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ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
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Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee [or Project Committee] ISO/TC [or ISO/PC] ###, [name of committee], Subcommittee SC ##, [name of subcommittee].
This second/third/… edition cancels and replaces the first/second/… edition (ISO #####:####), which has been technically revised.
The main changes are as follows:
—	xxx xxxxxxx xxx xxxx
A list of all parts in the ISO ##### series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
The document contains a best-effort standards description of the winning technology submitted to the CfP and is known to be incomplete at this point due to either (a) limitations in writing time or (b) the style of CfP technology evaluation (use of Audio Evaluation Platform as opposed to a real-world application environment). Passages that are known to be incomplete are marked with the searchable label [TO BE AMENDED] and are planned to be described fully by the time of the delivery of the final RM0 Working Draft text also containing the merged technology from the low bitrate category winning system.
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MPEG-I Immersive Audio reproduction with 6 degrees of freedom (6DoF) movement of the listener in an audio scene enables the experience of virtual acoustics in a Virtual Reality (VR) or Augmented Reality (AR) simulation. Audio effects and phenomena known from real-world acoustics like, for example, localization, distance attenuation, reflections, reverberation, occlusion, diffraction and the Doppler effect are modelled by a renderer that is controlled through metadata transmitted in a bitstream with additional input of interactive listener position data. 
Along with other parts of MPEG-I (i.e., Part 12, “Immersive Video”, Part 5, “Visual Volumetric Video-based Coding (V3C) and Video-based Point Cloud Compression” and Part 2, “Systems Support”), the suite of standards supports a complete audio-visual VR or AR presentation in which the user can navigate and interact with the simulated environment using 6DoF, that being spatial navigation (x, y, z) and user head orientation (yaw, pitch, roll).
While VR presentations impart the feeling that the user is actually present in the virtual world, AR enables the enrichment of the real world by virtual elements that are perceived seamlessly as being part of the real world. The user can interact with the virtual scene or virtual elements and, in response, cause sounds that are perceived as realistic and matching the users’ experience in the real world.
This document provides means for rendering a real-time interactive audio presentation while permitting the user to have 6DoF movement. It defines metadata to support this rendering and a bitstream syntax that enables efficient storage and streaming of the MPEG-I Immersive Audio content. 
The International Organization for Standardization (ISO) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent.
ISO takes no position concerning the evidence, validity and scope of this patent right.
The holder of this patent right has assured ISO that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO. Information may be obtained from the patent database available at www.iso.org/patents.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those in the patent database. ISO shall not be held responsible for identifying any or all such patent rights.
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Title (MPEG-I — Main element — Part #: Audio)
[bookmark: _Toc353342669][bookmark: _Toc117076272][bookmark: _Toc131497292][bookmark: _Toc132126296][bookmark: _Toc132225865][bookmark: _Toc135210053][bookmark: _Toc166076532]Scope
This document specifies technology that supports the real-time interactive rendering of an immersive audio presentation while permitting the user to have 6DoF movement in an audio scene. It defines metadata to support this rendering and a bitstream syntax that enables efficient storage and streaming of Immersive Audio content.
[bookmark: _Toc353342670][bookmark: _Ref95392442][bookmark: _Toc117076273][bookmark: _Toc131497293][bookmark: _Toc132126297][bookmark: _Toc132225866][bookmark: _Toc135210054][bookmark: _Toc166076533]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 23008‑3, High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio
ISO 9613-1, Attenuation of sound during propagation outdoors — Part 1: Calculation of the absorption of sound by the atmosphere
ISO 266 Acoustics — Preferred frequencies
[bookmark: _Toc353342671][bookmark: _Toc117076274][bookmark: _Toc131497294][bookmark: _Toc132126298][bookmark: _Toc132225867][bookmark: _Toc135210055][bookmark: _Toc166076534]Terms and definitions
[bookmark: _Toc117076275][bookmark: _Toc131497295][bookmark: _Toc132126299][bookmark: _Toc132225868][bookmark: _Toc135210056][bookmark: _Toc166076535][bookmark: _Toc353798249]Acronyms
	6DoF
	6-Degrees-of-Freedom

	AE
	Acoustic Environment

	AR
	Augmented Reality

	CoRI
	Consolidation of Render Items

	CV
	Configuration Variable

	DOA
	Direction-Of-Arrival

	DSR
	Diffuse-to-Source energy Ratio

	EIF
	Encoder Input Format

	EP
	Extent Processor

	EQ
	Equalizer

	ER
	Early Reflections

	ES
	Extended Source

	ESD
	Equivalent Spatial Domain

	FDN
	Feedback Delay Network

	HRIR
	Head-Related Impulse Responses

	HRTF
	Head Related Transfer Function

	IACC
	Interaural Cross Correlation

	IALD
	Interaural Level Differences

	IAPD
	Interaural Phase Differences

	ID
	Identifier of an entity in the scene

	IIR
	Infinite Impulse Response

	LC-ER
	Low Complexity Early Reflections

	LCS
	Listener Coordinate System

	LoS
	Line-of-Sight

	LSDF
	Listener Space Description Format

	MP-HOA
	Multi Point Higher Order Ambisonics

	RDR
	Reverberant-to-Direct Ratio

	RT60
	Reverberation Time for reverberation energy to drop 60 dB

	RI
	Render Item

	RIR
	Room Impulse Response

	SESS
	Spatially Extended Sound Sources

	SN3D
	Data exchange format for Ambisonics (Schmidt semi-normalisation)

	SO
	Scene Object

	SOFA
	Spatially Oriented Format for Acoustics

	SOS
	Second-Order-Section

	SP-HOA
	Single Point Higher Order Ambisonics

	SRIR
	Spatial Room Impulse Response

	VBAP
	Vector-Base-Amplitude-Panning

	VDL
	Variable Delay Line

	VR
	Virtual Reality



[bookmark: _Toc368312621][bookmark: _Toc509230092][bookmark: _Toc515477872][bookmark: _Toc77175787][bookmark: _Toc117076276][bookmark: _Toc131497296][bookmark: _Toc132126300][bookmark: _Toc132225869][bookmark: _Toc135210057][bookmark: _Toc166076536]Terms
[bookmark: _Toc117076277][bookmark: _Toc131497297][bookmark: _Toc132126301][bookmark: _Toc132225870][bookmark: _Toc135210058][bookmark: _Toc166076537]auralize	
Note: PCM waveform synthesis of immersive audio effects.
[bookmark: _Toc117076278][bookmark: _Toc131497298][bookmark: _Toc132126302][bookmark: _Toc132225871][bookmark: _Toc135210059][bookmark: _Toc166076538]audio element	
Note: Audio signal data corresponding to the three signal types (audio objects, channels, HOA).
[bookmark: _Toc117076279][bookmark: _Toc131497299][bookmark: _Toc132126303][bookmark: _Toc132225872][bookmark: _Toc135210060][bookmark: _Toc166076539]audio scene	
Note: All audio elements, acoustic elements and acoustic environment which are needed to render the sound in the scene.
[bookmark: _Toc117076280][bookmark: _Toc131497300][bookmark: _Toc132126304][bookmark: _Toc132225873][bookmark: _Toc135210061][bookmark: _Toc166076540]control workflow	
Note: All components of the Renderer that are not part of the Rendering Workflow (i.e. the Scene and all related components)
[bookmark: _Toc117076281][bookmark: _Toc131497301][bookmark: _Toc132126305][bookmark: _Toc132225874][bookmark: _Toc135210062][bookmark: _Toc166076541]cover	
Note: A frequency dependant quasi-uniform grid on the surface of a unit sphere whereupon each point is a scalar value in dB.
[bookmark: _Toc117076282][bookmark: _Toc131497302][bookmark: _Toc132126306][bookmark: _Toc132225875][bookmark: _Toc135210063][bookmark: _Toc166076542]conditional scene update	
Note: A scene update initiated by the renderer when a certain condition is true.
[bookmark: _Toc117076283][bookmark: _Toc131497303][bookmark: _Toc132126307][bookmark: _Toc132225876][bookmark: _Toc135210064][bookmark: _Toc166076543]Doppler effect	
Note: Pitch change of sound perceived when distance between sound source and listener changes.
[bookmark: _Toc117076284][bookmark: _Toc131497304][bookmark: _Toc132126308][bookmark: _Toc132225877][bookmark: _Toc135210065][bookmark: _Toc166076544]dynamic scene update	
Note: An update triggered by external entity that includes the values of the attributes to be updated.
[bookmark: _Toc117076285][bookmark: _Toc131497305][bookmark: _Toc132126309][bookmark: _Toc132225878][bookmark: _Toc135210066][bookmark: _Toc166076545]effective spatial extent
The part of an extent that is acoustically relevant given a specific listening position relative to the extent.
[bookmark: _Toc117076286][bookmark: _Toc131497306][bookmark: _Toc132126310][bookmark: _Toc132225879][bookmark: _Toc135210067][bookmark: _Toc166076546]exterior representation
The exterior representation of an audio element is what is rendered when the listener is outside the extent of the audio element and is based on a source-centric format.
[bookmark: _Toc117076287][bookmark: _Toc131497307][bookmark: _Toc132126311][bookmark: _Toc132225880][bookmark: _Toc135210068][bookmark: _Toc166076547]interior representation
The interior representation of an audio element is what is rendered when the listener is inside the extent of the audio element and is based on a listener-centric format.
[bookmark: _Toc117076288][bookmark: _Toc131497308][bookmark: _Toc132126312][bookmark: _Toc132225881][bookmark: _Toc135210069][bookmark: _Toc166076548]listener centric format
An audio format for representing an audio element that is rendered to reproduce a sound field around the listener, such as HOA or channel-based formats like, e.g., 5.1 or 7.4.1.
[bookmark: _Toc117076289][bookmark: _Toc131497309][bookmark: _Toc132126313][bookmark: _Toc132225882][bookmark: _Toc135210070][bookmark: _Toc166076549]location	
Note: 3DoF location of an object in space in Cartesian coordinates.
[bookmark: _Toc117076290][bookmark: _Toc131497310][bookmark: _Toc132126314][bookmark: _Toc132225883][bookmark: _Toc135210071][bookmark: _Toc166076550]metadata	
Note: All input and state parameters that are used to calculate the acoustic events of a virtual environment.
[bookmark: _Toc117076291][bookmark: _Toc131497311][bookmark: _Toc132126315][bookmark: _Toc132225884][bookmark: _Toc135210072][bookmark: _Toc166076551]MPEG-H 3DA decoder	
Note: MPEG-H 3D Audio Low Complexity (LC) Profile decoder that receives as input an MPEG-H 3D Audio LC Profile MHAS stream and provides as output decoded PCM audio together with all metadata available in the MHAS packets. Decoded PCM audio contains channels, objects and reconstructed HOA as described in ISO/IEC 23008-3:2018 clause 17.10.
[bookmark: _Toc117076292][bookmark: _Toc131497312][bookmark: _Toc132126316][bookmark: _Toc132225885][bookmark: _Toc135210073][bookmark: _Toc166076552]orientation	
Note: 3DoF rotation of an object in Tait-Bryan angles (yaw, pitch, roll).
[bookmark: _Toc166076553]portal	
Note: Portals model spatial transfer regions where there is a possible acoustic link that can transfer acoustic energy from one AE into another AE for reverberation and/or coupled transmission.
[bookmark: _Toc117076294][bookmark: _Toc131497314][bookmark: _Toc132126318][bookmark: _Toc132225887][bookmark: _Toc135210075][bookmark: _Toc166076554]position	
Note: Consists of 6DoF location + orientation.
[bookmark: _Toc117076295][bookmark: _Toc131497315][bookmark: _Toc132126319][bookmark: _Toc132225888][bookmark: _Toc135210076][bookmark: _Toc166076555]primary  ray	
Note: Rays used by the system to explore the scene geometry, the results of casting Primary Rays stored and addressed individually by unique ray IDs.
[bookmark: _Toc117076296][bookmark: _Toc131497316][bookmark: _Toc132126320][bookmark: _Toc132225889][bookmark: _Toc135210077][bookmark: _Toc166076556]primary RI	
Note: A RI that is directly derived from an audio element in the scene.
[bookmark: _Toc117076297][bookmark: _Toc131497317][bookmark: _Toc132126321][bookmark: _Toc132225890][bookmark: _Toc135210078][bookmark: _Toc166076557]renderer	
Note: The entire software specified in this standard.
[bookmark: _Toc117076298][bookmark: _Toc131497318][bookmark: _Toc132126322][bookmark: _Toc132225891][bookmark: _Toc135210079][bookmark: _Toc166076558]renderer pipeline	
Note: The collection of Stages, which sequentially perform audio and metadata processing.
[bookmark: _Toc117076299][bookmark: _Toc131497319][bookmark: _Toc132126323][bookmark: _Toc132225892][bookmark: _Toc135210080][bookmark: _Toc166076559]rendering workflow	
Note: The control and multithreading of the Renderer Pipeline and the Spatializer.
[bookmark: _Toc117076300][bookmark: _Toc131497320][bookmark: _Toc132126324][bookmark: _Toc132225893][bookmark: _Toc135210081][bookmark: _Toc166076560]render item	
Note: Any audio element in the Renderer pipeline. Abbreviated with RI.
[bookmark: _Toc117076301][bookmark: _Toc131497321][bookmark: _Toc132126325][bookmark: _Toc132225894][bookmark: _Toc135210082][bookmark: _Toc166076561]RI type	
Note: RI have an associated type, denoting their relevance for the pipeline stages. 
[bookmark: _Toc117076302][bookmark: _Toc131497322][bookmark: _Toc132126326][bookmark: _Toc132225895][bookmark: _Toc135210083][bookmark: _Toc166076562]scene	
Note: The Scene is the aggregate of all entities that represent the acoustic events of a virtual environment modeled in the renderer through metadata. 
[bookmark: _Toc117076303][bookmark: _Toc131497323][bookmark: _Toc132126327][bookmark: _Toc132225896][bookmark: _Toc135210084][bookmark: _Toc166076563]scene controller	
Note: The Renderer processing block that holds and updates the Scene State.
[bookmark: _Toc117076304][bookmark: _Toc131497324][bookmark: _Toc132126328][bookmark: _Toc132225897][bookmark: _Toc135210085][bookmark: _Toc166076564]scene object	
Note: Any entity in the scene (geometry, audio element, listener).
[bookmark: _Toc117076305][bookmark: _Toc131497325][bookmark: _Toc132126329][bookmark: _Toc132225898][bookmark: _Toc135210086][bookmark: _Toc166076565]scene state	
Note: The Scene State reflects the current state of all 6DoF metadata of the scene.
[bookmark: _Toc117076306][bookmark: _Toc131497326][bookmark: _Toc132126330][bookmark: _Toc132225899][bookmark: _Toc135210087][bookmark: _Toc166076566]secondary ray	
Note: Auxiliary rays used to refine the results based on casting the Primary Rays, the results of casting Secondary Rays are aggregated and stored under the respective primary ray IDs.
[bookmark: _Toc117076307][bookmark: _Toc131497327][bookmark: _Toc132126331][bookmark: _Toc132225900][bookmark: _Toc135210088][bookmark: _Toc166076567]secondary RI	
Note: RI representing additional aspects of another RI, called its primary RI (e.g. mirror sources for modelling early reflections, sources at diffracting edges for modelling diffraction, extended sources corresponding to ray bundles having the same occlusion material lists).
[bookmark: _Toc117076308][bookmark: _Toc131497328][bookmark: _Toc132126332][bookmark: _Toc132225901][bookmark: _Toc135210089][bookmark: _Toc166076568]source-centric format
An audio format for representing an audio element that is rendered such that all direct sound from the audio element appears to radiate from a bounded region in space that does not include the listener.
[bookmark: _Toc117076309][bookmark: _Toc131497329][bookmark: _Toc132126333][bookmark: _Toc132225902][bookmark: _Toc135210090][bookmark: _Toc166076569]spatializer	
Note: A special processing block that terminates the Renderer Pipeline and produces a final multi-channel output signal for a specific playback method (e.g. headphones or loudspeakers).
[bookmark: _Toc117076310][bookmark: _Toc131497330][bookmark: _Toc132126334][bookmark: _Toc132225903][bookmark: _Toc135210091][bookmark: _Toc166076570]spatially-heterogeneous audio element
An audio element which has an extent and a source signal with more than one channel.
[bookmark: _Toc117076311][bookmark: _Toc131497331][bookmark: _Toc132126335][bookmark: _Toc132225904][bookmark: _Toc135210092][bookmark: _Toc166076571]stage	
Note: A processing block in the Renderer Pipeline that addresses a dedicated rendering aspect.
[bookmark: _Toc117076312][bookmark: _Toc131497332][bookmark: _Toc132126336][bookmark: _Toc132225905][bookmark: _Toc135210093][bookmark: _Toc166076572]teleport	
Note: Instant change of listener position triggered by user interaction within VR environment.
[bookmark: _Toc117076313][bookmark: _Toc131497333][bookmark: _Toc132126337][bookmark: _Toc132225906][bookmark: _Toc135210094][bookmark: _Toc166076573]timed scene update	
Note: A scene update executed by the renderer once at a fixed, predefined time.
[bookmark: _Toc117076314][bookmark: _Toc131497334][bookmark: _Toc132126338][bookmark: _Toc132225907][bookmark: _Toc135210095][bookmark: _Toc166076574]triggered scene update
Note: A scene update triggered manually from an external entity and executed by the renderer immediately after receiving the trigger.
[bookmark: _Toc117076315][bookmark: _Toc131497335][bookmark: _Toc132126339][bookmark: _Toc132225908][bookmark: _Toc135210096][bookmark: _Toc166076575]user	
Note: The listener whose position is input to the render. 
[bookmark: _Toc117076316][bookmark: _Toc131497336][bookmark: _Toc132126340][bookmark: _Toc132225909][bookmark: _Toc135210097][bookmark: _Toc166076576]voxel
Note: The geometry element defining a volume on a regular three-dimensional grid.
[bookmark: _Toc361740874][bookmark: _Toc394389715][bookmark: _Toc402950146][bookmark: _Toc415014031][bookmark: _Toc419889697][bookmark: _Toc437860796][bookmark: _Toc438629734][bookmark: _Toc497148958][bookmark: _Toc517062405][bookmark: _Toc194918907][bookmark: _Toc368312622][bookmark: _Toc509230093][bookmark: _Toc515477873][bookmark: _Toc77175788][bookmark: _Toc117076317][bookmark: _Toc131497337][bookmark: _Toc132126341][bookmark: _Toc132225910][bookmark: _Toc135210098][bookmark: _Toc166076577]Mnemonics
The following mnemonics are defined to describe the different data types used in the coded bitstream payload.
bslbf	Bit string, left bit first, where “left” is the order in which bit strings are written in ISO/IEC 14496 (all parts). Bit strings are written as a string of 1s and 0s within single quote marks, for example '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
uimsbf	Unsigned integer, most significant bit first.
vlclbf	Variable length code, left bit first, where “left” refers to the order in which the variable length codes are written.
tcimsbf 	Two’s complement integer, most significant (sign) bit first.
New mnemonics have been added. These mnemonics are temporary and only used during the development period of the MPEG-I bitstream. The intent is to remove these in the future. The following mnemonics have been added. 
cstring	A C style string; a sequence of ascii characters, in bytes, terminated with a null byte (0x00).
float	An IEEE 754 floating single point precision number.
[bookmark: _Toc96955427][bookmark: _Toc117076318][bookmark: _Toc131497338][bookmark: _Toc132126342][bookmark: _Toc132225911][bookmark: _Toc135210099][bookmark: _Toc166076578]	Overview
[bookmark: _Toc509230094][bookmark: _Toc515477874][bookmark: _Toc94518073][bookmark: _Toc117076319][bookmark: _Toc131497339][bookmark: _Toc132126343][bookmark: _Toc132225912][bookmark: _Toc135210100][bookmark: _Toc166076579]Technical overview
[bookmark: _Toc353798250]The Renderer operates with a global sampling frequency of 48 kHz. Input PCM audio data with other sampling frequencies must be resampled to 48 kHz before processing. A block diagram of the MPEG-I architecture overview is shown in Figure 2. The overview illustrates how the Renderer is connected to external units like MPEG-H 3DA coded Audio Element bitstreams, the metadata MPEG-I bitstream and other interfaces. The MPEG-H 3DA coded Audio Elements are decoded by the MPEG-H 3DA Decoder. All Audio Elements (channels, objects and HOA) that are to be input into the renderer have a counterpart in the MPEG-I Immersive audio standard, namely so-called source types (see Figure 1): Objects are represented as object sources, equipped with many VR/AR specific properties. Channels are channel sources that are played back in the virtual world through a virtual loudspeaker setup. Finally, HOA sources can be rendered into the virtual world in two different ways: rendering one or more HOA sources individually with three degrees of freedom (user orientation) or rendering one or more HOA sources as a group with six degrees of freedom. For all three paradigms, encoded waveforms can preferably be carried over from MPEG-H 3D audio to MPEG-I Immersive audio directly without the need for any re-encoding and associated loss in quality. 
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[bookmark: _Ref164844442] Figure 1 — Correspondences in MPEG-H Audio and MPEG-I Immersive Audio.
The decoded audio is subsequently rendered together with the MPEG-I bitstream, which is described in clause 5. The MPEG-I bitstream carries the Audio Scene description and other metadata used by the Renderer. In addition, the Renderer has interfaces are available to access consumption environment information, scene updates during playback, user interactions and user position information. Following the MPEG-I architecture overview, a more detailed description of the Renderer and the Renderer pipeline is presented.

[image: ]
[bookmark: _Ref100396624] Figure 2 —MPEG-I architecture overview
The Renderer allows real-time auralization of complex 6DoF audio scenes where the user may directly interact with entities in the scene. To achieve this, the multithreaded software architecture is divided into several workflows and components.  A block diagram with all Renderer components is shown in Figure 3. The Renderer supports the rendering of VR as well as AR scenes. In case of VR and AR scenes, the rendering metadata and the Audio Scene information is obtained from the bitstream. In case of AR scenes, the listener space information is obtained as LSDF file (see B.3) during playback. The components in the diagram are briefly described in the following. A complete description of the rendering framework and processing is given in clause 6.4.
[bookmark: _Ref89961755][image: ]
[bookmark: _Ref97649559]Figure 3 — MPEG-I immersive audio renderer components overview 
The control workflow is the entry point of the Renderer and responsible for the interfaces with external systems and components. 
Its main functionality is embedded in the scene controller component, which coordinates the state of all entities in the 6DoF scene and implements the interactive interfaces of the Renderer. The Scene supports external updates of modifiable properties of scene objects, as well as reading and parsing the LSDF (Listener Space Description Format, see B.3) files to complete the information in the bitstream. The Scene also keeps track of time- or location-dependent properties of scene objects (e.g. interpolated locations or listener proximity conditions).
The scene state always reflects the current state of all scene objects, including audio elements, transforms/anchors and geometry. Other components of the Renderer can subscribe to changes in the Scene State. Before rendering starts, all objects in the entire scene are created and their metadata is updated to the state that reflects the desired scene configuration at start of playback.
The stream manager provides a unified interface for renderer components to access audio streams associated with an audio element in the Scene State. Audio streams are input to the Render as PCM float samples. The source of an audio stream may for example be decoded MPEG-H audio streams or locally captured audio.
The clock provides an interface for renderer components to get the current scene time in seconds. The Clock input may for example be a synchronization signal from other subsystems or the internal wall clock of the renderer. The Clock input to the Scene is not related to audio synchronization.
The rendering workflow is producing PCM float audio output signals. It is separated from the Control Workflow and only the Scene State (for communicating any changes in the 6DoF scene) and the Stream Manager (for providing input audio streams) are accessible from the Rendering Workflow for communication between both workflows.
The renderer pipeline auralizes the input audio streams provided by the Stream Manager based on the current Scene State. The rendering is organized in a sequential pipeline, such that individual renderer stages implement independent perceptual effects and make use of the processing of preceding and subsequent stages.
The spatializer terminates the Renderer Pipeline and auralizes the output of the Renderer Stages to a single output audio stream suitable for the desired playback method (e.g. binaural or adaptive loudspeaker rendering).
The limiter provides clipping protection for the auralized output signal.
Figure 4 illustrates the Renderer pipeline where each box represents a separate Renderer Stage. The Renderer stages are instantiated during Renderer initialization. Renderer Stages are computed in the sequence presented in the figure.
[image: A diagram of a system
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[bookmark: _Ref97735826]Figure 4 — Renderer pipeline

[bookmark: _Toc117076320][bookmark: _Toc131497340][bookmark: _Toc132126344][bookmark: _Toc132225913][bookmark: _Toc135210101][bookmark: _Toc166076580]	MPEG-I Immersive Audio profiles and levels
[bookmark: _Toc117076321][bookmark: _Toc131497341][bookmark: _Toc132126345][bookmark: _Toc132225914][bookmark: _Toc135210102][bookmark: _Toc166076581]General
[TO BE AMENDED]
[bookmark: _Toc117076322][bookmark: _Toc131497342][bookmark: _Toc132126346][bookmark: _Toc132225915][bookmark: _Toc135210103][bookmark: _Toc166076582]Profiles
[TO BE AMENDED]
[bookmark: _Ref100769482][bookmark: _Toc117076323][bookmark: _Toc131497343][bookmark: _Toc132126347][bookmark: _Toc132225916][bookmark: _Toc135210104][bookmark: _Toc166076583]MPEG-I Immersive Audio transport
[bookmark: _Toc117076324][bookmark: _Toc131497344][bookmark: _Toc132126348][bookmark: _Toc132225917][bookmark: _Toc135210105][bookmark: _Toc166076584]Overview
MPEG-I Audio introduces three additional MHASPacketType values and associated MHASPacketPayload for the existing MPEG-H 3DA MHAS stream to transport the data necessary for 6DoF rendering of MPEG-H audio content (channels, objects, HOA signals). The MHASPacketLabel of these packets is used to connect MPEG-H 3DA Audio content to its associated 6DoF scene data. MHAS Packets of the MHASPacketType PACTYP_MPEGI_CFG, PACTYP_MPEGI_UPD and PACTYP_MPEGI_PLD embed MPEG-I 6DoF scene data, mpegiSceneConfig, mpegiSceneUpdate and mpegiScenePayload in the MHASPacketPayload().
The mpegiSceneConfig packet is a lightweight packet for the MPEG-I bitstream. It provides all relevant information for the renderer to configure itself for initialization. It provides a mapping between identifiers for all entities within a scene such that the renderer can translate integer identifiers transmitted from the Update and Payload packets into human readable string identifiers. In scenarios where side-channels are present, the config packet shall detail the side-channel locations and what Payload packets are available via said side-channels.
The mpegiSceneUpdate packet communicates L1, L2 (i.e. changes to the entities in a scene which are known when the stream starts), and L3 updates (i.e. changes to the entities in a scene that are unknown when the stream starts). 
The mpegiScenePayload packet is the main container for all “bulk” metadata in the MPEG-I Audio bitstream. It can contain, for example, Directivities, Geometries and other metadata for individual audio effects like Reverberation, Early Reflections or Diffraction. The distribution of payloads into Scene Payload packets can be organized by the encoder, taking into the account when and where the metadata is needed by the renderer, which metadata is essential for rendering, as well as maximum size of the packet, etc. In a server-client scenario, payloads can be loaded via a separate channel. For pure broadcast scenarios, Payload sizes can be restricted to save bandwidth. 
In a server-client application, the MHASPacketType PACTYP_MPEGI_CFG shall be interleaved periodically with the MHAS audio packets in the broadcast stream, but the large PACTYP_MPEGI_PLD packets should be sent on request only.
To sync to the broadcast stream an MHAS sync packet PACTYP_SYNC shall be inserted before each mpegiSceneConfig() packet. The MPEG-I scene payload can be packaged into one or more mpegiScenePayload() packets. Fine granular interleaving between MPEG-I metadata and audio content can be achieved by distributing MPEG-I metadata into Interleaving MPEG-I metadata over multiple payload packets.
[bookmark: _Toc117076325][bookmark: _Toc131497345][bookmark: _Toc132126349][bookmark: _Toc132225918][bookmark: _Toc135210106][bookmark: _Toc166076585]Definitions
[bookmark: _Toc117076326][bookmark: _Toc131497346][bookmark: _Toc132126350][bookmark: _Toc132225919][bookmark: _Toc135210107][bookmark: _Toc166076586]Syntax
General
The bitstream syntax is based on ISO/IEC ISO/IEC 23008-3 (MPEG-H Part 3), Clause 5. Modifications and amendments to the existing bitstream syntax are listed below.  
In environments that require byte alignment, MPEG-I Immersive audio configuration elements or payload elements that are not an integer number of bytes in length are padded at the end to achieve an integer byte count. This is indicated by the function ByteAlign()	.
The payloads in mpegiScenePayload can contain more bits than what the corresponding syntax defines. These can be bits beyond byte alignment, representing future extensions of payloads. Consequently, the implementation shall ignore any additional bits until payloadLength bytes have been parsed for any payload, as indicated by discardBits, before continuing with the next payload.
The syntax description contains so-called support elements. These are functions that are called to read and decode the raw bitstream into internal renderer parameters. Support elements are defined in 6.2.15.
noOfBits denotes the No. of bits used for transmission of a given parameter as noted in the respective bitstream syntax table containing said parameter.
[bookmark: _Toc509230260][bookmark: _Toc515478040][bookmark: _Toc77175956]MHAS syntax
Audio stream
[bookmark: _Ref100915792]Table 1 — Syntax of mpegiAudioStream ()
	Syntax
	No. of bits
	Mnemonic

	mpegiAudioStream()
	
	

	{
	
	

		bitstreamIdentifier;
	48
	cstring

		bitstreamVersion;
	16
	uimsbf

	
	
	

		while (bitsAvailable() != 0) {
	
	

			mpegiAudioStreamPacket();
	
	

		}
	
	

	}
	
	



Audio stream packet
Table 2 — Syntax of mpegiAudioStreamPacket()
	Syntax
	No. of bits
	Mnemonic

	mpegiAudioStreamPacket()
	
	

	{
	
	

		MHASPacketType;
	11
	uimsbf

		MHASPacketLabel;
	2
	uimsbf

		MHASPacketLength;
	59
	uimsbf

		
	
	

		switch (MHASPacketType) {
	
	

			case PACTYP_MPEGI_CFG: {
	
	

				mpegiSceneConfig();
	
	

				break;
	
	

			}
	
	

			case PACTYP_MPEGI_UPD: {
	
	

				mpegiSceneUpdate();
	
	

				break;
	
	

			}
	
	

			case PACTYP_MPEGI_PLD: {
	
	

				mpegiScenePayload();
	
	

				break;
	
	

			}
	
	

		}
	
	

		ByteAlign();
	
	

	}
	
	



Scene configuration
[bookmark: _Hlk132123361]Table 3 — Syntax of mpegiSceneConfig ()
	Syntax
	No. of bits
	Mnemonic

	mpegiSceneConfig()
	
	

	{
	
	

		entityCount = GetCountOrIndex();
	
	

		for (int i = 0; i < entityCount; i++) {
	
	

			integerId = GetID();
	
	

			stringId;
	8..*
	cstring

		}
	
	

	
	
	

		delayBufferSize;
	3
	uimsbf

		gainCullingThreshold;
	3
	uimsbf

		enableCullingReflectionRI
	1
	bslbf

	
	
	

		overrideSpeedOfSound;
	1
	bslbf

		if (overrideSpeedOfSound) {
	
	

			speedOfSound;
	13
	uimsbf

		}
	
	

		overrideTemperature;
	1
	bslbf

		if (overrideTemperature) {
	
	

			temperature;
	5
	uimsbf

		}
	
	

		overrideHumidity;
	1
	bslbf

		if (overrideHumidity) {
	
	

			humidity;
	4
	uimsbf

		}
	
	

		isSmallScene;
	1
	bslbf

		FreqGridData()
	
	

		hasEarlyTuningGain;
	1
	bslbf

		if (hasEarlyTuningGain) {
	
	

			earlyTuningGain;
	6
	uimsbf

		}
	
	

		useLowComplexityER;
	1
	bslbf

		hasHeadphoneEQ;
	1
	bslbf

		if (hasHeadphoneEQ){
	
	

			readHeadphoneEQ();
	
	

		}
	
	

	
	
	

		hasLoudnessCullingThreshold;
	1
	bslbf

		if(hasLoudnessCullingThreshold) {
	
	

			loudnessCullingThreshold;
	6
	Uimsbf

		}
	
	

		hasConsolidationThreshold;
	1
	bslbf

		if (hasConsolidationThreshold) {
	
	

			consolidationThreshold;
	5
	uimsbf

		}
	
	

		enableLocallyCapturedAudio
	1
	bslbf

		If (enableLocallyCapturedAudio) {
	
	

			overrideListenerVoiceDirectivity;
	1
	bslbf

			If (overrideListenerVoiceDirectivity) {
	
	

				listenerVoiceDirectivityId = GetID();
	
	

			}
	
	

		}
	
	

	}
	
	



Table 4 Syntax of FreqGridData()
	Syntax
	No. of bits
	Mnemonic

	FreqGridData ()
	
	

	{
	
	

		fgdNrGrids = GetCountOrIndex();
	
	

		for ( g = 0:fgdNrGrids – 1)
	
	

		{
	
	

			fgdMethod;
	2
	uimsbf

			if (fgdMethod == 'Individual frequencies')
	
	

			{
	
	

				fgdNrBands[g] = GetCountOrIndex();
	
	

				for ( b = 0:fgdNrBands[g] – 1)
	
	

				{ 
	
	

					fgdCenterFreq[g][b] = GetFrequency();
	
	

				}
	
	

			} elseif (fgdMethod == 'Start-Hop-Amount') 
	
	

			{
	
	

				fgdNrBands[g] = GetCountOrIndex();
	
	

				fgdCenterFreq[g][0] = GetFrequency();
	
	

				frequencyHop = LUT(frequencyHopCode);
	var
	vlclbf

				for ( b = 1:fgdNrBands[g] – 1)
	
	

				{
	
	

					fgdCenterFreq[g][b] = 
	
	

							fgdCenterFreq[g][b - 1] * frequencyHop;
	
	

				}
	
	

			} elseif (fgdMethod == 'Default banding')
	
	

			{
	
	

				fgdDefaultGrid;
	4
	uimsbf

				if (fgdIsSubGrid)
	1
	bslbf

				{
	
	

					fgdDefaultGridOffset;
	3
	uimsbf

					fgdDefaultGridNrBands;
	6
	uimsbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Ref161749567][bookmark: _Ref161749527]Table 5 Syntax of readHeadphoneEQ()
	Syntax
	No. of bits
	Mnemonic

	readHeadphoneEQ ()
	
	

	{
	
	

		specType;
	3
	uimsbf

		if (specType == “freqgain”) {
	
	

	[bookmark: _Hlk161745688]		freqGridIdx = getCountOrIndex();
	
	

			nrBands = fgdNrBands[freqGridIdx];
	
	

			for (int i = 0; i < nrBands; i++)  {
	
	

				gains[i] = GetGain();
	
	

			}
	
	

		} elseif (specType == “parametricfilters”) {
	
	

			freqGridIdx = getCountOrIndex();
	
	

			nrBands = fgdNrBands[freqGridIdx];
	
	

			for (int i = 0; i < nrBands; i++) {
	
	

				filterType[i];
	2
	uimsbf

				gains[i] = GetGain();
	
	

				q[i];
	7
	uimsbf

			}
	
	

		} elseif (specType == “preset”) {
	
	

			preset;
	7
	uimsbf

		}
	
	

	}
	
	



[bookmark: _Ref108345008]Scene update
Table 6 — Syntax of mpegiSceneUpdate()
	Syntax
	No. of bits
	Mnemonic

	mpegiSceneUpdate()
	
	

	{
	
	

		updatesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < updatesCount; i++) {
	
	

			modificationsCount = GetCountOrIndex();
	
	

	
	
	

			for (int j = 0; j < modificationsCount; j++) {
	
	

				targetId = GetID();
	
	

	
	
	

				hasDuration;
	1
	bslbf

				if (hasDuration) {
	
	

					Duration = GetDuration(isLongRangeMode=True);
	
	

				}
	
	

	
	
	

				changesCount;
	5
	uimsbf

				for (int k = 0; k < changesCount; k++) {
	
	

					targetAttribute;
	6
	uimsbf

					switch (targetAttribute) {
	
	

					case 0: {
	
	

						for (int l = 0; l < 3; l++) {
	
	

							isPositionParameterVariable;
	1
	bslbf

							if (isPositionParameterVariable) {
	
	

								positionParameterVariableIndex;
	4
	uimsbf

							}
	
	

							else {
	
	

								newPositionValue =
                                                                           GetDistance(isSmallScene);
							isNegative;
							if (isNegative){
								newPositionValue =
                                                                             -newPositionValue
							}
	

1
	

bslbf

							}
	
	

						}
	
	

						break;
	
	

					}
	
	

					case 1: {
	
	

						for (int l = 0; l < 3; l++) {
	
	

							isOrientationParameterVariable;
	1
	bslbf

							if (isOrientationParameterVariable) {
	
	

								orientationParameterVariableIndex;
	4
	uimsbf

							}
	
	

							else {
	
	

								newOrientationValue;
	32
	float

							}
	
	

						break;
	
	

					}
	
	

					case 2: {
	
	

						newCoordSpaceValue;
	1
	bslbf

						break;
	
	

					}	
	
	

					case 3: {
	
	

						newActiveValue;
	1
	bslbf

						break
	
	

					}
	
	

					case 4: {
	
	

						isGainDbParameterVariable;
	1
	bslbf

						if (isGainDbParameterVariable){
	
	

							gainDbParameterVariableIndex;
	4
	uimsbf

						}
	
	

						else {
	
	

							newGainValue = GetGain(isHiPrecGain=True)
	
	

						}
	
	

						break;
	
	

					}
	
	

					case 5: {
	
	

						newSignalId = GetID();
	
	

						break;
	
	

					}
	
	

					case 6: {
	
	

						newExtentId = GetID();
	
	

						break;
	
	

					}
	
	

					case 7: {
	
	

						newDirectivityId = GetID();
	
	

						break;
	
	

					}
	
	

					case 8: {
	
	

						newDirectivenessValue;
	8
	uimsbf

						break;
	
	

					}
	
	

					case 9: {
	
	

						newPlayValue;
	1
	bslbf

						break;
	
	

					}
	
	

					case 10:{
	
	

						newGroupId = GetID();
	
	

						break;
	
	

					}
	
	

					case 11: {
	
	

						newRegionId = GetID();
	
	

						break;
	
	

					}
	
	

					case 12: {
	
	

						newSizeXValue = GetDistance(isSmallScene);
	
	

						newSizeYValue = GetDistance(isSmallScene);
	
	

						newSizeZValue = GetDistance(isSmallScene);
	
	

						break;
	
	

					}
	
	

					case 13: (
	
	

						isSpeedParameterVariable;
	1
	bslbf

						if (isSpeedParameterVariable){
	
	

							speedParameterVariableIndex;
	4
	uimsbf

						}
	
	

						else {
	
	

							newSpeedValue;
	10
	uimsbf

						}
	
	

						break;
	
	

					}
	
	

					case 14: {
	
	

						newMaterialId = GetID();
	
	

						break;
	
	

					}
	
	

					case 15: {
	
	

						newReverbGainDbValue =
	
	

						GetGain(isHiPrecGain=True);
	
	

						break;
	
	

					}
	
	

					case 16: {
	
	

						newNoReverb;
	1
	bslbf

						break;
	
	

					}
	
	

					case 17: (
	
	

						for (int l = 0; l < 3; l++) {
	
	

							isGranParameterVariable;
	1
	bslbf

							if (isGranParameterVariable) {
	
	

								granPosParameterVariableIndex;
	4
	uimsbf

							}
	
	

							else {
	
	

	[bookmark: _Hlk161651136]							newGranPosValue;
	16
	uimsbf

							}
	
	

						}
	
	

						break;
	
	

					case 18: {
	
	

						isGranGrpNoParameterVariable;
	1
	bslbf

						if (isGranGrpNoParameterVariable){
	
	

							granGrpNoParameterVariableIndex;
	4
	uimsbf

						}
	
	

						else {
	
	

							newGranGrpNoValue;
					}
	8
	uimsbf

						isGranGrpProbParameterVariable;
	1
	bslbf

						if (isGranGrpProbParameterVariable) {
	
	

							granGrpNoParameterVariableIndex;
	4
	uimsbf

						}
	
	

						else {
	
	

							newGranGrpProbValue;
	16
	uimsbf

						}
	
	

						break;
	
	

					}
	
	

					case 19: {
	
	

						isLoudnessDbParameterVariable;
	1
	bslbf

						if(isLoudnessDbParameterVariable) {
	
	

							loudnessDbVariableIndex
	4
	uimsbf

						} else {
	
	

							 newLoudnessDbValue;
	32
	float

						}
	
	

					}
	
	

				}
	
	

			}
	
	

			updateType;
	2
	uimsbf

			switch (updateType) {
	
	

			case 0: {
	
	

				timedUpdateHasId;
	1
	bslbf

				if (timedUpdateHasId) {
	
	

					timedUpdateId = GetID();
	
	

				}
	
	

				timedUpdatedHasIndex;
	1
	bslbf

				if (timedUpdateHasIndex) {
	
	

					timedUpdateIndex = GetCountOrIndex();
	
	

				}
	
	

				Time = GetDuration(isLongRangeMode=True);
	
	

				break;
	
	

			}
	
	

			case 1: {
	
	

				conditionalUpdateHasId;
	1
	bslbf

				if (conditionalupdateHasId) {
	
	

					conditionalUpdateId = GetID();
	
	

				}
	
	

				conditionalHasIndex;
	1
	bslbf

				if (conditionalHasIndex) {
	
	

					conditionalUpdateIndex = GetCountOrIndex();
	
	

				}
	
	

				fireOn;
	1
	bslbf

				conditionalHasDelay;
	1
	bslbf

				if (conditionalHasDelay) {
	
	

					conditionalDelay; = GetDuration(isLongRangeMode=True)
	
	

				}
	
	

				conditionalUpdateId = GetID();
	
	

				break;
	
	

			}
	
	

			case 2: {
	
	

				triggeredUpdateId = GetID();
	
	

				triggeredUpdateIndex; = GetCountOrIndex()
	
	

				break;
	
	

			}
	
	

			case 3: {
	
	

				dynamicUpdateId = GetID();
	
	

				dynamicUpdateIndex = GetCountOrIndex();
	
	

				break;
	
	

			}
	
	

		}
	
	

	}
	
	




[bookmark: _Ref100937025]Scene payload
Table 7 — Syntax of mpegiScenePayload()
	Syntax
	No. of bits
	Mnemonic

	mpegiScenePayload()
	
	

	{
	
	

		payloadId;
	16
	uimsbf

		payloadCount;
	16
	uimsbf

	
	
	

		for (int i = 0; i < payloadCount; i++) {
	
	

			payloadType;
	11
	uimsbf

			payloadLabel;
	2
	uimsbf

			payloadLength;
	59
	uimsbf

	
	
	

			switch (payloadType) {
	
	

				case PLD_DIRECTIVITY: {
	
	

					bitsRead = payloadDirectivity();
	
	

					break;
	
	

				}
	
	

				case PLD_DIFFRACTION: {
	
	

					bitsRead = payloadDiffraction();
	
	

					break;
	
	

				}
	
	

				case PLD_EARLY_REFLECTIONS: {
	
	

					bitsRead = payloadEarlyReflections();
	
	

					break;
	
	

				}
	
	

				case PLD_PORTAL: {
	
	

					bitsRead = payloadPortal();
	
	

					break;
	
	

				}
	
	

				case PLD_REVERB: {
	
	

					bitsRead = payloadReverb();
	
	

					break;
	
	

				}
	
	

				case PLD_AUDIO_PLUS: {
	
	

					bitsRead = payloadAudioPlus();
	
	

					break;
	
	

				}
	
	

				case PLD_DISPERSION: {
	
	

					bitsRead = payloadDispersion();
	
	

					break;
	
	

				}
	
	

				case PLD_VOX_DATA: {
	
	

					bitsRead = payloadVoxData();
	
	

					break;
	
	

				}
	
	

				case PLD_AIRFLOW: {
	
	

					bitsRead = payloadAirflow();
	
	

					break;
	
	

				}
case PLD_RASTERMAP: {
bitsRead = payloadRasterMap();
break;
}
	
	

				case PLD_SCENE: {
	
	

					bitsRead = payloadScene();
	
	

					break;
	
	

				}
	
	

				case PLD_GRANULAR: {
	
	

					bitsRead = payloadGranular();
	
	

					break;
	
	

				}
	
	

				default: {
	
	

					bitsRead = 0;
	
	

					break;
	
	

				}
	
	

			}
	
	

			// Byte-alignment and potential extensions
	
	

			nDiscardBits = (payloadLength << 3) – bitsRead;
	
	

			discardBits;
	nDiscardBits
	

		}
	
	

	}
	
	



Semantics
bitstreamIdentifier	This integer represents “MPEGI” in the form of a C string. It is used for development purposes to verify MPEG-I bitstreams. This is a prevention mechanism for reading other files by accident.
bitstreamVersion	This integer represents the version number for this bitstream. The integer changes with alongside the syntax to ensure that the renderer can correctly decode this bitstream. It is primarily used for development purposes whilst the syntax is in flux.
MHASPacketLabel	This element provides an indication of which packets belong together. For example, with using different labels, different MPEG-H 3D audio configuration structures may be assigned to particular sequences of MPEG-H 3D audio access units.
MHASPacketLength	This element indicates the length of the packet in bytes.
Table 8 — Value of MHASPacketType
	MHASPacketType
	Value

	PACTYP_MPEGI_CFG
	23

	PACTYP_MPEGI_UPD
	24

	PACTYP_ MPEGI_PLD
	25



mpegiSceneConfig ()	MPEG-I data structure for configuration
mpegiSceneUpdate ()	MPEG-I data structure for update
mpegiScenePayload ()	MPEG-I data structure for parameter payload 
payloadId	This integer is the unique identifier of the payload packet. This is to distinguish it from other payload packets.
payloadCount	This integer indicates how many payloads are currently present in this packet.
payloadType	This integer denotes the type of the current payload.
Payload elements listed in Table 9 are defined in 6.2.3.
[bookmark: _Ref100064840]Table 9 — Value of payloadType
	payloadType
	Value

	PLD_DIRECTIVITY
	6

	PLD_DIFFRACTION
	10

	PLD_EARLY_REFLECTIONS
	11

	PLD_PORTAL
	12

	PLD_REVERB
	14

	PLD_AUDIO_PLUS
	15

	PLD_DISPERSION
	17

	PLD_VOX_DATA
	18

	PLD_AIRFLOW
	19

	PLD_RASTERMAP
	20

	PLD_GRANULAR
	22

	PLD_SCENE
	31



payloadLabel	This element is used to group multiple payloads together.
payloadLength	This element is the length of the payload in bytes.
bitsRead	Indicates the number of bits read by a payload element.
nDiscardBits	Indicates the number of bits to be read and discarded after a payload element.
discardBits	Indicates the bits to be read and discarded after a payload element.
entityCount	This value represents the number of entities that exist with identifiers.
integerId	This value represents the newly derived integer from the string identifier. All integerId values shall be unique.
stringId	This string is the original string found from the Encoder Input Format for this entity. The intention is to map strings to integers so that the rest of the bitstream can use integers as ids to the bitstream size. All stringId values shall be unique.
delayBufferSize	This element sets the size of the propagation delay buffers. The size must be large enough to handle the largest propagation delay that can occur in the scene.
[bookmark: _Ref109391517]Table 10 — Value of delayBufferSize
	Value
	Buffer size (in samples)

	0
	10000

	1
	20000

	2
	30000

	3
	50000

	4
	100000

	5
	200000

	6
	500000

	7
	1000000



gainCullingThreshold	This element sets a threshold at which a render item with a large attenuation (e.g., due to large distance attenuation) is deactivated. The deactivation threshold factor  can be calculated from the value  with  With  ranging between 0 and 7, this leads to a deactivation threshold between -100 dB and -30 dB in increments of 10 dB.
enableCullingReflectionRI	A boolean flag that enables or disables the Reflection RI culling. This flag is recommended to be set false if the renderer is running in the Voxel mode.
overrideSpeedOfSound	This flag indicates whether the default speed of sound (340 m/s), used for the calculation of propagation delay, is overridden for this scene.
speedOfSound	This value sets the speed of sound.
overrideTemperature	This flag indicates whether the default temperature (20°C), used for the calculation of medium attenuation, is overridden for this scene.
temperature	This value sets the temperature. The temperature in °C is calculated from the value  with .
overrideHumidity	This flag indicates whether the default humidity (40%), used for the calculation of medium attenuation, is overridden for this scene.
humidity	This value sets the humidity. The humidity in % is calculated from the value  with .
isSmallScene	This flag indicates whether the scene is considered a small scene, where no individual dimension is greater than 100m.
fgdMethod	Indicates the method with which the frequency grid is coded.
Table 11 – Value of fgdMethod.
	bits
	Meaning

	0b00
	Individual frequencies

	0b01
	Start-Hop-Amount

	0b10
	Default banding

	0b11
	Reserved



fgdCenterFreq	Indicates the center frequency in Hz, for each band in each frequency grid.
frequencyHopCode	Code indicating the hop-factor for the frequency banding.
Table 12 – Value of frequencyHopCode.
	bits
	frequencyHopCode

	0b0010
	2(1/12)

	0b0011
	2(1/6)

	0b0000
	2(1/4)

	0b01
	2(1/3)

	0b0001
	2(1/2)

	0b11
	21

	0b10
	22



fgdDefaultGrid	Field indicating which default grid to use as frequency banding.
fgdIsSubGrid	Flag indicating whether further data is present indicating a subset of the default grids.
fgdDefaultGridOffset	Indicates the (0-based) index of the first relevant frequency of the default grid that is used.
fgdDefaultGridNrBands	Indicates the number of bands used from the default grid.
		fgdNrBands[g] = fgdDefaultGridNrBands + 1.
Table 13 – Value of fgdDefaultGrid.
	bits
	fgdCenterFreq[g] in Hz
	fgdNrBands[g]
	Description

	0b0000
	{31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000}
	10
	Octave - ISO

	0b0001
	{25, 50, 100, 200, 400, 800, 1600, 3150, 6300, 12500}
	10
	Octave alternative

	0b0010
	{20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 
400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150,
4000, 5000, 6300, 8000, 10000, 12500, 16000, 20000}
	31
	1/3 Octave – ISO


	0b0011
	{25, 100, 400, 1600, 6300}
	5
	2 Octave – ISO

	0b0100
	{125, 250, 500, 1000, 2000, 4000}
	6
	Octave subset

	0b0101
	{25, 250, 2500}
	3
	

	0b0110
	{27, 56, 89, 126, 168, 214, 265, 323, 387, 459, 539, 628, 727,
839, 963, 1101,1256, 1429, 1621, 1836, 2077, 2345, 2644,
2978, 3351, 3767, 4232, 4750, 5329, 5975, 6697, 7502, 8401,
9405, 10525, 11775, 13171, 14729, 16468, 18410, 20577}
	41
	1 ERB scale

	0b0111
	{27, 89, 168, 265, 387, 539, 727, 963, 1256, 1621, 2077, 2644, 
3351, 4232, 5329, 6697, 8401, 10525, 13171, 16468, 20577}
	21
	2 ERB scale

	0b1000
	{50, 150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370,
1600, 1850, 2150, 2150, 2500, 2900, 3400, 4000, 4800,
5800, 7000, 8500, 10500, 13500}
	25
	Bark scale

	0b1001
	Reserved
	
	

	0b1010
	Reserved
	
	

	0b1011
	Reserved
	
	

	0b1100
	Reserved
	
	

	0b1101
	Reserved
	
	

	0b1110
	Reserved
	
	

	0b1111
	Reserved
	
	



hasEarlyTuningGain	Flag indicating the presence of earlyTuningGain.
earlyTuningGain	Early reflection tuning gain in 0.5dB steps starting at -21.5dB,
.
[bookmark: _Hlk158372659]useLowComplexityER	This flag indicates that the low complexity early reflection stage is used to render early reflections.

hasHeadphoneEQ	Flag indicating the presence of content creator target headphone equalization data;
specType	Integer indicating which method is used to specify the headphone equalization data.
[bookmark: _Ref161748928][bookmark: _Ref161748922]Table 14 — Value of specType
	bits
	specType

	0b000
	freqgain

	0b001
	parametricfilters

	0b010
	preset

	0b011
	Reserved

	…
	…

	0b111
	Reserved



gains	Headphone gain in decibel at specified frequency.
filterType	Integer value indicating the type of parametric filter that is specified.
[bookmark: _Ref161749160]Table 15 – Value of filterType.
	bits
	Meaning

	0b00
	Low Shelf

	0b01
	Peak

	0b10
	High Shelf

	0b11
	Reserved



q			Quantized float value representing the Q of the parametric filter, with a value between 0 and 10. To dequantize it to a floating point value, use the following equation:
	
	(1)



preset	Integer value representing the pre-defined equalization spectral data.	
[bookmark: _Ref161749125]Table 16 — Value of preset
	bits
	preset

	0b0000000
	flat

	0b0000001
	classical

	0b0000010
	club

	0b0000011
	dance

	0b0000100
	midcut

	0b0000101
	large_hall

	0b0000110
	party

	0b0000111
	pop

	0b0001000
	reggae

	0b0001001
	rock 

	0b0001010
	soft

	0b0001011
	ska

	0b0001100
	full_bass

	0b0001101
	soft_rock

	0b0001110
	full_treble

	0b0001111
	full_bass_treble

	0b0010000
	live

	0b0010001
	techno

	0b0010010
	RESERVED

	…………….
	…………

	0b1111111
	RESERVED


	

hasLoudnessCullingThreshold	Flag indicating the presence of the threshold for loudness based culling.
loudnessCullingThreshold	Loudness culling threshold [-73, -10dB]; threshold = (-73 + loudnessCullingThreshold)dB, mapping the 6 bits values of [0, 63] to the [-73, -10] range.
hasConsolidationThreshold	Flag indicating the presence of consolidationThreshold
consolidationThreshold	Value for the perceptual threshold below which render items may be consolidated. 
enableLocallyCapturedAudio	This flag indicates if the renderer should allow the inclusion of audio input local to the user into the rendered scene.
overrideListenerVoiceDirectivity	This flag indicates if the default directivity used for the Listener Voice should be overridden by one provided in the bitstream.
listenerVoiceDirectivityId	This ID corresponds to the directivity that should be used for the Listener Voice instead of the renderer default.
updatesCount	This value is the number of updates in this payload.
modificationsCount	This value is the number of modifications in this update.
targetId	This value is the unique identifier of the target entity which is being modified.
hasDuration	This flag indicates if the modification occurs over a period of time.
duration	This value is the total duration of the modification in seconds. 
changesCount	This integer represents how many value changes there are in this modification.
[bookmark: _Ref130571426]targetAttribute	This integer indicates which attribute is being modified. 
Table 17 — Value of targetAttribute
	bits
	targetAttribute

	0b000000
	POSITION

	0b000001
	ORIENTATION

	0b000010
	COORDSPACE

	0b000011
	ACTIVE

	0b000100
	GAIN

	0b000101
	SIGNAL

	0b000110
	EXTENT

	0b000111
	DIRECTIVITY

	0b001000
	DIRECTIVENESS

	0b001001
	PLAY

	0b001010
	GROUP

	0b001011
	REGION

	0b001100
	SIZE

	0b001101
	SPEED

	0b001110
	MATERIAL

	0b001111
	REVERB GAIN

	0b010000
	NO REVERB

	0b010001
	GRANULARPOS

	0b010010
	GRANULARGROUPPROB

	0b010011
	LOUDNESS

	0b010100
	RESERVED

	…………….
	…………

	0b111111
	RESERVED



isPositionParameterVariable	This flag indicates if the value is coming from the evaluation platform.
positionParameterVariableIndex	This integer is the update value channel index which is supplied from the evaluation platform.
newPositionValue	This value is the new position value in meters for the target entity.
isNegative	This flag indicates if the newPositionValue is negative.
isOrientationParameterVariable	This flag indicates if the value is coming from the evaluation platform.
orientationParameterVariableIndex	This integer is the update value channel index which is supplied from the evaluation platform.
newOrientationValue	This float is the new orientation value in degrees for the target entity.
newCoordSpaceValue	This flag is the new coordinated space value for the target entity.
Table 18 — Value of newCoordSpaceValue
	bits
	newCoordSpaceValue

	0b0
	RELATIVE

	0b1
	USER



newActiveValue	This flag de/activates the rendering of target entity.
isGainDbParameterVariable	This flag indicates if the value is coming from the evaluation platform.
gainDbParameterVariableIndex	This integer is the update value channel index which is supplied from the evaluation platform.
newGainValue	This value is the new gain value for the target entity. 
newSignalId	This value is the new unique audio stream identifier for the target entity.
newExtentId	This value is the new unique geometry identifier for the extent attribute of the target entity.
newDirectivityId	This value is the new unique directivity identifier for the source directivity of the target entity.
newDirectivenessValue	This value is new directiveness value for the target entity. It ranges between 0.0 to 20.0. To dequantize it to a floating point value, use the following equation:
	
	(2)


newPlayValue	This flag indicates the new play value for the target entity.
newGroupId	This value represents the new unique HOA Group for the target HOA source.
newRegionId	This value represents the new unique geometry identifier for the region attribute of the target entity.
newSizeXValue	This value represents the new size (m) attribute in the X axis for the target primitive entity.
newSizeYValue	This value represents the new size (m) attribute in the Y axis for the target primitive entity.
newSizeZValue	This value represents the new size (m) attribute in the Z axis for the target primitive entity.
isSpeedParameterVariable	This flag indicates if the value is coming from the evaluation platform.
speedParameterVariable	This integer is the update value channel index which is supplied from the evaluation platform.
newSpeedValue	This value is the new speed value for the target entity.
newMaterialId	Indicates a unique ID of a material for the target entity.
newReverbGainDbValue 	This value is the new reverb gain dB value for the target entity.
newNoReverb	This flag indicates the new reverb state for the target entity.
isGranPosParameterVariable	This flag indicates if the value is coming from the evaluation platform.
granPosParameterVariableIndex	This integer is the update value channel index which is supplied from the evaluation platform.
newGranPosValue	This value is the new granular position value for the target entity.
isGranGrpNoParameterVariable	This flag indicates if the value is coming from the evaluation platform.
granGrpNoParameterVariableIndex	This integer is the update value channel index which is supplied from the evaluation platform.
newGranGrpNoValue	This value is the new granular group number for the target entity.
isGranGrpProbParameterVariable	This flag indicates if the value is coming from the evaluation platform.
granGrpProbParameterVariableIndex	This integer is the update value channel index which is supplied from the evaluation platform.
newGranGrpProbValue	This value is the new granular group probability value for the target entity. It ranges between 0.0 to 1000.0. To dequantize it to a floating point value, use the following equation:
		
isLoudnessDbParameterVariable	This flag indicates if the value is provided via renderer interface.
loudnessDbVariableIndex	This integer is the update value index which is provided via renderer interface.
newLoudnessDbValue	This value is the new loudness value [dB] for the target entity.

updateType	This integer indicates an update to be of the following types: timed, conditional, dynamic, or triggered.
Table 19 — Value of updateType
	bits
	updateType

	0b00
	TIMED

	0b01
	CONDITIONAL

	0b10
	TRIGGERED

	0b11
	DYNAMIC



timedUpdateHasId	This flag indicates if the timed update has a unique identifier
timedUpdateId	This value indicates the unique identifier for this timed update.
timedUpdateHasIndex	This flag indicates if the timed update has an index value.
timedUpdateIndex	This value is the index value for this timed update.
time	This value is the point in time in which the update begins in seconds. conditionalUpdateHasId	This flag indicates if this conditional update has a unique identifier.
conditonalUpdateId	This value is the unique identifier for this conditional update.
conditionHasIndex	This flag indicates if this conditional update has a unique index.
conditionalUpdateIndex	This value is the index value for this conditional update.
fireOn	This flag determines when this update is triggered. It is triggered when the state of this value is reached.
conditonalHasDelay	This flag indicates if the conditional update is delayed after the trigger.
conditionalDelay	This value is the delay in seconds between the update trigger and the actualization of the update itself. conditionUpdateId	This value is the unique listener proximity condition identifier that this update is triggered upon.
triggeredUpdateId	This value is the unique identifier for this triggered update.
triggeredUpdateIndex	This value is the index value for this triggered update.
dynamicUpdateId	This value is the unique identifier for this dynamic update.
dynamicUpdateIndex	This value is the index value for this dynamic update.
[bookmark: _Toc117076327][bookmark: _Toc131497347][bookmark: _Toc132126351][bookmark: _Toc132225920][bookmark: _Toc135210108][bookmark: _Toc166076587]MPEG-I Immersive Audio renderer
[bookmark: _Toc117076328][bookmark: _Toc131497348][bookmark: _Toc132126352][bookmark: _Toc132225921][bookmark: _Toc135210109][bookmark: _Toc166076588]Definitions
[bookmark: _Toc117076329][bookmark: _Toc131497349][bookmark: _Toc132126353][bookmark: _Toc132225922][bookmark: _Toc135210110][bookmark: _Toc166076589] Syntax
[bookmark: _Toc117076330][bookmark: _Toc131497350][bookmark: _Toc132126354][bookmark: _Toc132225923][bookmark: _Toc135210111][bookmark: _Toc166076590]General
In environments that require byte alignment, MPEG-I Immersive Audio configuration elements or payload elements that are not an integer number of bytes in length are padded at the end to achieve an integer byte count. This is indicated by the function ByteAlign()	.
To round a floating point number to the nearest integer the round() function is used - halfway cases round up.
The syntax description contains so-called support elements. These are functions that are called to read and decode the raw bitstream into internal renderer parameters. Support elements are defined in 6.2.14.

[bookmark: _Toc131497351][bookmark: _Toc132126355][bookmark: _Toc132225924][bookmark: _Toc135210112][bookmark: _Toc166076591]Generic Codebook
Some payloads like payloadEarlyReflections() utilize individual codebooks which are defined within the bitstream using the following syntax:

Table 20 — Syntax of genericCodebook()
	Syntax
	No. of bits
	Mnemonic

	genericCodebook()
	
	

	{
	
	

		this.flagFixedLength;
	1
	uimsbf

		this.flagOffset;
	1
	uimsbf

		if (this.flagOffset) {
	
	

			wordSizeOffset;
	6
	uimsbf

			this.offset;
	wordSizeOffset
	uimsbf

		}
	
	

		else {
	
	

			this.offset = 0;
	
	

		}
	
	

		this.wordSize;
	6
	uimsbf

		if (this.flagFixedLength) {
	
	

			numCodes = 1 << this.wordSize;
	
	

			for (unsigned int n = 0; n < numCodes; n++) {
	
	

				// initialize bool array of given length
	
	

				this.codeList[n] = Bitarray(n, this.wordSize);
	
	

				this.symbolList[n] = n + this.offset;
	
	

			}
	
	

		}
	
	

		else {
	
	

			Bitarray code = [];
	
	

			this.codeList = traverseTreeDecode( code );
	
	

			for (int n = 0; n < this.codeList.size(); n++) {
	
	

				rawList[n];
	this.wordSize
	uimsbf

				this.symbolList[n] = rawList[n] + this.offset;
	
	

			}
	
	

		}
	
	

		return this;
	
	

	}
	
	



The code word list “codeList” is transmitted using the following recursive tree traversal algorithm where the keyword “Bitarray” is used as an alias for a bit sequence of a certain length. Furthermore, the keyword “append()” denotes a method which extends the length of the array by one or more elements, that are added at the end:

Table 21 — Syntax of traverseTreeDecode()
	Syntax
	No. of bits
	Mnemonic

	traverseTreeDecode(Bitarray code)
	
	

	{
	
	

		Bitarray codeList[];
	
	

		isLeaf;
	1
	uimsbf

		if (isLeaf) {
	
	

			codeList.append(code);
	
	

		}
	
	

		else {
	
	

			Bitarray codeLeft = code;
	
	

			Bitarray codeRight = code;
	
	

			codeLeft.append(0);
	
	

			codeLeft.append(1);
	
	

			codeList.append( traverseTreeDecode( codeLeft ) );
	
	

			codeList.append( traverseTreeDecode( codeRight ) );
	
	

		}
	
	

		return codeList;
	
	

	}
	
	




An instance “exampleCodebook” of such a codebook is created as follows:

exampleCodebook = genericCodebook();

In addition to the data fields of the returned data structure, generic codebooks have a method “get_symbol()” which reads in a valid code word from the bitstream, i.e. the nth element of codeList[], and returns the corresponding symbol, i.e. symbolList[n]. The usage of this method is indicated as follows:

exampleVariable = exampleCodebook.get_symbol();

[bookmark: _Ref97199652][bookmark: _Toc117076331][bookmark: _Toc131497352][bookmark: _Toc132126356][bookmark: _Toc132225925][bookmark: _Toc135210113][bookmark: _Toc166076592]Directivity payloads syntax
Table 22 — Syntax of payloadDirectivity()
	Syntax
	No. of bits
	Mnemonic

	payloadDirectivity()
	
	

	{
	
	

		directivitiesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < directivitiesCount; i++) {	
	
	

			directivityId = GetID();
	
	

			directivityCodedLength;
	32
	uimsbf

			coverSet();
	directivityCodedLength
	bslbf

		}
	
	

	}
	
	



Table 23 — Syntax of coverSet()
	Syntax
	No. of bits
	Mnemonic

	coverSet()
	
	

	{
	
	

		direcCoverCount;
	6
	uimsbf

		direcFreqQuantType;
	2
	uimsbf

		for (int i = 0; i < direcCoverCount; i++) {	
	
	

			covers[i] = directivityCover();
	
	vlclbf

		}
	
	

	
	
	

		frdFinish();
	
	vlclbf

	}
	
	



Table 24 — Syntax of directivityCover()
	Syntax
	No. of bits
	Mnemonic

	directivityCover()
	
	

	{
	
	

		direcUseRawBaseline;
	1
	uimsbf

		freq = readQuantFrequency();
	
	vlclbf

	
	
	

		dbStepIdx = frdReadUniform(12);
	
	vlclbf

		dbStep = (dbStepIdx + 1) * 0.25;
	
	

		intPer90 = frdReadUniform(45);
	
	vlclbf

		intPer90 += 1;
	
	

	
	
	

		minPosVal = round(-128.0 / dbStep);
	
	

		maxPosVal = round(127.0 / dbStep);
	
	

		posValCount = maxPosVal – minPosVal + 1;
	
	

	
	
	

		elCnt, aziCntPerEl, coverWidth = generateSphereGrid(intPer90);
	
	

	
	
	

		if (direcUseRawBaseline) {
	
	

			cover = rawCover();
	
	vlclbf

		}
	
	

		else {
	
	

			cover = optimizedCover();
	
	vlclbf

		}
	
	

	
	
	

		for (int ei = 0; ei < elCnt; ei++) {
	
	

			for (int ai = 0; ai < aziCntPerEl[ei]; ai++) {
	
	

				cover[ei][ai] *= dbStep;
	
	

			}
	
	

		}
	
	

	}
	
	



Table 25 — Syntax of readQuantFrequency()
	Syntax
	No. of bits
	Mnemonic

	readQuantFrequency()
	
	

	{
	
	

		freq1oIdxMin = -5;
	
	

		freq1oIdxMax = 4;
	
	

		freq3oIdxMin = -17;
	
	

		freq3oIdxMax = 13;
	
	

		freq6oIdxMin = -34;
	
	

		freq6oIdxMax = 26;
	
	

	
	
	

		if (direcFreqQuantType == 0) {
	
	

			alphaSize = freq1oIdxMax – freq1oIdxMin + 1;
	
	

			freqIdx = frdReadUniform(alphaSize);
	
	vlclbf

			freqIdx += freq1oIdxMin;
	
	

			freq = 1000 * pow(2, freqIdx);
	
	

		}
	
	

		else if (direcFreqQuantType == 1) {
	
	

			alphaSize = freq3oIdxMax – freq3oIdxMin + 1;
	
	

			freqIdx = frdReadUniform(alphaSize);
	
	vlclbf

			freqIdx += freq3oIdxMin;
	
	

			freq = 1000 * pow(2, freqIdx / 3);
	
	

		}
	
	

		else if (direcFreqQuantType == 2) {
	
	

			alphaSize = freq6oIdxMax – freq6oIdxMin + 1;
	
	

			freqIdx = frdReadUniform(alphaSize);
	
	vlclbf

			freqIdx += freq6oIdxMin;
	
	

			freq = 1000 * pow(2, freqIdx / 6);
	
	

		}
	
	

		else {
	
	

			freqIdx = frdReadUniform(24000);
	
	vlclbf

			freq = freqIdx + 1;
	
	

		}
	
	

	}
	
	



[bookmark: _Ref100677504]Table 26 — Syntax of rawCover()
	Syntax
	No. of bits
	Mnemonic

	rawCover()
	
	

	{
	
	

		minVal = frdReadUniform(posValCount);
	
	vlclbf

		minVal += minPosVal;
	
	

	
	
	

		maxVal = frdReadUniform(posValCount);
	
	vlclbf

		maxVal += minPosVal;
	
	

	
	
	

		valAlphabetSize = maxVal – minVal + 1;
	
	

		for (int ei = 0; ei < elCnt; ei++) {
	
	

			for (int ai = 0; ai < aziCntPerEl[ei]; ai++) {
	
	

				cover[ei][ai] = frdReadUniform(valAlphabetSize);
	
	vlclbf

				cover[ei][ai] += minVal;
	
	

			}
	
	

		}
	
	

	}
	
	



Table 27 — Syntax of optimizedCover()
	Syntax
	No. of bits
	Mnemonic

	optimizedCover()
	
	

	{
	
	

		predictionOrder = frdReadUniform(5);
	
	vlclbf

		predictionOrder += 1;
	
	

		if (predictionOrder != 5) {
	
	

			coverResiduals[0][0] = frdReadUniform(posValCount);
	
	vlclbf

		}
	
	

	
	
	

		minResidual = frdReadCompactUint(10);
	
	vlclbf

		maxResidual = frdReadCompactUint(10);
	
	vlclbf

	
	
	

		alph = maxResidual – minResidual + 1;
	
	

		for (int ei = 0; ei < elCnt; ei++) {
	
	

			for (int ai = 0; ai < aziCntPerEl[ei]; ai++) {
	
	

				coverResiduals[ei][ai] = frdRead(alph);
	
	vlclbf

				coverResiduals[ei][ai] += minResidual;
	
	

			}
	
	

		}
	
	

		cover = unpredict(coverResiduals, predictionOrder, covers[-1]);
	
	

	}
	
	



[bookmark: _Toc117076332][bookmark: _Toc131497353][bookmark: _Toc132126357][bookmark: _Toc132225926][bookmark: _Toc135210114][bookmark: _Toc166076593]Diffraction payload syntax
Table 28 — Syntax of diffractionPayload()
	Syntax
	No. of bits
	Mnemonic

	diffractionPayload()
	
	

	{
	
	

		diffrVoxelGrid();
	
	

		diffrStaticEdgeList();
	
	

		diffrStaticPathDict();
	
	

		diffrListenerVoxelDict();
	
	

		diffrSourceVoxelDict();
	
	

		diffrValidPathDict();
	
	

		diffrDynamicEdges();
	
	

		diffrDynamicPaths();
	
	

	}
	
	



Table 29 — Syntax of diffrVoxelGrid()
	Syntax
	No. of bits
	Mnemonic

	diffrVoxelGrid()
	
	

	{
	
	

		[diffrVoxelOriginX;
	
	

		diffrVoxelOriginY;
	
	

		diffrVoxelOriginZ;] = GetPosition(isSmallScene)
	
	

	
	
	

		diffrVoxelPitchX = GetDistance(isSmallScene);
	
	

		diffrVoxelPitchY = GetDistance(isSmallScene);
	
	

		diffrVoxelPitchZ = GetDistance(isSmallScene);
	
	

	
	
	

		diffrVoxelShapeX = GetID();
	
	

		diffrVoxelShapeY = GetID();
	
	

		diffrVoxelShapeZ = GetID();
	
	

	}
	
	



Table 30 — Syntax of diffrStaticEdgeList()
	Syntax
	No. of bits
	Mnemonic

	diffrStaticEdgeList()
	
	

	{
	diffrHasStaticEdgeData;
	if (diffrHasStaticEdgeData) {
		codebookEdgeID = genericCodebook();
		codebookVtxID = genericCodebook();
		codebookTriID = genericCodebook();
	
1
	
uimsbf

			numberOfStaticEdges = GetID();
	
	

			for (int i = 0; i < numberOfStaticEdges; i++){
	
	

				staticEdge[i] = diffrEdge(codebookEdgeID, codebookVtxID,
				codebookTriID);
	
	

			}
	}
	
	

	}
	
	



Table 31 — Syntax of diffrEdges()
	Syntax
	No. of bits
	Mnemonic

	diffrEdge(codebookEdgeID, codebookVtxID, codebookTriID)
	
	

	{
	
	

		edgeId = codebookEdgeID.get_symbol();
	
	vlclbf

		edgeVertexId1 = codebookVtxID.get_symbol();
	
	vlclbf

		edgeVertexId2 = codebookVtxID.get_symbol();
	
	vlclbf

		edgeAdjacentTriangleID1 = codebookTriID.get_symbol();
	
	vlclbf

		edgeAdjacentTriangleID2 = codebookTriID.get_symbol();
	
	vlclbf

		edgeIsRounded;
	1
	bslbf

		edgeIsRelevant;
	1
	bslbf

	}
	
	



Table 32 — Syntax of diffrStaticPathDict()
	Syntax
	No. of bits
	Mnemonic

	diffrStaticPathDict()
	
	

	{
	
	

		diffrHasStaticPathData;
	1
	uimsbf

		if (diffrHasStaticPathData) {
	
	

			staticPathDict = diffrPathDict();
	
	

		}
	
	

	}
	
	



Table 33 — Syntax of diffrPathDict()
	Syntax
	No. of bits
	Mnemonic

	diffrPathDict()
	
	

	{
	
	

		codebookEdgeIDSeqLen = genericCodebook();
	
	

		codebookEdgeIDSeq = genericCodebook();
	
	

		codebookAngleSeq = genericCodebook();
	
	

		numBitsForAngle;
	6
	uimsbf

		numberOfRelevantEdges = GetID();
	
	

		for (int i = 0; i < numberOfRelevantEdges; i++){
	
	

			numberOfPaths = GetID();
	
	

	
	
	

			for (int j = 0; j < numberOfPaths; j++){
	
	

				numberOfEdgesInPath =
				codebookEdgeIDSeqLen.get_symbol();
	
	vlclbf

	
	
	

				for (int k = 0; i < numberOfEdgesInPath; k++){
	
	

					edgeId[i][j][k] = codebookEdgeIDSeq.get_symbol();
	
	vlclbf

					faceIndicator[i][j][k];
	1
	uimsbf

					angle[i][j][k] = codebookAngleSeq.get_symbol();
	
	vlclbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	



Table 34 — Syntax of diffrListenerVoxelDict()
	Syntax
	No. of bits
	Mnemonic

	diffrListenerVoxelDict()
	
	

	{
	
	

		diffrHasListenerVoxelData;
	if (diffrHasListenerVoxelData) {
		x = -1;
		y = -1;
		z = -1;

		codebookVcX = genericCodebook();
		codebookVcY = genericCodebook();
		codebookVcZ = genericCodebook();
		codebookNumEdges = genericCodebook();
		codebookEdgeId = genericCodebook();
		codebookIndicesRemoved = genericCodebook();

		numberOfListenerVoxels = GetID();
	1
	uimsbf

			for (int i = 0; i < numberOfListenerVoxels; i++){
			z += 1;
			hasVoxelCoordZ;
			if (hasVoxelCoordZ) {
				z = codebookVcZ.get_symbol();

				y += 1;
				hasVoxelCoordY;
				if (hasVoxelCoordY) {
					y = codebookVcY.get_symbol();

					x += 1;
					hasVoxelCoordX;
					if (hasVoxelCoordX) {
						x = codebookVcX.get_symbol();
					}
				}
			}
	

1




1




1
	

uimsbf

vlclbf


uimsbf

vlclbf


uimsbf

vlclbf

				listenerVoxelGridIndexX[i] = x;
	
	

				listenerVoxelGridIndexY[i] = y;
	
	

				listenerVoxelGridIndexZ[i] = z;
	
	

				
			diffrListenerVoxelMode[i];
			bool remove_loop = diffrListenerVoxelMode[i] != 0;
			int k = 0;
			while (remove_loop) {
				diffrListenerVoxelIndexDiff[i][k] =
					codebookIndicesRemoved.get_symbol();
				remove_loop = diffrListenerVoxelIndexDiff[i][k] != 0;
				k += 1;
			}

			numberOfEdgesAdded=codebookNumEdges.get_symbol();
			for (int j = 0; j < numberOfEdgesAdded; j++){
				diffrListenerVoxelEdge[i][j] =
					codebookEdgeId.get_symbol();
			}
	
2
	
uimsbf



vlclbf





vlclbf

vlclbf

			}
	
	

		}
	
	

	}
	
	



Table 35 — Syntax of diffrSourceVoxelDict()
	Syntax
	No. of bits
	Mnemonic

	diffrSourceVoxelDict()
	
	

	{
	
	

		diffrHasSourceVoxelData;
	if (diffrHasSourceVoxelData){
		numberOfStaticSources = GetID();
	1
	uimsbf

			for (int i = 0; i < numberOfStaticSources; i++){
	
	

				staticSourceId = GetID();
	
	

				numberOfVoxelsPerStaticSource = GetID();
	
	

	
	
	

				for (int j = 0; j < numberOfVoxelsPerStaticSource; j++){
	
	

					sourceVoxelGridIndexX[i][j] = GetID();
	
	

					sourceVoxelGridIndexY[i][j] = GetID();
	
	

					sourceVoxelGridIndexZ[i][j] = GetID();
	
	

	
	
	

					numberOfEdgesPerSourceVoxel = GetID();
	
	

					for (int k = 0; k < numberOfEdgesPerSourceVoxel; k++){
	
	

						sourceVisibleEdgeId[i][j][k] = GetID();
	
	

					}
	
	

				}
		}
	
	

		}
	
	

	}
	
	


 
Table 36 — Syntax of diffrValidPathDict()
	Syntax
	No. of bits
	Mnemonic

	diffrValidPathDict()
	
	

	{
	
	

		diffrHasValidPathData;
	if (diffrHasValidPathData) {
		numberOfValidStaticSources = GetID();
	1
	uimsbf

			for (int i = 0; i < numberOfValidStaticSources; i++){
	
	

				validStaticSourceId = GetID();

			x = -1;
			y = -1;
			z = -1;

			codebookVcX = genericCodebook();
			codebookVcY = genericCodebook();
			codebookVcZ = genericCodebook();
			codebookNumPaths = genericCodebook();
			codebookEdgeId = genericCodebook();
			codebookPathId = genericCodebook();
			codebookIndicesRemoved = genericCodebook();

	
	

				numberOfMaximumListenerVoxels = GetID();
	
	

				for (int j = 0; j < numberOfMaximumListenerVoxels; j++){
				z += 1;
				hasVoxelCoordZ;
				if (hasVoxelCoordZ) {
					z = codebookVcZ.get_symbol();
					
					y += 1;
					hasVoxelCoordY;
					if (hasVoxelCoordY) {
						y = codebookVcY.get_symbol();
						
						x += 1;
						hasVoxelCoordX;
						if (hasVoxelCoordX) {
							x = codebookVcX.get_symbol();
						}
					}
				}
	

1




1




1
	

uimsbf

vlclbf


uimsbf

vlclbf


uimsbf

vlclbf


					validListenerVoxelGridIndexX[i][j] = x;
	
	

					validListenerVoxelGridIndexY[i][j] = y;
	
	

					validListenerVoxelGridIndexZ[i][j] = z;
	
	

	
				diffrValidPathMode[i][j];
				bool remove_loop = diffrValidPathMode[i][j] != 0;
				int k = 0;
				while (remove_loop) {
					diffrValidPathIndexDiff[i][j][k] =
						codebookIndicesRemoved.get_symbol();
					remove_loop = diffrValidPathIndexDiff[i][j][k] != 0;
					k += 1;
				}
				
				numberOfPathsAdded[i][j] =
					codebookNumPaths.get_symbol();
				for (int k = 0; k < numberOfPathsAdded[i][j]; k++){
					diffrValidPathEdge[i][j][k] =
						codebookEdgeId.get_symbol();
					diffrValidPathPath[i][j][k] =
						codebookPathId.get_symbol();
				}
	
2
	
uimsbf



vlclbf





vlclbf


vlclbf

vlclbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	



Table 37 — Syntax of diffrDynamicEdges()
	Syntax
	No. of bits
	Mnemonic

	diffrDynamicEdges()
	
	

	{
	
	

		diffrHasDynamicEdgeData;
	if (diffrHasDynamicEdgeData) {
		dynamicGeometryCount = GetID();
	1
	uimsbf

			for (int i = 0; i < dynamicGeometryCount; i++){
	
	

				geometryId[i] = GetID();
			codebookEdgeID = genericCodebook();
			codebookVtxID = genericCodebook();
			codebookTriID = genericCodebook();
			dynamicEdgesCount = GetID();
	
	

				for (int j = 0; j < dynamicEdgesCount; j++) {	
	
	

					dynamicEdge[i][j] = diffrEdge(codebookEdgeID,
					codebookVtxID, codebookTriID);
	
	

				}
		}
	
	

		}
}
	
	



Table 38 — Syntax of diffrDynamicPaths()
	Syntax
	No. of bits
	Mnemonic

	diffrDynamicPaths()
	
	

	{
	
	

		diffrHasDynamicPathData;
	if (diffrHasDynamicPathData) {
		dynamicGeometryCount = GetID();
	1
	uimsbf

			for (int i = 0; i < dynamicGeometryCount; i++){
	
	

				relevantGeometryId = GetID();
	
	

				dynamicPathDict[g] = diffrPathDict();
	
	

			}
	}
	
	

	}
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Table 39 — Syntax of payloadVoxData()
	Syntax
	No. of bits
	Mnemonic

	payloadVoxData()
	
	

	{
	
	

		numberOfVoxSubScenes = escapedValue(8, 16, 32) + 1;
	
	

		for (int i = 0; i < numberOfVoxSubScenes; i ++) {
	
	

			voxSceneHeader();
	
	

			voxSceneData();
	
	

		}
	
	

		voxReflectionConfigurationParameters();
	
	

	}
	
	



Table 40 — Syntax of voxSceneHeader()
	Syntax
	No. of bits
	Mnemonic

	voxSceneHeader()
	
	

	{
	
	

		voxSceneSize();
	
	

	}
	
	



Table 41 — Syntax of voxSceneSize()
	Syntax
	No. of bits
	Mnemonic

	voxSceneSize()
	
	

	{
	
	

		voxScenePosS = GetPosition(isSmallScene);
	
	

		voxScenePosE = GetPosition(isSmallScene);
	
	

		for (int i = 0; i < 3; i++) {
	
	

			voxSceneDimensions[i];
	16
	uimsbf

		}
	
	

	}
	
	



Table 42 — Syntax of voxSceneData()
	Syntax
	No. of bits
	Mnemonic

	voxSceneData()
	
	

	{
	
	

		voxSceneElements();
	
	

		voxSceneMaterials();
	
	

		voxSceneSettings();
	
	

		voxSceneUpdates();
	
	

	}
	
	



Table 43 — Syntax of voxSceneElements()
	Syntax
	No. of bits
	Mnemonic

	voxSceneElements()
	
	

	{
	numberOfVoxSceneElements = escapedValue(8, 16, 32);
	for (int i = 0; i < numberOfVoxSceneElements; i++) {
		voxSceneElementMatID[i] = escapedValue(4, 8, 32);
		voxSceneElementPosPackedS[i];
		voxSceneElementPosPackedE[i];
	}
	



NbitsVox a
NbitsVox a
	



uimsbf
uimsbf

	}
	
	


	a	NbitsVox = ceil(log2(prod(voxSceneDimensions)-1)

Table 44 — Syntax of voxSceneMaterials()
	Syntax
	No. of bits
	Mnemonic

	voxSceneMaterials()
	
	

	{
	
	

		numberOfVoxSceneMaterials = escapedValue(8, 16, 32);
	
	

		for (int i = 0; i < numberOfVoxSceneMaterials; i++) {
	
	

			voxSceneMaterialID = escapedValue(8, 16, 32);
	
	

		}
	
	

	}
	
	



Table 45 — Syntax of voxSceneSettings()
	Syntax
	No. of bits
	Mnemonic

	voxSceneSettings()
	
	

	{
	
	

		voxSceneInstructionsForOcclusion();
	
	

		voxSceneInstructionsForDiffraction();
	
	

	}
	
	



Table 46 — Syntax of voxSceneInstructionsForOcclusion()
	Syntax
	No. of bits
	Mnemonic

	voxSceneInstructionsForOcclusion()
	
	

	{
	
	

		voxSceneOcclusionInstructionsPresentFlag;
	1
	bslbf

		if (voxSceneOcclusionInstructionsPresentFlag) {
	
	

			for (int i = 0; i < numberOfVoxSceneMaterials; i++) {
	
	

				voxSceneOcclusionRecoveryFlag[i];
	1
	bslbf

				if (voxSceneOcclusionRecoveryFlag[i]) {
	
	

					voxSceneOcclusionRecoveryValue[i];
	32
	float

				}
	
	

			}
	
	

		}
	
	

		voxSceneOcclusionSourceMaterialDependency();
}
	
	



Table 47 — Syntax of voxSceneOcclusionSourceMaterialDependency()
	Syntax
	No. of bits
	Mnemonic

	voxSceneOcclusionSourceMaterialDependency()
	
	

	{
	
	

		voxSceneOcclusionSourceMaterialDependencyFlag;
	1
	bslbf

		if (voxSceneOcclusionSourceMaterialDependencyFlag) {
	
	

			numberOfSourceMaterialEntries = escapedValue(8, 16, 32);
	
	

			for (int i = 0; i < numberOfSourceMaterialEntries; i++) {
	
	

				voxSceneOcclusionSkipForObjectID[i] = escapedValue(8, 16, 32);

				voxSceneOcclusionSkipForMaterialID[i] = escapedValue(8, 16, 32);

			}
	
	

		}
	
	

	}
	
	



Table 48 — Syntax of voxSceneInstructionsForDiffraction()
	Syntax
	No. of bits
	Mnemonic

	voxSceneInstructionsForDiffraction()
	
	

	{
	
	

		voxSceneDiffractionInstructionsPresentFlag;
	1
	bslbf

		if (voxSceneDiffractionInstructionsPresentFlag) {
	
	

			for (int i = 0; i < numberOfVoxSceneMaterials; i++) {
	
	

				voxSceneDiffractionEnabledFlag[i];
	1
	bslbf

			}
	
	

		}
	
	

		voxSceneDiffractionEffectControlFlag;
	1
	bslbf

		if (voxSceneDiffrationEffectControlFlag) {
	
	

			voxSceneDiffractionEffectControlValue;
	32
	float

		}
	
	

		voxSceneDiffractionMapPresentFlag;
	1
	bslbf

		if (voxSceneDiffractionMapPresentFlag) {
	
	

			voxSceneDiffractionMap();
	
	

		} else {
	
	

			if (voxSceneDiffractionMapHeightPresentFlag) {
	1
	bslbf

				voxSceneDiffractionMapHeight;
	16
	uimsbf

			}
	
	

		}
	
	

		voxSceneDiffractionPreComputedPathData();
	
	

	}
	
	



Table 49 — Syntax of voxSceneDiffractionMap()
	Syntax
	No. of bits
	Mnemonic

	voxSceneDiffractionMap()
	
	

	{
	
	

		numberOfVoxDiffractionMapElements = escapedValue(8, 16, 32);
	
	

		for (int i = 0; i < numberOfVoxDiffractionMapElements; i++) {
	
	

			voxDiffractionMapValue[i];
	1
	bslbf

			voxDiffractionMapPosPackedS[i];
	NbitsMap a
	uimsbf

			voxDiffractionMapPosPackedE[i];
	NbitsMap a
	uimsbf

		}
	
	

	}
	
	


	a	NbitsMap = ceil(log2(voxSceneDimensions[0]*voxSceneDimensions[1]-1)

Table 50 — Syntax of voxSceneUpdates()
	Syntax
	No. of bits
	Mnemonic

	voxSceneUpdates()
	
	

	{
	
	

		numberOfVoxSceneUpdates = escapedValue(8, 16, 32);
	
	

		for (int i = 0; i < numberOfVoxSceneUpdates; i++) {
	
	

			voxSceneUpdateID[i] = escapedValue(8, 16, 32);
	
	

			voxSceneUpdateReferenceFlag[i];
	1
	bslbf

			if (voxSceneUpdateReferenceFlag[i]) {
	
	

				voxSceneUpdateReferencePos[i] =
								GetPosition(isSmallScene)
	
	

			}
	
	

			numberOfVoxSceneUpdateSequences[i] = 
								escapedValue(8, 16, 32);
	
	

			for (int j = 0; j < numberOfVoxSceneUpdateSequences[i]; j++) {
	
	

				voxSceneUpdateTime[i][j];
	16
	uimsbf

				voxSceneElements();
	
	

				voxSceneSettings();
	
	

			}
	
	

		}
	
	

	[bookmark: _Ref100563153][bookmark: _Ref100563814]}
	
	



Table 51 — Syntax of voxSceneDiffractionPreComputedPathData()
	Syntax
	No. of bits
	Mnemonic

	voxSceneDiffractionPreComputedPathData()
	
	

	{
	
	

		if (pcpdPresent) {
	1
	bslbf

			pcpdNumStartPositions = escapedValue(8,16,32)
	
	

			if (pcpdFull) {
	1
	bslbf

				pcpdDecodeFull(pcpdNumStartPositions)
	
	

			} else {
	
	

				pcpdDecodeSelective(pcpdNumStartPositions)
	
	

			}
	
	

		}
	
	

	}
	
	



Table 52 — Syntax of pcpdDecodeFull()
	Syntax
	No. of bits
	Mnemonic

	pcpdDecodeFull(pcpdNumStartPositions)
	
	

	{
	
	

		for (int i = 0; i < pcpdNumStartPositions; ++i) {
	
	

			if (!pcpdDataPresentForPos) {
	1
	bslbf

				continue;
	
	

			}
	
	

			pcpdStartVoxelPacked;
	NbitsMap a
	uimsbf

			for (int x = 1; x <= voxSceneDimensions[0]; ++x) {
	
	

				for (int y = 1; y <= voxSceneDimensions[1]; ++y) {

					if (pcpdPathExistFlag) {
	1
	bslbf

						if (!pcpdUsePreviousPath) {
	1
	bslbf

						pcpdSourceDirectionPacked;
	NbitsMap a
	uimsbf

							pcpdPathLength;
	32
	float

						} else {
	
	

							pcpdPathDelta;
	2
	uimsbf

						}
	
	

					}
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	


a	NbitsMap = ceil(log2(voxSceneDimensions[0]*voxSceneDimensions[1]-1)

Table 53 — Syntax of pcpdDecodeSelective()
	Syntax
	No. of bits
	Mnemonic

	pcpdDecodeSelective(pcpdNumStartPositions)
	
	

	{
	
	

		for (int i = 0; i < pcpdNumStartPositions; ++i) {
	
	

			pcpdNumEndPositions = escapedValue(8,16,32)
	
	

			pcpdStartVoxelPacked;
	NbitsMap a
	uimsbf

			for (int j = 0; j < pcpdNumEndPositions; ++j) {
	
	

				pcpdEndVoxelPacked;
	NbitsMap a
	uimsbf

				if (pcpdPathExistFlag) {
	1
	bslbf

					if (!pcpdUsePreviousSourceDirection) 				{
	1
	bslbf

						pcpdSourceDirectionPacked;
	NbitsMap a
	uimsbf

					}
	
	

					pcpdPathLength;
	32
	float

				}
	
	

			}
	
	

		}
	
	

	}
	
	


a	NbitsMap = ceil(log2(voxSceneDimensions[0]*voxSceneDimensions[1]-1)
	Syntax of escapedValue() shall be as defined in ISO/IEC 23003-3

Table 54 — Syntax of voxReflectionConfigurationParameters()
	Syntax
	No. of bits
	Mnemonic

	voxReflectionConfigurationParameters()
	
	

	{
	
	

		voxReflectionNumOriginsPresentFlag;
	1
	bslbf

		if (voxReflectionNumOriginsPresentFlag) {
	
	

			voxReflectionNumOrigins;
	5
	uimsbf

		}
	
	

		voxReflectionNumClustersPresentFlag;
	1
	bslbf

		if (voxReflectionNumClustersPresentFlag) {
	
	

			voxReflectionNumClusters;
	5
	uimsbf

		}
	
	

		voxReflectionTuningIndoorOutdoorTypeFlag;
	1
	bslbf

		if (voxReflectionTuningIndoorOutdoorTypeFlag) {
	
	

			voxReflectionEarlyTuningIndoorGainDb = GetGain(isHiPrecGain=True);
		voxReflectionEarlyTuningOutdoorGainDb = GetGain(isHiPrecGain=True);
	

	
	

		}
	
	

		voxReflectionSectorDownmixFlag;
	1
	bslbf

	}
	
	




[bookmark: _Ref116740704][bookmark: _Toc117076334][bookmark: _Toc131497355][bookmark: _Toc132126359][bookmark: _Toc132225928][bookmark: _Toc135210116][bookmark: _Toc166076595]Early reflection payload syntax 
Table 55 — Syntax of payloadEarlyReflections()
	Syntax
	No. of bits
	Mnemonic

	payloadEarlyReflections()
	
	

	{
	
	

		earlyTriangleCullingDistanceOrder1;
	8
	uimsbf

		earlyTriangleCullingDistanceOrder2;
	8
	uimsbf

		earlyTriangleSourceDistanceOrder1;
	8
	uimsbf

		earlyTriangleSourceDistanceOrder2;
	8
	uimsbf

	
	
	

		[earlyVoxelGridOriginX;
	
	

		earlyVoxelGridOriginY;
	
	

		earlyVoxelGridOriginZ;] = GetPosition(isSmallScene)
	
	

	
	
	

		earlyVoxelGridPitchX = GetDistance(isSmallScne);
	
	

		earlyVoxelGridPitchY = GetDistance(isSmallScne);
	
	

		earlyVoxelGridPitchZ = GetDistance(isSmallScne);
	
	

	
	
	

		earlyVoxelGridShapeX;
	32
	uimsbf

		earlyVoxelGridShapeY;
	32
	uimsbf

		earlyVoxelGridShapeZ;
	32
	uimsbf

	
	
	

		earlyHasSurfaceData;
	1
	uimsbf

		if (earlyHasSurfaceData) {
	
	

	earlySurfaceDataLength;
	32
	uimsbf

	earlySurfaceData();
	earlySurfaceDataLength * 8
	

		}
	
	

	
	
	

		earlyHasVoxelData;
	1
	uimsbf

		if (earlyHasVoxelData) {
	
	

	earlyVoxelDataLength;
	32
	uimsbf

	earlyVoxelData();
	earlyVoxelDataLength * 8
	

		}
	
	

	}
	
	



Table 56 — Syntax of earlySurfaceData()
	Syntax
	No. of bits
	Mnemonic

	earlySurfaceData()
	
	

	{
	
	

		codebookLengthFaceIdx = genericCodebook();
	
	

		codebookFaceIdx = genericCodebook();
	
	

		codebookAzi = genericCodebook();
	
	

		codebookEle = genericCodebook();
	
	

		codebookDist = genericCodebook();
	
	

	
	
	

		earlySurfaceDistOffset;
	22
	tcimsbf

		numberOfSurfaces;
	16
	uimsbf

		for (int s = 0; s < numberOfSurfaces; s++) {
	
	

			earlySurfaceLengthFaceIdx[s] =
		codebookLengthFaceIdx.get_symbol();
	

	vlclbf


			for (int f = 0; f < earlySurfaceLengthFaceIdx[s]; f++) {
	
	

				earlySurfaceFaceIdx[s][f] =
				codebookFaceIdx.get_symbol();
	
	vlclbf


			}
	
	

	
	
	

			earlySurfaceAzi[s] = codebookAzi.get_symbol();
	
	vlclbf

			earlySurfaceEle[s] = codebookEle.get_symbol();
	
	vlclbf

			earlySurfaceDist[s] = codebookDist.get_symbol();
	
	vlclbf

		}
	
	

	}
	
	



Table 57 — Syntax of earlyVoxelData()
	Syntax
	No. of bits
	Mnemonic

	earlyVoxelData()
	
	

	{
	
	

		codebookL = genericCodebook();
	
	

		codebookS = genericCodebook();
	
	

		codebookIndicesRemoved = genericCodebook();
	
	

		codebookNumPaths = genericCodebook();
	
	

		codebookOrder = genericCodebook();
	
