DIS 14496-12:202x (E)

ISO/IECJTC1/SC29 N
Date: 2024-01

DIS 14496-12:202x(E)
ISO/IEC]JTC1/SC29/WG 11
Secretariat: JISC

Information technology — Coding of audio-visual objects — Part 12: ISO base media file
format

Technologies de l'information — Codage des objets audiovisuels — Partie 12: Format ISO
de base pour les fichiers médias

© ISO/IEC 202x - All rights reserved i

DIS 14496-12:202x

ii

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the I1SO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address,
as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the
TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO/IEC 202x - All rights
reserved

DIS 14496-12:202x (E)

Contents
Page
1 Y 60 1 1
2 VL0 00 B T A W] (=) W= 4 Lo 1
3 Terms, definitions and abbreviated terms.........————— 2
3.1 Terms and definitioNS.. ... ———————————— 2
3.2 AbDbreviated tEIMIS ... ————————————————— 9
4 Object-structured file Organization ... ————— 10
41 200 TR o 1 . o 10
4.2 (0.0 Tt 9 0 oo 10
4.3 FIle-EyPe DOX . 14
4.4 Extended tyPe DOX ... 15
5 /00 L 16
6 ISO base media file Organization ... —————————— 16
6.1 Files, segments, and Streams.........couummmmmsiimmmmmssssssssss s 16
6.2 Presentation StIUCLUTE ... ccuirisnsssssssssesssssssssssssssssssssessssssssnsssssssssssssssnsssssnsassssssssssnsnssnssnsnsess 16
6.2.1 Object structure of a preSentation ... ——————————————— 16
6.2.2 Meta data and media dataccococvrrvserrrnsssnssssss s es s s snssnssesns e e nnnans 17
6.2.3 2 U 0] < 17
6.3 Structure-data (ODJECES) ... ———————————————— 18
6.3.1 5710 18
6.3.2 Data types and flelds ... —————————— 18
6.3.3 URIS as type INAICALOTS ... ssssassssss s sens 20
6.3.4 5003 Q0. 4 () 20
6.4 TiMe SIIUCLUI'E OVEIVIEW ...cvieriersrsesssssssssnssessmsssnsssssssssssssssnssnssnsnssans 25
6.5 06 20 0 U0 <) o 26
6.6 Brand identifiCation ... ————————n 26
6.7 Uniform resource 10cators (URLS) ...cmmssses 26
7 Y0 QE) 00 T0 0T 11 0 011) o . 26
8 BOX STIUCTUTES....ccitirinsnisnesersmssssssssssssssssssassmssssssssssssssssssassnsssssnssssssssssssnssnssassnssssssnsssssnssnssassnsssnss 26
8.1 File structure and general bBoXes ... 26
8.1.1 J\Y (20 2 TG B X = T 00) 26
8.1.2 Free SPace DOX .. s s 27
8.1.3 Progressive download information boX.......n. 27
8.1.4 Identified media data DOX.......cccvnnrminnienmnr e —————————— 28
8.2 1\ 00374 TSI 1 001) o = 29
8.2.1 IMOVIE DOX tierrierimrsassnsssssssssnssersnsssssnsssssssssssssssnsssssnssssssssssssessnssassnsssssssssnssnssnssassassassanssnssnsnssassnsssnss 29
8.2.2 J\Y [0 T30 4 U= 16 <3 ol o X . G 29
8.3 TTACK STIUCLULE ..oieiieriesisssrsssersmsssssssssssss s e ssms s ssssssssssssnsssssmssnssnssssssnsanssnssmssassasssessnssnssnssnsnsnas 31
8.3.1 B 1 02 100 G 5). 31
8.3.2 B = ol - 4 T T 1l o o . 31
8.3.3 Track referencCe DOX .. sssssssssssssssssssssssssssssnssmssassassssssnssnssnssmssassans 35
8.3.4 Track Group DOX ... sssssasasasseses 37
8.3.6 B2 U L4 0TI 01) G, 45
8.4 Track Media STIUCIUIE ..o risssssss s sssssss s e smsssssassssssssssssassmssassassssssnsanssmssmssanans 45
8.4.1 1 (21 T 00) 45
8.4.2 Media header DOX .. s sss s sssssnsssssnssnssssssssmssnssnnsnsnesn 45
8.4.3 5 E200 16 1 =D ol). 46

© ISO/IEC 202x - All rights reserved

DIS 14496-12:202x

8.44
8.4.5
8.4.6
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.7
8.7.1
8.7.2
8.7.3
8.74
8.7.5
8.7.6
8.7.7
8.7.8
8.7.9
8.8
8.8.1
8.8.2
8.8.3
8.84
8.8.5
8.8.6
8.8.7
8.8.8
8.8.9
8.8.10
8.8.11
8.8.12
8.8.13
8.8.14
8.8.15
8.8.16
8.8.17
8.9
8.9.1
8.9.2
8.9.3
8.94
8.9.5
8.10
8.10.1
8.10.2
8.10.3

iv

Media information DOX..... s ————— 47
Media information header BoXescunm——————— 47
Extended 1anguage tag ... 48
Sample tables.....c s —————————————"—_—————_——_— 49
Sample table DOX ... 49
Sample deSCription DOX ... 50
Degradation Priority DOX ... 52
Sample SCALE DOX ..o s sssssasas s sssssssssssasasassssssnsssnnanas 52
Track time StIUCTUIES ... s 53
Time t0 SAMPLE DOXES ...crciiirmsesmsniinsssssssmsssssssssssssssss s s s ssssssas 53
SYNC SAMPILE DOX ..o ssssssssss s sssssssasasassssssssssssssssssasasassssssnsssnasanas 59
LY 1 52 10 L0 4 59
Independent and disposable samples DoX........cccvn————— 61
D00 L 1), G 63
Edit LISt DOX..uicinimssmmmsmssssssssssssssssssssss s s sasssens 63
Track data 1ayout StIUCTULES ... 66
Data information DOX......cumsssisssssss s 66
Data reference BoX ...m—————————————- 66
SAMPIE SIZE DOXES ...ocrrrrrrirmsmsmsssss s s sn s s s s ss s s snsnsas s s s s e s snsnanas 68
Sample to ChUNK DOX....cisssssssssssss s 70
ChUunK OffSet DOX ... sssssssssasssssssssssssssssssssssssssssssssasas 71
Padding Bits DOX ... 72
Sub-sample information DoX........co s ———————— 72
Sample auxiliary information sizes boX.......ccocvnnm————— 74
Sample auxiliary information offsets boXcoonnn———————— 75
MOVie fragmMentS. ..o s 76
Movie exXtends DOX ... ———————————————— 76
Movie extends header BoXc—————————— 78
Track eXteNds DOX. ... seesnsas 78
Movie fragment DOX..... o sasass 79
Movie fragment header DOXccoonninnm——————— 80
Track fragment DOX.....cci s ——————- 80
Track fragment header DoX......c———————— 81
Track fragment run DOX.. s 83
Movie fragment random acCESS DOX ... 85
Track fragment random acCess DOX ... 85
Movie fragment random access offSet BoX........cunmss————— 87
Track fragment decode time DOX ... ——————— 87
Level assignment boX ... 89
Sample auxiliary information in movie fragments.......ccoomnnssn———— 91
Track Extension Properties DoX ... 91
Alternative startup sequence properties DoX..... i ———— 92
Metadata and user data in movie fragments.........u———— 92
Sample Sroup StIUCLUTES ... s ssssas 93
L0 1T =) a4 T 93
Sample £0 Group DOX ... —————————————— 94
Sample group description BoX ... ————————— 926
Representation of group structures in movie fragments.........c.courmmnnisssssssssnnns 99
Compact sample to Sroup DOX ... 100
LT s b i 102
LUET=Y s b= U T 0 102
L0705, 72 9 72 1 L 010> G 103
Track selection DOX ... 103
© ISO/IEC 202x - All rights

reserved

DIS 14496-12:202x (E)

8.10.4
8.10.5
8.11
8.11.1
8.11.2
8.11.3
8.11.4
8.11.5
8.11.6
8.11.7
8.11.8
8.11.9
8.11.10
8.11.11
8.11.12
8.11.13
8.11.14
8.11.15
8.12
8.13
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5
8.13.6
8.13.7
8.14
8.14.1
8.14.2
8.14.3
8.14.4
8.14.5
8.14.6
8.15
8.16
8.16.1
8.16.2
8.16.3
8.16.4
8.16.5
8.17
8.18
8.18.1
8.18.2
8.18.3
8.18.4
8.19
8.19.1
8.19.2
8.19.3
8.19.4
8.19.5

TracK KiNd ... sssssssssssss s sssssssss s sssssssssssssssssasasssssssssss 105
0 1 0T I 01 . 106
11T 3 2 T b T TR 1103 010 o 107
1] 2 0, 107
XIVIL DOX@S.urururrnesnsmsnsassssssssesssssasassssssssasssssssssssssssssassasasssas e e E R R AR AR AR E AR R A AR E AR AR AR AR SRR AR AR R R RS 108
=) 1000 L0 T0r T T 1 T 00). G, 109
Primary item DOX ... sssssssssssssssssassssssssssssssssnsns 113
Item Protection DOX ... ————————— 113
Item INfOrmation DOX ... 114
Additional metadata cOntainer BOX ... ————— 117
MetaboX Relation DOX ... sssssssssssssssssssssssssss 117
URL forms fOor MetaBOXesccummsmsismsssmsmssissasssssssssssssss 117
Static MeEtadata ... ———————————————————_ 118
Item data DOX ..o 119
[tem reference BoX..... i —————————————————— 119
Auxiliary video metadataossssss————————— 120
Item Properties DOX ... ————————————— 121
Brand item ProPerty ... 123
0] T 124
File delivery format SUPPOTLc.cccvmimsmnmimmmsmsmsssssssmmsmsssasssns 124
L0 0] 74 124
FD item information BoX......ssssss 124
File partition DOX ... ssssssssssssssssssssssssssssssassssssssssssssssnsns 125
FEC reServoir DOXmssans 127
FD SeSSioN Sroup DOX ...cccinmmmss 128
Group ID £0 NAIME DOX .o ssseessssaes 129
File reServoir DOX ... es 129
Y1 L0 i U € 130
L0 1) a4 T . 130
Backward compatibility ... s———————— 130
SUD tracK DOX .coouiiisesesssssssssssnsssssmssssssssssssssssss s sssssasssss s ssssssssssssssssssssssssssnsssssssssssasassssssnssss 131
Sub track information DOX ... ———————————— 131
Sub track definition DOX.....cc s —————————————— 133
Sub track sample Group DOX .. ————————— 133
0] L 134
SEBIMENLS. ...t 134
L0 1) a4 T, 134
SegMeENt tYPE DOX.. s 134
Segment INdeX DOX ..o ————————————— 134
Subsegment indeX DOX ... —————————— 139
Producer reference time bBoX ... 140
0] T 142
ENtity Srouping..... s 142
0 11 - 142
00 o011 010 L 0 10). G, 142
ENtity 0 Group DOX.....cismimsssssisssss s ssssss s ssssssssssssss 143
Entity group definitions ... 144
000100 00 YT B 010, 146
Overview and ProCeSSING....c s sssses 146
Processing model........s—————————— 146
LET23 1T 1) 72 (L2 G 148
General SEMANTICS ..o e e 148
Original file-tyPe DOX... s s es 148

© ISO/IEC 202x - All rights reserved

DIS 14496-12:202x

8.19.6 Compressed MOVIE DOX ...
8.19.7 Compressed movie fragment DOX.....commmm s
8.19.8 Compressed segment iNdeX DOX ...
8.19.9 Compressed subsegment iNdeX DOX ...
9 Hint track formats ...
9.1 RTP and SRTP hint track format........ssssssss
9.1.1 OVETVICW vttt s AR SRR R AR
9.1.2 Sample entry format ... ———————————————————_
9.1.3 Sample fOrmat..... s ————————————————————
9.14 SDP infOrmation ..o s asassssass
9.1.5 Statistical information ... ————_———
9.2 ALC/LCT and FLUTE hint track format.........cummmmmssssssssssssssssssas
9.2.1 L0 02 a2 T
9.2.2 DesSign PrincCiples... . —————————————————
9.2.3 Sample entry format ... ————————————————
9.24 Sample format..... i —————————————
9.3 MPEG-2 transport hint track format.........—————ns
9.3.1 L0123 o T P,
9.3.2 DesSign PrincCiples... s ————————————————
9.3.3 Sample entry format ... ————————————
9.34 Sample format..... i ———————————————
9.3.5 Protected MPEG 2 transport stream hint track.........cccoommnmmssssss
9.4 RTP, RTCP, SRTP and SRTCP reception hint tracks........s
9.4.1 RTP reception hint track ...
9.4.2 RTCP reception hint track......sssssssssssssssssssss
9.4.3 SRTP reception hint track.... s
9.4.4 SRTCP reception hint tracks ...
9.4.5 Protected RTP reception hint track ...
9.4.6 ReCOrding ProCeAUre........mmmssmssssssssssssssssssssssssss s s ssssasas
9.4.7 Parsing ProCeaure ... ssasas
10 SAMPLE BrOUPS...corsirimimsmsirss s —————
10.1 Random access reCOVEry POINLS ...
10.2 Rate Share Groups ... —————
10.2.1 L0123 o T .
10.2.2 Rate share sample group description entry.......————————
10.2.3 Relationship between tracks ...
10.2.4 Bitrate allocations——————————————
10.3 Alternative Startup SEQUENCEScuiressmsmssssmsssssssmsmssssssssssssssssssss s ssssssasas
10.4 Random access point (RAP) sample Sroup ...
10.5 Temporal level sSample Group......———————————
10.6 Stream access point SAMPIE GrOUP ...
10.7 Sample-to-item SAMPIE GroUP ..o
10.8 Dependent random access point (DRAP) sample group........mssss
10.9 Pixel Aspect Ratio Sample Grouping ...
10.10 Clean Aperture Sample GroUPING.....ccocicicsmsmsmsmsmsmssssisssssssssssssssss s ssssssasases
10.11 EDRAP SAIMPIE GIOUP cuccciimsmsmrssasssssssssssssasass
10.11.1 Definition . sssssssssssssssssasasasssss s snsnsssssssasas
B0 4 1 -
10.11.3 SeMANTICS i ———
10.12 Essential descriptions hierarchy sample grouping ...
10.12.1 DefiNitionN. s ——————————————————
B 0 4 1 L

vi

© ISO/IEC 202x - All
reserved

DIS 14496-12:202x (E)

B LR 0 T) 1 B 199
11 Derived file formats..... s —————————— 199
12 Media-specific definitions ... ————————_——— 199
121 4 TT0 0 4 L= - 199
12.1.1 Media handler ... —————————————————— 199
12.1.2 Video media header ... sssssasassssssssss 200
12.1.3 Y0101 0] =) 110 o 200
12.1.4 Pixel aspect ratio and clean aperturemm—————— 201
12.1.5 L0701 L0200 gl 00100 314 -1 1) o . 203
12.1.6 Content light level ... ———— 204
12.1.7 Mastering display COlOUr VOIUIMEcciismnnsssssmmmsmsmsisss 204
12.1.8 Content COlOUL VOIUIME ... ssssssasssas 205
12.1.9 Ambient viewing environment........usss——————————— 206
12.2 AUAiO MEIA...... iR 206
12.2.1 Media handIer ... ——————————————— 206
12.2.2 Sound media header....... s ————————————— 206
12.2.3 SAMPIE ENETY ..o ———————————————— 207
12.2.4 Channel 1ayouL ... —————————————— 209
12.2.5 DOWNMIX INSEFUCLIONS ..cviiresesersssnsssssssssssssssssssssssss s es 212
12.2.6 DRC infOrmation ... s ssssssssssssssssssssssssssasssssssssssssassssssasses 216
12.2.7 Audio stream IoUudNess.......ci s ————————— 217
12.2.8 Audio rendering indication BOX ... ——————— 220
12.2.9 Audio eleMent DOX ... ——————————————— 221
12.2.10 Audio element description BOXcuiinm————————— 221
12.2.11 Audio element positioning interactivity polar boX........ccocvnnnmnssnn, 222
12.2.12 Audio element prominence interactivity boX ... 223
12.2.13 Audio element selection DOX ... 224
12.2.14 Audio element selection description DOXccuvnn——————— 224
12.3 Metadata Media. .. —————————_——_—_————_—_—_—_—— 224
12.3.1 Media handler ... ————————————————— 224
12.3.2 Media header ... —————————— 225
12.3.3 SAMPILE ENETY ..o ——————————————————— 225
12.4 8 011 LT . 227
12.4.1 L0 1) a4 T 227
12.4.2 Media handler ... e 228
12.4.3 Hint media header....... s s sssasasses 228
12.4.4 KT D107 0) =) 110 o 229
12.5 B o 11 LT L 229
12.5.1 Media handler ... s s s ms s sm s e ms s m s e 229
12.5.2 117 (2T b T 3 L= T (=) 229
12.5.3 T D107 8] CI=) 110 o 229
12.6 Subtitle Media... s ——————————————————— 230
12.6.1 Media handIer ... s s s ms s s m s e as s m s e 230
12.6.2 Subtitle media header ... ————————— 230
12.6.3 T D107 8] CI=) 110 o 230
12.7 0003 L 14 L=) 231
12.7.1 Media handler ... s s s ms s sm s e ms s m s e 231
12.7.2 Media hEAder ... —————————— 231
12.7.3 T D107 8] CI=) 110 o 231
12.8 202 232
12.9 Multiplexed timed metadata tracks......mss—— 232
12.9.1 0 11 i . 232

© ISO/IEC 202x - All rights reserved

vii

DIS 14496-12:202x

12.9.2 L0 R0 ez 1L 12 e T, 232
12.9.3 Sample fOrmat..... s ———————————————— 232
12.9.4 Sample entry format ... —————————————————— 232
12.9.5 Defined fOrmats ... ———————————— 236
12.10 Volumetric visual Media.....ccouiimmmmmsmmimssasssssas 237
12.10.1 Media handIer ... ——————————————— 237
12.10.2 Media header ... ——————————— 237
B 778 (LT T P2 1111 0] U) 1 2 238
12.10.4 Sample fOrmat..... s —————————————————— 238
12.11 Haptic Media ... 238
12.11.1 Media handler . ———————————— 238
12.11.2 Media header ... ———— 238
12.11.3 SAMPIE ENEIY wiiicicciismsmsssmssssssssssssss s 238
12.11.4 Sample fOrmat.......coiiiiisss s s s s snsmsas s s snn s 239
13 Transformed media tracks.....————————— 239
13.1 03 11 i 239
13.2 Multiple transformations for a single transformed media trackccocouniuiesennns 239
13.3 Determining the untransformed sample entry type........cnn. 239
13.3.2 Example for protected and restricted media (informative).......cccussrmsnsnsssinsnsesnass 240
13.3.3 The 'codecs' MIME parameter for a transformed media track........c.ousmsmsnsnnens 240
13.4 Support for protected Streams.........cis s —————————— 240
13.4.1 L0 02 a2 T 240
13.4.2 Protection scheme information DOX.....umss————s 242
13.4.3 Original format BoX ... ————————————— 243
13.4.4 IPMPINFOBOX weucuiutscssssess s sssssss s s ssssss s s sssss s s s s nassssans 243
13.4.5 IPMP CONEIOl BOX c.uciiieieieisisisnnsssnisisssssmsssssssss s ssasasasssssssssssssassssasases 243
13.4.6 Scheme tYPe DOX .. asssas 243
13.4.7 Scheme information DOX...... s s sssssnsasasasssassssesessnas 244
13.4.8 Scramble Scheme INformation BOX ... 244
13.5 Restricted media tracks.....ossssa———s 245
13.5.1 =3 1 1) i 245
13.5.2 Restricted sample entry transformation.......—————" 245
13.5.3 Restricted scheme information boXcu————————— 247
13.54 Scheme for stereoscopic video arrangements........usmmsmssssssmsmsssmsssssssssssss 247
13.5.5 Compatible scheme type DOX ... 250
13.5.6 Sample-packed tracks ... s————- 250
13.6 Support for incomplete tracks ... ———————————— 251
13.6.1 =3 1 1) o 251
13.6.2 TransSformation ... —————————————————————— 252
13.6.3 Complete track information DoX ... ———— 253
Annex A (informative) Overview and tutorial........——————— 254
A1l ANNEX OVEIVICW wuveiuiinsessssismssssmssissesssssssssssssessssssssssnssssssssssssnass 254
A.2 Design CONSIAETALIONScocmimsmsisisisismsmsmssss s s e 254
A2.1 L 254
A3 DesSign PrincCiples... . ——————————— 255
A4 L0703 1 Lo 11 256
A5 Physical structure of the mediacccriicininnnn s ————— 256
A.6 Temporal structure of the media ... ——————— 257
A.7 0 0L o (= L 257
A.8 L0703 10 0 0] L) o 257
A9 RANAOIMN ACCESS ..ucvrmmmsmsnsnssssisssssssssssssmsmsssssss s e e e 258
A.10 Fragmented movie flles ... 258

viii

© ISO/IEC 202x - All rights

reserved

DIS 14496-12:202x (E)

A11 Construction of fragmented MOVIES ... —————— 259
A12 Transformed streaming over streaming protocols........————— 260
A12.1 Design considerations for streaming protocols———— 260
A12.2 Design considerations for streaming protocols ... ————— 261
Annex B (informative) Guidance on deriving from this documentcoounnmsnscsnssnsnsnsnsnsnnns 264
B.1 GENETAL ... ———————————————— 264
B.2 General PrincCiples. .. ——————————————— 264
B.2.1 GENETAL ..t ————— 264
B.2.2 Base layer OPerations ... s ssssssssssans 264
B.3 BOXES curuiuciiimmnisssiss s AR AR AR 265
B.4 Brand identifiers.....ssssssss————————————. 266
B.4.1 OVETVICW .t R AR AR AR 266
B.4.2 Usage of the brand........ssssssssssms 266
B.4.3 Introduction of a new brand.......———————— 266
B.4.4 Player GUIideline ... sssssssssssssssssssssasssss 267
B.4.5 Authoring guideline.......o——————————— 267
B.4.6 25)1 11 1) (= 267
B.5 Storage of new media tYPEeS ... ———————————— 268
B.6 B U 269
B.6.1 1D F T 10 (T or 1 (0] . 269
B.6.2 1 1L 270
B.6.3 10T (T8 T T 7 0 L 270
B.6.4 COAING LYPES euvrrrrrrcsissssmsmssssssssssssssssssss s sssssssssssss s s s s A s AR e AR 270
B.6.5 Sub-sample information ... —————————_————— 270
B.6.6 Sample dePendency ... —————————————————————— 271
B.6.7 T) 100 e 011 0 271
B.6.8 Track-level ... ————————————————- 271
B.6.9 o (0T ot 1) o 271
B.7 MeEtAAAta ... ———————————————_——————_ 272
B.8 Sample groups, timed metadata tracks, and sample auxiliary information....... 272
Annex C (normative) Fragment identifiers for ISO base media resources........cocounsuseseseens 274
C1 L0 825 a2 T . 274
C.2 Syntax and SEMANTICS .. ——————————————— 274
Annex D (informative) Management of extension code-points ... 276
D.1 COAE POINLES oo AR AR 276
D.2 Procedure for the request of an extension code-point.......u—m—m 277
Annex E (normative) File format brands ... 278
E.l GENETAL ..ot —————————————————— 278
E.2 The 'isom' Brand ... sss——m 279
E.3 The 'avel' Brand ... s 280
E.4 The '1iS02" Drand ... s 280
E.5 The "MP71" Drand ... 281
E.6 The '1503 " Brand ... s 282
E.7 The 'iS04 " Drand ... s 282
E.8 The '1505 " Brand ... s 283
E.9 The '1S06 "' Brand ... ————————— 284
E.10 The '1iS07 "' Drand ... ————s 284
E.11 The '1iS08"' Drand ... ———————————- 285
E.12 The '1iS09" Brand ...—————————————————— 285
E.13 The 'isoa' Drandssss———————————————— 285
E.14 The "iSoDb ' Drand ... ——————————" 286

© ISO/IEC 202x - All rights reserved

ix

DIS 14496-12:202x

E.15 The 'relo’ Drand.....ssss— s —————————————— 286
E.15.1 Requirements for files........ummmsssssss s 286
E.15.2 Requirements for readers...... s 286
E.15.3 Use cases (iNfOrmative) ... 287
E.16 The 'is0C' Brand.... s ——————————————— 289
E.17 The 'comp ' Drand......cmsssssssss——————" 289
E.18 The "unif' Brand.....cc————————————————— 289
E.18.1 GENETAL i 289
E.18.2 Requirements for files........ummmsssssss s 290
E.18.3 Requirements for readers.......mnssss————n" 290
E.19 The 'isod' Brand....s——————————————————— 290
Annex F (normative) MIME type registration of segmentsccucummnnmnnmssn. 292
F.1 L0 02 a2 T 292
F.2 30 1] 0 = L0) 292
Annex G (informative) URI-labelled metadata forms ... 293
G.1 UUID-labelled Metadatacoommmsmmmssimmsmsssas 293
G.2 ISO OID-labelled metadata ... sssssssssasas 293
G.3 SMPTE-labelled metadata.......mmmmsssssssnn 293
Annex H (informative) Processing of RTP streams and reception hint tracks ... 295
H.1 0 1 1) i 295
H.1.1 L0 02 o T2 T 295
H.1.2 R0) Ll 11 P 295
H.1.3 Specific definItions ... ————————————— 295
H.2 Synchronization of RTP Streams ... 295
H.3 Recording of RTP Streams......mss 296
H.3.1 L0123 o T . 296
H.3.2 Compensation for unequal starting for position of received RTP streams.......... 299
H.3.3 Recording Of SDP ... 300
H.3.4 Creation of a sample within an RTP reception hint trackcoonmnmnsniinsesnns 300
H.3.5 Representation of RTP timesStamps........coocunmmmimmmmssssssssssssssssssssssaes 301
H.3.6 Recording operations to facilitate inter-stream synchronization in playback..304
H.3.7 Representation of reception timescunn—————— 306
H.3.8 Creation of media SAMPIESccvrvmrniiinmnmnns s ———————————— 306
H.3.9 Creation of hint samples referring to media samplesccuvinnssmnnmsnsssses 307
H.4 Playing of recorded RTP Streams........cuuvsmsnnmsmsmsmnmsssmsmsssssssssssssssssssssssssssssssas 307
H.4.1 L0 0025 o T2 T 307
H.4.2 Preparation for the playbacK......ciiinnnssssnsssssss s 308
H.4.3 Decoding of a sample within an RTP reception hint tracK........coounnmnnsnsnsininsesnnns 308
H.4.4 Lip SYNChroniZation. ... ssssssssas 308
H.4.5 RaANAOM ACCESS .. s 310
H.5 Re-sending recorded RTP Streamsouuummmnmmmisismsssmsmssmssssssssssssssssssssssssssssssssssases 310
H.5.1 L0 002 g T2 T 310
H.5.2 Re-sending RTP packets ... 311
H.5.3 RTCP PrOCESSING ..couiiseseseinisssrsmmsmsssissssssmsss s sssssasassssssssssssssassssssases 312
Annex | (normative) Stream accCess POINES ... ———————— 314
1.1 =3 1 1) o 314
1.2 Y N ol 1) (0 0 1] o T 314
1.2.1 GENETAL ..t 314
1.2.2 SAP properties fOr JaYers ... 315
1.3 Y N 7 1T 316

© ISO/IEC 202x - All rights
X reserved

DIS 14496-12:202x (E)

1.4 SAP definitions for the ISO base media file formatccococvisnisisssnsnsnnnnsssssnnsn 317
Annex J (informative) Segment index eXxamples.......oumm—————————— 318
J1) 1) o 1 318
].2 D01 11 1] 318
J.2.1 Simple one-level INdeXiNgcuvinmmm————————————— 318
].2.2 Hierarchical ... s s s ssssssssssssssssassssssasses 319
]J.2.3 D F= Y53 2ol 1 T) 1 320
].2.4 Combination hierarchical and daisy-chain.......s————— 321
Annex K (normative) Use of IETF RFC 6381 for ISOBMFF files ... 324
K.1 0 1T i . 324
K.2 Use of the ' codecs ' Parameter ... 324
K.2.1 O3 113 iz 1D o) L, 324
K.2.2)7L . 325
K.3 The 'codecs' parameter for transformed media tracks........cummmmmmsssssssnsn 325
K.4 Use of the 'profiles' PArameter ... sssssasassssssssss 326
K.5 Use of the 'itemtypes' PArameter ... s————————— 327
K.6 Use of the 'essential' PArameterms——————" 327

© ISO/IEC 202x - All rights reserved

xi

DIS 14496-12:202x

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and [EC shall not be held responsible for identifying any or all such patent rights. Details
of any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent
declarations received (see patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This eigth edition cancels and replaces the seventh edition (ISO/IEC 14496-12:2022), which has been
technically revised.

The main changes compared to the previous edition are as follows:

— Specification of essential sample groups

— Addition of the essential descriptions hierarchy sample group

— Addition of the preselection entity group and related boxes

— Addition of the extended dependent random access point (EDRAP) sample group
— Specification of the sample-packed restricted video track

— Addition of the associated external stream track reference

— Relaxing the presence requirements of the HandlerBox within a MetaBox

— Addition of the handler property for items

© ISO/IEC 202x - All rights
Xii reserved

http://www.iso.org/directives
http://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch/
http://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards

DIS 14496-12:202x (E)

Alist of all parts in the ISO/IEC 14496 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

© ISO/IEC 202x - All rights reserved xiii

http://www.iso.org/members.html
http://www.iec.ch/national-committees
http://www.iec.ch/national-committees

DIS 14496-12:202x

Introduction

The ISO base media file format is designed to contain timed media information for a presentation in a
flexible, extensible format that facilitates interchange, management, editing, and presentation of the
media. This presentation may be ‘local’ to the system containing the presentation, or may be via a network
or other stream delivery mechanism.

The file structure is object-oriented; a file can be decomposed into constituent objects very simply, and
the structure of the objects inferred directly from their type.

The file format is designed to be independent of any particular network protocol while enabling efficient
support for them in general.

The ISO base media file format is a base format for media file formats.

The International Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use
of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights

The holders of these patent rights have assured ISO and IEC that they are willing to negotiate licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In
this respect, the statements of the holders of these patent rights are registered with ISO and IEC.
Information may be obtained from the patent database available at www.iso.org/patents.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those in the patent database. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

Structure of this document

Clause 4 defines object-structured files; files that are built from boxes.

Clause 6 gives the core concepts and data-types for time-based presentations, called 'movies' in this
document.

Clause 8 defines the boxes used by time-based presentations, and other formats.
Clause 9 defines the hint track formats used to support some streaming protocols.

Clause 10 builds on the concept of sample groups as defined in subclause 8.9 and defines some sample
groups.

Clause 11 defines how to base a file format on this document.

Clause 12 builds on the general concepts of tracks as defined in Clause 8, and defines track formats for
various general types of media (video, sound, etc.).

Annex A provides an informative introduction to time-based presentations, which may be of assistance
to first-time readers and implementers.

© ISO/IEC 202x - All rights
Xiv reserved

http://www.iso.org/patents

DIS 14496-12:202x (E)

Annex B provides guidance on writing derived specifications.
Annex C provides the syntax for uniform resource identifier (URI) fragments.
Annex D documents how identifier values defined externally to this document are managed.

Annex E defines brands that may be used to identify the conformance and reader requirements to the
structures defined in this document for time-based presentations.

Annex F contains the formal IANA registration of segments.

Annex G defines some forms used for labelling metadata with uniform resource identifier (URI) labels.
Annex H provides an overview of the use of hint tracks for RTP streams and RTP stream reception.
Annex | contains the formal definitions of the types of stream access points in timed media streams.
Annex] contains examples of the use of the SegmentIndexBox defined in 8.16.3.

Annex K defines the MIME parameters that may be used to annotate MIME types for time-based
presentations based on Clause 6.

© ISO/IEC 202x - All rights reserved XV

DRAFT INTERNATIONAL STANDARD ISO/IEC FDIS 14496-12:202x(E)

Information technology — Coding of audio-visual objects —

Part 12:
ISO base media file format

1 Scope
This document specifies the ISO base media file format, which is a general format forming the basis for a

number of other more specific file formats. This format contains the timing, structure, and media
information for timed sequences of media data, such as audio-visual presentations.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 639-2, Codes for the representation of names of languages — Part 2: Alpha-3 code

ITU-T X.667 | ISO/IEC 9834-8, Information technology — Procedures for the operation of object identifier
registration authorities - Part 8: Generation of universally unique identifiers (UUIDs) and their use in object
identifiers

ISO/IEC 10646 Information technology - Universal coded character set (UCS)

ISO/IEC 13818-2:2013, Information technology — Generic coding of moving pictures and associated audio
information — Part 2: Video

ISO/IEC 14496-1: Information technology — Coding of audio-visual objects — Part 1: Systems

ISO/IEC 14496-10:2014, Information technology — Coding of audio-visual objects — Part 10: Advanced
Video Coding

ISO 15076-1, Image technology colour management — Architecture, profile format and data structure —
Part 1: Based on ICC.1:2010

ISO/IEC 15938-1, Information technology — Multimedia content description interface — Part 1: Systems

ISO/IEC 23001-1, Information technology — MPEG systems technologies — Part 1: Binary MPEG format
for XML

ISO/IEC 23001-14, Information technology — MPEG systems technologies — Part 14: Partial file format

ISO/IEC 23002-3, Information technology — MPEG video technologies — Part 3: Representation of
auxiliary video and supplemental information

© ISO/IEC 202x - All rights reserved 1

DIS 14496-12:202x

ISO/IEC 23003-4 Information technology — MPEG audio technologies — Part 4: Dynamic range control

ITU-T H.265 | ISO/IEC 23008-2, , Information technology — High efficiency coding and media delivery in
heterogeneous environments — Part 2: High efficiency video coding

ISO/IEC 23091-2, Information technology —Coding-independent code points — Part 2: Video
ISO/IEC 23091-3, Information technology —Coding-independent code points — Part 3: Audio
IETF RFC 1951, DEFLATE Compressed Data Format Specification version 1.3

IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies
IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

IETF RFC 3629, UTF-8, a transformation format of ISO 10646

IETF RFC 3711:2004, The Secure Real-time Transport Protocol (SRTP)

IETF RFC 5052, Forward Error Correction (FEC) Building Block

IETF RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification

ITU-R TF.460-6:2002, Standard-frequency and time-signal emissions

ITU-R BS.1770-4, Algorithms to measure audio programme loudness and true-peak audio level
IETF BCP 47, Tags for Identifying Languages

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace
IETF RFC 3061, A URN Namespace of Object Identifiers

W3C Recommendation, Extensible Markup Language (XML) 1.0 (Fifth Edition), 26 November 2008,
https://www.w3.org/TR/2008/REC-xml-20081126/

3 Terms, definitions and abbreviated terms
3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

[SO and IEC maintain terminology databases for use in standardization at the following addresses:
— IS0 Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3.1.1
access unit

media data pertaining to a particular composition time in a media stream, usually carried in one sample
of a media track

2 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.iso.org/obp/ui
https://www.electropedia.org/

ISO/IEC 14496-12:202x

3.1.2
box
object-oriented building block defined by a unique type identifier and length

Note 1 to entry Called ‘atom’ in some specifications, including the first definition of MP4.

3.1.3
chunk

contiguous set of samples for one track

3.14

clean aperture

part of a decoded video image from which undesirable pixels introduced for coding purposes such as
having integer number of coding blocks have been removed for presentation

3.1.5
container box
box whose sole purpose is to contain and group a set of related boxes

Note 1 to entry Container boxes are normally not derived from Ful1Box

3.1.6
dual-headed file

ISO base media file that is both an item file and a movie file

3.1.7

EDRAP sample

sample for which all subsequent samples in both decoding and output order can be correctly decoded
provided that the required preceding SAP or EDRAP samples are available for decoding the sample and
the subsequent samples, where the required preceding SAP or EDRAP samples consist of one or more of
the set of samples starting from the closest preceding SAP sample of type 1, 2, or 3 in decoding order
closestSapSample, and including all EDRAP samples between closestSapSample and the sample in
decoding order

3.1.8

essential sample group

sample group that describes essential information for the associated samples and is associated with a
sample group description for which the version field is equal to 3

3.1.9
file level
byte position in an ISO base media file not contained in a Box structure

3.1.10
full aperture
decoded video image as output by the decoder which may contain undesirable pixels for presentation

3.1.11

hint track

special track which does not contain media data, but instead contains instructions for packaging one or
more tracks into a streaming channel

© ISO/IEC 202x - All rights reserved 3

DIS 14496-12:202x

3.1.12

hinter

tool that is run on a file containing only media, to add one or more hint tracks to the file and so facilitate
streaming

3.1.13
index file

ISO base media file containing only SegmentIndexBox

3.1.14

ISO base media file

file conforming to the file format described in this document (either a movie file, a item file, a segment
file or an index file)

Note 1 to entry This document uses this term even when data delivered is not stored as a file but on the wire as
payload of a protocol data unit (e.g. HTTP, RTP, MMT, ...). In this case, it is assumed that the payload of the protocol
data unit is first saved into a file and then the normative statements of this document that use the term “file” apply.

3.1.15
item
data which does not require timed processing, as opposed to sample data

3.1.16
item data
concatenation of the extents of an item as specified by the definition of TtemLocationBox

3.1.17
item file

ISO base media file containing a top-level MetaBox

Note 1 to entry A movie file can also be an item file, and vice-versa. Such a file can be called a dual-headed file.

3.1.18

leading sample

sample associated with a random access point (RAP) that precedes the RAP in composition order and
immediately follows the RAP or another leading sample in decoding order, and which possibly cannot be
correctly decoded when decoding starts from the RAP

3.1.19

leaf subsegment

subsegment that does not contain any indexing information that enables its further division into
subsegments

3.1.20
mod

modulo operator: (x mod y) = x-y floor (x/y)

3.1.21
media data box
box which can hold the actual media data for a presentation ('mdat"')

4 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

3.1.22
movie box
container box whose sub-boxes define the structure-data for a presentation ('moov ')

3.1.23
movie file

ISO base media file containing a MovieBox

3.1.24
movie fragment
fragment of the information contained in a MovieBox, defined by a MovieFragmentBox and its

contents

3.1.25
structure-data

data that provides the location, size, timing, and characteristics of the media data (e.g. the coded frames
of audio and video)

3.1.26

movie-fragment relative addressing

signalling of offsets for media data in movie fragments that is relative to the start of those movie
fragments, specifically setting the flags base-data-offset-present to 0 and default-base-is-moof to 1 in
TrackFragmentHeaderBoxes

Note 1 to entry Setting the default-base-is-moof flag to 1 is only relevant for movie fragments that contain more
than one track run (either in the same or several tracks).

3.1.27
object-structured file
file that is formed as a series of boxes including a Fi1eTypeBox and contains no data outside the series

of boxes

3.1.28

open random access point

sample after which all samples in composition order can be correctly decoded, but some samples
following the random access point in decoding order and preceding the random access point in
composition order need not be correctly decodable

EXAMPLE An intra picture starting a group of pictures can be followed in decoding order by (bi-)predicted
pictures that however precede the intra picture in composition order; though they possibly cannot be correctly
decoded if the decoding starts from the intra picture, they are not needed.

3.1.29
pixel aspect ratio
scaling required to be applied to the output pixel of a decoder to produce a non-distorted image

Note 1 to entry The term "Sample Aspect Ratio" is sometimes used for this term, but "sample"” in this standard
has a specific meaning.

3.1.30

preselection

set of one or more tracks representing one version of the media presentation for simultaneous decoding
or presentation

© ISO/IEC 202x - All rights reserved 5

DIS 14496-12:202x

3.1.31
presentation
one or more motion sequences, possibly combined with audio

3.1.32

presentation time

timeline of a track that aligns with the timelines of other tracks established by an explicit or implied edit
list applied to the composition timestamps

3.1.33
random access

decoding of a media stream starting from a particular sample without decoding of any sample in the
media stream earlier in decoding order

Note 1 to entry Sync samples and SAPs provide random accessing capabilities.

3.1.34
timeline

monotonic linear representation of times with respect to a zero origin point

3.1.35
timescale

number of timestamp values that represent a duration of one second

3.1.36
timestamp
integer coded value representing an instant of time on an associated timeline

3.1.37
decoding timestamp
timestamp on the media timeline such that samples are decoded in decoding timestamp order

Note 1 to entry: The decoding timestamps primarily define the required decoding order; systems may decode at
a time of their choosing; in the case of signed composition offsets, decoding timestamps do not necessarily precede
composition timestamps

3.1.38

composition timestamp

timestamp on the media timeline such that samples are presented in composition timestamp order and
that establishes their relative composition timing

3.1.39

sample duration

difference between the decoding timestamp of the following sample (when known) and the decoding
timestamp of this sample

3.1.40
random access point
RAP

sample in a track that starts at the Isay of a SAP of type 1 or 2 or 3; informally, a sample, from which when
decoding starts, the sample itself and all samples following in composition order can be correctly decoded

Note 1 to entry SAP types are defined in Annex L.

6 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

3.141
random access recovery point
sample in a track with presentation time equal to the Tsap of a SAP of type 4

Note 1 to entry SAP types are defined in Annex 1.

Note 2 to entry A random access recovery point relates to gradual decoding refresh and is the first sample that
can be correctly decoded when the decoding started at the previous SAP of type 4 in decoding order.

3.1.42
sample
all the data associated with a single time

Note 1 to entry No two samples within a track can share the same decoding timestamp; no two samples can share
the same composition timestamp.

Note 2 to entry In non-hint tracks, a sample is, for example, an individual frame of video, a series of video frames
in decoding order, or a compressed section of audio in decoding order; in hint tracks, a sample defines the formation
of one or more streaming packets.

3.1.43
sample entry
structure which defines and describes the format of some number of samples in a track

Note 1 to entry The term "sample description” has also been used, and has the same meaning.
3.1.44
sample entry type

four-character code that is either a format value of a SampleEntry directly contained in
SampleDescriptionBox oradata format value of OriginalFormatBox

3.1.45

untransformed sample entry type

sample entry type that applied prior to transformations were performed to form a transformed media
track

Note 1 to entry: This is the sample entry type that applied as the format value in a SampleEntry directly contained
in the SampleDescriptionBox prior to transformations were performed to form a transformed media track.

3.1.46
sample number
ordinal index number of a given sample where the first sample has sample number 1

3.1.47
sample table
packed directory for the timing and physical layout of the samples in a track

3.1.48
sync sample
sample in a track that starts at the Isay of a SAP of type 1 or 2

Note 1 to entry SAP types are defined in Annex 1.

Note 2 to entry Informally, a media sample that starts a new independent sequence of samples; if decoding starts
at the sync sample, it and succeeding samples in decoding order can all be correctly decoded, and the resulting set of
decoded samples forms the correct presentation of the media starting at the decoded sample that has the earliest
composition time; a media format may provide a more precise definition of a sync sample for that format

© ISO/IEC 202x - All rights reserved 7

DIS 14496-12:202x

3.1.49
sync sample information
SyncSampleBox or sample is non sync sample equal to 0

3.1.50

segment

portion of movie file, consisting of either (a) a MovieBox, with its associated media data (if any) and
other associated boxes or (b) one or more MovieFragmentBoxes, with their associated media data, and
other associated boxes

Note 1 to entry The associated media data can be found by following byte offsets, but the process of finding
associated boxes is not given in this standard and may be derived by other specifications.

3.1.51
segment file
ISO base media file containing one or more segment(s)

3.1.52
subsegment
time interval of a segment formed from MovieFragmentBoxes, that is also a valid segment

3.1.53
thumbnail image
smaller-resolution representation of an image

3.1.54
top-level box
box contained at file level

3.1.55
track
timed sequence of related samples (q.v.) in an ISO base media file

Note 1 to entry For media data, a track corresponds to a sequence of images or sampled audio; for hint tracks, a
track corresponds to a streaming channel.

3.1.56

transformed media track

media track that requires specific processing on top of the processing imposed by the untransformed
sample entry type of the track

Note 1 to entry A transformed media track can be a protected, incomplete, or restricted media track, or any
combination of them.

3.1.57
haptic media
timed tactile signals to be presented as part of the media presentation

3.1.58
volumetric visual media
timed visual media defining a visual coding in a three-dimensional space

Note 1 to entry: In contrast to video media, which defines a planar coding.

8 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

3.1.59
container

<SAP information> file or segment compatible with the ISO base media file format

Note 1 to entry: This definition applies for the interpretation of SAP information for files and segments compatible with
the ISO base media file format.

3.1.60
media stream

<SAP information> samples of a track in their decoding order

Note 1 to entry: This definition applies for the interpretation of SAP information for files and segments compatible with
the ISO base media file format.

3.1.61
bitstream
<SAP information> file or segment compatible with the ISO base media file format

Note 1 to entry: This definition applies for the interpretation of SAP information for files and segments compatible with
the ISO base media file format.

3.1.62
SAP sample
sample associated with Isay from which decoding of the media stream or the target layers can be started

3.2 Abbreviated terms

4CC four-character code

ALC asynchronous layered coding

AVC advanced video coding

EDRAP extended dependent random access point
FD file delivery

FDT file delivery table

FEC forward error correction

FLUTE file delivery over unidirectional transport

[ANA internet assigned numbers authority
IETF internet engineering task force
LCT layered coding transport

MBMS multimedia broadcast/multicast service

MIME multipurpose internet mail extensions (as defined in IETF RFC 2045 and IETF RFC 2046)

MVC multiview video coding
RAP random access point
SAP stream access point
SvC scalable video coding

UuID universally unique identifier (as defined in IETF RFC 4122 and ISO/IEC 9834-8)

© ISO/IEC 202x - All rights reserved 9

DIS 14496-12:202x

4 Object-structured file organization

4.1 File structure

Files are formed as a series of objects, called boxes in this document. All data is contained in boxes; there
is no other data within the file. This includes any initial signature required by the specific file format.

All object-structured files conformant to Clause 4 (all object-structured files) shall contain a
FileTypeBox.

In this document, top-level boxes (boxes not contained in other boxes) are indicated as being at ‘file’ level,
with the notation “Container: File”.

4.2 Object structure

4.2.1 Object syntax conventions

The definitions of objects are given in the syntax description language (SDL) defined in ISO/IEC 14496-
1.

NOTE Comments in the code fragments in this document are informative.

The fields in the objects are stored with the most significant byte first, commonly known as network byte
order or big-endian format. When fields smaller than a byte are defined, or fields span a byte boundary,
the bits are assigned from the most significant bits in each byte to the least significant. For example, a
field of two bits followed by a field of six bits has the two bits in the high order bits of the byte.

In the SDL, the notation ‘=’ indicates that in this object, the field read from the bitstream (whose name
and type are given in the left hand-side part) is expected to match the value given in the right hand-side
part.

The following basic field types are defined. In these definitions, null-terminated means that the string is
terminated by the first Unicode NUL, which shall be present, and hence an empty string is represented
by a single Unicode NUL. Some fields using these types may restrict the characters permitted.

Name Semantics

utf8string UTF-8 string as defined in IETF RFC 3629, null-terminated.

utfstring null-terminated string encoded using either UTF-8 or UTF-16.

If UTF-16 is used, the sequence of bytes shall start with a byte order mark
(BOM) and the null termination shall be 2 bytes set to 0.
utf8list null-terminated list of space-separated UTF-8 strings

base64string | null-terminated base64 encoded data

signed int same as int in ISO/IEC 14496-1, represented as two’s complement
representation

10 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

4.2.2 Object definitions
An object in this terminology is a box.

Boxes start with a header which gives both size and type. The header permits compact or extended size
(32 or 64 bits) and compact or extended types (32 bits or full universal unique identifiers, i.e. UUIDs).
The standard boxes all use compact types (32-bit) and most boxes will use the compact (32-bit) size.
Typically, only the MediaDataBox needs the 64-bit size.

To permit ease of identification, the 32-bit compact type can be expressed as four characters from the
range 0020 to 007E, inclusive, of ISO/IEC 10646 (technically identical to the Unicode standard[27]) or
ISO/IEC 8859-111l. Each character is hence expressible in a single byte. The four individual byte values of
the field are placed in order in the file. Other fields may also use this 32-bit representation, referred to as
a ‘four-character code’ (4CC). The maintenance of four-character codes used in the format is defined in
Annex D.

The size is the entire size of the box, including the size and type header, fields, and all contained boxes.
This facilitates general parsing of the file.

User extensions use an extended box type; in this case, the type field is set to 'uuid".

aligned(8) class BoxHeader (
unsigned int (32) boxtype,
optional unsigned int(8) extended typel[l6])

unsigned int (32) size;
unsigned int (32) type = boxtype;
if (size==1) {
unsigned int (64) largesize;
} else 1f (size==0) {
// box extends to end of file
}
if (boxtype=='uuid') {
unsigned 1int(8) usertype[l6] = extended type;

}

aligned(8) class Box (
unsigned int (32) boxtype,
optional unsigned int (8) extended typell6])

BoxHeader (boxtype, extended type);
// the remaining bytes are the BoxPayload
}

The semantics of these two fields are:

size is aninteger that specifies the number of bytes in this box, including all its fields and contained
boxes; if size is 1 then the actual size is in the field 1argesize; if size is 0, then this box shall be
in a top-level box (i.e. not contained in another box), and be the last box in its 'file’, and its payload
extends to the end of that enclosing 'file'. This is normally only used for a MediaDataBox.

type identifies the box type; user extensions use an extended type, and in this case, the type field is
setto 'uuid"'.

© ISO/IEC 202x - All rights reserved 11

DIS 14496-12:202x

BoxPayload is defined as all the bytes in a Box, included by the size or largesize field (as
appropriate), following the BoxHeader.

Boxes with an unrecognized type shall be ignored and skipped.

Many objects also contain a version number and flags field:

aligned(8) class FullBoxHeader (unsigned int (8) v, bit(24) f)
{

unsigned int (8) wversion =
bit (24) flags = £;

\%

}

aligned(8) class FullBox (unsigned int (32) boxtype,
unsigned int(8) v, bit(24) £,
optional unsigned int(8) extended type[l6])
extends Box (boxtype, extended type)

FullBoxHeader (v, f);
// the remaining bytes are the FullBoxPayload
}

The semantics of these two fields are:

version is an integer that specifies the version of this format of the box.
flags is a map of flags

When the syntax specifies version = 0, it means that this document only defines the syntax for version
0 of the FullBox. When “= 0” is not present, it means different values are possible and the syntax has
actual differences depending on the actual version used. Derived specifications are not permitted to
define a new version of a box defined in this document.

When the syntax specifies flags = 0 (or sometimes simply “0” for the f1ags), it means that this
document does not define flag values for this Ful1Box. When “= 0” is not present, it means different
flag values are defined. Unless specified otherwise, values of flags that are not specified in this
document are reserved for future use by ISO/IEC. Additional flags may be defined and may be used to
introduce backwards-compatible changes that parsers unaware of the change may safely omit. If parsers
unaware of changed syntax of a box fail parsing the box (non-backwards-compatible), a new version will
be used. Derived specifications should follow this practice. As a consequence, if a reader supports a
version of a Ful1Box, it can and should keep parsing the box even if it does not recognize a flag value.
Writers should not write flag values that they do not understand.

FullBoxPayload is defined as all the bytes in a Ful1Box, included by the size or largesize field
(as appropriate), following the FullBoxHeader. Since BoxPayload is defined for any box extending
from Box, FullBox has both BoxPayload and FullBoxPayload defined, the former including the
latter (with BoxPayload of a FullBox including the FullBoxHeader).

The payload (contents) of a box are Ful1BoxPayload fora FullBox and BoxPayload for all boxes.
FullBoxes with an unrecognized version shall be ignored and skipped.

Boxes specified in this document may be extended but such extensions are reserved for future use by
ISO/IEC. Syntax may be added at the end of a box derived from FullBox and an already specified
version value may be kept, if it is not essential to parse such added syntax. When a parser has not
reached the end of a box derived from FullBox as defined by the values of the size or largesize

12 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

field (as appropriate) but does not recognize the remaining syntax elements, it shall ignore and skip the
remaining of the box.
NOTE This document and derived specifications describe the different flags defined for a box extending from Ful1Box

as hexadecimal values (e.g. 0x000001); these values correspond to 24-bit unsigned integers with the most significant
byte first.

4.2.3 Extensibility of object definitions

The normative objects defined in this document are identified by a 32-bit value, which is normally a four
character compact code as defined in subclause 4.2.

To permit user extension of the format, to store new object types, and to permit the inter-operation of
the files formatted to this documentwith certain distributed computing environments, there are a type
mapping and a type extension mechanism that together form a pair.

Commonly used in distributed computing are UUIDs (universal unique identifiers), which are 16 bytes.
Any normative type specified here can be mapped directly into the UUID space by composing the four
byte type value with the twelve byte ISO reserved value, 0xXXXXXXXX-0011-0010-8000-
00AA00389B71. The four character code replaces the XXXXXXxXX in the preceding number. These types
are reserved or specified in this document.

User objects use the escape type 'uuid'. They are documented above in subclause 6.3. After the size
and type fields, there is a full 16-byte UUID.

Systems which wish to treat every object as having a UUID may employ the following algorithm:

size := read uint32();
type := read uint32();
if (type=='uuid')
then uuid := read uuid()
else uuid := form uuid(type, ISO 12 bytes);

Similarly when linearizing a set of objects into files formatted to this document, the following is applied:

write uint32(object size(object));
uuid := object uuid type (object);
if (is_ISO uwuid(uuid))
write uint32(ISO type of (uuid))
else { write uint32('uuid'); write uuid(uuid); }

A file containing boxes from this document that have been written using the 'uuid' escape and the full
UUID is not compliant; systems are not required to recognize standard boxes written using the 'uuid’
and an ISO UUID.

© ISO/IEC 202x - All rights reserved 13

DIS 14496-12:202x

4.3 File-type box

4.3.1 Definition

Box Type: 'ftyp'

Container: File,or OriginalFileTypeBox
Mandatory: Yes

Quantity: Exactly one (but see below)

Files conformant to Clause 4 shall contain a FileTypeBox. For compatibility with an earlier edition of
this document, files may be conformant to this document and not contain a Fi 1eTypeBox. Files with no
FileTypeBox should be read as if they contained a FileTypeBox with Major brand='mp4l"',
minor version=0, and the single compatible brand 'mp41".

A media-file structured to this document may be compatible with more than one detailed specification,
and it is therefore not always possible to speak of a single ‘type’ or ‘brand’ for the file. This means that the
utility of the file name extension and multipurpose internet mail extension (MIME) type are somewhat
reduced.

This box shall be placed as early as possible in the file (e.g. after any obligatory signature, but before any
significant variable-size boxes such as a MovieBox, MediaDataBox, or FreeSpaceBox). It identifies
which specification is the ‘best use’ of the file (the major brand), and a minor version of that
specification; and also a set of other specifications to which the file complies (the
compatible brands); the major brand should be repeated in the compatible brands list.
Readers implementing this format should attempt to read files that are marked as compatible with any
of the specifications that the reader implements. Any incompatible change in a specification should
therefore register a new ‘brand’ identifier to identify files conformant to the new specification.

The minor version is informative only. It does not appear for compatible-brands, and is not used to
determine the conformance of a file to a standard. It may allow more precise identification of the major
specification, for inspection, debugging, or improved decoding.

Files are normally identified externally (e.g. with a file extension or MIME type) that identifies the ‘best
use’ (major brand), or the brand that the author believes will provide the greatest compatibility.

This subclause does not define any brands. However, see subclause 6.6 for brands for files conformant to
the whole document and not just this subclause. All file format brands defined in this document are
included in Annex E with a summary of which features they require.

4.3.2 Syntax

aligned(8) class GeneralTypeBox (code) extends Box (code)
{

unsigned int (32) major brand;

unsigned int (32) minor version;

unsigned int (32) compatible brands[]; // to end of the box
}

aligned(8) class FileTypeBox extends GeneralTypeBox ('ftyp')
{
}

14 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

4.3.3 Semantics
This box identifies the specifications to which this file complies.
Each brand is a four character code, registered with ISO, that identifies a precise specification.

major brand -isabrand identifier
minor version -isan informative integer for the minor version of the major brand
compatible brands -isalist, to the end of the box, of brands

4.4 Extended type box

4.4.1 Definition

Box Type: 'etyp'

Container: File, ItemPropertyContainerBox,or OriginalFileTypeBox
Mandatory: No

Quantity: Zero or more in file, zero or one per an item

Box Type: 'tyco'

Container: ExtendedTypeBox
Mandatory: Yes

Quantity: One or more

The ExtendedTypeBox may be placed after the FileTypeBox, any SegmentTypeBox, or any
TrackTypeBox, or used as an item property to indicate that a reader should only process the file, the
segment, the track, or the item, respectively, if it supports the processing requirements of all the brands
in at least one of the contained TypeCombinationBoxes, or at least one brand in the preceding
FileTypeBox, SegmentTypeBox,or TrackTypeBox,orinthe BrandProperty associated with the
same item, respectively.

The TypeCombinationBox expresses that the associated file, segment, track, or item may contain any
boxes or other code points required to be supported in any of the brands listed in the
TypeCombinationBox and that the associated file, segment, track, or item complies with the
intersection of the constraints of the brands listed in the TypeCombinationBox.

NOTE Effectively, if the compatible brands in the FileTypeBox are labeled C[1], C[2], etc, and the
compatible brands inthe first TypeCombinationBox D[1,1], D[1,2],andthesecondD[2,1], D[2,2],
and so on, then a reader has to support:

4.4.2 Syntax

aligned(8) class TypeCombinationBox extends Box('tyco')
{

unsigned int (32) compatible brands[]; // to end of the box
}

© ISO/IEC 202x - All rights reserved 15

DIS 14496-12:202x

aligned(8) class ExtendedTypeBox extends Box ('etyp')
{

TypeCombinationBox compatible combinations[]; // to end of the box

}

4.4.3 Semantics

compatible brands isalistof brands.
compatible combinationsisalistof TypeCombinationBoxes.

5 Void

6 ISO base media file organization

6.1 Files, segments, and streams
This document supports the exchange of presentations in three principle ways:

1) Asasingle file (e.g. on exchangeable media such as discs, or as a download).

2) As aseries of segments, preceded by an initialization segment.

3) Transformed by supporting structures, called hint tracks, into a streaming protocol such as the
IETF real-time protocol RTP specified in IETF RFC 3550 or an MPEG-2 transports stream specified
in ISO/IEC 13818-1.

A movie file logically includes all its segments.

The file format supports transformation of media data into a streaming protocol as well as local playback.
The process of sending protocol data units is time-based, just like the display of time-based data, and is
therefore suitably described by a time-based format. A file or ‘movie’ that supports streaming includes
information about the data units to stream. This information is included in additional tracks of the file
called “hint” tracks. Hint tracks may also be used to record a stream; these are called Reception Hint
Tracks, to differentiate them from plain (or server, or transmission) hint tracks.

6.2 Presentation structure

6.2.1 Object structure of a presentation

An ISO base media file is an object-structured file as defined in Clause 4 (and hence contains a
FileTypeBox); some of these objects may contain other objects.

ISO base media files contain data that structures, orders, times, and describes the media data that is
passed to decoders. This non-media data is called structure-data here.

The sequence of objects in a movie file shall contain exactly one MovieBox. It is usually close to the
beginning or end of the file, to permit its easy location. The other objects found at this level include a

FileTypeBox, FreeSpaceBox (es), MovieFragmentBox (es), a MetaBox, or
MediaDataBox(es).
16 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

6.2.2 Meta data and media data

The structure-data is contained within a structure-data wrapper (the MovieBox or
MovieFragmentBox); the media data is contained either in the same file, within MediaDataBox(es),
or in other files. The media data is composed, for example, of images or audio data; the media data
containers, or media data files, may contain other un-referenced information.

The file containing the presentation structure-data may also contain all the media data, whereupon the
presentation is self-contained. If the media data is externally referenced in other files, they are not
required to be formatted to this document; they are used to contain media data, and may also contain
unused media data, or other information. This document concerns the structure of the ISO base media
file only. The format of the media-data files is constrained by this document only in that the media-data
in the media files needs to be capable of description by the structure-data defined here.

NOTE Media-data files can comply with any format. It is possible to store only the media data itself in a
media-data file, or media-data files can contain unused media data or other information that is not referenced
by the ISO base media file. All timing and framing (position and size) information is in the ISO base media file.

6.2.3 Data offsets

Each sample or item is mapped to a data reference entry that is present in the DataReferenceBox
contained in the MediaInformationBox of the track or the MetaBox where the item is defined,
respectively. The data reference entry specifies the container for the sample or item data among the
following:

- the same file where this data reference entry is present;

- aresource identified by a given URL or URN;

- the IdentifiedMediaDataBox that contains a given identifier value;

- the IdentifiedMediaDataBox that contains the identifier value that is equal to
sequence number of the MovieFragmentHeaderBox of the movie fragment containing the
sample.

The location of samples and item data within its container is indicated through data offsets, which may
be provided or inferred, for example based on the ChunkOf fsetBox, TrackFragmentHeaderBox,
or TtemLocationBox. Table 1 summarizes the different types of data offsets.

Table 1 - Data offset types

Type of data offset Signalling The origin that the data Usage examples
addressing offset is relative to
Movie-fragment- The base-data-offset- The first byte of the Delivery of segments that
relative present and default- MovieFragmentBox contain one or more movie
base-is-moof flags of the defining the sample (if this is | fragments
TrackFragmentHeaderBox |the first
(see subclause 8.8.7.1) TrackFragmentHeaderBox

of this track within the movie
fragment), or

the end of the data defined by
the preceding track fragment
of the same track (otherwise)

File-relative Data reference entry of type The first byte of the file Files that do not contain
'url 'or 'urn ',and either |identified by the data movie fragments.
no movie-fragment relative reference entry

offsets indicated or

© ISO/IEC 202x - All rights reserved 17

DIS 14496-12:202x

construction method

equal to 0 in
ItemLocationBox

NOTE It is theoretically
possible to store media data
in a movie-fragmented file
and use file-relative data
offsets. However, movie-
fragment-relative data
offsets are used in practice
as it has the benefit of
enabling delivery on movie
fragment basis.

IdentifiedMedia
DataBox-relative

Data reference entry of type
'imdt' or 'snim'

The first byte of the payload of
the referenced
IdentifiedMediaDataBox

File editing (see subclause
E.15.3.1), partial image file
reception (see subclause
E.15.3.2), delivery of the
MovieFragmentBox in a
separate resource from the
media data it references.

ItemDataBox-relative

construction method

equalto 1in
ItemLocationBox

The first byte of the payload of
the referenced ItemDataBox

Items that are small in size
stored in the same MetaBox

that defines them.

Item-relative

construction method

equal to 2 in
ItemLocationBox

The first byte of the
concatenated data (of all the
extents) of a given item

An item is made of the
concatenation of one or
more parts of existing items.

6.3 Structure-data (objects)

6.3.1 Box

Type fields not defined here are reserved. Private extensions shall be achieved through the 'uuid"' type.
In addition, the following types either are not used in this document and will not be used, or are used only
in their existing sense specified in this document and will not be used in any other sense, to avoid conflict
with existing content using earlier pre-standard versions of this format:

clip, crgn, matt, kmat, pnot, ctab, load, imap;
these track reference types (as found in the reference type ofaTrackReferenceBox):
tmcd, chap, sync, scpt, ssrc.

A number of boxes contain index values into sequences in other boxes. These indexes start with the value
1 (1 is the first entry in the sequence).

6.3.2 Data types and fields

In a number of boxes in this document, there are two variant forms: version 0 using 32-bit fields, and
version 1 using 64-bit sizes for those same fields. In general, if a version 0 box (32-bit field sizes) can be
used, it should be; version 1 boxes should be used only when the 64-bit field sizes they permit, are
required. Values for counters, offsets, times, durations etc. in this format do not ‘wrap’ to 0 when the
maximum value that can be stored in their field is reached; appropriately large fields must be used for all
values.

For convenience during content creation there are creation and modification times stored in the file.
These can be 32-bit or 64-bit numbers, counting seconds since midnight, Jan. 1, 1904, which is a
convenient date for leap-year calculations. 32 bits are sufficient until approximately year 2040. These

18 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

times shall be expressed in Universal Time Coordinated (UTC) as defined in ITU-R TF.460-6:2002,
Annex |, and therefore may need adjustment to local time if displayed.

Fixed-point numbers are signed or unsigned values resulting from dividing an integer by an appropriate
power of 2. For example, a 30.2 fixed-point number is formed by dividing a 32-bit integer by 4.

Fields shown as “template” in the syntax are interpreted as follows:

The value given after the equals sign in the syntax is a value defined in the context of this
document and to be interpreted specifically by readers and writers, as indicated below.

Derived specifications are permitted to define additional possible values for the field, but they
shall indicate when these should be used, and they shall not modify the remaining syntax of the
box to depend on the value of this field.

Writers should write the value after the equal sign if they intend to write files compliant to this
specification. If they intend to write files conformantto a derived specification, they may write
another value, as permitted by that derived specification.

Readers should expect any value and should keep parsing the box even if they do not recognize
the value.

Fields whose name is “pre defined” are interpreted as follows:

They had specific semantics in an earlier edition of this document, but their semantics are no
longer in use. They are considered legacy fields.

The value given after the equals sign in the syntax is the only permitted value.

Derived specifications are not permitted to change this value.

Writers shall always write this value to create conformant files.

Readers should expect any value, and should keep parsing the box even if they do not recognize
a value. Derived specifications may require stricter behaviour from readers (e.g. requiring
reading to stop and emit an error when reading a different value).

Fields whose name is “reserved” are interpreted as follows:

They may have a value defined in this document (typically 0) or they may not.
Additional values are reserved for future use by ISO/IEC.
Derived specifications are not permitted to define other values for this field.

[Editor’s note: The stvi box in this specification has a field reserved with template qualifier. This
would need to be studied how to solve this contradiction.]

A given syntax structure may contain multiple fields named “reserved”.
This document guarantees the following:

o WhenusedinaFullBox,ifanew valueisintroduced that requires changes to the syntax
of the Ful1Box in a non-compatible way, this change will be done together with a change
of version.

o When used in other structures, new values may be defined but these will not affect the
syntax of the structure.

Writers shall always write the default value, if specified, or shall write a value of 0, if not specified.
Readers should expect any value, and should keep parsing the box even if they do not recognize
the value.

Matrix values which occur in the headers specify a transformation of video images for presentation. Not
all derived specifications use matrices; if they are not used, they shall be set to the identity matrix. If a
matrix is used, the point (p,q) is transformed into (p', q') using the matrix as follows:

© ISO/IEC 202x - All rights reserved 19

DIS 14496-12:202x

m=ap +cq+ x; n=>Dbp +dg+ vy; =z =up + vqg + w;
p' =m/z; gq' = n/z

The coordinates {p,q} are on the decompressed frame, and {p’, q'} are at the rendering output. Therefore,
for example, the matrix {2,0,0, 0,2,0, 0,0,1} exactly doubles the pixel dimension of an image. The
coordinates transformed by the matrix are not normalized in any way, and represent actual sample
locations. Therefore {x,y} can, for example, be considered a translation vector for the image.

The coordinate origin is located at the upper left corner, and X values increase to the right, and Y values
increase downwards. {p,q} and {p’,q’} are to be taken as absolute pixel locations relative to the upper left
hand corner of the original image (after scaling to the size determined by the track header's width and
height) and the transformed (rendering) surface, respectively.

Each track is composed using its matrix as specified into an overall image; this is then transformed and
composed according to the matrix at the movie level in the MovieHeaderBox. It is application-
dependent whether the resulting image is ‘clipped’ to eliminate pixels, which have no display, to a vertical
rectangular region within a window, for example. So for example, if only one video track is displayed and
it has a translation to {20,30}, and a unity matrix is in the MovieHeaderBox, an application may choose
not to display the empty “L” shaped region between the image and the origin.

All the values in a matrix are stored as 16.16 fixed-point values, except for u, v and w, which are stored
as 2.30 fixed-point values.

The values in the matrix are stored in the order {a,b,u, ¢,d,v, x,y,w}.

6.3.3 URIs as type indicators

When URIs are used as a type indicator (e.g. in a sample entry or for un-timed metadata), the URI shall be
absolute, not relative and the format and meaning of the data must be defined by the URI in question. This
identification may be hierarchical, in that an initial sub-string of the URI identifies the overall nature or
family of the data (e.g. urn:oid: identifies that the metadata is labelled by an ISO-standard object
identifier).

The URI should be, but is not required to be, de-referencable. It may be string compared by readers with
the set of URI types it knows and recognizes. URIs provide a large non-colliding non-registered space for
type identifiers.

If the URI contains a domain name (e.g. it is a URL), then it should also contain a month-date in the form
mmyyyy. That date shall be near the time of the definition of the extension, and it must be true that the
URI was defined in a way authorized by the owner of the domain name at that date. (This avoids problems
when domain names change ownership).

6.3.4 Boxorder

An overall view of the normal encapsulation structure is provided in the following informative Table 2.
In the event of a conflict between this table and the prose, the prose prevails. The order of boxes within
its container is not necessarily indicated in Table 2.

20 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The table shows those boxes that may occur at the top-level in the left-most column; indentation is used
to show possible containment. Thus, for example, a TrackHeaderBox ('tkhd') is found in a
TrackBox ('trak'), whichis found inaMovieBox ('moov'). Notall boxes need to be used in all files;
the mandatory boxes are marked with an asterisk (*). See the description of the individual boxes for a
discussion of what must be assumed if the optional boxes are not present.

Objects using an extended type may be placed in a wide variety of containers, not just the top level.

In order to improve interoperability and utility of the files, the following rules and guidelines shall be
followed for the order of boxes:

1) The FileTypeBox shall occur before any variable-length box (e.g. movie, free space, media data).
Only a fixed-size box such as a file signature, if required, may precede it.

2) Itis strongly recommended that all header boxes be placed first in their container: these boxes are
the MovieHeaderBox, TrackHeaderBox, MediaHeaderBox, and the specific media headers
inside the MediaInformationBox (e.g. the VideoMediaHeaderBox).

3) Any movie fragment boxes should be in sequence order (see subclause 8.8.5).

4) It is recommended that the boxes within the SampleTableBox be in the following order:
SampleDescriptionBox, TimeToSampleBox, SampleToChunkBox, SampleSizeBox,
ChunkOffsetBox.

5) Itis strongly recommended that the TrackReferenceBox and EditBox (if any) should precede
the MediaBox, and the HandlerBox should precede the MediaInformationBox, and the
DataInformationBox should precede the SampleTableBox.

6) Itisrecommended that UserDataBoxes be placed last in their container.
7) Itis recommended that the MovieFragmentRandomAccessBox, if present, be last in the file.

8) Itisrecommended thatthe ProgressiveDownloadInfoBox be placed as early as possible in files,
for maximum utility.

Table 2 — Box types, structure and cross-reference

Box types, structure, and cross-reference
ftyp * K.2.3 file type and compatibility
otyp 8.19.5 original file-type
pdin 8.1.3 progressive download information
moov * 8.2.1 container for all the structure-data
mvhd * 8.2.2 imovie header, overall declarations
meta 8.11.1 Imetadata
grpl 8.18.2 entities groups list
prsl 8.18.4.1 preselection group
elng 8.4.6 extended language tag
udta 8.10.1 user-data
kind 8.10.4 track kind
labl 8.10.5 label
chnl 12.2.4 channel layout

© ISO/IEC 202x - All rights reserved 21

DIS 14496-12:202x

Box types, structure, and cross-reference

ardi 12.2.8 audio rendering indication
aelm 12.2.9 audio element
elng 8.4.6 extended language tag
kind 3.10.4 track kind
labl 8.10.5 abel
chnl 12.2.4 channel layout
aedb 12.2.10 audio element description
aepp 12.2.11 audio element positioning interactivity polar
aepr 12.2.12 audio element prominence interactivity
aesb 12.2.13 audio element selection
labl 8.10.5 Jabel
aelm 12.2.9 audio element
elng| [8.4.6 extended language tag
kind 8.10.4 track kind
labl 8.10.5 Jabel
chnl 12.2.4 channel layout
12.2.10 audio element description
aedb /Ed.Note] 'aepp’ and 'aepr' child boxes are not
described in the table due to lack of table columns
aepp 12.2.11 audio element positioning interactivity polar
aepr 12.2.12 audio element prominence interactivity
aesd 12.2.14 audio element selection description
trak 8.3.1 container for an individual track or stream
Ctyp 8.3.6 track type
tkhd 8.3.2 track header, overall information about the track
tref 8.3.3 track reference container
trgr 8.3.4 track grouping indication
msrc 8.3.4.4.1 Imulti-source presentation track group type box
ster 8.3.4.4.2 stereoscopic pair track group type box
edts 8.6.5 edit list container
elst 8.6.6 an edit list
meta 8.11.1 Imetadata
mdia 8.4 container for the media information in a track
ndhd 8.4.2 medz:a header, overall information about the
imedia
hdlr 8.4.3 handler, declares the media (handler) type
elng 8.4.6 extended language tag
minf 8.4.4 Imedia information container
mhd 12.1.2 ggiz or’r;zgia header, overall information (video
smhd 12.2.2 if::]gor:begm header, overall information (sound
hmhd 12.4.3 Zznr;;)medla header, overall information (hint track
sthd 12.6.2 subtit{le media header, overall information
subtitle track only)
hmhd 8.4.5.2 gzgkx)ii;g header, overall information (some|
dinf 8.7.1 [data information box, container

22

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Box types, structure, and cross-reference
dref . [8.7.2 data .reference box, declares source(s) of media
data in track
<tbl . [8.5.1 sample table box, container for the time/space
imap
<tsd . [8.5.2 sample description box (codec types, initialization
etc.)
stts * 8.6.1.2 (decoding) time-to-sample
ctts 8.6.1.3 (composition) time to sample
cslg 8.6.1.4 composition to decode timeline mapping
stsc * 8.7.4 sample-to-chunk, partial data-offset information
stsz 8.7.3.2 sample sizes (framing)
stz2 8.7.3.3 compact sample sizes (framing)
stco * 8.7.5 chunk offset, partial data-offset information
co64 8.7.5 64-bit chunk offset
stss 8.6.2 sync sample table
stsh 8.6.3 shadow sync sample table
padb 8.7.6 sample padding bits
stdp 8.7.6 sample degradation priority
sdtp 8.6.4 independent and disposable samples
sbgp 8.9.2 sample-to-group
sgpd 8.9.3 sample group description
subs 8.7.7 sub-sample information
saiz 8.7.8 sample auxiliary information sizes
saio 8.7.9 sample auxiliary information offsets
udta 8.10.1 user-data
cprt 8.10.2 copyright etc.
tsel 8.10.3 track selection box
kind 8.10.4 itrack kind box
strk 8.14.3 sub track box
stri 8.14.4 sub track information box
strd 8.14.5 sub track definition box
ludt 12.2.7 audio stream loudness
tkgd 8.3.5 track group description box
prse 8.3.5.4.1 preselection track group entry
elng 8.4.6 extended language tag
udta 8.10.1 user-data
kind 8.10.4 track kind
labl 8.10.5 abel
chnl 12.2.4 channel layout
ardi 12.2.8 laudio rendering indication
aelm 12.2.9 audio element
elng 8.4.6 extended language tag
kind 8.10.4 track kind
labl 8.10.5 abel
chnl 12.2.4 channel layout
aedb 12.2.10 audio element description
aepp 12.2.11 audio element positioning interactivity polar
aepr 12.2.12 audio element prominence interactivity
aesb 12.2.13 audio element selection
labl 8.10.5 abel
aelm 12.2.9 audio element

© ISO/IEC 202x - All rights reserved 23

DIS 14496-12:202x

Box types, structure, and cross-reference
elng 8.4.6 extended language tag
kind 3.10.4 track kind
labl 8.10.5 abel
chnl 12.2.4 channel layout
12.2.10 audio element description
aedb /Ed.Note] 'aepp’ and 'aepr' child boxes are not
described in the table due to lack of table columns
aepp 12.2.11 audio element positioning interactivity polar
aepr 12.2.12 laudio element prominence interactivity
aesd 12.2.14 audio element selection description
mvex 8.8.1 imovie extends box
mehd 8.8.2 imovie extends header box
trex 8.8.3 track extends defaults
leva 8.8.13 level assignment
udta 8.10.1 user-data
cprt 8.10.2 copyright etc.
moo £ 8.8.4 imovie fragment
mfhd 8.8.5 Imovie fragment header
meta 8.11.1 metadata
traf 8.8.6 track fragment
tfhd 3.8.7 track fragment header
trun 8.8.8 track fragment run
sbgp 8.9.2 sample-to-group
sgpd 8.9.3 sample group description
subs 8.7.7 sub-sample information
saiz 8.7.8 sample auxiliary information sizes
saio 8.7.9 sample auxiliary information offsets
tfdt 8.8.12 track fragment decode time
meta 8.11.1 metadata
udta 8.10.1 user-data
udta 8.10.1 user-data
mfra 8.8.9 Imovie fragment random access
tfra 8.8.10 track fragment random access
mfro 8.8.11 imovie fragment random access offset
mdat 8.2.2 imedia data container
free 8.1.2 free space
skip 8.1.2 free space
imda 8.1.4 imedia datg container that contains an identifier to
be used with data references
meta 8.11.1 Imetadata
hdlr 8.4.3 handler, declares the metadata (handler) type
dinf 8.7.1 [data information box, container
dref 8.7.2 tliata reference box, declares source(s) of metadata
tems
i1loc 8.11.2.3 item location
ipro 8.11.5 item protection
sinf 13.4.2 protection scheme information box
frma 13.4.3 priginal format box
schm 13.4.6 scheme type box
schi 13.4.7 scheme information box
iinf 8.11.6 item information
24 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

Box types, structure, and cross-reference
xm 1 8.11.2 XML container
[oxml 8.11.2 binary XML container
oitm 8.11.4 primary item reference
fiin 8.13.2 file delivery item information
paen 8.13.2 partition entry
fire 8.13.7 file reservoir
fpar 8.13.3 file partition
fecr 8.13.4 FEC reservoir
segr 8.13.5 file delivery session group
gitn 8.13.6 lgroup id to name
idat 8.11.11 item data
iref 8.11.12 item reference
grpl 8.18.2 entities groups list
styp 8.16.2 segment type
sidx 8.16.3 segment index
ssix 8.16.4 subsegment index
prft 8.16.5 producer reference time
'mov 8.19.6 compressed movie box
'mof 8.19.7 compressed movie fragment box
Isix 8.19.8 compressed segment index box
I'ssx 8.19.9 compressed subsegment index box

6.4 Time structure overview

Tracks identify, in decoding order, of a sequence of samples. Each sample has a decoding timestamp that
is computed by adding to the previous sample's decoding timestamp, the previous sample's duration (as
given by the values in the TimeToSampleBox or the equivalent field in movie fragments). The decoding
timestamp of the first sample is defined as being at time zero. This forms the decoding timeline of a track.

In some coding systems (notably video) samples are coded in a different order from their presentation
order. In this case, each sample is assigned a composition time (as given by the values in the
CompositionOffsetBox or the equivalent field in movie fragments), which is computed by adding a
composition offset to the decoding timestamp. This forms the composition timeline, and re-orders the
samples into composition order.

The presentation timeline for each track is formed by the concatenation of sections of the composition
timeline by means of explicit or implicit edit lists.

The presentation timelines of all the tracks are aligned at their zero point. This forms the presentation
timeline for the presentation as a whole. This aligned zero point is the nominal time at which presentation
starts and from which movie and track durations are measured.

Composition offsets can be signed or unsigned. When they are unsigned, the composition timeline and
the decoding timeline are related, and the decoding and compositions times can be considered as
enabling a hypothetical system, that is capable of instant decoding, to manage buffering. When they are
signed, the composition timeline and the decoding timeline are disconnected. They can be reconnected
using the CompositionToDecodeBox, if needed, though many systems do not use decoding
timestamps, merely decoding in decoding order.

© ISO/IEC 202x - All rights reserved 25

DIS 14496-12:202x

6.5 Identifiers
The track identifiers used in a movie file are unique within that file; no two tracks shall use the same
identifier. Under unified identifier handling (see E.18) this uniqueness requirement is extended to other

identifiers.

The next track identifier value stored in next track IDinthe MovieHeaderBox generally contains
avalue one greater than the largest identifier value, of the set required to be unique, found in the file. This
enables easy generation of a unique identifier under most circumstances. However, if this value is equal
to ones (32-bit unsigned maxint), then a search for an unused unique identifier is needed for all additions.

6.6 Brand identification

The definitions of the brands that apply to timed presentations are specified in Annex E.

6.7 Uniform resource locators (URLSs)

When a file conformant to this document is identified by URL, a URL fragment (if present) shall follow
the syntax(es) documented in Annex C.

When files are identified by a MIME type, the syntax specified in IETF RFC 63811251 and Annex K shall be
used for any parameters.

7 Streaming support
Segmented streaming is supported by segments as defined in 3.1.50 and 8.16.

Transformed streaming into streaming protocols is supported by hint tracks as defined in 12.4, with
specific formats for some protocols in Clause 9; there is a general overview in A.12.

8 Box structures
8.1 File structure and general boxes
8.1.1 Media data box

8.1.1.1 Definition

Box Type: 'mdat'
Container: File
Mandatory: No

Quantity: Zero or more

This box contains the media data. For example, this box contains video frames for video tracks. A
presentation may contain zero or more MediaDataBoxes. The actual media data follows the type field;
its structure is described by the structure-data (see particularly the SampleTableBox, subclause 8.5,
and the TtemLocationBox, subclause 8.11.2.3).

In large presentations, it may be desirable to have more data in this box than a 32-bit size permits. In this
case, the large variant of the size field, above in subclause 4.2, is used.

26 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

There may be any number of these boxes in the file (including zero, if all the media data is in other files).
The structure-data refers to media data by its absolute offset within the file (see subclause 8.7.5, the
ChunkOffsetBox); soMediaDataBox headers and free space may easily be skipped, and files without
any box structure may also be referenced and used.

8.1.1.2 Syntax

aligned(8) class MediaDataBox extends Box('mdat')

{
bit (8) datall;
}

8.1.1.3 Semantics

data is the contained media data
8.1.2 Free space box

8.1.2.1 Definition

Box Types: 'free', 'skip'
Container: File or other box
Mandatory: No

Quantity: Zero or more

The contents of a FreeSpaceBox are irrelevant and may be ignored, or the box deleted, without
affecting the presentation. (Care should be exercised when deleting the box, as this may invalidate offsets
used to refer to other data, unless this box is after all the media data).

