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Chapter 1. Extensions

1.1. MPEG_material_acoustic
Source: m64377

1.1.1. General

The acoustic material extension adds support for acoustic materials to a scene. This extension may
be used together with the MPEG_audio_spatial extension, but is not limited to that extension.

When present, the MPEG_material_acoustic extension shall be included as an extension to a
material object as defined in ISO/IEC DIS 12113:2021.

For a primitive that is associated with a visual material, the acoustic material extension shall be
attached to it.

1.1.2. Semantics

The definition of the MPEG_material_acoustic extension is provided in the following table.

Name Type Default Usage Description

frequencies array O provides an array
of
MPEG_material_ac
oustic.frequency
objects as defined
in the next table.

accessor integer O As an alternative,
the frequency
characteristics
may be accessible
through an
accessor, which
references a
binary
representation of
the data in a
buffer. The binary
format of the
elements is
provided in table
3.

The definition of the MPEG_material_acoustic.frequency is provided in the following table.
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Name Type Default Usage Description

frequency number M The frequency for
associated with
the following
coefficients, with
values between 1
and 24000.

specularReflection number 0.0 O The specular
reflection
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indicates the
energy reflected
back in a distinct
outgoing direction.

diffuseScattering number 0.0 O The diffused
scattering
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indiates the
energy that is
diffusely scattered
back from the
material.

transmission number 0.0 O The transmission
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indiciates the
energy which
passes through the
material without
changing the
direction of the
sound.
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Name Type Default Usage Description

coupling number 0.0 O The coupling
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indiciates the
energy which
excites vibrations
in the structure
and is reemitted
by the entire
structure.

The binary format of the samples of the frequency characteristics is given in the following table.

Syntax Length (bits) Type Semantics

frequency 16 uint(16) The frequency for
associated with the
following coefficients,
with values between 1
and 24000.

specularReflection 32 float The specular reflection
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indicates the
energy reflected back
in a distinct outgoing
direction.

diffuseScattering 32 float The diffused scattering
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indiates the
energy that is diffusely
scattered back from the
material.
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Syntax Length (bits) Type Semantics

transmission 32 float The transmission
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indiciates the
energy which passes
through the material
without changing the
direction of the sound.

coupling The coupling
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indiciates the
energy which excites
vibrations in the
structure and is
reemitted by the entire
structure.

1.1.3. Processing Model

An acoustic material is described via that a list of elements, where each element holds four
coefficients and an associated frequency.

The coefficients are:

• specular reflection, which represents the energy being reflected in a distinct outgoing direction
from the direct sound.

• diffused scattering, which represents energy being diffusely scattering back from the material.

• transmission, which represents the energy that is passed through the material without changing
the direction.

• coupling, which represents the energy that excites vibrations in the structure and is re-emitted
by the entire structure.

The sum of these four coefficients, per frequency, must be less than or equal to 1, and be greater
than or equal to 0. The difference between 1 and the sum of the four coefficients, per frequency,
represents the energy that is dissipated into heat.

1.2. The Physics glTF extension and interactivity
Source: m67814
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1.2.1. 1 Introduction

Khronos is currently working on an extension for rigid body physics that is expected to produce a
set of KHR extensions. In this contribution, we introduce the current specification of this feature in
Khronos and discuss how it can be integrated with the interactivity extensions from MPEG.

1.2.2. 2 Khronos Physics Extensions

The Khronos effort on adding support for Physics to glTF 2.0 to enable rigid body simulations has
led to the development of 2 extensions: KHR_physics_rigid_bodies and KHR_collision_shapes.

The extensions to the glTF 2.0 document structure are depicted by the following figure:

Figure 1. A black and white image of a camera Description automatically generated

The KHR_physics_rigid_bodies extensions defines properties of a rigid body, which are associated
with a particular node in the graph. It may have one or more of the following properties:

• Motion: The motion property defines the type of motion a rigid body can have. It can be static,
dynamic, or kinematic. Static bodies do not move and are not affected by forces. Dynamic
bodies can move and are affected by forces. Kinematic bodies can move according to their
velocity but are not affected by external forces. The motion object provides other information
such as the mass, inertia vector, center of mass, linear and angular velocities of the node.

• Collider: The collider property describes the shape of the collider object for the purpose of
collision detection. Each rigid body has exactly one collider shape, which is defined by the
KHR_collision_shapes extension. In addition, the object provides pointers into physics materials,
which are materials that contain physics properties that describe the collision response of that
object. Finally, it also contains a set of filters, which describe if collision between two different
colliders is allowed to be triggered or is ignored.

• Trigger: A trigger object is used to trigger application-specific behavior upon detection of a
collision/overlap event. It is similar to a collider object but lacks a physics material.

• Joint: The joint property describes the physical connection between two rigid bodies. It defines
the type of movement allowed between the bodies, such as hinge (rotation around one axis),
slider (movement along one axis), or ball-and-socket (rotation around all axes). The joint
property also includes descriptions of joint limits and joint drives. The restrictions for the
movement of one rigid body with respect to the other are expressed by a limit object, which sets
min and max values for the position/rotation along a specific axis. A joint_drive object further
describes additional forces that are applied by a joint on a connected rigid body object.

As mentioned above, colliders are described through references to the KHR_collision_shapes, which
is an independent extension. The extension currently supports the definition of the following
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shapes: sphere, box, capsule, cylinder, convex, and trimesh.

1.2.3. 3 Relationship to the MPEG Interactivity Extension

The MPEG_scene_interactivity and MPEG_node_interactivity extensions define a collision trigger
for interactivity, which relies on the implementation of a rigid body physics simulation. The use of
the latter is activated through an explicit usePhysics flag. A mandatory collider mesh object is
provided but it is allowed to use simplified primitives instead. It is suggested to make the collider
object optional and mutually exclusive to the use of primitives.

We further suggest that the physics aspects be completely separated from the interactivity triggers
as described by the interactivity extension. This will allow for the usage of the interactivity
extension with any physics description model. A simple way to do that is by associating a collision
or trigger event with the trigger for interactivity, e.g. through indexing. The physics properties
should be completely extracted out of the interactivity extensions, which would allow for replacing
the physics description in the scene graph.

6



Chapter 2. ISOBMFF

2.1. Improvements for MPEG-I SD random access
description
Source: m58853

2.1.1. General

For random access of the MPEG-I Scene Description data in a ISOBMFF file tracks, play of the track
must start from either a sync sample or a redundant coding sample containing glTF JSON
document. Draft FDIS of ISO/IEC 23090-14 Scene Description for MPEG Media indicates that glTF
JSON documents shall be marked as sync samples and potential usage of redundant samples for
random access but it does not provide detailed descriptions on how to process such samples for
random access. This contribution proposes improvements on such description to avoid any
confusion by the readers.

2.1.2. Characteristics of random access points of MPEG-I Scene Description

For traditional audio-visual media data, sync samples are simply considered as random access
points as processing of a sync sample is same for a decoder playing a sync sample as the first
sample and a decoder already processed other sync samples and non-sync samples. When a sync
sample of traditional audio-visual media data is processed the result of previously processed
samples does not have to be preserved as they are not used for decoding of a sync sample and a
decoder is fully refreshed regardless of the status of the decoder before processing a sync sample.
This processing model cannot be simply applied to the processing of a sync sample of scene
description data as the status of Presentation Engine should not be fully refreshed and the status of
Presentation Engine before processing a sync sample needs to be preserved for efficient processing.
Therefore, appropriate processing model of sync sample of scene description needs to be described.

Table 1. Comparison of characteristics of sync samples characteristics of sync samples traditional
audio-visual media scene description data dependency to the previous samples No No continuity of
the decoder status No Yes

As shown in the Table 1, characteristics of sync sample of traditional audio-visual data and scene
description data are different. For traditional audio-visual media, sync samples are not dependent
to the previous samples and continuity of the data from the previous sample does not exist.
However, for scene description data, sync samples are not dependent to the previous samples but
continuity of the data from the previous sample may exist.

2.1.3. Description and processing of random access points

2.1.3.1. Random access points with sync samples

One type of random access point is sync sample. Currently, the specification is silent about the case
of having a sync sample in the middle of a track and how such samples should be process by a
Presentation Engine already in the processing of that track without breaking continuity of the
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Presentation Engine. So, there must be description about how to process sync samples by a
Presentation Engine already in the processing of a track. In this case, an ISOBMFF file track
carrying scene description data can have more than one sync sample and all of each sync samples
will contain a glTF JSON document which defines the status of the nodes at the presentation time of
the sync sample. The Presentation Engine which has not processed any sample before the current
sync sample can process a sync sample as normal scene description document. However, the
Presentation Engine already processed any samples before the current sync sample in decoding
order should process a sync sample as scene update even though document in the sample is not in
the form of JSON patch. Therefore, the description about such processing model should be defined.
Otherwise, there should be a restriction that only one sync sample is allowed in the track with
MPEG-I Scene Description data.

2.1.3.2. Random access points with redundant coding

The other type of random access point is redundant coding sample. Currently, the specification
mentions that the scene description data track can contain some non-sync samples which have
sample_has_redundancy flag set to '1'. As such samples will be parsed by a Presentation Engine
starting play from such sample and ignored by a Presentation Engine already in the processing of a
track, this sample will not break continuity of a Presentation Engine already in the processing of a
track. To use such samples as a random access point, such sample should carry a glTF JSON
document and the document should have the description of a scene same as the scene at the
composition time of that sample. In addition, it also needs to be mentioned that there should be no
update of scene between the sample preceding such samples and the sample succeeding such
samples.

Figure 2 shows an example with redundant samples for random access. In this example, a track
with scene description data has two redundant samples denoted as R. The redundant sample R8
whose composition time is between U7 and U9 contains a glTF JSON document contains description
of the scene at the time of the composition time of R8. The The Presentation Engine starting from
middle of the track starts play either R5 or R8, then play U6 or U9, respectively. The The
Presentation Engine starting from the begining of the track starts play D0 and ignore R5 and R8. As
the sample duration of U4 and U7 will be extended by sample duration of R5 and R8, respectively,
the scene description information in U4 and U7 must consider that the Presentation Engine will
play it longer than the duration of the sample containing it. For example, the animation of active
scene of the Presentation Engine according to the animation samplers provided by the sample U4
and the samples before that sample may continue until it receives any updated animation samplers
by the U6 sample or the samples after that sample.

Figure 2. An example structure of scene description data with shadow sync samples

Therefore some additional description about the scene description for such samples should be
provided.

2.1.4. Proposed text improvements
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2.1.4.1. Sync Samples

It is proposed to add a section about processing of sync samples as follows.

Processing of sync sample

When no nodes in the currently active scene of the Presentation Engine matches a node in a glTF JSON
document from a sync sample, the Presentation Engine shall add such node and interact with the MAF
to fetch any new content associated with the scene update. When a node in the currently active scene
of the Presentation Engine dose not match to any nodes in a glTF JSON document from a sync sample,
such nodes shall be removed from the currently active scene of the Presentation Engine. When a node
in the currently active scene of the Presentation Engine matches a node in a glTF JSON document from
a sync sample, then the status of such node shall be updated to the status of the node described by the
sync sample.

2.1.4.2. Redundant coding

It is proposed to improve a section about sample redundancies in section 8.7 of ISO/IEC 23090-14 as
follows.

Sample redundancies

For all tracks defined in this document, if a sample has its sample_has_redundancy flag set to '1' and
sample_depends_on flag set to '2', then it is expected that that sample contains a glTF JSON document
describing the status of the scene at the compsotion time of that sample and would only be made
available by the ISOBMFF parser to the Presentation Engine if the processing of the file starts with
this sample. Otherwise, it is expected that the sample be ignored, and that processing of the current
sample is continued beyond the duration of current sample for a duration equal to the duration of the
ignored sample, as defined in ISO/IEC 14496-12.