	

		codebookSurf = genericCodebook();
	
	

	
	
	

		numberOfVoxelPairs;
	32
	uimsbf

		for (int v = 0; v < numberOfVoxelPairs; v++) {
	
	

			earlyVoxelL[v] = codebookL.get_symbol();
	
	vlclbf

			earlyVoxelS[v] = codebookS.get_symbol();
	
	vlclbf

	
	
	

			earlyVoxelMode[v];
	2
	uimsbf

			bool remove_loop = earlyVoxelMode[v] != 0;
	
	

			int k = 0;
	
	

			while (remove_loop) {
	
	

				earlyVoxelIndicesRemovedDiff[v][k] =
				codebookIndicesRemoved.get_symbol();
	
	vlclbf

				remove_loop = earlyVoxelIndicesRemovedDiff[v][k] != 0;
	
	

				k += 1;
	
	

			}
	
	

	
	
	

			earlyVoxelNumPaths[v] = codebookNumPaths.get_symbol();
	
	vlclbf

			for (int p = 0; p < earlyVoxelNumPaths[v]; p++) {
	
	

				earlyVoxelOrder[v][p] = codebookOrder.get_symbol();
	
	vlclbf

				for (int o = 0; o < earlyVoxelOrder[v][p]; o++) {
	
	

					earlyVoxelSurf[v][p][o] = codebookSurf.get_symbol();
	
	vlclbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	



Table 58 — Syntax of payloadLcEarlyReflections()
	Syntax
	No. of bits
	Mnemonic

	payloadLcEarlyReflections() {
	
		

		lcEarlyNumberOfEnvironments;
	16
	uimsbf

		for (int i = 0; s < lcEarlyNumberOfEnvironments; i++) {
	
	

			lcEarlyEnvType;
	4
	uimsbf

			
	
	

	      		if (lcEarlyEnvType ==  LCERoutdoor) {
	
	

				lcEarlyEnvironmentPriority;
	8
	uimsbf

	
	
	

				lcEarlyAmpFac1Db = GetGain(true);
	
	

				lcEarlyAmpFac2Db = GetGain(true);
	
	

				lcEarlyPreDelay1;
	16
	uimsbf

				lcEarlyPreDelay2;
	16
	uimsbf

	
	
	

				lcEarlyBoundingBox();
	
	

	        	} 
	
	

	    }
	
	

	}
	
	



Table 59 — Syntax of lcEarlyBoundingBox() 
	Syntax
	No. of bits
	Mnemonic

	lcEarlyBoundingBox() {
	
		

			[lcEarlyBoundingBoxPositionX;
	
	

			lcEarlyBoundingBoxPositionY;
	
	

			lcEarlyBoundingBoxPositionZ;] = GetPosition(isSmallScene)
	
	

	
	
	

			[lcEarlyBoundingBoxOrientationYaw;
	
	

			lcEarlyBoundingBoxOrientationPitch;
	
	

			lcEarlyBoundingBoxOrientationRoll] = GetOrientation();
	
	

	
	
	

			[[lcEarlyBoundingBoxSizeX;
	
	

			lcEarlyBoundingBoxSizeY; 
	
	

			lcEarlyBoundingBoxSizeZ;] = GetPosition(isSmallScene);
	
	

	}
	
	




[bookmark: _Toc117076335][bookmark: _Toc131497356][bookmark: _Toc132126360][bookmark: _Toc132225929][bookmark: _Toc135210117][bookmark: _Ref164955704][bookmark: _Toc166076596]Portal payload syntax
Table 60 — Syntax of payloadPortal()
	Syntax
	No. of bits
	Mnemonic

	payloadPortal()
	
	

	{
	
	

		numPortals = GetCountOrIndex();
	
	

		if (numPortals > 0) {
	
	

			isExplicitPortalMode;
	1
	bslbf

		}
	
	

		for (int i = 0; i < numPortals; i++) {
	
	

			portalId = GetID();
	
	

			if (hasExtent) {
	1
	bslbf

				portalExtentId = GetID();
	
	

			}
	
	

			if (isExplicitPortalMode) {
	1
	bslbf

				if (isConnectedToAE) {
	1
	bslbf

					portalEnv1 = GetID();
	
	

					if (isConnectedToSecondAE) {
	1
	bslbf

						portalEnv2 = GetID();
	
	

					}
	
	

				}
	
	

	
	
	

				if (hasMaterial) {
	1
	bslbf

					portalMaterialId = GetID();
	
	

				}
	
	

				portalNormal = GetPosition(true);
	
	

				if (explicitPortalProperties) {
	1
	bslbf

					portalCenterPos = GetPosition(isSmallScene);
	
	

					equivalentPortalWidth = GetDistance(isSmallScene);
	
	

					equivalentPortalHeight = GetDistance(isSmallScene);
	
	

					equivalentPortalDepth = GetDistance(isSmallScene);
	
	

				}
	
	

				if (hasPortal2PortalFactors) {
	1
	bslbf

					for (int j = 0; j < i; j++) {
	
	

						if ((portalEnv1[i]==portalEnv1[j] 
	
	

							&& portalEnv2[i] != portalEnv2[j]) 
	
	

						  || (portalEnv2[i] == portalEnv2[j] 
	
	

							&& portalEnv1[i]	!= portalEnv1[j])
	
	

				                    || (portalEnv1[i] == portalEnv2[j] 
	
	

							&& portalEnv2[i] != portalEnv1[j])
	
	

				                    || (portalEnv2[i] == portalEnv1[j] 
	
	

							&& portalEnv1[i] != portalEnv2[j])) {
	
	

						if (hasAcousticLink) {
	1
	bslbf

							portal2PortalFactor[i][j] = 
							pow(10, portal2PortalFactorCode / 10);
	var
	vlclbf

							portal2PortalFactor[j][i] = 
							pow(10, portal2PortalFactorCode / 10);
	var
	vlclbf

						}
	
	

					}
	
	

				}
	
	

			} else {
	
	

				portalParentEnvId = GetID();
	
	

			}
	
	

		}
	
	

		if (isExplicitPortalMode) {
	
	

			if (hasAeLosVoxelData) {
	1
	bslbf

				numAEs = GetCountOrIndex();
	
	

				for (int i = 0; i < numAEs; i++) {
	
	

					aeBsId = GetCountOrIndex();
	
	

					losVoxelDataStruct();
	
	

				}
	
	

			}
	
	

			if (hasOutsideLosVoxelData) {
	1
	bslbf

				numOutsideAreas = GetCountOrIndex();
	
	

				for (int i = 0; i < numOutsideAreas; i++) {
	
	

					losVoxelDataStruct();
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	


[bookmark: _Ref163203817][bookmark: _Ref163203794]Table 61 — Syntax of losVoxelDataStruct()
	Syntax
	No. of bits
	Mnemonic

	losVoxelDataStruct()
	
	

	{
	
	

		nVoxelsX = GetCountOrIndex();
	
	

		nVoxelsY = GetCountOrIndex();
	
	

		nVoxelsZ = GetCountOrIndex();
	
	

		cornerP1 = GetPosition(isSmallScene);
	
	

		cornerP2 = GetPosition(isSmallScene);
	
	

		voxelSideLenCm = GetCountOrIndex();
	
	

		portalCount = GetCountOrIndex();
	
	

		for (j = 0; j < portalCount; j++) {
	
	

			portalBsId = GetID();
	
	

			nLosBitMasks = GetCountOrIndex();
	
	

			for (k = 0; k < nLosBitMasks; k++) {
	
	

				nMaskBytes = GetCountOrIndex();
	
	

				for (l = 0; l < nMaskBytes; l++) {
	
	

					maskByte[l];
	8
	uimsbf

				}
	
	

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Ref101343306][bookmark: _Toc117076336][bookmark: _Toc131497357][bookmark: _Toc132126361][bookmark: _Toc132225930][bookmark: _Toc135210118][bookmark: _Toc166076597]Reverberation payload syntax
Table 62 — Syntax of payloadReverb()
	Syntax
	No. of bits
	Mnemonic

	payloadReverb()
	
	

	{
	
	

		if (revpresent) 
	1
	bslbf

		{
	
	

			revNrElements = GetCountOrIndex();
	
	

			for ( e = 0; e < revNrElements; e++) {
	
	

				revAcEnvID = GetID();
	
	

	
	
	

				revFreqGridIdx[e] = GetCountOrIndex();
	
	

				revPredelay[e] = GetDuration(false);
	
	

				if (revDelayLineCountPresent)
	1
	bslbf

				{
	
	

					revDelayLineCount = LUT(delayLineCountCode)
	var
	vlclbf

				}
	
	

				for ( b = 0:fgdNrBands[revFreqGridIdx[e]] – 1)
	
	

				{
	
	

					revRT60[e][b] = GetDuration(false);
	
	

				}
	
	

				for ( b = 0:fgdNrBands[revFreqGridIdx[e]] – 1) {
	
	

					revDSR[e][b] = LUT(dsrCode);
	var
	vlclbf

				}
	
	

			}
	
	

	[bookmark: _Hlk100060477]		if (revRenderControlPresent) {
	1
	bslbf

				revDistanceGainDropDb = GetGain(true);
	
	

				revMinDistance = GetDistance(true);
	
	

			}
	
	

			if (revMultiRoomConfigPresent) {
	1
	bslbf

				if (revFadeEnabled)
	1
	bslbf

				{
	
	

					revFadeDistance = GetDistance(true);
	
	

				}
	
	

				revHeadtrackingEnabled;
	1
	bslbf

			}
	
	

			if (revARConfigPresent) {
	1
	bslbf

				revLsdfTheoreticalRDRtoactualRDRdB = GetGain(true);
	
	

				revLsdfRDRtoActualRDRdB = GetGain(false);
	
	

				revOverrideLSDF_RDR;
	1
	bslbf

			}
	
	

		}
	
	

	
	
	

		if (revDefaultAEPresent) {
	1
	bslbf

			if (revHasCustomDefaultAE) {
	1
	bslbf

				revDefaultAEFreqGridIdx = GetCountOrIndex();
	
	

				revDefaultAEPredelay = GetDuration(false);
	
	

				revDefaultAEDelayRatio;
	32
	float

				revDefaultAEDelayMinMs;
	32
	float

				for ( b = 0:fgdNrBands[defaultAEFreqGridIdx] – 1)
	
	

				{
	
	

					revDefaultAERT60[b] = GetDuration(false);
	
	

				}
	
	

				for ( b = 0:fgdNrBands[defaultAEFreqGridIdx] – 1)
	
	

				{
	
	

					revDefaultAEDSR[b] = LUT(dsrCode);
	
	

				}
	
	

				revDefaultAEDistanceGainDropDb = GetGain(true);
	
	

				revDefaultAEMinimumDistance = GetDistance(true);
	
	

			} else {
	
	

				revDefaultAEPreset;
	6
	uimsbf

				if (revHasDefaultAEGain)
	1
	bslbf

					revDefaultAEGain = GetGain(true);
	
	

				if (revHasDefaultAEDelayRatio)
	1
	bslbf

					revDefaultAEDelayRatio;
	32
	float

				if (revHasDefaultAEDelayMinMs)
	1
	bslbf

					revDefaultAEDelayMinMs;
	32
	float

				if (revHasDefaultAEDistanceGainDrop)
	1
	bslbf

					revDefaultAEDistanceGainDropDb = GetGain(true);
	
	

				if (revHasDefaultAEMinDist)
	1
	bslbf

					revDefaultAEMinimumDistance = GetDistance(true);
	
	

			}
	
	

		}
	
	

	}
	
	

	
	
	


 

[bookmark: _Toc117076337][bookmark: _Toc131497358][bookmark: _Toc132126362][bookmark: _Toc132225931][bookmark: _Toc135210119][bookmark: _Toc166076598]Audio plus payload syntax
Table 63 — Syntax of payloadAudioPlus()
	Syntax
	No. of bits
	Mnemonic

	payloadAudioPlus()
	
	

	{
	
	

		numberOfSources = GetCountOrIndex()
	
	

		for (int i = 0; i < numberOfSources; i++){
	
	

			audioSourceId = GetID();
	
	

			distanceGainModel;
	1
	bslbf

	
	
	

			hasDiffuseness;
	1
	bslbf

			if (hasDiffuseness) {
	
	

				diffuseness;
	7
	uimsbf

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Toc117076338][bookmark: _Toc131497359][bookmark: _Toc132126363][bookmark: _Toc132225932][bookmark: _Toc135210120][bookmark: _Toc166076599]Dispersion payload syntax
Table 64 — Syntax of payloadDispersion ()
	Syntax
	No. of bits
	Mnemonic

	payloadDispersion() 
	
	

	{
	
	

		enableDispersionFilterER;
	1
	bslbf

		enableDispersionFilterDiffr;
	1
	bslbf

		enableFilter = enableDispersionFilterER || enableDispersionFilterDiffr;
	
	

		if (enableFilter) {
	
	

			codedDispersionFilterLength;
	4
	uimsbf

			dispersionFilterLength = (codedDispersionFilterLength + 1) * 2;
	
	

			codedDispersionFilterGain;
	5
	uimsbf

			dispersionFilterGaindB = codedDispersionFilterGain – 21;
	
	

			enableSpatialDispersion
	1
	bslbf

		}
	
	

	}
	
	



[bookmark: _Toc117076339][bookmark: _Toc131497360][bookmark: _Toc132126364][bookmark: _Toc132225933][bookmark: _Toc135210121][bookmark: _Toc166076600]Scene plus payload syntax
Table 65 — Syntax of payloadScene()
	Syntax
	No. of bits
	Mnemonic

	payloadScene()
	
	

	{
	
	

		sceneDuration;
	8
	uimsbf

		sceneType;
	1
	bslbf

		transforms();
	
	

		anchors();
	
	

		audioStreams();
	
	

		granularSounds();
	
	

		materials();
	
	

		directivities();
	
	

		primitives();
	
	

		meshes();
	
	

		environments();
	
	

		objectSources();
	
	

		hoaGroups();
	
	

		hoaSources();
	
	

		channelSources();
	
	

		airflowGeneratorObjects();
	
	

	}
	
	



Table 66 — Syntax of transforms()
	Syntax
	No. of bits
	Mnemonic

	transforms()
	
	

	{
	
	

		transformsCount = GetCountOrIndex();
	
	

		for (int i = 0; i < transformsCount; i++) {
	
	

			transformId  = GetId();
	
	

	
	
	

			[transformPositionX;
	
	

			transformPositionY;
	
	

			transformPositionZ;] = GetPosition(isSmallScene);
	
	

	
	
	

			[transformOrientationYaw;
	
	

			transformOrientationPitch;
	
	

			transformOrientationRoll;] = Getorientation()
	
	

	
	
	

			transformCoordSpace;
	1
	bslbf

		}
	
	

	}
	
	



Table 67 — Syntax of anchors()
	Syntax
	No. of bits
	Mnemonic

	anchors()
	
	

	{
	
	

		anchorsCount = GetCountOrIndex();	
	for (int i = 0; i < anchorsCount; i++) {	
		anchorId = GetId();	
		anchorLsdfRef;	

		[audioSourceRescaleX;
audioSourceRescaleY;
audioSourceRescaleZ] = GetAudioSourceRescale();

autoRescale;

[toleranceXMax;
toleranceXMin;
toleranceYMax;
toleranceYMin;
toleranceZMax;
toleranceZMin] = GetTolerance();	
	}	
	

8..*






1

	

cstring






bool

	}
	
	



Table 68 — Syntax of audioStreams()
	Syntax
	No. of bits
	Mnemonic

	audioStreams()
	
	

	{
	
	

		audioStreamsCount = GetCountOrIndex();
	
	

		for (int i = 0; i < audioStreamsCount; i++) {
	
	

			audioStreamId; = GetId()
	
	

			If(enableLocallyCapturedAudio){
	
	

				isLocallyCaptured;
	1
	bslbf

			} else {
	
	

				isLocallyCaptured = false;
	
	

			}
	
	

			If not (isLocallyCaptured){
	
	

				audioStreamFilePath;
	8..*
	cstring

				inputChannelsCount = GetCountOrIndex();
	
	

				for (int j = 0; j < inputChannelsCount; j++) {
	
	

					inputChannelIndex = GetCountOrIndex();
	
	

				}
	
	

				isSoundEffect;
	1
	bslbf

				if (isSoundEffect) {
	
	

				streamDuration = GetDuration(isLongRangeMode=True);
	
	

				}
	
	

			}
	
	

		}
	
	

	}
	
	



Table 69 — Syntax of granularSounds()
	Syntax
	No. of bits
	Mnemonic

	granularSounds ()
	
	

	{
	
	

		granularSoundsCount = GetCountOrIndex();
	
	

		for (int i = 0; i < granularSoundsCount; i++) {
	
	

			GranularSoundId = GetId()
	
	

			GranularDatabaseFilePath;
	8..*
	cstring

			granularSoundChannels = GetCountOrIndex();
	
	

		}
	
	

	}
	
	

	
	
	




Table 70 — Syntax of materials()
	Syntax
	No. of bits
	Mnemonic

	materials()
	
	

	{
	
	

		materialsCount = GetCountorIndex();
	
	

		for (int i = 0; i < materialsCount; i++) {
	
	

			materialId = Get Id();
	
	

			materialCodedLength;
	32
	uimsbf

			materialCoeffs();
	materialCodedLength
	bslbf

		}
	
	

	}
	
	



Table 71 — Syntax of materialCoeffs()
	Syntax
	No. of bits
	Mnemonic

	materialCoeffs() 
	
	

	{
	
	

		frdReadUniform(18); // skip[footnoteRef:2] [2:  The following bits are skipped because they are not used. This will be revised in the future.] 

	
	vlclbf

		materialCount = frdReadCompactUint(10);
	
	vlclbf

		assert(materialCount == 1);
	
	

		stepIdx = frdReadCompactUint(10);
	
	vlclbf

		cxStep = round(10000.0/ stepIdx);
	
	

		matwerialFreqGridIdx = frdReadUniform(128)
	
	vlclbf

		materialFreqCount = fgdNrBands[materialFreqGridIdx]
	
	

		spcRflIs0;
	1
	uimsbf

		diffScatIs0;
	1
	uimsbf

		trnsIs0;
	1
	uimsbf

		cplIs0;
	1
	uimsbf

		for (int i = 0; i < materialFreqCount; i++) {
	
	

			freq = fgdCenterFreq[materialFreqGridIdx][i]
	
	

			specularReflection = materialCoeff(spcRflIs0, cxStep);
	
	vlclbf

			diffusedScattering = materialCoeff(diffScarIs0, cxStep);
	
	vlclbf

			transmission = materialCoeff(trnsIs0, cxStep);
	
	vlclbf

			coupling = materialCoeff(cplIs0, cxStep);
	
	vlclbf

		}
	
	

		reserved;
	32
	uimsbf

	}
	
	



Table 72 — Syntax of materialCoeff()
	Syntax
	No. of bits
	Mnemonic

	materialCoeff(is0, cxStep) 
	
	

	{
	
	

		materialCoeff = 0;
	
	

		if (!is0) {
	
	

			materialCoeff = frdReadUniform(cxStep + 1) / cxStep;
	
	vlclbf

		}
	
	

		return materialCoeff;
	
	

	}
	
	




Table 73 — Syntax of sourceDirectivities()
	Syntax
	No. of bits
	Mnemonic

	sourceDirectivities() 
	
	

	{
	
	

		sourceDirectivitiesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < sourceDirectivitiesCount; i++) {
	
	

			sourceDirectivityId = GetId();
	
	

		}
	
	

	}
	
	



Table 74 — Syntax of primitives()
	Syntax
	No. of bits
	Mnemonic

	primitives()
	
	

	{
	
	

		primitivesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < primitivesCount; i++) {
	
	

			primitiveType;
	2
	uimsbf

			primitiveId = GetId();
	
	

	
	
	

			[primitivePositionX;
	
	

			primitivePositionY;
	
	

			primitivePositionZ;] = GetPosition(isSmallScene)
	
	

	
	
	

			[primitiveOrientationYaw;
	
	

			primitiveOrientationPitch;
	
	

			primitiveOrientationRoll] = GetOrientation();
	
	

	
	
	

			primitiveCoordSpace;
	1
	bslbf

	
	
	

			primitiveSizeX = GetDistance(isSmallScene);
	
	

			primitiveSizeY = GetDistance(isSmallScene);
	
	

			primitiveSizeZ = GetDistance(isSmallScene);
	
	

	
	
	

			primitiveHasMaterial;
	1
	bslbf

			if (primitiveHasMaterial) {
	
	

				primitiveMaterialId = GetID();
	
	

			}
	
	

	
	
	

			primitiveHasSpatialTransform;
	1
	bslbf

			if (primitiveHasSpatialTransform) {
	
	

				primitiveHasAnchor;
	1
	bslbf

				if (primitiveHasAnchor) {
	
	

					primitiveParentAnchorId = GetID();
	
	

				}
	
	

				else {
	
	

					primitiveParentTransformId = GetID;
	
	

				}
	
	

			}
	
	

			isPrimitiveStatic;
	1
	bslbf

			isEarlyReflectionPrimitive;
	1
	bslbf

		}
	
	

	}
	
	


Table 75 — Syntax of meshes()
	Syntax
	No. of bits
	Mnemonic

	meshes()
	
	

	{
	
	

		meshesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < meshesCount; i++) {
	
	

			meshId = GetID();
	
	

			meshCodedLength;
	32
	uimsbf

			meshFaces();
	meshCodedLength
	bslbf

			
	
	

			[meshPositionX;
	
	

			meshPositionY;
	
	

			meshPositionZ;] = GetPosition(isSmallScene)
	
	

	
	
	

			[meshOrientationYaw;
	
	

			meshOrientationPitch;
	
	

			meshOrientationRoll;] = GetOrientation()
	
	

	
	
	

			meshCoordSpace;
	1
	bslbf

	
	
	

			meshHasSpatialTransform;
	1
	bslbf

			if (meshHasSpatialTransform) {
	
	

				meshHasAnchor;
	1
	bslbf

				if (meshHasAnchor) {
	
	

					meshParentAnchorId = GetID();
	
	

				}
	
	

				else {
	
	

					meshParentTransformId = GetID();
	
	

				}
	
	

			}
	
	

			isMeshStatic;
	1
	bslbf

			isEarlyReflectionMesh;
	1
	bslbf

		}
	
	

	}
	
	



[bookmark: _Ref107932988]Table 76 — Syntax of meshFaces()
	Syntax
	No. of bits
	Mnemonic

	meshFaces()
	
	

	{
	
	

		vertexCount = frdReadUniform(18);
	
	vlclbf

		faceCount = frdReadUniform(18);
	
	vlclbf

		frdReadUniform(10); // skip[footnoteRef:3] [3:  The following bits are skipped because they are not used. This will be revised in the future.] 

	
	

		vertexQuantStep = frdReadCompactUint(10) / 10000.0;
	
	vlclbf

		bbBits;
	5
	uismbf

		bbBits += 1;
	
	

		boudingBox(); 
	
	

		preprocessGCD();
	
	

		vertexList();
	
	

		faceList();
	
	

		reserved;
	32
	uimsbf

	}
	
	



Table 77 — Syntax of boundingBox()
	Syntax
	No. of bits
	Mnemonic

	boundingBox()
	
	

	{
	
	

		bb_x_min = boundingBoxDimension();
	
	

		bb_x_max = boundingBoxDimension();
	
	

		bb_y_min = boundingBoxDimension();
	
	

		bb_y_max = boundingBoxDimension();
	
	

		bb_z_min = boundingBoxDimension();
	
	

		bb_z_max = boundingBoxDimension();
	
	

	}
	
	



Table 78 — Syntax of boundingBox()
	Syntax
	No. of bits
	Mnemonic

	boundingBoxDimension()
	
	

	{
	
	

		bb_dim;
	bbBits - 1
	uimsbf

		bb_dim_sign;
	1
	uimsbf

		if (bb_dim_sign) {
	
	

			bb_dim = -bb_dim;
	
	

		}
	
	

		return bb_dim;
	
	

	}
	
	


Table 79 — Syntax of preprocessGCD()
	Syntax
	No. of bits
	Mnemonic

	preprocessGCD()
	
	

	{
	
	

		gcdX = 1;
	
	

		gcdY = 1;
	
	

		gcdZ = 1;
	
	

		gcdPresent;
	1
	uismbf

		if (gcdPresent) {
	
	

			gcdXPresent;
	1
	uismbf

			if (gcdXPresent) {
	
	

				gcdX = gcdX;
	bbBits
	uismbf

			}
	
	

			gcdYPresent;
	1
	uismbf

			if (gcdYPresent) {
	
	

				gcdY = gcdY;
	bbBits
	uismbf

			}
	
	

			gcdZPresent;
	1
	uismbf

			if (gcdZPresent) {
	
	

				gcdZ = gcdZ;
	bbBits
	uismbf

			}
	
	

		}
	
	

	}
	
	



Table 80 — Syntax of vertexList()
	Syntax
	No. of bits
	Mnemonic

	vertexList()
	
	

	{
	
	

		for (int i = 0; i < vertexCount; i++) {
	
	

			vertexX = vertex();
	
	vlclbf

			vertexY = vertex();
	
	vlclbf

			vertexZ = vertex();
	
	vlclbf

		}
	
	

	}
	
	



Table 81 — Syntax of faceList()
	Syntax
	No. of bits
	Mnemonic

	faceList()
	
	

	{
	
	

		alph_mat = frdRead(10) + 1;
	
	vlclbf

		alph_cmi = 0;
	
	

		for (int i = 0; i < alph_mat; i++) {
	
	

			if (i == alph_mat – 1 && alph_cmi == 0) {
	
	

				is_present[i] = 1;
	
	

			}
	
	

			else {
	
	

				is_present[i];
	1
	uismbf

			}
	
	

			
	
	

			if (is_present[i]) {
	
	

				cmi_to_mi.insert(i);
	
	

				alph_cmi++;
	
	

			}
	
	

		}
	
	

	
	
	

		for (int i = 0; i < faceCount; i++) {
	
	

			v1[i] = frdReadUniform(vertexCount);
	
	vlclbf

			v2[i] = frdReadUniform(vertexCount);
	
	vlclbf

			v3[i] = frdReadUniform(vertexCount);
	
	vlclbf

	
	
	

			if (alph_cmi == 1) {
	
	

				cmi = 0;
	
	

			}
	
	

			else {
	
	

				same_cmi = frdRead(2);
	
	vlclbf

				if (same_cmi) {
	
	

					cmi = last_cmi;
	
	

				}
	
	

				else {
	
	

					if (cmi_alph == 2) {
	
	

						cmi = 1 – last_cmi;
	
	

					}
	
	

					else {
	
	

						cmi = frdRead(alph_cmi);
	
	vlclbf

					}
	
	

	
	
	

					last_cmi = cmi;
	
	

				}
	
	

			}
	
	

	
	
	

			mi[i] = cmi_to_mi[cmi] – 1;
	
	

		}
	
	

	}
	
	




Table 82 — Syntax of environments()
	Syntax
	No. of bits
	Mnemonic

	environments ()
	
	

	{
	
	

		environmentsCount = GetCountOrIndex();
	
	

		for (int i = 0; i < environmentsCount; i++) {
	
	

			acousticParametersCount = GetCountOrIndex();
	
	

	
	
	

			for (int j = 0; j < acousticParametersCount; j++) {		
	
	

				[paramPosX;
	
	

				paramPosY;
	
	

				paramPosZ] = GetPosition(isSmallScene);
	
	

			}
	
	

	
	
	

			environmentId = GetID();
	
	

			acousticRegionId = GetID();
	
	

		}
	
	

	}
	
	



Table 83 — Syntax of objectSources()
	Syntax
	No. of bits
	Mnemonic

	objectSources()
	
	

	{
	
	

		objectSourcesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < objectSourcesCount; i++) {
	
	

			hasInputLayout;
	1
	bslbf

			if (hasInputLayout) {
	
	

				inputLayoutAlignment;
	1
	bslbf

				inputLayoutTL;
	1
	bslbf

				inputLayoutT;
	1
	bslbf

				inputLayoutTR;
	1
	bslbf

				inputLayoutL;
	1
	bslbf

				inputLayoutC;
	1
	bslbf

				inputLayoutR;
	1
	bslbf

				inputLayoutBL;
	1
	bslbf

				inputLayoutB;
	1
	bslbf

				inputLayoutBR;
	1
	bslbf

			}
	
	

			objectSourceId = GetID();
	
	

	
	
	

			[objectSourcePositionX;
	
	

			objectSourcePositionY;
	
	

			objectSourcePositionZ] = GetPosition(isSmallScene)
	
	

	
	
	

			[objectSourceOrientationYaw;
	
	

			objectSourceOrientationPitch;
	
	

			objectSourceOrientationRoll] = GetOrientation();
	
	

	
	
	

			objectSourceCoordSpace;
	1
	bslbf

	
	
	

			objectSourceActive;
	1
	bslbf

			objectSourceGainDb = GetGain(isHiPrecGain=True);
	
	

			objectSourceRefDistance = GetDistance(isSmallScene);
	
	

			objectSourceSignalId = GetID();
	
	

	
	
	

			objectSourceHasReverbGain
	1
	bslbf

			if (objectSourceHasReverbGain) {
	
	

				objectSourceReverbGainDb = GetGain(isHiPrecGain=True);
	
	

			}
	
	

	
	
	

			objectSourceHasExtent;
	1
	bslbf

			if (objectSourceHasExtent) {
	
	

				objectSourceExtentId = GetID();
	
	

			}
	
	

	
	
	

			objectSourceHasDirectivity;
	1
	bslbf

			if (objectSourceHasDirectivity) {
	
	

				objectSourceDirectivityId = GetID();
	
	

			}
	
	

			
	
	

			objectSourceDirectiveness;
	8
	uimsbf

	
	
	

			objectSourceNoReverb;
	1
	bslbf

			objectSourceNoDoppler;
	1
	bslbf

			objectSourceNoDistance;
	1
	bslbf

			objectSourceNoCulling;
	1
	bslbf

			objectSourceNoDirectionalFocus;
	1
	bslbf

			objectSourceMode;
	1
	bslbf

			objectSourcePlay;
                  objectSourceVDLMethod;
	1
3
	Bslbf
uimsbf

	
	
	

			objectSourceHasSpatialTransform;
	1
	bslbf

			if (objectSourcehasSpatialTransform) {
	
	

				objectSourceHasAnchor;
	1
	bslbf

				if (objectSourceHasAnchor) {
	
	

					objectSourceParentAchorId = GetID();
	
	

				}
	
	

				else {
	
	

					objectSourceParentTransformId = GetID();
	
	

				}
	
	

			}
	
	

			objectSourceIsStatic;
	1
	bslbf

	
	
	

			objectSourceHasGranularPos;
	1
	bslbf

			If (objectSourceHasGranularPos) {
	
	

				granularPosX;
	16
	uimsbf

				granularPosY;
	16
	uimsbf

				granularPosZ
	16
	uimsbf

			}
	
	

		}
	
	

	}
	
	



Table 84 — Syntax of hoaGroups()
	Syntax
	No. of bits
	Mnemonic

	hoaGroups()
	
	

	{
	
	

		hoaGroupsCount = GetCountOrIndex();
	
	

		for (int i = 0; i < hoaGroupsCount; i++) {
	
	

			hoaGroupId = GetID();
	
	

	
	
	

			hoaGroupHasRegion;
	1
	bslbf

			if (hoaGroupHasRegion) {
	
	

				hoaGroupRegionId = GetID();
	
	

			}
	
	

	
	
	

			coSourceCount = GetCountOrIndex();
	
	

			for (int j = 0; j < coSourceCount; j++) {
	
	

				coSourceId = GetID();
	
	

			}
	
	

			FreqBandConfig();
	
	

	
	
	

			exteriorRenderingProjectionRadius = GetDistance(isSmallScene);
	
	

	
	
	

			hoaGroupHasInformedSources;
	1
	bslbf

			if (hoaGroupHasInformedSources == True) {
	
	

				informedSourceCount;
	16
	uimsbf

				maxSimulInformedSources;
	8
	uimsbf

				for (j = 0; j < informedSourceCount; j++) {
	
	

					InformedSourceInfoStruct()
	
	

				}
	
	

	                     	adaptiveExteriorRenderingProjectionRadius;
	1
	bslbf

			}
	
	

	
	
	

			hoaGroupHasLowProfileConfig;
	1
	bslbf

			if (hoaGroupHasLowProfileConfig == True) {
	
	

				LowProfileConfig()
	
	

			}
	
	

		}
	
	

	}
	
	



Table 85 — Syntax of FreqBandConfig()
	Syntax
	No. of bits
	Mnemonic

	FreqBandConfig()
	
	

	{
	
	

		hoaGroupHasFreqBandConfig;
	1
	bslbf

		if (hoaGroupHasFreqBandConfig == True) {
	
	

			highestSingleBinBandsIndex;
	8
	uimsbf

			lowestHighBandIndex;
	8
	uimsbf

			intermediateBandsERBWidth;
	8
	uimsbf

		}
	
	

	}
	
	



Table 86 — Syntax of InformedSourceInfoStruct()
	Syntax
	No. of bits
	Mnemonic

	InformedSourceInfoStruct()
	
	

	{
	
	

		informedSourceId = GetID();
	
	

		informedSourcePositionX;
	31
	uimsbf

		informedSourcePositionY;
	31
	uimsbf

		informedSourcePositionZ;
	31
	uimsbf

		listenerThresholdPresent;
	1
	bslbf

		hoaSourceThresholdPresent;
	1
	bslbf

		if (listenerThresholdPresent == True) {
	
	

			lpdInformedSourceEnableThreshold;
	16
	uimsbf

		}
	
	

		if (hoaSourceThresholdPresent == True) {
	
	

			hpdInformedSourceEnableThreshold;
	16
	uimsbf

		}
	
	

		priorityValue;
	6
	uimsbf

		}
	
	

	}
	
	



Table 87— Syntax of LowProfileConfig()
	Syntax
	No. of bits
	Mnemonic

	LowProfileConfig()
	
	

	{
	
	

		distanceFactor;
	8
	uimsbf

		panningGridOrder;
	3
	uimsbf

	}
	
	



Table 88 — Syntax of hoaSources()
	Syntax
	No. of bits
	Mnemonic

	hoaSources()
	
	

	{
	
	

		hoaSourcesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < hoaSourcesCount; i++) {
	
	

			hoaSourceId = GetID();
	
	

	
	
	

			[hoaSourcePositionX;
	
	

			hoaSourcePositionY;
	
	

			hoaSourcePositionZ] = GetPosition(isSmallScene);
	
	

	
	
	

			[hoaSourceOrientationYaw;
	
	

			hoaSourceOrientationPitch;
	
	

			hoaSourceOrientationRoll] = GetOrientation();
	
	

	
	
	

			hoaSourceCoordSpace;
	1
	bslbf

	
	
	

			hoaSourceActive;
	1
	bslbf

			hoaSourceGainDb = GetGain(isHiPrecGain=True);
	
	

	
	
	

			hoaSourceHasReverbGain;
	1
	bslbf

			if(hoaSourceHasReverbGain) ){
	
	

				hoaSourceReverbGainDb = GetGain(isHiPrecGain=True);
	
	

			}
	
	

	
	
	

			hoaSourceRefDistance = GetDistance(isSmallScene);
	
	

			hoaSourceSignalId = GetID();
	
	

	
	
	

			hoaSourceHasExtent;
	1
	bslbf

			if (hoaSourceHasExtent) {
	
	

				hoaSourceExtentId = GetID();
	
	

			}
	
	

	
	
	

			hoaSourceExtentTransform;
	1
	bslbf

			hoaSourceRepresentation;
	1
	bslbf

		
	
	

			hoaSourceHasGroup;
	1
	bslbf

			if (hoaSourceHasGroup) {
	
	

				hoaSourceGroupId = GetID();
	
	

			}
	
	

	
	
	

			hoaSourceNoReverb;
	1
	bslbf

			hoaSourceNoDoppler;
	1
	bslbf

			hoaSourceNoDistance;
	1
	bslbf

			hoaSourceNoCulling;
	1
	bslbf

			hoaSourceNoDirectionalFocus;
	1
	bslbf

			hoaSourceMode;
	1
	bslbf

			hoaSourcePlay;
                  hoaSourceVDLMethod;
	1
3
	Bslbf
uimsbf

	
	
	

			hoaSourceHasSpatialTransform;
	1
	bslbf

			if (hoaSourceHasSpatialTransform){
	
	

				hoaSourceHasAnchor;
	1
	bslbf

				if (hoaSourceHasAnchor){
	
	

					hoaSourceParentAnchorId = GetID();
	
	

				}
	
	

				else {
	
	

					hoaSourceParentTransformId = GetID();
	
	

				}
	
	

			}
	
	

			hoaSourceIsStatic;
	1
	bslbf

	
	
	

			objectSourceHasGranularPos;
	1
	bslbf

			If (objectSourceHasGranularPos) {
	
	

				granularPosX;
	16
	uimsbf

				granularPosY;
	16
	uimsbf

				granularPosZ
	16
	uimsbf

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Hlk114042351]Table 89 — Syntax of channelSources()
	Syntax
	No. of bits
	Mnemonic

	channelSources()
	
	

	{
	
	

		channelSourcesCount = GetCountOrIndex();
	
	

		for (int i = 0; i < channelSourcesCount; i++) {
	
	

			loudspeakerCount = GetCountOrIndex();
	
	

			for (int j = 0; j < loudspeakerCount; j++) {
	
	

				loudspeakerId = GetID();
	
	

	
	
	

				[loudspeakerPositionX;
	
	

				loudspeakerPositionY;
	
	

				loudspeakerPositionZ] = GetPosition(isSmallScene);
	
	

	
	
	

				[loudspeakerOrientationYaw;
	
	

				loudspeakerOrientationPitch;
	
	

				loudspeakerOrientationRoll] = GetOrientation();
	
	

	
	
	

				loudspeakerChannel = GetCountOrIndex();
	
	

				loudspeakerHasDirectivity;
	1
	bslbf

				if (loudspeakerHasDirectivity) {
	
	

					loudspeakerDirectivityId = GetID();
	
	

				}
	
	

				loudspeakerDirectiveness;
	8
	uimsbf

			}
	
	

		channelSourceId = GetID();
	
	

	
	
	

		[channelSourcePositionX;
	
	

		channelSourcePositionY;
	
	

		channelSourcePositionZ] = GetPosition(isSmallScene);
	
	

	
	
	

		[channelSourceOrientationYaw;
	
	

		channelSourceOrientationPitch;
	
	

		channelSourceOrientationRoll] = Getorientation();
	
	

		
	
	

		channelSourceCoordSpace;
	1
	bslbf

		
	
	

		channelSourceInputLayout;
	7
	uimsbf

		channelSourceActive;
	1
	bslbf

		channelSourceGainDb = GetGain(isHiPrecGain=True);
	
	

	
	
	

		 channelSourceHasReverbGain;
	1
	bslbf

		 if(channelSourceHasReverbGain){
	
	

			channelSourceReverbGainDb = GetGain(isHiPrecGain=True);
	
	

		}
	
	

	
	
	

		channelSourceRefDistance = GetDistance(isSmallScene);
	
	

		channelSourceSignalId = GetID();
	
	

		
	
	

		channelSourceNoReverb;
	1
	bslbf

		channelSourceNoDoppler;
	1
	bslbf

		channelSourceNoDistance;
	1
	bslbf

		channelSourceNoCulling;
	1
	bslbf

		channelSourceNoDirectionalFocus;
	1
	bslbf

	
	
	

		channelSourceMode;
	1
	bslbf

		channelSourcePlay;
         channelSourceVDLMethod;
	1
3
	Bslbf
uimsbf

	
	
	

		channelSourceHasSpatialTransform;
	1
	bslbf

		if (channelSourceHasSpatialTransform){
	
	

			channelSourceHasAnchor;
	1
	bslbf

			if (channelSourceHasAnchor){
	
	

				channelSourceParentAnchorId = GetID();
	
	

			}
	
	

			else {
	
	

				channelSourceParentTransformId = GetID();
	
	

			}
	
	

		}
	
	

		channelSourceIsStatic;
	1
	bslbf

	
	
	

		objectSourceHasGranularPos;
	1
	bslbf

		If (objectSourceHasGranularPos) {
	
	

			granularPosX;
	16
	uimsbf

			granularPosY;
	16
	uimsbf

			granularPosZ
	16
	uimsbf

		}
	
	

	}
	
	




Table 90 - Syntax of airflowGeneratorObjects()
	Syntax
	No. of bits
	Mnemonic

	airflowGeneratorObjects ()
	
	

	{
	
	

		numberOfGeneratorObjects = GetCountOrIndex()
	
	

		for (n = 0:numberOfGeneratorObjects-1)
	
	

		{
	
	

			id = GetID();
	
	

			generatorType;
	3
	uimsbf

			speed;
	10
	uimsbf

			orientation = GetOrientation();
	
	

			gainDb = GetGain();
	
	

			active;
	1
	bslbf

			if (generatorType == ‘Point Source’)
	
	

			{
	
	

				position = GetPosition(isSmallScene);
	
	

				hasLimits;
	1
	bslbf

				if (hasLimits)
	
	

				{
	
	

					aziRange;
	8
	uimsbf

					elevRange;
	8
	uimsbf

				}
	
	

			} elseif (generatorType == ‘Cone’)
	
	

			{
	
	

				position = GetPosition(isSmallScene);
	
	

				baseRadius = GetDistance(isSmallScene);
	
	

				length = GetDistance(isSmallScene);
	
	

				hasTopRadius;
	1
	bslbf

				if (hasTopRadius)
	
	

				{
	
	

					topRadius = GetDistance(isSmallScene);
	
	

				}
	
	

				edgeRolloff;
	10
	uimsbf

			} elseif (generatorType == ‘Plane’
	
	

				position = GetPosition(isSmallScene);
	
	

				width = GetDistance(isSmallScene);
	
	

				height = GetDistance(isSmallScene);
	
	

				edgeRolloff;
	10
	uimsbf

			}
	
	

			hasDistanceAttenuationFactor;
	1
	bslbf

			if (hasDistanceAttenuationFactor)
	
	

			{
	
	

				distanceAttenuationFactor;
	8
	uimsbf

			}
	
	

		}
	
	

	}
	
	



[bookmark: _Toc139470837][bookmark: _Ref139533022][bookmark: _Toc146548030][bookmark: _Toc166076601]Airflow payload syntax
Table 91 - Syntax of payloadAirflow()
	Syntax
	No. of bits
	Mnemonic

	payloadAirflow ()
	
	

	{
	
	

		numberOfAirFlowSources = GetCountOrIndex():
	
	

	
	
	

		for (i=0:numberOfAirFlowSources - 1)
	
	

		{
	
	

			hasCustomProfile;
	1
	bslbf

			if (hasCustomProfile)
	
	

			{
	
	

				profileType
	2
	uimsbf

				if (profileType == ‘freq-gain pairs’)
	
	

				{
	
	

					// per velocity frequency-gain pair lists
	
	

	[bookmark: _Hlk130816124]				numSpeedProfiles = GetCountOrIndex();
	
	

					numAziProfiles = GetCountOrIndex();
	
	

					numElevProfiles = GetCountOrIndex();
	
	

	
	
	

	
	
	

					for (k = 0:numSpeedProfiles-1)
	
	

					{
	
	

						freqGridIdx[i] = GetCountOrIndex();
	
	

						refSpeed[k];
	10
	uimsbf

						for (b = 0:fgdNrBands[freqGridIdx[i]] – 1)
	
	

						{
	
	

							speedProfile[k][b] = getGain(true);
	
	

						}
	
	

					}
	
	

	
	
	

					for (k = 0:numAziProfiles-1)
	
	

					{
	
	

						freqGridIdx[i] = GetCountOrIndex();
	
	

						refAzimuth[k];
	9
	uimsbf

						for (b = 0:fgdNrBands[freqGridIdx[i]] – 1)
	
	

						{
	
	

							azimuthProfile[k][b][0] = getGain(true);
	
	

							azimuthProfile[k][b][1] = getGain(true);
	
	

						}
	
	

					}
	
	

	
	
	

					for (k = 0:numElevProfiles-1)
	
	

					{
	
	

						freqGridIdx[i] = GetCountOrIndex();
	
	

						refElevation[k];
	9
	uimsbf

						for (b = 0:fgdNrBands[freqGridIdx[i]] – 1)
	
	

						{
	
	

							elevationProfile[k][b] = getGain(true);
	
	

						}
	
	

					}
	
	

	
	
	

				} elseif (profileType == ‘filterParameters’)
	
	

				{
	
	

					// per velocity list of centre freq , gain, Q.
	
	

	
	
	

					numSpeedProfiles = GetCountOrIndex();
	
	

					numAziProfiles = GetCountOrIndex();
	
	

					numElevProfiles = GetCountOrIndex();
	
	

	
	
	

					for (k = 0:numSpeedProfiles-1)
	
	

					{
	
	

						freqGridIdx[i] = GetCountOrIndex();
	
	

						refSpeed[k];
	10
	uimsbf

						for (b = 0:fgdNrBands[freqGridIdx[i]] – 1)
	
	

						{
	
	

							speedFilterGain[k][b] = getGain(true);
	
	

							speedFilterQ[k][b];
	7
	uimsfb

						}
	
	

					}
	
	

	
	
	

					for (k = 0:numAziProfiles-1)
	
	

					{
	
	

						freqGridIdx[i] = GetCountOrIndex();
	
	

						refAzimuth[k];
	9
	uimsbf

						for (b = 0:fgdNrBands[freqGridIdx[i]] – 1)
	
	

						{
	
	

							azimuthFilterGain[k][b][0] = getGain(true);
	
	

							azimuthFilterGain[k][b][1] = getGain(true);
	
	

							azimuthFilterQ[k][b][0];
	7
	uimsfb

							azimuthFilterQ[k][b][1];
	7
	uimsfb

						}
	
	

					}
	
	

	
	
	

					for (k = 0:numElevProfiles-1)
	
	

					{
	
	

						freqGridIdx[i] = GetCountOrIndex();
	
	

						refElevation[k];
	8
	uimsbf

						for (b = 0:fgdNrBands[freqGridIdx[i]] – 1)
	
	

						{
	
	

							elevationFilterGain[k][b] = getGain(true);
	
	

							elevationFilterQ[k][b];
	7
	uimsfb

						}
	
	

					}
	
	

				}
	
	

			} else {
	
	

				profile; //specify which LUT to use.
	2
	uimsbf

			}
	
	

			generatorID[i] = GetID();
	
	

			activeInDefaultRegion;
	1
	bslbf

			hasValidRegions;
	1
	bslbf

			if (hasValidRegions)
	
	

			{
	
	

				numRegions = GetCountOrIndex();
	
	

				for (e =0:numRegions-1)
	
	

				{
	
	

					activeRegionID[i][e] = GetID();
	
	

				}
	
	

			}
	
	

	
	
	

	
	
	

	
	
	

	}
	
	



[bookmark: _Toc166076602]Granular payload syntax
Table 92 - Syntax of payloadGranular()
	Syntax
	No. of bits
	Mnemonic

	payloadGranular()
	
	

	{
	
	

		numberOfGranularDatabases=GetCountOrIndex();                                                                       
	
	

		for (int i=0; i<numberOfGranularDatabases; i++) {
	
	

			granularID = GetID();
	
	

			GranularAudioEncodingMode=GetCountOrIndex();
	
	

			DescriptorCoordinateDimensions=GetCountOrIndex();
	
	

			numberOfChannels=GetCountOrIndex();
	
	

			numberOfGrains;  
	20
	uimsbf

	
	
	

			for (int i=0; i<DescriptorCoordinateDimensions; i++) {
	
	

				coordScaling[i];
	10
	uimsbf

				smoothingTargetCoordinates[i]
	10
	uimsbf

			}
	 
	

			searchRadius;
	10
	uimsbf

			grainHistoryLength=GetCountOrIndex();
	
	

			numMixRule=GetCountOrIndex();
	
	

			for (int i=0; i<numMixRule; i++) {
	
	

				grainMixRule[i] 
	8
	uimsbf

				for (int j=0; j< DescriptorCoordinateDimensions; j++) {
	
	

					grainMixingRuleCoordinates[i][j] 
	16
	uimsbf

				}
	
	

			}
	
	

			fastGrainSwitchThresholdAvailable;
	1
	bslbf

			if (fastGrainSwitchThresholdAvailable) {
	
	

				fastGrainSwitchThreshold;
	10
	uimsbf

			}
	
	

			probabilityExponentPosition;
	8
	uimsbf

			probabilityWeightPosition;
	16
	uimsbf

			probabilityExponentHistory;
	8
	uimsbf

			probabilityWeightHistory;
	16
	uimsbf

			descrTrendAvailable;
	1
	bslbf

			if (descrTrendAvailable) {
	
	

				probabilityExponentTrend;
	8
	uimsbf

				probabilityWeightTrend;
	16
	uimsbf

				descrTrendMethod=GetCountOrIndex();
	
	

			}
	
	

			originalRecordingPositionAvailable;
	1
	bslbf

			if (originalRecordingPositionAvailable) {
	
	

				probabilityExponentOriginalRecordingPosition;
	8
	uimsbf

				probabilityWeightOriginalRecordingPosition;
	16
	uimsbf

			}
	
	

			probabilityGroupsAvailable;
	1
	bslbf

			perGrainProbabilityAvailable;
	1
	bslbf

			if (probabilityGroupsAvailable) {
	
	

				numProbGroups=GetCountOrIndex();
	
	

				For (int i=0; i<numProbGroups;i++) {
	
	

					probabilityGroupVal[i];
	16
	uimsbf

				}
	
	

			}
	
	

			randomSelection;
	1
	bslbf

			useInterpolation;
	1
	bslbf

			if (useInterpolation){
	
	

				grainInterpolationDistThreshold;
	10
	uimsbf

				useInterpolationResampling;
	1
	bslbf

				InterpolationMethod=GetCountOrIndex();
	
	

				for (int i=0; i< DescriptorCoordinateDimensions;i++) {
	
	

					pitchDimension[i];
	1
	bslbf

				}
	
	

			}           
	
	

			grainOverlapAmountAvailable;
	1
	uimsbf

			if (grainOverlapAmountAvailable) {
	
	

				grainOverlapAmount;
	10
	uimsbf

			}
	
	

			for (int j=0; j<numberOfGrains; j++) {
	
	

				ReadGrain();
	
	

			}
	
	

		} 
	
	

	}
	
	



Table 93 - Syntax of ReadGrain()
	Syntax
	No. of bits
	Mnemonic

	ReadGrain()
	
	

	{
	
	

		for (int i = 0; i < DescriptorCoordinateDimensions; i++) {
	
	

			DescrCoord [i];
	16
	uimsbf

		}	
	
	

		GrainLen; 
	18
	uimsbf

		if (descrTrendAvailable){
	
	

			for (int i = 0; i < DescriptorCoordinateDimensions; i++) {
	
	

				DescrCoordTrend[i];
	16
	uimsbf

			}	
	
	

		}
	
	

		if (originalRecordingPositionAvailable) {	
	
	

			origRecordingPos;
	16
	uimsbf

		}
	
	

	
	
	

		if (probabilityGroupsAvailable) {
	
	

			grainProbabilityGroup=GetCountOrIndex();
	
	

		}
	
	

	
	
	

		if (perGrainProbabilityAvailable) {
	
	

			perGrainProbabilityValue;
	16
	uimsbf

		}
	
	

	
	
	

		switch (GranularAudioEncodingMode) {
	
	

			case 0: { //No compression
	
	

				for (int j=0; j<numberOfChannels; j++) {
	
	

					for (int i=0; i<GrainLen; i++) {
	
	

						GrainSamples[i][j];
	16
	uimsbf

					}
	
	

				}
	
	

				break;
	
	

			}
	
	

			case 1: { //PCM data from separately provided PCM signal
	
	

				grainSampleIndex;
	32
	uimsbf

				break;
	
	

			}
	
	

		}
	
	

	}
	
	




[bookmark: _Toc166076603][bookmark: _Ref116064867][bookmark: _Toc117076340][bookmark: _Toc131497361][bookmark: _Toc132126365][bookmark: _Toc132225934][bookmark: _Toc135210122]RasterMap payload syntax
Table 94 - Syntax of payloadRasterMap()
	Syntax
	No. of bits
	Mnemonic

	[bookmark: _Hlk146884798]payloadRasterMap()
	
	

	{
	
	

		numberOfVoxSubScenes = GetCountOrIndex();
	for (int i = 0; i < numberOfVoxSubScenes; i ++) {
		rasterMapSubScene();
	}
	



	




	}
	
	



Table 95 - Syntax of rasterMapSubScene()
	[bookmark: _Hlk157432080]Syntax
	No. of bits
	Mnemonic

	rasterMapSubScene()
	
	

	{
	
	

		hasVoxSceneDiffractionRasterMap;
	if (hasVoxSceneDiffractionRasterMap) {
		numRasterMapSources = GetCountOrIndex();
		for (int s = 0; s < numRasterMapSources; s++) {
			rasterMapSourceIdLen[s] = GetCountOrIndex();
			for (int i = 0; i < numRasterMapSources; i++) {
				rasterMapSourceId[s][i] = GetID();
			}
			numRasterMapLayers[s];
			for (int l = 0; l < numRasterMapLayers[s]; l++) {
				rasterMap[s][l] = rasterMapLayer(l);
			}
		}
	}
	1







3





	bslbf







Uimsbf






	}
	
	



Table 96 - Syntax of rasterMapLayer()
	[bookmark: _Hlk157432258]Syntax
	No. of bits
	Mnemonic

	rasterMapLayer(l)
	
	

	{
	
	

		vcX = 0;
	vcY = -1;

	codebookVcX = genericCodebook();
	codebookVcY = genericCodebook();
	codebookWpX = genericCodebook();
	codebookWpY = genericCodebook();

	numRasterMapVoxels = GetID();
	for (int v = 0; v < numRasterMapVoxels; v++) {
					
		vcY += 1;
		hasVoxelCoordY;
		if (hasVoxelCoordY) {
			vcY = codebookVcY.get_symbol();

			vcX += 1;
			hasVoxelCoordX;
			if (hasVoxelCoordX) {
				vcX = codebookVcX.get_symbol();
			}
		}
	











1




1




	











bslbf

vlclbf


bslbf

vlclbf



			this.voxelCoordX[v] = vcX;
		this.voxelCoordY[v] = vcY;

		this.refMode[v];
		if (this.refMode[v] == 0) {
			mapChange;
			this.waypointX[v] = codebookWpX.get_symbol();
			this.waypointY[v] = codebookWpY.get_symbol();
			this.waypointL[v] = l - mapChange;
		}
	}
	return this;
	


2

1






	


uimsbf

uimsbf
vlclbf
vlclbf





	}
	
	



[bookmark: _Ref166054331][bookmark: _Toc166076604]Support Elements
Support elements are functions that are called to read and decode the raw bitstream into internal renderer parameters.
Table 97 - Syntax of GetID()
	Syntax
	No. of bits
	Mnemonic

	id = GetID()
	
	

	{
	
	

		id = idVal;
	7
	uimsbf

		while (largerValue)
	1
	bslbf

		{
	
	

			idVal;
	7
	uimsbf

			id = id * 128 + idVal;
	
	

		}
	
	

	
	
	

		return id;
	
	

	}
	
	



idVal	ID value or partial ID value.
largerValue	Flag that indicates whether the ID value is larger.

Table 98 - Syntax of GetCountOrIndex()
	Syntax
	No. of bits
	Mnemonic

	number = GetCountOrIndex()
	
	

	{
	
	

	   number = LUT(countOrIndexLoCode);
	
	vlclbf

	   if (isLargerNumber)
	1
	bslbf

	   {
	
	

	      numberHi = LUT(countOrIndexHiCode);
	
	vlclbf

	      number = number + numberHi * 64;
	
	

	   }
	
	

	
	
	

	   return number;
	
	

	}
	
	



countOrIndexLoCode	Code indicating the lower bits of a count or index value.
LUT()	Executes query on look-up table corresponding to the field whose name is provided as argument. The look-up tables used by the support elements are listed in A.14.
isLargerNumber	Flag indicating whether more bits are sent to indicate a larger number.
countOrIndexHiCode	Code indicating the higher bits of a count or index value, see table in Annex A.14.



Table 99 - Syntax of GetDuration()
	Syntax
	No. of bits
	Mnemonic

	duration = GetDuration( isLongRangeMode)
	
	

	{
	
	

		deciSeconds = LUT(deciSecondsCode);
	var
	vlclbf

		duration = deciSeconds;
	
	

		if (addMilliseconds)
	1
	bslbf

		{
	
	

			miliSeconds = LUT(milliSecondsCode);
	var
	vlclbf

			duration = duration + miliSeconds;
	
	

			if (addMicroseconds)
	1
	bslbf

			{
	
	

				microseconds = LUT(microsecondsCode);
	var
	vlclbf

				duration = duration + microseconds;
	
	

			}
	
	

	   	}
	
	

		if (addSeconds)
	1
	bslbf

		{
	
	

			if (isLongRangeMode) 
	
	

			{
	
	

				duration = duration + rawSeconds;
	12
	uimsbf

				if (addHours)
	1
	bslbf

				{
	
	

	[bookmark: _Hlk94603000]				duration = duration + (rawHours + 1) * 3600;
	5
	uimsbf

				}
	
	

			}
	
	

			else
	
	

			{
	
	

				seconds = LUT(secondsCode);
	var
	vlclbf

				duration = duration + seconds;
	
	

			}
	
	

		}
	
	

	
	
	

	
	
	

		return duration;
	
	

	}
	
	



deciSecondsCode	Code for indicating decimal seconds duration offset.
addMilliseconds	Flag indicating whether milliseconds duration offset is transmitted next.
milliSecondsCode	Code for indicating milliseconds duration offset.
addMicroseconds	Flag indicating whether microseconds duration offset is transmitted next.
microsecondsCode	Code for indicating number of microseconds duration offset.
addSeconds	Flag indicating whether seconds duration offset is transmitted next.
secondsCode	Code for indicating seconds duration offset.
rawSeconds	Value indicating seconds duration offset in case of an initialization data point. Valid values in range 0..3600.
rawHours	Value indicating seconds duration offset in case of an initialization data point.


Table 100 - Syntax of Getfrequency()
	Syntax
	No. of bits
	Mnemonic

	frequency = GetFrequency()
	
	

	{
	
	

		frequency = LUT(frequencyCode);
	var
	vlclbf

		if (moreAccuracy)
	1
	bslbf

		{
	
	

			frequency = frequency * 2^((frequencyRefine + 1) / 51);
	4
	uimsbf

		}
	
	

		return frequency;
	
	

	}
	
	



frequencyCode	Code that indicates a center frequency in Hz of a one-third octave band.
moreAccuracy	Flag that indicates whether data for a more accurate frequency is transmitted.
frequencyRefine	Field that indicates a value for refining the frequency value.

Table 101 - Syntax of GetPosition()
	Syntax
	No. of bits
	Mnemonic

	position = GetPosition(isSmallScene)
	
	

	{
	
	

		for c = 0:2
	
	

		{
	
	

			coord = GetDistance(isSmallScene);
	
	

			isNegative;
	1
	bslbf

			if (isNegative)
	
	

			{
	
	

				position[c] = -1 * coord;
	
	

			} else
	
	

			{
	
	

				position[c] = coord;
	
	

			}
	
	

		}
	
	

		return position;
	
	

	}
	
	



[bookmark: _Hlk95133516]position	Contains a position in [x, y, z] coordinates.
isNegative	Flag that indicates whether the coordinate magnitude in coord is in the negative direction (1) or positive direction (0) of the corresponding dimension.

Table 102 - Syntax of GetDistance()
	Syntax
	No. of bits
	Mnemonic

	distance = GetDistance(isSmallScene)
	
	

	{
	
	

		meters = LUT(metersCode);
	var
	vlclbf

		distance = meters;
	
	

		if (isSmallScene == false)
	
	

		{
	
	

			if (addHectometers)
	1
	bslbf

			{
	
	

				hectometers = LUT(hectometersCode);
	var
	vlclbf

				distance = distance + 100 * hectometers;
	
	

				while (addKilometers)
	1
	bslbf

				{
	
	

					kilometers = LUT(kilometersCode);
	var
	vlclbf

					distance = distance + kilometers * 1000;
	
	

				} 
	
	

			}
	
	

		}
	
	

		if (addCentimeters)
	1
	bslbf

		{
	
	

			centimeters = LUT(centimetersCode);
	var
	vlclbf

			distance = distance + centimeters / 100;
	
	

			if (addMillimeters)
	1
	bslbf

			{
	
	

				millimeters = LUT(millimetersCode);
	var
	vlclbf

				distance = distance + millimeters / 1000;
	
	

			}
	
	

		}
	
	

		return distance;
	
	

	}
	
	



metersCode		Code for indicating meters coordinate offset.

addHectometers	Flag indicating whether hectometers coordinate offset is transmitted next.
hectometersCode	Code for indicating hectometers coordinate offset.

addKilometers		Flag indicating whether kilometers coordinate offset is transmitted next.
kilometersCode	Code for indicating kilometers coordinate offset. Multiple occurrences can be provided for distances beyond 10 km.

addCentimeters	Flag indicating whether centimeters coordinate offset is transmitted next.
centimetersCode	Code for indicating centimeters coordinate offset.

addMillimeters		Flag indicating whether millimeters coordinate offset is transmitted next.
millimetersCode	Code for indicating millimeters coordinate offset.

Table 103 - Syntax of GetOrientation()
	Syntax
	No. of bits
	Mnemonic

	orientation = GetOrientation()
	
	

	{
	
	

		orientation = LUT(orientationCode);
	var
	vlclbf

		if (orientationCode == 'Default angles') 
	
	

		{
	
	

			orientation[0] = LUT(defaultYawCode);
	var
	vlclbf

			orientation[1] = LUT(defaultPitchCode);
	var
	vlclbf

			orientation[2] = LUT(defaultRollCode); 
	var
	vlclbf

		} elseif (orientationCode == 'Explicit angles') 
	
	

		{
	
	

			for (o = 0:2)
	
	

			{
	
	

				coarseAngle = LUT(coarseAngleCode); 
	var
	vlclbf 

				angle = coarseAngle;
	
	

				if (addFineAngle)
	1
	bslbf

				{
	
	

					fineAngle = LUT(fineAngleCode);
	var
	vlclbf

					angle = angle + fineAngle;
	
	

				}
	
	

				orientation[o] = angle;
	
	

			}
	
	

		} elseif (orientationCode == ‘High resolution angles’)
	
	

		{
	
	

			for (o = 0:2)
	
	

			{
	
	

				orientation[o] = angleVal;
	32
	float

			}
	
	

		}
	
	

		return orientation;
	
	

	}
	
	



orientationCode	Code for orientation, indicating either a default orientation or one of two escape values for which further data defines the orientation.

defaultYawCode	Code for a default yaw angle.

defaultPitchCode	Code for a default pitch angle.

defaultRollCode	Code for a default roll angle.

coarseAngleCode	Code for a coarse angle indication in steps of 5 degrees.


addFineAngle	Flag indicating whether finer granularity angle data is transmitted.
fineAngleCode	Code for a fine angle indication in steps of 0.1 degrees.



Table 104 - Syntax of GetGain()
	Syntax
	No. of bits
	Mnemonic

	gain = GetGain(isHiPrecGain)
	
	

	{
	
	

		gain = LUT(coarseGainCode);
	var
	vlclbf

		if (addFineGain)
	1
	bslbf

		{
	
	

			fineGain = LUT(fineGainCode);
	var
	vlclbf

			gain = gain + fineGain;
	
	

		}
	
	

		if (isHiPrecGain)
	
	

		{
	
	

			if (addDecimalGain)
	1
	bslbf

			{
	
	

				decimalGain = LUT(deciGainCode);
	var
	vlclbf

				gain = gain + decimalGain;
	
	

			}
	
	

		}
	
	

		return gain;
	
	

	}
	
	



isHiPrecGain	Input argument indicating whether the gain is a high precision gain with 0.1 dB accuracy.
coarseGainCode	Code for a coarse gain value (in dB).

addFineGain	Flag indicating whether further data is transmitted to provide a finer resolution gain value.
fineGainCode	Code for a finer gain resolution (1 dB resolution).

addDecimalGain	Flag indicating whether further data is transmitted to provide a decimal precision gain code.
decimalCode	Code for a decimal value.
Table 105 - Syntax of GetAudioSourceRescale()
	Syntax
	No. of bits
	Mnemonic

	audioSourceRescale = GetAudioSourceRescale()
	
	

	{
	
	

		for d = 0:2
	
	

		{
	
	

			audioSourceRescale[d] = LUT(decimalCode);
	var
	vlclbf

		}
	
	

		return audioSourceRescale;
	
	

	}
	
	



audioSourceRescale	Rescale factors used to modify the position of audio elements.
Table 106 - Syntax of GetTolerance()
	Syntax
	No. of bits
	Mnemonic

	tolerance = GetTolerance()
	
	

	{
	
	

		for d = 0:5
	
	

		{
	
	

			tolerance[d] = LUT(decimalCode);
	var
	vlclbf

		}
	
	

		return tolerance;
	
	

	}
	
	



decimalCode	Percentage of scene region that remains outside of LSDF region,(max x-dimension, min x-dimension, max y-dimension, min y-dimension, max z- dimension, min z-dimension).
[bookmark: _Toc165022038][bookmark: _Toc165022039][bookmark: _Toc117076341][bookmark: _Toc131497362][bookmark: _Toc132126366][bookmark: _Toc132225935][bookmark: _Toc135210123][bookmark: _Toc166076605]Data structure
[bookmark: _Toc117076342][bookmark: _Toc131497363][bookmark: _Toc132126367][bookmark: _Toc132225936][bookmark: _Toc135210124][bookmark: _Toc166076606]General
In environments that require byte alignment, MPEG-I Immersive Audio configuration elements or payload elements that are not an integer number of bytes in length are padded at the end to achieve an integer byte count. This is indicated by the function ByteAlign()	.
noOfBits denotes the No. of bits used for transmission of a given parameter as noted in the respective bitstream syntax table containing said parameter.
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Geometry
Mesh Geometry Data
Scene geometry can be described by meshes. Mesh data is arithmetically coded for efficient transmission in the bitstream. Only the vertices, faces, and associated material IDs per face are coded. 
Acoustic materials are used for geometries to determine their acoustic properties. These materials are transmitted in the bitstream using efficient arithmetic coding. An acoustic material lists, per frequency: specular reflection coefficient, diffuse scattering coefficient, transmission coefficient, and a coupling coefficient.
The detailed decoding procedure is described in 6.5.
Static geometry for Early Reflection and Diffraction Stage
The static mesh data for the Early Reflection and the Diffraction Stage is derived via geometry data conversion.
The earlySurfaceFaceIdx[s][f] bitstream elements of the earlySurfaceData() payload component specify the triangle index of the static early reflection geometry which is derived as follows:
The decoder iterates over all meshes and geometric primitives in bitstream order and if the isEarlyReflectionMesh flag or the isEarlyReflectionPrimitive flag is set, then a mesh representation of the geometric object is added to a list of geometries. The static early reflection mesh is then generated by concatenating the mesh data (i.e. vertices and triangles) as follows (with meshHandle being a pointer to the instance of the static early reflection mesh):
for (const auto& geo : geometries) {
    const auto& mesh_new = geo->getMesh();
    const auto& vertices = meshHandle->getVertices();
    size_t v0 = vertices.size();

    // add vertices
    const auto& vertices_new = mesh_new->getVertices();
    for (const auto& v : vertices_new) {
        meshHandle->addVertex(v);
    }

    // add triangles
    const auto& triangles_new = mesh_new->getTriangles();
    for (const auto& t : triangles_new) {
        meshHandle->addTriangle(v0 + t.v1, v0 + t.v2, v0 + t.v3, t.material);
    }
}
The static diffraction mesh is derived in a very similar way with the difference being that cylinder primitives are added to the geometries list, if the isStatic flag is set and if the cylinder has material data. Consequently, the static early reflection mesh and the static diffraction mesh only differ by the mesh data for cylinders which are handled separately by the Early Reflection Stage (see Section 6.6.6.3.5).
The mesh representation is retrieved in the source code above via geo->getMesh().
For a sphere, an icosahedron with the following vertices and faces is used as basis:
a = 0.2929428;
b = 0.47399141;
sphere_vertices = {
    {-a,  b,  0},
    { a,  b,  0},
    {-a, -b,  0},
    { a, -b,  0},
    { 0, -a,  b},
    { 0,  a,  b},
    { 0, -a, -b},
    { 0,  a, -b},
    { b,  0, -a},
    { b,  0,  a},
    {-b,  0, -a},
    {-b,  0,  a}
};
sphere_faces = {
    {0, 11, 5},
    {0, 5, 1},
    {0, 1, 7},
    {0, 7, 10},
    {0, 10, 11},
    {1, 5, 9},
    {5, 11, 4},
    {11, 10, 2},
    {10, 7, 6},
    {7, 1, 8},
    {3, 9, 4},
    {3, 4, 2},
    {3, 2, 6},
    {3, 6, 8},
    {3, 8, 9},
    {4, 9, 5},
    {2, 4, 11},
    {6, 2, 10},
    {8, 6, 7},
    {9, 8, 1}
};
For a cylinder, the following mesh is used as basis:
a = 0.5086662;
b = 0.4405178;
c = 0.2543331;
cylinder_vertices = {
    { a,  0.5,  0},
    { b,  0.5,  c},
    { c,  0.5,  b},
    { 0,  0.5,  a},
    {-c,  0.5,  b},
    {-b,  0.5,  c},
    {-a,  0.5,  0},
    {-b,  0.5, -c},
    {-c,  0.5, -b},
    { 0,  0.5, -a},
    { c,  0.5, -b},
    { b,  0.5, -c},
    { a, -0.5,  0},
    { b, -0.5,  c},
    { c, -0.5,  b},
    { 0, -0.5,  a},
    {-c, -0.5,  b},
    {-b, -0.5,  c},
    {-a, -0.5,  0},
    {-b, -0.5, -c},
    {-c, -0.5, -b},
    { 0, -0.5, -a},
    { c, -0.5, -b},
    { b, -0.5, -c},
    { 0,  0.5,  0},
    { 0, -0.5,  0}
};
cylinder_faces = {
    {11, 0, 12},
    {11, 12, 23},
    {0, 1, 13},
    {0, 13, 12},
    {1, 2, 14},
    {1, 14, 13},
    {2, 3, 15},
    {2, 15, 14},
    {3, 4, 16},
    {3, 16, 15},
    {4, 5, 17},
    {4, 17, 16},
    {5, 6, 18},
    {5, 18, 17},
    {6, 7, 19},
    {6, 19, 18},
    {7, 8, 20},
    {7, 20, 19},
    {8, 9, 21},
    {8, 21, 20},
    {9, 10, 22},
    {9, 22, 21},
    {10, 11, 23},
    {10, 23, 22},
    {24, 1, 0},
    {24, 2, 1},
    {24, 3, 2},
    {24, 4, 3},
    {24, 5, 4},
    {24, 6, 5},
    {24, 7, 6},
    {24, 8, 7},
    {24, 9, 8},
    {24, 10, 9},
    {24, 11, 10},
    {24, 0, 11},
    {25, 12, 13},
    {25, 13, 14},
    {25, 14, 15},
    {25, 15, 16},
    {25, 16, 17},
    {25, 17, 18},
    {25, 18, 19},
    {25, 19, 20},
    {25, 20, 21},
    {25, 21, 22},
    {25, 22, 23},
    {25, 23, 12}
}
For a box, the following mesh is used as basis:
a = 0.5;
b = 0.5;
c = 0.5;
box_vertices = {
    {-a,  b,  c},
    { a,  b,  c},
    {-a, -b,  c},
    { a, -b,  c},
    {-a,  b, -c},
    { a,  b, -c},
    {-a, -b, -c},
    { a, -b, -c}
};
box_faces = {
    {1, 0, 2},
    {1, 2, 3},
    {4, 5, 7},
    {4, 7, 6},
    {5, 4, 0},
    {5, 0, 1},
    {3, 2, 6},
    {3, 6, 7},
    {0, 4, 6},
    {0, 6, 2},
    {5, 1, 3},
    {5, 3, 7}
}
These base vertices are then transformed according to the position, orientation, and size values of the primitives() payload component.
[bookmark: _Ref138939720]Voxel Geometry Data
Voxel-based scene representation is loss-less coded for its efficient storage and transmission in the bitstream. Only the integer grid indices of two bounding voxels are considered per one voxel block element associated with one material ID. All voxels (of the voxel block i) with grid indices between these bounding voxels (corresponding to the variables start and end) share the same material ID (defined by the variable voxSceneElementMatID), where 
	start = voxSceneElementPosS[i]
	end = voxSceneElementPosE[i]

All sequentially specified overlapping voxel block elements override the corresponding voxel material IDs inside of the overlapping region. The sequential specification of voxel block elements allows to describe level of details progressively - from the most significant to significant less important scene geometry elements.
The uncompressed voxel scene data is represented by the 3D matrix variable VoxDataMatrix is defined by the payload element voxSceneElements() using the following pseudo code:
for (int i = 0; i < numberOfVoxSceneElements; i++) {
	PackedPosS[i] = voxSceneElementPosPackedS[i]
	PackedPosE[i] = voxSceneElementPosPackedE[i]
	for (int j = 0; j < 3; j++) {
		(voxSceneElementPosS[i][j], PackedPosS[i]) = FunctionUnpackPos(PackedPosS[i], 
			voxSceneDimensions[j])
		(voxSceneElementPosE[i][j], PackedPosE[i]) = FunctionUnpackPos(PackedPosE[i],
 			voxSceneDimensions[j])
		start[j] = voxSceneElementPosS[i][j]
 		end[j] = voxSceneElementPosE[i][j]
	}
	for (int x = start[0]; x <= end[0]; x++) {
		for (int y = start[1]; y <= end[1]; y++) {
			for (int z = start[2]; z <= end[2]; z++) {
				VoxDataMatrix[x][y][z] = voxSceneElementMatID[i]
			}
		}
	}
}

where

(UnpackedPos, PackedData) = FunctionUnpackPos(PackedData, Dimension)
{
	UnpackedPos = mod(PackedData, Dimension) + 1
	PackedData = floor(PackedData / Dimension)
}

The same approach is used for uncompressing of the 2D marix variable VoxDataDiffractionMap used for the diffraction modeling processing stage. If the 2D marix variable VoxDataDiffractionMap is specified by the encoder (i.e., voxSceneDiffractionMapPresentFlag == 1), it is defined by the bitstream payload element voxSceneDiffractionMap(); otherwise (i.e., voxSceneDiffractionMapPresentFlag == 0), it is defined by the bitstream payload element voxSceneElements() using the following pseudo code:
if (voxSceneDiffractionMapPresentFlag == 1) {
	for (int i = 0; i < numberOfVoxDiffractionMapElements; i++) {
		PackedPosS[i] = voxDiffractionMapPosPackedS[i]
		PackedPosE[i] = voxDiffractionMapPosPackedE[i]
		for (int j = 0; j < 2; j++) {
			(voxDiffractionMapPosS[i][j], PackedPosS[i]) = FunctionUnpackPos(PackedPosS[i],
 				voxSceneDimensions[j])
			(voxDiffractionMapPosE[i][j], PackedPosE[i]) = FunctionUnpackPos(PackedPosE[i],
 				voxSceneDimensions[j])		
	
			start[j] = voxDiffractionMapPosS[i][j]
 			end[j] = voxDiffractionMapPosE[i][j]
		}
		for (int x = start[0]; x <= end[0]; x++) {
			for (int y = start[1]; y <= end[1]; y++) {
				VoxDataDiffractionMap[x][y] = voxDiffractionMapValue[i]
			}
		}
	}
} else {
	if (voxSceneDiffractionMapHeightPresentFlag) {
		H = voxSceneDiffractionMapHeight
	} else {
		H = round(0.5*voxSceneDimensions[2])
	}
	for (int x = 0; x < voxSceneDimensions[0]; x++) {
		for (int y = 0; y < voxSceneDimensions[1]; y++) {
			VoxDataDiffractionMap[x][y] = VoxDataMatrix[x][y][H]
		}
	}
}

Mapping of voxel positions to global scene coordinates is defined by two reference points voxScenePosS and voxScenePosE specifying two voxel extreme scene corner positions and the number of voxels voxSceneDimensions per each scene dimension. Each of two reference points has three floating point values that represent a point in Cartesian space in meters.
Table 107 — Mapping of two bounding voxel positions to the global scene coordinates
	Coordinates of scene corners
	Corresponding voxels and grid indeces

	voxScenePosS
	VoxDataMatrix[0][0][0]

	voxScenePosE
	VoxDataMatrix[voxSceneDimensions[0]-1]
[voxSceneDimensions[1]-1][voxSceneDimensions[3]-1]



Once VoxDataMatrix and VoxDataDiffractionMap are created, the uncompressed voxel-based scene representation data is used in the renderer pipeline. The method for conversion between uncompressed and compressed data representation formats is specified in 6.3.2.1.4.
The same approach is used for uncompressing the voxel scene diffraction pre-computed path data represented by the set of variables voxDiffractionPathStartVoxel, voxDiffractionPathEndVoxel and voxDiffractionSourceDirection, it is defined by the bitstream payload element voxSceneDiffractionPreComputedPathData() using the following pseudo code:

// Encoding mode for voxel scene diffraction pre-computed path data
if (pcpdFull) {

// Full encoding mode for pre-computed diffraction data
for (int i = 0; i < numStartPositions; i++) {
	if (pcpdPresentForStartPosition[i]) {
		startPosition = pcpdStartVoxelPacked[i].unpack()
		// Previous path information
		prev = {}
		// Traverse the diffraction map
		for(int x = 1; x < voxSceneDimensions[0]; ++x) {
			for(int y = 1; y < voxSceneDimensions[1]; ++y) {
				endPosition = [ x, y ]
				if(!pcpdPathExistFlag[i][x][y]) {
					continue;
				}

				if(!pcpdUsePreviousPath[i][x][y]) {
					// Complete data-point
					sourceDirection[startPosition, endPosition] = pcpdSourceDirectionPacked[i][x][y].unpack()
pathLength[startPosition, endPosition] = pcpdPathLength[i][x][y]
					// Update memory
prev.sourceDirection = sourceDirection[startPosition, endPosition]
					prev.pathLength = pathLength[startPosition, endPosition]
				} else {
sourceDirection[startPosition, endPosition] = prev.sourceDirection
					// Delta-coding of path-length
					delta_table = {1, sqrt(2)-1, 1-sqrt(2), -1}
[bookmark: _Hlk139551449]pathLength[startPosition, endPosition] = prev.pathLength + delta_table[delta[i][x][y]]
					prev.PathLength = pathLength[startPosition, endPosition]
				}
			}
		}
}
} else {

// Selective encoding mode for pre-computed diffraction data
for (i = 0; i < pcpdNumStartPositions; ++i) {
    // Previous path information
	prev = {}
	startPosition = pcpdStartVoxelPacked[i].unpack()
	numEndPositions = pcpdNumEndPositions[i]
	for(j = 0; j < numEndPositions; ++j) {
		endPosition = pcpdEndVoxelPacked[i][j].unpack()
		if(pcpdPathExistFlag[i][j]) {
			if(!pcpdUsePreviousSourceDirection[i][j]) {
				sourceDirection[startPosition][endPosition] = 
					pcpdSourceDirectionPacked[i][j].unpack()
				prev.sourceDirection = sourceDirection[startPosition][endPosition]
			} else {
				sourceDirection[startPosition][endPosition] = prev.sourceDirection
			}
			pathLength[startPosition][endPosition] = pcpdPathLength[i][j]
		}
	}
}
}

// Helper function to unpack packed voxel coordinates
unpack(packedCoordinate, voxSceneDimensions) {
	unpackedCoordinate = {}
	for (int j = 0; j < voxSceneDimensions.size(); j++) {
		(unpackedCoordinate[j], packedCoordinate) =
			FunctionUnpackPos(packedCoordinate, voxSceneDimensions[j])
	}
	reuturn unpackedCoordinate;
}

[bookmark: _Ref149140092]Conversion of matrix to voxel block representation format
The voxel-based scene representation is coded lossless for its efficient storage and transmission. The voxel matrix vox to compressed format BS_vox conversion is defined by the following pseudo-code:
// ---------------------------------------------------------------------------------------
// Voxel matrix to voxel blocks conversion
//
// Input
//  voxel_matrix
// Output 
//  voxel_blocks
//   id: matrix entry in the voxel block element
//   p0: voxel indices of the first (start) voxel defining the voxel block element
//   p1: voxel indices of the second (end) voxel defining the voxel block element
// ---------------------------------------------------------------------------------------

convert_voxel_matrix_to_blocks
{
    vox_matrix_tmp = voxel_matrix;
    for (unsigned int x = 0; x < dim[0]; ++x) {
        for (unsigned int y = 0; y < dim[1]; ++y) {
            for (unsigned int z = 0; z < dim[2]; ++z) {
              mat_id id = vox_matrix_tmp[x][y][z]
                if (id != 0) {
                    if (materials.find(id) != materials.end()) {
                        materials.emplace(id);
                    }
                }
            }
        }
    }
    for (mat_id id : materials) { 
        std::array<unsigned int, N> last_ps = {0, 0, 0};
        do {
            bool vox_matrix_id_is_empty = true;
            unsigned int x, y, z;
            voxel_block block;
            for (z = last_ps[2]; z < dim[2]; ++z) {
                for (y = last_ps[1]; y < dim[1]; ++y) {
                    for (x = last_ps[0]; x < dim[0]; ++x) {
                        if (vox_matrix_tmp[x][y][z] == id) {
                            vox_matrix_id_is_empty = false;
                            break;
                        }
                    }
                    last_ps[0] = 0;
                    if (vox_matrix_id_is_empty == false)
                        break;
                }
                last_ps[1] = 0;
                if (vox_matrix_id_is_empty == false)
                    break;
            }
            last_ps[0] = 0;
            if (vox_matrix_id_is_empty)
                break;
            last_ps = ps; 
            // Block initialization
            std::array<unsigned int, N> ps{x, y, z};
            std::array<unsigned int, N> pe = ps;
            std::array<bool, N> checked_dim = {false, false, false};
            // Search voxel matrix for one voxel block
            for (unsigned int i = 0; i < N; i++)
                process_one_dimension(vox_matrix_tmp, id, ps, pe, checked_dim, dim);
            // Add voxel block to voxel block list
            block.id = id;
            block.p0 = ps;
            block.p1 = pe;
            voxel_bocks.push_back(block);
        } while (true);
    }
}

process_one_dimension
{
    for (unsigned int j = 0; j < N; j++) {
        i_e[j] = 0;
        D[j].clear();
        B[j].clear();
        for (unsigned int k = ps[j]; k <= pe[j]; k++) {
            B[j].push_back(k);
        }
    }
    for (unsigned int k = 0; k < N; k++) {
        if (checked_dim[k] == false) {
            for (unsigned int i = ps[k]; i < dim[k]; i++) {
                i_e[k] = i + 1;
                unsigned int P = min(i_e[k], dim[k] - 1);
                for (unsigned int j = 0; j < N; j++)
                    D[j] = B[j];
                D[k] = std::vector<unsigned int>(1, P);
                bool is_empty = false;
                for (unsigned int x : D[0]) {
                    for (unsigned int y : D[1]) {
                        for (unsigned int z : D[2]) {
                            if (vox_matrix[x][y][z] != id) {
                                is_empty = true;
                                break;
                            }
                        }
                        if (is_empty == true)
                            break;
                    }
                    if (is_empty == true)
                        break;
                }
                if (is_empty == true)
                    break;
            }
        }
    }
    // Find dimension with maximum value
    int max_val = std::numeric_limits<int>::lowest()
    int max_dim = 0;
    for (unsigned int j = 0; j < N; j++) {
        int diff = (int)i_e[j] - (int)ps[j];
        if (diff > max_val) {
            max_val = diff;
            max_dim = j;
        }
    }
    pe[max_dim] = i_e[max_dim] - 1;
    B[max_dim].clear();
    for (unsigned int k = ps[max_dim]; k <= pe[max_dim]; k++)
        B[max_dim].push_back(k);
    // Clear block in voxel matrix
    for (unsigned int x : B[0])
        for (unsigned int y : B[1])
            for (unsigned int z : B[2])
                vox_matrix_id[x][y][z] = 0;
    checked_dim[max_dim] = true;
}

Directivity payload data structure
directivitiesCount	This value represents the number of source directivities that are present in the payload. 
directivityId	This value is the identifier for this source directivity
directivityCodedLength	This integer represents the size of the coded source directivity data in Bytes.
direcCoverCount	This integer represents the number of covers that are available.
direcFreqQuantType	This integer determines the quantization type of the frequency for every cover.
Table 108 — Value of direcFreqQuantValue
	Quantization Type
	Value

	Octave Quantization
	0

	Third Octave Quantization
	1

	Sixth Octave Quantization
	2

	Integer Quantization
	3



direcUseRawBaseline	This flag determines which mode of quantization that the cover is using. If true, it uses the baseline mode, if false, it uses the optimized mode.

[bookmark: _Ref142653433]Diffraction payload data structure
Data belonging to diffrVoxelGrid():
diffVoxelOriginX	This element indicates the X-coordinate of the voxel at the origin of the scene. Trimesh python library can generate its coordinate from a given scene.
diffVoxelOriginY	This element indicates the Y-coordinate of the voxel at the scene origin.
diffVoxelOriginZ	This element indicates the Z-coordinate of the voxel at the scene origin.
diffVoxelPitchX	This element indicates the side length of a voxel along the X axis.
diffVoxelPitchY	This element indicates the side length of a voxel along the Y axis.
diffVoxelPitchZ	This element indicates the side length of a voxel along the Z axis.
diffVoxelShapeX	This element indicates the number of voxels along the Y axis within the voxelized scene.
diffVoxelShapeY	This element indicates the number of voxels along the Y axis within the voxelized scene.
diffVoxelShapeZ	This element indicates the number of voxels along the Z axis within the voxelized scene.

Data belonging to diffrStaticEdgeList():
diffrHasStaticEdgeData	This element indicates the presence of static edge data.
codebookEdgeID	This element is the generic codebook for the edgeId element.
codebookVtxID	This element is the generic codebook for the edgeVertexId1  and edgeVertexId2 element.
codebookTriID	This element is the generic codebook for the elements  edgeAdjacentTriangleID1 and edgeAdjacentTriangleID2.
numberOfStaticEdges	This element indicates the number of potential edges on the combined static geometry which can be created from a single or multiple static geometries.
staticEdge[i]	This element contains the data structure of a static diffraction edge. 

Data belonging to diffrEdges():
edgeId	This element indicates the edge Id starting from 0 as a non-negative integer.
edgeVertexId1	Two vertex points are allocated to define unique edge position and this element, which refers to the static diffraction mesh, indicates the first edge vertex Id of a given edge.
edgeVertexId2	This element, which refers to the static diffraction mesh, indicates the second edge vertex Id of a given edge.
edgeVertexPos1X	This internal element represents the X coordinate of the first edge vertex of a given edge. It is a copy of the X coordinate of vertices[edgeVertexId1] of the static diffraction mesh.
edgeVertexPos1Y	This internal element represents the Y coordinate of the first edge vertex of a given edge. It is a copy of the Y coordinate of vertices[edgeVertexId1] of the static diffraction mesh.
edgeVertexPos1Z	This internal element represents the Z coordinate of the first edge vertex of a given edge. It is a copy of the Z coordinate of vertices[edgeVertexId1] of the static diffraction mesh.
edgeVertexPos2X	This internal element represents the X coordinate of the second edge vertex of a given edge. It is a copy of the X coordinate of vertices[edgeVertexId2] of the static diffraction mesh.
edgeVertexPos2Y	This internal element represents the Y coordinate of the second edge vertex of a given edge. It is a copy of the Y coordinate of vertices[edgeVertexId2] of the static diffraction mesh.
edgeVertexPos2Z	This internal element represents the Z coordinate of the second edge vertex of a given edge. It is a copy of the Z coordinate of vertices[edgeVertexId2] of the static diffraction mesh.
edgeVectorX	This internal element represents the X coordinate of the edge vector edgeVector:
edgeVectorX = edgeVertexPos2X – edgeVertexPos1X
edgeVectorY	This internal element represents the Y coordinate of the edge vector edgeVector:
edgeVectorY = edgeVertexPos2Y – edgeVertexPos1Y
edgeVectorZ	This internal element represents the Z coordinate of the edge vector edgeVector:
edgeVectorZ = edgeVertexPos2Z – edgeVertexPos1Z
edgeNormalizedDirectionX	This internal element represents the X coordinate of the normalized edge vector:
edgeNormalizedDirectionX = edgeVectorX / norm(edgeVector)
edgeNormalizedDirectionY	This internal element represents the Y coordinate of the normalized edge vector:
edgeNormalizedDirectionY = edgeVectorY / norm(edgeVector)
edgeNormalizedDirectionZ	This internal element represents the Z coordinate of the normalized edge vector:
edgeNormalizedDirectionZ = edgeVectorZ / norm(edgeVector)
edgeLength	This internal element represents the edge length in meter: 
edgeLength = norm(edgeVector)
edgeAdjacentTriangleId1	This element, which refers to the static diffraction mesh, represents the triangle Id of the first adjacent triangle.
edgeAdjacentTriangleId2	This element, which refers to the static diffraction mesh, represents the triangle Id of the second adjacent triangle.
edgeAdjacentTriangle1Vertex0	This internal element represents the first vertex Id of the first adjacent triangle. It is a copy of the static diffraction mesh triangle triangles[edgeAdjacentTriangleId1][0].
edgeAdjacantTriangle1Vertex1	This internal element represents the second vertex Id of the first adjacent triangle. It is a copy of the static diffraction mesh triangle triangles[edgeAdjacentTriangleId1][1].
edgeAdjacantTriangle1Vertex2	This internal element represents the third vertex Id of the first adjacent triangle. It is a copy of the static diffraction mesh triangle triangles[edgeAdjacentTriangleId1][2].
edgeAdjacantTriangle2Vertex0	This internal element represents the first vertex Id of the second adjacent triangle. It is a copy of the static diffraction mesh triangle triangles[edgeAdjacentTriangleId2][0].
edgeAdjacantTriangle2Vertex1	This internal element represents the second vertex Id of the second adjacent triangle. It is a copy of the static diffraction mesh triangle triangles[edgeAdjacentTriangleId2][1].
edgeAdjacantTriangle2Vertex2	This internal element represents the third vertex Id of the second adjacent triangle. It is a copy of the static diffraction mesh triangle triangles[edgeAdjacentTriangleId2][2].
edgeAdjacantTriangle1CenterX	This internal element represents the X coordinate of the first adjacent triangle’s centroid (computed by the mean of the static diffraction mesh vertices defined above).
edgeAdjacantTriangle1CenterY	This internal element represents the Y coordinate of the first adjacent triangle’s centroid (computed by the mean of the static diffraction mesh vertices defined above).
edgeAdjacantTriangle1CenterZ	This internal element represents the Z coordinate of the first adjacent triangle’s centroid (computed by the mean of the static diffraction mesh vertices defined above).
edgeAdjacantTriangle2CenterX	This internal element represents the X coordinate of the second adjacent triangle’s centroid (computed by the mean of the static diffraction mesh vertices defined above).
edgeAdjacantTriangle2CenterY	This internal element represents the Y coordinate of the second adjacent triangle’s centroid (computed by the mean of the static diffraction mesh vertices defined above).
edgeAdjacantTriangle2CenterZ	This internal element represents the Z coordinate of the second adjacent triangle’s centroid (computed by the mean of the static diffraction mesh vertices defined above).
edgeAdjacantTriangle1NormalX	This internal element represents the X coordinate of the first adjacent triangle’s surface normal (computed from the static diffraction mesh vertices defined above).
edgeAdjacantTriangle1NormalY	This internal element represents the Y coordinate of the first adjacent triangle’s surface normal (computed from the static diffraction mesh vertices defined above).
edgeAdjacantTriangle1NormalZ	This internal element represents the Z coordinate of the first adjacent triangle’s surface normal (computed from the static diffraction mesh vertices defined above).
edgeAdjacantTriangle2NormalX	This internal element represents the X coordinate of the second adjacent triangle’s surface normal (computed from the static diffraction mesh vertices defined above).
edgeAdjacantTriangle2NormalY	This internal element represents the Y coordinate of the second adjacent triangle’s surface normal (computed from the static diffraction mesh vertices defined above).
edgeAdjacantTriangle2NormalZ	This internal element represents the Z coordinate of the second adjacent triangle’s surface normal (computed from the static diffraction mesh vertices defined above).
edgeAngle	This element represents the angle of the edge. It is computed as follows:
center0 = {edgeAdjacantTriangle1CenterX,
           edgeAdjacantTriangle1CenterY,
           edgeAdjacantTriangle1CenterZ}
center1 = {edgeAdjacantTriangle2CenterX,
           edgeAdjacantTriangle2CenterY,
           edgeAdjacantTriangle2CenterZ}
normal0 = {edgeAdjacantTriangle1NormalX,
           edgeAdjacantTriangle1NormalY,
           edgeAdjacantTriangle1NormalZ}
normal1 = {edgeAdjacantTriangle2NormalX,
           edgeAdjacantTriangle2NormalY,
           edgeAdjacantTriangle2NormalZ}
angleAbs = 180 - acos(dot(normal0, normal1)) * 180 / pi
d0 = dot(normal0, center0)
center1_plane0_dist = dot(normal0, center1) - d0
angleSgn = sgn(center1_plane0_dist) * abs(angleAbs)
edgeAngle = mod(angleSgn + 360, 360)
edgeCenterPointX	This internal element represents the X coordinate of the center position of the edge.
edgeCenterPointY 	This internal element represents the Y coordinate of the center position of the edge.
edgeCenterPointZ 	This internal element represents the Z coordinate of the center position of the edge.
edgeCenterPointVisibilityTestX	This element represents the X coordinate of the position cp_vt used for the visibility check. The position cp_vt is computed as follows:
cp = {edgeCenterPointX,
      edgeCenterPointY,
      edgeCenterPointZ}
normal_sum = normal0 + normal1
normal_mean = normal_sum / norm(normal_sum)
cp_vt = cp + 0.001 * normal_mean
edgeCenterPointVisibilityTestY 	This element represents the Y coordinate of the position cp_vt used for the visibility check.
edgeCenterPointVisibilityTestZ 	This element represents the Z coordinate of the position cp_vt used for the visibility check.
edgeIsRounded	This element indicates if a given edge is a part of the rounded surface or not.
edgeIsRelevant	This element indicates if a given edge is potentially relevant for diffraction at a reachable listener location. For a static scene with static geometries and sources, it indicates if a given edge is reachable from a source with a given encoding parameters. For a dynamic edge, all edges are marked as relevant.

Data belonging to diffrStaticPathDict():
diffrHasStaticPathData	This element indicates the presence of static path data.
staticPathDict	This element contains the data structure of a static path dictionary. 

Data belonging to diffrPathDict():
codebookEdgeIDSeqLen	This element is the generic codebook for the element numberOfEdgesInPath.
codebookEdgeIDSeq	This element is the generic codebook for the element edgeId[i][j][k].
codebookAngleSeq	This element is the generic codebook for the element angle[i][j][k].
numBitsForAngle	This element represents the number of bits used for quantizing the element angle[i][j][k].
numberOfRelevantEdges	This element represents the number of relevant edges.
numberOfPaths	This element represents the number of potential paths for a given mesh and the process of decoding and allocating relevant path information into a certain type of data structure will be iteratively called as many as the given value. 
numberOfEdgesInPath	This element represents the number of edges included in a potential path and it can be considered as path order. This element will be used to generate a Path instance with the given number of relevant edges, faces/triangles, and angles.
edgeId[i][j][k]	This element indicates an edge Id to generate a Path instance. 
faceIndicator[i][j][k]	This element indicates which adjacent face/triangle is associated to define a diffraction direction along a given edge. 0 indicates the first adjacent triangle and 1 indicates the second adjacent triangle to the associated edge.
angle[i][j][k]	This quantized element represents an associated angle within a given path. The de-quantized angle sequence angleSeq[i][j][k] is derived from this element as follows:
quant2angle = 360 / (2 ^ numBitsForAngle)
angleSeq[i][j][k] = quant2angle * angle[i][j][k]

Data belonging to diffrListenerVoxelDict():
diffrHasListenerVoxelData	This element indicates the presence of listener voxel data.
codebookVcX	This element is the generic codebook for the element listenerVoxelGridIndexX.
codebookVcY	This element is the generic codebook for the element listenerVoxelGridIndexY.
codebookVcZ	This element is the generic codebook for the element listenerVoxelGridIndexZ.
codebookNumEdges	This element is the generic codebook for the element numberOfEdgesAdded.
codebookEdgeId	This element is the generic codebook for the element diffrListenerVoxelEdge[i][k].
codebookIndicesRemoved	This element is the generic codebook for the element diffrListenerVoxelIndexDiff[i][k].
numberOfListenerVoxels	This element represents the number of user-/listener-reachable voxels in a scene.
hasVoxelCoordZ	This element indicates the presence of z-coordinate data.
hasVoxelCoordY	This element indicates the presence of y-coordinate data.
hasVoxelCoordX	This element indicates the presence of x-coordinate data.
listenerVoxelGridIndexX[i]	This element represents the listener-reachable voxel X index.
listenerVoxelGridIndexY[i]	This element represents the listener-reachable voxel Y index.
listenerVoxelGridIndexZ[i]	This element represents the listener-reachable voxel Z index.
diffrListenerVoxelMode[i]	This element indicates the differential voxel encoding mode:
0: no reference voxel data
1: use neighbour in negative x-direction as reference
2: use neighbour in negative y-direction as reference
3: use neighbour in negative z-direction as reference
diffrListenerVoxelIndexDiff[i][k]	This element represents the differential encoding of the removal list indices.
numberOfEdgesAdded	This element represents the number of edges that are added to the list of listener-reachable edges for the current voxel.
diffrListenerVoxelEdge[i][j]	This element represents an edge Id that is added to the list of listener-reachable edges for the current voxel.
diffrListenerVoxelDatabase[l][j]	This element is the decoded listener voxel dictionary that contains for a voxel l the list of visible edge IDs.