8.1.2.2 Syntax

aligned(8) class FreeSpaceBox extends Box (free type)

{
unsigned int (8) datall];

}

8.1.2.3 Semantics

free typeshallbe 'free' or 'skip"'.
8.1.3 Progressive download information box

8.1.3.1 Definition

Box Types: 'pdin'
Container: File
Mandatory: No
Quantity: Zero or One

The ProgressiveDownloadInfoBox aids the progressive download of an ISO base media file. The
box contains pairs of numbers (to the end of the box) specifying combinations of effective file download
bitrate in units of bytes/sec and a suggested initial playback delay in units of milliseconds.

© ISO/IEC 202x - All rights reserved 27

DIS 14496-12:202x

A receiving party can estimate the download rate it is experiencing, and from that obtain an upper
estimate for a suitable initial delay by linear interpolation between pairs, or by extrapolation from the
first or last entry.

Itis recommended that the ProgressiveDownloadInfoBox be placed as early as possible in files, for
maximum utility.

8.1.3.2 Syntax

aligned(8) class ProgressiveDownloadInfoBox
extends FullBox('pdin', version = 0, 0)

{
for (i=0; ; i++) { // to end of box
unsigned int (32) rate;
unsigned int (32) initial delay;

}

8.1.3.3 Semantics

rate is a download rate expressed in bytes/second

initial delay isthe suggested delay to use when playing the file, such that if download
continues at the given rate, all data within the file will arrive in time for its use and playback
should not need to stall.

8.1.4 Identified media data box

8.1.4.1 Definition

Box Type: 'imda'
Container: File
Mandatory: No

Quantity: Zero or more

This box contains the media data. Its semantics are the same as those for MediaDataBox but it
additionally contains an identifier that is used in setting up data references to the contained media data.

8.1.4.2 Syntax

aligned(8) class IdentifiedMediaDataBox extends Box('imda')

{

unsigned int(32) imda identifier;

bit(8) datal[]l; // until the end of the box
}

8.1.4.3 Semantics

imda identifier shall differ from the imda identifier values of the other
IdentifiedMediaDataBoxes of the file.

28 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.2 Movie structure
8.2.1 Movie box

8.2.1.1 Definition

Box Type: 'moov'
Container: File
Mandatory: Yes
Quantity: Exactly one

The structure-data for a presentation is stored in the single MovieBox which occurs at the top-level of a
file. Normally this box is close to the beginning or end of the file, though this is not required.

8.2.1.2 Syntax

aligned(8) class MovieBox extends Box ('moov')
{
}

8.2.2 Movie header box

8.2.2.1 Definition

Box Type: 'mvhd'
Container: MovieBox
Mandatory: Yes
Quantity: Exactly one

This box defines overall information which is media-independent, and relevant to the entire presentation
considered as a whole.

The duration of a movie is usually the duration of the longest track (as documented by the duration
field of the TrackHeaderBox); if any track has an indefinite duration, the movie should also have an
indefinite duration. If there are tracks longer than the movie duration, it is recommended that playback
terminate at the movie duration (i.e. that the longer tracks be implicitly trimmed to the movie duration);
this can happen when two media have frame durations that are not exactly divisible, for example.

© ISO/IEC 202x - All rights reserved 29

DIS 14496-12:202x

8.2.2.2 Syntax

aligned(8) class MovieHeaderBox extends FullBox('mvhd', wversion, 0)

{

}

if (version==1) {
unsigned int (64) creation time;
unsigned int (64) modification time;
unsigned int (32) timescale;
unsigned int (64) duration;
} else { // version==
unsigned int(32) creation time;
unsigned int(32) modification time;
unsigned int (32) timescale;
unsigned int (32) duration;
}
template int (32) rate = 0x00010000; // typically 1.0
template int (16) volume = 0x0100; // typically, full volume
const bit (16) reserved = 0;
const unsigned int (32) reserved[2] = 0;
template int(32) matrix[9] =
{ 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
// Unity matrix
bit (32) pre defined[6] = 0O;
unsigned int (32) next track ID;

8.2.2.3 Semantics

30

version is an integer that specifies the version of this box (0 or 1 in this document)

creation time isan integer that declares the creation time of the presentation (in seconds since
midnight, Jan. 1, 1904, in UTC time)

modification time is an integer that declares the most recent time the presentation was
modified (in seconds since midnight, Jan. 1, 1904, in UTC time)

timescale isan integer that specifies the time-scale for the entire presentation; this is the number
of time units that pass in one second. For example, a time coordinate system that measures time
in sixtieths of a second has a time scale of 60.

duration is an integer that declares length of the presentation (in the indicated timescale). This
property is derived from the presentation’s tracks: the value of this field corresponds to the
duration of the longest track in the presentation. If the duration cannot be determined then

duration is set to all 1s.

rate is a fixed point 16.16 number that indicates the preferred rate to play the presentation; 1.0
(0x00010000) is normal forward playback

volume is a fixed point 8.8 number that indicates the preferred playback volume. 1.0 (0x0100) is
full volume.

matrix provides a transformation matrix for the video; (u,v,w) are restricted here to (0,0,1), hex
values (0,0,0x40000000).

next track IDisanon-zero integer thatindicates a value to use for the track ID of the next
track to be added to this presentation. Zero is not a valid track ID value. The value of
next track IDshallbe larger than the largest track IDin use. Ifthis value is equal to all
1s (32-bit maxint), and a new media track is to be added, then a search must be made in the file
for an unused value of track ID.

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.3 Track structure
8.3.1 Track box

8.3.1.1 Definition

Box Type: 'trak'
Container: MovieBox
Mandatory: Yes
Quantity: One or more

This is a container box for a single track of a presentation. A presentation consists of one or more tracks.
Each track carries its own temporal and spatial information. Each track will contain its associated
MediaBox.

Tracks are used for a number of purposes, including: (a) to contain media data (media tracks) and (b) to
contain packetization information for streaming protocols (hint tracks).

There shall be at least one media track within a MovieBox, and all the media tracks that contributed to
the hint tracks shall remain in the file, even if the media data within them is not referenced by the hint
tracks; after deleting all hint tracks, the entire un-hinted presentation shall remain.

8.3.1.2 Syntax

aligned(8) class TrackBox extends Box ('trak')
{
}

8.3.2 Track header box

8.3.2.1 Definition

Box Type: 'tkhd'
Container: TrackBox
Mandatory: Yes
Quantity: Exactly one

This box specifies the characteristics of a single track. Exactly one TrackHeaderBox is contained in a
track.

In the absence of an edit list, the presentation of a track starts at the beginning of the overall presentation.
An ‘empty’ edit is used to offset the start time of a track (see 8.6.6).

The tracks marked with the track in movie flag set to 1 are those that are intended by the file writer
for direct presentation. Thus a track that is used as input to another track — either before or after
decoding — but that is not presented by itself — should have the track in movie flagsetto 0. Tracks
having the track in movie flag set are candidates for playback, regardless of whether they are media
tracks or reception hint tracks. A track may be used as input and also have the track in movie flag
setto 1.

If a track is a member of a group that presents alternatives for presentation, either by using the

alternate group field in the track header, or by using the TrackGroupBox with a group type that
defines alternatives, then either only the preferred or default choice track should have the

© ISO/IEC 202x - All rights reserved 31

DIS 14496-12:202x

track in movie flag set to 1, or all tracks should have the track in movie flag set to 1 (if no
default is to be indicated).

Ifan 'altr' entity group contains entities for playing, track in movie should be equal to 1 in all
the tracks of the entity group.

If in a presentation no tracks have track in movie set, and therefore it appears that there is nothing

to present, then a player may enable a track from each group for presentation; derived specifications can
give further guidance and/or restrictions.

Tracks that are marked as not enabled (t rack enabled set to 0) shall be ignored and treated as if not

present. Application environments may offer a way to enable/disable tracks at run-time and dynamically
alter the state of this flag.

The processing of the pixel data from the output of the decoder to its rendering on the screen is not a
conformance point of ISOBMFF. However, several structures enable signaling of such rendering features.
They are based on the following assumptions:

1) Under the 'iso3"' brand or brands that share its requirements, the TrackHeaderBox width and
height assume that the rendered pixels are square (i.e. that the pixel aspect ratio is 1:1). For other
brands, the use of the associated structure for rendering is undetermined.

2) The VisualSampleEntry documents the expected size of the pixel buffer needed to receive the
codec output, possibly cropped by in-stream structures.

EXAMPLE: If a video codec works only with multiples of 16 pixels per line or column, and if the width
and height of the video fed to the encoder is 1000x500, the encoder will typically, internally use
64x32 blocs of pixels, but it is expected to use codec-specific cropping structures, that are not
exposed at the ISOBMFF level to output a 1000x500 video. The width and height of the
VisualSampleEntry fields in this case will be 1000x500.

3) The PixelAspectRatioBox documents the aspectratio that should be applied to the pixels output
by the decoder but does not imply the adjustment. The associated adjustment should be taken care
of by setting scaled values in the TrackHeaderBox.

EXAMPLE If prior to the encoder, the pixels are scaled horizontally by a factor of 1/2, at the output
of the decoder, the inverse scaling should be applied to present non distorted videos. This is done by
setting the TrackHeaderBox height equal to the VisualSampleEntry height and the
TrackHeaderBox width equal to the double of the VisualSampleEntry width. Additionally,
aPixelAspectRatioBox with a hSpacing twice bigger than its vSpacing field may be used, if
in-stream structures do not carry that information.

4) Additionally, a CleanApertureBox may be provided to further crop the video.
The processing of the decoded pixel is assumed to be as follows:
1) Any cropping documented by a CleanApertureBox is applied on the pixels output by the decoder,

2) Then,ifaCleanApertureBoxis present, the cropped image is then scaled horizontally by the factor
TrackHeaderBox.width/CleanAperturewidth and vertically by
TrackHeaderBox.height/CleanApertureheight

32 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

3) Otherwise, ifaCleanApertureBox is not present, the decoded image is then scaled horizontally by
the factor TrackHeaderBox.width/SampleEntry.width and vertically by
TrackHeaderBox.height/SampleEntry.height.

NOTE 1 This operation is called in previous editions "normalization to track dimensions".
4) Thematrix ofthe TrackHeaderBox is then applied
5) All visual tracks are superposed in increasing order of the TrackHeaderBox.layer value

6) Thematrix ofthe MovieHeaderBox is then applied to the composition.

NOTE 2 This is a theoretical processing model and concrete implementations following it should avoid
resampling the image, in particular when the combination of the above operations results in the identity
transformation.

The duration field here does not include the duration of following movie fragments, if any, but only of the
media in the enclosing MovieBox. The MovieExtendsHeaderBox may be used to document the
duration including movie fragments, when desired and possible.

8.3.2.2 Syntax

aligned(8) class TrackHeaderBox extends FullBox('tkhd', version, flags)
{
if (version==1) {
unsigned int (64) creation time;
unsigned int (64) modification time;
unsigned int (32) track ID;
const unsigned int (32) reserved = 0;
unsigned int (64) duration;
} else { // version==
unsigned int (32) creation time;
unsigned int (32) modification time;
unsigned int(32) track ID;
const unsigned int (32) reserved = 0;
unsigned int (32) duration;
}
const unsigned int (32) reserved[2] = 0;
template int(16) layer = 0;
template int (16) alternate group = 0;
template int (16) volume = {if track is audio 0x0100 else 0};
const unsigned int (16) reserved = 0;
template int(32) matrix([9]=
{ 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
// unity matrix
unsigned int (32) width;
unsigned int (32) height;
}

8.3.2.3 Semantics
version isan integer that specifies the version of this box (0 or 1 in this document)
flags isa 24-bitinteger with flags; the following values are defined:

track enabled:Flag maskis 0x000001. The value 1 indicates that the track is enabled. A disabled
track (when the value of this flag is zero) is treated as if it were not present.

© ISO/IEC 202x - All rights reserved 33

DIS 14496-12:202x

track in movie: Flag mask is 0x000002. The value 1 indicates that the track, or one of its

alternatives (if any) forms a direct part of the presentation. The value 0 indicates that the track
does not represent a direct part of the presentation.

NOTE When playing only this track results in an incomplete experience, the track in movie flagis suggested to
be set to ‘0’ to prevent players from playing only the track. An example for setting the track in movie flagofatrack
to ‘0’ in the context of a preselection is when the track contains only the narrative speaker of an audio description
service (also known as Visual Description Service).

track in preview: Flag mask is 0x000004. This flag currently has no assigned meaning, and the
value should be ignored by readers. In the absence of further guidance (e.g. from derived
specifications), the same value as for track in movie should be written.

track size is aspect ratio: Flag value is 0x000008. The value 1 indicates that the width
and height fields are not expressed in pixel units. The values have the same units but these units
are not specified. The values are only an indication of the desired aspect ratio. If the aspect ratios
of this track and other related tracks are notidentical, then the respective positioning of the tracks
is undefined, possibly defined by external contexts.

creation time isaninteger that declares the creation time of this track (in seconds since midnight,
Jan. 1, 1904, in UTC time).

modification time is an integer that declares the most recent time the track was modified (in
seconds since midnight, Jan. 1, 1904, in UTC time).

track ID isan integer that uniquely identifies this track over the entire life-time of this presentation;
track IDs are never re-used and cannot be zero.

duration is an integer that indicates the duration of this track (in the timescale indicated in the

MovieHeaderBox) This duration field may be indefinite (all 1s) when either there is no edit list and

the MediaHeaderBox duration is indefinite (i.e. all 1s), or when an indefinitely repeated edit list is

desired (see subclause 8.6.6 for repeated edits).. If there is no edit list and the duration is not
indefinite, then the duration shall be equal to the media duration given in the MediaHeaderBox,
converted into the timescale in the MovieHeaderBox. Otherwise the value of this field is equal to
the sum of the durations of all of the track’s edits (possibly including repetitions).

layer specifies the front-to-back ordering of video tracks; tracks with lower numbers are closer to the
viewer. 0 is the normal value, and -1 is in front of track 0, and so on.

alternate group is an integer that specifies a group or collection of tracks. If this field is 0 there is
no information on possible relations to other tracks. If this field is not 0, it should be the same for
tracks that contain alternate data for one another and different for tracks belonging to different such
groups. Only one track within an alternate group should be played or streamed at any one time, and
shall be distinguishable from other tracks in the group via attributes such as bitrate, codec, language,
packet size etc. A group may have only one member.

volume is a fixed 8.8 value specifying the track'’s relative audio volume. Full volume is 1.0 (0x0100)
and is the normal value. Its value is irrelevant for a purely visual track. Tracks may be composed by
combining them according to their volume, and then using the overall MovieHeaderBox volume
setting; or more complex audio composition (e.g. MPEG-4 BIFS) may be used.

matrix provides a transformation matrix for the video; (u,v,w) are restricted here to (0,0,1), hex
(0,0,0x40000000).

width and height fixed-point 16.16 values are track-dependent as follows:

For text and subtitle tracks, they may, depending on the coding format, describe the suggested size
of the rendering area. For such tracks, the value 0x0 may also be used to indicate that the data
may be rendered at any size, that no preferred size has been indicated and that the actual size
may be determined by the external context or by reusing the width and height of another track.
For those tracks, the flag track size is aspect ratio may also be used.

For non-visual tracks (e.g. audio), they should be set to zero.

For all other tracks, they specify the track's visual presentation size. These need not be the same as
the pixel dimensions of the images, which is documented in the sample entries; all images in the

34 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

sequence are scaled to this size, before any overall transformation of the track represented by
the matrix.Unless scaling is desired or needed, writers should set width and height to the
dimensions of the images.

8.3.3 Track reference box

8.3.3.1 Definition

Box Type: 'tref'
Container: TrackBox
Mandatory: No
Quantity: Zero or one

This box includes a set of TrackReferenceTypeBoxes, each of which indicates, by its type, that the
enclosing track has one of more references of that type. Each reference type shall occur at most once.
Within each TrackReferenceTypeBox there is an array of t rack IDs; within a given array, a given
value shall occur at most once. Other structures in the file formats index through these arrays; index
values start at 1.

Exactly one TrackReferenceBox can be contained within the TrackBox.

If this box is not present, the track is not referencing any other track in any way. The reference array is
sized to fill the reference type box.

8.3.3.2 Syntax

aligned(8) class TrackReferenceBox extends Box('tref')

{

TrackReferenceTypeBox [];

}

aligned(8) class TrackReferenceTypeBox (unsigned int (32) reference type)
extends Box (reference type)

{
unsigned int(32) track IDs[];

}

8.3.3.3 Semantics

The TrackReferenceBox contains TrackReferenceTypeBoxes. There shall be at most one
TrackReferenceTypeBox of a given type ina TrackReferenceBox.

track IDs isan array of integers providing the track identifiers of the referenced tracks or
track group idvalues of the referenced track groups. Each value track IDs[i], where i
is avalid index to the track IDs[] array, is an integer that provides a reference from the
containing track to the track with track IDequalto track IDs[i] or to the track group
with both track group idequaltotrack IDs[i] and (flags &1)of
TrackGroupTypeBox equal to 1. When a track group id value is referenced, the track
reference applies to each track of the referenced track group individually unless stated
otherwise in the semantics of particular track reference types. The value 0 shall not be present.
In the array there shall be no duplicated value; however, a track ID may appear in the array
and also be a member of one or more track groups for which the track group idsappearin
the array. This means that in forming the list of tracks, after replacing track group ids by
the track IDs of the tracks in those groups, there might be duplicate track IDs.A

© ISO/IEC 202x - All rights reserved 35

DIS 14496-12:202x

track group id shall notbe used when the semantics of the reference requires that the
reference be to a single track.

The reference type shall be set to one of the following values, or a value registered or from a
derived specification or registration:

e 'hint' thereferenced track(s) contain the original media for this hint track.
e 'cdsc' links a descriptive or metadata track to the content which it describes
e 'font' thistrackuses fonts carried/defined in the referenced track.

e 'hind' indicates thatthe referenced track(s) may contain media data required for decoding
of the track containing the track reference, i.e, it should only be used if the
referenced hint track is used. The referenced tracks shall be hint tracks. The
'hind' dependency can, for example, be used for indicating the dependencies
between hint tracks documenting layered [P multicast over RTP.

e 'vdep' thistrack contains auxiliary depth video information for the referenced video track.

e 'vplx' this track contains auxiliary parallax video information for the referenced video
track.

e 'subt' this track contains subtitle, timed text or still images of symbols or icons for the
referenced track or any track in the alternate group to which the track belongs, if
any.

e 'thmb' this track contains thumbnail images for the referenced track. A thumbnail track
shall not be linked to another thumbnail track with the 'thmb ' track reference.

e 'auxl' this track contains auxiliary media for the indicated track (e.g. depth map or alpha
plane for video).

e 'cdtg' describes the referenced media tracks and track groups collectively; the 'cdtg’
track reference shall only be present in timed metadata tracks.

e 'shsc' linksashadow sync track to a main track; see subclause 8.6.3

e 'aest' associated external stream track; see subclause 8.3.3.4.1.

NOTE1 A track with reference type 'aux1' can have a coding dependency; its use is clarified
by specifications that use it.

NOTE2 When multiple track references describe an auxiliary video track, derived
specifications can constrain or recommend which track references are used. For example, derived
specifications can constrain or recommend whether to use 'vdep' or 'auxl' or both for
auxiliary depth video track.

36 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

NOTE 3 Other structures index through the array of track references and hence position and
order of them can be significant.

NOTE4 A timed metadata track containing 'cdsc' track reference to a track group id
value describes each track in the track group individually.

8.3.3.4 Track reference definitions

8.3.3.4.1 Associated external stream track reference

A track reference of type 'aest' (meaning "associated external stream track") may be included in a
media track. When present, the TrackReferenceTypeBox with reference typeequalto 'aest'
shall contain only a track identifier and shall not contain any track group identifier.

When a media track has a track reference of type 'aest ', the following applies:

— The media track should have at least one sample identified as an EDRAP sample by being
associated with an EDRAP sample group.

— The referenced track shall comply to the following constraints:
o Each sample in the referenced track shall be identified as a sync sample.

o The referenced track shall have both header flags track in movie and
track in preview equalto 0.

o The referenced track shall use a restricted scheme as follows:

* The scheme type field in the SchemeTypeBox, which is in the
RestrictedSchemeInfoBox, is equal to 'spkt' and the value of the mode
field in the SamplePackingInformationBox is equal to 1.

= Bit0 ofthe flags field of the SchemeTypeBox is equal to 0, such that the value
of (flags & 0x000001) isequalto 0.

— For each EDRAP sample sampleA in the media track, there shall be one and only one sample
sampleB in the referenced track that has the same decoding time as sampleA, and sampleB shall
contain all media data of the closest SAP sample of type 1, 2, or 3 that precedes sampleA in
decoding order and the required preceding SAP or EDRAP samples of sampleA.

8.3.4 Trackgroup box

8.3.4.1 Definition

Box Type: 'trgr'
Container: TrackBox
Mandatory: No
Quantity: Zero or one

This box enables indication of groups of tracks, where all tracks in a group share a particular
characteristic or the tracks within a group have a particular relationship. The box contains zero or more

© ISO/IEC 202x - All rights reserved 37

DIS 14496-12:202x

boxes, and the particular characteristic or the relationship is indicated by the box type of the contained
boxes. The contained boxes include an identifier, which can be used to conclude the tracks belonging to
the same track group. The tracks that contain the same type of a contained box within the
TrackGroupBox and have the same identifier value within these contained boxes belong to the same
track group.

Track groups shall not be used to indicate dependency relationships between tracks. Instead, the
TrackReferenceBox is used for such purposes.

Boxes derived from TrackGroupTypeBox shall have version equal to 0 unless defined otherwise for
the value of track group type.

(flags & 1) equalto 1ina TrackGroupTypeBox of a particular track group type indicates that
track group idinthat TrackGroupTypeBox isnotequal toany track ID value and isnotequal
totrack group idofanyother TrackGroupTypeBox withadifferenttrack group type.When
(flags & 1) is equal to 1 in a TrackGroupTypeBox with particular values of track group type
and track group id, (flags & 1) shall be equal to 1 in all TrackGroupTypeBoxes of the same
values of track group typeand track group id,respectively.

Any values of f1ags such that (f1ags & 0x000FFE) is not equal to 0 are reserved. The values of f1ags
shall be such that (flags & 0xFFF000) is equal to 0 unless defined otherwise for the value of
track group type.

8.3.4.2 Syntax

aligned(8) class TrackGroupBox extends Box('trgr')

{

Box boxes|[];

}

aligned(8) class TrackGroupTypeBox (unsigned int (32) track group type)
extends FullBox(track group type, version, flags)
{
unsigned int (32) track group id;
// the remaining data may be specified
// for a particular track group type
}

8.3.4.3 Semantics
boxes is an array of boxes that shall derive from TrackGroupTypeBox or FreeSpaceBox.

track group type indicates the track grouping type and shall be set to one of the following values,
or a value registered, or a value from a derived specification or registration:

'msrc' indicates that this track belongs to a multi-source presentation. Specified in 8.3.4.4.1.
'ster' indicates that this track is either the left or right view of a stereo pair suitable for
playback on a stereoscopic display. Specified in 8.3.4.4.2.

The pair of track group id and track group type identifies a track group. The tracks that
contain a particular TrackGroupTypeBox having the same value of track group id and
track group type belong to the same track group.

38 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.3.4.4 Track group definitions

8.3.4.4.1 Multi-source presentation

track group type equalto 'msrc' indicates that this track belongs to a multi-source presentation.
The tracks that have the same value of track group id within a TrackGroupTypeBox of
track group type 'msrc' are mapped as being originated from the same source. For example, a
recording of a video telephony call may have both audio and video for both participants, and the value of
track group id associated with the audio track and the video track of one participant differs from

value of track group idassociated with the tracks of the other participant.
8.3.4.4.2 Stereoscopic pair

8.3.4.4.2.1 Definition

TrackGroupTypeBox with track group type equal to 'ster' indicates that this track is either
the left or right view of a stereo pair suitable for playback on a stereoscopic display.

The tracks that have the same value of track group id within StereovideoGroupBox form a
stereo pair, and there shall be no more than two of such tracks for the same value of track group id.

NOTE Usually there are two tracks indicated to be a stereo pair with the StereoVideoGroupBox having the same
value of track group id.However, only one track can be associated with a stereo pair in specific cases. For example,
the file can be edited in a manner that one of the tracks forming a stereo pair gets removed. In another example, only
one of the tracks of a stereo pair is selected for transmission, e.g. using DASH.

8.3.4.4.2.2 Syntax

aligned(8) class StereoVideoGroupBox extends TrackGroupTypeBox ('ster')

{
unsigned int (1) left view flag;
bit (31) reserved;

}

8.3.4.4.2.3 Semantics

left view flagequalto O indicates the right view of a stereo pair,and left view flag
equal to 1 indicates the left view of a stereo pair. When there are two tracks with the same value
of track group id,thevalueofleft view flag shall differ.

[Ed.Note] Unless major issues are found by NB comments in the EntityToGroup solution, the preselection
group box is at risk of being removed. Comments are welcome.

8.3.4.4.3 Preselection group box

8.3.4.4.3.1 Definition

The presence of a TrackGroupTypeBox with track group type equal to 'pres', which is also
referred to as a PreselectionGroupBox, in a track indicates that this track contributes to a
preselection.

© ISO/IEC 202x - All rights reserved 39

DIS 14496-12:202x

All the tracks that have a track group with track group typeequalto 'pres' and a particular value
of track group id are part of the same preselection. The particular value of track group idis
also referred to as the ID of the preselection.

NOTE1 This means that a preselection is uniquely identified by the track group id ofthe track group.

When multiple tracks contribute to a preselection, the optionally present
PreselectionProcessingBox provides information on how to process the track containing this box
in the context of the preselection and relative to other tracks. Consequently, the content of the
PreselectionProcessingBox may differ for each track within a preselection.

NOTE 2 Preselections consisting of only one track do not require any track-related processing. In this case, the
PreselectionProcessingBox is typically not present in the PreselectionGroupBox.

8.3.4.4.3.2 Syntax

aligned(8) class PreselectionGroupBox extends TrackGroupTypeBox ('pres')

{

PreselectionProcessingBox preselection processing; // optional

}

8.3.4.4.3.3 Semantics

preselection processingisaninstance of the PreselectionProcessingBox, providing
information needed for processing the containing track in the context of the preselection and
relative to other tracks.

[Ed.Note] Unless major issues are found by NB comments in the EntityToGroup solution, the preselection
processing box is at risk of being removed. Comments are welcome.

8.3.4.4.3.4 Preselection processing box

8.3.4.4.3.4.1 Definition

Box Type: 'prsp'

Container: PreselectionGroupBox
Mandatory: No

Quantity: Zero or one

This box contains information about how the tracks contributing to the preselection can be processed.
Media type specific boxes may be used to describe further processing.

40 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.3.4.4.3.4.2 Syntax

aligned(8) class PreselectionProcessingBox
extends FullBox ('prsp', version = 0, flags)
{
unsigned int (8) track order;
unsigned int(l) sample merge flag;
unsigned int (7) reserved;
// further attributes and Boxes defining additional processing of
// the track contributing to the preselection

}

8.3.4.4.3.4.3 Semantics

track order defines the order of this track relative to other tracks in the preselection as
described below.

sample merge flagequalto 1 indicates that this trackis enabled to be merged with another
track as described below.

Sample entry specific specifications might require the tracks for a preselection to be provided to the
respective decoder instances in a specific order. Since other means, such as the track id, are not
reliable for this purpose, the track order is used to order tracks in a preselection relative to each
other. A lower value of track order indicates that at a given decoding time the sample of the
containing track is provided to the decoder before the sample with the same given decoding time of other
tracks with higher number. If two tracks in a preselection have their track order setto the same value
or if the preselection processing box is absent for at least one of the tracks, the order of these tracks is
not relevant for the preselection, and the samples with a particular decoding time for these two tracks
can be provided to the decoder in any order.

A merge group is defined as a group of tracks, sorted according to track order, where one track with
the sample merge flag set to 0 is followed by a group of consecutive tracks with the
sample merge flag setto 1. All tracks of a merge group shall be of the same media type and shall
have all samples decoding-time-aligned.

If the sample entry type is associated with a codec-specific process to merge samples of a preselection,
this process shall be used.

NOTE 1 If the tracks in the merge group are all of sample entry type of “mhm2” (MPEG-H 3D Audio), the merging
process is defined in ISO/IEC 23008-3:2019, subclause 14.6.

NOTE 2 Tracks in a merge group may have different sample entry types.

If the sample entry type is not associated with a codec-specific process to merge samples of a preselection,
the following process shall be used:

Merging within the merge group shall proceed by forming tuples of track samples with the same decoding
time across contributing tracks. The ordering of samples within the tuple shall be determined by
track order. These tuples shall be formed by byte-wise concatenation of the samples resulting in a
single sample with having the respective decoding time assigned. If generation of new tracks is targeted,
each merge group shall result in a separate output track conformant to a media type derived from the
media types of the merged tracks.

For tracks not part of a merge group, a merging process is not specified by this document.

© ISO/IEC 202x - All rights reserved 41

DIS 14496-12:202x

[Ed.Note] Unless major issues are found by NB comments in the EntityToGroup solution, the feature track
group description box (including the preselection track group entry box) is at risk of being removed.
Comments are welcome.

8.3.5 Track group description box

8.3.5.1 Definitions

Box Type: 'tkgd'
Container: MovieBox
Mandatory: No
Quantity: Zero or One

The TrackGroupDescriptionBox provides an array of TrackGroupEntryBoxes, where each
TrackGroupEntryBox provides detailed characteristics of a particular track group.

The syntax of the TrackGroupEntryBox is determined by track group entry type.
TrackGroupEntryBox is mapped to the track group by a unique track group entry type that
is associated with a track group type defined in subclause 8.3.4.3. More than one
TrackGroupEntryBox with the same track group entry type may be present in
TrackGroupDescriptionBox, in that case TrackGroupEntryBoxes shall have different
track group id.

Boxes derived from TrackGroupEntryBox shall have version equal to 0 unless defined otherwise
for the value of track group entry type.

Any values of f1lags such that f1ags & 0x000FFF is not equal to 0 are reserved. The values of f1ags
shall be such that flags & OxFFF000 is equal to O unless defined otherwise for the value of
track group entry type.

8.3.5.2 Syntax

aligned(8) class TrackGroupDescriptionBox extends Box('tkgd')

{

Box boxes|[];

}

aligned(8) abstract class TrackGroupEntryBox (
unsigned int (32) track group entry type,
unsigned int (8) version,
unsigned int (24) flags)
extends FullBox(track group entry type, version, flags)

unsigned int(32) track group id;
// the remaining data may be specified

// for a particular track group entry type
}

8.3.5.3 Semantics
boxes is an array of boxes that shall derive from TrackGroupEntryBox or FreeSpaceBox.
track group entry type indicatesa4CC thatis associated witha track group type.

42 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The pair of track group idand track group entry type identifies the track group that the
TrackGroupEntryBox describes.

8.3.5.4 Track group entry definitions
8.3.5.4.1 Preselection track group entry box

8.3.5.4.1.1 Definition

Box Type: 'prse'

Container: TrackGroupDescriptionBox
Mandatory: No

Quantity: Zero or more

Preselections can be characterized, for example, by language, kind or media specific attributes like audio
rendering indications, audio interactivity or channel layouts. Attributes signalled in a
PreselectionTrackGroupEntryBox take precedence over attributes signalled in contributing
tracks.

PreselectionTrackGroupEntryBox shall describe only track groups identified by
track group typeequalto 'prse'.

For any preselection, if at least one contributing track in this file has the track in movie flag equal
to 1, the PreselectionTrackGroupEntryBox shall be present in this file for the preselection;
otherwise, the presence of the PreselectionTrackGroupEntryBox for the preselection in this file
is optional.

All attributes uniquely characterizing a preselection should be present in the
PreselectionTrackGroupEntryBox for the preselection.

8.3.5.4.1.2 Syntax

aligned(8) class PreselectionTrackGroupEntryBox
extends TrackGroupEntryBox ('prse', version=0, flags)
{
unsigned int(8) num tracks;
if (flags & preselection tag present)
utf8string preselection tag;
if (flags & selection priority present)
unsigned int(8) selection priority;
// Boxes describing the preselection

}

8.3.5.4.1.3 Semantics
This box contains information on what experience is available when this preselection is selected.

Boxes suitable to describe a preselection include but are not limited to the following list of boxes defined
in this document:

e AudioElementBox (subclause 12.2.9)

e AudioElementSelectionBox (subclause 12.2.13)
e ExtendedLanguageBox (subclause 8.4.6)

e UserDataBox (subclause 8.10.1)

e KindBox (subclause 8.10.4)

© ISO/IEC 202x - All rights reserved 43

DIS 14496-12:202x

e LabelBox (subclause 8.10.5)
e AudioRenderingIndicationBox (subclause 12.2.8)
e ChannelLayout (subclause 12.2.4)

When contained in a PreselectionTrackGroupEntryBox, a UserDataBox shall not carry any of
the above boxes.

flags the following values are defined:
preselection tag present:Flag maskis 0x001000. The value 1 indicates the presence of
thepreselection tag element
selection priority present: Flag maskis 0x002000. The value 1 indicates the presence
of the selection priority element
num_tracks specifies the number of non-alternative tracks grouped by this preselection track
group.
A track grouped by this preselection track group is a track that has the 'pres"' track group
with track group id equalto the ID of this preselection.
The number of non-alternative tracks grouped by this preselection track group is the sum of the
following:
e the number of tracks thathave alternate group equal to 0 and are grouped by this
preselection track group,
e the number of unique non-zero alternate group valuesin all tracks that are grouped by
this preselection track group.
The value of num_tracks shall be greater than or equal to the number of non-alternative
tracks grouped by this preselection track group in this file.
A value equal to 0 indicates that the number of tracks grouped by this track group is unknown

or not essential for processing the track group.
NOTE 1 The value of num_tracks can be greater than the number of non-alternative tracks containing a
PreselectionGroupBox with the same track group idin this file when the preselection is split into multiple

files.
NOTE 2 When a player has access to fewer non-alternative tracks grouped by this preselection track group than
indicated by num_tracks, the player might need to omit the tracks grouped by this preselection track group.

preselection tag isa codec specific value that a playback system can provide to a decoder to
uniquely identify one out of several preselections in the media.

selection priority isaninteger that declares the priority of the preselection in cases where
no other differentiation such as through the media language is possible. A lower value of
selection priority indicates a higher priority.

NOTE 3 Notall tracks contributing to the playout of a preselection may be delivered in the same file.

NOTE 4 The kind box might utilize the Role scheme defined in ISO/IEC 23009-1:2022, subclause 5.8.5.5 as it provides a
commonly used scheme to describe characteristics of preselections.

NOTE5 Optional boxes contained within this box can carry information about the initial experience of the preselection in the
referenced tracks. The preselection experience can change during the playback of these tracks (e.g. audio language can change
during playback). These changes are not subject to the information presented in this box.

Further media type specific boxes may be used to describe properties of the preselection. Readers may
ignore and skip boxes that are not recognized.

44 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.3.6 Track type box

8.3.6.1 Definition

Box Type: 'ttyp'
Container: TrackBox
Mandatory: No
Quantity: Zero or one

The payload of TrackTypeBox has the same syntax as the payload of FileTypeBox. The content of an
instance of TrackTypeBox shall be such that it applies as the content of Fi1eTypeBox, when all other
tracks of the file are removed and only the track containing this box, and the tracks it references by means
of track references, remain in the file.

NOTE TrackTypeBox can be used in specifying media profiles or track-specific brands.
8.3.6.2 Syntax

aligned(8) class TrackTypeBox extends GeneralTypeBox ('ttyp')
{
}

8.4 Track media structure
8.4.1 Mediabox

8.4.1.1 Definition

Box Type: 'mdia'
Container: TrackBox
Mandatory: Yes
Quantity: Exactly one

The media declaration container contains all the objects that declare information about the media data
within a track.

8.4.1.2 Syntax

aligned(8) class MediaBox extends Box('mdia')
{
}

8.4.2 Media header box

8.4.2.1 Definition

Box Type: 'mdhd'
Container: MediaBox
Mandatory: Yes
Quantity: Exactly one

The media header declares overall information that is media-independent, and relevant to characteristics
of the media in a track.

© ISO/IEC 202x - All rights reserved 45

DIS 14496-12:202x

8.4.2.2 Syntax

aligned(8) class MediaHeaderBox extends FullBox('mdhd', wversion, 0)
{
if (version==1) {
unsigned int (64) creation time;
unsigned int (64) modification time;
unsigned int (32) timescale;
unsigned int (64) duration;
} else { // version==
unsigned int(32) creation time;
unsigned int(32) modification time;
unsigned int (32) timescale;
unsigned int (32) duration;
}
bit (1) reserved = 0;
unsigned int(5) language[3]; // IS0-639-2/T language code
unsigned int (16) pre defined = 0;
}

8.4.2.3 Semantics

version is an integer that specifies the version of this box (0 or 1)

creation time isaninteger that declares the creation time of the media in this track (in
seconds since midnight, Jan. 1, 1904, in UTC time).

modification time isan integer that declares the most recent time the media in this track was
modified (in seconds since midnight, Jan. 1, 1904, in UTC time).

timescale is an integer that specifies the number of time units that pass in one second for this
media. For example, a time coordinate system that measures time in sixtieths of a second has a
time scale of 60.

duration isan integer that declares the duration of this media (in the scale of the timescale) and

should be the largest composition timestamp plus the duration of that sample. If the duration
cannot be determined then duration is set to all 1s.

NOTE The duration of an audio track may be smaller than the duration of the audio samples output by
the decoder. This depends on the decoding process. The decoding of the last ISOBMFF sample of a track may
produce additional audio samples that are not meant to be rendered.

language declares the language code for this media, as a packed three-character code defined in
[SO 639-2. Each character is packed as the difference between its ASCII value and 0x60. Since
the code is confined to being three lower-case letters, these values are strictly positive.

8.4.3 Handler box

8.4.3.1 Definition

Box Type: 'hdlr'
Container: MediaBox or MetaBox
Mandatory: Yes
Quantity: Exactly one in MediaBox
Zero or one in MetaBox, as constrained in subclause 8.11.1.1

This box within a MediaBox declares media type of the track, and thus the process by which the media-
data in the track is presented. For example, a format for which the decoder delivers video is stored in a

46 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

video track, identified by being handled by a video handler. The documentation of the storage of a media
format identifies the media type which that format uses.

This box when present within a MetaBox, declares the structure or format of the MetaBox contents.

There is a general handler for metadata streams of any type; the specific formatis identified by the sample
entry, as for video or audio, for example.

8.4.3.2 Syntax

aligned(8) class HandlerBox extends FullBox ('hdlr', version = 0, 0)
{

unsigned int(32) pre defined = 0;

unsigned int (32) handler type;

const unsigned int(32) reserved[3] = 0;

utf8string name;

}

8.4.3.3 Semantics

version isan integer that specifies the version of this box
handler type

- when present in a MediaBox, contains a value as defined in Clause 12, or a value from a derived
specification, or registration.

- when present in a MetaBox, contains an appropriate value to indicate the format of the
MetaBox contents. The value 'null' can be used in the primary MetaBox to indicate that it
is merely being used to hold resources.

name gives a human-readable name for the track type (for debugging and inspection purposes).

8.4.4 Mediainformation box

8.4.4.1 Definition

Box Type: 'minf'
Container: MediaBox
Mandatory: Yes
Quantity: Exactly one

This box contains all the objects that declare characteristic information of the media in the track.
8.4.4.2 Syntax

aligned(8) class MedialInformationBox extends Box ('minf')
{
}

8.4.5 Media information header boxes

8.4.5.1 Definition
There is a different media information header for each track type (corresponding to the media handler-

type); the matching header shall be present, which may be one of those defined in Clause 12, or one
defined in a derived specification.

© ISO/IEC 202x - All rights reserved 47

DIS 14496-12:202x

The type of media header is used is determined by the definition of the media type and shall match the
media handler.

8.4.5.2 Null media header box

8.4.5.2.1 Definition

Box Types: 'nmhd'

Container: MediaInformationBox

Mandatory: Yes

Quantity: Exactly one specific media header shall be present

Streams for which no specific media header is identified use a Nul1MediaHeaderBox, as defined here.

8.4.5.2.2 Syntax

aligned(8) class NullMediaHeaderBox

extends FullBox ('nmhd', version = 0, flags)
{
}

8.4.5.2.3 Semantics

version -isan integer that specifies the version of this box.
flags -isa24-bitinteger with flags (currently all zero).

8.4.6 Extended language tag

8.4.6.1 Definition

Box Type: 'elng'

Container: MediaBox, PreselectionGroupBox, AudioElementBox
Mandatory: No

Quantity: Zero or one

The ExtendedLanguageBox represents media language information, and shall contain a code in
conformance with IETF BCP 47. It is an optional peer of the MediaHeaderBox, and shall occur after the
MediaHeaderBox.

The extended language tag can provide better language information than the language field in the
MediaHeaderBox, including information such as region, script, variation, and so on, as parts (or
subtags).

The ExtendedLanguageBox is optional, and if it is absent the media language should be used. The
extended language tag overrides the media language if they are not consistent.

For best compatibility with earlier players, if an extended language tag is specified, the most compatible
language code should be specified in the language field of the MediaHeaderBox (for example, "eng" if
the extended language tag is "en-UK"). If there is no reasonably compatible tag, the packed form of 'und'
can be used.

48 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.4.6.2 Syntax

aligned(8) class ExtendedLanguageBox extends FullBox('elng', 0, 0)
{

utf8string extended language;

}

8.4.6.3 Semantics

extended language contains a IETF BCP 47 compliant language tag string, such as "en-US", "fr-
FR", or "zh-CN".

8.5 Sample tables
8.5.1 Sample table box

8.5.1.1 Definition

Box Type: 'stbl'

Container: MediaInformationBox
Mandatory: Yes

Quantity: Exactly one

The sample table contains all the time and data indexing of the media samples in a track. Using the tables
here, it is possible to locate samples in time, determine their type (e.g. [-frame or not), and determine
their size, container, and offset into that container.

If the track that contains the SampleTableBox references no data, then the SampleTableBox does
not need to contain any sub-boxes (this is not a very useful media track).

If the track that the SampleTableBox is contained in does reference data, then the following sub-boxes
are required: SampleDescriptionBox, SampleSizeBox (or CompactSampleSizeBox),
SampleToChunkBox, and ChunkOffsetBox (or ChunkLargeOffsetBox). Further, the
SampleDescriptionBox shall contain at least one entry. A SampleDescriptionBox is required
because it contains the data reference index field which indicates which DataEntry to use to retrieve
the media samples. Without the SampleDescriptionBox, it is not possible to determine where the
media samples are stored. The SyncSampleBox is optional.

The SyncSampleBox should be present in the SampleTableBox if some samples in the track,
including any track fragments, are non sync samples, but the flag sample is non sync sample of
samples in track fragments is valid and describes the samples, even if the SyncSampleBox is not present.
If the track is not fragmented and the SyncSampleBox is not present, all samples in the track are sync
samples.

A9 provides a narrative description of random access using the structures defined in the
SampleTableBox.

8.5.1.2 Syntax

aligned(8) class SampleTableBox extends Box('stbl')
{
}

© ISO/IEC 202x - All rights reserved 49

DIS 14496-12:202x

8.5.2 Sample description box

8.5.2.1 Definition

Box Types: 'stsd'

Container: SampleTableBox
Mandatory: Yes

Quantity: Exactly one

The sample description table gives detailed information about the coding type used, and any initialization
information needed for that coding. The syntax of the sample entry used is determined by both the format
field and the media handler type.

The information stored in the SampleDescriptionBox after the entry-count is both track-type
specific as documented here, and can also have variants within a track type (e.g. different codings may
use different specific information after some common fields, even within a video track).

Which type of sample entry form is used is determined by the media handler, using a suitable form, such
as one defined in Clause 12, or defined in a derived specification, or registration.

Multiple descriptions may be used within a track.

NOTE 1 Though the count is 32 bits, the number of items is usually much fewer, and is restricted by the fact that the
reference index in the sample table is only 16 bits

If the ‘format’ field ofa SampleEntry is unrecognized, neither the sample entry itself, nor the associated
media samples, shall be decoded.

NOTE 2 The format field of a SampleEntry is restricted in this document not to contain the character '.' (dot).
Derived specifications are encouraged to avoid using it as well as any character that requires encoding of the "codecs”
parameter; see Annex K.

Derived specifications deriving Sample Entry classes listed in the table of 13.4.1 should be extremely
careful. Derivation by adding boxes at the end of the class should be preferred as it preserves Sample
Entry parsing and does not require a new 'encX' value. Adding a new field to a class will not allow for
the use of the associated 'encX' scheme for parsing reasons. A new 'encX' scheme will have to be
defined for signaling encrypted stream based on that derived class.

The definition of sample entries specifies boxes in a particular order, and this is usually also followed in
derived specifications. For maximum compatibility, writers should construct files respecting the order
both within specifications and as implied by the inheritance, whereas readers should be prepared to
accept any box order.

All SampleEntry boxes may contain “extra boxes” not explicitly defined in the box syntax of this or
derived specifications. When present, such boxes shall follow all defined fields and should follow any
defined contained boxes. Decoders shall presume a sample entry box can contain extra boxes and shall
continue parsing as though they are present until the containing box length is exhausted.

An optional BitRateBox may be present in any SampleEntry to signal the bit rate information of a
stream. This can be used for buffer configuration.

All string fields shall be of type ut £8stringand null-terminated, even if unused. “Optional” means there
is at least one null byte.

50 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Entries that identify the format by MIME type, such as a TextSubtitleSampleEntry,
TextMetaDataSampleEntry,or SimpleTextSampleEntry, all of which contain a MIME type, may
be used to identify the format of streams for which a MIME type applies. A MIME type applies if the
contents of the string in the optional configuration box (without its null termination), followed by the
contents of a set of samples, starting with a sync sample and ending at the sample immediately preceding
a sync sample, are concatenated in their entirety, and the result meets the decoding requirements for
documents of that MIME type. Non-sync samples should be used only if that format specifies the
behaviour of ‘progressive decoding’, and then the sample times indicate when the results of such
progressive decoding should be presented (according to the media type).

NOTE 3 The samples in a track that is all sync samples are therefore each a valid document for that MIME type.

In some classes derived from SampleEntry, namespace and schema location are used both to
identify the XML document content and to declare “brand” or profile compatibility. Multiple namespace
identifiers indicate that the track conforms to the specification represented by each of the identifiers,
some of which may identify supersets of the features present. A decoder should be able to decode all the
namespaces in order to be able to decode and present correctly the media associated with this sample
entry.

NOTE 4 Additionally, namespace identifiers might represent performance constraints, such as limits on document
size, font size, drawing rate, etc., as well as syntax constraints, such as features that are not permitted or ignored.

8.5.2.2 Syntax

aligned(8) abstract class SampleEntry (unsigned int (32) format)
extends Box (format)

{
const unsigned int (8) reserved[6] = 0;
unsigned int (16) data reference index;

}

class BitRateBox extends Box('btrt')
{
unsigned int (32) bufferSizeDB;
unsigned int (32) maxBitrate;
unsigned int (32) avgBitrate;

}

aligned(8) class SampleDescriptionBox ()
extends FullBox('stsd', version, 0)

{

int 1i;
unsigned int(32) entry count;
for (i =1 ; i <= entry count ; i++){

SampleEntry () ; // an instance of a class derived from SampleEntry

}

8.5.2.3 Semantics

version is setto zero. A version number of 1 shall be treated as a version of 0.
entry count is an integer that gives the number of entries in the following table.
SampleEntry is the appropriate sample entry.

© ISO/IEC 202x - All rights reserved 51

DIS 14496-12:202x

data reference indexisaninteger thatcontains the index of the DataEntry to use to retrieve
data associated with samples that use this sample entry. Data entries are stored in
DataReferenceBoxes. The index ranges from 1 to the number of data entries.

bufferSizeDB gives the size of the decoding buffer for the media stream in bytes.

maxBitrate gives the maximum rate in bits/second over any window of one second; this is a
measured value for stored content, or a value that a stream is configured not to exceed; the stream
shall not exceed this bitrate.

avgBitrate gives the average rate in bits/second of the stream; this is a measured value
(cumulative over the entire presentation) for stored content, or the configured target average
bitrate for a stream.

8.5.3 Degradation priority box

8.5.3.1 Definition

Box Type: 'stdp'

Container: SampleTableBox
Mandatory: No.

Quantity: Zero or one.

This box contains the degradation priority of each sample. The values are stored in the table, one for each
sample. The size of the table, sample count is taken from the sample count in the
SampleSizeBox. Specifications derived from this define the exact meaning and acceptable range of the
priority field.

8.5.3.2 Syntax

aligned(8) class DegradationPriorityBox
extends FullBox('stdp', version = 0, 0)

{
int 1i;
for (i=0; i < sample count; i++) {
unsigned int (16) priority;

}

8.5.3.3 Semantics

version -isan integer that specifies the version of this box.
priority - isinteger specifying the degradation priority for each sample.

8.5.4 Sample scale box

This box has been deprecated and is no longer defined in this document.

52 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.6 Track time structures

8.6.1 Time to sample boxes

8.6.1.1 Definition

The composition timestamps (CT) and decoding timestamps (DT) of samples are derived from the time
to sample boxes, of which there are two types. The decoding timestamp is defined by the
TimeToSampleBox, which documents the sample duration, that is, the difference between the decoding
timestamp of the following sample and the sample at hand. The composition timestamps are defined in
the CompositionOffsetBox as time offsets from decoding timestamps. If the composition and
decoding timestamps are identical for every sample in the track, then only the TimeToSampleBox is
required; the CompositionOffsetBox shall not be present and all composition offsets are defined to
be zero.

The TimeToSampleBox shall give non-zero durations for all samples with the possible exception of the
last one. Durations in the TimeToSampleBox are strictly positive (non-zero), except for the very last
entry, which may be zero. This rule derives from the rule that there shall not be two samples in a stream
with the same decoding timestamp. Great care must be taken when adding samples to a stream, that the
sample that was previously last may need to have a non-zero duration established, in order to observe
this rule. One approach in the case where the the duration of the last sample is indeterminate is to use an
arbitrary small value and a ‘dwell’ edit.

Some coding systems may allow samples that are used only for reference and not output (e.g. a non-
displayed reference frame in video). When any such non-output sample is present in a track, the following
applies:

1) A non-output sample shall be given a composition timestamp which is outside the time-range of the
samples that are output.

2) An edit list shall be used to exclude the composition times of the non-output samples.
3) When the track includes a CompositionOffsetBox,
1) version 1 of the CompositionOffsetBox shall be used,

2) thevalue of sample offset shall be set equal to the most negative number possible (for 32-
bit values, -231) for each non-output sample,

3) the CompositionToDecodeBox should be contained in the SampleTableBox of the track,
and

4) when the CompositionToDecodeBox is present for the track, the value of
leastDecodeToDisplayDelta field in the box shall be equal to the smallest composition
offset in the CompositionOffsetBox excluding the sample offset values for non-output
samples.

NOTE Thus, leastDecodeToDisplayDelta is greater than -231.

In the example in Table 3 and Table 4, there is a sequence of I, P, and B frames, each with a sample
duration of 10. The samples are stored as follows, with the indicated values for their sample durations
and composition time offsets (the actual composition timestamp, CT, and decoding timestamp, DT, are
given for reference). The re-ordering occurs because the predicted P frames must be decoded before the
bi-directionally predicted B frames. The value of DT for a sample is always the sum of the durations of

© ISO/IEC 202x - All rights reserved 53

DIS 14496-12:202x

the preceding samples. Thus, in the absence of composition offsets, the total of the sample durations is
the duration of the media in this track.

Table 3 — Closed GOP example

GOP [~ e e e N e e e e e N

11 |P4 |B2 (B3 |P7 |B5 |B6 (I8 |P11|B9 |B10|P14|B12|B13
DT 0 |10 |20 (30 |40 |50 |60 |70 |80 |90 |100 (110|120 (130
CT 10 |40 |20 (30 |70 |50 |60 |80 |[110|90 |100|140 120|130
Duration 10 |10 |10 (10 (10 |10 |10 |10 (10 |10 |10 |10 (10 |10
Composition 10 {30 |0 (O (30 |0 |0 |10 (30 |0 |0 |30 (0O |O
offset

Table 4 — Open GOP example

GOP N N N A O O O S

13 Bl | B2 | P6 | B4 |B5 [I9 B7 |B8 (P12 [B10 |B11
DT 0 10 |20 |30 |40 ([50 |60 |70 |80 (90 |100 |110
CT 30 (10 (20 |60 |40 |50 (|90 (70 |80 120 {100 |[110
Duration 10 |10 |10 |10 |10 |10 |10 (10 (10 |10 |10 |10
Composition 30 |0 0 30 |0 0 30 |0 0 30 |0 0
offset

8.6.1.2 Decoding time to sample box

8.6.1.2.1 Definition

Box Type: 'stts'
Container: SampleTableBox
Mandatory: Yes

Quantity: Exactly one

This box contains a compact version of a table that allows indexing from decoding timestamp to sample
number. Other tables give sample sizes and pointers, from the sample number. Each entry in the table
gives the number of consecutive samples with the same sample duration, and that sample duration. By
adding the sample durations a complete time-to-sample map may be built.

The TimeToSampleBox contains sample durations, the differences in decoding timestamps (DT):
DT[n+1] = DT[n] + sample delta[n]

The sample entries are ordered by decoding timestamps; therefore all the values of sample delta shall
be non-negative.

The DT axis has a zero origin; DT[i] = SUM[for j=0 to i-1 of sample deltalj]], and in the absence of

composition offsets, the sum of all sample durations gives the duration of the media in the track (not
mapped to the overall timescale, and not considering any edit list).

54 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.6.1.2.2 Syntax

aligned(8) class TimeToSampleBox extends FullBox('stts', version = 0, 0)
{
unsigned int(32) entry count;
int i;
for (i=0; i < entry count; i++) {
unsigned int(32) sample count;
unsigned int(32) sample delta;

}

For example with Table 3, the values of the syntax elements are:

entry count=1

sample count =14
sample delta=10

8.6.1.2.3 Semantics

version -isan integer that specifies the version of this box.

entry count - is an integer that gives the number of entries in the following table.

sample count - is an integer that counts the number of consecutive samples that have the given
duration.

sample delta -isan integer that gives the difference between the decoding timestamp of the
next sample and this one, in the time-scale of the media.

8.6.1.3 Composition time to sample box

8.6.1.3.1 Definition

Box Type: 'ctts'

Container: SampleTableBox
Mandatory: No

Quantity: Zero or one

This box provides the offset between decoding timestamp and composition timestamp. In version 0 of
this box the decoding timestamp must be less than the composition timestamp, and the offsets are
expressed as unsigned numbers such that if CT is the composition timestamp, CT[n] = DT[n] +
sample offset[n].

In version 1 of this box, the composition timestamp is still derived from the decoding timestamp, but the
offsets are signed. It is recommended that for the computed composition timestamps, there is exactly one
sample with the value 0 (zero), and that no sample have a composition timestamp less than zero.

NOTE the presentation of samples with a composition timestamp less than 0 is undefined, as time 0 is the start time
of the presentation across all tracks; nor can edit lists refer to samples with such composition timestamps.

Composition cannot happen before actual decoding. If negative offsets are used such that the composition
timestamp of a sample becomes smaller than its decoding timestamp: either the decoding timestamp is
ignored (for systems that only need decoding order, for example) or if decoding timestamps are needed,
the decoding timeline must be offset to ensure that decoding happens in time. The
CompositionToDecodeBox can be used to give advice on what offset may be needed.

© ISO/IEC 202x - All rights reserved 55

DIS 14496-12:202x

For either version of the box, each sample shall have a unique composition timestamp, that is, the
composition timestamp for two samples in the same track shall never be the same.

It may be true that there is no frame to compose at time 0; the handling of this is unspecified (systems
might display the first frame for longer, or a suitable fill colour).

When version 1 of this box is used, the CompositionToDecodeBox may also be present in the sample
table to relate the composition and decoding timelines. When backwards-compatibility or compatibility
with an unknown set of readers is desired, version 0 of this box should be used when possible. In either
version of this box, but particularly under version 0, if it is desired that the media start at track time 0,
and the first media sample does not have a composition timestamp of 0, an edit list may be used to ‘shift’
the media to time 0.

The composition time to sample table is optional and shall only be present if DT and CT differ for any
samples.

For example with Table 3, the values of the syntax elements are:

entry count =10

sample count=1
sample offset =10

sample count=1
sample offset =30

sample count =2
sample offset=0

sample count=1
sample offset =30

sample count =2
sample offset=0

sample count=1
sample offset =10

sample count=1
sample offset =30

sample count =2
sample offset=0

sample count=1
sample offset =30

sample count =2
sample offset=0

56 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.6.1.3.2 Syntax

aligned(8) class CompositionOffsetBox extends FullBox('ctts', version, 0)
{
unsigned int(32) entry count;
int 1i;
if (version==0) {
for (i=0; i < entry count; i++) {
unsigned int(32) sample count;
unsigned int (32) sample offset;
}
}
else if (version == 1) {
for (i=0; i < entry count; i++) {
unsigned int(32) sample count;
signed int (32) sample offset;

}

8.6.1.3.3 Semantics

version -isan integer that specifies the version of this box.

entry count isan integer that gives the number of entries in the following table.

sample count is an integer that counts the number of consecutive samples that have the given
offset.

sample offset isan integer that gives the offset between CT and DT, such that CT[n] = DT[n]+
sample offset[n].

8.6.1.4 Composition to decode box

8.6.1.4.1 Definition

Box Type: 'cslg'

Container: SampleTableBox or TrackExtensionPropertiesBox
Mandatory: No

Quantity: Zero or one

When signed composition offsets are used, this box may be used to relate the composition and decoding
timelines, and deal with some of the ambiguities that signed composition offsets introduce. This box is
only advisory; it documents values that can be calculated by inspecting the track. There is no normative
processing associated with this box. Readers that want to assure that, for example, all decoding
timestamps precede composition timestamps might subtract a value equal to or larger than
compositionToDTSShift from the decoding timestamps in the stream (note that this may yield
negative decoding timestamps).

All these fields apply to the entire media (not just that selected by any edits). It is recommended that any
edits, explicit or implied, not select any portion of the composition timeline that does not map to a sample.
For example, if the smallest composition timestamp is 1000, then the default edit from 0 to the media
duration leaves the period from 0 to 1000 associated with no media sample. Player behaviour, and what
is composed in this interval, is undefined under these circumstances. It is recommended that the smallest
computed CTS be zero, or match the beginning of the first edit.

© ISO/IEC 202x - All rights reserved 57

DIS 14496-12:202x

The composition duration of the last sample in a track might be (often is) ambiguous or unclear; the field
for composition end time can be used to clarify this ambiguity and, with the composition start time,
establish a clear composition duration for the track.

When the CompositionToDecodeBox is included in the SampleTableBox, it documents the
composition and decoding time relationships of the samples in the MovieBox only, not including any
subsequent movie fragments. When the CompositionToDecodeBox is included in the
TrackExtensionPropertiesBox, it documents the composition and decoding time relationships of
the samples in all movie fragments following the MovieBox.

Version 1 of this box supports 64-bit times and should only be used if needed (at least one value does not
fit into 32 bits).

NOTE in the absence of this box when signed composition offsets are used, correct decoding timestamps cannot in
general be re-computed, even with complete inspection of all the samples. Hence, in order to enable converting
ISOBMFF content to formats that do not support negative composition offsets, the CompositionToDecodeBox may
be necessary.

8.6.1.4.2 Syntax

class CompositionToDecodeBox extends FullBox('cslg', wversion, 0)
{

if (version==

signed int

0

(compositionToDTSShift;
signed int(

(

(

(

)
32)
32) leastDecodeToDisplayDelta;
signed int (32) greatestDecodeToDisplayDelta;
signed int (32)
signed int (32)

} else {
signed int compositionToDTSShift;
signed int leastDecodeToDisplayDelta;

(64)
(64)
signed int (64) greatestDecodeToDisplayDelta;
(64)
(64)

compositionStartTime;
compositionEndTime;

signed int compositionStartTime;
signed int compositionEndTime;

}

8.6.1.4.3 Semantics

compositionToDTSShift: if this value is added to the composition timestamps (as calculated by
the CTS offsets from the DTS), then for all samples, their CTS is guaranteed to be greater than or
equal to their DTS, and the buffer model implied by the indicated profile/level will be honoured;
if leastDecodeToDisplayDelta is positive or zero, this field can be 0; otherwise it should be
atleast (- leastDecodeToDisplayDelta)

leastDecodeToDisplayDelta: the smallest composition offset in the
CompositionOffsetBox in this track
greatestDecodeToDisplayDelta: the largest composition offset in the

CompositionOffsetBox in this track

compositionStartTime: the smallest computed composition timestamp (CTS) for any sample in
the media of this track

compositionEndTime: the composition timestamp plus the composition duration, of the sample
with the largest computed composition timestamp (CTS) in the media of this track; if this field
takes the value 0, the composition end time is unknown.

58 © ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.6.2 Syncsample box

8.6.2.1 Definition

Box Type: 'stss'

Container: SampleTableBox
Mandatory: No

Quantity: Zero or one

This box provides a compact marking of sync samples within the stream. The table is arranged in strictly
increasing order of sample number.

If the SyncSampleBox is not present, every sample is a sync sample.

NOTE it is not required that every sync sample be marked by this table (or the equivalent flag in Movie Fragments),
only that samples so marked actually be sync samples.

8.6.2.2 Syntax

aligned(8) class SyncSampleBox extends FullBox('stss', wversion = 0, 0)

{
unsigned int (32) entry count;
int 1i;
for (i=0; i < entry count; i++) {
unsigned int (32) sample number;

}

8.6.2.3 Semantics

version -isaninteger that specifies the version of this box.

entry count isan integer that gives the number of entries in the following table. If entry_count
is zero, there are no sync samples within the stream and the following table is empty.

sample number gives, for each sync sample in the stream, its sample number.

8.6.3 Shadow sync

8.6.3.1 Shadow sync support

There are two forms of support for shadow sync; the sample table box in this subclause, and the use of
the shadow sync track reference type in 8.3.3.

A track containing an 'shsc' track reference is called a shadow sync sample track, and the tracks
pointed to by the 'shsc' track reference are called main tracks.

The shadow sync sample track provides an optional set of sync samples that can be used when seeking
to a position or for similar operations performed to any of the associated main tracks.

When an 'shsc' track reference is present, the following constraints shall be obeyed:
- All samples of the shadow sync sample track shall be sync samples.

- Each main track shall have a sample that is aligned in decoding time with each sample of the shadow
sync sample track.

© ISO/IEC 202x - All rights reserved 59

DIS 14496-12:202x

- A concatenation of the following samples in the following order shall conform to the sample entry of
the main track:

o Any selected sample of the shadow sync sample track, with the sample duration of the sample of the
main track that is aligned in decoding time with the selected sample of the shadow sync sample track.

o Samples of the main track following the sample of the main track that is aligned in decoding time
with the selected sample of the shadow sync sample track.

An 'shsc' track reference indicates that the decoded samples resulting from the concatenation
specified above have acceptable quality for playback.

NOTE The samples in the main track that are aligned in decoding time with the samples in the shadow sync sample
track are "switchable" samples that are constrained so that no samples preceding a "switchable" sample in decoding
order are used as a prediction reference for any sample following the "switchable" sample in decoding order.

8.6.3.2 Shadow sync sample box

8.6.3.2.1 Definition

Box Type: 'stsh'

Container: SampleTableBox
Mandatory: No

Quantity: Zero or one

The shadow sync table provides an optional set of sync samples that can be used when seeking or for
similar purposes. In normal forward play they are ignored.

Each entry in the ShadowSyncSampleBox consists of a pair of sample numbers. The first entry
(shadowed-sample-number) indicates the number of the sample that a shadow sync will be defined for.
This should always be a non-sync sample (e.g. a frame difference). The second sample number (sync-
sample-number) indicates the sample number of the sync sample (i.e. key frame) that can be used when
there is a need for a sync sample at, or before, the shadowed-sample-number.

The entries in the ShadowSyncSampleBox shall be sorted based on the shadowed-sample-number
field.

The shadow sync samples are normally placed in an area of the track that is not presented during normal
play (edited out by means of an edit list), though this is not a requirement. The shadow sync table can be
ignored and the track will play (and seek]) correctly if it is ignored (though perhaps not optimally).

The ShadowSyncSample replaces, not augments, the sample that it shadows (i.e. the next sample sent is
shadowed-sample-number+1). The shadow sync sample is treated as if it occurred at the time of the
sample it shadows, having the duration of the sample it shadows.

Hinting and transmission might become more complex if a shadow sample is used also as part of normal
playback, or is used more than once as a shadow. In this case the hint track might need separate shadow
syncs, all of which can get their media data from the one shadow sync in the media track, to allow for the
different timestamps etc. needed in their headers.

60 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.6.3.2.2 Syntax

aligned(8) class ShadowSyncSampleBox
extends FullBox('stsh', version = 0, 0)
{
unsigned int(32) entry count;
int i;
for (i=0; i < entry count; i++) {
unsigned int(32) shadowed sample number;
unsigned int(32) sync_sample number;

}

8.6.3.2.3 Semantics

version -isan integer that specifies the version of this box.

entry count - is an integer that gives the number of entries in the following table.

shadowed sample number - gives the number of a sample for which there is an alternative sync
sample.

sync_sample number - gives the number of the alternative sync sample.

8.6.4 Independent and disposable samples box
8.6.4.1 Definition

Box Types: 'sdtp'
Container: SampleTableBox
Mandatory: No

Quantity: Zero or one

This optional table answers three questions about sample dependency:

1) does this sample depend on others (e.g. is it an I-picture)?

2) do no other samples depend on this one?

3) does this sample contain multiple (redundant) encodings of the data at this time-instant (possibly
with different dependencies)?

In the absence of this table:

1) the sync sample information (partly) answers the first question; in most video codecs, I-pictures
are also sync points,

2) the dependency of other samples on this one is unknown.

3) the existence of redundant coding is unknown.

When performing ‘trick’ modes, such as fast-forward, it is possible to use the first piece of information to
locate independently decodable samples. Similarly, when performing random access, it may be necessary
to locate the previous sync sample or random access recovery point, and roll-forward from the sync
sample or the pre-roll starting point of the random access recovery point to the desired point. While
rolling forward, samples on which no others depend need not be retrieved or decoded.

The value of sample is depended on is independent of the existence of redundant codings.
However, a redundant coding may have different dependencies from the primary coding; if redundant
codings are available, the value of sample depends on documents only the primary coding.

© ISO/IEC 202x - All rights reserved 61

DIS 14496-12:202x

A leading sample (usually a picture in video) is defined relative to a reference sample, which is the
immediately prior sample that is marked as sample depends_on having no dependency (anI picture).
A leading sample has both a composition timestamp before the reference sample, and possibly also a
decoding dependency on a sample before the reference sample. Therefore if, for example, playback and
decoding were to start at the reference sample, those samples marked as leading are not be needed and
are possibly not decodable. A leading sample itself shall therefore not be marked as having no
dependency.

For tracks with a handler type thatisnot 'vide', 'soun', 'hint' or 'auxv', if another sample
with sample depends on=2 or another sample tagged as a “Sync Sample” has already been
processed and unless specified otherwise, a sample tagged with sample depends on=2, and
sample has redundancy=1 canbediscarded, and its duration added to the duration of the preceding
one, to maintain the timing of subsequent samples.

The size of the table, sample count, is taken from the sample count in the SampleSizeBox or
CompactSampleSizeBox.

8.6.4.2 Syntax

aligned(8) class SampleDependencyTypeBox
extends FullBox ('sdtp', version = 0, 0)
{
for (i=0; 1 < sample count; i++) {
unsigned int(2) is leading;
unsigned int (2) sample depends on;
unsigned int (2) sample is depended on;
unsigned int (2) sample has redundancy;

}

8.6.4.3 Semantics

is leading takes one of the following four values:
0: the leading nature of this sample is unknown;
1: this sample is a leading sample that has a dependency before the referenced I-picture (and is
therefore not decodable);
2: this sample is not a leading sample;
3: this sample is a leading sample that has no dependency before the referenced I-picture (and is
therefore decodable);
sample depends on takes one of the following four values:
0: the dependency of this sample is unknown;
1: this sample does depend on others (not an I picture);
2: this sample does not depend on others (I picture);
3: reserved
sample is depended on takes one of the following four values:
0: the dependency of other samples on this sample is unknown;
1: other samples may depend on this one (not disposable);
2: no other sample depends on this one (disposable);
3: reserved
sample has redundancy takes one of the following four values:
0: itis unknown whether there is redundant coding in this sample;
1: there is redundant coding in this sample;
2: there is no redundant coding in this sample;

62 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

3: reserved
8.6.5 Editbox

8.6.5.1 Definition

Box Type: 'edts'
Container: TrackBox
Mandatory: No
Quantity: Zero or one

An EditBox maps the presentation timeline to the media timeline as it is stored in the file. The EditBox
is a container for the edit lists.

The EditBox is optional. In the absence of this box, there is an implicit one-to-one mapping of these
timelines, and the presentation of a track starts at the beginning of the presentation. An empty edit is
used to offset the start time of a track.

8.6.5.2 Syntax

aligned(8) class EditBox extends Box ('edts')
{
}

8.6.6 Editlist box

8.6.6.1 Definition

Box Type: 'elst'
Container: EditBox
Mandatory: No
Quantity: Zero or one

This box contains an explicit timeline map. Each entry defines part of the track timeline: by mapping part
of the composition timeline, or by indicating ‘empty’ time (portions of the presentation timeline that map
to no media, an ‘empty’ edit), or by defining a ‘dwell’, where a single time-point in the media is held for a
period.

NOTE 1 Edits are not restricted to fall on sample times. This means that when entering an edit, it can be necessary to
(a) back up to a sync point, and pre-roll from there and then (b) be careful about the duration of the first sample — it
might have been truncated if the edit enters it during its normal duration. If this is audio, that frame might need to be
decoded, and then the final slicing done. Likewise, the duration of the last sample in an edit might need slicing. The
length of the whole track in an EditListBox might be the overall duration of the whole movie excluding fragments
of a fragment movie. Since edit lists cannot occur in movie fragments, there is an implied edit at the end of the current
explicit or implied edit list, that inserts the new media material and the presentation of fragments starts after the
presentation of the movie in the MovieBox.

Starting offsets for tracks (streams) are represented by an initial ‘empty’ edit.

A non-‘empty’ edit may insert a portion of the media timeline that is not present in the initial movie, and
is present only in subsequent movie fragments.

Edit lists may be repeated; this is indicated with the RepeatEdits flag. When this flag is equal to 0 the
edit list is not repeated, while the value 1 specifies that the edit list is repeated. When an EditListBox
indicates the playback of zero samples or one sample, RepeatEdits shall be equal to 0. When the

© ISO/IEC 202x - All rights reserved 63

DIS 14496-12:202x

TrackHeaderBox duration is not indefinite (all 1s), then the edit list is repeated R times such that the
total duration of the edit list multiplied by R equals the TrackHeaderBox duration (R is not necessarily
an integer). If the TrackHeaderBox duration is indefinite, then the edit list is repeated indefinitely.

NOTE 2 When the edit list is repeated, media at time 0 resulting from the edit list follows immediately
the media having the largest time resulting from the edit list. In other words, the edit list is repeated seamlessly.

When a movie is fragmented, and does not contain any MovieExtendsHeaderBox, the last entry in a
track edit list may be a non-empty entry with a media duration field set to 0; in this case, readers shall
interpret this media duration as being the accumulated duration of all samples defined in the initial movie
and any further movie-fragments. If there is a MovieExtendsHeaderBox, the last entry in the edit list
should be adjusted such that the total duration of all edits corresponds to the duration in the
MovieExtendsHeaderBox.

It is recommended that such an edit be used to establish a presentation time of 0 for the first presented
sample, when composition offsets are used.

In the case of a fragmented movie, starting offsets for tracks (streams) are also represented by an initial
‘empty’ edit, followed by a non-‘empty’ edit.

NOTE 3 The field edit duration used to be called segment duration in previous editions of this document.
8.6.6.2 Syntax

aligned(8) class EditListBox extends FullBox('elst', wversion, flags)
{

unsigned int (32) entry count;
for (i=1; i <= entry count; i++) {
if (version==1) {
unsigned int (64) edit duration;
int (64) media time;
} else { // version==0
unsigned int (32) edit duration;
int (32) media time;
}
int (16) media rate integer;
int (16) media rate fraction;

}

8.6.6.3 Semantics

version is an integer that specifies the version of this box (0 or 1)
flags the following values are defined. The values of f1ags greater than 1 are reserved.
RepeatEdits 1

entry count is an integer that gives the number of entries in the following table

edit duration is an integer that specifies the duration of this edit in units of the timescale in the
MovieHeaderBox

media time isan integer containing the starting time within the media of this edit entry (in media
time scale units, in composition time). If this field is set to -1, it is an empty edit. The last editin a
track shall never be an empty edit. Any difference between the duration in the
MovieHeaderBox, and the track’s duration is expressed as an implicit empty edit at the end.

64 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

media rate specifies the relative rate at which to play the media corresponding to this edit entry.
If this value is 0, then the edit is specifying a ‘dwell’: the media at media-time is presented for
the edit duration. Thisis expressed as a 16.16 fixed-point integer (16 bits each for the
integer and fractional part). The normal value, indicating normal-speed forward play, is 1.0
(integer part equal to 1, fraction part equal to 0).

8.6.6.4 Editlist examples

To play a track from its start for 30 seconds, but at 10 seconds into the presentation, we have the following
edit list:

entry count =2

edit duration =10 seconds
media time=-1
media rate=1

edit duration =30 seconds (is possibly the length of the whole track)
media time =0 seconds
media rate=1

As an example of correcting for a non-zero initial composition timestamp, if the composition timestamp
of the first composed frame is 20, then the edit that maps the media time from 20 onwards to movie time
0 onwards, reads:

entry count=1

edit duration=0
media time =20
media rate=1

As an example of an initial offset, to play a track from its start for 0 seconds, but at 2 seconds into the
presentation, we have the following edit list:

entry count =2
edit duration =2 seconds
media time=-1

media rate=1

edit duration =0 seconds
media time =0 seconds
media rate=1

© ISO/IEC 202x - All rights reserved 65

DIS 14496-12:202x

8.7 Track datalayout structures
8.7.1 Data information box

8.7.1.1 Definition

Box Type: 'dinf'

Container: MediaInformationBox or MetaBox

Mandatory: Yes (required within MediaInformationBox) and No (optional within MetaBox)
Quantity: Exactly one

The DataInformationBox contains objects that declare the location of the media information in a
track.

8.7.1.2 Syntax

aligned(8) class DataInformationBox extends Box('dinf')
{
}

8.7.2 Datareference box

8.7.2.1 Definition

Box Type: 'dref"

Container: DataInformationBox
Mandatory: Yes

Quantity: Exactly one

Box Types: 'url ', 'urn '

Container: DataReferenceBox

Mandatory: Yes (atleast one of 'url ' or 'urn ' shall be present)
Quantity: One or more

Box Type: 'imdt'

Container: DataReferenceBox
Mandatory: No.

Quantity: Zero or more.

Box Type: 'snim'

Container: DataReferenceBox
Mandatory: No.

Quantity: Zero or more.

The data reference object contains a table of data references (normally URLs) that declare the location(s)
of the media data used within the presentation. The data reference index in the sample entry ties entries
in this table to the samples in the track. A track may be split over several sources in this way.

If the flag is set indicating that the data is in the same file as this box, then no string (not even an empty
one) shall be supplied in the entry field.

The entry_count in the DataReferenceBox shall be 1 or greater.

66 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

NOTE Though the count is 32 bits, the number of items is usually much fewer, and is restricted by the fact that the
reference index in the sample table is only 16 bits

When a file that has data entries with the flag set indicating that the media data is in the same file, is split
into segments for transport, the value of this flag does not change, as the file is (logically) reassembled
after the transport operation.

The DataEntryImdaBox identifies the IdentifiedMediaDataBox containing the media data
accessed through the data reference index corresponding to this DataEntryImdaBox. The
DataEntryImdaBox contains the value of imda identifier of the referred
IdentifiedMediaDataBox. The media data offsets are relative to the first byte of the payload of the
referred IdentifiedMediaDataBox. In other words, media data offset 0 points to the first byte of the
payload of the referred ITdentifiedMediaDataBox.

The DataEntrySegNumImdaBox identifies the TdentifiedMediaDataBox containing the media
data accessed through the data reference index corresponding to this
DataEntrySegNumImdaBox. Whenadata reference indexincluded in a sample entry refers to
DataEntrySegNumImdaBox, each sample referring to the sample entry shall be contained in a movie
fragment, and media data offset 0 points to the first byte of the payload of the
IdentifiedMediaDataBox that has imda identifier equal to sequence number of the
MovieFragmentHeaderBox of the movie fragment containing the sample.

8.7.2.2 Syntax

aligned(8) class DataEntryBaseBox (entry type, bit(24) flags)
extends FullBox (entry type, version = 0, flags)

{

}

aligned(8) class DatakEntryUrlBox (bit(24) flags)
extends DataEntryBaseBox('url ', flags)
{

utf8string location;

}

aligned(8) class DatakEntryUrnBox (bit(24) flags)
extends DataEntryBaseBox('urn ', flags)

{
utf8string name;
utf8string location;

}

aligned(8) class DataEntryImdaBox (bit(24) flags)
extends DataEntryBaseBox ('imdt', flags)
{

unsigned int(32) imda ref identifier;

}

aligned(8) class DatakEntrySegNumImdaBox (bit(24) flags)
extends DataEntryBaseBox ('snim', flags)

{

}

© ISO/IEC 202x - All rights reserved 67

DIS 14496-12:202x

aligned(8) class DataReferenceBox extends FullBox ('dref', version = 0, 0)
{
unsigned int(32) entry count;
for (i=1; i <= entry count; i++) {
DataEntryBaseBox data entry(entry type, entry flags);

}

8.7.2.3 Semantics

version is an integer that specifies the version of this box

entry count isan integer that counts the actual entries

entry flags is a 24-bit integer with flags; one flag is defined (x000001) which means that the
media data is in the same file as the Box containing this data reference. If this flag is set, the
DataEntryUrlBox shall be used and no string is present; the box terminates with the entry-
flags field.

data_entry isaninstance of a class derived from DataEntryBaseBox.

name is a URN, and is required in a URN entry

locationisa URL, and is required in a URL entry and optional in a URN entry, where it gives a
location to find the resource with the given name. The URL type should be of a service that
delivers a file (e.g. URLs of type file, http, ftp etc.), and which services ideally also permit random
access. Relative URLs are permissible and are relative to the file that contains this data
reference.

imda ref identifier identifies the IdentifiedMediaDataBox containing the media data
accessed through the data reference index corresponding to this DataEntryImdaBox.
The referred IdentifiedMediaDataBox contains imda identifier thatisequal to
imda ref identifier.

8.7.3 Sample size boxes

8.7.3.1 Definition

Box Type: 'stsz', 'stz2'

Container: SampleTableBox

Mandatory: Yes

Quantity: Exactly one variant shall be present

This box contains the sample count and a table giving the size in bytes of each sample. This allows the
media data itself to be unframed. The total number of samples in the media is always indicated in the
sample count.

There are two variants of the sample size box. The first variant has a fixed size 32-bit field for representing
the sample sizes; it permits defining a constant size for all samples in a track. The second variant permits
smaller size fields, to save space when the sizes are varying but small. One of these boxes shall be present;
the first version is preferred for maximum compatibility.

NOTE A sample size of zero is not prohibited in general, but it must be valid and defined for the coding system, as
defined by the sample entry, that the sample belongs to.

68 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.7.3.2 Sample size box

8.7.3.2.1 Syntax

aligned(8) class SampleSizeBox extends FullBox('stsz', wversion = 0, 0)

{
unsigned int(32) sample size;
unsigned int(32) sample count;
if (sample size==0) {
for (i=1; i <= sample count; i++) {
unsigned int (32) entry size;

}

8.7.3.2.2 Semantics

version isan integer that specifies the version of this box
sample size isinteger specifying the default sample size. If all the samples are the same size, this
field contains that size value. If this field is set to 0, then the samples have different sizes, and

those sizes are stored in the sample size table. If this field is not 0, it specifies the constant sample
size, and no array follows.

sample count is an integer that gives the number of samples in the track; if sample sizeisO,
then it is also the number of entries in the following table.
entry size isan integer specifying the size of a sample, indexed by its number.

8.7.3.3 Compact sample size box

8.7.3.3.1 Syntax

aligned(8) class CompactSampleSizeBox
extends FullBox('stz2', version = 0, 0)
{
unsigned int (24) reserved = 0;
unsigned int (8) field size;
unsigned int (32) sample count;
for (i=1; 1 <= sample count; i++) {
unsigned int(field size) entry size;

}

8.7.3.3.2 Semantics

version isan integer that specifies the version of this box
field sizeisaninteger specifying the size in bits of the entries in the following table; it shall
take the value 4, 8 or 16. If the value 4 is used, then each byte contains two values:

entry[i]<<4 + entry[i+1]; if the sizes do not fill an integral number of bytes, the last byte is
padded with zeros.

sample count is an integer that gives the number of entries in the following table
entry size isaninteger specifying the size of a sample, indexed by its number.

© ISO/IEC 202x - All rights reserved 69

DIS 14496-12:202x

8.7.4 Sample to chunk box

8.7.4.1 Definition

Box Type: 'stsc'

Container: SampleTableBox
Mandatory: Yes

Quantity: Exactly one

Samples within the media data are grouped into chunks. Chunks can be of different sizes, and the samples
within a chunk can have different sizes. This table can be used to find the chunk that contains a sample,
its position, and the associated sample entry.

The table is compactly coded. Each entry gives the index of the first chunk of a run of chunks with the
same characteristics. By subtracting one entry here from the previous one, it is possible to compute how
many chunks are in this run. This can be converted to a sample count by multiplying by the appropriate
samples-per-chunk.