If the scene description preceding the sample ignored, then the Presentation Engine should continue
play of the currently active scene until it receives any updates from the next samples after the sample
ignored. Therefore, the scene description in the sample immediately preceding the sample in decoding
order whose sample_has_redundancy set to '1' and sample_depends_on set to '2 should consider that
the Presentation Engine will play the scene beyond the duration of that sample by the amount of the
duration of the next sample. In addition, the glTF JSON document in the sample whose sample_has
sample_has_redundancy set to '1' and sample_depends_on set to '2' shall not introduce any scene
description which make the status of active scene of a Presentation Engine different from the stauts of
the active scene of a Presentation Engine played immediately preceding this sample during the time
between the composition time of this sample and the composition time of immediately succeding
sample.

2.2. On sample formats for lighting information
Source: m65312

2.2.1. Introduction

At MPEG #143, the SC29 WG03 Systems issued the Text of ISO/IEC 23090-14 DAM 2 Support for
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haptics, augmented reality, avatars, interactivity and lighting (N00942).

Among other features, the amendment enables the signalling of lighting information in the scene
description document as follows:

1. Image-based lighting

2. Punctual light sources

Both types of lighting information can either be explicitly signalled in the scene description as static
information or be provided from accessors. For the image-based lighting, the extension
MPEG_lights_texture_based provides references to accessors for the rotation, intensity and
irradiances coefficients. For the punction light sources, the extension MPEG_light_punctual
provides references to accessor for the colour, intensity and range.

Since the specular images are suitable for storage in ISOBMFF files as static pictures or video
sequences (e.g. like in test files captured using ARCore), but the current specifications lacks of the
ability to store in such ISOBMFF the rest of the lighting information.

Therefore, this contribution proposes to define a sample format for all the lighting information
such that the scene creator can store all this information in a unified way.

In the v2 of the document, following discussion in session, this contribution also provides
alternative designs that were proposed. Those alternatives are:

• Defining the sample entry codes, e.g. ‘puli’, but not the sample format which is defined by the
time accessor

• Defining a single sample entry code, e.g. ‘sdmt’, with samples containing different parameters.

Those three alternatives needs to be studied for the next meeting.

2.2.2. Lighting information signalling

Lighting extension Attribute Accessor type

MPEG_lights_texture_based rotation componentType = 5126 (float),
type = VEC4,
count = 1

MPEG_lights_texture_based intensity componentType = 5126 (float),
type = SCALAR,
count = 1

MPEG_lights_texture_based irradiance componentType = 5126 (float),
type = SCALAR,
count = 27

MPEG_light_punctual color componentType = 5126 (float),
type = VEC3,
count = 1
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Lighting extension Attribute Accessor type

MPEG_light_punctual Intensity componentType = 5126 (float),
type = SCALAR,
count = 1

MPEG_light_punctual range componentType = 5126 (float),
type = SCALAR,
count = 1

2.2.3. Proposals

2.2.3.1. Option #1: Per metadata tracks

2.2.3.1.1. Design principles for file encapsulation

Principle #1: A light source is contained into one track

For a punctual light, there are three attributes. One approach is to have one track per attribute,
another is to have one track providing the three attributes. We believe that parsing one track for all
three attributes is friendlier for the application rather than getting all the information from
multiple tracks.

Principle #2: Elements can be configured to be optional

In some cases, some attributes of a light source are varying over time and some are static for the
duration of the scene. For instance, the intensity attribute of a light may change during a scene
while the color attribute may remain the same. In this case, it would be inefficient to repeat the
color information for every sample whenever the intensity does change. Therefore, it is desirable
that the presence of the attribute in the sample is gated by a flag.

Principle #3: Light sources multiplexing in samples

Especially for punctual lights in virtual scenes, there can be several light sources to describe. To
make the parsing simpler for the application, it is desirable to allow storing multiple light sources
in the same tracks, although the content creator may still decide which light sources to group
together. Therefore, it is desirable that the sample format allows for describing several light
sources, i.e. enabling a “light source multiplexing”.

2.2.3.1.2. Illustration of proposed file structures

For punctual lights, the content creator can create one or more tracks (with sample entry code
‘puli’) for storing the related information.

Figure 3. Carriage of punctual light information in timed metadata track ('puli')

For texture-based lights, the content creator can create one or more tracks (with sample entry code
‘tbli’) for storing the related information. For the specular images since they are video sequences,
conventional 2D video tracks are used.
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Figure 4. Carriage of texture-based light information in timed metadata track ('tbli')

2.2.3.1.3. Text proposal

2.2.3.1.3.1. Carriage format for lighting information

2.2.3.1.3.1.1. General

A timed metadata track can be used to provide the lighting information related to a given light
source. The light source can be of two types, punctual as defined in [MPEG_light_punctual] or
texture-based as defined in [MPEG_lights_texture_based]. The sample timing of the metadata track
defines the time instant of a lighting sample to which the lighting information in the sample
applies.

In the scene description document, the specified values are provided by referring to an accessor
with MPEG_accessor_timed extension.

2.2.3.1.3.2. Punctual lights sample entry*

Definition*

Sample Entry Type: 'puli'
Container: Sample Description Box ('stsd')
Mandatory: No
Quantity: 0 or 1

A punctual light sample entry identifies a track containing lighting information related to punctual
lights as defined in [MPEG_light_punctual].

2.2.3.1.3.2.1. Syntax

aligned(8) class PunctionalLLightSampleEntry( )
extends MetadataSampleEntry( 'puli' ) {
    unsigned int(16)    number_of_light_sources;
    unsigned int(1) color_is_static;
    unsigned int(1) intensity_is_static;
    unsigned int(1) range_is_static;
    bit(5)              reserved;
    if(color_is_static == 1) {
        unsigned int(16)    color[3];
    }
    if(intensity_is_static == 1) {
        unsigned int(16)    intensity;
    }
    if(range_is_static == 1) {
        unsigned int(16)    range;
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    }
}

2.2.3.1.3.2.2. Semantics*

number_of_light_sources specifies the number of light sources described in the samples.

color_is_static indicates that the color attribute is present in the sample entry and not in samples.

intensity_is_static indicates that the intensity attribute is present in the sample entry and not in
samples.

range_is_static indicates that the range attribute is present in the sample entry and not in samples.

color is an array of three fixed-point 0.16 number that indicates the value of the color attribute of
the light as defined in the color attribute of the KHR_lights_punctual extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the KHR_lights_punctual extension.

range a fixed-point 8.8 number that indicates the value of the range attribute of the light as defined
in the range attribute of the KHR_lights_punctual extension.

2.2.3.1.3.3. Punctual lights sample format*

2.2.3.1.3.3.1. General*

The sample format includes the attributes of a punctual light for each light source described by the
track.

2.2.3.1.3.3.2. Syntax*

class PunctualLightsInfo(
    int color_is_static,
    int intensity_is_static,
    int range_is_static) {
    if(color_is_static == 0) {
        unsigned int(16)    color[3];
    }
    if(intensity_is_static == 0) {
        unsigned int(16)    intensity;
    }
    if(range_is_static == 0) {
        unsigned int(16)    range;
    }
}

aligned(8) class PunctualLightsSample(
    int number_of_light_sources,
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    int color_is_static,
    int intensity_is_static,
    int range_is_static) {
    PunctualLightsInfo light_info(
        color_is_static,
        intensity_is_static,
        range_is_static)[number_of_light_sources];
}

2.2.3.1.3.3.3. Semantics

color is an array of three fixed-point 0.16 number that indicates the value of the color attribute of
the light as defined in the color attribute of the KHR_lights_punctual extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the KHR_lights_punctual extension.

range a fixed-point 8.8 number that indicates the value of the range attribute of the light as defined
in the range attribute of the KHR_lights_punctual extension.

2.2.3.1.3.4. Texture-based lights sample entry*

2.2.3.1.3.4.1. Definition

Sample Entry Type: 'tbli'
Container: Sample Description Box ('stsd')
Mandatory: No
Quantity: 0 or 1

A texture-based light sample entry identifies a track containing lighting information related to
texture-based lights as defined in [MPEG_lights_texture_based].

2.2.3.1.3.4.2. Syntax

aligned(8) class TextureBasedLLightSampleEntry( )
extends MetadataSampleEntry( 'tbli' ) {
    unsigned int(16) number_of_light_sources;
    unsigned int(1) rotation_is_static;
    unsigned int(1) intensity_is_static;
    unsigned int(1) irradiance_coefficients_are_static;
    bit(5)              reserved;
    if(rotation_is_static == 1) {
        unsigned int(16)    color[3];
    }
    if(intensity_is_static == 1) {
        unsigned int(16)    intensity;
    }
    if(irradiance_coefficients_are_static == 1) {
        float(32)           irradience_coefficients[27];
    }
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}

2.2.3.1.3.4.3. Semantics

number_of_light_sources specifies the number of light sources described in the samples.

rotation_is_static indicates that the rotation attribute is present in the sample entry and not in
samples.

intensity_is_static indicates that the intensity attribute is present in the sample entry and not in
samples.

irradiance_coefficients_are_static indicates that the irradiance coefficients attribute are present in
the sample entry and not in samples.

rotation is an array of four fixed-point 0.32 signed integer that indicates the value of the quaternion
representing the rotation attribute of the light as defined in the rotation attribute of the
EXT_lights_image_based extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the EXT_lights_image_based extension.

irradience_coefficients is a sequence of 27 32-bit float numbers that indicates the value of the
irradiance coefficients of the light as defined in the irradiance attribute of the
EXT_lights_image_based extension.

2.2.3.1.3.5. Texture-based lights sample format

2.2.3.1.3.5.1. General

The sample format includes the attributes of a texture-based light for each light source described by
the track. ====== Syntax

class TextureBasedLightsInfo(
    int rotation_is_static,
    int intensity_is_static,
    int irradiance_coefficients_are_static) {
    if(rotation_is_static == 0) {
        signed int(32)  rotation[4];
    }
    if(intensity_is_static == 0) {
        unsigned int(16)    intensity;
    }
    if(irradiance_coefficients_are_static == 0) {
        float(32)           irradience_coefficients[27];
    }
}

aligned(8) class TextureBasedLightsSample(
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    int number_of_light_sources,
    int rotation_is_static,
    int intensity_is_static,
    int irradiance_coefficients_are_static) {
    TextureBasedLightsInfo light_info(
        rotation_is_static,
        intensity_is_static,
        irradiance_coefficients_are_static)[number_of_light_sources];
}

2.2.3.1.3.5.2. Semantics

rotation is an array of four fixed-point 0.32 signed integer that indicates the value of the quaternion
representing the rotation attribute of the light as defined in the rotation attribute of the
EXT_lights_image_based extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the EXT_lights_image_based extension.

irradience_coefficients is a sequence of 27 32-bit float numbers that indicates the value of the
irradiance coefficients of the light as defined in the irradiance attribute of the
EXT_lights_image_based extension.

2.2.3.2. Option #2: Unspecified sample format

In this option, we would only define the sample entry (empty) and let the timed accessor in the glTF
to describe how the samples are formed.

aligned(8) class PunctionalLLightSampleEntry( )
extends MetadataSampleEntry( 'puli' ) {
}

aligned(8) class TextureBasedLLightSampleEntry( )
extends MetadataSampleEntry( 'tbli' ) {
}

2.2.3.3. Option #3: Generic sample definition for SD timed metadata

In this option, we would define a single sample entry code and sample format that accommodates
all the timed metadata defined in SD.