Data belonging to diffrSourceVoxelDict():
diffrHasSourceVoxelData	This element indicates the presence of source voxel data.
numberOfStaticSources	This element represents the number of static sources in a scene.
staticSourceId	This element represents a static source’s Id.
numberOfVoxelsPerStaticSource	This element represents the number of occupied voxels by a static source.
sourceVoxelGridIndexX	This element represents the source voxel X index.
sourceVoxelGridIndexY	This element represents the source voxel Y index.
sourceVoxelGridIndexZ	This element represents the source voxel Z index.
numberOfEdgesPerSourceVoxel	This element represents the number of potential edges at a given source voxel.
sourceVisibleEdgeId	This element represents potential edge Id at a given source voxel. 

Data belonging to diffrValidPathDict():
diffrHasValidPathData	This element indicates the presence of valid path data.
numberOfValidStaticSources	This element represents the number of static sources.
validStaticSourceId	This element represents a static source Id.
codebookVcX	This element is the generic codebook for the element validListenerVoxelGridIndexX.
codebookVcY	This element is the generic codebook for the element validListenerVoxelGridIndexY.
codebookVcZ	This element is the generic codebook for the element validListenerVoxelGridIndexZ.
codebookNumPaths	This element is the generic codebook for the element numberOfPathsAdded[i][j].
codebookEdgeId	This element is the generic codebook for the element diffrValidPathEdge[i][j][k].
codebookPathId	This element is the generic codebook for the element diffrValidPathPath[i][j][k].
codebookIndicesRemoved	This element is the generic codebook for the element diffrValidPathIndexDiff[i][j][k].
numberOfMaximumListenerVoxels	This element represents the number of listener-reachable voxels.
validListenerVoxelGridIndexX[i][j]	This element represents the listener-reachable voxel’s X index to link the valid path data from a given source location.
validListenerVoxelGridIndexY[i][j]	This element represents the listener-reachable voxel’s Y index for valid path data
validListenerVoxelGridIndexZ[i][j]	This element represents the listener-reachable voxel’s Z index for valid path data.
diffrValidPathMode[i][j]	This elements indicates the differential voxel encoding mode:
0: no reference voxel data
1: use neighbour in negative x-direction as reference
2: use neighbour in negative y-direction as reference
3: use neighbour in negative z-direction as reference
diffrValidPathIndexDiff[i][j][k]	This element represents the differential encoding of the removal list indices.
numberOfPathsAdded[i][j]	This element represents the number of paths that are added to the list of valid paths for the current voxel.
diffrValidPathEdge[i][j][k]	This element represents the Id of the initial edge within a given valid path and this edge is visible to a given static source.
diffrValidPathPath[i][j][k]	This element represents the valid path index to make it possible to fetch the precomputed path from the list of paths starting from a given initial edge.

Data belonging to diffrDynamicEdges():
diffrHasDynamicEdgeData	This element indicates the presence of dynamic edge data.
dynamicGeometryCount	This element represents the number of dynamic geometries – the number of dynamic lists. 
geometryId[i]	This element represents a (dynamic) geometry Id which is used as a key when creating a dictionary of dynamic lists per dynamic geometry.
codebookEdgeID	This element is the generic codebook for the edgeId element.
codebookVtxID	This element is the generic codebook for the edgeVertexId1  and edgeVertexId2 element.
codebookTriID	This element is the generic codebook for the elements  edgeAdjacentTriangleID1 and edgeAdjacentTriangleID2.
dynamicEdgesCount	This element represents the number of edges on a given geometry.
dynamicEdge[i][j]	This element contains the data structure of a dynamic diffraction edge. 

Data belonging to diffrDynamicPaths():
diffrHasDynamicPathData	This element indicates the presence of dynamic path data.
dynamicGeometryCount	This element represents the number of dynamic geometries
relevantGeometryId	This element represents a (dynamic) geometry Id.
dynamicPathDict[g]	This element contains the data structure of a dynamic path dictionary.
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numberOfVoxSubScenes	This element represents the number of voxel-based sub-scenes.
voxScenePosS	This element represents the global coordinates of the first corner point defining the voxel scene dimensions.
voxScenePosE	This element represents the global coordinates of the second corner point defining the voxel scene dimensions.
voxSceneDimensions	This element represents the number of voxels for each voxel scene dimension.
numberOfVoxSceneElements	This element represents the number of block elements defining the voxel scene geometry.
voxSceneElementMatID	This element represents the material ID for the voxels in the voxel block element.
voxSceneElementPosPackedS	This element represents the packed form of the variable voxSceneElementPosS indicating the voxel indices of the first (start) voxel defining the voxel block element.
voxSceneElementPosPackedE	This element represents the packed form of the variable voxSceneElementPosE indicating the voxel indices of the second (end) voxel defining the voxel block element.
numberOfVoxSceneMaterials	This element represents the number of materials defined for the voxel (sub-) scene.
voxSceneMaterialID	This element represents the material ID for mapping the material properties to voxSceneElementMatID.
voxSceneOcclusionInstructionsPresentFlag	
		This element indicates whether the occlusion modelling instructions are present or not.
voxSceneOcclusionRecoveryFlag	This element indicates whether the occlusion recovery control value is present or not.
voxSceneOcclusionRecoveryValue	This element represents the control value for the occlusion recovery effect.
voxSceneOcclusionSourceMaterialDependencyFlag
This element indicates whether the occlusion modelling instructions for the source-material pendant deactivation are present or not.
numberOfSourceMaterialEntries	This element represents the number of source-material pairs for source-material pendant deactivation of the occlusion modelling.
voxSceneOcclusionSkipForObjectID	This element represents the object source ID (corresponding to objectSourceId) of the source-material pair for which occlusion modelling is skipped.
voxSceneOcclusionSkipForMaterialID	This element represents the material ID (corresponding to materialId) of the source-material pair for which occlusion modelling is skipped.
voxSceneDiffractionInstructionsPresentFlag
		This element indicates whether the diffraction modelling is material selective or not.
voxSceneDiffractionEnabledFlag	This element indicates whether the diffraction modelling is enabled for the corresponding material or not.
voxSceneDiffractionMapPresentFlag	This field indicates whether the diffraction map for diffraction modelling is present or not.
voxSceneDiffractionMapHeightPresentFlag	
		This field indicates whether the height for automatic generation of the diffraction map is present or not.
voxSceneDiffractionMapHeight	This field represents the height on which the scene is considered for an automatic generation of the diffraction map for diffraction modelling.
voxSceneDiffractionEffectControlFlag	
This element indicates whether the diffraction control value is present or not.
voxSceneDiffractionEffectControlValue	
This element represents the control value for the diffraction modelling effect.
numberOfVoxDiffractionMapElements	This element represents the number of block elements defining the voxel scene diffraction map.
voxDiffractionMapValue	This element represents the voxel type ID for the diffraction map in the voxel block element.
voxDiffractionMapPosPackedS	This element represents the packed form of the variable voxDiffractionMapPosS indicating the voxel indices of the first (start) voxel defining the diffraction map block element.
voxDiffractionMapPosPackedE	This element represents the packed form of the variable voxDiffractionMapPosE indicating the voxel indices of the second (end) voxel defining the diffraction map block element.
numberOfVoxSceneUpdates	This element represents the number of voxel scene geometry updates.
voxSceneUpdateID	This element represents the voxel scene geometry update ID.
voxSceneUpdateReferenceFlag	This element indicates whether the voxel scene geometry update has the reference position or not.
voxSceneUpdateReferencePos	This element represents the reference point for scene coordinate mapping to voxel indices. This reference point corresponds to the variable VoxScenePosS update.
numberOfVoxSceneUpdateSequences	This element represents the number of the update sequences.
voxSceneUpdateTime	This element represents the update duration in milliseconds.
numberOfVoxDiffractionPathData	This element represents the number of pre-computed diffraction path data sets.
voxDiffractionPathStartVoxelPacked	This element represents the packed form of the variable voxDiffractionPathStartVoxel indicating the voxel indices of the path start voxel of the pre-computed diffraction path.
voxDiffractionPathEndVoxelPacked	This element represents the packed form of the variable voxDiffractionPathEndVoxel indicating the voxel indices of the path end voxel of the pre-computed diffraction path.
voxDiffractionPathDataExistFlag	This element indicates whether the diffraction path exists or not.
voxDiffractionSourceDirectionPacked
This element represents the packed form of the variable voxDiffractionSourceDirection indicating the voxel indices of the voxel for determining diffracted source azimuth value.
voxDiffractionPathLength	This element represents the diffraction path length on the diffraction map 2D matrix.
pcpdPresent	This element indicates presence of pre-computed path data for voxel diffraction.
pcpdFull	Indicates pre-computed path data encoding mode. 0: selective, 1: full
pcpdPresentForStartPosition	Indicates whether pre-computed path data is available for a specific start position.
pcpdStartVoxelPacked	This element represents the packed form of the variable voxDiffractionPathStartVoxel indicating the voxel indices of the path start voxel of the pre-computed diffraction path.
pcpdEndVoxelPacked	This element represents the packed form of the variable voxDiffractionPathEndVoxel indicating the voxel indices of the path end voxel of the pre-computed diffraction path.
pcpdPathExistFlag	This element indicates whether the diffraction path exists or not.
pcpdUsePreviousPath	Indicates whether the previously transmitted path information shall be reused.
pcpdUsePreviousDirection	Indicates whether the previously transmitted direction information shall be reused.
pcpdSourceDirectionPacked	This element represents the packed form of the variable voxDiffractionSourceDirection indicating the voxel indices of the voxel for determining diffracted source azimuth value.
pcpdPathLength	This element represents the diffraction path length on the diffraction map 2D matrix.
pcpdPathDelta	Encoded path-length delta. Shall be encoded according to Table 109
[bookmark: _Ref149144730][bookmark: _Ref149144724]Table 109 – Encoding of pcpdPathDelta
	bits
	Value

	0b00
	1

	0b01
	sqrt(2)-1

	0b10
	1-sqrt(2)

	0b11
	-1




voxReflectionNumClustersPresentFlag	
		This flag indicates whether the number of clusters is present or not.
voxReflectionNumClusters	This element represents the number of clusters for the modelled early reflection incoming directions 
 = voxReflectionNumClusters + 2.
voxReflectionTuningIndoorOutdoorTypeFlag
Flag indicating the presence of additional gains (dB) to be used for early reflection rendering for indoor/outdoor environment types.
voxReflectionEarlyTuningIndoorGainDb
This value is the additional tuning gain (dB) to be used for early reflection rendering for the indoor environment type. 
It shall range between -119 to +12 (dB). Default value is 0 (dB).
voxReflectionEarlyTuningOutdoorGainDb
This value is the additional tuning gain (dB) to be used for early reflection rendering for the outdoor environment type. 
It shall range between -119 to +12 (dB). Default value is 0 (dB).
voxReflectionNumOriginsPresentFlag	
		This flag indicates whether the number of origin points is present or not.
voxReflectionNumOrigins	This element represents the number of origin points for the volumetric ray marching algorithm 
 = voxReflectionNumOrigins + 2.
voxReflectionSectorDownmixFlag	
		This element indicates whether the reflection modeling produces one rendering item per cluster or not.
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earlyTriangleCullingDistanceOrder1	Triangle culling distance for 1st order reflections.
earlyTriangleCullingDistanceOrder2	Triangle culling distance for 2nd order reflections.
earlySourceCullingDistanceOrder1	Source culling distance for 1st order reflections.
earlySourceCullingDistanceOrder2	Source culling distance for 2nd order reflections.

earlyVoxelGridOriginX	x-component of the Cartesian coordinate of the voxel grid origin [0,0,0].
earlyVoxelGridOriginY	y-component of the Cartesian coordinate of the voxel grid origin [0,0,0].
earlyVoxelGridOriginZ	z-component of the Cartesian coordinate of the voxel grid origin [0,0,0].

earlyVoxelGridPitchX	Voxel grid spacing along the x-axis (voxel width).
earlyVoxelGridPitchY	Voxel grid spacing along the y-axis (voxel length).
earlyVoxelGridPitchZ	Voxel grid spacing along the z-axis (voxel height).

earlyVoxelGridShapeX	Number of voxels along the x-axis.
earlyVoxelGridShapeY	Number of voxels along the y-axis.
earlyVoxelGridShapeZ	Number of voxels along the z-axis.

earlyHasSurfaceData	Flag indicating the presence of earlySurfaceData.
earlySurfaceDataLength	Length of the earlySurfaceData block in bytes.

earlyHasVoxelData	Flag indicating the presence of earlyVoxelData.
earlyVoxelDataLength	Length of the earlySurfaceData block in bytes.

earlySurfaceDistOffset	Offset in mm for earlySurfaceDist.
numberOfSurfaces	Number of surfaces.
earlySurfaceLengthFaceIdx	Array length of earlySurfaceFaceIdx.
earlySurfaceFaceIdx	List of triangle IDs.
earlySurfaceAzi	Array with azimuth angles specifying the surface normals in spherical coordinates (Hesse normal form).
earlySurfaceEle	Array with elevation angles specifying the surface normals in spherical coordinates (Hesse normal form).
earlySurfaceDist	Array with distance values (Hesse normal form).

numberOfVoxelPairs	Number of source & listener voxel pairs with available voxel data.
earlyVoxelL	Array with listener voxel indices.
earlyVoxelS	Array with source voxel indices.
earlyVoxelMode	Array specifying the encoding mode of the voxel data.
earlyVoxelIndicesRemovedDiff	Differentially encoded removal list specifying the indices of the reference reflection sequence list that shall be removed.
earlyVoxelNumPaths	Number of reflection paths.
earlyVoxelOrder	2D Array specifying the reflection order.
earlyVoxelSurf	Reflection sequences given as 3D array of surface indices.
lcEarlyNumberOfEnvironments	Number of low-complexity early reflection environments
lcEarlyEnvType	Type of low-complexity early reflection environments
Table 110 – Encoding of lcEarlyEnvType
	int
	Value

	0
	Not set

	1
	LCERindoor

	2
	LCERoutdoor

	3..15
	reserved



lcEarlyEnvironmentPriority	Priority of low-complexity environment
lcEarlyAmpFac1Db	First low-complexity outdoor amplification in dB
lcEarlyAmpFac2Db	Second low-complexity outdoor amplification  in dB
lcEarlyPreDelay1	First low-complexity outdoor predelay
lcEarlyPreDelay2	Second low-complexity outdoor predelay
lcEarlyBoundingBoxPositionX	X-position of low-complexity environment bounding box
lcEarlyBoundingBoxPositionY	Y-position of low-complexity environment bounding box
lcEarlyBoundingBoxPositionZ	Z-position of low-complexity environment bounding box
lcEarlyBoundingBoxOrientationYaw	Yaw orientation of low-complexity environment bounding box
lcEarlyBoundingBoxOrientationPitch	Pitch orientation of low-complexity environment bounding box
lcEarlyBoundingBoxOrientationRoll	Roll orientation of low-complexity environment bounding box
lcEarlyBoundingBoxSizeX	Size X of low-complexity environment bounding box
lcEarlyBoundingBoxSizeY	Size Y of low-complexity environment bounding box
lcEarlyBoundingBoxSizeZ	Size Z of low-complexity environment bounding box

Portal payload data structure
numPortals	This value indicates the total number of portals in the scene.
isExplicitPortalMode	Indicates whether the scene uses implicit or explicit portals. When true, explicit portal data is provided.
portalId	This value indicates a unique identification for each portal in the scene.
hasExtent	Flag indicating whether a portal extent geometry is indicated.
portalExtentId	This value indicates a unique identification of the geometry representing the spatial extent of this portal.
isConnectedToAE	Flag indicating whether either side is connected to an acoustic environment or neither.
portalEnv1	Indicates the first acoustic environment the portal is connected to.
isConnectedToSecondAE	Flag indicating whether on one side of the portal is a region that is not defined as an acoustic environment. Typically, the ‘outdoors’ region.
portalEnv2 	Indicates the second acoustic environment the portal is connected to.
hasMaterial	Flag indicating whether the portal has a material associated with it.
portalMaterialId	Material ID for the portal.
portalNormal	Indicates the normal vector for the portal, pointing into portalEnv1, and perpendicular to the centre of the portal.
explicitPortalProperties	Flag indicating whether explicit portal properties are provided. If not, these shall be derived from the portal extent geometry.
portalCenterPos	Location of the centre of the portal (x, y, z). 
equivalentPortalWidth	Explicit indication of a box-equivalent portal width. Size in x-axis direction if portalNormal were [0, 0, -1].
equivalentPortalHeight	Explicit indication of a box-equivalent portal height. Size in y-axis direction if portalNormal were [0, 0, -1].
equivalentPortalDepth	Explicit indication of a box-equivalent portal depth. Size in z-axis direction if portalNormal were [0, 0, -1].
hasPortal2PortalFactors	Flag indicating whether portal to portal factors are included in the portal payload.
hasAcousticLink	Flag indicating whether two portals are acoustically linked. When set to true, a portal2PortalFactor is available for those portals.
portal2PortalFactorCode	Huffman code indicating the portal2PortalFactor according to Table A.24 —. 
portalParentEnvId	ID of the acoustic environment to which the implicit portal applies.
hasAeLosVoxelData 	Flag indicating whether acoustic environment Line-of-Sight (LoS) voxel data is present. The AE LoS voxel data shall be such that the voxel grid covers at least a portion of an AE. 
numAEs	Indicates the number of AEs for which LoS voxel data is provided.
aeBsId	Bitstream identifier of the AE.
hasOutsideLosVoxelData	Flag indicating whether outside LoS voxel data is present. Outside LoS voxel data shall be created for portals which only have one AE defined to cover an area at the side of the portal where no AE connection is defined, in most cases covering an area in the “outside” region of the scene.
numOutsideAreas	Number of outside LoS voxel grids.
nVoxelsX	Number of voxels along the x-axis.
nVoxelsY	Number of voxels along the y-axis.
nVoxelsZ	Number of voxels along z-axis.
cornerP1	Coordinate of top-left AE bounding geometry diagonal corner-point. The bounding geometry shall be a rectangular axes-aligned region. If x, y, and z represent the corner coordinate vectors of the geometry then cornerP1 = [min(x), max(y), min(z)].
cornerP2	Coordinates of bottom-right AE bounding geometry diagonal corner-point. If x, y, and z represent the corner coordinate vectors of the geometry then cornerP1 = [max(x), min(y), max(z)]
voxelSideLenCm	Length of LoS voxel side in cm.
portalCount	Number of portals for which LoS data is provided.
portalBsId	Bitstream identifier of the portal for which LoS data is provided.
nLosBitMasks	Number of bitmasks the portal LoS info consists of.
nMaskBytes	Number of bytes in the run length encoded LoS bitmask.
maskByte	Run length encoded code value of LoS bitmask.
Reverberation payload data structure
revPresent	Flag indicating whether reverberation data is present.
revNrElements	Number of reverberation parameter set.
revAcEnvID	Identifier of the acoustic environment to which the reverberation parameter set relates.
revFreqGridIdx	Index in the list of frequency grids defined in FreqGridData().
revPredelay	Offset in seconds from where DSR is calculated in the RIR, a delay of 0 coincides with emission at the source.
revDelayLineCountPresent	Indicates whether reverb delay line count is present for the acoustic environment indicated by revAcEnvID.
revDelayLineCount	Decoded value of the number of delay lines for reverb controlling the computational complexity and quality (echo density and diffuseness) of reverberation rendering.
delayLineCountCode	Huffman code indicating the number of delay lines for reverb.
revRT60	RT60 time in seconds calculated from 0 to -30 dB in a linear part of the EDR, after early decay.
revDSR	Diffuse to Source energy Ratio. Diffuse reverberation energy is calculated from revPredelay into the RIR. Source energy is the total emitted source energy that gives rise to that diffuse energy.
dsrCode	Huffman code indicating the DSR value.
revRenderControlPresent	Indicates whether distance attenuation control data is present, overriding the default settings.
revDistanceGainDropDb	Decibel constant for controlling the amount of distance gain attenuation in late reverberation. Distance doubling reduces reverberation level by reverbDistanceGainDropDb decibels. When revRenderControlPresent == false, the default value is 1.5 dB.
revMinDistance	Minimum distance threshold applied to late reverberation distance gain attenuation. When revRenderControlPresent == false, the default value is 1 m.
revMultiRoomConfigPresent	Indicates whether multi-room reverberation rendering control data is present, overriding the default values.
revFadeEnabled	This field indicates whether late reverberation shall use reverberation fade-in outside the acoustic environment enclosure.
revFadeDistance	Distance in meters outside an acoustic environment enclosure at which fade in of that acoustic environment reverberation is started. When revMultiRoomConfigPresent == false, the default value is 1 m.
revHeadtrackingEnabled	This field indicates whether late reverberation shall use head tracking of late reverberation output channels for immersive reverberation rendering.
revARConfigPresent	Indicates whether reverberation control parameters are present for AR environments.
revLsdfTheoreticalRDRtoactualRDRdB	Offset in decibels to be added to the log base 10 of an RDR value obtained from a statistical diffuse approximation based on the RT60 value when RDR values have not been provided in an LSDF file or when overideLSDF_RDR is set. 
revLsdfRDRtoActualRDRdB	Offset in decibels to be added to the log base 10 of the RDR value obtained from an LSDF file. 
revOverrideLSDF_RDR	This field indicates whether late reverberation shall derive RDR values using a statistical diffuse approximation based on the RT60 value instead of the RDR values in an LSDF file.
revDefaultAEPresent 	Flag indicating whether Default AE data is present.
revHasCustomDefaultAE 	Flag signalling a transmitted customized Default AE.
revDefaultAEFreqGridIdx 	Index in the list of frequency grids defined in ReverbFreqGridData(), indicating the grid applicable for the Default AE parameters.
revDefaultAEPredelay 	Offset in seconds from where revDefaultAEDSR is calculated in the RIR, a delay of 0 coincides with emission at the source.
revDefaultAEDelayRatio 	Delay ratio used in calculation of delay line lengths for Default AE (VR) in 6.6.4.3.2.3.
revDefaultAEDelayMinMs	Minimum delay line length in milliseconds used in calculation of delay line lengths for Default AE (VR) in 6.6.4.3.2.3.
revDefaultAERT60 	Default AE RT60 time in seconds calculated from 0 to -30 dB in a linear part of the EDR, after early decay.
revDefaultAEDSR 	Default AE Diffuse to Source energy Ratio. 
revDefaultAEDistanceGainDropDb	Decibel constant for controlling the amount of distance gain attenuation in late reverberation for the Default AE. The default value is 6 dB.
[bookmark: _Hlk133434884]revDefaultAEMinimumDistance	Minimum distance threshold applied to Default AE late reverberation distance gain attenuation. The default value is 5 m.
[bookmark: _Hlk125652422]revDefaultAEPreset	Index into a table containing Default AE presets. See A.3 for preset tables.
[bookmark: _Hlk125719761]Table 111 – Value of revDefaultAEPreset.
	bits
	ID
	Meaning

	0b000000
	0
	Default AE preset 0

	0b000001
	1
	Default AE preset 1

	0b000010
	2
	Default AE preset 2

	0b000011
	3
	Default AE preset 3

	0b000100
	4
	Default AE preset 4

	0b000101
	5
	Default AE preset 5

	0b000110
	6
	Default AE preset 6

	0b000111 - 0b111111 
	7-63
	Reserved



revHasDefaultAEGain 	Flag signalling whether an overall reverberation gain of the Default AE is transmitted. 
revDefaultAEGain	Overall gain for the late reverberation of the Default AE.
revHasDefaultAEDelayRatio 	Flag signalling a transmitted delay ratio overriding the respective preset value for the Default AE.
revHasDefaultAEDistanceGainDrop 	Flag signalling a transmitted distance gain drop overriding the respective preset value for the Default AE.
revHasDefaultAEMinDist 	Flag signalling a transmitted minimum distance overriding the respective preset value for the Default AE.


Audio plus payload data structure
The Audio Plus Payload contains Audio Plus metadata for audio elements with extent. For more information on the type of audio elements that have Audio Plus metadata see B.2.2.
numberOfSources	Number of audio elements with Audio Plus metadata
For each audio element with Audio Plus metadata, the following metadata is specified:
audioSourceId	Source ID of audio element.
distanceGainModel	Choice of distance gain model (bool). 0 means volumetric model, 1 means point-source model.
hasDiffuseness	Flag signalling if the audio element has a diffuseness parameter (bool).
diffuseness	Diffuseness of the audio element (float) in the range 0.0 to 1.0, where 1.0 means fully diffuse.

Dispersion Payload Data Structure
enableDispersionFilterER	A boolean flag that enables or disables the dispersion filter processing for early reflections sounds.
enableDispersionFilterDiffr	A boolean flag that enables or disables the dispersion filter processing for diffracted sounds.
codedDispersionFilterLength	The coded value of dispersionFilterLengthMSec. dispersionFilterLengthMSec = (codedDispersionFilterLength +1)*2;
codedDispersionFilterGain	The coded value of dispersionFilterGaindB. dispersionFilterGaindB =  codedDispersionFilterGain – 21;
enableSpatialDispersion	A parameter that enables spatial dispersion processing.

[bookmark: _Ref133496397][bookmark: _Hlk132137211]Scene plus payload data structure
sceneDuration	This value is duration of the scene in seconds. If the duration is 0.0, then the scene shall loop. This value represents a range between 0.0 and 180.0. To dequantize it to a floating point value, use the following equation:
	
	(3)



 sceneType	This flag determines the type of the scene, either a VR or an AR scene.
Table 112 — Value of sceneType
	bits
	sceneType

	0b0
	VR

	0b1
	AR



transformsCount	This value is the number of transforms in this payload.
transformId	This value represents the unique identifier for this transform
transformPositionX	This value represents the Cartesian spatial position of the transform along the x dimension in meters
transformPositionY	This value represents the Cartesian spatial position of the transform along the y dimension in meters
transformPositionZ	This value represents the Cartesian spatial position of the transform along the z dimension in meters
transformOrientationYaw	This value represents the Euler orientation of the transform in the Yaw axis in degrees
transformOrientationPitch	This value represents the Euler orientation of the transform in the Pitch axis in degrees
transformOrientationRoll	This value represents the Euler orientation of the transform in the Roll axis in degrees
transformCoordSpace	This flag represents in which coordinate system the transform refers to.
Table 113 — Value of transformCoordSpace
	bits
	transformCoordSpace

	0b0
	RELATIVE

	0b1
	USER



anchorsCount	This value is the number of anchors in this payload
anchorId	This value represents the unique identifier for this anchor.
anchorLsdfRef	This string is the reference for the LSDF anchor which is known to the renderer via the LSDF. The LSDF anchor indicates the position of the anchor in the listener space.
audioStreamsCount	This value is the number of audio streams in this payload
audioStreamId	This value represents the unique identifier for this audio stream.
isLocallyCaptured	This flag indicates that the audio content of the stream is provided to the renderer via local capturing in real time and thus is not available as an audio file at encoding time. The number of input channels is assumed to be one if the flag is set.
audioStreamFilePath	This string is the file path to the respective WAV file for this audio stream. The path is relative to the bitstream itself. 
inputChannelsCount	This value represents the number of Input Channels for this audio stream.
inputChannelIndex	This value is the input channel index. 
granularSoundsCount	This value is the number of granular sounds in this payload
granularSoundId	This value represents the unique identifier for this granular sound.
granularDatabaseFilePath	This string is the file path to the respective granular database file for this granular sound. The path is relative to the bitstream itself. 
granularSoundChannels   	This value represents the number of channels of this granular sound. 
materialsCount	This value represents how many acoustic materials are in this payload.
materialId	This value represents the unique identifier for this acoustic material
materialCodedLength	This integer represents the length of the coded material binary in bytes
sourceDirectivitiesCount	This value represents how many source directivities are in this payload.
sourceDirectivityId	This value represents the unique identifier for this source directivity.
primitivesCount	This value represents the number of primitive geometries are in this payload
primitiveType	This integer represents the type of primitive geometry.
Table 114 — Value of primitiveType
	bits
	primitiveType

	0b00
	BOX

	0b01
	SPHERE

	0b10
	CYLINDER

	0b11
	RESERVED



primitiveId	This value represents the unique identifier for this primitive.
primitivePositionX	This value represents the Cartesian spatial position of the primitive along the x dimension in meters
primitivePositionY	This value represents the Cartesian spatial position of the primitive along the y dimension in meters
primitivePositionZ	This value represents the Cartesian spatial position of the primitive along the z dimension in meters
primitiveOrientationYaw	This value represents the Euler orientation of the primitive in the Yaw axis in degrees
primitiveOrientationPitch	This value represents the Euler orientation of the primitive in the Pitch axis in degrees
primitiveOrientationRoll	This value represents the Euler orientation of the primitive in the Roll axis in degrees
primitiveCoordSpace	This flag represents in which coordinate system the primitive refers to.
Table 115 — Value of primtiiveCoordSpace
	bits
	primitiveCoordSpace

	0b0
	RELATIVE

	0b1
	USER



primitiveSizeX	This value represents the size of the primitive along the X axis in meters. The interpretation of this variable is dependent on the primitiveType. 
primitiveSizeY	This value represents the size of the primitive along the Y axis in meters. The interpretation of this variable is dependent on the primitiveType. 
primitiveSizeZ	This value represents the size of the primitive along the Z axis in meters. The interpretation of this variable is dependent on the primitiveType. 
primitiveHasMaterial	This flag indicates if this primitive has an acoustic material attributed to it.
primitiveMaterialId	This value is the identifier of an acoustic material.
primitiveHasSpatialTransform	This flag indicates if this primitive has a parent spatial transform.
primitiveHasAnchor	This flag indicates if this primitive’s spatial transform is an anchor. If false, then the parent is a regular transform.
primitiveParentAnchorId	This value represents the unique identifier for the parent anchor.
primitiveParentTransformId	This value represents the unique identifier for the parent transform.
isPrimitiveStatic	This flag indicates if the primitive is static or dynamic. If static, then the primitive is stationary throughout the entire duration of the scene, whereas the position of the primitive is updatable if it is dynamic.
isEarlyReflectionPrimitive	This flag indicates if the primitive is added by the geometry data converter to the static mesh for the Early Reflection Stage. 
meshesCount	This value is the number of meshes in this payload.
meshId	This value is a unique identifier for this mesh.
meshCodedLength	This integer is the length of the coded mesh data in bytes, this data is decoded by meshFaces(), (Table 76).
meshPositionX	This value represents the Cartesian spatial position of the mesh along the x dimension in meters.
meshPositionY	This value represents the Cartesian spatial position of the mesh along the y dimension in meters.
meshPositionZ	This value represents the Cartesian spatial position of the mesh along the z dimension in meters.
meshOrientationYaw	This value represents the Euler orientation of the mesh in the Yaw axis in degrees.
meshOrientationPitch	This value represents the Euler orientation of the mesh in the Pitch axis in degrees.
meshOrientationRoll	This value represents the Euler orientation of the mesh in the Roll axis in degrees.
meshCoordSpace	This flag represents in which coordinate system the mesh refers to.
Table 116 — Value of meshCoordSpace
	bits
	meshCoordSpace

	0b0
	RELATIVE

	0b1
	USER



meshHasSpatialTransform	This flag indicates if this mesh has a parent spatial transform.
meshHasAnchor	This flag indicates if this mesh’s spatial transform is an anchor. If false, then the parent is a regular transform.
meshParentAnchorId	This value represents the unique identifier for the parent anchor.
meshParentTransformId	This value represents the unique identifier for the parent transform.
isMeshStatic	This flag indicates if the mesh is static or dynamic. If static, then the mesh is stationary throughout the entire duration of the scene, whereas the position of the mesh is updatable if it is dynamic.
isEarlyReflectionMesh	This flag indicates if the mesh is added by the geometry data converter to the static mesh for the Early Reflection Stage.environmentsCount	This value represents the number of acoustic environments in this payload.
acousticParametersCount	This value represents the number of acoustic parameters in this environment.
paramPosX	This value represents the Cartesian spatial position of the acoustic parameter along the x dimension in meters.
paramPosY	This value represents the Cartesian spatial position of the acoustic parameter along the y dimension in meters.
paramPosZ	This value represents the Cartesian spatial position of the acoustic parameter along the z dimension in meters.
environmentId	This value is the unique identifier for this acoustic environment.
acousticRegionId	This value is the unique identifier for the geometry that represents the region in this environment. 
objectSourcesCount	This value represents the number of object sources in this payload.
hasInputLayout	This flag indicates if the object source has an input layout. An input layout can map multi-channel audio to create an extended sound source.
inputLayoutAlignment	This flag indicates the anchoring mode: either “user” or “object”. 
Table 117 — Value of inputLayoutAlignment
	bits
	inputLayoutAlignment

	0b0
	USER

	0b1
	OBJECT



inputLayoutTL	This flag indicates if the source is projected to the top left of the user spatial observation plane.
inputLayoutT	This flag indicates if the source is projected to the top center of the user spatial observation plane.
inputLayoutTR	This flag indicates if the source is projected to the top right of the user spatial observation plane.
inputLayoutL	This flag indicates if the source is projected to the middle left of the user spatial observation plane.
inputLayoutC	This flag indicates if the source is projected to the direct center of the user spatial observation plane.
inputLayoutR	This flag indicates if the source is projected to the middle right of the user spatial observation plane.
inputLayoutBL	This flag indicates if the source is projected to the bottom left of the user spatial observation plane.
inputLayoutB	This flag indicates if the source is projected to the bottom center of the user spatial observation plane.
inputLayoutBR	This flag indicates if the source is projected to the bottom right of the user spatial observation plane.
objectSourceId	This value represents the unique identifier for the object source.
objectSourcePositionX	This value represents the Cartesian spatial position of the object source along the x dimension in meters.
objectSourcePositionY	This value represents the Cartesian spatial position of the object source along the y dimension in meters.
objectSourcePositionZ	This value represents the Cartesian spatial position of the object source along the z dimension in meters.
objectSourceOrientationYaw	This value represents the Euler orientation of the object source in the Yaw axis in degrees.
objectSourceOrientationPitch	This value represents the Euler orientation of the object source in the Pitch axis in degrees.
objectSourceOrientationRoll	This value represents the Euler orientation of the object source in the Roll axis in degrees.
objectSourceCoordSpace	This flag represents in which coordinate system the object source refers to.
Table 118 — Syntax of objectSourceCoordSpace
	bits
	objectSourceCoordSpace

	0b0
	RELATIVE

	0b1
	USER



objectSourceActive	This flag represents if the object source will be rendered.
objectSourceGainDb	This value is the Gain (dB) that adjusts the level of this object source. It ranges between -119.0 to 36.0.
objectSourceHasReverbGain	This flag indicates that this object source has reverbGainDb parameter set.
objectSourceReverbGainDb	This value is the reverb gain (dB) of this object source. It shall range between -119.0 to +12.0. Default value is 0 (dB) 
objectSourceRefDistance	This value is the reference distance (m) of the object source. The reference distance is the point in which the source becomes 0dB, which is useful for the distance attenuation law.
 objectSourceSignalId	This value represents the unique audio stream identifier that this object source requires for its audio.
objectSourceHasExtent	This flag indicates if the object source is spatially extended.
objectSourceExtentId	This value is the unique geometry identifier that represents the extent of this object source.
objectSourceHasDirectivity	This flag indicates if the object source has directivity data attributed to it.
objectSourceDirectivityId	This value is the unique directivity identifier for that this object source uses for its directivity data.
objectSourceDirectiveness	This value is directiveness coefficient for directivity, indicating its strength. The range is between 0.0 and 20.0. To dequantize it to a floating point value, use the following equation:
	
	[bookmark: _Ref116994916](4)


objectSourceNoReverb	This flag indicates that no reverberation shall be applied to this object source.
objectSourceNoDoppler	This flag indicates that no Doppler shifts shall be applied to this object source.
objectSourceNoDistance	This flag indicates that no distance attenuation shall be applied to this object source.
objectSourceNoDirectionalFocus	This flag indicates that directional focus processing shall not be applied to this object source.
objectSourceNoCulling	This flag indicates that this object source shall not be removed by culling algorithms.
objectSourceMode	This flag indicates the playback mode for this object source.
Table 119 — Value of objectSouceMode
	bits
	objectSourceMode

	0b0
	CONTINUOUS

	0b1
	EVENT



objectSourcePlay	This flag indicates if playback is enabled for this object source.
objectSourceVDLMethod	This indicates the VDL method combination to be used for the particular object source with the bits vdlMethod. In case that no argument is being provided, “spline” VDL method will be used as a default setting.
objectSourceHasSpatialTransform	This flag indicates if this object source has a parent spatial transform.
objectSourceHasAnchor	This flag indicates if this object source’s spatial transform is an anchor. If false, then the parent is a regular transform.
objectSourceParentAnchorId	This value represents the unique identifier for the parent anchor.
objectSourceParentTransformId	This value represents the unique identifier for the parent transform.
isObjectSourceStatic	This flag indicates if the object source is static or dynamic. If static, then the object source is stationary throughout the entire duration of the scene, whereas the position of the object source is updatable if it is dynamic. 
hoaGroupsCount	This value represents how many HOA groups are in this payload.
hoaGroupId	This value represents the unique identifier for this HOA group.
hoaGroupHasRegion	This flag indicates if this HOA group has a region attributed to it.
hoaGroupRegionId	This value is the unique geometry identifier that represents the region of validity for this HOA group.
[bookmark: _Hlk131681226]hoaGroupHasFreqBandConfig	A value equal to 0 indicates that the 6DoF HOA rendering utilizes all the frequency bins specified in the Appendix A.10. A value equal to 1 indicates that the 6DoF HOA rendering utilizes the frequency bins/bands as specified in Section 6.6.26.3.1.4.
highestSingleBinBandsIndex	Indicates the highest bin index until which all the frequency bins specified in Appendix A.10 are used as single bins for the subsequent rendering for the particular HOA group. 
lowestHighBandIndex	Indicates the lowest bin index above all the frequency bins are merged and treated as a single bin for the subsequent rendering for the particular HOA group. Additionally, this value also indicates the maximum frequency limit index for spatial metadata calculation, comprising DOA and DTR.
intermediateBandsERBWidth 	Indicates the ERB width for merging the frequency bins in between the highestSingleBinBandsIndex and the lowestHighBandIndex.
exteriorRenderingProjectioRadius 	Indicates the exterior projection radius for exterior 6DoF HOA rendering.
adaptiveExteriorRenderingProjectionRadius 	Indicates whether the exterior projection radius for 6DoF HOA rendering is modified based on informed source positions.
hoaGroupHasInformedSources 	Indicates if the HOA group has informed sources. 
maxSimulInformedSources 	Indicates the maximum number of active informed sources for a particular HOA group.
informedSourceCount 	Indicates the number of informed sources for a particular HOA group. 
informedSourceId 	Indicates a unique identifier for the informed source. 
informedSourcepositionX	Indicates the position of the informed source in cartesian coordinate X axis (in OpenGL notation) with reference to the origin of the audio scene coordinates system. The original value in meters is quantized with .
informedSourcepositionY	Indicates the position of the informed source in cartesian coordinate Y axis (in OpenGL notation) with reference to the origin of the audio scene coordinates system. The original value in meters is quantized with .
informedSourcepositionZ	Indicates the position of the informed source in cartesian coordinate Z axis (in OpenGL notation) with reference to the origin of the audio scene coordinates system. The original value in meters is quantized with .
listenerThresholdPresent 	A value equal to 1 indicates the presence of audio source or informed source distance threshold with respect to the listener position in the audio scene. A value equal to 0 indicates the absence of any such listener proximity threshold. 
hoaSourceThresholdPresent 	A value equal to 1 indicates the presence of audio source or informed source distance threshold with respect to the HOA source position in the audio scene. A value equal to 0 indicates the absence of any such HOA source proximity threshold. 
lpdInformedSourceEnableThreshold 	Specifies the proximity threshold distance between the listener and any informed source. If the listener is at a distance less than this threshold from any informed source, the informed mode processing is enabled for the corresponding one or more informed source(s). The original value in meters is quantized with .
hpdInformedSourceEnableThreshold 	Specifies the proximity threshold distance between the HOA source and any informed source. If the HOA source is at a distance greater than this threshold from any informed source, the HOA source shall not be utilized for performing informed mode processing for the corresponding one or more informed source(s). The original value in meters is quantized with .
priorityValue 	Specifies the importance of this source for informed mode rendering. This value is used to disable less important sources from informed mode rendering when the maximum limit of active informed mode sources is reached.
hoaGroupHasLowProfileConfig	A value equal to 0 indicates that the low complexity MP-HOA renderer will utilize the default values for the parameters distanceFactor (1) and panningGridOrder (0). A value equal to 1 indicates that the low complexity MP-HOA renderer will utilize will set the parameters distanceFactor and panningGridOrder according to the payload. The usage of these two parameters is described in Section 6.6.27.2.
distanceFactor	Indicates a quantized decimal value in the range [0.25, 4] to be multiplied with the VLO radius, as described in Section 6.6.27. To dequantize it to a floating-point value, use the following equation:
	
	(5)


panningGridOrder	Indicates the VBAP node grid order to be used by the MP-HOA renderer, as described in Section 6.6.27. If set to 0 (default), the same order as the input ESD signals will be used.
Table 120— Value of panningGridOrder
	bits
	panningGridOrder

	0b000
	SAME ORDER AS INPUT HOA SIGNAL

	0b001
	1ST ORDER GRID (4 NODES)

	0b010
	2ND ORDER GRID (9 NODES)

	0b011
	3RD ORDER GRID (16 NODES)

	0b100
	4TH ORDER GRID (25 NODES)

	0b101-0b111
	RESERVED



coSourceCount	This value is the number of object sources that are also sampled alongside the HOA sources.
coSourceId	This value is the unique object source identifier that is sampled within this HOA group.
hoaSourcesCount	This value is the number of HOA sources in this payload.
hoaSourceId	This value represents the unique identifier for the HOA source.
hoaSourcePositionX	This value represents the Cartesian spatial position of the HOA source along the x dimension in meters.
hoaSourcePositionY	This value represents the Cartesian spatial position of the HOA source along the y dimension in meters.
hoaSourcePositionZ	This value represents the Cartesian spatial position of the HOA source along the z dimension in meters.
hoaSourceOrientationYaw	This value represents the Euler orientation of the HOA source in the Yaw axis in degrees.
hoaSourceOrientationPitch	This value represents the Euler orientation of the HOA source in the Pitch axis in degrees.
hoaSourceOrientationRoll	This value represents the Euler orientation of the HOA source in the Roll axis in degrees.
hoaSourceCoordSpace	This flag represents in which coordinate system the HOA source refers to.
Table 121 — Value of hoaSourceCoordSpace
	bits
	hoaSourceCoordSpace

	0b0
	RELATIVE

	0b1
	USER



hoaSourceActive	This flag represents if the HOA source will be rendered.
hoaSourceGainDb	This value is the Gain (dB) that adjusts the level of this HOA source. The range is between -119.0 to 36.0. hoaSourceRefDistance	This value is the reference distance (m) of the HOA source. The reference distance is the point in which the source becomes 0dB, which is useful for the distance attenuation law. 
hoaSourceHasReverbGain	This flag indicates that this HOA source has reverbGainDb parameter set.
hoaSourceReverbGainDb	This value is the reverb gain (dB) of this HOA source. It ranges between -119.0 to +12.0. Default value is 0 (dB)
hoaSourceSignalId	This value represents the unique audio stream identifier that this object source requires for its audio.
hoaSourceHasExtent	This flag indicates if the HOA source is spatially extended.
hoaSourceExtentId	This value is the unique geometry identifier that represents the extent of this HOA source.
hoaSourceExtentTransform	This flag turns on/off the external rendering of an interior source or the internal rendering of an exterior source.
hoaSourceRepresentation	This flag indicates the representation of this HOA source, either interior or exterior.
Table 122 — Value of hoaSourceRepresentation
	bits
	hoaSourceRepresentation

	0b0
	INTERIOR

	0b1
	EXTERIOR



hoaSourceHasGroup	This flag indicates if this HOA source belongs to a HOA group.
hoaSourceGroupId	This value is the unique HOA group identifier in which this HOA source belongs to.
hoaSourceNoReverb	This flag indicates that no reverberation shall be applied to this HOA source.
hoaSourceNoDoppler	This flag indicates that no Doppler shifts shall be applied to this HOA source.
hoaSourceNoDistance	This flag indicates that no distance attenuation shall be applied to this HOA source.
hoaSourceNoDirectionalFocus	This flag indicates that directional focus processing shall not be applied to this HOA source.
hoaSourceNoCulling	This flag indicates that this HOA source shall not be removed by culling algorithms.

hoaSourceMode	This flag indicates the playback mode for this HOA source.
Table 123 — Value of hoaSourceMode
	bits
	hoaSourceMode

	0b0
	CONTINUOUS

	0b1
	EVENT



hoaSourcePlay	This flag indicates if playback is enabled for this HOA source.
hoaSourceVDLMethod	This indicates the VDL method combination to be used for the particular HOA source with the bits vdlMethod. In case that no argument is being provided, “spline” VDL method will be used as a default setting.
hoaSourceHasSpatialTransform	This flag indicates if this HOA source has a parent spatial transform.
hoaSourceHasAnchor	This flag indicates if this HOA source’s spatial transform is an anchor. If false, then the parent is a regular transform.
hoaSourceParentAnchorId	This value represents the unique identifier for the parent anchor.
hoaSourceParentTransformId	This value represents the unique identifier for the parent transform.
isHoaSourceStatic	This flag indicates if the HOA source is static or dynamic. If static, then the HOA source is stationary throughout the entire duration of the scene, whereas the position of the object source is updatable if it is dynamic. 
channelSourcesCount	This value represents how many channel sources are in this payload.
loudspeakerCount	This value represents how many loudspeakers are in this channel source.
loudspeakerId	This value represents the unique identifier for this loudspeaker.
loudspeakerPositionX	This value represents the Cartesian spatial position of the loudspeaker along the x dimension in meters.
loudspeakerPositionY	This value represents the Cartesian spatial position of the loudspeaker along the y dimension in meters.
loudspeakerPositionZ	This value represents the Cartesian spatial position of the loudspeaker along the z dimension in meters.
loudspeakerOrientationYaw	This value represents the Euler orientation of the loudspeaker in the Yaw axis in degrees.
loudspeakerOrientationPitch	This value represents the Euler orientation of the loudspeaker in the Pitch axis in degrees.
loudspeakerOrientationRoll	This value represents the Euler orientation of the loudspeaker in the Roll axis in degrees.
loudspeakerChannel	This value represents the channel index in the associated audio stream.
loudspeakerHasDirectivity	This flag indicates if the loudspeaker has directivity data attributed to it.
loudspeakerDirectivityId	This value is the unique directivity identifier for that this loudspeaker uses for its directivity data.
loudspeakerDirectiveness	This value is the directiveness coefficient for directivity, indicating its strength. The range is between 0.0 and 20.0. To dequantize it to a floating point value, use the following equation:
	
	(6)


channelSourceId	This value represents the unique identifier for the channel source.
channelSourcePositionX	This value represents the Cartesian spatial position of the channel source along the x dimension in meters.
channelSourcePositionY	This value represents the Cartesian spatial position of the channel source along the y dimension in meters.
channelSourcePositionZ	This value represents the Cartesian spatial position of the channel source along the z dimension in meters.
channelSourceOrientationYaw	This value represents the Euler orientation of the channel source in the Yaw axis in degrees.
channelSourceOrientationPitch	This value represents the Euler orientation of the channel source in the Pitch axis in degrees.
channelSourceOrientationRoll	This value represents the Euler orientation of the channel source in the Roll axis in degrees.
channelSourceCoordSpace	This flag represents in which coordinate system the channel source refers to.
Table 124 — Value of channelSourceCoordSpace
	bits
	channelSourceCoordSpace

	0b0
	RELATIVE

	0b1
	USER



channelSourceInputLayout	This integer represents the original CICP loudspeaker layout.
channelSourceActive	This flag represents if the channel source will be rendered
channelSourceGainDb	This integer represents a floating point value for the Gain (dB) that adjusts the level of this channel source. The range is between -119.0 to 36.0 channelSourceRefDistance	This value is the reference distance (m) of the channel source. The reference distance is the point in which the source becomes 0dB, which is useful for the distance attenuation law. channelSourceSignalId	This value represents the unique audio stream identifier that this channel source requires for its audio.
channelSourceHasReverbGain	This flag indicates that this channel source has reverbGainDb parameter set.
channelSourceReverbGainDb   	This value is the reverb gain (dB) of this channel source. It ranges between -119.0 to +12.0. Default value is 0 (dB)
channelSourceNoReverb	This flag indicates that no reverberation shall be applied to this channel source.
channelSourceNoDoppler	This flag indicates that no Doppler shifts shall be applied to this channel source.
channelSourceNoDistance	This flag indicates that no distance attenuation shall be applied to this channel source.
channelSourceNoCulling	This flag indicates that this channel source shall not be removed by culling algorithms.
channelSourceNoDirectionalFocus	This flag indicates that directional focus processing shall not be applied to this channel source.
channelSourceMode	This flag indicates the playback mode for this channel source.
Table 125 — Value of channelSourceMode
	bits
	channelSourceMode

	0b0
	CONTINUOUS

	0b1
	EVENT



channelSourcePlay	This flag indicates if playback is enabled for this channel source.
[bookmark: _Hlk141102053]channelSourceVDLMethod	This indicates the VDL method combination to be used for the particular channel source with the bits vdlMethod. In case that no argument is being provided, “spline” VDL method will be used as a default setting.
channelSourceHasSpatialTransform	This flag indicates if this channel source has a parent spatial transform.
channelSourceHasAnchor	This flag indicates if this channel source’s spatial transform is an anchor. If false, then the parent is a regular transform.
channelSourceParentAnchorId	This value represents the unique identifier for the parent anchor.
channelSourceParentTransformId	This value represents the unique identifier for the parent transform.
[bookmark: _Hlk147153562]isChannelSourceStatic	This flag indicates if the channel source is static or dynamic. If static, then the channel source is stationary throughout the entire duration of the scene, whereas the position of the channel source is updatable if it is dynamic. 
numberOfGeneratorObjects	Number of Airflow Generators in the scene.
id	ID of the generator.
generatorType	Index indicating which generator type is being specified.

Table 126 - Value of generatorType
	bits
	ID
	Meaning

	0b000
	0
	Global

	0b001
	1
	Point

	0b010
	2
	Cone

	0b011
	3
	Planar

	0b010 – 0b111
	4-7
	Reserved



speed	Speed of the airflow in meters per second. This value represents a range between 0.0 and 100.0. To dequantize it to a floating point value, use the following equation:
	
	(7)


orientation	Euler orientation of the airflow generator.
gainDb	Gain value of the generator source in dB.
active	Flag indicating if the generator is currently active.
position	Position of the generator object.
hasLimits	Flag indicating if the point-source generator has Azimuth and Elevation range limits.
aziRange	Azimuth range over which the generator emits airflow relative to its orientation. This value represents a range between 0.0 and 180.0 and is applied plus-minus zero. To dequantize it to a floating point value, use the following equation:
	
	(8)


elevRange	Elevation range over which the generator emits airflow relative to its orientation. This value represents a range between 0.0 and 180.0 and is applied plus-minus zero. To dequantize it to a floating point value, use the following equation:
	
	(9)


baseRadius	Radius of the base of the cone source, the base being the end of the cone at length distance from the position.
length	The length of the cone that describes the generator source emission pattern.
hasTopRadius	Flag indicating if the cone has a top radius. 
topRadius	Radius of the top of the cone. Top radius must be less than or equal to base radius, and if equal describes a cylinder.
edgeRolloff	The edge fade distance, in percentage, relative to the cross-section of the generator.
width	Width of the planar source.
height	Height of the planar source.
hasdistanceAttenuationFactor	Flag indicating if the generator object has a distance attenuation factor.
distanceAttenuationFactor	Distance attenuation factor with which the power in the inverse square law is scaled. This value represents a range between -5.0 and 5.0. To dequantize it to a floating point value, use the following equation:
		 
	(7)


audioSourceRescaleX	This value is the rescale factor applied to the Cartesian position of audio element along the x dimension in meters.
audioSourceRescaleY	This value is the rescale factor applied to the Cartesian position of audio element along the y dimension in meters.
audioSourceRescaleZ    	This value is the rescale factor applied to Cartesian position of audio element along the z dimension in meters.
autoRescale	This value enables the renderer to determine the rescale factor by comparing the audio element Acoustic Environment (source space) region defined in the LSDF (playback region/dimensions).
toleranceXMax	This value represents the percentage of source region that remains outside of the listener region with respect to the source region’s x dimension maximum.
toleranceXMin	This value represents the percentage of source region that remains outside of the listener region with respect to the source region’s x dimension minimum.
toleranceYMax	This value represents the percentage of source region that remains outside of the listener region with respect to the source region’s y dimension maximum.
toleranceYMin	This value represents the percentage of source region that remains outside of the listener region with respect to the source region’s y dimension minimum.
toleranceZMax	This value represents the percentage of source region that remains outside of the listener region with respect to the source region’s z dimension maximum.
toleranceZMin	This value represents the percentage of source region that remains outside of the listener region with respect to the source region’s z dimension minimum.
Airflow payload data structure
numberOfAirflowSources	Number of airflow sources in the scene
hasCustomProfile	Flag indicating of the source uses a custom set of frequency profiles.
profileType	Index as to which type of profile is specified.

Table 127 - Value of profileType
	bits
	ID
	Meaning

	0b00
	0
	Frequency-Gain pairs

	0b01
	1
	Filters specified as centre frequency and Q

	0b10 – 0b11
	2-3
	Reserved



numSpeedProfiles	Number of speed-dependent profiles that are specified.
numAziProfiles	Number of azimuth-dependent profiles that are specified.
numElevProfiles	Number of elevation-dependent profiles that are specified.
refSpeed	Reference speed for which the profile is valid in meters per second. This value represents a range between 0.0 and 100.0. To dequantize it to a floating point value, use the following equation:
	[bookmark: _Hlk139442009]

	(10)



speedProfile	Frequency-dependent filter profile for a given refSpeed.
refAzimuth	Reference azimuth for which the profile is valid in degrees. This value represents a range between 0.0 and 360.0. To dequantize it to a floating point value, use the following equation:
	
	(11)



azimuthProfile	Frequency-dependent filter profile for a given refAzimuth.
refElevation	Reference elevation for which the profile is valid in degrees. This value represents a range between 0.0 and 360.0. To dequantize it to a floating point value, use the following equation:
	
	(12)



elevationProfile	Frequency-dependent filter profile for a given refelevation.
speedFilterGain	Gain of the filter at the centre frequency given.
speedFilterQ	Q of the filter, where Q is defined as the filter centre frequency divided by the bandwidth of the filter at -3dB below speedFilterGain.
azimuthFilterGain	Gain of the filter at the centre frequency given, for the left and right ears.
azimuthFilterQ	Q of the filter, where Q is defined as the filter centre frequency divided by the bandwidth of the filter at -3dB below azimuthFilterGain. For the left and right ears.
elevationFilterGain	Gain of the filter at the centre frequency given.
elevationFilterQ	Q of the filter, where Q is defined as the filter centre frequency divided by the bandwidth of the filter at -3dB below elevationFilterGain.

profile	Integer index into table of default frequency profiles.
generatorID	ID of the generator object associated with the airflow source.
activeInDefaultRegion	Flag indicating if the source should be active when the listener is inside the default acoustic region.
hasValidRegions	Flag indicating if the source contains a list of acoustic regions where it should be active.
numRegions	Number of valid Regions for the source.
activeRegionID	ID of the region where the source should be active.

Granular payload data structure
numberOfGranularDatabases	This value represents the number of granular databases in the payload.
granularID	This value is the identifier of the granular database. This is referenced by GranularSoundId in the in granularSounds structure and provides the mapping from a granular sound to a specific granular database.
GranularAudioEncodingMode	This value indicates how the audio samples of grains are provided:
0: Uncompressed PCM
1: Using refences to a separate PCM signal. 
Values 2-9 are reserved for ISO use. Values 10-15 are reserved for use outside of ISO scope.
DescriptorCoordinateDimensions	This value represents the dimension of the descriptor coordinate space.
numberOfChannels	This value represents the number of channels of the granular database.
numberOfGrains	This value represents the number of grains in the granular database.
GrainLen	This value represents the length of a certain audio grain.
coordScaling	This vector represents the scaling parameter for all descriptor coordinate dimensions.  Scaling of each dimension of the descriptor space. Increasing the scaling of a dimension makes the grain search in that dimension more precise. It is in a range between 0.0 and 100.0 To dequantize it to a floating point, use the following equation:
	
	(13)


smoothingTargetCoordinates	This vector represents smoothing parameters used to smooth target coordinate values obtained from the user input.  It is in a range between 0.0 and 1.0. To dequantize it to a floating point, use the following equation:
	
	(14)


searchRadius	This value represents the radius of search while searching for grains via kDTree search.  This radius is used in the scaled descriptor space.  It is in a range between 0.0 and 1.0. To dequantize it to a floating point, use the following equation:
	
	(15)


grainHistoryLength	This value represents length of the history of used grains.
numMixRule	This value represents the number of mixing rule coefficients available in the database.
grainMixRule	This value represents the mixing rule coefficient that is in a range between 0.0 and 1.0.  To dequantize it to a floating point, use the following equation:
	
	(16)


grainMixingRuleCoordinates	This vector of values is the list of descriptor coordinates at which a grainMixRule is specified. Each value is in a range between 0.0 and 1.0. To dequantize it to a floating point,  use the following equation:
	
	(17)


fastGrainSwitchThreshold	This value represents the fast grain switching threshold distance in the descriptor space. It is in a range between 0.0 and 2.0.  To dequantize it to a floating point, use the following equation:
	
	(18)


probabilityExponentPosition	This value represents the exponent used to calculate the probability value associated with the position of the grain in the descriptor space for random selection.  It is in a range between 0.0 and 10.0. To dequantize it to a floating point, use the following equation:
	
	(19)


probabilityWeightPosition	This value represents the weight used to calculate the probability value associated with the descriptor position evaluation in the random selection.  It is in a range between 0.0 and 100.0. To dequantize it to a floating point, use the following equation:
	
	(20)


probabilityExponentHistory	This value represents the exponent used to calculate the probability value associated with the history of the grains rendered for random selection.  It is in a range between 0.0 and 10.0. To dequantize it to a floating point, use the following equation:
	
	(21)


probabilityWeightHistory	This value represents the weight used to calculate the probability value associated with the history of the grains rendered for random selection.  It is in a range between 0.0 and 100.0. To dequantize it to a floating point, use the following equation:
	
	(22)


descrTrendAvailable	This value indicates whether descriptor coordinate trend is available as a parameter in the granular database.
probabilityExponentTrend	This value represents the exponent used to calculate the probability value associated with the trend of the position of the grain in the descriptor space for random selection of grains.  It is in a range between 0.0 and 10.0. To dequantize it to a floating point, use the following equation:
	
	(23)


probabilityWeightTrend	This value represents the weight used to calculate the probability value associated with the descriptor position evaluation in the random selection.  It is in a range between 0.0 and 100.0. To dequantize it to a floating point, use the following equation:
	
	(24)


descrTrendMethod	This value indicates the index of the method chosen to evaluate the descriptor trend coordinate values for random selection.
originalRecordingPositionAvailable	This value indicates whether original recording position is available as a parameter in the granular database.
probabilityExponentOriginalRecordingPosition	This value represents the exponent used to calculate the probability value associated with the index or position of the grain in the original recording  for random selection.  It is in a range between 0.0 and 10.0. To dequantize it to a floating point, use the following equation:
	
	(25)


probabilityWeightOriginalRecordingPosition	This value represents the weight used to calculate the probability value associated with the index or position of the grain in the original recording  for random selection.  It is in a range between 0.0 and 100.0. To dequantize it to a floating point, use the following equation:
	
	(26)


probabilityGroupsAvailable	This value indicates whether probability groups are available in the granular database.
perGrainProbabilityAvailable	This value indicates whether individual or per grain probabilities are available in the granular database.
numProbGroups	This value represents the number of probability groups in the granular database.
probabilityGroupVal	This value specifies the probability weight of a probability group. The value is in a range between 0.0 and 1000.0.  To dequantize it to a floating point, use the following equation:
	
	(27)


randomSelection	This value indicates whether random selection is to be used for granular synthesis. If 0, then the grain with highest probability weight is chosen.
useInterpolation	This value indicates whether interpolation is to be used for granular synthesis.
grainInterpolationDistThreshold	This value represents the distance threshold for interpolation.  It is in a range between 0.0 and 1.0.  To dequantize it to a floating point, use the following equation:
	
	(28)


useInterpolationResampling	This value indicates whether resampling operation is to be performed for granular interpolation.
pitchDimension	This vector of values indicate the descriptor coordinate dimension that corresponds to pitch. This is used to calculate length of the interpolated grain.
InterpolationMethod	This value represents the index of interpolation method to be chosen.
grainOverlapAmountAvailable	This value indicates whether the parameter of overlap amount or percentage used for overlap-add is available.
grainOverlapAmount	This value represents the parameter of overlap amount or percentage used for overlap-add operation in granular synthesis. It is in a range between 0.0 and 1.0.  To dequantize it to a floating point, use the following equation:
	
	(29)


DescrCoord	This vector of values represents the grain descriptor coordinates for a certain grain. Each value is in a range between 0.0 and 1.0.  To dequantize it to a floating point, use the following equation:
	
	(30)


GrainLen	This value represents the length of the grain.
DescrCoordTrend	This vector of values represents the trend of the grain descriptor coordinates for a certain grain.  Each value is in a range between 0.0 and 1.0.  To dequantize it to a floating point, use the following equation:
	
	(31)


origRecordingPos	This value represents the position of the grain in the original recording. To dequantize it to a floating point, use the following equation:
	
	(32)


grainProbabilityGroup	This value represents the probability group to which the grain belongs.
perGrainProbabilityValue	This value represents the per-grain probability value.  Each value is in a range between 0.0 and 1000.0.  To dequantize it to a floating point, use the following equation:
	
	(33)


GrainSamples	This vector of values represents the samples of the grain. When  GranularAudioEncodingMode =0, each value is in a range between -1.0 and 1.0. To dequantize it to a floating point, use the following equation:
	
	(34)


grainSampleIndex	This value specifies at which sample index the grain starts within a PCM audio signal that is made available to the renderer using some separate channel when the encoding option is set to 1.
RasterMap payload data structure
numberOfVoxSubScenes	This element represents the number of voxel-based sub-scenes.
hasVoxSceneDiffractionRasterMap	Flag indicating the presence of rasterMapSubScene data.
numRasterMapSources	This element represents the number of sources for which RasterMap data is available (informational).
rasterMapSourceIdLen[s]	This element represents the number of elements of rasterMapSourceId[s].
rasterMapSourceId[s][i]	This element represents the i-th source ID which belongs to s-th RasterMap source.
numRasterMapLayers[s]	This element represents the number of available RasterMap layers.
rasterMap[s][l]	This element represents the l-th layer of the RasterMap for source s.
codebookVcX	Generic Codebook for the x-component of voxel coordinates.
codebookVcY	Generic Codebook for the y-component of voxel coordinates.
codebookWpX	Generic Codebook for the x-component of waypoint voxel coordinates.
codebookWpY	Generic Codebook for the y-component of waypoint voxel coordinates.
numRasterMapVoxels	This element represents the total number of RasterMap data entries.
hasVoxelCoordY	This flag indicates if the y-component of a voxel coordinate is transmitted (true) or predicted (vcY is increased if false).
vcY		This element represents the y-component of the current voxel coordinate (zero indexed value).
hasVoxelCoordX	This flag indicates if the x-component of a voxel coordinate is transmitted (true) or predicted (vcX is increased if false).
vcX		This element represents the x-component of the current voxel coordinate (zero indexed value).
this.voxelCoordX[v]	This data structure element of rasterMap[s][l] represents the x-component of the v-th voxel coordinate having associated voxel data, i.e. a 2D waypoint (zero indexed value).
this.voxelCoordY[v]	This data structure element of rasterMap[s][l] represents the y-component of the v-th voxel coordinate having associated voxel data, i.e. a 2D waypoint (zero indexed value).
this.refMode[v]	This element represents the transmission mode for the v-th RasterMap waypoint [wpX, wpY, wpL] as follows where rasterMapMatrix[vcX, vcY, vcL] = [wpX, wpY, wpL] stores the previously transmitted RasterMap data:
		If 0: The waypoint coordinate [wpX, wpY, wpL] is transmitted explicitly.
		If 1: [wpX, wpY, wpL] = rasterMapMatrix[vcX-1, vcY, l]
		If 2: [wpX, wpY, wpL] = rasterMapMatrix[vcX, vcY-1, l]
		If 3: [wpX, wpY, wpL] = rasterMapMatrix[vcX, vcY, l-1]
mapChange	This flag indicates a reduction of the layer to the next lower layer.
this.waypointX[v]	This element represents the x-component of the v-th waypoint associated to a voxel coordinate. If not transmitted explicitly, the x-component of the waypoint [wpX, wpY, wpL] is transmitted according to the transmission mode specified above (zero indexed value).
this.waypointY[v]	This element represents the y-component of the v-th waypoint associated to a voxel coordinate. If not transmitted explicitly, the y-component of the waypoint [wpX, wpY, wpL] is transmitted according to the transmission mode specified above (zero indexed value).
this.waypointL[v]	This element represents the l-component of the v-th waypoint associated to a voxel coordinate. If not transmitted explicitly, the l-component of the waypoint [wpX, wpY, wpL] is transmitted according to the transmission mode specified above (zero indexed value).

[bookmark: _Ref101262754][bookmark: _Toc117076344][bookmark: _Toc131497365][bookmark: _Toc132126369][bookmark: _Toc132225938][bookmark: _Toc135210126][bookmark: _Toc166076608]Renderer framework
[bookmark: _Toc117076345][bookmark: _Toc131497366][bookmark: _Toc132126370][bookmark: _Toc132225939][bookmark: _Toc135210127][bookmark: _Toc166076609]Control workflow
General
The Control Workflow consists of the components that are required to handle a 6DoF scene. It provides interfaces for receiving a bitstream and an LSDF, as well as an API for local updates of metadata, clock synchronization and local audio stream inputs. For an overview of the Renderer components, see Figure 3.
Scene controller
The Scene Controller is the central component for maintaining a 6DoF scene representation including all audio elements and geometries. It holds the Scene State (6.4.1.2.1) and handles all internal and external modifications to it through updates (6.4.1.2.3), which can be received via the bitstream or a local update interface. If the scene is an AR scene, the Scene Controller additionally reads the LSDF, describing the acoustic properties and anchor positions of the listener space, which are integrated into the Scene State.
[bookmark: _Ref100915628]Scene state
The Scene State always reflects the current state of all entities in the scene, incorporating metadata from multiple sources, including the bitstream, an LSDF and local updates. The entities are represented as Scene Objects (SOs) (6.4.1.2.2). Only the Scene Controller can modify the Scene State, whereas all other components in the Renderer have read-only access to the Scene State and all SOs.
Components may also subscribe to changes in the Scene State and of individual SOs, so that a callback is called when attributes are modified. For this, the component can implement the SceneStateObserver and SceneObjectObserver interfaces. The callback of a SceneStateObserver is called when an SO is added or removed from the Scene State. 
class SceneStateObserver {
public:
    virtual ~SceneStateObserver(){};

    virtual void sceneStateAttached(const SceneState* sceneState) = 0;
    virtual void sceneStateDetached() = 0;

    virtual void sceneObjectAdded(SceneObject* object) = 0;
    virtual void sceneObjectRemoved(SceneObject* object) = 0;
};

The SceneObjectObserver callback notifies about any modifications of individual SOs.
class SceneObjectObserver {
public:
    virtual ~SceneObjectObserver(){};

    enum class Property {
        Position,
        Activity,
        Directivity,
        Gain,
        DistanceModel,
        AudioStream,
        Extent,
        ReferenceDistance,
        Staticity,
        VDLMethod,
        ReverbGain,
        NoReverb,
        Loudness,
        Play,
        Stop

    };

    virtual void objectChanged(SceneObject* obj, Property modification) = 0;
};
[bookmark: _Ref101271149]Scene objects
Any audio element, geometry, transform and the listener in the Scene is represented as a Scene Object (SO). Every SO has at least the attributes specified in Table 128.
[bookmark: _Ref100915821][bookmark: _Ref100915777]Table 128 — Scene Objects
	[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier oft he SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false



Identifiers
The id attribute is used to reference the SO internally. The Scene keeps a dictionary of human-readable bitstream identifiers to associate them with the corresponding SO, so that the bitstream identifier can be used for local updates.
[bookmark: _Ref157268392]Positions
The position of an SO consists of its location in cartesian coordinates, its orientation in Tait-Bryan angles, as well as a coordinate space reference cSpace, which specifies whether the position is given in global coordinates or relative to a parent coordinate system.
enum class CSpace {
    WCS, // World Coordinate System
    RCS, // Parent-relative Coordinate System
    LCS, // Listener-relative Coordinate System
};

struct Position {
    Vector3 location;
    Euler orientation;
    CSpace cSpace;
};

The representation of location and orientation follows the OpenGL coordinate format as shown in Figure 5 and Figure 6. Any SO can be the parent of another SO, so that relative coordinates are relative to the position of the parent SO. The parent relationship is specified by the parent attribute which can be empty or contain a reference to another SO.
[image: ]
[bookmark: _Ref100916131]Figure 5 — OpenGL coordinate system (right-handed, +y points up) 
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	(a) yaw rotation
	(b) pitch rotation
	(c) roll rotation


[bookmark: _Ref100916137]Figure 6 — Yaw, pitch and roll rotations 
Written in rotation matrices , ,  for the three global coordinate axes , the total 
yaw-pitch-roll rotation matrix yields: .
An object with yaw-pitch-roll angles (0°, 0°, 0°) has the following orientation in the global cartesian coordinate axes:
· Its front direction points into -z 
· Its up direction points to +y
· Its right direction points to +x

Listener
The Listener SO cannot have a parent and isStatic is always false. The bitstream identifier “listener” is reserved for this SO and may not be used by other entities in the scene. This way, the listener properties like its position can be updated using the local update API (6.4.1.2.3) with the identifier “listener”.
Associated to the listener SO is an audio element SO of type ListenerVoice that represents the listener’s own voice from a locally captured signal (i.e. microphone input) within the scene unless enableLocallyCapturedAudio is set to false.
Guidance on the usage of Locally Captured Audio, especially the user’s own voice is given in B.6.

Audio elements
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Audio elements are represented as SOs with the additional attributes given in Table 129 and Table 131.
[bookmark: _Ref100916502]Table 129 — Object Source
	[bookmark: OLE_LINK17][bookmark: OLE_LINK18]Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier oft he SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	gain
	float
	Frequency-independent gain in dB
	

	itemReverbGain
	float
	Frequency-independent gain as factor
	1

	noReverb
	bool
	Turns the reverb on or off per source
	false

	directivity
	Directivity*
	Optional reference to a Directivity representation
	None

	directiveness
	float
	Parameter to control the frequency-independent intensity of the Directivity
	1

	extent
	Geometry*
	Optional reference to a Geometry that represents the extent of the Object Source
	None

	[bookmark: _Hlk100517356]refDistance
	float
	Reference distance for the distance attenuation model
	1

	audioStream
	Audio stream reference
	ID of an Audio Stream that can be requested from the Stream Manager (cf. 6.4.1.3)
	-


	vdlMethod
	int
	Parameter to indicate the Variable Delay Line method used for the primary render item and its reflections
	0

	loudness
	float
	The current loudness of the source (linear), if any
	-



Channel source
A Channel Source is represented as a collection of Object Sources located at the respective loudspeaker positions. The loudspeaker layout of the Channel Source is specified by a layout ID according to ISO/IEC 23091-3:2018 CICP-Audio and a radius that specifies the distance between center point and each loudspeaker.
The Object Sources have their parent attribute set to the SO that represents the Channel Source and their coordinates are set relative to the parent.
Listener Voice
The Listener Voice is a specialized Object Source that represents the listeners voice within the scene. It is located in a fixed relation to the listener SO’s location. The listener’s voice is obtained from a locally captured stream, e.g. a microphone signal, and therefore requires additional parameters to adapt the levels to the listener’s physical input and room properties. The Listener Voice SO attributes extend the Object Source SO by the parameters given in given in Table 130. If overrideListenerVoiceDirectivity is false the ListenerVoiceDefaultDirectity is obtained from the payload of type coverSet() specified as listenerVoiceDefaultDirectivityData in Annex A.18. The attributes erGainDb, itemReverbGain, directGainDb shall be obtained via a real-time adjustable user interface.
[bookmark: _Ref163826882]Table 130 — Listener Voice Source
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier oft he SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	0, -0.05, 0 relative to the listener Position

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	gain
	float
	Frequency-independent gain in dB
	

	itemReverbGain
	float
	Frequency-independent gain as factor
	See Annex B.6

	noReverb
	bool
	Turns the reverb on or off per source
	false

	directivity
	Directivity*
	Optional reference to a Directivity representation
	ListenerVoiceDefaultDirectivity

	directiveness
	float
	Parameter to control the frequency-independent intensity of the Directivity
	1

	extent
	Geometry*
	Optional reference to a Geometry that represents the extent of the Object Source
	None

	refDistance
	float
	Reference distance for the distance attenuation model
	1

	audioStream
	Audio stream reference
	ID of an Audio Stream that can be requested from the Stream Manager (cf. 6.4.1.3)
	-


	vdlMethod
	int
	Parameter to indicate the Variable Delay Line method used for the primary render item and its reflections
	0

	erGainDb
	float
	Early Reflection gain in dB
	See Annex B.6

	directGainDb
	float
	Direct sound gain in dB
	See Annex B.6



[bookmark: _Ref100916507]Table 131 — HOA Source
	Field name
	Data type
	Description
	Default value

	id
	Uint
	Unique identifier oft he SO
	-

	Position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	Velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	Parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	Bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	Gain
	float
	Frequency-independent gain in dB
	

	itemReverbGain
	float
	Frequency-independent gain as factor
	1

	noReverb
	bool
	Turns the reverb on or off per source
	false

	representation
	Representation
	Whether the HOA Source represents an Interiour or Exterior sound filed
	-

	Extent
	Geometry*
	Optional reference to a Geometry that represents the extent of the Object Source
	None

	doesExtentTransform
	bool
	Whether or not the HOA Source shall be handled with extent transform
	false

	transitionDistance
	float
	Transition distance range for the optional extent transform (only if doesExtentTransform == true)
	0

	refDistance
	float
	Reference distance for the distance attenuation model
	1

	Group
	int
	Optional group ID to add this HOA Source to a HOA Group (-1 for no group)
	-1

	Is6DoF
	bool
	Whether or not this HOA Source shall be considered as a 6DoF source. If false, the HOA Source is always listener-relative with location = 0,0,0
	false

	vdlMethod
	int
	Parameter to indicate the Variable Delay Line method used for the primary render item and its reflections
	0

	loudness
	float
	The current loudness of the source (linear), if any
	-





Geometry
Geometry entities are represented as SOs with the attributes given in Table 132 - Table 135. A geometry must further implement a common interface to allow interoperability between any kind of geometry.
Class Geometry {
	virtual bool isInside(const Vector3& point) const = 0;
    virtual Vector3 closestPointTo(const Vector3& point) const = 0;
    virtual Type getType() const = 0;
    virtual float getArea() const = 0;
    virtual float getVolume() const = 0;
    virtual const Mesh* getMesh() const = 0;
    virtual float greatestDistance() const = 0;
};

isInside() – returns true when the given point in global coordinates is inside the geometry.
closestPointTo() – returns the closest point on the surface of the geometry in global coordinates, both if the query point is inside or outside of the geometry.
getType() – returns an identifier for the type of geometry (Box, Sphere, Cylinder or Mesh)
getArea() – returns the total surface area of the geometry in square meters.
getVolume() – returns the total volume of the geometry in cubic meters.
getMesh() – returns a reference to a Mesh instance that represents the same geometry. If the geometry is a Box, Sphere or Cylinder, the Mesh representation is a tesselation of the original geometry.
greatestDistance() – returns the longest distance between two points on the surface of the geometry in meters.
[bookmark: _Ref101270462][bookmark: _Ref101270461]Table 132 — Box
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	volume
	Vector3
	Extent of the box in x/y/z direction of its local coordinate system. The origin of the local coordinate system is the center of the box.
	-

	material
	Material*
	Optional reference to a Material representation that describes the acoustic properties of the geometry. Geometries without a Material are acoustically transparent.
	None	






Table 133 — Sphere
	Field name
	Data type
	Description
	Default value

	Id
	uint
	Unique identifier of the SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	radius
	float
	Radius of the sphere. The origin of the local coordinate system is the centre of the sphere.
	-

	material
	Material*
	Optional reference to a Material representation that describes the acoustic properties of the geometry. Geometries without a Material are acoustically transparent.
	None	



Table 134 — Cylinder
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	height
	float
	Height of the cylinder in y-direction of the local coordinate system. The origin of the local coordinate system is the middle of the cylinder.
	-

	xRadius
	float
	Radius of the cylinder in x-direction of the local coordinate system.
	-

	zRadius
	float
	Radius of the cylinder in z-direction of the local coordinate system.
	-

	isCircular
	Bool
	True if xRadius == zRadius
	-

	material
	Material*
	Optional reference to a Material representation that describes the acoustic properties of the geometry. Geometries without a Material are acoustically transparent.
	None	



[bookmark: _Ref101270463]Table 135 — Mesh
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	velocity
	Vector3
	The optional velocity of the SO
	0, 0, 0

	parent
	SceneObject*
	Reference to an optional parent SO
	None

	isStatic
	bool
	Whether or not the SO is allowed to be moved in the Scene
	false

	height
	float
	Height of the cylinder in y-direction of the local coordinate system. The origin of the local coordinate system is the middle of the cylinder.
	-

	vertices
	List<Vector3>
	Variable-length list of vertices (locations in local coordinate system)
	-

	triangles
	List<Triangle>
	List of triangles, defined by triplets of vertices.  Different triangles may have different materials.
	-

	surfaces
	List<Surface>
	List of surfaces, 
	-



Triangle
A triangle face of a mesh is characterized by three vertices v1, v2, and v3 that reference the vertices list of the parent mesh. Each triangle can have an individual material that defines its acoustic properties (see below).
struct Triangle {
    unsigned int v1, v2, v3;
    Mesh* parent;
	std::shared_ptr<Material> material;
    unsigned int surfaceId;
};

Surface
A surface is a collection of connected triangles that lie in the same plane, forming a single reflecting surface. Surfaces must be calculated from the transmitted triangles in the renderer.
struct Plane {
    Vector3 normalVector;
    float originDist;
};

struct Surface {
    unsigned int surfaceId;
    std::vector<unsigned int> triangles;
    Plane plane;
};

Material
The material specifies the acoustic properties of a box, sphere, cylinder or individual triangles of a mesh.
Struct Material {
    std::vector<float> reflection;
    std::vector<float> scattering;
    std::vector<float> transmission;
    std::vector<float> coupling;
};

The frequency-dependent material properties are given in EQ bands as specified in Table 149. 
· Specular reflected energy (reflection) is reflected back in a distinct outgoing direction
· Diffuse reflected energy (scattering) is diffusely scattered back from the material
· Transmitted energy (transmission) passes through the material without changing the sound’s direction
· Coupled energy (coupling) excites vibrations in the structure and is reemitted by the entire structure
Each value is a number in the range . The sum of these four values, must not exceed one. The remaining energy is dissipated energy that is absorbed by the material. Materials are assumed to be isotropic (i.e. rotation-invariant).
[bookmark: _Ref139464402]Airflow Generator
Airflow generators are SOs that represent an object in the virtual space that emits air. The four classes of Global, Point, Cone, and Planar source (Table 136 - Table 139) inherit from a base AirflowGenerator class.

class AirflowGeneratorBase{
	virtual Vector3 getAirspeed(const Vector3& position) const =0;
	virtual Type getType() const =0;
	float getDistanceAttenuationFactor() const  = 1.0f;
}

[bookmark: _Ref139455542]Table 136 - Global
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	name
	string
	Unique string identifier of the SO
	

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-



Table 137 - Point
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	name
	string
	Unique string identifier of the SO
	

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	hasLimits
	Boolean
	Flag to indicate of either aziRange or elevRange is different from default.
	False

	aziRange
	float
	Azimuthal range of the point generator.
	360

	elevRange
	float
	Elevation range of the point generator.
	360



Table 138 - Cone
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	name
	string
	Unique string identifier of the SO
	

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	baseRadius
	float
	Radius of the base of the cone.
	1.0

	length
	float
	Length of the cone.
	1.0

	edgeRolloff
	float
	Percentage of the cross-section over which to fade out the speed parameter.
	50.0

	hasTopRadius
	Boolean
	Flag to indicate if topRadius is set.
	false

	topRadius
	float
	Radius of the top of the cone.
	0.0f



[bookmark: _Ref139455549]



[bookmark: _Ref156833824]Table 139 - Planar
	Field name
	Data type
	Description
	Default value

	id
	uint
	Unique identifier of the SO
	-

	name
	string
	Unique string identifier of the SO
	

	position
	Position
	The position (location and orientation) of the SO in global coordinates
	-

	width
	float
	Width of the planar source.
	1.0

	height
	float
	Height of the planar source.
	1.0

	edgeRolloff
	float
	Percentage of the cross-section over which to fade out the speed parameter.
	50.0




Transform
A Transform is a SO that can be used as parent for audio elements and geometry. Transforms can be used in the bitstream to group other SOs into a separate relative coordinate system, and to represent ARAnchors from the LSDF.
[bookmark: _Ref100915663]Update
An Update is a collection of modifications to metadata of Scene Objects. The Scene Controller allows Updates in the Scene State through the following means:
1. SceneUpdate Packets in the bitstream contain information about changes to individual entities in the scene (cf. 5.2.1.2.4). They allow immediate, pre-defined, location- or time-based, and interpolated updates.
a. Immediate updates: The Scene updates the Scene State as soon as the SceneUpdate packet is received from the Bitstream interface.
b. Pre-defined updates: A specified packet of modifications is transmitted and triggered locally by a given identifier.
c. Location- or time-based single updates: The Scene evaluates previously received location- and time-based criteria and updates the Scene State if the criteria require a metadata change.
d. Interpolated updates: the Scene evaluates previously received and started metadata trajectories and updates the Scene State accordingly.
2. A Local Update API for other systems and components at the decoder (cf. 6.4.1.2.3.1)
Evaluation of location- and time-based criteria, as well as interpolation is done in a separate thread created by the Scene Controller. The thread must operate at a rate of at least 100 executions per second.
Temporal interpolations can be triggered by pre-defined, location-based or local updates when the update contains a duration and are always linear interpolations. Temporal interpolations are stopped when the scene is looped. Start value for a temporary interpolation is always the metadata property value at the time the update is triggered, not considering delay.
The behavior is undefined when a SO metadata property is changed with multiple types of updates simultaneously, e.g., when an Object Source is moving on a timed trajectory, its location cannot be changed by a local update.
[bookmark: _Ref100916654]Local update API
External components and subsystems of the decoder can construct local updates to change metadata of Scene Objects. Allowed changes through updates are indicated in the bitstream as L2 or L3 updates. 
struct Modification {
    std::string entityId;
    std::string attributeName;
    Variant targetValue;

    bool teleport = false;
};

struct Update {
[bookmark: OLE_LINK25][bookmark: OLE_LINK26]    double timestamp = -1;
    std::vector<Modification> modifications;
};

The timestamp is given in Scene time. If the current Scene time when the Update is received is larger than the Update timestamp, the Update is executed immediately. Furthermore, each Update contains a list of Modifications, that each consist of 
· An entityId. The reserved identifier “listener” is used to update e.g. the Listener position through the same API as other entities,
· An attributeName, 
· A targetValue, whose data type depends on the attribute, and
· A teleport flag to indicate non-interpolated modifications to the location of an entity, affecting e.g. the propagation delay.
[bookmark: _Ref101271420]Stream manager
The Stream Manager provides access to Audio Streams by an identifier that can be referenced in the bitstream or in external updates. The Audio Stream source is variable and can either be a local PCM stream or a decoded MPEG-H audio stream from the bitstream.
Audio Stream access is frame-based. Components in the Renderer can create a StreamAccessBuffer, that is associated with a certain Audio Stream and a block of samples is written into its memory buffer for each processed frame of the Audio Stream. Stream access may support seeking in the Audio Stream. The Stream Manager crossfades between Audio Streams if the accessed stream changes.

class StreamBuffer {
    RealFrame& getFrame();
    const RealFrame& getFrame() const;
};

class StreamAccessBuffer : public StreamBuffer
{
    void setStream(const std::string& id, double t = 0.0);
    void play();
    void stop();
    void seekTo(double t);
    void setLoop(bool shouldLoop);
    std::size_t getReadPosition() const;
    inline const std::string& getStreamId() const;
};

Components may also create empty StreamBuffer instances, which have the same properties as a StreamAccessBuffer, but the contents must be managed by the owning component.
Clock
The Clock component allows to synchronize the Scene time to an external timekeeper. In the stand-alone case, an InternalClock implementation of the Clock interface uses the CPU wallclock (e.g. std::chrono::steady_clock) to determine the time in seconds that has passed since the Scene has started. The current time of InternalClock is synchronized with the audio thread by counting the number of samples that has been played out since the Scene started.
class Clock {
public:
    virtual ~Clock(){};

    virtual double getCurrentTime() = 0;
    virtual void start() = 0;
    virtual void stop() = 0;
    virtual bool isRunning() = 0;
    virtual void sync(double t) = 0;
};
Multithreading
The Scene Controller creates a separate thread to handle time- and location-based updates, as well as interpolations. The update routine in this thread shall be executed at a rate of at least 100 Hz.
Observing the Scene State and SOs is read-only. Observer callbacks are called from the thread where the Update was triggered. The observing component must ensure thread-safety of the callback.
The Clock::sync() routine must be thread-safe with regard to concurrent calls to getCurrentTime().
StreamBuffers and StreamAccessBuffers may only be accessed in the audio thread. The Stream Manager ensures StreamAccessBuffers to contain the correct samples at the beginning of each audio thread callback.
[bookmark: _Toc117076346][bookmark: _Toc131497367][bookmark: _Toc132126371][bookmark: _Toc132225940][bookmark: _Toc135210128][bookmark: _Toc166076610]Rendering workflow
General
The Rendering Workflow consist of the components that auralize the scene for a listener using information from the Control Workflow. The required processing of metadata and audio signals is implemented in a number of Renderer Stages (6.4.2.2), which are executed sequentially in the Renderer Pipeline (6.4.2.2) to contribute acoustic effects to the auralization. The metadata interface between Renderer Stages consists of a Render List (6.4.2.3) which contains a variable number of RIs (6.4.2.4), each representing an acoustically relevant element in the scene, for example a point source or a specular reflection. The Renderer Pipeline is terminated by the Spatializer (6.4.2.5) that produces a final output signal from the remaining and active RIs for a given playback method.
[bookmark: _Ref100916860]Multithreaded renderer pipeline
The Renderer Pipeline organizes the sequential execution of Renderer Stages. Each Stage has an interface (6.4.2.2.1) that ensures interoperability between stages. 
The Renderer Pipeline translates all audio elements in the Scene into a list of RIs, which is processed by the Stages sequentially.
[bookmark: _Ref100916926]Renderer stages interface
The Renderer Stage interface consists of 3 routines that are executed in different threads.


Figure 7 — Renderer stage interface 
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]initializeStage() – The initialization routine is called when the Scene is loaded. It cannot be called when rendering is running. The interface provides references to the Stream Manager, as well as the Scene State, so that the stage can access the entities in the Scene that are not audio elements (i.e., Geometry). The Stage uses this routine to prepare for rendering by allocating possibly required resources before rendering starts. The initialization routine is called from the main thread in which the Renderer Pipeline is initialized.
[bookmark: OLE_LINK19][bookmark: OLE_LINK20]update() – The update routine is called in a dedicated update thread which is executed in regular intervals (80-160 Hz) to update the metadata of all processed signals. The metadata associated with each signal is given as RI (6.4.2.4) in a Render List (6.4.2.3). The update routine of one Stage prepares the Render List for the succeeding Stage, so that each Stage builds up on the metadata provided by previous Stages. The Stage prepares a directive for the DSP processing (DSP directive in the following) that is sent to the audio processing thread without blocking it. The exchange of DSP directives is synchronized across all Stages and the next DSP directive is used, when all Stages have finished their update routine.  The DSP directive contains all information that is required by the audio processing routine, including references to the input and output signal buffers, as well as the processing configuration, like filter coefficients or algorithm parameters. The update routine guarantees that the signals associated with the RIs in the output Render List are correctly processed in the respective DSP directive. A Stage that only modifies metadata uses empty DSP directives.
processBlock() – The audio processing routine is called by the audio callback thread of the host system when new samples are requested by the sound playback hardware (e.g. a PC sound card). It uses the previously prepared DSP directive from the update thread to process the audio streams given in the DSP directive. Between successive calls to update(), the DSP directive is constant and as the update routine ensures consistency between the signals associated with the output RIs and the DSP processing, the audio processing routine of all stages are called in the pipeline order.

[bookmark: _Ref100916889]Render list
The Render List is the primary interface for a Renderer Stage to receive metadata about the audio elements in the scene. It consists of a unique identifier id, a variable-length list of RIs (6.4.2.4), and a listener state (Table 140). The id is used for the synchronization of active DSP diagrams between Stages. All Stages can modify, add and remove RIs from the Render List. The listener state is read-only and prepared by the Renderer Pipeline controller. The attributes of the listener state is given in Table 140.
[bookmark: _Ref100923499][bookmark: _Ref101274822]Table 140 — Listener state
	Field name
	Data type
	Description
	Default value

	position
	Position
	The position (location and orientation) of the listener in global coordinates (see Position type description)
	-

	trajectory
	Trajectory
	Optional constant-velocity trajectory to interpolate the location of the listener between successive calls to the update() routine
	None

	cs
	Homogeneous transform matrix
	4x4 transformation matrix representing the transform from global coordinates into the listener coordinate system
	-

	teleport
	bool
	Whether or not a change in the listener position shall be handled as teleport
	false

	hasMoved
	bool
	Whether or not the listener position has changed since the last call to the update() routine
	false	

	acEnvId
	int
	Identifier of the acoustic environment the listener is located in (special value -1 if the listener is outside of all acoustic environments in the scene)
	-1



[bookmark: _Ref100916975][bookmark: _Ref100930687]Render item
A RI is the representation of an acoustically active element in the scene. The RI can be primary, i.e., derived directly from an audio element in the scene, or secondary, i.e., derived from another RI (for example a reflection or diffraction path). The attributes of an RI are given in Table 141.
[bookmark: _Ref100924133][bookmark: _Ref163093401]Table 141 — RI metadata fields
	[bookmark: _Hlk100263382]Field name
	Data type
	Description
	Default value

	idx
	const int
	Unique identifier of the RI
	-

	status
	ItemStatus
	The status of the RI (see ItemStatus type description)
	-

	type
	ItemType
	The type of the RI (see ItemType type description)
	-

	subtype
	ItemSubtype
	The subtype of the RI (see ItemSubtype description)
	-

	changed
	ItemProperty
	Flags to mark changed properties of the RI (see ItemProperty type description)
	-

	aparams
	AParam
	Flags to mark special rendering instructions for the RI (see AParam type description)
	-

	acEnvId
	int
	Identifier of the acoustic environment this RI is located in (special value -1 if the RI is outside of all acoustic environments in the scene)
	-1

	trajectory
	Trajectory
	Optional constant-velocity trajectory to interpolate the location of the RI between successive calls to the update() routine
	None

	teleport
	bool
	Whether or not this RI  shall be handled as teleport
	false

	[bookmark: _Hlk100263626]position
	Position
	The position (location and orientation) of the RI in global coordinates (see Position type description)
	-

	apparentDistanceDelta
	float
	Compensation for the distance to the listener for synchronizing multiple RIs with different locations in terms of their propagation delay and distance attenuation
	0

	[bookmark: _Hlk100514967]refDistance
	float
	Reference distance for the distance attenuation model
	1

	signal
	StreamBuffer 
	Reference to a StreamBuffer instance (see Stream Manager section)
	-

	eq
	List<float>
	Frequency-dependent gain for the signal associated with this RI in globally defined bands (see Equalizer section)
	N x 1

	gain
	float
	Global frequency-independent gain for the signal associated with this RI
	1

	itemReverbGain
	float
	Frequency-independent gain as factor
	1

	noReverb
	bool
	Turns the reverb on or off per source
	false

	directivity
	Directivity
	Optional reference to a Directivity representation for the RI (see Directivity type description)
	None

	[bookmark: _Hlk100514918]directiveness
	float
	Parameter to control the frequency-independent intensity of the Directivity
	1

	extent
	Geometry
	Optional reference to a Geometry that describes the extent of the RI
	None

	extentLayout
	ExtentLayout
	Reference to the channel layout of a heterogeneous extended source
	None

	rayHits
	List<RayHit>
	Data structure to aid the processing of extended sources (see respective stages)
	Empty

	[bookmark: _Hlk100177150]reflectionInfo
	ReflectionInfo
	Optional reference to a special struct that contains information about the reflection path this RI represents (see 6.6.6)
	None

	occlusionInfo
	OcclusionInfo
	Optional reference to a special struct that contains information about the occlusion of  this RI (see 6.6.9)
	None

	channelPositions
	List<Position>
	
	None

	hoaInfo
	HoaInfo
	Optional reference to a special struct that contains information about the HOA source this RI represents (see 6.6.23)
	None

	vdlMethod
	int
	Parameter to indicate the Variable Delay Line method used for the primary render item and its reflections
	0

	isSoundEffect
	bool
	Valueindicating if the RI is representative of a sound effect source.
	false



ItemStatus
enum data type
enum class ItemStatus
{
  New = 0,
  Active,
  FadeOutInactive,
  Inactive,
  FadeOutOrphaned,
  Orphaned
};

· New: This RI appears for the first time. Stages may have to allocate new resources and change their DSP processing to accommodate the new RI. It will become Active in the next update() call.
· Active: This RI shall be handled as active by all Stages. If the status has been different in the previous update() call (e.g. because the RI changed from Inactive to Active), the changed flag is set accordingly.
· FadeOutInactive: This RI is being faded out and becomes Inactive afterwards. Stages shall continue to process it until the Inactive state is reached.
· Inactive: This RI shall be handled as inactive by all Stages. It shall have no influence on the metadata or signal output of the Stage.
· FadeOutOrphaned: This RI is being faded out and becomes orphaned afterwards. Stages shall continue to process it until the Orphaned state is reached.
· Orphaned: This RI reached its end of life and will be removed from the Render List in the next update() call. It shall have no influence on the metadata or signal output of the Stage. Stages may permanently free any resources allocated for the processing of this RI.

ItemType
enum data type
enum class ItemType
{
  Primary = 0,
  HOA,
  Representative,
  Reflection,
  Diffraction,
  DirectionalReverb,
  Nondiegetic,
  Downmix,
  Pannable,
  Reverb,
  Airflow,
  ListenerVoice,
};

· Primary: A RI that is directly derived from a Scene Object
· HOA: An HOA RenderItem directly derived from a HOASource 
· Representative: A representative RI derived from another RI (e.g. a cluster or an extended source representative)
· Reflection: A secondary RI derived as a specular reflection of another RI
· Diffraction: A secondary RI derived as a geometrically diffracted path of another RI
· DirectionalReverb: A representative RI for directional reverberation from a portal 
· Nondiegetic: A RI that shall be spatialized, but is not part of the scene
· Downmix: RI that shall be mixed directly to the output without additional processing
· Pannable: RI that shall be panned into a virtual loudspeaker layout that is going to be spatialized
· Reverb: RI that is generated as a reverberation output for an acoustic environment
· Airflow: RI that is generated by the airflow simulation that shall be directly downmixed to the output without further processing.
· ListenerVoice: A RI that represents the listener’s voice as part of the scene
ItemSubtype
enum data type
enum class ItemSubtype
{
  None = 0,
  CoupledSource,
};

· None: No subtype was provided
· CoupledSource: A RI of an extent source that is a coupling source.