8.7.4.2 Syntax

aligned (8) class SampleToChunkBox extends FullBox('stsc', version = 0, 0)

{
unsigned int (32) entry count;
for (i=1; i <= entry count; i++) {
unsigned int(32) first chunk;
unsigned int (32) samples per chunk;
unsigned int(32) sample description index;

}

8.7.4.3 Semantics

version isan integer that specifies the version of this box

entry count is an integer that gives the number of entries in the following table

first chunkisaninteger that gives the index of the first chunk in this run of chunks that share the
same samples-per-chunk and sample-description-index; the index of the first chunk in a track has
the value 1 (the first chunk field in the first record of this box has the value 1, identifying that
the first sample maps to the first chunk).

samples per chunk isan integer that gives the number of samples in each of these chunks

sample description index is an integer that gives the index of the sample entry that
describes the samples in this chunk. The index ranges from 1 to the number of sample entries in
the SampleDescriptionBox

70 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.7.5 Chunk offset box

8.7.5.1 Definition

Box Type: 'stco', 'co64'

Container: SampleTableBox

Mandatory: Yes

Quantity: Exactly one variant shall be present

The chunk offset table gives the index of each chunk into the containing file. There are two variants,
permitting the use of 32-bit or 64-bit offsets. The latter is useful when managing very large presentations.

At most one of these variants will occur in any single instance of a sample table.

When the referenced datareference entryis not DataEntryImdaBox or DataEntrySegNumImdaBox,
offsets are file offsets, not the offset into any box within the file (e.g. MediaDataBox). This permits
referring to media data in files without any box structure. It does also mean that care must be taken when
constructing a self-contained movie file with its structure-data (MovieBox) at the front, as the size of the

MovieBox will affect the chunk offsets to the media data.

When the referenced data reference entry is DataEntryImdaBox or DataEntrySegNumImdaBox,
offsets are relative to the first byte of the payload of the TdentifiedMediaDataBox corresponding to
the data reference entry. This permits reordering file-level boxes and receiving a subset of file-level boxes
but possibly requires traversing the file-level boxes until the referenced IdentifiedMediaDataBox

is found.

8.7.5.2 Syntax

aligned(8) class ChunkOffsetBox extends FullBox('stco', version

{
unsigned int(32) entry count;
for (i=1; i <= entry count; i++) {
unsigned int(32) chunk offset;

}

aligned(8) class ChunkLargeOffsetBox
extends FullBox('co64', version = 0, 0)
{
unsigned int(32) entry count;
for (i=1; i <= entry count; i++) {
unsigned int(64) chunk offset;

}
8.7.5.3 Semantics

version isan integer that specifies the version of this box
entry count is an integer that gives the number of entries in the following table

chunk offsetisa32 or 64 bitinteger that gives the offset of the start of a chunk. If the referenced
data reference entry is DataEntryImdaBox or DataEntrySegNumImdaBox, the value of
chunk offset isrelative to the first byte of the payload of the IdentifiedMediaDataBox
corresponding to the data reference entry. Otherwise, the value of chunk offset isrelative to

the start of the containing media file.

© ISO/IEC 202x - All rights reserved

71

DIS 14496-12:202x

8.7.6 Padding bits box

8.7.6.1 Definition

Box Type: 'padb'

Container: SampleTableBox
Mandatory: No

Quantity: Zero or one

In some streams the media samples do not occupy all bits of the bytes given by the sample size, and are
padded at the end to a byte boundary. In some cases, it is necessary to record externally the number of
padding bits used. This table supplies that information.

8.7.6.2 Syntax
aligned(8) class PaddingBitsBox extends FullBox('padb', wversion = 0, 0)

{

unsigned int (32) sample count;

int 1i;
for (i=0; 1 < floor((sample count + 1)/2); 1++) {
bit (1) reserved = 0;
bit (3) padl;
bit (1) reserved = 0;
bit (3) pad2;

}

8.7.6.3 Semantics

sample count - countsthe number of samples in the track; it should match the count in other
tables

padl -isavalue from 0 to 7, indicating the number of padding bits at the end of sample (i*2)+1.

pad2 -isavalue from 0 to 7, indicating the number of padding bits at the end of sample (i*2)+2

8.7.7 Sub-sample information box

8.7.7.1 Definition

Box Type: 'subs'

Container: SampleTableBox or TrackFragmentBox
Mandatory: No

Quantity: Zero or more

This box is designed to contain sub-sample information.

A sub-sample is a contiguous range of bytes of a sample. The specific definition of a sub-sample shall be
supplied for a given coding system (e.g. for ISO/IEC 14496-10:2014, Advanced Video Coding). In the
absence of such a specific definition, this box shall not be applied to samples using that coding system.

If subsample count is 0 for any entry, then those samples have no subsample information and no
array follows. The table is sparsely coded; the table identifies which samples have sub-sample structure
by recording the difference in sample-number between each entry. The first entry in the table records
the sample number of the first sample having sub-sample information.

72 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

NOTE Itis possible to combine subsample priorityanddiscardable suchthatwhen subsample priority
is smaller than a certain value, discardable issetto 1. However, since different systems may use different scales of
priority values, separating them is safer, to have a clean solution for discardable sub-samples.

When more than one SubSampleInformationBox is present in the same container box, the value of
flags shall differ in each of these SubSampleInformationBoxes. The semantics of f1lags, if any,
shall be supplied for a given coding system. If f1ags have no semantics for a given coding system, the
flags shall be 0.

8.7.7.2 Syntax

aligned(8) class SubSampleInformationBox
extends FullBox('subs', version, flags)
{
unsigned int(32) entry count;
int i, 3;
for (1i=0; 1 < entry count; i++) {
unsigned int (32) sample delta;
unsigned int (16) subsample count;
if (subsample count > 0) {
for (J=0; J < subsample count; j++) {
if (version == 1) {
unsigned int (32) subsample size;
}
else {
unsigned int (16) subsample size;
}
unsigned int (8) subsample priority;
unsigned int (8) discardable;
unsigned int (32) codec specific parameters;

}
8.7.7.3 Semantics

version isan integer that specifies the version of this box (0 or 1 in this document)

entry count isan integer that gives the number of entries in the following table.

sample delta is an integer that indicates the sample having sub-sample structure. It is coded as
the difference, in decoding order, between the desired sample number, and the sample number
indicated in the previous entry. If the current entry is the first entry in the track, the value
indicates the sample number of the first sample having sub-sample information, that is, the value
is the difference between the sample number and zero (0). If the current entry is the first entry in
a track fragment with preceding non-empty track fragments, the value indicates the difference
between the sample number of the first sample having sub-sample information and the sample
number of the last sample in the previous track fragment. If the current entry is the first entry in
a track fragment without any preceding track fragments, the value indicates the sample number
of the first sample having sub-sample information, that is, the value is the difference between the
sample number and zero (0). This implies that the sample delta for the first entry describing
the first sample in the track or in the track fragment is always 1.

subsample count isaninteger that specifies the number of sub-sample for the current sample. If
there is no sub-sample structure, then this field takes the value 0.

subsample size isaninteger that specifies the size, in bytes, of the current sub-sample.

© ISO/IEC 202x - All rights reserved 73

DIS 14496-12:202x

subsample priority is an integer specifying the degradation priority for each sub-sample.
Higher values of subsample priority, indicate sub-samples which are important to, and
have a greater impact on, the decoded quality.

discardable equal to 0 means that the sub-sample is required to decode the current sample,
while equal to 1 means the sub-sample is not required to decode the current sample but may be
used for enhancements, e.g. the sub-sample consists of supplemental enhancement information
(SEI) messages.

codec specific parameters is defined by the codec in use. If no such definition is available,
this field shall be set to 0.

8.7.8 Sample auxiliary information sizes box

8.7.8.1 Definition

Box Type: 'saiz'

Container: SampleTableBox or TrackFragmentBox
Mandatory: No

Quantity: Zero or more

Per-sample sample auxiliary information may be stored anywhere in the same file as the sample data
itself; for self-contained ISO base media files, this is typically in a MediaDataBox or a box from a derived
specification. It is stored either (a) in multiple chunks, with the number of samples per chunk, as well as
the number of chunks, matching the chunking of the primary sample data or (b) in a single chunk for all
the samples in a movie sample table (or a movie fragment). The sample auxiliary information for all
samples contained within a single chunk (or track run) is stored contiguously (similarly to sample data).

Sample auxiliary information, when present, is always stored in the same file as the samples to which it
relates as they share the same data reference ('dref ') structure. However, this data may be located
anywhere within this file, using auxiliary information offsets (' saio') to indicate the location of the data.

Whether sample auxiliary information is permitted or required may be specified by the brands or the
coding format in use. The format of the sample auxiliary information is determined by aux info type.
If aux info type and aux info type parameter are omitted then the implied value of
aux_info type is either (a) in the case of transformed content, such as protected content, the
scheme type included in the ProtectionSchemeInfoBox or ScrambleSchemeInfoBox, or
otherwise (b) the sample entry type. In the case of tracks containing multiple transformations,
aux info type and aux info type parameter shall not be omitted. The default value of the
aux_info type parameteris0.Somevaluesofaux info type may be restricted to be used only
with particular track types. A track may have multiple streams of sample auxiliary information of
different types. The types are managed according to Annex D.

While aux info type determines the format of the sample auxiliary information, several streams of
sample auxiliary information having the same format may be used when their value of
aux_info type parameter differs. The semantics of aux info type parameter for a
particular aux_info type value shall be specified along with specifying the semantics of the particular
aux_info_ type value and the implied sample auxiliary information format.

This box provides the size of the sample auxiliary information for each sample. For each instance of this
box, there shall be a matching SampleAuxiliaryInformationOffsetsBox with the same values
of aux info type and aux info type parameter, providing the offset information for this
sample auxiliary information.

74 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

NOTE For discussions on the use of sample auxiliary information versus other mechanisms, see Annex B.8.
8.7.8.2 Syntax

aligned(8) class SampleAuxiliaryInformationSizesBox
extends FullBox('saiz', version = 0, flags)
{
if (flags & 1) {
unsigned int (32) aux info type;
unsigned int(32) aux info type parameter;
}
unsigned int (8) default sample info size;
unsigned int(32) sample count;
if (default sample info size == 0) {
unsigned int(8) sample info size[sample count];

}

8.7.8.3 Semantics

aux_info type is an integer that identifies the type of the sample auxiliary information. At most
one occurrence of this box with the same values for aux info type and
aux_info type parameter shall existin the containing box.

aux_info type parameter identifies the “stream” of sample auxiliary information having the
same value of aux info type and associated to the same track. The semantics of
aux_info type parameter are determined by the value of aux_info type.

default sample info size is an integer specifying the sample auxiliary information size for
the case where all the indicated samples have the same sample auxiliary information size. If the
size varies then this field shall be zero.

sample count is an integer that gives the number of samples for which a size is defined. For a
SampleAuxiliaryInformationSizesBox appearing in the SampleTableBox this shall
be the same as, or less than, the sample count within the SampleSizeBox or
CompactSampleSizeBox. Fora SampleAuxiliaryInformationSizesBox appearing in
a TrackFragmentBox this shall be the same as, or less than, the sum of the sample count
entries within the TrackRunBoxes of the track fragment. If this is less than the number of
samples, then auxiliary information is supplied for the initial samples, and the remaining samples
have no associated auxiliary information.

sample info size gives the size of the sample auxiliary information in bytes. This may be zero
to indicate samples with no associated auxiliary information.

8.7.9 Sample auxiliary information offsets box

8.7.9.1 Definition

Box Type: 'saio'

Container: SampleTableBox or TrackFragmentBox
Mandatory: No

Quantity: Zero or more

For an introduction to sample auxiliary information, see the definition of the
SampleAuxiliaryInformationSizesBox.

© ISO/IEC 202x - All rights reserved 75

DIS 14496-12:202x

This box provides the position information for the sample auxiliary information, in a way similar to the
chunk offsets for sample data.

8.7.9.2 Syntax

aligned(8) class SampleAuxiliaryInformationOffsetsBox
extends FullBox('saio', version, flags)

{
if (flags & 1) {
unsigned int(32) aux info type;
unsigned int(32) aux info type parameter;
}
unsigned int (32) entry count;
if (version ==) |
unsigned int (32) offset[entry count];

}
else {
unsigned int (64) offset[entry count];

}
}

8.7.9.3 Semantics

aux info type and aux info type parameter are defined as in the
S_ample_AuxiliaryInforma_tionS_izesB_ox

entry count gives the number of entries in the following table. For a
SampleAuxiliaryInformationOffsetsBox appearing in a Sample Table Box this shall be
equal to one or to the value of the entry count field in the ChunkOffsetBox or
ChunkLargeOffsetBox. For a SampleAuxiliaryInformationOffsetsBox appearing
in a TrackFragmentBox, this shall be equal to one or to the number of TrackRunBoxes in the
TrackFragmentBox.

of fset gives the position in the file of the sample auxiliary information for each chunk or track
fragment run. If entry count is one, then the sample auxiliary information for all chunks or
track fragment runs is contiguous in the file in chunk or run order. When in the
SampleTableBox, the offsets are relative to the same base offset as derived for the respective
samples through the data reference index of the sample entry referenced by the
samples. In a TrackFragmentBox, this value is relative to the base offset established by the
TrackFragmentHeaderBox in the same track fragment (see 8.8.14).

8.8 Movie fragments

8.8.1 Movie extends box

8.8.1.1 Definition

Box Type: 'mvex'
Container: MovieBox
Mandatory: No
Quantity: Zero or one

This box warns readers that there might be MovieFragmentBoxes in this file. To know of all samples
in the tracks, these MovieFragmentBoxes must be found and scanned in order, and their information
logically added to that found in the MovieBox.

76 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

There is a narrative introduction to movie fragments in Annex A.

There are functional equivalences between structures and fields in fragmented and non-fragmented

movies, as documented by Table 5.

Table 5 — Equivalences between fragmented and non-fragmented movies

Movie Fragment

Non-Fragmented Movie

MovieExtendsHeaderBox:fragment durat
ion

TrackHeaderBox:duration

TrackExtendsBox:default sample flags
TrackFragmentHeaderBox:default sampl
e flags
TrackRunBox: (first sample flags,
sample flags)

:is leading

SampleDependencyTypeBox:1s leading

:sample depends on

SampleDependencyTypeBox:
ends_on

sample dep

:sample is depended on

SampleDependencyTypeBox:
depended on

sample is

:sample has redundancy

SampleDependencyTypeBox:
redundancy

sample has

:sample padding value

PaddingBitsBox: (padl, pad2)

:sample is non sync sample

present (SyncSampleBox:sample numbe
r)

:sample degradation priority

DegradationPriorityBox:priority

TrackExtendsBox:default sample descr
iption index
TrackFragmentHeaderBox:sample descri
ption index

SampleToChunkBox:sample descriptio
n_ index

TrackExtendsBox:default sample durat
ion

TrackFragmentHeaderBox:default sampl
e duration

TrackRunBox:sample duration

TimeToSampleBox:sample delta

TrackExtendsBox:default sample size
TrackFragmentHeaderBox:default sampl
e size

TrackRunBox:sample size

SampleSizeBox: (sample size P
entry size)
CompactSampleSizeBox:entry size

TrackRunBox:sample composition time

CompositionOffsetBox:sample offset

offset
8.8.1.2 Syntax
aligned(8) class MovieExtendsBox extends Box ('mvex') {

}

© ISO/IEC 202x - All rights reserved

77

DIS 14496-12:202x

8.8.2 Movie extends header box

8.8.2.1 Definition

Box Type: 'mehd'

Container: MovieExtendsBox
Mandatory: No

Quantity: Zero or one

The movie extends header is optional, and provides the overall duration, including fragments, of a
fragmented movie. If this box is not present, the overall duration must be computed by examining each
fragment.

If the duration fields in all tracks are 0, and movie fragments are present, the duration in MovieHeaderBox
should be set to indefinite or 0. If movie fragments are present but there is no MediaExtendsHeaderBox
and the movie duration is 0, the movie duration should be interpreted as indefinite duration.

8.8.2.2 Syntax

aligned(8) class MovieExtendsHeaderBox
extends FullBox ('mehd', version, 0)
{
if (version==1) {
unsigned int (64) fragment duration;
} else { // version==
unsigned int (32) fragment duration;
}
}

8.8.2.3 Semantics

fragment durationisan integer that declares length of the presentation of the whole movie
including fragments (in the timescale indicated in the MovieHeaderBox). The value of this
field corresponds to the duration of the longest track, including movie fragments. If an MP4 file
is created in real-time, such as used in live streaming, it is not likely that the
fragment duration is known in advance and this box may be omitted.

8.8.3 Track extends box

8.8.3.1 Definition

Box Type: 'trex'

Container: MovieExtendsBox

Mandatory: Yes

Quantity: Exactly one for each track in the MovieBox

This sets up default values used by the movie fragments. By setting defaults in this way, space and
complexity can be saved in each TrackFragmentBox.

The sample flags field in sample fragments (default sample flags here and in a
TrackFragmentHeaderBox,and sample flagsand first sample flagsinaTrackRunBox)
is coded as a 32-bit value. It has the following structure:

78 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

bit (4) reserved=0;

unsigned int(2) is leading;

unsigned int(2) sample depends on;

unsigned int (2) sample is depended on;
unsigned int (2) sample has redundancy;

bit (3) sample padding value;

bit (1) sample is non sync sample;

unsigned int (16) sample degradation priority;

The is leading, sample depends on, sample is depended on and
sample has redundancy values are defined as documented in the SampleDependencyTypeBox.

The flag sample is non sync sample provides the same information as the SyncSampleBox.
When this value is set to 0 for a sample, it is the same as if the sample were not in a movie fragment and
marked with an entry in the SyncSampleBox (or, if all samples are sync samples, the SyncSampleBox
were absent).

The sample padding value is defined as for the PaddingBitsBox. The
sample degradation priorityisdefined as for the DegradationPriorityBox.

8.8.3.2 Syntax

aligned(8) class TrackExtendsBox extends FullBox('trex', 0, 0){
unsigned int (32) track ID;
unsigned int (32) default sample description index;
unsigned int default sample duration;
unsigned int default sample size;
unsigned int default sample flags;

(
(
(
(

~_—~ ~— ~— ~—

32
32
32
}

8.8.3.3 Semantics

track ID identifies the track; this shall be the track ID ofatrackintheMovieBox

default sample description index:indicates the index of the sample entry that describes,
by default, the samples in the track fragments

default sample duration:indicates the default duration of the samples in the track
fragments

default sample size:indicates the default size of the samples in the track fragments

default sample flags:indicate the default flags values for the samples in the track fragments.
(See 8.8.7 for the possible values)

8.8.4 Movie fragment box

8.8.4.1 Definition

Box Type: 'moof'
Container: File
Mandatory: No

Quantity: Zero or more

The movie fragments extend the presentation in time. They provide the information that, when fragments
are not used, is present in the MovieBox. The actual samples are in MediaDataBoxes, as usual, if they
are in the same file. The data reference index is in the sample entry, so it is possible to build incremental
presentations where the media data is in files other than the file containing the MovieBox.

© ISO/IEC 202x - All rights reserved 79

DIS 14496-12:202x

The MovieFragmentBox is a top-level box, (i.e. a peer to the MovieBox and MediaDataBoxes). It
contains a MovieFragmentHeaderBox, and then one or more TrackFragmentBoxes.

NOTE There is no requirement that any particular movie fragment extend all tracks present in the movie header, and
there is no restriction on the location of the media data referred to by the movie fragments. However, derived
specifications may make such restrictions.

8.8.4.2 Syntax

aligned(8) class MovieFragmentBox extends Box ('moof')
{
}

8.8.5 Movie fragment header box

8.8.5.1 Definition

Box Type: 'mfhd'

Container: MovieFragmentBox
Mandatory: Yes

Quantity: Exactly one

The movie fragment header contains a sequence number, as a safety check. The sequence number usually
starts at 1 and increases for each movie fragment in the file, in the order in which they occur. This allows
readers to verify integrity of the sequence in environments where undesired re-ordering might occur.

8.8.5.2 Syntax

aligned(8) class MovieFragmentHeaderBox extends FullBox ('mfhd', 0, 0)
{

unsigned int (32) sequence number;

}

8.8.5.3 Semantics

sequence number anumber associated with this fragment
8.8.6 Track fragment box

8.8.6.1 Definition

Box Type: 'traf'

Container: MovieFragmentBox
Mandatory: No

Quantity: Zero or more

Within the movie fragment there is a set of track fragments, zero or more per track. The track fragments
in turn contain zero or more track runs, each of which documents a contiguous run of samples for that
track. Within these structures, many fields are optional and can be defaulted.

It is possible to add 'empty time' to a track using these structures, as well as adding samples. Empty
inserts can be used in audio tracks doing silence suppression, for example. These are referred to in this
document as ‘empty’ edits (portions of the presentation timeline that map to no media).

80 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

8.8.6.2 Syntax
aligned(8)
{
}

class TrackFragmentBox extends

8.8.7 Track fragment header box

8.8.7.1 Definition

Box Type: 'tfhd'

Container: TrackFragmentBox
Mandatory: Yes

Quantity: Exactly one

ISO/IEC 14496-12:202x

Box ('traf')

Each movie fragment can add zero or more fragments to each track; and a track fragment can add zero
or more contiguous runs of samples. The track fragment header sets up information and defaults used

for those runs of samples.

The data origin that base data offset is relative to and the value of base data offset, when

not present, are inferred as specified inTable 6.

© ISO/IEC 202x - All rights reserved

81

DIS 14496-12:202x

Table 6 - Derivation of the value and data origin of base_data offset

Conditions
A:base-data-offset-present flag
B: default-base-is-moof flag
C: the referenced data reference entry is
DataEntryImdaBox or
DataEntrySegNumImdaBox
D: this TrackFragmentBox is the first
TrackFragmentBox in the containing
MovieFragmentBox
A B C D base_data offset Data origin of base_data_offset
value
0 1 true or true or base data offsetis | base data offset isrelative to the
false false inferred to be equal to 0 first byte of the MovieFragmentBox
containing this box
0 0 true or false base data offsetis | base data offset isrelative to the
false inferred to be equalto 1 | end of the data defined by the
preceding track fragment
0 0 true true base data offsetis | base data offset isrelative to the
inferred to be equal to 0 first byte of the payload of the
IdentifiedMediaDataBox
corresponding to the data reference
entry
0 0 false true base data offsetis | base data offset isrelative to the
inferred to be equal to 0 first byte of the MovieFragmentBox
containing this box
1 Oor1l true true or base data offsetis | base data offset isrelative to the
false present first byte of the payload of the
IdentifiedMediaDataBox
corresponding to the data reference
entry
1 Oorl false true or base data offsetis | base data_ offset isrelative to the
false present file identified by the referenced data
reference entry

NOTE 1 base-data-offset-present flag is advised to be set equal to 1 only if the file identified by the
referenced data reference entry is not meant to be delivered with movie fragments in separate segments or the
referenced data reference entry is DataEntryImdaBox or DataEntrySegNumImdaBox.

When base-data-offset-present flagis equal to 1 and the referenced data reference entry is of
type 'url ' with (entry flags & 1) equal to 1 (indicating that the media data is in the same file as
the DataReferenceBox containing the referenced data reference entry), this
TrackFragmentHeaderBox shall be present in the same file as the MovieBox.

The following flags are defined in the t £ flags:

0x000001base-data-offset-present: indicates the presence of the base-data-offset
field. This provides an explicit anchor for the data offsets in each track run (see below).

0x000002 sample-description-index-present: indicates the presence of this field, which
over-rides, in this fragment, the default set up in the TrackExtendsBox.

82 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

0x000008default-sample-duration-present

0x000010default-sample-size-present

0x000020default-sample-flags—-present

0x010000duration-is-empty: this indicates that the duration provided in either default-
sample-duration, or by the default-sample—-duration in the TrackExtendsBox, is
empty, i.e. that there are no samples for this time interval. It is an error to make a presentation
that has both edit lists in the MovieBox, and empty-duration fragments.

0x020000default-base-is-moof:ifbase-data-offset-presentis 1, this flagis
ignored. Support for the default-base-is-moof flagis required under the 'iso5"' brand,
and it shall not be used in brands or compatible brands earlier than 'iso5".

NOTE 2 Thedefault-base-is-moof flagcannotbesetwhen 'isom','avcl', 'iso2','iso3",
or 'iso4' brand is included in the FileTypeBox.

When both the base-data-offset-present flag and the default-base-is-moof flag are equal
to 0, the value of data reference index shall be equalinthis TrackFragmentHeaderBox and in
the previous TrackFragmentHeaderBox of the same track.

8.8.7.2 Syntax

aligned(8) class TrackFragmentHeaderBox
extends FullBox ('tfhd', 0, tf flags)
{
unsigned int(32) track ID;
// all the following are optional fields
// their presence is indicated by bits in the tf flags
unsigned int (64) base data offset;

unsigned int(32) sample description index;
unsigned int (32) default sample duration;
unsigned int(32) default sample size;
unsigned int (32) default sample flags;

}

8.8.7.3 Semantics

base data offset the base offset to use when calculating data offsets
sample description index,default sample duration,default sample size,
default sample flags:see 8.8.3.3

8.8.8 Track fragment run box

8.8.8.1 Definition

Box Type: 'trun'

Container: TrackFragmentBox
Mandatory: No

Quantity: Zero or more

Within the TrackFragmentBox, there are zero or more TrackRunBoxes. If the duration-is-empty flag
issetinthe t£ flags, there are no track runs. A track run documents a contiguous set of samples for a
track.

© ISO/IEC 202x - All rights reserved 83

DIS 14496-12:202x

The number of optional fields is determined from the number of bits set in the lower byte of the flags, and
the size of a record from the bits set in the second byte of the flags. This procedure shall be followed, to
allow for new fields to be defined.

Whendata offsetisnotpresent, the data for this run starts immediately after the data of the previous
run, or at base data offset defined by the track fragment header if this is the first run in a track
fragment.

When data offset is present, itisrelative to base data offset established in the track fragment
header.

The following flags are allowed to be setin the tr flags:

0x000001 data-offset-present.

0x000004 first-sample-flags-present; this overrides the default flags for the first sample
only, defined in 8.8.3.1. This makes it possible to record a group of frames where the first is a key
and the rest are difference frames, without supplying explicit flags for every sample. If this flag
and field are used, sample-flags-present shall not be set.

0x000100 sample-duration-present: indicates that each sample has its own duration,
otherwise the default is used.

0x000200 sample-size-present: each sample has its own size, otherwise the default is used.

0x000400 sample-flags-present;eachsample hasits own flags, otherwise the default is used.

0x000800 sample-composition-time-offsets-present;eachsample hasacomposition
time offset.

The composition offset values in the CompositionOffsetBox and in the TrackRunBox may be
signed or unsigned. The recommendations given in the CompositionOffsetBox concerning the use
of signed composition offsets also apply here.

8.8.8.2 Syntax

aligned(8) class TrackRunBox extends FullBox('trun', version, tr flags)
{
unsigned int (32) sample count;
// the following are optional fields
signed int (32) data offset;
unsigned int (32) first sample flags;
// all fields in the following array are optional
// as indicated by bits set in the tr flags
{
unsigned int (32) sample duration;
unsigned int (32) sample size;
unsigned int (32) sample flags
if (version == 0)
{ unsigned int (32) sample composition time offset; }
else
{ signed int (32) sample composition time offset; }
} [sample count]

84 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.8.8.3 Semantics

sample count the number of samples being added in this run; also the number of rows in the
following table (the rows can be empty)

data offset is added to the implicit or explicit base data offset established in the track
fragment header.

first sample flags provides a set of flags for the first sample only of this run.

8.8.9 Movie fragment random access box

8.8.9.1 Definition

Box Type: 'mfra'
Container: File
Mandatory: No
Quantity: Zero or one

The MovieFragmentRandomAccessBox provides a table which may assist readers in finding sync
samples in a file using movie fragments. It contains a TrackFragmentRandomAccessBox for each
track for which information is provided (which may not be all tracks). It is usually placed at or near the
end of the file; the last box within the MovieFragmentRandomAccessBox provides a copy of the
length field from the MovieFragmentRandomAccessBox. Readers may attempt to find this box by
examining the last 32 bits of the file, or scanning backwards from the end of the file for a
MovieFragmentRandomAccessOf fsetBox and using the size information in it, to see if that locates
the beginning of a MovieFragmentRandomAccessBox.

This box provides only a hint as to where sync samples are; the movie fragments themselves are definitive.
It is recommended that readers take care in both locating and using this box as modifications to the file
after it was created may render either the pointers, or the declaration of sync samples, incorrect.

8.8.9.2 Syntax

aligned(8) class MovieFragmentRandomAccessBox extends Box('mfra')
{
}

8.8.10 Track fragment random access box
8.8.10.1 Definition

Box Type: 'tfra'

Container: MovieFragmentRandomAccessBox
Mandatory: No

Quantity: Zero or one per track

Each entry contains the location and the presentation time of the sync sample. Not every sync sample in
the track needs to be listed in the table.

The absence of this box does not mean that all the samples are sync samples. Random access information
inthe "trun', 'traf' and 'trex' shall be set appropriately regardless of the presence of this box.

© ISO/IEC 202x - All rights reserved 85

DIS 14496-12:202x

8.8.10.2 Syntax

aligned(8) class TrackFragmentRandomAccessBox

{

}

extends FullBox('tfra', version, 0)

unsigned int (32) track ID;
const unsigned int (26) reserved = 0;
unsigned int(2) length size of traf num;
unsigned int(2) length size of trun num;
unsigned int(2) length size of sample num;
unsigned int (32) number of entry;
for (i=1; i <= number of entry; i++){
if (version==1) {
unsigned int (64) time;
unsigned int (64) moof offset;
lelse{
unsigned int (32) time;
unsigned int (32) moof offset;
}
unsigned int ((length size of traf num+l) * 8) traf number;
unsigned int ((length size of trun num+l) * 8) trun number;
unsigned int ((length size of sample num+l) * 8) sample delta;

8.8.10.3 Semantics

86

track ID is an integer providing the track identifier for which random access information is
provided

length size of traf numindicates the length in bytes of the traf number field minus one.

length size of trun numindicates the length in bytes of the t run _number field minus one.

length size of sample numindicates the length in bytes of the sample number field minus
one.

number of entry isaninteger that gives the number of the entries for this track. If this value is
zero, it indicates that every sample is a sync sample and no table entry follows.

time isa 32 or 64 bitinteger that indicates the presentation time of the sync sample in units defined
in the MediaHeaderBox of the associated track.

NOTE Presentation times are usually expressed in movie timescale, except for the specific case of
TrackFragmentRandomAccessBox where itis expressed in media timescale.

moof offset isa32 or 64 bits integer that gives the offset of the 'moof ' used in this entry. Offset
is the byte-offset between the beginning of the file and the beginning of the "moof".

traf number indicates the 'traf' number that contains the sync sample. The number ranges
from 1 (the first 'traf' is numbered 1)in each 'moof".

trun number indicates the 'trun' number that contains the sync sample. The number ranges
from 1ineach 'traf’.

sample delta indicates the sample number of the sync sample. It is coded as one plus the desired
sample number minus the sample number of the first sample in the TrackRunBox.

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.8.11 Movie fragment random access offset box

8.8.11.1 Definition

Box Type: 'mfro'

Container: MovieFragmentRandomAccessBox
Mandatory: Yes

Quantity: Exactly one

The MovieFragmentRandomAccessOf fsetBox provides a copy of the size field from the enclosing
MovieFragmentRandomAccessBox. It is placed last within that box, so that the size field is also last
in the enclosing MovieFragmentRandomAccessBox. When the
MovieFragmentRandomAccessBox is also last in the file this permits its easy location. The size field
here shall be correct. However, neither the presence of the MovieFragmentRandomAccessBox, nor
its placement last in the file, are assured.

8.8.11.2 Syntax

aligned(8) class MovieFragmentRandomAccessOffsetBox
extends FullBox ('mfro', version, 0)

{

unsigned int (32) parent size;

}

8.8.11.3 Semantics

parent size isan integer that gives the number of bytes of the enclosing
MovieFragmentRandomAccessBox box. This field is placed last in the enclosing box to
assist readers scanning from the end of the file in finding the
MovieFragmentRandomAccessBox.

8.8.12 Track fragment decode time box

8.8.12.1 Definition

Box Type: 'tfdt'

Container: TrackFragmentBox
Mandatory: No

Quantity: Zero or one

The TrackFragmentBaseMediaDecodeTimeBox provides the absolute decoding timestamp,
measured on the decoding timeline, of the first sample in decoding order in the track fragment. This can
be useful, for example, when performing random access in a file; it is not necessary to sum the sample
durations of all preceding samples in previous fragments to find this value.

The TrackFragmentBaseMediaDecodeTimeBox, if present, shall be positioned after the
TrackFragmentHeaderBox and before the first TrackRunBox.

NOTE 1 The decoding timeline is a media timeline, established before any explicit or implied mapping of composition
time to presentation time, for example by an edit list or similar structure. See subclause 6.4.

If the time expressed in the TrackFragmentBaseMediaDecodeTimeBox exceeds the sum of the
sample durations of the samples in the preceding movie and movie fragments, then the duration of the

© ISO/IEC 202x - All rights reserved 87

DIS 14496-12:202x

last sample preceding this track fragment is extended such that the sum now equals the time given in
this box. In this way, it is possible to generate a fragment containing a sample when the time of the next
sample is not yet known, by assigning it a small or even zero sample duration, that is then overriden by
the time expressed in this box in the following fragment. The time expressed in the
TrackFragmentBaseMediaDecodeTimeBox shall not be less than the sum of the sample durations
of the samples in the preceding movie and movie fragments.

If no samples were present in the preceding movie and movie fragments for this track, the time
expressed in the TrackFragmentBaseMediaDecodeTimeBox defines the decoding timestamp of

the first sample in this track.

Players may choose to skip over an initial empty media range in tracks where the first decoding
timestamp is defined by a TrackFragmentBaseMediaDecodeTimeBox with non-zero time.

In particular, an empty track fragment (with no samples, but with a track fragment decode time box) may
be used to establish the duration of the last sample.

NOTE 2 If fragments are delivered out-of-order, file readers might need additional information to determine if the
duration of the last sample of the last fragment needs to be extended using the track decode time of the next fragment
to come, or if it should wait until all fragments have been received (also indicated by out-of-band means) to do that
operation. Derived specifications are permitted to require specific handling of the sequence number of the
MovieFragmentHeaderBox, for example (e.g. that sequence numbers start at and increment by 1).

8.8.12.2 Syntax

aligned(8) class TrackFragmentBaseMediaDecodeTimeBox
extends FullBox ('tfdt', wversion, 0)

if (version==1) {

unsigned int (64) baseMediaDecodeTime;
} else { // version==

unsigned int (32) baseMediaDecodeTime;

}

8.8.12.3 Semantics

version isan integer that specifies the version of this box (0 or 1 in this document).

baseMediaDecodeTime is an integer equal to the sum of the decode durations of all earlier
samples in the media, expressed in the media's timescale. It does not include the samples added
in the enclosing track fragment.

88 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.8.13 Level assignment box

8.8.13.1 Definition

Box Type: 'leva'

Container: MovieExtendsBox
Mandatory: No

Quantity: Zero or one

Levels specify subsets of the file. Samples mapped to level n may depend on any samples of levels m,
where m <= n, and shall not depend on any samples of levels p, where p > n. For example, levels can be
specified according to temporal level (e.g. temporal_id of SVC or MVC).

Levels cannot be specified for the initial movie. When the LevelAssignmentBox is present, it applies
to all movie fragments subsequent to the initial movie.

For the context of the LevelAssignmentBox, a fraction is defined to consist of one or more
MovieFragmentBoxes and the associated MediaDataBoxes, possibly including only an initial part of
the last MediaDataBox. Within a fraction, data for each level shall appear contiguously. Data for levels
within a fraction shall appear in increasing order of level value. All data in a fraction shall be assigned to
levels.

NOTE In the context of DASH (ISO/IEC 23009-1), each subsegment indexed within a SubsegmentIndexBox is a
fraction.

The LevelAssignmentBox provides a mapping from features, such as scalability layers, to levels. A
feature can be specified through a track, a sub-track within a track, or a sample grouping of a track.

When padding flag is equal to 1 this indicates that a conforming fraction can be formed by
concatenating any positive integer number of levels within a fraction and padding the last
MediaDataBox by zero bytes up to the full size that is indicated in the header of the last
MediaDataBox. The use of padding flag is deprecated.

© ISO/IEC 202x - All rights reserved 89

DIS 14496-12:202x

8.8.13.2 Syntax

aligned(8) class LevelAssignmentBox extends FullBox('leva', 0,

{

}

unsigned int (8) level count;
for (j=1; j <= level count; j++) {

unsigned int (32) track ID;
unsigned int(l) padding flag;
unsigned int(7) assignment type;
if (assignment type == 0) {
unsigned int (32) grouping type;
}
else 1f (assignment type == 1) {
unsigned int (32) grouping type;
unsigned int (32) grouping type parameter;
}
else if (assignment type == 2) {}
// no further syntax elements needed
else if (assignment type == 3) {}
// no further syntax elements needed
else 1f (assignment type == 4) {
unsigned int (32) sub track ID;
}

// other assignment type values are reserved

8.8.13.3 Semantics

90

greater than or equal to 2.

track_ ID forloop entryj specifies the track identifier of the track assigned to level j.
padding flag equal to 1 indicates that a conforming fraction can be formed by concatenating any

level count specifies the number of levels each fraction is grouped into. level count shall be

positive integer number of levels within a fraction and padding the last MediaDataBox by zero
bytes up to the full size that is indicated in the header of the last MediaDataBox. When

padding flagisequal to O this is not assured.

assignment type indicates the mechanism used to specify the assignment to a level

assignment type values greater than 4 are reserved, while the semantics for the other values
are specified as follows. The sequence of assignment_types is restricted to be a set of zero or more

of type 2 or 3, followed by zero or more of exactly one type.

e (: sample groups are used to specify levels, i.e.,, samples mapped to different sample group
description indexes of a particular sample grouping lie in different levels within the identified

track; other tracks are not affected and shall have all their data in precisely one level;
e 1:as for assignment_type 0 except assignment is by a parameterized sample group;

e 2, 3: level assignment is by track (see the SubsegmentIndexBox for the difference in

processing of these levels)

e 4: the respective level contains the samples for a sub-track. The sub-tracks are specified
through the SubTrackBox; other tracks are not affected and shall have all their data in

precisely one level;

grouping typeand grouping type parameter, if present, specify the sample grouping used

to map sample group description entries in the SampleGroupDescriptionBox to levels.

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

Level n contains the samples that are mapped to the SampleGroupDescriptionEntry
having indexn in the SampleGroupDescriptionBox having the same values of
grouping typeand grouping type parameter, if present, as those provided in this box.

sub_track ID specifies that the sub-track identified by sub track ID withinloop entryjis
mapped to level j.

8.8.14 Sample auxiliary information in movie fragments

When sample auxiliary information (8.7.8 and 8.7.9) is present in the MovieFragmentBox, the offsets
in the SampleAuxiliaryInformationOffsetsBox are treated the same as the data offset in
the TrackRunBox, thatis, they are relative to anybase data offset value established for that track
fragment.

If only one offset is provided, then the Sample Auxiliary Information for all the track runs in the fragment
is stored contiguously, otherwise exactly one offset shall be provided for each track run.

If the field default sample info size is non-zero in one of these boxes, then the size of the
auxiliary information is constant for the identified samples.

In addition, if:
e this boxis present in the MovieBox,

e anddefault sample info size isnon-zero in the box in the MovieBox,

e andthe SampleAuxiliaryInformationSizesBox isabsentin a movie fragment,

then the auxiliary information has this same constant size for every sample in the movie fragment also;
it is then not necessary to repeat the box in the movie fragment.

8.8.15 Track Extension Properties box

8.8.15.1 Definition

Box Type: 'trep'

Container: MovieExtendsBox

Mandatory: No

Quantity: Zero or more. (Zero or one per track)

This box can be used to document or summarize characteristics of the track in the subsequent movie
fragments. It may contain any number of child boxes.

8.8.15.2 Syntax

class TrackExtensionPropertiesBox extends FullBox('trep', 0, 0)

{
unsigned int(32) track ID;
// Any number of boxes may follow

}

8.8.15.3 Semantics

track IDindicates the track for which the track extension properties are provided in this box.

© ISO/IEC 202x - All rights reserved 91

DIS 14496-12:202x

8.8.16 Alternative startup sequence properties box

8.8.16.1 Definition

Box Type: 'assp'

Container: TrackExtensionPropertiesBox
Mandatory: No

Quantity: Zero or one

This box indicates the properties of alternative startup sequence sample groups in the subsequent track
fragments of the track indicated in the containing TrackExtensionPropertiesBox.

Version 0 of the AlternativeStartupSequencePropertiesBox shall be used if version 0 of the
SampleToGroupBox is used for the alternative startup sequence sample grouping. Version 1 of the
AlternativeStartupSequencePropertiesBox shall be wused if version 1 of the
SampleToGroupBox is used for the alternative startup sequence sample grouping.

8.8.16.2 Syntax

class AlternativeStartupSequencePropertiesBox
extends FullBox('assp', version, 0)

{

if (version == 0) {

signed int (32) min initial alt startup offset;
}
else if (version == 1) {

unsigned int (32) num entries;
for (J=1; j <= num entries; Jj++) {
unsigned int (32) grouping type parameter;
signed int(32) min initial alt startup offset;

}

8.8.16.3 Semantics

min initial alt startup offset: No value of sample_offset[1] of the referred sample
group description entries of the alternative startup sequence sample grouping shall be smaller
than min_initial_alt_startup_offset. In version 0 of this box, the alternative startup sequence
sample grouping using version 0 of the Sample to Group box is referred to. In version 1 of this
box, the alternative startup sequence sample grouping using version 1 of the
SampleToGroupBox is referred to as further constrained by grouping type parameter.

num_entries indicates the number of alternative startup sequence sample groupings
documented in this box.

grouping type parameter indicates which one of the alternative sample groupings this loop
entry applies to.

8.8.17 Metadata and user data in movie fragments

When MetaBoxes occur in MovieFragmentBoxes or TrackFragmentBoxes, the following applies.
The file shall have been fragmented such that any metadata needed in the movie or track fragment is
formed from the union of the metadata in the MovieBox and the fragment, not considering or using
metadata in any other fragment. Metadata in a movie or track fragment is logically ‘arriving late’ but is

92 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

valid for the entire track. When a file is de-fragmented, the metadata in the movie or track fragments must
be merged into the movie or track boxes, respectively. This process allows for ‘just in time’ delivery of
support resources, and bandwidth management, while preserving the essentially atemporal nature of
untimed metadata. If metadata truly changes over time, a timed metadata track may be needed.

If, during this merge, there are either (a) metadata items with the same item ID or (b) user-data items
with the same type, then the following applies:

a) all occurrences of the data (user-data box or metadata item) must be ‘true’ for the entire movie
including all fragments;

b) the occurrences in higher-numbered movie fragments (‘later’ occurrences) may be more accurate
or ‘preferred’;

c) in particular, data in an empty initial MovieBox may be only estimates or ‘not to exceed’ values,
and data in a final otherwise empty movie fragment may be the ‘final’ or most accurate values.

Consequently, for MetaBox, the redefinition of an item with the same item ID in a subsequent
MetaBox is equivalent to an item replacement, the new item applying for the entire track or file. For
UserDataBox, there may be multiple occurrences of a user data of a given type (for example
CopyrightBox with different languages), and these occurrences may be delivered in different movie
fragments or in the initial movie. Readers should be careful when attempting at removing duplicates of
such boxes in a defragmentation process, since checking the type of the user data for removal might not
be sufficient; the language or other fields specific to the type of user-data may need inspection.

8.9 Sample group structures

8.9.1 Overview

This clause specifies a generic mechanism for representing a partition of the samples in a track. A sample
grouping is an assignment of each sample in a track to be a member of one sample group, based on a
grouping criterion. A sample group in a sample grouping is not limited to being contiguous samples and
may contain non-adjacent samples. As there may be more than one sample grouping for the samples in a
track, each sample grouping has a type field to indicate the type of grouping. For example, a file might
contain two sample groupings for the same track: one based on an assignment of sample to layers and
another to sub-sequences.

Sample groupings are represented by two linked data structures: (1) a SampleToGroupBox represents
the assignment of samples to sample groups; (2) a SampleGroupDescriptionBox contains a sample
group description entry for each sample group describing the properties of the group. There may be
multiple instances of the SampleToGroupBox and SampleGroupDescriptionBoxes based on
different grouping criteria. These are distinguished by a type field used to indicate the type of grouping.

A grouping of a particular grouping type may use a parameter in the sample to group mapping; if so,
the meaning of the parameter must be documented with the group. An example of this might be
documented the sync points in a multiplex of several video streams; the group definition might be ‘Is an
I frame’, and the group parameter might be the identifier of each stream. Since the SampleToGroupBox
occurs once for each stream, it is now both compact, and informs the reader about each stream separately.

One example of using these tables is to represent the assignments of samples to layers. In this case each
sample group represents one layer, with an instance of the SampleToGroupBox describing which layer
a sample belongs to.

© ISO/IEC 202x - All rights reserved 93

DIS 14496-12:202x

In general, itis not required that a sample to group mapping marks every sample for which the associated
sample group description applies. It is only required that the mapping is correct for mapped samples.
However, this general principle may be overridden by the definition of specific sample groups.

NOTE There might not be a SampleToGroupBox of a given grouping type corresponding to a
SampleGroupDescriptionBox with the same grouping type because references to the
SampleGroupDescriptionBox (in particular to its entries) might be provided by specific constructs in derived
specifications.

8.9.2 Sample to group box

8.9.2.1 Definition

Box Type: 'sbgp'

Container: SampleTableBox or TrackFragmentBox
Mandatory: No

Quantity: Zero or more.

This table can be used to find the group that a sample belongs to and the associated description of that
sample group. The table is compactly coded with each entry giving the index of the first sample of a run
of samples with the same sample group descriptor. The sample group description ID is an index that
refers to a SampleGroupDescriptionBox, which contains entries describing the characteristics of
each sample group.

There may be multiple instances of this box if there is more than one sample grouping for the samples in
a track or track fragment. Each instance of the SampleToGroup box has a type that distinguishes
different sample groupings. Within a track, whether declared in the SampleTableBox or in
TrackFragmentBox, there shall be at most one instance of this box with a particular grouping type,
and, if present, a grouping type parameter. The associated SampleGroupDescriptionBox
shall indicate the same value for the grouping type.When there are multiple SampleToGroupBoxes
with a particular value of grouping type in a container box, the version of all the
SampleToGroupBoxes shall be 1. When the version of a SampleToGroupBox is 0, there shall be only
one occurrence of SampleToGroupBox with this grouping type ina container box.

Version 1 of this box should only be used if a grouping type parameter is needed. When the
grouping type parameter is not explicitly defined in this standard, its semantics may be
overridden by derived specifications.

For a SampleGroupDescriptionBox with a given grouping type, there may be more than one
SampleToGroupBox with the same grouping type if and only if each SampleToGroupBox has a
different value of grouping type parameter; there may also be no SampleToGroupBox with the
given grouping type if no samples are mapped to a description of that grouping type, or if all
samples are mapped to the default entry identified by the SampleGroupDescriptionBox.

94 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.9.2.2 Syntax

aligned(8) class SampleToGroupBox extends FullBox ('sbgp', version, 0)
{
unsigned int(32) grouping type;
if (version == 1) {
unsigned int(32) grouping type parameter;
}
unsigned int(32) entry count;
for (i=1; i <= entry count; i++)
{
unsigned int(32) sample count;
unsigned int (32) group description index;

}

8.9.2.3 Semantics

version isan integer that specifies the version of this box, either 0 or 1.

grouping type isaninteger thatidentifies the type (i.e. criterion used to form the sample groups)
of the sample grouping and links it to its sample group description table with the same value for
grouping type. At mostone occurrence of this box with the same value for grouping type
(and, ifused, grouping type parameter) shall exist for a track.

grouping type parameter isanindication of the sub-type of the grouping

entry count is an integer that gives the number of entries in the following table.

sample count is an integer that gives the number of consecutive samples with the same sample
group descriptor. The total sample count is defined to be equal to the sample count
documented in SampleSizeBox or CompactSampleSizeBox when this box is contained in
SampleTableBox, and equal to the total number of samples in all the track fragment runs of the
track fragment when this box is contained in TrackFragmentBox. Itis an error for the total of
all of the sample count in this box to be greater than the total sample count, and consequently
the reader behaviour is undefined. If the sum of the sample count in this box with
grouping type value is less than the total sample count, or there is no SampleToGroupBox
for a value of grouping type that applies to some samples (e.g. it is absent from a track
fragment), then those samples are associated with the group identified by the
default group description index in the SampleGroupDescriptionBox with the
same value of grouping type, ifany, or else with no group.

group description index isan integer that gives the index of the sample group description
entry which describes the samples in this group. The index ranges from 1 to the number of
sample group description entries in the SampleGroupDescriptionBox, or takes the value 0
to indicate that this sample is a member of no group of this type.

NOTE When a movie is fragmented, group description index can refer to a sample group

description entry of the SampleGroupDescriptionBox with same grouping type either in the
MovieBox orin the TrackFragmentBox as specified in 8.9.4.

© ISO/IEC 202x - All rights reserved 95

DIS 14496-12:202x

8.9.3 Sample group description box

8.9.3.1 Definition

Box Type: 'sgpd'

Container: SampleTableBox or TrackFragmentBox

Mandatory: No

Quantity: Zero or more, with exactly one for each grouping typeina SampleToGroupBox.

This description table gives information about the characteristics of sample groups. The descriptive
information is any other information needed to define or characterize the sample group. The syntax of
the sample group description entry used is determined by both the grouping type and the media
handler type.

There may be multiple instances of this box if there is more than one sample grouping for the samples in
a track. Each instance of the SampleGroupDescriptionBox has a type that distinguishes different
sample groupings. There shall be at most one instance of this box with a particular grouping type in
atrack (i.e. defined ina SampleTableBox or TrackFragmentBox).

The flags field of the SampleGroupDescriptionBox shall be zero when the box is in a
TrackFragmentBox. When the boxisina SampleTableBox, either or both of the two lowest bits may
be set:

e static group description:Flag maskis 0x000001. When set to 1, this flag indicates that
there are no SampleGroupDescriptionBoxes of this grouping type inany
TrackFragmentBox of this track.

e static mapping: Flag maskis 0x000002. When set to 1, this flag indicates that there are no
SampleToGroupBoxes of this grouping type in this track (in neither the SampleTableBox
nor any TrackFragmentBox of this track); all samples therefore map to the default.

NOTE 1 When static_mappingissettoland default group description indexisequal to
zero or is unspecified, this means that none of the entries of the SampleGroupDescriptionBox actually map to
samples per default, but this default can be changed for a given fragment by defining a
SampleGroupDescriptionBox with version >= 2, same grouping type and
default group description index >0 in this fragment.

These flags may be used in combination with the version of the SampleGroupDescriptionBox to
signal various possibilities.

e static group description withoutstatic mapping:

the SampleGroupDescriptionBox shall only be in the MovieBox for the given
grouping type, but samples of the track, including in movie fragments, can map to any entry
in this SampleGroupDescriptionBox..

e static mapping withoutstatic group description:

everything in a fragment maps to at most one group; there may be new
SampleGroupDescriptionBoxes of this type in fragments; depending on their version, the
SampleGroupDescriptionBoxes can identify a default sample group, or that samples are
unmapped.

e bothstatic group descriptionandstatic mapping:

96 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

every sample maps to the default indicated in the SampleGroupDescriptionBox in the
MovieBox; that SampleGroupDescriptionBox can indicate a default sample group or
indicate that all samples are unmapped, depending on its version.

The information is stored in the SampleGroupDescriptionBox after the entry-count. An abstract
entry type is defined and sample groupings shall define derived types to represent the description of each
sample group.

NOTE 2 In version 0 of the entries the base classes for sample group description entries are neither boxes
nor have a size that is signalled. For this reason, use of version 0 entries is deprecated. When defining derived classes,
ensure either that they have a fixed size, or that the size is explicitly indicated with a length field. An implied size (e.g.
achieved by parsing the data) is not recommended as this makes scanning the array difficult.

An essential sample group description is a sample group description for which the version field is equal
to 3, and the associated sample group is also referred to as an essential sample group. An essential sample
group description describes essential information for the associated samples, and parsers shall not
attempt to process any track for which unrecognized sample group descriptions marked as essential are
present.

The grouping type inany SampleGroupDescriptionBox with version equal to 3 shall not be
equal to any scheme type present in the same track.

8.9.3.2 Syntax

// Sequence Entry

abstract class SampleGroupDescriptionEntry (unsigned int (32)
grouping type)

{

}

abstract class VisualSampleGroupEntry (unsigned int(32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

abstract class AudioSampleGroupEntry (unsigned int (32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

abstract class HintSampleGroupEntry (unsigned int(32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

abstract class SubtitleSampleGroupEntry (unsigned int (32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

abstract class TextSampleGroupEntry (unsigned int (32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

abstract class MetadataSampleGroupEntry (unsigned int (32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

© ISO/IEC 202x - All rights reserved 97

DIS 14496-12:202x

abstract class HapticSampleGroupEntry (unsigned int(32) grouping type)
extends SampleGroupDescriptionEntry (grouping type)

{

}

abstract class VolumetricVisualSampleGroupEntry (unsigned int (32)
grouping type) extends SampleGroupDescriptionEntry (grouping type)
{
}

aligned(8) class SampleGroupDescriptionBox ()
extends FullBox ('sgpd', version, flags)
{
unsigned int (32) grouping type;
i1f (version>=1l) { unsigned int (32) default length; }
if (version>=2) {
unsigned int (32) default group description index;
}

unsigned int (32) entry count;

int i;
for (i =1 ; i <= entry count ; i++){
if (version>=1) {
if (default length==0) {

unsigned int (32) description length;
}
}
SampleGroupDescriptionEntry (grouping type);
// an instance of a class derived from SampleGroupDescriptionEntry
// that is appropriate and permitted for the media type

}

8.9.3.3 Semantics

version isan integer that specifies the version of this box.

grouping type isaninteger thatidentifies the SampleToGroupBox thatis associated with this
sample group description.

default group description index: specifies the index of the sample group description
entry which applies to all samples in the track for which no sample to group mapping is
provided through a SampleToGroupBox with the same value of grouping type. For
version strictly less than 2, this field is not coded and file readers shall behave as if the field
had been coded with a value of zero. A value of zero indicates that no default mapping for
samples to a group description entry for this grouping type is provided.

NOTE 1 When a movie is fragmented, default group description_ index can refer to a sample
group description entry of the SampleGroupDescriptionBox with same grouping type either in the
MovieBox orinthe TrackFragmentBox as specified in 8.9.4.

entry count is an integer that gives the number of entries in the following table.

default length indicates the length of every group entry (if the length is constant), or zero (0)
if it is variable

description length indicates the length of an individual group entry, in the case it varies from
entry to entry and default length is therefore 0

NOTE 2 The field default group description index used to be called
default sample description index in previous editions of this document.

98 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.9.4 Representation of group structures in movie fragments

Support for sample group structures within movie fragments is provided by the use of the
SampleToGroupBox with the container for this box being the TrackFragmentBox. The definition,
syntax and semantics of this Box is as specified in subclause 8.9.2.

The SampleToGroupBox can be used to find the group that a sample in a track fragment belongs to and
the associated description of that sample group. The table is compactly coded with each entry giving the
index of the first sample of a run of samples with the same sample group descriptor. The sample group
description ID is an index that refers to a SampleGroupDescriptionBox, which contains entries
describing the characteristics of each sample group and present in the SampleTableBox.

There may be multiple instances of the SampleToGroupBox if there is more the one sample grouping
for the samples in a track fragment. Each instance of the SampleToGroupBox hasa grouping type,
and possibly grouping type parameter, that distinguishes different sample groupings. The
associated SampleGroupDescriptionBox shall indicate the same value for the grouping type.

The total number of samples represented in any SampleToGroupBox in the track fragment shall match
the total number of samples in all the track fragment runs. Each SampleToGroupBox documents a
different grouping of the same samples.

Zero or more SampleGroupDescriptionBoxes may also be present in a TrackFragmentBox.
These definitions are additional to the definitions provided in the SampleTableBox of the track. Group
definitions within a movie fragment can only be referenced and used from within that same movie
fragment.

Within the SampleToGroupBox in that movie fragment, the group description indexes for groups
defined within the same fragment start at 0x10001, i.e. the index value 1, with the value 1 in the top 16
bits. This means there must be fewer than 65536 group definitions for this track and grouping type
in the SampleTableBox of the track.

When changing the size of movie fragments, or removing them, these fragment-local group definitions
will need to be merged into the definitions in the MovieBox, or into the new movie fragments, and the
index numbers in the SampleToGroupBox(es) adjusted accordingly. It is recommended that, in this
process, identical (and hence duplicate) definitions not be made in any
SampleGroupDescriptionBox, but that duplicates be merged and the indexes adjusted accordingly.

When a SampleGroupDescriptionBox “A”, declaringa default group description index,
is present in a TrackFragmentBox, that default group description index shall indicate
either:

e 00or0x10000, if no default sample group description is defined for that track fragment

e the index of a sample group description entry in a SampleGroupDescriptionBox of the same
grouping type declared in the SampleTableBox of the track

e theindex incremented by 0x10000 of the entry of that SampleGroupDescriptionBox “A”.
The index value for the first entry in a SampleGroupDescriptionBox is 1.

For any track fragment, the default sample group description entry for a given grouping type isthe
one indicated by the default group description index of the

© ISO/IEC 202x - All rights reserved 99

DIS 14496-12:202x

SampleGroupDescriptionBox of the same grouping type declared in that track fragment, if any;
otherwise by default group description index of the SampleGroupDescriptionBox of
the same grouping type declared in the SampleTableBox of the track, if any; otherwise, no default
entry is used for that grouping type.

The default sample group identified in a SampleGroupDescriptionBox in the SampleTableBox
shall identify a group within that box, i.e. the index value of the default is less than 0x10000.

8.9.5 Compact sample to group box

8.9.5.1 Definition

Box Type: 'csgp'

Container: SampleTableBox or TrackFragmentBox
Mandatory: No

Quantity: Zero or more.

The compact sample to group box provides a more compact way to represent the mapping from sample
to group, especially in the cases where there are repeating patterns, and when there are few sample
groups of a particular type.

The design uses a vector of concatenated patterns each of which is used once by a mapping array, which
associates runs of samples with repeats of that pattern. This is illustrated by the following example. In
the following, each letter represents a different sample group description index value (possibly 0).

If a track has the following associations, starting from the first sample:

abcb abcb abcxx abcb abdb

those associations might be represented by the following:

pattern length=4; sample count=11;
pattern length=1; sample count=2;
pattern length=4; sample count=6;
pattern length=2; sample count=2;

S w N

pattern=|[
abchb // pattern
x // pattern of length
abchb // pattern of length
db // pattern 4 of length 2

] // the pattern length is thus 4+1+4+2=11

of length

w N =
N

When sample count[i] isequaltopattern length[i],the pattern is notrepeated.

When sample count[i] is greater than pattern length[i], the
sample group description index values of the i-th pattern are used repeatedly to map the
sample count[i] values. It is not necessarily the case that sample count[i] is a multiple of
pattern length[i];the cycling may terminate in the middle of the pattern.

When the total of the sample count [i] values forall values of i intherange of 1topattern count,
inclusive, is less than the total sample count, the reader should associate the samples that have no explicit

100 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

group association with the default group defined in the SampleGroupDescriptionBox, if any, or else
with no group.

It is an error for the total of the sample count [i] values to be greater than the total count of actual
samples described by the encompassing TrackBox or TrackFragmentBox, and consequently the
reader behaviour is undefined

The 24-bit flag field is defined as follows:

unsigned int (16) reserved = 0;
unsigned int (1
unsigned int (1
unsigned int(2) pattern size code;
(2) count size code;
(2

index size code;

unsigned int

6
)
) grouping type parameter present;
)
)
unsigned int (2)

8.9.5.2 Syntax

unsigned int (8) function f (unsigned int (2) index) {

}

switch (index) {
case 0: return 4;
case 1: return 8;
case 2: return 16;
case 3: return 32;

aligned(8) class CompactSampleToGroupBox

{

}

extends FullBox('csgp', version, flags)

unsigned int (32) grouping type;
if (grouping type parameter present == 1) {
unsigned int(32) grouping type parameter;
}
unsigned int (32) pattern count;
totalPatternLength = 0;
for (i=1; i <= pattern count; i++) {
unsigned int (f (pattern size code)) pattern length[[i]];
unsigned int (f (count size code)) sample count[[i]];
}
for (j=1; J <= pattern count; j++) {
for (k=1; k <= pattern length[j]; k++) {
unsigned int (f (index size code))
sample group description index[[J]][[k]];
// whose msb might indicate fragment local or global

8.9.5.3 Semantics

version isan integer that specifies the version of this box, currently 0.

index msb indicates fragment local description;

grouping type isaninteger that identifies the type (i.e. criterion used to form the sample groups)
of the sample grouping and links it to its sample group description table with the same value for

© ISO/IEC 202x - All rights reserved

101

DIS 14496-12:202x

grouping type. At most one occurrence of either the 'csgp' or 'sbgp' with the same value for
grouping type (and, ifused, grouping type parameter) shall exist for a track.

grouping type parameter isan indication of the sub-type of the grouping.

index msb indicates fragment local descriptionisa flagthatshall be zerowhen this
box appears inside a TrackBox but may be 0 or 1 when this box appears inside a
TrackFragmentBox. When it is 1, it indicates that the most significant bit (MSB) of every
sample group description index does not form part of the index number but instead
indicates which SampleGroupDescriptionBox the group description is to be found in: if the
MSB is 0, the index identifies a group description from the TrackBox's
SampleGroupDescriptionBox; if the MSBis 1, the index identifies a group description from
the TrackFragmentBox's SampleGroupDescriptionBox.

field size code, pattern size code, index size code are integers specifying the
size in bits of the entries in the array of the pattern length, sample count and
sample group description index values respectively; the matching code values map to
the sizes: code 0 indicates a 4-bit size, code 1 an 8-bit size, code 2 a 16-bit size, and code 3 a 32-
bit size. If the field size 4 is used for the pattern_size, then it shall also be used for the count_size
(to maintain byte alignment), though this is probably rarely useful; if it is used for
sample group description index, then each byte contains two values: entry[i]<<4
+ entry[i+1]; if the sizes do not fill an integral number of bytes, the last byte is padded with
Zeros.

pattern count indicates the length of the associated pattern in the pattern array that follows it.
The sum of the included sample count values indicates the number of mapped samples.

pattern length[i] corresponds to a pattern within the second array of
sample group description index[j] values. Each instance of pattern length[i]
shall be greater than 0.

sample count [i] specifies the number of samples that use the i-th pattern. sample count[i]
shall be greater than zero, and sample count[i] shall be greater than or equal to
pattern length[i].

sample group description index[j] [k] isan integer that gives the index of the sample
group description entry which describes the samples in this group. The index ranges from 1 to
the number of sample group description entries in the SampleGroupDescriptionBox,
inclusive, or takes the value 0 to indicate that this sample is a member of no group of this type.

8.10 User data
8.10.1 User data box

8.10.1.1 Definition

Box Type: 'udta'

Container: MovieBox, TrackBox,MovieFragmentBox, TrackFragmentBox or
PreselectionGroupBox

Mandatory: No

Quantity: Zero or one

This box contains objects that declare user information about the containing box and its data
(presentation or track).

The UserDataBox is a container box for informative user-data. This user data is formatted as a set of
boxes with more specific box types, which declare more precisely their content. The contained boxes are
normal boxes, using a defined, registered, or UUID extension box type.

102 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The handling of user-data in movie fragments is described in 8.8.17.
8.10.1.2 Syntax

aligned(8) class UserDataBox extends Box('udta')
{
}

8.10.2 Copyright box

8.10.2.1 Definition

Box Type: 'cprt'
Container: UserDataBox
Mandatory: No

Quantity: Zero or more

The CopyrightBox contains a copyright declaration which applies to the entire presentation, when
contained within the MovieBox, or, when contained in a track, to that entire track. There may be multiple
copyright boxes using different language codes.

8.10.2.2 Syntax

aligned(8) class CopyrightBox extends FullBox('cprt', version = 0, 0)
{
const bit(l) pad = 0;
unsigned int (5) language[3]; // IS0-639-2/T language code
utfstring notice;

}

8.10.2.3 Semantics

language declares the language code for the following text, in the form of a packed three-character
code from ISO 639-2. Each character is packed as the difference between its ASCII value and 0x60.
The code is confined to being three lower-case letters, so these values are strictly positive.
notice gives a copyright notice.

8.10.3 Track selection box

8.10.3.1 Overview

A typical presentation stored in a file contains one alternate group per media type: one for video, one for
audio, etc. Such a file may include several video tracks, although, at any point in time, only one of them
should be played or streamed. This is achieved by assigning all video tracks to the same alternate group.
(See subclause 8.3.2 for the definition of alternate groups.)

All tracks in an alternate group are candidates for media selection, but it may not make sense to switch
between some of those tracks during a session. One may for instance allow switching between video
tracks at different bitrates and keep frame size but not allow switching between tracks of different frame
size. In the same manner it may be desirable to enable selection - but not switching - between tracks of
different video codecs or different audio languages.

The distinction between tracks for selection and switching is addressed by assigning tracks to switch
groups in addition to alternate groups. One alternate group may contain one or more switch groups. All

© ISO/IEC 202x - All rights reserved 103

DIS 14496-12:202x

tracks in an alternate group are candidates for media selection, while tracks in a switch group are also
available for switching during a session. Different switch groups represent different operation points,
such as different frame size, high/low quality, etc.

For the case of non-scalable bitstreams, several tracks may be included in a switch group. The same also
applies to non-layered scalable bitstreams, such as traditional AVC streams.

By labelling tracks with attributes it is possible to characterize them. Each track can be labelled with a
list of attributes which can be used to describe tracks in a particular switch group or differentiate tracks
that belong to different switch groups.

8.10.3.2 Definition

Box Type: 'tsel'

Container: UserDataBox of the corresponding TrackBox
Mandatory: No

Quantity: Zero or One

The track selection box is contained in the user data box of the track it modifies.
8.10.3.3 Syntax

aligned (8) class TrackSelectionBox
extends FullBox('tsel', wversion = 0, 0)

{

template int (32) switch group = 0;

unsigned int (32) attribute list[]; // to end of the box
}

8.10.3.4 Semantics

switch group is an integer that specifies a group or collection of tracks. If this field is 0 (default
value) orifthe TrackSelectionBox is absent there is no information on whether the track can
be used for switching during playing or streaming. If this integer is not 0 it shall be the same for
tracks that can be used for switching between each other. Tracks that belong to the same switch
group shall belong to the same alternate group. A switch group may have only one member.

attribute list isalist, to the end of the box, of attributes. The attributes in this list should be
used as descriptions of tracks or differentiation criteria for tracks in the same alternate or
switch group. Each differentiating attribute is associated with a pointer to the field or
information that distinguishes the track.

8.10.3.5 Attributes

104 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The following attributes are descriptive:

Name Attribute Description

Temporal "tesc' The track can be temporally scaled.
scalability

Fine-grain SNR "fgsc' The track can be scaled in terms of quality.
scalability

Coarse-grain SNR 'cgsc' The track can be scaled in terms of quality.
scalability

Spatial scalability "spsc' The track can be spatially scaled.
Region-of-interest 'resc' The track can be region-of-interest scaled.
scalability

View scalability 'vwsc' The track can be scaled in terms of number of views.

The following attributes are differentiating:

Name Attribute Pointer

Codec 'cdec! Sample Entry (in SampleDescriptionBox of
media track)

Screen size 'scsz' Width and height fields of VisualSampleEntry.

Max packet size 'mpsz' Maxpacketsize fieldin RtpHintSampleEntry

Media type 'mtyp' Handlertype in HandlerBox (of media track)

Media language 'mela’ Language field in MediaHeaderBox

Bitrate 'bitr' Total size of the samples in the track divided by the
duration in the TrackHeaderBox

Frame rate 'frar' Number of samples in the track divided by duration
in the TrackHeaderBox

Number of views 'nvws' Number of views in the track

Descriptive attributes characterize the tracks they modify, whereas differentiating attributes
differentiate between tracks that belong to the same alternate or switch groups. The pointer of a
differentiating attribute indicates the location of the information that differentiates the track from other
tracks with the same attribute.

8.10.4 Trackkind
8.10.4.1 Definition

Box Type: 'kind'

Container: AudioElementBox, PreselectionGroupBox, or
UserDataBox of the corresponding TrackBox

Mandatory: No

Quantity: Zero or more

The KindBox labels a track with its role or kind.

It contains a URI, possibly followed by a value. If only a URI occurs, then the kind is defined by that URI;
if a value follows, then the naming scheme for the value is identified by the URL

© ISO/IEC 202x - All rights reserved 105

DIS 14496-12:202x

More than one of these may occur in a track, with different contents but with appropriate semantics (e.g.
two schemes that both define a kind that indicates sub-titles).

8.10.4.2 Syntax

aligned(8) class KindBox extends FullBox('kind', version = 0, 0)

{
utf8string schemeURI;
utf8string value;

8.10.4.3 Semantics

schemeURI declares either the identifier of the kind, if no value follows, or the identifier of the
naming scheme for the following value.
value is a name from the declared scheme

8.10.5 Label box

8.10.5.1 Definition

Box Type: 'labl'

Container: UserDataBox ofa TrackBox, AudioElementBox,
AudioElementSelectionBox, or PreselectionroupBox

Mandatory: No

Quantity: Zero or more

Labels provide the ability to annotate data structures in an ISOBMFF file to provide a description of the
context of the entity to which the label is assigned. Such labels may for example be used by playback
clients to provide a selection choice to the user. The label may also be used for simple annotation in
another context.

Multiple labels can be used to provide the textual description. To annotate the entity to a multilingual
audience, the annotation can be provided in multiple languages.

When is group label is equal to 1 this indicates that the label text in this box specifies a summary
or title of all labels with the same 1abel id.This may be used as the title on a selection menu containing
a collection of labels.

8.10.5.2 Syntax

aligned(8) class LabelBox extends FullBox('labl', wversion=0, 0)
{

unsigned int(l) is group label;

bit (7) reserved = 0;

unsigned int (16) label id;

utf8string language;

utf8string label;

106 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.10.5.3 Semantics

is group label specifies if the label contains a summary label for a group of labels.

label id isaninteger that contains an identifier for the label. Labels with the same value belong
to a label group. The value of zero indicates that the label does not belong to any label group.

language contains an [ETF BCP 47 compliant language tag string, such as "en-US", "fr-FR", or "zh-
CN", the language being the language the label is targeted at.

label contains the textual description.

8.11 Metadata support
8.11.1 MetaBox

8.11.1.1 Definition

Box Type: 'meta'
Container: File, Segment, MovieBox, TrackBox, MovieFragmentBox or TrackFragmentBox
Mandatory: No
Quantity: Zero or one (in File, MovieBox, and TrackBox),
Zero or one (in Segment, MovieFragmentBox or TrackFragmentBox)

A common base structure is used to contain general untimed metadata. This structure is called the
MetaBox as it was originally designed to carry metadata, i.e. data that is annotating other data. However,
it is now used for a variety of purposes including the carriage of data that is not annotating other data,
especially when present at ‘file level’. The handling of metadata in movie fragments is described in 8.8.17.

NOTE In previous editions of this document, the presence of the HandlerBox was mandatory. The 'isod' brand
and any brands derived thereof allow omission of the HandlerBox unless specified otherwise below.

When a HandlerBox is present, it applies to all items without a HandlerProperty and may provide
additional requirements on items with a HandlerProperty with different handler type than the
one in the HandlerBox.

When the MetaBox contains a PrimaryItemBox and a HandlerBox, and the item indicated by the
PrimaryItemBox has a HandlerProperty, the HandlerBox and the HandlerProperty of the
primary item shall identify the same handler type.

When the MetaBox contains a GroupsListBox,any handler type may be used including 'null".
This rule may be overridden by grouping type specific definitions.

When the MetaBox contains neither a PrimaryItemBox nor a GroupsListBox, the MetaBox is
required to contain a HandlerBox indicating the structure or format of the MetaBox contents.

When item indicated by PrimaryItemBox does not have a HandlerProperty, but has an
ItemInfoEntry with an item type, the handler type in HandlerBox may be the same as the
item type.

The other boxes defined here may be defined as optional or mandatory for a given format. If they are
used, then they shall take the form specified here. These optional boxes include a
DataInformationBox, which documents other files in which metadata values (e.g. pictures) are
placed, and an ITtemLocationBox, which documents where in those files each item is located (e.g. in
the common case of multiple pictures stored in the same file).

© ISO/IEC 202x - All rights reserved 107

DIS 14496-12:202x

At most one MetaBox may occur at each of the file level, segment, movie level, or track level.

If an TtemProtectionBox occurs, then some or all of the metadata, including possibly the primary
resource, may have been protected and be un-readable unless the protection system is taken into account.

NOTE The MetaBox is unusual in that it is a container box yet extends FullBox, not Box.

Metadata items are identified by item ID. Within a given MetaBox, a given item ID shall uniquely
refer to a single item. When an item is updated in movie fragments, the item ID refers to the latest
received version.

Derived specifications may further restrict the criteria for uniqueness: unique among the item IDs in
both file and movie-level boxes, or unique within that set extended with the track ID of the tracks in
amovie box. The item ID value of 0 should not be used, and shall not be used when the set is extended
to include track IDs.

There are three scopes for item IDs: file and segments; MovieBox and MovieFragmentBox; and
TrackBox and TrackFragmentBox. In other words, there shall be only one item with a given
item ID within a given scope (e.g. in the TrackBox and all TrackFragmentBox with the same
track ID).

8.11.1.2 Syntax

aligned(8) class MetaBox (handler type)
extends FullBox ('meta', version = 0, 0)

{
HandlerBox (handler type) theHandler; // optional
PrimaryItemBox primary resource; // optional
DataInformationBox file locations; // optional
ItemLocationBox item locations; // optional
ItemProtectionBox protections; // optional
ItemInfoBox item infos; // optional
IPMPControlBox IPMP control; // optional
ItemReferenceBox item refs; // optional
ItemPropertiesBox item properties; // optional
ItemDataBox item data; // optional
GroupsListBox entity groups; // optional
Box other boxes[]; // optional

}

8.11.2 XML boxes

8.11.2.1 Definition

Box Type: 'xml 'or 'bxml'
Container: MetaBox
Mandatory: No

Quantity: Zero or one

When the primary data is in XML format as defined by the W3C Recommendation, Extensible Markup
Language (XML) and it is desired that the XML be stored directly in the MetaBox, one of these forms may
be used. The BinaryXMLBox may only be used when there is a single well-defined binarization of the
XML for that defined format as identified by the handler.

108 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

The use of the XMLBox in new specifications is deprecated. The preferred technique is to use an item,
identify it as a primary item, and identify its precise XML format in the TtemInfoBox.

Previous edition of this standard did not mandate the XML data to be null-terminated, while this edition
does. Writers conformant to this edition shall use a null termination character. Readers should tolerate
boxes missing this null termination character.

8.11.2.2 Syntax

aligned(8) class XMLBox extends FullBox('xml ', version = 0, 0)

{

utfstring xml;

}

aligned(8) class BinaryXMLBox extends FullBox('bxml', version = 0, 0)

{
unsigned int (8) datal]; // to end of box

}

8.11.2.3 Semantics

xml is a zero-terminated string containing the XML data.
data contains the encoded XML data.

8.11.3 Item location box

8.11.3.1 Definition

Box Type: 'iloc'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The ItemLocationBox provides a directory of resources in this or other files, by locating their
container, their offset within that container, and their length. Using byte offsets and lengths enables
common handling of this data, even by systems which do not understand the particular metadata system
(handler) used. For example, a system might integrate all the externally referenced metadata resources
into one place, re-adjusting offsets and references accordingly.

The box starts with three or four values, specifying the size in bytes of the offset field, length field,
base offset field, and, in versions 1 and 2 of this box, the item reference index fields,
respectively. These values shall be from the set {0, 4, 8}.

The construction method field indicates the ‘construction method’ for the item:

1)file offset: by absolute byte offsets into the file or the payload of IdentifiedMediaDataBox
referenced by data reference index; (construction method == 0)

2)idat offset: by byte offsets into the TtemDataBox in the same MetaBox; neither the
data reference indexnoritem reference index fields are used;
(construction method==1)

3)item offset: by byte offsetinto the items indicated by the item reference index field,
which is only used (currently) by this construction method. (construction method == 2).

© ISO/IEC 202x - All rights reserved 109

DIS 14496-12:202x

The item reference index is only used for the method item offset; it indicates the 1-based
index of the item reference with referenceType 'iloc' linked from this item. If index sizeisO,
then the value 1 is implied; the value 0 is reserved.

The data reference index may take the value 0, indicating a reference into the same file as this
MetaBox, or an index into the data references in the DataInformationBox in the containing
MetaBox, with value 1 indicating the first entry in the data reference list.

NOTE 1 A reference to the ‘same file’ can also be coded by setting data reference index to a non-
zero value pointing to a data reference entry of type 'urn ' with the flag 0x000001 set. However, using
data reference index 0 isrecommended.

[tems may be stored fragmented into extents, e.g. to enable interleaving. An extent is a contiguous subset
of the bytes of the resource identified by an offset and a length; the resource is formed by concatenating
the extents in the order specified in this box. The size of the item is the sum of the extent lengths.

NOTE 2 Extents can be interleaved with the chunks defined by the sample tables of tracks.
The offsets are relative to a data origin. That origin is determined as follows:

1. when construction method =0 (file offset):

a. when the data reference points to the ‘same file’ and when the MetaBox is in a Movie
Fragment, the data origin is the first byte of the enclosing MovieFragmentBox (as for the
default-base-is-moof flagin the TrackFragmentHeaderBox

b. when the data reference indicates DataEntryImdaBox or DataEntrySegNumImdaBox,
the data origin is the first byte of the payload of the corresponding
IdentifiedMediaDataBox;

c. in all other cases, the data origin is the beginning of the file identified by the data reference;

2. when the construction method==1 (offsets into the ItemDataBox), the data origin is the
beginning of data[] in the TtemDataBox;

NOTE 3 There are offset calculations in other parts of this document based on the beginning of a box
header; in contrast, item data offsets are calculated relative to the box payload.

3. when construction method==2 (offsets into another item), the data origin is the first byte
of the concatenated data (of all the extents) of that item;

Avalue of 0 for extent length isinterpreted as follows:

1. when construction method =0 (file offset):

a. when the data reference points to the ‘same file’, the length of the extent is assumed to be the
length of the data between the offset (if specified) or the origin (if not specified), and the end
of the file.

b. when the data reference indicates a DataEntryImdaBox or DataEntrySegNumImdaBox,
the extent_length is assumed to be the length of the data between the offset (if specified) or
the origin (if not specified), and the end of the payload of the corresponding
IdentifiedMediaDataBox.

c. inall other cases, the extent_length is assumed to be the length of the referenced file between
the offset (if specified) or the origin (if not specified) and the end of the file.

2. when the construction method==1 (offsets into the ItemDataBox), the length of the
extent is assumed to be the length of the data between the offset (if specified) or the origin (if not
specified) and the end of the payload of the TtemDataBox;

110 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

3. when construction method==2 (offsets into another item), the length of the extent is
assumed to be the size of the item minus the offset (if specified)

If only one extentisused (extent count = 1) then either or both of the offset and length may be implied,
i.e. by setting offset sizeorlength sizetoO.

References into the same file as this structure-data, or items divided into more than one extent, should
have an explicit offset and length, or use a MIME type requiring a different interpretation of the file, to
avoid infinite recursion.

Some referenced data may itself use offset/length techniques to address resources within it (e.g. an MP4
file might be ‘included’ in this way). Normally such offsets in the item itself are relative to the beginning
of the containing file. The field ‘base offset’ provides an additional offset for offset calculations within that
contained data. For example, if an MP4 file is included within a file formatted to this document, then
normally data-offsets within that MP4 section are relative to the beginning of file; the base offset adds to
those offsets.

If an item is constructed from other items, and those source items are protected, the offset and length
information apply to the source items after they have been de-protected. That is, the target item data is
formed from unprotected source data.

For maximum compatibility, version 0 of this box should be used in preference to version 1 with
construction method==0, or version 2 when possible. Similarly, version 2 of this box should only
be used when support for large item ID values (exceeding 65535) is required or expected to be
required.

NOTE 4 When construction method 2 is used and one item needs to have an offset of 0 into another item, the
base offset fieldis setto 0.

© ISO/IEC 202x - All rights reserved 111

DIS 14496-12:202x

8.11.3.2 Syntax

aligned(8) class ItemLocationBox extends FullBox('iloc', wversion, 0)
{

unsigned int (4) offset size;

unsigned int (4) length size;

unsigned int(4) base offset size;

if ((version == 1) || (version == 2)) {
unsigned int(4) index size;
} else {

unsigned int (4) reserved;
}
if (version < 2) {
unsigned int (16) item count;
} else if (version == 2) {
unsigned int (32) item count;
}
for (i=0; i<item count; i++) {
if (version < 2) {
unsigned int (16) item ID;
} else if (version == 2) {
unsigned int (32) item ID;
}
if ((version == 1) || (version == 2)) {
unsigned int (12) reserved = 0;
unsigned int(4) construction method;
}
unsigned int (16) data reference index;
unsigned int (base offset size*8) base offset;

unsigned int (16) extent count;
for (j=0; j<extent count; j++) {
if (((version == 1) || (version == 2)) && (index size > 0)) {
unsigned int (index size*8) item reference index;

}
unsigned int (offset size*8) extent offset;
unsigned int (length size*8) extent length;

}

8.11.3.3 Semantics

offset sizeistaken from the set {0, 4, 8} and indicates the length in bytes of the offset field.

length size is taken from the set {0, 4, 8} and indicates the length in bytes of the 1ength field.

base offset size is taken from the set {0, 4, 8} and indicates the length in bytes of the
base offset field.

index size is taken from the set {0, 4, 8} and indicates the length in bytes of the
item reference index field.

item count counts the number of resources in the following array.

item ID is an arbitrary integer ‘name’ for this resource which can be used to refer to it (e.g. in a
URL).

construction method is taken from the set O (file), 1 (idat) or 2 (item)

data reference index is either zero ('this file') or an index, with value 1 indicating the first
entry, into the data references in the DataInformationBox.