For instance, this is a possible sample entry definition when considering the punctual and texture-
based lighting extension. Note that this should be extended to the other timed metadata present in
SD v1 if we move forward with this approach.

class PunctionalLLightConfig( )
    unsigned int(16)    number_of_light_sources;
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    unsigned int(1) color_is_static;
    unsigned int(1) intensity_is_static;
    unsigned int(1) range_is_static;
    bit(5)              reserved;
    if(color_is_static == 1) {
        unsigned int(16)    color[3];
    }
    if(intensity_is_static == 1) {
        unsigned int(16)    intensity;
    }
    if(range_is_static == 1) {
        unsigned int(16)    range;
    }
}

class TextureBasedLightingConfig( ) {
    unsigned int(16) number_of_light_sources;
    unsigned int(1) rotation_is_static;
    unsigned int(1) intensity_is_static;
    unsigned int(1) irradiance_coefficients_are_static;
    bit(5)              reserved;
    if(rotation_is_static == 1) {
        unsigned int(16)    color[3];
    }
    if(intensity_is_static == 1) {
        unsigned int(16)    intensity;
    }
    if(irradiance_coefficients_are_static == 1) {
        float(32)           irradience_coefficients[27];
    }
}

aligned(8) class SceneDescrptionMetadataSampleEntry( )
extends MetadataSampleEntry( 'sdmt' ) {
    unsigned int(3) metadata_type;

    switch(metadata_type) {
        case 0:
            PunctionalLLightConfig config;
            return;
        case 1:
            TextureBasedLightingConfig config;
            return;
    }
}

Then the text would say that if metadata_type is equal to 0 then the sample is
PunctualLightsSample, if equal to 1 then the sample is TextureBasedLightsSample.
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class PunctualLightsInfo(
    int color_is_static,
    int intensity_is_static,
    int range_is_static) {
    if(color_is_static == 0) {
        unsigned int(16)    color[3];
    }
    if(intensity_is_static == 0) {
        unsigned int(16)    intensity;
    }
    if(range_is_static == 0) {
        unsigned int(16)    range;
    }
}

aligned(8) class PunctualLightsSample(
    int number_of_light_sources,
    int color_is_static,
    int intensity_is_static,
    int range_is_static) {
    PunctualLightsInfo light_info(
        color_is_static,
        intensity_is_static,
        range_is_static)[number_of_light_sources];
}

class TextureBasedLightsInfo(
    int rotation_is_static,
    int intensity_is_static,
    int irradiance_coefficients_are_static) {
    if(rotation_is_static == 0) {
        signed int(32)  rotation[4];
    }
    if(intensity_is_static == 0) {
        unsigned int(16)    intensity;
    }
    if(irradiance_coefficients_are_static == 0) {
        float(32)           irradience_coefficients[27];
    }
}

aligned(8) class TextureBasedLightsSample(
    int number_of_light_sources,
    int rotation_is_static,
    int intensity_is_static,
    int irradiance_coefficients_are_static) {
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    TextureBasedLightsInfo light_info(
        rotation_is_static,
        intensity_is_static,
        irradiance_coefficients_are_static)[number_of_light_sources];
}
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Chapter 3. Codec Support

3.1. Dynamic mesh support in scene description
V-DMC is considerd for future Amendment

3.2. Support for multiple atlases for MIV applications
(MPEG142)
Source: m62515

3.2.1. Multiple atlases

3.2.1.1. Motivation

A V3C bitstream can be decomposed into one or more atlas sub-bitstreams and their associated
video sub-bitstreams. The video sub-bitstreams for each atlas may include video-coded occupancy,
geometry, and attribute components. In the V3C parameter set (sub-clause 8.4.4.1 in [3]),
vps_atlas_count_minus1 plus 1 indicates the total number of atlases in the current bitstream. The
value of vps_atlas_count_minus1 is in the range of 0 to 63, inclusive.

With the proposal in Section 2.2.1 to support multiple atlases in the MPEG_primitive_V3C extension,
MPEG-I SD remains future proof to any future derivation of V3C specification which may depend on
multiple atlases along with common atlas data. One derived V3C specification in ISO/IEC 23090-12,
specified the use of common atlas data which is common to atlases in the V3C bitstream.

3.2.1.2. Overview

The proposals take the following aspects into consideration:

• Logical grouping of the relevant syntax to describe an atlas in the MPEG_primitive_V3C
extension.

• Use of atlasID property to identify the atlas identifier which is equal to vps_atlas_id[k] specified
in 8.4.4.1 of ISO/IEC 23090-5[3]. In case there are multiple atlases in the V3C bitstream, atlasID
provides a unique identifier stored in the bitstream to uniquely identify an atlas in
_MPEG_primitive_v3c extension and establishes a corresponding relation with atlas definition
in the bitstream.

3.2.1.3. Array of atlases

A new property is defined under the _MPEG_primitive_V3C extension named atlases. The atlases
property is an array of components corresponding to an atlas. The length of the atlases array shall
be equal to the number of atlases for a V3C object. The properties for an object in the atlases array
describe the atlas data component and corresponding video-coded components such as attribute,
occupancy, and geometry for a V3C object.

The atlasID property is an integer values, where each integer value refers to the vps_atlas_id
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specified in sub-clause 8.4.4 in [3] for each atlas in the V3C bitstream.

3.2.1.3.1. MPEG_primitive_V3C

glTF extension to specify support for V3C compressed primitives.

Table 1. MPEG_primitive_V3C Properties

Type Description Required

atlases MPEG_primitive_V3C.atl
as [1-*]

An array of atlases  Yes

_MPEG_V3C_CAD MPEG_primitive_V3C._MP
EG_V3C_CAD

This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.schema.json

3.2.1.3.1.1. MPEG_primitive_V3C.atlases

An array of atlases

• Type: MPEG_primitive_V3C.atlas [1-*]

• Required:  Yes

3.2.1.3.1.2. MPEG_primitive_V3C._MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

• Type: MPEG_primitive_V3C._MPEG_V3C_CAD

• Required: No

3.2.1.3.1.3. MPEG_primitive_V3C.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension
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3.2.1.3.1.4. MPEG_primitive_V3C.extras

Application-specific data.

• Type: any

• Required: No

3.2.1.3.2. MPEG_primitive_V3C._MPEG_V3C_CAD

defines the common atlas data for a v3c object

Table 2. MPEG_primitive_V3C._MPEG_V3C_CAD Properties

Type Description Required

MIV_view_parameters integer indicates the accessor
index which is used to
refer to the list of MIV
view parameters.

 Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json

3.2.1.3.2.1. MPEG_primitive_V3C._MPEG_V3C_CAD.MIV_view_parameters

indicates the accessor index which is used to refer to the list of MIV view parameters.

• Type: integer

• Required:  Yes

• Minimum: >= 1

3.2.1.3.2.2. MPEG_primitive_V3C._MPEG_V3C_CAD.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

3.2.1.3.2.3. MPEG_primitive_V3C._MPEG_V3C_CAD.extras

Application-specific data.
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• Type: any

• Required: No

3.2.1.3.3. MPEG_primitive_V3C.atlas

glTF extension to specify support for V3C compressed primitives.

Table 3. MPEG_primitive_V3C.atlas Properties

Type Description Required

_MPEG_V3C_CONFIG integer  Yes

_MPEG_V3C_AD integer  Yes

_MPEG_V3C_GVD_MAP
S

integer [1-*] an array of references
to video texture maps.

 Yes

_MPEG_V3C_OVD_MAP integer [0-*] a reference to a video
texture that provides
the occupancy map

No

_MPEG_V3C_AVD MPEG_primitive_V3C.att
ribute [0-*]

No

_MPEG_V3C_CAD object This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.atlas.schema.json

3.2.1.3.3.1. MPEG_primitive_V3C.atlas._MPEG_V3C_CONFIG

• Type: integer

• Required:  Yes

• Minimum: >= 0

3.2.1.3.3.2. MPEG_primitive_V3C.atlas._MPEG_V3C_AD

a reference to the accessor that points to the atlas data.

• Type: integer
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• Required:  Yes

• Minimum: >= 0

3.2.1.3.3.3. MPEG_primitive_V3C.atlas._MPEG_V3C_GVD_MAPS

an array of references to video textures that provide the geometry maps.

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required:  Yes

3.2.1.3.3.4. MPEG_primitive_V3C.atlas._MPEG_V3C_OVD_MAP

a reference to a video texture that provides the occupancy map

• Type: integer [0-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required: No

3.2.1.3.3.5. MPEG_primitive_V3C.atlas._MPEG_V3C_AVD

An array of references to the video textures that provide the attribute data

• Type: MPEG_primitive_V3C.attribute [0-*]

• Required: No

3.2.1.3.3.6. MPEG_primitive_V3C.atlas._MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

• Type: object

• Required: No

3.2.1.3.3.7. MPEG_primitive_V3C.atlas.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

3.2.1.3.3.8. MPEG_primitive_V3C.atlas.extras

Application-specific data.

• Type: any

• Required: No
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3.2.1.3.4. MPEG_primitive_V3C.attribute

defines the attribute of a V3C object.

Table 4. MPEG_primitive_V3C.attribute Properties

Type Description Required

type integer provides the type of the
attribute.

No

maps integer [1-*]  Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.attribute.schema.json

3.2.1.3.4.1. MPEG_primitive_V3C.attribute.type

provides the type of the attribute.

• Type: integer

• Required: No

• Minimum: >= 0

• Maximum: <= 255

3.2.1.3.4.2. MPEG_primitive_V3C.attribute.maps

provides the references to the corresponding video texture maps.

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required:  Yes

3.2.1.3.4.3. MPEG_primitive_V3C.attribute.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension
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3.2.1.3.4.4. MPEG_primitive_V3C.attribute.extras

Application-specific data.

• Type: any

• Required: No

Following is an example illustrating the use of the syntax described in Section 3.2.1.3.3

{
    "meshes": [{
        "name": "v3c_mesh",
        "primitives": [{
            "attributes": {
                "POSITION": 0,
                "COLOR_0": 1
            },
            "mode": 0,
            "extensions": {
                "MPEG_primitive_V3C": {
                    "atlases": [{
                        "atlasID": 1,
                        "_MPEG_V3C_OVD_MAPS": [2],
                        "_MPEG_V3C_GVD_MAPS": [3, 4],
                        "_MPEG_V3C_AVD": [{
                                "type": 0,
                                "maps": [5, 6]
                            },
                            {
                                "type": 4,
                                "maps": [7, 8]
                            }
                        ],
                        "_MPEG_V3C_CONFIG": 9,
                        "_MPEG_V3C_AD": {
                            "buffer_format": "baseline",
                            "accessor": 10
                        }
                    }],
                    "_MPEG_V3C_CAD": {
                        "MIV_view_parameters": 114
                    }
                }
            }
        }]
    }]
}
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PCC), Online, https://www.iso.org/standard/73025.html
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Chapter 4. Interfaces

4.1. Supporting Multiple Viewers in the Media Access
Function
Source: m58510

4.1.1. General

In the Presentation Engine of the MPEG-I Scene Description architecture, the viewer’s view of the
scene is determined by the camera used for rendering the scene from the viewer’s viewpoint. In
many use cases, the Presentation Engine runs on the end user’s device and therefore there is only
one viewer for the scene and one camera object is used at any given point in time for composition
and rendering. Using the camera information provided by the Presentation Engine, the MAF can
identify which objects in the scene are within the viewing frustum of the camera at a given time
instance.

However, in some scenarios multiple cameras are used for rendering the scene from a number of
viewpoints corresponding to different viewers of the same scene (e.g., in multi-viwer applications
such as online conferencing applications with multiple users). In such scenarios, information about
the cameras used to generate each viewer’s view of the scene, including both intrinsic and extrinsic
camera parameters, are required by the MAF to identify and request the appropriate media or
media parts for each viewer.

Since a media pipeline is tightly coupled with the type of the media, it may not be desirable to have
multiple media pipelines for the same content for different viewers. Rather, the MAF should allow a
single media pipeline for a media content to be used for composition and rendering for different
viewers.