ItemProperty
enum data type
enum class ItemProperty
{
  None = 0,
  Status = 1,
  Position = 2,
  Aparams = 4,
  Directivity = 8,
  Extent = 16,
  Signal = 32,
  Gain = 64,
  Eq = 128,
  RefDist = 256,
  Orientation = 512,
  Location = 1024,
  ParentRI = 2048,
  Reverb = 4096,
  ReflectionInfo = 8192,
  RayHits = 16384,
  VDLMethod = 32768,
  ReverbGain = 65536,
  NoReverb = 131072
};

Multiple item properties can be represented in a single variable using bitwise operators.
Example: adding two changed properties of a RI: 
item.changed = ItemProperty::Status | ItemProperty::Position;

Example: checking if a property changed for an RI: 
if (item.changed & ItemProperty::Position) { ... }

AParam
enum data type
enum class AParam
{
  None = 0,
  NoDoppler = 1,
   NoDistanceGain = 2,
  NoMediumAttenuation = 4,
  ForceNoDoppler = 8,
  noDirectionalFocus = 16,
};

[bookmark: _Ref100916908]Spatializer
The Spatializer terminates the Renderer pipeline. It produces an output signal that is directly played back to the listener via the configured playback method. The binaural spatializer is described in (6.6.28).
class Spatializer {
public:
    virtual ~Spatializer(){};

    virtual void update(std::shared_ptr<const RenderList> newRenderList) = 0;
    virtual void requestBlock(EAR::RealFrame& output) = 0;
    virtual std::size_t getNbrOfChannels() const = 0;
    virtual void cleanupDSPData(const std::vector<std::size_t>& toClear) = 0;
    virtual void initializeSpatializer(float fs, std::size_t B) = 0;
};

update(), requestBlock(), intializeSpatializer() and cleanupDSPData() are called analogous to update(), processBlock(), intializeStage() and cleanupDSPData()of the Stages. getNbrOfChannels() returns the number of output channels of the spatializer, so that the Renderer controller can allocate the required output buffers accordingly.
Limiter
General
The limiter provides clipping protection for the auralized output signal. It has an attack time of 0.0025 seconds, a threshold of 0.89 (-0.01 dBFS) and implements a heuristic to determine the release time. To avoid any processing delay, no look-ahead is used.
The releaseHeuristic is a value ranging from 0 to 1. It increases on each frame that contains a sample with a value above the threshold and decreases on each frame with all sample values below the threshold.
Values of 0 and 1 map to the shortest (0.005 seconds) and longest (1 second) release time, respectively.
The goal of this heuristic is to avoid the "pumping" effect when only sharp transients exceed the threshold, but also keep the gain curve smoother if the threshold is exceeded in many frames in a short span of time.
Data elements and variables
output	Input/Output buffer
gain	Gain to be applied to the output. It varies per sample and reaches 99% of frame_gain value within attack time from frame start
releaseHeuristic	Used to calculate the release time
limiter_mem[2]	State variable for previous gain and releaseHeuristic values. Shall be initialized to [1.f, 0.f]
output_frame	Number of samples per channel in the buffer
nchan_out	Number of channels in the buffer
max_val	Absolute maximum sample value in the buffer
output_Fs	System audio sampling rate, always set to 48000
attack_seconds	Attack in seconds, set to 0.0025
threshold	Threshold, which needs to be exceeded, to activate the limiter, set to 0.89
frame_gain	Target gain to be applied to current frame
attack_constant	Used to calculate the gain
release_constant	Used to calculate the gain
EPSILON	Set to 0.000000000000001f and used for float comparison
Stage description
For the current frame the limiter will be active, if either the threshold is exceeded in this frame, or the threshold has been exceeded in frames processed earlier and the system has not returned yet to its default state. The limiter works as follows:
1. The maximum absolute sample value for the current frame max_val is calculated:
max_val = 0.f;
	for ( i = 0; i < output_frame; i++ ) {
  			for ( c = 0; c < nchan_out; c++ ) {
       			tmp = abs( output[c][i] );
       			if ( tmp > max_val ) {
            		max_val = tmp;
        		}
    			}
	}

2. Depending on max_val the values for releaseHeuristic and frame_gain are calculated. Limiting will not be applied and the function returns early if the threshold is not exceeded and the system is in its default state:
releaseHeuristic = limiter_mem[1];
if ( max_val > threshold ) {
    frame_gain = threshold / max_val;
    releaseHeuristic = min( 1.f, releaseHeuristic + ( 4.f * output_frame / output_Fs ) );
} else {
    releaseHeuristic = max( 0.f, releaseHeuristic - ( output_frame / output_Fs ) );
    if ( limiter_mem[0] >= 1.f - EPSILON ) {
        limiter_mem[0] = 1.f;
        limiter_mem[1] = releaseHeuristic;
        return;
    }
    frame_gain = 1.f;
}

3. attack_constant and release_constant are calculated, for both variables the denominator of the exponent determines after how many samples the gain curve will reach 99% of its target value:
gain = limiter_mem[0];
attack_constant = pow( 0.01f, 1.0f / ( attack_seconds * output_Fs ) );
release_constant = pow( 0.01f, 1.0f / ( 0.005f * powf( 200.f, releaseHeuristic ) * output_Fs ) );

4. Limiting is applied with smooth sample-individual gains gain derived from the frame_gain. These gains are common to all channels followed by a hard clipping to +/-1 on individual channels.:
for ( i = 0; i < output_frame; i++ ) {
    if ( frame_gain < gain ) {
        gain = attack_constant * ( gain - frame_gain ) + frame_gain;
    } else {
        gain = release_constant * ( gain - frame_gain ) + frame_gain;
    }
    for ( c = 0; c < nchan_out; c++ ) {
        output[c][i] = gain * output[c][i];
        if ( output[c][i] > 1.0f ) {
            output[c][i] = 1.0f;
        } else if ( output[c][i] < -1.0f ) {
            output[c][i] = -1.0f;
        }
    }
}

5. The current state is saved:
limiter_mem[0] = gain;
limiter_mem[1] = releaseHeuristic;
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The Renderer Framework has local configuration parameters. The parameters and their values are given in Table 142.
[bookmark: _Ref100924217]Table 142 — Renderer framework local configuration parameters
	Name
	Type
	Value
	Description

	Binaural_HRIRFilterLength_LoQ 
	int
	 256
	The HRIR windowing length for binauralization of secondary RIs

	PanningHRIRConvolution
	int
	0
	0: Regular HRIR convolution
1: HRIR convolution by panning
Values larger than or equal to 2 are reserved.

	DiffractionCullingGain 
	float
	 0.1	
	The gain of the diffraction source that are culled

	DiffractionDistanceCullingThreshold 
	float
	 64
	The distance threshold for which diffraction items are culled in meters

	DiffractionFastSpeed 
	float
	 5
	For a source with slower speed than DiffractionFastSpeed, edges farther away from a test point than DiffractionDistanceCullingThreshold will be no longer relevant for diffraction. For a source with faster speed, the distance between a source and the listener will be used as CullingThreshold

	DiffractionFilterTuneParameter 
	float
	 0.5
	A factor for diffraction filter slope control whose range varies in between 0 to 1 and  1 applies no attenuation effect by bending mode of propagation 

	DiffractionGain 
	float
	 1
	The overall gain level for diffraction items

	DiffractionItemNumber 
	int
	 10
	The maximum number of diffraction-type render items per primary source

	DiffractionLinearPanning 
	bool
	 false
	Obsolete

	DiffractionPathSelection 
	bool
	 false
	Obsolete

	DiffractionRegularizationAngle 
	float
	 5
	Regularization coefficient in degree for weighting diffraction items according to their accumulated diffraction angle.

	DiffractionSESSGain 
	float
	 1.5
	The additional gain of diffraction-type render items in extended  source case

	DiffractionSourceExtentDistanceThreshold 
	float
	 32
	For an extended source that is farther away from the listener than the given distance threshold, diffraction is not applied.

	DiffractionSourceExtentGain 
	float
	 0.25
	The initial gain of diffraction-type render items in extended source case

	DiffractionSourceExtentGainNSample 
	int
	 10
	The number of gains to generate smooth gain change in extended source case

	DiffractionUpdateRate 
	int
	 10
	The update rate of diffractions in Hz

	Diffraction_GeometricErrorThreshold 
	float
	 0.001
	The acceptable geometrical margin in meter 

	DirectSoundEnabled 
	bool
	 true
	Flag to enable or disable direct sound

	DirectSoundGain 
	float
	 1
	The overall gain level for direct sound

	Dispersion_Diffraction 
	bool
	 false
	Flag to enable dispersion filter for diffraction sources

	Dispersion_Early_Reflections 
	bool
	 true
	Flag to enable dispersion filter for early reflections

	Dispersion_Filter_Length 
	float
	 0.015
	The length of the dispersion filter in seconds

	Dispersion_Gain_dB 
	float
	 0
	The gain level for the dispersion filter

	Distance_EnableDoppler 
	bool
	 true
	Flag to enable propagation delay processing

	Distance_MinDistance 
	float
	 0.2
	The minimum distance for the distance attenuation in meters

	Distance_SmoothingFactor 
	float
	 0.5
	A factor for smoothing of object trajectories to counteract sudden movements (avoiding excessive Doppler effects)

	Distance_TeleportThreshold 
	float
	 25
	Threshold in m/s after which a movement of the listener is treated as a teleportation (avoiding excessive Doppler effects)

	EarlyFloorAngleDeg 
	float
	 15
	The threshold in which to determine if early reflections come from the floor

	EarlyFloorGainDB 
	float
	 -6
	The gain level for reflections that have hit the floor

	EarlyLimitOrder 
	int
	 2
	The maximum possible order of early reflections

	EarlyTuningGain 
	float
	 0.4
	Overrides the early reflection tuning gain gtuning 

	EarlyMaxOrderNoVoxel 
	int
	 1
	

	EarlyReflectionsEnabled 
	bool
	 true
	Flag to enable or disable early reflections

	EarlySpeedLimit 
	float
	 5
	

	EarlyUpdateRate 
	int
	 4
	The update rate of early reflections in Hz

	ExtentFilterSmoothing 
	float
	 0
	

	ExtentHitCountMax 
	float
	 0.6
	

	ExtentHitCountMin 
	float
	 0.3
	

	Fade_Length 
	float
	 0.05
	Fade in/out time for activated/deactivated audio elements in seconds

	GeometricErrorThreshold 
	float
	 0.001
	

	HOAEnabled 
	bool
	 true
	Flag to enable or disable HOA stage

	HOAGain 
	float
	 1
	The overall gain for HOA sources

	Mphoa:gain 
	float
	 1
	The overall gain level for MPHOA sources

	OcclusionFastSpeed 
	float
	 5
	

	Occlusion_BinaryMode 
	bool
	 false
	

	Occlusion_RepeatDist 
	float
	 1
	

	OctaveBands 
	int
	 9
	

	Panner:oldGainWeight 
	float
	 0
	Apply gain smoothing in panner between frames if value > 0 by using oldGainWeight for old panning gains and (1-oldGainWeight) for new panning gains.

	Panner:spreadAuxiliarySourceCount 
	int
	 0
	Number of auxiliary sources for multiple direction amplitude panning (MDAP).

	Panner:spreadGainFraction 
	float
	 0
	Fraction of gain for auxiliary sources in MDAP.

	Panner:spreadRadiusDeg 
	float
	 0
	Radius for auxiliary sources in MDAP.

	PortalSoundEnabled 
	bool
	 true
	Flag to enable or disable the portal stage

	DirectionalReverb_Gain 
	float
	 1
	The overall gain level for reverb extent render items

	Portal_Enable_Coupling
	bool
	true
	Flag to enable / disable rendering of coupling sources

	RayHitSubdivCount 
	int
	 20
	

	Reverb:Crossfade 
	bool
	 true
	Flag to enable reverberation fade in outside the AE enclosure

	Reverb:Crossfade_Fade_In_Distance 
	float
	 1.00002
	Fade in distance in meters for reverberation fade in outside an AE

	Reverb:DistanceGainDropDb 
	float
	 1.50002
	Control for late reverberation distance gain attenuation. Distance doubling reduces late reverberation level by the given value in dB.

	Reverb:Gain 
	float
	 1
	The overall gain level for the late reverberation

	Reverb:HeadTrackingEnabled 
	bool
	 false
	Flag to enable or disable head tracking for reverberation

	Reverb:LSDF_RDRToActualRDR 
	float
	 -8.0
	Offset in decibels to be added to the log base 10 of the RDR value obtained from an LSDF file

	Reverb:MinimumDistance 
	float
	 1.00024
	Minimum distance threshold applied to late reverberation distance gain attenuation.

	Reverb:numDelayLines
	int
	15
	Number of delay lines for reverb. If provided, this shall configure all FDN reverberators with this value and override any possible value carried in the bitstream revDelayLineCount.

	Reverb:OverrideLSDF_RDR 
	bool
	 false
	This flag indicates whether late reverberation shall derive RDR values using a statistical diffuse approximation based on the RT60 value instead of the RDR values for AR.

	Reverb:PredelayFactor 
	float
	 4.0
	A divisor applied to the predelay to adjust the reverberation onset for VR AEs

	Reverb:PredelayFactorAR
	float
	1.0
	A divisor applied to the predelay (diffuseOnset) to adjust the reverberation onset for AR AEs

	Reverb:PredelayOffset
	float
	0.0
	A temporal offset, in seconds, added to the reverberator predelay

	Reverb:SpeedOfSound 
	float
	 343
	The value for the speed of sound for reverberation only in meters per second.

	Reverb:TheoreticalRdrToActualRdr 
	float
	 -7.99954
	Offset in decibels to be added to the log base 10 of an RDR value obtained from a statistical diffuse approximation based on the RT60 value.

	Reverb:Default_Acoustic_Environment_Preset_Override
	int
	0
	Index of a preset containing predefined reverberation parameters for Default AE.

	Reverb:Default_Acoustic_Environment_Gain
	float
	1.0
	The overall gain level for the reverberation in Default AE.

	Reverb:Default_Acoustic_Environment_Predelay_Override
	float
	0.154
	Offset in seconds from where revDefaultAEDSR is calculated in the RIR in the case of Default AE.

	Reverb:PredelayFactorDefaultAE
	float
	1.0
	A divisor applied to the predelay to adjust the reverberation onset for Default AE.

	Reverb:DistanceGainDropDbDefaultAE
	float
	6.0
	Control for late reverberation distance gain attenuation in Default AE. Distance doubling reduces late reverberation level by the given value in dB.

	Reverb:MinimumDistanceDefaultAE
	float
	5.0
	Minimum distance threshold in meters applied to late reverberation distance gain attenuation in case of Default AE.

	Reverb:Default_Acoustic_Environment_Delay_Ratio
	float
	8.78
	Delay ratio used in calculation of delay line lengths for Default AE.

	Reverb:Default_Acoustic_Environment_Delay_Min_Ms_Override
	float
	38.19
	Minimum delay line length in milliseconds used in calculation of the reverberation delay line lengths for Default AE.

	SmoothingDecayRate 
	float
	 -2
	

	Sphoa:gain 
	float
	 1
	The overall gain level for SP-HOA sources

	virtualHeadSize 
	float
	 0.1
	The radius of the listeners head in meters used for transitioning into spatially extended sound sources

	
	
	
	

	HeadphoneEQ:Mode
	string
	
	The specType used to specify the local headphone equalization data, as given in Table 14

	HeadphoneEQ:CenterFreq
	Vector of floats
	
	Vector of centre frequencies, in Hertz.

	HeadphoneEQ:Gain
	Vector of floats
	
	Vector of gains, in decibel.

	HeadphoneEQ:filterType
	Vector of strings
	
	Vector of filterType, as given in Table 15

	HeadphoneEQ:Q
	Vactor of floats
	
	Vector of parametric filter Q values.

	HeadphoneEQ:Preset
	int
	
	Preset to be used, as given in Table 16

	TargetHeadphoneEQ:Mode
	string
	
	The specType used to specify the target headphone equalization data, as given in Table 14

	TargetHeadphoneEQ:CenterFreq
	Vector of floats
	
	Vector of centre frequencies, in Hertz.

	TargetHeadphoneEQ:Gain
	Vector of floats
	
	Vector of gains, in decibel.

	TargetHeadphoneEQ:filterType
	Vector of strings
	
	Vector of filterType, as given in Table 15

	TargetHeadphoneEQ:Q
	Vactor of floats
	
	Vector of parametric filter Q values.

	TargetHeadphoneEQ:Preset
	int
	
	Preset to be used, as given in Table 16

	
	
	
	

	AccessibilityEqLeft:Mode /
AccessibilityEqRight:Mode
	string
	
	The specType used to specify the accessibility spectral compensation data for left/right ear. Can  be freqgain or parametricfilters, as defined in Table 14

	AccessibilityEqLeft:CenterFreq / 
AccessibilityEqRight:CenterFreq
	Vector of floats
	
	Vector of center frequencies, in Hertz to define the accessibility spectral compensation for left/right ear

	AccessibilityEqLeft:Gain / 
AccessibilityEqRight:Gain

	Vector of floats
	
	Vector of gains, in dB to define the accessibility spectral compensation for left/right ear

	AccessibilityEqLeft:filterType / 
AccessibilityEqRight:filterType
	Vector of strings
	
	Vector of filterType, as given in Table 15 to define the accessibility spectral compensation for left/right ear

	AccessibilityEqLeft:Q / 
AccessibilityEqRight:Q
	Vector of floats
	
	Vector of parametric filter Q values to define the accessibility spectral compensation for left/right ear

	EventActivator:delay
	float
	1.0
	The duration in seconds to wait before deactivating sound effect sources.
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The parametrized geometry data underpins the foundation of the acoustic description of a scene. Multiple renderer stages (for example Early Reflections (6.6.6), Occlusion(6.6.9), and Diffraction(6.6.10)), rely on the geometry data for high quality auralization. This processing is done through a combination of intersection tests, ray tracing and filtering based upon the geometry and the acoustic materials on the geometry. Once the transmission and the decoding of the geometry data is done, the geometry is then inputted into the framework where RIs can refer and query it. Further information about geometry parameter definitions can be found in the Encoder Input Format (EIF, B.4).
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Data elements and variables
vertexCount	The number of vertices in this mesh
faceCount	The number of faces in this mesh
vertexQuantStep	The quantization step size for vertices in meters. The range of this value is between 0.1 and 0.0001
reserved	Skip and ignore these bits
bbBits	The number of bits used to store bounding box dimensions
bb_x_min	The minimum value for the bounding box dimension on the x axis
bb_x_max	The maximum value for the bounding box dimension on the x axis
bb_y_min	The minimum value for the bounding box dimension on the y axis
bb_y_max	The maximum value for the bounding box dimension on the y axis
bb_z_min	The minimum value for the bounding box dimension on the z axis
bb_z_max	The maximum value for the bounding box dimension on the z axis
bb_dim	The value of the current bounding box dimension
bb_dim_sign	The flag which indicates the sign for the bounding box dimension value. If true, then minus sign is used, and if false, then plus sign is used
gcdX	The greatest common divisor amongst all vertices in the x axis
gcdY	The greatest common divisor amongst all vertices in the y axis
gcdZ	The greatest common divisor amongst all vertices in the z axis
gcdPresent	The flag to indicate, that if true, there is a greatest common divisor that is greater than one in any of the dimensions
gcdXPresent	The flag to indicate, that if true, there is a greatest common divisor that is greater than one in the x dimension
gcdYPresent	The flag to indicate, that if true, there is a greatest common divisor that is greater than one in the y dimension
gcdZPresent	The flag to indicate, that if true, there is a greatest common divisor that is greater than one in the z dimension
vertexX	The list of vertices along the x dimension
vertexY	The list of vertices along the y dimension
vertexZ	The list of vertices along the z dimension
alph_mat	The number of symbols in the alphabet for materials
alph_cmi	The number of symbols in the alphabet for compacted material indices
is_present[]	The boolean array to indicate if a material index is present in the bitstream
cmi_to_mi	The map from compacted material index to actual material index
v1[]	The list of vertex indices for the first vertex of all faces
v2[]	The list of vertex indices for the second vertex of all faces
v3[]	The list of vertex indices for the third vertex of all faces
cmi	The compacted material index
same_cmi	The flag to indicate if the current compacted material index is the same as the previous compacted material index	
mi[]	The list of material indices for all faces where the element values of -1 indicate no acoustic material for that face
Decoding Process
The geometry decoding is composed of six subsequent processing units. 
The first unit decodes the header information, such as the number of vertices (vertexCount) and the encoder selectable quantization step (vertexQuantStep).
The second unit decodes the bounding box for the geometry. The bounding box is the spatial constraint of all vertices. In other words, no vertex can exceed the dimensions of this bounding box. Since the vertices are quantized to a uniform spaced grid, the vertices will fall on a uniform space grid bounded on this box. The variables bb_x_min, bb_x_max, bb_y_min, bb_y_max, bb_z_min and bb_x_max are used to represent this bounding box. 
The third unit decodes the step size between all vertices per dimension (gcdX, gcdY, gcdZ) – this is the greatest common divisor amongst all vertex values. This is done with the intention to reduce the number of points in a dimension along the bounding box to achieve less bitstream complexity. 
The fourth unit decodes the vertices for each dimension. The vertex is either represented as a raw value or an index. Indices point to a sorted, dynamically-sized array which contains the vertices; the size of this array never exceeds the difference between the bounding box maximum and minimum divided by the greatest common divisor (i.e. gcdX). Before vertex decoding begins, the maximum and minimum bouding box points are pre-inserted into this array. For each vertex (as determined by vertexCount), the following processing is taking place: if any vertex has not been decoded yet, a flag indicates whether or not the vertex is coded with its index in the array or its raw value; if an index is transmitted, that index to access and read the value from the array is used; if the raw value is transmitted, the value is send to the range decoder where the alphabet size is determined as the difference between the maximum and minimum bounding box dimension divided by the greatest common divisor. Finally the value is stored into the array.  This is done across all three dimensions. The pseudocode below exemplary demonstrates the implementation of the aforementioned unit for the x-dimension:
vertex() {
	alph = ((bbq_max - bbq_min) / gcd) + 1;
	us; // variable sized array containing unique sorted values only
	us.insert(0);
	us.insert(bbq_max – bbq_min);
	for (int i = 0; i < vertexCount; i++) {
		coded_with_index = true;
		if (us.size() < alph) {
			coded_with_index = frdRead(2);
		}
	
		if (coded_with_index) {
			val = us[frdReadUniform(us.size())];
		} else {
			val = frdReadUniform(alph);
			us.insert(val);
		}
	}
}

The fifth unit reconstructs the vertices in accordance with the data retrieved from the prior units. For each vertex, the vertex is multiplied by the associated greatest common divisor, summed with the minimum bounding box value and multiplied by the quantization step. This results in the final vertex data.
xv[i] = (xv[i] * gcdX + bbq_x_min) * vertexQuantStep;

The sixth unit decodes the face list. A face is a triplet of vertex indices and, optionally, an acoustic material associated to the described surface. The vertex indices access the array mentioned in the fifth unit. If a value of 0 is transmitted for the material, this represents no associated material for that face; whereas a positive non-zero value indicates the index to material list detailed in 6.5.3. The vertices are decoded via range decoder using a uniform distribution where the alphabet size is vertexCount. The bitstream informs the decoder if the material for the current face is the same as the previous face, saving bitstream complexity.  
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The renderer uses information from acoustic materials to auralize scenes with high quality. For example, the early reflection stage and occlusion stage additionally consider acoustic materials to enrich auralization (see 6.6.6 and  6.6.9 respectively).
Therefore, Geometry elements can optionally have acoustic materials attributed to them; whether it’s a primitive, where the material is associated with the entire surface area of the primitive, or a mesh, whereupon each face can be attributed with a material. The integer used by geometry to reference acoustic materials acts as an index to the list in which all materials are decoded into: an acoustic material is described via that list where each element holds four coefficients and an associated frequency. The coefficients are: 
· specular reflection, which represents the energy being reflected in a distinct outgoing direction from the direct sound; 
· diffused scattering, which represents energy being diffusely scattering back from the material; 
· transmission, which represents the energy that is passed through the material without changing the direction;
· coupling, which represents the energy that excites vibrations in the structure and is reemitted by the entire structure. 
The sum of these four coefficients, per frequency, must be less than or equal to 1, and be greater than or equal to 0. The difference between 1 and the sum of the four coefficients, per frequency, represents the energy that is dissipated into heat. 
Data elements and variables
materialCount	The number of materials in this set, which is always one in the current implementation
stepIdx	The index of the quantization step for the coefficients
cxStep	The computed step size for the material coefficients
materialFreqGridIdx	Index in the list of frequency grids defined in FreqGridData(). 
materialFreqCount	The number of frequencies in this acoustic material
spcRflIs0	The flag to indicate that, if true, the specular reflection coefficient is 0
diffScatIs0	The flag to indicate that, if true, the diffuse scattering coefficient is 0
trnsIs0	The flag to indicate that, if true, the transmission coefficient is 0
cplIs0	The flag to indicate that, if true, the coupling coefficient is 0
freq	The frequency associated with the following coefficients, retrieved from the frequency grid in FreqGridData().
specularReflection	The specular reflection coefficient for this frequency, with a range of values between 0.0 and 1.0. Indicates the energy reflected back in a distinct outgoing direction
diffusedScattering	The diffused scattering coefficient for this frequency, with a range of values between 0.0 and 1.0. Indiates the energy that is diffusely scattered back from the material
transmission	The transmission coefficient for this frequency, with a range of values between 0.0 and 1.0. Indiciates the energy which passes through the material without changing the direction of the sound
coupling	The coupling coefficient for this frequency, with a range of values between 0.0 and 1.0. Indiciates the energy which excites vibrations in the structure and is reemitted by the entire structure
Decoding Process
First, the number of materials (materialCount) and the encoder-selectable coefficient step size (cxStep) is decoded. 
After that, for each material (as determined by materialCount) and for each frequency the set of coefficients (specularReflection, diffusedScattering, transmission and coupling) is decoded. All coefficients are within a range between 0 and 1. 
Next, the frequency is decoded which is an integer between 1 and 24000. 
Each coefficient has a flag to indicate if its value is equal to zero (spcRflIs0, diffScatIs0, trnsIs0, cplIs0). If the flag value is false, the coefficient is decoded using a range coder where the alphabet size is cxStep + 1.
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General
The Effect Activator stage manages the activation and deactivation of render items that are associated with the playback of sound effects.
Scene objects may be activated and deactivated within the scene state during runtime. When a scene object is activated the Effect Activator stage checks if the object is associated with a sound effect stream, and if so ensures that after the sound effect has been active for the duration of the audio stream it is currently rendering that it is deactivated, and all Render Items are likewise deactivated. 
Data Elements and Variables
audioFileDurations	a map of audioStreamId and streamDuration, as received in the AudioPlus payload.
deactivationDelay	a float value representing the time in seconds after the audio stream is finished before render items should be deactivated.
frameCounter	an integer value that represents the number of audio frames that have been processed since the start of scene playback.
activeEffects	a map of currently active audio effects, and the time, in frames, at which they should be deactivated.

Stage Description
Initialization
At initialization the EffectActivator stage creates the map of audioFileDurations from the audio stream information contained in the scene payload, 6.3.2.10. The map contains all the duration of all audio streams that are indicated as being used for sound effects, referenced by their integer id.
For all object sources that exist in the scene state, the Effect Activator Stage subscribes to the SceneObjectObserver functionality, as described in 6.4.1.2.1, for those scene objects sources.

Object Changes
The stage shall be notified of all changes to the object sources for which a subscription was added during initialization. When the stage is notified that the Play property of an object source is set, it shall check whether the audio stream currently associated with the scene object source exists in the map of audioFileDurations. If the audio stream exists in the map, the id of the object source is added to the map of active effects, with the deactivation time given as the sum of the frameCounter, deactivationDelay, and duration given for the audio stream in the audioFileDurations. The active flag of the scene object is set to true.
The deactivationDelay shall be set such that sufficient time is allowed for the time taken for the sound to reach the listener from the source position is accounted for. By default this is configured to be 1 second, but may be changed via the local configuration interface, 6.4.2.7, or may be set based on the dimensions of the scene, such as the time of flight equivalent to two times the longest dimension of the scene bounding volume.
Update Thread
When called, the update thread shall check if the deactivation time of any audio effect in the list of activeEffects has been exceeded by the frameCounter, and if so, shall deactivate the object within the scene state and all associated render items that have been created.
Audio Thread
The Effect Activator stage does not do any audio processing. During audio thread processing callback only the frameCounter is incremented. 

[bookmark: _Toc117076352][bookmark: _Toc131497373][bookmark: _Toc132126377][bookmark: _Toc132225946][bookmark: _Toc135210134][bookmark: _Toc166076617]Room assignment
General
The Acoustic Environment (AE) Assignment updates metadata of each RI and the listener at each update step to reflect the current scene configuration with respect to AEs defined in the scene. This can be used by the Reverb-, Portal- and other stages to determine which signals are currently relevant for the late reverberation processors and which reverberation extent items are audible. A special case of the Room Assignment is the Default AE, which is a generic AE that can be applied whenever the listener is situated in a scene part without a bounded AE.
This stage checks whether the listener and the RIs are inside any of the acoustic environments (AEs) in the scene and documents the result for later stages. 
Data elements and variables
acousticEnvs	a vector of acousticEnv objects. An acousticEnv object contains all the relevant information of an AE: 
· Unique identifier as an integer
· Bitstream ID from the encoder as an integer
· Boundary
· Human-readable name as string
The relation of acousticEnv and AE is a one-to-one mapping. acousticEnv is the renderer’s representation of an AE with the same data.
acEnvId 	Unique ID of an AE in the scene. This is different from the bitstream ID that came from the encoder and is generated incrementally by the renderer upon the creation of each acousticEnv.
Stage description
Update thread
For each update, the stage loops through the listener and all the RIs. If the listener or a RI is in none of the acousticEnvs, the id of the Default AE is assigned onto the acEnvId data field of the RI. Otherwise, the id of the corresponding acousticEnv is assigned. Figure 8 is an example of the classification of whether a sound source or a listener is inside or outside of an AE.


[bookmark: _Ref101262690]Figure 8 — Illustration of an acoustic environment (AE) with a listener inside (1) and one outside (2) the region
Audio thread
There is no Audio Thread processing in this stage.
Default acoustic environment
General
This stage is a special case of room assignment that can be applied whenever the listener is situated in a scene part without a bounded AE. It provides a definition for a generic room environment used by the renderer to control reverberation parameters. 
The purpose of this stage is to provide perceptually plausible acoustical properties in the scene regions, which do not have an AE specified in the bitstream or the LSDF. The lack of the early reflections and/or late reverberation signals results in unnaturally “dry” listening impression. To overcome this, the Default AE provides generic reverberation that aims at creating a more natural and not overly “dry” scene acoustics.
The Default AE solution consists of two main aspects:
1. Reverberation parameters
2. Signaling mechanism and secondary controls

Reverberation parameters
The reverberation parameters are provided using one of the predefined sets in A.3 or by providing custom Default AE reverberation parameters as part of the payloadReverb() bitstream

Signaling mechanism and secondary controls
When detecting which acoustic environment the listener is currently present in, the renderer generates a Null pointer when the listener is located in a scene part, which is not contained in a defined acoustic environment. In this case the renderer refers the Default AE parameters to be used by the reverberation stage.
Additional control parameters are being provided for further adjustments of the Default AE rendering. Those can be set either as part of the the payloadReverb() bitstream payload, or as presets in the renderer as defined in A.3.

revDefaultAEDistanceGainDropDb : defines amplitude gain drop of the reverberation level based on distance doubling between source and listener in dB
Respective preset and default value (float) in renderer:
presetDefaultAEDistanceGainDropDb{ 6.0f };

revDefaultAEMinimumDistance : defines minimum distance between source and listener in meters, below which the amplitude of the reverberation remains constant
Respective preset and default value (float) in renderer:
presetDefaultAEMinimumDistance{ 5.0f };

revDefaultAEGain : defines a independent global reverberation gain factor for Default AE
Respective preset and default value (float) in renderer:
presetDefaultAEGain{ 1.0f };
[bookmark: _Toc166076618]Granular synthesis
General
Granular synthesis is a method to render procedural audio, which means sound that can evolve in a controlled way using real-time input. The synthesis is based on original recordings that are divided into small pieces, a.k.a. grains. The synthesis works by chaining together grains at rendering time, where the choice of which grains to use can be controlled by live user input, virtual scene state changes, pre-defined trajectories etc. Granular synthesis is typically used for generating continuously evolving sounds that cannot easily be generated using triggered audio files or continuous loops where you have limited control over how the sound evolves. 
Examples of sound sources can be generated with granular synthesis:
· Engine sounds where the RPM of the engine changes over time.
· The sound of flowing water where the flow varies.
· Nature sounds, such as the sound of a forest where the frequency of bird chirps varies.
· Friction sounds, where objects slide against each other and where the speed and force vary.
A special version of granular synthesis is when grains are stored into a database where each grain has a specified position in a so-called descriptor space. The descriptor space is a multi-dimensional space where each dimension represents a certain descriptor of the sound. Figure 9 shows an example of a granular database with a 2-dimensional descriptor space.
A descriptor can be a measurable feature of the sound, like pitch, amplitude, energy in a certain frequency band etc. But it can also represent some abstract feature, related to how the sound is generated. For example, for the squeaking sound of an old door, one descriptor can represent the opening angle of the door. Another example is the sound of a water stream into a glass, where one descriptor can describe the level of water in the glass and another descriptor can describe the flow of water, which are aspects that both have an influence on the generated sound. In the latter case, the granular database would have a 2-dimensional descriptor space where the position in both dimensions has an influence on the generated sound.
[image: ]
[bookmark: _Ref155989936]Figure 9 – An example of a 2-dimensional granular database where grains, depicted as blue circles, are spread out in the descriptor space. The target position is marked with a cross. 

At rendering time, a target descriptor coordinate, or target position, in the descriptor space is continuously updated in real-time to control the sound so it evolves in a way that matches the user input or changes in the virtual scene. 
The granular databases can be included in the bitstream, or they can be retrieved from a separate channel by using the GranularSoundId and/or GranularDatabaseFilePath, which are specified in the GranularSounds item in payloadScene. If a granular database is missing, the rendering stage will skip rendering of the source that is referring to this database and silence will be produced for this source until the missing database is retrieved. 
Data elements and variables
Grain
The grain structure holds information that belongs to one grain.
Dim						This value represents the dimension of the descriptor 							coordinate space that the grain resides in.
DescrCoord	This vector of values represents the grain descriptor coordinates for the grain.
grainLen	This value represents the length of the grain.
DescrCoordTrend	A 3-dimensional vector of values that represents the trend of the grain descriptor coordinates for the grain.
origRecordingPos	The position of the grain within the original audio file that the grain was extracted from.
grainProbabilityGroup	The group that the grain belongs to.
perGrainProbabilityValue	Individual probability value associated with the grain.
mixingRule	The optimal mixing rule for this grain.

GranularDatabase
The GranularDatabase structure holds information that belongs to one granular database.
dimensions					The dimension of the descriptor space of the									database.
numberOfGrains					The number of grains in the database.
channels					The number audio channels used in the database.
grains					A vector of grains.
coordScaling			A vector of scaling factors for scaling the descriptor space 				coordinate system.
smoothingTargetCoordinates	This vector represents smoothing parameters used to smooth target coordinate values obtained from the user input.
searchRadius	This value represents the radius of search while searching for grains via kDTree search.  This radius is used in the scaled descriptor space.
grainHistoryLength	This value represents length of the history of used grains.
numMixRule	This value represents the number of mixing rule coefficients available in the database.
grainMixRule	This is a vector of values representing the mixing rule coefficients in different positions.
grainMixingRuleCoordinates	This is a vector positions corresponding to the mixing rules in the vector grainMixRule.
[bookmark: _Hlk161646955]probabilityWeightPosition	This value represents the weight used to calculate the probability value associated with the descriptor position evaluation in the random selection. 
probabilityExponentPosition	This value represents the exponent used to calculate the probability value associated with the descriptor position evaluation in the random selection.   
probabilityWeightHistory	This value represents the weight used to calculate the probability value associated with the history of the grains rendered for random selection.

probabilityExponentHistory	This value represents the exponent used to calculate the probability value associated with the history of the grains rendered for random selection. 
descrTrendAvailable	This value indicates whether descriptor coordinate trend is available as a parameter in the granular database.
probabilityWeightTrend	This value represents the weight used to calculate the probability value associated with the trend of the position of the grain in the descriptor space for random selection of grains.
probabilityExponentTrend	This value represents the exponent used to calculate the probability value associated with the trend of the position of the grain in the descriptor space for random selection of grains.  
probabilityWeightOriginalRecordingPosition	This value represents the weight used to calculate the probability value associated with the index or position of the grain in the original recording for random selection. 
probabilityExponentOriginalRecordingPosition This value represents the exponent used to calculate the probability value associated with the index or position of the grain in the original recording for random selection.
randomSelection	This value indicates whether random selection is to be used for granular synthesis. If 0, then the grain with highest probability weight is always chosen.
useInterpolation	This value indicates whether interpolation is to be used for granular synthesis.
grainInterpolationDistThreshold	This value represents the distance threshold for interpolation.
useInterpolationResampling	This value indicates whether resampling operation is to be performed for granular interpolation.
grainOverlapAmount	This value represents the parameter of overlap amount or percentage used for overlap-add operation in granular synthesis.
[bookmark: _Hlk155994195]descrTrendMethod	This value indicates the index of the method chosen to evaluate the descriptor trend coordinate values for random selection.
fastGrainSwitchThreshold	This value represents fast grain switching threshold distance.
InterpolationMethod	This value represents the index of interpolation method to be chosen. 
pitchDimension	This vector of values indicates the descriptor coordinate dimension that corresponds to pitch. This is used to calculate the length of the interpolated grain.
newGranPosValue	This value sets new target descriptor space coordinates.
probabilityGroupVal	This value sets the initial probability weight of a group in the bitstream.
granularProbGroupNo	This value specifies an index of a grain probability group for a dynamic update.
granularGroupProb	This value sets the probability weight of a group with a dynamic update.
[bookmark: _Ref162445043]Stage description
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Figure 10 – A block diagram of the main functional blocks of the granular rendering stage.

In contrast to most other rendering stages, the granular synthesis rendering stage produces audio output buffers without using any input audio buffers. When initializing the renderer, the granular databases are loaded for each sound source, and these are used for producing the audio output. Since the renderer has random access to the whole granular database and grains may be selected from any part of the descriptor space, fast transitions can be generated with very low latency.
Smoothing of updated target position
The received updates of the target position, as specified by newGranPosValue, are smoothed using a forgetting factor controlled by the parameter smoothingTargetCoordinates which is a vector of smoothing coefficients for each dimension of the descriptor space. The smoothed target position, Tn,Smooth, in the n:th dimension is calculated from the updated coordinate, Tn, as
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Overlap-add of consecutive grains
Each grain in the database has its own length. A part of the length of the grain is used for overlap-add windowing to transition from one grain to the next. The length of the overlap region of a grain,  is calculated as
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The first and last  samples of each grain are the overlap regions of the grain. When the rendering of the current grain reaches the overlap region at the end, the scheduling of the next grain is initiated and an overlap-add is done where the current grain is cross-faded into the next. Here an optimized overlap window is used, which is described in section 6.6.3.3.7. The length of the overlap region is set to the shortest of the two grains overlap regions. If grainOverlapAmount is not specified in the bitstream, it is assumed to be 0.
[bookmark: _Ref161646428]Grain scheduling using a weighed random selection
As described above, the grains in the granular databases are stored with metadata specifying a position within the descriptor space, which is a multi-dimensional coordinate system with up to three dimensions. A target position in the descriptor space controls which grains should be considered to be selected. To achieve a natural generated sound, the selection, or scheduling, of grains is based on a weighted random selection where different aspects of the grains are included. 
The first step in the weighted random selection is to select a set of candidate grains that will be further evaluated. The candidate grains are selected from the granular database by extracting the grains that reside within a radius distance from the target position in the descriptor space.
For each grain withing the set of candidate grains, a weight is calculated, and then a weighted random selection is performed to select a grain from the set of candidate grains.
The weight for each grain is taking several aspects into account, where each aspect contributes to the final weight:
· The distance from the position of the grain to the target position. 
· The history of previously used grains, where the previously used grains will be assigned a lower weight.
· The trajectory trend associated with the grain compared to the current trajectory trend of the target position.
· The distance between the grain and the currently used grain in the original recording.
· The probability weight of an individual grain given by the perGrainProbabilityValue.
· The probability weight of the group the grain belongs to if it belongs to a group.

The final weight, piFIN, for grain i is calculated as
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where pi0 to pi5 are the weights corresponding to the different aspects. The calculation of the weights for the different aspects is described in more detail in the respective subsections below.
The degree of influence of each aspect can be controlled by the creator of the database by setting the respective probabilityWeight and probabilityExponent parameters that control how much each aspect should affect the final weight of each grain in the weighted random selection. The probabilityWeight parameter sets the difference between the highest and lowest values of probability weight for that aspect. E.g., setting the probabilityWeightPosition to 2.0 means that the grain(s) closest to the target position will get two times higher probability weight compared to the grain that is furthest away.
The probabilityExponent parameter adds an exponent to the probability weight of that aspect, which will affect both the difference in maximum and minimum value of the probability weight of that aspect but also the shape of the probability function. E.g., if the probabilityWeightPosition is set to 2.0, setting the probabilityExponentPosition to 2.0 would increase the difference between the maximum and minimum probability weight to 4 but also make the probability function more exponential so that more weight is given to grains that are the closest to the target position as is shown in Figure 11. The parameters probabilityWeightHistory, probabilityExponentHistory, probabilityWeightTrend, probabilityExponentTrend, probabilityWeightRecordingPosition and probabilityExponentRecordingPosition specify the weight and exponent of the respective aspects. 
The individual grain probability and group probability do not have weight or exponent parameters since they are given explicitly as probabilities and are not derived from other parameters.

[image: ]
[bookmark: _Ref155975810]Figure 11 – An example of how the probability weight for the descriptor space position aspect can be set using the probabilityWeightPosition and probabilityExponentPosition parameters.

In some special cases, a random selection of grains is not desirable. For example, a granular database may contain a set of single cycle wav	eforms where the expected output is a very controlled static sound without any randomization. In this case the flag randomSelection can be set to false, in which case the grain with the highest weight will always be selected without any random selection. If randomSelection is set to true, a weighted random selection will be carried out.

Distance in the descriptor space
The target position is used to control from which part of the descriptor space grains should be selected. This means that grains that have a position that is close to the target position is given a higher weight in the weighted random selection.  The distance between the position of a grain, given by DescrCoord, and the target descriptor coordinate comes in at two stages in the weighted random selection, first when selecting the set of candidate grains, where only the grains that are closer than a specified radius, searchRadius, are included as described in section 6.6.3.3. Then the distance between the grain and the target position is also used as one of the aspects when calculating the weights for the candidate grains and can there further give higher weight to grains that are close to the target position. Here the Euclidian distance from the position of a grain to the target position, di, is measured for all candidate grains. The weight, p0i, for candidate grain i, is then calculated as
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where dMAX is the distance of the candidate grain that is furthest away from the target position and pEP is the parameter probabilityExponentPosition.
Grain history
It is often not desired that the same grain is used repeatedly since that may lead to an unnatural sound. To be able to avoid repetition of grains, a history of used grains is kept and updated by the granular renderer. By checking if a grain is present in the grain history, and at what position in the grain history it is present, a probability weight can be calculated.
The length of the grain history is set by the parameter grainHistoryLength in the granular database. If a grain is present in the grain history, the probability weight is calculated based on its position, h, in the grain history. If h=0, it means that the grain was the last one used. If h=4, it means that four other grains has been used since the grain was used that last time.
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Where R = 1/ probabilityWeightHistory 
and pEH is the parameter probabilityExponentHistory.
Descriptor trajectory trend
When performing grain extraction, the descriptor coordinates are used as the main selection criterion. But the trend of the original descriptor trajectory of the grain also gives important information. For example, if an engine sound is modelled with a granular database with one descriptor that denotes the RPM of the engine, the trend of the descriptor corresponds to the acceleration or deceleration of the engine at the time instant in the recording that the grain was extracted from. A grain that was extracted from a portion of the recording where the engine was accelerating will have a pitch that is slightly lower at the start than at the end and will therefor fit best when the desired output is the sound of an accelerating engine. The descriptor trend of a grain is specified with the parameter DescrCoordTrend.
In the more general case, where a multi-dimensional descriptor space is used, the descriptor trend is a vector that corresponds to the direction of the trajectory that describes how the descriptors were changing at the time of the original recording. The value of the trajectory trend represents the change of descriptor coordinates per second for the duration of the grain and can be calculated as:
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Where the coordSTART and coordEND are the descriptor coordinates of the original recording at the time instants representing the start and end of the grain. The duration is the length of the grain in seconds. 
Similarly, the trend of the target descriptor trajectory at rendering time describes the change in target position per second:
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where coordNEW is the latest target descriptor coordinate, coordLAST is the last target descriptor coordinates and time_delta is the time elapsed since the last update.
The descriptor trend describes both the direction and the rate of change. Referring again to the example of the engine, if the granular database includes grains that correspond to the same RPM but with different acceleration, the grains that correspond to a similar acceleration as that of the target descriptor trajectory should be preferred.
The probability weight of the trajectory trend aspect can be calculated using three different modes:
1. The default mode where the probability weight is calculated from the norm of the difference between the trajectory trend of the grain and the current trajectory trend of the target position.
2. A binary mode where the sign of the dot-product of the trajectory trend of the grain and the trajectory trend of the target position is used to set the probability weight of a grain. If the sign of the dot-produce is positive, the two vectors are pointing in directions less than 90 degrees apart and the grain will receive the highest probability weight. If the sign is negative, the two vectors are pointing in directions that are more than 90 degrees apart and the grain will receive the lower probability weight. 
3. A combined mode where both the sign of the dot-product of the trajectory trend vectors and norm of the difference in trajectory trend are evaluated. For the case that the sign of the dot-product is negative, the probability for the evaluated grain will be set low. If the sign is positive, the probability will depend on the size of the norm of the difference in trajectory trend, in the same way as for the default mode.
The selection of method is controlled by the parameter descrTrendMethod which may have the value 1, 2 or 3 for the respective methods. 
For mode 1, the norm of the difference in the trajectory trend of a grain and the current trajectory trend, ni, is calculated: 
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Where smoothedTargetTrend is calculated as 
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where T is the current target position and TPREV is the previous target position.
A weight, pi, for candidate grain i, is then calculated as
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where nMAX is the trend norm of the candidate grain that has the largest trend norm and pET is the parameter probabilityExponentTrend.
For the binary mode 2, the probability weight, p2i, is set to a low number close to zero, 0.00001, if the dot-product is negative.  If the dot product is positive p2i is set to 1.
In mode 3, the probability weight, p2i, is set to a low number close to zero, 0.00001, if the dot-product is negative, just as with mode 2. Otherwise, it is calculated as for mode 1.
If descrTrendAvailable is set to false, no descriptor trend information is available for the granular database and p2i is set to 1.
Difference position in the original recording
For some sound sources, the way that the sound evolves may not be completely described by the changes in descriptor coordinates. Sometimes sound evolves in a way that depends on what happened earlier. For example, the screeching sound of an old door may have a slightly different screeching sound every time it is opened, even if the opening of it is done at the same speed etc. In these cases, the sound of grains with similar descriptor values and descriptor trend may sound very different and combining them may result in unnatural discontinuities that were not there in the original recording. A way to avoid these discontinuities is to assign a higher probability to grains that come from the same part of the original recording as the grain that was rendered previously. Grains that came from the same part of the original recording are expected to be closely related and resemble each other in character and are therefore good candidates when selecting the next grain.
In order to measure how close one grain from a particular recording is to another grain from the same recording, a time difference can be calculated which corresponds to the difference in time instant in the recording that the two grains were extracted from. If the grains were close, this time difference is small. To calculate the time difference between two grains, metadata that tells from which original recording each grain was extracted and at what time instant can be used. This metadata, therefore, provides a measure of closeness between the two grains. This metadata can be specified in a compact way as two values: a recording identifier assigned to the recording of origin and a position value within that file that identifies the time instant in that recording that the grain was extracted from.
The position of a grain in the original recording can be specified with the origRecordingPos parameter in the bitstream. This is a floating-point value where the integer number corresponds to an index of a certain original audio file or segment of an audio file, and the decimal part describes the position within that audio file or segment of an audio file. If the integer parts of the origRecordingPos of two grains are different, it means that they come from different recordings and therefor the probability weight is set to its minimum value. If the integer part is the same, it means that the two grains come from the same recording and the distance between them is measured as the difference between the respective decimal parts.
For example, a value of 1.003 means that the grain originally came from the recording with index 1 and that the position of the grain within that recording was close to the start.
Another grain has the value of 1.981, which means that the grain originally came from the same recording with index 1 and that the position of the grain within that recording was close to the end.
The difference in position, di, for these grains is calculated by setting the integer number to zero and calculate the norm of the difference of the decimal parts only:
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 A weight, p3i, for candidate grain i, is then calculated as
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Where pER is the parameter probabilityExponentRecordingPosition.
Grain groups
If a grain is assigned to a grain group as specified by the parameter grainProbabilityGroup, the probability weight of that group, given by granularGroupProb, is used in the calculation of the final weight for the grain. If the grain does not belong to any group, this aspect will not have any influence of the final weight for the grain, which is equivalent to that the grain belongs to a group with the probability weight set to 1.0.
Grain groups are defined in the bitstream as a list of probabilityGroupVal where the index of the group is implicitly given by the order in the list.
The probability of groups can then be updated in real-time using dynamic updates where granularProbGroupNo is specified along with the new probability weight, granularGroupProb.
All grains are by default assigned to the group with id 0, which has the default probability weight 1.0.
Scaling of the descriptor space coordinate system
For some granular databases, the different dimensions of the descriptor space have very different meaning and may need different weight in the weighted random selection. For example, one dimension may represent the pitch of a sound while another dimension represents a difference in the tonal character of the sound. In this case, the accuracy requirement in the pitch dimension may be higher than in the other dimension.  By scaling the coordinate system differently in the different dimensions, the accuracy can be increased in a certain dimension. 
This has an influence on the selection of the set of candidate grains. All grains within a radius around the target position are chosen as candidate grains, but if the coordinate system has been scaled, this radius may be different in the different dimensions so that the selection of candidate grains is done using e.g., an elliptical area around the target position instead of a circular area, or an ellipsoid if the descriptor space has three dimensions. The coordinate scaling is specified by the parameter coordScaling. The scaled coordinates are calculated as
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The scaled coordinates are used throughout in the granular rendering in place of the original coordinates.
Grain interpolation
In some cases, the granular database may have too few grains, or grains that do not evenly fill the descriptor space. In these cases, the selection of grains becomes more restricted. For some target positions in the descriptor space, there might not be any grains that are close, or the close grains are few so that they need to be repeated frequently.
In the case that the grain scheduler does not find a grain that is close enough to the target position, or that all grains close to the target position have already been used recently, a new grain can be created; this new grain is referred to as an “interpolated grain”. The method for creating an interpolated grain includes selecting two grains that are then interpolated to form a new temporary grain. It is important to select two grains that are not on the same side of the target position in the descriptor space. This is done using the following steps:
1. Given an updated target position, select a set of candidate grains and use the weighted random selection described above to select a first grain. If the selected grain is within the threshold grainInterpolationDistThreshold from the target position, use this grain without doing any interpolation, otherwise continue with the next step.
2. For each grain remaining in the set of candidate grains, assign a final weight, where the final weight includes an extra aspect that depends on if the grain is in a complementary position in the descriptor space relative to the first grain with respect to the target position. Grains that are in positions that are not complementary are given a low weight and therefore have a low probability to be chosen.
3. Select a second grain from the set of candidate grains using the recalculated weights including the aspect of a complementary grain position.
4. Select a length for the new, interpolated, grain. The selection of the length of the interpolated grain depends on whether the useInterpolationResampling is set to true or false. This is explained in a separate section below. 
5. If useInterpolationResampling is active, the selected grains are resampled to match the length of the new interpolated grain. If useInterpolationResampling is not active, only the first section, matching the length of the new interpolated grain, of each grain is used.
6. Generate the new interpolated grain using a weighted mix of the selected grains where the weights depend on the distances of the respective grains to the target position.
Complementary position criterion
In step 2, to decide if a grain is in a complementary position to the first grain with respect to the target position, a criterion is evaluated where the position is seen as complementary only if it satisfies the following pseudo code:
bool positionIsComplementary = true;

if ((coordsA[D] <= targetCoord[D] - Thr) && (coordsB[D] <= targetCoord[D])) {
        	positionIsComplementary = false;
    	}
if ((coordsA[D] >= targetCoord[D] + Thr) && (coordsB[D] >= targetCoord[D])) 
{
        	positionIsComplementary = false;
    	}
Where coordsA and coordsB are the coordinates of the two grains and Thr is set to the grainInterpolationDistThreshold. The evaluation is repeated for each dimension, D, of the database and the position is complementary only if the coordinates satisfy this condition for all dimensions.

Choice of the length of the interpolated grain
If the flag useInterpolationResampling is set, the length of the new interpolated grain is set as a weighted mean of the lengths of the two grains selected as basis for the interpolated grain where the weights are inversely proportional to the respective grains distance to the target position: 
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Where L is the length of the new interpolated grain, L1 and L2 are the lengths of the selected grains and w1 and w2 are weights that are calculated as
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Were d1 and d2 are the distances from respective grains to the target position. In some databases, only one, or some, of the dimensions should have an influence of the pitch, and therefore the length of the interpolated grain. Therefor only the dimensions that are selected with the parameter pitchDimension will be included in the calculations of the distances d1 and d2.  pitchDimension is a vector of booleans, where the dimensions that should be included are set to true.
The final interpolated grain, GINT, is calculated as a weighted sum:
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where G’1 and G’2 are resampled versions of the original selected grains if resampling is enabled. If resampling is not enabled G’1 and G’2 are subsections of the original selected grains where only the first L samples are used.
The resampling is either done using simple, low complexity, linear interpolation or a higher quality resampling using a windowed sinc interpolation where the sinc function is windowed by a Hamming window:
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The variable a is called the kernel size and is set to 3, which gives a good trade-off between complexity and quality. The choice of resampling method is set with the parameter InterpolationMethod where 0 means that the low complexity interpolation is used and 1 means that the high-quality interpolation is used.
[bookmark: _Ref155980829]Optimized overlap-add window
When doing the overlap between two grains, an optimized overlap-add window needs to be selected. For grains that are highly correlated the grains will add up constructively, and therefore a linear overlap-add window, WL, is optimal:
	
	(52)


where x = 0, …, X-1
On the other hand, for grains that are mostly uncorrelated a power preserving overlap-add window, WP ,  is optimal since the grains will not add up constructively.
	
	(53)


To generate an optimized mixing window, WO, a mixing window coefficient, m, is used, which gives a continuous control over the mixing window, from linear to power preserving. WO is calculated as a weighted sum of the linear and power preserving windows, where the mixing window coefficient controls the weights:
	
	(54)


This means that when the mixing window coefficient is 1.0, a power preserving mixing window will be used and if the mixing window coefficient is 0.0, a linear mixing window will be used. Values in-between 0.0 and 1.0 will produce a window that is somewhere in-between a linear and power preserving window, which means that the mixing window can be optimized for grains that are only partly correlated.
A granular database may have clusters of grains that are highly correlated with each other, and other clusters of grains that are mostly uncorrelated with each other. The mixing window coefficient is derived directly from the grainMixRule parameter in the grain database. The grainMixRule can be specified for several positions in the descriptor space and the optimized mixing window for a particular grain is given by the grainMixRule that is specified in a point that is closest to the grain’s position.
Before starting the overlap-add between two grains, the respective mixing window coefficients are evaluated and the greatest of the two is used for deriving the optimal mixing window to be used for the overlap. 
Fast grain switching
Normally, the scheduling of the next grain is triggered when reaching the overlap region of the current grain. In some cases, however, the grains are long and waiting to switch grains until the currently playing grain has been completed will result in a slow update where the target position may have changed greatly during the time a grain is completely rendered. This may lead to a generated sound output with large stepwise changes in character rather than a fast and smooth change. Using shorter grains would improve the dynamic response, but this is not always desirable since longer grains are sometimes needed to produce a natural sounding output. To avoid this problem, a fast grain switch can be triggered before the current grain has been completed. 
A fast grain switch should be triggered when the target position has moved so much that the currently used grain is no longer close to the target, but as long as the currently used grain is still close to the target position a fast grain switch is not needed.
Before the rendering of a new audio buffer is started, a check is made if a fast grain switch should be triggered. This is done by calculating the distance from the target position to the position of the current grain and if this distance has increased more than the threshold fastGrainSwitchThreshold since the current grain was selected, a fast grain switch is triggered.
In the case that grain interpolation is used, the distance from the target position to a line between the two currently used grains is calculated, and if this distance has increased more than the threshold fastGrainSwitchThreshold since the two currently used grains were selected, a fast grain switch is triggered.
Addressing audio samples in an externally provided PCM signal
If the GranularAudioEncodingMode option is set to 1, the audio samples of each grain are not included in the bitstream. Instead, the audio samples of the grains are provided in a PCM signal that is made available to the renderer using some separate channel. The GranularSoundId and/or GranularDatabaseFilePath can be used to identify the PCM signal that correspond to the granular database.
For each grain in the bitstream, the parameter grainSampleIndex is specified. This index specifies at which sample index, within the externally provided PCM signal, the audio samples of a grain starts. 
Using the grainSampleIndex together with the parameters GrainLen and numberOfChannels, the audio samples for each grain can be extracted from the PCM signal. The grainSampleIndex refers to an index in a 1-dimensional array where the channels are interleaved. This means that the index of the sample at time instant T within a grain, for channel k, is calculated as:
	
	(55)


Where k is the index of the channel and is within the range [0, numberOfChannels-1] and T is within the range [0, GrainLen-1].
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General
The Reverb Stage is used for rendering the diffuse late reverberation for each Acoustic Environment (AE). The Reverb Stage is depicted in Figure 12. 
The Reverb Stage takes as input RIs which are of type Primary or HOA and which are not Inactive, Orphaned, or have the NoReverb authoring parameter set. The input audio samples are indicated by Input audio in Figure 12. The Reverb Stage executes several Feedback Delay Network (FDN) reverberators in parallel, one for each currently active AE. These are referred to as Reverberators. The parameters for each FDN are optimized according to the reverberation characteristics of the corresponding AE. Each reverberator takes as direct input those audio elements which are located inside the AE which this reverberator is associated to, and audio elements from other AEs that contribute energy via portals. The Room Assignment stage produces the information of which audio elements are currently inside each AE and this is used for selecting the input signals for each reverberator.
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[bookmark: _Ref100594689]Figure 12 — Overview of the Reverb Stage
[bookmark: _Hlk101311893]The Reverb Stage produces its output as a number of output RIs with their coordinates in a listener centric coordinate system. The output RIs contain the diffuse late reverberation signals as a mix of the currently audible AEs. This is depicted as Immersive reverberated signals in Figure 12. There are as many output RIs as there are delay lines in the largest FDN reverberator since the output signals are obtained from taps in the FDN delay lines. If the largest FDN reverberator has less than 15 delay lines, there shall be 15 output RIs. The reverberator output is rendered immersively enveloping the listener by positioning and rendering these delay line outputs nearly uniformly around the listener. The immersive reverberated signals are rendered to virtual loudspeaker output with the PannerStage. The virtual loudspeaker output of the PannerStage is spatialized to binaural with the BinauralSpatializer.
Head tracked and non-head tracked rendering of the delay line outputs are supported. In head-tracked rendering mode, the reverberator output spatial positions are world orientation locked and in non-head-tracked rendering mode the spatial positions are locked to the listener head orientation. Smooth acoustic transitions when entering and exiting an AE are implemented with cross fading of the immersive reverberator output signals. 
Reverberators associated with AEs having portals shall also provide their output to the Portal stage which renders the directional diffuse late reverberation from a connected AE through a portal opening. Coupling of acoustic environments and their reverberators is implemented by feeding the previous output buffer of a reverberator related to one environment of a portal as an input to the reverberator related to the other environment of the portal, scaled by a factor that depends on the dimensions of the portal opening.
The Reverb Stage reads the payloadReverb (6.2.8) from the bitstream and initializes the Feedback Delay Network (FDN) reverberators for each AE using reverberator configuration parameters calculated from the reverberation parameters in the bitstream. The FDN configuration is the same both for Virtual Reality (VR) and Augmented Reality (AR) scenes. For AR rendering, the FDN parameters are calculated based on the listener space description file (LSDF) description of the listening space AE, whose acoustic characteristics are defined as either reverberation parameters or a room impulse response (RIR), and control parameters from the bitstream. The Reverb Stage supports simultaneous rendering of reverberation from AEs in the bitstream and LSDF AE. 
The reverberation time of the FDN reverberator is controlled with the delay line attenuation filters and delays. The level and spectrum of reverberation is controlled by the reverberation energy ratio control filter and the source directivity gain filters. For AR scenes the configuration calculation routine selects between octave and third octave resolution based on the input data.
The FDN is configured with either 3, 7, 15, 31, or 63 delay lines. All delay line configurations are implemented in a computationally efficient way and with an optimized calculation of the feedback matrix operation using precalculated coefficient sequences. The reverberation quality, specifically echo density and diffuseness increases as the number of delay lines increases. Lower number of delay lines causes less echo density and diffuseness and provides low complexity operation. 
[bookmark: _Ref164855028]Data elements and variables
	Diffuse to Source energy Ratio for frequency b, in the filter design frequency grid, for the predelay value in the bitstream.
	Diffuse to Source energy Ratio for frequency b, in the filter design frequency grid, for the adjusted predelayRender value to be used in rendering.
delFltOrder	Filter order for the delay line attenuation filters.
dirFltOrder	Filter order for the directivity filters.
fcFltDes	Vector with frequencies for the VR filter design.
 	Target amplitude response for delay line attenuation filter  in frequency .
 	Target amplitude response for directivity filter  in frequency .
	Target amplitude response for the reverberation energy ratio control filter.
		Number of elevations for a certain directivity pattern.
		Number of azimuths for a certain directivity pattern, in its th elevation. 
		Delay for delay line  in samples.
ratioFltOrder	Filter order for the ratio control filter.
reverbCount	Number of active reverberators. 
slopeLimit	Steepest slope allowed in the VR EQ filter, in dB/octave.
slopeLimitPivotFreq	The starting frequency from which to perform slope limiting.
		RT60 value in seconds for frequency , in the filter design frequency grid.
		Surface weighing factor for directivity gain.
maxNumberOfOutputChannels	Number of outputs from the FDN reverberators. 
numDelayLines(r)	Number of delay lines in the reverberator r. The reverberators of different acoustic environments can have different number of delay lines.

B		Number of samples in a processing block. 
headtrackedOutputRenderItems(j,n,azi,ele) 	
		Immersive reverberation output signal for output channel j, sample index n, to be rendered at azimuth azi, elevation ele by the Panner Stage. 
predelay	Input predelay from the bitstream or LSDF file in seconds. 
	Delay line filter  for reverberator .
	Directivity gain control filter for directivity pattern k 
	Reverberation energy ratio control filter for reverberator 
predelayFactor	The ratio between bitstream/LSDF predelay and predelayRender to be used for rendering
predelayRender	The lag in the system’s IR at which reverberation rendering starts. 
predelayAdjustedInSamples	The delay with which the reverberator’s predelay shall be configured in order to achieve the desired predelayRender.
distanceGainDropDb	Amount of source-listener distance dependent attenuation in decibels per distance doubling
minimumDistance	Minimum distance in meters within which source-listener distance no longer increases reverberation level
fadeInDistance	Cross-fade distance in meters for fading immersive reverberation when entering/exiting an AE 
crossfade.enabled	Toggle cross-fade between AEs on/off 
headTrackingEnabled	Toggle head tracking on/off for immersive reverberation output 
speedOfSound	Speed of sound in  for calculating predelay
lsdfRDRToActualRDRDb	Offset to be applied to RDR values in LSDF 
overrideLsdfRdr	Force override of LSDF RDR values 
thereticalRDRToActualRDR	Offset applied to RDR values calculated from an acoustic approximation based on RT60 values 
		SOS filter global gain
	SOS filter feedback and feedforward coefficients, respectively
levelDb	Level offset to be added to the SOS filter gain
stageF	Stage gain for SOS filter
	Delay for the predelay line
	Attenuation filter for the delay line having delay md
A		FDN feedback matrix
maxDelayLineDelay	Delay of the longest FDN delay line in samples
minDelayLineDelay	Delay of the shortest FDN delay line in samples
delayLine[d]	dth delay line of the FDN
m_alpha	FDN feedback matrix calculation constant
boundingBoxWidth	Width of the AE region defining the virtual or physical room in m
boundingBoxHeight	Height of the AE region defining the virtual or physical room in m
boundingBoxDepth	Depth of the AE region defining the virtual or physical room in m 
sourceContribution	Energy portion of the source that contributes to a specific other AE than where the source is located.
portalCenter	Center position of a portal, derived in the portal stage.
portalFactor	The portion of source energy reaching a portal, indicating the maximum amount of energy that may transfer into the acoustic environment at the other side of the portal, barring the effect of any portal material.
samplingRate	Sampling rate in Hz
controlGainsDb	Control gains in dB for GEQ design
optimizedGainsDb	Optimized gains in dB for GEQ design
Wi		Weighting matrix of the ith layer of the neural network used for GEQ design 
xMin, xMax	Minimum and maximum input control gains for GEQ design NN, respectively
tMin, tMax	Minimum and maximum of training data targets for GEQ NN, respectively
thetai	Bias vector of the ith layer of the GEQ design NN
controlGainsDb	Control gains for GEQ design
		Octave band center frequencies
		Third octave band center frequencies
 or fs	The input signals’ sample-rate
sourceLocation	Location in Cartesian coordinates of the sound source to be rendered
distanceGain	Source-listener distance dependent reverberation gain 
directivityBusAdded	Status variable indicating the count of sources added to a directivity bus
numBands	Number of bands in a SOS cascade filter
levelAndFactor	Combined overall gain for a SOS cascade filter
m_inputBuffer	FDN reverberator input buffer
	Reverberated output signals for reverberator r, output channel j, sample index n. These are the input to the Portal Stage.
	Reverberated output signals for reverberator r, summed across all its output channels, sample index n. These are stored to be used as input for reverberators in connected acoustic environments. Acoustic environments connected via a portal are referred as connected acoustic environments.
reverbGain	Overall reverberation gain
		Azimuthal width of a directivity cover at elevation , in radians. 
		Elevational width of a directivity cover at elevation , in radians. 
		Elevation angle for directivity covers at elevation index  in radians.
delayMinMs	Minimum delay line length in milliseconds used in calculation of the reverberation delay line lengths.
delayRatio					Delay ratio used in calculation of delay line lengths.
itemReverbGain	Per-item reverberation gain
m_noLineOfSightCoeff	Multiplier applied to the energy which a source contributes via a portal connection when there is no line-of-sight from the source to the portal. 
m_unrestrictedSor	If true, enables bidirectional connected reverberation rendering where reverberation energy is constantly passed to both directions via a portal. Supported for scenes where all reverberators have at least 15 delay lines. If false, one-directional connected reverberation is implemented where reverberated energy is fed only into the listener AE reverberator from connected AE reverberators. Listener-only connected reverberation is the default and the only option for scenes with reverberators configured with less than 15 delay lines.
Stage description
Stage initialization: common
General
The initialization of the Reverb Stage is carried out before processing of the audio samples delivered by the decoder takes place. The initialization consists of several processing steps.
During audio processing, configuration data for the reverberation input gains is calculated dynamically, depending on in which room the listener is. The audio processing uses these static and dynamic configuration parameters to configure its components.
Run-time configuration of reverberation parameters
It is possible to override the following parameters relevant for reverberation parameterization from the config variables starting with the prefix “Reverb:” in the Renderer Framework local configuration parameters 6.4.2.7. If local configuration parameter value is not set, bitstream values are used when available, or default values when bitstream parameters do not exist.
Parameters related to AcousticEnvironmentData for bitstream or LSDF acoustic environments (the first available value shall be used from left to right:
predelayFactor = Reverb:PredelayFactor or 4.0 (VR) or Reverb:PredelayFactorAR or 1.0 (AR)
predelayOffset = Reverb:Predelay_Offset or 0.0
distanceGainDropDb = Reverb:DistanceGainDropDb or reverbDistanceGainDropDb or 1.5
minimumDistance = Reverb:MinimumDistance or reverbMinimumDistance or 1.0
reverbGain = Reverb:Gain or 1.0
When the Accessibility parameter reverbAttenuationDb is provided via the Accessbility User Interface (See Annex B.5), reverbGain is attenuated:  reverbGain *= pow(10,-0.05* reverbAttenuationDb).
Parameters related to defaultAcousticEnvironmentData and Default AE:
predelay = Reverb:Default_Acoustic_Environment_Predelay_Override or revDefaultAEPredelay or presetDefaultAEPredelay
predelayFactor = Reverb:PredelayFactorDefaultAE or 1.0
distanceGainDropDb = Reverb:DistanceGainDropDbDefaultAE or revDefaultAEDistanceGainDropDb or presetDefaultAEDistanceGainDropDb
minimumDistance = Reverb:MinimumDistanceDefaultAE or revDefaultAEMinimumDistance or presetDefaultAEMinimumDistance
reverbGain = Reverb:Default_Acoustic_Environment_Gain or revDefaultAEGain or presetDefaultAEGain
delayRatio  = Reverb:Default_Acoustic_Environment_Delay_Ratio or revDefaultAEDelayRatio or 
presetDefaultAEDelayRatio
delayMinMs = Reverb:Default_Acoustic_Environment_Delay_Min_Ms_Override or revDefaultAEDelayMinMs or presetDefaultAEDelayMinMs
Parameters related to cross fading of immersive reverberation:
fadeInDistance = Reverb:Crossfade_Fade_In_Distance or reverbFadeInDistance or 1.0
crossfade.enabled = Reverb:Crossfade or reverbFadeInEnabled or true
Parameters related to enabling/disabling head tracking of immersive reverberation:
headTrackingEnabled =Reverb:HeadTrackingEnabled or reverbHeadtrackingEnabled or false
Parameters related to LSDF acoustic environment reverberator configuration:
speedOfSound = Reverb:SpeedOfSound or 343 m/s
lsdrRDRToActualRDR = Reverb:LSDF_RDRToActualRDR or lsdfRDRtoactualRDRdB or -8.0
overrideLSDF_RDR = Reverb:OverrideLSDF_RDR or overideLSDF_RDR or false
theoreticalRDRToActualRDR = Reverb:TheoreticalRDRToActualRDR or lsdfTheorecticalRDRtoactualRDRdB or -8.0
Parameter related to computational complexity and quality of reverb: for VR reverb configuration
numDelayLines = Reverb:numDelayLines or revDelayLineCount or 15
and for AR reverb configuration
numDelayLines = Reverb:numDelayLines or numDelayLinesFromComplexityLevel(complexityLevel) or 15
Parameter related to line-of-sight data from sources to portals:
m_noLineOfSightCoeff = Reverb:NoLineOfSightGain or 0.1
Parameter controlling whether bi-directional connected room reverberation is enabled or whether connected reverberation feeds only into the listener environment from environments connected to it:
m_unrestrictedSor = Reverb:SecondOrderReverbUnrestricted or false
Initializing reverberation for different types of AcousticEnvironments
The Reverb Stage initializes as many FDN reverberators as there are active AEs within the audio scene. Active AEs can be one of three types: AEs listed in the bitstream corresponding to virtual environments for VR, an AE from the LSDF for AR reproduction corresponding to a physical listening space, and a Default AE (also indicated in the bitstream) for background reverberation. Each AE is characterized by its id, and acoustic parameters RT60, DSR or RDR, and predelay (VR) or diffuseOnset (AR). Bounded AEs also have a region and thus dimensions. Optionally, a bitstream AE can have a reverberator delay line count signalled as the bitstream parameter revDelayLineCount and an LSDF AE a complexityLevel value which is then converted to the number of delay lines by the renderer. A reverberator is initialized for each active AE based on its dimensions and acoustic parameters to reproduce the reverberation of this AE. Thus, the number of reverberators reverbCount at maximum equals the number of bitstream AEs plus a possible LSDF AE. 
The configuration and processing for different AEs has the following main characteristics:
—	Reverberation parameters for VR AEs obtained from the bitstream, whereas reverberation parameters for AR AEs are obtained from the LSDF.
—	Reverberation parameters for the Default AE are obtained either from the bitstream signalling the use of a preset defined in A.3 or by sending a full set of parameters.
—	Bitstream AEs with an associated region and LSDF AEs are bounded whereas the Default AE does not have boundaries. A bounded AE has a geometric region which defines the boundaries of the region within which the acoustic characteristics of the AE are valid. For the Default AE the geometric region is null.
—	The initialization and configuration of the reverberators is different for AEs in the bitstream and the LSDF. From the perspective of the Reverb Stage the virtual acoustic characteristics for AEs in the bitstream and the acoustic characteristics of the AE from the LSDF are merged into a common scene state. Subsequently, the rendering of the reverberation for the bitstream and LSDF AEs is the same. 
—	Since the Default AE is unbounded, the output gain processing differs for the Default AE and the bounded AEs to handle smooth transitions between reverberation from bounded AEs and the Default AE.
The Reverb Stage initializes an FDN reverberator for each bounded AE based on the received reverberator payload information from the bitstream or the LSDF acoustic parameter information. To limit computational cost when there are many bounded AEs, the number of active reverberators shall be limited by the value of MAX_NUM_BOUNDED_AES_BEFORE_DROPPING_DEFAULT. This will limit the number of active  reverberators reverbCount to be at maximum equal to the number of bounded bitstream AEs plus a possible LSDF AE by disabling the Default AE if one exists and there are at least MAX_NUM_BOUNDED_AES_BEFORE_DROPPING_DEFAULT bounded AEs.
The method for conditionally disabling the defaultAE reverberator shall be as follows:
—	Determine whether an unbounded AE exists. An unbounded AE exists if there is a reverberator for which the AE enclosure pointer is null.
—	If an unbounded AE exists, determine if the number of reverberators reverbCount equals or exceeds  MAX_NUM_BOUNDED_AES_BEFORE_DROPPING_DEFAULT + 1. If both conditions are true, reduce reverbCount by one and do not initialize the reverberator for the defaultAE.
[bookmark: _Ref100403595]Initializing directivity gain control filters
The Reverb Stage initializes as many source directivity gain control filters as there are directivity patterns in the scene. These filters are used in the Reverb Stage to adjust the frequency-dependent reverberation level and spectrum for sources with directivity depending on the average source directivity pattern to all directions. The coefficients for the directivity gain control filters shall be obtained from the directivity patterns in payloadDirectivity of the bitstream. Whereas the original source directivity pattern contains frequency-dependent directivity gain data for different spatial directions, the directivity gain filter represents the average frequency-dependent gain over all directions. The filter’s target frequency response shall be obtained by averaging the frequency-dependent directivity pattern data over all directions according to:
	
	(56)


 where  is the frequency index in the directivity pattern’s frequency grid,  elCnt, aziCntPerEl[i],  cover (as defined in 6.6.16) for frequency index , and
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 with ,          and
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Next, the raw target response  shall be resampled to the filter design frequency grid, using the function defined in 6.6.4.3.2.2:
	H_prime_dir[k] = resampleToGrid(fcDir[k], H_hat_dir[k], fcFltDes);

with  H_prime_dir[k][b], fcDir[k] the frequency grid corresponding to directivity pattern k,  H_hat_dir[k][b] and fcFltDes the filter design grid defined in 6.6.4.3.2.2.
Finally, the raw target spectrum shall be smoothed using the function defined in 6.6.4.3.2.2:
	H_dir[k] = smoothResponse(H_prime_dir[k], fcFltDes, 1);
with  H_dir[k][b].
The filter coefficients for a Second-Order-Section (SOS) cascade filter  shall be derived to model target frequency response  using the algorithm described in clause 6.6.4.3.2.7 for VR scenes. The filter order is given by dirFltOrder. 
The maximum error input argument to the algorithm shall be:
	
	(59)


where  dB.
For AR scenes, a SOS cascade graphic EQ filter shall be designed to model the target frequency response  using the algorithm described in clause 6.6.4.3.3.4. 

The source directivity gain control filter for the directivity pattern k in the scene is denoted as  
The Reverb Stage shall initialize a directivity filter input bus for each directivity filter. The input buses are vectors equal to the block length B. Each bus is associated with the directivity filter parameters  and the directivity id (directivityId).
Initializing stage outputs
The  Reverb Stage creates two kinds of output RIs: ItemType::Pannable and ItemType::Reverb. 
ItemType::Pannable items shall contain the immersive reverberation signal for the current listener position. The number of ItemType::Pannable reverberation items shall equal maxNumberOfOutputChannels. They shall be set to have the listener coordinate space and the ForceNoDoppler and NoDistanceGain authoring parameters. The signals from all audible acoustic environments during crossfading shall be summed into ItemType::Pannable output RIs. 
maxNumberOfOutputChannels = max(maxNumDelayLines, REVERB_MIN_NUMBER_OF_LOUDSPEAKERS)
where maxNumDelayLines is the largest number of delay lines in a reverb in the scene and REVERB_MIN_NUMBER_OF_LOUDSPEAKERS = 15. 
Each reverberator’s output shall be given a total of numDelayLines(r) spatial positions provided in delayLineAzimuth and delayLineElevation. The procedure used for calculating the spatial positions of the delay lines depends on whether the reverberator represents a VR or AR environment, and is detailed in 6.6.4.3.2.3 and 6.6.4.3.3.2, respectively.
The RIs of type ItemType::Pannable, which aggregate signals from reverberators in the scene, shall have their spatial positions assigned by the method corresponding to the type of acoustic environments in the scene. That is, if the scene contains exclusively VR acoustic environments, the directions shall be assigned following the VR delay line directional encoding procedure. If the scene contains an AR acoustic environment (even if VR acoustic environments are also preset), the spatial positions shall be determined according to the AR delay line directional encoding procedure.
The reverberators r having their number of outputs numDelayLines(r) less than maxNumberOfOutputChannels shall have their output channel positions mapped to the closest output position of the reverberator having maxNumberOfOutputChannels output positions. The output mapping shall be done by calculating the Euclidean distances between the numDelayLines(r) output positions and maxNumberOfOutputChannels output positions on the unit sphere and obtaining for each numDelayLines(r) output position the index corresponding to the closest output position of the larger output position set. The variable outputMapping[numDelayLines] shall then contain the list of output channel indices for a reverb with numDelayLines delay lines. The creation of this mapping ensures that all reverberators can have their output positions as a subset of the output positions of the largest reverberator, which makes it possible to mix the immersive reverberator outputs during cross fading. 
The output positions shall be headtracked based on listener orientation so that the output directions remain static when the listener's head turns if headTrackingEnabled = 1. If headTrackingEnabled = 0 (default) no head tracking shall be applied and output directions remain static with regard the listener head orientation. 
The number of ItemType::Reverb items shall equal  and contain reverberation output delay line audio for acoustic environments regardless of whether the listener is located in the environment or not. These outputs shall be used by the Portal Stage to render directional reverberation from portal openings. 
Stage initialization: VR reverberator configuration
General
For virtual scene-based AcousticEnvironments the reverberator parameters are obtained from the bitstream (payloadReverb). An FDN reverberator, as depicted in Figure 13 shall be initialized for each AE identified by acousticEnvironmentId in payloadReverb.

 
[bookmark: _Ref99955617]Figure 13 — FDN reverberator
The steps in the FDN reverberator configuration are depicted in Figure 14. The configuration shall be done in this order since there are dependencies between the different control parameters. 


[bookmark: _Ref100392577]Figure 14 — Steps in FDN reverberator configuration (VR)
[bookmark: _Ref116380850]Acoustic parameter pre-processing
For each acoustic environment, the corresponding acoustic parameters and other related bitstream data shall be processed before further configuration steps are applied to it.
For bounded environments, the dimensions of the acoustic environment shall be derived from the bounding box of the acoustic region.
	boundingBoxWidth  = boundingBox.xMax – boundingBox.xMin;
	boundingBoxHeight = boundingBox.yMax – boundingBox.yMin;
	boundingBoxDepth  = boundingBox.zMax – boundingBox.zMin;

The frequency dependent RT60 and DSR parameters as conveyed in the bitstream shall be mapped to a fixed filter design frequency grid (fcFltDes). 
	RT60 = resampleToGrid(fcBs, revRT60, fcFltDes);
	DSR  = resampleToGrid(fcBs, revDSR, fcFltDes);
where source frequency grid fcBs is the vector with the frequencies associated with the RT60 and DSR values from the bitstream. The target frequency grid fcFltDes shall be defined by the following procedure:

fcFltDes[0] = ERB2Hz(0.75);
fcFltDes[1] = ERB2Hz(2);
fcFltDes[2] = ERB2Hz(2);
b = 2;
for (e = 3.5; e <= 34; e += 0.25) {
	b++;
	fcFltDes[b] = ERB2Hz(e);
}
hfHop = (fs/2 – fcFltDes[b]) / floor((fs/2 – fcFltDes[b]) / 500);
while (fcFltDes[b] + hfHop < fs / 2) {
	b++;
	fcFltDes[b] = fcFltDes[b - 1] + hfHop;
}
where  converts ERB frequencies into Hz.
The mapping of the data with resampleToGrid shall be done according to the following procedure:

valOut = resampleToGrid(fcIn, val, fcTgt)
{
	if (fcIn[0] != 0) {
		fcIn = cat(0, fcIn);
		valIn = cat(val[0], val);
	}
	if (fcIn[endIdx(fcIn)] != fs/2) {
		fcIn = cat(fcIn, fs/2);
		valIn = cat(val, val[endIdx(val)]);
	}
	valOut = interpolate(fcIn, valIn, fcTgt);
}

The function cat(vec1, vec2) concatenates two vectors, endIdx(vec) returns the last index of the vector and interpolate(fInVec, valVec, fTgtVec) performs a linear interpolation interpolating values from valVec corresponding with frequencies fInVec to a new set of values corresponding to the target frequencies in fTgtVec. I.e., for every target frequency fTgtVec[i] the two values in valVec corresponding to the first frequency in fInVec smaller and the first frequency larger than fTgtVec[i] will be interpolated linearly according to the relative distances of fTgtVec[i] to the selected frequencies from fInVec.

Next, the RT60 and DSR data shall be smoothed according to the following procedure:
if (mean(RT60) < 0.3) {
	RT60 = smoothResponse(RT60, fcFltDes, 1);
}
else {
	RT60 = smoothResponse(RT60, fcFltDes, 2);
}
RT60 = smoothResponse(RT60, fcFltDes, 3);
RT60[0] = mean(RT60[0], RT60[1], RT60[2]);
RT60[1] = RT60[0];
RT60[2] = RT60[0];
RT60[3] = mean(RT60[2], RT60[4]);
DSR[0] = mean(DSR[0], DSR[1], DSR[2]);
DSR[1] = DSR[0];
DSR[2] = DSR[0];
DSR[3] = mean(DSR[2], DSR[4]);
RT60_sm = smoothResponse(RT60, fcFltDes, 1);
DSR_sm = smoothResponse(DSR, fcFltDes, 1);
for (b = 0; b < 8; b++) {
	RT60[b] = RT60_sm[b];
	DSR[b] = DSR_sm[b];
}

The function mean(val1, val2, ...) shall return the mean of all provided values and smoothResponse() shall perform a smoothing according to:
valOut = smoothResponse(valIn, fIn, Noct)
{
	nrFreq = length(fIn);
	positiveVal = true;
	for (b = 0; b != nrFreq; b++) {
		valOut[b] = val[b];
		if (valIn[b] < 0) {
			positiveVal = false;
		}
	}
	if (Noct > 0) {
		for (b = 0; b != nrFreq; b++) {
			if (fIn[b] > 0) {
				g = gauss_f(fIn, fIn[b], Noct);
				valOut[b] = 0;
				for (b2 = 0; b2 != nrFreq; b2++) {
					valOut[b] += g[b2] * valIn[b2];
				}
			}
		}
		if (positiveVal) {
			for (b = 0; b != nrFreq; b++) {
				if (valOut[b] < 0) {
					valOut[b] = 0;
				}
			}
		}
	}
}
where

vecOut = gauss_f(fVec, Fc, Noct)
{
	nrFreq = length(Fc);
	sigma = (Fc / Noct) / PI;
	sum = 0;
	den = 2 * (pow(sigma, 2));
	for (b = 0; b != nrFreq; b++) {
		num = -pow((fVec[b] - Fc), 2);
		sum += (vecOut[b] = exp(num / den));
	}
	for (b = 0; b != nrFreq; b++) {
		vecOut[b] /= sum;
		if (vecOut[b] < 1e-15) {
			vecOut[b] = 0;
		}
	}
}
with ,  and .

[bookmark: _Ref123828769]Delay lines (VR)
The reverberator delay line lengths delays[d] shall be initialized with the following procedure deriving delays from room dimensions.
minRoomDim = min(boundingBoxWidth, boundingBoxHeight, boundingBoxDepth);
maxRoomDim = max(boundingBoxWidth, boundingBoxHeight, boundingBoxDepth);
minDelay = max(minRoomDim * 2 / speedOfSound, 1e-3) * fs;
delayRatio = max(maxRoomDim / minRoomDim, 1.5);
nrLoops = numDelayLines;
base = pow(0.14623044588361, 1 / -(nrLoops - 1));
for (n = 0; n != nrLoops; n++) {
		r[n] = pow(base, -n);
}
alpha = (r[0] - delayRatio * r[nrLoops - 1]) / (delayRatio - 1);
for (n = 0; n != nrLoops; n++) {
		r[n] += alpha;
}

delays[nrLoops - 1] = minDelay;
for (n = nrLoops - 2; n != -1; n--) {
		delays[n] = delays[nrLoops - 1] * r[n] / r[nrLoops - 1];
}

Next, each delay shall be mapped to the nearest prime number:
for (n = 0; n != nrLoops; n--) {
		delayLine[n] = nearestPrime(delays[n]);
}
where p = nearestPrime(x) shall be a function that returns the prime number p with the smallest distance abs(x – p).
In the case of the Default AE, minDelay and delayRatio are not calculated from room dimensions but are provided directly by the preset data or from the bitstream data revDefaultAEDelayMinMs and revDefaultAEDelayRatio, as no room geometry is provided for a Default AE.
minDelay = decoded value of revDefaultAEDelayMinMs or presetDefaultAEDelayMinMs 
delayRatio =  decoded value of revDefaultAEDelayRatio or presetDefaultAEDelayRatio
The delay lines are each assigned a spatial encoding direction. The following procedure shall be used for calculating spatial positions nearly uniformly distributed on the unit sphere:
outputDirections = vector[numDelayLines];
phi = M_PI * (3.0 - sqrt(5.0));
for (i = 0; i < numDelayLines; i++) {
	y = 1.0 - (i / (numDelayLines - 1.0)) * 2.0;
	radius = sqrt(1.0 - y * y);
	theta = phi * i;
	x = cos(theta) * radius;
	z = sin(theta) * radius;
	outputDirections[i] = cartesianToPolarCoordinates([-y, z, -x]);
}
where the procedure cartesianToPolarCoordinates converts a cartesian vector having the coordinates x, y, z into polar coordinates azimuth and elevation.
The reverberation delay lines are sorted into ascending order according to their length (delay[d]) and having indices d =[0, …, numDelayLines-1], shall be assigned the positions delayLineAzimuth[d] and delayLineElevation[d] with the following procedure:
i = 0;
for (d = 0; d < numDelayLines; d+=2) {
	delayLineAzimuth[d], delayLineElevation[d] = round(outputDirections[i])
	if ((d + 1) < numDelayLines) {
		delayLineAzimuth[d+1], delayLineElevation[d+1] = 
			round(outputDirections[numDelayLines – 1 - i])
	}
	i += 1;
}
With the above procedure the shortest delay lines having more similar lengths shall be positioned far away from each other to ensure immersive reverberation rendering.
[bookmark: _Ref100404652]Predelay (VR)
The revPredelay value carried in the bitstream denotes the start of diffuse reverberation, from which DSR is calculated. This predelay value may be adjusted to a different value by the renderer application to be used for rendering using predelayFactor. The Reverb Stage is used together with the EarlyReflectionStage to render complete reverberation for an audio scene. Whereas Reverb Stage renders the late reverberation portion based on acoustic parameters of an environment, the EarlyReflectionStage renders discrete early reflections based on the acoustic material and geometry description parameters of the audio scene. Decoder-side changes to predelay shall be coordinated with the early reflection order to ensure that the early reflection portion and late reverberation portion blend together well. 
Firstly, the predelay is divided by predelayFactor to get a predelay for starting diffuse reverberation rendering, as long as the result is equal or larger than the smallest delay line delay. 
	
	(60)


Next, the shortest delay line length shall be subtracted from predelayRender. 
	