112 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

base offset provides a base value for offset calculations within the referenced data. If
base offset sizeis0,base offset takesthe value 0, i.e. itis unused.

extent count provides the count of the number of extents into which the resource is fragmented;
it shall have the value 1 or greater

item reference index provides an index as defined for the construction method

extent offset provides the absolute offset, in bytes from the data origin of the container, of this
extentdata. [f offset sizeis0,extent offset takes the value 0

extent length provides the absolute length in bytes of this metadata item extent. If
length sizeis0,extent length takes the value 0.

8.11.4 Primary item box

8.11.4.1 Definition

Box Type: 'pitm'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The item data for the primary item may be one of the referenced items when it is desired that it be stored
elsewhere, or divided into extents; or the primary metadata may be contained in the MetaBox (e.g.in an
XMLBox). Either this box shall occur, or there shall be a box within the MetaBox (e.g. an XMLBox)
containing the primary information in the format required by the identified handler.

8.11.4.2 Syntax

aligned(8) class PrimaryltemBox extends FullBox('pitm', version, 0)

{

if (version == 0) {
unsigned int (16) item ID;
} else {

unsigned int (32) item ID;
}
}

8.11.4.3 Semantics

item IDis the identifier of the primary item, which shall be the identifier of an item in the
MetaBox containing the PrimaryItemBox. Version 1 should only be used when large
item ID values (exceeding 65535) are required or expected to be required.

8.11.5 Item protection box

8.11.5.1 Definition

Box Type: 'ipro'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The ItemProtectionBox provides an array of item protection information, for use by the
ItemInfoBox.

© ISO/IEC 202x - All rights reserved 113

DIS 14496-12:202x

The ProtectionSchemeInfoBoxes shall not contain an OriginalFormatBox when present in an
ItemProtectionBox.

8.11.5.2 Syntax

aligned(8) class ItemProtectionBox
extends FullBox('ipro', version = 0, 0)

{
unsigned int (16) protection count;
for (i=1; i<=protection count; i++) {
ProtectionSchemeInfoBox protection information;

}

8.11.6 Item information box

8.11.6.1 Definition

Box Type: 'iinf'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The TtemInfoBox provides extra information about selected items, including symbolic ('file') names. It
may optionally occur, but if it does, it shall be interpreted, as item protection or content encoding may
have changed the format of the data in the item. If both content encoding and protection are indicated for
an item, a reader should first un-protect the item, and then decode the item’s content encoding. If more
control is needed, an IPMP sequence code may be used.

This box contains an array of entries, and each entry is formatted as a box. This array is sorted by
increasing item ID in the entry records. The item name shall be a valid URL (e.g. a simple name, or
path name) and shall not be an absolute URL.

Four versions of the item info entry are defined. Version 1 includes additional information to version 0
as specified by an extension type. For instance, it shall be used with extension type ' £del ' for items that
are referenced by the FilePartitionBox, which is defined for source file partitionings and applies to
file delivery transmissions. Versions 2 and 3 provide an alternative structure in which metadata item
types are indicated by a 32-bit registered or defined code (typically a four character code); two of these
codes are defined to indicate a MIME type or metadata typed by a URI. Version 2 supports 16-bit
item ID values, whereas version 3 supports 32-bit item ID values.

If no extension is desired, the box may terminate without the extension type field and the extension;
if, in addition, content encoding is not desired, that field also may be absent and the box terminate
before it. If an extension is desired without an explicit content encoding, a single null byte, signifying
the empty string, shall be supplied for the content encoding, before the indication of
extension_ type.

If file delivery item information is needed and a version 2 or 3 ItemInfoEntry is used, then the file delivery
information is stored as a separate item of type ' fdel' thatis also linked by an item reference from the
item, to the file delivery information, of type ' fdel'. There shall be exactly one such reference if file
delivery information is needed.

114 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

It is possible that there are valid URI forms for MPEG-7 metadata as defined in ISO/IEC 15938-1 (e.g. a
schema URI with a fragment identifying a particular element), and it may be possible that these structures
can be used for MPEG-7. However, there is explicit support for MPEG-7 in ISO base media files, and this
explicit support is preferred as it allows, among other things:

a) incremental update of the metadata (logically, I/P coding, in video terms) whereas this draft is
‘I-frame only’;

b) binarization and thus compaction;
c) the use of multiple schemas.

Therefore, the use of these structures for MPEG-7 is deprecated (and undocumented).
Information on URI forms for some metadata systems can be found in Annex G.

Version 1 of ItemInfoBox should only be used when support for a large number of
itemInfoEntries (exceeding 65535) is required or expected to be required.

The flags field of ItemInfoEntry with version greater than or equal to 2 is specified as follows:
» (flags &1)equalto 1 indicates that the item is not intended to be a part of the presentation. .
* (flags &1)equalto 0 indicates that the item is intended to be a part of the presentation.
8.11.6.2 Syntax

aligned(8) class ItemInfoExtension(unsigned int (32) extension type)
{
}

aligned(8) class FDItemInfoExtension() extends ItemInfoExtension ('fdel')
{

utf8string content location;

utf8string content MD5;

unsigned int (64) content length;

unsigned int (64) transfer length;

unsigned int (8) entry count;

for (i=1l; i <= entry count; i++)

unsigned int(32) group id;

© ISO/IEC 202x - All rights reserved 115

DIS 14496-12:202x

aligned(8)

{

}

if

((version == 0) || (version == 1)) {
unsigned int(16) item ID;

unsigned int(16) item protection index;
utf8string item name;

utf8string content type;

utf8string content encoding; //optional

(version == 1) {
unsigned int (32) extension type; //optional
ItemInfoExtension (extension type); //optional

(version >= 2) {

if (version == 2) {
unsigned int (16) item ID;

} else if (version == 3) {

unsigned int (32) item ID;
}
unsigned int (16) item protection index;
unsigned int (32) item type;
utf8string item name;
if (item type=="'mime') {
utf8string content type;
utf8string content encoding; //optional
} else if (item type == 'uri ") {
utf8string item uri type;

}

aligned(8) class ItemInfoBox extends FullBox('iinf',

{

}

if

(version == 0) {
unsigned int (16) entry count;

} else {

}

unsigned int (32) entry count;

ItemInfoEntry item infos[entry count];

8.11.6.3 Semantics

class ItemInfoEntry extends FullBox('infe'

, version,

version,

0)

flags)

item ID contains either O for the primary resource (e.g. the XML contained in an XMLBox) or the

ID of the item for which the following information is defined.

item protection index contains either 0 for an unprotected item, or the index, with value 1
indicating the first entry, into the ITtemProtectionBox defining the protection applied to this

item (the first box in the TtemProtectionBox has the index 1).

item name is the symbolic name of the item (source file for file delivery transmissions).

item type

indicator, such as "mime"'

is a 32-bit value, typically 4 printable characters, that is a defined valid item type

content type is the MIME type of the item. If the item is content encoded (see below), then the

content type refers to the item after content decoding.

item uri type is an absolute URI], thatis used as a type indicator.

116

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

content encoding optionally indicates that the binary file is encoded and needs to be decoded
before interpreted. The values are as defined for Content-Encoding for HTTP/1.1. Some possible
values are “gzip”, “compress” and “deflate”. An empty string indicates no content encoding.
Note that the item is stored after the content encoding has been applied.

extension type is a four character code that identifies the extension fields of version 1 with
respect to version 0 of the Item information entry.

content location contains the URI of the file as defined in HTTP/1.1 (IETF RFC 26160131).

content MD5 contains an MD5 digest of the file. See HTTP/1.1 (IETF RFC 2616('31) and IETF
RFC 1864112,

content length gives the total length (in bytes) of the (un-encoded) file.

transfer length gives the total length (in bytes) of the (encoded) file. Transfer length is equal
to content length if no content encoding is applied (see above).

entry count provides a count of the number of entries in the following array.

group ID indicates a file group to which the file item (source file) belongs. See 3GPP TS 26.346[2°]
for more details on file groups.

8.11.7 Additional metadata container box

This box has been deprecated and is no longer defined in this document.

8.11.8 Metabox Relation box

This box has been deprecated and is no longer defined in this document.

8.11.9 URL forms for MetaBoxes

When a MetaBox is used, then URLs may be used to refer to items in the MetaBox, either using an
absolute URL, or using a relative URL.

When interpreting data that is in the context of a MetaBox, the items in the MetaBox are treated as
shadowing files in the same location as that from which file containing the MetaBox (the 'container file')
came, i.e. the contents of the item is the same as the file located at the URL obtained by resolving an
absolute URL from the absolute container file URL used as base URL and from the item name (if not
empty) used as relative URL. This shadowing means that a reference to another file in the same location
as the container file may be resolved to an item within the container file itself.

Items can be addressed within the container file by appending a fragment to the URL for the container
file itself as specified in Annex C.

Consider the following example:
<http://a.com/d/v.grv#item name=tree.html*branchl>.

We assume that v. grv is a file with a MetaBox at the file level. First, the client strips the fragment and
fetches v.grv from a.com using HTTP. It then inspects the top-level MetaBox and adds the items in it,
logically, to its cache of the directory “d” on a.com. It then re-forms the URL as
<http://a.com/d/tree.html#branchl>. See that the fragment has been elevated to a full file
name, and the first “*” has been transformed back into a “#”. The client then either finds an item named
tree.html in the MetaBox, or fetches tree.html from a.com, and it then finds the anchor
“branchl” within tree.html. If within that html, a file was referenced using a relative URL, e.g.
“flower.gif”, then the client converts this to an absolute URL using the normal rules:

© ISO/IEC 202x - All rights reserved 117

DIS 14496-12:202x

<http://a.com/d/flower.gif> and again it checks to see if flower.gif is a named item (and
hence shadowing a separate file of this name), and then if it is not, fetches flower.gif from a. com.

8.11.10 Static metadata

8.11.10.1General
This subclause defines the storage of static (un-timed) metadata in ISO base media files.

Reader support for metadata in general is optional, and therefore it is also optional for the formats
defined here or elsewhere, unless made mandatory by a derived specification.

8.11.10.2 Simple textual

There is existing support for simple textual tags in the form of the user-data boxes; currently only one is
defined - the copyright notice. Other metadata is permitted using this simple form if:

1) ituses aregistered box-type or it uses the UUID escape (the latter is permitted today);

2) it uses a registered tag, the equivalent MPEG-7 construct must be documented as part of the
registration.

8.11.10.3 Other forms

When other forms of metadata are desired, then a MetaBox as defined above may be included at the
appropriate level of the document. If the document is intended to be primarily a metadata document per
se, then the MetaBox is at file level. If the metadata annotates an entire presentation, then the MetaBox
is at the movie level; an entire stream, at the track level.

8.11.10.4MPEG-7 metadata

When MPEG-7 metadata as defined in ISO/IEC 15938-1 is stored in MetaBoxes the requirements of this
clause apply.

1) When the handler-type is 'mp7t' the metadata shall be in textual form, shall conform to
ISO/IEC 15938-1, and shall use the encoding defined in ISO/IEC 10646 (technically identical to the
Unicode standard[27]).

2) When the handler-typeis 'mp7b' the metadata shall be in binary form compressed in the BIM format
as specified in ISO/IEC23001-1. In this case, the BinaryXMLBox contains the configuration
information immediately followed by the binarized XML.

3) When the format is textual, there shall be either another box in the MetaBox, called 'xm1 ', which
contains the textual MPEG-7 document, or there shall be a PrimaryItemBox identifying the item
containing the MPEG-7 XML.

4) When the format is binary, there shall be either another box in the MetaBox, called 'bxml ', which
contains the binary MPEG-7 document, or a PrimaryItemBox identifying the item containing the
MPEG-7 binarized XML.

118 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

5) If an MPEG-7 box is used at the file level, then the brand 'mp71' should be a member of the
compatible-brands list in the FileTypeBox.

8.11.11 Item data box

8.11.11.1Definition

Box Type: 'idat'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

This box contains the data of metadata items that use the construction method indicating that an item’s
data extents are stored within this box.

8.11.11.2 Syntax

aligned(8) class ItemDataBox extends Box ('idat')

{
bit (8) datall;

}

8.11.11.3 Semantics

data is the contained metadata
8.11.12 Item reference box

8.11.12.1 Definition

Box Type: 'iref'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The ITtemReferenceBox allows the linking of one item to others via typed references. All the references
for one item of a specific type are collected into a SingleItemTypeReferenceBox, whose type is the
reference type, and which has a from item ID field indicating which item is linked. The items linked
to are then represented by an array of to_item IDs; within a given array, a given value shall occur at
most once. Other structures in the file formats index through these arrays; index values start at 1.

All these single item type reference boxes are then collected into the ItemReferenceBox. The
reference types defined for the track reference box defined in 8.3.3 may be used here if appropriate, or
other registered reference types. Version 1 of ItemReferenceBox with
SingleItemReferenceBoxLarge should onlybeused whenlarge from item IDorto item ID
values (exceeding 65535) are required or expected to be required.

NOTE 1 This design makes it fairly easy to find all the references of a specific type, or from a specific item.

An item reference of type ' font ' may be used to indicate that an item uses fonts carried/defined in the
referenced item.

NOTE 2 Other structures index through the array of item references and hence position and order of them can be
significant.

© ISO/IEC 202x - All rights reserved 119

DIS 14496-12:202x

8.11.12.2 Syntax

aligned(8) class SingleltemTypeReferenceBox (referenceType)
extends Box (referenceType)
{
unsigned int (16) from item ID;
unsigned int (16) reference count;
for (j=0; j<reference count; Jj++) {
unsigned int(16) to item ID;

}

aligned(8) class SingleltemTypeReferenceBoxLarge (referenceType)
extends Box (referenceType)
{
unsigned int (32) from item ID;
unsigned int (16) reference count;
for (j=0; j<reference count; J++) {
unsigned int (32) to item ID;

}

aligned(8) class ItemReferenceBox extends FullBox('iref', version, 0)
{
if (version==0) {
SingleItemTypeReferenceBox references|];
} else if (version==1) {
SingleItemTypeReferenceBoxLarge references]|];
}
}

8.11.12.3 Semantics

referenceType contains an indication of the type of the reference
from item ID containsthe item ID ofthe item thatrefers to other items
reference count isthe number of references

to item ID containsthe item ID of the item referred to

8.11.13 Auxiliary video metadata

An auxiliary video track used for depth or parallax information may carry a metadata item of type
'auvd' (auxiliary video descriptor); the data of that item shall be exactly one si rbsp () as specified
in ISO/IEC 23001-14, Information technology — MPEG systems technologies — Part 14: Partial file format

ISO/IEC 23002-3. (Note that si_rbsp () is externally framed, and the length is supplied by the item
location information in the file format). There may be more than one of these metadata items (e.g. one for
parallax info and one for depth, in the case that the same stream serves).

120 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.11.14 Item properties box

8.11.14.1 Definition

Box Type: 'iprp'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The ItemPropertiesBox enables the association of any item with an ordered set of item properties.
[tem properties are small data records.

The ItemPropertiesBox consists of two parts: ITtemPropertyContainerBox that contains an
implicitly indexed list of item properties, and one or more ITtemPropertyAssociationBox(es) that
associate items with item properties.

Each item property is a Box or Ful1Box. The boxtype of the item property specifies the property type.
The FreeSpaceBox may occur in the TtemPropertyContainerBox; it has no meaning, and should
not be associated with any item.

NOTE Item Properties are based on the box format documented in 4.2 which means that boxes with an
extended type and the type field setto 'uuid' are permissible as item properties.

Each property association may be marked as either essential or non-essential. A reader shall not process
an item that is associated with a property that is not recognized or not supported by the reader and that
is marked as essential to the item. A reader may ignore an associated item property that is marked non-
essential to the item.

Specifications deriving from this document may specify property types and the respective item property
box definitions as well as constraints and requirements for the property associations.

When defining item properties, it is recommended that they be small. When large data records need to
be associated with an item, a separate item and item reference are more suitable.

Each TtemPropertyAssociationBox shall be ordered by increasing item ID,and there shall be at
most one occurrence of a given item ID, in the set of ItemPropertyAssociationBox boxes. The
version 0 should be used unless 32-bit item ID values are needed; similarly, f1ags should be equal to
0 unless there are more than 127 properties in the ItemPropertyContainerBox. There shall be at
most one ItemPropertyAssociationBox with a given pair of values of version and flags.

8.11.14.2 Syntax

aligned(8) class ItemProperty(property type) extends Box (property type)
{
}

aligned(8) class ItemFullProperty (property type, version, flags)
extends FullBox (property type, version, flags)

{

}

© ISO/IEC 202x - All rights reserved 121

DIS 14496-12:202x

aligned(8) class ItemPropertyContainerBox extends Box('ipco')
{
Box properties[]; // boxes derived from
// ItemProperty or ItemFullProperty, or FreeSpaceBox(es)
// to f£ill the box

aligned(8) class ItemPropertyAssociationBox
extends FullBox ('ipma', version, flags)
{
unsigned int (32) entry count;
for (i = 0; i < entry count; i++) {
if (version < 1)
unsigned int (16) item ID;
else
unsigned int (32) item ID;
unsigned int (8) association count;
for (j=0; Jj<association count; j++) {
bit (1) essential;
if (flags & 1)
unsigned int (15) property index;
else
unsigned int(7) property index;

aligned(8) class ItemPropertiesBox extends Box('iprp')
{
ItemPropertyContainerBox property container;
ItemPropertyAssociationBox association|[];

}

8.11.14.3 Semantics

item ID identifies the item with which properties are associated

essential when setto 1 indicates that the associated property is essential to the item, otherwise
it is non-essential

property indexis either 0 indicating that no property is associated (the essential indicator shall
also be 0), or is the 1-based index (counting all boxes, including FreeSpace boxes) of the
associated property box in the TtemPropertyContainerBox contained in the same
ItemPropertiesBox.property index shall notbe greater than the number of boxes
contained in the associated ITtemPropertyContainerBox.

122 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.11.15 Brand item property

8.11.15.1Definition

Box Type: 'brnd'

Property Type: Descriptive item property
Container: ItemPropertyContainerBox
Mandatory (per an item):No

Quantity (per an item): Zero or one

The payload of BrandProperty has the syntax of the GeneralTypeBox.

The content of an instance of BrandProperty shall be such that it applies as the content of
FileTypeBox, when the following modifications are made to the file:

- All tracks of the file are removed.
- All items except the following are removed:
o Theitem associated with this BrandProperty, referred to as currltem.

o The items, referred to as referencedItemsList, that currltem directly or indirectly references
to, as indicated in the ITtemReferenceBox.

- When the current primary item is not a member of the set including currltem and referencedltems,
currltem is set to be the primary item in the PrimaryItemBox.

8.11.15.2 Syntax

aligned(8) class BrandProperty extends GeneralTypeBox ('brnd')
{
}

8.11.16 Handler property
8.11.16.1 Definition

Box Type: 'hdlp'

Property Type: Descriptive item property
Container: ItemPropertyContainerBox
Mandatory: No

Quantity: zero or more

HandlerProperty provides a mapping of a media handler with an item in a MetaBox. Items that are
alternatives of each other shall have the same handler property, or none.

NOTE Items that are alternatives of each other are included in the same 'altr' entity group. One example of two items
being alternatives of each other is two coded image items, as defined in ISO/IEC 23008-12, that represent the same original
image but are coded with different codecs or have different spatial resolution. When the HandlerBox of the MetaBox
containing these two coded image items has a handler type different from 'pict' defined in ISO/IEC 23008-12, both of these
coded image items can be associated with the same HandlerProperty having handler typeequalto 'pict'.

© ISO/IEC 202x - All rights reserved 123

DIS 14496-12:202x

8.11.16.2 Syntax

aligned(8) class HandlerProperty
extends ItemFullProperty('hdlp', version = 0, flags = 0)

{
unsigned int (32) handler type;

}

8.11.16.3 Semantics

handler type isafour-character-code which corresponds to a media handler type. When the
HandlerProperty is associated with the primary item, handler type of the
HandlerProperty shall be equal to the handler type of the MetaBox. When no specific
handler type needs to be signalled for an item, the HandlerProperty for the item may be
absent or the handler type maybe 'null'.

8.12 Void
8.13 File delivery format support

8.13.1 Overview

Files intended for transmission over ALC/LCT or FLUTE are stored as items in a top-level MetaBox. The
ItemLocationBox specifies the actual storage location of each item within the container file as well as
the file size of each item. File name, content type (MIME type), etc., of each item are provided by version
1 of the ItemInfoBox.

Pre-computed FEC reservoirs are stored as additional items in the MetaBox. If a source file is split into
several source blocks, FEC reservoirs for each source block are stored as separate items. The relationship
between FEC reservoirs and original source items is recorded in the PartitionEntry located in the
FDItemInformationBox.

Pre-composed File reservoirs are stored as additional items in the container file. If a source file is split
into several source blocks, each source block is stored as a separate item called a file reservoir. The
relationship between File reservoirs and original source items is recorded in the PartitionEntry
located in the FDItemInformationBox.

See subclause 9.2 for more details on the usage of the file delivery format.
8.13.2 FD item information box

8.13.2.1 Definition

Box Type: 'fiin'
Container: MetaBox
Mandatory: No
Quantity: Zero or one

The FDItemInformationBox is optional, although it is mandatory for files using FD hint tracks. It
provides information on the partitioning of source files and how FD hint tracks are combined into FD
sessions. Each partition entry provides details on a particular file partitioning, FEC encoding and
associated File and FEC reservoirs. It is possible to provide multiple entries for one source file (identified

124 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

by its item ID) if alternative FEC encoding schemes or partitionings are used in the file. All partition
entries are implicitly numbered and the first entry has number 1.

8.13.2.2 Syntax

aligned(8) class PartitionEntry () extends Box('paen')

{
FilePartitionBox blocks and symbols;
FECReservoirBox FEC symbol locations; //optional
FileReservoirBox File symbol locations; //optional

aligned(8) class FDItemInformationBox

extends FullBox('fiin', version = 0, 0)

{
unsigned int (16) entry count;
PartitionEntry partition entries[entry count];
FDSessionGroupBox session info; //optional
GroupIdToNameBox group id to name; //optional

}

8.13.2.3 Semantics
entry count providesa count of the number of entries in the following array.

The semantics of the boxes are described where the boxes are documented.
8.13.3 File partition box

8.13.3.1 Definition

Box Type: 'fpar'

Container: PartitionEntry
Mandatory: Yes

Quantity: Exactly one

The FilePartitionBox identifies the source file and provides a partitioning of that file into source
blocks and symbols. Further information about the source file, e.g. filename, content location and group
IDs, is contained in the TtemInfoBox, where the ItemInfoEntry corresponding to the item ID of
the source file is of version 1 and includes a FDItemInfoExtension. Version 1 of
FilePartitionBox should only be used when support for large item IDor entry count values
(exceeding 65535) is required or expected to be required.

© ISO/IEC 202x - All rights reserved 125

DIS 14496-12:202x

8.13.3.2 Syntax

aligned(8) class FilePartitionBox extends FullBox ('fpar', version, O0)

{

}

if (version == 0) {
unsigned int (16) item ID;
} else {

unsigned int(32) item ID;

}

unsigned int (16) packet payload size;
unsigned int (8) reserved = 0;
unsigned int(8) FEC encoding ID;
unsigned int (16) FEC instance ID;
unsigned int (16) max source block length;
unsigned int (16) encoding symbol length;
unsigned int (16) max number of encoding symbols;
base64string scheme specific info;
if (version == 0) {

unsigned int (16) entry count;
} else {

unsigned int (32) entry count;

}

for (i=1; 1 <= entry count; i++) {
unsigned int (16) block count;
unsigned int (32) block size;

8.13.3.3 Semantics

item ID references the item in the ITtemLocationBox that the file partitioning applies to.

packet payload size gives the target ALC/LCT or FLUTE packet payload size of the
partitioning algorithm. Note that UDP packet payloads are larger, as they also contain ALC/LCT
or FLUTE headers.

FEC encoding ID shall identify the FEC encoding scheme using a "Reliable Multicast Transport
(RMT) FEC Encoding ID" declared at IANA, as defined in IETF RFC 5052. Note that i) value zero
corresponds to the "Compact No-Code FEC scheme" also known as "Null-FEC" (IETF
RFC 3695[171); ii) value one corresponds to the “MBMS FEC” (3GPP TS 26.3461291); iii) for values in
the range of 0 to 127, inclusive, the FEC scheme is Fully-Specified, whereas for values in the range
of 128 to 255, inclusive, the FEC scheme is Under-Specified.

FEC instance ID shall provide a more specific identification of the FEC encoder being used for
an Under-Specified FEC scheme. This value should be set to zero for Fully-Specified FEC schemes
and shall be ignored when parsing a file with FEC encoding ID in the range of 0 to 127,
inclusive. FEC instance ID is scoped by the FEC encoding ID. See IETF RFC 5052 for
further details.

max_ source block length givesthe maximum number of source symbols per source block.

encoding symbol length gives the size (in bytes) of one encoding symbol. All encoding
symbols of one item have the same length, except the last symbol which may be shorter.

max number of encoding symbols givesthe maximum number of encoding symbols that can
be generated for a source block for those FEC schemes in which the maximum number of encoding
symbols is relevant, such as FEC encoding ID 129 defined in IETF RFC 5052. For those FEC
schemes in which the maximum number of encoding symbols is not relevant, the semantics of
this field is unspecified.

126 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

scheme specific info is the scheme-specific object transfer information (FEC-OTI-Scheme-
Specific-Info). The definition of the information depends on the FEC encoding ID.

entry count givesthe number of entries in the list of (block count,block size) pairs that
provides a partitioning of the source file. Starting from the beginning of the file, each entry
indicates how the next segment of the file is divided into source blocks and source symbols.

block count indicates the number of consecutive source blocks of size block size.

block size indicates the size of a block (in bytes). A block_size that is not a multiple of the
encoding_symbol_length symbol size indicates with Compact No-Code FEC that the last source
symbols includes padding that is not stored in the item. With MBMS FEC (3GPP TS 26.346[29)
the padding may extend across multiple symbols but the size of padding should never be more
than encoding_symbol_length.

8.13.4 FEC reservoir box

8.13.4.1 Definition

Box Type: 'fecr'

Container: PartitionEntry
Mandatory: No

Quantity: Zero or One

The FECReservoirBox associates the source file identified in the FilePartitionBox with FEC
reservoirs stored as additional items. It contains a list that starts with the first FEC reservoir associated
with the first source block of the source file and continues sequentially through the source blocks of the
source file. Version 1 of FECReservoirBox should only be used when support for large item ID
values and entry count (exceeding 65535) is required or expected to be required.

8.13.4.2 Syntax

aligned(8) class FECReservoirBox extends FullBox ('fecr', version, 0)

{
{

if (version == 0)
(16) entry count;

unsigned int
} else {
unsigned int (32) entry count;

}

for (i=1; 1 <= entry count; i++) {

if (version == 0) {
unsigned int (16) item ID;
} else {

unsigned int (32) item ID;
}

unsigned int(32) symbol count;
}
8.13.4.3 Semantics

entry count gives the number of entries in the following list. An entry count here should match
the total number of blocks in the corresponding FilePartitionBox.

item ID indicates the location of the FEC reservoir associated with a source block.

symbol count indicates the number of repair symbols contained in the FEC reservoir.

© ISO/IEC 202x - All rights reserved 127

DIS 14496-12:202x

8.13.5 FD session group box

8.13.5.1 Definition

Box Type: 'segr'

Container: FDItemInformationBox
Mandatory: No

Quantity: Zero or One

The FDSessionGroupBox is optional, although it is mandatory for files containing more than one FD
hint track. It contains a list of sessions as well as all file groups and hint tracks that belong to each session.
An FD session sends simultaneously over all FD hint tracks (channels) that are listed in the FD session
group box for a particular FD session.

Only one session group should be processed at any time. The first listed hint track in a session group
specifies the base channel. If the server has no preference between the session groups, the default choice
should be the first session group. The group IDs of all file groups containing the files referenced by the
hint tracks shall be included in the list of file groups. The file group IDs can in turn be translated into file
group names (using the group ID to name box) that can be included by the server in FDTs.

8.13.5.2 Syntax

aligned(8) class FDSessionGroupBox extends Box('segr')
{
unsigned int (16) num session groups;
for (i=0; 1 < num session groups; i++) {
unsigned int (8) entry count;
for (J=0; j < entry count; j++) {
unsigned int (32) group ID;
}
unsigned int (16) num channels in session group;
for (k=0; k < num channels in session group; k++) {
unsigned int(32) hint track ID;

}

8.13.5.3 Semantics

num_session groups specifies the number of session groups.

entry count gives the number of entries in the following list comprising all file groups that the
session group complies with. The session group contains all files included in the listed file groups
as specified by the item information entry of each source file. The FDT for the session group
should only contain those groups that are listed in this structure.

group ID indicates a file group that the session group complies with.

num_channels in session groups specifies the number of channels in the session group.
The value of num channels in session groups shall be a positive integer.

hint track ID specifies the track identifier of the FD hint track belonging to a particular
session group. Note that one FD hint track corresponds to one LCT channel.

128 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.13.6 Group ID to name box

8.13.6.1 Definition

Box Type: 'gitn'

Container: FDItemInformationBox
Mandatory: No

Quantity: Zero or One

The GroupIdToNameBox associates file group names to file group IDs used in the version 1 item
information entries in the TtemInfoBox.

8.13.6.2 Syntax

aligned(8) class GroupIdToNameBox extends FullBox('gitn', wversion = 0, 0)

{
unsigned int(16) entry count;
for (i=1; i <= entry count; i++) {
unsigned int (32) group ID;
utf8string group_name;

}

8.13.6.3 Semantics

entry count gives the number of entries in the following list.
group_ ID indicates a file group.
group name is the file group name.

8.13.7 File reservoir box

8.13.7.1 Definition

Box Type: 'fire'

Container: PartitionEntry
Mandatory: No

Quantity: Zero or One

The FileReservoirBox associates the source file identified in the FilePartitionBox with File
reservoirs stored as additional items. It contains a list that starts with the first File reservoir associated
with the first source block of the source file and continues sequentially through the source blocks of the
source file. Version 1 of FileReservoirBox should only be used when support for large item ID or
entry count values (exceeding 65535) is required or expected to be required.

© ISO/IEC 202x - All rights reserved 129

DIS 14496-12:202x

8.13.7.2 Syntax

aligned(8) class FileReservoirBox extends FullBox('fire', version, 0)

{

if (version == 0) {
unsigned int (16) entry count;
} else {

unsigned int(32) entry count;

}

for (i=1; 1 <= entry count; i++) {

if (version == 0) {
unsigned int (16) item ID;
} else {

unsigned int (32) item ID;
1

unsigned int (32) symbol count;

}

8.13.7.3 Semantics

entry count gives the number of entries in the following list. An entry count here should match
the total number or blocks in the corresponding FilePartitionBox.

item ID indicates the location of the File reservoir associated with a source block.

symbol count indicates the number of source symbols contained in the file reservoir.

8.14 Sub tracks

8.14.1 Overview

Sub tracks are used to assign parts of tracks to alternate and switch groups in the same way as (entire)
tracks can be assigned to alternate and switch groups to indicate whether those tracks are alternatives
to each other and whether it makes sense to switch between them during a session. Sub tracks are
suitable for layered media (e.g. SVC and MVC), where media alternatives often are incommensurate with
track structures. By defining alternate and switch groups at sub-track level it is possible to use existing
rules for media selection and switching for such layered codecs. The over-all syntax is generic for all kinds
of media and backward compatible with track-level definitions. Sub-track level alternate and switch
groups use the same numbering as track level groups. The numberings are global over all tracks such that
groups can be defined across track and sub-track boundaries.

In order to define sub tracks, media-specific definitions are required. Definitions for SVC and MVC are
specified in the AVC file format (ISO/IEC 14496-15[31). Another way is to define sample groups and map
them to sub tracks using the SubTrackSampleGroupBox defined here. The syntax can also be
extended to include other media-specific definitions.

For each sub track that shall be defined a SubTrackBox shall be included in the UserDataBox of the
corresponding track. The SubTrackBox contains objects that define and provide information about a sub
track in the same track. The TrackSelectionBox for this same track is already located here.

8.14.2 Backward compatibility

The default is to assign alternate and switch groups to 0 (zero) for (entire) tracks, which means that there
is no information on alternate and/or switch groups for those (entire) tracks. However, file readers that

130 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

are aware of sub-track definitions will be able to find sub-track information on alternate and switch
groups even if the track indication is set to 0. This way it is possible to indicate that a file can be used by
legacy readers by including the appropriate brand in the FileTypeBox. A file creator that requires a
reader to be aware of sub-track information should not include legacy brands.

The same method of assigning sub track information can also be applied if all parts of a track except a sub
track belong to the same alternate or switch group. Then the overall definitions can be made on track
level as usual and specific assignments can be made at sub-track level. For sub tracks without specific
assignments, track level assignments apply by default. As before, if a file creator requires a reader to be
aware of sub-track information it should not include legacy brands (that do not require sub track support
and hence indicate that sub track information can be skipped).

8.14.3 Sub track box

8.14.3.1 Definition

Box Type: 'strk'

Container: UserDataBox of the corresponding TrackBox
Mandatory: No

Quantity: Zero or more

This box contains objects that define and provide information about a sub track in the present track.
8.14.3.2 Syntax

aligned(8) class SubTrackBox extends Box('strk')
{
}

8.14.4 Sub track information box

8.14.4.1 Definition

Box Type: 'stri'
Container: SubTrackBox
Mandatory: Yes

Quantity: One

8.14.4.2 Syntax

aligned(8) class SubTrackInformationBox
extends FullBox('stri', version = 0, 0)
{
template int (16) switch group = 0;
template int (16) alternate group = 0;
template unsigned int (32) sub_track ID = 0;
unsigned int (32) attribute list[];// to the end of the box
}

8.14.4.3 Semantics

switch group isan integer that specifies a group or collection of tracks and/or sub tracks. If this
field is 0 (default value), then there is no information on whether the sub track can be used for
switching during playing or streaming. If this integer is not 0 it shall be the same for tracks and/or

© ISO/IEC 202x - All rights reserved 131

DIS 14496-12:202x

sub tracks that can be used for switching between each other. Tracks that belong to the same
switch group shall belong to the same alternate group. A switch group may have only one

member.

alternate group isan integer that specifies a group or collection of tracks and/or sub tracks. If
this field is 0 (default value), then there is no information on possible relations to other
tracks/sub-tracks. If this field is not 0, it should be the same for tracks/sub-tracks that contain
alternate data for one another and different for tracks/sub-tracks belonging to different such
groups. Only one track/sub-track within an alternate group should be played or streamed at any

one time.

sub_track ID isan integer. A non-zero value uniquely identifies the sub track locally within the
track. A zero value (default) means that sub track IDisnotassigned.

attribute list isalist, to the end of the box, of attributes. The attributes in this list should be
used as descriptions of sub tracks or differentiating criteria for tracks and sub tracks in the

same alternate or switch group.

The following attributes are descriptive:

Name Attribute Description

Temporal 'tesc' The sub-track can be temporally scaled.

scalability

Fine-grain SNR "fgsc' The sub-track can be scaled in terms of quality.

scalability

Coarse-grain SNR 'cgsc' The sub-track can be scaled in terms of quality.

scalability

Spatial scalability "spsc' The sub-track can be spatially scaled.

Region-of-interest ~'resc' The sub-track can be region-of-interest scaled.

scalability

View scalability 'vwsc' The sub-track can be scaled in terms of number of
views.

The following attributes are differentiating:

Name Attribute Pointer

Bitrate 'bitr’ Total size of the samples in the sub track divided by
the duration in the TrackHeaderBox

Frame rate '"frar' Number of samples in the sub track divided by
duration in the TrackHeaderBox

Number of views 'nvws' Number of views in the sub track

132

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

8.14.5 Sub track definition box

8.14.5.1 Definition

Box Type: 'strd'
Container: SubTrackBox
Mandatory: Yes

Quantity: One

This box contains objects that provide a definition of the sub track.

8.14.5.2 Syntax

aligned(8) class SubTrackDefinitionBox extends Box('strd')
{
}

8.14.6 Sub track sample group box

8.14.6.1 Definition

Box Type: 'stsg'

Container: SubTrackDefinitionBox
Mandatory: No

Quantity: Zero or more

This box defines a sub track as one or more sample groups by referring to the corresponding sample
group descriptions describing the samples of each group.

8.14.6.2 Syntax

aligned(8) class SubTrackSampleGroupBox extends FullBox('stsg', 0, 0)
{
unsigned int (32) grouping type;
unsigned int (16) item count;
for (i = 0; i< item count; i++) {
unsigned int(32) group description index;

}

8.14.6.3 Semantics

grouping type is an integer that identifies the sample grouping. The value shall be the same as
in the corresponding SampleToGroupBox and SampleGroupDescriptionBox.

item count counts the number of sample groups listed in this box.

group description index isan integer that gives the index of the sample group description
entry which describes the samples in the group.

© ISO/IEC 202x - All rights reserved 133

DIS 14496-12:202x

8.15 Void
8.16 Segments

8.16.1 Overview

Media presentations may be divided into segments for delivery. For example, it is possible (e.g. in HTTP
streaming) to form files that contain a segment - or concatenated segments - which do not necessarily
form ISO base media file format compliant files (e.g. they do not contain a movie box).

When the MIME form registered in Annex F is used, it shall refer to a segment as defined here.
8.16.2 Segment type box

8.16.2.1 Definition

Box Type: 'styp'
Container: File
Mandatory: No

Quantity: Zero or more

If segments are stored in separate files (e.g. on a standard HTTP server) it is recommended that these
‘segment files’ contain a segment-type box, which shall be first if present, to enable identification of those
files, and declaration of the specifications with which they are compliant.

A SegmentTypeBox has the same formatasa FileTypeBox (see subclause 4.2.3), except that it takes
the box type 'styp'. The brands within it may include the same brands that were included in the
FileTypeBox that preceded the MovieBox, and may also include additional brands to indicate the
compatibility of this segment with various specification(s).

Valid segment type boxes shall be the first box in a segment. Segment type boxes may be removed if
segments are concatenated (e.g. to form a full file), but this is not required. Segment type boxes that are
not first in their files may be ignored.

8.16.2.2 Syntax

aligned(8) class SegmentTypeBox extends GeneralTypeBox ('styp')
{
}

8.16.3 Segment index box

8.16.3.1 Definition

Box Type: 'sidx'
Container: File
Mandatory: No

Quantity: Zero or more

The SegmentIndexBox provides a compact index of one media stream within the media segment to
which it applies. It is designed so that it can be used not only with media formats based on this document
(i.e. segments containing sample tables or movie fragments), but also other media formats (for example,
MPEG-2 transport streams in ISO/IEC 13818-1[11). For this reason, the formal description of the box given

134 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

here is deliberately generic (e.g. it uses the term “access unit”), and then at the end of this subclause the
specific definitions for segments using movie fragments are given.

Each SegmentIndexBox documents how a (sub)segment is divided into one or more subsegments
(which may themselves be further subdivided using Segment IndexBoxes).

A subsegment is defined as a time interval of the containing (sub)segment, and corresponds to a single
range of bytes of the containing (sub)segment. The durations of all the subsegments sum to the duration
of the containing (sub)segment.

Each entry in the SegmentIndexBox contains a reference type that indicates whether the reference
points directly to the media bytes of a referenced leaf subsegment, or to a SegmentIndexBox that
describes how the referenced subsegment is further subdivided; as a result, the segment may be indexed
in a ‘hierarchical’ or ‘daisy-chain’ or other form by documenting time and byte offset information for other
SegmentIndexBoxes applying to portions of the same (sub)segment.

Each Segment IndexBox provides information about a single media stream of the Segment, referred to
as the reference stream. If provided, the first Segment IndexBox in a segment, for a given media stream,
shall document the entirety of that media stream in the segment, and shall precede any other
SegmentIndexBox in the segment for the same media stream.

If a segment index is present for at least one media stream but not all media streams in the segment, then
normally a media stream in which not every access unit is independently coded, such as video, is selected
to be indexed. For any media stream for which no segment index is present, referred to as non-indexed
stream, the media stream associated with the first SegmentIndexBox in the segment serves as a
reference stream in a sense that it also describes the subsegments for any non-indexed media stream.

NOTE 1 Further restrictions can be specified in derived specifications.

SegmentIndexBoxes may be inline in the same file as the indexed media or, in some cases, in a separate
file containing only indexing information.

A SegmentIndexBox contains a sequence of references to subsegments of the (sub)segment
documented by the box. The referenced subsegments are contiguous in presentation time. Similarly, the
bytes referred to by a Segment IndexBox are always contiguous in both the media file, and the separate
index segment, or in the single file if indexes are placed within the media file. The referenced size gives
the count of the number of bytes in the material referenced.

NOTE 2 A media segment can be indexed by more than one “top-level” SegmentIndexBox that are independent of
each other, each of which indexes one media stream within the media segment. In segments containing multiple media
streams the referenced bytes can contain media from multiple streams, even though the SegmentIndexBox provides
timing information for only one media stream.

In the file containing the Segment IndexBox, the anchor point for a SegmentIndexBox is the first
byte after that box. If there are two files, the anchor point in the media file is the beginning of the top-
level segment (i.e. the beginning of the segment file if each segment is stored in a separate file). The
material in the file containing media (which may also be the file that contains the Segment IndexBoxes)
starts at the indicated offset from the anchor point. If there are two files, the material in the index file
starts at the anchor point, i.e. immediately following the SegmentIndexBox.

Within the two constraints (a) that, in time, the subsegments are contiguous, that is, each entry in the
loop is consecutive from the immediately preceding one and (b) within a given file (integrated file, media
file, or separate file containing only index information) the referenced bytes are contiguous, there are a
number of possibilities, including:

© ISO/IEC 202x - All rights reserved 135

DIS 14496-12:202x

1) a reference to a SegmentIndexBox may include, in its byte count, immediately following
SegmentIndexBoxes that document subsegments;

2) inanintegrated file, usingthe first offset field,itis possible to separate Segment IndexBoxes
from the media that they refer to;

3) inanintegrated file, itis possible to locate Segment IndexBoxes for subsegments close to the media
they index;

4) when a separate file containing SegmentIndexBoxes is used, it is possible for the loop entries to
have different reference type values,someto SegmentIndexBoxesintheindex segment, some
to media subsegments in the media file.

NOTE 3 Profiles can be used to restrict the placement of segment indexes, or the overall complexity of the indexing.

The Segment IndexBox documents the presence of stream access points (SAPs), as specified in Annex |,
in the referenced subsegments. The annex specifies characteristics of SAPs, such as Isay, Isap and Tsap, as
well as SAP types, which are all used in the semantics below. A subsegment starts with a SAP when the
subsegment contains a SAP, and for the first SAP, Isay is the index of the first access unit that follows Isap,
and Isap is contained in the subsegment.

For segments based on this document (i.e. based on movie sample tables or movie fragments):

an access unit is a sample;

a subsegment is a self-contained set of one or more consecutive movie fragments; a self-contained
set contains one or more MovieFragmentBoxes with the corresponding MediaDataBox(es),
and a MediaDataBox containing data referenced by a MovieFragmentBox shall follow that
MovieFragmentBox and precede the next MovieFragmentBox containing information about
the same track;

Segment index boxes shall be placed before subsegment material they document, that is, before
any MovieFragmentBox of the documented material of the subsegment;

streams are tracks in the file format, and stream IDs are track IDs;

a subsegment contains a stream access point if a track fragment within the subsegment for the
track with track IDequalto reference ID contains a stream access point;

initialisation data for SAPs consists of the movie box;

presentation times are in the presentation timeline, that is they are composition times after the
application of any edit list for the track;

the Isap is a position exactly pointing to the start of a top-level box, such as a movie fragment box
'moof’';

a SAP of type 1 or type 2 is indicated as a sync sample, or by sample is non sync sample
equal to 0 in the movie fragment;

a SAP of type 3 is marked as a member of a sample group of type 'rap ';

a SAP of type 4 is marked as a member of a sample group of type 'rol1l' where the value of the
roll distance fieldis greater than 0.

NOTE 4 For SAPs of type 5 and 6, no specific signalling in the ISO base media file format is supported.

Examples of the use of segment indexes can be found in Annex J.

136

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.16.3.2 Syntax

aligned(8) class SegmentIndexBox extends FullBox('sidx', version, O0)

{

}

unsigned int(32) reference ID;
unsigned int (32) timescale;
if (version==0) {
unsigned int(32) earliest presentation time;
unsigned int(32) first offset;
}
else {
unsigned int(64) earliest presentation time;
unsigned int(64) first offset;
}
unsigned int (16) reserved = 0;
unsigned int (16) reference count;
for (i=1; i <= reference count; i++)
{
bit (1) reference type;
unsigned int (31) referenced size;
unsigned int (32) subsegment duration;
bit (1) starts with SAP;
unsigned int (3) SAP type;
unsigned int (28) SAP delta time;

8.16.3.3 Semantics

reference ID provides the stream ID for the reference stream; if this SegmentIndexBox is
referenced from a “parent” Segment IndexBox, the value of reference ID shall be the same
as the value of reference ID ofthe “parent” SegmentIndexBox;

timescale provides the timescale, in ticks per second, for the time and duration fields within this
box; it is recommended that this match the timescale of the reference stream or track; for files
based on this document, that is the timescale field of the media header box of the track;

earliest presentation time isthe earliest presentation time of any content in the reference
stream in the first subsegment, in the timescale indicated in the timescale field; the earliest
presentation time is derived from media in access units, or parts of access units, that are not
omitted by an edit list (if any);

first offset is the distance in bytes, in the file containing media, from the anchor point, to the
first byte of the indexed material;

reference count provides the number of referenced items;

reference type:whensetto 1indicates that the referenceistoa Segment IndexBox; otherwise
the reference is to media content (e.g. in the case of files based on this document, to a
MovieFragmentBox); if a separate index segment is used, then entries with reference type 1
are in the index segment, and entries with reference type 0 are in the media file;

referenced size:the distance in bytes from the first byte of the referenced item to the first byte
of the next referenced item, or in the case of the last entry, the end of the referenced material;

subsegment duration: when the reference is to Segment IndexBox, this field carries the sum
of the subsegment duration fields in that box; when the reference is to a subsegment, this
field carries the difference between the earliest presentation time of any access unit of the
reference stream in the next subsegment (or the first subsegment of the next segment, if this is
the last subsegment of the segment, or the end presentation time of the reference stream if this is
the last subsegment of the stream) and the earliest presentation time of any access unit of the

© ISO/IEC 202x - All rights reserved 137

DIS 14496-12:202x

reference stream in the referenced subsegment; the duration is in the same units as
earliest presentation time;

starts with SAP indicates whether the referenced subsegments start with a SAP. For the
detailed semantics of this field in combination with other fields, see Table 7.

SAP type indicates a SAP type as specified in Annex |, or the value 0. Other type values are reserved.
For the detailed semantics of this field in combination with other fields, see the table below.

SAP delta time:indicates Tsap of the first SAP, in decoding order, in the referenced subsegment
for the reference stream. If the referenced subsegments do not contain a SAP,
SAP delta time isreserved with the value 0; otherwise SAP delta time is the difference
between the earliest presentation time of the subsegment, and the Tsap (this difference may be
zero, in the case that the subsegment starts with a SAP).

Table 7 — Semantics of SAP and reference type combinations

starts with SAP | SAP type | reference type Meaning

0 0 Oor1l No information of SAPs is provided.
0 1to 6, 0 (media) The subsegment contains (but may
inclusive not start with) a SAP of the given

SAP type and the first SAP of the
given SAP type corresponds to
SAP delta time.

0 1to 6, 1 (index) All the referenced subsegments
inclusive contain a SAP of at most the given
SAP type and none of these SAPs
is of an unknown type.

1 0 0 (media) The subsegment starts with a SAP of
an unknown type.

1 0 1 (index) All the referenced subsegments start
with a SAP which may be of an
unknown type

1 1to 6, 0 (media) The referenced subsegment starts
inclusive with a SAP of the given SAP type.

1 1to6, 1 (index) All the referenced subsegments start
inclusive with a SAP of at most the given

SAP type and none of these SAPs
is of an unknown type.

138 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.16.4 Subsegment index box

8.16.4.1 Definition

Box Type: 'ssix'
Container: File
Mandatory: No

Quantity: Zero or more

The SubsegmentIndexBox provides a mapping from levels (as specified by the
LevelAssignmentBox) to byte ranges of the indexed subsegment. In other words, this box provides a
compact index for how the data in a subsegment is ordered according to levels into partial subsegments.
It enables a client to easily access data for partial subsegments by downloading ranges of data in the
subsegment.

Each byte in the subsegment shall be explicitly assigned to a level, and hence the range count shall be 2
or greater. If the range is not associated with any information in the level assignment, then any level that
is not included in the level assignment may be used.

There shall be 0 or 1 SubsegmentIndexBoxes per each SegmentIndexBox that indexes only leaf
subsegments, i.e. that only indexes subsegments but no segment indexes. A SubsegmentIndexBox, if
any, shall be the next box after the associated SegmentIndexBox. A SubsegmentIndexBox
documents the subsegments that are indicated in the immediately preceding Segment IndexBox.

In general, the media data constructed from the byte ranges is incomplete, i.e. it does not conform to the
media format of the entire subsegment.

For leaf subsegments based on this document (i.e. based on movie sample tables and movie fragments):

e Each level shall be assigned to exactly one partial subsegment, i.e. byte ranges for one level shall
be contiguous.

e Levels of partial subsegments shall be assigned by increasing numbers within a subsegment, i.e.,
samples of a partial subsegment may depend on any samples of preceding partial subsegments in
the same subsegment, but not the other way around. For example, each partial subsegment
contains samples having an identical temporal level and partial subsegments appear in increasing
temporal level order within the subsegment.

e When a partial subsegment is accessed in this way, for any assignment type other than 3, the
final MediaDataBox may be incomplete, that is, less data is accessed than the length indication
of the MediaDataBox indicates is present. The length of the MediaDataBox may need
adjusting, or padding used. The padding flag in the LevelAssignmentBox indicates
whether this missing data can be replaced by zeros. If not, the sample data for samples assigned
to levels that are not accessed is not present, and care should be taken not to attempt to process
such samples.

e The dataranges corresponding to partial subsegments include both MovieFragmentBoxes and
MediaDataBoxes. The first partial subsegment, i.e. the lowest level, will correspond to a
MovieFragmentBox as well as (parts of) MediaDataBox(es), whereas subsequent partial
subsegments (higher levels) may correspond to (parts of) MediaDataBox(es) only.

© ISO/IEC 202x - All rights reserved 139

DIS 14496-12:202x

NOTE assignment type equal to O (specified in the LevelAssignmentBox) can be used, for
example, together with the temporal level sample grouping ('tele’) when frames of a video bitstream are
temporally ordered within subsegments; assignment type equal to 2 can be used, for example, when each
view of a multiview video bitstream is contained in a separate track and the track fragments for all the views are
contained in a single movie fragment. assignment type equal to 3 can be used, for example, when audio and
video movie fragments (including the respective MediaDataBoxes) are interleaved. The first level can be
specified to contain the audio movie fragments (including the respective MediaDataBoxes), whereas the second
level can be specified to contain both audio and video movie fragments (including all MediaDataBoxes).

8.16.4.2 Syntax

aligned(8) class SubsegmentIndexBox extends FullBox('ssix', 0, 0)
{
unsigned int (32) subsegment count;
for (i=1; 1 <= subsegment count; i++)
{
unsigned int (32) range count;
for (j=1; J <= range count; J++) {
unsigned int (8) level;
unsigned int (24) range size;

}

8.16.4.3 Semantics

subsegment count is a positive integer specifying the number of subsegments for which partial
subsegment information is specified in this box. subsegment count shall be equal to
reference count (i.e, the number of movie fragment references) in the immediately
preceding SegmentIndexBox.

range count specifies the number of partial subsegment levels into which the media data is
grouped. This value shall be greater than or equal to 2.

range_size indicates the size of the partial subsegment; the value 0 may be used in the last entry
to indicate the remaining bytes of the segment, to the end of the segment.

level specifies the level to which this partial subsegment is assigned.

8.16.5 Producer reference time box

8.16.5.1 Definition

Box Type: 'prft'
Container: File
Mandatory: No

Quantity: Zero or more

The ProducerReferenceTimeBox supplies times corresponding to the production of associated
movie fragments. When they are both produced and consumed in real time, this can provide clients with
information to enable consumption and production to proceed at equivalent rates, thus avoiding possible
buffer overflow or underflow.

This box is related to the next MovieFragmentBox that follows it in bitstream order. It shall follow
any SegmentTypeBox or SegmentIndexBox (if any) in the segment, and occur before the following
MovieFragmentBox (to which it refers).

140 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The box contains a time value, expressed using the NTP format, and measured on a clock which
increments at the same rate as a UTC-synchronized NTP clock as defined in IETF RFC 5905. This time is
associated with a media time in the range of media times for one of the tracks in the movie fragment.
Note that the media time does not need to match the actual decode or composition timestamp of a sample
of that track.

Given a succession of ProducerReferenceTimeBoxes in the same track with the same flag values
(notably the value 8, which promises consistency), a receiver can estimate the drift between the
producer's media clock and real time; the accuracy and variability of this estimation can depend on the
technique used to establish the times, as reported in the flag values.

For live-captured media, flags may be set to 24 (i.e. the two bits corresponding to value 8 and 16 are set).
When the flags have this value, the UTC time shall be at, or close to, the wall-clock-time of the experience
captured in the media. For example, if the media is a video that shows an accurate public clock timed to
UTC that displays 09:15, then the UTC time in this box also reads close to 09:15. The receiver can then
estimate the real-time latency of presentation, from the time the captured experience occurred, to the
time it is presented to the user.

Producer reference times should be associated with at most one track.
8.16.5.2 Syntax

aligned(8) class ProducerReferenceTimeBox
extends FullBox ('prft', version, flags)
{
unsigned int (32) reference track ID;
unsigned int(64) ntp timestamp;
if (version==0) {
unsigned int(32) media time;
} else {
unsigned int (64) media time;
}
}

8.16.5.3 Semantics

reference track ID providesthe track ID for the reference track.
ntp timestamp indicates a UTC time in NTP format associated to media time as follows:

- if flags is set to 0, the UTC time is the time at which the frame belonging to the reference
track in the following movie fragment and whose presentation time ismedia time wasinput
to the encoder.

- if flags is set to 1, the UTC time is the time at which the frame belonging to the reference
track in the following movie fragment and whose presentation time is media time was
output from the encoder.

- ifflagsissetto 2,the UTC time is the time at which the following MovieFragmentBox was
finalized. media time is set to the presentation of the earliest frame of the reference track in
presentation order of the movie fragment.

- ifflagsissetto4,the UTC time is the time at which the following MovieFragmentBox was
written to file. media time is set to the presentation of the earliest frame of the reference
track in presentation order of the movie fragment.

- if flags is set to 8, the association between the media time and UTC time is arbitrary but
consistent between multiple occurrences of this box in the same track

© ISO/IEC 202x - All rights reserved 141

DIS 14496-12:202x

- ifflagsis setto 24 (i.e. the two bits corresponding to value 8 and 16 are set), the UTC time
has a consistent, small (ideally zero), offset from the real-time of the experience depicted in
the media atmedia time

media time isexpressed in the time units used for the reference track.

NOTE In most cases this time will not be equal to the time of the first sample of the adjacent segment of
the reference track.

8.17 Void
8.18 Entity grouping

8.18.1 General

An entity group is a grouping of items, which may also group tracks. The entities in an entity group share
a particular characteristic or have a particular relationship, as indicated by the grouping type.

Entity groups are indicated in GroupsListBox. Entity groups specified in GroupsListBox of a file-
level MetaBox refer to tracks or file-level items. Entity groups specified in GroupsListBox of a movie-
level MetaBox refer to movie-level items. Entity groups specified in GroupsListBox of a track-level
MetaBox refer to track-level items of that track.

GroupsListBox contains EntityToGroupBoxes, each specifying one entity group.
8.18.2 Groups list box

8.18.2.1 Definition

Box Type: 'grpl'
Container: MetaBox
Mandatory: No
Quantity: Zero or One

The GroupsListBox includes the entity groups specified for the file. This box contains a set of full boxes,
each called an EntityToGroupBox, with four-character codes denoting a defined grouping type.

When GroupsListBox is present in a file-level MetaBox, there shall be no item ID value in
ItemInfoBoxinany file-level MetaBox thatis equal tothe track IDvalueinany TrackHeaderBox.

8.18.2.2 Syntax

aligned(8) class GroupsListBox extends Box('grpl')
{
}

142 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.18.3 Entity to group box

8.18.3.1 Definition

Box Type: As specified below with the grouping type value for the EntityToGroupBox
Container: GroupsListBox

Mandatory: No

Quantity: One or more

The EntityToGroupBox specifies an entity group.

The box type (grouping type)indicates the grouping type of the entity group. Each grouping type
code is associated with semantics that describe the grouping. The following grouping type values are
specified in this document:

"altr': The items and tracks mapped to this grouping are alternatives to each other, and only one
of them should be played (when the mapped items and tracks are part of the presentation; e.g.
are displayable items or tracks) or processed by other means (when the mapped items or tracks
are not part of the presentation; e.g. are metadata). A player should select the first entity from
thelistof entity id values thatit can process (e.g. decode and play for mapped items and
tracks that are part of the presentation) and that suits the application needs. Any entity id
value shall be mapped to only one grouping of type 'altr'. An alternate group of entities
consists of those items and tracks that are mapped to the same entity group of type 'altr'.

'prsl': The tracks mapped to this grouping are belonging to a preselection as specified in 8.18.4.1.

NOTE EntityToGroupBox can have grouping type specific extensions.
8.18.3.2 Syntax

aligned(8) class EntityToGroupBox (grouping type, version, flags)
extends FullBox (grouping type, version, flags)

{
unsigned int(32) group id;
unsigned int(32) num entities in group;
for (i=0; i<num entities in group; i++) {
unsigned int(32) entity id;
}

// the remaining data may be specified for a particular grouping type

}

8.18.3.3 Semantics

version shall be 0 unless defined otherwise for the grouping type. Any values of f1ags such
that (f1ags & 0x000FFF) is not equal to 0 are reserved. The values of £1ags shall be such that
(flags & 0xFFF000) is equal to 0 unless defined otherwise for the grouping type.

group_idisanon-negative integer assigned to the particular grouping that shall not be equal to any
group_id value of any other EntityToGroupBox, any item ID value of the hierarchy level
(file, movie. or track) that contains the GroupsListBox, or any track ID value (when the
GroupsListBox is contained in the file level).

num entities in group specifies the number of entity id values mapped to this entity
group.

entity id isresolved to one of the following:

© ISO/IEC 202x - All rights reserved 143

DIS 14496-12:202x

- anitem, when an item with item IDequaltoentity idis presentin the hierarchy level (file,
movie or track) that contains the GroupsListBox, or

- atrack, when a track with track IDequaltoentity idispresentand the GroupsListBoxis
contained in the file level, or

- atrack group, if the unified handling of identifiers is indicated with a brand as specified in Clause
E.18, this EntityToGroupBox is present at file level, and a track group with track group id
equal toentity id present, or

- asecond entity group, if the unified handling of identifiers is indicated with a brand as specified in
Clause E.18, this EntityToGroupBox is present at the same level that contains the
EntityToGroupBox for the second entity group, and the EntityToGroupBox for the second
entity group has group idequaltoentity id.

8.18.4 Entity group definitions
8.18.4.1 Preselection group box

8.18.4.1.1 Definition

Box Type: 'prsl'

Container: GroupsListBox ina MetaBox on movie level
Mandatory: No

Quantity: Zero or more

[Ed.Note] The uniqueness of identifiers is specified within the file, movie, or track level but not across
levels in subclause E.18. However, the uniqueness of identifiers on movie level is specified only on
item IDandgroup id, butE.18 doesnotmentiontrack IDandtrack group idformovielevel
uniqueness. Consequently, if the PreselectionGroupBox is contained in the movie-level MetaBox,
it cannot refer to tracks. Two potential approaches to resolve this are: 1) Move the preselection entity
group to file level; 2) Extend the scope of uniqueness at movie level. National bodies are encouraged to
comment on this.

A preselection is represented by a PreselectionGroupBox. This box contains information on what
experience is available when this preselection is selected. The characteristics of the preselection are given
by the boxes contained in the PreselectionGroupBox. Preselections can be characterized, for
example, by language, kind or media specific attributes like audio rendering indications, audio
interactivity or channel layouts. Charcteristics signalled ina PreselectionGroupBox take precedence
over characteristics signalled in contributing entities.

NOTE1 The kind box might utilize the Role scheme defined in ISO/IEC 23009-1:2022, subclause 5.8.5.5 as it provides a
commonly used scheme to describe characteristics of preselections.

NOTE 2 Optional boxes contained within this box can carry information about the initial experience of the preselection in the
referenced tracks. The preselection experience can change during the playback of these tracks, e.g. audio language can change
during playback. These changes are not subject to the information presented in this box.

The MetaBox containing the preselection entity group may have any handler type value, such as
'null’' inits HandlerBox, when present, or exclude the HandlerBox, when allowed by the indicated
brand(s).

A preselection may group multiple tracks. In some cases, for those tracks to be consumed by a single
decoder, these tracks need to be processed to produce a single track. This processing can be dependent
on a specific order. The order is given by the order of appearance in the entity idloop in the syntax.

144 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The exact processing to produce the single track is signalled by the interleaving tag. If the
interleaving tag starts with a 4CC of a sample entry, the document that specifies the 4CC shall
define the exact processing to generate the resulting track.

EXAMPLE: If the interleaving tagissetto 'mhm2' the specific processing for this preselection is
defined in ISO/IEC 23008-3:2019, subclause 14.

When the PreselectionGroupBox is used, the requirements from the 'unif' brand apply.
Consequently, theentity idvalue maybeequaltothe group idofadifferentEntityToGroupBox.
This allows nesting of entity groups. Circular references shall be avoided.

Each entity id value of a preselection shall either be equal to a track ID or to a group id of
another EntityToGroupBox. This requirement shall also be fulfilled for every (directly or indirectly)
referenced EntityToGroupBox. Consequently, a preselection always resolves to a (ordered) set of
tracks.

8.18.4.1.2 Syntax

aligned(8) class PreselectionGroupBox
extends EntityToGroupBox ('prsl', version=0, flags)
{
if (flags & preselection tag present)
utf8string preselection tag;
if (flags & selection priority present)
unsigned int (8) selection priority;
utf8string interleaving tag;
Box boxes[]; // Boxes describing the preselection

}

8.18.4.1.3 Semantics

flags is a 24-bit integer with flags; the following values are defined:
preselection tag present:Flag maskis 0x001000. The value 1 indicates the presence of
the preselection tag element
selection priority present:Flag maskis 0x002000. The value 1 indicates the presence
of the selection priority element
preselection tag isa codec specific value that a playback system can provide to a decoder to
uniquely identify one out of several preselections in the media.
selection priority isaninteger that declares the priority of the preselection in cases where
no other differentiation such as through the media language is possible. A lower value of
selection priority indicates a higher priority.
interleaving tag provides the interleaving processes to be used for interleaving samples or
groups of samples of the entities belonging to this preselections. If the interleaving tagis
empty, no process is specified for this preselection.
boxes isan array of boxes describing the preselection. Boxes suitable to describe a preselection
include but are not limited to the following list of boxes defined in this document:
- ExtendedLanguageBox (subclause 8.4.6)
- UserDataBox (subclause 8.10.1)
- KindBox (subclause 8.10.4)
- LabelBox (subclause 8.10.5)
- ChannelLayout (subclause 12.2.4)
- AudioRenderingIndicationBox (subclause 12.2.8)

© ISO/IEC 202x - All rights reserved 145

DIS 14496-12:202x

- AudioElementBox (subclause 12.2.9)

- AudioElementSelectionBox (subclause 12.2.13)
When contained in a PreselectionGroupBox, a UserDataBox shall not carry any of the
above boxes. Further media type specific boxes may be used to describe properties of the
preselection. Readers may ignore and skip boxes that are not recognized.

8.19 Compressed boxes

8.19.1 Overview and processing

A compressed box is a box that replaces another box, called original box, at the same top-level order in
the file but whose payload is the BoxPayload of that original box, compressed with deflate(), as defined
in IETF RFC 1951. A compressed box can only be defined for a top-level box; hence their container is
always the file and is omitted in their box definitions. Only a subset of existing top-level boxes can be
compressed.

The type of the box that a compressed box replaces is called the replacement type and is defined for each
compressed box. The content that is compressed comprises all the remaining bytes after the BoxHeader
of the original box.

Unless stated otherwise, the semantics of fields in the uncompressed payload is the same as the semantics
of the box with the given replacement type. Especially, when boxes use file offsets within the containing
file, unless stated otherwise these offsets are related to the file that results from expanding the
compressed box(es).

All compressed boxes defined in this document share the same syntax as defined in subclause 8.19.3.

The MovieFragmentRandomAccessBox is not supported in files containing compressed boxes and
shall not be present when a compressed box is present.

A reader that supports compressed boxes shall be capable of decompressing boxes and adjusting offsets
in a way that is functionally equivalent to the processing model in subclause 8.19.2.2.

8.19.2 Processing model

8.19.2.1 File parsing processing model
The processing model when reading compressed boxes is defined as follows:

- the BoxPayload of the compressed box (after the compressed box’s BoxHeader structure) is
decompressed (Note that a Ful 1Box also has a BoxPayload)

- the box type of the compressed box is replaced with the replacement type as specified for this
particular compressed box

- the compressed box size is replaced with the sum of the uncompressed payload size and the
BoxHeader size (8 bytes, in the case of a simple 32-bit size)

- the compressed box payload is replaced with the uncompressed payload

- the uncompressed box is read from the reconstructed BoxHeader and uncompressed payload

- the parsing is then resumed at the position of the end of the compressed box in the file.

146 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.19.2.2 File decompression processing model

The processing model when decompressing a file is defined as follows: the decompressed file is initialized
as empty, and for each top-level box in the compressed file:

o if there is an OriginalFileTypeBox, then the FileTypeBox or SegmentTypeBox, and a
following ExtendedTypeBox (if any), are replaced by the contents of the
OriginalFileTypeBox;

o otherwise, if the box is uncompressed, it is copied to the decompressed file.

o otherwise, the decompressed box is computed as indicated in subclause 8.19.2.1; the decompressed
box is written to the decompressed file as follows:

o if the decompressed box is a MovieBox or MovieFragmentBox, the decompressed box is
copied without modifications to the decompressed file.

o ifthe decompressed box is a Segment IndexBox

= the first_offset field is incremented by the number of extra bytes in the decompressed
data between the beginning of the Segment IndexBox and the indicated first_offset
in the compressed file, compared to the number of compressed bytes in that range;
(this necessarily includes the expansion of the Segment IndexBox itself); this step
is needed when SegmentIndexBox(es) and SubSegmentIndexBox(es) are
present between the end of an SegmentIndexBox and the first movie fragment
following this Segment IndexBox.

» Each reference_size field in the decompressed SegmentIndexBox is increased by
the number of uncompressed bytes minus the number of compressed bytes of all top-
level compressed boxes present in the corresponding range in the compressed file. (In
general it is not possible to update a Segment IndexBox immediately on reception,
asthe first offsetandreference sizeareupdated based on decompression
of boxes later in the file.)

» The modified uncompressed box is then copied to the decompressed file.

o if the decompressed box is a SubsegmentIndexBox, each range size field in the
uncompressed box is increased by the number of uncompressed bytes minus the number of
compressed bytes of all top-level compressed boxes starting in the corresponding range in
the compressed file. The modified uncompressed box is then copied to the decompressed file.

NOTE 1 There is no guarantee that the number of compressed bytes is less than the number of
uncompressed bytes, although it is better that file writers avoid using a compressed box if it is larger than the
uncompressed version. In the above processing model, this means that the number of bytes to add might be
negative.

NOTE 2 In this processing mode, a file decompressor might need to load top-level boxes following the
box currently being decompressed (e.g. SegmentIndexBox or SubsegmentIndexBox) to compute the
byte difference between compressed and uncompressed versions of subsequent boxes referred to by the box
currently being decompressed.

NOTE 3 Since, unless specified otherwise, byte offsets in compressed boxes describe the uncompressed
domain file, a file reader processing a compressed file on-the-fly (without producing a complete
uncompressed file) will need to maintain some correspondence table between byte offsets in the compressed
domain and byte offsets in the uncompressed domain in order to correctly adjust file offsets when fetching
data from the file. File offsets can only be interpreted once the reader is sure that all data preceding that file
offset has been decompressed. This can be achieved by either (1) loading all that data and decompressing it
or (2) knowing that the only boxes that precede the given offset, that are permitted to be compressed, have
been decompressed. For example, in many cases a file is only permitted to contain only a single MovieBox, a
MovieFragmentBox or a MetaBox and no other compressible box. Derived specification can further
restrict the possible set and layout of compressed boxes to simplify this process.

NOTE 4 This is a processing model that describes the correspondence between a file containing
compressed boxes and a hypothetical file containing uncompressed boxes; readers implement

© ISO/IEC 202x - All rights reserved 147

DIS 14496-12:202x

decompression as suits their processing needs. In particular, if Segment IndexBoxes are used to guide what
data to fetch and then not used further, it might not be necessary to recalculate the offsets and sizes that they
contain.

8.19.3 General syntax

aligned(8) class CompressedBox (box type, replacement type)
extends Box (box type)

{
bit (8) compressed datal[]; // to end of box

}

8.19.4 General semantics

compressed data isthe compressed payload of a box defined by the replacement type
type. This data contains the compressed box payload excluding the BoxHeader field of the
uncompressed box.

replacement type indicates the corresponding uncompressed box type.

8.19.5 Original file-type box

8.19.5.1 Definition

Box Type: 'otyp'

Container: File or OriginalFileTypeBox
Mandatory: Yes (see below)

Quantity: Zero or more

A file conformant to this document may have further transformation of its box structure, for example it
may use compressed top-level boxes. In this case, the resulting file may no longer be compliant with the
brand promises of the original file, as it requires the support for new tools (such as compressed top-level
boxes). For example, a file using a compressed MovieBox is no longer compliant to any brand defined
prior to the introduction of compressed boxes.

The OriginalFileTypeBox is used to encapsulate brand information applying to the original file
before transformation but not valid in the transformed domain. There shall be at most one
OriginalFileTypeBox after each FileTypeBox or SegmentTypeBox. An
OriginalFileTypeBox shall contain the FileTypeBox and, when present, the
ExtendedTypeBox, of the file before transformation. In cases where a file uses multiple
transformations, nested OriginalFileTypeBox shall be used, and there shall be at most one
OriginalFileTypeBoxineach OriginalFileTypeBox.

When present, an OriginalFileTypeBox shall follow a FileTypeBox or SegmentTypeBox, with
at mostan ExtendedTypeBox and/or FreeSpaceBox(es) in between.

The processing model for a file reader is equivalent to removing both
FileTypeBox/SegmentTypeBoxand OriginalFileTypeBox,and inserting in their place the child
boxes of the OriginalFileTypeBox. In the case of compressed top-level boxes, the resulting
replacement and decompression of the file shall be a compliant uncompressed ISOBMFF file.

148 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.19.5.2 Syntax

aligned(8) class OriginalFileTypeBox extends Box ('otyp')
{
}

8.19.6 Compressed movie box

8.19.6.1 Definition

Box Type: ''mov'
Replacement Type: 'moov'
Mandatory: No
Quantity: Zero or One

A CompressedMovieBox contains a compressed version of a MovieBox BoxPayload. The
replacement type of the CompressedMovieBox for the algorithm specified in subclause 8.19.1 is
'moov’.

There shall not be both a CompressedMovieBox and a MovieBox in a file.
8.19.6.2 Syntax
aligned(8) class CompressedMovieBox extends CompressedBox('!mov', 'moov')

{
}

8.19.7 Compressed movie fragment box

8.19.7.1 Definition

Box Type: ''mof"
Replacement Type: 'moof
Mandatory: No
Quantity: Zero or One

A CompressedMovieFragmentBox contains a compressed version of a MovieFragmentBox
BoxPayload. The replacement type of the CompressedMovieFragmentBox for the algorithm
specified in subclause 8.19.1 is 'moof'.

8.19.7.2 Syntax

aligned(8) class CompressedMovieFragmentBox
extends CompressedBox('!mof', 'moof')

{

}

© ISO/IEC 202x - All rights reserved 149

DIS 14496-12:202x

8.19.8 Compressed segment index box

8.19.8.1 Definition

Box Type: 'lsix!
Replacement Type: 'sidx'
Mandatory: No

Quantity: Zero or more

A CompressedSegmentIndexBox contains a compressed version of a SegmentIndexBox
BoxPayload. The replacement type of the CompressedSegmentIndexBox for the algorithm
specified in subclause 8.19.1is 'sidx"'.

The referenced size and first offset fields of the uncompressed SegmentIndexBox
payload shall be expressed in the compressed domain: they document the size and position of the
referenced item in the file, and the referenced items may contain compressed top-level boxes. This
ensures that byte-ranges computed from the referenced size fields always resolve in one or more
top-level boxes of the file, potentially using box compression.

If a physical version of the decompressed file is to be produced for later consumption, the
referenced size and first offset fieldsinthe uncompressed payload may need to be updated
according to the new size of the referenced items after decompression.

If the Segment IndexBox references an external file using box compression the referenced size
and first offset fields shall also be expressed in the compressed domain for the same reason as
stated above.

8.19.8.2 Syntax

aligned(8) class CompressedSegmentIndexBox
extends CompressedBox ('!six', 'sidx')

{

}

8.19.9 Compressed subsegment index box

8.19.9.1 Definition

Box Type: 'lssx!
Replacement Type: 'ssix'
Mandatory: No

Quantity: Zero or more

A CompressedSubsegmentIndexBox contains a compressed version of a SubsegmentIndexBox
BoxPayload. The replacement type of the CompressedSubsegmentIndexBox for the algorithm
specified in subclause 8.19.1is 'ssix"'.

The range size fields of the uncompressed SubsegmentIndexBox payload shall be expressed in
the compressed domain: it documents the size of the partial subsegment in the subsegment, potentially
containing compressed top-level boxes. This ensures that byte-ranges computed from the range size
fields always resolve in one or more top-level boxes of the file, potentially using box compression, or in a
subset of a MediaDataBox payload.

150 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

8.19.9.2 Syntax

aligned(8) class CompressedSubsegmentIndexBox
extends CompressedBox ('!ssx', 'ssix')

{

}

9 Hint track formats
9.1 RTP and SRTP hint track format

9.1.1 Overview

This subclause defines a hint track format for RTP; when processed by a server, the hint track shall yield
a stream of RTP packets that conform to IETF RFC 3550(171 and IETF RFC 3551118],

In standard RTP, each media stream is sent as a separate RTP stream; multiplexing is achieved by using
[P’s port-level multiplexing, not by interleaving the data from multiple streams into a single RTP session.
However, if MPEG is used, it may be necessary to multiplex several media tracks into one RTP track (e.g.
when using MPEG-2 transport in RTP, or FlexMux). Each hint track is therefore tied to a set of media
tracks by track references. The hint tracks extract data from their media tracks by indexing through this
table. Hint track references to media tracks have the reference type 'hint"'.

This design decides the packet size at the time the server hint track is created; therefore, in the
declarations for the hint track, we indicate the chosen packet size. This is in the sample-description.
Note that it is valid for there to be several RTP hint tracks for each media track, with different packet size
choices. Similarly the time-scale for the RTP clock is provided. The timescale of the server hint track is
usually chosen to match the timescale of the media tracks, or a suitable value is picked for the server. In
some cases, the RTP timescale is different (e.g. 90 kHz for some MPEG payloads), and this permits that
variation. Session description (SAP/SDP) information is stored in UserDataBoxes in the track.

RTP hint tracks do not use the CompositionOffsetBox. Instead, the hinting process for server hint
tracks establishes the correct transmission order and timestamps, perhaps using the transmission time
offset to set transmission times.

Hinted content may require the use of SRTP for streaming by using the hint track format for SRTP, defined
here. SRTP hint tracks shall form a stream of packets that shall conform to IETF RFC 3711, and are
formatted identically to RTP hint tracks, except that:

1) the sample entry name is changed from 'rtp ' to 'srtp' to indicate to the server that SRTP is
required;

2) anextraboxis added to the sample entry which can be used to instruct the server in the nature of the
on-the-fly encryption and integrity protection that must be applied.

9.1.2 Sample entry format

9.1.2.1 Structure

RTP server hint tracks are hint tracks (media handler 'hint"'), with an entry-format in the sample
description of 'rtp ':

© ISO/IEC 202x - All rights reserved 151

DIS 14496-12:202x

class RtpHintSampleEntry () extends HintSampleEntry ('rtp ')
{

uint (16) hinttrackversion = 1;
uint (16) highestcompatibleversion = 1;
uint (32) maxpacketsize;

}

Thehinttrackversionis currently 1; the highest compatible version field specifies the oldest version
with which this track is backward-compatible.
The maxpacketsize indicates the size of the largest packet that this track will generate.

The additional data is a set of boxes, from the following.

class timescaleentry () extends Box('tims')

{

uint (32) timescale;

}

class timeoffset () extends Box('tsro')

{ int (32) offset;

}

class sequenceoffset () extends Box('snro')
{ int (32) offset;

}

The timescale entry is required. The other two are optional. The offsets over-ride the default server
behaviour, which is to choose a random offset. A value of 0, therefore, will cause the server to apply no
offset to the timestamp or sequence number respectively.

An SRTP Hint Sample entry is used when it is required that SRTP processing is required.

class SrtpHintSampleEntry () extends HintSampleEntry ('srtp')
{

uint (16) hinttrackversion = 1;
uint (16) highestcompatibleversion = 1;
uint (32) maxpacketsize;

}

Fields and boxes are defined as for the RtpHintSampleEntry ('rtp ') of the ISO Base Media File
Format. However, an SRTPProcessBox shall be included in an SrtpHintSampleEntry as one of the
additionaldata boxes.

9.1.2.2 SRTP process box

Box Type: 'srpp'

Container: SrtpHintSampleEntry
Mandatory: Yes

Quantity: Exactly one

The SRTPProcessBox may instruct the server as to which SRTP algorithms should be applied.

152 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

aligned(8) class SRTPProcessBox extends FullBox('srpp', version, 0)

{
unsigned int (32) encryption algorithm rtp;
unsigned int (32) encryption algorithm rtcp;
unsigned int (32) integrity algorithm rtp;
unsigned int (32) integrity algorithm rtcp;
SchemeTypeBox scheme type box;
SchemeInformationBox info;

}

The SchemeTypeBox and SchemeInformationBox have the syntax defined above for protected
media tracks. They serve to provide the parameters required for applying SRTP. The SchemeTypeBox
is used to indicate the necessary key-management and security policy for the stream in extension to the
defined algorithmic pointers provided by the SRTPProcessBox. The key-management functionality is
also used to establish all the necessary SRTP parameters as listed in IETF RFC 3711:2004, Section 8.2.
The exact definition of protection schemes is out of the scope of the file format.

The algorithms for encryption and integrity protection are defined by SRTP. The following format
identifiers are defined here. An entry of four spaces ($20$20$20520) may be used to indicate that the
choice of algorithm for either encryption or integrity protection is decided by a process outside the file
format.

Format Algorithm

$20$20$20$20 | The choice of algorithm for either encryption or integrity protection is
decided by a process outside the file format

ACM1 Encryption using AES in Counter Mode with 128-bit key, as defined in
[ETF RFC 3711:2004, Section 4.1.1.

AF81 Encryption using AES in F8-mode with 128-bit key, as defined in IETF
RFC 3711:2004, Section 4.1.2.

ENUL Encryption using the NULL-algorithm as defined in IETF RFC 3711:2004,
Section 4.1.3.

SHMZ Integrity protection using HMAC-SHA-1 with 160-bit key, as defined in
IETF RFC 3711:2004, Section 4.2.1.

ANUL Integrity protection not applied to RTP (but still applied to RTCP).
NOTE Thisis valid only for integrity algorithm rtp.

9.1.3 Sample format

9.1.3.1 Sample format definition

Each sample in a server hint track will generate one or more RTP packets, whose RTP timestamp is the
same as the hint sample time. Therefore, all the packets made by one sample have the same timestamp.
However, provision is made to ask the server to ‘warp’ the actual transmission times, for data-rate
smoothing, for example.

Each sample contains two areas: the instructions to compose the packets, and any extra data needed

when sending those packets (e.g. an encrypted version of the media data). The size of the sample is known
from the sample size table.

© ISO/IEC 202x - All rights reserved 153

DIS 14496-12:202x

aligned(8) class RTPsample

{
unsigned int (16) packetcount;
unsigned int (16) reserved;
RTPpacket packets[packetcount];
byte extradatall;

}

9.1.3.2 Packet entry format

Each packet in the packet entry table has the following structure:

aligned(8) class RTPpacket
{
int (32) relative time;
// the next fields form initialization for the RTP
// header (16 bits), and the bit positions correspond
bit (2) RTP version;

bit (1) P bit;
bit (1) X bit;
bit (4) CSRC_count;
bit (1) M bit;

bit (7) payload type;
unsigned int (16) RTPsequenceseed;
unsigned int (13) reserved = 0;
unsigned int (1) extra flag;
unsigned int (1) bframe flag;
unsigned int (1) repeat flag;
unsigned int (16) entrycount;
i1f (extra flag) {
uint (32) extra information length;
box extra data tlv[];
}
dataentry constructors[entrycount];

}

The semantics of the fields for RTP server hint tracks is specified below. RTP reception hint tracks use
the same packet structure. The semantics of the fields when the packet structure is used in an RTP
reception hint track is specified in subclause 9.4.1.4.

In server hint tracks, the relative time field ‘warps’ the actual transmission time away from the
sample time. This allows traffic smoothing.

The following 2 bytes exactly overlay the RTP header; they assist the server in making the RTP header
(the server fills in the remaining fields). Within these 2 bytes, the fields RTP_versionand CSRC_count
are reserved in server (transmission) hint tracks and the server fills in these fields.

The sequence seed is the basis for the RTP sequence number. If a hint track causes multiple copies of the
same RTP packet to be sent, then the seed value is the same for them all. The server normally adds a
random offset to this value (but see above, under 'sequenceoffset"').

extra flagequalto 1 indicates that there is extra information before the constructors, in the form
of type-length-value sets.

154 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

extra information length indicates the length in bytes of all extra information before the
constructors, which includes the four bytes of the extra information length field. The
subsequent boxes before the constructors, referred to as the TLV boxes, are aligned on 32-bit
boundaries. The box size of any TLV box indicates the actual bytes used, not the length required
for padding to 32-bit boundaries. The value of extra information length includes the
required padding for 32-bit boundaries.