4.1.2. Proposed Updates to MAF API

To support media fetching for multi-viewer applications, where each viewer may have their own
extrinsic and intrinsic camera parameters, relevant methods in the MAF API and their definition
should be updated as follows (updates are in bold).

4.1.2.1. Methods

Table 5. n/a
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Methods State after success Description

startFetching() ACTIVE Once initialized and in READY
state, the Presentation Engine
may request the media pipeline
to start fetching the requested
data.

The initialization may be
performed using view
information for one or more
viewers.

updateView() ACTIVE Update the current view
information. This function is
called by the Presentation
Engine to update the current
view information, if the pose or
object position have changed
significantly enough to impact
media access. It is not expected
that every pose change will
result in a call to this function.

A call to this function shall
include the view information
for only those views whose
parameters have significantly
changed.

4.1.2.2. IDL for media pipeline

interface Pipeline {
    readonly attribute Buffer         buffers[];
    readonly attribute PipelineState  state;
    attribute          EventHandler   onstatechange;
    void    initialize.   (MediaInfo mediaInfo, BufferInfo bufferInfo[]);
    void    startFetching (TimeInfo timeInfo, ViewInfo viewInfo[]);
    void    updateView.   (ViewInfo viewInfo[]);
    void    stopFetching. ();
    void    destroy.      ();
};

4.2. Generic API for Presentation Engine
Source: m66705
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4.2.1. Generic Render Control API

The Generic Render Control API is an abstract API that is offered by external renderers to enable
applications, such as Presentation Engines, to control the rendering process by aligning and
synchronizing their rendering state to that of the Presentation Engine. This API is used by the
Presentation Engine to configure and update the status of the external renderer.

The following table describes the functionality provided by the Render Lock-in API:

Method Description

init() Initializes the external renderer by providing the related media source
information and their corresponding buffers. It also establishes a session
between the Presentation Engine and the external renderer.

The inputs to this method call should be:

• A media source object that contains a handler to the buffer(s), where the
source media will be made available by the MAF. A description of the
media source and the contents of each buffer shall also be provided.
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Method Description

configure() Configures the external renderer to establish an initial alignment and
synchronization between the Presentation Engine and the external
renderer.

The parameters to this method may include:

• A mapping between the initial timestamp of the common Presentation
Engine timeline and that of the media associated with the external
renderer. It also provides information about the clock rate of the
Presentation Engine.

• A list of mapped nodes in the source media rendered by the external
renderer. This list shall at least contain one object with a mapping to the
main camera of the main scene description. For audio renderers, this
may be the audio listener. The information is provided by the the
MPEG_node_mapping extension in the scene description document. It
should also provide the initial position and transformation of the
mapped nodes after applying the transformations associated with these
node mappings. .

• A description of the scene bounding box using the glTF 2.0 spatial
coordinate system. The external renderer uses this information to
establish a spatial alignment between the scene coordinate system and
the coordinate system that is used by the source media. The external
renderer may align the bounding box of the scene to that of its media
stream, which establishes the transformation that needs to be applied to
all spatial coordinates exchanged over the API, in order to determine the
corresponding coordinates in the coordinate system of the media
stream.

• A list of tracked AR anchors that may be used by the external renderer.

The external renderer may then subscribe for updates to specific aligned
nodes or it may specifically ask for current state for these nodes, using the
referenceId.



all exchanges over this API are based on the scene (glTF2.0)
coordinate system. It is the responsibility of the external
renderer to convert into their own coordinate system. The
Presentation Engine does not consider any other coordinate
systems other than the one established by the scene
description.
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Method Description

start()

pause()

resume()

stop()

Allows the Presentation Engine to control the playback of selected media
sources associated with the external renderer for interactivity purposes.

update() Used by the Presentation Engine to update node positions and orientations
for which there is a mapping with the external renderer. Updates may result
from received scene updates, user interactions, animations, physics
simulations, or any other events.

The parameters passed to this method are an array of objects consisting of:

• The referenceId of the node to which this update applies

• The transform matrix that sets the current pose of the tracked object
after applying the transform operation as described by the
corresponding MPEG_node_mapping. Any further adjustments need to
be applied by the external renderer to align with its internal coordinate
system.

updateGraph() The Presentation Engine uses the updateGraph function to add, update, or
remove a set of nodes to the internal representation of the scene that is
maintained by the external renderer. Only nodes that have a mapping with
the external renderer can be passed through this method.

The parameters to this method are an array of objects that include:

• The graph operation: ADD, REMOVE, UPDATE

• For ADD: the referenceId and the initialization information for the
associated media data to the object that is to be added.

• For REMOVE: the referenceId of the object to be removed.

• For UPDATE: the referenceId of the object to be updated, as well as a
dictionary of attributes and their update values.

registerCallback() The Presentation Engine may provide a callback function to the external
renderer to allow it to query the status of certain parameters at any time.
This may for example include asking for the current user pose.

The Presentation Engine shall register a callback function whenever
possible.

The following is a description for the API in IDL (ISO/IEC 19516):

interface GenericRenderControl {
   void init();
   void configure();
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   void start();
   void pause();
   void resume();
   void stop();
   update();
   void updateGraph();
   void registerCallback();
};

4.2.2. Extension for Audio Node Mapping

4.2.2.1. General

The MPEG node mapping extension, identified by MPEG_node_mapping, establishes a mapping
between the node in the scene description document and an external entity. An example is the
mapping between a node that contains a car and an external audio node in an MPEG-I Audio
bitstream, with a simplified geometry of that car and the attached audio sources. The following
figure depicts that example:

Figure 5. A black and white image of a camera Description automatically generated

When present, the MPEG_node_mapping extension shall be included in a node object.

4.2.2.2. Semantics

The definition of all objects with the MPEG_node_mapping extension is provided in the following
table:

Name Type Default Usage Description

mappings array(object) M An array of mappings associated with
the containing node.

Role string “urn:mp
eg:sd:rol
e:default
”

O An identifier of the role associated with
this mapping. The role may for instance
be “urn:mpeg:sd:role:audio-renderer” to
indicate that the component is an audio
renderer.

source number N/A M The index in the MPEG_media that
provides the media resource that
contains the mapped element.

referenceId number N/A M An identifier of the element in the
referenced resource.
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Name Type Default Usage Description

transform array(numb
er)

Identity O A 4x4 matrix that supplies the transform
used to align the referenced element to
the current node.

supportsInteractivity boolean false O Indicates if interactivity actions applied
to the node should be exposed if an API
is made available to the Presentation
Engine by the renderer of the resource.

4.2.2.3. Processing Model

When processing the MPEG_node_mapping extension, the Presentation Engine shall identify nodes
in the scene description that have a node mapping. The Presentation Engine shall determine if the
component identified by the indicated role supports the Rendering Alignment API as defined in
contribution m65395. If it does, the Presentation Engine shall pass the mapping information to the
identified component.

The Presentation Engine shall then use the API to align the rendering with the component as
configured over the API.
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Chapter 5. MPEG-I Audio in Scene
Description

5.1. Immersive audio extension
Source: m63549

5.1.1. Introduction

A support of spatial audio is provided in ISO/IEC 23090-14 [1] through the MPEG_audio_spatial
extension based on the description of source, reverb and listener objects.

To allow a better audio immersion, MPEG-I WG6 immersive audio group has developed a dedicated
Encoded Input Format (EIF) [1] to provide acoustic/audio properties in a scene graph for the MPEG
immersive audio rendering.

Several WG3/WG6 joint meetings have been held since October to define how to manage in a
consistent way both the immersive audio and the MPEG-I Scene Description scene graphs. As
detailed in [2], two approaches have been identified for further investigations:

• A first approach based on a hybrid scene description has been selected to be the first target for
developing an integrated architecture. As this approach supports the 2 scene graphs, a
synchronization mechanism shall be defined through a dedicated API.

• A second approach based on a common scene description

Related to the second approach, a shadow scene concept [3] has been introduced at the MPEG#141
meeting in January 2023 to provide a way for describing invisible simplified geometries to be used
by audio renderer. The main benefit of this approach is to share a common glTF-based semantic,
but the addition of a new glTF “shadow” scene creates a second scene graph which requires spatial
and temporal synchronizations with the graph of the main scene.

This contribution provides an alternative approach to the “shadow” scene concept to support
immersive audio. As for the MPEG spatial audio support [1], it relies on a single shared scene graph
thus eliminating the need for additional synchronization. This proposed approach is direct and
consistent compared to the MPEG interactivity extension where invisible simplified geometries are
already defined for collision detection for example.

Note: Further studies are required to ensure that all the audio/acoustic functionalities/features are
supported.

5.1.2. Background

Virtual objects may have several representations, each of them targeting a dedicated renderer.

For a sake of illustration, a full VR experience is shown in Figure 6 where a virtual car is moving
inside a virtual environment which includes a wall. A user is equipped with a HMD to visualize the
3D virtual scene, an immersive audio headset to hear the motor and a pad controller to drive the
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car.

The car and the wall have dedicated representations for audio and visual renderers:

• The car has a geometry for the audio source extent and another geometry for the visual
renderer

• The wall has a geometry associated with an acoustic material for the audio renderer and
another geometry for the visual renderer

Figure 6. Virtual objects having dedicated representations for audio and visual renderers

Each object representation is dedicated to either the audio or visual renderer. For example, the
geometry for the spatial extend of the audio source (motor of the car) shall not be considered by the
visual renderer.

When the car is moving, its audio and visual representations shall be spatially and timely
consistent.

5.1.3. MPEG-I immersive audio support

A preliminary approach to support MPEG-I immersive audio in a common scene graph is described
in this section. Further studies are required to ensure that all acoustic functionalities/features are
supported.

In Table 6, we describe and compare the different capabilities of MPEG_audio_spatial and the
MPEG-I Audio solution.

Table 6. Comparison between the different capabilities of MPEG_audio_spatial and the MPEG-I Audio
solution
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MPEG_audio_spatial MPEG-I Audio New Extension

Audio Objects • Listener: A
representation of
the listener in the
scene, typically
associated with the
camera of the
scene.

• Source: An audio
source that emits
sounds in the scene.

• Reverb: describes a
reverb effect that
can be applied to an
audio source.

Scene Objects include a
Listener and Audio
elements.

Inherit.

Audio Source Type • Object: a mono-
channel audio
source

• HOA

Audio elements maybe:

• Object Source

• HOA Source

Inherit.

Object Properties Inherited from glTF.
Velocity can be realized
as a TRANSLATION
animation. Animations
can do more, e.g. scale
and rotation.

Position, velocity,
isStatic, parent.

Inherit.

Source properties Pregain, playback
speed, attenuation,
referenceDistance,
reverbFeed and
reverbFeedgain,
accessors.

Gain, directivity,
directiveness, extent,
refDistance,
audioStream. And for
HOA, additional info:
group, Is6DoF,
transitionDistance.

Inherit + guidelines for
extents + better support
for hidden geometries +
support for HOA
groups.

Effects Reverberation effect. Reverberation, early
reflection, diffraction,
portal, dispersion, fade-
in/out.

Extend effects.

Scene types Supports any type of
scene. AR through AR
anchoring extension.

AR or VR. Inherit.

Geometry Inherited from glTF2.0. Built-in geometry
definitions.

Inherit + better support
for hidden
meshes/primitives.
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MPEG_audio_spatial MPEG-I Audio New Extension

Materials No support for acoustic
materials

Support for materials
with specular
reflection, diffused
scattering,
transmission, and
coupling.

Define acoustic
materials.

Voxel Representation Not supported Voxel-based geometry
and compression.

Add to the new
extension.

Mesh compression None. Built-in Add support for
external mesh codecs
such as V-DMC and
Draco (Khronos
extension).

As detailed in the MPEG-I Immersive Audio Encoder Input Format (EIF) document [1],
audio/acoustic data may be provided at several parts of a scene graph:

• At global/scene level

• At object/node level

• At avatar/user representation

• At mesh primitive level

The following sections identifies new potential MPEG extensions at several levels of a glTF scene
graph to support MPEG-I immersive audio as shown in Figure 7 . Note that alternatively, a single
extension, as is the case with MPEG_audio_spatial, might be defined instead.