	[bookmark: _Ref116753024](61)


 
The predelay delayline module prior to the ratio filter and FDN structure shall be configured to apply a delay of  to its input samples so that the FDN output starts after predelayRender seconds. 
In case of the reverberator for the Default AE, the predelayFactor is always 1.
Delay line attenuation filters (VR)
The delay line attenuation filters are initialized using the acoustic parameters provided in payloadReverb.  Target spectra are calculated for all delay line attenuation filters after which the filter coefficients for the delay line attenuation filters are derived. 
The filter target amplitude response for delay line d and frequency  shall be calculated as:
	
	(62)


 Filter coefficients for a SOS cascade filter shall be derived to model the target frequency response  using the algorithm described in clause 6.6.4.3.2.7. The filter order is given by delFltOrder. The frequency-dependent maximum error input argument to the algorithm shall be:
	
	(63)


 where  and 
	
	(64)


 The global gain  of each SOS cascade filter shall be forced to be positive:
	
	(65)


 The parameters of the SOS delay line attenuation filter  for reverberator  are initialized and denoted as .
Reverberation ratio control filter (VR)
For each reverberator the reverberation ratio control filter performs adjustment of the reverberation level and spectrum based on the  DSR data from the  corresponding acoustic environment definition in the bitstream. Additionally, a calibration component is included to compensate for the configuration of the FDN. 
A frequency dependent FDN energy estimate () shall be calculated to compensate for the effect of FDN configuration on reverberation level as follows:
	
	(66)


where
	

	(67)


The three calibration coefficients shall be dependent on the number of delay lines in the corresponding reverberator.
	numDelayLines
	t60Cal
	offsetCal
	delayCal
	ratioCal

	3
	0.02277
	26.2736
	-1.01887
	-0.79637

	7
	0.09588
	90.2901
	-1.07545
	-0.87111

	15
	0.11870
	225.3668
	-1.09620
	-0.89751

	31
	0.12366
	523.4558
	-1.11467
	-0.90326

	63
	0.11445
	1,237.1433
	-1.13477
	-0.93452



If the predelay value from the corresponding acoustic environment is modified from the value received in the bitstream, and the reverberator is not used for Default AE, the frequency dependent DSR shall be modified to compensate for the changed predelay. For each frequency index ,  shall be modified as follows:
	
	(68)


where   and .
In case the reverberator is used for Default AE  shall be assumed 0.
The raw ratio control filter target spectrum shall be calculated as:
	
	(69)


Then, the raw filter target shall be smoothed if the mean RT60 is below 0.3 s, where the mean shall be calculated over all frequencies .
if (mean(RT60) < 0.3) {
	H_ratioRaw = smoothResponse(H_ratioRaw, fcFltDes, 1);
}
where H_ratioRaw[b] = .
The target spectrum shall subsequently be processed by a slope limiter.
	H_ratio = responseSlopeLimit(H_ratioRaw, fcFltDes, slopeLimit,	slopeLimitPivotFreq);

where slopeLimit = 20 dB/octave and slopeLimitPivotFreq = 1000 Hz.
The slope limiter shall perform the following processing on its input spectrum and return an updated spectrum.
Y = responseSlopeLimit(X, fc, T, pivotFreq)
{
	logFRatio[0] = 0;
	for (b = 1; b < length(X); b++) {
		logFRatio[b] = log2(fc[b] / max(fc[b – 1], 1));
	}

	bPivot = minidx(abs(fc – pivotFreq));

	Y[bPivot] = X[bPivot];

	for (b = bPivot + 1; b < length(X); b++) {
		threshold = pow(10, T / 20 * logFRatio[b]);
		desiredChange = X[b] / Y[b – 1] ;
		if (desiredChange >= 1) {
			change = min(abs(desiredChange), threshold);
		}
		else {
			change = max(abs(desiredChange), 1 / threshold);
		}
  
		Y[b] = Y[b – 1] * change ;
	}

	for (b = bPivot – 1; b >= 0; b--) {
		threshold = pow(10, T / 20 * logFRatio[b]);
		desiredChange = X[b] / Y[b + 1] ;
		if (desiredChange >= 1) {
			change = min(abs(desiredChange), threshold);
		}
		else {
			change = max(abs(desiredChange), 1 / threshold);
		}
		Y[b] = Y[b + 1] * change ;
	}
}

where max(val1, val2) returns the largest of the two values, and max(vec) returns the largest element in vec, similarly min returns the smalles value, minidx(vec) returns the index of the smallest value in vec and abs(vec) returns the absolute value of each element in vec.
Finally, the common component will be removed from the ratio filter target.
commonComponentRatioFlt = mean(H_ratio);
for (b = 0; b < length(H_ratio); b++) {
		H_ratio[b] /= commonComponentClrFlt;
}

The filter coefficients for the ratio control filter shall be derived with  = H_ratio as the filter’s target spectrum, using the algorithm described in clause 6.6.4.3.2.7. The filter order is given by ratioFltOrder. The frequency-dependent maximum error input argument to the algorithm shall be:
	
	(70)


 where
	
	(71)


 The reverberator’s ratio control filter for reverberator  shall be initialized with a cascade of SOS IIR filters using the values obtained from the filter design (6.6.4.3.2.7) on the target spectrum () and is denoted with  for reverberator r. 
The global gain  of the SOS cascade filter shall be forced to be positive:
	
	(72)


[bookmark: _Ref110930915] Filter design
The filters used in the reverberator processing depend on input data and are designed based on target spectra. The filter design algorithm used for designing the VR filters shall take the following inputs:
· Target amplitude spectrum , 
· Error margin per frequency ,
· The frequencies corresponding to the values in  and .
· Filter order (shall be a multiple of 2).
The algorithm shall produce as output a filter definition for a cascade of Second-Order-Sections, with the following elements:
· denoting a global broadband gain.
·  denoting the first feedback coeffficient for each SOS.
·  denoting the second feedback coefficient for each SOS.
·  denoting the first feed-forward coefficient for each SOS.
·  denoting the second feed-forward coefficient for each SOS.
These parameters shall form a filter that can be expressed as:
	
	(73)


where  indicates the number of SOSs.
The algorithm that shall be used is based on a minimax algorithm around a quasi-Newton optimization described below in pseudo code.

filterOpt = DesignIIR(H[], maxErr[], fc[], order)
{
	errOpt = 2e14; 
	errOptFreqBand = 0;
	filterOpt = 0;

	maxSearchAttempts = 64;
	maxIterations = 64;

	nrSearchAttempts = 1;

	minimaxSuccess = false;
	stableFilter = true;

    for (i = 0; i != length(fc); i++) {
		fcNorm[i] = 2 * fc[i] / fs;
	}

	while ((((errOpt >= maxErr[errOptFreqBand]) && !minimaxSuccess) 
		|| !stableFilter) && nrSearchAttempts <= maxSearchAttempts) {
		if ((nrSearchAttempts > 1) && (nrSearchAttempts < 20)) {
			for (i = 0; i != length(fc); i++) {
				maxErr[i] *= 1.05;
			}
		}

		if (nrSearchAttempts > 1)
		{
			for (b = 0; b != length(H); b++) {
				x[b] = -0.5 + rand();
			}
		}
		else {
			x = XSTART;
		}

		[filter, filterErr, filterErrIdx, minimaxSuccess] = 
			minimax(H, maxErr, fcNorm, order, x, maxIterations, fs);

		if (filterErr < errOpt) {
			errOpt = filterErr;
			errOptIdx = filterErrIdx;
			filterOpt = filter;
		}

		stableFilter = isStableFilter(filter);

		nrSearchAttempts++;
	}
}

where rand() produces a random floating point number based on a uniform distribution in the interval 0 to 1, and XSTART is defined in Annex A.4. 
The minimax algorithm shall operate as follows:

[filter, err, errIdx, success] = minimax(H, maxErr, fc, order, x, maxIterations, fs)
{
	err = 0;
	errIdx = -1;
	success = false;
	minErrDiff = 1e-4;

	prevIterErr = 1 << 16;

	p = 2;
	m = 2;
	maxP = 64;

	nrSOS = order / 2;
	nrFreq = length(fc);

	for (i = 0; i != nrFreq; i++) {
		w[i] = fc[i] * PI;
	}

	for (i = 0; i != nrFreq; i++) {
		if (fc[i] > 30000 / fs || fc[i] < 100 / fs) {
			undershootIgnore[i] = 1;
		}
		else {
			undershootIgnore[i] = 0;
		}
	}

	for (iterIdx = 0; iterIdx != maxIterations; iterIdx++) { 
		x = quasiNewton(tgtMagn, w, order, x, p, maxIterations);

		magnResp = getMagnitudeResponse(x, w, order);

		for (i = 0; i != nrFreq; i++) {
			e[i] = magnResp[i] - tgtMagn[i];

			if (undershootIgnore[i]) {
				e[i] = max(e[i], 0.0);
			}
		}

		for (i = 0; i != nrFreq; i++) {
			errNorm[i] = pow(e[i] / maxErr[i], 2);
		}

		errNormWorstBand = -1;

		for (i = 0; i != nrFreq; i++) {
			if (errNormWorstBand < errNorm[i]) {
				errNormWorstBand = errNorm[i];
				errIdx = i;
			}
		}

		err = abs(e[errIdx]);

		num = 0;
		den = 0;
		for (i = 0; i != nrFreq; i++) {
			num += e[i] * e[i];
			den += maxErr[i] * maxErr[i];
		}
		errNormTotal = num / den;

		if ((err < maxErr[errIdx]) 
			|| (errNormWorstBand < 1.2 && errNormTotal < 0.02) 
			|| (abs(err - prevIterErr) < minErrorDiff) 
			|| (iterIdx >= maxIterations)) 
		{ 
			if ((err < maxErr[errIdx]) 
				|| (errNormWorstBand < 1.2 && errNormTotal < 0.02)) {
				success = true;
			}

			h0 = x[(2 * order)];
			for (sosIdx = 0; sosIdx != nrSOS; sosIdx++) {
				idx0 = sosIdx * 4;

				bSos[0] = 1;
				bSos[1] = x[idx0];
				bSos[2] = x[idx0 + 1];

				bComplex = false;
				rootage = x[idx0 + 2] * x[idx0 + 2] - 4 * x[idx0 + 3];
				if (rootage < 0) {
					rootage = -rootage;
					bComplex = true;
				}
				K = sqrt(rootage);
				if (bComplex) {
					p1r = -x[idx0 + 2] / 2;
					p1i = K / 2;
				} else {
					p1r = (-x[idx0 + 2] + K) / 2;
					p1i = 0;
				}

				if (bComplex) {
					p2r = -x[idx0 + 2] / 2;
					p2i = -K / 2;
				} else {
					p2r = (-x[idx0 + 2] - K) / 2;
					p2i = 0;
				}

				if ((p1r * p1r) + (p1i * p1i) > 1) { 
					tmpr = p1r / (p1r * p1r + p1i * p1i);
					tmpi = p1i / (p1r * p1r + p1i * p1i);
					p1r = tmpr;
					p1i = tmpi;
					if (!bComplex) {
						h0 *= p1r;
					}
				}

				if ((p2r * p2r) + (p2i * p2i) > 1) {
					tmpr = p2r / (p2r * p2r + p2i * p2i);
					tmpi = p2i / (p2r * p2r + p2i * p2i);
					p2r = tmpr;
					p2i = tmpi;
					if (bComplex) {
						h0 *= (p2r * p2r + p2i * p2i); 
					}
					else {
						h0 *= p2r;
					}
				}

				aSos[0] = 1;
				aSos[1] = -(p1r + p2r);
				aSos[2] = (p1r * p2r) - (p1i * p2i);

				x[order * 2] = h0;
				x[idx0 + 2] = aSos[1];
				x[idx0 + 3] = aSos[2];

				filter.b[0][sosIdx] = bSos[1];
				filter.b[1][sosIdx] = bSos[2];
				filter.a[0][sosIdx] = aSos[1];
				filter.a[1][sosIdx] = aSos[2];
			} 

			filter.G0 = h0;

			break;
		}
		else { 
			p *= m;
			if (p > maxP) {
				p = maxP;
			}
		}

		prevIterErr = err;
	}
}

The quasiNewton function shall operate as follows:

x = quasiNewton(H, w, order, x, p, maxIterations)
{
	nrCoeffs = (order * 2) + 1;

	e1 = 1e-5;
	e2 = 1e-6; 

	m = 0;
	Mh = 600;

	r = 0.1;
	s = 0.7;
	t = 0.1;
	c = 0.75;

	for (i = 0; i != nrCoeffs; i++) {
		for (j = 0; j != nrCoeffs; j++) {
			if (i == j) {
				Sk[i][i] = 1.0;
			}
			else {
				Sk[i][j] = 0.0;			
			}
		}
	}

	fk = getObjFunc(H, w, order, x, p);
	gk = getObjFuncGrad(H, w, order, x, p);

	m += 2;

	fk_prev = fk;
	dfk = fk;

	for (k = 0; k != maxIterations; k++) {
		for (i = 0; i != nrCoeffs; i++) {
			acc = 0;
			for (j = 0; j != nrCoeffs; j++) {
				acc += Sk[i][j] * gk[j];
			}
			dk[i] = -acc;
		}

		aL = 0;
		aU = pow(2.0, 20);

		for (i = 0; i != nrCoeffs; i++) {
			xIn[i] = x[i] + aL * dk[i];
		}

		gradOut = getObjFuncGrad(H, w, order, xIn, p);
		dfL = 0.0;
		for (i = 0; i != nrCoeffs; i++) {
			dfL += (gradOut[i] * dk[i]);
		}

		ak = 1;

		if (abs(dfL) > e2) {
			ak = -2 * (dfk / dfL);
		}

		if ((ak <= 0) || (ak > 1)) {
			ak = 1;
		}

		fL = fk;

		while (m < Mh) {
			for (i = 0; i != nrCoeffs; i++) {
				deltak[i] = ak * dk[i];
			}

			for (i = 0; i != nrCoeffs; i++) {
				xi[i] = x[i] + deltak[i];
			}

			fk = getObjFunc(H, w, order, xi, p);
			m++;

			if ((fk > (fL + r * (ak - aL) * dfL)) && (abs(fL - fk) > e2) 
				&& (m < Mh)) {
				if (ak < aU) {
					aU = ak;
				}

				ah0 = aL + (0.5 * (((ak - aL) * (ak - aL)) * dfL) / 
					((fL – fk) + ((ak – aL) * dfL)));

				ah0L = aL + (t * (aU – aL));

				if (ah0 < ah0L) {
					ah0 = ah0L;
				}

				ah0U = aU – (t * (aU – aL));

				if (ah0 > ah0U) {
					ah0 = ah0U;
				}

				ak = ah0;

				continue;
			}

			for (i = 0; i != nrCoeffs; i++) {
				xIn[i] = x[i] + ak * dk[i];
			}
			gradOut = getObjFuncGrad(H, w, order, xIn, p);
			dfk = 0;
			for (i = 0; i != nrCoeffs; i++) {
				dfk += gradOut[i] * dk[i];
			}

			m++;

			if ((dfk < (s * dfL)) && (abs(fL – fk) > e2) && (m < Mh)) {
				da0 = ((ak – aL) * dfk) / (dfL – dfk);

				if (da0 <= 0.0) {
					ah0 = 2.0 * ak;
				}
				else {
					ah0 = ak + da0;
				}

				ah0U = ak + (c * (aU – ak));

				if (ah0 > ah0U) {
					ah0 = ah0U;
				}

				aL = ak;
				fL = fk;
				dfL = dfk;

				ak = ah0;

				continue;
			}

			break; 
		}

		for (i = 0; i != nrCoeffs; i++) {
			x[i] += deltak[i];
		}

		dfk = fk_prev – fk;

		fnorm = norm(deltak);
		if (((fnorm < e1) && (abs(dfk) < e1)) || (m >= Mh)) {
			break;
		} else {
			m = m;
		}

		fk_prev = fk;
		for (i = 0; i != nrCoeffs; i++) {
			gk_prev[i] = gk[i];
		}

		gk = getObjFuncGrad(H, w, order, x, p);

		for (i = 0; i != nrCoeffs; i++) {
			gammak[i] = gk[i] – gk_prev[i];
		}

		D = 0;
		for (i = 0; i != nrCoeffs; i++) {
			D += (deltak[i] * gammak[i]);
		}

		if (D <= 0) {
			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					if (i == j) {
						Sk[i][j] = 1;
					}
					else {
						Sk[i][j] = 0;
					}
				}
			}
		} else {
			nfactor = 0;
			for (i = 0; i != nrCoeffs; i++) {
				nfactor += (deltak[i] * gammak[i]);
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					MM1[i][j] = deltak[i] * gammak[j];
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					acc = 0;
					for (l = 0; l != nrCoeffs; l++) {
						acc += MM1[i][l] * Sk[l][j];
					}
					MM4[i][j] = acc;
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					MM1[i][j] = gammak[i] * deltak[j];
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					acc = 0;
					for (l = 0; l != nrCoeffs; l++) {
						acc += Sk[i][l] * MM1[l][j];
					}
					MM2[i][j] = acc;
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					MM1[i][j] = MM4[i][j] + MM2[i][j];
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					MM2[i][j] = deltak[i] * deltak[j];
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				acc = 0;
				for (j = 0; j != nrCoeffs; j++) {
					acc += Sk[i][j] * gammak[j];
				}
				VV1[i] = acc;
			}

			int1 = 0;
			for (i = 0; i != nrCoeffs; i++) {
				int1 += gammak[i] * VV1[i];
			}

			int1 /= nfactor;
			int1 += 1.0;

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					MM4[i][j] = MM2[i][j] * int1;
				}
			}

			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					MM4[i][j] = MM4[i][j] – MM1[i][j];
				}
			}

			ratio = 1 / nfactor;
			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					C[i][j] = (MM4[i][j] * ratio);
				}
			}


			for (i = 0; i != nrCoeffs; i++) {
				for (j = 0; j != nrCoeffs; j++) {
					Sk[i][j] = Sk[i][j] + C[i][j];
				}
			}
		}
	}
}
where norm(v) returns the norm of v, ,  break exits the innermost while or for loop enclosing it and continue exits only the active iteration of the innermost while or for loop enclosing it.

The function isStableFilter shall test the resulting filter for stability as follows:

isStable = isStableFilter(filter)
{
	isStable = true;
	maxPoleAmpl = 0.995;

	for (sosIdx = 0; sosIdx != filter.order / 2; sosIdx++) {
		a0 = filter.a[0][sosIdx];
		a1 = filter.a[1][sosIdx];

		discr = a0 * a0 - 4 * a1;
		if (discr < 0) {
			if (sqrt(a1) > maxPoleAmpl) {
				isStable = false;
			}
		} else {
			if ((abs(0.5 * (-a0 - sqrt(discr))) > maxPoleAmpl) 
				|| (abs(0.5 * (-a0 + sqrt(discr))) > maxPoleAmpl)) {
				isStable = false;
			}
		}
	}
}

The function getMagnitudeResponse shall return the magnitude response corresponding to the provided filter coefficients, as follows:

Hx = getMagnitudeResponse(x, w, order)
{
	nrSos = order / 2;
	nrCoeffs = (order * 2) + 1;
	nrFreq = length(w);

	for (i = 0; i != nrFreq; i++) {
		Hx[i] = x[nrCoeffs - 1];
	}

	for (freqIdx = 0; freqIdx != nrFreq; freqIdx++) {
		cosw = cos(w[freqIdx]);
		cos2w = cos(w[freqIdx] * 2);

		for (sosIdx = 0; sosIdx != nrSos; sosIdx++) {
			idx0 = 4 * sosIdx;

			b0 = x[idx0];
			b1 = x[idx0 + 1];
			a0 = x[idx0 + 2];
			a1 = x[idx0 + 3];

			Num = (1.0 + ((b0 * b0) + ((b1 * b1) 
				+ ((2.0 * (b0 * ((1.0 + b1) * cosw))) + (2.0 * (b1 * cos2w))))));
			Den = (1.0 + ((a0 * a0) + ((a1 * a1) 
				+ ((2.0 * (a0 * ((1.0 + a1) * cosw))) + (2.0 * (a1 * cos2w))))));

			if ((Num < 0) || (Den < 0)) {
				if (Num < 0) {
					Num = 0;
				}
				if (Den < 0) {
					Den = 0;
				}
			}

			Den = max(Den, 1e-10);
			Hx[freqIdx] *= sqrt(Num / Den);
		}
	}
}

The function getObjFunc shall return the result of the objective function (i.e. the function to be minimized) at x as follows:

fk = getObjFunc(H, w, order, x, p)
{
	nrFreq = length(w);

	Mag = getMagnitudeResponse (x, w, order);

	for (i = 0; i != nrFreq; i++) {
		Mag[i] -= H[i];
	}

	Eh = 0;
	sumE = 0;
	for (i = 0; i != nrFreq; i++) {
		delta = abs(Mag[i]);
		if (delta > Eh) {
			Eh = delta;
		}
		sumE += delta;
	}

	oc = 0.0;
	for (i = 0; i != nrFreq; i++) {
		delta = abs(Mag[i]);

		r = 1.0;
		for (j = 0; j < p; j++) {
			r = r * (delta / (Eh + 1.0e-8));
		}
		oc += r;
	}

	o = pow(oc, 1.0 / p);
	o *= Eh;
	return o;
}

The function getObjFuncGrad shall return the objective function gradient at x as follows:

g = getObjFuncGrad(H, w, order, x, p)	
{
	nrFreq = length(w);
	nrCoeffs = (order * 2) + 1;

	Mag = getMagnitudeResponse(x, w, order);

	for (i = 0; i != nrFreq; i++) {
		e[i] = Mag[i] - H[i];
	}

	ge = getErrorGradient(Mag, e, w, order, x);

	Eh = 0;
	sumE = 0;
	for (i = 0; i != nrFreq; i++) {
		delta = abs(e[i]);
		if (delta > Eh) {
			Eh = delta;
		}
		sumE += delta;
	}

	oc = 0.0;
	for (i = 0; i != nrFreq; i++) {
		delta = abs(e[i]) / Eh;
		r = 1.0;
		for (j = 0; j < p; j++) {
			r = r * delta;
		}
		oc += r;
	}
	o = pow(oc, (1.0 / p) - 1.0);

	for (i = 0; i != nrFreq; i++) {
		v1[i] = pow((abs(e[i]) / Eh), (p - 1.0));
	}

	for (i = 0; i != nrCoeffs; i++) {
		for (j = 0; j != nrFreq; j++) {
			prod[i][j] = v1[j] * ge[i][j];
		}
	}

	for (i = 0; i != nrCoeffs; i++) {
		sum = 0;
		for (j = 0; j != nrFreq; j++) {
			sum += prod[i][j];
		}
		v3[i] = sum;
	}

	for (i = 0; i != nrCoeffs; i++) {
		g[i] = o * v3[i];
	}
}

The function getErrorGradient shall return the error gradient at x as follows:

ge = getErrorGradient(H, e, w, order, x)
{
    nrFreq = length(w);
    nrSos = order / 2;
    nrCoeffs = (order * 2) + 1;
    eps = 1.0e-10;

    for (i = 0; i != nrFreq; i++) {
		if (e[i] >= 0) {
			s[i] = 1;
		}
		else {
			s[i] = -1;
		}
	}

    for (i = 0; i != nrFreq; i++) {
        ge[nrCoeffs - 1][i] = (1 / x[nrCoeffs - 1]) * (s[i] * H[i]);
    }

    for (fIdx = 0; fIdx != nrFreq; fIdx++) {
        cosw = cos(w[fIdx]);
        cos2w = cos(w[fIdx] * 2);

        for (sosIdx = 0; sosIdx != nrSos; sosIdx++) {
            idx0 = 4 * sosIdx;

            b0 = x[idx0];
            b1 = x[idx0 + 1];
            a0 = x[idx0 + 2];
            a1 = x[idx0 + 3];

            Num = 1.0 + ((b0 * b0) + ((b1 * b1) 
				+ ((2.0 * (b0 * ((1.0 + b1) * cosw))) + (2.0 * (b1 * cos2w)))));
            Den = 1.0 + ((a0 * a0) + ((a1 * a1) 
				+ ((2.0 * (a0 * ((1.0 + a1) * cosw))) + (2.0 * (a1 * cos2w)))));

            Num = max(Num, eps);
            Den = max(Den, eps);
			
            ge[idx0][fIdx] = ((s[fIdx] * (b0 + ((1 + b1) * cosw))) / Num) * H[fIdx];
            ge[idx0 + 1][fIdx] = ((s[fIdx] * (b1 + ((b0 * cosw) + cos2w))) / Num) 
				* H[fIdx];
            ge[idx0 + 2][fIdx] = ((-s[fIdx] * (a0 + ((1 + a1) * cosw))) / Den) 
				* H[fIdx];
            ge[idx0 + 3][fIdx] = ((-s[fIdx] * (a1 + ((a0 * cosw) + cos2w))) / Den) 
				* H[fIdx];
        }
    }
}

Stage initialization: AR reverberator configuration
General
Whereas for VR scenes the acoustic parameters for AcousticEnvironments are provided in payloadReverb, for AR scenes the acoustic parameters are obtained at the renderer during playback, based on the LSDF. The acoustic parameters shall either be provided in the LSDF or be analyzed from a room impulse response (RIR) specified in the LSDF. Non-iterative filter design method using neural network acceleration for the calculation of the ratio control filter and delay line attenuation filter parameters shall be used when the target response is known from the LSDF acoustic parameters, or when the target response is analyzed from a RIR specified in the LSDF.
Figure 15 depicts an overview of the steps in FDN reverberator configuration for AR.


[bookmark: _Ref116287770]Figure 15 — Steps in FDN reverberator configuration (AR)

[bookmark: _Ref164955365]Delay lines (AR)
If complexityLevel has been specified in the LSDF, it shall be converted to numDelayLines as follows:
int numDelayLinesFromComplexityLevel(complexityLevel){
  switch(complexityLevel) {
    case 1: return 3;
    case 2: return 7;
    case 3: return 15; 
    case 4: return 31;
    case 5: return 63;
    default: return 15;
  }
}
Lenghts of numDelayLines delay lines shall then be calculated.
The delay line lengths shall be determined based on room dimensions. The Cartesian dimensions boundingBoxWidth, boundingBoxHeight, and boundingBoxDepth of a bounding box enclosing the AE are used.
First, all room modes permutations (except for mode [0,0,0]) shall be generated up to a maximum mode index maxMode by:
maxMode = 2;
vector<array<3>> modePermutations;
for (i=0; i <= maxMode; ++i) {
    for (int j=0; j <= maxMode; ++j) {
        for (k = 0; k <= maxMode; ++k) {
            if (i > 0 || j > 0 || k > 0) // don't use mode [0,0,0]
                modePermutations.append({i,j,k});
        }
    }
}

Delays for all mode permutations shall then calculated, in samples, then sorted in ascending order as:
numModeDelays = (pow(maxMode+1, 3)) - 1; // -1 to skip mode [0,0,0]
vector modeDelays(numModeDelays); // unit: samples
for (i = 0; ires < numModeDelays; ++ires) {
	xMode = modePermutations[i][0] / roomW;
	yMode = modePermutations[i][1] / roomH;
	zMode = modePermutations[i][2] / roomD;
	resonanceFreq = 343.f/2.f * sqrt(xMode*xMode + yMode*yMode + zMode*zMode);
	modeDelays[i] = fs / resonanceFreq;
}
sort(modeDelays.begin(), modeDelays.end());

Log-spaced delays shall then be generated between the frequencies corresponding to the minimum and maximum mode frequencies as follows:

vector logDelays(numDelayLines); // unit: samples
minResFreq = fs / modeDelays.back();
maxResFreq = fs / modeDelays.front();
// clamp min and max frequency between 5 and 300 Hz
minResFreq = max(5.0, minResFreq);
maxResFreq = min(300.0, maxResFreq);

start = fs / maxResFreq;
end = fs / minResFreq;
base = end / start;
for (i = 0; i < numDelayLines; ++i) {
    logDelays[i] = start * pow(base, (float)(i) / (numDelayLines - 1));
}
The log-spaced delays shall then be adjusted to match nearby delays corresponding to the generated mode frequencies as follows:
vector nearestLogDelIdx(numModeDelays);
// For each mode (resonant) delay, find the index of the nearest log-spaced delay
for (ires = 0; ires < numModeDelays; ++ires) {
    resDel = modeDelays[ires];
    nearestIdx = 0;
    minDist = LARGE_VALUE;
    for (ilog = 0; ilog < numDelayLines; ++ilog) {
        dist = abs(logDelays[ilog] - resDel);
        if (dist < minDist) {
            minDist = dist;
            nearestIdx = ilog;
        }
    }
    nearestLogDelIdx[ires] = nearestIdx;
}

// Assign the log-spaced delay the value of the nearest mode delay, if available
for (ilog = 0; ilog < numDelayLines; ++ilog) {
    logDelay = logDelays[ilog]; // log-spaced delay to be (possibly) replaced
    minDist = LARGE_VALUE;
    for (ires = 0; ires < numModeDelays; ++ires) {
        if (nearestLogDelIdx[ires] == ilog) {
            modeDelay = modeDelays[ires];
            dist = abs(logDelay - modeDelay);
            if (dist < minDist) {
                minDist = dist;
                logDelays[ilog] = modeDelay;
            }
        }
    }
}
The delays shall be sorted into ascending order. The delays shall be converted to mutually prime integers so that they do not have common factors. The length md for the dth delay line shall be obtained as 
		md = nearestPrime(delays[i]);

The attenuation filter coefficients in the delay lines are adjusted so that a desired amount in decibels of attenuation happens at each signal recirculation through the delay line so that the desired RT60(f) time is obtained. This is done in a frequency specific manner to ensure the appropriate rate of decay of signal energy at specified frequencies f.
The input to the attenuation filter configuration are the desired RT60 times per specified frequencies f denoted as RT60(f) and the delay line lengths md. For a frequency f, the desired attenuation per signal sample shall be calculated as attenuationPerSample(f) = -60 / (samplingRate * RT60(f)). The attenuation in decibels for a delay line of length md shall then be attenuationDb(f) = md * attenuationPerSample(f). Linear attenuation shall then be obtained as attenuation(f) = pow(10, attenuationDb(f) / 20). The attenuation values shall first be mapped to octave or third octave band center frequencies as described in 6.6.4.3.3.3 and then a cascade SOS filter shall be designed as described in 6.6.4.3.3.4.
Directions for reproducing output signals of the reverberator around the listener position shall be assigned to each delay line. The directions shall correspond to a spherical t-design with a number of points equal to the number of delay lines. The directions for the supported numbers of delay lines are tabulated in A.20. The direction assigned to each delay line shall be determined as follows. 
Cartesian unit vectors representing spherical directions shall each be scaled by a Cartesian vector of the room dimensions divided by two. I.e. the spherical direction vectors shall be scaled to form an ellipsoid approximately fitted to the bounding box of the acoustic environment. The indices of the list of these “ellipsoidal” vectors shall then be sorted in the order of ascending vector lengths. Reproduction directions shall then be assigned to each delay line by iterating through the delay lines, in order of ascending delay line length, assigning a (spherical) direction by the indices of the sorted (ellipsoidal) vectors. Thereby, directions shall be assigned, in order of shortest-to-longest ellipsoidal directional vector length, to delay lines in order of ascending delay line length. As a result, the early response of the FDN will more closely reflect the temporal distribution of middle-stage early reflections of the Acoustic Environment. 
[bookmark: _Ref100410126]Calculating input frequency response at band center frequencies
The frequency dependent response values frequencyResponse(f) shall be mapped to a set of frequency bands m, which are either octave or third octave bands, depending on the resolution at which the input data frequencyResponse(f) has been provided. Each value in frequencyResponse(f) shall first be mapped to third octave band to obtain data frequencyResponse (fc3), where fc3 are the center frequencies of a third octave filter bank. The third octave center frequencies fc3 shall be as defined in the ISO 266 (Acoustics — Preferred frequencies). 
Mapping input data frequencyResponse (f) to the third octave center frequencies fc3 shall be done by finding for all fc3 the input frequency f having the smallest absolute difference to fc3. This shall result in third octave mapped frequencyResponse data frequencyResponse (fc3):
	
	(74)


A set of  shall be formed indicating the index i of the closest frequency  for each fc3:
	
	(75)


A determination shall then be performed whether using the third octave resolution is necessary given the resolution of the input data. Third octave resolution shall be determined to be necessary if at least six adjacent frequency points  map to different bands  (somewhere in the spectrum). This shall be indicated by a trail of six adjacent ones in diff() where diff denotes the difference between adjacent values. If such a trail of adjacent ones is found then the third octave resolution frequencyResponse data frequencyResponse(fc3) shall be used.
Otherwise octave band data shall be formed as 
	
	(76)


where  shall be the octave center frequencies defined in ISO 266.
The determination above shall result in frequency mapped frequencyResponse values frequencyResponse(m) where m are the indices of the selected frequency bands (octave or third octave bands).
[bookmark: _Ref100404946]Calculating SOS cascade graphic equalizer coefficients
The parameters for a SOS cascade graphic equalizer are:
—	denoting a global broadband gain.
—	 denoting the first feedback coefficient for each SOS.
—	 denoting the second feedback coefficient for each SOS.
—	 denoting the first feed-forward coefficient for each SOS.
—	 denoting the second feed-forward coefficient for each SOS.
—	levelDb denoting a second global broadband gain. 
—	stageF denoting a broadband gain for each SOS.
The SOS cascade graphic equalizer (GEQ) design shall receive as an input a target magnitude response frequencyResponse(m) at octave or third octave bands. The frequencyResponse(m) shall first be preprocessed such that values equal to zero are substituted with the smallest value larger than zero in frequencyResponse(m) to prevent numerical problems in the filter coefficient calculation. This creates the zero-fixed input target magnitude response zeroFixedInput(m).
Target response in decibels shall then be calculated as controlGainNoOffsetDb(m) = 20*log10(zeroFixedInput(m)). 
The mean attenuation in decibels shall then be subtracted from the target response controlGainNoOffsetDb(m). The mean shall be stored as levelDb = -mean(zeroFixedInput(m)) and combined to the overall GEQ gain G0 during filter calculation. The mean removal is used to limit the range of control gains that need to be approximated with the response of the GEQ filter. The target response or control gains for the GEQ design shall be the mean removed response controlGainsDb(m) = controlGainNoOffsetDb(m) + levelDb.
The optimization of the GEQ parameters is done in a computationally efficient manner utilizing acceleration data in the form of neural network coefficients. The neural network has been trained to optimize the GEQ filter gains in decibels based on the input control gains in decibels. For octave band filters, the description follows Välimäki [1] and for third octave band filters Rämö [2].
For octave band filters, the optimal gains in decibels gains shall be obtained as:
g = 2.0 * hadamardDivision(controlGainsDb - xMin, xMax - xMin) - 1;
o = tanh(W1 * g + theta1);
go = W2 * o + theta2;
optimizedGains = hadamard((tMax - tMin), 0.5 * (go + 1.0)) + tMin;

where hadamardDivision performs an element wise division and tanh implements the hyperbolic tangent function which is the hidden layer activation function. The neural network parameters are the parameters of a one-layer fully-connected feedforward neural network including the maximum and minimum of the input control gains xMin and yMin, respectively, the weighting matrices W1 and W2, bias vectors theta1 and theta2, and the maximum and minimum of the training data targets tMax and tMin, respectively. The neural network parameters provided in A.5 shall be used.
Based on the optimized gains optimizedGains, the parameters of the SOS band filters shall be obtained. The frequency response of a cascade graphic EQ with M bands is
	
	(77)


where  is an overall gain factor.  are the frequency responses of equalizing filters,  is the radial frequency and  is the sample interval. 
A free design parameter  shall be set. The number of bands shall equal  The center frequency of the filters in radians shall be  where  is the filter center frequency at band  in Hz. The bandwidth of each band filter shall be obtained as . The following corrections shall be made to the bandwidths of three highest band filters: ,  and .
The transfer function of the GEQ filter at band m is 
	
	(78)


where the scaling coefficient shall be defined as
	
	(79)


where  is the target filter gains, db2mag(gains(m)) and shall be defined as
	
	(80)


 when  or as 
	
	(81)


when . 
The gain at bandwidth  shall be set as  db2mag .
The numerator coefficients shall be
	
	(82)

	
	(83)


where  is the center frequency for band .
The denominator coefficients shall be
	

	(84)


 
	
	(85)


where  is the normalized center frequency in radians. 
The gain factor  for the GEQ filters shall be the product of the scaling coefficients of the band filters
	
	(86)


As a result of the optimization, the parameters  for the SOS cascade filter shall be obtained. These parameterize the SOS cascade along with the levelDb.
The coefficients for the third octave band filters shall be obtained in the same manner, with the following differences to octave band filters:
There shall be one more layer in the network used to optimize the gains for the third octave cascade SOS. The optimized gains in decibels shall be obtained with the following procedure:
g = 2.0 * hadamardDivision(controlGainsDb - xMin, xMax - xMin) - 1;
o1 = tanh(W1 * g + theta1);
o2 = tanh(W2 * o1 + theta2);
go = W3 * o2 + theta3;
optimizedGains = hadamard((tMax - tMin), 0.5 * (go + 1.0)) + tMin;

The neural network parameters are the parameters of a two-layer fully-connected feedforward neural network including the maximum and minimum of the input control gains xMin and yMin, respectively, the weighting matrices W1, W2, and W3, bias vectors theta1, theta2, and theta3, and the maximum and minimum of the training data targets tMax and tMin, respectively. The neural network parameters provided in A.6 shall be used.
The free design parameter shall be set to . The number of bands shall equal  The bandwidths shall be set as 
	
	(87)


with the values of  tabulated in the Annex A.7.
[bookmark: _Ref164955623]Reverberation ratio control filter (AR)


[bookmark: _Ref99955570]Figure 16 — Determining reverberation ratio parameters to be used for RDR filter design
A reverberation ratio control filter (RDR control filter) shall be initialized using the input RDR data of the LSDF AE, the RDR calculated from the RIR specified in the LSDF, or the dimensions of the AE. The RDR refers to the reverberant-to-direct energy ratio and is defined for an omnidirectional sound source at one meter distance. It is noted that the ratio of rendered reverberant sound energy to rendered direct sound energy for the listener varies within the audio scene because of distance gain attenuation applied on the direct part and distance-gain attenuation applied on the reverberant part. The RDR parameter is used to adjust the level and spectrum of reverberation at one-meter distance for an omnidirectional source. The other parameter impacting the static reverberation level is source directivity which is handled by the source directivity gain control filters. Generally, the more directive the source is the less reverberant energy it contributes.
It is possible to use bitstream parameters to control how the reverberation ratio is handled when designing the reverberation ratio control filter for AR. The bitstream parameters provide the possibility to override the input ratio parameters from the LSDF with parameters obtained from a theoretical approximation or to adjust the reverberation level to an overall perceptually plausible level. Note that bitstream parameters (and corresponding runtime configuration parameters) allow the user to manually adjust the overall reverberation ratio with theoreticalRDRToActualRDR and lsdfRDRToActualRDR, respective to the chosen RDR specification. The RDR values specified in the LSDF (either as <AcousticParameters> or derived from a provided <RoomImpulseResponse>) can be overridden with the bitstream/runtime configuration parameter overrideLSDF_RDR. The acquisition of band-wise RDR values used as gain parameters to the reverberation ratio control filters is detailed in 6.6.4.3.3.7.6. Figure 16 depicts an overview of handling RDR data.
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[bookmark: _Ref99955675]Figure 17 — Overview of the RDR control filter design
Using the obtained reverberation ratio values a ratio control filter shall be designed as depicted in Figure 17. The filter is designed such that, when the filter is applied to the input data of the FDN reverberator, the output reverberation will have the desired energy ratio defined by the RDR(f). The input to the design procedure are the RDR values RDR(f) at a set of input frequencies .
The values RDR(f) shall be first mapped to a set of frequency bands m, which are either octave or third octave bands, depending on the resolution at which the input data RDR(f) has been provided. This is done as described in the clause 6.6.4.3.3.3. The mapping to frequency bands results in frequency mapped RDR values RDR(m) where m are the indices of the selected frequency bands (octave or third octave bands).
The energy ratio control filter matches the reverberator r output spectrum energy to the target spectrum energy provided by the input ratio data. To design the filter an estimate of the RDR of the reverberator output and the target RDR are needed. The RDR of the reverberator output shall be obtained by rendering a unit impulse through the reverberator which has been parameterized without the ratio control filter and measuring the energy of the reverberator output and energy of the unit impulse and calculating the ratio of these energies.
A unit impulse input shall be formed where the first sample value is 1 and the length of the zero tail is long enough. The length of the zero tail is adjusted to equal max(RT60(f)) plus the predelay in samples. The monophonic output of the reverberator is of interest in the ratio control filter design so a sum over the delay lines j is calculated to obtain the reverberator output s_rev(t) as a function of time t.
An FFT of length NFFT shall be  calculated over s_rev(t) and its absolute value obtained as 
	FFA(k) = abs(FFT(s_rev(t))
	(88)


Here, k are the FFT bin indices. NFFT is selected as the next power of two of the length of s_rev(t). The positive half spectral energy density shall be obtained as
	
	(89)


where the energy from the negative frequency indices k into the corresponding positive frequency indices kk has been added.
The positive half spectral energy density of a unit impulse shall be obtained analytically as 
Su(k) = 2/NFFT
Band energies are calculated of both the positive half spectral energy density of the reverberator S(k) and the positive half spectral energy density of the unit impulse Su(k). Band energies shall be calculated as 
	
	(90)


where mlow and mhigh are the lowest and highest bin index in k belonging to band m, respectively. The band bin indices are obtained by comparing the frequencies of the bins to the lower and upper frequencies of each band. 
The lower and upper frequencies shall be obtained with the help of a ratio : for third octave bands  and for octave bands . Band low frequencies are then obtained as  and band high frequencies as  where  are the band center frequencies. The first band low frequency is set equal to zero and the last band high frequency is set equal to the Nyquist frequency.
The reproduced  of the reverberator output at the frequency band m shall be obtained as 
	
	(91)


The target linear magnitude response for shall be obtained as
	
	(92)


This shall be the target magnitude input to the SOS cascade equalizer calculation routine described in the clause 6.6.4.3.3.4.
Predelay (AR)
A delay, here referred to as “predelay”, shall be applied to the input signal in order to align the onset of the diffuse response of the reverberator with the diffuse onset specification, which is either declared explicitly as the diffuseOnset attribute of the <AcouticParameters> in the LSDF file, or determined from analysis of a specified room impulse response (6.6.4.3.3.7.3.1 and 6.6.4.3.3.7.3.2). If the diffuse onset is not available through the LSDF file, it shall be approximated as
	
	(93)


where  is the speed of sound, and the longest room dimension  is the longest dimension of the bounding box enclosing the Acoustic Environment. Note that this differs from the predelay calculation used in the EIF in that a scaling factor of 4.0 has been omitted.
The diffuseOnset shall then be scaled by dividing by the predelayFactor, then offset by the addition of predelayOffset, both of which are user-specified runtime configuration parameters.
The predelay, in samples,  shall equal 
	
	(94)


where  is the diffuse onset time of the reverberator’s impulse response, which shall be spatially encoded into the SH domain and measured via the method described in 6.6.4.3.3.7.3.1. The predelay delay line shall be a ring buffer of length .
m_buffer = array(B + predelayAdjustedInSamples);
m_readIndex = 0;
m_readSamples = 0;
m_writeIndex = predelayAdjustedInSamples;
m_writtenSamples = predelayAdjustedInSamples;

Room Impulse Response Analysis
The acoustic environment to which the reverb corresponds, shall be defined in the LSDF by either explicit acoustic parameters or a room impulse response (RIR). The RIR can be provided as a monophonic file, representing an omnidirectional signal . Alternatively, a spatial room impulse response (SRIR) can be provided, comprising spherical harmonic (SH) domain, or ambisonic, signals , where  for a SRIR of SH order N, formatted according to the ambisonic channel numbering, ortho-normalized convention (ACN-N3D). In the case that the SRIR is provided in ambisonic semi-normalized (ACN-SN3D) format, the signal set shall first be converted to the N3D normalization scheme before further processing by
	
	(95)


where  comprises conversion coefficients calculated according to
	,     where   .
	(96)


The RIR analysis workflow generates the band-wise reverberation time (), and reverberant-to-direct energy ratio (RDR) which parameterize the reverberator. The following subsections describe the analysis procedures used to determine these acoustic parameters.
1.1.1.1.1.1.1 Frequency band filtering
Room acoustic parameters shall be derived from a room impulse response in a band-wise manner, using  octave bands with nominal center frequencies defined in Hertz as:

The filter bank is initialized with crossover frequencies
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where the first and last filters are lowpass and high-pass filters, respectively, with bandpass filters in between. The band filters shall be constructed as linear phase FIR filters. The filter design can be done using the windowing method of [18], with a Hamming window and a filter length of  samples. The filtering can be performed by frequency-domain convolution on each of the (S)RIR signal channels.
The resultant filter delay of  samples shall be removed from the head of the band-filtered signals in order that they remain time-aligned with the input signal, and the signals shall further be truncated at the tail such that their lengths are equal to that of the input RIR.
1.1.1.1.1.1.2 [bookmark: _Ref163756944]Direct sound arrival detection
The sample index of the direct sound arrival in the RIR (or omnidirectional component of the SRIR) for both the broadband and band-wise omnidirectional signals, denoted  and  respectively, shall be chosen to be the first sample index for which the condition
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is met, where  denotes a threshold level (set to ) below the maximum absolute value  within the signal .
1.1.1.1.1.1.3 [bookmark: _Ref163756936]Diffuse onset calculation 
A critical feature of reverberation is the diffuse onset—the point in time in RIR when the response becomes spatially and temporally diffuse and uncorrelated, i.e. in which individual early reflection echoes can no longer be distinguished as separate from one another. The diffuse onset is also commonly referred to as ‘mixing time’. The diffuse onset metric shall be determined by two different methods depending on whether the input is an SH domain SRIR or a monophonic RIR, as detailed in the following subsections.
1.1.1.1.1.1.3.1 [bookmark: _Ref163752546]Diffuse onset calculation — SRIR
In the case of SRIR processing, the diffuse onset shall be calculated using the intensity-based metric of diffuseness, calculated in the spatial time-frequency domain using the Short-time Fourier Transform (STFT). The time-domain signals from the first four HOA components (omnidirectional and three dipole components) shall first be transformed into the pressure-velocity signal vector, with velocity components ordered according to principal Cartesian axes by
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The time-domain signal  shall then be windowed into a size  samples and converted to the time-frequency domain by the forward transform of the (real) STFT, resulting in a frequency-domain analysis frame matrix , comprising bin-wise components for pressure  and velocity , where .
From the pressure and velocity signals, the active intensity , sound field energy , and diffuseness , shall be constructed by the following (frequency bin index  is omitted for brevity):
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In practice,  can be set to 128 and the analysis frame matrix can be culled to the hold only the frequency bins up to a cutoff frequency which diffuseness should be measured (MAX_DIFF_FREQ_HZ, which shall be set to 3000 Hz).
The broadband average of the above quantities shall be calculated by the covariance matrix , where the superscript  denotes the Hermitian conjugate and the quantities of active intensity and energy density are
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Analysis shall begin at a position which centers the analysis window on  and proceed frame-by-frame, with the analysis window advancing  samples at a time. Smoothing shall be carried out over  analysis frames according to
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where  is the current analysis frame and  is the smoothing constant, yielding a smoothed diffuseness measure
	
	(107)


The diffuse onset shall be determined to occur at the analysis frame index , which is the earliest frame for which
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where  (set to ) is a fraction of the maximum diffuseness  over all analysis frames. The sample index of the diffuse onset  shall be set to the sample that is the floor of the center position of the diffuse onset analysis frame at index .
1.1.1.1.1.1.3.2 [bookmark: _Ref163752548]Diffuse onset calculation — RIR
In the case that a monophonic RIR is specified in the LSDF, the diffuse onset shall be calculated based on the echo density metric
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where  is the RIR,  is the index into the frame window of size  (set to 1024 samples), and  is a Hann window function. The complementary error function  is used to normalize the echo density by the fraction of samples that are expected to lay outside one standard deviation of a Gaussian distribution, such that . The function  shall return a boolean value of 1 or 0 indicating whether or not its argument is true—in this case whether the absolute value of the RIR sample exceeds the standard deviation
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Analysis shall begin at a position which centers the analysis window on  and proceed through the RIR with a hop size of  samples until the diffuse onset criteria , where  (set to ), is met. The sample index of the diffuse onset  shall then be set to the index within the RIR corresponding to the sub-index , the nominal center index, of the analysis frame which satisfies the diffuse onset criterion.
1.1.1.1.1.1.4 [bookmark: _Ref163916465]Energy decay curve (EDC) calculation
The energy decay profile of a RIR provides a useful measure for determining the reverberation time of a room.  The energy decay curve EDC shall be calculated by backward integration of the squared input signal. This calculation shall be performed on the broadband RIR signals (or omnidirectional component of the SRIR ), denoted  and , respectively:
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1.1.1.1.1.1.5 [bookmark: _Ref163916561]Reverberation time estimation
The reverberation time  is estimated for the band-wise RIR signals (or band-wise omnidirectional component of the SRIR), representing an omnidirectional rate of energy decay, also called a “common slope” decay, because the metric is considered isotropic. The estimated values shall be used in the FDN attenuation filter configuration, as detailed in 6.6.4.3.3.2.
 for a signal shall be estimated by first finding a linear line-of-best-fit to a relevant span of the EDC on a logarithmic scale (decibels). A least-squares fit shall be performed on the EDC using sum of squares terms
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where  is a constructed vector of values representing a line with a slope of one dB per sample with a mean of zero, and  is , in logarithmic scale, and the overbar denotes the mean value over the measured span of length . The regression coefficient shall then be
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representing the linear decay per sample, in decibels, of the line-of-best-fit. The quality of the fit is captured by the correlation coefficient
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The length of the measured span  shall be determined through an iterative process, in which  and  shall be calculated for spans comprising different decay ranges from 10 to 60 dB, in steps of 2 dB, and from starting indices which range from  to  (see 6.6.4.3.3.7.3 and 6.6.4.3.3.7.2). The chosen fit shall be the one with the highest correlation coefficient . An exception to this rule shall be made when there are multiple fits for which , in which case the fit with the largest measurement length  among the qualified fits shall be chosen.
The rate of decay for the signal shall then be converted to reverberation time by
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where  is the sampling rate.
A rule-based error check shall be applied to the estimated  values, to guard against degenerate band signals which may, for example, be contaminated by a high noise floor. In particular, the lowest band (125 Hz) is susceptible to noise floor contamination, so it shall be checked that its estimated , stored in the variable t60Buf[ibnd], with ibnd denoting the band index, does not exceed twice that of the next-highest band (250 Hz). If the estimate is found to be out-of-range, it shall be set to a linear back projection of the values of the second and third bands, clipped at a lower bound of 0 dB (no cut allowed), as follows:
if (t60Buf[0] > t60Buf[1] * 2) {
    t60Buf[0] = t60Buf[1] + max(0, (t60Buf[1] - t60Buf[2]));
    validSlopeBoolBuf[0] = 0;
}
From band three upwards, the estimated  shall be checked that it does not exceed three times the value of the previous band. If the estimate is found to be out-of-range, it shall be set to a linear forward projection of the values of the previous two bands, clipped at an upper bound of 0 dB (no boost allowed), as follows:
if (ibnd >= 2 && t60Buf[ibnd] > t60Buf[ibnd - 1] * 3) {
    t60Buf[ibnd] = t60Buf[ibnd-1] - max(0, (t60Buf[ibnd-2] - t60Buf[ibnd - 1]));
    validSlopeBoolBuf[ibnd] = 0;
}
where ibnd is the band index. The band-wise flag validSlopeBoolBuf shall indicate whether the estimated  was valid for each band, and shall be used in downstream processing, namely the RDR and directional gain calculations, to signal whether to proceed with the metric calculation from the respective band signal, or otherwise handle the degenerate case.
1.1.1.1.1.1.6 [bookmark: _Ref163752448]Reverberant-to-direct energy ratio calculation
The reverberant-to-direct ratio (RDR) shall be used to scale the reverberation level in each frequency band via the gains passed to the  filter of the reverberator (6.6.4.3.3.5). The RDR shall be defined for an omnidirectional RIR (or the omnidirectional component of a SRIR) as
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where time bounds  and  shall denote endpoints of a window containing the direct sound, and time bounds  and  shall denote endpoints of a window containing the late, diffuse portion of the energy decay, from the diffuse onset to the moment that the noise floor is reached, respectively. The distance  shall be the distance between the sound source and the receiver. 
If the source and receiver position, from which  is calculated, are not specified in the LSDF, or if the bitstream configuration parameter overrideLSDFRDR is true, the RDR shall not be calculated from the (S)RIR, but a model-based linear approximation using the , diffuse onset, and room volume shall instead be used. The approximation of RDR values shall then be
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where  is the time of the diffuse onset, in seconds (see 6.6.4.3.3.7.3). The room volume  shall be calculated as the volume of the bounding box enclosing the Acoustic Environment. A user-specified offset to all RDR values shall be applied as
	
	(119)


where  is the bitstream parameter (or corresponding runtime configuration parameter) theoreticalRDRToActualRDR or lsdfRDRToActualRDR, depending on the source of the RDR values. Linear RDR values shall be provided to the RDR filter design routine described in 6.6.4.3.3.5:
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The direct onset window endpoints  and  shall be determined by centering a window on the direction onset index , with a window size that is ; that is, the duration of two periods of the center frequency of the  filter band, clipped at a minimum value of 2.5 milliseconds, in samples. The late energy window shall be bound between the diffuse onset  and the time point from the diffuse onset at which the energy has decayed 30 dB, calculated by .
The directivity of the sound sourced used in the (S)RIR measurement can be signaled in the LSDF file by the directivity attribute of <RoomImpulseResponse>, where a Boolean value of 0 or 1 shall indicate an omnidirectional or nominal loudspeaker directivity, respectively. In the case of an omnidirectional sound source, no modification of the RDR shall be done. In the case of loudspeaker directivity, a frequency-dependent scaling of the RDR shall be applied as
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The loudspeaker directivity factor  is listed and described in more detail in Annex A.2.


Reverb Stage processing
General
Reverberation processing for each block of samples of length B comprises the steps of determining input items, performing input gain processing for the input items, applying reverberator processing, crossfading output gains, and generating output signals.
Reverberation input processing


[bookmark: _Ref101343948]Figure 18 — Input processing for Reverberators.
The Reverb Stage shall take as input RIs which are of type Primary or HOA and which are not Inactive, Orphaned, or have the NoReverb attribute set to true. The reverberation input items are added as dspItems at each update() step of the Reverb Stage.
The Room Assignment stage produces the information of which audio elements are currently inside which AE. Each eligible input audio element (i.e. input render item) can contribute to all reverberators or a subset of them, depending on its location. A render item inside an AE that is different from the AE associated with the reverberator shall be considered an external source for that reverberator. Contributions of external sources shall only be included in explicit portal mode (isExplicitPortalMode = true). Their contribution shall be a portion of the full source energy, depending on how much of their energy reaches the reverberator’s AE through one or more portals. 
Conversely, internal sources shall be sources that are located inside the AE associated with the reverberator. Such sources’ contribution to that reverberator shall be reduced with the portions of source energy that are lost through one or more portals, unless the portals are operating in implicit portal mode,
The reverberation input items shall be gain controlled and summed into mono reverberator input bus. Details of reverberation input gain processing are depicted in Figure 18 and described in 6.6.4.3.4.3 and 6.6.4.3.4.5.
[bookmark: _Ref101344018]Reverberation input gain processing
The input gain calculation shall consist of six main components:
1. Source gain
2. Source contribution indicating which portion of the source’s energy contributes to the AE’s reverberation
3. Distance attenuation-based listener to source distance inside the AE
4. Conversion factor for converting PCM samples to RMS source energy
5. A common component from the reverberator
6. Arbitrary source reverb gain selected by the scene author
The static source gain is indicated with itemGain.
The dynamic source reverb gain is indicated with itemReverbGain.
In implicit portal mode, a source contributes only to reverberators associated with the AEs in which the source is located. Therefore, the source contribution (sourceContribution) is 1 if the source is in the AE associated with the reverberator, and 0 otherwise.
In explicit portal mode, the source contribution represents the effect of source energy leaking to other acoustic environments through portals. If the source AE is different from the reverberator AE, then the source contribution shall indicate the portion of source energy that reaches the reverberator AE through one or more portals connecting the two AEs. 
If the source AE and reverberator AE are the same, then the source contribution shall indicate the portion of source energy that is not lost to other AEs through portals.
When there are no portals directly or indirectly connecting the source AE with the reverberator AE, sourceContribution = 0. 
Otherwise, for each portal connected to the source AE with the reverberator AE, a portal contribution (portalFactor) shall be calculated, and all portal contributions shall be combined to form the source contribution for item :
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where 
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losFactor(i, p1) shall be a further gain factor controlling the amount of energy propagation from the render item  through portal p1 and adjusting the level of reverberation the source signal creates in the connected acoustic environment. If there is a line of sight (LoS) from the position of the source i to portal  then losFactor (i, p1) = 1.0. Otherwise losFactor(i, p1) = m_noLineOfSightCoeff.
[bookmark: _Hlk163144205]Determination whether there is a LoS from the position of the source i to portal p shall be obtained based on LoS voxel grids losVoxelGridp,area for portal p covering a subset of scene positions as possible source positions and which have been decoded from payloadPortal 6.2.7. area defines a rectangular axes-aligned subregion of the scene covered by LoS voxels. If there is no LoS voxel grid associated with p then it shall be determined that LoS exists. The search shall be first done from the LoS voxel grid covering a part of the AE where the source locates if such a grid exists or from the outside LoS voxel grid for p if one exists. If there exists a LoS voxel grid losVoxelGridp,area for the portal p then the LoS voxel index voxIdx(i) can be obtained using the following procedure, where pos = [x, y, z] contains the Cartesian coordinates of the source i position:
getLosVoxelIndex(pos)
{
    idx = [-1, -1, -1];
    for (i = 0; i < 3; i++) {
        M_TO_MM = 1000.f;
        CM_TO_MM = 10.f;
        mmvoxelSize = voxelSize * CM_TO_MM;
        mmpos = round(pos[i] * M_TO_MM);
        mmp1 = round(cornerP1[i] * M_TO_MM);
        nearest = abs((mmpos - mmp1) / mmvoxelSize);
        idx[i] = min(nearest, (nVoxels[i] - 1));
    }
    voxIdx = idx[1] * nVox[2] * nVox[0] + idx[2] * nVox[0] + idx[0];
    return voxIdx;
}
cornerP1, cornerP2, and voxelSize are the decoded values of cornerP1, cornerP2, and voxelSize of losVoxelDataStruct corresponding to losVoxelGridp, respectively. nVoxels = [nVoxelsX, nVoxelsY, nVoxelsZ], where nVoxelsX, nVoxelsY, and nVoxelsZ are the decoded values of nVoxelsX, nVoxelsY, and nVoxelsZ of losVoxelGridp,area respectively.
If voxIdx(i)  0 and losVoxelGridp,area[voxIdx(i)] = 1 then there is a LoS. Otherwise there is no LoS.
 shall be the set of all non-cyclical paths from source  to reverberator  where . A non-cyclical path  is comprised of  portals , such that:
·  shall have portalEnv1 or portalEnv2 equal to the AE of source 
·  shall have portalEnv1 or portalEnv2 equal to the AE of reverberator 
· Every adjacent pair of portals  and  shall share exactly one portal environment
· The AE of source  and the AE of reverberator  shall occur exactly once in the portal environments of all portals in a path.
· Other AEs shall occur exactly 0 or 2 times in all portal environments related to the portals in a path.
Here  denotes the number of portals in a path. Note that in case a path contains only a single portal, then the empty product  shall be 1.
The materialGain variable shall represent the material property of the portal . For calculating how much the source contributes to the other AE, materialGain shall be the sum of the transmission coefficient at 1 kHz and the coupling coefficient at 1 kHz. 
The p2pFactor[pj][pj+1] shall represent the portal2PortalFactor between portal pj
and portal pj+1 if it exists in the portal payload, and 0 otherwise.  
Calculation of portalFactor shall be performed based on the source position (x, y, z) in Cartesian coordinates. The renderer can first consult a cache of previously calculated portalFactor values for the source. If the source position has changed, it indicates dynamic source movement. If the source position has not changed, the previously calculated portalFactor can be retrieved from the cache for the static source position. If the source has moved or no cache for it exists, portalFactor shall be calculated.
The calculation of the portalFactor shall be based on the source to portal vector and the portal’s normal vector. First, the source to portal vector shall be rotated with rotation matrix  that aligns the portal normal to (0, 0, -1).
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where  shall be the coordinate of the source location and  shall be the coordinate of the portal’s centre (portalCenter). 
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Then, the portalFactor shall be calculated according to the following equations:
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	[bookmark: _Ref164422145](136)



Variable  indicates the portal width (portalWidth) and  the portal height (portalHeight). 
To calculate the energy a source  contributes to the AE  in which it is located the energy lost to other AEs shall be subtracted as:
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Here, materialGain shall be the transmission coefficient at 1 kHz.  represents the set of portals that connect the source AE to a non-AE (isConnectedToSecondAE == false).

The Reverb Stage shall further apply slight distance gain attenuation to match the expected decay of the late reverberation level particularly in large spaces. 
This shall be done as follows for sources within an AE when they contribute to the AE reverberator: 
The location (x, y, z) in Cartesian coordinates of the item to be rendered is stored in sourceLocation.
The Euclidean distance dist between the sourceLocation and listenerLocation (also in Cartesian coordinates):
	dist = abs(sourceLocation - listenerLocation);

The method then takes the maximum of dist and minimumDistance. This is done to prevent excessive level increase of the late reverberation when close to a sound source. minimumDistance is obtained from the reverbMinimumDistance field in the payloadReverb. 
	dist = max(minimumDistance, dist);

The distanceGain value to be applied to the reverberation input signal shall be calculated by the method calculateDistanceGain, based on dist and the refDistance value of the rendered item. The refDistance is a reference distance in meters for the rendering item obtained from the bitstream. The reference distance is the distance at which the calculated distance attenuation for the input signal is 0dB.
	distanceGain = calculateDistanceGain(dist, refDistance);

The method performed in calculateDistanceGain is as follows:
dbGain = distanceGainDbFactor * log10(refDistance / distance);
distanceGain = pow(10.0, dbGain / 20.0);
Here, distanceGainDbFactor is calculated as 
distanceGainDbFactor = distanceGainDropDb / log10(2.0);

distanceGainDropDb shall be obtained from the decoded value of the parameter reverbDistanceGainDropDb in the payloadReverb unless a run-time override value is provided. Suitable values are between 1dB and 2dB to implement a level decrease between of 1dB to 2dB per distance doubling.
The distanceGain value shall be  calculated at each update() step of the Reverb Stage. It shall be multiplied with the itemGain and with the itemReverbGain to obtain the final gain value to be applied to the audio signal input samples.
If item is not in any bounded AE, it shall be in the Default AE. The distance gain attenuation processing shall be the same as above but the refDistance shall be set to 1 and the decay and minimum distance shall be set differently to bounded acoustic environments. distanceGainDbFactor shall be set according to the decoded value of reverbPayload revDefaultAEDistanceGainDropDb or presetDefaultAEDistanceGainDropDb unless a run-time override is available. minimumDistance shall be set according to the decoded value of revDefaultAEMinimumDistance or presetDefaultAEDistanceGainDropDb unless a run-time override is available.
When a source contributes to the reverberator of an AE via a portal, the distance gain attenuation shall have the following differences to the above: the distance shall be calculated between the portal and the source location. If there are multiple portals between the AE where the source is located and the reverberator AE, the distance shall be calculated from the source to the portal closest to the listener. Since this mechanism can cause a switch in the closest portal and thus distance gain value, smoothing shall be applied to mitigate the effects. Distance gain shall be smoothed over update cycles in such a way that any change longer than 0.25 meters is not applied instantly, but the change is clamped to 0.25 m and any remaining change is applied in the upcoming update rounds (with a maximum of 0.25 m) until the new distance value is reached.

Then, the gain g that is to be applied to the reverberation input signal for this rendering item during DSP processing is calculated as follows:
	g = itemGain * sqrt(sourceContribution) * distanceGain * PCM2SourcEnergyFactor * commonComponentRatioFlt * itemReverbGain;

In this calculation, PCM2SourcEnergyFactor is the scale factor that indicates how the source’s PCM samples scale to RMS source energy emitted into the room if the source were omnidirectional, and for VR environments shall be calculated as:
	PCM2SourcEnergyFactor = sqrt(4 * PI / earSurf) * refDistance

where earSurf = 0.001 m2.
The factor commonComponentRatioFlt shall be the common component of the reverberation ratio control filter of the corresponding reverberator.
For AR environments: 
	PCM2SourcEnergyFactor = 1 and commonComponentRatioFlt = 1.

itemReverbGain is an optional parameter that can be updated via immediate, pre-defined, or interpolated scene updates. The dB value contained in the bitstream (reverbGainDb) is being converted to a linear value upon reading on the renderer side.
	itemReverbGain = pow(10.0, reverbGainDb / 20.0);

If it is not set in the bitstream, then default itemReverbGain = 1.0.

The gain g then contains the gain to be applied to the reverberation input signal for this rendering item during DSP processing, and combines any static gain in itemGain, the calculated distanceGain and the dynamic itemReverbGain.
Reverberation gain processing for connected acoustic environments
Acoustic environments connected via a portal are referred to as connected acoustic environments. In the case of connected acoustic environments the amount of reverberation leaking through a portal opening to a connected acoustic environment is represented with a connected reverberation coefficient . The coefficient value shall depend on the dimensions of the portal opening and the material property materialGain[pj] of the portal :
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where  indicates the portal width (portalWidth) and  the portal height (portalHeight) in meter. 
Clamping shall be applied to limit  between 0 and 1.
materialGain[pj] shall be updated during the update() cycle to enable determining active portal connections which can leak energy, i.e., whose transmission or coupling coefficients are non-zero.
The gain  shall be applied to the stored past output  of a reverberator r which provides energy through portal  to a connected acoustic environment.
[bookmark: _Ref101344037]Directivity gain filtering and summing to reverberator input buses
Each reverberator shall be associated with at least one input bus which shall be zeroed in the beginning of processBlock() processing for each reverberator. The audio signal of the dspItems for each reverberator shall be summed as mono mix audio signal into the corresponding reverberator predelay input bus before reverberation processing.
To facilitate spatial rendering of reverberation in multiple acoustic environments, a reverberator which corresponds to an acoustic environment having a portal defined in the bitstream shall have additional input buses for feeding sound sources and reverberation that propagate through the portal opening. The additional input buses are used to account for the additional propagation delay of sources and reverberation that propagate through the portal. There shall be as many input buses to reverberators as there are different predelay values that need to be applied: one for the acoustic environment predelay and one for each different propagation path delay via a portal opening.
The selection of the input bus to which feed the audio signal is done based on the predelay as follows: for sources within an acoustic environment AE1 the predelay input buffer corresponding to predelayAdjustedInSamplesAE1 for this acoustic environment (AE1) is selected. For sources outside AE1 and within AE2 and when feeding into the reverberation of AE1, the predelay buffer shall be selected based on connectedPredelayAE1, obtained as 
	connectedPredelayAE1 = predelayAdjustedInSamplesAE1 + max(minDelayAE2, 
		1/8*(predelayAdjustedInSamplesAE2 + minDelayAE2));
When connected reverberation is enabled into AE1 based on an active portal connection between AE1 and AE2, the past output of reverberator of the acoustic environment AE2 is fed into a predelay buffer of AE1 having the length
	secondOrderPredelayAE2,AE1 = 0.5*(predelayAdjustedInSamplesAE1 + predelayAdjustedInSamplesAE2).
When m_unrestrictedSor = false then an active portal connection from AE2 to AE1 shall exist when listener is within AE1, AE2 is connected to AE1 via a portal and material properties of the portal enable acoustic transmission. Otherwise, an active portal connection shall exist between all pairs of AEs which have a portal connection defined assuming the portal material enables acoustic transmission.
Sources with a directivity pattern and thus reverberation directivity gain filter shall be first summed to the corresponding reverberator directivity filter input bus. The reverberator directivity filter input buses shall be zeroed in the beginning of processBlock() processing for each reverberator. Each reverberator shall have its own set of directivity filter input buses.
Sources having a directivity pattern k shall be first summed into the reverberator directivity input bus associated with the directivity pattern k. Several sources with the same reverberation directivity gains shall be summed to the same bus and filtered only once with the corresponding reverberation directivity gain filter . A status variable directivityBusAdded shall be reset to count how many input signals are added to each directivity filter input bus. 
After adding all dspItems into either the reverberator input bus or one of the directivity filter input buses, the directivity gain filters shall be processed. The directivity gain filter processing for each directivity filter shall inspect the value of directivityBusAdded for this directivity filter to determine if any input signals have been added to this input bus and if at least one input signal has been added run processing for the directivity gain filter. The filtering with the directivity gain control filter shall be done in the same manner as for the ratio control filter described in clause 6.6.4.3.4.7. The filtered output from each directivity filter shall be added to a reverberator predelay input bus.
If a source does not have a directivity pattern it shall be directly summed into a reverberator predelay input bus.
[bookmark: _Ref100475309]Reverberator processing – predelay
The audio processing for each audio block of length B in each reverberator predelay input bus in each reverberator shall contain the following steps:
[bookmark: _Hlk116918960]Writing B input samples into the predelay delay line with the following method. 
write(source) {
  remainingSamples = length(source);
  firstWriteSize = min(remainingSamples, length(m_buffer) - m_writeIndex);
  copy_n(source, firstWriteSize, buffer + m_writeIndex);
  remainingSamples -= firstWriteSize;
  copy_n(source + firstWriteSize, remainingSamples, buffer);
  m_writtenSamples += length(source);
  m_writeIndex = m_writtenSamples % length(m_buffer);
}

copy_n(sourcePointer, count, targetPointer) shall copy count samples starting from the memory address sourcePointer to a memory location starting from the address targetPointer.

Reading B predelayed input samples into destination from the predelay delay line with the following method:
read(destination) {
  remainingSamples = length(destination);
  firstReadSize = min(remainingSamples, length(m_buffer) - m_readIndex);
  copy_n(m_buffer + m_readIndex, firstReadSize, destination);
  remainingSamples -= firstReadSize;
  copy_n(m_buffer, remainingSamples, destination + firstReadSize);
  m_readSamples += length(destination);
  m_readIndex = m_readSamples % length(m_buffer); 
}
 
Samples shall then be summed across predelay lines to form one buffer of length B as input for the following steps. 
[bookmark: _Ref116932144]Reverberator processing – reverberation energy ratio control filter
Filtering the predelayed input samples from destination with the ratio control filter  shall be performed to obtain ratio-controlled input samples to the FDN reverberator. 
The directivity gain control filters, ratio control filters  and the delay line attenuation filters shall use the below procedure filterSOSCascade for calculating an output filteredSample  for each input sample sample:
filterSOSCascade(filterParameters, sample) {
  a1, a2, b1, b2, wPast0, wPast1, levelAndFFactor, m_F = filterParameters;
  filteredSample = sample;
  for (i = 0; i < numSOSs; i++) {
    filteredSample = filterSOS(
      filteredSample, a1[i], a2[i], b1[i], b2[i], wPast0[i], wPast1[i]);
    filteredSample *= m_F[i];
  }
  filteredSample = levelAndFFactor * filteredSample;
}
numSOSs is the number of SOS filters in the cascade.
m_F are the stage gains for the SOS filters. If stage gains are not present or are all equal to one the multiplication with the stage gain is omitted.
levelAndFactor shall be calculated as levelAndFactor =  * db2mag(-levelDb).
The coefficients a1[i], a2[i], b1[i], b2[i] are the feedback and feedforward coefficients of the ith filter in the SOS cascade. The past output values wPast0 and wPast1 shall be initialized to vectors of zeroes of length numSOSs and stored between sequential calls of the filterSOSCascade and filterSOS methods.
The procedure filterSOS shall implement a SOS filter in direct form 2 as follows:
float filterSOS(float sample, float a1, float a2, float b1, float b2,
    float& wPast0, float& wPast1)
{
    w = sample - a1 * wPast0 - a2 * wPast1;
    sample = w + b1 * wPast0 + b2 * wPast1;
    wPast1 = wPast0;
    wPast0 = w;
    return sample;
}
[bookmark: _Ref100388735]Reverberator processing - FDN processing 
The FDN reverberator shall process the ratio-controlled input samples at m_inputBuffer to produce numDelayLines output signals  where j is the output channel index. 
For feedback matrix calculation, the constants m_alpha, m_hasPositiveFeedbackGain and m_hasNegativeFeedbackGain shall be initialized with the values listed in Table A.8, depending on numDelayLines.
The FDN reverberator processing shall be as follows:
outputBuffer = array(0.0f, numDelayLines);
numPositiveItems = m_hasPositiveFeedbackGain.size();
numNegativeItems = m_hasNegativeFeedbackGain.size();
for (n = 0; n < sampleCount; n++) {
  d = 0.0f;
  for (i = 0; i < numDelayLines; i++) { 
    d += v[i];  
  }
  alphaTimesD = alpha * d;
  updated_v = array(0.0f, numDelayLines);
  for (delayLineIndex = 0; delayLineIndex < numDelayLines; delayLineIndex++) {
    s = &m_v[numDelayLines - delayLineIndex];
    b = 0;
    c = 0;
    for (dlId2 = 0; dlId2 < numPositiveItems; dlId2++) {
      b += s[m_hasPositiveFeedbackGain[dlId2]];
    }
    for (dlId3 = 0; dlId3 < numNegativeItems; dlId3++) {
      c += s[m_hasNegativeFeedbackGain[dlId3]];
    }
    a = 0.25F * (b - c) + alphaTimesD;
    delayedSample =
      getDelayedSample(m_delayLines[delayLineIndex], m_inputBuffer[n] + a);
    filteredSample = filterSOSCascade(m_filters[delayLineIndex], delayedSample);
    updated_v[delayLineIndex] = filteredSample;
    m_outputBuffer[delayLineIndex][n] += filteredSample;
  }
  copy_n(&updated_v[0], numDelayLines, &m_v[0]);
  copy_n(&updated_v[0], numDelayLines, &m_v[numDelayLines]);
  outputScaler = 1.0f / numDelayLines;
  for (outputChannelIndex = 0; outputChannelIndex < numDelayLines; outputChannelIndex++) {
    m_outputBuffer[j][n] *= outputScaler;
  }
}
copy_n(sourcePointer, count, targetPointer) shall copy count samples starting from the memory address sourcePointer to a memory location starting from the address targetPointer.
array(value, count) shall initialize an array of length count with values value.
The operator &variable shall return the memory address of variable. 
The operator *pointer shall return the value of the variable located at the address specified by pointer.
The operator variable++ shall increment the value of variable by one.
The output signalis thus at m_outputBuffer[j][n]. All samples of the output signal shall further be multiplied with the overall reverberation gain reverbGain to obtain reverberated output signals .
For background information on the FDN processing see Rocchesso [3].
Reverberator output signal creation
ReverbStage outputs are created from the delay line outputs . The immersive reverberation signal shall be stored at headtrackedOutputRenderItems(j,n,azi,ele), where j is the output channel (delay line) index, n the sample index, and azi and ele the desired user-centric coordinates for rendering the immersive reverberation output signals.
Depending on the value of headTrackingEnabled, head tracking shall be applied to the output signals. 
—	if headTrackingEnabled=1, the delay line positions are to stay "static within the scene" when the listener head rotates and thus the delay line positions (azi and ele in headtrackedOutputRenderItems(j,n,azi,ele)) shall be rotated in inverse of the listener head rotation.
—	if headTrackingEnabled=0, the delay line positions are to stay “static around the listener head” and no rotation about the listener head shall be applied.
To implement smooth transitions between the AEs of an audio scene, transition region processing shall be applied to enable smooth audio transition between acoustic environments or when moving in/out of an AE. The size of the transition region shall be defined by the parameter fadeInDistance in meters. The fadeInDistance is the threshold distance in meters at which cross-fade processing shall be enabled for immersive reverberation. The threshold distance shall define a transition region having a width equal to fadeInDistance outside the region or enclosure of each AE. The cross-fade shall start at fadeInDistance from the region of an AE and end at the region.
To implement the smooth transition for the immersive reverberation output, an output gain coefficient  shall be calculated for each active reverberator r associated with an AE enclosure at every update phase depending on the listener position. The coefficient shall be equal to 1.0 if the listener is inside the AE having the reverberator : . For other reverberators  the gain shall be calculated linearly based on the distance of the listener from the enclosure. This shall be done as follows for :
—	Obtain the AE enclosure associated with the reverberator r. 
—	Calculate the Euclidean distance  between the listener position and the closest point to the listener position on the AE enclosure
—	Calculate the gain , where fadeInDistance is the fade-in distance for immersive reverberation.
In the explicit portal mode, the smooth transition shall be disabled when the listener distance from the closest portal is less than revExtentOffset defined in 6.6.5.2.
The Default AE shall be only audible if the listener is not in any bounded acoustic environment. The Default AE gain shall be faded in when the loudest bounded AE is faded out, and vice versa. The gain for the Default AE output shall be obtained as
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defaultAEgain is set from defaultAEGain unless overridden runtime.
When the gains  are applied to immersive reverberation signals enveloping the listener a fade in/out effect when the listener is approaching/moving away from an acoustic environment is produced. This ensures smooth transitions to and from acoustic environments.
The immersive reverberation signals for each block of B samples shall be obtained as: 
headtrackedOutputRenderItems(j,n,azi,ele)=array(0.0f, maxNumberOfOutputChannels*B)
for(r = 0; r < reverbCount; r++) {
  if  {
    outIndices = outputMapping[numDelayLines[r]];
    for(j = 0; j < numDelayLines[r]; j++) {
      outputChId = outIndices[j];
      for(n = 0; n < B; n++) {
        headtrackedOutputRenderItems(outputChId,n,azi,ele) += ;
      }
    }
  }
}
When the gain  for all reverberators, and portal representation is in explicit portal mode, the gain attribute of the headtrackedOutputRenderItems shall be set to 0. Otherwise it shall be set to 1. 
The immersive reverberated signals headtrackedOutputRenderItems(j,n,azi,ele) shall be passed to Panner Stage for immersive reverberation rendering. 
The reverberated signals  shall be passed to the Portal Stage for directional reverberation rendering via acoustic portals when needed.
Output signals of reverberators shall be stored to be used for reverberation of connected acoustic environments. The output signal is stored as
	.
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To reduce excessive emphasis on low frequencies due to summing the reverberator outputs, a second-order IIR low-shelving filter having the coefficients b = [0.978, -1.9276, 0.9549] and a = [1.0, -1.9263, 0.9290] shall be applied to attenuate the low end of the spectrum. The filtered signal shall be denoted as 
[bookmark: _Toc117076354][bookmark: _Toc131497375][bookmark: _Toc132126379][bookmark: _Toc132225948][bookmark: _Toc135210136][bookmark: _Toc166076620]Portals
General
This stage manages the activation and deactivation of two source types associated with portals. Firstly, reverberation extent sources so that reverberation is audible outside an acoustic environment, through acoustic openings (portals), as well as managing signal mixing for playback on these reverberation extent sources. A reverberation extent source is rendered as a Spatially Extended Sound Source (SESS), specifically Homogeneous Extended Sound Source, but of the 'DirectionalReverb' type, causing slightly different handling in subsequent stages.
Secondly, the stage manages coupling sources that render sources on opposite sides of portals with material, simulating the sound inducing vibrations in, for example, doors or windows causing them to become extended sources themselves.
The stage shall support two types of portals. Implicit portals are uniquely associated with an Acoustic Environment (AE), while explicit portals represent the actual portals between two environments. A scene shall only use one type. Coupling sources shall only be supported for explicit portal scenes.
Figure 19 and Figure 20 demonstrate the principle of an implicit portal. There are three AEs, illustrated as white-filled rectangles, in the example scene from Figure 19. In Figure 20, when the listener, illustrated as red sphere, is inside one of the AEs, the other two AEs are identified and rendered as portals, illustrated as blue rectangles. If there are acoustic paths from the portals to the listener position, the listener may hear the reverberation from the corresponding acoustic environment.


[bookmark: _Ref100061939]Figure 19 – Example of acoustic environments in a scene.


[bookmark: _Ref100061947]Figure 20 – Identification of active implicit portals based on the listener’s location.
Explicit portals define specific openings or other acoustic connections between two environments, as illustrated in Figure 21. If there are acoustic paths through the portals to the listener, the listener may hear the reverberation from the corresponding environment. This mode supports further multi-room reverberation features and rendering of coupled transmission.


[bookmark: _Ref152580335]Figure 21 – Example of explicit portals, identifying acoustic connections between two environments.
[bookmark: _Ref154063896]Data elements and variables
acEnvId 	Unique ID of each AE in the scene
bbPE	Bounding box object for the portal extent geometry rotated such that the portalNormal is aligned with the negative z axis, indicating minimum and maximum coordinate values in all dimensions.
portalWidth	Width of the portal.
portalHeight	Height of the portal
portalDepth	Depth of the portal
portalCenter	Centre coordinate of the portal extent.
revExtentOffset	Offset of the reverberation extent from the portal extent.
aeGeometry	Geometry defining the spatial region of an acoustic environment. Identified in the environments() syntax as acousticRegionId.
backFaceOffset	Offset in metres of additional faces for a reverberation extent mesh that form the back-side, ensuring a manifold mesh.
vertextToAdd	Vertex to be added to a reverberation extent mesh.
directionalStrengthCoeff	
		Strength coefficient in the range [0, 1], indicating how strong a reverberation extent source should be rendered, corresponding to 0- 100% of its amplitude. 
reverbStrengthCoeff	Strength coefficient in the range [0, 1], indicating how strong a corresponding immersive reverberation should be rendered, corresponding to 0-100% of its amplitude. 
ptListener	Listener position.
revExtentRIByAE 	Map storing key-value pairs where the key is the acEnvId of an AE, and the value is a vector of reverberation extent render items, whose audio signal shall be downmixed from the respective AE’s reverberator output.
reverbExtentRI	Reverberation extent render item, an extent source defined in the portal stage and representing reverberation from a specific acoustic environment for a specific portal.
allAcEnvIdsInScene 	A vector with the unique IDs of all AEs in the scene.
currentSignal 	An output signal frame (15 channels) from the current reverberator instance.
reverbSignalOutput 	A vector of output signal frames from all reverberator instances in the scene.
numDelayLines(r)	The number of outputs from reverberator instance r.
downmixAllReverbCh	Boolean to indicate if all reverberator output channels are to be used in the downmix for the portal.
reverbExtentSrcSignalBuffer 	
		The signal buffer of a reverberation extent RI.

Stage description
Runtime configuration of variables
The following variable can be configured from the runtime config. If the runtime variable Portal_DownmixAll is set, it will be used.
downmixAllReverbCh = Portal_DownmixAll or true
Portal payload decoding 
Portal line-of-sight data decoding
The portal payload contains LoS data indicating the LoS from a grid of possible sound source positions towards each of the portals. The LoS grid supports both static and dynamic sources as long as they stay within the LoS grid area. Sources outside the LoS grid shall be considered to have a LoS. 
The binary values at the voxel grids shall be divided into 2D planes and each plane shall be treated as a LoS bitmask and compressed. The compression shall be lossless run-length encoding and shall be decoded in the renderer. The decoding results are stored as binary vectors losVoxelGridp,area where a positive value indicates that there is a LoS at the area corresponding of the voxel to portal p. The area shall define a rectancular axes-aligned subregion of the scene covered by the LoS voxels. The area shall be be defined by its corner coordinates at decoded values of cornerP1 and cornerP2.
The number of bitmasks to be decoded shall be indicated by the decoded value of nLosBitMasks of losVoxelDataStruct Table 61. Each encoded bitmask shall contain a number of bytes indicated by the decoded value of nMaskBytes and the actual encoded bitmask data shall be a sequence of maskBytes stored into array maskBytes. Each encoded bitmask in maskBytes shall be decoded as follows:
Initial steps:
· 16-bit unsigned integers bitmask_width and bitmask_heigth shall be decoded from the maskBytes. 
· A 2-dimensional vector variable reconBitmask with the size of bitmask_width and bitmask_heigth shall be constructed and all elements in reconBitmask set to zero.
· A Variable prevRow shall be initialized as a zero vector with the dimension of bitmask_width. 
· Variables rowIdx, prevStart, prevEnd, and vIdx shall be set to zero.
Next, the LoS data entropy decoder shall be initialized by the following steps. 
· Initialize vector variable CDV_URLC and CDV_SPRS as described in the Annex A.19. 
· Initialize variable CDV_URLC_OFFSET and CDV_SPRS_OFFSET as the following: 
CDV_URLC_OFFSET = 0
CDV_SPRC_OFFSET = -128

· Initialize LoS data decoder giving the rest of maskBytes data as the input variable bitstream following the process defined in 6.6.5.3.2.2. 
After the LoS data entropy decoder is initialized, to decode the LoS data, the following steps shall be repeated until an exit condition is met. After the decoding, reconBitmask shall contain the reconstructed LoS data.
· decode a number  from LoS data entropy decoder following the entropy decoding process defined in 6.6.5.3.2.3 giving CDV_URLC and CDV_URLC_OFFSET as the input variables cdf and offset, respectively,
· set the next  rows in reconBitmask to be identical to prevRow, and increase rowIdx by ,
· if the rowIdx is equal or greater than bitmask_heigth, exit the loop,
· perform a decoding process (described below) to reconstruct a row from the payload, and copy reconstructed row to the current row in reconBitmask,
· copy the reconstructed row to variable prevRow,
· increase rowIdx by one, and
· if rowIdx is equal or greater than bitmask_heigth, exit the loop.
The decoding process reconstructs the LoS data for a layer of LoS voxels in the variable reconBitmask. The above process shall be repeated for all LoS bitmasks for portal p and the the reconstructed reconBitMasks shall be vectorized and appended one after another to create losVoxelGridp for portal p.
The following steps shall be performed to reconstruct a row from the payload: 
· initialize variable reconRow as a zero vector with the dimension of bitmask_width,
· decodes a number from LoS data entropy decoder following the entropy decoding process defined in 6.6.5.3.2.3 giving CDV_SRPC and CDV_SRPC_OFFSET as input, and assign the sum of the decoded number and prevStart to variable startIndex,
· assign startIndex to prevStart,
· decode a number from LoS data entropy decoder following the entropy decoding process defined in 6.6.5.3.2.3 giving CDV_URLC and CDV_URLC_OFFSET as input, and assign the sum of the decoded number and variable startIndex to variable endIndex,
· copy the segment between the beginning to the element before startIndex from variable prevRow to variable reconRow,
· copy the segment between endIndex to the end of the row from variable prevRow to variable reconRow,
· initialize variable prevValue as the value of the element prevRow[startIndex],
· initialize variable pixelIndex as the value of variable startIndex,
· while variable pixelIndex is less than variable endIndex: 
· decode a number  from LoS data entropy decoder following the entropy decoding process defined in 6.6.5.3.2.3 giving CDV_URLC and CDV_URLC_OFFSET as input,
· assign the next  elements in reconRow starting from index pixelIndex to the value of 1 - prevValue,
· set variable prevValue to 1-prevValue, and increase variable pixelIndex by .
· return variable reconRow
[bookmark: _Ref163151341]LoS data entropy decoder initialization 
Given input variable bitstream as a vector of 32-bit unsigned integer numbers, LoS data entropy decoder shall be initialized as the following where variable rans_state is a 64-bit unsigned integer. 
    rans_state  =  (bitstream[0]) << 0;
    rans_state |=  (bitstream[1]) << 32;
    bitstream_index = 2;

[bookmark: _Ref163191546]RANS entropy decoding process
[bookmark: _Hlk163151147]Given vector variable cdf, and variable offset a symbol shall be decoded from the initialized LoS data entropy decoder by the following procedure. 
decode_symbol(cdf, offset)

    max_value = length(cdf) - 2;
value = entropy_decode_symbol(cdf);
real_value = 0;
if (value == max_value) {
        real_value = decode_oor_bypass(max_value, offset);
      }
} else {
      real_value += value + offset;
}
return real_value;
}

The decode_oor_bypass  process shall follow the following procedure. 
decode_oor_bypass(max_value, offset){
bypass_precision = 3;
max_bypass_val = (1 << bypass_precision) – 1;
    val = decode_bits(bypass_precision);
    n_bypass = val;

    while (val == max_bypass_val) {
      val = decode_bits(bypass_precision);
      n_bypass += val;
    }

    raw_val = 0;
    for (j = 0; j < n_bypass; ++j) {
      val = decode_bits(bypass_precision);
      raw_val |= val << (j * bypass_precision);
    }
    value = raw_val >> 1;
    if (raw_val & 1) {
      value = -value - 1;
    } else {
      value += max_value;
    }

    return value + offset;
}

The decode_bits process shall follow the following procedure. 
decode_bits(n_bits) {
  x = rans_state;
  val = rans_state & ((1 << n_bits) – 1);
  RANS64_L = 1 << 31

  x = x >> n_bits;
  if (x < RANS64_L) {
x = (x << 32) | bitstream[bitstream_index];
bitstream_index += 1;
  }
  rans_state = x;
  return val;
}

The entropy_decode_symbol process shall follow the following procedure.

entropy_decode_symbol(cdf) {
cum_freq = rans_state & ((1 << 16) - 1);
symbol = find_index_of_first_element_greater_than_a_value(cdf, cum_freq) - 1

start = cdf[symbol]
freq = cdf[symbol+1]
mask = (1 << 16) - 1;
RANS64_L = 1 << 31

    uint64_t x = rans_state;
    x = freq * (x >> 16) + (x & mask) - start;

    if (x < RANS64_L) {
        x = (x << 32) | bitstream[bitstream_index];
        bitstream_index += 1;
    }

rans_state = x;
return symbol
}

Process find_index_of_first_element_greater_than_a_value shall return the index of the first element in an input vector with the value greater than a given input value. 
Stage initialization
During the initialization, the data of all portals and their associated acoustic environments shall be parsed from the bitstream. For implicit portal mode the reverberation extent geometry for each portal shall be provided in the bitstream (i.e., portalExtentId), while for explicit portal mode, the extent geometries shall be derived from the portal metadata. One for each acoustic environment associated with the portal.
Determining the reverberation extent geometries from the portal metadata shall be done according to the following process.
First, a reverberation extent offset shall be calculated. The initial offset shall be dependent on the smallest width or height dimension of the portal.
The dimensions of the portal may be provided explicitly in the portal payload (explicitPortalProperties = true). In that case the portal dimensions shall be:
	portalWidth = equivalentPortalWidth;
	portalHeight = equivalentPortalHeight;
	portalDepth = equivalentPortalDepth;

Otherwise, the dimensions shall be derived from the portal extent geometry indicated by portalExtentId.
The extent geometry shall be rotated without roll such that the portalNormal is aligned with the negative z axis. The dimensions of the bounding box determine the portal dimensions.
	portalWidth  = bbPE.xMax – bbPE.xMin;
	portalHeight = bbPE.yMax – bbPE.yMin;
	portalDepth  = bbPE.zMax – bbPE.zMin;

Similarly, the portal centre position shall be taken directly from the portal payload when included and otherwise derived from the bounding box. 
if (explicitPortalProperties) {
		portalCenter = portalCenterPos;
} else {
		portalCenter.x = (bbPE.xMax + bbPE.xMin) / 2;
		portalCenter.y = (bbPE.yMax + bbPE.yMin) / 2;
		portalCenter.z = (bbPE.zMax + bbPE.zMin) / 2;
}

In case explicit portal properties are provided in the portal payload, but no portal extent geometry, a Box geometry (eqBoxExtent) shall be created instead. A new ID shall be generated, the position set to the portal position (portalCenter), and the [x, y, z] dimensions to [portalWidth, portalHeight, portalDepth]. The orientation shall be yaw and pitch required to rotate the negative z-axis to align with the portal normal, and zero roll.

With that, the initial reverberation extent offset shall be calculated with:
	initialRevExtentOffset = max(0.8 * min(portalWidth, portalHeight), 0.3);

Subsequently, the reverberation extent offset shall be reduced when necessary such that it is not more than half the available space in the acoustic environment.
For each corner of the portal’s (box-equivalent) extent, the acoustic environment shall be probed whether it provides enough space, and adjusted if it doesn’t, according to the following pseudo-code.
revExtentOffset = initialRevExtentOffset;
checkCornersLocal[0] = {-portalWidth / 2,  portalHeight / 2, -portalDepth / 2 – 2 * initialRevExtentOffset};
checkCornersLocal[1] = {-portalWidth / 2, -portalHeight / 2, -portalDepth / 2 – 2 * initialRevExtentOffset};
checkCornersLocal[2] = { portalWidth / 2,  portalHeight / 2, -portalDepth / 2 – 2 * initialRevExtentOffset};
checkCornersLocal[3] = { portalWidth / 2, -portalHeight / 2, -portalDepth / 2 – 2 * initialRevExtentOffset};

	checkCornersGlobal[0]  = globalCSTransform * checkCornersLocal[0];
	checkCornersGlobal[1]  = globalCSTransform * checkCornersLocal[1];
	checkCornersGlobal[2]  = globalCSTransform * checkCornersLocal[2];
	checkCornersGlobal[3]  = globalCSTransform * checkCornersLocal[3];

	for (c = 0; c < 4; c++) {
		if (!aeGeometry.isInside(checkCornersGlobal[c])) {
			globalClosest = aeGeometry.closestPointTo(checkCornersGlobal[c]);
			localClosest = localCSTransform * globalClosest;
			
			revExtentOffset = min(initialRevExtentOffset, -((localClosest[2] + hd) / 2));
		}
	}

Where globalCSTransform is the transform matrix for the portal that transforms local coordinates into global coordinates, and localCSTransform is the transform matrix for the portal that transforms global coordinates into local coordinates for the portal extent geometry. 
The Geometry object aeGeometry is the geometry of the acoustic environment in which the reverberation extent is created.
Two reverberation extent meshes shall be constructed at the portalCenter using the vertices and face descriptions from A.16. The vertices shall be defined relative to the portalCenter using the portalWidth, portalHeight, and portalDepth of the portal, as well as the revExtentOffset as given in A.16. By default, three segments shall be used, unless a lower quality to complexity trade-off is required. The orientation of the first mesh shall be such that the resultant mesh is perpendicular to the normal axis of the portal, without roll rotation, and this mesh shall be associated with the acEnvId of the acoustic environment within which it is contained. The second mesh shall be orientated such that it is perpendicular to the inverse of the portal normal axis, without roll rotation, and it shall be associated to the acEnvId of the acoustic environment within which it is constrained.


Figure 22 – Cross-section of a 3 segment reverberation extent with a portal (dashed box) and walls (gray), no backfaceOffset.
The reverberation extent meshes shall be defined as either the default mesh as defined in A.16, which are not a closed mesh, or as having a back face defined by backfaceOffset = 0.05. If backfaceOffset is specified additional vertices are added to the mesh. For every vertex in the mesh the vector from the mesh origin to the vertex location is calculated, and the additional vertex location is calculated as the location at backfaceOffset further along the vector. Faces shall be added to create a manifold mesh using the newly added vertices, with the normal of every face pointing out of the mesh. 
If the acoustic environment that the mesh is associated with has a bounding aeGeometry, the reverberation extent meshes shall be checked to ensure that all vertices are inside of the bounding geometry. If any vertex is not inside of the bounding geometry it shall be moved along the vector from its current location to the mesh origin such that it is inside of the bounding geometry. If the mesh is defined with a backfaceOffset, the vertices that describe the inner faces of the mesh (insideFace = true) shall be moved additionally so as to maintain the backfaceOffset distance with respect to the outer vertices.
The check and adjustment of vertexToAdd taken from a table in A.16 shall be performed as described by the following pseudo-code.
	globalVertex = globalCSTransform * vertexToAdd;
	if (!aeGeometry.isInside(globalVertex) || abs(aeGeometry.closestPointTo(globalVertex) – globalVertex) <= minDistInside + 0.001) {
		if (insideFace) {
			factor = minDistInside + backFaceOffset;
		} else {
			factor = minDistInside;
		}
		globalClosest = aeGeometry.closestPointTo(globalVertex);
		localClosest = localCSTransform * globalClosest;
		vecToClosest = localClosest - vertexToAdd;

		offsetAmount[0] = copysign(factor, vertexToAdd.data()[0]);
		offsetAmount[1] = copysign(factor, vertexToAdd.data()[1]);
		if (abs(vecToClosest[2]) > 0.005) {
			offsetAmount[2] = copysign(factor, -vertexToAdd.data()[2]);
		} else {
			offsetAmount[2] = 0;
		}
		vertexToAdd = localClosest - offsetAmount;
	}

Constant minDistInside = 0.15, abs(x) returns the Euclidian norm of vector x and copysign(a, b) returns a value with the magnitude of a and sign of b.
As described in 6.6.5.3.4, the portal stage adds reverberation extent render items of type 'DirectionalReverb' to the render list for further processing by the discover SESS stage and homogeneous extent stages. In implicit portal mode, the render item shall be configured with the portal extent geometry carried in the bitstream as the render item’s extent, representing a shrunken version of the acoustic environment geometry.
The position shall be set the same as the position of the portal extent geometry, the reference distance be set to 1m, the status initialized to Inactive, aparams set to ForceNoDoppler, the acEnvId to the ID of the corresponding acoustic environment and the parentPortalId set to the corresponding portal’s ID.
For explicit portal mode, there shall be up to two reverberation extent render items of type ‘DirectionalReverb’, one for each acoustic environment associated with the portal. The extents of these render items shall be the corresponding reverberation extent geometries as derived according to above description.
In these render items the position shall be the centre position of the portal, the reference distance set to the corresponding revExtentOffset, the status initialized to Inactive, aparams set to ForceNoDoppler, the acEnvId to the ID of the corresponding acoustic environment and the parentPortalId set to the corresponding portal’s ID.
For the rendering of coupling sources, when enabled (Portal_Enable_Coupling = true), extent source render items shall be created using the portal geometry, indicated by portalExtentId, as the extent. In case no portal geometry is provided (explicitPortalProperties = true), the equivalent box extent (eqBoxExtent) is used. 
The coupling source render items shall be of type 'Primary', subtype 'CoupledSource', position set to the portal extent position, aparams set to NoDoppler and EQ set to the square root of the coupling coefficients of the current portal material. The coefficients shall be interpolated to the centre frequencies used by the EQ stage (6.6.20.1) by the Piecewise Cubic Hermite Interpolating Polynomial algorithm described in sub-clause 6.6.20.2.
[bookmark: _Ref153891393]Configuration update for external reverberation
For each update, the portal stage shall activate and/or deactivate render items of type 'DirectionalReverb' based on the position of the listener. In implicit portal mode, all reverberation extent render items associated with an acoustic environment (given by portalParentEnvId) that is not the acoustic environment with the listener, shall be activated with full strength (portalStrengthCoeff = 1). Otherwise, it shall be deactivated. 
For explicit portal mode, there shall be up to two reverberation extent render items per portal, one for each acoustic environment associated with the portal. 
If the listener is inside the portal extent, all associated reverberation extent render items shall be activated with full strength (portalStrengthCoeff = 1), while the immersive reverberation render items shall be fully muted (reverbStrengthCoeff = 0).
If the listener is in the acoustic environment of a reverberation extent render item, the reverberation extent render item shall be deactivated, unless the listener is inside the cross-fade region. No modifications shall be made to the immersive reverberation render items. 
A listener shall be denoted as being in the cross-fade region when the listener’s closest distance to the corresponding portal extent is less than or equal to the reverberation extent offset for that acoustic environment. If the listener is in the cross-fade region of a reverberation extent render item, cross-fade coefficients (portalStrengthCoeff, reverbStrengthCoeff) shall be calculated.
The cross-fade gain calculation shall be based on the listener position (ptListener), the point on the portal extent closest to the listener (ptOnPortal) and the point on the reverberation extent closest to the listener (ptOnRevExt). The calculation shall be conformant with the following pseudo code.
n = ptOnPortal – ptOnRevExt;
n = n / abs(n);

alpha = dot(ptOnRevExt – ptListener, n);
pa = ptOnRevExt – alpha * normal;

crossFadeCoeff = 0.0;

d1 = ptOnRevExt – pa;
d2 = ptOnPortal – pa;
if (dot(d1, d2) < 0) {
    l1 = abs(ptOnRevExt – ptListener);
    l2 = abs(ptOnPortal – ptListener);
    crossFadeCoeff = l2 / (l1 + l2);
} else {
    if (abs(d1) < abs(d2)) {
        crossFadeCoeff = 1;
    } else {
        crossFadeCoeff = 0;
    }
}

reverbStrengthCoeff = sin(crossFadeCoeff * PI / 2);
portalStrengthCoeff = sin((1 – crossFadeCoeff) * PI / 2);

where abs(x) returns the Euclidian norm of vector x, dot(x, y) returns the dot product of x and y and PI = .
If the listener is outside the acoustic environment of a reverberation extent render item and the listener is at the other side of the corresponding portal, spatially, and the listener acoustic environment is in the other acoustic environment associated with the corresponding portal, or there is a second portal connecting the listener acoustic environment to the other acoustic environment associated with the corresponding portal, the reverberation extent render item shall be activated with full strength (portalStrengthCoeff = 1) when the largest transmission coefficient of the portal material is larger than minTransmissionForRevExtent, or when the portal has no material. No modifications shall be made to the immersive reverberation render items. minTransmissionForRevExtent is the threshold for enabling reverberation extent sources behind a portal with material, its value is: .
The determination of the listener spatially being at the other side of a portal shall be done as follows:
If the acoustic environment of the reverberation extent render item is the same as portalEnv1 of the corresponding portal:
	portalOffsetPosition = portalCenter + portalNormal * portalDepth/2;
	if ((listenerPosition – portalOffsetPosition).dot(portalNormal) >= 0) {
		return false;
	} else {
		return true
	}

otherwise
	portalOffsetPosition = portalCenter – portalNormal * portalDepth/2;
	if ((listenerPosition – portalOffsetPosition).dot(portalNormal) >= 0) {
		return true;
	} else {
		return false
	}

In all other cases, the reverberation extent render item shall be deactivated. No modifications shall be made to the immersive reverberation render items.
When the listener is in more than one cross-fade region for reverberation extent render items associated with the same acoustic environment, the strength coefficients for all involved reverberation extent render items  and the related immersive reverberation render item shall be adjusted according to the following equations.
	
	(141)

	
	(142)



where
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The strength coefficient shall be applied as an additional gain for the corresponding render item
RI[p].gain *= portalStrengthCoeff[p];
RI[immRev].gain *= reverbStrengthCoeff;

A reverberation extent render item is a representation of an acoustic environment, so the audio signal for the reverberation extent render items is copied from the reverberator output of the corresponding AE. 
Configuration update for coupled transmission
When portals have a material with sufficiently strong coupling coefficients, they can be rendered as extent sources, representing coupled transmission between environments. For this, coupling sources shall be introduced at the portal geometries.
When rendering of coupling sources is enabled (Portal_Enable_Coupling = true) the following shall be done to generate the corresponding render items.
For each portal, an active render item for a coupling source is added when the portal has a material with sufficiently strong coupling coefficients and the listener is either in one of the acoustic environments  related to the portal of interest (portalEnv1 or portalEnv2), or the listener is in an acoustic environment that is indirectly connected, via one other portal, to one of the acoustic environments related to the portal of interest.
A material's coupling coefficients are considered sufficiently strong when the maximum coupling coefficient is larger than  and the ratio of the maximum coupling coefficient to the maximum transmission coefficient is larger than .