The rtpoffsetTLV ('rtpo') givesa 32-bit signed integer offset to the actual RTP timestamp
to place in the packet. This enables packets to be placed in the hint track in decoding order, but
have their presentation timestamp in the transmitted packet be in a different order. This is
necessary for some MPEG payloads.

The bframe flag indicates a disposable ‘b-frame’. The repeat flag indicates a repeat packet’, one
that is sent as a duplicate of a previous packet. Servers may wish to optimize handling of these packets.

9.1.3.3 Constructor format

There are various forms of the constructor. Each constructor is 16 bytes, to make iteration easier. The
first byte is a union discriminator:

aligned(8) class RTPconstructor (type)
{

unsigned int(8) constructor type = type;

}

aligned(8) class RTPnoopconstructor extends RTPconstructor (0)
{

uint (8) pad[1l5];
}

aligned(8) class RTPimmediateconstructor extends RTPconstructor (1)
{

unsigned int (8) count;

unsigned int (8) data[count];

unsigned int (8) pad[l4 - count];
}

aligned(8) class RTPsampleconstructor extends RTPconstructor (2)

{

signed int (8) trackrefindex;

unsigned int (16) length;

unsigned int (32) samplenumber;
unsigned int (32) sampleoffset;
unsigned int (16) bytesperblock = 1;
unsigned int (16) samplesperblock = 1;

}

aligned(8) class RTPsampledescriptionconstructor
extends RTPconstructor (3)

{

signed int (8) trackrefindex;

unsigned int (16) length;

unsigned int (32) sampledescriptionindex;
unsigned int (32) sampledescriptionoffset;
unsigned int (32) reserved;

© ISO/IEC 202x - All rights reserved 155

DIS 14496-12:202x

The immediate mode permits the insertion of payload-specific headers (e.g. the RTP H.261 header). For
hint tracks where the media is sent ‘in the clear’, the sample entry then specifies the bytes to copy from
the media track, by giving the sample number, data offset, and length to copy. The track reference may
index into the table of track references (a strictly positive value), name the hint track itself (-1), or the
only associated media track (0). (The value zero is therefore equivalent to the value 1.)

Thebytesperblockand samplesperblock concern compressed audio, using a scheme prior to MP4,
in which the audio framing was not evident in the file. These fields have the fixed values of 1 for MP4 files.

The sampledescription mode allows sending of sample entries (which contain elementary stream
descriptors), by reference, as part of an RTP packet. The index is the index of a SampleEntry in a
SampleDescriptionBox, and the offset is relative to the beginning of that SampleEntry.

For complex cases (e.g. encryption or forward error correction), the transformed data is placed into the
hint samples, in the extradata field, and then sample mode referencing the hint track itself is used.

Notice that there is no requirement that successive packets transmit successive bytes from the media
stream. For example, to conform with RTP-standard packing of H.261, it is sometimes required that a
byte be sent at the end of one packet and also at the beginning of the next (when a macroblock boundary
falls within a byte).

9.1.4 SDP information

9.1.4.1 Overview

Streaming servers using RTSP and SDP usually use SDP as the description format; and there are necessary
relationships between the SDP information, and the RTP streams, such as the mapping of payload IDs to
MIME names. Provision is therefore made for the hinter to leave fragments of SDP information in the file,
to assist the server in forming a full SDP description. Note that there are required SDP entries, which the
server should also generate. The information here is only partial.

SDP information is formatted as a set of boxes within UserDataBoxes, at both the movie and the track
level. The text in the movie-level SDP box should be placed before any media-specific lines (before the
first ‘m="1in the SDP file).

9.1.4.2 Movie SDP information
At the movie level, within the UserDataBox, a hint information container box may occur:

aligned(8) class moviehintinformation extends Box ('hnti')
{
}

aligned(8) class rtpmoviehintinformation extends Box('rtp ')

{
uint (32) descriptionformat = 'sdp ';
char sdptext[];

}

Themoviehintinformation box may contain information for multiple protocols; only RTP is defined
here. The RTP box may contain information for various description formats; only SDP is defined here.
The sdptext is correctly formatted as a series of lines, each terminated by <crlf>, as required by SDP.

156 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

9.1.4.3 Track SDP information

At the track level, the structure is similar; however, we already know that this track is an RTP hint track,
from the sample entry. Therefore the child box merely specifies the format.

aligned(8) class trackhintinformation extends Box ('hnti')
{
}

aligned(8) class rtptracksdphintinformation extends Box ('sdp ')
{

char sdptext[];
}

The sdptext is correctly formatted as a series of lines, each terminated by <crlf>, as required by SDP.
9.1.5 Statistical information

In addition to the statistics in the hint media header, the hinter may place extra data in a
hintstatisticsbox, in the track user-data box. This is a container box with a variety of sub-boxes
that it may contain.

aligned(8) class hintstatisticsbox extends Box ('hinf'")
{
}

aligned(8) class hintBytesSent extends Box('trpy') {
uint (64) bytessent; } // total bytes sent, including 12-byte RTP
headers
aligned(8) class hintPacketsSent extends Box ('nump') {
uint (64) packetssent; } // total packets sent
aligned(8) class hintBytesSent extends Box ('tpyl') {
uint (64) bytessent; } // total bytes sent, not including RTP headers

aligned(8) class hintBytesSent extends Box ('totl') {
uint (32) bytessent; } // total bytes sent, including 12-byte RTP
headers
aligned(8) class hintPacketsSent extends Box('npck') {
uint (32) packetssent; } // total packets sent
aligned(8) class hintBytesSent extends Box ('tpay') {
uint (32) bytessent; } // total bytes sent, not including RTP headers

aligned(8) class hintmaxrate extends Box('maxr') { // maximum data rate
uint (32) period; // in milliseconds
uint (32) bytes; 1} // max bytes sent in any period 'period' long
// including RTP headers
aligned(8) class hintmediaBytesSent extends Box('dmed') {
uint (64) bytessent; } // total bytes sent from media tracks
aligned(8) class hintimmediateBytesSent extends Box('dimm') {

uint (64) bytessent; } // total bytes sent immediate mode
aligned(8) class hintrepeatedBytesSent extends Box ('drep') {
uint (64) bytessent; } // total bytes in repeated packets

© ISO/IEC 202x - All rights reserved 157

DIS 14496-12:202x

aligned(8) class hintminrelativetime extends Box('tmin') {
int (32) time; } // smallest relative transmission time,
milliseconds
aligned(8) class hintmaxrelativetime extends Box ('tmax') {
int (32) time; } // largest relative transmission time,
milliseconds
aligned(8) class hintlargestpacket extends Box('pmax') {
uint (32) bytes; } // largest packet sent, including RTP header
aligned(8) class hintlongestpacket extends Box('dmax') {
uint (32) time; } // longest packet duration, milliseconds

aligned(8) class hintpayloadID extends Box('payt') {

uint (32) payloadID; // payload ID used in RTP packets
uint (8) count;
char rtpmap string[count]; }

NOTE It is possible that not all these sub-boxes are present, and that there can be multiple hintmaxrate boxes,
covering different periods.

9.2 ALC/LCT and FLUTE hint track format

9.2.1 Overview

The file format supports multicast/broadcast delivery of files with FEC protection. Files to be delivered
are stored as items in a container file (defined by the file format) and the MetaBox is amended with
information on how the files are partitioned into source symbols. For each source block of a FEC encoding,
additional parity symbols can be pre-computed and stored as FEC reservoir items. The partitioning
depends on the FEC scheme, the target packet size, and the desired FEC overhead. Pre-composed source
symbols can be stored as File reservoir items to minimize duplicate information in the container file
especially with MBMS-FEC. The actual transmission is governed by hint tracks that contain server
instructions that facilitate the encapsulation of source and FEC symbols into packets.

FD hint tracks have been designed for the ALC/LCT (asynchronous layered coding/layered coding
transport) and FLUTE (file delivery over unidirectional transport) protocols. LCT provides transport
level support for reliable content delivery and stream delivery protocols. ALC is a protocol instantiation
of the LCT building block, and it serves as a base protocol for massively scalable reliable multicast
distribution of arbitrary binary objects. FLUTE builds on top of ALC/LCT and defines a protocol for
unidirectional delivery of files.

FLUTE defines a file delivery table (FDT), which carries metadata associated with the files delivered in
the ALC/LCT session, and provides mechanisms for in-band delivery and updates of FDT. In contrast,
ALC/LCT relies on other means for out-of-band delivery of file metadata, e.g. an electronic service guide
that is normally delivered to clients well in advance of the ALC/LCT session combined with update
fragments that can be sent during the ALC/LCT session.

File partitionings and FEC reservoirs can be used independently of FD hint tracks and vice versa. The
former aid the design of hint tracks and allow alternative hint tracks, e.g. with different FEC overheads,
to re-use the same FEC symbols. They also provide means to access source symbols and additional FEC
symbols independently for post-delivery repair, which may be performed over ALC/LCT or FLUTE or out-
of-band via another protocol. In order to reduce complexity when a server follows hint track instructions,
hint tracks refer directly to data ranges of items or data copied into hint samples.

It is recommended that a server sends a different set of FEC symbols for each retransmission of a file.

158 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The syntax for using the MetaBox as a container file for source files is defined in 8.10.4, partitions, file
and FEC reservoirs are defined in 8.13, while the syntax for FD hint tracks is defined in 9.2.

9.2.2 Design principles

The support for file delivery is designed to optimize the server transmission process by enabling
ALC/LCT or FLUTE servers to follow simple instructions. It is enough to follow one pre-defined sequence
of instructions per channel in order to transmit one session. The file format enables storage of pre-
computed source blocks and symbol partitionings, i.e., files may be partitioned into symbols which fit an
intended packet size, and pre-computing a certain amount of FEC-symbols that also can be used for post-
session repair. The file format also allows storage of alternative ALC/LCT or FLUTE transmission session
instructions that may lead to equivalent end results. Such alternatives may be intended for different
channel conditions because of higher FEC protection or even by using different error correction schemes.
Alternative sessions can refer to a common set of symbols. The hint tracks are flexible and can be used to
compose FDT fragments and interleaving of such fragments within the actual object transmission. Several
hint tracks can be combined into one or more sessions involving simultaneous transmission over multiple
channels.

It is important to make a difference between the definition of sessions for transmission and the
scheduling of such sessions. ALC/LCT and FLUTE server files only address optimization of the server
transmission process. In order to ensure maximal usage and flexibility of such pre-defined sessions, all
details regarding scheduling addresses, etc. are kept outside the definition of the file format. External
scheduling applications decide such details, which are not important for optimizing transmission
sessions per se. In particular, the following information is out-of-scope of the file format: time scheduling,
target addresses and ports, source addresses and ports, and so-called transmission session identifiers
(TSD).

The sample numbers associated with the samples of a file delivery hint track provide a numbered
sequence. Hint track sample times provide send times of ALC/LCT or FLUTE packets for a default bitrate.
Depending on the actual transmission bitrate, an ALC/LCT or FLUTE server may apply linear time scaling.
Sample times may simplify the scheduling process, but it is up to the server to send ALC/LCT or FLUTE
packets in a timely manner.

A schematic picture of a file containing three alternative hint tracks with different FEC overhead for a
source file is provided in Figure 1. In this example, each source block consists of only one sub-block.

© ISO/IEC 202x - All rights reserved 159

DIS 14496-12:202x

Storage Format of a single file

File item FEC reservoir item s

FEC for Src Block #1

‘ FEC for Src Block #2

track #1

»\ >(

(10 % FEC) Src Sym [0-5119] ‘ FEC Sym #1[0-511] ‘ Src Sym [5120 -10240] ‘ FEC Sym#2 [0-511] ‘
track #2
(~12% FEC) ‘ Src Sym [0-5119] ‘ FEC Sym #1 [0-614] ‘ Src Sym [5120 -10240] ‘ FEC Sym #2[0-614] ‘
track #3
Src Sym [0-5119] FEC Sym #1 [0-716] Src Sym [5120 -10240] FEC Sym #2[0-716]
arrey | | | H L

Figure 1 — Different FEC overheads of a source file provided by alternative hint tracks

The source file in Figure 1 is partitioned into 2 source blocks containing symbols of a fixed size. FEC
redundancy symbols are calculated for both source blocks and stored as FEC reservoir items. As the hint
tracks reference the same items in the file there is no duplication of information. The original source
symbols and FEC reservoirs can also be used by repair servers that don’t use hint tracks.

9.2.3 Sample entry format

9.2.3.1 Definition

FD hint tracks are tracks with handler type 'hint' and with the entry-format 'fdp ' in the
SampleDescriptionBox. The FD hint sample entry is contained in the SampleDescriptionBox.

9.2.3.2 Syntax

class FDHintSampleEntry () extends HintSampleEntry ('fdp ')
{

unsigned int (16) hinttrackversion = 1;
unsigned int (16) highestcompatibleversion = 1;
unsigned int (16) partition entry ID;
unsigned int (16) FEC overhead;
}
160 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

9.2.3.3 Semantics

partition entry ID indicates the partition entry in the FDItemInformationBox. A zero
value indicates that no partition entry is associated with this sample entry, e.g. for FDT. If the
corresponding FD hint track contains only overhead data this value should indicate the partition
entry whose overhead data is in question.

FEC overheadis a fixed 8.8 value indicating the percentage protection overhead used by the hint
sample(s). The intention of providing this value is to provide characteristics to help a server
select a session group (and corresponding FD hint tracks). If the corresponding FD hint track
contains only overhead data this value should indicate the protection overhead achieved by
using all FD hint tracks in a session group up to the FD hint track in question.

The hinttrackversion and highestcompatibleversion fields have the same interpretation
as in the RTP hint sample entry described in 9.1.2. As additional data a timescaleentry box may be
provided. If not provided, there is no indication given on timing of packets.

File entries needed for an FDT or an electronic service guide can be created by observing all sample
entries of a hint track and the corresponding item information boxes of the items referenced by the above
partition entry IDs. No sample entries shall be included in the hint track if they are not referenced by any
sample.

9.2.4 Sample format

9.2.4.1 Sample container
Each FD sample in the hint track will generate one or more FD packets.

Each sample contains two areas: the instructions to compose the packets, and any extra data needed
when sending those packets (e.g. encoding symbols that are copied into the sample instead of residing in
items for source files or FEC). The size of the sample is known from the sample size table.

aligned(8) class FDsample extends Box('fdsa')

{
FDPacketBox packetbox[]
ExtraDataBox extradata; //optional

}

Sample numbers of FD samples define the order they shall be processed by the server. Likewise,
FDpacketBoxes in each FD sample should appear in the order they shall be processed. If the
timescaleentry box is present in the FDHintSampleEntry, then sample times are defined and
provide relative send times of packets for a default bitrate. Depending on the actual transmission bitrate,
a server may apply linear time scaling. Sample times may simplify the scheduling process, but it is up to
the server to send packets in a timely manner.

9.2.4.2 Packet entry format

Each packet in the FD sample has the following structure (see IETF RFC 3926['4, IETF RFC 3450[*5], and
IETF RFC 3451116n:

© ISO/IEC 202x - All rights reserved 161

DIS 14496-12:202x

aligned(8) class FDpacketBox extends Box('fdpa')
{

LCTheaderTemplate LCT header info;

unsigned int (16) entrycountl;

LCTheaderExtension header extension constructors|[entrycountl];
unsigned int (16) entrycount?2;

dataentry packet constructors|[entrycount2];

}

The LCT header info contains LCT header templates for the current FD packet. Header extension
constructors are structures which are used for constructing the LCT header extensions. Packet
constructors are used for constructing the FEC payload ID and the source symbols in an FD packet.

9.2.4.3 LCT header template format

The LCT header template is defined as follows:

aligned(8) class LCTheaderTemplate

{
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

(1) sender current time present;
(1) expected residual time present;
(1) session close bit;

(1) object close bit;

(4) reserved;

(16) transport object identifier;

}

It can be used by a server to form an LCT header for a packet. Note that some parts of the header depend
on the server policy and are not included in the template. Some field lengths also depend on the LCT
header bits assigned by the server. The server may also need to change the value of the transport object
identifier (TOI).

9.2.4.4 LCT header extension constructor format

The LCT header extension constructor format is defined as follows:

aligned(8) class LCTheaderextension

{
unsigned int (8) header extension type;
if (header extension type > 127) {
unsigned int (8) content[3];

}
else {
unsigned int (8) length;
if (length > 0) {
unsigned int (8) content[(length*4) - 2];

}

A positive value of the length field specifies the length of the constructor content in multiples of 32 bit
words. A zero value means that the header is generated by the server.

The usage and rules for LCT header extensions are defined in IETF RFC 345102¢l (LCT RFC). The
header extension type contains the LCT header extension type (HET) value.

162 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

HET values between 0 and 127 are used for variable-length (multiple 32-bit word) extensions. HET
values between 128 and 255 are used for fixed length (one 32-bit word) extensions. If the
header extension type is smaller than 128, then the length field corresponds to the LCT header
extension length (HEL) as defined in IETF RFC 3451116l The content field always corresponds to the
header extension content (HEC).

NOTE A server can identify packets including FDT by observing whether EXT_FDT (header extension type ==
192) is present.

9.2.4.5 Packet constructor format

There are various forms of the constructor. Each constructor is 16 bytes in order to make iteration easier.
The first byte is a union discriminator. The packet constructors are used to include FEC payload ID as
well as source and parity symbols in an FD packet.

aligned(8) class FDconstructor (type)
{
unsigned 1int(8) constructor type = type;

}

aligned(8) class FDnoopconstructor extends FDconstructor (0)
{

unsigned int (8) pad[15];
}

aligned(8) class FDimmediateconstructor extends FDconstructor (1)
{

unsigned int (8) count;

unsigned int (8) data[count];

unsigned int (8) pad[l4 - count];
}

aligned(8) class FDsampleconstructor extends FDconstructor (2)
{
signed int (8) trackrefindex;
unsigned int (16) length;
unsigned int (32) samplenumber;
unsigned int (32) sampleoffset;
unsigned int (16) bytesperblock = 1;
unsigned int (16) samplesperblock = 1;
}

aligned(8) class FDitemconstructor extends FDconstructor (3)

{

unsigned int (16) item ID;

unsigned int (16) extent index;

unsigned int (64) data offset; //offset in byte within extent

unsigned int (24) data length; //non-zero length in bytes within extent

or
//1if (data length==0) rest of extent

© ISO/IEC 202x - All rights reserved 163

DIS 14496-12:202x

aligned(8) class FDitemconstructorLarge extends FDconstructor (5)
{
unsigned int
unsigned int
unsigned int
unsigned int
or

item ID;
extent index;
data offset; //offset in byte within extent

32
32
64
24) data_length; //non-zero length in bytes within extent

A,\,\,\
—_— — — ~—

//if (data_length==0) rest of extent
}

aligned(8) class FDxmlboxconstructor extends FDconstructor (4)

{

unsigned int (64) data offset; //offset in byte within XMLBox or
BinaryXMLBox

unsigned int (32) data length;

unsigned int (24) reserved;

9.2.4.6 Extra data box

Each sample of an FD hint track may include extra data stored in an ExtraDataBox:

aligned(8) class ExtraDataBox extends Box('extr') {
FECInformationBox feci;
bit (8) extradatall];

9.2.4.7 FEC information box

9.2.4.7.1 Definition

Box Type: 'feci'
Container: ExtraDataBox
Mandatory: No

Quantity: Zero or One

The FECInformationBox stores FEC encoding ID, FEC instance ID and FEC payload ID which are
needed when sending an FD packet.

9.2.4.7.2 Syntax

aligned(8) class FECInformationBox extends Box('feci')
{
unsigned int
unsigned int
unsigned int
unsigned int

) FEC_encoding ID;

6) FEC instance_ ID;

6) source block number;
6

8
1
1
16) encoding symbol ID;

o~~~ —~

}
9.2.4.7.3 Semantics
FEC encoding ID identifies the FEC encoding scheme and is subject to IANA registration (see

IETF RFC 5052), in which (i) value zero corresponds to the "Compact No-Code FEC scheme" also
known as "Null-FEC" (IETF RFC 3695[171); (ii) value one corresponds to the “MBMS FEC”

164 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

(3GPP TS 26.3461291); (iii) for values in the range of 0 to 127, inclusive, the FEC scheme is Fully-
Specified, whereas for values in the range of 128 to 255, inclusive, the FEC scheme is Under-
Specified.

FEC instance ID provides a more specific identification of the FEC encoder being used for an
Under-Specified FEC scheme. This value should be set to zero for Fully-Specified FEC schemes
and shall be ignored when parsing a file with FEC_encoding_ID in the range of 0 to 127, inclusive.
FEC_instance_ID is scoped by the FEC_encoding_ID. See IETF RFC 5052 for further details.

source block number identifies from which source block of the object the encoding symbol(s)
in the FD packet are generated.

encoding symbol ID identifies which specific encoding symbol(s) generated from the source
block are carried in the FD packet.

9.3 MPEG-2 transport hint track format

9.3.1 Overview

MPEG-2 TS (transport stream) is a stream multiplex which can carry one or more programs, consisting
of audio, video and other media. The file format supports the storage of MPEG-2 TS in a hint track. An
MPEG-2 TS hint track can be used for both storage of received TS packets (as a reception hint track), and
as a server hint track used for the generation of an MPEG-2 TS.

The MPEG-2 TS hint track definition supports so-called “precomputed hints”. Precomputed hints make
no use of including data by reference from other tracks, but rather MPEG-2 TS packets are stored as such.
This allows reusing the MPEG-2 TS packets stored in a separate file. Furthermore, precomputed hints
facilitate simple recording operation.

In addition to precomputed hint samples, it is possible to include media data by reference to media tracks
into hint samples. Conversion of a received transport stream to media tracks allows existing players
compliant with earlier versions of the ISO base media file format to process recorded files as long as the
media formats are also supported. Storing the original transport headers retains valuable information for
error concealment and the reconstruction of the original transport stream.

9.3.2 Design principles

9.3.2.1 General principles

The design principles of the MPEG-2 TS hint track format are as follows.

A sequence of samples in an MPEG-2 TS hint track is a set of precomputed and constructed MPEG-2 TS
packets. Precomputed packets are TS packets which are stored unchanged in the case of reception or will
be sent as is. This is especially important where data cannot be de-multiplexed and elementary streams
cannot be created - e.g. when the transport stream is encrypted and is not allowed to be stored decrypted.
Therefore, it is necessary to be able to store the MPEG-2 TS as such in a hint track. Constructed packets
use the same approach as RTP hint tracks, i.e., the sample contains instructions for a streaming server to
construct the packet. The actual media data is contained in other tracks. A track reference of type 'hint'
is used.

9.3.2.2 Reusing existing transport streams

It was desired to reuse existing TS instances and therefore an additional mechanism exists to cover a
wide variety of existing TS recordings. These recordings may consist not only of TS packets but have
preceding or trailing data with each TS packet. A specific case for preceding data is a 4-byte timestamp in
front of each TS packet to remove the jitter of a transmission system. A specific case for trailing data is
the addition of FEC when a TS packet is transmitted over an error-prone channel.

© ISO/IEC 202x - All rights reserved 165

DIS 14496-12:202x

9.3.2.3 Timing

MPEG-2 TS defines a single clock for each program, running at 27MHz, which sampling value is
transported as PCRs in the TS for clock recovery. The timescale of MPEG-2 TS Hint Tracks is
recommended to be 90000, or an integer division or multiple thereof.

The decoding time of a sample in a MPEG-2 TS Hint Track is the reception/transmission time of the first
bit of that packet or packet group which is recommended to be derived from the PCR timestamps of the
TS, since if the PCR times are used, piece-wise linearity can be assumed and the 'stts' table compacts
sensibly. The optional TSTimingBox in the sample entry can be used to signal whether reception timing
with or without clock recovery was used when the hint track is a reception hint track. In the case of a
server hint track PCR timing is assumed.

NOTE When there are multiple packets in a sample, they cannot be given independent transmission time offsets.

9.3.2.4 Packet grouping

The sample format for MPEG-2 Transport Stream Hint Tracks allows multiple TS packets in one sample.
Specific applications, such as some IPTV applications, convey TS packets in an RTP stream. Only one
reception timestamp can be derived for all TS packets carried in one RTP packet. Another application for
storing multiple TS packets in a sample is SPTSs, where a sample contains all the TS packets for a GoP. In
this case every sample is a random access point.

NOTE random-access to every TS packet is not possible by the means of the file format if multiple TS packets per
sample are used.

In the case of an MPTS only one packet per sample should be used. This facilitates the use of the sample
group mechanism on a per-packet basis.

9.3.2.5 Random-access points

A sync sample is a point at which processing of a track may begin without error. Both MPTS and SPTS are
supported by MPEG-2 TS Hint Tracks, however a random access point that is marked as a sync sample is
normally only defined for SPTS, where it specifies the beginning of a packet that contains the first byte of
an independently decodable media access unit (e.g. MPEG-2 video [-frames or MPEG-4 AVC IDR pictures)
of a stream that uses differential coding. For MPTS, the SyncSampleBox is normally present but empty,
indicating that there is no point in the track at which processing of the entire track may begin without
error. It is recommended that the PSI/SI be in the sample entry so that true random-access with just the
media data is possible.

NOTE 1 in the case of an MPTS, the SyncSampleBox is present but empty (which means essentially that no sample
is a sync sample).

Note also that in case of an SPTS, samples including multiple TS packets should have a sync point (e.g.
GoP boundary) at the start of a sample. The SyncSampleBox then marks the samples the sync points
(e.g. the start of GoPs); if the SyncSampleBox is absent, all the samples are sync points. If the
SyncSampleBox is present but empty, the sync sample positions are unknown and may be not at the
start of samples.

NOTE 2 An application searching for a key frame can start reading at that location, but in general it also has to read
further MPEG-2 TS packets (regarding the file format these are subsequent samples) so that the decoder can decode a
complete frame.

166 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

9.3.2.6 Application as a reception hint track

Reception hint tracks may be used when one or more packet streams of data are recorded. They indicate
the order, reception timing, and contents of the received packets among other things.

NOTE 1 Players can reproduce the packet stream that was received based on the reception hint tracks and process the
reproduced packet stream as if it was newly received.

Reception hint tracks have the same structure as hint tracks for servers.

The format of the reception hint samples is indicated by the sample entry for the reception hint track.
Each protocol has its own reception hint sample format and name.

Servers using reception hint tracks as hints for sending of the received streams should handle the
potential degradations of the received streams, such as transmission delay jitter and packet losses,
gracefully and ensure that the constraints of the protocols and contained data formats are obeyed
regardless of the potential degradations of the received streams.

NOTE 2 As with server hint tracks, the sample formats of reception hint tracks can enable construction of packets by
pulling data out of other tracks by reference. These other tracks can be hint tracks or media tracks. The exact form of
these pointers is defined by the sample format for the protocol, but in general they consist of four pieces of information:
a track reference index, a sample number, an offset, and a length. Some of these can be implicit for a particular protocol.
These 'pointers' always point to the actual source of the data, i.e., indirect data referencing is disallowed. If a hint track
is built 'on top’ of another hint track, then the second hint track will need to have direct references to the media track(s)
used by the first where data from those media tracks is placed in the stream.

If received data is extracted to media tracks, the de-hinting process must ensure that the media streams
are valid, i.e. the streams must be error-free (which requires e.g. error concealment).

A sample with a size of zero is permitted in reception hint tracks, and such samples may be ignored.
9.3.3 Sample entry format

9.3.3.1 Definition

The sample entry for an MPEG2-TS reception hint track contains all static metadata that describe the
stream or a portion thereof, especially the PSI/SI tables. MPEG-2 TS reception hint tracks use an entry-
format in the sample entry of ' rm2t ' (which indicates MPEG-2 transport stream). The entry-format for
MPEG2-TS server hint tracks is 'sm2t"'.

The static metadata documents e.g. PSI/SI tables. The presence of static metadata is optional. When
present, the static metadata shall be valid for the MPEG2-TS packets it describes. Consequently, if a piece
of static metadata changes in the stream, a new sample entry is needed for the first sample at or after the
change. If static metadata is not present in the sample entry, structures, such as PSI/SI tables, stored in
the MPEG2-TS packets are valid and the stream must be scanned in order to find out which values of
static metadata are valid for a particular sample.

9.3.3.2 Syntax

class MPEG2TSReceptionSampleEntry () extends MPEG2TSSampleEntry (rm2t”)
{
}

class MPEG2TSServerSampleEntry () extends MPEG2TSSampleEntry (sm2t’)
{
}

© ISO/IEC 202x - All rights reserved 167

DIS 14496-12:202x

class MPEG2TSSampleEntry (name)

{

uint (16) hinttrackversion = 1;
uint (16) highestcompatibleversion = 1;
uint (8) precedingbyteslen;
uint (8) trailingbyteslen;
uint (1) precomputed only flag;
uint (7) reserved;
}
9.3.3.3 Semantics

extends HintSampleEntry (name)

hinttrackversion is currently 1; the highestcompatibleversion field specifies the oldest
version with which this track is backward-compatible.

precedingbyteslen indicates the number of bytes that are preceding each MPEG2-TS packet
(which may e.g. be a time-code from an external recording device).

trailingbyteslen indicates the number of bytes that are at the end of each MPEG2-TS packet
(which may e.g. contain checksums or other data that was added by a recording device).

precomputed only flag indicates whether the associated samples are purely precomputed if

setto 1;

additionaldata is a set of boxes. This set can contain boxes that describe one common version
of the PSI/SI tables by means of the PATBox or the PMTBox or other data, e.g. boxes that are
only valid for a sample (which contains multiple packets) and describe the initial conditions of
the STC or boxes that define the content of the preceding or trailing data. There shall be at most
one of each of PATBox, TSTimingBox, InitialSampleTimeBox present within

additionaldata

The following optional boxes for additionaldata are defined:

")

aligned(8) class PATBox extends Box ('tPAT')
{
uint (3) reserved;
uint (13) PID;
uint (8) sectiondatal];
}
aligned(8) class PMTBox extends Box ('tPMT')
{
uint (3) reserved;
uint (13) PID;
uint (8) sectiondatal];
}
aligned(8) class ODBox extends Box ('tOD
{
uint (3) reserved;
uint (13) PID;
uint (8) sectiondatal];
}
168

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

aligned(8) class TSTimingBox extends Box ('tsti')

{

}

uint (1) timing derivation method;
uint (2) reserved;
uint (13) PID;

aligned(8) class InitialSampleTimeBox extends Box ('istm')

{

}

uint (32) initialsampletime;
uint (32) reserved;

The PATBox contains the section data of the PAT and each PMTBox contains the section data of one of
the PMTs.

In the case of an SPTS, it is strongly recommended that the PMTBox is presentin the additionaldata.
If the PMT is not present in the sample data, then it shall be present in the additionaldata. If the
PMTRox is present, it shall be the PMT for the program contained in the sample data (although the
recorded stream may contain other programs and be an MPTS).

PIDis the PID of the MPEG2-TS packets from which the data was extracted. In the case of the PATBox
this value is always 0.

sectiondata extends to the end of the box and is the complete MPEG2-TS table, containing the
concatenated sections, of an identical version number.

initialsampletime specifies the initial value of the sample times in case the sample times do not
start from 0. Unlike media tracks, MPEG-2 TS hint track usually have sample times not starting
from 0, e.g. PCR times and reception times. Since 'stts' only stores the delta between sample

times, this field is required for reconstructing the original sample times:
OriginalSampleTime (n) = initialsampletime + STTS (n).

In case PCR times are used for sample times, the reconstructed sample time can be used to initialize
the STC when the sample is randomly accessed. Note that this field may need to be updated after
editing.

timing derivation method is a flag which specifies the method which was used to set the
sample time for a given PID. The values for timing derivation method are as follows:

0x0 reception time: the sample timing is derived from the reception time. It is not guaranteed
that the STC was recovered for derivation of the reception time.

0x1 piecewise linearity between PCRs: the sample time is derived from a reconstructed STC for
this program. Piecewise linearity between adjacent PCRs is assumed and all TS packets in
the samples have a constant duration in this range.

9.3.4 Sample format

9.3.4.1 Definition

Each sample of an MPEG-2 TS Hint track consists of a set of

pre-computed packets: one or more MPEG-2 TS packets with the associated headers and trailers

constructed packets: instructions to compose one or more MPEG2-TS packets with the associated
headers and trailers by pointing to data of another track.

© ISO/IEC 202x - All rights reserved 169

DIS 14496-12:202x

Each MPEG-2 TS packet in the sample may be preceded with a preheader (precedingbytes), or
followed by a posttrailer (trailingbytes), as detailed in the sample entry Format. The size of the
preheader and the posttrailer are specified by precedingbyteslen and trailingbyteslen,
respectively, in the sample entry to allow compact sample tables with fewer chunks.

[t is possible for a mixture of precomputed and constructed samples to occur in the same track. If padding
of the transport stream packet is required, this can be accomplished with the adaptation fieldor
explicitly by using the MPEG2TSImmediateConstructor as appropriate.

NOTE1 The number of MPEG-2 TS packets in the sample can be derived from the sample size table directly if the
sample consists of pre-computed packets only, which is a conclusion if the precomputed only flag inthe sample
entry is set. The number of MPEG-2 TS packets in the sample can be variable or restricted, e.g. extensions of this

document can define a sample to contain exactly one packet.

NOTE 2 Itis possible to compact common sequences of bytes in transport packets by including those bytes in one or
more packets directly for example in their precedingbytes or trailingbytes section, and then using the
MPEG2TSSampleConstructor in other places to refer to them; this is especially relevant for runs of OxFF bytes.

9.3.4.2 Syntax

// Constructor format

aligned(8)

{
uint (8)
}

aligned(8)

{
uint (8)
uint (8)
}

aligned(8)

{

uint (8)
uint (16
uint (32
uint (32
}
170

constructor type

immediatedatalen;
data[immediatedatalen];

sampledatalen;
trackrefindex;
samplenumber;
sampleoffset;

abstract class MPEG2TSConstructor (uint(8) type)

class MPEG2TSImmediateConstructor
extends MPEG2TSConstructor (1)

class MPEG2TSSampleConstructor
extends MPEG2TSConstructor (2)

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

// Packet format
aligned(8) class
{

MPEG2TSPacketRepresentation

uint (8) precedingbytes|[precedingbyteslen];
uint (8) sync byte;

ISO/IEC 14496-12:202x

if (sync byte == 0x47) {
uint (8) packet[187];
} else if (sync byte == 0x00 || sync byte == 0x01) {
uint (8) headerdatalen;
uint (4) reserved;
uint (4) num_constructors;
bit (1) transport error indicator;
bit (1) payload unit start indicator;
bit (1) transport priority;
bit (13) PID;
bit (2) transport scrambling control;
bit (2) adaptation field control;
bit (4) continuity counter;
if (sync byte == 0x00 && (adaptation field control == "10" ||
adaptation field control == "117)) {
uint (8) adaptation field[headerdatalen-3];

}

MPEG2TSConstructor constructors [num constructors];

} else if (sync byte == O0xFF) {
// implicit null packet that has been removed

}

uint (8) trailingbytes|[trailingbyteslen];

}
// Sample format
aligned(8) class
{

MPEG2TSSample

MPEG2TSPacketRepresentationsample[];

}

9.3.4.3 Semantics

precedingbytes contains any extra data preceding the packet, typically provided by the recording
device. For example, this may include a timestamp.

sync byter: if this value is 0x47, then the packet representation contains a transport stream
packet (a precomputed reception hint track sample), with the remaining bytes following in the
field packet. The values 0x00 and 0x01 are used for constructed packet representation(s). If
MPEG2TSSampleConstructor is used to construct packet representation(s), it points to a track
indexed by trackrefindex in the TrackReferenceBox with reference type 'hint'. If this
value is OxFF, it implies that a null packet has been removed at this position. All other values are
currently reserved.

trackrefindex indexes in the TrackReferenceBox with reference type 'hint' to indicate
with which media track the current sample is associated. The samplenumber and
sampleoffset fields in the MPEG2TSSampleConstructor point into this media track. The
trackrefindex starts from value 1. The value 0 is reserved for future use.

packet: The MPEG-2 TS packet, apart from the sync byte (0x47).

The MPEG2TSConstructor array is a collection of one or more constructor entries, to allow for
multiple access units in one transport stream packet. An MPEG2TSImmediateConstructor
can contain, amongst others, the PES header. An MPEG2TSSampleConstructor references
data in the associated media track. The sum of headerdatalen and the datalen fields of all

© ISO/IEC 202x - All rights reserved

171

DIS 14496-12:202x

constructors of an MPEG2TSPacket shall be equal to the length of the transport stream packet
being constructed, minus 1 byte, which is 187.

trailingbytes contains any extra data following the packet. For example, this may include a
checksum.

samplenumber indicates the sample within the referred track contained in the packet and
sampleoffset indicates the starting byte position of the referred media sample contained in
the packet of which sampledatalen bytes are included. sampleoffset starts from value 0.

immediatedatalen indicates the number of bytes within the field data that are included in the
sample rather than data being included into the sample by reference to a media track.

headerdatalen indicates the length of the TS packet header (without the sync byte) in bytes. This
field has the value 3 if the adaptation field is not present or the value
(adaptation field length+3),whereadaptation field lengthisthe firstoctet
of the structure adaptation field as defined inISO/IEC 13818-1[1].

Neither the format of precedingbytes nor trailingbytes are defined by this document.

The remaining fields (transport error indicator, payload unit start indicator,
transport priority, PID, transport scrambling control,
adaptation field control, continuity counter, adaptation field) of the sample
structure contain a copy of the packet header of the TS packet, as defined in in ISO/IEC 13818-111l.

9.3.5 Protected MPEG 2 transport stream hint track

9.3.5.1 Overview

This subclause defines a mechanism for marking media streams as protected. This works by changing the
four character code of the SampleEntry, and appending boxes containing both details of the protection
mechanism and the original four character code. However, in this case the track is not protected; it is an
‘in the clear’ hint track which contains protected data. This subclause describes how hint tracks should
be marked as carrying protected data, using a similar mechanism, and utilizing the same boxes.

9.3.5.2 Syntax

class ProtectedMPEG2TransportStreamSampleEntry
extends MPEG2TSSampleEntry ('pm2t')
{

ProtectionSchemeInfoBox SchemeInformation;

}
9.3.5.3 Semantics
The ProtectionSchemeInfoBox (defined in 13.4.2) shall contain details of the protection scheme

applied. This shall include the OriginalFormatBox which shall contain the original sample entry type
of the MPEG2TSSampleEntry.

172 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

9.4 RTP, RTCP, SRTP and SRTCP reception hint tracks
9.4.1 RTP reception hint track

94.1.1 Overview

This subclause specifies the reception hint track format for the real-time transport protocol (RTP), as
defined in IETF RFC 3550017,

RTP is used for real-time media transport over the Internet Protocol. Each RTP stream carries one media
type, and one RTP reception hint track carries one RTP stream. Hence, recording of an audio-visual
program results into at least two RTP reception hint tracks.

The design of the RTP reception hint track format follows as much as possible the design of the RTP server
hint track format. This design should ensure that RTP packet transmission operates very similarly
regardless whether it is based on RTP reception hint tracks or RTP server hint tracks. Furthermore, the
number of new data structures in the file format was consequently kept as small as possible.

The format of the RTP reception hint tracks allow storing of the packet payloads in the hint samples, or
converting the RTP packet payloads to media samples and including them by reference to the hint
samples, or combining both approaches. As noted earlier, conversion of received streams to media tracks
allows existing players compliant with earlier versions of the ISO base media file format to process
recorded files as long as the media formats are also supported. Storing the original RTP headers retains
valuable information for error concealment and the reconstruction of the original RTP stream. It is noted
that the conversion of packet payloads to media samples may happen "off-line" after recording of the
streams in precomputed RTP reception hint tracks has been completed.

9.4.1.2 Sample entry format

The entry-format in the sample entry for the RTP reception hint tracks is 'rrtp'. The syntax of the
sample entry is the same as for RTP server hint tracks having the entry-format 'rtp .

class ReceivedRtpHintSampleEntry () extends HintSampleEntry ('rrtp')
{

uint (16) hinttrackversion = 1;
uint (16) highestcompatibleversion = 1;
uint (32) maxpacketsize;

}

The entry-format identifier in the sample entry of the RTP reception hint track is different from the entry-
format in the sample entry of the RTP server hint track, in order to avoid using an RTP reception hint
track that contains errors as a valid server hint track.

The additionaldata set of boxes may include the timescaleentry and timeoffset boxes.
Moreover, the additionaldata may contain a timestamp synchrony box.

The timescaleentry box shall be present and the value of timescale shall be set to match the clock
frequency of the RTP timestamps of the stream captured in the reception hint track.

The timeoffset may be present. If the t imeoffset box is not present, the value of the field offset
is inferred to be equal to 0. The value of the field of £set is used for the derivation of the RTP timestamp,
as specified in 9.4.1.4.

© ISO/IEC 202x - All rights reserved 173

DIS 14496-12:202x

RTP timestamps typically do not start from zero, especially if an RTP receiver 'tunes' into a stream. The
timeoffset box should therefore be present in RTP reception hint tracks and the value of offset in
the timeoffset box should be set equal to the first RTP timestamp of the RTP stream in reception order.

Zero or one timestampsynchrony boxes may be present in the additionaldata of the sample
entry for a RTP reception hint track. If a timestampsynchrony box is not present, the value of
timestamp sync is inferred to be equal to 0.

class timestampsynchrony () extends Box('tssy')

{
unsigned int (6) reserved;
unsigned int (2) timestamp sync;

timestamp sync equal to 0 indicates that the RTP timestamps of the present RTP reception hint
track derived from Formula 1 (in 9.4.1.4) may or may not be synchronized with RTP timestamps
of other RTP reception hint tracks.

timestamp_ sync equal to 1 indicates that the RTP timestamps of the present RTP reception hint
track derived from Formula 1 (in 9.4.1.4) reflect the received RTP timestamps exactly (without
corrected synchronization to any other RTP reception hint track).

timestamp_ sync equal to 2 indicates that RTP timestamps of the present RTP reception hint
track derived from Formula 1 (in 9.4.1.4) are synchronized with RTP timestamps of other RTP
reception hint tracks.

When timestamp sync is equal to 0 or 1, a player should correct the inter-stream synchronization
using stored RTCP sender reports. When timestamp sync is equal to 2, the media contained in the
RTP reception hint tracks can be played out synchronously according to the reconstructed RTP
timestamps without synchronization correction using RTCP Sender Reports. If it is expected that the RTP
reception hint track will be used for re-sending the recorded RTP stream, it is recommended that
timestamp sync be setequal to 0 or 1, because the stored RTCP sender reports can be reused.

timestamp sync equal to 3 is reserved.
The value of timestamp_sync shall be identical for all RTP reception hint tracks present in a file.

When RTCP is also stored, using an RTCP hint track, the timestamp relationship between the RTP and
RTCP hint tracks can only be maintained if the RTP timestamps are anchored by using a set time offset
("tsro') in the RTP track, and hence the time offset is mandatory if RTCP is stored in an RTCP hint track.

Zero or one ReceivedSsrcBox identified with the four-character code ' rssr ' shall be present in the
additionaldata of a sample descriptor entry of a RTP reception hint track:

class ReceivedSsrcBox extends Box('rssr')

{
unsigned int (32) SSRC

}

The SSRC value shall equal the SSRC value in the header of all recorded SRTP packets described by the
sample entry.

174 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

9.4.1.3 Sample format

The sample format of RTP reception hint tracks is identical to the syntax of the sample format of the RTP
server hint tracks. Each sample in the reception hint track represents one or more received RTP packets.
If media frames are not both fragmented and interleaved in an RTP stream, it is recommended that each
sample represents all received RTP packets that have the same RTP timestamp, i.e., consecutive packets
in RTP sequence number order with a common RTP timestamp.

Each RTP reception hint sample contains two areas: the instructions to compose the packet, and any extra
data needed for composing the packet, such as a copy of the packet payload. The size of the sample is
known from the sample size table.

Since the reception time for the packets may vary, this variation can be signalled for each packet as
specified subsequently.

A sample with a size of zero is permitted in reception hint tracks, and such samples may be ignored.

9.4.14 Packetentry format
Each packetin the packet entry table has same structure as for server (transmission) hint tracks, in 9.1.3.2.

Where 1 is the sample number of a sample, the sum of the sample time DT(i) as specified in 8.6.1.2 and
relative time indicates the reception time of the packet. The clock source for the reception time is
undefined and may be, for instance, the wall clock of the receiver. If the range of reception times of a
reception hint track overlaps entirely or partly with the range of reception times of another reception
hint track, the clock sources for these hint tracks shall be the same.

It is recommended that receivers may use a constant value for sample delta in the decoding
TimeToSampleBox as much as reasonable and smooth out packet scheduling and end-to-end delay
variation by setting relative time adaptively in stored reception hint samples. This arrangement of
setting the values of sample delta and relative time can facilitate a compact decoding
TimeToSampleBox. In this case timestamp sync is set to 1, the sample durations are mostly
constant, and the timeoffset is stored in the sample entry.

The values of RTP version, P bit, X bit, CSRC count, M bit, payload type, and
RTPsequenceseed shall be set equal to the V, P, X, CC, M, PT and sequence number fields of the RTP
packet captured in the sample.

The fields bframe flagand repeat flag arereserved in reception hint tracks and shall be zero.

The semantics of extra flagandextra information length areidentical to those of specified
for the RTP server hint tracks.

The following TLV boxes are specified: rtphdrextTLV, rtpoffsetTLV, receivedCSRC.

If the X bit is set a single rtphdrextTLV box shall be present for storing the received RTP header
extension.

aligned(8) class rtphdrextTLV extends Box ('rtpx') {
unsigned int (8) datal];
}

data is the raw RTP header extension which is application-specific.

The syntax of the rtpoffsetTLV box is specified in 9.1.3.2.

© ISO/IEC 202x - All rights reserved 175

DIS 14496-12:202x

offset indicates a 32-bit signed integer offset to the RTP timestamp of the received RTP packet. Leti be
the sample number of a sample, DT(i) be equal to DT as specified in 8.6.1.2 for sample number i,
tsro.offset bethevalue of offsetin the timeoffset box of the referred reception hint sample entry,
and % be the modulo operation. The value of o f fset shall be such that Formula (1) is true:

RTPtimestamp = (DT, + tsro.offset + offset) mod2* €))

NOTE 1 When each reception hint sample represents all received RTP packets that have the same RTP timestamp, the
value of sample delta inthe decoding TimeToSampleBox can be set to match the RTP timestamp. In other words,
DT(i), as specified above, can be set equal to (the RTP timestamp - tsro.offset - offset) (assuming that the
resulting value is greater than or equal to 0). This is recommended.

NOTE 2 RTP timestamps do not necessarily increase as a function of RTP sequence number in all RTP streams, i.e.,
transmission order and playback order of packets might not be identical. For example, many video coding schemes
allow bi-prediction from previous and succeeding pictures in playback order. As samples appear in tracks in their
decoding order, i.e., in reception order in case of RTP reception hint tracks, of fset in the rtpof fsetTLV box can be
used to warp the RTP timestamp away from the sample time DT(i).

For the purpose of edits in EditListBoxes, the composition time of a received RTP packet is inferred
to be the sum of the sample time DT(i) and of fset as specified above.

If the value of CSRC_count is not equal to zero, a receivedCSRC box may be present for storing the
received CSRC header fields for each RTP packet. The receivedCSRC box is identified with the four-
character code 'rcsr'.

aligned(8) class receivedCSRC extends Box ('rcsr')

{
unsigned int (32) CSRC[]; //to end of the box

}

The number of entries in CSRC [] equals the CC value of received SRTP packets. The nth entry of CSRC []
shall equal the nt» CSRC value of the RTP packet header.

9.4.1.5 SDP information

Both movie and track SDP information may be present, as specified in 9.1.4.
9.4.2 RTCP reception hint track

94.2.1 Overview

This subclause specifies the reception hint track format for the real-time control protocol (RTCP), defined
in IETF RFC 35500171,

RTCP is used for real-time transport of control information for an RTP session over the Internet Protocol.
During streaming, each RTP stream typically has an accompanying RTCP stream that carries control
information for the RTP stream. One RTCP reception hint track carries one RTCP stream and is associated
to the corresponding RTP reception hint track through a track reference.

The format of the RTCP reception hint tracks allows the storage of RTCP Sender Reports in the hint
samples.

The RTCP sender reports are of particular interest for stream recording, because they reflect the current
status of the server, e.g. the relationship of the media timing (RTP timestamp of audio/video packets) to

176 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

the server time (absolute time in NTP format). Knowledge of this relationship is also necessary for
playback of recorded RTP reception hint tracks to be able to detect and correct clock drift and jitter.

The timestampsynchrony box as specified in 9.4.1.2 makes it possible to correct clock drift and jitter
before playing a file, and therefore recording of RTCP streams is optional when timestamp_sync is equal
to 2.

There is no server hint track equivalent for the RTCP reception hint track, since RTCP messages are
generated on-the-fly during transmission.

9.4.2.2 General

There shall be zero or one RTCP reception hint track for each RTP reception hint track. An RTCP reception
hint track shall contain a TrackReferenceBox including a reference of type 'cdsc' to the associated
RTP reception hint track.

When i is the sample number of a sample, the sample time DT(i) as specified in 8.6.1.2 indicates the
reception time of the packet. The clock source for the reception time shall be the same as for the
associated RTP reception hint track. The value of timescale in the MediaHeaderBox of an RTCP
reception hint track shall be equal to the value of timescale inthe MediaHeaderBox of the associated
RTP reception hint track.

9.4.2.3 Sample entry format

The entry-format in the sample entry for the RTCP reception hint tracks is 'rtcp'. It is otherwise
identical in structure to the sample entry format for RTP. There are no defined boxes for the
additionaldata field.

9.4.2.4 Sample format

9.4.2.4.1 Overview

Each sample in the reception hint track represents one or more received RTCP packets. Each sample
contains two areas: the raw RTCP packets and any extra data needed. The size of the sample is known
from the sample size table, and that the size of an RTCP packet is indicated within the packet itself (as
documented in IETF RFC 3550[171), as a count one less than the number of 32-bit words in that packet.

9.4.2.4.2 Syntax

aligned(8) class receivedRTCPpacket

{
unsigned int (8) datall;

}

aligned(8) class receivedRTCPsample

{
unsigned int (16) packetcount;
unsigned int (16) reserved;
receivedRTCPpacket packets[packetcount];

© ISO/IEC 202x - All rights reserved 177

DIS 14496-12:202x

9.4.2.4.3 Semantics

data contains a raw RTCP packet including the RTCP report header, the 20-byte sender information
block and any number of report blocks. The size of each RTCP packet is known by parsing the 16-
bit length field of the RTCP header.

packetcount indicates the number of received RTCP packets contained in the sample.

packets contains the received RTCP packets.

9.4.3 SRTP reception hint track

9.4.3.1 Overview

When reception hint tracks are used to store secure real-time transport protocol (SRTP) streams, as
defined in IETF RFC 3711, the formats in this subclause shall be used.

SRTP is a secure extension of the real-time media transport (RTP) over the internet protocol. Each SRTP
stream carries one media type, and one SRTP reception hint track carries one SRTP stream. Hence,
recording of an audio-visual program results into at least two SRTP reception hint tracks.

The design of the SRTP reception hint track format follows the design of RTP reception hint tracks and
reuses most of the framework provided by RTP reception hint tracks. The major difference between RTP
and SRTP reception hint tracks is that the actual media payload is stored in an encrypted form for SRTP
reception hint tracks, whereas it is unencrypted for RTP reception hint tracks. SRTP reception hint tracks
provide additional boxes to store information necessary to decrypt encrypted content on playback.
Additionally, all header fields of the SRTP packet header shall be stored with the payload, as this
information is necessary to check the integrity of the received data. SRTP reception hint tracks are
commonly used together with SRTCP reception hint tracks.

SRTP reception hint tracks may, for example, be used to store protected mobile TV content.

9.4.3.2 Sample entry format

9.4.3.2.1 Sample entry

The sample entry format for SRTP reception hint tracks is identical to that for RTP reception hint tracks
with the exception that the sample entry name is changed from 'rrtp' to 'rsrp' and that it may

contain additional boxes:

class ReceivedSrtpHintSampleEntry () extends HintSampleEntry ('rsrp')
{

uint (16) hinttrackversion = 1;
uint (16) highestcompatibleversion = 1;
uint (32) maxpacketsize;

}

Fields and boxes are identical to those of the ReceivedRtpHintSampleEntry ('rrtp'). The
addtionaldata[] of each sample entry of a SRTP reception hint track shall contain exactly one
ReceivedSsrcBox.

Additionally, the additionaldata[] may contain the ReceivedCryptoContextIdBox and the
RolloverCounterBox defined below. Furthermore, an SRTPProcessBox shall also be included as
one of the additionaldata boxes. As the content is stored encrypted, the integrity and the encryption
algorithm fields in the SRTP Process box specify the algorithm that was applied to the received stream.

178 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

An entry of four spaces ($20$20$20$20) may be used to indicate that the algorithm is defined by means
outside the scope of this document.

9.4.3.2.2 Received cryptographic context ID box

Zero or one ReceivedCryptoContextIdBox, identified with the four-character code 'ccid', may
be present in the additionaldata of a sample descriptor entry of an SRTP reception hint track.
Information to recover the cryptographic context for the received SRTP stream may be stored here.

aligned(8) class ReceivedCryptoContextIdBox extends Box ('ccid')
{
unsigned int (16) destPort;
unsigned int(8) ip version;
switch (ip version) {
case 4: // IPv4
unsigned int (32) destIP;
break;
case 6: // IPv6
unsigned int (64) destIP;
break;

}

The destPort and destIP parameters contain the port number and the IP address (as present in the
received IPv4 or IPv6 packages), respectively, of the SRTP session via which the recorded SRTP packets
were received. ip version contains either 4 or 6 representing IPv4 or IPv6, respectively.

9.4.3.2.3 Rollover counter box

Zero or one RolloverCounterBox, identified with the four-character code 'sroc', may be present
in the additionaldata of a sample descriptor entry of an SRTP reception hint track. Typically, the
rollover counter value changes every 65536 SRTP package.

aligned(8) class RolloverCounterBox extends Box ('sroc') {
unsigned int(32) rollover counter;

}

The rollover counter is a non-zero integer that gives the value of the ROC field for all associated
received SRTP packets.

NOTE The rollover counter (ROC) is an element of the cryptographic context of a SRTP stream and depends on the
absolute position of a packet in an RTP stream. Knowledge of the ROC value is necessary in order to decrypt a received
SRTP packet. It is optional to use the Rol1loverCounterBox as IETF RFC 47711221 defines as an optional mechanism
to signal the ROC value explicitly in the authentication tag of a SRTP package.

9.4.3.3 Sample and packet entry format

Both, sample format and packet entry format for SRTP reception hint tracks are identical to those of RTP
reception hint tracks, defined in 9.4.1.3 and 9.4.1.4. The packet payload is stored as received in the SRTP
packets, i.e., all information received in the SRTP packet excluding the header or, in other words, the
encrypted payload together with the key identifier (MKI) and the authentication tag.

If the value of CSRC_count is not equal to zero for a received SRTP packet, the extra data tlv
corresponding to this receivedSRTPpacket shall contain exactly one receivedCSRC box.

© ISO/IEC 202x - All rights reserved 179

DIS 14496-12:202x

9.4.4 SRTCP reception hint tracks

9.4.4.1 Overview

When reception hint tracks are used to store secure real-time control protocol (SRTCP) streams, as
defined in IETF RFC 3711, the formats in this subclause shall be used.

SRTCP is used for real-time transport of control information for a SRTP session over the Internet Protocol.
SRTCP takes for SRTP the role that RTCP takes for RTP, in comparison to 9.4.2. During streaming, each
SRTP stream typically has an accompanying SRTCP stream that carries control information for the SRTP
stream. One SRTCP reception hint track carries one SRTCP stream and is associated to the corresponding
SRTP reception hint track through a track reference.

The format of the SRTCP reception hint tracks allows the storage of SRTCP Packets in the hint samples,
e.g. of SRTCP Sender Reports.

The SRTCP Sender Reports are of particular interest for stream recording, because they reflect the
current status of the server, e.g. the relationship of the media timing (SRTP timestamp of audio/video
packets) to the server time (absolute time in NTP format). Knowledge of this relationship is also
necessary for playback of recorded SRTP reception hint tracks in order to be able to detect and correct
clock drift and jitter.

The timestampsynchrony box as specified in 9.4.1.2 makes it possible to correct clock drift and jitter
before playing a file, and therefore recording of SRTCP streams is optional.

There is no server hint track equivalent for the SRCTP reception hint track, since SRTCP messages are
generated on-the-fly during transmission.

9.4.4.2 General

There shall be zero or one SRTCP reception hint track for each SRTP reception hint track. An SRTCP
reception hint track shall contain a TrackReferenceBox including a reference of type 'cdsc' to the
associated SRTP reception hint track.

When i is the sample number a sample, the sample time DT(i) as specified in 8.6.1.2 indicates the
reception time of the packet. The clock source for the reception time shall be the same as for the
associated SRTP reception hint track. The value of timescale in the MediaHeaderBox of an SRTCP
reception hint track shall be equal to the value of t imescale inthe MediaHeaderBox of the associated
SRTP reception hint track.

9.4.4.3 Sample entry format

The entry-format in the sample entry for the SRTCP reception hint tracks is 'stcp"'. It is otherwise
identical in structure to the sample entry format for RTCP. The encryption and authentication method of
the SRTCP hint tracks are defined by the respective entries in SRTPProcessBox of the corresponding
SRTP hint track.

NOTE An equivalent to the ROC boxes defined for SRTP is not necessary for SRTCP, as the SRTCP packet contains an
explicitly signalled initialization vector.

9.4.4.4 Sample format

Sample format is the sample format for RTCP reception hint tracks as defined in 9.4.2.4.

180 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

9.4.5 Protected RTP reception hint track

9.4.5.1 Overview

This document defines a mechanism for marking media streams as protected. This works by changing
the four character code of the SampleEntry, and appending boxes containing both details of the protection
mechanism and the original four character code. However, in this case the track is not protected; it is an
‘in the clear’ hint track which contains protected data. This subclause describes the how reception hint
tracks should be marked as carrying protected data, using a similar mechanism, and utilizing the same
boxes.

9.4.5.2 Syntax

Class ProtectedRtpReceptionHintSampleEntry
extends RtpReceptionHintSampleEntry ('prtp')
{

ProtectionSchemeInfoBox SchemeInformation;

}

9.4.5.3 Semantics

The ProtectionSchemeInfoBox shall contain details of the protection scheme applied. This shall
include the OriginalFormatBox which shall contain the four character code 'rrtp' (the four
character code of the original ReceivedRtpHintSampleEntry).

9.4.6 Recording procedure

See Annex H.

9.4.7 Parsing procedure

See Annex H.

10 Sample groups
10.1 Random access recovery points

10.1.1 Definition

In some coding systems it is possible to random access into a stream and achieve correct decoding after
having decoded a number of samples. This is known as gradual decoding refresh. For example, in video,
the encoder might encode intra-coded macroblocks in the stream, such that it knows that within a certain
period the entire picture consists of pixels that are only dependent on intra-coded macroblocks supplied
during that period.

Samples for which such gradual refresh is possible are marked by being a member of one of these groups.
The definition of the groups allows the marking to occur at either the beginning of the period or the end.
However, when used with a particular media type, the usage of these groups may be restricted to marking
only one end (i.e. restricted to only positive or negative roll values). A roll-group is defined as that group
of samples having the same roll distance.

The roll groups have the following semantics.

© ISO/IEC 202x - All rights reserved 181

DIS 14496-12:202x

A VisualRollRecoveryEntry documents samples that enable entry points into streams that are
alternatives to sync samples.

An AudioRollRecoveryEntry documents the pre-roll distance required in audio streams in which
every sample can be independently decoded, but the decoder output is only assured to be correct after
pre-rolling by the indicated number of samples.

An AudioPreRollEntry documents samples that enable entry points into streams that are
independently decodable and are thus alternatives to sync samples. It should be used with audio streams
in which not every sample can be independently decoded; decoding can only start at an independently
decodable sample and decoder output is only assured to be correct after pre-rolling by the indicated
number of samples.

The roll distance shall be a positive value. Decoding starts at a member sample, but decoder output
is only assured to be correct after decoding the indicated number of samples.

10.1.2 Syntax

class VisualRollRecoveryEntry () extends VisualSampleGroupEntry ('roll')
{

signed int (16) roll distance;

}

class AudioRollRecoveryEntry () extends AudioSampleGroupEntry ('roll'")
{
signed int (16) roll distance;

}

class AudioPreRollEntry () extends AudioSampleGroupEntry ('prol')
{
signed int (16) roll distance;

}

10.1.3 Semantics

roll distance isasigned integer that gives the number of samples that need to be decoded in
order for a sample to be decoded correctly. A positive value indicates the number of samples
after the sample that is a group member that need to be decoded such that at the last of these
recovery is complete, i.e. the last sample is correct. A negative value indicates the number of
samples before the sample that is a group member that need to be decoded in order for
recovery to be complete at the marked sample. The value zero shall not be used; the samples
with zero roll distance can be signalled by other signaling mechanisms such as the sync
sample information, the 'rap ' sample grouping and the 'sap ' sample grouping.

10.2 Rate share groups

10.2.1 Overview

Rate share instructions are used by players and streaming servers to help allocating bitrates dynamically
when several streams share a common bandwidth resource. The instructions are stored in the file as
sample group description entries and apply when scalable or alternative media streams at different
bitrates are combined with other scalable or alternative tracks. The instructions are time-dependent as
samples in a track may be associated with different sample group description entries. In the simplest case,
only one target rate share value is specified per media and time range as illustrated in Figure 2.

182 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Ra
| |
Vv l :
| |
| |
| |
| |
| |
| |
| |
| |
A
| |
| |
| | _
i i Tt
l¢ |
1~ . il
I

Key

t Time

R Audio/Video Rate Share (%)

V Video

A Audio

i interval where higher audio rate is required

Figure 2 — Audio/Video rate share as function of time

In order to accommodate for rate share values that vary with the available bitrate, it is possible to specify
more than one operation range. One may for instance indicate that audio requires a higher percentage
(than video) at low available bitrates. Technically this is done by specifying two operation points as
shown in Figure 3.

© ISO/IEC 202x - All rights reserved 183

DIS 14496-12:202x

Ra

v

BR

Key

BR Available bitrate

R Audio Rate Share (%)

A region where higher audio rate is required
B region where lower audio rate is required
OP1 operation point 1

OP2 operation point 2

Figure 3 — Audio rate share as function of available bitrate

Operation points are defined in terms of total available bandwidth. For more complex situations it is
possible to specify more operation points.

In addition to target rate share values, it is also possible to specify maximum and minimum bitrates for a
certain media, as well as discard priority.

10.2.2 Rate share sample group description entry

10.2.2.1 Definition

Each sample of a track may be associated to (zero or) one of a number of sample group descriptions, each
of which defines a record of rate-share information. Typically the same rate-share information applies to
many consecutive samples and it may therefore be enough to define two or three sample group
descriptions that can be used at different time intervals.

The grouping type 'rash' (short for rate share) is defined as the grouping criterion for rate share
information. Zero or one SampleToGroupBoxes for the grouping type 'rash' canbe contained in
the SampleTableBox ofa track. It shall reside in a hint track, if a hint track is used, otherwise in a media
track.

Target rate share may be specified for several operation points that are defined in terms of the total
available bitrate, i.e., the bitrate that should be shared. If only one operation point is defined, the target
rate share applies to all available bitrates. If several operation points are defined, then each operation
point specifies a target rate share. Target rate share values specified for the first and the last operation
points also specify the target rate share values at lower and higher available bitrates, respectively. The

184 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

target rate share between two operation points is specified to be in the range between the target rate
shares of those operation points. One possibility is to estimate with linear interpolation.

10.2.2.2 Syntax

class RateShareEntry () extends SampleGroupDescriptionEntry('rash')

{

}

unsigned int (16) operation point count;

if (operation point count == 1) {
unsigned int (16) target rate share;

}

else {

for (1i=0; 1 < operation point count; i++) {
unsigned int (32) available bitrate;
unsigned int (16) target rate share;
}
}
unsigned int (32) maximum bitrate;
unsigned int(32) minimum bitrate;
unsigned int(8) discard priority;

10.2.2.3 Semantics

operation point count isanon-zero integer that gives the number of operation points.

available bitrate isa positive integer that defines an operation point (in kilobits per second).
[t is the total available bitrate that can be allocated in shares to tracks. Each entry shall be greater
than the previous entry.

target rate share is an integer. A non-zero value indicates the percentage of available
bandwidth that should be allocated to the media for each operation point. The value of the first
(last) operation point applies to lower (higher) available bitrates than the operation point itself.
The target rate share between operation points is bounded by the target rate shares of the
corresponding operation points. A zero value indicates that no information on the preferred rate
share percentage is provided.

maximum bitrate is an integer. A nonzero value indicates (in kilobits per second) an upper
threshold for which bandwidth should be allocated to the media. A higher bitrate than maximum
bitrate should only be allocated if all other media in the session has fulfilled their quotas for target
rate-share and maximum bitrate, respectively. A zero value indicates that no information on
maximum bitrate is provided.

minimum bitrate is an integer. A nonzero value indicates (in kilobits per second) a lower
threshold for which bandwidth should be allocated to the media. If the allocated bandwidth
corresponds to a smaller value, then no bitrate should be allocated. Instead preference should be
given to other media in the session or alternate encodings of the same media. Zero minimum
bitrate indicates that no information on minimum bitrate is provided.

discard priority isan integer indicating the priority of the track when tracks are discarded
to meet the constraints set by target rate share, maximum bitrate and minimum bitrate. Tracks
are discarded in discard priority order and the track that has the highest discard priority value
is discarded first.

10.2.3 Relationship between tracks

The purpose of defining rate share information is to aid a server or player extracting data from a track in
combination with other tracks. Note that a server/player streams/plays tracks simultaneously if they
belong to different alternate groups and can switch between tracks that belong to the same switch group

© ISO/IEC 202x - All rights reserved 185

DIS 14496-12:202x

within an alternate group. By default, all tracks are served/played simultaneously if no alternate groups
are defined.

Rate share information should be provided for each track. A track that does not include rate share
information has one operation point and can be treated as a constant-bitrate track with discard priority
128. Target rate share, minimum and maximum bitrates do not apply in this case.

Tracks that are alternates to each other shall (at each instance of time) define the same number of
operation points at the same set of total available bitrates and have the same discard priorities. Note that
the number and definition of operation points may depend on time. Alternate tracks may have different
target rate shares, minimum and maximum bitrates.

10.2.4 Bitrate allocation

Rate share information on maximum bitrate, minimum bitrate, and target rate share can be combined for
a track. If this is the case, the target rate share shall be applied to find an allocated bitrate before the
impact of the maximum and minimum bitrates is considered.

When allocating bandwidth to several tracks, the following considerations apply:

1. Inthe case all tracks have explicit target rate share values and they don’t sum up to 100 per cent, treat
them as weights, i.e., normalize them.

The total allocation shall not exceed total available bitrate.
In a choice between alternate tracks, the chosen track should be the track that causes the alternate

group to have an allocation most closely in accord with its target rate share, or the track that desires
the highest bitrate that can be allocated without discarding other tracks (see below).

Tracks must have an allocation between their minimum and maximum bitrates, or be discarded.

5. Tracks should have an allocation in accord with their target rate shares, but this may be distorted to
allow some tracks to achieve their minima, or in case some have reached their maxima.

6. If an allocation cannot be done including a track from every alternate group, then tracks should be
discarded in discard priority order.

7. The allocation must be re-calculated whenever the operating set for an active track (one that has been
selected from an alternate group) changes or the available bitrate changes.

10.3 Alternative startup sequences

10.3.1 Definition

An alternative startup sequence contains a subset of samples of a track within a certain period starting
from a sync sample or a sample marked by 'rap ' sample grouping, which are collectively referred to
as the initial sample below. By decoding this subset of samples, the rendering of the samples can be
started earlier than in the case when all samples are decoded.

An 'alst' sample group description entry indicates the number of samples in any of the respective
alternative startup sequences, after which all samples should be processed.

Either version 0 or version 1 of the SampleToGroupBox may be used with the alternative startup
sequence sample grouping. If version 1 of the SampleToGroupBox is used, the same algorithm to
derive alternative startup sequences should be used consistently for a particular value of
grouping type parameter.

186 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

A player utilizing alternative startup sequences can operate as follows. First, an initial sync sample from
which to start decoding is identified by wusing the SyncSampleBox, the
sample is non sync sample flag for samples enclosed in track fragments, or the 'rap ' sample
grouping. Then, if the initial sync sample is associated to a sample group description entry of type
'alst' where roll count is greater than 0, the player can use the alternative startup sequence. The
player then decodes only those samples that are mapped to the alternative startup sequence until the
number of samples that have been decoded is equal to rol1 count. After that, all samples are decoded.

10.3.2 Syntax

class AlternativeStartupEntry () extends VisualSampleGroupEntry ('alst')
{
unsigned int (16) roll count;
unsigned int(16) first output sample;
for (i=1; i <= roll count; i++)
unsigned int (32) sample offset[[i]];
Jj=1;
do { // optional, until the end of the structure
unsigned int (16) num output samples[[]j]];
unsigned int (16) num total samples[[J]];
J++;

}

10.3.3 Semantics

roll count indicates the number of samples in the alternative startup sequence. If rol1 count
is equal to 0O, the associated sample does not belong to any alternative startup sequence and the
semantics of first output sample are unspecified. The number of samples mapped to this
sample group description entry per one alternative startup sequence shall be equal to
roll count.

first output sample indicates the index of the first sample intended for output among the
samples in the alternative startup sequence. The index of the sync initial sample starting the
alternative startup sequence is 1, and the index is incremented by 1, in decoding order, per each
sample in the alternative startup sequence.

sample offset[i] indicates the decoding time delta of the i-th sample in the alternative startup
sequence relative to the regular decoding time of the sample derived from the
TimeToSampleBox or the TrackFragmentHeaderBox. The sync initial sample starting the
alternative startup sequence is its first sample.

num_output samples[j] andnum total samples[j] indicate the sample output rate
within the alternative startup sequence. The alternative startup sequence is divided into k
consecutive pieces, where each piece has a constant sample output rate which is unequal to that
of the adjacent pieces. The first piece starts from the sample indicated by
first output sample.num output samples[]j] indicates the number of the output
samples of the j-th piece of the alternative startup sequence. num total samples[]]
indicates the total number of samples, including those that are not in the alternative startup
sequence, from the first sample in the j-th piece that is output to the earlier one (in composition
order) of the sample that ends the alternative startup sequence and the sample that
immediately precedes the first output sample of the (j+1)th piece.

© ISO/IEC 202x - All rights reserved 187

DIS 14496-12:202x

10.3.4 Examples

Hierarchical temporal scalability (e.g. in AVC and SVC) improves compression efficiency but increases the
decoding delay due to reordering of the decoded pictures from the (de)coding order to composition order.
When the temporal hierarchy is deep and the operation speed of the decoder is limited (to no faster than
real-time processing), the initial delay from the start of the decoding to the start of rendering is
substantial and may affect the end-user experience negatively.

Figure 4 illustrates a typical hierarchically scalable bitstream with five temporal levels. Figure 4a shows
the example sequence in composition order. Values enclosed in boxes indicate the frame_num value of
the picture. Values in italics indicate a non-reference picture while the other pictures are reference
pictures. Figure 4b shows the example sequence in decoding order. Figure 4c shows the example
sequence in composition order when assuming that the composition timeline coincides with that of the
decoding timeline and the decoding of one picture lasts one picture interval. It can be seen that playback
of the stream starts five picture intervals later than the decoding of the stream started. If the pictures
were sampled at 25 Hz, the picture interval is 40 msec, and the playback is delayed by 0.2 sec.

188 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

a) 4 FIIJFI FIIJFI mum Fluﬁl ﬂuﬁl Wluml %IIJWI FIIJFI
3 4 5 7 8 12 13 15 16
2 B [¢] [11]
o [o] [] [¢]
b) 4 5]5] |66} gls] |9]9] 13[13] [14]14] 16{16] [17]17]
3 4 5] 7 B 12 13} 15 16}
2 3 [s] 11 [14]
1 2 10
o [B
c) 4 FIIJFI mum mum Flul?l Wluﬁl Wluml Wluﬁl WIIJWI
3 4 5 7 8 12 13 15 16
2 [5] B [¢] [11]
0 [o] [1] [¢]
Key

a) Example sequence in output order
b) Example sequence in decoding order
c) Example sequence at decoder output (delay outout order)

Horizontal grid denotes picture intervals, vertical grid denotes temporal level

Boxes denote frames with their respective frame numbers, where bold numbers are reference pictures
and italic numbers are non-reference pictures

Figure 4 — Decoded picture buffering delay of an example sequence with five temporal levels

Thanks to the temporal hierarchy, it is possible to decode only a subset of the pictures at the beginning
of the sequence. Consequently, rendering can be started faster but the displayed picture rate is lower at
the beginning. In other words, a player can make a trade-off between the duration of the initial startup
delay and the initial displayed picture rate. Figure 5 and Figure 6 show two examples of alternative
startup sequences where a subset of the bitstream of Figure 4 is decoded.

The samples selected for decoding and the decoder output are presented in Figure 5a and Figure 5b,
respectively. The reference picture having frame_num equal to 4 and the non-reference pictures having
frame_num equal to 5 are not decoded. In this example, the rendering of pictures starts four picture
intervals earlier than in Figure 4. When the picture rate is 25 Hz, the saving in startup delay is 160 msec.
The saving in the startup delay comes with the disadvantage of a lower displayed picture rate at the
beginning of the bitstream.

© ISO/IEC 202x - All rights reserved 189

DIS 14496-12:202x

13|13

14| 14

16|16

17|17

12

11

10

Lo]

15

m

a) 4 6] 6] glsl [9]9]
3 5 7
2 3 [
1 2
0 [o]1
b) 4
3
2 [5] [¢]
: [2]
0 [o]
Key

a) Processing of the example sequence
b) Example sequence at decoder output

[4]

[4]

Figure 5 — An example of an alternative startup sequence

DR EENENEREERERNR DA
B O O & _ & B _E

[s]

In the example of Figure 6, another way of selecting the pictures for decoding is presented. The decoding
of the pictures that depend on the picture with frame_num equal to 3 is omitted and the decoding of non-
reference pictures within the second half of the first group of pictures is omitted too. The decoded picture
resulting from the sample with frame_num equal to 2 is the first one that is output. As a result, the output
picture rate of the first group of pictures is half of normal picture rate, but the display process starts two
frame intervals (80 msec in 25 Hz picture rate) earlier than in the conventional solution illustrated in

Figure 4.

190

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

a) 4 13]13| [14]74] 16{16] |17]17|
3 7] 8] 12 13} 15 16}
2 6 11 [14]
1 2 10
0 [o]1 [9]
b) 4 [1s] [8] [[14 [1e] [1el [[+4
3 E @ E [
: 0 [
: [2]
0 [] B
Key

a) Processing of the example sequence
b) Example sequence at decoder output

Figure 6 — Another example of an alternative startup sequence

10.4 Random access point (RAP) sample group

10.4.1 Definition

Open random-access points can be marked by being a member of this group. Samples marked by this
group shall be random access points, and may also be sync points (i.e. it is not required that samples
marked by the sync sample information be excluded).

10.4.2 Syntax

class VisualRandomAccessEntry () extends VisualSampleGroupEntry ('rap ')

{
unsigned int(l) num leading samples known;
unsigned int (7) num leading samples;

}

10.4.3 Semantics

num_ leading samples known equalto 1indicates that the number of leading samples is known
for each sample in this group, and the number is specified by num_leading_samples.

num leading samples specifies the number of leading samples for each sample in this group.
When num_leading_samples_known is equal to 0, this field should be ignored.

10.5 Temporal level sample group

10.5.1 Definition

Many video codecs support temporal scalability where it is possible to extract one or more subsets of
frames that can be independently decoded. A simple case is the extraction of [frames for a bitstream with
a regular I-frame interval, e.g, IPPPIPPP..., where every *th picture is an I frame. Also subsets of these I
frames can be extracted for even lower frame rates. More elaborate situations with several temporal
levels can be constructed using hierarchical B or P frames.

© ISO/IEC 202x - All rights reserved 191

DIS 14496-12:202x

The temporal level sample grouping (' tele') provides a codec-independent sample grouping that can
be used to group samples in a track (and potential track fragments) according to temporal level, where
samples of one temporal level have no coding dependencies on samples of higher temporal levels. The
temporal level equals the sample group description index (taking values 1, 2, 3, etc). The bitstream
containing only the samples from the first temporal level to a higher temporal level remains conforming
to the coding standard.

A grouping according to temporal level facilitates easy extraction of temporal subsequences, for instance
using the Subsegment IndexBox in 8.16.4.

10.5.2 Syntax

class TemporallevelEntry() extends VisualSampleGroupEntry('tele')

{
bit (1) level independently decodable;
bit (7) reserved=0;

}

10.5.3 Semantics
The temporal level of samples in a sample group equals to the sample group description index.

level independently decodable isa flag. 1 indicates that all samples of this level have no
coding dependencies on samples of other levels. 0 indicates that no information is provided.

10.6 Stream access point sample group
10.6.1 Definition

A stream access point, as defined in Annex I, enables random access into a container of media stream(s).
The SAP sample grouping identifies samples (the first byte of which is the position Isay for a SAP as
specified in Annex I) as being of the indicated SAP type.

The syntax and semantics of grouping type parameter are specified as follows.

unsigned int (28) target layers;
unsigned int(4) layer id method idc;

target layers specifies the target layers for the indicated SAPs according to Annex I. The
semantics of target layers depends on the value of layer id method idc.When
layer id method idcisequalto0,target layersisreserved.

layer id method idc specifies the semantics of target layers.layer id method idc
equal to 0 specifies that the target layers consist of all the layers represented by the track.
layer id method idc notequalto 0 is specified by derived media format specifications.

192 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

10.6.2 Syntax

class SAPEntry() extends SampleGroupDescriptionEntry('sap ')
{

unsigned int (1) dependent flag;

unsigned int (3) reserved;

unsigned int (4) SAP type;
}

10.6.3 Semantics

reserved shall be equal to 0. Parsers shall allow and ignore all values of reserved.

dependent flag shall be 0 for non-layered media. dependent flag equal to 1 specifies that
the reference layers, if any, for predicting the target layers may have to be decoded for accessing
a sample of this sample group. dependent flag equal to 0 specifies that the reference layers,
if any, for predicting the target layers need not be decoded for accessing any SAP of this sample
group.

sap type values equal to 0 and 7 are reserved; sap type values in the range of 1 to 6, inclusive,
specify the SAP type, as specified in Annex |, of the associated samples (for which the first byte
of a sample in this group is the position Isay).

10.7 Sample-to-item sample group
10.7.1 Definition

Samples of a track can be linked to one or more metadata items using the sample-to-item sample grouping.
The MetaBox containing the referred items is resolved as specified in the semantics below.

The sample-to-item sample grouping is allowed for any types of tracks, and its syntax and semantics are
unchanged regardless of the track handler type.

In the absence of this sample group, the entire track-level MetaBox, if any, is applicable to every sample.
10.7.2 Syntax

class SampleToMetadataltemEntry ()
extends SampleGroupDescriptionEntry ('stmi')
{
unsigned int(32) meta box handler type;
unsigned int(32) num items;
for (i = 0; 1 < num items; i++) {
unsigned int(32) item id[[i]];

}

10.7.3 Semantics
meta box handler type informs about the type of metadata schema used by the MetaBox
which is referenced by the items in this sample group. When there are multiple MetaBoxes

with the same handler types, the MetaBox referred to in this sample group description entry is
the first MetaBox fulfilling one of the following ordered constraints:

- A MetaBox included in the current track, with handler type equal to
meta box handler type.

© ISO/IEC 202x - All rights reserved 193

DIS 14496-12:202x

- A MetaBox included in MovieBox, with handler type equal to
meta box handler type.

- A MetaBox included in the root level of the file, with handler type equal to
meta box handler type.

num_items counts the number of items referenced by this sample group.
item id[1i] specifies the item ID value of anitem thatapplies to or is valid for the sample
mapped to this sample group description entry.

10.8 Dependent random access point (DRAP) sample group

10.8.1 Definition

The DRAP sample group documents some or all of the DRAP samples in a track. A dependent random
access point (DRAP) sample is a sample after which all samples in decoding order and in output order
can be correctly decoded if the closest SAP sample of type 1, 2, or 3 preceding the DRAP sample is
available for reference..

NOTE 1 The closest SAP sample can be a sync sample or marked by the SAP sample group.

NOTE 2 DRAP samples can only be used in combination with SAP samples of type 1, 2 and 3. This is in order to enable the
functionality of creating a decodable sequence of samples by concatenating the preceding SAP sample with the DRAP sample
and the samples following the DRAP sample decoding order and in output order

The following applies for any DRAP sample sampleA that is mapped to a DRAP sample group:

— Let sampleSeqg be a sequence of samples consisting of the following samples in the order listed
below:
o the closest preceding SAP sample of type 1, 2, or 3,
o sampled, and
o all samples following sampleA in both decoding and output order in the track.

— For each sample sampleB in sampleSegq, all data needed for processing sampleB shall be
accessible in the referenced sample entry, in sampleB itself, or in any sample that precedes
sampleB in decoding order and is present in sampleSeq.

NOTE 3 For some video codecs, all data needed for processing a sample sampleB includes parameter sets needed for
decoding sampleB.

10.8.2 Syntax

class VisualDRAPEntry () extends VisualSampleGroupEntry('drap')

{
unsigned int (3) DRAP_ type;
unsigned int (29) reserved = 0;

}

10.8.3 Semantics

DRAP_type is a non-negative integer. When DRAP type is in the range of 1 to 3, it indicates the
SAP type (as specified in Annex I) of a sample that is othewise like the DRAP sample but does
depend on the closest preceding SAP. Other type values are reserved.

194 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

reservedshall be equal to 0. The semantics of this subclause only apply to sample group description
entries with reserved equal to 0. Parsers shall allow and ignore sample group description
entries with reserved greater than 0 when parsing this sample group.

10.9 Pixel Aspect Ratio Sample Grouping

10.9.1 Definition

The Pixel Aspect Ratio sample group ('pasr') may be used to signal the pixel aspect ratio of samples in
a video track, when the pixel aspect ratio of the samples within a track change dynamically and a single
value in a PixelAspectRatioBox in a sample entry, specified in 12.1.4 cannot therefore be used.