Figure 7. Proposed new MPEG glTF extensions to support MPEG-I immersive audio

5.1.3.1. Audio/acoustic data at global/scene level

The acoustic data relevant for the whole scene or for a specific spatial zone delimited by a static
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geometry are defined as acoustic environment data in section 3.9 of EIF document [1]. An
environment is characterized by acoustic parameters at defined positions such as:

• The 60 dB reverberation time (RT60)

• The pre-delay time

• The Diffuse-to-Direct-Ratio (DDR)

These acoustic environment data may be provided through a new “MPEG_acoustic_environment”
glTF extension at scene level.

5.1.3.2. Audio/acoustic data at node level

A dedicated acoustic extension shall be defined at the node level to support the representation of
the related 3D object for the audio renderer.

This new “MPEG_node_immersive_audio” extension typically provides a reference to a mesh
geometry having an acoustic material. Thanks to referencing the mesh inside an audio-specific
extension, we ensure that this mesh and the related material are only used by the audio renderer
and are “invisible” for the visual renderer.

The audio data related to the source which emits sound into the virtual scene may also typically be
provided at the node level (in line with the already-existing source object of the MPEG audio spatial
extension [1]). The audio source takes benefit from the node position/orientation to define its pose.

The audio source parameters are defined in section 3.2 of EIF document [1] such as:

• The unique ID

• The signal which defines the corresponding audio stream

• The extent which defines a geometry for the spatial extent of the source perceived by the
listener in an elevation/azimuth sector

◦ As this extent geometry is referenced inside an audio-specific extension, we ensure that this
mesh is only used by the audio renderer and is “invisible” for the visual renderer

These audio source data may be provided through a new “MPEG_audio_source” glTF extension at
node level.

5.1.3.3. Audio/acoustic data at avatar/user representation level

Basically, an audio listener is implicitly attached to the user experiencing the XR application.

A dedicated MPEG avatar extension is currently being defined to describe the user representation
for that XR experience. This extension is attached to a node having a camera component.

Therefore, we may also provide dedicated data related to the audio listener at the avatar node level
through a new “MPEG_audio_listener” glTF extension. One potential parameter would be a unique
identifier ID, in line with the already-existing listener object of the MPEG audio spatial extension
[1])
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5.1.3.4. Audio/acoustic material data at mesh primitive level

An acoustic material characterizes the acoustic behavior of surfaces of 3D object. This acoustic
material is typically referenced by the mesh geometry provided within the
MPEG_node_immersive_audio” extension.

The parameters are frequency-dependent and are defined in section 3.8 of EIF document [1] such
as:

• The specular reflection coefficient (r)

• The diffuse scattering coefficient (s)

• The transmission coefficient (t)

• The coupling coefficient (c)

These acoustic material data may be provided through a new “MPEG_audio_material” glTF
extension at mesh primitive level.

5.1.4. References

[1] ISO/IEC 23090-14

[2] MPEG-I Immersive Audio Encoder Input Format v3, N0169, October 2022

[3] Considerations on MPEG-I audio and MPEG-I scene description architectures, N0186, February
2023

[4] Definition of Shadow Scenes, m62227, January 2023

5.2. MPEG-I Audio in Scene Description
Source: m61180

5.2.1. General

MPEG-I Immersive Audio has been specified in ISO/IEC 23090-4. The specification assumes the
presence of an MPEG-I immersive audio renderer that will receive the MPEG-I audio bitstream, a
set of MPEG-H audio streams, as well as information about some scene metadata, such as listener’s
pose. It will then use the audio scene metadata in the MPEG-I audio bitstream, the decoded MPEG-H
bitstreams, and the pose information to render the spatial audio.

Figure 8 depicts the MPEG-I audio architecture:

Figure 8. N/A
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The MPEG-I render pipeline is depicted by Figure 9:

Figure 9. N/A

MPEG-I immersive audio relies on a new scene description format for the audio scene to establish
the spatial relationships between the different audio sources.

Ideally, the audio scene metadata should be described as part of a common scene description that
includes all media types: visual, audio, haptics, etc. The MPEG-I audio renderer would then be
driven by scene metadata extracted from the common scene description.

However, if this is not possible, alternative options may be available. In the first option, the MPEG-I
Presentation Engine will be provided with callbacks to allow it to update the audio scene based on
information coming from the common scene description. This option is described by Figure 10:

Figure 10. N/A

This option requires that the Presentation Engine gets all the extracted audio scene metadata, so
that it can align it with the common scene description.

Another option would be to pre-process the MPEG-I immersive audio bitstream to align it with the
common scene description. This option is depicted by Figure 11:

Figure 11. N/A

The pre-processing block may insert scene update MHAS packets to achieve the alignment of the
audio scene with the common scene.

Yet another option could be that the common scene description completely overwerites the MPEG-I
immersive audio scene with the spatial audio description in the scene description. In essence, it
would just use the decoded MPEG-H streams as audio sources.
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5.3. Establishing a Mapping between Audio and MPEG-I
Scenes
Source: m65378

5.3.1. General

Systems and Audio groups are discussing the support of MPEG-I Audio in Scene Description. The
groups have discussed several ways of achieving this goal, with the most agreed on option being the
support of a separate MPEG-I audio stream that is referenced by the scene description document.

This approach is depicted by the following figure:

Figure 12. n/a

The MPEG-I Audio bitstream contains a description of the audio scene that is independent of the
main scene description consumed by the Presentation Engine. In fact, this approach permits that
these two scenes are created completely separately and independently. Proper rendering of both
scenes to provide a consistent experience to the user becomes then extremely challenging.

To enable this approach, an alignment between the Presentation Engine and the Audio Renderer is
essential. This alignment goes beyond the traditional time alignment but includes also spatial
alignment.

5.3.2. Extension for Audio Node Mapping

5.3.2.1. General

The MPEG node mapping extension, identified by MPEG_node_mapping, establishes a mapping
between the node in the scene description document and an external entity. An example is the
mapping between a node that contains a car and an external audio node in an MPEG-I Audio
bitstream, with a simplified geometry of that car and the attached audio sources. The following
figure depicts that example:

Figure 13. n/a

When present, the MPEG_node_mapping extension shall be included in a node object.

5.3.2.2. Semantics

The definition of all objects with the MPEG_node_mapping extension is provided in the following
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table:

Name Type Default Usage Description

role string “urn:mp
eg:sd:rol
e:default
”

O An identifier of the role associated with
this mapping. The role may for instance
be “urn:mpeg:sd:role:audio-renderer” to
indicate that the component is an audio
renderer.

source number N/A M The index in the MPEG_media that
provides the media resource that
contains the mapped element.

referenceId number N/A M An identifier of the element in the
referenced resource.

transform array(numb
er)

Identity O A 4x4 matrix that supplies the transform
used to align the referenced element to
the current node.

supportsInteractivity boolean false O Indicates if interactivity actions applied
to the node should be exposed if an API
is made available to the Presentation
Engine by the renderer of the resource.

5.3.2.3. Processing Model

When processing the MPEG_node_mapping extension, the Presentation Engine shall identify nodes
in the scene description that have a node mapping. The Presentation Engine shall determine if the
component identified by the indicated role supports the Rendering Alignment API as defined in
contribution m65395. If it does, the Presentation Engine shall pass the mapping information to the
identified component.

The Presentation Engine shall then use the API to align the rendering with the component as
configured over the API.

5.4. On spatial synchronization between graphs
Source: m67011

5.4.1. Attempt problem definition for the spatial synchronization

5.4.1.1. Virtual Reality (VR) use case

The VR use case corresponds to an animated virtual car. Each wheel can be animated individually.
Spatial sounds are generated by the motor of the car, and by the contact of each wheel on the road.

Figure 14 provides the SD and the immersive audio graph representations of the virtual car.

It can be noticed that these two graphs have not the same topology and not the same global XR
Space (i.e., the global frame of reference in which 3D coordinates are expressed).
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The following node mappings have been created:

• Between the root nodes of the car to ensure a consistent car animation

• Between each node related to a wheel to ensure a consistent wheel animation

Figure 14. SD and immersive audio graph representations of a virtual car

Note 1: The node mapping needs to be investigated, when an extent is added to an audio source, to
ensure the spatial synchronization of both the audio source and its extent. For example, the two
following approaches may be envisaged if an extent is added to a wheel of the car:

• To allow nested spatial transformation nodes in the immersive audio graph Figure 15

◦ The audio source and its extent would then be the children of a mapped spatial
transformation node

• Or to allow the extent to be a child of the mapped audio source Figure 16

Figure 15. Possible approaches to ensure a spatial synchronization for both an audio source and its extent

Figure 16. Possible approaches to ensure a spatial synchronization for both an audio source and its extent

The following issues need to be addressed to ensure a spatial synchronization between the two
graphs:

• the knowledge of the transformation matrix between the global XR Space B and B’,

• the identification of which initial parameters to be provided to the immersive audio renderer
through the render control API at the configuration step,

• the identification of which parameters to be provided to the immersive audio renderer through
the render control API to maintain the spatial synchronization during the VR experience.
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5.4.1.2. Augmented Reality (AR) use case

In this use case, the virtual car of section 2 is inserted to the user’s real environment using AR
anchoring.

MPEG-I Scene Description has defined a dedicated MPEG_anchor glTF extension to support AR
anchoring of virtual assets represented by a node graph.

The MPEG_anchor extension defines the Trackable and Anchor objects as follows (Figure 17):

Trackable: a real-world object that can be tracked by the XR runtime. Each trackable provides a
local reference space, also known as a trackable space, in which an anchor can be expressed.

Anchor: a virtual element for which its position, orientation, scale and other properties are
expressed in the trackable space defined by the trackable. A virtual asset’s position, orientation,
scale and other properties are expressed in relation to an anchor.

Figure 17. Trackable and Anchor for AR

In this AR use case, both the SD and the immersive audio graph may define a Trackable to insert the
virtual car into the user’s real environment.

Note 2: The immersive audio group uses a single Anchor object for the AR anchoring of the scene.
This Anchor object corresponds to a Trackable object of an MPEG Scene Description. In other
words, the transformation matrix between the Trackable and the Anchor objects (TRS#1 in Figure
17 ) is always the Identity matrix in the immersive audio graph.

Figure 18 illustrates the AR anchoring of the SD and immersive audio graphs representing the
virtual car using a 2D marker by assuming that a common shared Trackable is defined in both the
SD and immersive audio graphs.

Note 3: The root nodes of the car for the two graphs need to have identical initial transformation
matrices to ensure a consistent spatial positioning with respect to the Trackable.

Figure 18. SD and immersive audio graph representations of a virtual car with AR anchoring using a 2D
marker

The pose of the Trackable is retrieved from the XR Runtime API of the device (e.g. Khronos
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OpenXR).

The XR Runtime needs to be configurated through the XR Runtime API at the beginning of the AR
session to be able to detect and track the Trackable at runtime.

It is assumed that the Presentation Engine related to the SD graph configures the XR Runtime. An
approach would be that the poses of the Trackables are provided to the immersive audio renderer
by the Presentation Engine through the render control API to ensure the spatial consistency
between the two graphs.

5.4.2. Approach proposal for the spatial synchronization

This section proposes an approach to address the following issues for ensuring a spatial
synchronization between the SD and the immersive audio graphs:

• the knowledge of the transformation matrix between the global XR Space B and B’,

• the identification of which initial parameters to be provided to the immersive audio renderer
through the render control API at the configuration step,

• the identification of which parameters to be provided to the immersive audio renderer through
the render control API to maintain the spatial synchronization during the VR experience.