In other cases, the coupling source render items shall be deactivated.
The EQ of the coupling source render item shall be set to the square root of the coupling coefficients of the current portal material. The coefficients shall be interpolated to the centre frequencies used by the EQ stage (6.6.20.1) by the Piecewise Cubic Hermite Interpolating Polynomial algorithm described in sub-clause 6.6.20.2. 
From the acoustic environments related to the portal of interest coupling input AEs shall be selected for each coupling source. In cases where the listener environment is directly connected to the portal, the other environment shall be the only coupling input AE. In case where the listener environment is indirectly connected, as described above in this sub-clause, either the portal environment through which the listener environment was not connected, or both portal environments shall be the coupling input AEs. Both portal environments shall be selected when both provide an indirect connection to the listener environment.
For active coupling source render items, or deactivated render items that are still fading out, a coupling downmix shall be created from sources and reverberation in the selected coupling input AEs. 
Any render item () of type 'Primary', of which the state is not Inactive and located in one of the input AEs shall be added to the downmix for the coupling source render item associated with portal  with downmix coefficient:
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where  shall be the render item gain and  the portal contribution of render item  to portal  according to equation (136).
If there are no render items that would contribute to the downmix, and the coupling input AEs have no associated, active reverberators, the corresponding coupling source render item may be deactivated.
Audio processing
There are originally numDelayLines(r)  output channels from each reverberator instance r, and only two signals are needed for rendering a portal as Homogeneous Extent. These two signals bypass the decorrelator step in Homogeneous Extent Stage and go through the mixing explained in 6.6.24.3 and illustrated in Figure 81. To generate two such signals from the reverberator outputs, the signals shall be downmixed for each reverberator that is used for a reverberation extent source. In such case, each reverberator output channel shall be downmixed into one of the two channels of the reverberation extent RI. If downMixAllReverbCh == false, the last channel is disregarded and all other odd and even channels are summed up separately according to Equation (146) and (147). 
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where C=numDelayLines – 1. The downmix is scaled to ensure energy is preserved:  and .
If downMixAllReverbCh == true, all channels are used in the downmix. The outputs  and  are obtained according to (146) and (147), respectively. The last channel is mixed to both channels to preserve energy: and .
As mentioned in the Update Thread Processing description above, the signal output of each reverberator instance shall be mapped to a corresponding reverberation extent RI.
for acEnvId in allAcEnvIdsInScene{
	currentSignal = reverbSignalOutput[acEnvId];
	for reverbExtentRI in revExtentRIByAE[acEnvId]{
		reverbExtentSrcSignalBuffer[reverbExtentRI.id].copyFrom(currentSignal);
	}
}
When rendering of coupling sources is enabled (Portal_Enable_Coupling = true) the following shall be done to generate the signal for each of the coupling source render items that are not Inactive.
The signals of all render items of type 'Primary', of which the state is not Inactive and located in one of the input AEs shall be downmixed to a single signal. Each render item signal shall be multiplied with the corresponding downmix coefficient .
For each reverberator related to one of the coupling input AEs of a coupling source, all signals shall be downmixed to mono (according to the downmix described above in this sub-clause, except that all signals mix to a single output signal) and added to the downmix from the corresponding Primary render items. The resulting signal shall be used as the signal of the coupling source render item.

[bookmark: _Ref100936898][bookmark: _Toc117076355][bookmark: _Toc131497376][bookmark: _Toc132126380][bookmark: _Toc132225949][bookmark: _Toc135210137][bookmark: _Toc166076621]Early reflections
General
The Early Reflection (ER) stage utilizes the transmitted geometry data to compute specular reflections from reflecting surfaces. An image source model is used for checking the visibility of potential propagation paths from the sound sources to the listener. Since this process involves sending a large number of rays from the listener to the potential image source locations and checking whether the correct surfaces are hit, pre-computed voxel data is used to speed up this procedure. The voxel data contains a comparably shorter list of potentially valid propagation paths for a given cubic source and listener area, relative to the large number of rays. It is generated by and transmitted from the encoder for selected source and listener voxels. This allows to render second order reflections in real time even in complex geometric environments. If no voxel data is available, only first order reflections are generated. The Early Reflection stage also supports sound transmission through partly occluding (transmissive) materials and uses reflection and transmission filters to model the sound propagation.
Terms and definitions
[bookmark: _Toc96682659]Voxel grid
The renderer uses voxel data to speed up the computational complex visibility check of reflected sound propagation paths. The scene is rasterized into a regular grid with a grid spacing that can be defined individually for each dimension. Each voxel is identified by a unique voxel ID and a sparse database is used to store pre-computed data for a given source/listener voxel pair. The relevant variables and data structures are specified in clause 6.3.2.5:
· earlyVoxelGridOriginX
· earlyVoxelGridOriginY
· earlyVoxelGridOriginZ
· earlyVoxelGridPitchX
· earlyVoxelGridPitchY
· earlyVoxelGridPitchZ
· earlyVoxelGridShapeX
· earlyVoxelGridShapeY
· earlyVoxelGridShapeZ
[bookmark: _Toc96682660]These variables are the basis for voxel coordinates V = [vx, vy, vz]T with 3 integer numbers as components. For any point P = [px, py, pz]T located in the scene, the corresponding voxel coordinate is computed by the following rounding operations to the nearest integer number:
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A voxel coordinate can be converted into a voxel index n:
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This representation is for example used in the sparse voxel database earlyVoxelDatabase[l][s][p] for the listener voxel ID l and the source voxel ID s.
Culling distances
The encoder can use source and/or triangle distance culling to speed up the pre-computation of voxel data. The culling distances are encoded in the bitstream to allow the renderer to smoothly fade-out reflections that reach the used culling thresholds. The relevant variables and data structures are specified in clause 6.3.2.5:
· earlyTriangleCullingDistanceOrder1
· earlyTriangleCullingDistanceOrder2
· earlySourceCullingDistanceOrder1
· earlySourceCullingDistanceOrder2
[bookmark: _Toc96682661][bookmark: _Hlk125108906]Surface data
Surface data is geometrical data which defines the reflection planes on which sound is reflected. It is specified in Hesse normal form. The relevant variables and data structures are specified in Section 6.3.2.5:
· earlySurfaceIdx[s];
· earlySurfaceFaceIdx[s][f];
· earlySurface_N0[s]
· earlySurface_d[s]
The surface index earlySurfaceIdx[s] identifies the surface and is referenced by the sparse voxel database earlyVoxelDatabase[l][s][p]. The triangle ID list earlySurfaceFaceIdx[s][f] defines the triangles of the static mesh which belong to this surface. One of these triangles must be hit for a successful visibility test of a specular planar reflection (see Section 6.6.6.3.3). The reflection plane of each surface is given in Hesse normal form using the surface normal N0 and the surface distance d which are converted as follows:

int max_steps_azi = 1 << 12;
int max_steps_ele = 1 << 11;
int num_steps_azi = 144 * (max_steps_azi / 144);
int num_steps_ele = 72 * (max_steps_ele / 72);
int shift_ele = num_steps_ele / 2;
float quant2azi = double(2.0 * M_PI) / double(num_steps_azi);
float quant2ele = double(M_PI) / double(num_steps_ele);
float quant2dist = 0.001f;

for (int s = 0; s < numberOfSurfaces; s++) {
	earlySurfaceIdx[s] = s;
	float azi = earlySurfaceAzi[s] * quant2azi;
	float ele = (earlySurfaceEle[s] - shift_ele) * quant2ele;
	earlySurface_N0[s][0] = -1.0 * sin(azi) * cos(ele);
	earlySurface_N0[s][1] = sin(ele);
	earlySurface_N0[s][2] = -1.0 * cos(azi) * cos(ele);
	earlySurface_d[s] = (earlySurfaceDist[s] + earlySurfaceDistOffset) *
                       quant2dist;
}
Voxel data
Early Reflection Voxel Data is a sparse voxel database containing lists of reflection sequences of potentially visible image sources for given pairs of source and listener voxels. The entries of the database can either be undefined for the case that the given pair of source and listener voxel is not specified in the bitstream, they can be an empty list, or they can contain a list of surface IDs. The relevant variables and data structures are specified in Section 6.3.2.5:
· numberOfVoxelPairs
· earlyVoxelL[v]
· earlyVoxelS[v]
· earlyVoxelMode[v]
· earlyVoxelIndicesRemovedDiff[v][k]
· earlyVoxelNumPaths[v]
· earlyVoxelOrder[v][p]
· earlyVoxelSurf[v][p][o]
The sparse voxel database earlyVoxelDatabase[l][s][p] is derived from these variables by the following algorithm:
int delta_x = voxelCoordinateToVoxelIndex( {1, 0, 0} );
int delta_y = voxelCoordinateToVoxelIndex( {0, 1, 0} );
int delta_z = voxelCoordinateToVoxelIndex( {0, 0, 1} );
int delta_list[4] = { 0, -delta_x, -delta_y, -delta_z };

for (int v = 0; v < numberOfVoxelPairs; v++) {
	PathList path_list;
	int l = earlyVoxelL[v];
	int s = earlyVoxelS[v];
	int mode = earlyVoxelMode[v];

	if (mode != 0) {
		int l_ref = l + delta_list[mode];
		path_list = earlyVoxelDatabase[l_ref][s];

		// generate list with removed items in reverse order
		int numberOfIndicesRemoved =
			length(earlyVoxelIndicesRemovedDiff[v]) - 1;
		int listIndicesRemoved[numberOfIndicesRemoved];
		int val = -1;
		for (int k = 0; k < numberOfIndicesRemoved; k++) {
			val += earlyVoxelIndicesRemovedDiff[v][k];
			listIndicesRemoved[numberOfIndicesRemoved - 1 - k] = val;
		}

		// remove reflection sequences
		for (int k = 0; k < numberOfIndicesRemoved; k++) {
			path_list.erase(listIndicesRemoved[k]);
		}
	}

	// add reflection sequences
	for (int p = 0; p < earlyVoxelNumPaths[v]; p++) {
		path_list.append(earlyVoxelSurf[v][p]);
	}

	// add sorted path list to sparse voxel database
	path_list = shortlex_sort(path_list);
	int num_paths = length(path_list);
	for (int p = 0; p < num_paths; p++) {
		earlyVoxelDatabase[l][s][p] = path_list[p];
	}
}

In this algorithm, the function voxelCoordinateToVoxelIndex()denotes the voxel coordinate to voxel index conversion specified in Equation (151). The keyword PathList denotes a list of integer arrays which can be modified by the method append(), that adds an element at the end of the list, and the method erase(), that removes a list element at a given position. Furthermore, the function shortlex_sort() denotes a sorting function which sorts the given list of reflection sequences in shortlex order. 
Stage description
The processing of specular early reflections consists of two components running in two different threads. The first component running in the update thread is responsible for generating and updating RIs for early reflections. The details are described in the following sections.
The second component which runs within the DSP thread is responsible for generating a binaural audio signal based on these RIs. The details of this component are described in the clause 6.6.28.
The Early Reflection stage shall be used if the bitstream flag useLowComplexityER in the mpegSceneConfig() is set to false. If useLowComplexityER is set to true, the Early Reflection stage shall be skipped in the rendering pipeline, as the early reflections are handled by the Low Complexity Early Reflection Stage.
Render item data
The Early Reflection Stage generates and updates RIs which contain the following rendering parameters:
· Image source location and orientation
· RI EQ
· RI gain
How the image source location and orientation of reflections on the planar surfaces of triangle meshes are computed is described in clause 6.6.6.3.2. The corresponding visibility check is described in clause 6.6.6.3.3. The computation of image source locations and orientations of reflections on mesh edges and corners of “rounded” surfaces are described in clause 6.6.6.3.4. Clause 6.6.6.3.5 describes the computation of image source locations and orientations of reflections on cylinders.
The synthesis of the RI EQ is described in clause 6.6.6.3.6.
The computation of the RI Gain is described in clause 6.6.6.3.7.
Within these paragraphs the variables described in clause 6.3.2.4 are used which are derived from the bitstream elements described in clause 6.3.2.5.
[bookmark: _Ref99977140]Planar reflections
The first type of reflections which are handled by the Early Reflection stage are specular reflections on planar surfaces. The image source model {Allen, 1979 #267} is used to determine image sources, i.e. mirrored versions of a sound source located at position P. The locations of the image sources are computed by the following formula using the Hesse normal coefficients N0 and d of a given reflection plane:
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 Higher order image source locations are computed by sequentially applying mirror(P, N0, d) in the corresponding order.
Since the Directivity Stage (see Clause 6.6.16) requires the orientation of the RIs, the orientation of the image sources is needed in addition to the location of the image sources. And because the orientation of odd-order image sources cannot be represented by rotations given as Euler angles, a homogeneous transformation matrix is used to specify the orientation of the image sources. The homogeneous transformation matrix is constructed using the following base vectors:
X0 = [1, 0, 0]T
Y0 = [0, 1, 0]T
Z0 = [0, 0, 1]T
O0 = [0, 0, 0]T

Sequentially applying the mirror() function using the Hesse normal coefficients of the corresponding reflection planes yields the mirrored base vectors:
Xn+1 = mirror(Xn, N0,n, dn)
Yn+1 = mirror(Yn, N0,n, dn)
Zn+1 = mirror(Zn, N0,n, dn)
On+1 = mirror(On, N0,n, dn)

The homogeneous transformation matrix which combines the complete process is given as follows where N denotes the reflection order:
M = [XN - ON, YN - ON, ZN - ON, ON]

[bookmark: _Ref99977215]Visibility check
The Early Reflection stage renders only image sources which are “visible”, i.e. image sources with a propagation path that is not blocked by non-transmissive materials and where the sound is reflected on the “positive” side of the geometry (in direction of the surface normal). A visibility check is performed to check if this condition is fulfilled as illustrated in Figure 23.

[image: ]
[bookmark: _Ref100327828]Figure 23 — Visibility Check
The sparse voxel database earlyVoxelDatabase[l][s][p] is used to speed up the visibility check by limiting the checks to those reflection sequences which are stored for the listener located in the voxel with voxel ID l and for the source located in the voxel with voxel ID s.
If the sparse voxel database earlyVoxelDatabase[l][s][p] has no entry for the voxel pair <l,s>, then only the visibility of all first order reflections are checked. In this case only first order reflections are generated.
[bookmark: _Ref99977392]Rounded edges and corners
If the geometry data approximates curved surfaces by triangles or rectangles, the classic geometrical acoustics methods are no longer valid and artefacts become audible. The resulting “disco ball effect” is illustrated in Figure 24. For a moving listener or a moving sound source the visibility of the image source will alternate between visible and invisible, resulting in a permanently switching localization, timbre, and loudness. 
[bookmark: _Hlk158831549][image: ]

[bookmark: _Ref100327881]Figure 24 — Illustration of the “disco ball effect” (the reflecting surfaces are sketched in black, gray areas mark the regions where the n-th image source “S|n” is visible, “S” marks the source location, and “L” marks the listener location)
The renderer uses a mitigation technique to reduce this effect. The applied method involves two components:
1. A geometry pre-processor which detects curved surfaces (“round edges or round corners”)
2. An extended image source model for the identified curved surfaces (“round edges or round corners”)

The geometry pre-processor is executed once during initialization as it does not depend on the listener or source locations. The extended image source model is executed at run-time and determines edge and corner reflections depending on the listener and source locations.
Curved surface detection (geometry pre-processor)
The geometry pre-processor implements the round edge and round corner detector using the triangle mesh. This is done by computing the angle between two adjacent triangles, here called face angle (see Figure 25) and if this angle is within a range of 0.1° … 31°, the adjacent edge and both triangles are considered to represent a curved surface section and are marked as such. If all edges which are connected to a corner are marked as being round, also the corner is marked as being round. 

[image: Face angle]

[bookmark: _Ref100327908]Figure 25 — Face angle spanned by two adjacent faces in a triangle mesh

Extended image source model for round edges and round corners
The extended image source model needs to extrapolate the image source location in the “dark zone” of the reflectors, i.e. the areas between the “bright zones” in which the image source is visible (see Figure 26). To do so, a frustum is created for each round edge and it is checked, if the listener is located within this frustum (indicated by the white area in Figure 26).

[image: ]
[bookmark: _Ref99963991]Figure 26 — Edge frustum (blue area)
The frustum is created as illustrated in Figure 26: For the two adjacent planes of the edge, namely the left and the right plane, the image sources SL and SR are computed by mirroring the source on the left and the right plane. From these points together with the beginning and the end point of the edge four planes in Hesse normal form are obtained where the normal vectors Nkare pointing inside of the frustum:
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If the distance
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is greater than or equal zero for all 4 planes, then the listener is located within the frustum that defines the coverage area of the model for the given round edge. In this case, the reflection point on the round edge is determined as follows:
If the listener is located within the frustum,  the orthogonal projection PS of the source location S onto the edge and the orthogonal projection PL  of the listener location L onto the edge is computed. This yields the reflection point R as follows:
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Figure 27 illustrates the geometric construction principle.
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[bookmark: _Ref99960132]Figure 27 — Determination of the edge reflection point
From the reflection point R the Hesse-Normal coefficients N0 and d are computed as follows:
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The image source location and orientation is then computed from the Hesse normal coefficients N0 and d by the same method that is used for the planar reflections described in clause 6.6.6.3.2.
Reflections on round corners are handled in the same way. Here, the k adjacent planes yield k image sources which together with the corner location result in a frustum that is bounded by k planes. Again, if the distances of the listener to these planes are all greater than or equal zero, the listener is located within the coverage area of the round corner. Figure 28 illustrates the frustum from a round corner with 4 adjacent round edges.
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[bookmark: _Ref99983690][bookmark: _Ref99983684]Figure 28 — Corner frustum (blue area)

With the round corner being the reflection point R, the reflection plane with Hesse normal coefficient N0 and d is computed as described in the previous paragraph. The image source location and orientation is then computed in the same way.
[bookmark: _Ref99977494]Cylinder reflections
The previous sections considered reflections on triangle meshes. Reflections on cylinders are handled by a specific algorithm that involves the following steps:
1. Determination of the reflection point within the normal 2D projection plane.
2. Determination of the reflection point in Cartesian coordinates.
3. Visibility (occlusion) check.
For the first step a coordinate transformation is used which maps the source location S and the listener location L into the normal 2D projection plane of the cylinder with the cylinder axis as the origin. The 2 orthogonal unit base vectors u0 and v0 of this 2D coordinate system can be chosen arbitrarily and the index “uv” will be used in the following to refer to this coordinate system. Figure 29 illustrates this projection for the source location Suv, the listener location Luv, and the reflection point Yuv.
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[bookmark: _Ref100331689]Figure 29 — Cylinder reflection in the uv-plane
The reflection point Yuv = r * [cos(α), sin(α)]T with r being the cylinder radius is found by a Newton root search for the error function e(α):
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After the reflection point Yuv was found within the normal projection plane, the reflection point Y in 3D Cartesian coordinates is determined as follows where PS and PL are the source and listener locations projected onto the axis of the cylinder: 
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The found cylinder reflection is only visible, if the point Y is located on the cylinder surface and if the propagation path from the source to the reflection point and from the reflection point to the listener is not blocked. For this, the visibility check described in clause 6.6.6.3.3 is utilized.
[bookmark: _Ref99977743]RI EQ
The Early Reflection stage creates a RI for each image source and generates equalizer (EQ) parameter settings for each of them. These are linear scaling factors for the frequency bands which are handled by the EQ Stage (see clause 6.6.20). The following properties are taken into account:
· Wall absorption EQ
· Transmission EQ (transmissive materials only)
· Shape EQ (cylinders only)
· Directivity EQ (taken into account by the Binaural Stage, see clause 6.6.28)
The wall absorption EQ accumulates the frequency dependent absorption coefficients of the materials on which the sound is reflected.
If the propagation path of the reflected sound is occluded by transmissive materials, then a transmission EQ accumulates the transmission coefficients of the transmissive materials.
For cylinder reflections a specific shape EQ is used which depends on the radius r of the cylinder. For a frequency band with center frequency f, the shape EQ is computed as follows:
	
	(170)


The directivity of the image source is taken into account by the Binaural Stage (see clause 6.6.28) in the same way as primary sources are handled.
[bookmark: _Ref99977849]RI gain
The Binaural Stage (see clause 6.6.28) implements a distance-dependant attenuation for all RIs including the image sources of the Early Reflection Stage. The total gain for the image sources is the product of the linear distance gain of the Binaural Stage and the following gain values:
· Tuning Gain gtuning = 0.4
· Floor Damping gfloor = 0.5 (15° threshold)
· Culling Gain gculling (linear fade-out starting 5 m before the source culling distance)
· Cylinder Gain gcylinder (apparent distance / optical magnification)
· Accessibility Gain gAccessibility 
The tuning gain gtuning = 0.4 attenuates the sound level of image sources to reduce sound coloration from strong individual reflections. This results in a reflection which has ~8 dB less sound pressure level than a reflection in the real world. If hasEarlyTuningGain is set to true, the default value of 0.4 is overridden as follows (see Clause 6.2.6):
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The floor damping gfloor is used to further reduce the sound level of floor reflections by 6 dB, if the sound is reflected on a surface which has a normal vector within 15° off the y-axis.
The culling gain gculling implements a linear fade-out of image sources which are close to the source distance culling value earlySourceCullingDistanceOrder1 for first-order reflections or earlySourceCullingDistanceOrder2 for second-order reflections with clip(x, range) specifying a limitation to the given range:
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A linear fade-out of image sources which are reflected on triangles close to the triangle culling distances
earlyTriangleCullingDistanceOrder1 and earlyTriangleCullingDistanceOrder2 is not implemented in the reference model.
The cylinder gain gcylinder is only applied for cylinder reflections. The distance attenuation of cylinder reflections differs from the distance attenuation of reflections on planar surfaces due to the magnification effect of the curved surface. The cylinder gain gcylinder takes this into account by using the apparent distance distapparent of the image source:
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	,   with 
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	,   with 
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	The Accessibility Gain gAccessibility shall be applied to all early reflections when the user parameter erAttenuationDb is provided via the Accessibility User Interface (see Annex B.5). It is computed as:
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	For all early reflections derived from a primary item of type ListenerVoice, the associated listener voice early reflection gain gListenerVoice shall additionally be applied. It is computed as: 
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Fast moving objects
Image sources are only generated for sound sources which move not faster than 5 m/s. A hysteresis technique in combination with a fade-in/fade-out is used to yield a smooth transition between those 2 speed operation modes (slow vs. fast moving sources).
Within the update thread the Early Reflection stage estimates the current speed v of each sound source by the location difference between 2 consecutive update calls:
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 Where n denotes the frame index and T denotes the update period. The state is switched from slow to fast mode, if the speed of the sound source exceeds 5 m/s for 10 consecutive update frames. Vice versa, the state is switched from fast to slow mode, if the speed is less than or equal 5 m/s for 10 consecutive update frames.
A fade-out/fade-in with a linear ramp with increments/decrements of 0.1 per frame is performed on each mode switch. This multiplicative speeding fade-out/fade-in gain is applied in addition to the gains described in the previous paragraph.
Heavy/light updates
In order to reduce the workload within the update thread, the Early Reflection stage distinguishes between light and heavy updates. The Early Reflection stage uses the frame counter starting at 0 to distinguish between these 2 update modes. If the modulo of the frame counter plus the RI index of the slow active sources is 0, a heavy update is performed while only a light update is performed otherwise.
In heavy update mode, all visibility checks described in the previous paragraphs are performed and the RIs are created accordingly.
In light update mode, the visibility checks are skipped and the RI list from the last heavy update is used with updated image source positions.
[bookmark: _Toc139470854][bookmark: _Toc146548047][bookmark: _Toc166076622]Airflow Simulation Stage
General
This stage is used to simulate the sound that is perceived by a listener due to air passing over their ears. The sound that the listener hears is dependent on the speed of the airflow and the direction relative to the listeners orientation.
The perceived sound shall be simulated by filtering pink noise by a set of speed, azimuth, and elevation dependent gain profiles. The primary influence on the overall level of the perceived sound is due to the speed gain. Azimuth and elevation gains are always considered to be a reduction in the level of the perceived sound, and the three effects are multiplicative. 
The frequency filtering is carried out in the stage using a 1/3rd Octave spaced set of biquad filters.

Data Elements and variables
airflowSource	A struct containing the parameters of an airflow source, as carried in the bitstream, see 6.2.12.
sourceID 	Unique ID of the source within the scene.
generatorID	Unique ID of the generator object within the scene state that is associated with the source.
defaultProfile	Map of key:value pairs where the key is an index and the value is a set of speedProfiles, aximuthProfiles, and elevationProfiles as given in A.15.
customProfileParameters	A vector of structs containing parameters to construct custom speedProfiles, azimuthProfiles and elevationProfiles. Specified as either frequency-gain pairs, or filters with centre frequencies, gains, and Q factors.
speedProfiles	Map of key-value pairs where the key is an airflow speed in metres per second, and the value is a 31-band frequency dependent gain profile.
azimuthProfiles	Map of key-value pairs where the key is an airflow azimuth in degrees, and the value is a pair of 31-band frequency dependent gain profiles for the left and right ear respectively.
elevationProfiles	Map of key-value pairs where the key is an airflow elevation in degrees, and the value is a 31-band frequency dependent gain profile.
itemStore	a pointer to an object which provides the functionalities for creating new RIs, updating existing RIs, and removing inactive RIs. This needs to be initialized before calling the update thread.
Peak-Q	A filter specified by the gain at a given centre frequency, and the Quality factor of the filter, which defines the bandwidth at -3 dB from the centre peak.
activeInDefaultRegion	Flag that indicates if a source is active within the default acoustic environment.
validRegions	List of acoustic environments for which a source should be considered active.
Euler rotation	Vector of rotations as [yaw, pitch, roll].
Polar rotation	Rotation represented as azimuth, elevation and distance.
elevationRange	Limited range of elevations for which a point generator is considered active.
azimuthRange	Limited range of azimuths for which a point generator is considered active.

Stage Description
Initialization
During the initialization of the airflow stage the data for all sources is read from the bitstream. For each source an airflowSource is constructed and stored. An airflowSource consists of a sourceID, a generatorID, and either a defaultProfile or a set of customProfileParameters.
For each airflowSource an Airflow renderItem shall be created and added to the itemStore. Two audio buffers are created per source, which are filled with pink noise. Additionally, 2 filterbanks consisting of 1/3rd octave spaced biquad bandpass filters shall be allocated per airflow source.
Construction of Profiles 
Lookup tables are defined for defaultProfiles, specified in A.15, these specify the speed, azimuth, or elevation frequency-dependent gains for a number of predefined measurement points which shall be used when a custom profile is not specified. When custom profiles are specified in the bitstream these shall be converted from the bitstream specification into the required speedProfiles, azimuthProfiles, and elevationProfiles.
Custom profiles may be carried in the bitstream as either frequency-gain pairs, or as Peak-Q filter parameters. In the case of frequency-gain pairs the profiles are created by interpolating the gains from the specified frequencies into 31 1/3rd Octave frequencies. For Peak-Q filters the filter parameters shall be converted to a polynomial representation using the equations in (187)
	


where:





, 
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For each filter the gain at the 1/3rd Octave frequencies, , is calculating as 
	
	(188)


The profile is calculated as the per-frequency maximum gain per filter.
speedProfiles are given as a single 31-element vector that is applied to both left and right outputs, and specified with a reference airflow in metres per second.
azimuthProifiles are given as a pair of 31-element vectors, where the first vector is applied to the left output and the second vector is applied to the right output. They are specified with a reference azimuth in degrees counter clockwise around the positive y axis.
elevationProfiles are given as a single 31-element vector that is applied to both the left and right outputs, and specified with a reference angle in degrees counter clockwise around the positive z axis.

[bookmark: _Ref146640461]Initialization of filters
Each airflow source requires two 1/3rd octave spaced filterbanks. These shall be constructed from a set of biquad filters, where the transfer function  takes the form of (189):
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[bookmark: _Hlk146548413]The parameters , , , ,  and  shall be calculated using the following pseudocode, and the centre frequencies listed in A.11.
filterParams(sampleRate_hz, centreFrequency_Hz){

Fc = centreFrequency_hz / sampleRate_Hz;
Q = 4.3290;
K = tan(pi * Fc);
norm = 1 / ( 1 + K / Q + K * K);
a0 = K / Q * norm;
a1 = 0;
a2 = -a0;
b1 = 2 ( K * K -1) * norm;
b2 = (1 -K / Q + K * K) * norm;
}

Update thread processing
For each airflowSource it is checked if they are considered active in the Acoustic Environment (AE) that the listener is currently in. A source is considered active if the current listener AE is in the list of validRegions for that source, or in the case that the listener is in the default AE, that the sources activeInDefaultRegion flag is true.
For each active airflowSource the velocity vector of the airflow shall be calculated from the generator specified in the generatorID. The velocity vector comprises the speed of the airflow at the listener position, as well as the relative azimuth and elevation of the airflow with respect to the listeners pose as described in 6.6.7.3.2.1.
From the calculated velocity vector the speedProfile, azimuthProfile, and elevationProfile can be retrieved from the lookup tables. If the profile does not exist within the provided profiles, linear interpolation of the nearest two profiles is used to construct the desired profile. The per-frequency gain is taken to be the multiplication of the speedProfile, azimuthProfile, and elevationProfile for that frequency. Calculated gains for each source is stored in the dspData to be used in the audio thread processing.
[bookmark: _Ref146549656]Calculating velocity-vector per generator type
Four generator object types exist within the scenestate, as defined in 6.4.1.2.2.6 each have differing methods by which to calculate the listener relative velocity vector.
Global generator
Global generators shall be assumed to be uniform within their valid AE regions, intended to model sources such as atmospheric wind. As such they have no location within the scene, only an orientation. The orientation of the global generator is converted from the Euler rotations into Polar rotations. The polar rotation shall be rotated by 180° in the elevation axis, to convert from rotation relative to the generator object to rotation relative to the listener.
Point Generator
For point generators the distance from listener to the generator location shall be calculated and the speed of the airflow source determined by (190)
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distanceAttenuationFactor allows for scaling the rate of decay of the inverse square law.
Point generators contain an optional elevationRange and azimuthRange parameter, when these are set the associated source shall only considered active when the user is in the azimuth and elevation range specified, with respect to the generator. 
Cone Generator
Figure 30 shows a section view of a cone airflow generator, positioned at point A, with length l and base radius br. For a listener at B the vector B-A shall be used to calculate the relative azimuth and elevation of A at B, and the length of B-A determines the distance used to calculate the perceived speed, with (190)
[image: ]
[bookmark: _Ref139524581][bookmark: _Ref139524574]Figure 30 - Cone airflow generator
Figure 31 shows a cone generator where in addition to the base radius an edgeFade parameter, ef is considered. At position B’ the perpendicular distance pd from the centre line of the cone c is calculated. The distance of B’ along the section of pd between d and e is calculated as a fraction, and this shall be used to scale the perceived speed using (191)
[image: ]
[bookmark: _Ref139524891]Figure 31 - Cone airflow generator with edgeFade parameter
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Figure 32 illustrates a cone specified with a top radius tr. In this case the perceived source location, pA, is offset from A within the top radius by the percentage distance that B is across the perpendicular radius of the cone at B. The vector B-pA shall be used for calculating the perceived azimuth, elevation, and speed in place of B-A in the basic cone above.

[image: ]
[bookmark: _Ref139527900]Figure 32 - Cone airflow generator with top radius
Planar Generator
Planar generators are 2-dimensional surfaces that emit air along their normal axis. Figure 33 illustrates a planar generator at position A with height h and width w. For a listener at position B the perceived source position A’ shall be translated from the position A by the offset of B from the normal axis of the generator, w. The vector B-A’ shall be used for the calculation of perceived azimuth, elevation and distance, with perceived speed calculated using (190)
[image: ]
[bookmark: _Ref139531534]Figure 33 - Planar airflow generator
Figure 34 illustrates a planar airflow parameter with edge fade parameters. As the edge fade is a percentage of the dimensions, ef and ef’ are defined as the same value, but correspond to different dimensions according to w and h respectively. The perceived speed shall be scaled using (191), where the distFadeRegion shall be calculated as the percentage that A’ is between the boundary of the planar generator object and the boundary of the fade region.

[image: ]
[bookmark: _Ref139532487]Figure 34 - Planar airflow generator with edgeFade parameter.

Audio thread processing
For each active airflow source the left and right channels shall be processed independently, by:
1. Generation of pink noise.
2. Filtering of pink noise into 1/3rd octave bands with the biquad filterbanks.
3. Application of bandwise gains.
4. Summation of the 1/3rd octave bands into the output buffers.
Pink noise may be generated by any known method such that the power spectral density of the generated noise is inversely proportional to frequency. 
The following pseudocode describes how to process the audio.
std::array<std::vector<BiquadFilter>> filters 
// contains the Biqaud filters created at init.

audiobuffer outputBuffer; // buffer for 2 channel output audio
audiobuffer pinkNoiseBuffer; // buffer containing 2 channels of input pink noise.
std::array<std::vector> previousFilterGains; // Vector of filter gains used in the last process block
std::array<std::vector> currentFilterGains; // Vector of filter gains to be used in the current frame
int frameLength = 256; // Size of frame used by the DSP thread

for (int ear = 0; ear < 2; ++ear){
	// Clear the output buffer
	outputBuffer.clear();
	for (int filterIndex = 0; filterIndex < filters[0].size; ++filterIndex){
		for (int offset = 0; offset < frameLength[0].size(); ++offset) {
			interpolatedGain = (1.0 – (offset / frameLength) * previousFilterGains[ear][filterIndex]) + ((offset / frameLength) * currentfilterGains[ear][filterIndex])
			outputBuffer[ear][offset] += filter[ear][filterIndex].process(inputBuffer[ear][offset]) * interpolatedGain;
		}
	}
}
previousFilterGains = currentFilterGains;

Where the biquad process function uses the coefficients calculated in 6.6.7.3.1.2, and internal state variables z1 and z2:

Biquad::process(float in){
	out = in * a0 + z1;
	z1 = in * a1 + x2 – b1 * out;
	z2 = in * a2 – b2 * out;
	return out;
}

If a global gain is applied to the airflow source, this shall be included by multiplication of the interpolated gain used.

[bookmark: _Ref100678502][bookmark: _Ref100678619][bookmark: _Toc117076356][bookmark: _Toc131497377][bookmark: _Toc132126381][bookmark: _Toc132225950][bookmark: _Toc135210138][bookmark: _Toc166076623]Discover SESS
General
This stage is a helper stage to render Spatially Extended Sound Sources (SESS). In a virtual 3D scene that contains only the meshes of all SESS (including portals), a predefined number of rays is cast into all directions. This is done in each update cycle, given that any relevant scene object or the listener position has changed. For each extended source/reverberation extent RI, the ray hits are stored. This information is then used in later stages like Occlusion and Homogeneous Extent.
Data elements and variables
alpha 	Variable containing the angle of a secondary ray’s endpoint in the polar coordinate system in the plane orthogonal to a primary ray
axis0, axis1	Unit vectors defining the local coordinate system in the plane orthogonal to a primary ray
R 		Radius of the disc around each primary ray, wherein the secondary rays are cast
ray		List of current secondary rays 
rays	4096 element list of 3-component vectors corresponding to the directions of primary rays
rayId	Index of the current primary ray
Stage description
1.1.1.1.2 Update thread processing
The Update thread shall only process the scene if either any relevant scene object position has changed, or the position of the listener has changed significantly since the last time the update processing occurred, otherwise the previously calculated rays shall be considered as still valid and will be reused by the later stages. The threshold for listener position change shall be 0.001m translation in any dimension, or 1 degree rotation in any axis. The threshold for scene object position change shall be 0.001m in any dimension, or any amount of rotation.
4096 primary rays are cast in all directions, measured relative to the listener’s orientation. The list of ray directions is stored in a list in the source code. All ray hits that are caused by an intersection of a ray with a source extent geometry (including portal geometries) are stored. However, there is a distinction between a ray hitting the outside or the inside of an extent geometry. If one ray hits the same extent geometry multiple times, only the closest hit is considered. 
For each primary ray, 6 additional rays are cast in a circular pattern. These secondary rays start at the same point as the primary ray, and pass through 6 points equidistributed on a circle of radius  on a plane, perpendicular to the primary ray’s direction at a distance 1 m from the listener (see Figure 35), where  . 
if (rayId == 0)
	axis0 = rays[rayId] - rays[rayId + 1];
else
	axis0 = rays[rayId - 1] - rays[rayId];
axis0.normalize();
axis1 = rays[rayId].cross(axis0);	 // cross product between the current ray and axis0
for (int i=0; i<6; i++) {
	alpha = 2*pi*i/6.0;
	ray[i] = rays[rayId] + (2.0*R/3.0)*axis0*sin(alpha) + (2.0*R/3.0)*axis1*cos(alpha);
}


[bookmark: _Ref100067328]Figure 35 – Secondary ray distribution
The primary ray and all of the additional rays are given an equal weight of 1/7. For each ray that hits a source extent geometry, its weight is added to the total weight associated with its primary ray’s ID. 
All rays with a non-zero weight are stored in the RI for later stages to consume.
In a second loop over all RIs, additional refined rays are cast for extent geometries that have been hit by fewer rays than RayHitSubdivCount = 20. For each of the primary rays that hit the geometry, 18 secondary rays are cast in circular patterns:  6 rays through points equidistributed on a circle of radius  that is located on a plane perpendicular to the primary ray’s direction at a distance of 1 m from the listener; 12 rays through points equidistributed  on a circle of radius   that is located on a plane perpendicular to the primary ray’s direction at a distance 1 m from the listener (see Figure 36).
for (int i=0; i<6; i++) {
	alpha = 2*pi*i/6.0;
	ray[i] = rays[rayId] + (2.0*R/5.0)*axis0*sin(alpha) + (2.0*R/5.0)*axis1*cos(alpha);
}
for (int i=0; i<12; i++) {
	alpha = 2*pi*i/12.0;
	ray[i] = rays[rayId] + (4.0*R/5.0)*axis0*sin(alpha) + (4.0*R/5.0)*axis1*cos(alpha);
}


[bookmark: _Ref100067349]Figure 36 – Refined secondary ray distribution 

The primary ray and all of the secondary rays are given an equal weight of 1/19. For each ray that hits a source extent geometry, its weight is added to the total weight associated with its primary ray’s ID. In the record associated to the primary ray’s ID, for each of the 19 rays a bit is set to 1 if the corresponding ray hits the geometry and to 0 otherwise.
1.1.1.1.3 Audio thread processing
This stage performs no processing on the audio thread.
[bookmark: _Ref108016099][bookmark: _Toc117076357][bookmark: _Toc131497378][bookmark: _Toc132126382][bookmark: _Toc132225951][bookmark: _Toc135210139][bookmark: _Toc166076624]Occlusion
General
The Occlusion stage provides occlusion information with respect to a direct path - a line of sight - from a source to the listener. When this straight line is occluded by acoustically opaque/partially-transparent objects, the geometry/mesh information encountered along the line of sight is updated in a dedicated data structure. Then, the status flags of the RI, e.g. relevant for the control of the fade-in/out process and its EQ are updated correspondingly. 
For extended sources, a number of ray bundles are created, one for each combination of occluding materials, encountered by a ray-cast from a listener to the geometry, representing the extent. Each bundle is provided with an EQ curve, based on the transmission properties of the occluding materials in the corresponding list. This data is used in the Homogeneous Extent stage to generate the final binaural signal, combining the occluded and the un-occluded parts of the extent. For example, in Figure 37 there are three bundles for the SESS on the right: bundles 1 and 3 correspond to two different occluders so each has its own EQ curve corresponding to the transmission properties of the respective occluders. Bundle 2 is unoccluded, and its contribution has no additional processing.



[bookmark: _Ref100077989]Figure 37 — SESS ray bundles
Data elements and variables
angle	variable holding the polar angle of and additional ray endpoint
distance	distance between the listener and the current RI
EQNBands	CV storing the number of parametric EQ bands in itemEQ array; default value 31
frameCounter	frame counter
itemEQ	array of EQ gains stored in the current RI
itemPosition	current RI position
itemRayHits	list of records, storing the information about the rays cast in Discover SESS stage (6.6.8) for each SESS
listenerPosition	current listener position
materialTransmission	two dimensional array of transmission coefficients for the current material list
bbPERot	Rotated bounding box object created from the portal extent geometry rotated such that the portalNormal is aligned with the negative z axis, indicating minimum and maximum coordinate values in each dimension, and resulting box rotated back with the inverse rotated.
plane	The side of a box-equivalent geometry closest to the acoustic environment in which the listener is located. The box-equivalent geometry shall be an axis-aligned bounding-box defined by the smallest and largest coordinates of the portal extent geometry in each axis, after this has been rotated such that the portal normal points along the negative z-axis.
ignoreRay	Boolean indicating whether a ray shall be discarded, and not be used for further processing of the reverberation extent source.
nMaterials	total count of materials in the current material list
nofHits	count of unoccluded ray hits
objectName	name of the object, corresponding to the current RI
OcclusionFastSpeed	CV storing the threshold speed value for separate fast-moving object processing
r		vector from the listener to the center of the current RI geometry
r_orth1, r_orth2	unit vectors orthogonal to r, used to calculated the endpoints of the additional rays
speed	current object’s speed estimate
speedmap	map from an object name string to a pair of current position and speed
Stage description
Update thread processing
[bookmark: _Ref100665888]Point source processing
Cast the ray corresponding to r against the scene geometry. For each of the intersected geometries, collect the material properties at the point of intersection. Adjust the RI EQ curve by the transmission coefficients, corresponding to each of the materials in the list. If the ray is unoccluded, reset the RI EQ curve to constant 1.0 for each frequency band.
for (int i = 0; i<EQNBands; i++)
	itemEQ[i] = 1.0f;
if (nMaterials != 0)  {
for (int m = 0; m<nMaterials; m++) {
	for (int i = 0; i<EQNBands; i++)
		itemEQ[i] *= materialTransmission[m][i];

}
}

[bookmark: _Ref100665893]Extended source processing
If itemRayHits list is empty, apply the same processing that is used for point sources.
For each ray hit in itemRayHits, cast secondary rays in two concentric circles around the main ray (1 ray in the centre constituting the main ray, 6 rays on the inner circle, and 12 on the outer); the exact parameters of the ray distribution are given in the Discover SESS stage (6.6.8) description. The indices of the secondary rays, hitting the same SESS as the primary ray, are stored by the Discover SESS stage in a binary mask in primary ray’s ray hit data structure. Skip the secondary rays not present in the binary mask since they do not hit the extent of the current RI. 
With the portal representation in explicit portal mode (isExplicitPortalMode = true), for sources with extent of type 'DirectionalReverb', each ray shall be tested whether it goes through the portal identified by its parentPortalId field. If it does not go through the portal the ray shall be ignored and not stored in the binary mask.
This shall be tested by defining a portal plane and testing whether the ray intersects with the portal plane. This shall be tested according to the procedure outlined in the following pseudo-code.
	u = plane.lowerRightCorner – plane.lowerLeftCorner;
	v = plane.upperLeftCorner – plane.lowerLeftCorner;
	uDotLL = dot(u, lowerLeftCorner);
	uDotLR = dot(u, lowerRightCorner);
	vDotLL = dot(v, lowerLeftCorner);
	vDotUL = dot(v, upperLeftCorner);	
	d = dot(plane.center, -1 * plane.normal);
	denom = dot(rayVector, planeNormal);
	if (abs(denom) < 1E-7f) {
		ignoreRay = true;
	} else {
		t = -(d + dot(rayOrigin, planeNormal) / denom;
		intersect = rayOrigin + t * rayVector;

		insideX = dot(u, intersect) >= uDotLL && dot(u, intersect) <= uDotLR;
		insideY = dot(v, intersect) >= vDotLL && dot(v, intersect) <= vDotUL;

		ignoreRay = (t <= 0.0f || !insideX || !insideY);
	}

where dot(a, b) shall be the dot product between vectors a and b, abs(x) the absolute value of a scalar, rayVector the absolute direction of the ray (listener orientation offset with listener-relative ray direction)  and rayOrigin the listener position.
The portal plane shall be the side of a box-equivalent geometry closest to the acoustic environment in which the listener is located, as illustrated in Figure 38. The box-equivalent geometry shall be an axis-aligned bounding-box defined by the smallest and largest coordinates of the portal extent geometry in each axis, after this has been rotated such that the portal normal points along the negative z-axis. 
The plane corner coordinates shall correspond to the following coordinates of the bounding box (bbPERot), but after being rotated back with the inverse rotation. Similarly, the plane centre coordinates shall be derived from the bounding box.
For portalEnv1:
	plane.lowerLeftCorner  = [bbPERot.xMin, bbPERot.yMin, bbPERot.zMin] – bbPERot.center;
	plane.lowerRightCorner = [bbPERot.xMax, bbPERot.yMin, bbPERot.zMin] – bbPERot.center;
	plane.upperLeftCorner  = [bbPERot.xMin, bbPERot.yMax, bbPERot.zMin] – bbPERot.center;
	plane.upperRightCorner = [bbPERot.xMax, bbPERot.yMax, bbPERot.zMin] – bbPERot.center;
	plane.center = [(bbPERot.xMax + bbPERot.xMin)/2, (bbPERot.yMax + bbPERot.yMin)/2, 
		bbPERot.zMin] – bbPERot.center;

For portalEnv2:
	plane.lowerLeftCorner  = [bbPERot.xMin, bbPERot.yMin, bbPERot.zMax] – bbPERot.center;
	plane.lowerRightCorner = [bbPERot.xMax, bbPERot.yMin, bbPERot.zMax] – bbPERot.center;
	plane.upperLeftCorner  = [bbPERot.xMin, bbPERot.yMax, bbPERot.zMax] – bbPERot.center;
	plane.upperRightCorner = [bbPERot.xMax, bbPERot.yMax, bbPERot.zMax] – bbPERot.center;
	plane.center = [(bbPERot.xMax + bbPERot.xMin)/2, (bbPERot.yMax + bbPERot.yMin)/2, 
		bbPERot.zMax] – bbPERot.center;

For both planes, the plane.normal shall be equal to the corresponding portalNormal.


[bookmark: _Ref153983378]Figure 38 – Illustration of portal planes (dashed lines) in a cross-section of a portal extent (grey) and walls (black).
Collect the remaining secondary rays into bundles, based on the material lists of the geometries they hit. For each bundle, generate a secondary RI with the EQ curve corresponding to the transmission coefficients of the materials on the corresponding list.
if (nMaterials != 0)  {
for (int m = 0; m<nMaterials; m++) {
	for (int i = 0; i<EQNBands; i++)
		itemEQ[i] *= materialTransmission[m][i];

}
}

In each created secondary RI create a ray hit record and  store the ratio of the number of rays in the bundle to the total number of secondary rays (19) in the weight field of the ray hit record.
Fast-moving object processing
This step provides smoother transitions between the occluded and unoccluded states for fast-moving audio sources relative to the listener.
Every fifth frame the speed estimate for each of the active objects in the scene is updated.
if (frameCounter % 5 == 0) {
	//abs() returns the length of a vector
	distance = (itemPosition –speedmap[objectName].position).abs()
	speed = distance * 48000/(256*5);
	speedmap[objectName] = {speed, itemPosition};
}

If the current speed estimate is above the threshold given by CV OcclusionFastSpeed = 5 [m/s], cast 20 rays from the listener towards the source with endpoints equidistributed on a circle, whose radius is proportional to the speed. 
if (speedmap[objectName].speed > OcclusionFastSpeed) {
	r = itemPosition – listenerPosition;
	r_orth1 = r;
	r_orth2 = r;
	if (r[2] != 0) {
		r_orth1[2] = -1 * (r[0] + r[1]) / r[2];
	} else if (r[1] != 0) {
		r_orth1[1] = -1 * (r[0] + r[2]) / r[1];
 	} else {
 		r_orth1[0] = -1 * (r[1] + r[2]) / r[0];
 	}
	r_orth1.normalize();
	//a.cross(b) returns the cross product of a vector a with vector b
	r_orth2 = r.cross(r_orth1).normalize();
	
	radius = speedmap[objectName].speed/50.f; 
	for (int j = 0; j<20; j++) {
		angle = j * 18.0;
		sample[j] = r_orth1 * radius * cos(angle*pi/180.0f) +
			r_orth2 * radius * sin(angle*pi/180.0f);
		sample[j] = sample[j] + itemPosition;
}

Cast each of the rays described by sample[j] against the scene geometry and count the number of unoccluded rays (the rays which do not intersect any geometry) nofHits. Adjust the EQ band factors by the ratio of unoccluded rays count to the total ray count (20).

for (int i = 0; i<EQNBands; i++)
	itemEQ[i] *= nofHits/20;

The fast moving RIs (the ones, whose speed exceeds the above threshold) are excluded from the processing described in 6.6.9.3.1.1 and 6.6.9.3.1.2. 

Final processing steps 
Remove all the cached occlusion-specific data corresponding to the removed RIs and increment the frameCounter.
Audio thread processing
This stage performs no processing on the audio thread.
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General
The Diffraction stage provides the information required for generating diffracted sounds from hidden sources to a listener around occluding objects. This stage uses pre-processed geometrical data from the bitstream including edges, paths, and voxel data. These data are used to efficiently identify relevant diffraction paths from a given source to the listener location during rendering, and these diffraction paths are used to create relevant additional RIs for diffraction. For static sources, it is possible to use pre-calculated paths stored in corresponding voxel data to achieve fast computation at runtime. For dynamic sources, precomputed edges visible at the locations of a source and the listener need to be found using ray tracing techniques and these edges are used to fetch and evaluate relevant paths before creating RIs. This stage also uses the line-of-sight occlusion information that is provided by the Occlusion Stage to decide whether the diffraction path finding process is activated based on the absence of a visible line-of-sight.
[bookmark: _Ref100565995]Data elements and variables
sources	a map of Source-type objects where each Source object is instantiated from the primary RI in renderList and the corresponding key is the corresponding item’s unique ID. Source objects contain the following list of variables: their global locations in the previous and current time frames, speed, current orientation, unique source ID, a flag of relocation status from the previous time frame,  source status to check if it is active or inactive, source type, visible edge list and path index list, a flag to indicate the occlusion status in the previous time frame (isPreviouslyOccluded) and a flag to indicate whether the occlusion status has been changed since the previous time frame (isOcclusionStateChanged). Each source object information is updated at every frame. 
listener	a unique pointer to the Listener object which contains its location, orientation, relevant visible edge list, a flag to indicate whether the listener location has been changed since the last time frame and this Listener-type object is updated at every update cycle.
meshes	a vector containing the meshes in a scene, which is used to instantiate the Embree tracer for visibility checks with all non-transparent static and dynamic meshes.
dynMeshes	a vector containing non-stationary/dynamic meshes in a scene, which is used to instantiate the Embree tracer for visibility checks with all non-transparent dynamic meshes.
tracer	a unique pointer to the instantiated Embree tracer with meshes which needs to be set properly before calling the update thread.
dynTracer	a unique pointer to the instantiated Embree tracer with dynMeshes which needs to be set properly before calling the update thread.
diffrPayload	a shared pointer to the diffraction payload object which contains pre-processed bitstream data including static edges under the name of staticEdgeList, dynamic edges as dynamicEdgeDict, paths around static meshes as staticPathDict, paths around dynamic meshes as dynamicPathDict, and source-visible edges as sourceEdgeDict, listener-visible edges as listenerEdgeDict, and valid paths from a static source to a given listener location as validPathDict. It needs to be set properly before calling the update thread, but after the Diffraction payload object is created from the bitstream.
rtDiffractionPathTrackers	a map of RTDiffractionPathTracker-type objects with RI ID as a key and RTDiffractionPathTracker-type object as a corresponding value which provides interfaces and functionalities to update the valid path list from a given source location to the listener location and generate diffraction items with location, orientation, and filter information for diffraction-type RI creation.
edgeListAccess	mutex object to offer exclusive ownership regarding edge list access/update when geometries are relocated.
itemStore	a pointer to an object which provides the functionalities for creating new RIs, updating existing RIs, and removing inactive RIs. This needs to be initialized before calling the update thread.
secondaryItems	a map of RIs created by the Diffraction Stage (update thread) which contains validated RIs at every time frame. This map has a key value as RI index and its corresponding value is a map of RIs with a unique hash.
isDynamicGeometryIncluded	a Boolean flag which indicates whether a given scene has dynamic geometries. This flag is set as false if dynMeshes is empty.
isDynamicGeometryRelocated	a Boolean flag which indicates whether a dynamic geometry is relocated from a previous time frame. If this flag is true, then dynamic edges are updated. By default, this flag is set as true to check possible paths around existing dynamic meshes initially. 
geometryObservers	a vector of Observer-type objects to each of which a dynamic geometry pointer is allocated. An Observer-type object supports the interfaces and functionalities needed to monitor the attached geometry’s status change. This includes location and orientation such that meshes of the geometry are promptly updated when they have changed. This vector needs to be updated before calling update thread. 
diffrItemInitialEQs	a vector of float values to store initial EQs for diffraction RI which is set with 1.0 entities assuming there is no attenuation for diffraction-type RIs initially.
cullingDist	culling distance threshold that is used to skip unnecessary visibility tests between source/listener to an edge and is initialized as 64 m by default. 
B		block size in samples to update source speed
Fs		sampling frequency in samples to update source speed.
updateCounter	counter that increases by 1 in every update cycle and is initialized as 0.
updateRate 	update rate for slow update mode which is set as 10 by default.
gainHistoryMap	a map that contains source names as a key and a vector of historical source gains as its value.
intersectionTestSamples a map of vertex points for intersection tests. This is used for visibility tests to identify the volume/portion of visible source extent from the listener position.
Voxel data
The voxel database diffrListenerVoxelDatabase[l][j] for the listener voxel dictionary is derived from the variables specified in Section 6.3.2.3 by the following algorithm:
int delta_x = voxelCoordinateToVoxelIndex({ 1, 0, 0 });
int delta_y = voxelCoordinateToVoxelIndex({ 0, 1, 0 });
int delta_z = voxelCoordinateToVoxelIndex({ 0, 0, 1 });
int delta_list[4] = { 0, -delta_x, -delta_y, -delta_z };

for (int i = 0; i < numberOfListenerVoxels; i++) {
    EdgeList edge_list;
    VoxelCoordinate voxelCoord = { listenerVoxelGridIndexX[i],
                                   listenerVoxelGridIndexY[i],
                                   listenerVoxelGridIndexZ[i] };
    int l = voxelCoordinateToVoxelIndex(voxelCoord);
    int mode = diffrListenerVoxelMode[i];

    if (mode != 0) {
        int l_ref = l + delta_list[mode];
        edge_list = diffrListenerVoxelDatabase[l_ref];

        // generate list with removed items in reverse order
        int numberOfIndicesRemoved =
            length(diffrListenerVoxelIndexDiff[i]) - 1;
        int listIndicesRemoved[numberOfIndicesRemoved];
        int val = -1;
        for (int k = 0; k < numberOfIndicesRemoved; k++) {
            val += diffrListenerVoxelIndexDiff[i][k];
            listIndicesRemoved[numberOfIndicesRemoved - 1 - k] = val;
        }

        // remove edge sequences
        for (int k = 0; k < numberOfIndicesRemoved; k++) {
            edge_list.erase(listIndicesRemoved[k]);
        }
    }

    // add edge sequences
    for (int j = 0; j < numberOfEdgesAdded[j]; j++) {
        edge_list.append(diffrListenerVoxelEdge[i][j]);
    }

    // add sorted edge list to listener voxel dictionary
    edge_list = sort(edge_list);
    int num_edges = length(edge_list);
    for (int j = 0; j < num_edjes; j++) {
        diffrListenerVoxelDatabase[l][j] = edge_list[j];
    }
}
The voxel database diffrValidPathVoxelDatabase[i][l][k] for the valid path dictionary is derived from the variables specified in Section 6.3.2.3 by the following algorithm:
int delta_x = voxelCoordinateToVoxelIndex({ 1, 0, 0 });
int delta_y = voxelCoordinateToVoxelIndex({ 0, 1, 0 });
int delta_z = voxelCoordinateToVoxelIndex({ 0, 0, 1 });
int delta_list[4] = { 0, -delta_x, -delta_y, -delta_z };

for (int i = 0; i < numberOfValidStaticSources; i++) {
    for (int j = 0; j < numberOfMaximumListenerVoxels[i]; j++) {
        ValidPathList validPathList;
        VoxelCoordinate voxelCoord = { validListenerVoxelGridIndexX[i][j],
                                       validListenerVoxelGridIndexY[i][j],
                                       validListenerVoxelGridIndexZ[i][j] };
        int l = voxelCoordinateToVoxelIndex(voxelCoord);
        int mode = diffrValidPathMode[i][j];

        if (mode != 0) {
            int l_ref = l + delta_list[mode];
            validPathList = diffrValidPathVoxelDatabase[i][l_ref];

            // generate list with removed items in reverse order
            int numberOfIndicesRemoved =
                length(diffrValidPathIndexDiff[i][j]) - 1;
            int listIndicesRemoved[numberOfIndicesRemoved];
            int val = -1;
            for (int k = 0; k < numberOfIndicesRemoved; k++) {
                val += diffrValidPathIndexDiff[i][j][k];
                listIndicesRemoved[numberOfIndicesRemoved - 1 - k] = val;
            }

            // remove path sequences
            for (int k = 0; k < numberOfIndicesRemoved; k++) {
                validPathList.erase(listIndicesRemoved[k]);
            }
        }

        // add valid path sequences
        for (int k = 0; k < numberOfPathsAdded[i][j]; k++) {
            ValidPathPair validPath = {diffrValidPathEdge[i][j][k],
                                       diffrValidPathPath[i][j][k]};
            validPathList.append(validPath);
        }

        // add sorted path list to valid path dictionary
        validPathList = sort(validPathList);
        int num_edges = length(validPathList);
        for (int k = 0; k < num_edjes; k++) {
            diffrValidPathVoxelDatabase[i][l][k] = validPathList[k];
        }
    }
}
Stage description
The Diffraction Stage is handled by two different threads for RI update and audio processing. Compared to other stages such as Homogeneous Stage, Diffraction Stage is only called within the update thread to generate secondary diffraction-type RIs. After the diffraction-relevant variables described in 6.6.10.2 are properly initialized, the Diffraction Stage’s RI update function is called at a given update cycle. 
[bookmark: _Ref100840937]Update thread processing
The general processing in the Diffraction stage is visualized as a flow diagram in Figure 39.
	[image: Diagram
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[bookmark: _Ref99723302]Figure 39 — Update process for generating diffraction-type RIs from active primary RIs based on source, listener, and precomputed path information
The update function for creating diffraction-type RIs is called with the renderList as an input which contains RIs and listener-relevant information such as location and orientation. At every update call, the listener is updated from the listener structure in renderList, and it checks every RI in it. 
[bookmark: _Ref101276438]Exceptional cases
The elements of renderList contain primary RIs and secondary RIs. Secondary RIs are derived from primary RIs along the pipeline. These can be, for instance, reflection-type, diffraction-type or DirectionalReverb-type. The Diffraction Stage supports the rendering of diffracted sounds from primary RIs which are either point sources or extended sources. 
The update process will be skipped for the following cases: Firstly, if a given RI’s type is not primary, the path-finding and creation of new diffraction-type RIs will be skipped in the loop over RIs and the next RI will be checked. Secondly, if a given RI within the loop is defined in listener coordinate system (LCS), this RI will be skipped assuming that a LCS-based RI is not affected by geometries. Thirdly, the update process can be skipped according to the RI’s current status. A given RI’s status which indicates whether the RI is active or inactive can be changed at runtime. If a given RI’s status is inactive, previously created diffraction-type RIs are removed in order not to render diffracted sounds from inactive primary RIs.
[bookmark: _Ref101276754]Initialization and update of basic data elements
If a given RI is primary and active, Source-type object is instantiated from a given RI. The Source-type  object is stored in sources, i.e. a vector of Source objects. If the object already exists in the sources vector, it is updated. As mentioned in 6.6.10.2, Source-type objects contain positional information, occlusion flags, and path-relevant variables. Its positional information is updated directly from a given RI and the other source variables are updated later in the update thread. 
A RTDiffractionPathTracker object is instantiated with the initialized along with the Source object, using listener, eifPayLoad and diffrPayLoad information to keep track of paths with the updated source and listener information. 
Occlusion status check
The path finding and diffraction-type RI creation processes are only called if the line-of-sight from the listener to a given primary RI (i.e., a source) is not visible. In this regard, the occlusionInfo structure needs to be checked. The occlusionInfo structure contains updated occlusion-related information such as occluded surfaces’ materials and corresponding material EQs along the line-of-sight. 
For instance, if occlusionInfo is empty, meaning there are no surfaces blocking the line-of-sight, the update stage needs to remove the diffraction-type RIs stored in itemStore. This is done to avoid rendering invalid diffraction-type RIs in the current time frame. The source’s occlusion flag isPreviouslyOccluded shall be set as false for the next update cycle.
If occlusionInfo is not empty and isPreviouslyOccluded is false,  isOccludedStateChanged shall be updated to true. Otherwise, isOccludedStateChanged shall be set to false. These flags are implemented to call the following processes in 6.6.10.4.1.5 – 6.6.10.4.1.7.
Diffraction item EQ initialization with occlusion information
If a given primary RI is occluded and its type is a point source, diffrItemInitialEQs is updated using the given RI’s EQ. The diffrItemInitialEQs is updated considering the occluded surface material’s EQ in the previous Occlusion Stage. This information is used to render the sound through acoustically transparent or non-transparent surfaces. The diffrItemInitialEQs element is updated as follows:

// Given: diffrItemInitialEQs, RI.EQs
// RI.EQs contains RI’s EQ coefficients updated in the Occlusion Stage

for (int i = 0; i < diffrItemInitialEQs.size(); i++) {
	diffrItemInitialEQs[i] = 1.0 – RI.EQs[i];
}

In case a RI corresponds to an extended source, it is required to additionally adjust diffraction-type RI’s gain according to the extended source’s partial visibility. The additional gain is calculated by checking which part of the source extent is visible from the listener. The ratio of the invisible surface of a given extended source to its original surface is used to adjust diffraction-type RI’s gain. 
In addition to the gain adjustment, two operations need to be performed to avoid unrealistic sound level changes behind occluding geometries of extended sources. These operations are carried out assuming that the extended source consists of spatially equally distributed point sources. The first operation consists in using ray tracing to count hit rays which are cast out from the listener position to test sample points stored in intersectionTestSamples per a given source extent. For instance, if there are N number of ray-hits out of M samples stored in intersectionTestSamples[extentID] where extentID is the ID of a given RI’s source extent, the diffrItemInitialEQs‘s entities are multiplied by . The second operation consists in calculating the centre of the occluded part of a source extent using the occluded test samples to update the source‘s location. For this,  intersectionTestSamples needs to be initialized as a pair of 1) source extent ID as a key, and 2) sample positions as a value. The sample positions are updated with intersections between a given source extent and rays which are cast out from the source’s center position to a uniformly distributed directions using azimuth and elevation angles.
[bookmark: _Ref100841010]Path finding and validation process
After diffrItemInitialEQs and source location have been updated, relevant diffraction path information is updated depending on the locations of RIs and the listener. This process validates the precomputed path list transmitted to the renderer using the bitstream. 
The path finding and validation process is computationally expensive, so it is only called at a slower rate than other processes in the stage. The path finding and validation process is also triggered immediately if the occlusion state of the source changed.
The process makes a distinction between static scenes and dynamic scenes due to complexity reasons. Static scenes do not contain moving geometries, so the path finding and validation process is only based on the precomputed diffraction paths in the bitstream, the position of the source and the position of listener. In contrast, dynamic scenes contain moving geometries, and additional diffraction paths need to be calculated at rendering time that depend on the current position of the moving geometry, requiring a higher computational load.
1.1.1.1.3.1.1 [bookmark: _Ref100682253]Static scenes
For a static scene with static sources and geometries, potential path information can be precomputed and transmitted to the renderer. The stored path data is available as a path index list in the voxel data alongside with information about RIs and listener. 
Static scene path fetching with static sources

The potential diffraction paths are fetched from the precomputed list present in the bitstream’s diffraction payload by considering the positions of the source and the listener. After fetching, each potential path needs to be validated in order to be rendered into a diffraction audio signal.
To fetch the proper voxel data corresponding to a given primary RI (e.g., the source) and listener, the listener location needs to be converted into voxel indices which is a list of integers indicating X, Y, and Z indices in the pre-processed voxel grid. This voxel index is the key to fetch the stored path index list in the voxel data corresponding to a given RI’s ID at a given listener location. The voxel index is generated from a given position as below.

// Given: diffrVoxelOriginalX, diffrVoxelOriginalY, diffrVoxelOriginalZ, diffrVoxelPitchX, 
// 		   diffrVoxelPitchY, diffrVoxelPitchZ 

VoxelIndex getVoxelIndexFromPosition(Position position) {
	int x = int((position.Xcoord – diffrVoxelOrignalX)/diffrVoxelPitchX + 0.5);
	int y = int((position.Ycoord – diffrVoxelOrignalY)/diffrVoxelPitchY + 0.5);
	int z = int((position.Zcoord – diffrVoxelOrignalZ)/diffrVoxelPitchZ + 0.5);
	return VoxelIndex(x, y, z);
}

And the potential path list for a static RI at a given listener location is fetched as below. 

// Given: sourceID, listenerVoxelIndex, diffrPayload
potentialPathIndexList = diffrPayload.validPathDict[sourceID][listenerVoxelIndex];

Additionally, the neighbouring voxels around the listener position are also checked for potential diffraction paths. If a diffraction path is present in one or more of the neighbouring voxels, and its end point is visible by the listener (i.e., not occluded), this path is also fetched as a potential path. 

Then, Source’s potential path index list is updated from the fetched voxel data follows: 

// Given: source, potentialPathIndexList 

source.pathIndexList.clear();
for (int i = 0; i < potentialPathIndexList.size(); i++) {	
	source.pathIndexList.push_back(potentialPathIndexList[i]);
}

Static scene path fetching with moving sources

In the case of moving sources, the path fetching procedure is somewhat different and more computationally expensive, if performed at a fast rate, due to changing source positions. In order to proceed with path fetching, the occlusion status of the paths between source and listener needs to be checked first.  This procedure is called each time the source changes position or the source is occluded. 

For testing the occlusion status, visibility tests are needed. Visibility tests are used to determine whether the sound source is visible or obstructed from a given receiver location, and vice versa (i.e., they are carried out each time from the source point of view, and from the listener point of view). They involve analyzing the direct line-of-sight between the source and receiver, as well as considering any obstacles or obstructions that may exist in the acoustic environment. The visibility tests return a list of visible geometry edges (addressed by unique identifiers), the visibleEdgeIdList, from the point of view of the source (source.visibleEdgeIdList) and the listener (listener.visibleEdgeIdList).
In order to reduce computational complexity, a first coarser visibility test is carried out using voxel data, which is computationally less expensive. If no visible edges were found, a second, finer, more expensive search for visible edges is performed. 
After the visibility tests are performed, the list of potential paths is retrieved from the diffraction payload using the visible edges from source.visibleEdgeIdList and listener.visibleEdgeIdList information.
For fast sources (i.e., sources moving faster than a pre-determined speed), the visibility test (i.e., the visible edge search procedure) is only performed for edges closer to the source than a pre-defined distance threshold, the so-called diffraction distance culling threshold.

Potential path index list structure

Each path index in this list includes two integers for identifying a unique path: the first integer indicates an initial geometry edge ID. The initial geometry edge refers to the first geometry edge encountered by a diffraction path stemming from the source (see path validation).  The  second integer indicates the index within the stored path list which contains all potential paths starting from the mentioned initial edge ID. 
The potential path list will be subject to path validation. The path validation will determine which of the diffraction rays will be actually rendered to an audible event. As the validation process uses geometrical calculations (ray tracing) to determine if a diffraction path in the list actually reaches the listener, information about the edges (edgeIDs) and faces (faceIndicators) of the involved geometries, as well as diffraction ray angles around them, is needed.
All the paths are in a form of Path-type object which contain precomputed path information together with a sequence of included edgeIDs, faceIndicators and angles. This process is briefly shown below. 
Static scene path validation

Potential paths are validated by using two angle calculations: one is based on the source angle. This is defined as the angle at source location with respect to the first face, where the first face is determined by the first entity of included faceIndicators. The other angle is the listener angle. This is defined as the angle at listener location with respect to the last face which is determined by the last faceIndicator. The faceIndicator can be either 0 or 1, for example, to indicate which adjacentTriangle is included per path. The pseudo code for getting face or triangle information is given below.
 
// Given: path, diffrPayload
// path includes its edgeIDs, faceIndicators, angles, and its path order. 

// Get the first triangle information within a given path
firstEdge = diffrPayload.staticEdges[path.edgeIDs[0]];
firstTriangle = firstEdge.adjacentTriangles[path.faceIndicators[0]];

// Get the last triangle information within a given path
lastEdge = diffrPayload.staticEdges[path.edgeIDs[path.order - 1]];
lastTriangle = firstEdge.adjacentTriangles[path.faceIndicators[path.order - 1]];


Figure 40 illustrates the validation process as a simple example. Figure 40 – (A) shows the scene configuration with a static source, a listener, and a rectangular geometry in 2D for simplicity. Figure 40 – (B) shows the possible two diffraction paths around the geometry: Path - i and j. Figure 40 – (C) and (D) show each path with illustrated source and listener angles. Path - i and j, can be both uniquely defined by three sequences of included edgeIDs, face IDs (or faceIndicators), and angles. For instance, Path - i can be described with the following sequences: 
· Path – i
· EdgeIDSequence: Edge A – Edge B
· FaceIDSequence: Surface 4 – Surface 1
· AngleSequence [in deg.]: 90 – 180
[bookmark: _Ref100677017][bookmark: _Ref105168894][image: Diagram
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[bookmark: _Ref105169536]Figure 40 — Example to show the angles at source and listener per a given path
Note: In cases in which the geometry’s triangle information is not included in the bitstream, an alternative data structure FaceIDSequence can be replaced with faceIndicator sequence. The values of faceIndicator can be either 0 or 1 to indicate which adjacentTriangle of a corresponding edge is included.
In this example, Path - i represents one of the potential paths for the given configuration. The sourceAngle is the angle of the vector from the first edge (Edge A) to the source, relative to Surface 4 (Figure 40 – (C)). The listenerAngle is the angle of the vector from the last edge (Edge B) to the listener, relative to Surface 1. 
The validation process for Path - i is carried out as follows: If the source angle is smaller than the first element of the AngleSequence in Path - i, and the listener angle is larger than the last element of the AngleSequence in Path - i, then Path - i is activated for the creation of diffraction-type RI signals. 
Once the path is validated, an associated diffraction type RI will be created (audible event), For this purpose, information about the involved diffraction angles is needed. The process for updating DiffractionAngleSequence is provided below.

// Given: path, sourceAngle, listenerAngle
// path is a Path-type object which contains (included) edgeIDSequence,
// faceIndicatorSequence, angleSequence, nEdges and DiffractionAngleSequence to update 
// diffraction-type RI’s EQ.
// sourceAngle and listenerAngle are calculated per each given path

angle1 = path.angleSequence[0];
angle2 = path.angleSequence[path.nEdges – 1];

path.DiffractionAngleSequence.clear();
if (angle1 > sourceAngle and angle2 < listenerAngle){
    if (path.nEdges == 1) { // First-order Diffraction (FOD) case
        // A single angle for FOD is computed from listenerAngle and sourceAngle directly.
        path.DiffractionAngleSequence.push_back(listenerAngle – sourceAngle – 180);
    } else {
        path.DiffractionAngleSequence.push_back(angle1 - sourceAngle);
	    for (int i = 0; I < path.nEdges – 2; i++) {
            path.DiffractionAngleSequence.push_back(path.angleSequence[i]);
        }		 
        path.DiffractionAngleSequence.push_back(listenerAngle – angle2);
    }
}

DiffractionAngleSequence consists of floating values each of which represents a diffracted angle per each edge considering a given configuration of source, listener, and geometries. For instance, as illustrated in Figure 40 – (C), Path – j starts from the source to the listener along the two included edges (Edge A and B) and for this path, two diffraction angles are required and are included in DiffractionAngleSequence. 

Static scene diffraction-type RI creation

After the paths are validated, they will be activated. An active state of a diffraction path means that an audible diffraction-type RI will be created based on said path. In principle, all validated paths are activated with a few exceptions discussed in Section 6.6.10.4.1.6.

The above mentioned angle sequence is used for two specific updates: firstly, it is used for updating secondary diffraction-type RI’s EQ due to angle-dependent attenuation, In this case, the diffraction-type RI’s EQ coefficients will be updated N times according to the number of included edges in a given path. Secondly, the DiffractionAngleSequence is used for updating diffraction-type RI’s positional data including location and orientation. To generate diffraction-type RI’s location, the primary RI’s location is rotated with respect to corresponding edges by the amount of corresponding DiffractionAngleSequence. The diffraction-type RI’s directivity is obtained by rotating primary RI’s orientation in the same way. If there are multiple valid paths considering the given configuration of source, listener, and geometries, e.g. as shown in Figure 40– (B), multiple diffraction-type RIs per primary RI are generated. 
The process for path fetching, path validation and diffraction-type RI creation for static scenes is summarized as below. 

// Given: validPaths, source, listener, diffrPayload, diffrItemInitialEQ
// validPaths is the list of valid Path-type objects per primary RI and Path-type object 
// contains (included) edgeIDSequence, faceIndicatorSequence, angleSequence, nEdges, and 
// diffractionAngleSequence.

validPaths.clear();

// Path finding and validation process
for (int i = 0; i < source.pathIndexList.size(); i++) {
    //Fetch the Path-type object from diffrPayload
	initialEdgeID = source.pathIndexList[i].first;
	pathLocalIndex = source.pathIndexList[i].second;
	path = diffrPayload.staticPathDict[initialEdgeID][pathLocalIndex];

	nEdges = path.nEdges;
	edgeIDSequence = path.edgeIDSequence;

	// edge is an Edge-type object which contains edge-relevant data 
	edge = diffrPayload.staticEdges[edgeIDSequence[0]];

	// triangle is a Triangle-type object which contains triangle-relevant data such as 
	// 3 vertex IDs, centroid, and surface normal.
	triangle = edge.faces[path.faceIndicatorSequence[0]];
	angle1 = path.angleSequence[0];

	sourceAngle = calculateAngle(source, edge, triangle);
	if (sourceAngle > angle1)
        Go to the next iteration.
	
	edge = diffrPayload.staticEdges[edgeIDSequence[nEdges - 1]];
	triangle = edge.triangles[path.faceIndicatorSequence[nEdges - 1]];
	angle2 = path.angleSequence[nEdges - 1];

	listenerAngle = calculateAngle(listener, edge, triangle);
	if (listenerAngle < angle2)
        Go to the next iteration.
    
    path.updateDiffractionAngleSequence(sourceAngle, listenerAngle); // as mentioned above
    validPaths.push_back(path);
}

// Diffraction-type RI creation from validPaths
for (int i = 0; i < validPaths.size(); i++) {
    position = getRotatedPosition(validPaths[i]);
    orientation = getRotatedOrientation(validPaths[i]);
    filterEQ = getDiffractionFilter(validPaths[i], diffrItemInitialEQ);
    Create diffraction-type RI with position, orientation, and filterEQ.
}

1.1.1.1.3.1.2 Dynamic scenes
If a scene has dynamic geometries, the static paths fetched from the payload (i.e., only considering static geometries, diffrPayload.staticPathDict) need to be checked for occluded intermediate propagation paths by dynamic geometries. Intermediate propagation paths can be paths between included static edges or between a source and the first edge or between the listener and the last edge.
If these are not occluded, the previously mentioned diffraction angle calculation in terms of sourceAngle and listenerAngle shall be called. However, if there are occluded path segments, the path finding/fetching process around occluding dynamic geometries shall be called to determine the additional attenuation for dynamic occlusion at runtime performing a series of visibility tests. 
For this process, the following steps need to be done: 
· An initial visibility test is conducted to identify the dynamic geometries in the scene that are causing occlusion. Each dynamic geometry in the scene includes a dynamic path dictionary within the diffraction payload (diffrPayload.dynamicPathDict). The dynamic path dictionary of an occluding dynamic geometry is then used for the validation of dynamic paths.
· The occlusion status of various pairs of points needs to be checked in order to identify occluded paths. These pairs of points can include a source point and the first edge in each dynamic path, two possible adjacent dynamic edges, or the last edge in a given path and the listener point.
· Afterwards, it is necessary to perform an additional visibility test in order to identify the visible dynamic edges considering said pairs of points. This test considers the diffrPayload.dynamicPathDict associated with the occluding dynamic geometry. 
· The relevant dynamic path list is then updated to determine which dynamic paths remain valid from these two occluded points. 
· Once the validated dynamic paths are established, an additional attenuation filter is determined using the diffraction angle sequences. A visual representation of this scenario is provided in Figure 41.
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[bookmark: _Ref100844708][bookmark: _Ref100844700]Figure 41 — Example to show the case with occluded/not-occluded static paths with static and dynamic geometries
There are two possible static paths StaticPath –i and StaticPath – j. StaticPath –i is not occluded by dynamic geometries but, StaticPath –j is occluded by a dynamic geometry in between Edge C and the listener. As described above, by using the visible edge lists – one from Edge C and the other from the listener location – and precomputed dynamic path data (diffrPayload.dynamicPathDict), the relevant dynamic paths (DynPath –k, DynPath – l) can be found through the steps described in 6.6.10.4.1.5.1. The additional attenuation filter is updated from these two dynamic paths accordingly. This process is described as below.

// Given: validPaths, source, listener, diffrPayload, diffrItemInitialEQ, dynMeshes, 

// Update source’s path index list as done for static scene.
source.pathIndexList = getPathIndexList(source, listener, diffrPayload);
validPaths.clear();

// Update validPaths with occluded static paths by dynamic geometries
For (int i = 0; i < source.pathIndexList.size(); i++) {
    path = diffrPayload.staticPathDict
           [source.pathIndexList[i].first][ source.pathIndexList[i].second];
	// Check if the given path 
	// is a valid static path without considering dynamic geometries
	// it returns true if a given path is valid one
	isValid = checkPath(path, source, listener); 
	if (isValid = true) {
		if (isDynamicGeometryIncluded == true) {
    
		    // path.additionalDynEQs is composed of 
			// multiple lists of floating values to contain                  
		    // additional EQs for dynamic occlusion.
    path.additionalDynEQs.clear();
    for (int j = -1; j < path.nEdges; j++) {
           
	       	if (j == -1) {
			    eLocation1 = source.location;
           	    edge = diffrPayload.staticEdges[path.edgeIDSequence[0]];
            	    eLocation2 = e.centerLocation;
			} else if (j == path.nEdges - 1) {
			    edge = diffrPayload.staticEdges[path.edgeIDSequence[path.nEdges - 1]];
            	    eLocation1 = e.centerLocation;
            	    eLocation2 = listener.location;
			} else {
			    edge1 = diffrPayload.staticEdges[path.edgeIDSequence[j + 0];
			    edge2 = diffrPayload.staticEdges[path.edgeIDSequence[j + 1];
			    eLocation1 = edge1.centerLocation;
			    eLocation2 = edge2.location;
			}
occludingDynGeoID = getOccludingDynGeoID(eLocation1, eLocation2, dynTracer);
if (occludingDynGeoID is empty) {
			    Go to the next iteration.
			}
       	
		       // Find relevant dynamic paths     
       dynEdges = diffrPayLoad.dynamicEdges[occludingDynGeoID];
       edgesFromE1 = getVisibleDynEdges(eLocation1, dynEdges, tracer);
       edgesFromE2 = getVisibleDynEdges(eLocation2, dynEdges, tracer);
       potentialDynPaths = getPotentialDynPaths (eLocation1, eLocation2, edgesFromE1, edgeFromE2);
	// Update path’s additional dynamic EQs
			for (auto& pDynPath : potentialDynPaths) {
    pDynPath.updateDiffractionAngleSequence(eLocation1, eLocation2); 
    additionalDynEQ = getEQfromAngles(pDynPath.diffractionAngleSequence);            
    path.additionalDynEQs.push_back(additionalDynEQ);
{
		   }
		}
	}
	else {
		Go to the next path index in the loop.
	}  
    validPaths.push_back(path);
}


Diffraction paths around dynamic geometries

In addition, it is necessary to check for potential diffraction paths around dynamic geometries that do not interact with static geometries. This process differs from static scenes because voxel data cannot be generated at encoding time due to the large number of potential configurations.
To fetch the potential dynamic diffraction paths, a first visibility test (to determine visible edges) is needed to determine the list of dynamic edges that are visible to both the source (primary RI) and the listener. This dynamic edge data is stored in diffrPayload.dynamicEdgeDict. 
From these two lists of visible dynamic edges (one from the source and the other from the listener), the potential dynamic paths that start from a dynamic edge visible to the source and end at a dynamic edge visible to the listener are fetched from diffrPayload.dynamicPathDict. 
Similar to finding additional dynamic paths, each dynamic path is then subjected to a validation process using sourceAngle and listenerAngle. During the validation process, the diffractionAngleSequence of the path is updated as described in Section 6.6.10.4.1.5.1.
If a dynamic path is determined to be valid, it is used to create a secondary diffraction-type RI. Additionally, whenever the positional data (location and orientation) of a dynamic geometry is changed, the vertex positions of the dynamic edges must be updated accordingly, using a combination of observer features as described in Section 6.6.10.4.1.5.1.
The process for path finding, path validation and diffraction-type RI creation in case of dynamic scenes is done as follows:

// Given: validPaths, source, listener, diffrPayload, diffrItemInitialEQ, dynMeshes, 

// Update source’s path index list as done for static scene.
source.pathIndexList = getPathIndexList(source, listener, diffrPayload);
validPaths.clear();

// Update validPaths with unoccluded dynamic paths
for (auto& dynMesh: dynMeshes) {
    dynEdges = diffrPayLoad.dynamicEdges[dynMesh.ID];
    edgesFromS = getVisibleDynEdges(source.location, dynEdges, tracer);
    edgesFromL = getVisibleDynEdges(listenr.location, dynEdges, tracer);
    potentialDynPaths = getPotentialDynPaths(source.location, listener.location, edgesFromS, edgeFromL);

    for (auto& dynPath: potentialDynPaths) {
        dynPath.updateDiffractionAngleSequence(source.location, listener.location); 
        validPaths.push_back(dynPath);
    }
}
createDiffrTypeRIs(validPaths);

[bookmark: _Ref155620831]Valid diffraction path activation and gain normalization
Activation refers to the process of flagging a given diffraction path to be rendered into an audible diffraction-type RI. In principle, all valid diffraction paths are activated, except for one case. 
The exceptional case occurs for the longer diffraction paths in case there are numerous paths flagged as active. It is assumed that very long and/or contrived diffraction paths (i.e., diffracting on many geometries) will be inaudible. To limit the number of active diffraction paths, only the P shortest paths will remain active, where P is a predefined maximum amount of diffraction-type RI allowed.
Additionally, the gain of a rendered diffraction item can be set to zero (and therefore rendered inaudible) at the ray summation stage at the listener position. As explained before, each diffraction path has an associated gain and EQ coefficient values that are dependent on the associated diffraction angle sequences. The signal contribution of all diffraction-type RIs is summed at listener position. In order to avoid loudness peaks, the diffraction RI gains are normalized. In this context, rays with gain values below a defined culling gain threshold are removed from the normalization procedure and set to zero. 

[bookmark: _Ref100840957]Slow update mode
The slow update mode is introduced in order to tackle some efficiency issues in the renderer. Namely, the Diffraction Stage will be called multiple times if the direct line-of-sight between a source and the listener is started to be occluded or unoccluded by geometries in an alternating fashion. Each call, the path fetching, validation and diffraction-type RI creation routines are executed, which may lead to a very high computational load. 
The slow update mode addresses this issue by calling the processes of the Diffraction Stage at a slower rate, under the basic assumption is that a listener is not highly sensitive to changes in the diffracted sound when a source is not visible from the listener. Conversely, the listener is more  sensitive to the diffracted sound when the direct line-of-sight between a source and the listener is started to be occluded or unoccluded by geometries. This assumption allows for increased rendering efficiency without perceived sound degradation. 
In other words, the renderer already needs to run all processes in the Diffraction Stage including path finding, path validation, diffraction-type RI creation promptly when a source begins to be occluded in order to achieve smooth transitions. However, the renderer calls the processes at a slower rate while a source is being occluded. 
To accomplish the slow mode, three integer numbers are included: itemCounter, updateCounter and updateRate. itemCounter is set as 0 at the beginning of the Diffraction Stage update call and it increases by 1 at every iteration of renderItems. updateCounter initialized as 0 increases by 1 at every update cycle, where updateRate is the rate in the slow update mode. For instance, if updateRate is 10, the diffraction-type RIs are updated per every 10 cycles unless the source occlusion flag, i.e. isOcclusionStateChanged is true. The general process for slow update mode is described below. 

// Given: renderList.listener, renderList.renderItems
// Initialize updateRate as 10 and updateCounter as 0 before update processing.

itemCounter = 0;
listener.update(renderList.listener);
for (auto& RI : renderList.renderItems) {

    //Skip the exceptional cases as described in clause 6.6.10.4.1.1
   	if (RI.type != ItemType::Primary || RI.cSpace == CSpace::LCS) { 
        // LCS: Listener Coordinate System
        continue;
    }

	source.update(RI); // as described in clause 6.6.10.4.1.2

    if (RI.occlusionInfo is empty) {
		source.isPreviouslyOccluded = false;
		Go to the next iteration.
    } else {
		if (source.isPreviouslyOccluded == false)
            source.isOcclusionStatusChanged = true;
		else
            source.isOcclusionStatusChanged = false;
            source.isPreviouslyOccluded = true;
	}

	initializeEQs(diffrItemInitialEQs, 1.0);

	if ((source.isOcclusionStatusChanged == true
		|| (updateCounter + itemCounter)%updateRate == 0)) {
    
		validPaths.clear();
		updateValidPaths(validPaths); 
		// run the processes to update validPaths in clause 6.6.10.4.1.5
	}

	createDiffrTypeRIs(validPaths);
	itemCounter++;
}

updateCounter++;

[bookmark: _Toc117076359][bookmark: _Toc131497380][bookmark: _Toc132126384][bookmark: _Toc132225953][bookmark: _Toc135210141][bookmark: _Toc166076626]Voxel-based occlusion and diffraction
General
The voxel-based occlusion stage provides occlusion information with respect to a direct path (i.e., a line-of-sight) from the audio source to the listener. The voxel-based diffraction stage provides the information required for generating additional diffracted sounds around occluding objects. The diffraction stage uses information that shall be provided by the occlusion stage.
Data elements and variables
VoxDataMatrix	Voxel scene data 3D matrix
	Diffraction map 2D matrix
	Voxel scene bounding box
	Listener position coordinates
	Listener voxel (enclosing ) grid indices,
where 
	Listener adjacent (neighboring)  grid indices
	Set of voxels adjacent to the listener voxel 
	Audio source position coordinates
	Audio source voxel (enclosing ) grid indices,
where  
	Audio source reference point on the voxel scene bounding box 
	Audio source reference voxel (enclosing ) grid indices,
where 
	General position coordinate for  = {, , }
	General voxel (enclosing ) grid indices,
where 
	Voxel size scalar
	Global coordinates of the first corner point defining the voxel scene,
where  = voxScenePosS
	Global coordinates of the second corner point defining the voxel scene,
where  = voxScenePosE
	Number of voxels for each voxel scene dimension,
where  = voxSceneDimensions
	Primary diffraction audio source data for 
	Primary diffraction audio source data for 
	Secondary diffraction audio source data for 
	Primary diffraction source position coordinates
	Secondary diffraction source position coordinates
 	Diffraction source azimuth angle in respect to the listener position 
, 	Diffraction source azimuth angle in respect to the listener position 
	Azimuth angle between  and 
 	Virtual diffraction source elevation angle in respect to the listener position 
	Estimation for the total diffraction path length between listener  and audio source  positions
	Direct distance between the listener  and audio source  positions
	Diffraction path length between the listener voxel  and audio source reference voxel 
	Distance between audio source reference point  and audio source  positions the outside the voxel scene bounding box 
	Listener-to-occluder distance
	Ordered set of voxels intersected by the line-of-sight segment (, )
	First closest to the listener occluding voxel position coordinates on the line-of-sight voxel set 
	Ordered set of voxels approximating the shortest path from  to 
	Set of voxels representing corner voxels on the diffraction map
	Voxel on the diffraction path  for obtaining the diffracted source azimuth  value
 	Voxel on the diffraction path  for obtaining the diffracted source azimuth  value
	Direct occlusion effect recovery control value, where
= voxSceneOcclusionRecoveryValue[i]
if voxSceneOcclusionRecoveryFlag[i] == 1, 
= 1 if voxSceneOcclusionRecoveryFlag[i] == 0
	Diffracted source attenuation effect control value, where = voxSceneDiffractionEffectControlValue
if voxSceneDiffrationEffectControlFlag == 1, 
= 0 if voxSceneDiffrationEffectControlFlag == 0
	Voxel-material transmission value controlling occlusion effect before the first closest to the listener occluding voxel 
 	Voxel-material transmission value controlling occlusion effect after the first closest to the listener occluding voxel 
f	Interpolation factor for the direct occlusion gain
	Estimation for the diffraction angle
	Index for the diffraction gain lookup table
	Direct occlusion attenuation gain
	Diffracted source attenuation gain
	Diffracted source attenuation path effect gain contribution
	Maximal value of the diffracted source attenuation gain
	Gain for primary diffraction audio source
	Gain for secondary diffraction audio source
	Gaussian gain weight matrix
	Single-voxel occluding element
	Set of voxels adjacent to the single-voxel element 
 	Threshold value for the diffraction azimuth angle difference between the corresponding “primary” and “secondary” diffraction azimuth directions
 	Distance from the ray origin and ray box intersection point for the ray box intersection algorithm


Stage description
[bookmark: _Ref157434586]Direct occlusion 
Listener position handling
The following processing steps shall be executed for each listener position coordinates  update and voxel-based scene VoxDataMatrix update.
· Get listener voxel  indices for the listener position coordinates  using Cartesian coordinate  to voxel grid indices  conversion equation (192), for :
	
	[bookmark: _Ref116482430](192)


	where:
	
	(193)


· Check the listener voxel  type:
· if voxel type is associated with a sound occluding material (i.e., not sound transmitting media): the sound transmission gains (associated with  voxel material transmission coefficients) shall be combined with all corresponding audio source gains
Audio source position handling
The following processing steps shall be executed for each specified audio source position  update.
· Determine whether the audio source position  is inside of the voxel scene bounding box  or not, where  shall be defined as follows:
	
	[bookmark: _Ref158726360](194)


· if  :		get the source reference voxel  indices, using equation (192), for the line-of-sight intersection position coordinates , determined by the ray box intersection algorithm (which determines), calculating an intersection point of the line (, ) with the voxel scene bounding box ; set the distance between the audio source  and scene bounding box :
	
	(195)

	
	(196)


· if  :		get the audio source voxel  indices, using equation (192), for the audio source position coordinates  coordinates; set zero distance between the audio source  and scene bounding box :
	
	(197)


set the following variables:
	
	(198)

	
	(199)


check the audio object voxel  type and if voxel type is associated with a sound occluding material (i.e., not sound transmitting media) then combine the sound transmission gains (associated with  voxel material transmission coefficients) with the corresponding audio source gains.

The following pseudocode represents the ray box intersection algorithm for :

// ----------------------------------------------------------------------------------------
// Ray box intersection algorithm
//
// Input
//  origin, direction: 3D vectors describing the ray 
//  vmin, vmax: ordered 3D corners of the bounding box
// Output
//  tmin = (txmin, tymin, tzmin): distance from the ray origin
//
[bookmark: _Hlk138754641]rayBoxIntersection(origin[3], direction[3], vmin[3], vmax[3])
{
  if (direction[0] >= 0){
    txmin = (vmin[0] - origin[0]) / direction[0];
    txmax = (vmax[0] - origin[0]) / direction[0];
  } else {
    txmin = (vmax[0] - origin[0]) / direction[0];
    txmax = (vmin[0] - origin[0]) / direction[0];
  }
  if (direction[1] >= 0){
    tymin = (vmin[1] - origin[1]) / direction[1];
    tymax = (vmax[1] - origin[1]) / direction[1];
  } else {
    tymin = (vmax[1] - origin[1]) / direction[1];
    tymax = (vmin[1] - origin[1]) / direction[1];
  }
  if ((txmin > tymax) || (tymin > txmax)){ txmin = -1.0; } // No ray/box intersection
  if (tymin > txmin){ txmin = tymin; }  
  if (tymax < txmax){ txmax = tymax; }
  if (direction[2] >= 0){
    tzmin = (vmin[2] - origin[2]) / direction[2];
    tzmax = (vmax[2] - origin[2]) / direction[2];
  } else {
    tzmin = (vmax[2] - origin[2]) / direction[2];
    tzmax = (vmin[2] - origin[2]) / direction[2];
  }
  if ((txmin > tzmax) || (tzmin > txmax)){ txmin = -1; } // No ray/box intersection
  if (tzmin > txmin){ txmin = tzmin; }
  if (tzmax < txmax){ txmax = tzmax; }
}

[bookmark: _Ref131063999]Voxel grid line-of-sight traversing
· Get the ordered set  of all voxels intersected by the listener-to-source line-of-sight segment (, ) by applying the segment traversal algorithm on the 3D voxel grid VoxDataMatrix
· Check the line-of-sight voxel  types: 
· if all voxel types are not occluding (e.g., sound transmitting media): no further attenuation shall be applied and the sub-sequent occlusion and diffraction stages shall be skipped
· otherwise: the direct occlusion attenuation gain shall be applied as follows
[image: A diagram of a green cube
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Figure 42 – Example of the voxel scene data 3D matrix, audio source and listener positions

The following pseudocode represents the segment traversal algorithm on the 3D voxel grid:

// ----------------------------------------------------------------------------------------
// Voxel traversal algorithm
//
// Input
//  gridSize: 3D vector describing the grid size 
//  voxelSize: Size of voxel
//  minBound, maxBound: Ordered 3D corners of the bounding box
//  listenerPos: 3D vector describing the listener position
//  objectPos: 3D vector describing the audio source position
//  listenerPosIdx: 3D voxel index of the listener
//  objectPosIdx: 3D voxel index of the audio source
// Output
//  N: Number of voxels intersected by the listener-to-source
//  voxelIdx: N dimensional vector of voxels intersected by the listener-to-source 
//
voxelTraversal(gridSize[3], voxelSize, minBound[3], maxBound[3], listenerPos[3], objectPos[3], listenerPosIdx[3], objectPosIdx[3], voxelIdx[][3])
{
    step[3] = {0, 0, 0};
    tVoxel[3] = {0, 0, 0};
 
    idx[0] = listenerPosIdx[0];
    idx[1] = listenerPosIdx[1];
    idx[2] = listenerPosIdx[2];

    vec[0] = objectPos[0] - listenerPos[0];
    vec[1] = objectPos[1] - listenerPos[1];
    vec[2] = objectPos[2] - listenerPos[2];

    norm = sqrt(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
    dir[0] = vec[0] / norm;
    dir[1] = vec[1] / norm;
    dir[2] = vec[2] / norm;

    for (i = 0; i < 3; i++) {
        if (idx[i] == gridSize[i]) { idx[i] = idx[i] - 1; }
        if (dir[i] >= 0) {
          tVoxel[i] = (idx[i] + 1) / gridSize[i];
          step[i] = 1;
        } else {
          tVoxel[i] = (idx[i]) / gridSize[i];
          step[i] = -1;
        }
     }

     voxelMax[0] = minBound[0] + tVoxel[0] * (maxBound[0] - minBound[0]);
     voxelMax[1] = minBound[1] + tVoxel[1] * (maxBound[1] - minBound[1]);
     voxelMax[2] = minBound[2] + tVoxel[2] * (maxBound[2] - minBound[2]);

     tMax[0] = (voxelMax[0] - listenerPos[0]) / dir[0];
     tMax[1] = (voxelMax[1] - listenerPos[1]) / dir[1];
     tMax[2] = (voxelMax[2] - listenerPos[2]) / dir[2];

     tDelta[0] = size_vox / abs(dir[0]);
     tDelta[1] = size_vox / abs(dir[1]);
     tDelta[2] = size_vox / abs(dir[2]);

     N = 0;
     while (
        (idx[0] * step[0] <= objectPosIdx[0] * step[0]) &&
        (idx[1] * step[1] <= objectPosIdx[1] * step[1]) &&
        (idx[2] * step[2] <= objectPosIdx[2] * step[2]) &&
        (idx[0] <  gridSize[0]) && (idx[0] >= 0) &&
        (idx[1] <  gridSize[1]) && (idx[1] >= 0) &&
        (idx[2] <  gridSize[2]) && (idx[2] >= 0)) {
      
        voxelIdx[N][0] = idx[0];
        voxelIdx[N][1] = idx[1];
        voxelIdx[N][2] = idx[2];
        
        N++;
        if (tMax[0] < tMax[1]) {
          if (tMax[0] < tMax[2]) {
            idx[0] = idx[0] + step[0];
            tMax[0] = tMax[0] + tDelta[0];
          } else {
            idx[2] = idx[2] + step[2];
            tMax[2] = tMax[2] + tDelta[2];
          }
        } else {
        if (tMax[1] < tMax[2]) {
          idx[1] = idx[1] + step[1];
          tMax[1] = tMax[1] + tDelta[1];
        } else {
          idx[2] = idx[2] + step_[2];
          tMax[2] = tMax[2] + tDelta[2];
        }
      }
   }
}
Local and global occluders 
Along the direct path from listener position coordinates  to audio source point , represented by the ordered set of voxels , only two particular voxel types are considered by the direct occlusion modeling. These voxels shall be associated with the occluding material having the transmission coefficients smaller than one to produce an acoustic occlusion effect (hereafter referred to as “occluding voxels”). This occlusion effect shall be modeled either as 
· local 		for 	voxSceneDiffractionEnabledFlag == 0
(i.e., producing direct occlusion effect only)
or 
· global 		for 	voxSceneDiffractionEnabeldFlag == 1
(i.e., producing both direct occlusion and acoustic diffraction effects) 
occlusion mode. The local occlusion mode setting may be used for small scale acoustic obstacles associated with high sound transmission coefficients. The global occlusion mode setting is useful for large scale obstruction associated with significant sound absorption. These mode settings are specified at the encoder side (via scene definition data) per occluding voxel material.
Only the first voxels from  closest to the listener position  indicating local occlusion mode (if any) and global occlusion mode (if any) shall be used to obtain the direct occlusion gain . The direct occlusion gain  shall be calculated by linear interpolation between the corresponding voxel-material transmission values  (i.e., occlusion effect before the first closest to the listener occluding voxel) and  (i.e., occlusion effect after the first closest to the listener occluding voxel):
	
	(200)


The direct occlusion gain  for the audio source  shall be combined with the gains of other rendering stages.
[bookmark: _Ref108097843]The local and global voxel appearance order in respect to set of voxels  determines the values  and  as given in Table 143. The corresponding voxel material transmission coefficients  and  shall be obtained from the bitstream elements containing the transmissive material coefficients.
[bookmark: _Ref116484008]Table 143 – Definition of interpolation coefficients
	Occluding voxel type
	Coefficients for interpolation

	1st voxel
	2nd voxel
	A
	B

	local
	global
	
	

	local
	any other local
	1
	

	global
	any
	1
	



Occlusion effect recovery 
The modeled occlusion effect recovery (i.e., relaxation of the direct occlusion gain  with the distance from the first closest to the listener occluding voxel) shall be achieved by the interpolation factor f obtained using the listener-to-occluder distance  and occlusion effect recovery value  as:
	
	(201)


The interpolation factor f controls the direct occlusion gain  dependency from the listener to occluding voxel distance  calculated as
	
	(202)


 
[image: ]
Figure 43 – Interpolation factor values for different occlusion effect recovery values

The value  shall be specified per each occluding voxel material to control the strength of the occlusion effect spatial relaxation. It determines the how fast the occlusion effect loses its relevance with the distance from an occluding geometry.
[image: ]
Figure 44 – Example of the direct occlusion gain estimation method
[bookmark: _Ref157433546]Diffraction
Diffraction map
The diffraction modeling shall be performed using the diffraction map matrix  (VoxDataDiffractionMap) obtained as described in 6.3.2.1.3.
Corner detection
The following processing steps shall be executed for each update of the diffraction map .
· Get set  of the diffraction map  corner voxels (: VoxDataCornerMap[x][y]) using the following pseudo code (for detecting and removing non-corner voxels):

for (int x = 0; x < voxSceneDimensions[0]; x++) {
	for (int y = 0; y < voxSceneDimensions[1]; y++) {
		VoxDataCornerMap[x][y] = VoxDataDiffractionMap[x][y]
	}
}
for (int x = 1; x < voxSceneDimensions[0]-1; x++) {
	for (int y = 1; y < voxSceneDimensions[1]-1; y++) {
		if (VoxDataDiffractionMap[x][y] == 1) {
			if ((VoxDataDiffractionMap[x-1][y] == 1) && 
				(VoxDataDiffractionMap[x+1][y] == 1)) || 
				((VoxDataDiffractionMap[x][y-1] == 1) && 
				(VoxDataDiffractionMap[x][y+1] == 1)) {
				VoxDataCornerMap[x][y] = 0
			}
		}
	}
}

Diffracted path finding 
· If the information for the diffraction modelling () for the current voxel scene state (i.e., ,  and ) is available in either the memory or the bitstream, it shall be applied. Otherwise, it shall be calculated.
The scene state shall be defined via the input parameters ,  and  for the function DiffractionInfoCalculation(). It includes the path-finding algorithm, voxel  selection and path length  estimation steps for obtaining the diffraction path information, see Figure 45:
	 
	(203)


The diffraction path information, if it is available, shall be directly obtained from the memory cache or bitstream element voxSceneDiffractionPreComputedPathData() for the corresponding scene state and applied without the function DiffractionInfoCalculation() call.