When the Pixel Aspect Ratio sample group is used in a track, the Pixel1AspectRatioBox shall not be
present in any sample entry of that track.

10.9.2 Syntax

class PixelAspectRatioEntry () extends VisualSampleGroupEntry ('pasr')

{
unsigned int (32) hSpacing;
unsigned int (32) vSpacing;

}

10.9.3 Semantics

hSpacing, vSpacing: define the relative width and height of a pixel as defined for the
PixelAspectRatioBoxin12.1.4

10.10Clean Aperture Sample Grouping

10.10.1 Definition

The Clean Aperture sample group ('casg') may be used to signal the clean aperture of samples in a
video track, when the clean aperture of the samples within a track change dynamically and a single value
ina CleanApertureBox in a sample entry, specified in 12.1.4 cannot therefore be used.

When the Clean Aperture sample group is used in a track, the CleanApertureBox shall not be present
in any sample entry of that track.

10.10.2 Syntax

class CleanApertureEntry () extends VisualSampleGroupEntry ('casg')

{
signed int (32) cleanApertureWidthN;
signed int (32) cleanApertureWidthD;

signed int (32) cleanApertureHeightN;
signed int (32) cleanApertureHeightD;

signed int (32) horizOffN;
signed int (32) horizOffD;

signed int (32) vertOffN;
signed int (32) vertOffD;

© ISO/IEC 202x - All rights reserved 195

DIS 14496-12:202x

10.10.3 Semantics

cleanApertureWidthN, cleanApertureWidthD, cleanApertureHeightN,
cleanApertureHeightD, horizOffN, horizOffD, vertOffN and vertOffD define the
clean aperture width, height and horizontal and vertical offsets of the clean aperture center as defined
for the CleanApertureBoxin 12.1.4

10.11 EDRAP sample group

10.11.1 Definition

The EDRAP sample group documents some or all of the EDRAP samples in a track. This sample group is
similar to the DRAP sample group as specified in subclause 10.8; however, it enables signalling additional
samples that can also be used for random access that have more flexible dependencies.

NOTE1 A DRAP sample is always an EDRAP sample.

The following applies for any EDRAP sample sampleA that is mapped to an EDRAP sample group:

— Let sampleSeqbe a sequence of samples consisting of the following samples in the order of the
bullets below:

o the SAP or EDRAP samples identified by ref sap or edrap idx deltal[i] foriin
therange of 0 to num ref sap or edrap samples minusl,inclusive, in decoding
order,
sampleA, and
all samples following sampleAa in both decoding and output order in the track.

— For each sample sampleB in sampleSegq, all data needed for processing sampleB shall be
accessible in the referenced sample entry, in sampleB itself, or in any sample that precedes
sampleB in decoding order and is present in sampleSeq.

NOTE 2 For some video codecs, all data needed for processing a sample sampleB includes parameter sets needed for
decoding sampleB.

10.11.2 Syntax

class VisualEdrapEntry () extends VisualSampleGroupEntry('edrp')
{
unsigned int(3) edrap type;
unsigned int(3) num ref sap or edrap samples minusl;
unsigned int (2) reserved = 0;
for (i=0; i<=num ref sap or edrap samples minusl; i++) {
unsigned int(16) ref sap or edrap idx deltal[i]];

}

10.11.3 Semantics

edrap type is a non-negative integer. When edrap type is in the range of 1 to 3 it indicates the
SAP type (as specified in Annex I) of a sample that is othewise like the EDRAP sample but
does depend on the closest preceding SAP or other EDRAP samples. Other values of
edrap type are reserved.

196 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

NOTE 1 An EDRAP sample and all the subsequent samples in the same track may depend on the closest preceding
SAP and/or some preceding EDRAP samples and does not depend on any other samples preceding the EDRAP
sample. Therefore, if the encoder chooses to encode an EDRAP sample such that it does not depend on the closest
preceding SAP or any preceding EDRAP sample, then the EDRAP sample becomes a SAP.

num ref sap or edrap samples minusl plus 1 indicates the number of samples in the
required preceding SAP or EDRAP samples as defined in subclause 3.1.7, which are earlier in
decoding order than the EDRAP sample and are needed for reference to be able to correctly
decode the EDRAP sample and all samples following the EDRAP sample in both decoding and
output order when starting decoding from the EDRAP sample.

NOTE 2 For an EDRAP sample that is also a DRAP sample, the value of
num_ref sap or)edrap samples minusl isequal to 0.

reserved shall be equal to 0. The semantics of this subclause only apply to sample group
description entries with reserved equal to 0. Parsers shall ignore sample group description
entries when reserved is greater than 0.

ref sap or edrap idx deltal[i] indicates the i-th required preceding SAP or EDRAP
sample of the current EDRAP sample. Let the list of SAP or EDRAP samples associated with a
SAP sample of type 1, 2 or 3 be the SAP sample and all the EDRAP samples following the SAP
sample and preceding the next SAP sample, when present. The SAP_or_EDRAP sample index is
defined as the index to this list of SAP or EDRAP samples. The value of
ref sap or edrap idx delta[i] isequal to the difference between the SAP_or_EDRAP
sample index of the current EDRAP sample and the SAP_or_EDRAP sample index of the i-th
required preceding SAP or EDRAP sample. The value 1 indicates that the i-th required SAP or
EDRAP sample is the last SAP or EDRAP sample preceding this EDRAP sample in decoding
order, the value 2 indicates that the i-th required SAP or EDRAP sample is the second last
EDRAP sample preceding this EDRAP sample in decoding order, and so on.

10.12 Essential descriptions hierarchy sample grouping

10.12.1 Definition

When an essential sample group (i.e, a sample group for which the version of the
SampleGroupDescriptionBox is equal to 3), which describes essential information for the
associated samples, is used, parsers can only attempt to process tracks for which there are no
unrecognized sample group descriptions marked as essential.

The essential descriptions hierarchy sample group ('esgh') indicates the processing order of the
essential sample group descriptions or reserved transformation values applying to a given sample. This
sample group description is an essential sample group description and shall use version 3 of the
SampleGroupDescriptionBox. It shall be present if at least one essential sample group description
with grouping type other than 'esgh' is present.

Each essential sample group description, except the essential descriptions hierarchy sample group itself,
shall be listed in the EssentialDescriptionsHierarchyEntry.

The grouping type paramater for an essential descriptions hierarchy sample group description is not
defined, and its value shall be set to 0.

The syntax of EssentialDescriptionsHierarchyEntry is the same for all media types.

Samples associated with essential sample groups shall use a restricted sample entry indicating the
original media type (e.g. 'resv', 'resa') witha scheme type equalto 'essg'. The original

© ISO/IEC 202x - All rights reserved 197

DIS 14496-12:202x

sample entry type prior to any transformation is stored within an OriginalFormatBox contained in
the RestrictedSchemeInfoBox.

For a restricted sample entry with a scheme_type equal to 'essg", the following applies:

- The restricted sample entry shall contain a single RestrictedSchemeInfoBox (with a
scheme type equalto 'essg').

- The payload of the SchemeInformationBox consists of zero or more
RestrictedSchemeInfoBox containing no OriginalFormatBox, with at most one
occurrence of a given scheme type.

- The payload of the SchemeInformationBox of the 'essg' transformation shall not contain
aRestrictedSchemeInfoBox with scheme type equalto 'essg'.

The transformations given in sample group description type are listed in the order in which a file
reader shall apply each transformation: any sample processing described by a sample group of type
sample group description type[i] shall be applied before any sample processing described by a
sample group of type sample group description type[i+1].

When a sample mapped to an essential descriptions hierarchy sample group description entry, with
sample group description type [SG; ... SGy], is not mapped to a sample group description with
grouping type SG;or doesn’t containa ProtectionSchemeInfoBox OraRestrictedSchemeInfoBox
with a scheme type equal to SG;, the processing described by SG; is ignored for this sample.

In the sample group description type list, the following transformation values are allowed:

- 'stsd' :indicates the position of the decoding process in the transformation chain.

- 'cenc' :indicates the position of the content protection removal in the transformation chain.
The content protection removal information is provided by the ProtectionSchemeInfoBox
that shall be present in the protected sample entry associated with the sample mapped to this
sample group.

- Any scheme type value contained in the SchemeTypeBox of a
RestrictedSchemeInfoBox contained in the SchemeInformationBox of a
RestrictedSchemeInfoBox with the scheme type 'essg' of the restricted sample entry
associated with sample(s) mapped to this sample group; this indicates the position of the
corresponding restricted media transformation in the transformation chain.

- Any grouping type of an essential sample group description describing a sample processing
applying to a sample mapped to this sample group description entry; this indicates the position
of the corresponding transformation in the transformation chain.

If 'stsd' is absent from the list of sample group description type, all listed transformations shall
apply to decoded samples. If 'cenc' is presentin the list, ' stsd' shall be present.

10.12.2 Syntax

class EssentialDescriptionsHierarchyEntry ()
extends SampleGroupDescriptionEntry ('esgh')
{
unsigned int (32) num groupings;
unsigned int (32) sample group description type[num groupings];

198 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

10.12.3 Semantics

num_groupings indicates the number of essential sample group description types listed.

sample group description type[] provides a list of the four-character code values of
grouping type of the essential sample group descriptions (i.e. with the version field equal
to 3) or reserved transformation values applying to the associated samples. Four-character code
values of grouping type of non-essential sample group descriptions shall not be present in
this list.

11 Derived file formats

This document may be used as the basis of a specific file format for a restricted purpose: for example, the
MP4 file format for MPEG-4 and the Motion JPEG 2000 file format are both derived from it. When a
derived specification is written, the following must be specified:

e The name of the new format, and its brand and compatibility types for the FileTypeBox.
Generally a new file extension will be used, a new MIME type, and Macintosh file type also, though
the definition and registration of these are outside the scope of this document.

e Any template fields used must be explicitly declared; their use must be conformant with this
document.

o Theexact codingname and protocol identifiers as used in a SampleEntry must be defined.
The format of the samples that these code points identify must also be defined. However, it may
be preferable to fit the new coding systems into an existing framework (e.g. the MPEG-4 systems
framework), than to define new coding points at this level. For example, a new audio format can
use a new codingname, or can use 'mp4a’' and register new identifiers within the MPEG-4
audio framework.

New boxes may be defined, though this is discouraged.

If the derived specification needs a new track type other than those defined here or registered, then a
new handler-type must be registered. The media header required for this track must be identified. If it is
a new box, it must be defined and its box type registered. In general, it is expected that most systems can
use existing track types.

Any new track reference types should be registered and defined.

The sample entry may be extended with optional or required boxes. The usual syntax for doing this is to
define a new box with a specific name, extending (for example) VisualSampleEntry, and containing
new boxes.

12 Media-specific definitions

12.1 Video media

12.1.1 Media handler

Video media uses the 'vide' handler type in the HandlerBox of the MediaBox, as defined in 8.4.3.

Auxiliary video media uses the 'auxv' handler type in the HandlerBox of the MediaBox, as defined
in 8.4.3.

© ISO/IEC 202x - All rights reserved 199

DIS 14496-12:202x

An auxiliary video track is coded the same as a video track, but uses this different handler type, and is not
intended to be visually displayed (e.g. it contains depth information, or other monochrome or color two-
dimensional information). Auxiliary video tracks are usually linked to a video track by an appropriate
track reference.

12.1.2 Video media header

12.1.2.1 Definition

Box Types: 'vmhd'

Container: MediaInformationBox
Mandatory: Yes

Quantity: Exactly one

Video tracks use the VideoMediaHeaderBox inthe MediaInformationBox as defined in 8.4.5. The
VideoMediaHeaderBox contains general presentation information, independent of the coding, for
video media. Note that the flags field has the value 1.

12.1.2.2 Syntax

aligned(8) class VideoMediaHeaderBox

extends FullBox ('vmhd', wversion = 0, 1)

{
template unsigned int (16) graphicsmode = 0; // copy, see below
template unsigned int (16) opcolor([3] = {0, 0, 0},

}

12.1.2.3 Semantics
version isan integer that specifies the version of this box
graphicsmode specifies a composition mode for this video track, from the following enumerated
set, which may be extended by derived specifications:

copy = 0 copy over the existing image
opcolor isasetof 3 colour values (red, green, blue) available for use by graphics modes

12.1.3 Sample entry

12.1.3.1 Definition

Video tracks use VisualSampleEntry.

In video tracks, the frame_count field shall be 1 unless the specification for the media format explicitly
documents this template field and permits larger values. That specification must document both how the
individual frames of video are found (their size information) and their timing established. That timing

might be as simple as dividing the sample duration by the frame count to establish the frame duration.

The width and height in the video sample entry document the pixel counts that the codec will deliver; this
enables the allocation of buffers. Since these are counts they do not take into account pixel aspect ratio.

12.1.3.2 Syntax
class VisualSampleEntry (codingname) extends SampleEntry (codingname)

{

200 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

unsigned int(16) pre defined = 0;
const unsigned int (16) reserved = 0;

unsigned int(32) pre defined[3] = 0;

unsigned int (16) width;

unsigned int (16) height;

template unsigned int (32) horizresolution = 0x00480000; // 72 dpi

template unsigned int (32) vertresolution = 0x00480000; // 72 dpi
const unsigned int (32) reserved = 0;
template unsigned int (16) frame count = 1;

uint (8) compressorname[32];
template unsigned int (16) depth = 0x0018;

int (16) pre defined = -1;
// other boxes from derived specifications
CleanApertureBox clap; // optional

PixelAspectRatioBox pasp; // optional
}

12.1.3.3 Semantics

resolution fields give the resolution of the image in pixels-per-inch, as a fixed 16.16 number

frame count indicates how many frames of compressed video are stored in each sample. The
defaultis 1, for one frame per sample; it may be more than 1 for multiple frames per sample

compressorname is a name, for informative purposes. It is formatted in a fixed 32-byte field, with
the first byte set to the number of bytes to be displayed, followed by that number of bytes of
displayable data encoded using UTF-8, and then padding to complete 32 bytes total (including the
size byte). The field may be set to 0.

depth takes one of the following values
0x0018 - images are in colour with no alpha

width and height are the maximum visual width and height of the stream described by this
sample entry, in pixels

12.1.4 Pixel aspect ratio and clean aperture

12.1.4.1 Definition

The pixel aspect ratio and clean aperture of the video may be specified using the
PixelAspectRatioBox and CleanApertureBox sample entry boxes, respectively. These are both
optional; if present, they over-ride the declarations (if any) in structures specific to the video codec, which
structures should be examined if these boxes are absent. For maximum compatibility, these boxes should
follow, not precede, any boxes defined in or required by derived specifications.

The PixelAspectRatioBox is informative; if the decoded output of the codec is re-formatted to the
dimensions in the track header, this will accomplish any needed adjustment to a uniformly-scaled grid.

In the PixelAspectRatioBox, hSpacing and vSpacing have the same units, but those units are
unspecified: only the ratio matters. hSpacing and vSpacing may or may not be in reduced terms, and
they may reduce to 1/1. Both of them shall be strictly positive.

NOTE 1 The pixel aspect ratio should not be confused with the picture aspect ratio, also known as the display aspect
ratio, which is the ratio of the width to the height of the final displayed image (e.g. 16:9).

They are defined as the aspect ratio of a pixel, in arbitrary units. If a pixel appears H wide and V tall, then
hSpacing/vSpacing is equal to H/V. This means that a square on the display that is n pixels tall needs to
be n*vSpacing/hSpacing pixels wide to appear square.

© ISO/IEC 202x - All rights reserved 201

DIS 14496-12:202x

There are notionally four values in the CleanApertureBox. These parameters are represented as a
fraction N/D. The fraction may or may not be in reduced terms. We refer to the pair of parameters fooN
and fooD as foo. For horizOff and vertOff, D shall be strictly positive and N may be positive or
negative. For cleanApertureWidth and cleanApertureHeight, N shall be positive and D shall
be strictly positive.

NOTE 2 These are fractional numbers for several reasons. First, in some systems the exact width after pixel aspect
ratio correction is integral, not the pixel count before that correction. Second, if video is resized in the full aperture, the
exact expression for the clean aperture might not be integral. Finally, because this is represented using centre and offset,
a division by two is needed, and so half-values can occur.

The relation of width and height of the VisualSampleEntry, the horizontal and vertical
coordinates of the picture centre of the image denoted as pcX and pcY respectively, and horizOff and
vertOff is defined as follows:

pcX = horizOff + (width - 1)/2
pcY vertOff + (height - 1)/2;

Typically, horizOff and vertOff are zero, so the image is centred about the picture centre.
The leftmost/rightmost pixel and the topmost/bottommost line of the clean aperture fall at:

(cleanApertureWidth - 1)/2
(cleanApertureHeight - 1)/2;

pcX

+
pcY =

The cropping implied by the Cl1eanApertureBox is applied before any transformation defined by track
or movie matrices.

12.1.4.2 Syntax

class PixelAspectRatioBox extends Box ('pasp')

{
unsigned int (32) hSpacing;
unsigned int (32) vSpacing;

}

class CleanApertureBox extends Box('clap')

{
signed int (32) cleanApertureWidthN;
signed int (32) cleanApertureWidthD;

signed int (32) cleanApertureHeightN;
signed int (32) cleanApertureHeightD;

signed int (32) horizOffN;
signed int (32) horizOffD;

signed int (32) vertOffN;
signed int (32) vertOffD;
}

12.1.4.3 Semantics

hSpacing, vSpacing: define the relative width and height of a pixel;

202 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

cleanApertureWidthN, cleanApertureWidthD: a fractional number which defines the width
of the clean aperture image

cleanApertureHeightN, cleanApertureHeightD: a fractional number which defines the
height of the clean aperture image

horizOffN, horizOffD:a fractional number which defines the horizontal offset between the
clean aperture image centre and the full aperture image centre. Typically 0.

vertOf£fN, vertOf £D: a fractional number which defines the vertical offset between clean
aperture image centre and the full aperture image centre. Typically 0.

12.1.5 Colour information

12.1.5.1 Definition

Colour information may be supplied in one or more ColourInformationBoxes placed in a
VisualSampleEntry. These should be placed in order in the sample entry starting with the most
accurate (and potentially the most difficult to process), in progression to the least. These are advisory
and concern rendering and colour conversion, and there is no normative behaviour associated with them;
a reader may choose to use the most suitable. A ColourInformationBox with an unknown colour
type may be ignored.

Ifused, an ICC profile may be a restricted one, under the code ' rICC ', which permits simpler processing.
That profile shall be of either the monochrome or three-component matrix-based class of input profiles,
as defined by ISO 15076-1. If the profile is of another class, then the 'prof ' indicator shall be used.

If colour information is supplied in both this box, and also in the video bitstream, this box takes
precedence, and over-rides the information in the bitstream.

NOTE When an ICC profile is specified, SMPTE RP 1771271 is possibly of assistance if there is a need to form the Y'CbCr
to R'G'B' conversion matrix for the colour primaries described by the ICC profile.

12.1.5.2 Syntax

class ColourInformationBox extends Box('colr')
{
unsigned int(32) colour type;
if (colour type == 'nclx') /* on-screen colours */
{
unsigned int
unsigned int

(16) colour primaries;
(1
unsigned int (1
(1
(7

6
6) transfer characteristics;
6) matrix coefficients;

) full range flag;

) reserved = 0;

unsigned int
unsigned int
;lse if (colour type == 'rICC'")
{ ICC profile; // restricted ICC profile
élse if (colour type == 'prof')
{ ICC profile; // unrestricted ICC profile
}

© ISO/IEC 202x - All rights reserved 203

DIS 14496-12:202x

12.1.5.3 Semantics

colour type:an indication of the type of colour information supplied.

colour primaries carries a ColourPrimaries value as defined in ISO/IEC 23091-2

transfer characteristics carries a TransferCharacteristics value as defined in
ISO/IEC 23091-2

matrix coefficients carries a MatrixCoefficients value as defined in ISO/IEC 23091-2

full range flag carries a VideoFullRangeFlag as defined in ISO/IEC 23091-2

ICC profile: anlICC profile as defined in ISO 15076-1 or ICC.1[23 is supplied.

12.1.6 Content lightlevel

12.1.6.1 Definition

This box may be used to provide information about the light level in the content and may be present in a
VisualSampleEntry. It is functionally equivalent to, and shall be as described in, the content light
level information SEI message in ITU-T H.265 | ISO/IEC 23008-2, with the addition that the provisions of
CTA-861-GB35], in which zero in some cases codes an unknown value, may be used.

NOTE ThisisaBox, nota FullBox (similar to PixelAspectRatioBox).
12.1.6.2 Syntax

class ContentLightLevelBox extends Box('clli')

{
unsigned int (16) max content light level;
unsigned int (16) max pic average light level;

}

12.1.7 Mastering display colour volume

12.1.7.1 Definition

This box may be used to provide information about the colour primaries, white point, and mastering
luminance in the content and may be presentina VisualSampleEntry. Itis functionally equivalent to,
and shall be as described in, the mastering display colour volume SEI message in ITU-T H.265 | ISO/IEC
23008-2, with the addition that the provisions of CTA-861-G[35] in which zero in some cases codes an
unknown value may be used.

NOTE ThisisaBox, nota FullBox (similar to PixelAspectRatioBox).

204 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.1.7.2 Syntax

class MasteringDisplayColourVolumeBox extends Box ('mdcv')
{
for (c = 0; c<3; c++) {
unsigned int(16) display primaries x;
unsigned int(16) display primaries y;

}

unsigned int (16) white point x;
unsigned int (16) white point y;
unsigned int(32) max display mastering luminance;
unsigned int(32) min display mastering luminance;

}

12.1.8 Content colour volume

12.1.8.1 Definition

This box describes the colour volume characteristics of the associated pictures. These colour volume
characteristics are expressed in terms of a nominal range, although deviations from this range may occur.
It is functionally equivalent to, and shall be as described in, the content colour volume SEI message in Rec.
ITU-T H.265 | ISO/IEC 23008-2 except that the box, in a sample entry, applies to the associated content
and hence the initial two bits (corresponding to the ccv cancel flag and

ccv_persistence flag) take the value 0.
NOTE ThisisaBox, nota FullBox (similar to PixelAspectRatioBox).
12.1.8.2 Syntax

class ContentColourVolumeBox extends Box('cclv')

{

unsigned int (1) reserved = 0; // ccv _cancel flag
unsigned int (1) reserved = 0; // ccv_persistence flag
unsigned int(l) ccv _primaries present flag;
unsigned int(l) ccv _min luminance value present flag;
unsigned int(l) ccv _max luminance value present flag;
unsigned int(l) ccv_avg luminance value present flag;
unsigned int (2) reserved = 0;
if(ccv _primaries present flag) {

for (¢ = 0; ¢ < 3; c++) |

signed int (32) ccv_primaries x[[c]];
signed int (32) ccv_primaries yl[[cl];
}
}

if(ccv_min luminance value present flag)
unsigned int(32) ccv_min luminance value;

if(ccv_max luminance value present flag)
unsigned int(32) ccv_max luminance value;

if(ccv_avg luminance value present flag)
unsigned int(32) ccv_avg luminance value;

© ISO/IEC 202x - All rights reserved 205

DIS 14496-12:202x

12.1.9 Ambient viewing environment

12.1.9.1 Definition

This box may be used to provide information about the characteristics of the nominal ambient viewing
environment for the display of the associated video content and may be present in a
VisualSampleEntry. The syntax elements of the ambient viewing environment box may assist the
receiving system in adapting the received video content for local display in viewing environments that
may be similar or may substantially differ from those assumed or intended when mastering the video
content. It is functionally equivalent to, and shall be as described in, the ambient viewing environment
SEI message in ITU-T H.265 |1 ISO/IEC 23008-2.

NOTE ThisisaBox,nota Ful1Box (similarto PixelAspectRatioBox).
12.1.9.2 Syntax

class AmbientViewingEnvironmentBox extends Box ('amve')

{
unsigned int (32) ambient illuminance;
unsigned int (16) ambient light x;
unsigned int (16) ambient light y;

}

12.2 Audio media

12.2.1 Media handler

Audio media uses the ' soun' handler type in the HandlerBox of the MediaBox, as defined in 8.4.3.
12.2.2 Sound media header

12.2.2.1 Definition

Box Types: 'smhd'

Container: MediaInformationBox Box

Mandatory: Yes

Quantity: Exactly one specific media header shall be present

Audio tracks use the SoundMediaHeaderBox intheMediaInformationBox as defined in 8.4.5. The
sound media header contains general presentation information, independent of the coding, for audio
media. This header is used for all tracks containing audio.

12.2.2.2 Syntax

aligned(8) class SoundMediaHeaderBox
extends FullBox('smhd', version = 0, 0)
{
template int(16) balance = 0;
const unsigned int (16) reserved = 0;

206 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.2.2.3 Semantics

version isan integer that specifies the version of this box
balance is a fixed-point 8.8 number that places mono audio tracks in a stereo space; 0 is centre
(the normal value); full left is -1.0 and full right is 1.0.

12.2.3 Sample entry

12.2.3.1 Definition
Audio tracks use AudioSampleEntry or AudioSampleEntryVi.

The samplerate, samplesize and channelcount fields document the default audio output
playback format for this media. The timescale for an audio track should be chosen to match the sampling
rate, or be an integer multiple of it, to enable sample-accurate timing. When channelcount is a value
greater than zero, it indicates the total number of channels in the audio stream.

The audio output format (samplerate, samplesize and channelcount fields) in the sample entry
should be considered definitive only for codecs that do not record their own output configuration. If the
audio codec has definitive information about the output format, it shall be taken as definitive; in this case
the samplerate, samplesize and channelcount fields in the sample entry may be ignored, though
sensible values should be chosen (for example, the highest possible sampling rate).

When it is desired to indicate an audio sampling rate greater than the value than can be represented in
the samplerate field, then one of the following may be used:

1) If the system needs to rely on this signalling alone, e.g. because the codec does not itself provide the
sample rate:

o anAudioSampleEntryVl1 is used

o aSamplingRateBox is presentinthe AudioSampleEntryV1, and it overrides the
samplerate field and documents the actual sampling rate;

2) Otherwise:

o aSamplingRateBox is presentinthe AudioSampleEntryV1 or AudioSampleEntry,
and it documents the actual sampling rate.

When a SamplingRateBox is present:

o the media timescale should be the same as the sampling rate, or an integer division or multiple
of it;

e the samplerate field in the sample entry should contain a value that matches the media
timescale left-shifted 16 bits (as for AudioSampleEntry), or be an integer division or multiple
of it.

An AudioSampleEntryV1 should only be used when needed; otherwise, for maximum compatibility,
an AudioSampleEntry should be used. For maximum compatibility, the SamplingRateBox,
ChannelLayoutBox and any DownMix and DRC boxes should follow, not precede, any boxes defined
in or required by derived specifications.

© ISO/IEC 202x - All rights reserved 207

DIS 14496-12:202x

Encoders should encode the DRC-related boxes in the AudioSampleEntry in the order given in
subclause 12.2.3.2. Decoders may ignore and discard the DRC-related boxes if they are not in that order.
DRC-related boxes include ChannelLayout, DownMixInstructions, DRCCoefficientsBasic,
DRCInstructionsBasic, DRCCoefficientsUniDrc, DRCInstructionsUniDrc, and
UniDrcConfigExtension. The DownMixInstructions and DRCInstructionsUniDrc box
cannot occur more than once if the box has version==1, but it can occur multiple times if version==0.

12.2.3.2 Syntax

class AudioSampleEntry(codingname) extends SampleEntry (codingname)
{

const unsigned int (32) reserved|[2] = 0;

unsigned int (16) channelcount;

template unsigned int (16) samplesize = 16;

unsigned int (16) pre defined = 0;

const unsigned int(16) reserved = 0 ;

template unsigned int (32) samplerate = { default samplerate of
media}<<1l6;

ChannelLayout (); // optional

DownMixInstructions() []; // optional

DRCCoefficientsBasic() []; // optional

DRCInstructionsBasic() []; // optional

DRCCoefficientsUniDRC() [];// optional

DRCInstructionsUniDRC() [];// optional

UniDrcConfigExtension(); // optional

SamplingRateBox (); // optional

Box () []; // optional
}

aligned(8) class SamplingRateBox extends FullBox ('srat')
{
unsigned int (32) sampling rate;

}

class AudioSampleEntryVl1 (codingname) extends SampleEntry (codingname)
{
unsigned int (16) entry version; // shall be 1,
// and shall be in an stsd with version ==
const unsigned int (16) reserved[3] = 0;
template unsigned int(16) channelcount; // shall be correct
template unsigned int (16) samplesize = 16;
unsigned int(16) pre defined = 0;
const unsigned int (16) reserved = 0 ;
template unsigned int (32) samplerate = 1<<16;
SamplingRateBox () ; ChannelLayout () ;
DownMixInstructions () []; // optional
DRCCoefficientsBasic() []; // optional
DRCInstructionsBasic () []; // optional
DRCCoefficientsUniDRC() []; // optional
DRCInstructionsUniDRC() []; // optional
UniDrcConfigExtension(); // optional
Box (); // optional

208 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.2.3.3 Semantics

channelcount is the number of channels
0 — inapplicable/unknown
1 — mono
2 — stereo (left/right)
all other values — the codec configuration should identify the channel assignment.
SampleSize isin bits, and takes the default value of 16
SampleRate when a SamplingRateBox is absent is the sampling rate; when a
SamplingRateBox is present, is a suitable integer multiple or division of the actual sampling
rate. This 32-bit field is expressed as a 16.16 fixed-point number (hi.lo)
sampling rate isthe actual sampling rate of the audio media in samples/second, expressed as a
32-bitinteger

12.2.4 Channel layout

12.2.4.1 Definition

Box Types: 'chnl'

Container: Audio sample entry, AudioElementBox, or PreselectionGroupBox
Mandatory: No

Quantity: Zero or one

This box may appear in an audio sample entry to document the assignment of channels in the audio
stream. It is recommended to use this box to convey the base channel count for the
DownMixInstructions box and other DRC-related boxes specified in ISO/IEC 23003-4.

The channel layout can be all or part of a standard layout (from an enumerated list), or a custom layout
(which also allows a track to contribute part of an overall layout).

A stream may contain channels, objects, neither, or both. A stream that is neither channel nor object
structured can implicitly be rendered in a variety of ways.

12.2.4.2 Syntax

aligned(8) class ChannellLayoutZero ()
{

for (1 =1 ; i <= layout channel count ; i++) {
unsigned int(8) speaker position;
if (speaker position == 126) { // explicit position

signed int (16) azimuth;
signed int (8) elevation;

© ISO/IEC 202x - All rights reserved 209

DIS 14496-12:202x

aligned(8) class Channellayout extends FullBox('chnl', version, flags=0)

{
if (version==0) {
unsigned int(8) stream structure;
if (stream structure & channelStructured) {
unsigned int (8) definedLayout;
if (definedLayout==0) {
ChannellLayoutZero (layout channel count)
// layout channel count comes from the sample entry
} else {
unsigned int (64) omittedChannelsMap;
// a ‘1’ bit indicates ‘not in this track’

}
1f (stream structure & objectStructured) {
unsigned int (8) object count;
}
} else {
unsigned int (4) stream structure;
unsigned int (4) format ordering;
unsigned int (8) baseChannelCount;
if (stream structure & channelStructured) {
unsigned int (8) definedLayout;
if (definedLayout==0) {
unsigned int (8) layout channel count;
ChannellLayoutZero (layout channel count)
} else {
int (4) reserved = 0;
unsigned int (3) channel order definition;
unsigned int (1) omitted channels present;
if (omitted channels present == 1) {
unsigned int (64) omittedChannelsMap;
// a ‘1’ bit indicates ‘not in this track’

if (stream structure & objectStructured) {
// object count is derived from baseChannelCount

12.2.4.3 Semantics

version isan integer that specifies the version of this box (0 or 1). When authoring, version 1
should be preferred over version 0. Version 1 conveys the channel ordering, which is not always
the case for version 0. Version 1 should be used to convey the base channel count for DRC.

stream structure is a field of flags that define whether the stream has channel or object
structure (or both, or neither); the following flags are defined, all other values are reserved:
channelStructured: Flag maskis 0x01 / 0x1. If the flag is set, it indicates that the stream

carries channels. If the flag is not set, it indicates that the stream does not carry any channel
based audio.

210 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

objectStructured: Flag maskis 0x02 / 0x2. If the flag is set, it indicates that the stream
carries objects. If the flag is not set, it indicates that the stream does not carry any audio
objects.
format ordering indicates the order of formats in the stream starting from the lowest channel

index (see Table). Each format shall only use contiguous channel indices.

format_ordering Order

0 unknown

1 Channels, possibly followed by Objects
2 Objects, possibly followed by Channels
Remaining values are -

reserved

definedLayout is a ChannelConfiguration from ISO/IEC 23091-3.

speaker position isan OutputChannelPosition from ISO/IEC 23091-3. If an explicit position
is used, then the azimuth and elevation are as defined as for speakers in ISO/IEC 23091-3. The
channel order corresponds to the order of speaker positions.

azimuth is a signed value in degrees, as defined for LoudspeakerAzimuth in ISO/IEC 23091-3.

elevation is asigned value, in degrees, as defined for LoudspeakerElevation in ISO/IEC 23091-
3.

channel order definition indicates where the ordering of the audio channels for the

definedLayout are specified (see Table).

channel_order_definition | Channel order specification

0 as listed for the ChannelConfigurations in
ISO/IEC 23091-3

1 Default order of audio codec specification

2 Channel ordering #2 of audio codec specification
3 Channel ordering #3 of audio codec specification
4 Channel ordering #4 of audio codec specification

Remaining values are -
reserved

omitted channels present is aflagthatindicates ifitis set to 1 that the
omittedChannelsMap is present.

omittedChannelsMap is a bit-map of omitted channels; the bits in the channel map are
numbered from least-significant to most-significant, and correspond in that ordering with the
order of the channels for the configuration as documented in ISO/IEC 23091-3
ChannelConfiguration. 1-bits in the channel map mean that a channel is absent. A zero value of
the map therefore always means that the given standard layout is fully present. The default
value is 0.

layout channel count isthe count of channels for the channel layout. The default value is 0 if
stream structure indicates that no channel structure is present. Otherwise, the value is the
number of channels of the defined layout, if present, otherwise it is the value from the sample
entry.

© ISO/IEC 202x - All rights reserved 211

DIS 14496-12:202x

object count is the count of channels that contain audio objects. The default value is 0. For
version 1 and if the objectStructured flag is set, the value is computed as
baseChannelCount minus the channel count of the channel structure.

baseChannelCount represents the combined channel count of the channel layout and the object
count. The value must match the base channel count for DRC (see ISO/IEC 23003-4).

12.2.5 Downmix instructions

12.2.5.1 Definition

Box Types: 'dmix'

Container: Audio sample entry
Mandatory: No

Quantity: Zero or more

The downmix can be controlled by the production facility if necessary. For instance, some content may
require more attenuation of the surround channels before downmixing to maintain intelligibility.

The downmix support is designed so that any downmix (e.g. from 7.1 to quad as well as to stereo) can be
described.

It is possible to declare the loudness characteristics of the signal after downmix, and after DRC and
downmix.

If targetChannelCount*baseChannelCount is odd, the box is padded with 4 bits set to OxF. The
targetChannelCount shall be consistent with the targetLayout (if given), and shall be less than or equal to
the channelcount.

Each downmix is uniquely identified by an ID.

In the following definition, ceil () is the ceiling function.

212 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.2.5.2 Syntax

aligned(8) class DownMixInstructions
extends FullBox ('dmix', version, flags=0)
{
if (version >= 1) {
bit (1) reserved = 0;
bit (7) downmix instructions count;
} else {
int downmix instructions count = 1;
}
for (a=1l; a<=downmix instructions count; a++) {
unsigned int (8) targetLayout;
unsigned int (1) reserved = 0;
unsigned int (7) targetChannelCount;
bit(l) in stream;
unsigned int(7) downmix ID;
if (in stream==0)
{ // downmix coefficients are out of stream and supplied here
int i, 7j;
if (version >= 1) {
bit (4) bs downmix offset;
int size = 4;
for (i=1; 1 <= targetChannelCount; i++) {
for (j=1; j <= baseChannelCount; j++) {
bit (5) bs downmix coefficient vl;
size += 5;
}
}
bit (8 ceil(size / 8) - size) reserved = 0; // byte align
} else {
for (i=1; i <= targetChannelCount; i++) {
for (j=1; j <= baseChannelCount; j++) {
bit (4) bs downmix coefficient;

}

12.2.5.3 Semantics

targetLayout is a ChannelConfiguration from ISO/IEC 23091-3 and defines the resulting layout
after downmix

targetChannelCount is the count of channels in the resulting stream, and shall correspond with
the target layout

downmix IDisan arbitrary value that identifies this downmix, and shall be unique among the
DownMixInstructions in a given sample entry; there are two reserved values, 0 and 0x7F, which
shall not be used

version isan integer that specifies the version of this box (0 or 1)

© ISO/IEC 202x - All rights reserved 213

DIS 14496-12:202x

bs downmix offset isan offsetin dB for all downmix coefficients that are defined in the

bs downmix coefficient vl field.Itis encoded as defined in Table 8 using the following

expression for:

Table 8 — Downmix offset encoding

Value [dB] Hex encoding (3 bits)
0.0 0x0

0x1

0x2
reserved other

baseChannelCount is the channel count of the audio signal in the base layout as also defined in

ISO/IEC 23003-4. It should be derived from the ChannelLayout box, if present.

in streamhas avalue of 1 when the downmix coefficients are in the stream. Otherwise, it is zero.

bs downmix coefficient is encoded as defined in Table 9 and Table 10:
Table 9 — Downmix coefficient encoding for non-LFE channel and version==
(bs_downmix_coefficient)

Value Hex encoding (4 bits)
0.00 dB 0x0
-0.50 dB 0x1
-1.00 dB 0x2
-1.50 dB 0x3
-2.00 dB 0x4
-2.50 dB 0x5
-3.00 dB 0x6
-3.50dB 0x7
-4.00 dB 0x8
-4.50 dB 0x9
-5.00 dB 0xA
-5.50 dB 0xB
-6.00 dB 0xC
-7.50 dB 0xD
-9.00 dB OxE

-co dB OxF

214

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

Table 10 — Downmix coefficient encoding for LFE channel and version==
(bs_downmix_coefficient)

Value Hex encoding (4 bits)
10.00 dB 0x0
6.00 dB 0x1
4.5dB 0x2
3.00dB 0x3
1.50 dB 0x4
0.00 dB 0x5
-1.50 dB 0x6
-3.00 dB 0x7
-4.50 dB 0x8
-6.00 dB 0x9
-10.00 dB 0xA
-15.00 dB 0xB
-20.00 dB 0xC
-30.00 dB 0xD
-40.00 dB OxE
-o0 dB OxF

bs downmix coefficient vl isencoded as definedin Table 11:

Table 11 — Downmix coefficient encoding for version>=1 (bs_downmix_coefficient_v1)

Value Hex encoding (5 bits)
10.00 dB 0x00
6.00 dB 0x01
4.50 dB 0x02
3.00dB 0x03
1.50dB 0x04
0.00dB 0x05
-0.50 dB 0x06
-1.00 dB 0x07
-1.50dB 0x08
-2.00dB 0x09
-2.50dB 0x0A
-3.00dB 0x0B
-3.50dB 0x0C
-4.00 dB 0x0D
-4.50 dB 0x0E
-5.00dB 0xOF
-5.50 dB 0x10

© ISO/IEC 202x - All rights reserved 215

DIS 14496-12:202x

-6.00 dB 0x11
-6.50 dB 0x12
-7.00 dB 0x13
-7.50 dB 0x14
-8.00 dB 0x15
-9.00dB 0x16
-10.00 dB 0x17
-11.00dB 0x18
-12.00dB 0x19
-15.00dB 0x1A
-20.00 dB 0x1B
-25.00dB 0x1C
-30.00 dB 0x1D
-40.00 dB 0x1E
-oco dB 0x1F

12.2.6 DRC information

A DRC is used in the encoder to generate gain values using one of the pre-defined DRC characteristics as
defined in ISO/IEC 23091-3 or a characteristic defined in ISO/IEC 23003-4. The coefficients are placed
either in-stream or in an associated meta-data track. Alternatively, coefficients are generated at the
decoder based on transmitted parametric DRC configurations.

For some content, such as some multi-channel content, it may be advantageous to use different DRC
characteristics in different channels. For instance, if speech is exclusively present in the center channel,
this feature can be very useful. It is supported by the assignment of DRC characteristics to audio channels.

It is possible to declare the loudness characteristics of the signal after DRC.

DRC support includes supporting in-stream DRC coefficients, and a separate track carrying them; the
latter is particularly useful for legacy coding systems (including uncompressed audio) that have no
provision for in-stream coefficients.

In the ISO base media file format, the audio content may be carried in multiple tracks where a base track
contains the DRC metadata for all tracks. The additional tracks are referenced by the base track using a
track reference of type 'adda' (additional audio). The channels processed by the DRC are all the
channels in the base track, plus all the channels in track(s) referenced, in the order of the references. The
DRC channel groups apply to all those channels (even if they are channels in a track that is disabled or
not currently being played).

The boxes DRCCoefficientsBasic, DRCCoefficientsUniDRC, DRCInstructionsBasic,
DRCInstructionsUniDRC, and UniDrcConfigExtension may occur in an AudioSampleEntry
and are defined in ISO/IEC 23003-4.

216 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.2.7 Audio stream loudness

12.2.7.1 Definition

Box Types: 'ludt'

Container: UserDataBox of the corresponding TrackBox
Mandatory: No

Quantity: Zero or more

Loudness declarations are placed in UserDataBoxes, to enable their presence and update in movie
fragments. In particular, in live scenarios, user-data in the initial MovieBox may be a ‘promise not to
exceed’ or ‘best guess’, and then user-data updates give better (but still generally valid) values. Thus, for
example, a loudness range in this user data that is associated with a particular set of DRC instructions
constitutes a ‘promise’ rather than a measurement, under these circumstances.

Several metadata values are available that describe aspects of the dynamic range. The size of the dynamic
range can be useful in adjusting the DRC characteristic, e.g. the DRC is less aggressive if the dynamic range
is small or the DRC can even be turned off.

True Peak and maximum loudness values can be useful for estimating the headroom, for instance when
loudness normalization results in a positive gain [dB] or when headroom is needed to avoid clipping of
the downmix. The DRC characteristic can then be adjusted to approach a headroom target. The peak level
of the associated content is represented here in a coding-independent way.

The audio sound pressure level that the content was mixed to can also be documented. (If audio is listened
to at a level other than the mixing level, this can affect the perceived tonal balance.)

The following measures may also be used:

e Maximum of the loudness range derived from EBU-Tech 3342(33]

e Maximum momentary loudness derived from ITU-R BS.1771-1011 or EBU-Tech 3341132l
e Maximum short-term loudness derived from ITU-R BS.1771-1['11 or EBU-Tech 3341132
e Short-term loudness defined in ITU-R BS.1771-111 or EBU-Tech 3341[32]

Under some circumstances it can be desirable to indicate the loudness characteristics of an album, in each
song that the album contains. A separate box can be specified for that purpose. The TrackLoudnessInfo
and AlbumLoudnessInfo provide loudness information for the song, and for the entire album which
contains the song, respectively.

The program loudness shall be measured using ITU-R BS.1770-4 over the associated content; the ‘anchor
loudness’ is the loudness of the anchor content, where what that content is, is determined by the content
author; one suitable value (especially for content for which the main content is speech) is ‘dialog normal
level’ or DialNorm as defined in ATSC Doc. A/52:2012341, ISO/IEC 23003-4 specifies the measurement
systems, measurement methods and the coding of all loudness and peak-related values.

© ISO/IEC 202x - All rights reserved 217

DIS

12.2

ali

extends FullBox (loudnessType,

{

if

else 1if

for

}

ali
{
}

ali
{
}

218

14496-12:202x

.7.2 Syntax

gned (8) class LoudnessBaseBox

version,

{

loudness info type;

(version >= 2)
unsigned int (2)
unsigned int (6) B
if (loudness info type == 1
unsigned int (1) reserved 0;
unsigned int(7) mae group ID;

1

else 1f (loudness info type == 3)
unsigned int (3) reserved = 0;
unsigned int (5)

{

}
}
) A

reserved

(version ==
unsigned int (2)
unsigned int (6)

} else {
int loudness base count

0;

1;

}

(a=1;

if (version >= 1)
unsigned int (2)
unsigned int (6)

a<=loudness base count; a++)

{

reserved
EQ set ID;

0;

}
unsigned int
unsigned int
unsigned int
signed int (1
signed int (12
unsigned int
unsigned int
unsigned int
int 1i;
for (i 1
unsigned
unsigned
unsigned
unsigned

(3) reserved 0;
(7)
(6)
2
bs true peak level;
)
)

)

reliability for TP;

3
-
6
)
)
4
4
8) measurement count;

(
(
(
method value;

reliability;

gned (8) class

gned (8) class

mae group_ preset

measurement system

1 <= measurement count;
method definition;

TrackLoudnessInfo extends LoudnessBaseBox (

AlbumLoudnessInfo extends LoudnessBaseBox

flags=0)

loudness base count;
loudness info type ==

)

ID;

loudness _base count;

{

// to match an EQ box

downmix ID; // matching downmix
DRC set ID; // to match a DRC box
bs sample peak level;

for TP;

1++) {

measurement system;

'tlou')

)

alou'

(1

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

aligned(8) class LoudnessBox extends Box ('ludt')

{
// not more than one TrackLoudnessInfo box with version>=1 is allowed
loudness TrackLoudnessInfol[];
// not more than one AlbumlLoudnessInfo box with version>=1 is allowed
albumLoudness AlbumLoudnessInfol[];

}

12.2.7.3 Semantics

version isan integer that specifies the version of this box (0, 1 or 2)

loudness_info type isthe type of audio scene described by the loudness information. It shall
take a value of zero unless other types are supported by the loudness processing. For defined
values refer to the corresponding loudnessinfoType specification in ISO/IEC 23008-318l.

mae_group IDisaunique identifier for a group of metadata elements as specified in
ISO/IEC 23008-3I8l.

mae group preset IDisaunique identifier for a group preset as specified in ISO/IEC 23008-
3181,

downmix ID when zero, declares the loudness characteristics of the layout without downmix. If
non-zero, this box declares the loudness after applying the downmix with the matching
downmix ID and shall match a value in exactly one box in the sample entry of this track

DRC set ID when zero, declares the characteristics without applying a DRC. If non-zero, this box
declares the loudness after applying the DRC with the matching DRC set ID and shall match
a value in exactly one box in the sample entry of this track

EQ set IDwhen zero, declares the characteristics without applying EQ. If non-zero, this box
declares the loudness after applying the EQ with the matching EQ set ID and shall match a
value in exactly one box in the UniDrcConfigExtension of this track

bs sample peak level takes avalue for the sample peak level as defined in ISO/IEC 23003-4;
all other values are reserved

bs true peak level takes avalue for the true peak level as defined in ISO/IEC 23003-4; all
other values are reserved

measurement system for TP takes an index for the measurement system as defined in
ISO/IEC 23003-4; all other values are reserved

method definition takes an index for the measurement method as defined in ISO/IEC 23003-4;
all others are reserved

measurement system takes an index for the measurement system as defined in
ISO/IEC 23003-4; all others are reserved

reliability and reliability for TP each take one of the following values (all other
values are reserved):

0: Reliability is unknown

1: Value is reported /imported but unverified
2:Value is a ‘not to exceed’ ceiling

3: Value is measured and accurate

© ISO/IEC 202x - All rights reserved 219

DIS 14496-12:202x

12.2.8 Audio rendering indication box

12.2.8.1 Definition

Box Type: 'ardi'

Container: PreselectionGroupBox
Mandatory: No

Quantity: Zero or one

The audio rendering indication box contains a hint for a preferred reproduction channel layout.
12.2.8.2 Syntax

aligned(8) class AudioRenderingIndicationBox
extends FullBox('ardi', version=0, 0)

{
unsigned int (8) audio rendering indication = 0;

}

12.2.8.3 Semantics

audio rendering indication contains a hint for a preferred reproduction channel layout,
coded according to Table 12.

Table 12 — Coding of audio rendering indication

audio_rendering_indication | Description

0 no preference given for the reproduction channel layout
1 preferred reproduction channel layout is stereo
2 preferred reproduction channel layout is two-dimensional (e.g. 5.1

multi-channel)

3 preferred reproduction channel layout is three-dimensional
4 content is pre-rendered for consumption with headphones
5to 255 reserved for future use
220 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

12.2.9 Audio element box

12.2.9.1 Definition

Box Type: 'aelm'

Container: AudioElementSelectionBox,
PreselectionGroupBox

Mandatory: Yes (required within AudioElementSelectionBox)
No (optional within PreselectionGroupBox)

Quantity: Zero or more

This box aggregates all semantic information about the audio element.
12.2.9.2 Syntax

aligned(8) class AudioElementBox extends Box('aelm')
{
}

12.2.10 Audio element description box

12.2.10.1Definition

Box Type: 'aedb'

Container: AudioElementBox
Mandatory: Yes

Quantity: Exactly One

This box contains information about the interactivity options of the audio element.
12.2.10.2 Syntax
aligned(8) class AudioElementDescriptionBox

extends FullBox('aedb', version=0, flags)

{

utf8string audioElementTag;

unsigned int (1) isToggleable;

unsigned int (1) isDefaultEnabled;

unsigned int (6) reserved;

AudioElementPosInteractivityPolar aePosIntAct; // optional

AudioElementProminenceInteractivity aePromIntAct; // optional

}

12.2.10.3 Semantics

audioElementTag is astring that uniquely identifies the audio element that is described by this
box within the preselection.

isToggleable specifies whether the described audio element can be switched on / off
independently.

isDefaultEnabled specifies whether the described audio element is enabled or disabled by
default.

aePosIntAct specifies whether and, if present, within which parameters the described audio
element can be interactively placed within the audio scene.

© ISO/IEC 202x - All rights reserved 221

DIS 14496-12:202x

aePromIntAct specifies whether and, if present, to which extend prominence interactivity is
allowed for the described audio element

12.2.11 Audio element positioning interactivity polar box

12.2.11.1Definition

Box Type: 'aepp'

Container: AudioElementDescriptionBox,AudioElementSelectionBox
Mandatory: No

Quantity: Zero or one

This box contains information about the positioning interactivity options of the audio element when the
format is based on a polar coordinate system.

If this box is not present, no position interactivity on polar coordinates is allowed for the described audio
element.

If this box is contained within an AudioElementSelectionBox, all
AudioElementDescriptionBoxes grouped within this selection shall not contain an
AudioElementPosInteractivityPolar box. The semantics of having this box on the
AudioElementSelectionBox levelis similar to having a copy of this box within each contained audio
element description box.

Syntax
aligned(8) class AudioElementPosInteractivityPolar

extends FullBox('aepp', version=0, flags)

{

if (flags & 1) {
signed int (16) minAzimuth;
signed int (16) maxAzimuth;
signed int (16) defaultAzimuth;

if (flags & 2)
signed int(
signed int(
signed int(

{

8) minElevation;
8) maxElevation;
8) defaultElevation;

if (flags & 4) {
unsigned int (32) minDistance;
(32) maxDistance;

(32

) defaultDistance;

unsigned int
unsigned int

12.2.11.2 Semantics

minAzimuth isavaluein degrees, as defined for LoudspeakerAzimuth in ISO/IEC 23001-8. It
specifies the minimum allowed Azimuth angle for the described audio element.

maxAzimuth isavaluein degrees, as defined for LoudspeakerAzimuth in ISO/IEC 23001-8. It
specifies the maximum allowed Azimuth angle for the described audio element.

222 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

defaultAzimuth isavaluein degrees, as defined for LoudspeakerAzimuth in ISO/IEC 23001-8.
It specifies the default Azimuth angle setting for the described audio element.

minElevation isavalue,in degrees, as defined for LoudspeakerElevation in I[SO/IEC 23001-8. It
specifies the minimum allowed elevation for the described audio element.

maxElevation isavalue,in degrees, as defined for LoudspeakerElevation in ISO/IEC 23001-8. It
specifies the maximum allowed elevation for the described audio element.

defaultElevation isa value,in degrees, as defined for LoudspeakerElevation in
ISO/IEC 23001-8. It specifies the default elevation setting for the described audio element.

minDistance specifies the minimum allowed distance of the described audio element from the
listener in millimetres.

maxDistance specifies the maximum allowed distance of the described audio element from the
listener in millimetres.

defaultDistance specifies the default distance of the described audio element from the listener
in millimetres.

12.2.12 Audio element prominence interactivity box

12.2.12.1Definition

Box Type: 'aepr'
Container: AudioElementDescriptionBox,AudioElementSelectionBox

Mandatory: No
Quantity: Zero or one

This box contains information about the prominence interactivity options of the audio element.
If this box is not present, no prominence interactivity is allowed for the described audio element.

If this box is contained within an AudioElementSelectionBox, all
AudioElementDescriptionBoxes grouped within this selection shall not contain an
AudioElementProminenceInteractivity box. The semantics of having this box on the
AudioElementSelectionBox levelis similar to having a copy of this box within each contained audio
element description box.

12.2.12.2 Syntax
aligned(8) class AudioElementProminencelnteractivity

extends FullBox('aepr', version=0, flags)

{

double (32) minProminence;
double (32) maxProminence;
double (32) defaultProminence;

}
12.2.12.3 Semantics

minProminence specifies the minimum allowed prominence of the described audio element in
dB.

maxProminence specifies the maximum allowed prominence of the described audio element in
dB.

defaultProminence specifies the default prominence setting of the described audio element in
dB.

© ISO/IEC 202x - All rights reserved 223

DIS 14496-12:202x

12.2.13 Audio element selection box

12.2.13.1Definition

Box Type: 'aesb'

Container: PreselectionGroupBox
Mandatory: No

Quantity: Zero or more

The audio element selection box signals a collection of audio elements where just one of the objects can
be switched on at a given time.

12.2.13.2 Syntax

aligned(8) class AudioElementSelectionBox extends Box ('aesb')
{
}

12.2.14 Audio element selection description box

12.2.14.1Definition

Box Type: 'aesd'

Container: AudioElementSelectionBox
Mandatory: Yes

Quantity: Exactly One

This box contains semantic information about the audio element selection.
12.2.14.2 Syntax

aligned(8) class AudioElementSelectionDescriptionBox
extends FullBox('aesd', version=0, flags)

{

utf8string selectionTag;

}

12.2.14.3 Semantics

selectionTag is a string that contains an identifier for the audio element selection. This
identifier shall uniquely identify the signalled audio element selection.

12.3 Metadata media

12.3.1 Media handler

Timed metadata media uses the "meta' handler type in the HandlerBox of the MediaBox, as defined
in 8.4.3.

NOTE 1 MPEG-7 streams, which are a specific kind of metadata stream, have their own handler declared, documented
in the MP4 file format (ISO/IEC 14496-1413I).

Metadata tracks should be linked to the track they describe using a track-reference of type 'cdsc'.

224 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.3.2 Media header

Metadata tracks use a Nul1lMediaHeaderBox, as defined in subclause 8.4.5.2.

12.3.3 Sample entry

12.3.3.1 Definition
Timed metadata tracks use MetaDataSampleEntry.

In case of XML metadata a BitRateBox in the SampleEntry can be used to choose the appropriate
memory representation format (DOM, STX).

The URIMetaSampleEntry entry contains, in a box, the URI defining the form of the metadata, and
optional initialization data. The format of both the samples and of the initialization data is defined by all
or part of the URI form.

It may be the case that the URI identifies a format of metadata that allows there to be more than one
‘stated fact’ within each sample. However, all metadata samples in this format are effectively ‘I frames’,
defining the entire set of metadata for the time interval they cover. This means that the complete set of
metadata at any instant, for a given track, is contained in (a) the time-aligned samples of the track(s) (if
any) describing that track, plus (b) the track metadata (if any), the movie metadata (if any) and the file
metadata (if any).

If incrementally-changed metadata is needed, the MPEG-7 framework provides that capability.

Information on URI forms for some metadata systems can be found in Annex G.
12.3.3.2 Syntax

class MetaDataSampleEntry (codingname) extends SampleEntry (codingname)
{
}

class XMLMetaDataSampleEntry () extends MetaDataSampleEntry ('metx')
{

utf8string content encoding; // optional
utf8list namespace;
utf8list schema location; // optional

}

class TextConfigBox extends Fullbox ('txtC', 0, 0)

{
utf8string text config;

}

class TextMetaDataSampleEntry () extends MetaDataSampleEntry ('mett')
{

utf8string content encoding; // optional
utf8string mime format;
TextConfigBox (); // optional

© ISO/IEC 202x - All rights reserved 225

DIS 14496-12:202x

class MIMEBox extends Fullbox ('mime', 0, 0)
{

utf8string content type;
}

aligned(8) class URIBox extends FullBox('uri ', version = 0, 0)
{

utf8string theURI;
}

aligned(8) class URIInitBox extends FullBox('uril', version = 0, 0)
{
unsigned int(8) uri initialization datal[];

}

class URIMetaSampleEntry () extends MetaDataSampleEntry ('urim')
{

URIbox the label;

URIInitBox init; // optional
}

12.3.3.3 Semantics

content encoding provides a MIME type which identifies the content encoding of the timed
metadata. It is defined in the same way as for an TtemInfoEntry in this document. If not
present (an empty string is supplied) the timed metadata is not encoded. An example for this
field is ‘application/zip’. Note that no MIME types for BiM [ISO/IEC 23001-1] and TeM
[ISO/IEC 15938-1] currently exist. Thus, the experimental MIME types ‘application/x-BiM’ and
‘text/x-TeM’ shall be used to identify these encoding mechanisms.

namespace provides one or more XML namespaces to which the sample documents conform.
When used for metadata, this is needed for identifying its type, e.g. gBSD or AQoS [MPEG-21-7]
and for decoding using XML aware encoding mechanisms such as BiM.

schema location provides zero or more URLs for XML schema(s) to which the sample
document conforms. If there is one namespace and one schema, then this field shall be the URL
of the one schema. If there is more than one namespace, then the syntax of this field shall adhere
to that for xsi:schemal.ocation attribute as defined by XML. When used for metadata, this is
needed for decoding of the timed metadata by XML aware encoding mechanisms such as BiM.

mime format providesa MIME type which identifies the content format of the samples. Examples
for this field include ‘text/html’ and ‘text/plain’.

text config provides the initial text of each document which is prepended before the contents
of each sync sample.

content type is astring corresponding to the MIME type each XML document carried in the
stream has when delivered on its own, possibly including sub-parameters.

NOTE This implies that if two XML documents carried in the same track have different MIME types (or
sub-parameters), each document is associated with a different sample entry.

theURI is a URI formatted according to the rules in 6.3.3;

uri initialization data is opaque data whose form is defined in the documentation of the
URI form.

226 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.4 Hint media

12.4.1 Overview

Hint tracks are used to describe media stream data in the file. Each protocol or each family of related
protocols has its own hint track format. A server hint track format and a reception hint track format for
the same protocol are distinguishable from the associated four character code of the sample entry. In
other words, a different four character code is used for a server hint track and a reception hint track of
the same protocol. The syntax of the server hint track format and the reception hint track format for the
same protocol should be the same or compatible so that a reception hint track can be used for re-sending
of the stream provided that the potential degradations of the received streams are handled appropriately.
Most protocols will need only one sample entry format for each track.

Servers find their hint tracks by first finding all hint tracks, and then looking within that set for server
hint tracks using their protocol (identified by the sample entry). If there are choices at this point, then
the server chooses on the basis of preferred protocol or by comparing features in the hint track header
or other protocol-specific information in the sample entries. Particularly in the absence of server hint
tracks, servers may also use reception hint tracks of their protocol. However, servers should handle
potential degradations of the received stream described by the used reception hint track appropriately.

Tracks having the track in movie flag set are candidates for playback, regardless of whether they
are media tracks or reception hint tracks.

Hint tracks construct streams by pulling data out of other tracks by reference. These other tracks may be
hint tracks or media stream tracks. The exact form of these pointers is defined by the sample format for
the protocol, but in general they consist of four pieces of information: a track reference index, a sample
number, an offset, and a length. Some of these may be implicit for a particular protocol. These ‘pointers’
always point to the actual source of the data. If a hint track is built ‘on top’ of another hint track, then the
second hint track shall have direct references to the media track(s) used by the first where data from
those media tracks is placed in the stream.

All hint tracks use a common set of declarations and structures.

o Hint tracks are linked to the media stream tracks they carry, by track references of type
'hint'

e They use a handler-type of 'hint ' in the HandlerBox
e TheyuseaHintMediaHeaderBox

e They use a HintSampleEntry in the SampleDescriptionBox, with a name and format
unique to the protocol they represent.

Server hint tracks are usually marked as disabled for local playback, with their track header
track in movieand track in preview flagssetto 0.

Hint tracks may be created by an authoring tool, or may be added to an existing presentation by a hinting
tool. Such a tool serves as a ‘bridge’ between the media and the protocol, since it intimately understands
both. This permits authoring tools to understand the media format, but not protocols, and for servers to
understand protocols (and their hint tracks) but not the details of media data.

Hint tracks shall not use composition time offsets. The process of hinting computes transmission times
correctly as the presentation time derived from the decoding time.

© ISO/IEC 202x - All rights reserved 227

DIS 14496-12:202x

Servers using reception hint tracks as hints for sending of the received streams should handle the
potential degradations of the received streams, such as transmission delay jitter and packet losses,
gracefully and ensure that the constraints of the protocols and contained data formats are obeyed
regardless of the potential degradations of the received streams.

Conversion of received streams to media tracks allows existing players compliant with earlier versions
of the ISO base media file format to process recorded files as long as the media formats are supported.
However, most media coding standards only specify the decoding of error-free streams, and consequently
it should be ensured that the content in media tracks can be correctly decoded. Players may utilize
reception hint tracks for handling of degradations caused by the transmission, i.e., content that may not
be correctly decoded is located only within reception hint tracks. The need for having a duplicate of the
correct media samples in both a media track and a reception hint track can be avoided by including data
from the media track by reference into the reception hint track.

12.4.2 Media handler

Hint media uses the "hint ' handler type in the Hand1lerBox of the MediaBox, as defined in 8.4.3.
12.4.3 Hint media header

12.4.3.1 Hint media header box

Box Types: 'hmhd'

Container: MediaInformationBox

Mandatory: Yes

Quantity: Exactly one specific media header shall be present

Hint tracks use the HintMediaHeaderBox in the MediaInformationBox, as defined in 8.4.5. The
hint media header contains general information, independent of the protocol, for hint tracks. (A PDU is a
protocol data unit.)

12.4.3.2 Syntax

aligned(8) class HintMediaHeaderBox

extends FullBox ('hmhd', version = 0, 0)
{

unsigned int (16) maxPDUsize;

unsigned int (16) avgPDUsize;

unsigned int (32) maxbitrate;

unsigned int (32) avgbitrate;

unsigned int (32) reserved = 0;

}

12.4.3.3 Semantics

version isan integer that specifies the version of this box

maxPDUsize gives the size in bytes of the largest PDU in this (hint) stream
avgPDUsize gives the average size of a PDU over the entire presentation
maxbitrate givesthe maximum rate in bits/second over any window of one second
avgbitrate gives the average rate in bits/second over the entire presentation

228 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.4.4 Sample entry

12.4.4.1 Definition
Hint tracks use an entry format specific to their protocol, with an appropriate name.

For hint tracks, the sample entry contains appropriate declarative data for the streaming protocol being
used, and the format of the hint track. The definition of the sample entry is specific to the protocol.

The protocol (codingname) field is a registered identifier that uniquely identifies the streaming
protocol or compression format decoder to be used. A given protocol may have optional or required
extensions to the sample entry (e.g. codec initialization parameters). All such extensions shall be within
boxes; these boxes occur after the required fields. Unrecognized boxes shall be ignored.

12.4.4.2 Syntax

class HintSampleEntry () extends SampleEntry (protocol)

{
}

12.5 Text media
12.5.1 Media handler

The timed text media type indicates that the associated decoder will process only text data. Timed text
media uses the ' text' handler type in the HandlerBox of the MediaBox, as defined in 8.4.3.

12.5.2 Media header

Timed text tracks use a NullMediaHeaderBox, as defined in subclause 8.4.5.2.

12.5.3 Sample entry

12.5.3.1 Definition

Timed text tracks use PlainTextSampleEntry.
12.5.3.2 Syntax

class PlainTextSampleEntry(codingname) extends SampleEntry (codingname)
{
}

class SimpleTextSampleEntry () extends PlainTextSampleEntry ('stxt')
{

utf8string content encoding; // optional
utf8string mime format;
TextConfigBox () ; // optional

}

12.5.3.3 Semantics

content encoding provides a MIME type which identifies the content encoding of the timed
text. It is defined in the same way as for an ITtemInfoEntry in this document. If not present

© ISO/IEC 202x - All rights reserved 229

DIS 14496-12:202x

(an empty string is supplied) the timed text is not encoded. An example for this field is
‘application/zip’.

mime format providesa MIME type which identifies the content format of the samples. Examples
for this field include ‘text/html’ and ‘text/plain’.

12.6 Subtitle media

12.6.1 Media handler

The subtitle media type indicates that the associated decoder will process text data and possibly images.
Subtitle media uses the ' subt ' handler type in the HandlerBox of the MediaBox, as defined in 8.4.3.

12.6.2 Subtitle media header

12.6.2.1 Definition

Subtitle tracks use the SubtitleMediaHeaderBox inthe MediaInformationBox, as defined in
8.4.5. The subtitle media header contains general presentation information, independent of the coding,
for subtitle media. This header is used for all tracks containing subtitles.

12.6.2.2 Syntax

aligned(8) class SubtitleMediaHeaderBox

extends FullBox ('sthd', version = 0, flags = 0)
{
}

12.6.2.3 Semantics

version -isaninteger that specifies the version of this box.
flags -isa24-bitinteger with flags (currently all zero).

12.6.3 Sample entry

12.6.3.1 Definition

Subtitle tracks use SubtitleSampleEntry.
12.6.3.2 Syntax

class SubtitleSampleEntry(codingname) extends SampleEntry (codingname)
{
}

class XMLSubtitleSampleEntry () extends SubtitleSampleEntry ('stpp')
{
utf8list namespace;
utf8list schema location; // optional
utf8list auxiliary mime types;
// optional, required if auxiliary resources are present

230 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

class TextSubtitleSampleEntry () extends SubtitleSampleEntry ('sbtt')
{

utf8string content encoding; // optional

utf8string mime format;

TextConfigBox (); // optional
}

12.6.3.3 Semantics

content encoding provides a MIME type which identifies the content encoding of the subtitles.
It is defined in the same way as for an TtemInfoEntry in this document. If not present (an
empty string is supplied) the subtitle samples are not encoded. An example for this field is
‘application/zip’.

namespace is one or more XML namespaces to which the sample documents conform. When used
for metadata, this is needed for identifying its type, e.g. gBSD or AQoS [MPEG-21-7] and for
decoding using XML aware encoding mechanisms such as BiM.

schema locationiszero or more URLs for XML schema(s) to which the sample document
conforms. If there is one namespace and one schema, then this field shall be the URL of the one
schema. If there is more than one namespace, then the syntax of this field shall adhere to that for
xsi:schemalocation attribute as defined by XML. When used for metadata, this is needed for
decoding of the timed metadata by XML aware encoding mechanisms such as BiM.

mime format providesa MIME type which identifies the content format of the samples. Examples
for this field include ‘text/html” and ‘text/plain’.

auxiliary mime types indicates the media type of all auxiliary resources, such as images and
fonts, if present, stored as subtitle sub-samples.

optional box maybeaBitRateBox oraMIMEBox or other box. When both BitRateBox
and MIMEBox are present, they may be in any order. Parsers shall allow other boxes to be
present.

12.7 Font media

12.7.1 Media handler

Font media uses the ' fdsm' handler type in the HandlerBox of the MediaBox, as defined in 8.4.3.
12.7.2 Media header

Font tracks use a Nul1MediaHeaderBox.

12.7.3 Sample entry

12.7.3.1 Definition

Font streams use a FontSampleEntry.

12.7.3.2 Syntax

class FontSampleEntry(codingname) extends SampleEntry (codingname)

{

//other boxes from derived specifications

}

© ISO/IEC 202x - All rights reserved 231

DIS 14496-12:202x

12.8 Void
12.9 Multiplexed timed metadata tracks

12.9.1 General
Multiplexed timed metadata tracks

1) allow the carriage of any user-data item (untimed metadata) as timed metadata; this allows the 'radio
station' case where song title, performer, etc. need to change as songs change;

2) allow the multiplexing together of formats; so, for example, a camera might record both location and
facing direction in the same sample.

12.9.2 Overall design

Timed metadata multiplex is a specific format of a metadata track (subclause 12.3); it has a sample entry
code, sample entry definitions, and a sample format. The sample entry code is 'mebx"', standing for
'metadata boxed'.

The track reference ' cdsc' should be used as described in subclause 12.3.1.

The sample entry sets up an association between a compact, fixed-size, identifier used in the streams
(repeatedly) and the permanent, possibly long-format, identifier, of the metadata and any parameters.

12.9.3 Sample format

A media sample is structured as a concatenation of one or more value Boxes (as defined in subclause 4.2).
The four-character-codes of these boxes are local keys and shall be declared in the sample entry; the
setup for these keys allows various associations (e.g. as equivalent to a user-data item, as equivalent to
an un-multiplexed timed metadata sample, etc.). The content of the box is defined by the association.

If no value for a particular key is present in the sample at the given time, the interpretation should be that
there is no metadata of that type at the time. Metadata values for that key for other times (e.g. from a

previous sample) should not be interpreted as applying to the target time.

If no values for any key are present for a time range, the best practice is to include a sample with only a
“NULL” data entry for the time range as defined in subclause 12.9.5.

12.9.4 Sample entry format
12.9.4.1 General

The sample entry for boxed timed metadata is the BoxedMetadataSampleEntry:

aligned(8) class BoxedMetadataSampleEntry
extends MetaDataSampleEntry ('mebx')
{

MetadataKeyTableBox () ; // mandatory
BitRateBox (); // optional
}
232 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

The only required box within BoxedMetadataSampleEntry is MetadataKeyTableBox which
defines what metadata values may be found in the AUs of the track.

MetadataKeyTableBox (defined in 12.9.4.2) is a table indicating the set of keys and information about
each key that may occur in associated samples.

BitRateBox is an optional box to signal the bitrate of the metadata stream.

12.9.4.2 Metadata key table box

Box Type: 'keys'

Container: BoxedMetadataSampleEntry
Mandatory: Yes

Quantity: Exactly one

The MetadataKeyTableBox contains a table of keys and mappings to payload data in the
corresponding samples. It is defined as:

aligned(8) class MetadataKeyTableBox extends Box ('keys')

{
MetadataKeyBox|[];

}

This is a box containing one or more instances of MetadataKeyBox, one for each “configuration” of key
that may occur in the samples of the track. For example, if there are two keys, there will be two
MetadataKeyBox boxes in the MetadataKeyTableBox - one for each key.

If the MetadataKeyTableBox does not contain a key for which a client is searching no samples
associated with this sample entry contain values with that key.

Ifthe MetadataKeyTableBox does contain a particular key, this does not however guarantee that any
samples containing a value for the key were written. Clients finding a key in the
MetadataKeyTableBox may still need to look through the track’s samples for values to determine if
the track has the particular metadata.

NOTE This rule allows a sample entry to be populated (say during a capture process) with keys that might be
discovered and then samples to be written with a binding only for the keys found. There is no requirement that the
sample entry be rewritten to exclude the key that was not needed. This makes writing using movie fragments easier
as the sample entries in the initial movie never need to be rewritten.

Whenever possible, it is preferred to remove unused sample entries efficiently and rewrite the sample
entry.

© ISO/IEC 202x - All rights reserved 233

DIS 14496-12:202x

12.9.4.3 Metadata key box

12.9.4.3.1 Definition

Box Type: locally defined

Container: MetadataKeyTableBox
Mandatory: Yes

Quantity: One or more

The box type for each MetadataKeyBox is here referred to as 'local_key_id' and serves (1) as a unique
identifier among all MetadataKeyBoxes and (2) as the identifier for the metadata value boxes within
samples that have that key.

The box type for the contained MetadataKeyBox is 'local' to the containing track and corresponds to
the box types (32-bit integers or four-character-codes) for boxes within metadata samples that hold that
particular metadata value. For example, if the MetadataKeyBox has the box type of ' stuf ', any boxes
of type 'stuf' in samples sharing this sample entry hold the value for this key. Values fitting in a 32-bit
big endian integer can be used (e.g. ' stuf’, the integer 72). It is recommended that it be mnemonic if
possible. Values 0 and OxFFFFFFFF are reserved and shall not be used to defiend new boxes.

There are two reserved box types for boxes of type MetadataKeyBox: 0 and OxFFFFFFFF. A
local key id of 0 in the MetadataKeyBox indicates that the MetadataKeyBox is unused and
should not be interpreted. This allows the key to be marked as unused in the sample entry without
requiring the sample entry and parent atoms to be rewritten/resized. (A box-type of 0 in a sample
indicates 'null' metadata, see below). A local key id of OXxFFFFFFFF should never occur in
MetadataKeyBox as this special value can be used to signal inline key/value boxes within samples.

All other box types are available to define box types used in samples.

NOTE Because the children boxes within MetadataKeyTableBox can take on any box type, there is be no
special interpretation of the box type for contained boxes other than the special value 0. Therefore, including a
FreeSpaceBox does not have the conventional meaning in the MetadataKeyBox. Even so, it is suggested
that the use of overly confusing use of existing four-character-codes be avoided.

Each MetadataKeyBox contains a variable number of boxes that define the key structure, the datatype
for values, optionally the locale for the values, and optional setup information needed to interpret the
value. In future versions of this document, new children boxes may be introduced.

12.9.4.3.2 Syntax

aligned(8) class MetadataKeyBox extends Box(local key id)
{
MetadataKeyDeclarationBox () ;
MetadatalLocaleBox () ; // optional
MetadataSetupBox () ; // optional
// other boxes may be present

234 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.9.4.4 Metadata key declaration box

12.9.4.4.1 Definition

Box Type: 'keyd'
Container: MetadataKeyBox
Mandatory: Yes

Quantity: Exactly one

The MetadataKeyDeclarationBox holds the key namespace and key value of that namespace for the
given values.

12.9.4.4.2 Syntax

aligned(8) class MetadataKeyDeclarationBox extends Box ('keyd')
{

unsigned 1int (32) key namespace;
unsigned int(8) key valuel[];

}

12.9.4.4.3 Semantics

key namespace is a 32-bit identifier describing the domain and the structure of the key value.
For example, this can indicate that key value is areverse-address style null-terminated string
using UTF-8 (e.g. "com.foo.mymetadata"), a binary four-character codes (e.g. ' cprt ' user data
key), a Uniform Resource Identifier (URI), or other structures (e.g. native formats from
metadata standards such as MXF). New key namespaces are registered, but as a URI can often
be used, using the URI key namespace may be sufficient for most uses. Unrecognized key
namespaces shall cause the associated key, and the sample data for that key, data to be ignored.

key value isanarray of bytes holding the key and whose interpretation is defined by the
associated key namespace field.

12.9.4.5 Metadata locale box

12.9.4.5.1 Definition

Box Type: 'loca'

Container: MetadataKeyBox
Mandatory: No

Quantity: Zero or one

A metadata value may optionally be tagged with its locale so that it may be chosen based upon the user's
language, country, etc. This makes it possible to include several keys of the same key type (e.g. copyright
or scene description) but with differing locales for users of different languages or locations. This allows
one track to hold different localizations for a particular key.

This is accomplished by including a MetadataLocaleBox within the MetadataKeyBox.

If the MetadatalocaleBox is absent, corresponding metadata values should be considered
appropriate for all locales. Example locale strings include 'en-US', 'fr-FR', or 'zh-CN".

© ISO/IEC 202x - All rights reserved 235

DIS 14496-12:202x

12.9.4.5.2 Syntax

aligned (8) class MetadatalocaleBox extends Box('loca')

{

utf8string locale string;

}

12.9.4.5.3 Semantics

locale string holds alanguage tag complying with IETF BCP 47.
12.9.4.6 Metadata setup box

12.9.4.6.1 Definition

Box Type: 'setu'

Container: MetadataKeyBox
Mandatory: No

Quantity: Zero or one

For some key namespaces, setup data is needed. The contents of the MetadataSetupBox are
defined by the key namespace. (For example, it contains the boxes present in the sample entry, for the
case of multiplexed timed metadata).

12.9.4.6.2 Syntax

aligned(8) class MetadataSetupBox extends Box ('setu')

{

// leaf data or array of Boxes

}

12.9.5 Defined formats

12.9.5.1 Null

A NULL value (and hence sample) can be signalled using a single box with the reserved value of 0 for
local key id. The contents of any such boxes should be ignored and may be present. No setup is
needed for NULL values; they may be present in any multiplex without declaration.

Null values may also be used to pad samples e.g. to a constant size, or to mark a value as no longer relevant
without having to edit the file or samples, simply by changing the box type to 0.

12.9.5.2 User-data

The key namespace 'uiso' (ISO user-data) indicates that the key is mapped to the user-data four-
character-code indicated by the key wvalue, which shall be 4 bytes in big-endian order, and shall be a
code valid as user-data. When key namespace equal to 'uiso' is used, the MetadataSetupBox
shall not be used.

For ease of reading and inspection, it is suggested that the 1ocal key id and the original user-data
four-character-code be equal. However readers shall not rely on any particular valuesof 1local key id.

236 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.9.5.3 Storing timed metadata in multiplexed timed metadata tracks

The key namespace 'me4c' (metadata sample entry four-character-code) indicates that the values
are valid timed metadata samples in their own right.

This key namespace indicates that the key is mapped to the sample-entry four-character-code, that is
valid for metadata tracks, indicated by the key wvalue, which shall be 4 bytes in big-endian order, and
shall be a code valid for a metadata track sample entry. All the extra data present as mandatory extensions
to the MetaDataSampleEntry for that sample entry four-character-code shall be present in the
MetadataSetupBox.

For ease of reading and inspection, itis suggested thatthe local key idand the original sample-entry
four-character-code be equal. However readers shall not rely on any particular values of 1local key id.

NOTE These are already defined by this document, and there are others defined elsewhere (e.g. 3GPP):
XMLMetaDataSampleEntry, TextMetaDataSampleEntry and URIMetaSampleEntry.

12.9.5.4 Other forms

Other key namespaces may be registered and used. If an unrecognized key namespace is found, the
associated sample entry and sample data shall be ignored.

Other possible key namespaces include URI and URNs, though formats for timed metadata (and hence
that can be multiplexed) for URIs already exist.

12.10Volumetric visual media

12.10.1 Media handler

Volumetric visual media uses the 'volv' handler type in the HandlerBox of the MediaBox, as defined
in 8.4.3. Multiple volumetric visual tracks may be present in the file.

12.10.2 Media header

12.10.2.1 Definition

Box Type: 'vvhd'

Container: MediaInformationBox
Mandatory: Yes

Quantity: Exactly one

Volumetric visual tracks use the VolumetricVisualMediaHeaderBox in the
MediaInformationBox as defined in 8.4.5. The volumetric visual media header contains general
presentation information, independent of the coding, for volumetric visual media. This header shall be
used in any track containing volumetric visual media.

12.10.2.2Syntax
aligned(8) class VolumetricVisualMediaHeaderBox
extends FullBox('vvhd', 0, 0)

{
}

© ISO/IEC 202x - All rights reserved 237

DIS 14496-12:202x

12.10.3 Sample entry

12.10.3.1Definition

Volumetric visual media tracks shall use a VolumetricVisualSampleEntry.
12.10.3.2 Syntax

class VolumetricVisualSampleEntry (codingname)

extends SampleEntry (codingname)

{
unsigned int (8) compressorname[32];
// other boxes from derived specifications

}

12.10.3.3 Semantics
compressorname isaname, for informative purposes. It is formatted in a fixed 32-byte field,

with the first byte set to the number of bytes to be displayed, followed by that number of bytes
of displayable data encoded using UTF-8, and then padding to complete 32 bytes total (including
the size byte). The field may be set to 0.

12.10.4 Sample format

The format of a volumetric visual sample is defined by the coding system.

12.11Haptic media

12.11.1 Media handler

Haptic media uses the 'hapt ' handler type in the HandlerBox of the MediaBox, as defined in 8.4.3.

12.11.2 Media header

Haptics tracks use the Nul1MediaHeaderBox in the MediaInformationBox as defined in 8.4.5.

12.11.3 Sample entry

12.11.3.1 Definition

Haptic tracks use HapticSampleEntry.

The HapticSampleEntry extends the SampleEntry class and holds haptic configuration

information. This configuration information may be further extended using boxes for codec-specific
information.

238 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

12.11.3.2Syntax

aligned(8) class HapticSampleEntry (codingname)
extends SampleEntry (codingname)

{

Box otherboxes|[];

}

12.11.4 Sample format

The haptics coding format defines the format of a haptics sample. It also defines whether the coding
format is all sync-sample, and if not, defines what a sync sample is.

13 Transformed media tracks

13.1 General
Protected media is described in 13.4.
Restricted media is described in 13.5.

Incomplete media is described in 13.6.

13.2 Multiple transformations for a single transformed media track

A transformed media track may have undergone several transformations of different types and shall not
have undergone more than one transformation of any particular type.

NOTE For example, a transformed media track can be both protected and restricted.

The following process applies to conclude the untransformed sample entry type of a transformed media
track:

1) Let schemelnfoContainerBox be ProtectionSchemeInfoBox,
RestrictedSchemeInfoBox, or CompleteTrackInfoBox when the track sample entry
type indicates an encrypted, restricted, or incomplete media track, respectively.

2) Let dataFormat be equal to the data format value of OriginalFormatBox of
schemelnfoContainerBox.

3) If dataFormat indicates a transformed media track, schemelnfoContainerBox is updated to be
ProtectionSchemeInfoBox, RestrictedSchemeInfoBox, or
CompleteTrackInfoBox when dataFormat indicates an encrypted, restricted, or incomplete
media track, respectively. The process continues from step 2.

4) Otherwise (dataFormat does not indicate a transformed media track), the untransformed sample
entry type is concluded to be equal to dataFormat.

13.3 Determining the untransformed sample entry type

13.3.1.1 General

A transformed media track may have undergone several transformations of different types but cannot
have undergone more than one transformation of any particular type.