For the AR case, it is assumed that the Presentation Engine related to the SD graph configures the
XR Runtime. Then, the poses of the Trackables are provided to the immersive audio renderer by the
Presentation Engine through the render control API.

5.4.2.1. Determination the transformation matrix between the global XR Space of each graph

This spatial transformation corresponds to the matrix PB’
B which transforms the input 3D

coordinates expressed in the global XR Space B of the SD graph to 3D coordinates expressed in the
global Space B’ of the immersive audio graph (1):

(x’,y’,z’)B’ = PB’
B (x,y,z)B (1)

The proposed approach uses the node mappings between the two graphs to obtain a common XR
Space from which the calculation of this matrix PB’

B can be done.

Figure 19 illustrates this matrix calculation process with:

• The node ref of the SD graph used as the node mapping of reference, defining a local XR Space
Bref, and a mapping transform matrix PBref

Bref’ (i.e., the transform parameter of the node mapping
glTF extension of [1])

• The node ref’ of the immersive audio graph referenced by the referenceId parameter of the
node mapping glTF extension of [1]
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Figure 19. Transformation matrix determination using a node mapping

For any point P:

(x,y,z)B = PB
Bref’ (xref’,yref’,zref’)Bref’ = PB

Bref PBref
Bref’ (xref’,yref’,zref’)Bref’ (2)

(x’,y’,z’)B’ = PB’
Bref’ (xref’,yref’,zref’)Bref’ (3)

Then, with (2) and (3):

(x’,y’,z’)B’ = PB’
Bref’[PBref^Bref’^\]^-1^ [PB^Bref^\]^-1^ (x,y,z)B (4)

With (1) and (4):

PB’
B =PB’

Bref’[PBref^Bref’^\]^-1^[PB^Bref^\]^-1^ (5)

For a sake of clarity, the matrix product [PBref^Bref’^\]^-1^ [PB^Bref^\]^-1^ may be called alignment
matrix Palign

Palign = [PBref^Bref’^\]^-1^ [PB^Bref^\]^-1^ (6)

And finally, with (5) and (6):

PB’
B = PB’

Bref’ Palign (7)

In formula (7), it has to be noted that:

• The Presentation Engine does not know the matrix PB’
Bref’

• The immersive audio renderer does not know the alignment matrix Palign and which node ref’ of
the immersive audio graph has been used for the calculation of the transformation matrix PB’

B

5.4.2.2. Parameters to be provided to the immersive audio renderer during the configuration
step

The following parameters need to be provided to the immersive audio renderer during the
configuration step:

• The alignment matrix Palign,

• The unique identifier (i.e., the referenceId of the node mapping glTF extension of [1]) of the
node of the immersive audio graph used for the calculation of the transformation matrix PB’

B

By receiving the alignment matrix Palign and the referenceId of the node ref’, the immersive audio
renderer can calculate and store the transformation matrix PB’

B using the formula (7).

Then, when receiving the initial poses of the mapped nodes and the Trackables expressed in the
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global XR Space B of the SD graph, the immersive audio renderer can convert these poses to the
global XR Space B’ of the immersive audio graph by using the formula (1).

5.4.2.3. Parameters to be provided to the immersive audio renderer to maintain the spatial
synchronization

The spatial synchronization between the two graphs is maintained by providing the current poses
of the mapped nodes and the Trackables expressed in the global XR Space B of the SD graph. Then,
the immersive audio renderer can convert these poses to the global XR Space B’ of the immersive
audio graph by using the formula (1).

5.4.3. Conclusion

We propose to discuss on the content of the sections 2 and 3 with the immersive audio experts. If
the proposed approach is agreeable, we propose to add the content of sections 3 to the TuC for
further investigations.

5.4.4. References

[1] MPEG-I WG3 m66705, generic API for Presentation Engine, January 2024
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Chapter 6. Reference Software

6.1. Thoughts on trimesh playback of AR scenes
Source: m60282

6.1.1. General

The MPEG-I Scene Description standard relies and extends on the Khronos glTF format. While the
primary goal of glTF is to represent 3D objects in virtual scenes, the MPEG-I SD work also aims at
addressing AR applications wherein 3D objects are integrated into real-world scenes.

Given the requirement for test assets and reference software to guide the standardisation work of
MPEG-I SD, this brings challenges to also include test assets for AR applications as well as their
integration into the reference software, currently based on trimesh, while both glTF and trimesh
are not originally developed for these AR applications.

Therefore, here we aim at starting the discussion on the feasibility of meeting this requirement and
presents a possible approach. This approach comprises two main steps:

• Recording a real-world scene as an AR test asset using the AR Session recorder of Google ARCore

• Playing back the recorded an AR test asset inside trimesh (or other renderer)

6.1.2. AR Sessions recording and format

6.1.2.1. AR Session in Google ARCore

The Google ARCore framework provides an API to record an AR Session such that it can be played
back at later time. By recording, the function effectively captures and stores the sensors
information that are fed as input of the AR algorithms which power the AR application. This way,
the playback function can later read those AR session files and recreate the device movement and
sensing based on this file and no longer using direct sensor measurements.

This is depicted in Figure 20 available in the ARCore documentation.

Figure 20. AR Session playback in ARCore

According to the documentation, the recorded AR Session will contain:

• Primary video track (CPU image track, i.e. not the video rendered on the screen)

• Camera depth map from hardware depth sensors, when available

• Gyrometer data

• Accelerometer data
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• Custom/user event

6.1.2.2. AR Session file format

In order to test this capability, several recording where made with ARCore compatible
smartphones. The DepthLab Android application developped by Google [Ruofei et. al.][DepthLab]
was used to perform those quick tests. This application demonstrates the capabilities of the ARCore
framework to application developers as well as provides a function to record the AR Session via the
corresponding ARCore API.

Here are some dump information from the recorded files.

Track # 1 Info - TrackID 1 - TimeScale 90000 - Media Duration 00:00:29.107
Track has 2 edit lists: track duration is 00:00:29.134
Media Info: Language "und (und)" - Type "vide:avc1" - 869 samples
Visual Track layout: x=0 y=0 width=640 height=480
MPEG-4 Config: Visual Stream - ObjectTypeIndication 0x21
AVC/H264 Video - Visual Size 640 x 480
        AVC Info: 1 SPS - 1 PPS - Profile High @ Level 3
        NAL Unit length bits: 32
        SPS#1 hash: 03802E3BC1A1E33FE5B23E626E9E4D37369B6548
        PPS#1 hash: 85644534159E9C005D09E9AC5EACE302A792A46E
Self-synchronized
        RFC6381 Codec Parameters: avc1.64001e
        Average GOP length: 32 samples

Track # 2 Info - TrackID 2 - TimeScale 90000 - Media Duration 00:00:29.107
Track has 2 edit lists: track duration is 00:00:29.134
Media Info: Language "und (und)" - Type "meta:mett" - 869 samples
Textual Metadata Stream - mime application/arcore-video-0
        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 3 Info - TrackID 3 - TimeScale 90000 - Media Duration 00:00:29.109
Media Info: Language "und (und)" - Type "meta:mett" - 5875 samples
Textual Metadata Stream - mime application/arcore-gyro
        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 4 Info - TrackID 4 - TimeScale 90000 - Media Duration 00:00:29.109
Track has 2 edit lists: track duration is 00:00:29.109
Media Info: Language "und (und)" - Type "meta:mett" - 5875 samples
Textual Metadata Stream - mime application/arcore-accel
        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 5 Info - TrackID 5 - TimeScale 90000 - Media Duration 00:00:27.575
Track has 2 edit lists: track duration is 00:00:28.327
Media Info: Language "und (und)" - Type "meta:mett" - 41 samples
Textual Metadata Stream - mime application/arcore-custom-event
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        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 1 Info - TrackID 1 - TimeScale 90000 - Media Duration 00:00:21.579
Track has 2 edit lists: track duration is 00:00:21.784
Media Info: Language "und (und)" - Type "vide:avc1" - 643 samples
Visual Track layout: x=0 y=0 width=640 height=480
MPEG-4 Config: Visual Stream - ObjectTypeIndication 0x21
AVC/H264 Video - Visual Size 640 x 480
        AVC Info: 1 SPS - 1 PPS - Profile High @ Level 3.1
        NAL Unit length bits: 32
        SPS#1 hash: 217A055E6A89F18FED4CDE98F4039A7B505ACC0B
        PPS#1 hash: 85644534159E9C005D09E9AC5EACE302A792A46E
Self-synchronized
        RFC6381 Codec Parameters: avc1.64001f
        Average GOP length: 32 samples

Track # 2 Info - TrackID 2 - TimeScale 90000 - Media Duration 00:00:21.579
Track has 2 edit lists: track duration is 00:00:21.784
Media Info: Language "und (und)" - Type "meta:mett" - 643 samples
Textual Metadata Stream - mime application/arcore-video-0
        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 3 Info - TrackID 3 - TimeScale 90000 - Media Duration 00:00:21.581
Track has 2 edit lists: track duration is 00:00:21.585
Media Info: Language "und (und)" - Type "meta:mett" - 4444 samples
Textual Metadata Stream - mime application/arcore-gyro
        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 4 Info - TrackID 4 - TimeScale 90000 - Media Duration 00:00:21.581
Media Info: Language "und (und)" - Type "meta:mett" - 4445 samples
Textual Metadata Stream - mime application/arcore-accel
        RFC6381 Codec Parameters: mett
        All samples are sync

Track # 5 Info - TrackID 5 - TimeScale 90000 - Media Duration 00:00:20.312
Track has 2 edit lists: track duration is 00:00:00.753
Media Info: Language "und (und)" - Type "meta:mett" - 28 samples
Textual Metadata Stream - mime application/arcore-custom-event
        RFC6381 Codec Parameters: mett
        All samples are sync

As can be seen from those dumps, the generated mp4 files contain: * The main video used for video
processing * Gyroscopic data * Acceleration data * User actions (probably the custom-event track) *
A mysterious track that has the same number of samples as the video track but only between 84
and 86 bytes per sample depending on the recording
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Note that the smartphones used for the test recording were not equipped with depth sensors, e.g.
ToF sensor, this should be the reason why there is no depth map video track as stated in the
documentation “video file representing the camera’s depth map, recorded from the device’s
hardware depth sensor”.

[Ruofei et. al.] Du, Ruofei, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian,
Joao Afonso et al. "DepthLab: Real-time 3D interaction with depth maps for mobile augmented
reality." In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology, pp. 829-843. 2020.

[DepthLab] DepthLab: Real-Time 3D Interaction With Depth Maps for Mobile Augmented Reality
(augmentedperception.github.io), https://augmentedperception.github.io/depthlab/

6.1.3. AR Session playback in trimesh

As presented in clause Section 6.1.2, the ARCore API provides the ability to record all the
information pertaining to an AR session in terms of sensor data and user events.

From such a file, it should then be possible to:

• Determine the position of the smartphone camera over time (even absolute if GPS activated)
using the rotation and displacement data.

• Create a point cloud frame/mesh frame from each recorded video frame based on the associated
depth map. NOTE If no depth sensor is used for the recording, the depth map should be either
generated via an algorithm or retrieved from the ARCore API and stored in the mp4 file using a
custom made application.

• Position this point cloud frame/mesh frame in the scene over time.

Once this volumetric data corresponding to the AR Session is generated, this could constitute an AR
test asset for MPEG-I Scene Description work which could be then played back in trimesh
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Chapter 7. Interactivity framework

7.1. On event-based scene update
Source: m61812

7.1.1. General

In the 23090-14 DIS document, a scene update mechanism is proposed, with predefined timed
updates: A special track in a media content (for instance an ISOBMFF file), provides timed samples
that contain patch (i.e., JSON patch) to be apply to the original scene description file.