[image: ]
[bookmark: _Ref112659435]Figure 45 – Example of the scene state with pre-computed diffraction path information

· Get ordered set of voxels  representing an approximation of the shortest path between the listener  and audio source reference  voxels by running VoxDataDiffractionMap grid path-finding algorithm. 
The following pseudocode represents the path-finding algorithm on the 2D voxel grid:
// ----------------------------------------------------------------------------------------
// Variables used for path-finding algorithm
struct jps_node
{
  x; y; // coordinates of the node
  g; h; // Euclidean and Manhattan distances of the node to active node
  f; // sum of g and h distance
  opened; closed; // node opened and closed flags
  struct jps_node* parent; // parent of node
};
vector<vector<jps_node>> jps_grid_nodes: // 2D matrix of size voxSceneDimensions
vector<jps_node*> opened_list, closed_list: // opened and closed node lists
vector<pair<int, int>> neighbors: // neighbor list

// ----------------------------------------------------------------------------------------
// Path-finding algorithm (jump point search)
//
// Input
//  startX, startY: listener 2D voxel coordinates
//  endX, endY: audio source 2D voxel coordinates
//  VoxDataDiffractionMap: 2D matrix of size voxSceneDimensions
// Output
//  pathFound: indicating if there is a path from the listener to the audio source 
//  path: N dimensional vector containing the path from listener to the audio source
//
findPath(startX, startY, endX, endY, VoxDataDiffractionMap[][], vector<int>& path)
{
  counter = 0;
  pathFound = false;

  path.clear();
  opened_list.clear();
  closed_list.clear();

  startNode = getNodeAt(startX, startY);
  endNode = getNodeAt(endX, endY);

  // Check if start or end node is blocked 
  if (isWalkableAt(startNode->x, startNode->y, VoxDataDiffractionMap) &&
      isWalkableAt(endNode->x, endNode->y, VoxDataDiffractionMap)) {

    startNode->opened = true;
    opened_list.push_back(startNode);

    // List is empty when no successors have been found
    while (opened_list.size()) { 

      activeNode = m_opened_list.back();
      activeNode->closed = true;

      opened_list.pop_back();
      closed_list.push_back(activeNode);

      if (activeNode->x == endNode->x && activeNode->y == endNode->y) {
        backtracePath(activeNode, path);
        pathFound = true;
        break;
      }
      IdentifySuccessors(activeNode, endX, endY, VoxDataDiffractionMap);
      counter++;
    }
  }
}

// ----------------------------------------------------------------------------------------
// Generate the path from the active node to the start node by adding all node coordinates	 
// of the jump points to the path and add intermediate points between the jump points with // a line drawing algorithm
backtracePath(jps_node* activeNode, vector<int>& path)
{
    vector<pair<int, int>> path_points;
    path_points.push_back(make_pair(activeNode->x, activeNode->y));
    while ((activeNode = activeNode->parent) != NULL) {
        path_points.push_back(make_pair(activeNode->x, activeNode->y));
    }
    vector<pair<int, int>> smooth_path;
    it = path_points.begin();
    end = path_points.end();
    vector<pair<int, int>> lastJump;
    smooth_path.push_back(*it);

    while (it != end) {
        next = it + 1;
        while (next != end) {
            vector<pair<int, int>> line;
            interpolateLine(it->first, it->second, next->first, next->second, line);
            if (line.size() != 0) {
                lastJump.clear();
                copy(line.begin() + 1, line.end(), back_inserter(lastJump));
                next++;
            } else {
                next--;
                break;
            }
        }
        for (point : lastJump) { smooth_path.push_back(move(point)); }
        it = next;
    }
    for (point : smooth_path) {
        path.push_back(point.first);
        path.push_back(point.second);
    }
}

// ----------------------------------------------------------------------------------------
// Run a jump point search in direction of each available neighbour, adding any open nodes
// found to the open list; returns all the nodes have found jumpable from the activeNode
identifySuccessors(jps_node* activeNode, endX, endY, vector<jps_node*> opened_list)
{
    findNeighbors(activeNode);
    for (neighbor : neighbors) {
        jx = neighbor.first;
        jy = neighbor.second;
        jumpPoint = jump(jx, jy, activeNode->x, activeNode->y, endX, endY);
        if (jumpPoint) {
            jumpNode = getNodeAt(jx, jy);
            if (jumpNode->closed) { continue; }
            d = euclidean(abs(jx - activeNode->x), abs(jy - activeNode->y));
            ng = activeNode->g + d;
            if (!jumpNode->opened || ng < jumpNode->g) {
                jumpNode->g = ng;
                if (jumpNode->h == 0) {
                    jumpNode->h = manhattan(abs(jx - endX), abs(jy - endY)); 
                }
                jumpNode->f = jumpNode->g + jumpNode->h;
                jumpNode->parent = activeNode;
                if (!jumpNode->opened) {
                    jumpNode->opened = true;
                    opened_list.push_back(jumpNode);
                }
                // keep open list sorted by f value in descending order
                for (i = m_opened_list.size() - 1; i > 0; i--) {
                    if (opened_list[i]->f > opened_list[i - 1]->f) {
                        swap(opened_list[i], opened_list[i - 1]);
                    }
                }
            }
        }
    }
}

// ----------------------------------------------------------------------------------------
// Search recursively in the direction [px, py] from [x, y], untill a jump point is found
jump(x, y, px, py, endX, endY)
{
    dx = x - px;
    dy = y - py;

    if (!isWalkableAt(x, y)) {
        return false;
    } else {
        if (x == endX && y == endY) { return true; }
    }
    // check for forced neighbors along the diagonal
    if (dx != 0 && dy != 0) { 
        if ((isWalkableAt((x - dx), (y + dy)) && !isWalkableAt((x - dx), y))
            || (isWalkableAt((x + dx), (y - dy)) && !isWalkableAt(x, (y - dy)))) {
            return true;
        }
        // when moving diagonally, check for vertical/horizontal jump points
        xpdx = x + dx;
        ypdy = y + dy;
        if (jump(xpdx, y, x, y, endX, endY) || jump(x, ypdy, x, y, endX, endY)) {
            return true;
        }
    } else { // horizontally/vertically
        if (dx != 0) {
            if ((isWalkableAt((x + dx), (y + 1)) && !isWalkableAt(x, (y + 1)))
                || (isWalkableAt((x + dx), (y - 1)) && !isWalkableAt(x, (y - 1)))) {
                return true;
            }
        } else {
            if ((isWalkableAt((x + 1), (y + dy)) && !isWalkableAt((x + 1), y))
                || (isWalkableAt((x - 1), (y + dy)) && !isWalkableAt((x - 1), y))) {
                return true;
            }
        }
    }
    px = x;
    py = y;
    x = x + dx;
    y = y + dy;

    return jump(x, y, px, py, endX, endY);
}

// ----------------------------------------------------------------------------------------
// Find the neighbors for the active Node. If the node has a parent, prune the neighbors 
// based on the jump point search algorithm, otherwise return all available neighbors.
findNeighbors(jps_node* activeNode)
{
    jps_node* parent = activeNode->parent;
    x = activeNode->x;
    y = activeNode->y;

    neighbors.clear();

    if (parent) {
        px = parent->x;
        py = parent->y;

        dx = (x - px) / max(abs(x - px), 1);
        dy = (y - py) / max(abs(y - py), 1);
        
        if (dx != 0 && dy != 0) { // Diagonal
            if (isWalkableAt(x, (y + dy))) {
                neighbors.push_back(make_pair(x, y + dy));
            }
            if (isWalkableAt((x + dx), y)) {
                neighbors.push_back(make_pair(x + dx, y));
            }
            if (isWalkableAt(x, (y + dy)) || isWalkableAt((x + dx), y)) {
                neighbors.push_back(make_pair(x + dx, y + dy));
            }
            if (!isWalkableAt((x - dx), y) && isWalkableAt(x, (y + dy))) {
                neighbors.push_back(make_pair(x - dx, y + dy));
            }
            if (!isWalkableAt(x, (y - dy)) && isWalkableAt((x + dx), y)) {
                neighbors.push_back(make_pair(x + dx, y - dy));
            }
        } else { // Horizontal / vertical
            if (dx == 0) {
                if (isWalkableAt(x, (y + dy))) {
                    if (isWalkableAt(x, (y + dy))) {
                        neighbors.push_back(make_pair(x, y + dy));
                    }
                    if (!isWalkableAt((x + 1), y)) {
                        neighbors.push_back(make_pair(x + 1, y + dy));
                    }
                    if (!isWalkableAt((x - 1), y)) {
                        neighbors.push_back(make_pair(x - 1, y + dy));
                    }
                }
            } else {
                if (isWalkableAt((x + dx), y)) {
                    if (isWalkableAt((x + dx), y)) {
                        neighbors.push_back(make_pair(x + dx, y));
                    }
                    if (!isWalkableAt(x, (y + 1))) {
                        neighbors.push_back(make_pair(x + dx, y + 1));
                    }
                    if (!isWalkableAt(x, (y - 1))) {
                        neighbors.push_back(make_pair(x + dx, y - 1));
                    }
                }
            }
        }
    } else {
        d0 = false;
        d1 = false;
        d2 = false;
        d3 = false;
        
        if (isWalkableAt(x, y - 1)) {
            neighbors.push_back(make_pair(x, y - 1));
            d0 = d1 = true;
        }
        if (isWalkableAt(x + 1, y)) {
            neighbors.push_back(make_pair(x + 1, y));
            d1 = d2 = true;
        }
        if (isWalkableAt(x, y + 1)) {
            neighbors.push_back(make_pair(x, y + 1));
            d2 = d3 = true;
        }
        if (isWalkableAt(x - 1, y)) {
            neighbors.push_back(make_pair(x - 1, y));
            d3 = d0 = true;
        }
        if (d0 && isWalkableAt(x - 1, y - 1)) {
            neighbors.push_back(make_pair(x - 1, y - 1));
        }
        if (d1 && isWalkableAt(x + 1, y - 1)) {
            neighbors.push_back(make_pair(x + 1, y - 1));
        }
        if (d2 && isWalkableAt(x + 1, y + 1)) {
            neighbors.push_back(make_pair(x + 1, y + 1));
        }
        if (d3 && isWalkableAt(x - 1, y + 1)) {
            neighbors.push_back(make_pair(x - 1, y + 1));
        }
    }
}

// ----------------------------------------------------------------------------------------
// Interpolate line from [x0, y0] to [x1, y1] using Bresenham's algorithm
interpolateLine(x0, y0, x1, y1, vector<pair<int, int>>& line)
{
    line.clear();

    dx = abs(x1 - x0);
    dy = abs(y1 - y0);
    sx = (x0 < x1) ? 1 : -1;
    sy = (y0 < y1) ? 1 : -1;
    err = dx - dy;

    while (true) {
        if (isWalkableAt(x0, y0)) {
            line.push_back(make_pair(x0, y0));
        } else {
            line.clear();
            break;
        }
        if (x0 == x1 && y0 == y1) { break; }
        e2 = 2 * err;
        if (e2 > -dy) {
            err = err - dy;
            x0 = x0 + sx;
        }
        if (e2 < dx) {
            err = err + dx;
            y0 = y0 + sy;
        }
    }
}

// ----------------------------------------------------------------------------------------
// Get node at position at [x, y] 
getNodeAt(x, y)
{
    return jps_grid_nodes[x][y];
}

// ----------------------------------------------------------------------------------------
// Check if position at [x, y] is inside the VoxDataDiffractionMap and not blocked
isWalkableAt(x, y)
{
    return (isInsideAt(x, y) && VoxDataDiffractionMap[x][y] == false);
}

// ----------------------------------------------------------------------------------------
// Check if position at [x, y] is inside the VoxDataDiffractionMap
isInsideAt(x, y)
{
    return (x >= 0 && x < voxSceneDimensions[0]) && (y >= 0 && y < voxSceneDimensions[1]);
}

// ----------------------------------------------------------------------------------------
// Calculate Euclidean distance
euclidean(dx, dy)
{
    distance = sqrt(dx * dx + dy * dy);
}

// ----------------------------------------------------------------------------------------
// Calculate Manhattan distance
manhattan(dx, dy)
{
    distance = (dx + dy);
}

If a path is not found (i.e.,  is empty) then all corresponding diffracted source(s) shall be muted. If a path is found (i.e.,  is not empty) then the modelling of the diffracted source(s) shall be performed as follows:
· Select the voxel   , which is close to a ‘visible’ (from the listener position coordinates ) corner voxel belonging to  and causing the path  direction change; if there are more than one such corner, the one furthest away from the listener along the path  shall be selected
· Get the diffraction path length  (=r_path) within the voxel scene bounding box  calculated from the path  (=P_set),voxel size  (=V_size), and direct distance between the listener  and audio source  positions  (=r_direct) using the following pseudo code: 

length_on_grid = 0
for (int i = 0; i < P_set.size – 1; i++) {
	if ((P_set.x[i] != P_set.x[i+1]) && (P_set.y[i] != P_set.y[i+1])) {
		step = sqrt(2)
} else {
		step = 1
}
length_on_grid = length_on_grid + step
}
r_path = max(length_on_grid * voxel_size, r direct)

· When the diffraction path information ,  is obtained for the current scene state , , VoxDataDiffractionMap, this information can be converted to the existing bitstream format to make it accessible to a renderer. The format of the metadata corresponds to the bitstream syntax elements described in 6.2.5. The method for conversion between uncompressed and compressed VoxDataDiffractionMap data representation formats is specified in 6.3.2.1.4.
· The Diffraction Look-Up Table (DLUT) dataset shall be extended for all voxels of the diffraction map   on the line segment  connecting the user position  to the corresponding corner voxel  for a single run of the pathfinding algorithm, see Figure 46.
[image: ]
[bookmark: _Ref125985967]Figure 46 — Examples of DLUT voxels (red) with the same corner Cvox for the scene state , , .

Diffracted source position estimation
· Get the diffracted source azimuth  from listener voxel  and selected voxel :
	
	(204)


· Get the diffracted source elevation  from the listener voxel  and source reference voxel :
	
	(205)


· Get the diffracted source radius from the listener voxel , source reference voxel  and corresponding distances , :
	
	(206)


· Get the direct audio source distance from the listener  and audio source  positions as:
	
	(207)


· Set the virtual diffraction source position coordinates  based on the listener position to correspond to the diffracted source azimuth , elevation  and direct distance :
	
	(208)



[image: ]
Figure 47 – Example of the diffracted source position estimation method
· Get the diffracted source attenuation gain  modelling the total diffracted path effect as:
	
	(209)


where
	
	(210)

	
	(211)


 
· Apply the diffracted energy limitation requiring that the sum of the direct and diffracted energy behind an occluding voxel (causing the diffraction effect) does not exceed the energy before it:
	
	(212)


Get the maximal value  of the diffracted source attenuation gain  () using equation (192) for  as:
	
	(213)


· Set the diffracted source attenuation gain  as:
	
	(214)



Primary and secondary diffraction audio sources
The “primary” and “secondary” diffraction audio source data shall be defined by two sets containing the corresponding virtual diffraction source position and diffracted source attenuation gain. The “primary” diffraction audio source data  shall be defined as:
	
	(215)


The “secondary” diffraction audio source data  shall be obtained using the “primary” data :
	
	(216)


The “secondary” virtual diffraction source position   shall be obtained from the (pre-)computed (or cached) DLUT “primary” data. In contrast to the “primary” diffraction audio source data , the “secondary” diffraction audio source data  is not part of the DLUT data but calculated during the audio rendering process.
The “secondary” diffraction audio source data  is calculated using one of the following two variants of the function , depending on the listener position  and voxel occluding elements causing the acoustic diffraction effect. These methods differ from each other by the following functional dependencies:
(A) “General” method:
	
	(217)


where  data is the “primary” diffraction audio source data for the listener adjacent (neighboring) voxel ; the variable  represents a threshold value for the diffraction azimuth angle difference between the corresponding “primary” and “secondary” diffraction azimuth directions.
(B) “Single-voxel” method: 
	
	(218)


where  is the single-voxel occluding element (causing the acoustic diffraction effect) adjacent to the listener voxel .
Processing steps at the scene initialization and diffraction map update stages
The set   of voxels, for which the “single-voxel” method (B) shall be applied, shall be obtained at the scene initialization and diffraction map  update stages to prepare for the method selection.
The set  of voxels adjacent to the single-voxel occluding element  shall be determined by evaluating the results of application of the following matrix comparison for all diffraction map P values:
	=	,	if 
	(219)


The set  contains all voxels adjacent to all single-voxel occluding elements on the diffraction map P.
[image: ]
Figure 48 — Set  of the voxel neighborhood of the single-voxel element .
Processing steps at the listener or audio source voxel updates
For the listener voxel  the following check shall be performed to select the “secondary” diffraction audio source data estimation method.
(A) “general” method shall be applied if the listener voxel  is not adjacent to the single-voxel occluding element  or the corresponding corner voxel  is far from the listener voxel :
		or		
	(220)


(B) “single-voxel” method shall be applied if the listener voxel  is adjacent to the single-voxel occluding element  and the corresponding corner voxel  is close to the listener voxel :
		and		
	(221)


where the distance  shall be expressed in the number of the voxel size  unites.
“General” method
If the listener voxel  does not belong to the neighborhood voxel set  of any single-voxel occluding element  or the listener voxel  and the corresponding corner voxel  are not adjacent to each other, the following processing steps of the “general” method (A) for calculation of function shall be performed:
· Select one voxel  from the voxel set  of the listener voxel  neighborhood on the diffraction map P.
[image: ]
[bookmark: _Ref135132568]Figure 49 — Set  of the voxel neighborhood of the listener voxel .
The following selection order for the neighbouring voxel  shall be applied:
	, 		 , 		
	(222)

	
	(223)


This results in the following sequence of the neighboring voxel  candidates:
	
 
	(224)


If the “secondary” diffraction audio source data  is not determined, but all voxels  of the neighborhood voxel set  are already processed – define the “primary” diffraction audio source only (without the “secondary” one):
	,		 
	(225)


· Check whether the neighboring voxel  represents a valid candidate for further processing by checking simultaneous fulfilment of the following three conditions:
·  is inside of the diffraction map P dimensions
·  is of the sound transmission media type (i.e., if of the air-type and not an occluder-voxel) 
·  is not in the direct (i.e., un-occluded) view-line from the listener position  to audio source position 
If at least one of these conditions is not fulfilled – this voxel shall be neglected, the next voxel shall be selected from the neighborhood matrix  and this check again shall be repeated.
· Check whether the DLUT data set contains the “primary” diffraction data  for the selected neighboring voxel . If the data exists - retrieve the corresponding corner voxel  value.
· Get the “secondary” diffracted source azimuth angle  from the neighboring voxel  and the corresponding corner voxel  as:
	
	(226)


· Set the “secondary” virtual diffraction source position , if the value of the diffraction azimuth angle difference is bigger than the corresponding threshold value :
	, 		if 
	(227)


If the condition is not fulfilled (i.e., ) – this voxel shall be neglected, the next voxel shall be selected from the neighborhood matrix  and the processing shall be repeated.
[image: ]   [image: ]
[bookmark: _Ref126331101]Figure 50 — Examples of the case (A) where voxels  and  are not adjacent to each other 
(green sectors depict the azimuth difference between primary  and secondary  diffraction directions defined by azimuth angles  and).
The threshold value h determines how much the “secondary” diffraction direction  must differ from the “primary” one  to be considered for the audio rendering. The threshold value h shall be set to 30 degrees:
	
	(228)


· Get the “primary” gprimary and “secondary” gsecondary gains for the diffraction audio sources using the following relationship (for distributing the relative energy between them):
	 
	(229)


The following Gaussian gain weight matrix  applied to the “primary” and “secondary” elements (to ensure total diffraction gain preservation):
	
	(230)


where operation  denotes element-by-element multiplication and
	
	(231)

	
	(232)


where  - if the index  corresponds to the selected neighboring voxel  and  - otherwiese.
Using these two conditions the “primary” gprimary and “secondary” gsecondary gains shall be obtained (depending on wither the neighbouring voxel  corresponds to the upright or diagonal position in respect to the listener voxel ):
	,  if 
	(233)

	, , if 
	(234)


where the distance  shall be expressed in the number of the voxel size unites.
The diffracted source attenuation gains  and  for the “primary”  and “secondary”  virtual diffraction sources shall be combined with the corresponding gains of other audio rendering stages.
“Single-voxel” method
If the listener voxel  belongs to the neighborhood voxel set  of the single-voxel occluding element  and the listener voxel  is adjacent to the corresponding corner voxel , the following processing steps of the “single-voxel” method (B) for calculation of function shall be performed:
· Get the “secondary” diffracted source azimuth :
	
	(235)


where
	
	(236)


The difference between the “primary” and “secondary” diffraction directions shall be always equal to , since the vector  shall be determined by the  degree rotation of the corresponding “primary” diffraction audio source azimuth victor  (azimuth angle between  and ) around the vector  (azimuth angle between  and ) pointing to the single-voxel occluding element  from the listener voxel .
· Set the “secondary” virtual diffraction source position :
	
	(237)


[bookmark: _Ref126330959][image: ]    [image: ] 	
[bookmark: _Ref132105675]Figure 51 — Examples of the case (B) where all voxels  and  are adjacent to each other.
The “secondary” virtual diffraction source shall be always obtained for the “single-voxel” method (B). 
· Get the energy gains for the “primary” gprimary and “secondary” gsecondary diffraction audio sources:
	,	 
	(238)


The diffracted source attenuation gains  and  for the “primary”   and “secondary”  virtual diffraction sources shall be combined with the corresponding gains of other audio rendering stages.


[bookmark: _Toc166076627][bookmark: _Toc135717663]Multi-Path voxel-based diffraction with RasterMaps
General
This section describes an alternative to the diffraction modelling approach specified in 6.6.11.3.2. 
This method is only applicable to static voxel-based scenes.
Static voxel-based scenes are defined as the ones where voxel geometry representation and audio source positions remain unchanged until the end of the rendering process. Dynamic voxel-based scenes are defined as the ones where voxel geometry or audio source positions can be changed during the rendering process.
The Multi-Path Diffraction with RasterMaps method uses diffraction metadata obtained from RasterMap data stored in the bitstream element payloadRasterMap(). It is activated by the presence of the bitstream element payloadRasterMap() and stays active until the end of the rendering process.
The following scenarios are not supported by the  multi-path voxel-based diffraction rendering:
· voxSceneUpdates() is present or 
· voxSceneInstructionsForDiffraction() is present or 
· scene geometry metadata VoxDataMatrix is changed during the rendering process or
· any audio source position is changed during the rendering process.
The following rendering stages can be used in addition for modelling further acoustic effects for static voxel-based scenes:
· direct occlusion modelling (6.6.11.3.1) 
· early reflection modelling (6.6.13)

Data elements and variables
VoxDataMatrix	Voxel scene data 3D matrix
		Voxel scene bounding box
VoxDataDiffractionMap	Diffraction map 2D matrix
		Listener position coordinates
		Listener position in continuous voxel grid domain having floating point components, where , , and  for 
		Listener voxel (enclosing ) grid indices,
where 
		Listener adjacent (neighbouring)  grid indices
		Audio source position coordinates
	Audio source voxel (enclosing ) grid indices,
where  
		Audio source reference point on the voxel scene bounding box 
		Audio source reference voxel (enclosing ) grid indices,
where 
	Voxel size scalar
	Global coordinates of the first corner point defining the voxel scene,
where  = voxScenePosS
	Global coordinates of the second corner point defining the voxel scene,
where  = voxScenePosE
	Number of voxels for each voxel scene dimension,
where  = voxSceneDimensions
	Primary diffraction audio source data for 
	Primary diffraction audio source data for 
	Secondary diffraction audio source data for 
		Primary diffraction source position coordinates
		Secondary diffraction source position coordinates
	Estimation for the total diffraction path length between listener  and audio source  positions
	Diffraction path length between the listener voxel  and audio source reference voxel 
	Continuous diffraction path length between the listener voxel  and static audio source reference voxel 
	Waypoint for multi-layer diffraction path between the listener voxel  and audio source reference voxel 
dl		Euclidian point-line distance for layer l (in voxel units) from the continuous listener position Lf  to the initial segment of the split path section
Stage description
Diffraction map
The diffraction modeling is performed using the static diffraction map matrix  (VoxDataDiffractionMap) obtained as described in 6.3.2.1.3.
Retrieval of diffraction path information from RasterMap data
The multi-layer RasterMap data is stored in the structure rasterMap[s][l]. This data is used to obtain the diffraction path information {, } for the layer l ∈ {0, }. The first layer (l=0) represents the shortest diffraction path; whereas the second layer (l=1) represents an additional diffraction path.
The diffraction path information {, }  is retrieved by iterating over all elements of rasterMap[s][l] as described by the following pseudo code which sets the diffraction path information path_info:
typedef array<int, 3> RasterMapCoord;
typedef array<int, 2> VoxelCoord;
WaypointMatrix waypointMatrix;
// initialize key-value store for RasterMap coordinates
for (int l = 0; l < numRasterMapLayers[s]; l++) {
	for (int v = 0; v < numRasterMapVoxels; v++) {
		int vcX = rasterMap[s][l].voxelCoordX[v];
		int vcY = rasterMap[s][l].voxelCoordY[v];
		int vcL = l;
		int wpX = rasterMap[s][l].waypointX[v];
		int wpY = rasterMap[s][l].waypointY[v];
		int wpL = rasterMap[s][l].waypointL[v];
		waypointMatrix.at(vcX, vcY, vcL) = { wpX, wpY, wpL };
	}
}
// extract diffractions paths
for (int l = 0; l < numRasterMapLayers[s]; l++) {
	for (int v = 0; v < numRasterMapVoxels; v++) {
		int vcX = rasterMap[s][l].voxelCoordX[v];
		int vcY = rasterMap[s][l].voxelCoordY[v];
		int vcL = l;
		RasterMapCoord vc = { vcX, vcY, vcL };
		vector<RasterMapCoord> path = waypointMatrix.getPath(vc);
		RasterMapCoord vcSrc = path.back();
		RasterMapCoord vcCorner = path.front();
		// convert zero-indexed values to one-indexed voxel coordinates
		VoxelCoord L_vox = { vcX + 1, vcY + 1 };
		VoxelCoord S_vox = { vcSrc[0] + 1, vcSrc[1] + 1 };
		VoxelCoord C_vox = { vcCorner[0] + 1, vcCorner[1] + 1 };
		// compute path length
		float r_path = waypointMatrix.getPathLength(vc, path);
		// RasterMap layer index
		int layer = vc[2];
		int corner_layer = vcCorner[2];
		// add path to cache
		path_info.at(L_vox, S_vox, layer) = { C_vox, r_path, corner_layer };
	}
}

where s denotes the RasterMap  source index; path_info denotes the diffraction path information of a given sub-scene and where the functions waypointMatrix.getPath(vc) and waypointMatrix.getPathLength(vc, path) are defined as: 
vector<RasterMapCoord> WaypointMatrix::getPath(RasterMapCoord pos)
{
    vector<RasterMapCoord> path;
    RasterMapCoord wp = at(pos);
    while (pos != wp) {
        pos = wp;
        wp = at(wp);
        path.push_back(pos);
    }
    return path;
}

float WaypointMatrix::getPathLength(RasterMapCoord pos, vector<RasterMapCoord>& path)
{
    float length = 0.f;
    for (const RasterMapCoord& wp : path) {
        float delta_x = float(wp[0] - pos[0]);
        float delta_y = float(wp[1] - pos[1]);
        length += sqrtf(delta_x * delta_x + delta_y * delta_y);
        pos = wp;
    }
    return length;
}

Estimation of the diffraction source positions
The following processing steps are executed for each listener position coordinates  update:
· Get the diffracted source azimuth  from listener voxel  and selected voxel :
	
	(239)


· Get the diffracted source elevation  from the listener voxel  and source reference voxel :
	
	(240)


· Get the direct audio source distance from the listener  and audio source  positions as:
	
	(241)


· Set the virtual diffraction source position coordinates  based on the listener position to correspond to the diffracted source azimuth , elevation  and direct distance :
	
	(242)

	
	


Estimation of the diffraction source gains
The following processing steps are executed for each listener position coordinates  update:
· Get listener voxel  indices for the listener position coordinates  using Cartesian coordinate  to voxel grid indices  conversion equation (192), for :
	
	(243)


	where:
	
	(244)


· Get continuous listener position  as:
	
	(245)


The continuous listener position  is used to compute the continuous path length :
	
	(246)


where
	
	(247)


· Get the diffracted source radius from the listener position coordinates , source reference voxel , the continuous path length  and corresponding distance :
	
	(248)


· Get the diffracted source attenuation gain  modelling the total diffracted path effect as:
	
	(249)


where
	
	(250)

	
	(251)



Crossfading of multi-path diffraction sources
If two diffraction paths are rendered for a sound object, then individual layer gains are computed. For computing these layer gains, the diffraction paths are determined for both layers by back tracing the points. If all paths are complete, i.e. can be back-traced to Svox, then the split path sections of these paths are determined by reverting the paths and removing those segments which are common for all paths.
The following algorithm is applied to check, if a reversed path denoted as seq, i.e. first element is the listener voxel coordinate, with tail_idx being the split point of the diffraction paths is convex:
typedef array<int, 2> VoxelCoord;
bool path_is_convex(VoxelCoord seq[], int tail_idx)
{
    if (tail_idx < 3) {
        return true;
    }
    int dx1 = seq[1][0] - seq[2][0];
    int dy1 = seq[1][1] - seq[2][1];
    int dx2 = seq[0][0] - seq[1][0];
    int dy2 = seq[0][1] - seq[1][1];
    int ref_val = dy1 * dx2 - dx1 * dy2;
    int ref_sign = (ref_val > 0) - (ref_val < 0);
    for (int n = 3; n <= tail_idx; n++) {
        dx1 = seq[n - 1][0] - seq[n][0];
        dy1 = seq[n - 1][1] - seq[n][1];
        dx2 = seq[n - 2][0] - seq[n - 1][0];
        dy2 = seq[n - 2][1] - seq[n - 1][1];
        int test_val = dy1 * dx2 - dx1 * dy2;
        int test_sign = (test_val > 0) - (test_val < 0);
        if ((test_sign != 0) && (test_sign != ref_sign)) {
            return false;
        }
    }
    return true;
}

If all split path sections are convex, the Euclidean point-line distance dl (in voxel units) from the continuous listener position Lf  to the initial segments of the split path sections are determined as illustrated in Figure 52. The distances dl yield the unnormalized layer gains  
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where
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If not all split path sections are convex, the following unnormalized layer gains   are used:
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where limit(y, [ymin, ymax]) denotes a limitation to the range [ymin, ymax].
	, 
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[bookmark: _Ref157761859][bookmark: _Ref157761851]Figure 52 - Distances d0 and d1 to the initial segments of the split path sections
The final layer gains  are computed by applying the following normalization that corresponds approximately to a 4.5dB level summing law:
	
	(257)

	
	(258)


where:
	,   
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The final layer gains  are computed as
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where:
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[bookmark: _Ref157434653][bookmark: _Toc166076628]Voxel-based early reflections
General
The Voxel-based Early Reflection stage provides acoustically relevant reflection information with respect to the audio source(s) position(s), listener position and reflective geometry description. This stage utilizes the scene voxel geometry data to compute first order reflections from reflecting voxel elements. The segment traversing algorithm [16] on the 3D voxel grid (used for voxel-based occlusion modeling) shall be used for checking the visibility of potential propagation paths from the sound sources to the listener. The Voxel-based Early Reflection stage uses reflection pathlength and material reflection coefficients to model the corresponding reflected sound attenuation. This stage doesn’t need any pre-computed data transmitted from the encoder. This allows to render early reflections in real time in dynamically updatable and complex geometric environments.
Data elements and variables
VOX	Voxel scene data 3D matrix
	Listener position coordinates
	Audio source position coordinates
	Maximum number of the audio sources for the reflection modelling
	Uniform angular sectors for the reflection modelling 
	Sector angular size
	Number of the ray directions for the volumetric ray marching algorithm
, 	Set of the ray directions for the volumetric ray marching algorithm
	Number of the audio sources representing reflections
, 	Set of the ray directions for the volumetric ray marching algorithm
	Set of the ray-voxel collision voxels
	Set of the “air”-type voxel prior the first ray-voxel collision “material”-type voxel  on the line 
	Sub-set of the ray-voxel collision voxels  corresponding to the considered reflection trajectory path lengths
	Sub-set of the ray-voxel collision voxels  corresponding to the un-occluded reflection trajectories 
 	Reflection trajectory length component for the segment 
	Reflection trajectory length component for the segment 
 , 	Spherical coordinates of all virtual image sources contributing to the reflection modelling
	Reflection attenuation gains for all image sources contributing to the reflection modelling
	Frequency dependent distance attenuation for the segment 
	Frequency dependent reflection coefficients
 	Rendered audio sources for the reflection modelling
	Spherical coordinates of the rendered audio sources  
	Reflection attenuation gains for the rendered audio sources 
	Early reflection gain adjustment function for indoor/outdoor environment types
	The indoor environment type characterization function
	Indoor environment type early reflection tuning gain obtained from voxReflectionEarlyTuningIndoorGainDb
	Outdoor environment type early reflection tuning gain obtained from voxReflectionEarlyTuningOutdoorGainDb
	Number of early reflection ray hits 
	Number of all considered early reflection rays

Stage description
Initialization of acoustic reflection number and ray direction pattern
The following processing steps shall be executed at the (sub-)scene initialization stage to prepare for the dynamic early reflection modelling.
· Set the number  of clusters for the modelled early reflection incoming directions. The variable  is the audio renderer configuration parameter obtained from the bitstream element voxReflectionNumClusters. The value of  shall be used as the default parameter (for voxReflectionNumClustersPresentFlag == 0). It corresponds to the maximum number of virtual audio sources representing acoustically relevant early reflections.
· Set the uniform angular sector clusters  as:
	, 	
	(262)
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Figure 53 — Uniform angular sectors (clusters) for early reflection incoming directions.
where the angular sector size  defined as:
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· Set the number  of the ray directions for the volumetric ray marching algorithm. The variable   is the audio renderer configuration parameter.
· Set the considered ray directions  for the volumetric ray marching algorithm as:
	
	(264)

	[image: ]
	[image: ]


Figure 54 — All possible 26 ray directions  on the 3D voxel grid (right) 
and axis aligned projection view (left).
Processing steps at the listener or audio source updates
The following processing steps shall be executed for each listener position  and/or specified audio source position  updates.
· If the information for the early reflections modelling (i.e.,  and ) for the current voxel scene state (i.e., ,  and VOX) is available, it shall be applied. Otherwise, it shall be calculated.
· Get the origin points  on the line segment  connecting the audio source  and listener  positions to run the volumetric ray marching algorithm:
	,		
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The set of points  splits the segment  into  equal parts, where the variable  is the audio renderer configuration parameter obtained from the bitstream element voxReflectionNumOrigins. The value of   shall be used as the default parameter (for voxReflectionNumOriginsPresentFlag == 0). The set  includes only points located inside of the voxel scene bounding box  defined by equation (194).
[image: ]  [image: ]
Figure 55 — Example of reflecting voxel-based geometry (left) and origin points for the volumetric ray marching algorithm (right).
· Get the ray-voxel collision set of voxels  for each considered ray and origin point  as: 
	 
	(266)


where  and . 
The voxel-based audio scene geometry representation VOX contains all acoustically relevant reflecting geometry elements associated with the corresponding material reflection coefficients.
[image: ]  [image: ]
Figure 56 — Example of the considered ray directions for the ray marching algorithm (left) and ray marching algorithm outcome of one origin point (right).
· Get the trajectory  path length components  and  as:
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· Get the voxel sub-set  corresponding to the considered reflection trajectory path lengths:
			if
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Discard all trajectory candidate  from consideration, which results in too short or too long trajectory paths:
			if
	(270)


where the variables  and are the audio renderer configuration parameters.
· Get the “reflecting” voxel sub-set  corresponding to the un-occluded reflection trajectories  by checking the “direct visibility” condition for the following two line-segments: 
			if 
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where  is the “air”-type voxel prior the first ray-voxel collision “material”-type voxel  on the line .
The trajectory candidate  shall be considered for early reflection modelling if both segments go only through the sound propagation “air”-type voxel(s). If at least one of two following line-segments are blocked (or separated) by any “material”-type occluding voxel(s), then the trajectory   and position  shall be discarded from the early reflection modelling:
			if  
	(272)
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Figure 57 — Example of the positive (left) and negative “direct visibility” condition check (right).
· Get the spherical coordinates of all virtual image sources contributing to the reflection modelling:
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· Get the corresponding reflection attenuation gains for all image sources as:
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where the frequency dependent values  accounts for the distance attenuation between the audio source  and reflecting voxel element  positions and the values  accounts for reflection energy absorption obtained from the material reflection coefficients:
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where the value  corresponds to the material reflection property of the voxel .
· Get the coordinates of the audio sources  and the reflection attenuation gains  as:
	, 		
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where the spherical coordinates shall be obtained by image sources azimuth clustering and averaging:
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where  and the values  correspond to the number of all image sources contributing to the considered early reflection sector .
The gain  is the reflection level tuning parameter (obtained from earlyTuningGain). The gain is the reflection level alignment parameter (to align reflection levels of voxel and mesh reflection modelling modes).
Audio rendering of obtained early reflections
All calculated early reflections  for all audio sources shall be rendered as individual render items
	
	(283)


if voxReflectionSectorDownmixFlag == 0; or as downmixed render items
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if voxReflectionSectorDownmixFlag == 1.
where  are all early reflections  for all audio sources belonging to the cluster .
The audio rendering of all obtained audio sources  shall be performed using the attenuation gains  applied to the corresponding weighted early reflection downmix signal(s).
Early reflection gain adjustment to environment type
The early reflection gain adjustment function  is obtained as:
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where the indoor environment characterization function  is obtained by the ratio between the number of early reflection ray hits  and the number of all considered rays :
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[bookmark: _Toc117076360][bookmark: _Toc131497381][bookmark: _Toc132126385][bookmark: _Toc132225954][bookmark: _Toc135210142][bookmark: _Toc166076629][bookmark: _Hlk165983781]Metadata culling
General
In the Metadata Culling stage, RIs that become inaudible due to very low gain or EQ (e.g. because of a strong distance attenuation or occlusion) are deactivated to save computations that would otherwise occur in subsequent stages. The audio signal itself is not analysed in this stage. 
In addition, Reflection RIs that become perceived as a part of their parent Primary RIs due to the precedence effect can be also deactivated and culled. This does not apply to RIs of type ListenerVoice since the precedence effect can be prevented by tuning the level of its direct sound down or turning it completely off.
Furthermore, the calculation and application of the directivity filter gains shall be skipped in the Directivity stage (as described in 6.6.16) if the corresponding RIs are fulfilling culling conditions in the Metadata Culling stage.
Data elements and variables
gainCullingThreshold 	minimum per-band gain value to keep RI activated, configured from bitstream parameter to a value between -100 dB and -30 dB.
enableCullingReflectionRI	A boolean flag that enables or disables the Reflection RI culling.
timeDiff	time difference between Primary RI and Reflection RI at the listener’s position in ms.
gainThresh	gain threshold for Reflection RI culling in dB.
Ggr		global gain of Reflection RI in linear scale
Geqr	averaged EQ gain of Reflection RI in linear scale.
Gd		dispersion filter gain in linear scale.
Ggp		global gain of Primary RI in linear scale
Geqp	averaged EQ gain of Primary RI in linear scale
gainDiff	gain difference between Primary RI and Reflection RI at the listener’s position in dB
Stage description
[bookmark: _Hlk132209104]Run-time configuration of culling parameter
It is possible to override the culling parameters gainCullingThreshold and loudnessCullingThreshold from a local renderer configuration parameter. If the local configuration parameter value is not set, the bitstream value is used. Further, sources shall be excluded from processing if the corresponding attribute is set (i.e., objectSourceNoCulling, channelSourceNoCulling, hoaSourceNoCulling).
[bookmark: _Ref165892276]Gain-based culling of RIs
Only RI types Primary, Representative, Reflection, Portal, HOA, Diffraction are considered.
Only RIs without extent are considered.
For each of those RIs, the EQ band with the maximum amplification value is found. This value is multiplied by the overall gain value of the RI. If the resulting value is below gainCullingThreshold, the RI is deactivated. When the value exceeds the threshold again, the RI is re-activated.
[bookmark: _Ref162966879]Loudness-based culling of RIs
In addition to the gain-based culling mechanism described in 6.6.14.3.2 a loudness-based culling mechanism is available. With respect to processed RIs, the same restrictions as in 6.6.14.3.2 apply.
Loudness interface
The renderer shall provide an interface to accept generic loudness data (broadband) per audio stream from an external source (e.g., MPEG-H metadata). The exact nature of the loudness data (e.g., measurement method, system) is out of scope of this specification.
service loudness_interface {
    i32 update(1: i32 audio_stream_id, 2: double loudness_db),
}
Where:
· audio_stream_id: Unique identifier of the audio stream, i.e., audioStreamId.
· loudness_db: Loudness value in dB (e.g., derived from MPEG-D/H metadata). The loudness attribute of the corresponding source(s) shall be updated accordingly. The loudness value shall remain valid until another update is received. 
If no loudness values are available, the render-item shall be excluded from loudness-based processing.
Processing
The culling mechanisms described in 6.6.14.3.2 and 6.6.14.3.3 shall be combined in a two-step process as follows:

// look up table for item gain calculation
std::map<int, float> itemGain;

// first loop, calculate item gains and max item gain (incl. loudness factor)
{
  float maxItemGain = 1.0e-10f;

  for (auto& item : renderList.items) {
    // only HOA, portal, primary and directly derived render items are processed
    if(item->type != Primary || Representative || Reflection || Portal
      || Diffraction)
      continue;      

    // do not process extended items
    if(item->extent)
      continue;

    // do not process orphaned items
    if(item->status == Orphaned)
      continue;
        
    // do not process items with “no culling” attribute 
    if(item->aparams & NoCulling)
      continue;
 
    // calculate minimal attenuation of gain and EQ combined
    float maxBandGain = *std::max_element(item->eq.begin(), item->eq.end());
    itemGain[item->idx] = maxBandGain * item->gain;

    // skip maxItemGain calculation if no loudness information is available
    if(!item->loudness.has_value())
      continue;
  
    If (item->status != ItemStatus::Inactive && 
       itemGain[item->idx] * item->loudness.value() > maxItemGain)
     maxItemGain = itemGain[item->idx] * item->loudness.value()
}

// second loop, culling
for (auto& item : renderList.items) {
 // only HOA, portal, primary and directly derived render items are processed
 if(item->type != Primary || Representative || Reflection || Portal
   || Diffraction)
   continue;   

 // do not process extended items
 if (item->extent)
   continue;

 // do not process orphaned items
 if (item->status == Orphaned)
      continue;
  // do not process items with "no culling" attribute 
  if (item->aparams & NoCulling)
    continue;

  // get item status
  auto& deactivate = item->getStateOrCreate<ItemState>().deactivate;

  bool freshActivation = false;

  // only perform deactivation check if item status has changed
  if (item->changed & (Gain | Loudness | Eq | Status)) {

    // if attenuation is below absolute threshold (default -60dB), or
    // attenuation is below relative threshold, deactivate the source

    if (item->status != Inactive && (itemGain[item->idx] < DeactivationThreshold
      || (item->loudness.has_value() 
      && itemGain[item->idx] * item->loudness.value() / maxItemGain < 
      DeactivationThresholdRel))) {
      deactivate = true;
    } else {
      if (deactivate) {
        freshActivation = true;
      }
      deactivate = false;
    }
  }

  if (deactivate) {
    // deactivate item
    itemStore->deactivate(item.get());
  } else if (freshActivation) {
    // explicitly reactivate item
    item->setStatus(ItemStatus::Active, true); 
  }
}

[bookmark: _Hlk165983861][bookmark: _Hlk165984015]Culling of Early Reflections
For the mesh-based ER RIs, which are created through Sec. 6.6.6, Reflection RI culling process is applied as described below.
Following to the above deactivation process, Reflection RI culling process is performed, if enableCullingReflectionRI is true. However, this process shall be skipped if Voxel ER (Sec. 6.6.13) is used. The Reflection RI culling process is performed as follows. For each of those RIs, if their RI type is Reflection, and it has a parent Primary RI other than type ListenerVoice, and the parent Primary RI is without extent, time difference and sound volume ratio (gain difference in dB) between the RI and its parent Primary (Direct) RI at the listener’s position are calculated. For each of the calculated pairs of time difference and sound volume ratio, the calculated time difference is converted to a corresponding gain threshold, and the calculated sound volume ratio is compared with the gain threshold. If the calculated sound volume ratio is below the gain threshold, such Reflection RI is deactivated. This process is performed in each update cycle.
Time difference at the listener’s position in ms is calculated by the following equation. The distDiff is a difference between distances from Direct RI’s position and Reflection RI’s position to the listener’s position in meter, which are calculated using those positions (coordinates of the points).
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Once the timeDiff is calculated, it is converted to a gain threshold as follows.
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For the cases where timeDiff is equal to or less than 1 ms and larger than 40 ms, gainThresh is not calculated and this culling is not performed. This is because the precedence effect does not occur or negligible when the time difference is outside of the range between 1 ms and 40 ms typically.

Sound volume ratio (gain difference in dB) between Reflection RI and Direct RI at the listener’s position, gainDiff, is calculated using each global gain and averaged EQ gain of the RIs. The global and EQ gains are read from the “gain” and “eq” fields of RI metadata (c.f. Table 141 — RI metadata fields) of those RIs. Therefore, without any calculation, those gains are already available at this stage. Calculation of the averaged EQ gain is performed in A-weighted domain. This is done by multiplying each EQ value by a corresponding A-weighting coefficient. The A-weighting coefficients can be found in the international standard IEC 61672-1:2013 and various national standards relating to the sound pressure level measurement. They are shown in Table 141.
Table 144 — A weighting coefficients (linear scale, 20Hz – 20kHz, 1/3 Octave band)
	Frequency (Hz)
	A-weighting

	20
	0.00299

	25
	0.00582

	31.5
	0.01072

	40
	0.01862

	50
	0.03090

	63
	0.04898

	80
	0.07499

	100
	0.11092

	125
	0.15668

	160
	0.21380

	200
	0.28510

	250
	0.37154

	315
	0.46774

	400
	0.57544

	500
	0.69183

	630
	0.80353

	800
	0.91201

	1000
	1.00000

	1250
	1.07152

	1600
	1.12202

	2000
	1.14815

	2500
	1.16145

	3150
	1.14815

	4000
	1.12202

	5000
	1.05925

	6300
	0.98855

	8000
	0.88105

	10000
	0.74989

	12500
	0.60954

	16000
	0.46774

	20000
	0.34277



A dispersion filter gain, Gd, is further applied to Reflection RI. If the dispersion filter is applied to Reflection RI in the binaural spatializer, a configured dispersion filter gain, which is described in Section 6.6.28.3.4 Dispersion filter generation and processing, is used as Gd as follows. 
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Otherwise, Gd is set to 1.0 in default. The gain difference at the listener’s position is calculated as follows.
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[bookmark: _Ref100936777][bookmark: _Toc117076361][bookmark: _Toc131497382][bookmark: _Toc132126386][bookmark: _Toc132225955][bookmark: _Toc135210143][bookmark: _Toc166076630]Heterogeneous extent
General
The Heterogeneous Extent rendering stage takes care of the rendering of so-called spatially-heterogeneous audio elements, which are audio elements that have an extent and a source signal with more than one audio channel. This includes both object sources with more than one source channel and HOA sources with an extent that are specified to be rendered for listening positions both inside and outside the extent. The rendering uses the provided extent to render a plausible representation of the audio element from any listening position, including both width and height information. 
When the listener position is inside the extent of an audio element, an interior representation is rendered which is in a listener centric format that is rendered as a sound field that surrounds the listener. When the listener is outside of the extent, an exterior representation is rendered using a source-centric format that is rendered so that it appears to radiate from the extent of the audio element. The extent of the audio element serves as the boundary of a spatial region wherein the interior representation is valid. For listening positions within the extent, the rendering is essentially homogeneous, meaning that the same sound field is rendered as the listener moves around inside the extent. E.g., for the example of an HOA source with an extent, the HOA signal is rendered as a 3DoF HOA signal when the listener is inside the extent but when the listener is outside the extent, an exterior representation derived from the HOA signal is rendered so that it has a localizable position and extent.
[image: Diagram
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Figure 58 - A functional overview of the heterogeneous rendering stage
In the case of HOA sources, the exterior representation is derived from the provided interior representation, while for object sources the interior representation is derived from the provided source signals that describe the exterior representation. A smooth transition is provided between the interior and exterior representations within a transition region around the extent, so that the listener can move in and out of the extent without glitches or unnatural behaviour. 
The Heterogeneous Extent rendering stage supports object sources with up to nine channels where the channels represent the spatial information as specified by the input layout parameters. Both user- and object-aligned input layouts are supported. For object sources that lack the spatial information in a dimension, decorrelation is used to synthesize the missing spatial information.
The update function of the heterogeneous rendering stage receives a list of rendering items. For each rendering item that represents an audio element with an extent and has a source signal with more than one channel, a heterogeneousStageItem is created and added to the map heterogeneousStageItems. The heterogeneousStageItem objects keep track of the state of each heterogeneous audio element in the scene. For each heterogeneousStageItem a set of output rendering items are created, which are used to represent the audio element. The original rendering item is deactivated.
Each heterogeneousStageItem has an instance of the class HeterogeneousSource as a member and this is where most of the rendering is done. The function HeterogeneousSource::Update updates the state of each heterogeneous audio element, defines the simplified extent, updates the interior and exterior representations etc. 
State data that is updated in the update function and is needed by the audio thread processBlock function is stored in a DSPItem structure, which can be shared from the update thread to the audio processing thread without causing thread problems. In the audio thread call to processBlock the output signal for each rendering item is calculated.
Data elements and variables
observationFrontVec		Observation coordinate system front vector
observationUpVec		Observation coordinate system up vector
Ox, Oy, Oz		x, y, z components of observationFrontVec	
normalAzimuth		Horizontal angle to the closest normal
closestNormal		The closest outline normal
maxAzimVertex_local		Point on the extent with maximum azimuth angle
minAzimVertex_local		Point on the extent with minimum azimuth angle
maxElevVertex_local		Point on the extent with maximum elevation angle	
minElevVertex_local		Point on the extent with minimum elevation angle
horizontalDirectionVec_local	Vector between maxAzimVertex_local and minAzimVertex_local
displacement_left	Distance from the anchor point to the left edge of the simplified extent
displacement_right	Distance from the anchor point to the right edge of the simplified extent
maxAzim		Azimuth angle to maxAzimVertex_local
minAzim		Azimuth angle to minAzimVertex_local
horizontalAngle	Horizontal angle of horizontalDirectionVec_local
min_distance		Distance from the listening position to the anchor point
verticalDirectionVec_local	Vector between maxElevVertex_local and minElevVertex_local
displacement_top	Distance from the anchor point to the top edge of the simplified extent
displacement_bottom	Distance from the anchor point to the bottom edge of the simplified extent
verticalAngle		Horizontal angle of verticalDirectionVec_local
maxElev	Elevation angle to maxElevVertex_local
minElev	Elevation angle to minElevVertex_local
anchorPoint_relative	Anchor point position relative to the listener
leftEdgePos_relative	Left edge position relative to the listener
rightEdgePos_relative	Top edge position relative to the listener
topEdgePos_relative	Top edge position relative to the listener
bottomEdgePos_relative	Bottom edge position relative to the listener
∆D		Change of relative position of the audio element and the listener				
D		Distance to the extent when calculating effective spatial extent
L		Geometrical size of the extent when calculating the effective spatial extent		
trans_fac[]	Array of transition factors
trans_fac1	Transistor factor controlled by azim_ang
trans_fac2	Transistor factor controlled by elev_ang		
azim_ang	Horizontal opening angle divided by 2
elev_ang	Vertical opening angle divided by 2
ang_st	Angle where the transition starts
ang_end	Angle where the transition ends
ptLineAtt	Gain scaler for transitions between virtual loudspeaker setups
ptLineAmp	Gain scaler for transitions between virtual loudspeaker setups
lin2DimAtt	Gain scaler for transitions between virtual loudspeaker setups
lin2DimAmp	Gain scaler for transitions between virtual loudspeaker setups
gainCompPt	Gain compensation for a one virtual loudspeaker setup
gainCompLine	Gain compensation for a three virtual loudspeaker setup
gainComp2D	Gain compensation for a five virtual loudspeaker setup
g0-g4		Gain adjustments for virtual loudspeakers with index 0-4
midSpeakerPos	Position of the middle virtual loudspeakers
leftToListenerDist	Distance from the listening position to the left edge point
rightToListenerDist	Distance from the listening position to the right edge point 
distanceToExtent	Distance from the listening position to the anchor point. If the listening position is inside the extent, it is negative.
transitionDistance	Distance from the extent where the exterior/interior transition starts
interiorExteriorWeight	Ratio of the interior and exterior in the transition
extraMargin	Extra margin distance from the extent where only the interior representation is used
rearGain	Gain applied to only the rear hemisphere
distToOutline	Distance from the listening position to the outline of the extent
topHeightDiff	Altitude difference of the listening position and top of the extent
topGain	Gain applied to only the top hemisphere
topTransitionDistance	Distance from the top of the extent where the top attenuation starts
bottomGain	Gain applied to only the bottom hemisphere
bottomHeightDiff	Altitude difference of the listening position and the bottom of the extent
bottomTransitionDistance	Distance from the bottom of the extent where the bottom attenuation starts
sout 		Output signal from a virtual microphone
iFRONT, iLEFT, iBACK, iRIGHT	Signals of the interior representation in quadraphonics format
θ		Horizontal angle of a virtual microphone
φ		Vertical angle of a virtual microphone
layerGainTop	Gain of the top layer of a layered quadraphonics form	
layerGainBottom	Gain of the bottom layer of a layered quadraphonics format
layerGainMiddle	Gain of the middle layer of a layered quadraphonics format
micElevOverlap	Controlled cross-feed between the layers in a layered quadraphonics format
sTOP, sMID, sBOTTOM 	Output signal from the top, mid and bottom layers in a layered quadraphonics format
i0-i3 	Signals of the interior representation in FOA format
p	Virtual microphone pattern
C		Distance gain correction 
DS		Distance to the source when calculating the distance gain correction
gtarget	Target distance gain
grendered 	Distance gain of rendered source before distance gain correction
gi 	Overall gain of the rendered signal of virtual loudspeaker i at the listener position
gi,processing 	Gain including any gain applied to the virtual loudspeaker in the heterogeneous source processing before calculating the distance gain correction
gi,distance 	Distance gain for virtual loudspeaker i corresponding to the current distance Di between the listener and virtual loudspeaker i
Di		Distance between the listener and virtual loudspeaker i
distanceGainModel	Choice of distance gain model. 0 means volumetric model, 1 means point-source model 
hasDiffuseness	Flag signalling if the audio element has a diffuseness parameter
diffuseness	Diffuseness of the audio element
azimRange	The horizontal opening angle of an extent as seen from the listening position
elevRange	The vertical opening angle of an extent as seen from the listening position
numOfAzimDivisions	The number of columns in the grid of rays used for detecting cropping occlusion
numOfElevDivisions	The number of rows in the grid of rays used for detecting cropping occlusion
gridShiftCnt	A counter used for calculating the shift of the positions in the ray grid
[bookmark: _Hlk124172055]gridShift 	The shift of the positions in the ray grid
(azimPos, elevPos)	A 2-dimensional position using the local coordinate system of the simplified extent.
gSA,f		The gain for frequency f, for a certain sub area
gn,f		The gain for frequency f, for a certain point of a sub area
horizRays		The number of columns in the grid of rays used for detecting occlusion within a sub area.
vertRays		The number of rows in the grid of rays used for detecting occlusion within a sub area.
(subAreaAzimPos, subAreaElevPos)	A 2-dimensional position using the local coordinate system of the simplified extent.
eqScaler	A gain scaler that is applied to all occlusion EQs to compensate for the cropping occlusion.
activeExtentRatio	The ratio of the area of the modified, “cropped” extent and the original simplified extent.
f1-f6	The occlusion filters for sub areas 1-6.
fTL, fTR, fM, fBL, and fBR	The occlusion filters for each virtual loudspeaker used to render the heterogeneous source.
FS		A matrix of the occlusion filters fTL, fTR, fM, fBL, and fBR.
FO		A matrix of the occlusion filters f1-f6.
MPOINT, MLINE, MPLANE		Mapping matrices for the 1, 2, and 5 speaker setups.
aPOINT, aLINE, aPLANE		Control parameters that control the weight of mapping matrices for the 1, 2, and 5 speaker setups.
modTransDist	The transition distance modified due to occlusion.
occlLeftAngleScaler	A scaling factor that is used to modify the direction of the virtual microphone capturing the left side of the interior representation due to occlusion.
occlRightAngleScaler	A scaling factor that is used to modify the direction of the virtual microphone capturing the right side of the interior representation due to occlusion.
occlTopAngleScaler	A scaling factor that is used to modify the direction of the virtual microphone capturing the top part of the interior representation due to occlusion.
occlBottomAngleScaler	A scaling factor that is used to modify the direction of the virtual microphone capturing the bottom part of the interior representation due to occlusion.


[bookmark: _Ref101275297]Stage description
[bookmark: _Ref99014203]Finding the description points and defining the simplified extent
The rendering of the exterior representation is based on a simplified extent in the form of a plane that represents the extent as observed from the current listening position. The plane is formed by finding the anchor point of the audio element on the extent, which is defined as the point on the extent that is closest to the listening position. Given the anchor point, the observation vector is defined as the vector from the listening position to the anchor point. 
A local coordinate system is defined with the observation vector defining the direction of the front-vector, observationFrontVec. The up-vector, observationUpVec, is then calculated as
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where Ox, Oy and Oz denote the x, y, z components of observationFrontVec.
A special case happens when the listening position is directly above or below the extent, in which case the observation vector would point exactly upwards or downwards, i.e., both Ox and Oz would be zero. To avoid this, an alternative definition is used for the front vector if the y-component of the observation vector exceeds 0.9 or is below -0.9. In those cases, the front vector is instead based on the closest outline normal of the extent, which is described in 6.6.15.3.4, and calculated as
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 where normalAzimuth is calculated as
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The up-vector, observationUpVec, is then calculated as described above. 
Using the local coordinate system, all vertices of the extent are evaluated and the points representing the max and min azimuth angles and max and min elevation angles are identified. Together with the anchor point, these are called the description points that the simplified extent is based on. 
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Figure 59 – The simplified extent is defined as a plane that represents the audio element from a certain listening position. The red dot shows the anchor point and the blue dots show the description points representing the points on the extent with the min/max azimuth and min/max elevation relative to a local coordinate system based on the observation vector, from the listening position to the anchor point.

In the search for the description points representing the edges of the extent, only points with an azimuth angle in the range [-90°, 90°] and elevation [-89°, 89°] are evaluated. As a result, the four description points maxAzimVertex_local, minAzimVertex_local, maxElevVertex_local and minElevVertex_local are identified. 
An additional search for points on the extent with the maximum and minimum elevation is performed along all edges that passes through the maxElevVertex_local and minElevVertex_local. 
The simplified extent is defined as a plane that is going through the anchor point at a horizontal angle that corresponds to the horizontal angle between the min and max azimuth description points. The vertical angle of the plane is adjusted so that it corresponds to the vertical angle between the min and max elevation description points. The width and height of the simplified extent is set so that it is covering the same angular width and height as defined by the description points. This is achieved by using the anchor point as the point of reference and then calculating the horizontal and vertical vectors that describe how the plane extends in the two dimensions.


[image: ]
Figure 60 – The simplified extent is calculated from the description points by calculating the horizontal and vertical angle and how much it extends from the anchor point. In the figure the red dot shows the anchor point and the blue dots show the minimum and maximum azimuth points. The angles a and b correspond to the variables minAzim and maxAzim and the distances L1 and L2 correspond to displacement_left and displacement_right respectively.

The vector describing the horizontal angle of the plane is calculated as the vector between the vertices representing the minimum and maximum azimuth angles:
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The vector is then projected onto the horizontal plane:
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Then the width of the plane is determined by calculating how much the plane extends in the horizontal dimension to match the minimum and maximum azimuth angles. The variable displacement_left represents the distance along horizontalDirectionVec_local that the left edge of the extent is displaced in relation to the anchor point.
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 where min_distance is the distance from the listening position to the anchor_point and minAzim is the azimuth angle of minAzimVertex_local.
Similarly, the length of the right side of the simplified extent is calculated as
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where maxAzim is the azimuth angle of maxAzimVertex_local.
The vector describing the vertical angle of the plane is calculated as the vector between the vertices representing the maximum and minimum elevation angles:
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The vector is then projected on the vertical plane of the local coordinate system:
The height of the plane is determined by how much the plane extends in the vertical dimension to match the minimum and maximum elevation angles. The variable displacement_top represents the distance along verticalDirectionVec_local that the top edge is displaced in relation to the anchor point.
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where maxElev is the elevation angle of maxElevVertex_local and verticalAngle is calculated as
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Similarly, the displacement of the bottom edge of the simplified extent is calculated as
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where minElev is the elevation angle of minElevVertex_local.
Before the actual edge points of the simplified extent are computed, the effective extent size is calculated as described in 6.6.15.3.2. In this calculation the geometric width is the sum of displacement_left and displacement_right and the distance to the anchor point is used as the distance to the extent. The effective width is then calculated and a scaler, width_scaler, is calculated as the effective width divided by the geometrical width. This scaler is then applied to both displacement_left and displacement_right. The same principle is used to calculate the effective height and thereby calculating the resulting displacement_top and displacement_bottom.
Finally, the edge points of the simplified extent are calculated as
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Before the edge points of the simplified extent are stored, they are temporally smoothed to avoid sudden jumps when they are not expected. This smoothing is taking into account the change of relative position of the audio element and the listening position from the previous frame to the current. Before updating the edge point positions, the change of relative position of the audio element and the listener since the last frame, ∆D, is first calculated. The edge point positions will then only be changed with a maximum distance of ∆D. In addition to this there is also a slow smoothing applied based on a forgetting factor, that will allow the edge points to move even if ∆D is zero.
[bookmark: _Ref99107145]Calculating the effective spatial extent
For large extents, or when the listener is close to a moderately sized extent, the part of the extent that is close to the listener will usually overpower the energy coming from parts of the extent that are further away. Therefore, only a part of the geometrical extent may be acoustically relevant at a given listening position. Basing the rendering on the geometrical size may in such situations result in a subjective extent that is unnaturally wide and therefore the acoustically relevant part of the extent is determined, which is called the effective spatial extent. 
The effective spatial extent, expressed in meters, is calculated according to the following formula:
	
	[bookmark: _Ref100313019](310)


 
where L is the geometrical size of the (simplified) extent, and D is the distance to the (simplified) extent, both expressed in meters. Eq. x was derived from a physics model of the sound field radiated by extended sound sources, combined with the psychoacoustical notion that parts of a source that do not contribute noticeably to the loudness of the source will also not contribute significantly to its perceived spatial size.
As can be seen from (310) , the effective spatial extent is only different from the geometrical spatial extent size at relatively close distances to the source, i.e., closer than 1/6 of the geometrical size, where the effective spatial extent becomes directly proportional to the distance. (Another way of looking at this is that the effective spatial extent becomes constant when expressed in angular terms). Note however, that for very large sources the listener may essentially always be in this “close” region.
In the Heterogeneous Extent stage, the effective spatial extent concept is used to modify the simplified extent according to the description in 6.6.15.3.1. This modified simplified extent is then used for positioning the virtual loudspeakers that are used to render the source to the listener, as described in more detail in 6.6.15.3.3.

[bookmark: _Ref99013170]Updating the virtual speaker configuration for the exterior representation
The exterior representation is rendered using an adaptive setup of virtual loudspeakers. The number of virtual loudspeakers used in the setup depends on the angular width and height of the extent, as seen from the listener position. Three different setups of virtual loudspeakers are used with either one, three or five virtual loudspeakers and smooth transitions between these setups are provided.
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[bookmark: _Ref99354878][bookmark: _Ref100308010]Figure 61 – The three virtual loudspeaker setups used by the heterogeneous rendering stage. The same five virtual loudspeakers are used for the different setups by controlling their positions and gain.
When an extent is large, or the listener is close to the extent, the setup with five virtual loudspeakers is used in order to provide good spatial quality rendering including both the width and height information. For extents where the height is relatively small compared to the width, the setup with three virtual loudspeakers is used since it is perceptually not relevant to render the spatial information in the height dimension. For small extents, or extents at a large distance, only one virtual loudspeaker is used.
The adaptation of the virtual loudspeaker setup is based on the horizontal and vertical opening angle of the extent as seen from the listening position. By adapting both the positions and gains of the virtual loudspeakers, it is possible to go seamlessly from one setup to another.

[image: ]
Figure 62 - Angle a denotes the horizontal opening angle and is associated with the perceived width of the audio element. Angle b denotes the vertical opening angle and is associated with the perceived height of the audio element.

Two transition factors control the adaptation of the rendering setup. These factors are stored in the array trans_fac[]. In this description they will be denoted transfac1 and transfac2 for convenience. 
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where azim_ang is the horizontal angle divided by 2, elev_ang is the vertical opening angle divided by 2, ang_st is the angle where the transition starts and ang_end is the angle where the transition ends. In the implementation ang_st is set to π/64 and ang_end is set to π/24. 
In order to keep the overall power of the virtual loudspeaker setup constant, a number of gain scaler variables are calculated. 
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where gainCompPt, gainCompLine and gainComp2D are gain scalers for the three different rendering setups that compensate for the different number of speakers used.
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The gains of the signals for the five virtual loudspeakers used for the exterior representation are then set as
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 where g0 to g4 are gain adjustments of the signals going to the virtual loudspeakers shown in Figure 61. 
The positions of virtual loudspeakers 0 and 1 are adapted between being situated in the lower left and right corners, for the 5-speaker setup, and being situated left and right edge points, for the 3-speaker setup. This is done with a linear interpolation based on trans_fac1.
The position of the middle speaker is adaptively controlled by the angular width of the extent as seen from the listening position. When the angular width of the extent is small, the middle speaker is placed  in the centre between the left and right edge points of the simplified extent but as the angular width increases, the position of the middle speaker will go towards the closest point of the simplified extent. This will avoid the problem with a psychoacoustical hole in the middle when the listener is close to the extent. This is done with the following equation:
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where leftEdgePoint is the point between the top left and bottom left corners of the simplified extent and rightEdgePoint is the point between the top right and bottom right corners. leftToListenerDist and rightToListenerDist are the distances to the left and right edge points from the listening position.
The overall gain of the rendered exterior representation follows the distance gain behaviour of the target distance gain model. Using the bitstream variable distanceGainModel, the target distance gain model is chosen to be either that of a point-source or that of a volumetric source where the distance gain is calculated taking the size of the extent into account. corresponding to an extended source with the specified extent. To ensure that the target distance gain behaviour is achieved, a gain correction is performed, as described in 6.6.15.3.10.

[bookmark: _Ref99025316]Updating the virtual speaker configuration for the interior representation
The interior representation is rendered with a spherical setup of 12 virtual loudspeakers positioned around the listening position, arranged as a lower, a middle and a top circle. 
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Figure 63 – The 12 virtual loudspeakers used for the interior representation are arranged as three circles at different height.

The positions of the virtual speakers relative to the front vector of the rendering setup is listed in Table 145.
[bookmark: _Ref99382683]Table 145 – Spherical coordinates of the virtual loudspeakers of the rendering setup for the interior representation relative to the front vector.
	Virtual speaker index
	Spherical coordinates (azimuth, elevation)

	0
	-90, 0

	1
	90, 0

	2
	0, 0

	3
	-180, 0

	4
	-45, 45

	5
	-45, -45

	6
	45, 45

	7
	45, -45

	8
	-135, 45

	9
	-135, -45

	10
	135, 45

	11
	135, -45



The horizontal orientation of the setup is defined by the direction of the front speaker. The orientation is not following the head movements of the listener but is instead aligned with the horizontal outline of the extent of the audio element.
The horizontal outline of the extent is calculated as the outline of the projection of the extent onto the horizontal plane. The outline is stored as a list of normals along with their positions. When aligning the rendering setup of the interior representation, the closest normal is found and the horizontal orientation of the rendering setup is adjusted so that its front vector is pointing in the negative normal direction, i.e., inwards from the outline of the extent.
[image: ]
Figure 64 – The figure shows the horizontal outline of an extent as the dotted line and its normal. The rendering setup for the interior representation is visualized as the dotted circle and its front vector with a red arrow. The closest normal of the outline is shown as a blue arrow and the front vector is aligned to point in the negative direction of the closest normal. In the left figure the listener position is outside of the extent and in the right figure the listening position is inside the extent.
Only the horizontal orientation of the rendering setup is changed, thus it does not matter if the listening position is above or below the extent. When identifying the closest normal of the outline, the listening position is projected onto the horizontal plane.
[bookmark: _Ref132366118]Transition between exterior and interior representations
Internally in the heterogeneous rendering stage the state of the rendering setups for the exterior and interior representations is continuously updated, including positions of virtual loudspeakers. The output of the rendering stage is however a combination of the rendering setups where some virtual loudspeakers are reused for both of the representations. Most of the time only a subset of the virtual loudspeakers is active and virtual loudspeakers that are not active are deactivated by setting their gain to zero. These are then excluded from the rendering and will not add unnecessary complexity.
The heterogeneous rendering stage uses a maximum of 14 virtual loudspeakers to render the combined output of the interior and exterior representations. Three virtual loudspeakers, 0, 1 and 2 in Table 145, are used in the rendering of both the interior and exterior representations, which is why 14 virtual loudspeakers are enough to render the combination of the 5 virtual loudspeakers of the exterior representation and the 12 virtual loudspeakers of the interior representation.
Within a transition region outside of the extent of the audio element, there is a gradual transition between the exterior and interior representations. The rendering setup used for the interior representation is aligned with the horizontal outline of the extent and therefor the virtual loudspeakers 0, 1 and 2 can be reused by both representations since they represent the left, middle and right of the audio element as seen from the listening position in both representations. The reusage of virtual loudspeakers is done both for reduction of complexity involved in rendering the virtual loudspeakers but also to avoid problems with comb-filtering effects due to virtual loudspeakers that are fed with correlated signals when they move close to each other. 

During the transition, there is a linear interpolation of the positions of the reused virtual loudspeakers so that they are seamlessly going from the positions corresponding to the interior and exterior representations respectively. The signals going to the reused virtual loudspeakers are also cross-faded between the signals that correspond to the interior and exterior representations respectively.
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Figure 65 – The transition between the exterior and interior representations. Active virtual loudspeakers are shown as red. In part 1, the listener is outside the transition region and only the exterior representation is rendered. In part 2, the listener is inside the transition region and interpolation is used between positions of the virtual loudspeakers of the interior and exterior representations are used for the reused virtual loudspeakers. In part 3, the listener is at the surface of the extent and here only the interior representation is used. The virtual loudspeaker representing the back of the rendering setup is suppressed. In part 4, the listener has moved some distance into the extent and here only the interior representation is used.

The transition is controlled by comparing the distance from the listening position to the extent, distanceToExtent, to the transitionDistance parameter. If the listener is inside the extent, distanceToExtent is negative. The parameter, interiorExteriorWeight, is then calculated as
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where extraMargin is a distance from the extent where only the interior representation is used. 

The interiorExteriorWeight is used to interpolate the positions of the reused virtual loudspeakers:
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The same linear interpolation, based on the parameter interiorExteriorWeight, is used for the cross-fade of the signals going to the virtual loudspeaker.
Modification of the interior representation for listening positions close to the extent
When the listening position is outside the extent but within the transition region and the transition between the exterior and interior representation is active, the interior representation is modified so that the rear hemisphere of the interior representation rendering setup is suppressed. This is done since the listener does not expect to hear sound coming from other directions than from the extent. Since the rendering setup of the interior representation is aligned with the surface of the extent, the rear hemisphere is always pointing away from the extent. This makes it possible to suppress only the virtual loudspeakers representing this hemisphere.
Likewise, when the listening position is above or below the extent, the top or bottom hemisphere of the rendering setup is suppressed. 
Referencing the virtual loudspeaker indexes in Figure 61 the rear, top and bottom hemispheres are represented by the virtual loudspeakers as listed in Table 146. Notice that some virtual loudspeakers belong to two different hemispheres.
[bookmark: _Ref99617356]Table 146 – Table of the different hemispheres of the rendering setup of the interior representation and which speakers belong to them.
	Hemisphere
	Virtual loudspeakers

	Rear
	3, 8, 9, 10, 11

	Top
	4, 6, 8, 10

	Bottom
	5, 7, 9, 11



A gain factor is calculated for each hemisphere, and these are applied when calculating the signals for the corresponding group of virtual loudspeakers. 
The gain factor, rearGain, is controlled by the distance, distToOutline, from the listener position, projected onto the horizontal plane, to the horizontal outline of the extent and a check if the projected listening position is inside the outline or not. Whenever the projected listening position is outside of the horizontal outline, rearGain is set to 0.25 and the rear hemisphere is suppressed. Just inside of the horizontal outline there is a linear interpolation towards 1, that will fade in the rear hemisphere as the listener moves further inside the horizontal outline.
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For the top hemisphere, the topGain, is calculated in a similar way but is instead controlled by the difference in altitude, topHeightDiff, of the listener position and the highest point of the extent. If the listening position is below the top point of the extent, topGain is set to 1. If the listening position is within a vertical transition distance, topTransitionDistance, above the top point of the extent there is a linear interpolation towards 0.25 so that the top hemisphere is gradually supressed the higher above the extent the listener is situated. In addition, topGain is set to 1 for all listening positions inside the extent.
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where
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The gain for the bottom hemisphere, bottomGain, is controlled by the difference in altitude, bottomHeightDiff, of the listening position and the lowest point of the extent. If the listening position is above the lowest point of the extent, bottomGain, is set to 1. If the listening position is within a vertical transition distance, bottomTransitionDistance, below the bottom point of the extent there is a linear interpolation towards 0.25 so that the bottom hemisphere is gradually supressed the lower below the extent the listener is situated. In addition, bottomGain is set to 1 for all listening positions inside the extent.
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where
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Handover to single-point HOA rendering stage for rendering the interior representation
For audio elements with a source signal in HOA format there is a handover implemented to the Single-Point HOA rendering stage so that the interior representation is rendered by that rendering stage as the listening position moves inside the extent of the audio element. The handover is implemented with a smooth cross-fade that starts when the listener moves inside the extent and completes when the distance from the surface of the extent is greater than transitionDistance. 
Deriving the interior representation signals from the source signal
The rendering of heterogeneous audio elements is always based on the interior representation. For HOA sources with an extent, the interior representation is directly based on the first order spherical harmonics of the HOA source signal. For object sources with an extent and a multi-channel source signal, the interior representation is derived from the source signal. 
The format of the interior representation depends on the format of the source signal and the extent layout labels associated with the respective channels of the source signal. As far as possible the original source signals are used as they are and only the missing signals in the interior representation need to be generated using a combination of mixing and decorrelation of the source signals.
Table 147 – The format of the interior representation given the source format.
	Source signal format
	Interior representation format

	HOA
	FOA

	Stereo, left-right
	Quadraphonic

	Multi-channel
Only horizontal extent layout labels
	Quadraphonic

	Multi-channel
Horizontal and vertical extent layout labels
	3-layer Quadraphonic



HOA source signal
For audio elements with a source signal in HOA format, the first order spherical harmonics are used as the interior representation in FOA format.
Stereo source signal
For audio elements with a source signal in left-right stereo format, the interior representation is based on a quadraphonic format, where the left and right channels from the source signal are reused as they are. The front signal is generated as a mix of the left and right. The back signal is then generated as a decorrelated version of the front signal.
Multi-channel source signal
For audio elements with a source signal in a multi-channel format other than stereo, the format used for the interior representation depends on the extent layout labels associated with the respective channels of the source signal. If the extent layout only includes labels describing the horizontal dimension, i.e., left, centre, right, the interior representation will be based on a quadraphonic audio format with four audio signals representing the left, right, front and back of the audio element as described for the case of a stereo source signal. If the extent layout includes labels describing the vertical dimension, i.e., top-left, top, top-right, bottom-left, bottom or bottom-right, a 3-layered quadraphonic audio format is used where the top layer corresponds to the labels top-left, top and top-right. The lower layer corresponds to the labels bottom-left, bottom and bottom-right.
If a middle signal of some layer is not present in the source signal, the front signal of that layer is generated as a mix of the left and right channels of that layer. The back signal of each layer is generated as a decorrelated version of the front signal of the same layer.
[image: ]
Figure 66 – The format of the interior representation depends on the format of the source signal. To the left is the single layer quadraphonic format used when the source signal is a stereo signal or a multi-channel format with only left, centre right channels. To the right is the three-layer quadraphonic format used for multi-channel source signals where channels are also represents the top or bottom of the audio element.
[bookmark: _Ref131064677]Deriving the exterior representation signals from the interior representation
The signals for the exterior representation are derived from the interior representation using a set of virtual microphones that capture a certain direction of the sound field that is described by the interior representation.
[image: ]
Figure 67 – In order to derive signals for the virtual loudspeakers of the exterior representation, one virtual microphone per virtual loudspeaker is used to capture a certain direction of the sound field described by the interior representation. In the figure, three speakers, depicted as blue dots, are used to represent the simplified extent, depicted as a green line. In this case the middle virtual loudspeaker receives a signal mostly consisting of the front signal and left and right virtual loudspeakers receives signals mostly consisting of the left respectively right signals of the interior representation.

The virtual microphones are specified with a horizontal and elevation angle relative to the front vector of the interior representation, i.e., the direction which the front signal is directed.
For the case of an interior representation based on single layer quadraphonic format, the microphone works a directional mixing of the signals of the interior representation. 
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 Where sOUT is the output signal of the virtual microphone, θ is the horizontal angle of the virtual microphone and iFRONT, iLEFT, iRIGHT and iBACK are the signals of the interior representation.
For the case of an interior representation based on a three-layer quadraphonic format, there is a directional mixing also between the layers based on the elevation angle. Then each layer has a gain according to the following:
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where φ is the elevation angle and micElevOverlap is a controlled cross-feed between the layers and is set to 
The combined output of the three layers is then just the weighted sum of these where the signal from each layer is calculated the same way as for the single layer case.
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For the case of an interior representation based on a FOA format the signal from a virtual microphone is calculated as
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 Where i0, i1, i2 and i3 are the four channels of the FOA signal of the interior representation in ACN channel order and p which is a floating point value between 0 and 1 that describes the microphone pattern.
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Figure 68 – Examples of different input layout alignments. To the left, the input layout is aligned with the front vector of the audio element. To the right, the input layout is aligned with the direction to the listening position.
The orientation of the interior representation can be controlled in two ways, either it is aligned with the front vector of the audio element, or it is aligned with the direction to the listening position. In cases where the audio element has a clear directionality, what is left and right, e.g., a piano, the interior representation can be aligned with the front vector of the audio element. In other cases where the audio element is not expected to have clear directionality, such as the sound of a beach line, it is beneficial to let the interior representation be aligned with the direction to the listener since the best audio quality can be retained as the listener moves around the audio element because the generated back signals are not used other than when the listener is inside, about or below the audio element.
[bookmark: _Ref99013727]Distance gain correction
As described in the preceding subsections, heterogeneous extended sources are rendered to the listener using a (variable) number of discrete virtual loudspeakers. This affects the distance attenuation behaviour of the rendered extended source, i.e., the resulting sound level of the extended source at the listener position as a function of distance. Generally, the resulting distance gain curve will be different from the distance gain curve that is expected for an extended source of the corresponding size.
This issue is addressed by applying an overall scalar distance gain correction to the rendered heterogeneous source. The distance gain correction module essentially calculates the “target” distance gain  for an extended source of the specified size at the current listener distance, as well as the distance gain  of the rendered heterogeneous source at that same distance, and then calculates the distance gain correction C that is required to match the distance gain of the rendered source to the target distance gain, as follows:
	
	[bookmark: _Ref100325377](329)


 with DS the current distance to the source.
The target distance gain for the extended source is calculated from the geometrical distance gain model described in 6.6.17.4. Using the bitstream variable distanceGainModel, the target distance gain model is chosen to be either that of a point-source or that of a volumetric source where the distance gain is calculated taking the size of the extent into account.
The distance gain of the rendered heterogeneous source is calculated from the instantaneous gains and positions of the virtual loudspeakers (which, as described in the preceding subsections, are dynamic functions of the listener distance), according to the following formula:
	
	[bookmark: _Ref100325232](330)


where:
	
	[bookmark: _Ref100325334](331)


is the overall gain of the rendered signal of virtual loudspeaker i at the listener position, which combines the gain  that includes any gain applied to the virtual loudspeaker in the heterogeneous source processing described in the preceding subsections of 6.6.15.3, and the distance gain  for virtual loudspeaker i corresponding to the current distance  between the listener and virtual loudspeaker i.
In (330), the virtual loudspeakers i=0…4 correspond to the virtual loudspeakers with the same labels inFigure 61 in 6.6.15.3.3.
The distance gain correction C follows from inserting (330) and (331) into (329) and is applied equally to all virtual loudspeakers i=0…4.

Occlusion of Heterogeneous Audio Elements
The occlusion of heterogeneous audio elements is rendered by modifying the simplified extent and by applying filters on the signals going to the virtual loudspeakers that are used for rendering the audio element.  In order to do the dection in an efficient way, it is done in a two-step process as described in the following sections.
The occlusion detection makes use of the same ray tracing functionality that is used in the occlusion rendering stage described in 6.6.9.  If voxel-based scene geometry is available in the bitstream, the voxel grid line-of-sight traversing described in 6.6.11.3.1.3 is used.
Detection of cropping occlusion
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Figure 69 – An example of a heterogeneous audio element and an occluding object. A set of rays are cast towards the simplified extent. The part of the simplified extent which is occluded from the listening position is discarded to form the modified, or “cropped”, extent.

The first stage of the occlusion detection detects so called cropping occlusion, wich is occlusion that completely occludes one or several edges of the simplified extent. If one ore more edges of the simplified extent is completely occluded, a modified extent will be calculated where the completely occluded parts are removed. 
The detection of cropping occlusion is performed by sending out rays from the listening position towards a sparse grid of points on the simplified extent and checking which rays are not completely occluded. The edges of the modified, or cropped, extent are found by identifying the points on the simplified extent representing the highest and lowest horizontal and vertical angles, as seen from the listening position, that are not completely occluded. These points are stored as starting points for binary searches where the exact edges are found.
The number of rays sent towards the simplified extent is adaptive and depends on the horizontal and vertical opening angles of the extent, as seen from the listening position. The number of columns of the grid is calculated as
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where  denotes the horizontal opening angle.
Similarly, the number of rows in the grid is calculated as
	,
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where  denotes the vertical opening angle.
In order to avoid checking the same azimuth and elevation positions several times, the grid is shifted in position by adding an accumulated offset to both the horizontal and vertical positions between consecutive updates of the rendering stage. The following pseudo code illustrates the calculation of the positions in the grid:

gridShiftCnt++;
if (gridShiftCnt > 10) {
    gridShiftCnt = 0;
}
float gridShift = gridShiftCnt / 10;

for (int v = 0; v < numOfElevDivisions; v++) {
        float elevPos = 0.01
            + 0.98 * (gridShift / numOfElevDivisions + v / numOfElevDivisions);
        for (int h = 0; h < numOfAzimDivisions; h++) {
            float azimPos = 0.01
                + 0.98 * (gridShift / numOfAzimDivisions + h / numOfAzimDivisions);

			// Check occlusion for point (azimPos, elevPos)
        }
    }

In this code, the positions are given in a local coordinate system (azimPos, elevPos) where (0.0, 0.0) is the bottom-left corner of the simplified extent and (1.0, 1.0) is the top-right corner.
In addition to the even grid, the center, top-left, top-right. bottom-left and bottom right points of the previous cropped extent are checked. Finally, binary searches are performed to find the exact left, right, top, and bottom edges of the cropped extent.
When the cropped extent has been calculated, the positions of the center and the four corners are stored so that they can be checked at the next call of the update function of the rendering stage.
Detection of soft and partial occlusion
[image: Chart
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Figure 70 – Soft and partial occlusion within the cropped extent is detected by dividing the cropped extent into six sub-areas and casting a grid of rays to each. An occlusion EQ is calculated for each sub-area, which corresponds to the soft and partial occlusion within the sub area.

In the second stage of occlusion detection the modified, or cropped, extent of the audio element is checked for soft and partial occlusion. This is done by first defining six sub areas of the modified extent: top-left, top-mid, top-right, bottom-left, bottom-mid and bottom-right. For each sub area, an even grid of points is checked for occlusion with raytracing.
For each checked point on the sub areas, an occlusion filter is calculated which describes the occlusion effect for that specific point, from the listening position. The occlusion filters are specified in form of a filter that the EQ renderin stage can process.  If there is no occlusion, the EQ filter will be specified as having no attenuation for any frequency. If the point is completely occluded, the filter will be specified to attenuate all frequencies completely. If there was soft occlusion, the filter will be specified according to the transmission parameters of the occluding material. If the ray passes through more than one material, a compound occlusion filter is calculated by accumulating the occlusion filter of each material.
An overall occlusion filter is then calculated for each sub area by accumulating the occlusion filters for each checked point of that sub area. Since the heterogeneous sources are assumed to be diffuse, the filters are not accumulated linearly but instead according to the formula
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where gSA denotes the accumulated gain for a certain frequency, f,  and for one sub area, gn is the gain of frequency f for one sample point in the sub area and N is the number of sample points.
If any occlusion was detected in the cropping occlusion check, the number of rays per sub area is set according to:
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If no occlusion was detected in the cropping occlusion check, only one ray per sub area is used.
When calculating the grid positions to check within each sub area, a skewed regular grid is used, where an increasing offset is added to the horizontal positions in each row of rays, This avoids that the same horizontal position is checked for each row. This spreading of horizontal positions provides a smoothing effect when an occluder has a straight vertical edge, as is the case in many cases, like e.g. a doorway or the end of a wall etc. The following pseudo code illustrates the calculation of the positions in the grid for each sub area:

// Send a grid of rays towards the subarea and accumulate any occlusion EQs
for (int elevLoop = 0; elevLoop < vertRays; elevLoop++) {

    // Add an offset to the azimuth to prevent check of the same azimuth many times
    azimOffset = elevLoop / vertRays / horizRays;

    for (int azimLoop = 0; azimLoop < horizRays; azimLoop++) {
        float subAreaAzimPos = azimLoop / horizRays + azimOffset;
        float subAreaVertPos = elevLoop / vertRays;
        
        // Check occlusion for point (subAreaAzimPos, subAreaVertPos) within the sub area
    }
}

In this code, the positions are given in a local coordinate system [subAreaAzimPos, subAreaElevPos] where (0.0, 0.0) is the bottom-left corner of the sub area and (1.0, 1.0) is the top-right corner. 

All occlusion filters are scaled with a gain factor that accounts for how much of the simplified extent was cropped:
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The ratio, activeExtentRatio, is calculated as the area of the cropped extent divided by the area of the simplified extent. 