© ISO/IEC 202x - All rights reserved 239

DIS 14496-12:202x

The following process applies to conclude the untransformed sample entry type (as defined in the
following subclause) of a transformed media track:

1) Let schemelnfoContainerBox be any ProtectionSchemeInfoBox, the
RestrictedSchemeInfoBox, or the CompleteTrackInfoBox when the sample entry type of
the track (i.e, the format value of a SampleEntry directly contained in the
SampleDescriptionBox) indicates an encrypted, restricted, or incomplete media track,
respectively.

2) Let dataFormat be equal to the data format value of OriginalFormatBox of
schemelnfoContainerBox.

3) If dataFormat indicates a transformed media track, schemelnfoContainerBox is updated to be
ProtectionSchemeInfoBox, RestrictedSchemeInfoBox, or CompleteTrackInfoBox
when dataFormat indicates an encrypted, restricted, or incomplete media track, respectively. The
process continues from step 2.

4) Otherwise (dataFormat does not indicate a transformed media track), the untransformed sample
entry type is concluded to be equal to dataFormat.

13.3.2 Example for protected and restricted media (informative)

For example, a transformed media track can be both protected and restricted, in which case the relevant
boxes in the sample entry can be set as follows:

SampleEntry ('encv')
{
ProtectionSchemeInfoBox {
OriginalFormatBox; // data format is 'resv'
SchemeTypeBox;
SchemeInformationBox;
}
RestrictedSchemeInfoBox {
OriginalFormatBox; // data format indicates a codec, e.g. 'avcl'
SchemeTypeBox;
SchemeInformationBox;
}
// Boxes specific to the untransformed sample entry type
// For 'avcl', these include AVCConfigurationBox

}

13.3.3 The 'codecs' MIME parameter for a transformed media track
The 'codecs' parameter value for transformed media tracks is described in Annex K.
13.4 Support for protected streams

13.4.1 Overview

This subclause documents the file-format transformations which are used for protected content. These
transformations can be used under several circumstances:

240 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

= They shall be used when the content has been transformed (e.g. by encryption) in such a way that
it can no longer be decoded by the normal decoder;

= They may be used when the content should only be decoded when the protection system is
understood and implemented.

The transformation functions by encapsulating the original media declarations. The encapsulation
changes the four character-code of the sample entries, so that protection-unaware readers see the media
stream as a new stream format.

Because the format of a sample entry varies with media-type, a different encapsulating four character-
code is used for each media type (audio, video, text etc.). They are shown in Table 13.

Table 13 — Protected sample-entry codes

Stream (Track) Type Sample-Entry Code SampleEntry Class

Video encv VisualSampleEntry

Audio enca AudioSampleEntry or
AudioSampleEntryVvl

Metadata encm MetaDataSampleEntry

Text enct SimpleTextSampleEntry

Subtitle encu XMLSubtitleSampleEntry

Systema encs

Font encf FontSampleEntry

Haptics encp HapticSampleEntry

Volumetric visual enc3 VolumetricVisualSampleEntry

a System streams are defined in ISO/IEC 14496-14[31.

The transformed sample entry type shall only be used with the indicated sample entry classes, or classes
derived from them that add only boxes (but not fields).

A protected sample entry is defined as using one of the preceding sample entry codes, and the following
transformation procedure:

1. The four character code of the sample entry is replaced with a four character code indicating
protection encapsulation: these codes vary only by media-type. For example, 'mp4v"' is replaced
with 'encv' and 'mp4a' isreplaced with 'enca"'.

2. A ProtectionSchemeInfoBox (defined below) is added to the sample entry, leaving all other
boxes unmodified.

3. The original sample entry type (four character code) 1is stored within the
ProtectionSchemeInfoBox, in a new box called the OriginalFormatBox (defined below);

There are then three methods for signalling the nature of the protection, which may be used individually
or in combination.

1) When MPEG-4 systems is used, then IPMP shall be used to signal that the streams are protected.

© ISO/IEC 202x - All rights reserved 241

DIS 14496-12:202x

2) IPMP descriptors may also be used outside the MPEG-4 systems context using boxes containing IPMP
descriptors.

3) The protection applied may also be described using the scheme type and information boxes.

When IPMP is used outside of MPEG-4 systems, then a ‘global’ TPMPControlBox may also occur within
the MovieBox.

NOTE When MPEG-4 systems is used, an MPEG-4 systems terminal can effectively treat, for example, 'encv' with an
original format of 'mp4v ' exactly the same as 'mp4v"', by using the IPMP descriptors.

13.4.2 Protection scheme information box

13.4.2.1 Definition

Box Types: 'sinf'

Container: Protected Sample Entry, or TtemProtectionBox
Mandatory: Yes

Quantity: One or More

The ProtectionSchemeInfoBox contains all the information required both to understand the
encryption transform applied and its parameters, and also to find other information such as the kind and
location of the key management system. It also documents the original (unencrypted) format of the media.
The ProtectionSchemeInfoBox isacontainer Box. Itis mandatory in a sample entry that uses a code
indicating a protected stream.

When used in a protected sample entry, this box shall contain the OriginalFormatBox to document
the original format. Atleast one of the following signalling methods shall be used to identify the protection
applied:

1) MPEG-4 systems with IPMP: no other boxes, when IPMP descriptors in MPEG-4 systems streams are
used;

2) Scheme signalling: a SchemeTypeBox and SchemeInformationBox, when these are used (either
both shall occur, or neither).

At least one ProtectionSchemeInfoBox shall occur in a protected sample entry. When more than
one occurs, they are equivalent, alternative, descriptions of the same protection. Readers should choose
one to process.

13.4.2.2 Syntax

aligned(8) class ProtectionSchemeInfoBox (fmt) extends Box('sinf')
{
OriginalFormatBox (fmt) original format;
// mandatory for sample protection,
// shall not be present for item protection

SchemeTypeBox scheme type box; // optional
SchemeInformationBox info; // optional

242 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

13.4.3 Original format box

13.4.3.1 Definition

Box Types: 'frma'

Container: ProtectionSchemeInfoBox, RestrictedSchemeInfoBox, or
CompleteTrackInfoBox

Mandatory: Yes when used in a protected sample entry, in a restricted sample entry, or
in a sample entry for an incomplete track.

Quantity: Exactly one.

The OriginalFormatBox contains the four character code of the original un-transformed sample
entry.

13.4.3.2 Syntax

aligned(8) class OriginalFormatBox (codingname) extends Box ('frma')

{

unsigned int (32) data format = codingname;
// format of decrypted, encoded data (in case of protection)
// or un-transformed sample entry (in case of restriction
// and complete track information)

}

13.4.3.3 Semantics

data_ format is the four character code of the original un-transformed sample entry (e.g. 'mp4v"'
if the stream contains protected or restricted MPEG-4 visual material).

13.4.4 IPMPInfoBox

This box has been deprecated and is no longer defined in this document.

13.4.5 IPMP control box

This box has been deprecated and is no longer defined in this document.
13.4.6 Scheme type box

13.4.6.1 Definition

Box Types: 'schm'
Container: ProtectionSchemeInfoBox,RestrictedSchemeInfoBox,
or SRTPProcessBox
Mandatory: No
Quantity: Zerooronein 'sinf', depending on the protection structure; Exactly one in 'rinf"' and
'srpp’

The SchemeTypeBox identifies the protection or restriction scheme.

© ISO/IEC 202x - All rights reserved 243

DIS 14496-12:202x

13.4.6.2 Syntax

aligned(8) class SchemeTypeBox extends FullBox('schm', 0, flags)
{
unsigned int (32) scheme type; // 4CC identifying the scheme
unsigned int (32) scheme version; // scheme version
if (flags & 0x000001) {
utf8string scheme uri; // browser uri

}

13.4.6.3 Semantics

scheme type is the code defining the protection or restriction scheme, normally expressed as a
four character code;

scheme version isthe version of the scheme (used to create the content)

scheme URI is an absolute URI allowing for the option of directing the user to a web-page if they
do not have the scheme installed on their system.

13.4.7 Scheme information box

13.4.7.1 Definition

Box Types: 'schi'

Container: ProtectionSchemeInfoBox,RestrictedSchemeInfoBox,
or SRTPProcessBox

Mandatory: No

Quantity: Zero or one

The SchemeInformationBox is a container Box that is only interpreted by the scheme being used.
Any information the encryption or restriction system needs is stored here. The content of this box is a
series of boxes whose type and format are defined by the scheme declared in the SchemeTypeBox.

13.4.7.2 Syntax

aligned(8) class SchemeInformationBox extends Box ('schi')

{

Box scheme specific datal];

}

13.4.8 Scramble Scheme Information Box

13.4.8.1 Definition

Box Types: 'scrb'

Container: Sample entry or ItemPropertyContainerBox

Mandatory: Yes, if the media sample(s) associated with the sample entry or the associated item(s)
use a scrambling scheme

Quantity: One or More

In the context of this document, a scrambling operation on media stream is the process of modifying
binary patterns in a compressed media stream without modifying the media bitstream syntax (i.e.
decoding without reverting the scramble is syntactically correct). The ScrambleSchemeInfoBox

244 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

contains all the information required both to understand the scrambling operation applied and its
parameters, and also to find other information such as the kind and location of the key management
system. The ScrambleSchemeInfoBox is a container box.

It is mandatory in a sample entry for which media samples use a scrambling scheme resulting in media
content compliant with the requirements of the media format identified by the sample entry type of the
track, if the track is not a transformed media track, or by the untransformed sample entry type, otherwise.

For an item consisting of media using a scrambling scheme resulting in media content compliant with the
requirements of the media format identified by the item type, this property shall be present in the
ItemPropertyContainerBox and the protected item shall have this property listed as a non-
essential property.

This box shall not be used for any scrambling scheme resulting in a cyphered media stream not
compatible with the requirements of the media format identified by the sample entry type or item type.

NOTE The ScrambleSchemeInfoBox is identical to the ProtectionSchemeInfoBox except that (a) it
uses the four-character code 'scrb' and (b) does not contain an OriginalFormatBox.

13.4.8.2 Syntax

aligned(8) class ScrambleSchemeInfoBox extends Box('scrb')

{
SchemeTypeBox scheme type box;
SchemeInformationBox info; // optional

}

13.5 Restricted media tracks

13.5.1 General

In order to handle situations where the file author requires certain actions on the player or renderer, this
subclause specifies a mechanism that enables players to simply inspect a file to find out such
requirements for rendering a bitstream and stops legacy players from decoding and rendering files that
require further processing. The mechanism applies to any type of video codec. In particular it applies to
AVC and for this case specific signalling is defined in the AVC file format (ISO/IEC 14496-15[31) that allows
afile author to list occurring SEI message IDs and distinguish between required and non-required actions
for the rendering process.

The mechanism is similar to the content protection transformation where sample entries are hidden
behind generic sample entries, 'encv’', 'enca’, etc, indicating encrypted or encapsulated media. The
analogous mechanism for restricted video uses a transformation with the generic sample entry 'resv'.
The method may be applied when the content should only be decoded by players that present it correctly.

13.5.2 Restricted sample entry transformation

A restricted sample entry is defined as a sample entry on which the following transformation procedure
has been applied:

1) The four character code of the sample entry is replaced by a sample entry code as defined in
Table 14 below.

© ISO/IEC 202x - All rights reserved 245

DIS 14496-12:202x

2) A RestrictedSchemeInfoBox is added to the sample entry, leaving all other boxes
unmodified.

3) The original sample entry type is stored within an OriginalFormatBox contained in the
RestrictedSchemeInfoBox.

Table 14 — Restricted sample-entry codes

Stream (Track) Type | Sample-Entry Code | SampleEntry Class

Video resv VisualSampleEntry

Audio resa AudioSampleEntry or AudioSampleEntryVil
Metadata resm MetaDataSampleEntry

Text rest SimpleTextSampleEntry
Subtitle resu XMLSubtitleSampleEntry
Systema ress

Font resf FontSampleEntry

Haptics resp HapticSampleEntry

Volumetric visual res?3 VolumetricVisualSampleEntry
aSystem streams are defined in ISO/IEC 14496-14I81.

A RestrictedSchemeInfoBox is formatted exactly the same as a ProtectionSchemeInfoBox,
except that is uses the identifier 'rinf ' instead of 'sinf' (see below).

The original sample entry type is contained in the OriginalFormatBox located in the
RestrictedSchemeInfoBox (in an identical way to the ProtectionSchemeInfoBox for
encrypted media).

The exact nature of the restriction is defined in the SchemeTypeBox, and the data needed for that
scheme is stored in the SchemeInformationBox, again, analogously to protection information.

Restriction and protection can be applied at the same time. The order of the transformations follows from
the four-character code of the sample entry. For instance, if the sample entry type is 'resv', undoing
the above transformation may result in a sample entry type 'encv', indicating that the media is
protected.

If the file author only wants to provide advisory information without stopping legacy players from playing
the file, the RestrictedSchemeInfoBox may be placed inside the sample entry without transforming
the four character code. In this case it is not necessary to include an OriginalFormatBox.

246 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

13.5.3 Restricted scheme information box

13.5.3.1 Definition

Box Types: 'rinf'

Container: Restricted Sample Entry or Sample Entry
Mandatory: Yes in Restricted Sample Entry, no otherwise
Quantity: Zero or one

The RestrictedSchemeInfoBox contains all the information required both to understand the
restriction scheme applied and its parameters. It also documents the original (un-transformed) sample
entry type of the media. The RestrictedSchemeInfoBox is a container Box. It is mandatory in a
sample entry that uses a code indicating a restricted stream, i.e., ' resv"'.

When used in a restricted sample entry, this box shall contain the OriginalFormatBox to document
the original sample entry type and a SchemeTypeBox. A SchemeInformationBox may be required
depending on the restriction scheme.

13.5.3.2 Syntax

aligned(8) class RestrictedSchemeInfoBox (fmt) extends Box('rinf')

{
OriginalFormatBox original format (fmt);
SchemeTypeBox scheme type box;
SchemeInformationBox info; // optional

}
13.5.4 Scheme for stereoscopic video arrangements
13.5.4.1 General

When stereo-coded video frames are decoded, the decoded frames either contain a representation of two
spatially packed constituent frames that form a stereo pair (frame packing) or only one view of a stereo
pair (left and right views in different tracks). Restrictions due to stereo-coded video are contained in the
StereoVideoBox.

scheme typeequalto 'stvi' (stereoscopic video) is used.
13.5.4.2 Stereo video box

13.5.4.2.1 Definition

Box Type: 'stvi'

Container: SchemeInformationBox
Mandatory: Yes (when scheme typeis 'stvi')
Quantity: One

The StereovVideoBox is used to indicate that decoded frames either contain a representation of two
spatially packed constituent frames that form a stereo pair or contain one of two views of a stereo pair.
The StereoVideoBox shall be present when scheme typeis 'stvi'.

When the value of stereo indication type indicates the temporal interleaving frame packing
arrangement and the display system in use presents two views simultaneously, readers should implicitly

© ISO/IEC 202x - All rights reserved 247

DIS

14496-12:202x

set the composition timestamp for constituent picture 0 to coincide with the composition timestamp for
constituent picture 1.

13.5.4.2.2 Syntax

aligned(8) class StereoVideoBox extends FullBox('stvi', wversion = 0, 0)

{

template unsigned int (30) reserved = 0;
unsigned int(2) single view allowed;

unsigned int (32) stereo scheme;

unsigned int (32) length;

unsigned int(8) stereo indication type[length];

Box any box[]; // optional

}

13.5.4.2.3 Semantics

single view allowed is an integer. A zero value indicates that the content may only be
displayed on stereoscopic displays. When (single view allowed & 1) is equal to 1, it is
allowed to display the right view on a monoscopic single-view display. When
(single view allowed & 2) is equal to 2, it is allowed to display the left view on a
monoscopic single-view display.

stereo scheme is an integer that indicates the stereo arrangement scheme used and the stereo
indication type according to the used scheme. The following values for stereo scheme are
specified:
1: the frame packing scheme as specified by the Frame packing arrangement Supplemental

Enhancement Information message of ISO/IEC 14496-10:2014,

the arrangement type scheme as specified in ISO/IEC 10646, Annex D

3: the stereo scheme as specified in ISO/IEC 23000-11[¢l for both frame/service compatible and
2D /3D mixed services.
4,5:values of VideoFramePackingType, QuincunxSamplingFlag.
PackedContentInterpretationType as defined in ISO/IEC 23091-2.
Other values of stereo scheme are reserved.
length indicates the number of bytes for the stereo indication type field.
stereo indication type indicates the stereo arrangement type according to the used stereo
indication scheme. The syntax and semantics of stereo _indication type depend on the
value of stereo_scheme. The syntax and semantics for stereo indication type for the
following values of stereo scheme are specified as follows:
stereo_scheme equal to 1: The value of 1ength shallbe 4 and stereo_indication type
shall be unsigned int (32) which contains the frame_packing_arrangement_type value
from ISO/IEC 14496-10:2014,, Table D-8. (‘Definition of frame_packing_arrangement_type’).

stereo_scheme equal to 2: The value of length shallbe 4 and stereo _indication type shallbe

uns

igned int (32) which contains the type value from ISO/IEC 10646, Table D.1 (‘Definition of

arrangement_type’).

248

stereo_scheme equal to 3: The value of 1length shall be 2 and
stereo_indication type shall contain two syntax elements of unsigned int (8).
The first syntax element shall contain the stereoscopic composition type from
ISO/IEC 23000-11:20091¢], Table 4. The least significant bit of the second syntax element

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

shall contain the value of is left first asspecified in ISO/IEC 23000-11:20091¢],
subclause 8.4.3, while the other bits are reserved and shall be set to 0.

stereo_scheme equal to 4: The value of length shallbe 2and stereo_indication type
shall contain two syntax elements of unsigned int (8). The first syntax element shall
contain a VideoFramePackingType from ISO/IEC 23091-2. The least significant bit of the
second syntax element shall contain the value of QuincunxSamplingFlag as specified in
ISO/IEC 23091-2, while the other bits are reserved and shall be set to 0.
PackedContentInterpretationType specified in ISO/IEC 23091-2 is inferred to be equal to
1.

stereo scheme equal to 5: The value of 1ength shall be 3 and
stereo indication type shall contain three syntax elements of type unsigned
int (8). The first syntax element shall contain a VideoFramePackingType from
ISO/IEC 23091-2. The least significant bit of the second syntax element shall contain the
value of QuincunxSamplingFlag as specified in ISO/IEC 23091-2, while the other bits are
reserved and shall be set to 0. The third syntax element shall contain the
PackedContentInterpretationType from ISO/IEC 23091-2.

The following applies when the StereovideoBox is used:
— Inthe TrackHeaderBox

— width and height in the TrackHeaderBox specify the visual presentation size of a single
view after unpacking.

— The following specifications apply for syntax elements and boxes in a SampleEntry in the
SampleDescriptionBox

— frame count shall be 1, because the decoder physically outputs a single frame. In other words,
the constituent frames included within a frame-packed picture are not documented by
frame count.

— width and height document the pixel counts of a frame-packed picture (and not the pixel
counts of a single view within a frame-packed picture).

— the PixelAspectRatioBox documents the pixel aspect ratio of each view when the view is
displayed on a monoscopic single-view display. For example, in many spatial frame packing
arrangements, the pixel aspect ratio box therefore indicates 2:1 or 1:2 pixel aspect ratio, as the
spatial resolution of one view of frame-packed video is typically halved along one coordinate axis
compared to that of the single-view video of the same format.

© ISO/IEC 202x - All rights reserved 249

DIS 14496-12:202x

13.5.5 Compatible scheme type box

13.5.5.1 Definition

Box Type: 'csch'

Container: RestrictedSchemeInfoBox
Mandatory: No

Quantity: Zero or more

CompatibleSchemeTypeBox identifies a scheme type that the track conforms to. The
SchemeTypeBox and the instances of CompatibleSchemeTypeBox provide the possibility to
indicate several scheme type values for the same track. The track conforms to all the constraints
imposed by all indicated scheme type values among the SchemeTypeBox and the instances of
CompatibleSchemeTypeBox within the same RestrictedSchemeInfoBox.

Parsers that are capable of processing any indicated scheme type value among the SchemeTypeBox
or any instance of CompatibleSchemeTypeBox are allowed to process the track provided that they
process all the boxes contained in the SchemeInformationBox.

13.5.5.2 Syntax

aligned(8) class CompatibleSchemeTypeBox
extends FullBox('csch', 0, flags)
{
// identical syntax to SchemeTypeBox
unsigned int (32) scheme type; // 4CC identifying the scheme

unsigned int (32) scheme version; // scheme version
if (flags & 0x000001) {
utf8string scheme uri; // browser uri

}

13.5.5.3 Semantics

The semantics of the syntax elements are identical to the semantics of the syntax elements with the same
name in SchemeTypeRox.

13.5.6 Sample-packed tracks

13.5.6.1 Introduction

When arestricted scheme with scheme type equalto 'spkt' isin use for a track, a sample associated
with the sample entry may be a packed sample, i.e., it may contain more than one sample of an original
track. Such a current track is referred to as a sample-packed track.

250 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

13.5.6.2 Sample packing information box

13.5.6.2.1 Definition

Box Type: 'spki'

Container: SchemeInformationBox
Mandatory: Yes (when scheme typeis 'spkt')
Quantity: One

13.5.6.2.2 Syntax

aligned(8) class SamplePackingInformationBox
extends FullBox('spki', version = 0, flags = 0)
{

unsigned int (8) mode;

}

13.5.6.2.3 Semantics

mode equal to 0 specifies that all the samples of the original streams have been preserved. The value 1
specifies that only some samples have been preserved. All other values are reserved for future
use.

13.6 Support for incomplete tracks

13.6.1 General

This subclause documents the sample entry formats for tracks that are incomplete. Incomplete tracks
may contain samples that are marked empty or not received using the sample format.

Incomplete tracks may result, for example, when subsegments are received partially according to level
assignments and padding flag in the LevelAssignmentBox indicates that the data in a
MediaDataBox that is not received can be replaced by zeros. Consequently, sample data assigned to
non-accessed levels is not present, and care should be taken not to attempt to process such samples.
However, in partially received subsegments some tracks might remain complete in content while other
tracks might be incomplete and only contain data that is included by reference into the complete tracks.

This subclause specifies support for sample entry formats for incomplete tracks. With this support,
readers can detect incomplete tracks from their sample entries and avoid processing such tracks or take

the possibility of empty or not received samples into account when processing such tracks.

The support for incomplete tracks is similar to the content protection transformation where sample
entries are hidden behind generic sample entries, such as 'encv' and 'enca'. Because the format of a

© ISO/IEC 202x - All rights reserved 251

DIS 14496-12:202x

sample entry varies with media-type, a different encapsulating four character code is used for incomplete
tracks of each media type (audio, video, text etc.). They are:

Stream (Track) Type Sample-Entry Code
Video icpv
Audio icpa
Text icpt
System icps
Hint icph
Haptics icpp
Volumetric visual icp3
Timed Metadata icpm

Sample data of incomplete tracks may be included into samples of other tracks by reference, and hence
an incomplete track should not be removed as long as any track reference points to it.

NOTE 1 The choice of level by the original recording client can vary over time, and at times represent the complete
track. The level is not indicated here, and it is not required that the sample entry change from ‘incomplete’ to ‘complete’
when all levels were, in fact, received, for a period.

NOTE 2 The ‘original format’ might have indicated encryption, if partial reception and decryption works for that
encryption format.

13.6.2 Transformation

The sample entry for a track that becomes incomplete e.g. through partial reception, should be modified
as follows:

1) The four character code of the sample entry, e.g. 'avcl', is replaced by a new sample entry code
'icpv' meaning an incomplete track.

2) ACompleteTrackInfoBox is added to the sample entry, leaving all other boxes unmodified.

3) The original sample entry type, e.g. 'avcl',is stored within an OriginalFormatBox contained in
the CompleteTrackInfoBox.

After transformation, an example AVC sample entry might look like:

class IncompleteAVCSampleEntry () extends VisualSampleEntry ('icpv')
{

CompleteTrackInfoBox () ;

AVCConfigurationBox config;

}
NOTE The sample entry type 'avcl' and the AVCConfigurationBox are specified in ISO/IEC 14496-15[3l.

252 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

13.6.3 Complete track information box

13.6.3.1 Definition

Box Types: 'cinf'

Container: Sample Entry for an Incomplete Track
Mandatory: Yes

Quantity: Exactly one

The CompleteTrackInfoBox contains, within the OriginalFormatBox, the sample entry format
of the complete track that was transformed to the presentincomplete track. It may contain optional boxes
for example including information required to process samples of the present incomplete track. The
CompleteTrackInfoBox is a container box. It is mandatory in a sample entry that uses a code
indicating an incomplete track.

13.6.3.2 Syntax
aligned(8) class CompleteTrackInfoBox (fmt) extends Box ('cinf')

{

OriginalFormatBox (fmt) original format;

}

© ISO/IEC 202x - All rights reserved 253

DIS 14496-12:202x

Annex A
(informative)

Overview and tutorial

A.1Annex overview
This annex provides an overview to the file format, that potentially assists readers in understanding the

overall concepts underlying the file format.

A.2Design considerations
A.2.1 Usage

A.2.1.1 Multi-purpose

The file format is intended to serve as a basis for a number of operations. In these various roles, it can be
used in different ways, and different aspects of the overall design exercised.

A.2.1.2 Interchange

When used as an interchange format, the files would normally be self-contained (not referencing media
in other files), contain only the media data actually used in the presentation, and not contain any
information related to streaming. This will result in a small, protocol-independent, self-contained file,

which contains the core media data and the information needed to operate on it.

Figure A.1 gives an example of a simple interchange file, containing two streams.

ISO file

moov mdat
...other boxes trak (video)

interleaved, time-
ordered video and
audio access units

trak (audio)

Figure A.1 — Simple interchange file

A.2.1.3 Content creation

During content creation, a number of areas of the format can be exercised to useful effect, particularly:

o the ability to store each media stream separately (not interleaved), possibly in separate files.

254 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

o the ability to work in a single presentation that contains media data and other streams (e.g.
editing the audio track in the uncompressed format, to align with an already-
prepared video track).

These characteristics mean that presentations can be prepared, edits applied, and content developed and
integrated without either iteratively re-writing the presentation on disc - which would be necessary if
interleave was required and unused data had to be deleted; and also without iteratively decoding and re-
encoding the data - which would be necessary if the data must be stored in an encoded state.

In Figure A.2, a set of files being used in the process of content creation is shown.

media file

video access units,
possibly un-ordered
with other unused data

ISO file

moov L1
..other boxes trak (video) K

ISO file

mdat
N

video and audio access
units possibly un-
ordered with other
unused data

trak (audio) KN

77

other boxes (incl. moov)

Figure A.2 — Content creation file

A.3Design principles

The file structure is object-oriented; a file can be decomposed into constituent objects very simply, and
the structure of the objects inferred directly from their type.

Media-data is not ‘framed’ by the file format; the file format declarations that give the size, type and
position of media data units are not physically contiguous with the media data. This makes it possible to
subset the media-data, and to use it in its natural state, without requiring it to be copied to make space
for framing. The structure-data is used to describe the media data by reference, not by inclusion.

The file format does not require that a single presentation be in a single file. This enables both sub-setting
and re-use of content. When combined with the non-framing approach, it also makes it possible to include
media data in files not formatted to this document (e.g. ‘raw’ files containing only media data and no
declarative information, or file formats already in use in the media or computer industries).

The file format is based on a common set of designs and a rich set of possible structures and usages. The
same format serves all usages; translation is not required. However, when used in a particular way (e.g.

© ISO/IEC 202x - All rights reserved 255

DIS 14496-12:202x

for local presentation), the file possibly needs structuring in certain ways for optimal behaviour (e.g.
time-ordering of the data). No normative structuring rules are defined by this document, unless a
restricted profile is used.

A.4Core concepts

In the file format, the overall presentation is called a movie. It is logically divided into tracks; each track
represents a timed sequence of media (frames of video, for example). Within each track, each timed unit
is called a sample; this might be a frame of video or audio. Samples are implicitly numbered in sequence.
Note that a frame of audio typically decompresses into a sequence of audio samples (in the sense this
word is used in audio); in general, this document uses the word sample to mean a timed frame or unit of
data. Each track has one or more sample entries; each sample in the trackis tied to an entry by reference.
The description defines how the sample can be decoded (e.g. it identifies the compression algorithm
used).

Unlike many other multi-media file formats, this format, with its ancestors, separates several concepts
that are often linked. Understanding this separation is key to understanding the file format. In particular:

The physical structure of the file is not tied to the physical structures of the media itself. For example,
many file formats ‘frame’ the media data, putting headers or other data immediately before or after each
frame of video; this document does not do this.

Neither the physical structure of the file, nor the layout of the media, is tied to the time ordering of the
media. Frames of video need not be laid down in the file in time order (though they can be).

This means that there are file structures that describe the placement and timing of the media; these file
structures permit, but do not require, time-ordered files.

All the data within a conforming file is encapsulated in boxes (called atoms in predecessors of this
document). There is no data outside the box structure. All the structure-data, including that defining the
placement and timing of the media, is contained in structured boxes. This document defines the boxes.
The media data (frames of video, for example) is referred to by this structure-data. The media data can
be in the same file (contained in one or more boxes), or can be in other files; the structure-data permits
referring to other files by means of URLs. The placement of the media data within these secondary files
is entirely described by the structure-data in the primary file. They need not be formatted to this
document, though they can be; it is possible that there are no boxes, for example, in these secondary
media files.

Tracks can be of various kinds. Three are important here. Video tracks contain samples that are visual;
audio tracks contain audio media. Hint tracks are rather different; they contain instructions for a
streaming server in how to form packets for a streaming protocol, from the media tracks in a file. Hint
tracks can be ignored when a file is read for local playback; they are only relevant to streaming.

A.5Physical structure of the media
The boxes that define the layout of the media data are found in the sample table. These include the data

reference, the sample size table, the sample to chunk table, and the chunk offset table. Between them,
these tables allow each sample in a track to be both located, and its size to be known.

256 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

The data references permit locating media within secondary media files. This allows a composition to
be built from a ‘library’ of media in separate files, without actually copying the media into a single file.
This greatly facilitates editing, for example.

The tables are compacted to save space. In addition, it is expected that the interleave will not be sample
by sample, but that several samples for a single track will occur together, then a set of samples for another
track, and so on. These sets of contiguous samples for one track are called chunks. Each chunk has an
offset relative to the containing resource that is identified through a reference to a data reference entry.
For example, a chunk offset can be provided relative to the beginning of the file. Within the chunk, the
samples are contiguously stored. Therefore, if a chunk contains two samples, the position of the second
can be found by adding the size of the first to the offset for the chunk. The chunk offset table provides the
offsets; the sample to chunk table provides the mapping from sample number to chunk number.

Note that in between the chunks (but not within them) there can be ‘dead space’, un-referenced by the
media data. Thus, during editing, if some media data is not needed, it can simply be left unreferenced; the
data need not be copied to remove it. Likewise, if the media data is in a secondary file formatted to a
‘foreign’ file format, headers or other structures imposed by that foreign format can simply be skipped.

A.6Temporal structure of the media

Timing in the file can be understood by means of a number of structures. The movie, and each track, has
a timescale. This defines a time axis which has a number of ticks per second. By suitable choice of this
number, exact timing can be achieved. Typically, this is the sampling rate of the audio, for an audio track.
For video, a suitable scale is to be chosen. For example, a media TimeScale of 30000 and media sample
durations of 1001 exactly define NTSC video (often, but incorrectly, referred to as 29.97) and provide
19.9 hours of time in 32 bits.

The time structure of a track can be affected by an edit list. These provide two key capabilities: the
movement (and possible re-use) of portions of the timeline of a track, in the overall movie, and also the
insertion of ‘blank’ time, known as empty edits. Note in particular that if a track does not start at the
beginning of a presentation, an initial empty edit is needed.

The overall duration of each track is defined in headers; this provides a useful summary of the track. Each
sample has a defined duration. The exact decoding timestamp of a sample is defined by summing the
durations of the preceding samples.

A.7Interleave

The temporal and physical structures of the file can be aligned. This means that the media data has its
physical order within its container in time order, as used. In addition, if the media data for multiple tracks
is contained in the same file, this media data can be interleaved. Typically, in order to simplify the reading
of the media data for one track, and to keep the tables compact, this interleave is done at a suitable time
interval (e.g. 1 second), rather than sample by sample. This keeps the number of chunks down, and thus
the chunk offset table small.

A.8Composition

If multiple audio tracks are contained in the same file, they are implicitly mixed for playback. This mixing
is affected by the overall track volume, and the left/right balance.

© ISO/IEC 202x - All rights reserved 257

DIS 14496-12:202x

Likewise, video tracks are composed, by following their layer number (from back to front), and their
composition mode. In addition, each track can be transformed by means of a matrix, and also the overall
movie transformed by matrix. This permits both simple operations (e.g. pixel doubling, correction of 902
rotation) as well as more complex operations (shearing, arbitrary rotation, for example).

Derived specifications can over-ride this default composition of audio and video with more powerful
systems (e.g. MPEG-4 BIFS).

A.9Random access

This clause describes how to seek. Seeking is accomplished primarily by using the child boxes contained
in the SampleTableBox. If an edit list is present, it must also be consulted.

To seek a given track to a time T, where T is in the time scale of the MovieHeaderBox, the following
operations can be performed:

1) If the track contains an edit list, determine which edit contains the time T by iterating over the edits.
The start time of the edit in the movie time scale must then be subtracted from the time T to generate
T', the duration into the edit in the movie time scale. T' is next converted to the time scale of the track's
media to generate T". Finally, the time in the media scale to use is calculated by adding the media
start time of the edit to T".

2) The TimeToSampleBox for a track indicates what times are associated with which sample for that
track. Use this box to find the first sample prior to the given time.

3) Possibly, the sample that was located in step 1 is nota sync sample. The SyncSampleBox documents
sync samples, which are random access points (Note that there can be random access points that are
not documented by the SyncSampleBox). Using this table, the first sync sample prior to the
specified time can be located. The absence of the SyncSampleBox indicates that all samples are
synchronization points, and makes this problem easy. Having consulted the SyncSampleBox, the
next step is likely to be seeking to whichever resultant sample is closest to, but prior to, the sample
found in step 1.

4) At this point the sample that will be used for random access is known. Use the SampleToChunkBox
to determine in which chunk this sample is located.

5) Knowing which chunk contained the sample in question, use the ChunkOffsetBox to figure out
where that chunk begins.

6) Starting from this offset, use the information contained in the SampleToChunkBox and the
SampleSizeBox to figure out where within this chunk the sample in question is located. This is the

desired information.

A.10Fragmented movie files

This clause introduces a technique that can be used in movie files, where the construction of a single
MovieBox in a movie is burdensome. This can arise in at least the following cases:

258 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

e Recording. If un-fragmented movie files are used, if a recording application crashes, runs out of disk,
or some other incident happens, after it has written a lot of media to disk but before it writes the
MovieBox, the recorded data is unusable. This occurs because the file format insists that all
structure-data (the MovieBox) be written in one contiguous area of the file.

e Recording. On embedded devices, particularly still cameras, there is not the RAM to buffer a
MovieBox for the size of the storage available, and re-computing it when the movie is closed is too
slow. The same risk of crashing applies, as well.

e HTTP fast-start. If the movie is of reasonable size (in terms of the MovieBox, if not time), the
MovieBox can take an uncomfortable period to download before fast-start happens.

o Segmented streaming. Segment-based streaming systems divide presentations into a sequence of
segments which are transmitted and played. An initial segment (often called an initialization
segment) contains a MovieBox in which the track(s) contain no samples, and subsequent segments

contain one or more MovieFragmentBox(es).

The basic 'shape’ of the movie is set in initial MovieBox: the number of tracks, the available sample
entries, width, height, composition, and so on. However the MovieBox does not contain the information
for the full duration of the movie; in particular, it can have few or no samples in its tracks.

To this minimal or empty movie, extra samples are added, in structure called movie fragments.

The basic design philosophy is the same as in the MovieBox; data is not 'framed'. However, the design is
such that it can be treated as a 'framing' design if that is needed. The structures map readily to the
MovieBox, so a fragmented presentation can be rewritten as a single MovieBox.

The approach is that defaults are set for each sample, both globally (once per track) and within each
fragment. Only those fragments that have non-default values need include those values. This makes the
common case — regular, repeating, structures — compact, without disabling the incremental building of
movies that have variations.

The regular MovieBox sets up the structure of the movie. It can occur anywhere in the file, though it is
best for readers if it precedes the fragments. (This is not a rule, as trivial changes to the MovieBox that
force it to reside at the end of the file would then be impossible). This MovieBox:

e mustrepresent a valid movie in its own right (though the tracks can have no samples at all);

e hasaboxin it to indicate that fragments are to be found and used;

e isused to contain the complete edit list (if any).

Note that software that doesn't understand fragments will play just this initial movie. Software that does

understand fragments and gets a non-fragmented movie won't scan for fragments as the fragment
indication MovieExtendsBox won't be found.

A.11Construction of fragmented movies
When constructing a fragmented file for playback, there are some recommendations for structuring the

content to optimize playback and random access. The recommendations are as follows:

© ISO/IEC 202x - All rights reserved 259

DIS 14496-12:202x

e The file consists of boxes in the following order:
- FileTypeBox
- MovieBox
- pairof MovieFragmentBox and MediaDataBox (arbitrary number)
- MovieFragmentRandomAccessBox

e AMovieFragmentBox consists of at mostone TrackFragmentBox for each media. When the file
contains a single video track and a single audio track, the MovieFragmentBox will contain two
TrackFragmentBoxes, one for the video and one for the audio.

e Forvideo, random accessible samples are stored as the first sample of each TrackFragmentBox.
In the case of gradual decoder refresh, a random accessible sample and the corresponding recovery
point are stored in the same movie fragment. For audio, samples having the closest presentation time
for every video random accessible sample are stored as the first sample of each
TrackFragmentBox. Hence, the first samples of each media in the MovieFragmentBox have the
approximately equal presentation times.

e First (random accessible) samples are recorded in the MovieFragmentRandomAccessBox for
both video and audio.

e All samples in MediaDataBox are interleaved with an appropriate interleave depth.

The offset and the initial presentation time of every MovieFragmentBox are given in the
MovieFragmentRandomAccessBox for both audio and video.

The player will load the MovieBox and MovieFragmentRandomAccessBox initially, and hold them
in memory during playback. When random access is needed, the player will search
MovieFragmentRandomAccessBox in order to find the random access point having the closest
presentation time for the indicated time.

Since the first sample in the MovieFragmentBox is random accessible, the player can directory jump
in on the random access point. The player can read the MovieFragmentBox of the random access point
from the beginning. The subsequent MediaDataBox starts from the random accessible sample. As such,
a two-step seeking is not necessary for random access.

Note thatan MovieFragmentRandomAccessBox box is optional, and might never occur in a given file.

A.12Transformed streaming over streaming protocols
A.12.1Design considerations for streaming protocols

A12.1.1.1 Preparation for transformed streaming

When prepared for transformed streaming, the file needs to contain information to direct the streaming
server in the process of sending the information. In addition, it is helpful if these instructions and the
media data are interleaved so that excessive seeking can be avoided when serving the presentation. It is
also important that the original media data be retained unscathed, so that the files may be verified, or re-
edited or otherwise re-used. Finally, it is helpful if a single file can be prepared for more than one protoco],
so differing servers can use it over disparate protocols.

260 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

A.12.1.1.2 Local presentation

‘Locally’ viewing a presentation (i.e. directly from the file, not over a streamed interconnect) is an
important application; it is used when a presentation is distributed (e.g. on CD or DVD ROM), during the
process of development, and when verifying the content on streaming servers. Such local viewing is
supported, with full random access. If the presentation is on CD or DVD ROM, interleave is important as
seeking can be slow.

A.12.1.1.3 Streamed presentation

When a server operates from the file to make a stream, the resulting stream has to be conformant with
the specifications for the protocol(s) used, and should contain no trace of the file-format information in
the file itself. The server needs to be able to random access the presentation. It can be useful to re-use
server content (e.g. to make excerpts) by referencing the same media data from multiple presentations;
it can also assist streaming if the media data can be on read-only media (e.g. CD) and not copied, merely
augmented, when prepared for streaming.

Figure 3 shows a presentation prepared for streaming over a multiplexing protocol, only one hint track
is required.

ISO file

moov mdat
...other boxes trak (video)

\ 4

interleaved, time-
ordered video and
audio access units and
hint instructions

L 4

trak (audio)

trak (hint)

Figure A.3 — Hinted presentation for streaming

A.12.2Design considerations for streaming protocols
A.12.2.1 General

Transmission or server hint tracks contain instructions to assist a streaming server in the formation of
packets for transmission. These instructions can contain immediate data for the server to send (e.g.
header information) or reference parts of the media data. These instructions are encoded in the file in the
same way that editing or presentation information is encoded in a file for local playback. Instead of editing
or presentation information, information is provided which allows a server to packetize the media data
in a manner suitable for streaming using a specific network transport.

The protocol information for a particular streaming protocol does not frame the media data; the protocol

headers are not physically contiguous with the media data. Instead, the media data can be included by
reference. This makes it possible to represent media data in its natural state, not favouring any protocol.

© ISO/IEC 202x - All rights reserved 261

DIS 14496-12:202x

It also makes it possible for the same set of media data to serve for local presentation, and for multiple
protocols.

The same media data is used in a file that contains hints, whether it is for local playback, or streaming
over a number of different protocols. Separate ‘hint’ tracks for different protocols can be included within
the same file and the media will play over all such protocols without making any additional copies of the
media itself. In addition, existing media can be easily made streamable by the addition of appropriate hint
tracks for specific protocols. The media data itself need not be recast or reformatted in any way.

This approach to streaming and recording is more space efficient than an approach that requires that the
media information be partitioned into the actual data units that will be transmitted for a given transport
and media format. Under such an approach, local playback requires either re-assembling the media from
the packets, or having two copies of the media — one for local playback and one for streaming. Similarly,
streaming such media over multiple protocols using this approach requires multiple copies of the media
data for each transport. This is inefficient with space, unless the media data has been heavily transformed
for streaming (e.g. by the application of error-correcting coding techniques, or by encryption).

Reception hint tracks can be used when one or more packet streams of data are recorded. Reception hint
tracks indicate the order, reception timing, and contents of the received packets among other things.

NOTE Players can reproduce the packet stream that was received based on the reception hint tracks and process the
reproduced packet stream as if it was newly received.

A.12.2.2 Protocol ‘hint’ tracks

Support for streaming is based upon the following three design parameters:

e The media data is represented as a set of network-independent standard tracks, which can be
played, edited, and so on, as normal;

e There is a common declaration and base structure for hint tracks; this common format is
protocol independent, but contains the declarations of which protocol(s) are
described in the hint track(s);

e There is a specific design of the hint tracks for each protocol that can be transmitted; all these
designs use the same basic structure. For example, there can be designs for RTP (for
the Internet) and MPEG-2 transport (for broadcast), or for new standard or vendor-
specific protocols.

The resulting streams, sent by the servers under the direction of the server hint tracks or reconstructed
from the reception hint tracks, need contain no trace of file-specific information. This design does not
require that the file structures or declaration style, be used either in the data on the wire or in the
decoding station. For example, a file using ITU-T H.261 video and DVI audio, streamed under RTP, results
in a packet stream that is fully compliant with the IETF specifications for packing those codings into RTP.

If a movie file contains hint tracks, the media tracks that reference the media data from which the hints
were built remain in the file, even if the data within them is not directly referenced by the hint tracks;
after deleting all hint tracks, the entire un-hinted presentation remain. The media tracks can, however,
refer to external files for their media data.

The protocol information is built in such a way that the streaming servers need to know only about the
protocol and the way it is to be sent; the protocol information abstracts knowledge of the media so that

262 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

the servers are, to a large extent, media-type agnostic. Similarly, the media-data, stored as it is in a
protocol-unaware fashion, enables the media tools to be protocol-agnostic.

© ISO/IEC 202x - All rights reserved 263

DIS 14496-12:202x

Annex B
(informative)

Guidance on deriving from this document

B.1General

This annex provides guidance explaining how to derive a specific file format from the ISO base media file
format.

This document defines the basic structure of the file format. Media-specific and user-defined extensions
can be provided in other specifications that are derived from the ISO base media file format.

B.2General principles

B.2.1 General

A number of existing file formats use the ISO base media file format, not least the MPEG-4 MP4 file format
(ISO/IEC 14496-14181), and the Motion JPEG 2000 M]J2 file format (ISO/IEC 15444-3151). When considering
a new specification derived from the ISO base media file format, all the existing specifications ought to be
used both as examples and a source of definitions and technology. Check with the maintenance agency
(see Annex D) to find what might already exist, and what specifications exist.

In particular, if an existing specification already covers how a particular media type is stored in the file
format (e.g. MPEG-4 video in MP4), that definition ought to be used and a new one ought not to be
invented. In this way specifications which share technology will also share the definition of how that
technology is represented.

Be as permissive as possible with respect to the presence of other information in the file; indicate that
unrecognized boxes and media "may be ignored" (not “should be ignored”). This permits the creation of
hybrid files, drawing from more than one specification, and the creation of multi-format players, capable
of handling more than one specification.

When layering on this document, it's worth observing that there are some characteristics that are
intentionally ‘parameters’ to the lower specification (this document), that need to be specified. Equally,
there are some characteristics of this document that are internal and ought rarely be discussed by other
specifications. Of course, there are some characteristics in between.

Derived specifications are ideally written solely in terms of the parameters of the file format in this
document; what a sample is, what its decoding and composition times mean, and so on. Mentioning
specific existing boxes in a derived specification can often turn out to be an error, except in limited cases
(e.g. adding a UserDataBox, or an extension box).

B.2.2 Base layer operations

It ought to be possible to perform some operations on a file based on this document without knowing
anything about any potential derived specifications. These operations might include the obvious reading

264 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

tracks, finding the data and timing for samples, and their sample entry and track type, and so on. This
might be done, for example, by a file-format inspector or general library like the reference software.

Less obvious are a class of manipulations of the files:

a) re-interleaving the data; making the media data in time order, with the samples for various tracks
grouped into chunks of a sensible size, with the chunks interleaved;

b) making files that use data references self-contained, by copying the data from external files into
the new file;

c) removing free space boxes and compacting the box structure;

d) removing data from MediaDataBoxes that appears to be un-referenced by tracks, items, or
structure-data boxes;

e) removing sample entries that have no associated samples;

f) removing sample groups that have no associated samples;

g) extracting some tracks and making a new file with just those (e.g. an audio track from an
audio/video presentation);

h) inserting, or removing, movie fragments, or re-fragmenting a movie.

This list is not exhaustive, of course.

B.3Boxes

Boxes can be added to the file format, but be careful about how they interact with other boxes. In
particular, if they ‘cross-link’ into existing boxes, it might not be possible to mark such files as compliant
with this document.

All new boxes must be registered, except those using the 'uuid' type. Likewise, codec (sample entry)
names, brands, track reference types, handlers (media types), group types, and protection scheme types
ought to be registered. It really is a bad idea to use one of these without registration, as collisions can
occur - or someone else has registered the same identifier with a different meaning.

A box outght not to be written using the ‘UUID escape’ (the reserved ISO UUID pattern 0xXXXXXXXX-
0011-0010-8000-00AA00389B71, where the four-character code replaces the Xs) if a simple four
character code can be used, and ideally it outght not to be designed to use a UUID box; it’s better to place
data in known ‘expansion points’ of the file format if at all possible, or register a new box type if really
needed.

Don’t forget that all data in ISO base media files must be, or be contained in, boxes. A signature can be
introduced, but it must ‘look like’ a box.

Do not require that any existing or new boxes you define be in a particular position, if at all possible. For
example, the existing JPEG 2000 specifications require a signature box and that it be first in the file. If
another specification also defines a signature box and also requires that it be first, then a file conformant
to both specifications cannot be constructed.

It must be possible to ‘walk’ the top-level of a file by finding box lengths. Don’t forget that ‘implied length’
is permitted at file level.

Unless absolutely unavoidable, boxes ought not to contain either data (e.g. in fields), or other boxes, but
not both. All boxes containing data ought to be a full box to allow later changes to syntax and semantics.
Boxes containing other boxes are known as container boxes, and are normally a plain (non-full) box, since
their semantics will never change if they are documented to contain only boxes.

© ISO/IEC 202x - All rights reserved 265

DIS 14496-12:202x

B.4Brand identifiers

B.4.1 Overview

This subclause covers the use of brand identifiers in the file-type box, including:
- Introduction of a new brand.
- Player’s behaviour depending on the brand.
- Setting of the brand on the creation of the ISO base media file.

Brands identify a specification and make a simple set of statements:

a) the file conforms to all requirements of the identified specification;

b) the file contains nothing contrary to the identified specification;

c) areader implementing potentially that single specification may read, interpret, and possibly present
the file, ignoring data it does not recognize.

Therefore specifications ought to specify (if they need a brand) “the brand that identifies files conformant
to this specification is XXXX”, and register the brand.

B.4.2 Usage of the brand

In order to identify the specifications to which the file complies, brands are used as identifiers in the file
format. These brands are set in the FileTypeBox.

For example, a brand might indicate:

1) the codecs that may be present in the file,

2) how the data of each codec is stored,

3) constraints and extensions that are applied to the file.

New brands can be registered if it is necessary to make a new specification that is not fully conformant
to the existing standards. For example, 3GPP allows using AMR and H.263 in the file format. Since these
codecs were not supported in any standards at that time, 3GPP specified the usage of the SampleEntry
and template fields in the ISO base media format as well as defining new boxes to which these codecs
refer. Considering that the file format is used more widely in the future, it is expected that more brands
will be needed.

Brands are not additive; they stand alone. It is not possible to say: “this brand indicates that support for
Y is also required” because the ‘also’ has no referent.

Systems that re-write files ought to remove brands that they do not recognize, as they do not know
whether the file still conforms to that brand’s requirements (e.g. re-interleaving a file possibly takes it
out of conformance with a specification that requires a certain style of interleaving).

Note that the major brand usually implies the file extension, which in turn implies the MIME type. But

these are not rules. In addition, when serving under a MIME type do not forget that MIME types can take
parameters, and the list of compatible brands can often be useful to the receiving system.

B.4.3 Introduction of a new brand

Anew brand can be defined if conformance to a new specification must be indicated. This generally means
that for the definition of a new brand at least one of the following conditions ought to be satisfied:

1) Use of a codec that is not supported in any existing brands.

266 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

2) Use more than one codec in a combination that is not supported in any existing brands. In addition,
the playback of the file is allowed only when decoding of all the media in the file is supported by the
player.

3) Use constraints and/or extensions (boxes, template fields, etc.) that are user-specific.

However, the file format contains both amajor brandfield anda compatible brands array. These
fields are owned by the file author and this document. Do not write a specification that talks about these
fields, merely about brands and what they mean. In particular, do not claim the major brand field
(“files conformant to this specification must set the major brand to XXXX") as a file can never be
conformant to two such specifications written that way, and it also blocks someone also from deriving a
specification from yours. However, brands that are only permitted as compatible brands can be defined.

Brands can be used as a tracer, however. It's permissible to have a brand which has no requirements, and
is placed in a file as an ‘I was there’ point (or strictly “this brand requires that the file was last written by
1Z777").

B.4.4 Player guideline

If more than one brand is present in the list of the compatible_brands, and one or more brands are
supported by the player, the player necessarily plays those aspects of the file that comply with those
specifications. In this case, the player is possibly not able to decode unsupported media.

B.4.5 Authoring guideline

If the author wants to create a file that complies with more than one specification, the following
considerations apply:

1. There must be nothing contrary to the specification identified by a brand within the file. For
example, if a specification requires that files be self-contained, then the brand indication of that
specification must not be used on non-self-contained files.

2. Ifthe author is satisfied that a player compliant with only one of the specifications play only that
media compliant with that specification, then that brand can be indicated.

3. If the author requires that the media from more than one specification be played, then a new
brand is needed as this represents a new conformance requirement for the player.

B.4.6 Example
This subclause covers an example case when a new brand can be defined.

First of all, consider two currently existing brands. If the brand '3gp5' is in the list of the
compatible_brands, it indicates that the file contains the media defined in 3GPP TS 26.23411l (Release 5)
in the way specified by the standard. For example, the file of ' 3gp5 ' brand can contain H.263. Likewise,
if the brand '"mp42 "' is in the list of the compatible_brands, it indicates that the file contains the media
defined in ISO/IEC 14496-1418] in the specified way. For example, the file of 'mp42 ' brand can contain
MP3. However, MP3 is not supported in ' 3gp5 "' brand.

Given that the file contains H.263 and MP3, and has '3gp5' and 'mp42' as the compatible_brands. If
the player complies only with '3gp5' and does not support MP3, the recommended behaviour of the
playeris to play only H.263. If the content’s author does not expect such behaviour, a new brand is defined
to indicate that both H.263 and MP3 are supported in the file. By specifying the newly defined brand in

© ISO/IEC 202x - All rights reserved 267

DIS 14496-12:202x

the list of the compatible_brands, it can prevent the above behaviour and the file is played only when the
player supports both H.263 and MP3.

B.5Storage of new media types

This document defines an abstraction layer on which derived specifications are ideally built, leaving to
this document how these abstractions are built. These abstractions fall into two main groups: timed and
un-timed media.

The support for timed media views such media as a succession of timed samples, associated with setup
information in a "sample entry". Derived specifications are recommended to:

identify the general track type (as defined in Clause 12) used by the media;

define the four-character code of the "sample entry" for the coding system;

identify the values of the fields in the base sample entry for the identified media type;

define a sample for the coding system (e.g. "a sample is an encoded visual access unit as defined in

XXXX");

define the decoder initialization is required (e.g. "the decoder configuration information is a

metadata-setup structure, contained in a Ful1Box of type 'medc', in the sample entry);

o define a 'sync sample' for the coding system; example "a sync sample is a metadata-frame with the
IndependentProperty flag set as defined in XXXX"). The definition must conform to the general
definition (i.e. a place where decoding and playback can start);

o the type of Stream Access Points that are supported by the coding system (see Annex I) and what is
aleading sample, to enable the use of the stream access point and random access point sample groups.

o define the values for the common shared fields, e.g. in the track header, media header, or base sample

entry type for the media type.

O O O O

O

Notice that these definitions do not need to discuss where the sample data is (in the same file, or another)
or whether movie fragments are in use or not.

Other tools for timed media include:

e Sample groups. Here, there is some property of a given type that is shared by a set of samples in a
track - a group definition. Multiple groups of the same type can be defined, and each sample in a track
mapped to either a definition, or nothing. For example, if each sample were a frame of audio, some of
which contain speech content, and some contain musical content, is is possible to define a sample
group, with an enumeration of content type (e.g. 1 predominantly speech, 2 predominantly music).
The classifiable samples are associated with the matching group definition.

e Random Access Point (RAP) types. There is a general definition of RAP points in Annex [; it can be
useful to define or identify which RAP types apply to this format; they can then be used in the
appropriate sample group.

e Sample auxiliary information. If the information for each sample is unique, sample groups do not
work, as they rely on sharing a definition. Sample auxiliary information provides a unique piece of
data for each sample. The usual example is initialization vectors for decoding.

e Related tracks. Tracks can be linked by typed, directional, track references, or they can be grouped
into TrackGroups.

e Sub-sample information. If a given coding format naturally and usefully has a way to split a sample
into sub-samples (e.g. base data, olfactory data, and gustatory data) then sub-sample structure can
be documented to ease the finding of only the desired sub-samples.

e Independent and disposable sample tagging.

268 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

o Padding bits; most coding systems define their coded content as occupying at least whole bytes, but
for those that have frames ending in the middle of a byte, and which are not self-framing (i.e. the end
of the data cannot be determined) this table can document the padding bits present.

e Degradation Priority; this table is sometimes used to indicate sample priority (especially when
packet-based streaming protocols are used or expected).

o Shadow Sync; this table has been used to provide extra, optional, sync samples.

If MPEG-4 systems constructs are desired or acceptable, then:

a) anew ObjectTypelndication ought to be requested and used;

b) the decoderspecificinformation for this codec ought to be defined as an MPEG-4 descriptor;
c) the sample format ought to be defined for this media.

The media then uses the MPEG-4 code points in the file format; for example, a new video codec uses a
sampleentry of type "mp4v'.

If the coding format supports a variety of options, not all of which every player will support (e.g. video
codec profiles), then defining sub-parameters for the codec type to use in the codecs MIME parameter
is desirable, to give advance notice of the format of the content.

Similarly, for untimed data, the MetaBox provides a number of tools. Again, the definition of such items
ought to include what constitutes an item body, what initialization data is needed and what item property
itis in. [tems can be linked, by reference, to other items, just like track; and indeed, it is possible to unify
the item IDand track ID number spaces so that references can be made between tracks and items,
either way.

If the 'codecs' MIME parameter is important for this coding type, sub-parameters can be defined (e.g. to
identify profiles or levels).

B.6Tracks

B.6.1 Datalocation
A track is a timed sequence of samples; each sample is defined by its data (the bytes it contains), their
length and location. The length and data of a sample are external parameters to the file format; the

location of the bytes is not.

The exact way that the data is stored is internal to this document. When defining what a sample in a new
format is, simply define the length and the data of a sample.

Do not mention the following boxes, however, as the way that they are structured is open to change, and

the information that they store can be stored in other ways (e.g. it is possible that sample size information

is presentinan SampleSizeBox,a CompactSampleSizeBox, or a movie fragment):
SampleSizeBox, CompactSampleSizeBox

Samples are, in fact, stored in contiguous runs of samples for one track; these runs are called chunks, and

it is chunks from different tracks that are interleaved. But files can be re-interleaved or re-chunked; the

following boxes are about how chunking is done:

chunk offsets (ChunkOf fsetBox or ChunkLargeOffsetBox), SampleToChunkBox

© ISO/IEC 202x - All rights reserved 269

DIS 14496-12:202x

Most critically, locating data must be done through these boxes (or their equivalent in movie fragments).
The MediaDataBox is merely one possible location, and looked at by itself, it can only be considered an
un-ordered bag of un-identifiable bits. There is no assurance that the desirable material in a
MediaDataBox is the only data in the box or in any particular order, and, especially if data references
are used, there is no assurance that any particular sample is even in a MediaDataBox at all. Mentioning
the MediaDataBox in a derived specification is almost certainly a mistake, and attempting to define (or
assume) its structure is usurping this document, and is an error.

It is perfectly permissible to require a certain style, duration, or size of interleaving in an integration
specification (“this specification requires that the file be self-contained, and that the media-data be in
decoding timestamp order, interleaved on a granularity of no greater than one second”).

B.6.2 Time

Similarly, samples are parameterized in time in the file format by their decoding timestamp, and
optionally by their composition timestamp. Define what these mean for your media. However, the way
that these are stored is again internal to this document.

Do not mention the following boxes, however, as the way that they are structured is open to change, and
the information that they store can be stored in other ways:

TimeToSampleBox, CompositionOffsetBox

Likewise, the time-structure effect of edits ought to be preserved by the file format, but there a file
simplifier can, for example, merge two adjacent edits that in fact belong together (e.g. two empty edits, or
an edit that selects time A-B followed by one that selects B-C).

B.6.3 Media types

There are a number of media types in this document: video, audio, metadata, and so on. These are
represented by track handler types and by media-specific media headers. It is possible to register new
media handlers, but this is rarely required. It might be needed, for example, if a track type were needed
for say, laboratory instrument traces, or for a ‘timed aroma’ track. Registrations are recommended to be
checked; the needed handler might be already defined in another derived specification.

B.6.4 Coding types

The name of a sample entry identifies the coding format used. This is one of the principal ways that this
document is parameterized; AVC (ISO/IEC 14496-10:2014,) uses 'avcl' for example, as a sample entry
type. Defining this name for a codec, and registering it, and then defining what extra boxes are in a sample
entry for this codec, are primary ways that format of this document is used. These ought to be defined for
a coding system. Note that technically the coding type is ‘scoped’ by the media type (though the intention
is not to define the same four character code as two different codecs in two media types, such as video
and audio, in order to avoid confusion).

B.6.5 Sub-sample information
The specifications of this document can carry information about ‘sub-sample’ boundaries for each sample.

However, the definition of what a sub-sample is, is specific to a coding system. There might be a value in
defining it when defining how a coding system is stored.

270 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

B.6.6 Sample dependency

The format defined in this document allows the identification of some of the decoding dependency
information for a coding system. In particular, what constitutes a valid ‘sync’ or random access point
(points from which decoding can be started) ought to be identified. They can be marked in the file format
(in the SyncSampleBox, or by flags in movie fragments). How sync sample are marked is likely not a
concern.

Similarly, it is possible to indicate which samples:
a) depend on others, or can be decoded independently;
b) are depended on by others, or can be discarded without affecting decoding;
c) contain multiple encodings of the same information, possibly with different dependencies (are
redundantly coded).

For most coding systems the meanings of these are self-evident and do not need spelling out; however,
they possibly need explicit statement for some coding systems.

B.6.7 Sample groups

Sample groups provide another way to describe samples and their characteristics. To use sample groups,
define a group type, and then how a group is defined (the group description). The file format can then
map a given sample to a single definition of a group of any given type. Defining new grouping types
and the way that they are parameterized is an important way to parameterize the file format.

B.6.8 Track-level

Tracks can be associated with each other in the file format, in two important ways. Track references are
a typed link indicating a reference or dependency of one track to or on another (e.g. a metadata track that
describes a media track has a dependency on that media track, as it makes no sense without it). New track
reference types can be registered and used in derived specifications.

Similarly tracks can be grouped into sets of alternatives, where the reader is expected to be able to pick
one that suits it (e.g. on the basis of supported codecs, bit-rates, screen sizes, and so on). 3GPP 26.234I1]
has taken this concept and included user-data (a permitted extension) to give a hint as to why a track is
a member of a group (‘I contain a different codec’).

Lastly, tracks can be enabled or disabled in the file format. Disabled tracks might be used, for example,
for optional features (e.g. closed captions).

B.6.9 Protection

Similarly to the parameterization of coding schemes by using the same entry type, and extra boxes in the
sample entry, the format defined in this documentallows protection to be applied to tracks,
parameterized by the scheme type and the contents of the scheme information box. The
SchemeInformationBox is ‘owned’ by the scheme type - to the extent that contained boxes there do
not need to be registered, as they are already scoped by the scheme type.

Protection can be subtle; many encryption systems, for example, ‘chain’ together. It's tempting to encrypt
‘the contents of the mdat box’, but that is very badly non-resilient to minor changes to the file. It’s also
tempting to protect chunks - they do seem to represent contiguous runs of media data for one track. But
again, re-chunking the file can break the ability to de-protect.

Instead, consider modifying the sample, or introducing time-parallel metadata, or use sample groups, to
introduce enough context to enable both file-based manipulation and decryption. Time-parallel metadata

© ISO/IEC 202x - All rights reserved 271

DIS 14496-12:202x

are in a track, and a track reference ought to be used to indicate that the protected data depends on the
parallel encryption-context track.

B.7Metadata

Much of what is said above about tracks and their data applies to metadata items, except that, of course,
metadata items have no time structure. In particular, the division of items into extents - allowing them
to be interleaved - is again, a property of the file format. It is a mistake to design some new support based
on extent structure.

B.8Sample groups, timed metadata tracks, and sample auxiliary information

The ISO base media file format contains three mechanisms for timed metadata that can be associated
with particular samples: sample groups, timed metadata tracks, and sample auxiliary information.
Derived specifications can provide similar functionality with one or more of these three mechanisms.
This clause provides guidelines for derived specifications to choose between the three mechanisms.

Sample groups and timed metadata are less tightly coupled to the media data and are typically
‘descriptive’, whereas sample auxiliary information might be required for decoding.

Sample auxiliary information is only intended for use where the information is directly related to the
sample on a one-to-one basis, and is required for the media sample processing and presentation. For
general content, the existing solution of additional tracks ought to be used. Sample auxiliary information
and sample media data are both addressed using byte pointers and size information, and so when the
same bytes form the data for more than one sample it is possible to share that data by re-using the same
byte pointer.

Sample groups can be useful in the following occasions.

- When several samples share the same metadata values, it is space-efficient to specify the metadata in
a SampleGroupDescriptionBox and the association of samples to metadata in
SampleToGroupBox(es).

- Asthe sample group information is stored in MovieBox and MovieFragmentBox(es), they provide
an index to the data in the MediaDataBoxes. No data from the MediaDataBoxes need be fetched,
which can therefore reduce disk accesses when compared to timed metadata tracks and sample
auxiliary information.

Timed metadata tracks can be useful in the following occasions.

- The same timed metadata track can be associated to more than one track. In other words, a timed
metadata track can be more independent of the content of the associated tracks than sample groups
and sample auxiliary information.

- It can be easier to append a file with a timed metadata track than with sample auxiliary information
or sample groups, because sample auxiliary information and SampleToGroupBoxes have to reside
in the same TrackFragmentBox as the associated samples, whereas timed metadata can reside in
its own MovieFragmentBox(es). For example, it can be easier to provide an additional subtitle
track as timed metadata than use sample auxiliary information.

272 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

- The duration of timed metadata samples need not match the duration of associated media or hint
samples. In cases where the duration of timed metadata samples spans over multiple associated
media or hint samples, timed metadata tracks can be more space-efficient than sample auxiliary
information.

Sample auxiliary information can be useful in the following occasions.

- The data associated with samples is changing sufficiently frequently such that specifying sample
groups cannot be justified from storage space point of view.

- The amount of data associated with samples is such large that its carriage within the MovieBox or
MovieFragmentBox (as required by sample grouping) cause disadvantages. For example, in
progressive downloading, it can be beneficial to make the size of MovieBox small in order to keep
the initial buffering time small.

- When each sample is associated with metadata, sample auxiliary information provides a more
straightforward association of the auxiliary information to samples when compared to the same
functionality with timed metadata tracks, which typically requires resolving sample decoding
timestamps to establish the association between timed metadata samples and media/hint samples.

© ISO/IEC 202x - All rights reserved 273

DIS 14496-12:202x

Annex C
(normative)

Fragment identifiers for ISO base media resources

C.10verview

This annex defines fragment identifiers usable for any media resource conformant to the ISO base media
file format. They can address items or tracks. Such fragment identifiers are compliant to the generic
syntax for URIs defined by IETF RFC 3986241 and therefore can be used after the ‘#’ character in a URI.
Where appropriate, such fragment identifiers can also be used in IRIs as specified by IETF RFC 39871211,

Additional fragment identifiers may be defined by derived specifications.

The MPEG-21 fragment identifiers scheme, defined in ISO/IEC 21000-17:2006!61 may also be used.

In this annex, where the notation uses a syntax name in angle brackets, e.g. "t rack ID=<track ID>",
it is to be replaced by the decimal string representation of the value of the indicated syntax element, e.g.
"track ID=23".

C.2 Syntax and semantics

Fragment identifiers for ISOBMFF resources shall start consist of either:

a)

b)

g)

track ID=<track ID>, identifying the track with the given track ID;

item ID=<item ID>,identifying the item of the MetaBox at the file level that has the given
id;

item name=<item name>,identifying the item of the MetaBox at the file level that has the
given name (as provided in the TtemInfoBox);

/item ID=<item ID>,identifying the item of the MetaBox at the movie level that has the
given id;

/item name=<item name>,identifying the item of the MetaBox at the movie level that has
the given name (as provided in the ITtemInfoBox);

track ID=<track ID>/item ID=<item ID>,identifying the item that has the given id
in the MetaBox located in the track with the given track ID;

track ID=<track ID>/item name=<item name>,identifying the item that has the
given name (as provided in the TtemInfoBox) in the MetaBox located in the track with the
given track ID.

NOTE For fragment identifiers identifying items in MetaBoxes at the track or movie level, the id or name may identify
items stored in movie fragments.

274 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

If a fragment within a contained item must be addressed, then the initial “#” character of that fragment
shall be replaced by “*”. For example, if the URL for the desired resource when it is not in an item is
/example.html#secure, then when that same resource is in an item the URL might be
/container#item_name=example.html*secure.

© ISO/IEC 202x - All rights reserved 275

DIS 14496-12:202x

Annex D
(informative)

Management of extension code-points

D.1 Code points

The code-points within the file format are all 32-bit fields, normally four printable characters (commonly
known as four-character compact types, four-character-codes, or 4CCs). An objecttype identifier is an
8-bit integer.

Extension code-points can be entered into the database by the maintenance agency. More types of code-
points can be added later, but they include at least:

iy

2)

3)

4)

5)

6)

7)

File format box identifiers. Note that in some specifications boxes were known as atoms. Note that
the introduction of new box types is discouraged; in general, other extensibility features of the file
format ought to be used if possible.

File format track type identifiers. A pair of identifiers is usually used here, to identify the track type
(audio, video, etc.) and, if required, a media-specific header box (video media header, etc.). It is
expected that the need for new track types is rare, however; most media likely fall into existing types
(e.g. video codecs ought to use video tracks, hint protocols ought to use hint tracks, and so on).

File format sample entry and sample format identifiers (also known as codec names). This includes
audio and video codecs, and also protocol identifiers for hint tracks. It is permitted that any request
of a new sample format code requests issuing an object-type identifier also (see below), thus making
the identification of the carriage of this format within the MPEG-4 systems object descriptor
framework possible.

File format track reference identifiers. Dependencies between tracks are typed in the file format (for
example, hint tracks depend on the media tracks they hint, using a track dependency of type 'hint').

This document includes a FileTypeBox which includes a list of ‘brands’ which identify which
specifications the file is conformant to. Bodies defining standards based on the structural definition
of this document are normally expected to use a new brand to identify files conformant to their
specification. Any documentation of a new brand ought to specify the precise specification which the
brand identifies.

Within the MPEG-4 object descriptor framework, the objecttype value is used to identify the
format of the streams. An objecttype identifier can be requested independently of the file format
identifiers above.

Sample groups associate typed information with groups of samples, for which a grouping type
can be documented.

276 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

8) Both media and metadata can be protected and the protection scheme used identified with a
registered protection scheme type.

These code- points are referred to in the rest of this annex as registered identifiers, abbreviated as RIDs.
D.2 Procedure for the request of an extension code-point

The name and contact information of the maintenance agency for this document (ISO/IEC 14496-12) can
be found at https://www.iso.org/mara.

© ISO/IEC 202x - All rights reserved 277

DIS 14496-12:202x

Annex E
(normative)

File format brands

E.1General

The presence of a brand in the compatible brands list of the FileTypeBox is a claim and a
permission. It is a claim that the file conforms to all the requirements of that brand, and a permission to
areader implementing potentially only that brand to read the file.

In general, readers are required to implement all features documented for a brand unless one of the
following applies:

a) the media they are using does not use or require a feature: for example, [-frame video does not need
a SyncSampleBox, and if composition re-ordering is not used, then no composition time offset table
is needed; similarly, if content protection is not needed, then support for the structures of content
protection is not required.

b) another specification with which the file is conformant forbids the use of a feature (for example, some
derived specifications explicitly forbid use of movie fragments);

c) the context in which the product operates means that some structures are not relevant; for example,
hint track structures are only relevant to products preparing content for, or performing, file delivery
(such as streaming) for the protocol in the hint track.

The following clauses list the brands defined in this document; no inheritance is implied by the clause
order - when inheritance occurs, it is specifically stated. Other brands may be defined in other
specifications. Note that if one brand is a subset of another (e.g. ' i som' requirements are a subset of the
'is02"' requirements) then:

a) files labelled as compatible with the subset can always be labelled as also compatible with the
superset; a file compatible with 'isom' can always be labelled as compatible with 'iso2';

b) products supporting the superset automatically can support the subset; a product that supports
'is02 "' also necessarily supports 'isom'.

No brands defined here require support for any particular media type (e.g. video, audio, metadata) or
media encoding (e.g. a particular codec), or structures supporting a specific media type (e.g. visual sample
entries or the boxes contained in a specific kind of sample entry).

More specific identifiers can be used to identify precise versions of specifications providing more detail.
These brands should not be used as the major brand; this base file format should be derived into another
specification to be used. There is therefore no defined normal file extension, or MIME type assigned to
these brands, nor definition of the minor version when one of these brands is the major brand.

278 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

E.2The 'isom' brand

The type 'isom' (ISO base media file) is defined in this clause, as identifying files that conform to the
first version of ISO base media file format.

Support for the structural boxes according to Table E. 1 is required.

Table E. 1: Boxes required under the 'isom' brand

moov container for all the meta-data

mvhd movie header, overall declarations

trak container for an individual track or stream

tkhd track header, overall information about the track

tref track reference container

edts edit list container

elst an edit list

mdia container for the media information in a track

mdhd media header, overall information about the media
hdlr handler, at this level, the media (handler) type

minf media information container

vmhd video media header, overall information (video track only)
smhd sound media header, overall information (sound track only)
hmhd hint media header, overall information (hint track only)
<mpeg mpeg stream headers

dinf data information box, container

dref |data reference box, declares source(s) of media in track
stbl sample table box, container for the time/space map
Stts |(decoding) time-to-sample

Ctt s [composition time-to-sample table

St ss |sync (key, I-frame) sample map

st sd |[sample description box (codec types, initialization etc.)
St sz |sample sizes (framing)

St sc |sample-to-chunk, partial data-offset information

St co |chunk offset, partial data-offset information

Cc0 64 |64-bit chunk offset

stsh |shadow sync

stdp |degradation priority

mdat Media data container
free Tree space

skip ree space

udta user-data, copyright etc.
ftyp ile type and compatibility

st z2 |compact sample sizes (framing)
padb [sample padding bits

mvex movie extends box
mehd movie extends header box
trex track extends defaults
moof movie fragment
mfhd movie fragment header
traf track fragment
tfhd track fragment header
trun track fragment run
mfra movie fragment random access
tfra track fragment random access
mfro movie fragment random access offset

Hint tracks shall be recognized, and in hint tracks, RTP protocol hint tracks.

© ISO/IEC 202x - All rights reserved 279

DIS 14496-12:202x

Support for only version 0 of the CompositionOffsetBox is required; version 1 support is not
required.

Support for only version 0 of the TrackRunBox is required; version 1 support is not required.
NOTE 1 The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.
NOTE 2 Some requirements of the TrackHeaderBox do not apply to this brand; see subclause 8.3.2.1.

Under this brand and its derivatives the media rate in the EditListBox is restricted such that the
fraction shall have the value 0 and the integer shall have the value 0 or 1.

E.3The 'avecl' brand

The brand 'avcl' shall be used to indicate that the file is conformant with the ‘AVC extensions’ in
subclauses 8.6.4 and 8.9. If used without other brands, this implies that support for those extensions is
required. The use of "avcl' as a major-brand may be permitted by specifications; in that case, that
specification defines the file extension and required behaviour.

The "avcl' brand requires support for the 'isom' brand. In addition, support of the boxes according
to Table E. 2 is required.

Table E. 2: Boxes required under the 'avcl' brand

sdtp |independent and disposable samples
sbgp |sample-to-group
sgpd |sample group description

Within the sample groups, support for roll groups (grouping type 'roll')isrequired.
NOTE 1 The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

NOTE 2 Some requirements of the TrackHeaderBox do not apply to this brand; see subclause 8.3.2.1.

Support for only version 0 of the CompositionOffsetBox is required; version 1 support is not
required.

Support for only version 0 of the TrackRunBox is required; version 1 support is not required.

Support of SampleGroupDescriptionBoxes in movie fragments is not required.

E.4The 'iso2' brand

The brand 'iso2 ' shall be used to indicate compatibility with the second version of the ISO base media
file format; it may be used in addition to or instead of the ' isom' brand and the same usage rules apply.
If used without the brand 'isom' identifying the first version of this document, it indicates that support
for some or all of the technology in subclauses 8.6.4, 8.8.15, 8.11.1 through 8.11.7, 8.11.10, 13.1, or the
SRTP support in subclause 9.1, is required.

The 'iso2' brand requires support for all features of the 'avcl' brand.

280 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

In addition, support for the boxes according to Table E. 3 is required.

ISO/IEC 14496-12:202x

Table E. 3: Boxes required under the 'iso2' brand

pdin progressive download information
subs |sub-sample information
meta metadata
iloc item location
ipro item protection
sinf protection scheme information box
frma original format box
schm scheme type box
schi scheme information box
iinf item information (version field set to 0)
xml XML container
bxml binary XML container
pitm primary item reference

[Ed.Note] It is suggested to add hd1r under meta in the table above and the following sentence: When a
file is indicated to conform to the "iso2 ' brand and the file includes a MetaBox, a HandlerBox shall

be present in the MetaBox.

In the context of RTP hint tracks, SRTP hint tracks shall now be recognized. Content protection and
generalized metadata boxes support is required.

Only support for version 0 of the item information box, and version 0 of the item location box, is required.

Support for only version 0 of the CompositionOffsetBox is required; version 1 support is not

required.

Support for only version 0 of the TrackRunBox is required; version 1 support is not required.

Support for SampleGroupDescriptionBoxes in movie fragments is not required.

NOTE 1 The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

NOTE 2 Some requirements of the TrackHeaderBox do not apply to this brand; see subclause 8.3.2.1.

Supportforonly 16-bititem IDand item count valuesinMetaBox isrequired; 32-bititem IDand
item count valuesin MetaBox is not required

Support for MetaBox in movie fragments is not required

Support for only one SubSampleInformationBox per track is required

E.5The 'mp71' brand

If a MetaBox with an MPEG-7 handler type is used at the file level, then the brand "'mp71 ' should be a
member of the compatible-brands list in the FileTypeBox.

© ISO/IEC 202x - All rights reserved

281

DIS 14496-12:202x

E.6The 'iso3' brand
The brand 'iso3"' requires support for all features of the ' iso2 "' brand.

In addition, support for the boxes according to Table E. 4 is required.

Table E. 4: Boxes required under the 'iso3' brand

fiin file delivery item information
paen partition entry
fpar file partition
fecr FEC reservoir
segr file delivery session group
gitn group id to name

Support for version 0 and version 1 of the TtemInfoBox is required. Within the sample groups, support
for rate share information (grouping type 'rash') is required. File delivery hint tracks (sample
entry ' fdp ') shall be recognized.

Support for only version 0 of the CompositionOffsetBox is required; version 1 support is not
required.

Support for only version 0 of the TrackRunBox is required; version 1 support is not required.
Support for SampleGroupDescriptionBoxes in movie fragments is not required.

Only support for version 0 of the TtemLocationBox is required.
NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

Support foronly 16-bititem IDand item count valuesinMetaBox isrequired;32-bititem IDand
item count valuesinMetaBox is notrequired

Support for MetaBox in movie fragments is not required

Support for only one SubSampleInformationBox per track is required

E.7The 'iso4' brand
The brand ' iso4 ' requires support for all features of the 'iso3"' brand.
Support for version 1 of the CompositionOffsetBox boxis required under this brand.

Support for version 1 of the ItemLocationBox, version 2 of the ItemInfoBox, and the
ItemDataBox and ItemReferenceBox is required.

In addition, support for the boxes according to Table E. 5 is required.

Table E. 5: Boxes required under the 'iso4' brand

| | |trgr | | | | |track grouping indication

282 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

cslg composition to decoding timeline
mapping
idat item data
iref item reference

Support for only version 0 of the TrackRunBox is required; version 1 support is not required.

Support for SampleGroupDescriptionBoxes in movie fragments is not required.
NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

Supportforonly 16-bititem IDand item count valuesinMetaBox isrequired; 32-bititem IDand
item count valuesinMetaBox is notrequired

Support for MetaBox in movie fragments is not required
Support for only one SubSampleInformationBox per track is required

Support for only 32-bit values in CompositionToDecodeBox is required; 64-bit values in
CompositionToDecodeBox is notrequired.

Within the sample groups, support for alternative startup sequence information (grouping type
'alst')isrequired.

E.8The 'iso5' brand

The brand 'iso5' requires support for all features of the ' iso4 "' brand.

Support for the default-base-is-moof flag is required under this brand.

Processing of restricted sample entries (i.e. ' resv') is required under this brand.

Support for only version 0 of the TrackRunBox is required; version 1 support is not required.
Support for SampleGroupDescriptionBoxes in movie fragments is not required.

Supportforonly 16-bititem IDand item count valuesinMetaBox isrequired; 32-bititem IDand
item count valuesinMetaBox is not required

Support for MetaBox in movie fragments is not required
Support for only one SubSampleInformationBox per track is required

Support for only 32-bit values in CompositionToDecodeBox is required; 64-bit values in
CompositionToDecodeBox is not required.

© ISO/IEC 202x - All rights reserved 283

DIS 14496-12:202x

E.9The 'iso6' brand
The brand 'iso6' requires support for all features of the ' iso5"' brand.

Support for the boxes according to Table E. 6 is required under this brand.

Table E. 6: Boxes required under the 'iso6' brand

saiz sample auxiliary information sizes
saio sample auxiliary information offsets
tfdt track fragment decode time

styp segment type

sidx segment index

ssix subsegment index

prft producer reference time

Support for the following is required under this brand:

e SampleGroupDescriptionBoxesin movie fragments;

e Signed composition offsets in TrackRunBoxes (i.e. version 1 of TrackRunBoxes);

e Within the sample groups, support for random access point information
(grouping type 'rap ') and temporal level information (grouping type 'tele') is required.

e Support for only 16-bititem IDand item count valuesinMetaBox is required; 32-bit
item IDand item count valuesinMetaBox is notrequired

e Support for MetaBox in movie fragments is not required

e Support for only one SubSampleInformationBox per track is required

e Support for only 32-bit values in CompositionToDecodeBox is required; 64-bit values in
CompositionToDecodeBox is not required.

E.10The 'iso7"' brand
The brand 'iso7' requires support for all features of the ' iso6' brand.

Support for the boxes according to Table E. 7 is required under this brand.

Table E. 7: Boxes required under the 'iso7' brand

trep track extension properties
assp alternative startup sequence
properties

Support for the following is required under this brand:

e Support for 32-bititem IDand item count valuesinMetaBox
¢ Recognizing incomplete tracks by detecting the following sample entries for incomplete tracks:
'icpv', 'icpa', 'icpt', 'icps', 'icph', 'icpp', 'icp3' and 'icpm'.

NOTE The process of detecting when a track becomes incomplete (before the transformation specified in
subclause 13.6.2) and handling incomplete tracks in playback are outside the scope of this document

e Support for MetaBox in movie fragments is not required

284 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

e Support for only one SubSampleInformationBox per track is required
e Support for only 32-bit values in CompositionToDecodeBox is required; 64-bit values in
CompositionToDecodeBox is not required.