Figure 21. n/a

This mechanism handles pre-defined scene evolution but does not allow describing event-based
update, following for instance a user action or any event that may occurred amongst the scene
objects at any time. In the MPEG-I Scene Description output document on scene update [ISO/IEC JTC
1/SC 29/WG 3 N0315], a potential solution is presented for event-based scene updates : while a
predefined timed scene update is in progress, an event may occur that updates the scene
description. Several scenarios are then proposed: apply a patch and switch to a new timed samples
track or apply a patch and skip one or more versions in the same track.

Figure 22. n/a

This mechanism is still strongly related to pre-defined scene evolutions and does not specify how
the event that triggers the update is described in the scene description document.

Furthermore, it does not handle the case where the same event that creates a new node may be
fired multiple times, like illustrated in the following diagram: A glTF scene contains a description of
an event-based update mechanism with the same patch applied each time an event is fired. Some
elements of the glTF scene are modified (adding, changing or removing nodes, meshes parameters)
but not the event-based update description.
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Figure 23. Event-based update diagram

7.1.2. A use case for event based updates

This update diagram is illustrated in the IDCC demo, presented during the last MPEG meeting in
Mainz:

Figure 24. n/a

Figure 25. n/a

The demo presents a game application. An initial scene is first displayed, containing a plane
surface, a TV screen displaying a video content and a vertical surface displaying a pattern. The user
can add a new cube in the scene by touching the screen, in order to build a cubes stack that
matches the displayed pattern. Each time a match occurs, a new scene is loaded with a new pattern
and a new video. The game may be multiplayer with the same scene shared between all the
connected clients. The scene is synchronized each time an update is performed in one client. A
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game server handles the scene synchronization each time an update is performed by a client.

The creation of the cube and the loading of a new scene is currently implemented using proprietary
solution, but it could be possible to build a mechanism in line with the MPEG-SD dynamic scene
framework.

Two kinds of updates are triggered during the game:

1. During a game phase, each time the user touches the screen to create a cube in front of the
pattern, a same scene update/patch is applied. The difference is the position of the user’s finger
that gives the position where the cube is created and from which it falls. Using the current scene
update mechanism, with JSON patch, the creation of a new cube would be performed with 2
patch operations:

◦ An “add” operation, that adds a new node in the glTF node array, for instance with a path
equal to “/nodes/-“, i.e. a new node created at the end of the array. A new node created in the
middle of the nodes array (i.e., with a path equal to “/nodes/2”) would leave the scene in an
erroneous status and would need extra patch operations to fix it. We would face other issues
if the new “cube” nodes must be created as children of another “cubesStack” node: We
would not know in advance the index of the new node since it depends on the number of
updates that have already been triggered.

◦ A “place” operation that does not exist in the JSON patch specifications. We could use a
“replace” operation to set the “translation” or/and “rotation” elements of the new node but:

▪ Same as above, we do not know in advance the index of the new node!

▪ The value to be applied must be retrieved from user’s finger position on the screen! And
there is no way to pass this value as an input to the “replace” operation.

2. When the cubes stack matches the pattern, a new scene is loaded with a new pattern:

◦ It could be a JSON patch, removing the cube nodes and replacing the pattern with a new
one. As above, we do not know the indexes of all the cube nodes and these indexes are
needed to remove the nodes. If the nodes have been created as children of a unique parent
node, we could just empty the children array of this node. The cube nodes description would
remain in the description file.

◦ It could be a complete update and a new glTF file is used.

7.1.3. JSON patch limitations

A JSON patch is not a “glTF patch” and does not consider all the characteristics of the JSON tree in a
glTF scene description file and particularly the interdependence between elements of different
branches of the glTF tree (a node referencing a mesh that references a material, or a node
referencing one or more child nodes). It is fine if you know in advance the scene description you
want to update and the resulting scene description: The JSON patch can be generated by comparing
the 2 JSON description files.

For repetitive event-based updates as described in Section 7.1.2, we don’t know the resulting scene
and care should be taken when writing the JSON patch. Furthermore, the application, that applies
the patch, may need to perform extra operations to complete the update:
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• check the consistency of the resulting glTF scene,

• get the index of an array item created with the “-“ JSON patch alias,

• perform extra glTF modifications not handled by JSON patches (set newly created nodes as child
of another node, set JSON element to a value only determined at run-time…).

7.1.4. Semantics for event-based update

A new semantic is needed to describe event-based scene update: A semantic that would address the
use case (related to pre-defined timed scene updates) as well as the new one introduced in Section
7.1.2.

An approach would be to keep using the JSON patch mechanism, which is already used for the pre-
defined timed scene updates. As explained above, the definition of extra parameters would then be
required.

Furthermore, the description of the event and its relationship with the scene update could be
described with the interactivity framework specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]. It defines
a set of action types that can be executed following a trigger activation. As a reminder, the table
above gives the action types that are already specified:

Table 7. Type of action

Action type Description

“ACTION_ACTIVATE” Set activation status of a node

“ACTION_TRANSFORM” Set transform to a node

“ACTION_BLOCK” Block the transform of a node

“ACTION_ANIMATION” Select and control an animation

“ACTION_MEDIA” Select and control a media

“ACTION_MANIPULATE” Select a manipulate action

“ACTION_SET_MATERIAL” Set new material to nodes

“ACTION_SET_HAPTIC” Get haptic feedbacks on a set of nodes

An event-based scene update may be described in a glTF scene description file, using the
interactivity extensions specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]: A trigger element may
described the event (for instance, a “TRIGGER_USER_INPUT” trigger, as defined in [ISO/IEC JTC 1/SC
29/WG 3 N0725]), and an action element (of a new type, to be defined) may described the update
information (a patch to be applied (an array of JSON patch operations) and other parameters used
by the application to complete this update). Here is a list of such parameters that may be defined:

• Parameters to place one or more nodes in a position not known in advance. For instance, it may
include a position information and a list of nodes. The position parameter may be related to a
user input, or a user pose and may use the OpenXR interaction profile path semantic. Each node
to position may be identified by one of the patch operations that created or modified it.

• Parameters identifying one or more nodes to be used as parent of one or more newly created
nodes. For instance, a list of parent nodes and a list of child nodes. Same as above, each child
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node may be identified by one of the patch operations that created or modified it.

• Any other parameters that may be needed for other use cases: flag to share or not a local update
with other connected users sharing the same scene, strategy in case the patch fails or gives an
inconsistent glTF tree (rollback, fix…), …
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Chapter 8. Collected problem statements
and industry needs

8.1. On the support of real environment data
Source: m61811

8.1.1. General

In Augmented Reality (AR) experiences, virtual content is seamless inserted into the user real
environment using optical or video-see through devices. The knowledge of the user real
environment is then required for: * The positioning of the virtual objects based on AR anchors *
Consistent handling of collisions between virtual and real objects * Consistent rendering of virtual
and real objects including occlusion and lighting/shadowing aspects

This contribution provides an overview of how real environment data are handled (captured,
computed, stored and loaded) in some AR frameworks and proposes to investigate the support of
real environment data in MPEG-I Scene Description for transmission purpose.

8.1.2. Representation of the real environment

As shown in Figure 26, the real environment data are computed from embedded-sensor raw data.
An AR device may have several embedded sensors to scan the user environment, such as color
camera(s) and Light Detection and Ranging (LiDAR). The generated raw data are typically point
clouds, depth maps, pictures. An Inertial Measurement Unit (IMU) is also required to estimate the
current pose of the AR device when acquiring these data. Based on these sensor raw data, a
representation of the real environment is computed and the resulting real environment data may
have various formats:

• A single mesh, optionally textured, issued from a spatial mapping computation

• A semantic representation, optionally associated with a mesh segmentation, issued from a scene
understanding computation

• A real light mapping

Depending on the AR experiences, the most appropriate representation of the real environment is
computed:

• A single mesh representation may be sufficient for coherent collision handling and lighting

• A semantic representation (e.g. “desk”, “laptop”, “screen”, “floor”, “ceiling”, “wall”) may be
required for the definition of advanced anchoring and/or interaction

• A mesh segmentation is required for individual real object handling, such as object removal in a
diminished reality application
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Figure 26. Computation of real environment data

The computation of the real environment data may either be done locally in the AR device or
remotely in a Spatial Computing Server. In the case of remote computation, the transmission of
such kind of data is in line with the Spatial Computing Server (SCS) requirements for eXtended
reality (XR) of the MPEG-I Phase 2 requirement document especially the requirement #134:

“The SCS shall provide XR Spatial Description in a standard representation format (e.g. scene
description) upon request of XR devices (UEs) on different platforms (desktop and mobile).”

8.1.3. Storing a representation of the real environment

The process of scanning the real environment and generating the corresponding representation
may be done prior to runtime. This approach is often related to quasi-static environment and has
the following main advantages:

• Availability of the real environment data at the beginning of the AR session

• Resource optimization of the AR devices resulting to power savings as no or limited scans are
required at runtime

• Support of low-end AR devices having no efficient sensors

• Consistency of the representation of a shared real environment between several heterogenous
AR devices

• Ability to build a scalable library of real environments (rooms, buildings, cities…)

Note: Having an initial scan may also be relevant for time-evolving real environments. Updating
some parts of the initial scan could be less time-consuming than performing a complete scan.

Generating real environment data before runtime requires efficient storage. Storing real
environment data in the Cloud has been investigated by ETSI Augmented Reality Framework (ARF).
As shown in Figure 27, a World Knowledge server is located in the Cloud and stores the real
environment data to be used by

• a Vision Engine for AR anchoring positioning/localization aspects

• a 3D Rendering Engine for consistent collision handling and rendering between virtual and real
objects

Figure 27. Global overview of the architecture of an AR system (from ETSI ARF)
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Note: there is a need for a format to transmit real environment data between the World Knowledge
storage server and the 3D Rendering Engine in complement to the transmission of virtual contents,
which is already the scope of MPEG-I SD.

8.1.4. Examples of framework for real environment handling

Several frameworks are available to scan, compute, store and load real environment data for AR
experiences. An overview of the following frameworks is provided in this section:

• Microsoft’s Mixed Reality framework

• Apple’s ARKit framework

• Meta/Oculus framework

8.1.4.1. Microsoft’s Mixed Reality framework

The Microsoft Mixed Reality framework has been developed for the HoloLens 2 device. It is
composed of

• a spatial computing module, generating a mesh representation of the real environment as
shown in Figure 28

• a scene understanding module from Mixed Reality Toolkit (MRTK) version 2.7 based on OpenXR,
detecting and labeling planar surfaces for the placement of virtual content as shown in Figure
29

Figure 28. Mesh representation of the real environment after a spatial mapping computation

Figure 29. Semantic representation of the real environment after a scene understanding computation

A complete Microsoft’s Scene Understanding SDK for Unity is available. An example of a C# code to
scan, load and store real environment data based on the Scene Observer object is shown below

if (!SceneObserver.IsSupported())
{
    // Handle the error
}

// This call should grant the access we need.
await SceneObserver.RequestAccessAsync();

// Create Query settings for the scene update
SceneQuerySettings querySettings;
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querySettings.EnableSceneObjectQuads = true;
// Requests that the scene updates quads.
querySettings.EnableSceneObjectMeshes = true;
// Requests that the scene updates watertight mesh data.
querySettings.EnableOnlyObservedSceneObjects = false;
// Do not explicitly turn off quad inference.
querySettings.EnableWorldMesh = true;
// Requests a static version of the spatial mapping mesh.
querySettings.RequestedMeshLevelOfDetail = SceneMeshLevelOfDetail.Fine; // Requests
the finest LOD of the static spatial mapping mesh

// Initialize a new Scene
Scene myScene = SceneObserver.ComputeAsync(querySettings, 10.0f).GetAwaiter()
.GetResult();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

// Compute a scene but serialized as a byte array
SceneBuffer newSceneBuffer = SceneObserver.ComputeSerializedAsync(querySettings, 10
.0f).GetAwaiter().GetResult();

// If we want to use it immediately we can de-serialize the scene ourselves
byte[] newSceneData = new byte[newSceneBuffer.Size];
newSceneBuffer.GetData(newSceneData);
Scene mySceneDeSerialized = Scene.Deserialize(newSceneData);

// Save newSceneData for later

8.1.4.2. Apple’s ARKit framework

On a fourth-generation iPad Pro running iPad OS 13.4 or later, Apple’s ARKit uses the LiDAR
Scanner to create a mesh representation of the user real environment. Then this mesh is further
segmented and multiple anchors, called ARMeshAnchor, are assigned to the resulting set of
segmented meshes. As shown in Figure 30, a semantic labeling is performed for the real objects that
ARKit can identify such as ceiling, door, floor, seat, table, wall and window labels.

Figure 30. Semantic labeling of Apple’s ARKit

These real environment data attached to the ARMeshAnchors can be saved and loaded by
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serializing/deserializing an ARWorldMap as shown in Figure 31.

Figure 31. Saving and loading an Apple’s ARKit ARWorldMap

8.1.4.3. Meta/Oculus framework

The Meta/Oculus framework has ben developed for Meta Quest 2 and Meta Quest Pro devices. The
scene understanding computation provides a scene model, which is a representation of the user
real environment. The scene model contains Scene Anchors, with each anchor being attached to
geometric components and semantic labels. The floor, ceiling, wall_face, desk, couch, door_frame
and window_frame labels are currently supported as shown in Figure 32.

Figure 32. Semantic labeling of the Meta/Oculus Scene Understanding

The scene understanding computation is based on the Khronos OpenXR standard and relies on the
Meta OpenXR XR_FB_scene extension. By using Unity as Presentation Engine, an OVRSceneManager
allows access to the scene model. An OVRSceneAnchor component corresponds to a scene anchor.
The semantic classification of a scene anchor is managed by the OVRSemanticClassification.

A Scene Model is generated by the Scene Capture system flow that lets users walk around and
capture their scene. Users have complete control over the manual capture experience and decide
what they want to share about their environment.

As shown below, the OVRSceneManager provides functions

• to launch a scene capture to generate a Scene Model

• to load an existing Scene Model

OVRSceneManager.RequestSceneCapture()
OVRSceneManager.LoadSceneModel()
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8.2. Semantic representation
Source: m64402

8.2.1. Semantic Expression for 3D contents

We will divide the semantic expression for 3D contents into four criteria: the detailed attributes of
objects, object (or scene)-level rendering priorities, semantic relationships between object by scene
graph, and scene-level descriptions.

8.2.1.1. Detailed attributes of objects

The current glTF or other 3D format can include the color information (RGB values) or object name
as attributes about objects. However, from the user’s perspective, it needs to describe more detailed
attributes for better understanding and interaction with a particular object (or mesh). For instance,
a person object might need the emotion or situation currently experiencing, or an object like a
product (e.g. wallet, chair) might need a color name, or a brand (include price).

8.2.1.2. Priority information according to object (definition of rendering order)

The current MPEG-I Scene Description (SD) does not take sufficient account of object priority within
its information. Consequently, this can result in increased rendering complexity for individual
objects. By incorporating rendering priority of objects into the SD object information, it would
facilitate rendering based on the creator’s intent. This means that even objects positioned at a
greater distance within a 3D scene could be rendered first based on their importance. Furthermore,
it would enable the application of rendering techniques such as super resolution and denoising to
enhance the quality specifically for certain objects.

Additionally, it would provide the flexibility to selectively specify the rendering order for object
classes.

Figure 33. Example of rendering when distant objects have high priority

8.2.1.3. Semantic relationships between objects

An object is included as a lower node in MPEG-I Scene Description (SD), but there are cases where a
semantic relationship is required.

For example, if there is a wallet on a desk, sub nodes of the desk might have a desk, desk legs, and a
wallet. At this time, if there is no semantic relationship, the desk, desk legs, and wallet can all be
separated when recreating or editing scenes. If the desk legs are separated, the meaning of the desk
class becomes meaningless, so to prevent this phenomenon, the desk and the desk legs store
semantic relationship information that is not separated, and the wallet has separate semantic
relationship information for clear and efficient reproduction. Creation and scene editing are
possible.
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8.2.1.4. Scene-level descriptions

Scene-level descriptors are useful information for users who want to interact(user-experience) or
edit contents. These scene-level descriptors can be defined through a descriptor neural network
model. At this point, the scene graph described above may optionally be input to increase the
performance of the neural network model.

Figure 34. Example of scene-level description generation

8.3. The support of XR Spatial Computing of real
environment
Source: m67595

8.3.1. Introduction

In Augmented Reality (AR) experiences, virtual content is inserted into the user real environment.

As described in MDS23494_WG03_N01127 Section 9.1 ([6]), the knowledge of the user real
environment may be used for:

• the positioning of the virtual objects based on AR anchors,

• the consistent handling of collisions between virtual and real objects,

• the consistent rendering of virtual and real objects including occlusion and lighting/shadowing
aspects.

An entity, commonly called XR Spatial Computing, computes an appropriate representation of the
real environment (e.g., single mesh, segmented and labeled meshes) for the AR experience. This
representation, commonly called XR Spatial Description, is then used by the Presentation Engine for
the insertion and the rendering of virtual content into the user real environment.

In the context of MPEG-I Scene Description, a content creator may have the possibility to configure
the XR Spatial Computing to get an XR Spatial Description that is best suited for that AR experience,
i.e. it allows the best integration of the virtual scene provided in the scene description file.

The following aspects need to be addressed for the proposed study:

• the configuration of the XR Spatial Computing to generate the appropriate XR Spatial
Description,

• the retrieval of the XR Spatial Description.

This contribution provides some configuration examples of the XR Spatial Computing (section 2)
and proposes a tentative approach for the proposed study on the support of the XR Spatial
Computing in Scene Description during the phase 3 (section 3).
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8.3.2. Configuration examples of XR Spatial Computing

Recent AR devices (Apple Vision Pro, Meta Quest 3) compute a XR Spatial Description for AR
experiences.

The configuration of the XR Spatial Computing and the retrieval of the generated XR Spatial
Description are provided through XR Runtime APIs (e.g., Khronos OpenXR API with dedicated
vendor extensions or proprietary API).

For example, Apple ARKit/RealityKit provides the following configuration options for its “scene
reconstruction and understanding” API [2]:

ARView.Environment.SceneUnderstanding.Options

static let collision: ARView.Environment.SceneUnderstanding.Options The .collision option means
that the reconstructed geometry can be used for collision queries (i.e. raycasting)

static let default: ARView.Environment.SceneUnderstanding.Options

The .default options is a sentinel value that indicates the user wants whatever scene understanding
features work with the current device and are supported. It overrides other options in the options
set. static let occlusion: ARView.Environment.SceneUnderstanding.Options The .occlusion option
means that the reconstructed geometry will be used for rendering, but only to update the depth
buffer. Parts of virtual objects which are behind the reconstructed geometry are not rendered.
static let physics: ARView.Environment.SceneUnderstanding.Options

No abstract static let receivesLighting: ARView.Environment.SceneUnderstanding.Options The
.receivesLighting option means that the virtual lights will interact with real world surfaces causing
them to shine. The properties of the mesh will be set to a default material.

The .receivesLighting option means that the virtual lights will interact with real world surfaces
causing them to shine. The properties of the mesh will be set to a default material.

In another example, Microsoft provides the following configuration options in its
XR_MSFT_scene_understanding [3] Khronos OpenXR vendor extension:

XrSceneComputeFeatureMSFT:
typedef enum XrSceneComputeFeatureMSFT {
  XR_SCENE_COMPUTE_FEATURE_PLANE_MSFT = 1,
  XR_SCENE_COMPUTE_FEATURE_PLANE_MESH_MSFT = 2,
  XR_SCENE_COMPUTE_FEATURE_VISUAL_MESH_MSFT = 3,
  XR_SCENE_COMPUTE_FEATURE_COLLIDER_MESH_MSFT = 4,
  // Provided by XR_MSFT_scene_understanding_serialization
  XR_SCENE_COMPUTE_FEATURE_SERIALIZE_SCENE_MSFT = 1000098000,
  // Provided by XR_MSFT_scene_marker
  XR_SCENE_COMPUTE_FEATURE_MARKER_MSFT = 1000147000,
  XR_SCENE_COMPUTE_FEATURE_MAX_ENUM_MSFT = 0x7FFFFFFF
} XrSceneComputeFeatureMSFT;

In the case of the computation of segmented meshes, the XR Spatial Computing is capable of
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providing a classification.

For example, the Apple ARKit ARMeshClassification API [5] provides the following classification:

case ceiling : The face is a part of a real-world ceiling.
case door : The face is a part of a real-world door.
case floor : The face is a part of a real-world floor.
case none : A face ARKit can't classify.
case seat : The face is a part of a real-world seat.
case table : The face is a part of a real-world table.
case wall : The face is a part of a real-world wall.
case window : The face is a part of a real-world window.

In another example, Microsoft
thehttps://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_MSFT_scene_understanding
[ XR_MSFT_scene_understanding] extension [4] provides the following classification:

XrSceneObjectTypeMSFT
* XR_SCENE_OBJECT_TYPE_UNCATEGORIZED_MSFT
* XR_SCENE_OBJECT_TYPE_BACKGROUND_MSFT
* XR_SCENE_OBJECT_TYPE_WALL_MSFT
* XR_SCENE_OBJECT_TYPE_FLOOR_MSFT
* XR_SCENE_OBJECT_TYPE_CEILING_MSFT
* XR_SCENE_OBJECT_TYPE_PLATFORM_MSFT
* XR_SCENE_OBJECT_TYPE_INFERRED_MSFT

In another example, Meta provides the following classification for its Quest 3 VR headset, mapped
with the AR Foundation labels in Unity :

Meta Label            AR Foundation Label
DESK                        Table
COUCH                    Seat
FLOOR                      Floor
CEILING                    Ceiling
WALL_FACE             Wall
DOOR_FRAME        Door
WINDOW_FRAME Window
SCREEN                    Other
LAMP                       Other
PLANT                      Other
STORAGE                Other
BED                          Other
OTHER                     Other

8.3.3. Approach proposal to support XR Spatial Computing 

The two following aspects need to be addressed to support XR Spatial Computing:
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• the configuration of the XR Spatial Computing to generate the appropriate XR Spatial
Description,

• the retrieval of the XR Spatial Description.

The parameters for the configuration of the XR Spatial Computing may be provided within
dedicated MPEG glTF extension(s) in the Scene Description graph.

The XR Spatial Computing may handle the real objects within its own real scene representation
(e.g., a real scene graph). This real scene representation may be time-evolving.

Therefore, a Spatial Computing (SC) API may be defined for the configuration and the retrieval of
the XR Spatial description.

In that sense, this approach may be similar to the one addressing the need of time and spatial
synchronizations between the Scene Description graph managed by a Presentation Engine and
another graph managed by an external renderer (e.g. an immersive audio renderer)[1].

A high-level architecture corresponding to the proposed approach is provided below:

Figure 35. Proposed high-level architecture for the XR Spatial Computing support

[1] MPEG-I WG3 m66705, generic API for Presentation Engine, January 2024

[2] Apple Scene Understanding API

[3] Microsoft scene understanding OpenXR extension: compute options

[4] Microsoft scene understanding OpenXR extension: object types

[5] Apple ARKit mesh classification

[6] MPEG-I Part 14 Scene Description Technology Under Considerations (TuC),
MDS23494_WG03_N01127

[7] Unity Meta OpenXR platform: plane detection
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Appendix A: Disclaimer


The formatting of the document is based on the Khronos glTF specification
formatting under CC-BY 4.0.


The extensions information are automaticaly generated using wetzel tool under
Apache License 2.0.
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