E.11The 'iso8' brand
The brand 'iso8' requires support for all features of the ' iso7"' brand.

Support for the boxes according to Table E. 8 is required under this brand.

Table E. 8: Boxes required under the 'iso8' brand

sthd subtitle media header, overall
information (subtitle track only)

Support for the following is required under this brand:

e Support for MetaBox in movie fragments

e Support for one or more SubSampleInformationBox per track

e Support for only 32-bit values in CompositionToDecodeBox is required; 64-bit values in
CompositionToDecodeBox is not required.

E.12The 'iso9' brand
The brand 'iso9' requires support for all features of the ' iso8"' brand.

Support for the boxes according to Table E. 9 is required under this brand.

Table E. 9: Boxes required under the 'iso9' brand

| | | |elng | | | | |extended language tag

Support for the following is required under this brand:

e Support for 64-bit values in CompositionToDecodeBox.

E.13The 'isoa' brand
The brand ' isoa' requires support for all features of the 'iso09' brand.

Support for the boxes according to Table E. 10 is required under this brand.

Table E. 10: Boxes required under the 'isoa' brand

iprp item property
grpl entity groups list
Support for the following is required under this brand:

= Within the sample groups, support for Sample-to-item (' stmi ') and dependent random access
point ('drap') grouping types is required.

© ISO/IEC 202x - All rights reserved 285

DIS 14496-12:202x

* Within the entity groups, support for EntityToGroupBox withgrouping typeequalto 'altr'
is required.
Within the sample groups, support for audio pre-roll information (grouping type 'prol')and

stream access point information (grouping type 'sap ') is required.
NOTE Although the above sample groups were defined in former versions of this document, no support was required
in any brands.

E.14The 'isob' brand
The brand 'i sob' requires support for all features of the 'i soa' brand.

Support for the boxes according to Table E. 11 is required under this brand.

Table E. 11: Boxes required under the 'isob' brand

ttyp track type of the track
brnd brand property

Under the 'isob' brand the restriction, given for 'isom' and its derivatives, in the media ratein
the EditListBox is lifted and any value is permitted for the integer and fraction parts.

Under the 'isob' brand support for (flags & 1) ofthe TrackGroupTypeBox is mandatory.

E.15The 'relo’' brand

E.15.1 Requirements for files

Files having the 'relo' brand among compatible brands ofa TypeCombinationBox associated
with the FileTypeBox shall be constrained as follows:

- When construction method equal to 0 (file offset) is in use for an item in
ItemLocationBox,data reference index fortheitem shall pointtoaDataEntryImdaBox.

- Each data reference index value in the sample entries of all tracks shall point to
DataEntryImdaBox or DataEntrySegNumImdaBox.
NOTE 1 By including 'relo' in the compatible brands of TypeCombinationBox associated with a

TrackTypeBox or included in ExtendedTypeBox used as an item property, it is possible to limit the scope of the
constraints above to individual tracks or items.

A file having the 'relo' brand in the compatible brands ofa TypeCombinationBox associated
with the FileTypeBox shall be accompanied by a BoxFileIndexBox that indexes the file and is
provided separately from the file, for example using the £ileindex MIME parameter with the file. The
BoxFileIndexBox shall contain FrontPartBox including imda identifier for each
IdentifiedMediaDataBox. BoxFileIndexBox, FrontPartBox, and the fileindex MIME
parameters shall be as specified in ISO/IEC 23001-141101,

NOTE 2 Rather than traversing the top-level boxes of the file, parsers can use the BoxFileIndexBox to conclude the
byte locations of each IdentifiedMediaDataBox referred to by the DataReferenceBox(es).

E.15.2Requirements for readers

Support for the boxes according to Table E. 12 is required under this brand.

286 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Table E. 12: Boxes required under the 'relo' brand

imda identified media data
imdt data entry of imda
snim data entry sequence number for imda

When a data reference refers to an IdentifiedMediaDataBox of the containing file but no
IdentifiedMediaDataBox with imda identifier equal to the imda ref identifier given
in the data reference is present in the file, readers shall omit the processing of the associated track or
item. Furthermore, readers shall omit the processing of any tracks or items depending on such an
associated track or item, for example through a track reference or an item reference.

E.15.3 Use cases (informative)

E.15.3.1 File editing

When the 'relo’ brand is in use, removal and addition of tracks and items can be done as described
below.

When a track or item is added into a file complying with the ' relo' brand, its media data can be included
in a new IdentifiedMediaDataBox. The MovieBox is appended with a new TrackBox or item
information. The location offset information of the tracks or items that were already present in the file
does not have to be updated, because the offsets are relative to the IdentifiedMediaDataBox that
carries the respective media data. The location offset information of the added track or item is relative to
the newly added IdentifiedMediaDataBox and is hence also straightforward to compute. It is easy
to locate the amended MovieBox into the beginning of the file, because no location offsets depend on the
size of the boxes preceding the IdentifiedMediaDataBoxes in the file order.

When a track or item is removed from a file complying with the 'relo"' brand, it can be checked if no
other media data than that of the removed track or item is present in the ITdentifiedMediaDataBox.
If so, the ITdentifiedMediaDataBox can be removed without affecting the location offsets of the
remaining tracks or items. Likewise, the TrackBox or the item information can be removed from the file
without a need to re-compute the location offsets of the remaining tracks and items.

A file editor can maintain a file index that is a data structure containing the box types and either the sizes
or byte ranges of all the file-level boxes and the imda identifier values of all instances of
IdentifiedMediaDataBox. The file editor should be able to output the file index data structure
formatted as a BoxFileIndexBox.

E.15.3.2 Partial image file reception
In the file writing, the following two steps are carried out:

- Afilewith 'relo' brand and with image items as specified in ISO/IEC 23008-12 (HEIF) is created,
and each image item is located in its own IdentifiedMediaDataBox.

- A BoxFileIndexBox for the HEIF file is created as a sequence of BoxIndexBoxes and has the
following structure:

© ISO/IEC 202x - All rights reserved 287

DIS 14496-12:202x

BoxIndexBox {
indexed box type = 'ftyp';
indexed box size = XI1;

}

BoxIndexBox {
indexed box type = 'etyp';
indexed box size = X2;

}

BoxIndexBox {
indexed box type = 'meta';
indexed box size = X3;

}

BoxIndexBox {

indexed box type = 'imda';
indexed box size = X4;
FrontPartBox { box content[4]; // containing imda identifier

}
}
// one BoxIndexBox per IdentifiedMediaDataBox
BoxIndexBox {
indexed box type = 'imda';

indexed box size = X5;
FrontPartBox {
box content[4]; // containing imda identifier

}
}

- The file is made available for downloading e.g. in a web page, by referring to its HTTP URL and
providing its MIME media type, including the £ileindex parameter.

Reception of a subset of the image items is enabled by:
- parsing the file index from the fileindex parameter,

- concluding from the file index the byte ranges for the FileTypeBox, the ExtendedTypeBox, and
the root-level MetaBox,

- fetchingthe FileTypeBox, the ExtendedTypeBox, and the root-level Met aBox with a byte range
request,

- determining which image items are of interest based on the item information in the MetaBox,

- resolving from the file index the byte ranges of the IdentifiedMediaDataBoxes containing the
image items of interest,

- fetching the concluded byte ranges,
- creating a local file by concatenating all the fetched byte ranges, and

- when the reader expects a file index as input, pruning the parsed file index by keeping only the top-
level BoxIndexBoxes of the received top-level boxes.

The local file is a compliant HEIF file with the 'relo' brand.

288 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

E.16The 'isoc' brand

The brand 'i soc' requires support for all features of the 'i sob' brand. Support for the boxes according
to Table E. 13 is required under this brand.

Table E. 13: Boxes required under the 'isoc' brand

'mov compressed movie

I'six compressed segment index
I'ssx compressed subsegment index
'mof compressed movie fragment
otyp original file type box

E.17The 'comp' brand

The 'comp ' brand indicates that the file conforms to the compressed box requirements of 8.19 and that
areader is required to conform to the reader requirements of that subclause.

Under this brand, , a reader shall process an OriginalFileTypeBox (if present).

NOTE There are a number of ways to mark a file as using compression and requiring decompression, including:

» The use of the 'isoc' brand, in combination with brands that permit (or do not forbid) compression.

e This brand (' comp') probably with little else, in the main type box (e.g. FileTypeBox or SegmentTypeBox),
followed by an OriginalFileTypeBox; the full file is delivered and described by doing the decompression, and then

using the OriginalFileTypeBox

e This brand ('comp') with brands that permit (or do not forbid) compression, in the main type box (e.g.
FileTypeBox or SegmentTypeBox), withoutan OriginalFileTypeBox;

e This brand (' comp ') used in the TypeCombinationBox, withoutan OriginalFileTypeBox.

E.18The 'unif' brand

E.18.1 General

The brand 'unif' may be used to indicate unified handling of identifiers, for example across tracks,
track groups, entity groups, and file-level Met aBoxes. The consequences are

e that a given identifier identifies at most one of those (or nothing at all); for example, there is no
identifier which is used to label both a track and an entity group;

o that where an identifier is restricted, without this brand, to refer to a particular type (e.g. to a track
by track ID) that reference is no longer so restricted, and can refer to any type (e.g. to a track
group), if the semantics of the reference permit it.

It is recommended that this brand be used in the ExtendedTypeBox, in combination with the brands
of other specifications which readers must support.

There are three levels:

1) file-level: comprising tracks, track groups, and items and entity groups in a MetaBox not contained
in any other box;

© ISO/IEC 202x - All rights reserved 289

DIS 14496-12:202x

2) movie-level: aMetaBox contained in a MovieBox
3) track-level: aMetaBox contained in a TrackBox

E.18.2 Requirements for files
The set of types so unified are, at file-level:

e track IDinthe TrackHeaderBox inall tracks;

e track group idinthe TrackGroupTypeBox ofa TrackGroupBox in all tracks;

e item IDvalueinItemInfoBox in a file-level MetaBox

e group idinanEntityToGroupBox inthe GroupsListBox in the file-level MetaBox

The set of types so unified are, at movie-level or track-level:

e item IDvaluein ItemInfoBox inthe MetaBox atthatlevel
e group idinanEntityToGroupBox inthe GroupsListBox inthe MetaBox at thatlevel

In files compliant with this brand, there shall not be two IDs with the same value in the same level.

In the MovieHeaderBox, the value of next track ID shallbelarger than the largestidentifier value
in use at file level. If this value is equal to all 1s (32-bit maxint), and an identifier is needed, then a search
must be made in the file for an unused identifier value.

NOTE The uniqueness of entity group IDs and item IDs in a MetaBox is required, at any level, irrespective of this
brand.

References used in boxes using reference by ID, such as TrackReferenceBox or ITtemReferenceBox,
only resolve within a given level. References do not cross levels. A reference to an identifier that is not
present at the same level does not resolve.

E.18.3 Requirements for readers
A reader supporting this brand shall locate the target of the reference using an ID by checking the IDs of

the unified types at the same level (file, movie, track) as permitted by the semantics of the reference in
question.

E.19The 'isod' brand

The brand 'i sod' requires support for all features of the 'i soc' brand. Support for the boxes according
to Table E. 14is required under this brand.

Table E. 14: Boxes required under the 'isod' brand

hdlp handler property
spki sample packing information
prsl preselection group

Support for the following is required under this brand:

e The associated external stream 'aest ' track reference shall be supported.
e Sample-packed tracks shall be recognized.

290 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

e The SampleGroupDescriptionBox with version equal to 3, which describes an essential
sample group, shall be supported.

e Within the sample groups, support for EDRAP sample group (grouping type 'edrp') and essential
descriptions hierarchy sample group (grouping type 'esgh') is required.

e Supportfor track in movie flag is required.

A file that is indicated to conform to the 'isod' brand shall be constrained with the same constraints
that apply files conforming to the ' isoc' brand except the following:

e The presence of a HandlerBox in the MetaBox is optional unless specified otherwise in subclause
8.11.1.1.

© ISO/IEC 202x - All rights reserved 291

DIS 14496-12:202x

Annex F
(normative)

MIME type registration of segments

F.1O0verview

This annex provides the formal MIME registration of media segments formatted according to 8.16.

F.2 Registration

MIME media type name: video

MIME subtype name: iso.segment

Required parameters: none

Optional parameters: as specified by RFC 6381 and its successors
Encoding considerations: as for video/mp4

Security considerations: See section 4 of RFC 4337.

Interoperability considerations: A number of interoperating
implementations exist within the ISO/IEC 14496 community, and
that community has reference software for reading and writing
the file format.

Published specification: ISO/IEC 14496-12
Applications: Multimedia
Additional information:

Magic number (s): none

File extension(s): m4ds

Macintosh File Type Code(s): None

Intended usage: Common

292 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Annex G
(informative)

URI-labelled metadata forms

G.1UUID-labelled metadata

The format of the URI for UUID-labelled metadata is defined in IETF RFC 4122.

There are no general statements about the form of the primary metadata, the initialization data for
temporal metadata, or the temporal metadata itself. The form of all of these depends on the precise UUID

and its definition.

Note that UUIDs cannot easily be traced to their point of origin, and so they may be unsuitable if it is
desired that recipients of metadata be able to find, if needed, the associated documentation.

If traceability is needed, then a standardized metadata framework, such as MPEG-7, or a registered
framework, such as SMPTE, or a de-referencable URL should be used.

G.21SO OID-labelled metadata

When OID-labelled metadata is carried the URI form defined in IETF RFC 3061 shall be used.

There are no general statements about the form of the primary metadata, the initialization data for
temporal metadata, or the temporal metadata itself. The form of all of these depends on the precise object

identifier and its definition.

A number of more specific labelling systems can also be expressed as object identifiers. The more specific
UUID form should be used.

Object identifiers starting {joint-iso-itu(2) uuid(25)} (i.e. starting urn:oid:2.25) should not be used; UUID
URIs should be used directly.

Object identifiers starting {iso(1) identified-organizations(3) SMPTE(52) metadata-dictionary(1)} (i.e.
urn:oid:1.3.52.1) should not be used, nor should any other OID being used as a label according to SMPTE
298M or 336M; the more specific SMPTE URI form should be used.

Object Identifiers are registered to specific organizations, and so it may be possible to identify the
organization owning a particular identifier. However, some sections of the object identifier tree are

delegated to unregistered uses (such as UUIDs, as noted above), and traceability is then lost.

If traceability is needed, then a standardized metadata framework, such as MPEG-7, or a registered
framework, such as SMPTE, or a de-referencable URL should be used.

G.3SMPTE-labelled metadata

The format of the URI for SMPTE-labelled metadata is in IETF RFC 5119[24],

© ISO/IEC 202x - All rights reserved 293

DIS 14496-12:202x

The primary metadata is exactly the value (V) part of a KLV (key, length, value) triplet as defined in
SMPTE 33631, with the key being the label given in the URN, and the length (L) being derived from the
item length.

Similarly, each temporal metadata sample is the value (V) part of a KLV, where the key is the URN label
given in the matching sample entry, and the length (L) is derived from the sample size (as given in the
sample size or compact sample size tables).

The initialization data may be present. It contains the key (K) and value (V) of a KLV that provides an
initialization context for the KLVs formed from the samples, with the length (L) being derived from the
DataBox size. The first 16 bytes are a SMPTE label of the initialization data, stored as defined in SMPTE
3361], followed by the data.

The typical value of these bytes, as defined in SMPTE 377M, is ‘primer pack’ (in hexadecimal): 06 OE 2B
34 02050101 0D010201 010501 00.If the label of the initialization data does not, in fact, identify
a structure giving context information (such as a primer pack), the behaviour is undefined. This enables
each sample to be a local set. The rules for the construction of local sets, as defined in SMPTE 377M, shall
be followed.

SMPTE 377M uses locators to locate other resources outside the metadata itself. For static metadata,
these should use the TtemLocationBox in the MetaBox. For temporal metadata, external pointers
may be used directly.

The initialization data may be absent, and the label then identifies a specific metadata item (e.g. a
geographic locator) not needing a context.

294 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Annex H
(informative)

Processing of RTP streams and reception hint tracks

H.1 General

H.1.1 Overview

This Annex provides recommendations for recording of RTP streams and the use of recorded RTP
streams for playback and re-sending.

H.1.2 Structure
This annex is organized as follows:

- H.2 introduces the potential sources why the playback of RTP streams might become
unsynchronized and provides an overview how proper synchronization is facilitated in recording
and playback. It precedes the other clauses, because both the recording unit and the player have
to take actions to achieve proper synchronization.

- H.3 provides recommendations for storing RTP streams.
- H.4 provides recommendations how to play files containing recorded RTP streams.

- H.5 provides recommendations for re-sending received RTP streams stored in files as described
in H.3.

H.1.3 Specific definitions
Within the context of this annex:

e aplayer is an entity that parses a file, decodes at least a subset of the tracks in the file, and renders
the decoded tracks;

e a recording unit is an entity that receives one or more packet streams of encapsulated and
compressed media and stores the received media into a file;

e are-sending unit is an entity that parses a file containing media that originates from one or more
received packet streams of encapsulated and compressed media and transmits at least a subset of the
media stored in the file.

H.2 Synchronization of RTP streams

There are several potential sources of unsynchronized playback for received RTP streams. When RTP
streams are recorded as RTP reception hint tracks, the necessary information for guaranteeing
synchronized playback is also recorded. When RTP streams are recorded as media tracks, the
synchronization of the playback of the media tracks has to be guaranteed by creating the composition
times of the media samples appropriately. The following list describes the sources of unsynchronized
playback for received RTP streams, summarizes the recommended synchronization means, and points to
the relevant clauses for further information.

© ISO/IEC 202x - All rights reserved 295

DIS 14496-12:202x

1) The RTP timestamp of the first packet of the stream has a random offset. Hence, the RTP timestamps
of two streams are shifted by the difference of their initial random offsets even if the potentially
different clock rate of the RTP timestamps of the different streams were compensated. The random
offset ought to be reflected in the value of the of fset field of the timeoffset box of the referred
reception hint sample entry as described in H.3.5.

2) The first received and recorded packet of the different streams do not necessarily have an identical
playback time as discussed in H.3.2. The unequal start time of the different recorded streams is
compensated by parsing one or more RTCP sender reports to derive the playback time as the
wallclock time of the sender and creating an initial offset of the playback using the EditListBox as
described in H.3.2. The EditListBox is interpreted by the player as described in H.4.4.

3) There is no guarantee that the clock for producing the RTP timestamps of a certain RTP stream runs
at the same pace as the wallclock time of the sender, which is used to create the RTCP Sender Reports.
For example, the RTP timestamps can be generated on the basis of a constant sampling frequency,
e.g. 44.1 kHz for audio, and hence governed by the clock rate of the audio capturing hardware.
However, the RTCP Sender Reports can be generated according to the system clock running at a
different pace than the clock of the audio capturing hardware. Moreover, the clock used to generate
RTP timestamps for audio might run at a different pace than the clock used to generate RTP
timestamps for video (when both a normalized to the same clock tick frequency).

A similar problem in the player arises if the clock pacing the output of a decoded stream runs at a
different pace than the wallclock of the player or the clocks pacing the rendering of different decoded
streams are not synchronized.

The recommended approach for all these potential problems of clocks running at a different pace is
to use RTCP sender reports to align the RTP timestamps of different streams onto the same wallclock
timeline, which is used for inter-stream synchronization. This alignment can be done while recording
the streams by modifying the representation of the recorded RTP timestamps or while playing the
recorded streams by using the recorded RTCP sender reports as described in H.3.6. Moreover, it is
recommended to pace the playback according to the audio playout rate as described in H.4.4.

4) The wallclock of the sender possibly run at a different pace than the wallclock of the player.

It is recommended to play a recorded program at the pace of the wallclock of the player and to use
the audio playout clock as the wallclock of the player. Consequently, the audio timescale does not
typically have to be modified. Even if the wallclock of the player ran at a different pace than the
wallclock of the sender, it is typically unnoticeable.

Pacing of the output of decoded media samples is described in H.4.4.

H.3 Recording of RTP streams

H.3.1 Overview
Recording of RTP streams can result into three basic file structures.

1) A file containing only RTP reception hint tracks. No media tracks are included. This file structure
enables efficient processing of packet losses, but only players capable of parsing RTP reception hint
tracks can play the file.

2) A file containing only media tracks. No RTP reception hint tracks are included. This file structure
allows existing players compliant with the earlier versions of the ISO base media file format process

296 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

recorded files as long as the media formats are also supported. However, sophisticated processing of
transmission errors is not possible due to reasons explained in subsequent clauses.

3) A file containing both RTP reception hint tracks and media tracks. This file structure has both the
benefits mentioned above and is recommended to be used for as good interoperability as possible
with other file formats derived from the ISO base media file format.

If an RTP stream being recorded is protected, a protected RTP reception hint track is used instead of an
RTP reception hint track, while the operation of the recording unit remains unchanged otherwise. At the
time of playback, the data included in the protected RTP reception hint track is unprotected first and then
processed similarly to a conventional unprotected RTP stream. Alternatively, the RTP stream can be
unprotected before storing it as a RTP reception hint track, but then care has to be taken that the rights
to use the content in the protected RTP stream are obeyed.

Some of the recording operations are common for all the three file structures, while others differ. Table
H.1 indicates which recording operations are required for the basic file structures.

© ISO/IEC 202x - All rights reserved 297

DIS 14496-12:202x

Table H.1: RTP Recording Operations

File containing only

File containing only

File containing both

samples referring to
media samples
(H.3.9)

RTP reception hint media tracks RTP reception hint
tracks tracks and media
tracks

Compensation for no, when RTCP yes no, when RTCP
unequal starting reception hint tracks reception hint tracks
position of received are stored; are stored;
RTP streams yes, otherwise yes, otherwise
(H.3.2)
Recording of SDP yes no yes, for RTP reception
(H.3.3) hint tracks only
Creation of a sample yes no yes, for RTP reception
within an RTP hint tracks only
reception hint track
(H.3.4)
Representation of RTP | yes no yes, for RTP reception
timestamps hint tracks only
(H.3.5)
Recording operations | yes yes, the composition yes
to facilitate inter- times of media tracks
stream ought to be
synchronization in compensated as
playback described in H.3.6.3
(H.3.6)
Representation of yes no yes, for RTP reception
reception times hint tracks only
(H.3.7)
Creation of media no yes yes, for media tracks
samples only
(H.3.8)
Creation of hint no no yes

Some implementations can record first to RTP reception hint tracks only

combination of media tracks and RTP reception hint tracks off-line.

298

and create a file with a

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

H.3.2 Compensation for unequal starting for position of received RTP streams

When the recording of RTP streams is started, it can happen that the presentation time of the first media
sample in one RTP stream is not equal to the presentation time of the first media sample in another RTP
stream at least due to the following reasons:

- The sampling frequency of audio and video typically differ.

- Audio and video streams are not perfectly interleaved in terms of presentation times in transmission
order.

If RTCP reception hint tracks are stored, the compensation for unequal starting position of received RTP
streams ought to be done at playback time and no EditListBox concerning RTP reception hint tracks
ought to be created. If RTCP reception hint tracks are not stored or if media tracks are stored it is essential
that the recording unit indicates the relative initial delay of the streams in order to synchronize audio
and video correctly at the beginning of the playback of the streams as described subsequently in this
clause. The recording unit ought to perform the following operations.

1) An RTCP sender report indicates which RTP timestamp corresponds to the wallclock time of the time
instant the report was sent. At least the first RTCP sender report for each RTP stream ought to be
parsed in order to establish an equivalence of an RTP timestamp of each RTP stream and a wallclock
time of the sender. The wallclock timestamp of the earliest received RTP packet, in presentation
order, is derived for each RTP stream by simple linear extrapolation.

2) The smallest wallclock timestamp derived above among all the received RTP streams is mapped to
presentation timestamp zero in the movie timeline, i.e., is presented immediately at the beginning of
the playback of the recorded file. The movie timeline is the master timeline for the playback of the
file.

3) The media timeline for each track starts from 0. In order to shift the media timeline to a correct
starting position in the movie timeline, an EditBox and an EditListBox are created for each of
the other RTP tracks (which do not contain a packet having the earliest wallclock timestamp) as
follows:

4) The EditListBox contains two entries:

a) The first entry is an empty edit (indicated by media time equal to -1), and its duration
(edit duration) is equal to the difference of the presentation times of the earliest media
sample among all the RTP streams and the earliest media sample of the track. Figure H.1 presents
an example of how the edit duration of the first entry inan EditListBox is derived.

b) The value of media time of the second entry is equal to the composition time of the earliest
sample in presentation order, and the value of edit duration of the second entry spans over
the entire track. As the actual duration of the track might not be known at the time of creating
the EditListBox, it is recommended to set the edit duration equal to the maximum
possible value (either the maximum 32-bit unsigned integer or the maximum 64-bit unsigned
integer, depending on which version of the box is used).

The value of media rate integerisequalto 1in both the entries of the EditListBox.

© ISO/IEC 202x - All rights reserved 299

DIS 14496-12:202x

RTP reception hint track
for audio stream

RTP reception hint track Edit List box
for video stream A

[N
9
<.
o
I
o
0
o
3
°
o
‘

[N
9
o
c
=7
1S
0
o
3
j=3
o

-
-

segment duration Movie timeline

Figure H.1 — Example of an EditListBox to compensate the unequal starting of the received
RTP streams, edit_duration is copied to the first entry of the EditListBox

Some recording units are able to detect packets from which decoding can be started, which are here
referred to as random access points. An IDR picture of an H.264/AVC stream is an example of a random
access point. If a stream contains a packet having the earliest wallclock timestamp among all the received
streams and the same stream contains packets preceding, in decoding order, the first random access point
of the stream, it is recommended not to store the packets preceding the first random access point of the
stream and not to consider them when determining the earliest wallclock timestamp among all the
received streams.

H.3.3 Recording of SDP

The SDP is recommended to be stored as follows. Session-level SDP, i.e., all lines before the first media-
specificline (“m="line), are recommended be stored as movie SDP information within the UserDataBox,
as specified in 9.1.4.2. Each media-level section within the SDP description starts with an 'm="line and
continues to the next media-level section or the end of the whole session description. Each media-level
section is recommended be stored as Track SDP information within the UserDataBox of the
corresponding RTP reception hint track.

H.3.4 Creation of a sample within an RTP reception hint track

It is recommended that each sample represents all received RTP packets that have the same RTP
timestamp, i.e., consecutive packets in RTP sequence number order with a common RTP timestamp. The
RTPsample structure is set to contain one RTPpacket structure per each received RTP packet having
the same RTP timestamp. Each RTPpacket is recommended to contain one packet constructor of type 2
(RTPsampleconstructor). An RTPsampleconstructor copies a particular byte range, indicated
by the sampleoffset and length fields of the constructor, of a particular sample, indicated by the
samplenumber field of the constructor, by reference into the packet payload being constructed. The
payload of each received RTP packet having the same RTP timestamp is copied to the ext radata section
of the sample. The track reference of each constructor is set to point to the hint track itself, i.e., is set equal
to -1, and sampleoffset and length are set to match to the location and size of the packet payload
within the sample.

300 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Figure H.2 presents a pseudo-code example of an RTP reception hint sample, which contains two RTP
packets.

aligned(8) class RTPsample {

unsigned int (16) packetcount = 2;
unsigned int (16) reserved;
RTPpacket packets[packetcount]
{
RTPpacket {
int (32) relative time;
unsigned int (16) entrycount = 1;

RTPconstructor (2)
{

signed int (8) trackrefindex = -1;
unsigned int (16) length; // number of bytes in the payload
unsigned int (32) samplenumber; // samplenumber of this sample
unsigned int (32) sampleoffset;
unsigned int (16) bytesperblock = 1;
unsigned int (16) samplesperblock = 1;
}
}
RTPpacket {
int (32) relative time;
unsigned int (16) entrycount = 1;
RTPconstructor (2)
{
signed int (8) trackrefindex = -1;
unsigned int (16) length; // number of bytes in the payload
unsigned int (32) samplenumber; // samplenumber of this sample
unsigned int (32) sampleoffset;
unsigned int (16) bytesperblock = 1;
unsigned int (16) samplesperblock = 1;
}
}
}
byte extradata
{

L—————p byte rtppayloadll[];
byte rtppayload2[]; <«

}

Figure H.2 — Example of a RTP reception hint sample containing two packets
(their header and payload)

The use of an error occurrence indexing event to indicate an RTP packet loss is not recommended,
because the RTPsequenceseed field can be used for detecting packet losses without any increase in
the storage space. Furthermore, the minimum unit the error occurrence event can refer to is a sample (in
an RTP reception hint track). Since a sample can contain many packets, it is ambiguous which ones of
these packets the error occurrence indexing event concerns.

H.3.5 Representation of RTP timestamps

RTP timestamps are represented in a RTP reception hint track by a sum of three values, one of which is
the decoding time DT in the media timeline of the track. The decoding time is run-length coded into the
TimeToSampleBox and additionally to one or more TrackRunBoxes, if a sample resides in a movie
fragment. The TimeToSampleBox includes a number of sample count and sample delta pairs,
where sample delta is the decoding time increment (i.e., the sample duration in terms of decoding
time) for each sample in a set of consecutive samples, the number of which equals to sample count.
The TrackRunBox indicates one pair of sample count and sample duration, where

© ISO/IEC 202x - All rights reserved 301

DIS 14496-12:202x

sample duration is the decoding time increment (i.e., the sample duration) for each sample in a set
of consecutive samples, the number of which equals to sample count.Each TrackFragmentBox can
contain a number of TrackRunBoxes. The decoding time DT(i) for sample number i is derived by
summing up the sample durations of all the samples preceding sample i from the TimeToSampleBox
and, if needed, the TrackRunBoxes referring to any sample preceding sample i.

The RTP timestamp for sample i, RTPTS(i), is represented by a sum of three values specified as follows:
RTPTS(i) = (DT(i) + tsro.offset + of fset) mod 2% (H.1)

where tsro.of fset is the value of offset in the t imeof f set box of the referred reception hint sample
entry and of fset is the value included in the rtpoffsetTLV box in the RTPpacket structure, and
mod is the modulo operation.

A timeoffset box ought to be present in RTP reception hint sample entries. The value of offset in
any timeoffset box of a track ought to be equal to the RTP timestamp of the first packet of the
respective stream in RTP sequence number order.

Provided that no wrap-around of the RTP timestamp values over the maximum 32-bit unsigned integer
happened between sample i-1 and i, the difference between consecutive unequal RTP timestamps, in RTP
sequence number order, is

RTPTS_DIFF(i) = RTPTS(i) - RTPTS(i — 1) forany i > 1 (H.2)

RTPTS_DIFF(i) remains unchanged, when the frame rate is constant, the number of frames in any packet
is constant, and the transmission order is the same as the presentation order. These constraints are
typically met by audio streams and temporally non-scalable video streams. If RTPTS_DIFF(i) is a constant
denoted as RTPTS_DIFF, the following is recommended. The value of sample delta in the
TimeToSampleBox and, if movie fragments are used, the value of sample duration in the
TrackRunBox(es) are set to RTPTS_DIFF, which results into compact TimeToSampleBox and
TrackRunBoxes. The rtpoffsetTLV box ought not to be used within the RTP reception hint samples,
if RTCP reception hint tracks are used (see H.3.6). Otherwise (if RTCP reception hint tracks are not used),
offsetinthe rtpoffsetTLV box ought to be set to 0.

When temporal scalability is used in a video stream, the transmission order and the playback order of
packets are not identical, RTP timestamps do not increase as a function of RTP sequence number, and
RTPTS_DIFF(i) is not constant. However, RTP timestamps typically have a constant behaviour in periods
determined by the GOP_size, which is one plus the number of pictures between two consecutive pictures
in the lowest temporal level in RTP sequence number order. For example, if two non-reference pictures
are coded for each pair of reference pictures as illustrated in Figure H.3, GOP_size is equal to 3. Figure H.4
presents an example of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

In these diagrams RTP sequence numbers (SN) are normalized to start from 0, and one packet per frame
is assumed. RTP timestamps (TS) are normalized to start from 0 and indicated as clock ticks lasting one
frame interval. Inter prediction arrows are indicated for the first GOP only, while pictures in other GOPs
are predicted similarly.

302 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Temporal

level

t) [

0 [IbR] P] (7] [F]
RTPSN O 2 3
RTPTS O 1 2 3 4 5 6 7 8 9

(x clock tick of one
frame interval)

Figure H.3 — Example of a temporally scalable bitstream with GOP_size equal to 3

Temporal

level

2

1

0
RTPSN 0 3 2 4 1 7 6 8
RTPTS O 1 2 3 4 5 6

(x clock tick of one
frame interval)

Figure H.4 — Example of a hierarchically temporally scalable bitstream with GOP_size equal to 4

The RTP timestamp increment caused by one GOP is derived as follows, when no wrap-around of the RTP
timestamp values over the maximum 32-bit unsigned integer happened between sample i and i +
GOP_size, inclusive:

RTPTS_GOP_DIFF(i) = RTPTS(i + GOP_size) —- RTPTS(i) (H.3)

If RTPTS_GOP_DIFF(i) is a constant equal to RTPTS_GOP_DIFF, when no samplei, i+ 1, ..., i + GOP_size is
a picture starting a so-called closed group of pictures, such as an IDR picture of H.264/AVC streams, the
following is recommended. The value of sample delta in the TimeToSampleBox and, if movie
fragments are used, the value of sample duration in the TrackRunBox(es) are set to
RTPTS_GOP_DIFF / GOP_size. The rtpoffsetTLV box ought not to be used for pictures in the lowest
temporal level, if RTCP reception hint tracks are used (see H.3.6). Otherwise (if RTCP reception hint
tracks are not used), of fset in the rtpoffsetTLV box ought to be set to 0. The value of offset in
the rtpoffsetTLV box is recommended to be set for pictures in other temporal levels to such that
Formula (H.1) is fulfilled. Figure H.5 indicates how the decoding time and offset are set for a
hierarchically temporally scalable video bitstream presented in Figure H.4. In this example, the decoding
time increment between samples is set equal to RTPTS_GOP_DIFF / GOP_size to have a compact encoding
decoding times. The value of offset in the rtpoffsetTLV box is adjusted for each sample to store a
representation of the RTP timestamp. For this illustration, RTP timestamps and decoding times are
normalized to start from 0 and indicated as clock ticks lasting one frame interval.

© ISO/IEC 202x - All rights reserved 303

DIS 14496-12:202x

Temporal
level
2
1
0
DT 0 3 2 4 1 7 6 8 5
offset 0 -2 0 -1 3 -2 0 -1
RTPTS O 1 2 3 4 5 6 7 8

(x clock tick of one frame interval)

Figure H.5 — Example of setting the decoding time (DT) and the value of offset in the
rtpoffsetTLV box of a hierarchically temporally scalable bitstream with GOP_size equal to 4

If no linear and periodical behaviour of RTP timestamps is detected from the received packets, and no
two received packets of different samples have the same reception time, it is recommended to set the
value of sample delta in the TimeToSampleBox and, if movie fragments are used, the value of
sample duration inthe TrackRunBox(es) to represent the reception time of the first packet of the
sample. That is, the derived decoding time DT(i) ought to be equal to the reception time of the first packet
of the sample subtracted by the reception time of the first packet of the first received sample of the stream.

It is noted that composition timestamps are not explicitly indicated in the file for samples in any hint
tracks. Consequently, for RTP reception hint tracks, the composition timestamps are inferred from the
information related the RTP timestamps indicated in the stored packet stream. For an RTP reception hint
track that is not associated with an RTCP reception hint track, the composition time of a received RTP
packet is inferred to be the sum of the sample time DT(i) and the value of the offset field in the
rtpoffsetTLV box including the sample. For an RTP reception hint track that is associated with an
RTCP reception hint track, the composition time is inferred as follows. Let the received RTP packet having
the earliest RTP timestamp within the same track have composition time equal to 0. Any remaining RTP
packet has a composition time equal to the RTP timestamp difference of the present RTP packet and the
earliest RTP packet in presentation order with clock drift correction similar to H.3.6.3. The composition
time refers to the media timeline of the track.

H.3.6 Recording operations to facilitate inter-stream synchronization in playback

H.3.6.1 General

Lip synchronization, i.e., correct synchronization between recorded RTP streams, during playback can be
facilitated at least with the following two means:

1) An RTCP reception hint track is generated for each RTP reception hint track. The potential clock drift
between the RTP timestamp clocks of different streams is corrected at the time when the file is parsed
and the media streams included in the file are decoded and played. The clock drift correction is done
similarly to as would be done for RTP streams that are received and played simultaneously. This
mode of operation is straightforward for the recording units. However, accessing a file from an exact
playback position might be more cumbersome, because it requires compensation of the clock drift of
all the recorded streams at the time of the access.

2) The potential clock drift between recorded RTP streams is corrected by modifying the RTP
timestamps of one or more recorded streams. This mode of operation requires processing of RTCP
sender reports at the time of recording and is hence more tedious for the recording units than
creation of RTCP reception hint tracks. However, the operation of the player is straightforward.

304 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

Recording units ought to use the timestampsynchrony box [9.4.1.2] to indicate which lip
synchronization approach has been used. The timestampsynchrony box includes the
timestamp sync field. timestamp sync equal to 1 indicates that players ought to use RTCP
reception hint tracks for lip synchronization. timestamp_sync equal to 2 indicates that players ought
to use composition timestamps for lip synchronization.

Some implementations create RTCP reception hint tracks first during the real-time recording operation
and then compensate the clock drift by modifying RTP timestamps as an off-line post-processing step.

The following clauses provide more details about both approaches.

H.3.6.2 Facilitating lip synchronization based on RTCP sender reports

A recording unit stores all RTCP sender reports for a particular RTP stream as samples in the respective
RTCP reception hint track.

H.3.6.3 Compensating clock drift in timestamps

It is not recommended to modify the RTP timestamps of the recorded audio streams. Such a modification
would cause an audio timescale modification in the player, which is a non-trivial operation.

The recorded representation of the RTP timestamps of the video and other non-audio streams ought to
be modified using the following procedure.

1) First, the wallclock timestamp a of a video frame is derived from the RTP timestamp corresponding
to the video frame as a sum of the wallclock timestamp of the previous video frame and the difference
of the RTP timestamps of the current and previous video frames in the units of the wallclock timeline.

2) Second, the playback time b for the video frame on the wallclock time is derived based on the RTCP
Sender Reports. If no RTCP sender report that exactly indicates the wallclock time for the video frame
is available, the wallclock time can be extrapolated assuming that the rate at which the RTP
timestamp clock and the sender wallclock in RTCP sender reports deviates stays unchanged.

3) Third, based on the RTCP sender reports for audio, the audio RTP timestamp that is played
simultaneously with the video frame at time b of the wallclock timeline is derived. There need not be
an audio frame having exactly the derived audio RTP timestamp. The wallclock timestamp c of an
audio sample is calculated from the derived audio RTP timestamp as a sum of the wallclock timestamp
of the preceding audio frame and the difference of the RTP timestamps of the derived audio RTP
timestamp and the RTP timestamp of the preceding audio frame.

The difference between a and ¢, if any, ought to be compensated in the fields that represent the video RTP
timestamp in the file. In practice, the easiest way might be to add the difference to the of fset field in
the rtpoffsetTLV box, which is illustrated in Figure H.6. The other option, rewriting the
TimeToSampleBox and the TrackRunBox(es) (if any), might be more cumbersome to implement,
because of particular way of coding the sample times by a combination of sample counts and durations,
and might require more storage space too.

© ISO/IEC 202x - All rights reserved 305

DIS 14496-12:202x

7N 77N
(A (B
~_7/ ~_7/
al b Cl
7 ‘ 7 >
N q t
Y
/_\\ /"\
(D1 (C
~_/ ~_/
Key:
t Sender's wallclock timeline
A Wallclock timestamp derived from a video RTP timestamp only
B Wallclock timestamp derived from RTCP Sender Report(s) of video
C Wallclock timestamp derived from an audio RTP timestamp only for an audio frame that is played

at time b according to RTCP Sender Report(s) of audio
Difference to be added to of fset in the rtpoffsetTLV box of the video RTP reception hint
track

o}

Figure H.6 — Example of correcting the lip synchronization in the RTP timestamp
representation

H.3.7 Representation of reception times

As specified in 9.4.1.4, the reception time of a packet is indicated by the sum of the decoding time of the
sample containing the packet and the value of relative time of the RTPpacket structure of the
packet.

The reception time of the earliest received RTP packet ought to be zero, and the reception times of all
subsequent packets ought to be relative to the reception time of the earliest received RTP packet.

The clock source for the reception time is undefined and can be, for instance, the wallclock of the receiver.
If the range of reception times of a reception hint track overlaps entirely or partly with the range of
reception times of another reception hint track, the clock sources for these hint tracks are expected to be
the same.

The reception time of a packet ought to correspond to the time instant when the protocol stack layer
underneath RTP, typically UDP, outputs the packet.

H.3.8 Creation of media samples

Media samples are created from the received RTP packets as instructed by the relevant RTP payload
specification and RTP itself. However, most media coding standards only specify the decoding of error-
free streams and consequently it ought to be ensured that the content in media tracks can be correctly
decoded by any standard-compliant media decoder. Handling of transmission errors therefore requires
two steps: detection of transmission errors and inference of samples that can be decoded correctly. These
steps are described in the subsequent paragraphs.

Lost RTP packets can be detected from a gap in RTP sequence number values. RTP packets containing bit
errors are usually not forwarded to the application as their UDP checksum fails and packets are discarded

306 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

in the protocol stack of the receiver. Consequently, bit-erroneous packets are usually treated as packet
losses in the receiver.

The inference of media samples that can be correctly decoded depends on the media coding format and
is therefore not described here in details. Generally, inter-sample prediction is weak or non-existing in
audio coding formats, whereas most video coding formats utilize inter prediction heavily. Consequently,
a lost sample in many audio formats can often be replaced by a silent or error-concealed audio sample. It
ought to be analysed whether a loss of a video packet concerned a non-reference picture or a reference
picture, or, more generally, in which level of the temporal scalability hierarchy the loss occurred. Then, it
ought to be concluded which pictures are possibly not correctly decodable. For example, a loss of a non-
reference picture does not affect the decoding of any other pictures, whereas a loss of a reference picture
in the base temporal level typically affects all pictures until the next picture for random access, such as
an IDR picture in H.264/AVC. Video tracks are not allowed to contain any samples dependent on any lost
video sample.

H.3.9 Creation of hint samples referring to media samples

Media samples are created from the received RTP packets as explained in H.3.8. RTP reception hint tracks
are created as explained in H.3.4, but the contents of the RTPpacket structure depend on the existence
of the corresponding media sample as follows.

If the packet payload of the received RTP packet is represented in a media track, the track reference of
the relevant packet constructors are set to point to the media track and include the packet payload by
reference. It is not recommended to have a copy of the packet payload in the extradata section of the
received RTP sample in order to save storage space and make file editing operations easier to implement.

If the packet payload of the received RTP packet is not represented in a media track, the instance of the
RTPpacket structure is created as explained in H.3.4.

H.4 Playing of recorded RTP streams

H.4.1 Overview

This clause describes operations required for playback of a file containing recorded RTP streams. It is
organized as follows:

- Before RTP streams can be played, the contents of the files ought to be analysed. Particularly,
alternative tracks representing the same media stream ought to be identified and one of these tracks
ought to be selected for decoding and playback. The coding format ought to be detected in order to
conclude up front that it can be decoded by the player. These preparation operations are described
in more details in H.4.2.

- Ifan RTP reception hint track is being processed, there are a few things to be taken into account as
described in H.4.3. For example, packet losses ought to be detected and handled appropriately.

- The synchronization of the decoded media samples ought to be handled properly as described in
H.4.4.

- If the RTP streams stored in a file are accessed from a position other than the beginning of the
streams, proper inter-stream synchronization and decoder initialization are needed as described in
H.4.5.

© ISO/IEC 202x - All rights reserved 307

DIS 14496-12:202x

H.4.2 Preparation for the playback

In the preparation phase for playback, the player selects which tracks are played. The basic track
structure of the file is parsed first. The tracks are grouped according to which alternate group they belong
to. Tracks that belong to the same alternate group are indicated by the same valueof alternate group
in the TrackHeaderBox. One track from each alternate group is selected for playback as follows.

If there is an RTP reception hint track in the alternate group, it is preferred for playback, because it
contains an entire representation of the received RTP stream, unlike media tracks derived from the
received RTP streams, which might use such subset of the received RTP packets that can be decoded by
any standard-compliant decoder without capability for handling packet losses.

The compatibility of the player with the selected track ought to be ensured. For example, it ought to be
examined whether the codec, the profile, and the level used in the track are such that the player is able to
support.

The codec, profile, and level used for the coded bitstream in an RTP reception hint track can be concluded
from the SDP description of the RTP stream. The SDP descriptions are stored in the movie-level index
track. If SDP is unchanged throughout the file, it can be additionally stored as Movie SDP information and
Track SDP information within UserDataBoxes. If Track SDP information is present, it can be parsed to
find out the codec, profile, and level used for the bitstream contained in the RTP reception hint track. If
Movie SDP information or Track SDP information is not present, the move-level index track is traversed
to find and parse each SDP index and, consequently, the codec, profile, and level used for the bitstream
contained in the RTP reception hint track.

If no RTP reception hint track exists in an alternate group, the sample entry or sample entries of the media
tracks in the alternate group ought to be examined to find out which ones of them the player is able to
support.

H.4.3 Decoding of a sample within an RTP reception hint track

The original RTP packets can be reconstructed from an RTP reception hint sample by creating the RTP
packet header from the RTPpacket structures and by resolving the constructors of the RTPpacket
structures. Hence, one approach for file players to process RTP reception hint tracks is to re-create the
packet stream that was received and process the re-created packet stream as if it was newly received.

The relative time field included in the RTPpacket structure can be used to schedule the insertion
of the packet into the buffer for the RTP receiver. However, it is possibly more advisable to modify the
decoding process of recorded RTP streams such a manner that the decoder output buffers are kept as full
as possible in order to avoid interruptions or jerky playback caused by late packets or occasional
problems in real-time decoding in systems running other processes in addition to the player.

Packet losses ought to be detected from gaps in the RTP sequence number. The reaction to packet losses
depends on the particular media decoder implementation and can also depend on user preferences.

H.4.4 Lip synchronization
The following steps are required for achieving correct synchronization between streams:

1) Inter-track synchronization at the start of the playback.

The starting position of the media timeline of a track can be shifted in the movie timeline of the file
as described in the following two paragraphs.

308 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

For a media track and an RTP reception hint track that is not associated with an RTCP reception hint
track, an EditListBox ought to be used to shift the starting position of the media timeline within
the move timeline as described in H.3.2. The media timelines of the tracks selected for playback are
mapped to the movie timeline by parsing the EditListBoxes of the tracks, if present. The playback
of each media track and each RTP reception hint track that is not associated with an RTCP reception
hint track starts at the movie timeline position indicated in the EditListBox of the track or from
the beginning of the movie timeline, if no EditListBox exists for the track.

For RTP reception hint tracks that are associated with respective RTCP reception hint tracks, the
shifting of the starting position of the media timeline within the movie timeline is inferred as follows.
The media timeline of the RTP reception hint track containing the earliest RTP packet (in
presentation time on the sender wallclock timeline) among all RTP reception hint tracks is not shifted
within the movie timeline (i.e., starts at time 0 on the movie timeline). The starting time of the media
timeline of the any other RTP reception hint track is equal to the timestamp difference of the earliest
RTP packets of the present track and the track containing the earliest RTP packet among all RTP
reception hint tracks.

2) Reconstruction of RTP timestamps and composition times on the media timeline (H.3.5).

3) Correction of RTP timestamps and composition times based on RTCP Sender Reports, if RTCP
reception hint tracks are used.

The correction is done similarly to what is described in H.3.6.3. However, instead of adding the
difference between times a and c into the representation of the RTP timestamps in the file, the
difference is added during the playback to the presentation times of the video frames on the movie
timeline.

4) Pacing the output of the decoded media samples.

It is recommended to play a recorded program at the pace of the wallclock of the player and to use
the audio playout clock as the wallclock of the player. The audio playback is arranged to be
continuous at the native sampling frequency of the audio signal. A presentation clock of the player
runs at the pace of the audio playback, i.e., its value is always equal to the (the number of the most
frequent uncompressed audio sample that was played out) x (sampling frequency of the audio signal).
The playback of the video track (and potential other continuous media tracks) is synchronized to the
presentation clock of the player. In other words, when the presentation clock of the player meets the
composition time of a video sample on the movie timeline, the video sample is played out.

Only if a file being simultaneously recorded and played back and if the receiver wallclocks runs faster
than the sender wallclock, pacing the playback according to the rate of the receiver wallclock might
not be recommended and synchronizing the rate of the receiver wallclock to the rate of the sender
wallclock can be done as follows.

The pace of the sender clock is recovered by creating a relationship between the reception times
(according to the receiver clock) and the respective wallclock timestamps of the sender, which are
reconstructed from RTCP Sender Reports. It is recommended to use the audio playout clock as the
receiver clock. As the delay in the network and in the receiver can be varying, the relation between
the reception times and the respective timestamps of the sender is recommended to be averaged
over a large number of received packets. A timescale multiplication factor is concluded as a result of
the averaging of the relation between the reception times and the respective timestamps of the
sender.

A presentation time on a timeline of the receiver clock is derived for each sample. If RTCP reception
hint tracks are in use, the presentation time is the composition time of the sample on the movie

© ISO/IEC 202x - All rights reserved 309

DIS 14496-12:202x

timeline, also including clock drift correction as described in step 3 above. If RTCP reception hint
tracks are not in use, the presentation time is directly the composition time of the sample on the
movie timeline. Then, for playback purposes only, the presentation times of the samples in all tracks
being played ought to be multiplied by the timescale multiplication factor.

Time stretching of the signal ought to be done accordingly. Samples are played out at their
presentation times.

In practice, the timescale multiplication factor and the mapping from the RTP timeline to the
wallclock of the sender (step 3 above) can be implemented as a single operation.

H.4.5 Random access

Random access refers to a non-linear access to the media streams represented in the file. In other words,
in a random access operation the file is accessed from another sample than that which was previously
played or the file is initially accessed from a position that is not the beginning of the movie timeline.

It is recommended to provide the random access functionality to the user relative to the movie timeline
of the file rather than any other timelines, such as the sender wallclock timeline. By using the movie
timeline as the basis, the number of steps for a random access operation is kept low.

First, it is derived which media frames are at a desired random access position (or closest to it, if there
are none exactly at the desired random access position). In the case of media tracks, RTP reception hint
tracks for audio, and any RTP reception hint tracks having the timestamp_sync field equal to 2 (indicating
pre-compensated lip synchronization), the media frame closest to the desired random access position
can be directly derived based on the composition timestamps (on the media timeline) shifted by the initial
starting position indicated in the EditListBox, if any. In the case of non-audio RTP reception hint
tracks having the timestamp_sync field equal to 1 (indicating the use of RTCP reception hint tracks), the
presentation times of samples ought to be derived as described in H.4.4, until the closest presentation
time to the desired random access position is found.

Second, decoding of many media bitstreams can be started only from frames of a particular type, such an
IDR picture of H.264/AVC. Player implementations can therefore have different approaches, including
the following:

1. Discover the closest frame at or preceding the desired random access position from which
decoding can be started, start decoding from that frame, and start rendering only from the desired
random access point. This approach possibly implies some processing delay before the rendering
is started.

2. Startdecoding and rendering at or after the desired random access point using the earliest frame
from which decoding can be started. Typically, audio playback would start earlier than video
playback, but the processing delay before the rendering is started is smaller than in the previous
option.

H.5 Re-sending recorded RTP streams

H.5.1 Overview

It can be a desirable operation to re-send the RTP streams that have been recorded earlier to a file. For
example, if RTP streams are received through a broadcast or streaming service and recorded into a file,
it can be desirable to re-send them from one device to another device in a home environment using a
WLAN connection. This clause provides recommendations for re-sending of recorded RTP streams.

310 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

A communication system based on RTP includes a source endpoint (also known as a sender) and a
destination endpoint (also known as a receiver) and can contain one or more mixers and translators. The
sender and the receiver are the endpoints of the RTP and RTCP sessions. The behaviour of RTP translators
and mixers is specified in IETF RFC 35500171 and clarified in IETF RFC 5117123, In general, the recording
unit receiving RTP streams and storing them into a file acts as a destination endpoint, and a re-sending
unit reading stored RTP streams from a file and sending them acts as a source. Typically, the payloads of
the re-sent RTP stream are not modified, which makes a combination of a recording unit and a re-sending
unit acting similarly to a transport translator as described in IETF RFC 5117231, However, the essential
characteristic of a translator is that receivers cannot detect its presence. Consequently, a combination of
a recording unit and a re-sending unit cannot act as a transport translator, unless re-sending happens
simultaneously with the recording of the original streams. As this case is considered rare, the discussion
in this clause regards a recording unit as a destination terminating the original RTP and RTCP sessions
and a re-sending unit as a source of new RTP and RTCP sessions.

This clause is organized as follows:

- H.5.2 includes recommendations how to compose RTP packets from RTP reception hint tracks and
how to schedule the transmission of the RTP packets.

- H.5.3 discusses how RTCP packets ought to be generated and how received RTCP packets ought to be
processed.

H.5.2 Re-sending RTP packets
The packets are recommended to be constructed and transmitted as follows.

The packet payloads are recommended to be constructed according to the constructors stored in the
reception hint track, i.e., the packet payloads are recommended to be identical to those received, unless
a different packet size is crucial for the network to which the packets are re-sent.

- The values of the header fields for the RTP packets created as suggested by an RTP reception hint
track ought to be kept the same as in the respective RTPpacket structure except for the following
cases:

- The initial RTP timestamp offset and the RTP sequence number offset ought to be selected randomly
regardless of the values stored in the offset field of the timeoffset box of the referred reception
hint sample entry or the values of the RTPsequenceseed field of the RTPpacket structure of any
for any of the packets of the respective RTP reception hint track.

- The value of the RTP timestamp field is recommended to be a sum of the random initial offset, the
value of offset in the RTPpacket structure, and the decoding time of the respective RTP sample.
If the sum exceeds the maximum unsigned 32-bit integer, it is recommended to be wrapped over.

- The relative increments of the RTP sequence number are recommended to be the same as those
recorded in the values of the RTPsequenceseed fields. Consequently, if there was a packet loss in
the stream that was recorded, the stream that is re-sent also has a respective gap in the RTP sequence
number, and the receiver is able to deduce a packet loss.

- The value of the CSRC count field is always recommended to be zero, because no contributing sources
of the previous RTP session that was recorded are actively modifying the streams for the RTP session
for the stream being re-sent. The source identifier space (for both SSRC and CSRC) is session specific.
Consequently, the CSRC list of the RTP header ought to be empty regardless of the potentially stored
CSRC values for the received streams, which are included in the receivedCSRC TLV box in the
RTPpacket structure.

© ISO/IEC 202x - All rights reserved 311

DIS 14496-12:202x

- The value of the payload type field can be dynamically selected depending on the signalling scheme
in use.

- The value of the SSRC field ought to be randomly selected and potential collisions ought to be handled
as specified in IETF RFC 3550017l The SSRC value of a received stream can be stored in the
ReceivedSsrcBox of the referred reception hint sample entry but it ought to be ignored when the
stream is re-sent.

- The recorded RTP header extensions, stored in rtphdrext TLV in the RTPpacket structure, if any,
ought to be re-sent only if the re-sending unit can verify that they are valid for the re-sent stream. If
the re-sending unit is not able to parse the semantics of the recorded RTP header extensions, they
ought not to be re-sent.

The reception time of a packet, represented by the sum of the decoding time of the RTP reception hint
sample containing the packet and the value of the relative time ofthe RTPpacket structure, equals
to the transmission time of the packet with a skew caused by the transmission delay and the processing
delay in the protocol stack of the receiver. The skew of adjacent packets might not be equal due to
transmission delay jitter and varying processing delay. Moreover, the protocol stack used when receiving
the stream might differ from the protocol stack used for re-sending the stream. Due to these reasons, the
reception times are often not applicable as such to pace the transmission of the re-sent packets. In all
cases, the re-sending unit ought to verify that the re-sent packet stream complies with the buffering
model in use, if any. If the re-sending unit can conclude that the network environments and protocol
stacks used when receiving the stream and when re-sending the recorded stream are similar, reception
times can be used as a basis for scheduling the packet transmission. The re-sending unit ought to make
an effort to remove or conceal the transmission delay jitter in the recorded stream. If the re-sending unit
is unable to conclude that the network environments and protocol stacks used when receiving the stream
and when re-sending the recorded stream are similar or is uncertain which kind of packet scheduling is
appropriate, it can use the decoding time as the basis for scheduling.

H.5.3 RTCP processing

RTCP sender reports and other RTCP messages are regenerated following the constraints specified in
IETF RFC 3550017 rather than directly using the RTCP messages recorded in RTCP reception hint tracks,
if any.

An RTCP sender report contains the wallclock time when the report was sent and the RTP timestamp
corresponding to the same time as the indicated wallclock time. The RTP timestamp for an RTCP Sender
Report is generated as follows. A presentation time on a timeline of a reference clock is derived for the
sample corresponding the indicated wallclock time in the RTCP sender report. The reference clock can
be the wallclock of the re-sending unit initialized to 0 at the beginning of the session. The sample
corresponding to the indicated wallclock time might not exist in the corresponding RTP reception hint
track, because the sampling instants of the samples in the RTP reception hint tracks might not match with
the transmission instants of the RTCP sender reports. However, as instructed by [ETF RFC 35500171, the
RTP timestamp is derived as if there was a sample in the RTP stream corresponding to the indicated
wallclock time. The RTP timestamp for an RTCP sender report ought to be linearly interpolated from the
RTP timestamps of the samples immediately preceding and following the wallclock time indicated in the
RTCP sender report. In order to conclude the samples immediately preceding and following the wallclock
time indicated in the RTCP sender report, presentation times on the timeline of the reference clock ought
to be derived until the closest samples are discovered. If RTCP reception hint tracks are present for the
RTP reception hint track being re-sent, the presentation time is the composition time of the sample on
the movie timeline, also including clock drift correction as described in step 3 of H.4.4. If RTCP reception
hint tracks are not present, the presentation time is directly the composition time of the sample on the
movie timeline.

312 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

When handling the received RTCP receiver reports, it ought to be noticed that the reported cumulative
number of packets lost includes also the unsent packets that were never originally received and
correspond to the gaps in the RTP sequence number in the RTP reception hint tracks. Any congestion
management, retransmission, or other packet loss resilience method ought to take this into account.

© ISO/IEC 202x - All rights reserved 313

DIS 14496-12:202x

Annex |
(normative)

Stream access points

I.1 General
This annex defines a stream access point (SAP) and specifies six types of SAPs.

The SAP definitions and SAP types are specified in a generic manner in 1.1 through 1.3 so that they can be
applied to any container format, i.e. also other formats than the ISO base media file format. The terms
container, media stream, and bitstream are used in 1.1 through 1.3 as defined in ISO/IEC 23009-1110]. 1.4
specifies the interpretation of the generic SAP definitions in the context of the ISO base media file format.

A stream access point (SAP) enables random access into a container of media stream(s). A container may
contain more than one media stream, each being an encoded version of continuous media of certain
media type. A SAP is a position in a container enabling playback of an identified media stream to be
started using only (a) the information contained in the container starting from that position onwards,
and (b) possible initialisation data from other part(s) of the container, or externally available. Derived
specifications should specify if initialisation data is needed to access the container at a SAP, and how the
initialisation data can be accessed.

A SAP for layered media may apply to all the layers, a particular set of layers, or only a single layer in a
media stream. When a SAP applies to a set of layers that use inter prediction from a layer that is not a
member of the set, there may be an indication if the SAP requires the correct decoding of the reference
layer.

— When SAPs are used with layered media, derived specifications should specify or provides means to

indicate which layers SAPs apply to and whether SAPs require correct decoding of the reference layer.

1.2 SAP properties

1.2.1 General
For each SAP the properties, Isap, Tsap, Isau, Toec, Tepr, and Tprr are identified and defined as:

— Tsap is the earliest presentation time of any access unit of the media stream such that all access units
of the media stream with presentation time greater than or equal to Tsap can be correctly decoded
using data in the bitstream starting at Isap and no data before Isap.

— Isap is the greatest position in the bitstream such that all access units of the media stream with
presentation time greater than or equal to Tsap can be correctly decoded using Bitstream data starting
at Isap and no data before Isap.

— Isau is the starting position in the bitstream of the latest access unit in decoding order within the
media stream such that all access units of the media stream with presentation time greater than or

314 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

equal to Tsap can be correctly decoded using this latest access unit and access units following in
decoding order and no access units earlier in decoding order.

NOTE 1 Isauis always greater than or equal to Isap.

— Toxc is the earliest presentation time of any access unit of the media stream that can be correctly
decoded using data in the bitstream starting at Isauv and no data before Isau.

— Tger is the earliest presentation time of any access unit of the media stream starting at Isay in the
bitstream.

— Tprr is the presentation time of the first access unit of the media stream in decoding order in the
bitstream starting at Isau.

For the purposes of these definitions, the SAP is the access unit that is described as located at Isay and/or
ISAP-

NOTE 2 The distinction between Isav and Isap is only needed to distinguish between referring directly to the access
unit, and referring to its containing structure.

1.2.2 SAP properties for layers

The following properties apply to layered media streams for which SAPs are indicated for one or more
layers, referred to as the target layers. In the following properties, an access-unit partition refers to a unit
that contains the coded data of a single time instance for the target layers, and a media stream partition
refers to a sequence of access-unit partition of the target layers in decoding order.

When the target layers cover all the layers of a media stream, the following properties are equivalent to
those in .2.1.

For each SAP the properties, Isap, Tsap, Isau, Toec, Tepr, and Tpre are identified and defined as:

— Tsap is the earliest presentation time of any access-unit partitions of the target layers such that all
access-unit partitions of target layers with presentation time greater than or equal to Tsap can be
correctly decoded using data in the media stream partition starting at Isap and no data before Isap.

— Isap is the greatest position in the container of the media stream partition such that all access-unit
partition of the target layers with presentation time greater than or equal to Tsap can be correctly
decoded using data of the media stream partition starting at Isap and no data before Isap.

— Isau is the starting position, in the media stream partition, of the latest access-unit partition in
decoding order such that all access-unit partition of the target layers with presentation time greater
than or equal to Tsap can be correctly decoded using this latest access-unit partition and access-unit
partitions following in decoding order and no access-unit partition earlier in decoding order.

NOTE Isau is always greater than or equal to Isap.

— Togc is the earliest presentation time of any access-unit partition of the target layers that can be
correctly decoded using data in the media stream partition starting at Isay and no data before Isau.

— Tepr is the earliest presentation time of any access-unit partition of the target layers starting at Isay
in the media stream partition.

© ISO/IEC 202x - All rights reserved 315

DIS

14496-12:202x

Tprr is the presentation time of the first access-unit partition of the target layers in decoding order in
the media stream partition starting at Isav.

1.3 SAP types

Six types of SAPs are defined with properties as follows:

Type 1: Tepr = Torc = Tsap = Terr
Type 2: Tepr = Toec = Tsap < Terr
Type 3: Tepr < Toec = Tsap <= Terr
Type 4: Tepr <= Terr < Torc = Tsap
Type 5: Tepr = Toec < Tsap

Type 6: TEPT < TDEC < TSAP

NOTE The type of SAP is dependent only on which access units are correctly decodable and their arrangement in
composition order. The types informally correspond with some common terms:

316

Type 1 corresponds to what is known in some coding schemes as a “Closed GoP random access point”
(in which all access units, in decoding order, starting from Isap can be correctly decoded, resulting in
a continuous time sequence of correctly decoded access units with no gaps) and in addition the access
unit in decoding order is also the first access unit in composition order.

Type 2 corresponds to what is known in some coding schemes as a “Closed GoP random access point”,
for which the first access unit in decoding order in the media stream starting from Isay is not the first
access unit in composition order.

Type 3 corresponds to what is known in some coding schemes as an “Open GoP random access point”,
in which there are some access units in decoding order following Isay that cannot be correctly
decoded and have presentation times less than Tsap.

Type 4 corresponds to what is known in some coding schemes as an "gradual decoding refresh (GDR)
starting point”, in which there are some access units in decoding order starting from and following
[sau that cannot be correctly decoded and have presentation times less than Tsap.

Type 5 corresponds to the case for which there is at least one access unit in decoding order starting
from Isap that cannot be correctly decoded and has presentation time greater than Tpgc and where
Torc is the earliest presentation time of any access unit starting from Isau.

Type 6 corresponds to the case for which there is at least one access unit in decoding order starting
from Isap that cannot be correctly decoded and has presentation time greater than Tpgc and where
Torc is not the earliest presentation time of any access unit starting from Isau.

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

1.4 SAP definitions for the ISO base media file format

Clause 3 defines the terms container, media stream, and bitstream for the interpretation of SAP
information for files and segments compatible with the ISO base media file format.

Isau is the first byte of the SAP sample.
The mapping of specific values and terms is further specified in 8.16.3.1.

When the file structure-data (e.g. sample duration) of the SAP sample is included in a
MovieFragmentBox, Isap is the first byte of the MovieFragmentBox for the SAP sample or the
MediaDataBox containing the SAP sample, whichever is earlier in the file order. When the file
structure-data of the SAP sample is included in the MovieBox, Isap is the first byte of the MovieBox or
the MediaDataBox containing the SAP sample, whichever is earlier in the file order.

The MovieBox of afile shall be made available as initialisation data for utilizing the SAP information of
the file.

© ISO/IEC 202x - All rights reserved 317

DIS 14496-12:202x

J.1 General

Annex J
(informative)

Segment index examples

This annex gives some examples of the use of the Segment IndexBox, and what values are inserted in
it when it is used in various different ‘styles’ or configurations.

In the following examples, the size of i-th SegmentIndexBox is defined as Siindex, the size of i-th
subsegment, e.g. i-th MovieFragmentBox and MediaDataBoxes, is defined as Simedia, the duration of
i-th subsegment is defined as D;, the number of the last subsegment is defined as N, and the duration of
the segment is defined as Dsegment.

J.2 Examples

J.2.1 Simple one-level indexing

This example shows a simple segment index (Figure J. 1). All entries of the top level sidx point to media
content (segments comprising one or more movie fragments), i.e. reference type is equal to 0. The
value of referenced sizeand subsegment duration of each entry are calculated as in Table J. 1.

sidx
o
€1
moof
e
Di Si
mdat
moof P
D. S.
1 mdat *1
Figure J. 1 Simple segment index
Table J. 1 Simple segment index
sidx entries | referenced_size subsegment_duration

€o

Si

D;

318

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

€1

Si+1

Di+1

J.2.2 Hierarchical

This example shows hierarchical segment index (Figure]. 2). All entries of the top level sidx point to
another SegmentIndexBox, i.e. reference type is equal to 1, and all entries of the second level
sidx point to media content, i.e. reference type is equal to 0. The value of referenced sizeand
subsegment duration of each entry are calculated as in Table . 2.

sidx e,
Si index
L1 ’
sidx e,
9 e S
e — i+1,index
1]
moof
(_
D. S. .
| mdat J,media
moof P
D. S. .
J+1 mdat Jj+1,media
sidx rg
01z S
e - i+1,index
1
moof
(_
D, S. .
J+2 mdat j+2, media
moof P
I:)j+3 mdat Sj+3,media
Figure J. 2 Hierarchical segment index
Table]. 2 Hierarchical segment index
sidx# | entries | referenced_size subsegment_duration

© ISO/IEC 202x - All rights reserved

319

DIS 14496-12:202x

i-th €o Si+1,index + Sj,media + Sj+1,media Dj + Dj+1

€1 Si+2,index * Sj+2,media + Sj+3,media Dji2 + Djs3
(I+1)th €0 Sj,media Df

€1 Sj+1,media Dj+1
(i+2)th | eo Sj+2,media Djs2

€1 Sj+3,media Dj+3

J.2.3 Daisy-chain

This example shows daisy-chained segment index (Figure J. 3). Each SegmentIndexBox has two entries,
the first entry points to media content, i.e. reference type is equal to 0, the second (the last) entry
points to next SegmentIndexBox, ie. reference type is equal to 1. The value of
referenced sizeand subsegment duration of each entry are calculated as in Table J. 3.

320 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

sidx
eo S
e; i,index
moof
e
D. S. .
i mdat i,media
sidx
eoH-= s
e; — i+1,index
moof
(_
D. S, .
i+2 mdat i+1,media
sidx
ol | S,
i+2,index
Figure J. 3 Daisy-chained segment index
Table]. 3 Daisy-chained segment index
sidx# entries | referenced_size | subsegment_duration
i-th €0 Si,media D
€1 Si+1index n L
z Dj = Dsegment - Z Dj
j=i+1 j=0
(I+1]th [<h) Si+l,media Dis1
e1 Si+2,index n i+1
Z Dj = Dsegment - z Dj
j=i+2 j=0

J.2.4 Combination hierarchical and daisy-chain
This example shows hierarchical and daisy-chained segment index (Figure]. 4), which is combination of

J.2.2 and].2.3. The value of referenced size and subsegment duration of each entry are
calculated as in Table J. 4.

© ISO/IEC 202x - All rights reserved 321

DIS 14496-12:202x

322

J+1

J*2

J*3

Dj+4

sidx 1
e
0
e |
3
sidx
e
0
1)
moof P
mdat
moof P
mdat
sidx
e
O A
e, —
moof P
mdat
moof P
mdat
sidx
e
O A
e, _
moof
(_
mdat
sidx ﬂ
)

Si,inde><
Si+1 ,index

Sﬁmema

Sj+‘| ,media
Si+2,inde><

|
|
|
|
|
|
|
|
|

S

j+3,media
Si+3Jndex
Sj+4,media

Si+4Jndex

Figure J. 4 Combined segment index

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights

reserved

ISO/IEC 14496-12:202x

Table J. 4 Combined segment index

sidx# entries | referenced_size subsegment_duration
i-th €eo Si+1,index + Sj,media + Sj+1,media Dj + Dj+1
€1 Si+2,index + Sj+2,media + Sj+3,media Dj+2 + Dj+3
(S] Si+3,index + Sj+4,media n Jj+3
E Dk: Dsegment - E Dk
k=j+4 k=0
(i+1)th | eo Sjmedia D;
€1 Sj+l,media Dj+1
(i+2)th | eo Sj+2,media Dj:2
€1 Sj+3,media Dj+3
(i+3)th | eo Sj+4,media Djrs
e1 Si+4,index n j+4
Dy = Dsegment - § Dy,
k=j+5 k=0

© ISO/IEC 202x - All rights reserved 323

DIS 14496-12:202x

Annex K
(normative)

Use of IETF RFC 6381 for ISOBMFF files

K.1 General

IETF RFC 6381125 specifies parameters that are used with various MIME types or type/subtype
combinations to allow for unambiguous specification of the codecs employed by the media formats
contained within, or the profile(s) of the overall container format. This annex defines generic rules on
how to use these parameters for ISOBMFF and for derived specifications. These rules may be
complemented by derived specifications.

K.2 Use of the 'codecs' parameter

K.2.1 General rules

For files based on or derived from this document, each value in the comma separated list forming the
"codecs" attribute and formed by dot-separated-elements corresponds to a given track. For each track,
the first element of the dot-separated-elements is obtained as follows:

e It is set to the 'format' field of the first SampleEntry (respecting case), with the following
exceptions:

NOTE 1 Some but not all uses of the ISOBMFF restrict the number of sample entries in a track to one. So, there
are files potentially carrying multiple sample entries in which case the codecs parameter does not describe it all.

o If the 'format' field contains a space, the character "', or any character not supported by the
encoding of the codecs string, the "encoded" version of the codecs parameter shall be used, as
defined in IETF RFC 6381251 (i.e. using 'codecs*").

NOTE 2 Even though this is not recommended by this document, some sample entry four-character
codes are using the character .. Care is needed when forming the codecs value for those tracks.

o Ifthe 'format' field refers to a transformed sample entry the procedures in K.3 apply.

324 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

K.2.2 Syntax

id-simple :=/ id-iso

id-encoded :=/ id-iso

id-iso := iso-gen

iso-gen := cpid *(element / encoded-elm)
; <element> used with <codecs-simple>
; <encoded-elm> used with <codecs-fancy>
; Note that the BNF permits "." within <element>
; and <encoded-elm> but "." is reserved as the
; hierarchy delimiter

cpid := 4 (octet-simple / octet-fancy)

; <octet-simple> used with <codecs-simple>
; <octet-fancy> used with <codecs-fancy>

K.3 The 'codecs' parameter for transformed media tracks

For a transformed media track, the ' codecs' MIME parameter (as defined in this annex) may document
the original format with no transformation or only a subset of the transformations, if the environment
using that parameter separately documents the existence of the omitted transformations, such as
protection.

For a transformed media track, the ' codecs' MIME parameter may document the transformed format,
and in that case is a comma-separated list of one or more list items.

The following process applies to derive the value for a list item of the codecs MIME parameter of a
transformed media track:

1) The value of the codecs MIME parameter is initialized to be an empty string.

2) Let schemelnfoContainerBox be any ProtectionSchemeInfoBox, the
RestrictedSchemeInfoBox, or the CompleteTrackInfoBox when the sample entry type of
the track (i.e, the format value of a SampleEntry directly contained in the
SampleDescriptionBox) indicates an encrypted, restricted, or incomplete media track,
respectively.

3) Let dataFormat be equal to the data format value of OriginalFormatBox of
schemelnfoContainerBox.

4) The value of the codecs MIME parameter is appended by dataFormat followed by a dot ('.")
character.

5) When dataFormat indicates a transformed media track:

a. If the transformation type indicates an essential sample group (scheme type equal to
'essqg'), the value of the codecs MIME parameter is appended by the four-character code
'essg' followed by a star (' * '), further followed by the four-character codes listed in the
Essential Descriptions Hierarchy sample description, from the first entry up to but excluding
the first occurrence of 'stsd' Or 'cenc'. A star (' *') shall be used to separate the four-
character codes listed in the Essential Descriptions Hierarchy sample description.

© ISO/IEC 202x - All rights reserved 325

DIS 14496-12:202x

NOTE It can be known from the presence of the four-character code 'essg"' or the star
symbol (' * ') in the value of the codecs MIME parameter that an essential sample group is
used.

b. Otherwise, the value of the codecs MIME parameter is appended by the scheme type
four-character code contained in the SchemeTypeBox of schemelnfoContainerBox.

6) When schemelnfoContainerBox contains instances of CompatibleSchemeTypeBox, the following
applies for each instance of the CompatibleSchemeTypeBox of schemelnfoContainerBox in any
order: the value of the codecs MIME parameter is appended by a plus character (' +') followed by
the scheme type four-character code contained in the CompatibleSchemeTypeBox.

7) The value of the codecs MIME parameter is appended by adot (' . ') character.

8) If dataFormat indicates a transformed media track, schemelnfoContainerBox is updated to be any
ProtectionSchemeInfoBox, the RestrictedSchemeInfoBox, or the
CompleteTrackInfoBox when dataFormat indicates an encrypted, restricted, or incomplete
media track, respectively. The process continues from step 3.

9) Otherwise (dataFormat does not indicate a transformed media track), the value of the codecs MIME
parameter is appended by the original format string.

The original format string starts with the untransformed sample entry type indicating a coding format
and follows the specifications of the ' codecs' string for that coding format.

In the process above, steps 4 and 5 describe the derivation of a scheme type string.

For example, the value of the ' codecs' MIME parameter mightbe 'resv.stvi.avcl"'.

K.4 Use of the 'profiles' parameter

For any file format based on this document, the 'profiles' parameter, if used, shall be a comma-
separated list of brands constrained as follows:

1) The list shall include the major-brand, followed by the compatible-brands, as listed in the
FileTypeBox ('ftyp') or SegmentTypeBox ('styp'). The major-brand shall be first,
and may be removed from the compatible-brands list;

2) The list should include the brands from each TypeCombinationBox in the top-level
ExtendedTypeBox in the list, and the brands from a single TypeCombinationBox shall
be separated by '+'.

NOTE This document recommends that the major brand be repeated in the compatible-brands, but this requirement
is relaxed in the 'profiles' parameter for compactness.

An example might be profiles="qvXt, isoc, iso8+comp", indicating that ' qvXt' (whatever that
might be) is the major-brand and preferred use, that the file is compatible with the version of the base
file format identified by 'isoc', and that it is also compatible with the combination of 'iso08"' and
'comp'.

326 © ISO/IEC 202x - All rights reserved®© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

K.5 Use of the 'itemtypes' parameter

For files derived on this document and containing a top-level MetaBox, the 'itemtypes' parameter
shall be as defined in IANA media type registration: http://www.iana.org/assignments/media-
types/image /heic [xx] and, when used, is composed of one or more comma-separated item descriptions.

An item description should be present for the primary item of the file and may be present for other items
of the file. Each item description starts with an item type string and is followed by a plus-separated (' +')
list of zero or more item property strings. The item type string starts with the four-character item_type
value of the item and may be followed by zero or more dot-separated ('. ') qualifiers specified by

derived specifications.

K.6 Use of the 'essential' parameter

For files containing essential sample group descriptions, the 'essential' parameter, when used, is
composed of one or more comma-separated essential hierarchy descriptions.

Each essential hierarchy description is composed of one or more four-character code of essential sample
group descriptions, separated with a dot.

- If the 'codecs' parameter includes description of the transformation used, the listed four-
character codes shall be the ones listed in the Essential Descriptions Hierarchy sample group
description, in the same order, from the first code following the last occurrence of ' stsd' until
the last listed code.

- Otherwise, the listed four-character codes shall be the ones listed in the Essential Descriptions
Hierarchy sample group description in the same order.

NOTE Derived specifications can have different practices whether codecs contains only the untransformed sample
entry type or also four-character codes for transformations and essential sample groups. If no practices of derived
specifications apply, it is suggested that codecs contains also four-character codes for transformations and essential
sample groups and essential contains only the post-processing transformations and essential sample groups.

Example:

An HEVC sample is encrypted by means other than indicated through a protected sample entry type. The
encryption is signaled through an essential sample group of type ' FOOv '. The resulted decoded sample
needs to have a post-processing filter applied, signaled through an essential sample group of type
'BARv'. The EssentialDescriptionsHierarchyEntry lists the transformations as ['FOOv',
'stsd!', 'BARV'].

The 'codecs' and 'essential' MIME type sub-parameters can be:

codecs=resv.essg*FOOv.hvcl.1.6.L186.80
essential=BARv
or

codecs=hvcl.1.6.L186.80
essential=FOOv.stsd.BARv

© ISO/IEC 202x - All rights reserved 327

http://www.iana.org/assignments/media-types/image/heic
http://www.iana.org/assignments/media-types/image/heic

DIS 14496-12:202x

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

328

Bibliography

ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1

ISO/IEC 13818-1, Information technology — Generic coding of moving pictures and associated audio
information — Part 1: Systems

ISO/IEC 14496-14, Information technology — Coding of audio-visual objects — Part 14: MP4 file
format

ISO/IEC 14496-15, Information technology — Coding of audio-visual objects — Part 15: Carriage of
network abstraction layer (NAL) unit structured video in the ISO base media file format

ISO/IEC 15444-3, Information technology — JPEG 2000 image coding system: Motion JPEG 2000 —
Part 3: Motion JPEG 2000

ISO/IEC 21000-17:2006, Information technology - Multimedia framework (MPEG-21) - Part 17:
Fragment Identification of MPEG Resources

ISO/IEC 23000-11, Information technology — Multimedia application format (MPEG-A) — Part 11:
Stereoscopic video application format

ISO/IEC 23001-14, Information technology — MPEG systems technologies — Part 14: Partial file
format

ISO/IEC 23008-3, Information technology — High efficiency coding and media delivery in
heterogeneous environments — Part 3: 3D audio

ISO/IEC 23009-1:2022, Information technology - Dynamic adaptive streaming over HTTP (DASH) -
Part 1: Media presentation description and segment formats

Rec. ITU-R BS.1771-1, Requirements for loudness and true-peak indicating meters

IETF RFC 1864, The Content-MD5 Header Field, October 1995

IETF RFC 2616, Hypertext Transfer Protocol — HTTP/1.1, June 1999

IETF RFC 3926, FLUTE - File Delivery over Unidirectional Transport, October 2004

IETF RFC 3450, Asynchronous Layered Coding (ALC) Protocol Instantiation, December 2002
IETF RFC 3451, Layered Coding Transport (LCT) Building Block, December 2002

IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications, July 2003

IETF RFC 3551, RTP Profile for Audio and Video Conferences with Minimal Control, July 2003

IETF RFC 3695, Compact Forward Error Correction (FEC) Schemes, February 2004

© ISO/IEC 202x - All rights reserved© ISO/IEC 2015 - All rights
reserved

ISO/IEC 14496-12:202x

[20] IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005
[21] IETF RFC 3987, Internationalized Resource Identifiers (IRIs), January 2005

[22] IETF RFC 4771, Integrity Transform Carrying Roll-Over Counter for the Secure Real-time Transport
Protocol (SRTP), January 2007

[23] IETF RFC 5117, RTP Topologies, January 2008.

[24] IETF RFC 5119, A Uniform Resource Name (URN) Namespace for the Society of Motion Picture and
Television Engineers (SMPTE), February 2008

[25] IETF RFC 6381, The 'Codecs' and 'Profiles' Parameters for "Bucket” Media Types, August 2011
[26] ICC.1:2001-04, File format for color profiles, International Color Consortium

[27] The Unicode Standard, https://www.unicode.org/versions/latest/

[28] 3GPP TS 26.244, 3GPP file format (3GP)

[29] 3GPP TS 26.346, Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs

[30] SMPTE RP 177, Derivation of Basic Television Color Equations; Society of Motion Picture and
Television Engineers (SMPTE), 1993

[31] SMPTE ST 336:2017 Data Encoding Protocol Using Key-Length-Value

[32] EBU - Tech 3341, Loudness Metering: EBU mode metering to supplement loudness normalization in
accordance with EBU R128

[33] EBU - Tech 3342, Loudness Range: A measure to supplement loudness normalisation in accordance
with EBUR 128

[34] ATSC Doc. A/52:2012, ATSC Standard: Digital Audio Compression (AC-3, E-AC-3)

[35] Consumer Technology Association CTA-861-G, A DTV Profile for Uncompressed High Speed Digital
Interface

© ISO/IEC 202x - All rights reserved 329