Mapping of sub area occlusion filters to filters for each virtual speaker
Since the virtual loudspeakers used for rendering the heterogeneous audio element do not correspond directly to the sub areas, one-to-one, the occlusion filters of the sub areas need to be mapped to occlusion filters that are applied to each virtual loudspeaker. This is done using a set of three mapping matrices that correspond to the three virtual loudspeaker setups described in 6.6.15.3.3. 
For the five-speaker setup the mapping is done using the following matrix:
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where f1-f6 are the occlusion filters for sub areas 1-6 and fTL, fTR, fM, fBL, and fBR are the occlusion filters for the corresponding virtual loudspeakers.
For the three-speaker setup the following mapping matrix is used:
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For the one-speaker setup the following mapping matrix is used:
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Since the speaker setup is adaptive, the mapping needs to follow this adaptation. This is done as
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 where Fs is a matrix of the mapped filters, F0 is a matrix of the sub area occlusion filters f1-f6, MPOINT is the mapping matrix of the one-speaker setup, MLINE is the mapping matrix of the two-speaker setup, MPLANE is the mapping matrix of the five-speaker setup. aPOINT, aLINE, and aPLANE are control parameters that control the weight of the three mapping matrices. These control parameters depend on the transition parameters  and , which were described in 6.6.15.3.3.
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Adaptation of the transition distance due to occlusion
The transition from the exterior representation of a heterogeneous audio element to the interior representation happens within a transition distance from the extent of the audio element as described in 6.6.15.3.5. However, in the case that there is an occluder between the listener and the extent, this transition needs to be modified. This is done by calculating a modified transition distance as
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where transitionDistance is the normal transition distance when there is no occlusion and activeExtRatio is the amount of extent which is active, i.e. not occluded. This has the effect that, for example, if the whole of the extent is occluded from the listening position, activeExtRatio is zero and the transition distance will also become zero.
Adaptation of the virtual microphones due to occlusion
When a large part of a heterogeneous audio element is occluded it is expected that the signals sent to the virtual loudspeakers reflects the part of the extent that is audible, e.g., if the left half of the extent of a piano is occluded, it is expected that the higher notes are heard more than the lower since the lower strings are to the left of the piano, assuming a position in front of the keybed. This effect can be achieved by controlling the angles of the virtual microphones that are used to derive signals from the interior representation, as described in 6.6.15.3.9.
By default, the virtual microphones are configured to capture the full width and height of the audio element. If a substantial part of the extent is occluded the angles of the microphones are adapted so that they capture less of the part that is occluded, e.g., the left part or the lower part. This is done with a scaling factor for left, right, top, and bottom edges respectively:
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where minUnoccludedAzim, maxUnoccludedAzim, minUnoccludedElev and minUnoccludedElev denotes the positions of the left, right, top, and bottom edges of the cropped extent expressed as a number in the range [0, 1.0] where an azimuth position of 0.0 corresponds to the left edge of the original simplified extent, and an azimuth position of 1.0 corresponds to the right edge. An elevation position of 0.0 similarly corresponds to the bottom edge of the original simplified extent and 1.0 corresponds to the top edge. Each scaling factor is limited to never go below 0.5 to avoid an unnaturally strong effect on the signals derived.
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General
Directivity is used to auralize the Directivity property of Audio Elements. To do this, the Directivity tool is comprised of two components: the coding of the Directivity data, and the rendering of the Directivity data. The Directivity is represented as a number of Covers (see 6.6.16.2.1), where each Cover is arithmetically coded. The rendering of the Directivity is done by checking to see which RIs use Directivity, taking the filter gain coefficients from the Directivity, and applying an EQ to the metadata of the RI.
Data elements and variables
covers	This array holds all decoded directivity Covers
dbStepIdx	This is the index of the decibel quantization range.
dbStep	This number is the decibel step that the values have been quantized to.
intPer90	This integer is the interval of azimuth points per 90 degrees around the equator of the Cover.
elCnt	This integer is the number of elevation points on the Cover.
aziCntPerEl	Each element in this array represents the number of azimuth points per elevation point.
coverWidth	This number is the maximum azimuth points around the equator.
minPosVal	This number is the minimum possible decibel value to be coded.
maxPosVal	This number is the maximum possible decibel value to be coded.
minVal	This number is the lowest decibel value that is actually present in the coded data.
maxVal	This number is the lowest decibel value that is actually present in the coded data.
valAlphabetSize	This is the number of symbols in the alphabet for decoding.
predictionOrder	This number represents the prediction order for this Cover. This influences how the Cover is reconstructed using the previous residual data, if present.
cover	This 2d matrix represents the Cover for a given frequency band. The first index is the elevation, and the second index is the azimuth. The value is the dequantized decibel value for that azimuth and elevation. Note, the length of the azimuth points is variant. 
max_cover	This is the maximum dequantized decibel value of the whole cover.
max_band_gain	This is the maximum gain value of the central EQ metadata.
directiveness	Intensity of the directivity filter.
broadband_gain	Accumulated broadband gain of the current RI.
distance	Distance between the listener and the Audio Element.
refDistance	Reference distance of the current RI for the distance attenuation model.

coverResiduals	This 2d matrix represents the residual compression data for the Cover. It mirrors the same data structure as cover, however the value is the residual data instead of the decibel value itself.
freq	This is the final dequantized frequency value in Hertz.
freqIdx	This is the index of the frequency that needs to be dequantized to retrieve the original value.
freq1oIdxMin	This is the minimum possible index in the octave quantization mode.
freq1oIdxMax	This is the maximum possible index in the octave quantization mode.
freq3oIdxMin	This is the minimum possible index in the third octave quantization mode.
freq3oIdxMax	This is the maximum possible index in the third octave quantization mode.
freq6oIdxMin	This is the minimum possible index in the sixth octave quantization mode.
freq6oIdxMax	This is the maximum possible index in the sixth octave quantization mode.
[bookmark: _Ref100220113]Definitions
Sphere Grid	A quasi-uniform grid of points upon the surface a unit sphere.
	Where  is the current Cover,  is the elevation index, and  is the azimuth index.
	Where  is the current Cover’s fixed linear predictor,  is the elevation index, and  is the azimuth index.
	Where  is the current Cover that has been circularly interpolated, and where  is the elevation index, and where  is the azimuth index.
		Where  is the number of azimuth points in the Sphere Grid per elevation, and where  is the elevation index.
Decoding process
Once the directivity payload is received by the renderer, before the Directivity Stage initialization, the decoding process begins. Each Cover has an associated frequency; direcFreqQuantType indicates how the frequency is decoded, i.e. determining the width of the frequency band, which is done in readQuantFreq(). The variable dbStep determines the quantized step sizes for the gain coefficients; its value lies within a range between 0.5 and 3.0 with increments of 0.5. intPer90 is the number of azimuth points around a quadrant of the equator and is the key variable used for the Sphere Grid generation (see 6.6.16.2.2.1). direcUseRawBasline determines which of two decoding modes is chosen for the gain coefficients. The available decoding modes are either the “Baseline Mode” or the “Optimized Mode” (see 6.6.16.2.2.2 and 6.6.16.2.2.3, respectively). The baseline mode simply codes each decibel index arithmetically using a uniform probability distribution. Whereas, the optimized mode uses residual compression in conjunction with an adaptive probability estimator alongside five different prediction orders. Finally, after the completion of decoding, the directivities are passed to the Scene State where other Scene Objects can refer to them. 
[bookmark: _Ref100217100]Sphere grid generation
The Sphere Grid determines the spatial resolution of a Cover that can be different across Covers. The Sphere Grid of the Cover has a number of different points. Across the equator, there are at least 4 points, possibly more depending on the intPer90 value. At the north and south poles, there is exactly one point. At different elevations, the number of points is equal or less than the number of points across the equator, and is decreasing as the elevation approaches the poles. Upon each elevation layer, the first azimuth point is always 0°, creating a line of evenly spaced points from the south pole, to the equator, and, finally, to the north pole. This property is not guaranteed for the rest of the azimuth points across different elevations. The following is a description in pseudocode format:
generateSphereGrid(intPer90)
{
    piOver180 = acos(-1) / 180;
    degStep = 90 / intPer90;
    elCnt = 2 * intPer90 + 1;
    azCnt[elCnt] = { 0 };
    coverWidth = 4 * intPer90; // maximum number of azimuth points (at equator)

    for (ei = 0; ei < elCnt; ei++)
    {
        elAng = (ei - intPer90) * degStep;
        elLen = cos(elAng * piOver180);
        azCnt[ei] = max(round(elLen * 4 * intPer90), 1);
    }

    return elCnt, aziCntPerEl, coverWidth
}

[bookmark: _Ref100217135]Baseline mode
The baseline mode uses a range decoder with a uniform probability distribution to decode quantized decibel values. The maximum and minimum possible values (i.e., maxPosVal, minPosVal) that can be stored are -128.0 and 127, respectively. The alphabet size can be found using dbStep and the actual maximum and minimum possible value (maxVal, minVal). After decoding the decibel, a simple rescaling is done to find the actual dB value. This can be seen in Table 26.
[bookmark: _Ref100217150]Optimized mode
The optimized mode decoding uses a sequential prediction scheme, which traverses the Cover in a special order. This scheme is determined by predictionOrder, where its value can be an integer between 1 and 5 inclusive. predictionOrder dictates which linear prediction order (1 or 2) to use. When predictionOrder == 1 || predictionOrder == 3, the linear prediction order is 1 and when predictionOrder == 2 || predictionOrder == 4, the linear prediction order is 2. The traversal is composed of four different sequences:
The first sequence goes vertically, from the value at the South Pole to the North Pole, all with azimuth 0. The first value of the sequence (coverResiduals[0][0]), at the South Pole is not predicted. This value serves as the basis in which the rest of the values are predicted from. This prediction uses either a linear prediction of order 1 or 2. Using a prediction order of 1 uses the previous elevation value, where a prediction order of 2 uses the two previous elevation values as a basis for prediction.
The second sequence goes horizontally, at the equator, from the value next to the one at azimuth 0 degrees (which was already predicted during the first sequence), until the value previous to it at azimuth close to 360 degrees. The values are predicted from previous values also using linear prediction of order 1 or 2. Similarly to sequence one, using a prediction order of 1 uses the previous azimuth value, where using a prediction of 2 uses the previous two azimuth values as a basis prediction.
The third sequence goes horizontally, in order for each elevation, starting from the one next to the equator towards the North Pole until the one previous to the North Pole. Each horizontal subsequence starts from the value next to the one at azimuth 0 degrees (which was already predicted during the first sequence), until the value previous to it at azimuth close to 360 degrees. When (predictionOrder == 1 || predictionOrder == 2 || predictionOrder == 3 || predictionOrder == 4)  the values are predicted from previous values using either linear prediction of order 1 or 2, as explained above. Furthermore, when (predictionOrder == 3 || predictionOrder == 4), in addition to the previous values on the current Cover, the values are also used from the previously predicted elevation. Since the number of points upon the Sphere Grid  at the previously predicted elevation  is different from the number of points  at the currently predicted elevation , the number of azimuth points do not match across the elevations in the Sphere Grid. Therefore, the points  at the previously predicted elevation  are circularly interpolated to produce  new points, where is azimuth index and  is a 2d vector representing the Cover. For example, if the number of points at the current elevation is 24, and the number of points at the previous elevation is 27, they are circularly interpolated to produce 24 new points. Interpolation is linear to preserve monotonicity. For a given point value to be predicted , the previous point value horizontally  and the corresponding previous point value  and current point value  on the circularly interpolated new points (which are derived from the previous elevation level) are used as regressors to create a predictor with 3 linear prediction coefficients. A fixed linear predictor is used, i.e. , which predicts perfect 2D linear slopes in dB domain.
The fourth sequence also goes horizontally, in order for each elevation, exactly like the third sequence, however starting from the one next to the equator towards the South Pole until the one previous to the South Pole. 
The following pseudocode describes the aforementioned algorithm:
unpredict(predOrder, coverRes, prevCover)
{
    if (predOrder == 5) {
        for (ei = 0; ei < elCnt; ei++) {
            for (ai = 0; ai < aziCntPerEl[ei]; ai++) {
                i = ei * coverWidth + ai;
                cover[ei][ai] = coverRes[ei][ai] + prevCover[ei][ai];
            }
        }

        return;
    }

    // copy the original value at the South pole,
    // coverRes[0], which is not predicted
    cover[0] = coverRes[0];

    // predict vertically, from the one after the
    // South pole to the North pole, at azimuth 0
    for (int ei = 1; ei < elCnt; ++ei) {
        if ((predOrder == 1) || (ei == 1) || (predOrder == 3)) {
            pred_v = cover[ei - 1][0];
        }
        else if ((predOrder == 2) || (predOrder == 4)) {
            pred_v = 2 * cover[ei - 1][0] - cover[ei - 2][0];
        }

        cover[ei][0] = coverRes[ei][0] + pred_v;

        // always use true order 1 or true order 2 horizontal prediction at the equator
        if (((predOrder == 3) || (predOrder == 4)) && (ei != intPer90)) {
            continue;
        }

        // predict horizontally, from azimuth 0 to the maximum azimuth
        for (int ai = 1; ai < aziCntPerEl[ei]; ++ai) {
            if ((predOrder == 1) || (ai == 1) || (predOrder == 3)) {
                pred_h = cover[ei][ai - 1];
            }
            else if ((predOrder == 2) || (predOrder == 4)) {
                pred_h = 2 * cover[ei][ai - 1] - cover[ei][ai - 2];
            }

            cover[ei][ai] = coverRes[ei][ai] + pred_h;
        }
    }

    if ((predOrder == 3) || (predOrder == 4)) {
        cResample[coverWidth] = { 0 };
        // predict horizontally for each elevation,
        // from the one following the equator to the South pole
        for (int ei = intPer90 - 1; ei >= 1; --ei) {
            input = cover;
            start = (ei + 1) * coverWidth;
            count = aziCntPerEl[ei + 1];
            newCount = aziCntPerEl[ei];
            output = cResample;
            circularResample(input, start, count, newCount, output);

            for (int ai = 1; ai < aziCntPerEl[ei]; ++ai) {
                pred_h = cover[ei][ai - 1] + (cResample[ai] - cResample[ai - 1]);
                cover[ei][ai] = coverRes[ei][ai] + pred_h;
            }
        }

        // predict horizontally for each elevation,
        // from the one following the equator to the North pole
        for (int ei = intPer90 + 1; ei < elCnt - 1; ++ei) {
            input = cover;
            start = (ei - 1) * coverWidth;
            count = aziCntPerEl[ei - 1];
            newCount = aziCntPerEl[ei];
            output = cResample;
            circularResample(input, start, count, newCount, output);

            for (int ai = 1; ai < aziCntPerEl [ei]; ++ai) {
                pred_h = cover[ei][ai - 1] + (cResample[ai] - cResample[ai - 1]);
                cover[ei][ai] = coverRes[ei][ai] + pred_h;
            }
        }
    }
}

Stage description
General
The stage iterates over all RIs in the update thread, checks whether Directivity can be applied, and, if so, the stage takes the relative position between the Listener and the RI, and queries the Directivity for filter coefficients. Finally, the stage applies these filter gain coefficients to the central EQ metadata field of the RI, to be finally auralized in EQ stage.
Update thread processing
Directivity is applied to all RIs with a value of true in the data elements of objectSourceHasDirectivity  and loudspeakerHasDirectivity (and by secondary RIs derived from such RIs in the Early Reflections and Diffraction stages) by using the central EQ metadata field that accumulates all EQ effects before they are applied to the audio signals by the EQ stage (6.6.20). The listener’s relative position in polar coordinates to the RI is needed to query the Directivity. This can be done, e.g. using Cartesian to Polar coordinate conversion, homogenous matrix transforms, or quaternions. In the case of secondary RIs, their relative position for their parents must be used to correctly auralize the Directivity. For consistent frequency resolution, the directivity data is linearly interpolated to match the EQ bands of the metadata field, which can differ from the bitstream representation, depending on the bitstream compression configuration. For each frequency band, directiveness (available from objectSourceDirectiveness or loudspeakerDirectiveness) is applied according to the formula , where  is the directiveness value and  is the interpolated magnitude derived from the Covers adjacent to the requested frequency band, and  is the coefficient used for the EQ. 
The filter gain coefficients calculation shall be skipped to keep the overall complexity low, if the corresponding RI is fulfilling culling conditions in the Metadata Culling stage. Namely, the application of the Directivity stage shall be omitted, if the following product of RI gains is smaller than the culling threshold.
The following pseudocode describes the condition for skipping the Directivity stage:

max_magnitude = pow(10, (max_cover / 20) * directiveness);
distance = calculateDistance(listener_position, RI_position);
distanceGain = calculateDistanceGain(distance, refDistance);

if (max_band_gain * max_magnitude * broadband_gain * distanceGain < gainCullingThreshold) {
   // skip directivity filter gain calculation
} else {
   // perform directivity filter gain calculation
}

The distanceGain value to be applied to the RI shall be calculated by the method calculateDistanceGain(), based on the distance  and refDistance value of the current RI. The method calculateDistance() provides the Euclidean distance value between the listener position  listener_position and RI position RI_position.
Audio thread processing
The directivity stage has no additional processing in the audio thread. The application of the filter coefficients is done in the EQ stage.
[bookmark: _Toc117076363][bookmark: _Toc131497384][bookmark: _Toc132126388][bookmark: _Toc132225957][bookmark: _Toc135210145][bookmark: _Toc166076632]Distance
General
The distance stage renders three independent perceptual effects that are related to the travelling of sound through the air: propagation delay, distance gain and medium absorption. The stage calculates the current distance between each RI and the listener and interpolates the distance between calls to the update routine based on a constant velocity model.
Propagation delay is applied to the signals associated with RIs to produce a physically accurate delay and Doppler effect using a variable delay line with subsample interpolation. A smoothing is applied to the distance used for propagation delay rendering when updating the model velocity in order to mitigate jitter in the head-tracked listener location and RI location updates. The conversion from distance to propagation delay is calculated with a speed of sound given by the local configuration parameter SpeedOfSound (6.4.2.7). The propagation delay is also responsible for the delay of early reflections relative to the corresponding direct sound RI. See 6.6.17.3 for details.
Distance attenuation models the frequency-independent attenuation of audio elements due to geometrical spreading of the source energy. For the distance attenuation of geometrically extended sources, a model is used that takes the size of the sound source into account. See 6.6.17.4 for details.
Medium absorption models the frequency-dependent attenuation of audio elements related to the absorption characteristics of air, as defined in ISO 9613-1. See 6.6.17.5 for details. 
Data elements and variables
currentTime	Current timer in audio processing thread	
listenerLocation	Current listener location as 3D coordinate vector
itemLocation	RI location of most recent timestamp as 3D coordinate vector
itemTimestamp	Timestamp associated with most recent RI location
isCV	Boolean Flag indicating constant velocity RI
itemTeleport	Boolean Flag indicating that an item has been teleported
speedOfSound	Speed of sound (constant)
fs		System audio sampling rate
B		Length of audio processing block
teleportThreshold	Configuration variable for teleportation detection threshold (default: 25 m/s)
smoothingFactor	Configuration variable for velocity smoothing weighting (default: 0.95)
minDelay	Minimum delay that can be handled by variable delay line (fixed value originating from  delay line topology)
maxDelay	Configured maximum delay that can be handled by variable delay line (value is given by delayBufferSize according to Table 10)

listenerMovement 	Calculated listener movement speed
listenerTimeDiff	Calculated difference between listener timestamps
detectedListenerTeleport	Boolean flag indicating that listener teleport has been detected
dist	Calculated momentary distance between listener and RI
deltaT	Calculated time difference between current and previous timestamp
distPrevScene	Estimated distance between listener and RI for previous scene update
v		Calculated relative velocity between listener and RI
smoothVelocity	Smoothed relative velocity between listener and RI
smoothDistance	Smoothed relative distance between listener and RI

prevTime	State variable for previous audio thread timestamp
prefDist	State variable for previous distance
prevListenerTime	State variable for previous listener location update timestamp
prevListenerLocation State variable for previous listener location as 3D coordinate vector
prevItemLocation	State variable for previous item location as 3D coordinate vector
prevItemTimestamp	State variable for previous item location update
prevTimeDiff	State variable for previous time differences between location updates

dly		Calculated delay in samples resulting from smoothed velocity model
[bookmark: _Ref100333104]Distance-based delay calculation with smooth velocity model
Overview
The distance between the listener location and a RI is calculated as the Euclidean distance in between, when a location update is provided by the update thread. The distance corresponds to the momentary propagation delay, which is reproduced using an interpolated variable delay line. Continuous variations of the propagation delay inherently produce a physically accurate Doppler effect. The Doppler pitch shift is a function of the relative velocity between a sound source and the observer, i.e., the derivative of the distance. 
The human hearing is rather sensitive to sudden changes in pitch, and consequently a smooth velocity curve is desirable. Even minor jitter in RI and listener locations, e.g. due to head-tracking, numerical precision, clock jitter and asynchronous updates of the update thread and audio threads can cause artefacts. To ensure consistent movement, the distance is updated continuously with a smoothed velocity model in the audio thread. As long as no new RI location or listener location is provided by the update thread, the distance is continuously extrapolated assuming a constant velocity model.  When a location update is received, the relative velocity is re-estimated based on the previous location and the difference between the corresponding timestamps and the model velocity is smoothly updated by a weighted combination of the new and previous model velocity to prevent jumps in pitch shift.
Processing in the audio thread
Listener teleport detection
When a deliberate discontinuity in the listener location or RI location occurs, e.g. due to a teleportation, the smoothing is disabled and the velocity is reset to prevent implausible Doppler effects with extreme movement speeds.  Since in a user-interactive framework not all relevant listener location discontinuities are semantically marked as teleportation, the distance stage implements a listener teleport detection by checking for implausibly high velocity.
If an update of the listener location is received, and the renderer is not in the start-up phase, then the teleportation detection is performed. The Euclidean distance of the listener location and the time difference between the current and previous timestamp are calculated and the velocity of the listener movement is calculated. The velocity calculation shall be encapsulated in a sanity check to avoid division by zero (e.g. for updates with duplicate timestamps). If the listener movement velocity exceeds a configurable teleportation threshold, this shall be detected as a teleportation and marked by setting the Flag detectedListenerTeleport = true.  The teleportation detection is performed as follows.

listenerMovement = abs(listenerLocation-prevListenerLocation);
listenerTimeDiff = ct - prevListenerTime;
if (listenerTimeDiff > 0) {
	listenerMovement /= listenerTimeDiff;
	if (listenerMovement > teleportThreshold) {
		detectedListenerTeleport = true;
	}
}

The threshold value shall be set to teleportThreshold = 25 [m/s] for room scale applications. 
Velocity calculation
The model velocity v is defined as the difference in the relative distance between the listener and an RI within one block of the audio thread.
The Scene State distinguishes between RI with and without “constant velocity”, i.e. RI that are a priori defined with time-continuous locations by a constant velocity and a timestamped reference location (e.g. by the scene description) and RI with “static” locations that are defined by time discrete location updates with attached timestamps at runtime (e.g. provided by interactive scene updates), for which the underlying movement’s velocity is estimated by the distance stage at runtime.
In both cases, the current distance between listener and RI location is calculated as:
dist = abs(itemLocation – listenerLocation);

In case of RI with constant velocity that are marked isCV == true, the location for arbitrary points in time is uniquely defined by the equation of motion. Thus, the velocity relative to the listener is calculated as the difference between the distance in the current and previous audio frame. 
v = dist – prevDist;

In case of RI with static location updates that are marked isCV == false, location updates with attached timestamps are provided at a different (typically lower) rate than the audio frame rate and without explicit specification of the underlying movement. Therefore, the velocity relative to the listener is estimated by the Distance Stage based on the distances between RI and listener location for the previous and new timestamp. 
The elapsed time between location updates is calculated as the difference between the RI location timestamps. The time differences are calculated based on the original location update‘s timestamps rather than the audio thread timer, as external location updates are not synchronized to the audio processing block rate.
deltaT = itemTimestamp – prevItemTimestamp

The previous relative distance distPrevScene is calculated from the previously received update of RI or listener location. In case of listener teleportation or RI teleportation, the teleportation shall be represented to be instantaneous, i.e. not as an implausibly fast movement. In order to provide continuous Doppler effects in case of teleportation, the previous distance is estimated relative to the new location.
if (!itemTeleport && !detectedListenerTeleport) {
    distPrevScene = abs(prevItemLoc - prevListLoc);
} else if (!itemTeleport && detectedListenerTeleport) {
    distPrevScene = abs(prevItemLoc - listenerLocation);
} else if (itemTeleport && !detectedListenerTeleport) {
    distPrevScene = abs(itemLocation - prevListLoc);
} else {
    distPrevScene = abs(itemLocation-listenerLocation);
}

The relative velocity is calculated as the difference in relative distance divided by the elapsed time difference, and normalized to represent the velocity per audio processing block of block length B.
v = (dist - distPrevScene) / deltaT * B/fs;

Velocity smoothing
To prevent discontinuities in Doppler pitch shift, the velocity is smoothed by updating the model velocity smoothVelocity with a weighted contribution of the momentary velocity v (corresponding to a 1-tap IIR low-pass filter). 
smoothVelocity = smoothVelocity*smoothingFactor + v*(1 – smoothingFactor);

The weighting factor for smoothing shall be set to smoothingFactor=0.95 (corresponding to a falloff below 5% after 60 audio blocks, i.e. 0.32 s for 256 samples block length). 

The smoothing is only applied if no teleportation of RI or listener occurred in the previous and current frame. If a teleportation occurred, the smoothed velocity shall be reset to the new velocity estimate by setting smoothVelocity = v.

For increased robustness of constant velocity RI (isCV == true) against temporal inconsistencies (e.g. due to dropped audio frames), the audio thread timer difference calculated between currentTime and previousTime is checked to be consistent within the audio block size. If the time difference exceeds the audio block size beyond the tolerance of 10 samples, then smoothVelocity shall not be updated.

Smoothed distance model
Based on the smoothed velocity model, a smoothed distance model smoothDistance is continuously updated in each audio processing block, as long as no new location update is received. In order to mitigate drift, the model distance is combined with a weighted contribution of the current distance.
smoothDistance = smoothDistance + smoothVelocity;
smoothDistance = smoothDistance * 0.995 + dist * 0.005;

In case a listener teleport was detected as detectedListenerTeleport == true, the distance model is reset to the current distance by setting smoothDistances = dist.
For increased robustness against inconsistencies in the update rate for static location RI that otherwise lead to implausible velocities, the time difference is checked for consistency. If an increase in time difference exceeds a factor of 10, the RI teleportation flag shall be set and the smoothed distance be reset to the current distance.
if ((!isCV) && (deltaT > prevTimeDiff* 10.0f) {
	smoothDistances = dist;
	itemTeleport = true;
}

[bookmark: _Ref128575639]Delay calculation and variable delay line

The delay dly to be applied by the variable delay line is calculated in samples by dividing the model distance by speed of sound multiplied by sampling rate.
dly = dist / speedOfSound * fs

To comply with the delay line buffer size, the delay is limited between the minimum and maximum delay. The minimum delay minDelay is governed by the algorithmic latency of the delay processing described below. For a sampling rate of 48 kHz, the group delay is twice the value given in samples in LPAA_IIR_48000_18000_2x_GROUPDELAY below. The maximum delay maxDelay is configured by delayBufferSize through lookup in Table 10. If the maximum delay is exceeded, the teleportation flag for the RI is set to prevent interpolation beyond the allowed delay. 
if (dly < minDelay {
	dly = minDelay;
} else if (dly > maxDelay) {
	dly = maxDelay;
	itemTeleport = true;
}

The calculated delay for each RI is passed to a variable delay line (VDL) that delays the associated signal(s) by dly samples, including sub-sample interpolation for fractional values of dly. When the delay changes, the VDL interpolates between the previous and the newly specified delay over the duration of one block. 

The signal is stored in a ring buffer of length Distance_MaxDelay. One or multiple read cursors can read from the ring buffer and calculate fractional delays using one of the two following methods dependent on the choice signaled in vdlMethod.
Table 148 — Bit assignments to vdlMethod
	bits
	vdlMethod

	0b000
	Direct sound - vdl method is spline
Early reflections - vdl method is spline

	0b001
	Direct sound - vdl method is linear
Early reflections - vdl method is linear

	0b010
	Direct sound - vdl method is spline
Early reflections - vdl method is linear

	0b011
	RESERVED

	0b100
	RESERVED

	0b101
	RESERVED

	0b110
	RESERVED

	0b111
	RESERVED



· Spline method
[bookmark: _Hlk141114728]A third order spline interpolation implemented in Newton Structure, Lamb [4]. With buffer as the ring buffer, rc as the integer read cursor position, and fdly as the fractional part (represented in a number range of 0 to 4096) of dly, the ith output sample is calculated with
k0 = buffer[rc];
k1 = buffer[rc-1];
k2 = buffer[rc-2];
k3 = buffer[rc-3];
b0 = k0;
b1 = k0 - k1;
b2 = k0 - 2 * k1 + k2;
b3 = k0 - 3 * k1 + 3 * k2 - k3;
fd = -fdly / 4096;
output[i] = k0 + 0.5 * (b2 + b3) + (fd - 1.f) * (
    b1 + 1/6 * b3 + fd * (
    0.5 * b2 + (fd + 1.f) * 1/6 * b3
    )
);
· Linear method 
With buffer as the ring buffer, rc as the integer read cursor position, and fdly as the fractional part (represented in a number range of 0 to 4096) of dly, the ith output sample is calculated using linear interpolation with
k0 = buffer[rc];
k1 = buffer[rc-1];
fd = -fdly / 4096;
output[i] = k1 + ((k0 - k1) * fd / 4096);

If the listener or RI have been teleported (i.e., the location changed and  teleport == true for at least one of them), the change in the read cursor position shall not be interpolated. In this case, the VDL uses a one-block crossfade between the signal samples at the old and new read cursor position.
The Distance Stage creates a new StreamBuffer for each delayed signal, which replaces the signal buffer associated with each RI, to allow processing multiple RIs with the same input signal but different listener-relative locations.
Update of state memory
The state variables are updated to save the previous state after each block at the end of the distance stage. 
prevTime = currentTime;
prevDist = dist;
prevTimeDiff = deltaT;
prevItemTeleport = itemTeleport;
prevListenerTeleport = detectedListenerTeleport;
prevListenerLocation = listenerLocation;
prevListenerTime = currentTime
prevItemLocation = itemLocation;
prevItemTimestamp = itemTimestamp;

The start-up phase shall be handled as a teleportation for the RI and the listener where no previous state is available.
Processing in the update thread.
None of the processing described in 6.6.17.3 takes place in the update thread.

[bookmark: _Ref101275228]Distance attenuation due to geometrical spreading
Overview
For the distance attenuation due to geometrical spreading, a parametric model is used that takes the size of the sound source into account. The model is based on the physics of real-life sound sources, which may have a different distance attenuation behaviour depending on their size and shape. While a very small point-like source may have a distance attenuation curve that essentially follows the theoretical 1/r point source curve, the distance attenuation behaviour may be very different for non-point like real-life sources.
Processing in the audio thread
None of the processing takes place in the audio thread.
Processing in the update thread.
[bookmark: _Ref157269444]General model properties
For audio objects without an extent, i.e., point source audio objects, the distance attenuation curve produced by the model is the classical 1/r point source distance attenuation curve.
For making MPEG-I more accessible, the tuning parameter a is introduced for the calculation of the distance-based gain attenuation, changing the distance r to ra. The intended effect is that the depth of the sound scene (comprised of audio objects) can be increased or decreased to the user’s needs. For instance, when a>1 the depth of the scene expands and objects that are further away will become less audible and vanish. In opposite, when a<1, the depth of the scene shrinks and objects that are further away will become more audible.  A value of a=1 preserves the default behaviour. Figure 71 depicts the effect of the exponent a for the three different values 0.7, 1.0, and 1.1. 
Note that audio elements, that are authored with the noDistance authoring parameter are excluded from this processing. The distance exponent a is provided via the parameter distanceExponent via the Accessibility User Interface (See Annex B.5). 
When the parameter a is provided via the Accessibility User parameter  distanceExponent Interface (See Annex B.5), the distance  of an RI shall be modified to   .
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[bookmark: _Ref157267993]Figure 71 — Example for three different distance exponents a
.
For audio objects with an extent, the distance attenuation curve produced by the model depends on the size of the extent, matching the distance attenuation behaviour of a real-life sound source of the corresponding size. Generally, at large distances the distance attenuation behaviour of the extended sound source is essentially the same as that of a point source, with the distance attenuation curve having the corresponding slope of -6 dB per distance doubling, while at smaller distances the slope of the distance attenuation curve of the extended sound source is smaller, i.e., the level increases less steeply when closely approaching the source as it is the case for a point source. In this context, “large” and “small” distances are to be understood relative to the largest size of the extent.
The size of the extent that is used to evaluate the geometrical distance attenuation model is the “apparent” size of the extent as observed from the current observation position. It is expressed by two values, representing the apparent size of the extent in two orthogonal dimensions (e.g. apparent width and height). The extent size that is used as input to the geometrical distance attenuation model is derived dynamically from the audio object’s extent geometry as specified in the audio object’s metadata, and the current observation position relative to the audio object (which also depends on the audio object’s position and orientation).
[bookmark: _Ref98934801]Core geometrical distance attenuation model
The parametric geometrical distance attenuation model approximates the real distance attenuation curve of the extended source by using a different distance gain function in different distance regions, each having a constant slope of -6 dB, -4.5 dB, -3 dB or -0.75 dB per distance doubling, respectively, with the boundaries between the regions being determined by the sizes L1 and L2 of the two dimensions of the apparent extent, as expressed by this formula:
	
	[bookmark: _Ref100561682](345)


 Here, g is the distance attenuation expressed as a linear gain, L1 represents the size of the apparent extent in the largest of the two dimensions, L2 represents the size of the apparent extent in the smallest of the two dimensions, and D is the distance to the extent. When plotted on a double-logarithmic scale (logarithmic distance versus dB), the resulting distance attenuation curve is a piecewise-linear function of distance.
As can be seen from (345), for a source without an extent (L1, L2=0) the model reduces to the simple 1/r distance attenuation model of a point source. For a source that only has an extent in one dimension (L2=0, line source) the model reduces to a 3-segment curve with 1/r (-6 dB per distance doubling) point source behaviour at distances larger than the size L1 of the extent, 1/ (-3 dB per distance doubling) infinite line source behavior at distances smaller than L1/6, and an intermediate slope of -4.5 dB per distance doubling in between. If the line source is infinitely long (L1=∞, L2=0), the model reduces to the 1/distance attenuation of an infinite line source at all distances.
Additional conditioning of geometrical distance attenuation
The distance attenuation value that is obtained from the core geometrical distance attenuation model described in 6.6.17.4.3.2 is scaled such that it is 0 dB at the reference distance specified for the audio object. This is done by evaluating the core geometrical distance attenuation model at the reference distance, and then using the obtained value to scale the value obtained for the current observation distance.
To prevent excessive distance gain when coming very close to a source, the distance attenuation curve from the core geometrical distance attenuation model is only applied from a certain threshold distance from the extent onwards. For distances within this threshold distance, the distance gain is kept constant to the value at the threshold distance (default: 0.2 m).
To prevent excessive gains for listener voice reflections when e.g. approaching a wall, the threshold distance for RI of type Reflection derived from items of type ListenerVoice shall be set to 1.0 m.
To ensure a more realistic distance attenuation of implicit Portals, which are radiating late reverberation sound instead of dry direct sound, an additional Portal Factor, , is calculated based on (346), where is the volume of the portal geometry. This factor shall not be applied in explicit portal mode (isExplicitPortalMode = true).
	
	[bookmark: _Ref100561755](346)


[bookmark: _Ref104224476]Medium attenuation
Processing in the audio thread
None of the processing takes place in the audio thread.
Processing in the update thread.
Medium attenuation describes the frequency-dependent attenuation of sound sources due to the geometrical spreading of energy. The distance stage models this effect by modifying the eq field of relevant RIs.
The EQ values for each band are calculated according to ISO 9613-1 (“Attenuation of sound during propagation outdoors — Part 1: Calculation of the absorption of sound by the atmosphere”), using the band center frequency (Table 78), the local configuration parameters (6.4.2.7) for Temperature and Humidity, and an atmospheric pressure of 101.325 kPa. This results in a low-pass effect for audio elements that are far away from the listener.
[bookmark: _Ref157269495][bookmark: _Toc166076633]Directional Focus
Intended as a functionality for improving accessibility, the directional focus is meant to attenuate distracting sounds from directions outside a spatial region of interest (see Figure 72). The focus is radial symmetric with one “main lobe” region. Its damping behavior is configurable with three parameters provided by the Accessibility User Interface (see Annex B.5). The default direction steers towards the frontal viewing direction of the user but can also be re-oriented to other directions, e.g., to enable control through other services or modalities (e.g., eye tracker, handheld controller, etc.). 

- Audio elements, that are signalled to be part of the Listener-relative Coordinate System (LCS, see clause 6.4.1.2.2.2) and are therefore associated with the listener will not be processed with the Directional Focus. 
- RIs of reflection-type are excluded from this processing.
- Audio elements, that are signalled with the noDistance or noDirectionalFocus authoring parameter are excluded from this processing.
[image: ]
[bookmark: _Ref157267474]Figure 72 – Visualization of Directional Focus Parameter
directionalFocusAperture		Opening angle of the directional focus’ main lobe in degree.  
 
startStopbandAngle	Angle in degree where the stopband starts: directionalFocusAperture+directionalFocusTransitionWidth

stopbandGainLinear 	Linear gain computed as 				
pow(10.0, -0.05 * directionalFocusStopbandAttenuationDb)

coefA	Variable to compute the attenuation in the transition band:	


DirYawRad    	Yaw angle of the primary direction of the directional focus with respect to the frontal head orientation in degree.

DirPitchRad   	Pitch angle of the primary direction of the directional focus with respect to the frontal head orientation in degree.

Processing in the audio thread
None of the processing takes place in the audio thread.
Processing in the update thread
The directional focus attenuates the frequency-independent gain of a RI. For this, the RI location in global coordinates is transformed to listener-relative polar coordinates with  and  being the azimuth and elevation angles of the RI direction in radians in the listener-relative polar coordinates.
The angular distance angDist between the direction of the RI and the viewing direction is computed as:



based on angDist, the gain of the RI is scaled as follows:

if (angDist > directionalFocusAperture) {
	if (angDist >= startStopbandAngle) {
		gain *= stopbandGainLinear;
       } else { 
		gain *= pow(10.0, coefA * (angDist - directionalFocusAperture));
    	}
}
[bookmark: _Toc166076634]Consolidation of Render Items
General
The Consolidation Stage combines RI with similar localization properties, to reduce the total number or RI in the renderer pipeline and therefore computational complexity. RI for which the differences in perceptual localization properties are below a given threshold are identified via a psychoacoustic model. Based thereon, groups of RI within these thresholds are selected via a computationally efficient clustering algorithm. The RI within each group are consolidated into a common representative RI. For temporal stability, the assignment of RI is optimized to avoid unnecessarily frequent re-assignment and crossfades are applied if the assignment of RI changes. 

Data Elements and Variables
p		user-relative RI location as 3D coordinate vector 
xp, yp, zp	x,y,z components of RI location vector
rp		radius distance of RI location to user
q 		RI location in perceptual coordinates as 3D coordinate vector
uq, vq, wq	components of perceptual coordinate vector
cLR		perceptual weighting factor for left-right differences, shall be 20
cFB		perceptual weighting factor for front-back differences, shall be 20
cUD		perceptual weighting factor for up-down differences, shall be 20
cr		perceptual weighting factor for radius differences, shall be 0 when
		consolidation is positioned after distance stage.
cEQ		perceptual weighting factor for equalizer differences, shall be 1
cER		perceptual weighting factor for early reflection, shall be 6
rPCS		radius distance component in perceptual coordinates
rref		reference radius for perceptual distance mapping, shall be 0.2m
EQlin	RI equalizer magnitude gains in linear domain as vector
EQlog	RI equalizer magnitude gains in logarithmic domain as vector
b		equalizer band index
isER		flag indicating that an RI is of type Reflection
i, j	I	ndex variables referring to RI indices
E(i)		Energy of RI of index i
itemGain(i)	item gain of RI of index i
	perceptual localization difference between RI of index i and j
	perceptual equalization difference between RI of index i and j
	perceptual reflection type difference between RI of index i and j
	total perceptual difference between RI of index i and j
thrPCS	threshold for perceptual differences from bitstream, default value 5,
		can be adjusted via bitstream in range 0 to 31
	flag indicating that RI of index i and j are within perceptual thresholds
Nin		number of input RI into the consolidation algorithm
k		number of consolidated RI clusters from clustering in current frame
kprev		number of consolidated RI clusters from clustering in previous frame
m	I	ndex of consolidated RI cluster
centroids(m)	centroid location of consolidated RI in perceptual domain
assigned(m)	number of RI assigned to centroid of index m
memberships(i)	membership of RI, i.e. RI of index i is assigned to centroid(memberships(i))
Eperm	Energy permutation matrix of size k x kprev
		radial distance of output centroid location
		location of consolidated RI centroid as 3D coordinate vector
EQcons	equalizer gains of consolidated RI in linear magnitude domain as vector
Stage description
Overview
The Consolidation stage collects all RI types that may be consolidated and converts the RI metadata into a perceptual representation. This representation enables the calculation of pairwise differences between RI in order to determine pairs for which the differences are below a given perceptual threshold. Based on this threshold detection, a greedy clustering algorithm is applied to select groups of RI to be combined into clusters. For improved temporal stability, the result of the clustering algorithm is optimized to minimize re-assignments due to permutation changes. The RI within each group are consolidated into a common representative RI and the corresponding audio signals are combined via a downmixing. To prevent discontinuities if the assignment of RI changes, crossfades are applied when necessary. The workflow is illustrated in the block diagram in Figure 73. 
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[bookmark: _Ref164789072][bookmark: _Ref164789065]Figure 73 – Block diagram of Consolidation of Render Items
Update Thread Processing
The consolidation stage considers render items that represent point sound sources, therefore, RI of type Nondiegetic, Pannable, Reverb, HOA, ListenerVoice and RI with extent are omitted. 
If consolidationThreshold is set to 0, no RI will be combined. Therefore, in this case, the Consolidation Stage shall omit processing of all RI to avoid unnecessary distance calculations.
 Mapping of RI properties to Perceptual Coordinate System
To enable efficient calculation of perceptual differences, the location of each RI is transformed and scaled into a listener-relative Perceptual Coordinate System (PCS) by the following processing.

The RI location is transformed into user relative coordinate space to obtain the user-relative location
p = (xp, yp, zp). Spatial hearing is based on different localization cues for horizontal and vertical direction, as well as for distance. Therefore, the location is separated in a radial distance component rp = |p| and a normalized position p’ = p/r on the unit sphere, similar to a polar coordinate representation. To reflect human hearing’s different sensitivity for different directions, the location is scaled into a perceptual coordinate representation q by weighting constants for left-right cLR, front-back cFB and up-down cUD directions as
	.
	(347)


The distance component rPCS is modeled in analogy to the perception of distance-based gain differences by a logarithmic transformation of the radius in relation to the reference distance rref as
	.
	(348)


This representation gives a generalized perceptual model for free-field localization of point sources. However, further processing is applied in the renderer to model further effects of sound propagation which must be considered for the perceptual model as well.

Individual equalizer (EQ) curves are applied per RI e.g., to represent directivity and propagation dampening. The shape of the EQ given by the magnitude filter curve EQlin for each of the Nb octave band b is represented by the log-magnitude curve. Any full-band offset of the EQ curve can be compensated by a linear gain and is therefore removed.
	
	(349)

	.
	(350)


Furthermore, for RI of type Reflection, a dispersion filter is applied by the spatialization, thus introducing perceptual difference between different RI types. This is considered by a flag isER set as: 
	
	(351)



 Perceptual Differences and Thresholds
The CoRI is based on a pair-wise estimation of the perceptual difference between the properties of two RI. If the perceptual difference is below an appropriate perceptual threshold, the corresponding RI can be combined. Since the consolidation of two or more RI into one RI results into one combined, position, EQ curve, and item type, all differences between these individual factors contribute to the overall perceptual differences. Therefore, a threshold for a weighted, overall sum of the perceptual differences is considered, rather than individual thresholds.
The PCS representation enables to estimate perceptual differences between the localization from simple distance calculations in the PCS coordinates. The perceptual difference dPCS (i,j) between the directional properties two RI of index i and j is calculated as
	.
	(352)


The difference in distance perception is calculated as 
	
	(353)


and the average difference in EQ curves as
	
	(354)


Combining items with different isER property enables/disables the application of the dispersion filter, therefore the perceptual difference between ER and non-ER items is considered as
	
	(355)


The individual perceptual differences are combined into a total difference dtotal as we weighted sum:
	
	(356)



Note: Since the location difference dq already includes its individual weighting factors cLR, cFB, and cUD, it is not weighted twice.
To determine if two RI may be combined, the perceptual distance is compared against the perceptual threshold obtained from the bitstream as thrPCS = consolidationThreshold to yield a flag isBelowThr(I,j) as
	
	(357)



 Clustering Algorithm
The goal of CoRI is to determine clusters of RI with small perceptual differences that can be combined in order to reduce the number of RI in the pipeline and therefore complexity, while maintaining low complexity for the clustering algorithm itself. Therefore, a greedy clustering algorithm is applied. The approach is, starting at the RI with the lowest index, to determine for each RI, which of the other RI are within the perceptual thresholds and not already assigned to another cluster. All corresponding RI are combined and marked to be already processed. This is repeated for the remaining render items, until no further differences below the perceptual thresholds remain.
The clustering algorithm is defined by the following pseudo-code. Here for the algorithm input,
Nin indicates the total number of input RI, q[i] the input RI location in PCS coordinates, E[i] the energy of the RI. For the algorithm output, centroid indicates the combined centroid position, assigned(i) indicates the number of assigned RI for each centroid, memberships(i) to which centroid each RI is assigned to. The algorithm is initialized with each RI being one individual cluster.

for (i = 0; i < Nin; i++) {
  memberships[i] = i;
  assigned[i] = 1;
  centroids[i] = q[i];
  E[i] = itemGain[i]^2;
}
for (i = 0; i < Nin; i++) {
  for (j = i + 1; j < Nin; j ++) {
    if ( (assigned[i] > 0) && (assigned[j] > 0) && (isBelowThr(i,j) == 1)) {
      memberships[j] = i;
      assigned[i] = assigned[i] + assigned[j];
      assigned[j] = 0;		
      centroids[i] = q[i]*E[i] + q[j]*E[j];
      E[i] = E[i] + E[j];
      E[j] = 0;
    }
  }
}
The clustering is applied in-place, leaving empty centroid indices with assigned[i]=0, and a total number of k centroids with assigned[i]>0. The resulting k centroid positions and memberships of index m are collected and re-assigned as defined by the following pseudo-code:

m = 0;
for (i = 0; i < Nin; i++) {
  if (assigned[i] > 0) {    
    centroidsOut[m] = centroids[i];
    membershipCollected[m] = membership[i];
    k++;
  }
}

for (i = 0; i < Nin; i++) {
  for (m = 0; m < k; j++) {
    if (membership[i] == membershipCollected[m]) {
      membershipOut[i] = m;
    }
  }
}
 Cluster Order Permutation Optimization
The index order of the obtained centroids depends on the member RI with the lowest index. To avoid permutations of centroid assignments due to small re-assignment of individual RI, the permutation order of the assigned output clusters is optimized to improve temporal stability. The goal of the optimization is to keep as much input signal energy assigned to the downmix signal with the index where it was assigned in the previous frame. This is achieved by calculating an energy permutation matrix to determine how much energy is re-assigned between clusters in consecutive frames and iteratively selecting the maximum entries to maximize the amount of energy that is kept assigned to the same cluster as before. The permutation optimization shall be performed as defined by the following pseudo-code.
The energy permutation matrix Eperm of size k x kprev is initialized to zero and then filled by accumulating the RI energies, based on their current membership membershipOut and their previous membership membershipPrevious for the k current and kprev previous number of clusters.

for (i = 0; i < Nin; i++) {
  Eperm[membershipOut[i]][membershipPrevious[i]] += E[i];
}

The permutation is optimized by a greedy approach, iteratively picking the matrix entry with the highest energy, from the rows/columns of permutations that have not yet been assigned. 

for (m = 0; m < k; m++) {
  [rowMax, colMax] = argMax(Eperm)
  permutation[colMax] = rowMax;
  permutedClusters[rowMax] = 1;
  Eperm(rowMax, : ) = 0;
  Eperm(:, colMax ) = 0;
}

Finally, the permutation is applied to obtain the permutated memberships and centroid positions, (replacing the variables centroids and memberships for improved readability). 

for (m = 0; m < k; m++) {
  centroids[m] = centroidsOut[permutation[m]];
  for (int i = 0; i < numObjIn; i++) {
    if (membershipOut[i] == permutation[m]) {
      memberships[i] = m;
    }
  }
}
 Inversion of Perceptual Mapping
After the consolidation is performed in the perceptual domain, the output RI properties are transformed back into geometric coordinates.
The radius is converted back from logarithmic to linear coordinate representation as
	
	(358)


and the user-relative, geometric coordinates pOut are calculated by inverting the perceptual weighting and the normalization to the unit sphere as

 
	.
	(359)



For the combined RI, the Equalizer Curve is calculated as the RMS average of the contributing RI as weighted by the contributing RI energies in relation to the cluster’s total energy Em 
	
	(360)



 Assignment and Deactivation of Render Items
When two or more input RI are assigned to one centroid by the clustering algorithm, they shall be combined into a consolidated RI with the location and EQ properties of the obtained centroid and the original RI are deactivated. Though the consolidation is time-variant, it is expected to remain identical or at least similar, as long as there are only small changes in the user and sound source positions. Therefore, a consolidated RI that has been created shall be kept persistent and active as long as it has input RI assigned to it and shall only be deactivated when no input RI are assigned to it anymore. Vice versa, input RI that are no longer assigned to a centroid shall be re-activated.

For input RI of type Reflection, the spatializer applies a dispersion filter. The consolidation allows, though with a given penalty, the combination of reflection and non-reflection RI. In this case, the perceptual impact of applying the dispersion filter to a primary item is assumed to be more detrimental to sound quality than the impact of not applying the dispersion filter to a reflection RI that is combined with other non-reflection RI. Therefore, the default item type of the consolidated RI shall be of type Representative. If, and only if, all members of a consolidated RI are or type Reflection, then also the consolidated RI shall be of type Reflection, and thus enable the dispersion filter. 
Audio Thread Processing
In the Audio Processing Thread, the individual input signals of the RI that have been consolidated are summed up into the respective target consolidated RI. In case the assignment changes, a short crossfade of one audio block length is applied in order to prevent signal discontinuities. 
When the membership of an RI changes, the existing signal is cross-faded into the newly assigned consolidated RI signal over the course of one audio block. For render items that have previously not been consolidated, the fade out window is applied in the original RI’s signal. Conversely, for RI that are no longer part of a consolidated RI and are reactivated, a fadeout is applied in the previously assigned consolidated RI and a fade in is applied to the re-activated original RI’s signal. For crossfading, the fade in and fade out window shapes are taken from the FadeStage, as defined in Section 6.6.22 Fade. Since the activation and deactivation of RI by the consolidation corresponds to a re-assignment of signals and is crossfaded within the CoRI stage, the FadeStage shall not apply any additional fade in or fade out in case RI are activated or deactivated by the CoRI stage.

[bookmark: _Ref100564130][bookmark: _Toc117076364][bookmark: _Toc131497385][bookmark: _Toc132126389][bookmark: _Toc132225958][bookmark: _Toc135210146][bookmark: _Toc166076635]Equalizer (EQ)
[bookmark: _Ref164421568]General
The Equalizer (EQ) stage applies frequency-dependent gain to all relevant audio signals after the frequency-dependent attenuation has been accumulated for all contributing acoustic effects (e.g. occlusion, diffraction, reflection, directivity, medium attenuation) by preceding stages. The gain for  bands with fixed center frequency is stored in the eq metadata element of each RI (6.4.2.4). The EQ Stage implements the necessary DSP functionality to apply the frequency-dependent gain to the associated signal(s). The number of bands and their center frequencies may depend on the quality profile and hardware constraints for the rendering. The default configuration uses third-octave bands with  and center frequencies given in Table 149. The EQ stage further applies the frequency-independent gain of each RI to the associated signal(s). For RI of type ListenerVoice, the EQ stage further applies the frequency-independent directGainDb as gain = gain*10^(-0.05*directGainDb).
[bookmark: _Ref100935354]Table 149 – Center frequencies of EQ bands
	Band
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Center Freq.  [Hz]
	20
	25
	31.5
	40
	50
	63
	80
	100
	125
	160
	200

	Band
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

	Center Freq. [Hz]
	250
	315
	400
	500
	630
	800
	1000
	1250
	1600
	2000
	2500

	Band
	23
	24
	25
	26
	27
	28
	29
	30
	31
	
	

	Center Freq. [Hz]
	3150
	4000
	5000
	6300
	8000
	10000
	12500
	16000
	20000
	
	



[bookmark: _Ref101283785]Signal processing
The frequency-dependent gain values in the eq element are interpolated from the  bands given in eq to a real magnitude spectrum  using piecewise cubic Hermite interpolating polynomial, Brodlie [5] pp. 1-37. The interpolation requires three values , ,  for each of  bands (or supporting points), where  is the center frequency of the band,  is the desired magnitude for this band and is the desired slope of the tangent at this supporting point of the interpolation.  is chosen with the following algorithm (assuming ):
for (n = 1; n <= N; n++) { 
	if (n == 1) { // only right neighbor available: use a three-point algorithm
		s1 = x[n+1] - x[n];
		s2 = x[n+2] - x[n+1];
		d1 = y[n+1] - y[n];
		d2 = y[n+2] - y[n+1];
		m[n] = d1 * (2*s1 + s2) / (s1 + s2) - d2 * s1 / (s1 + s2);
	} else if (n == N) { // only left neighbor available: use a three-point algorithm
		s1 = x[n-1] - x[n-2];
		s2 = x[n] - x[n-1];
		d1 = y[n-1] - y[n-2];
		d2 = y[n] - y[n-1];
		m[n] = -d1 + s2 / (s1 + s2) + d2 * (s1 + 2 * s2) / (s1 + s2);
	} else { // left and right neighboring points are available
		s1 = x[n] - x[n-1];
		s2 = x[n+1] - x[n];
		d1 = y[n] - y[n-1];
		d2 = y[n+1] - y[n];
		if (d1 < 0 && d2 > 0) || (d1 > 0 && d2 < 0) || (d1 == d2 && d1 == 0) {
			// use tangent slope of 0 if x[n] is a critical point
			m[n] = 0;
		} else { // use Brodlie modification of Butland formula
      dmax = absmax(d1, d2);
      dmin = absmin(d1, d2);
			m[n] = (dmin / 3) / ((1 + s1 / (s1 + s2)) * (d1 / dmax)
				+ (1 + s2 / (s1 + s2)) * (d2 / dmax));
		}
	}	  
}

The interpolated magnitude for the spectrum of length  with bin frequency  with  is given by
	
	(361)


where  to  are the first four Hermite basis functions in the interval  and  is the index of the supporting point with the largest . Extrapolation outside of the interpolation range (i.e.  or ) is done using linear extrapolation with the slope at the first or last supporting point, respectively. 
[bookmark: b1]To minimize group delay in the signal processing, the minimum-phase version of the interpolated spectrum is generated using the cepstrum-windowing method, Oppenheim [6] pp.788. For a length  magnitude spectrum, the cepstral coefficients  for  are given by
	
	[bookmark: _Ref156899297](362)


and the final minimum-phase filter spectrum  is given by
	
	[bookmark: _Ref156899309](363)


assuming  to be odd. The number of frequency bins is  for primary RIs and  for secondary RIs, yielding FIR filters of length 1024 and 256 respectively.
Stage description
For each RI, the EQ Stage designs an equalizing FIR filter according to (6.6.20.2) and prepares it for a filter exchange according to  (A.13) in the update() routine. A separate FIR filter instance is created for each channel of the signal(s) associated with the RI.
In the processBlock() routine, each single-channel signal is filtered according to (A.13) and the gain of the corresponding RI is multiplied with the signal. If gain changed from the previous block, the multiplication value is interpolated linearly to avoid discontinuities by large changes in the amplitude of the signal. 
[bookmark: _Toc166076636]Low-Complexity Early Reflections (LC-ERs)
General
The impulse response in an indoor acoustical environment comprises of direct sound, early reflections (ERs) and late reverb. In the high-quality early reflections (HQ-ER) implementation, the direct sound and every single early reflection dynamically change their individual direction and distance to the listener when the listener and/or the sound source is moving in the environment. This implementation accurately models physics in real world and thereby provides highest perceptual quality.
However, in most cases humans mainly localize a source based on the direct sound (law of the first wave front, precedence effect). In terms of perception, the ER essentially just fill the gap between direct sound and late reverb and provide some additional cues about the room properties in addition to the main information provided by the late reverb.
Position of LC-ER Stage in Pipeline
The HQ-ER stage produces an individual ER pattern and inserts several additional render items for each primary sound source. This results in a multiplicative increase of render items, which have also to be processed by the subsequent stages e.g. distance (with variable delay line) and EQ stage, see Figure 74. 
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[bookmark: _Ref155338099]Figure 74 – Original pipeline position for HQ-ERs stage

[image: Ein Bild, das Text, Screenshot, Schrift, Rechteck enthält.
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[bookmark: _Ref155338116]Figure 75 – Optimized pipeline position for LC-ERs stage, leading to reduced number of processed render items in subsequent stages
For the LC-ER approach, only one common reflection pattern is applied for all primary sound sources within a scene. In addition to lower complexity for geometric calculations, reducing the total number of render items is a crucial factor to achieve a substantial reduction of the overall renderer complexity and especially the workload of the audio processing thread (especially for scenes with a high number of primary sound sources). By repositioning the LC-ER towards to the end of the renderer pipeline, see Figure 75, the number of render items that have to be processed is minimized for the majority of the renderer pipeline, before introducing additional reflection render items. The LC-ER stage needs only one integer delay line for all ERs, because the distances or delays between listener and ERs is not changing. This is a further advantage to the more costly variable delay lines with time interpolation.
The LC-ER stage shall be activated if the bitstream flag useLowComplexityER in the mpegSceneConfig() is set to true. In this case, the HQ-ER stage shall be skipped in the rendering pipeline. Otherwise, if useLowComplexityER is set to false, the HQ-ER stage is engaged and the LC-ER stage shall be skipped in the rendering pipeline.

Data elements and variables
	Number of LC-ERs
	Distance factor between indoor LC-ERs
	Initial delay to the first indoor LC-ER [ms]
	Amplitude factor 
	Azimuth angles of first indoor spiral pattern [rad]
	Azimuth angles of second indoor spiral pattern [rad]
	Radius of first indoor spiral pattern [m]
	Radius of second indoor spiral pattern [m]
	Source listener distance [m]
	Estimated absorption of the indoor environment
	Amplitude correction of first indoor spiral pattern
	Amplitude correction of second indoor spiral pattern
	Amplitude attenuation factor 
	Amplitude of first indoor spiral pattern
	Amplitude of second indoor spiral pattern
	Estimation of the room dimension
	Angular offset dependent on listener position
	Radii of LC-ERs
	Amplitudes of LC-ERs
	Bounding box for current set of LC-ER parameters

	preDelay to outdoor reflection number 1 and 3
	preDelay to outdoor reflection number 2 and 4
	log amplitude correction beyond 1/r for reflection 1 and 3
	log amplitude correction beyond 1/r for reflection 2 and 4
	linear amplitude correction beyond 1/r for reflection 1 and 3
	linear amplitude correction beyond 1/r for reflection 2 and 4
	Radius start value for outdoor reflection number 1 and 3 [m]
	Radius start value for outdoor reflection number 2 and 4 [m]
	Gain for HQ-ERs
	Relative tuning gain for LC-ERs
	Absolute gain for LC-ERs
	Environment crossfade factor
	Distance limit [m]
	Distance to portal [m]
	LC-ER total gain
	Input signal per sample
	Downmix weight for sources not processed by DistanceStage
	Weighted downmix for samples for all sound sources
	Source listener distance gain
	Individual LC-ER reflection
		Reflection index
		Input signal index
		Sample index

Stage description
Implementation of LC-ERs 
There are different implementations for in- and outdoor LC-ERs. Figure 76 gives an overview of the implementation of LC-ER algorithm in en- and decoder/renderer. The structogram is structured in three rows: encoder, bitstream and decoder. It has two main columns: the left is for indoor scenes, using the predefined indoor ER spiral pattern, the second is for outdoor scenes, using the predefined outdoor ER pattern. Indoor scenes are defined by an acoustic environment. All other scenes are handled with the outdoor LC-ER pattern. The four parameters for the outdoor pattern can either be defined in the EIF file or they can be calculated out of a geometry analysis in the encoder.


[bookmark: _Ref155339558][bookmark: _Ref130821704]Figure 76 – Implementation of LC-ER algorithm in en- and decoder/renderer
Because the LC-ER patterns are not dependent on any mesh information, they can also be used for voxel-based scenes.
The following LC-ER calculations are executed in every frame.
[bookmark: _Ref155347124]Implementation of Indoor LC-ER Pattern
Figure 77 shows the indoor LC-ER pattern plotted a) over time, b) across location (top view). It is a pattern with reflections only in the horizontal plane at ear height. It is just “moving” with the lateral position of the listener. It is not dependent on the orientation of the listener.
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[bookmark: _Ref155339658][bookmark: _Ref130821845]Figure 77 – Indoor LC-ER pattern plotted a) over time, b) across location (top view)
The predelay time to the start of the late reverb determines the number of ERs, numER in eq (364), the factor determining their spacing, distFac in eq (365) and their initial delay, initDelay in eq (366). The room’s RT60(1kHz) determines the internal amplification factor, ampFac in eq (367). This predelay and RT60 time are obtained from the Reverb Stage (6.6.4.2): predelayRender, .
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	[bookmark: _Ref154045065](365)
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Azimuth angles β calculation of ER positions for the two spirals are defined in eq (368) and (369).
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	[bookmark: _Ref154048317](369)

	Radius calculation of ER positions for the two spirals are defined in eq (370) to (372), with .
	

	
	[bookmark: _Ref154048484](370)
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	[bookmark: _Ref154048488](372)


The amplitudes of the LC-ERs are adapted by the absorption factor and the source-listener distance slDistance is calculated as the Euclidean distance between the item location and the current listener location. 
	
	(373)


When multiple sound sources are within a scene, slDistance for the closest source is used for generating the overall pattern. The absorption influence is taken from the RT60 values and room volume V [m3], room surface A [m2], eq (374) to (376).
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	(375)

	
	[bookmark: _Ref154065328](376)

	The amplitude of the pattern is limited to maximum 0.7 by applying an attenuation factor based on the amplitude of the first reflection, (377) to (379).
	

	
	[bookmark: _Ref154057843](377)

	
	(378)

	
	[bookmark: _Ref154066743](379)


To include some variation into the pattern when the listener is moving, the pattern is rotated around the listener dependent on the listener position. The pattern is rotated by an angle offset βoffs which is calculated from the listener coordinates in the horizontal plane (listenerX, listenerY) in relation to the room dimensions estimated from the initDelay [ms] as follows (380) to (383).
The two spiral arms of the reflection pattern are combined and mapped into output arrays as follows.
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	(381)

	
	(382)
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The two spiral arms of the reflection pattern are combined and mapped into output arrays as follows for .
	
	   (384)

	
	(385)

	
	(386)

	
	(387)


The reflection positions are converted from listener-relative polar coordinates into Cartesian world coordinates as output positions for the generated render items.
[bookmark: _Ref155347127]Implementation of Outdoor LC-ER Pattern
Specifically for outdoor scenes, a pattern with four roughly cross-positioned ERs is designed, see Figure 85. Such a sparse pattern does not produce an indoor perception, but it is also more than just the direct sound only. The pattern is highly adjustable in time and in level. With this the scene author has a high degree of freedom to adjust the perception of the pattern to individual scenes. The pattern is independent from the position of the listener and is not taking into account any geometry of the scene. With this the high complexity reduction compared to HQ-ERs is achieved.
[image: Ein Bild, das Text, Diagramm, Zahl, Reihe enthält.

Automatisch generierte Beschreibung]
[bookmark: _Ref153015572]Figure 78 – Outdoor LC-ER pattern plotted a) over time, red circle normalized direct sound, blue circles reflections; b) across location (top view), green circle listener position
The pattern consists out of four ERs, defined by the bit stream parameters:
lcEarlyPreDelay1		preDelay to reflection number 1 and 3, default 60 ms
lcEarlyPreDelay2		preDelay to reflection number 2 and 4, default 100 ms
lcEarlyAmpFac1Db 	log amplitude correction beyond 1/r for reflection 1 and 3, default 0 dB
lcEarlyAmpFac2Db 	log amplitude correction beyond 1/r for reflection 2 and 4, default 0 dB
These parameters can be obtained e.g. by an encoder geometry analysis as described in Annex B.2.5 or be set manually by the scene content creator via EIF parameters. This allows the full freedom to adapt to every individual scene.
The bitstream parameters are converted to linear gains by (388) and (389)
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The four angles stay constant: β(n) = [0.44,1.84,3.2,4.7], n=[1:4]. They are not dependent on listener orientation. There is also no pattern rotation for outdoor LC-ERs.
 The distances of the reflections to the listener are calculated by (390) until (395).
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	(394)
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	The amplitudes are calculated by (396) until (399).
	

	
	[bookmark: _Ref154063322](396)

	
	(397)

	
	(398)
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Selection of active LC-ER Environment 
If the listener is within a part of the scene that has a defined Acoustic Environment, the indoor reflection pattern is applied, based on the parameters provided by the ReverbStage.
If the listener is within an outdoor section of the scene, the outdoor reflection pattern is applied. To determine the parameters for the outdoor pattern generation, it is checked for the environments in the payloadLcEarlyReflections() if the listener position is contained in the respective environment’s lcEarlyBoundingBox() geometry. If the listener is inside one bounding box, the parameters for the corresponding environment are selected. If the listener is within multiple, overlapping bounding boxes, the environment with the highest lcEarlyEnvironmentPriority is selected. If no outdoor LC-ER environment has been transmitted for the current listener location, the default pattern parameters are used.
Application of Tuning Gain and Environment Crossfade Factor to LC-ER Gain Calculation 
There are several gain factors involved in the final LC-ER level.
The scene dependent tuning gain EarlyTuningGain that is set by the scene author for HQ-ER is also applied for LC-ER. Additionally, a factor to align the level of the LC-ER relative to HQ-ER is applied as lcEarlyRelativeTuningGain = 0.7. This combined, constant level adjustment is calculated per scene as
	
	(400)


To mitigate discontinuities at the transition between acoustic environments, a crossfade is applied when a listener is close to a portal. Based on the distance to the closest point of the portal, a position-dependent factor envCrossfadeFactor is calculated with distLimit = 0.2 m as follows.
	
	(401)



Total gain of LC-ER items is calculated from the individual reflection pattern factors, the tuning gain and the environment crossfade as
	
	(402)



Signal Processing of LC-ERs
Overview
The LC-ER stage calculates a downmix of all processed sound sources that feeds into the individual reflections of the reflection patterns defined in sections 6.6.21.3.2 and 6.6.21.3.3. The LC-ER stage is located in the renderer pipeline behind the DistanceStage and EQStage, therefore the input signals have already been processed in terms of delay and level alignment dependent on the source-listener distance. 
The delay times for the individual reflections within a pattern are fixed (i.e. independent of the source-listener distance) and therefore obtained via one integer delay line with multiple taps. 
Summation of Several Direct Sources into One LC-ER Pattern 
All sound sources are summed before they are fed into the LC-ER pattern. Due to the positioning of the LC-ER stage, the direct sound signals entering the LC-ER stage are already adjusted in delay and level according to their individual source listener distance by the preceding stages (distance, EQ).  Therefore, the contribution of the individual sound sources to the summation is dependent on the individual listener to direct source distance and this can vary over time, see Figure 79. The LC-ER pattern is applied as a relative level and delay adjustment to the sum signal. The closest listener to direct source distance determines the shape of the pattern. 
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[bookmark: _Ref155339856][bookmark: _Ref130822961]Figure 79 – Summation of several audio sources into one ER pattern
For each frame, a weighted Downmix dmx for samples of index i of all sound sources of index m that feed into the reflection pattern is calculated.
	
	(403)


For extended sound sources, which are not processed by the DistanceStage, a weighting is applied to align the source-listener distance based gain, which is calculated based on the slDistance by the renderer’s calculateDistanceGain()function.
	
	(404)

	For primary items of type ListenerVoice, the associated listener voice early reflection gain gListenerVoice shall additionally be applied. It is computed as: 
	

	
	(405)


Output Signals for LC-ER render items
All render items are fed with signals from the downmix, by using multiple taps in an integer delay line and individual amplitude factors for each reflection item. 
The integer delay of the signals for the reflection render items of index n are calculated from the reflection radius.
	
	(406)


The individual reflection signals are obtained by reading from the downmix delay line at the position with the corresponding read offset and weighting with the individual reflections amplitude factor.
	
	(407)



[bookmark: _Toc117076365][bookmark: _Toc131497386][bookmark: _Toc132126390][bookmark: _Toc132225959][bookmark: _Toc135210147][bookmark: _Ref164855387][bookmark: _Toc166076637]Fade
General
The Fade stage is responsible for applying fade-in and fade-out ramps to audio signals before RIs are activated or deactivated, respectively. The deactivation is synchronized across stages, so that all stages continue to process the audio signals of RIs (e.g. propagation delay) before their fade-out is complete. The fade stage is also active during teleporting to mute sound output.
Data elements and variables
activeListId	list id of the currently active list
B		audio block size
controlMessages	an array of control messages to be passed via the message queue from the update thread to the audio thread processing logic
FADE_NONE, FADED_IN,
FADED_OUT, FADING_IN,
FADING_OUT	constant integer values used to indicate a particular state of the RI fade
fadeActiveDirection	1 indicates a fade-in, -1 indicates a fade-out, 0 indicates an idle state
fadeCurrentState	an atomic integer variable holding the current state of the RI fade, it is set on the audio thread, and read on the update thread
fadeId	a unique reference to the memory, storing the fade state of the current RI
fadeSamplesLeft	number of sample left until the fade envelope is complete
ictrl	index into the controlMessages array

itemActiveEnvelope	an array with the sample values of the currently active fade shape
itemChannels	number of channels in the itemSignal array
itemStatus	an integer variable holding the value representing the current state of a RI
itemSignal	an array of audio buffers containing the current audio frame’s PCM audio samples for each of the RI source channels
itemStatusChanged	a flag indicating whether the itemStatus value for the current RI has been changed by a previous stage in this frame

ITEM_ACTIVE,
ITEM_FADEOUT_INACTIVE,
ITEM_FADEOUT_ORPHANED,
ITEM_INACTIVE,
ITEM_NEW	constant integer values used to indicate a particular status of a RI
L		length of the fade segment to be processed in the current audio frame
messageQueue	Single Producer Single Consumer message queue used to pass messages from the update thread to the audio thread
needsReset	a boolean variable indicating whether the fade needs to be reset
new	FadeDirection	1, -1, or 0, depending on whether the RI needs to fade in, fade out, or remain unchanged after this update frame
renderListId	list ID of the current render list, populated by the update thread
Stage description
Update thread processing
Based on the current status of each RI, determine the required fade direction.
if (itemStatus == ITEM_INACTIVE) {
	newFadeDirection= 0;
}
else if ((itemStatus == ITEM_FADEOUT_INACTIVE || itemStatus == ITEM_FADEOUT_ORPHANED)
		&& itemStatusChanged) {
	newFadeDirection = -1;// fade out
} else if (itemStatus == ITEM_NEW || (itemStatus == ITEM_ACTIVE && itemStatusChanged)) {
	newFadeDirection = 1;// fade in
}

Based on the current state of the RI fade and the itemStatus, determine whether a reset of the fade state is necessary.
needsReset = false;
if (fadeCurrentState == FADED_IN || fadeCurrentState == FADED_OUT
	|| itemStatus == ITEM_INACTIVE)
	needsReset = true;

Prepare the fade control messages.
controlMessages[ictrl++] = {fadeId, needsReset, newFadeDirection};

Once all active RIs have been processed, add the control messages to the messageQueue, along with the current renderListId.
messageQueue.push({renderListId, controlMessages});

Audio thread processing
Message queue processing


[bookmark: _Ref100231093]Figure 80 — Fade stage message queue
The memory layout of the message queue is illustrated in Figure 80. Each message consists of a Render list ID and a pointer to an array of control messages. Each control message contains a fadeId used to identify a specific fade instance, a Boolean flag needsReset, and an integer fadeDirection.
While the Render list ID of the front message in the queue is less than the current activeListId, pop the front message from the queue and update the states of the fades with the given IDs according to the control messages.
Now the message at the front of the queue has its Render list ID equal to the activeListId. Apply the control messages to the fades referenced by the fade IDs as before, but do not remove the message from the queue. It will be removed in a future audio frame, once activeListId has been incremented.
Fade application
For each RI with an active fade, multiply the samples in the RI audio buffer by the fade envelope, stored in the itemActiveEnvelope array.
int L = B;
if (fadeSamplesLeft < B)
	L = fadeSamplesLeft;
for (int ch=0; ch<itemChannels; ch++) {
for(int i=0; i<L; i++) {
	itemSignal[ch][i] *= itemActiveEnvelope[fadeLength – fadeSamplesLeft + i];
	}
}
When fading out, if the remaining fade duration is less than B, set the leftover samples to 0.f.
if (L < B && fadeActiveDirection == -1) {
for (int ch=0; ch<itemChannels; ch++) {
for(int i=L; i<B; i++) {
	itemSignal[ch][i] = 0.f;
	}
}
}
fadeSamplesLeft -= B;

Fade state update
Check the current fade parameters for every RI with an active fade, and set the fadeCurrentState atomic variable value accordingly.
fadeCurrentState = FADE_NONE;
if (fadeActiveDirection != 0) {
if (fadeSampleLeft <= 0) {
	fadeSampleLeft;
	fadeCurrentState = fadeActiveDirection < 0 ? FADED_OUT : FADED_IN;
}
else {
	fadeCurrentState = fadeActiveDirection < 0 ? FADING_OUT : FADING_IN;
}

}

[bookmark: _Ref108345343][bookmark: _Toc117076366][bookmark: _Toc131497387][bookmark: _Toc132126391][bookmark: _Toc132225960][bookmark: _Toc135210148][bookmark: _Toc166076638]Single point higher order ambisonics (SP-HOA)
General
The Single Point Higher Order Ambisonics (SP-HOA) stage renderers a single HOA source binaurally based on the listener position and orientation with respect to the source position. The binaural rendering is performed with a magnitude least-squares (MagLS) decoder. Unlike in the MP-HOA stage, the SP-HOA stage does not use parameterized spatial metadata for its processing.
Data elements and variables
j – sub-frame index, k – audio frame index, b – frequency bin index
	ESD to HOA transformation matrix
	Spherical harmonics to binaural decoding matrix of the bth frequency bin
	ESD audio signal of the kth audio frame
	HOA audio signal of the kth audio frame
	Real spherical harmonic rotation matrix of the kth audio frame
	Rotated HOA audio signal of the kth audio frame
	Time-frequency domain signal of the kth audio frame
	Time-frequency domain binaural signal of the kth audio frame
	Time domain binaural signal of the kth audio frame
	Signal frame length in samples
	Hop length of one STFT window in samples
	Number of sub-frames in the time-frequency domain signal,  / 
	Number of channels in the input signal
	Number of frequency bins in the time-frequency domain signal
	Linear gain multiplier
Stage description
General
Figure 81 describes the SP-HOA audio thread processing. The binaural decoding is performed in the time-frequency domain. 
Each block in Figure 81 is described in 6.6.23.3.2. The initializations for SP-HOA stage are described in 6.6.23.3.3. Update thread processing is described in 6.6.23.3.4.
[image: ]
[bookmark: _Ref99463965][bookmark: _Ref99463961]Figure 81 — SP-HOA audio thread processing
[bookmark: _Ref100671572]Audio thread processing
[bookmark: _Ref100674902]HOA format conversion (ESD2HOA)
The input source signal , which is in the Equivalent Spatial Domain (ESD) representation, are converted to Higher-Order Ambisonics (HOA) signals  with:
	
	(408)


where  is a transformation matrix, see 6.6.23.3.3.3.  signals are N3D normalized.
[bookmark: _Ref164950166]Rotation
Obtain a real spherical harmonic rotation matrix  based on the signal rotation values, and apply it to the input signal :
	
	(409)



[bookmark: _Hlk163724117]The matrix  can be obtained by using the pseudo-code function getSHRotationMatrix(R, L), shown below. R is a rotation matrix according to the listener head orientation and L is the order of the HOA source. For more information, refer to [11].
getSHRotationMatrix(R, L) {
  M = (L+1) * (L+1);
  R_sh = zero_matrix(M, M);
  R_1 = zero_matrix(3, 3);
  R_lm1 = zero_matrix(M, M);
  
  R_sh[0][0] = 1.0;

  R_1[1][1] = R[1][1];
  R_1[1][2] = R[1][2];
  R_1[1][3] = R[1][0];

  R_1[2][1] = R[2][1];
  R_1[2][2] = R[2][2];
  R_1[2][3] = R[2][0];

  R_1[3][1] = R[0][1];
  R_1[3][2] = R[0][2];
  R_1[3][3] = R[0][0];

  for (i = 0; i < 3; i++) {
    for (j = 0; i < 3; j++) {
      R_sh[i+1][j+1] = R_1[i][j];
      R_lm1[i][j] = R_1[i][j];
    }
  }

  band_idx = 4;
  
  for (l = 2;l <= L;l++) {
    R_l = zero_matrix(2*l+1);
    for (m=-l;m <= l; m++) {
      for(n=-l; n<=l; n++){
        d = m == 0 ? 1 : 0;
        denom = abs(n) == l ? (2*l)*(2*l-1) : (l*l-n*n);
        u = sqrt((l*l-m*m) / denom);
        v = sqrt((1+d)*(l+abs(m)-1)*(l+abs(m)) / denom) * (1-2*d)*0.5;
        w = sqrt((l-abs(m)-1)*(l-abs(m)) / denom) * (1-d)*(-0.5);
        if (u!=0) {
          u = u * getU(l,m,n,R_1,R_lm1);
        }
        if (v!=0) {
          v = v * getV(l,m,n,R_1,R_lm1);
        }
        if (w!=0) {
          w = w* getW(l,m,n,R_1,R_lm1);
        }
        R_l[m+l][n+l] = u+v+w;
      }
    }
    for(i=0; i<2*l+1; i++) {
      for(j=0; j<2*l+1; j++) {
        R_sh[(bandIdx + i)*M + (bandIdx + j)] = R_l[i][j];
      }
    }
    for(i=0; i<2*l+1; i++) {
      for (j=0; j < 2*l+1; j++) {
        R_lm1[i][j] = R_l[i][j];
      }
    }
    bandIdx += 2*l+1;
  }
  return R_sh;
}

getU(l,m,n,R_1,R_lm1) {
  return getP(0, l, m, n, R_1, R_lm1);
}

getV((l,m,n,R_1,R_lm1) {
  if (m == 0) {
    p0 = getP(1, l, 1, n, R_1, R_lm1);
    p1 = getP(-1, l, -1, n, R_1, R_lm1);
    ret = p0 + p1;
  }
  else {
    if (m>0) {
      d = m == 1 ? 1 : 0;
      p0 = getP(1, l, m - 1, n, R_1, R_lm1);
      p1 = getP(-1, l, -m + 1, n, R_1, R_lm1);
      ret = p0*sqrt(1.0 + d) - p1*(1.0 - d);
    }
    else {
      d = m == -1 ? 1 : 0;
      p0 = getP(1, l, m + 1, n, R_1, R_lm1);
      p1 = getP(-1, l, -m - 1, n, R_1, R_lm1);
      ret = p0*(1.0 - d) + p1*sqrt(1.0 + d);
    }
  }
  return ret;
}

getW((l,m,n,R_1,R_lm1) {
  ret = 0.0;
  if (m != 0) {
    if (m>0) {
      p0 = getP(1, l, m + 1, n, R_1, R_lm1);
      p1 = getP(-1, l, -m - 1, n, R_1, R_lm1);
      ret = p0 + p1;
    }
    else {
      p0 = getP(1, l, m - 1, n, R_1, R_lm1);
      p1 = getP(-1, l, -m + 1, n, R_1, R_lm1);
      ret = p0 - p1;
    }
  }
  return ret;
}

getP(i, l, a, b, R_1, R_lm) {
    ri1 = R_1[i + 1][1 + 1];
    rim1 = R_1[i + 1][-1 + 1];
    ri0 = R_1[i + 1][0 + 1];
    
    if (b == -l)
      ret = ri1 * R_lm1[a + l - 1][0] + rim1 * R_lm1[a + l - 1][2 * l - 2];
    else {
      if (b == l)
        ret = ri1*R_lm1[a + l - 1][2 * l - 2] - rim1 * R_lm1[a + l - 1][0];
      else
        ret = ri0 * R_lm1[a + l - 1][b + l - 1];
    }
    return ret;
}

STFT
The time domain signal  shall be converted into a time-frequency domain signal  by applying a short-term Fourier transform (STFT), see 6.6.23.3.3.4.
Binaural decoding
For each input signal , apply a decoding matrix  to obtain the output binaural signal:
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Inverse STFT
The binaural time-frequency domain signal  shall be converted into a time domain signal  using an inverse STFT..
Linear gain multiplication
If a linear gain multiplier  is set for the HOA source, apply it to the binaural output signal:
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[bookmark: _Ref100676188]Initialization
General
The initialization steps are executed once before the processing chain.
Initialize ESD to HOA conversion
Pre-calculate the  transformation matrix used in 6.6.23.3.2.1. as specified in [7] and [8].
[bookmark: _Ref164948624]Initialize binaural decoder
Obtain a  decoding matrix for each frequency bin, which decodes an input time-frequency domain spherical harmonic signal with  channels into a binaural time-frequency domain output signal. shall be calculated as described in 6.6.26.3.1.3.
Instead of computing the decoding matrices during every execution, the matrices may be pre-computed and only read during execution to reduce processing load.
[bookmark: _Ref164948908]Initialize time-frequency domain conversion
[bookmark: _Hlk164949274][bookmark: _Ref100676020]STFT shall be initialized with an appropriate number of channels , with a hop size  of 128 samples and band center frequencies according to A.10. 
The output of the STFT for a single frame of audio data shall contain  amount of sub-frames, each containing  by  amount of data.
Initialize linear gain multiplication
If hoaSourceGainDb is set in the scene plus payload (6.3.2.10), a linear gain multiplier  shall be calculated using the following equation
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where  is obtained from hoaSourceGainDb.
[bookmark: _Ref164948504]Update thread processing
In the update thread, a new audio frame is read into buffers, and the signal rotation values are updated based on the positions and orientations of the listener and the HOA source.  shall be updated using equation if the  for the HOA source is modified.
[bookmark: _Toc117076367][bookmark: _Toc131497388][bookmark: _Toc132126392][bookmark: _Toc132225961][bookmark: _Toc135210149][bookmark: _Toc166076639]Homogeneous extent
General
This stage synthesizes Spatially Extended Sound Sources (SESS) for headphone reproduction for object sources that have the associated flag objectSourceHasExtent set to 1. The respective parameters for the object source are identified by objectSourceExtentId.
The synthesis is based on a description of a SESS by an (ideally) infinite number of decorrelated point sources distributed over the entire source extent spatial range. By continuously projecting the SESS geometry in the direction towards the current listener position, the range covered by said geometry can be identified every frame and updated in real-time. In other words, the geometry is projected onto a sphere representing the user’s virtual listening space every frame. And the spatial sections occupied by the projected geometry on the sphere are the ones included in the auralization of the SESS.
Given a desired source extent range, an SESS is synthesized using two decorrelated input signals. These input signals are processed in such a way, that perceptually important auditory cues are synthesized. This includes the following interaural cues: Interaural Cross Correlation (IACC), Interaural Phase Differences (IAPD) and Interaural Level Differences (IALD). Besides that, monaural spectral cues are reproduced. This is illustrated in Figure 82.


[bookmark: _Ref99121685]Figure 82 — Block diagram of SESS synthesis
Data elements and variables
itemStore	a local pointer to the RenderItemStore object
B		block size
Fs		sampling rate
extentProcessors	map from item id to its extentProcessor instance
extentDownmixItem 	RI to store the final output of all extent’s binaural signal.
[bookmark: _Ref100661448]Stage description
To save real-time computational cost, individual HRTF points are assigned into pre-defined grid tables that separate the listener’s virtual listening sphere into uniformly distributed regions. During the initialization, a N-point DFT is performed to get N/2+1 frequency components for each HRIR, where N is the length of it. Then, three intermediate values for each grid are obtained by integrating the data of all HRTF points within, which are the gains of the left and right channels, non-normalized IACC. In addition, the number of HRTF data points included in each grid is also stored. These are used to calculate the final cues in real-time. 
The gains of both channels for each grid are calculated with equation 1 and 2, where   and  is the magnitude of the left and right HRTF respectively, N is the number of HRTF points that are within this grid:
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The non-normalized IACC for each grid is calculated with equation 3, where , l and , r is the phase of left and right HRTF respectively:
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During the real-time processing, each unique extended sound source is generated and managed by an Extent Processor. For every frame, each active processor receives a buffer of audio samples and the metadata indicating how to synthesize the extended sound source. Two separate processing chains exist: metadata handling in the update thread and audio processing in the audio thread. These are described respectively in the following sections, and their results are combined at the end of the second chain to produce binaural audio output. 
Calculations performed in the Update Thread:
For each unique extended sound source, one or more metadata carriers, in the form of RIs, are generated by the Occlusion Stage. 
This stage loops through all the incoming RIs and assigns relevant extent metadata to the corresponding processor. If one of the spatial sections from the pre-defined table is covered it  shall be included for auralizing an Extent in this frame. Then, the incoming metadata contains a gain factor and a list of gains corresponding to some pre-defined frequency bins for it. By selecting, weighting and eventually accumulating the stored intermediate data with the gain and EQs, the generation of arbitrary shape of extended sound source with any form and degree of occlusion (size/material) is achieved. 
The final filter is obtained by the following steps: After integrating all grid points indicated in the RI, the gain of the left and right channel and IACC are normalized with the total weighted number of HRTF data points:
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The frequency dependent  and  are calculated using the normalized IACC:
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The final stereo filters are obtained using  and , gains of left and right channels ( and ) and the phase extracted from the HRTF point corresponds to the center of the extent. ( and ):
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Calculations performed in the Audio Thread:
The input mono signal is first fed into the decorrelator to obtain two decorrelated versions. 



[bookmark: _Ref99121437]Figure 83 — Decorrelator
The MPEG-I decorrelator performs the following steps to create two completely decorrelated signals from one. Figure 83 is the block diagram of the decorrelator. The decorrelator has an internal processing cycle of a fixed number of 256 samples regardless of the global block size B, so a circular buffer is used to manage the reading and writing of samples in to the decorrelator. The incoming B samples of the renderer are written into the internal buffer. The write cursor starts 128 samples ahead of the read cursor, which acts as a delay compensation unit that is parallel to the whole processing chain. There is a 128-sample of overlap between each decorrelator processing frame. As a consequence, when more than 128 new samples come in, N samples (128 old + 128 new) are stored in the input buffer and the decorrelation processing starts. 
A 256-point DFT is performed on the windowed frame to obtain K=129 frequency bins. A sine window is applied as shown in equation 10, where N = 256. 
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The complex DFT coefficients are passed through a delay, as illustrated in Equation (426) for the n-th frame, where is the pre-delay. The pre-delay is set to 4 frames. Next, the delayed signal is passed on to a series of first order all-pass filters, which is illustrated in direct form  in Equation (427), where a1=b0=0.7  and  b1=1 represent the coefficients, and  represents the amount of delay of each all-pass filter, which is 1 , 2, 3, 5 frames for i = 1, 2, 3, 4.  In the following steps,  is called the direct component (DC), while , which went through the delay and all-pass filter, is called the processed component (PC). 
	
	[bookmark: _Ref100317550](426)

	 
	[bookmark: _Ref100317576](427)


A transient in the current frame is detected by calculating whether the energy of the current frame, summed over certain frequency bins, is stronger than the previous frame by a threshold T=2.8. Two counters control the transient processing: a hold counter and a inhibition counter. Both are initially set to their inactive state 0. When a transient is detected and the inhibition counter is inactive, a hold counter is started for the next 8 frames to control a muting of the processed signal in the output mix. Also, the inhibition counter starts counting to prevent a hold counter start in the next 56 frames. In addition, if another transient is detected during this inhibition time, this will re-start the inhibition counter, and the inhibition time will be increase from 56 to 64 frames. When active counters reach their maximum count, they are reset to their inactive state 0.
The energy in current frame is calculated using the DCs. The energy of the current frame is smoothed by a factor of   with the previous frame. Equation (428) and (429) illustrates how energy of the current frame, , is calculated with the energy of the previous frame, , and the DCs, , and how the decision of transient detection is made respectively.
	
	[bookmark: _Ref100317669](428)

	 
	

	 
	[bookmark: _Ref100317685](429)


Each bin of the PCs is amplified or attenuated if it is weaker or stronger by a factor of  = 1.5 comparing to the DC. Equation (430) and (431) illustrates how to calculate the energy of the current PC, , and the current DC,  with α = 0.4. Equation (432) demonstrates the boosting or suppression process depending on the energy difference. Finally, the PC is multiplied with a fixed normalized factor f = 1.1.
	
	[bookmark: _Ref100564353](430)

	
	[bookmark: _Ref100317830](431)

	 
	[bookmark: _Ref100320964](432)


A N-point IDFT is performed to transform the processed frequency bins to time domain and frames are combined in a windowed overlap-add procedure applying a sine window.
The decorrelated output with normalization is generated as illustrated in Equation (433). If the hold counter is inactive, the two decorrelated output frames are the sum and the difference of the windowed and original input and the processed signal respectively. If a transient was detected and the hold counter is activated, the two output frames will be identical, and contain the windowed and original input weighted by a scaling factor.
	
	[bookmark: _Ref100319782](433)


The writing of 128 samples from the decorrelator output and the reading of B samples back to the renderer input for the two decorrelated signals are managed using circular buffers.   
Finally, each of the two decorrelated signals are convolved with the corresponding stereo filters calculated in the update thread, which results in four channels of output. Then, a cross mixing will be performed to produce the final binaural output. Equation (434) and (435) defines the mixing process, where  and  stands for the two decorrelated signals, and  and  are the two stereo filters calculated in the metadata processing section.  Figure 84 is a signal flow diagram for the process.
	
	[bookmark: _Ref100319846](434)
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[bookmark: _Ref99121476]Figure 84 — Block diagram of the signal mixing process

[bookmark: _Toc117076368][bookmark: _Toc131497389][bookmark: _Toc132126393][bookmark: _Toc132225962][bookmark: _Toc135210150][bookmark: _Ref156899236][bookmark: _Toc166076640]Panner
General
The Panner Stage is used for panning audio sources to a virtual loudspeaker (LS) setup. The Panner stage implements Vector-Base-Amplitude-Panning (VBAP) with additional controls such as configurable spatial spread.
Data elements and variables
speakerNodeDirections	Loudspeaker directions (azimuth, elevation) 
speakerNodeCount	Number of LS
m_internalSpeakerNodeCount	Number of internal LS nodes including possible virtual top or bottom node
B		Number of samples in a processing block. 
outputRenderItems	Panned output RIs containing the LS signals
m_tripletSelect	Triplet selections for panning directions
SpeakerNode	A data structure defining a LS node including its unit vector, azimuth and elevation in degrees, and SpeakerNodeGroup
SpeakerNodeGroup	Unique grouping of the LS node depending on its elevation. One of bottomHalf, horizontal, or topHalf.
oldGainWeight	Apply gain smoothing between frames if oldGainWeight > 0. (default 0.0)
spreadAuxiliarySourceCount	Number of auxiliary sources for multiple direction amplitude panning (MDAP, [2]) (default 0)
spreadRadiusDeg	Radius for auxiliary sources in MDAP (default 0.0)
spreadGainFraction	Fraction of gain for auxiliary sources (default 0.0)
l1, l2, l3	Unit vectors (the vector base) of a LS triplet
g		Vector of amplitude panning gains
p		Unit vector pointing towards the amplitude panning direction
[bookmark: _Ref100840773]Stage description
The Panner stage implements Vector-Base Amplitude Panning (VBAP, [1]) of its input rendering items into the configured 3D LS configuration with additional controls such as configurable spatial spread.
VBAP refers to the method where three unit-vectors l1, l2, l3 (the vector base) are assumed from the point of origin to the positions of the three LSs forming a triplet (or triangle) wherein the panning direction is located.
The panning gains for these three LSs are determined as weights of the corresponding three unit-vectors such that the weighted sum of these vectors points towards the desired amplitude panning direction. This is solved as follows. A column unit vector p is formulated pointing towards the desired amplitude panning direction, and a vector g containing the amplitude panning gains can be solved by a matrix multiplication
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where -1 denotes the matrix inverse. After formulating gains g, their overall level is normalized such that for the final gains the energy sum gTg = 1.
Audio source positioning in VBAP is performed in three phases
1)	Triangulate the LS setup.
2)	Based on the direction from the listener to the audio source, select a triplet and compute the gains for the LSs of the triplet.
3)	Apply the gains to the audio signal to be positioned. 
The phase 1) is performed at Panner Stage initialization and the result of the initialization are a list of LS nodes and a lookup table of precalculated LS triplet inverse matrices which are then utilized in real-time processing.
Stage initialization: general
The initialization of the Panner Stage is carried out before processing of the audio samples delivered by the decoder takes place. 
[bookmark: _Ref100484613]Run-time configuration of panner parameters
It is possible to override the following parameters relevant for Panner Stage parameterization from the config variables starting with the prefix “Panner:”. If config variables are not given, then default values are used. 
speakerNodeDirections = Panner:directions or defaultDirection in 6.6.25.4.
oldGainWeight = Panner:oldGainWeight or 0.0.
spreadAuxiliarySourceCount = Panner:spreadAuxiliarySourceCount or 0.
spreadRadiusDeg = Panner:spreadRadiusDeg or 0.0.
spreadGainFraction = Panner:spreadGainFraction or 0.0.
Panner stage initialization
The Panner Stage is initialized with the parameters described in 6.6.25.3.2.
The Panner Stage initializes its output RIs as type Nondiegetic and having their positions according to the virtual LS positions in speakerNodeDirections.
Stage update
The Panner Stage determines its input items as RIs having ItemType::Pannable and which are not Inactive or Orphaned. The number of inputs is stored as inputCount.
Panner instance created at the first call to update when inputCount > 0.
Panner creation
LS configuration basic checks
Basic checks are done to check that valid LS directions have been provided:
—	speakerNodeCount <= 128 and speakerNodeCount > 3.
—	speakerNodeDirections does not contain duplicates.
[bookmark: _Ref101195874]Adding virtual top or bottom LS node
A check is then done if the speaker node setup needs a virtual top or bottom node. This updates m_internalSpeakerNodeCount. 
If a speaker node is found
—	above NO_VIRTUAL_SPEAKER_NODE_ELE_LIMIT_DEG (45.0 degrees), no virtual top or bottom node is used
—	above DISTRIBUTE_VIRTUAL_SPEAKER_NODE_ELE_LIMIT_DEG (20.0 degrees), energy-spreading virtual top or bottom node is used. The energy of an energy-spreading virtual node is distributed into its neighbors.
—	not above DISTRIBUTE_VIRTUAL_SPEAKER_NODE_ELE_LIMIT_DEG, energy-omitting
virtual top or bottom node is used. The energy from an energy-omitting virtual node is omitted, i.e., it is not distributed into its neighbors.
The same applies for both elevations and inclinations, i.e., the two half-spheres.
Internal speaker node configuration is then initialized, which is the original LS configuration appended with the virtual top and/or bottom LSs. A possible virtual top LS is created at azimuth 0.0, elevation 90.0. A possible virtual bottom LS is created at azimuth 0, elevation -90.0.
Triangulation of the internal LS node configuration is then performed to obtain the LS triplets for all possible azimuth, elevation combinations. This is done in three main phases: 1) creating internal LS nodes, 2) determining connections between internal LS nodes; and 3) determining virtual surface triplets.
Creating internal LS nodes
Triangulation of the internal loudspeaker node configuration is then performed to obtain the loudspeaker triplets for all possible azimuth, elevation combinations. The goal of triangulation is to completely cover the virtual surface defined by the LS nodes with non-overlapping virtual surface triplets of three LS nodes. This is done in three main phases: 1) creating internal loudspeaker nodes, 2) determining connections between internal loudspeaker nodes; and 3) determining virtual surface triplets. Care is taken in order to have no triplets with edges which cross the horizontal plane as panning of sound sources on the horizontal plane is preferably done with LS triplets that have an edge on the horizontal plane. The horizontal plane refers to the virtual plane spanned by the LS nodes at zero elevation. The reason for this is that the binaural cues for elevation perception relate mostly to the sound spectrum (which is not well reproduced with amplitude panning), while the binaural cues for azimuth perception relate mostly to the inter-aural level and time differences (which are better reproduced with amplitude panning). Also, when there are at least two loudspeakers at some elevation level above/below the horizontal level (0 elevation) spanning a virtual plane, the method tries to avoid crossing such a virtual plane with a triplet edge (although this can happen). 
Internal speaker nodes contain the input LS nodes and the possible top and/or bottom virtual nodes. The nodes are ordered in the same order as the input speakerNodeDirections. The last two nodes are the possible bottom and top virtual node, respectively, if present. The nodes have indices nodej, j=1,…, internalSpeakerNodeCount . The internal speaker nodes are classified to three groups: 
—	horizontal group containing speaker nodes with elevation between -5 degrees and +5 degrees. The elevation for the horizontal group speaker nodes is set to zero degrees. That is, the speaker nodes in the horizontal group are moved onto the virtual plane at zero elevation.
—	top half group containing speaker nodes with elevation larger than +5 degrees
—	bottom half group containing speaker nodes with elevation smaller than -5 degrees
Unit vectors are formed for each node as 
	
	(437)


where aziRad and eleRad are the speaker node azimuth and elevation in radians.
Determining connections between internal speaker nodes
All valid connections between internal speaker nodes are then determined. This is done in the method determineConnections. Connections between LS nodes are candidates for triplet edges. 
First, some prominent elevated planes that are favoured in making node-to-node connections are determined. A prominent elevated plane is determined if
—	There are at least three speaker nodes outside the horizontal group which have the same elevations (within a tolerance of 0.001 degrees) and for which the maximum horizontal gap is less than 140 degrees.
The elevations of determined prominent elevated planes are stored into nonCrossingPlaneElesDeg.
The node-to-node connections are determined in three stages: top, horizontal and bottom. The aim for this is to avoid connections crossing the horizontal plane. This provides better quality for audio objects placed on the horizontal plane.
Node-to-node connections for the top half are first determined. This contains the following steps:
—	get the next possible half-sphere connection where at least one node is in the top half group and the other is in the same group or in the horizontal group.
—	determine a connection class for the half-sphere connection by checking the possible half-sphere connection with respect to all LS nodes:
· in case there is a node behind or nearly behind the connection line, discard the connection. These are not valid connections as they do not lie on the convex surface enclosing the LS nodes. 
· in case there is a node that is closer to the connection line than 1/5 of the connection length AND at the same horizontal plane. These connections need to be weighted with a penalty. The connection class is set as elevatedPlaneThinTriangle. This is done in order to favor connections which are horizontal.
· Otherwise the connection class is set as regular.
—	Connections of type regular and elevatedPlaneThinTriangle are processed further.
· The favorability of a connection is measured by the angle between unit vectors of the nodes in the connection. The larger the angle, the less favorable the connection is. The angle is stored as the variable newArcWeighted for the connection.
· For connections of class elevatedPlaneThinTriangle, newArcWeighted *= 2 (they are penalized)
· For connections crossing a non-crossing plane newArcWeighted *= 2 (they are penalized)
· The validity of a connection is determined by comparing against all previously defined connections. A comparison to a previously defined connection oldConnection is done if the connections do not share the same nodes. The comparison involves determining whether the connections cross. The crossing is determined by studying the intersection of two planes defined by the two connections (two node pairs). The determination of whether there is a crossing is done by the method detectCrossing.
· If there is a crossing and newArcWeighted <= (arcWeighted of oldConnection) then oldConnection is discarded.
· Else if there is a crossing and newArcWeighted > (arcWeighted of oldConnection) then the new connection is not valid and is discarded.
· If the connection passes the validity checks it is stored into the connection data.
—	The process repeats for the next possible half-sphere connection until no possible half-sphere connections remain.
Node-to-node connections for the horizontal plane are then determined.  This is done by iterating through all speaker nodes and forming, for each node nodeA, a connection to the closest node. The closest node is searched among all the other nodes and the closeness is measured as the azimuth angle difference from the other node to nodeA.
Node-to-node connections for the bottom half are then determined. This is done in the same way for as for the top half but searching connections within the bottom half instead of the top.
Determining virtual surface triplets
Virtual surface triplets are then determined from the node-to-node connection data. This is done in the method determineVirtualSurfaceTriplets.
The method forms possible triplets by selecting combinations of three LS nodes nodeA, nodeB, and nodeC having indices nodeAIndex, nodeBIndex, and nodeCIndex, respectively, such that 
—	nodeCIndex > nodeBIndex > nodeAIndex and 
—	there is a connection from nodeA to nodeB and nodeC and
—	there is a connection between nodeB and nodeC.
For each possible triplet a check is made to ensure that no speaker node is located within the triplet. This is done by calculating, for each possible triplet of nodeA, nodeB, nodeC, the VBAP gains for all speaker nodes not in the triplet and checking that no speaker node obtains positive gains (indicating that the speaker node is within the triplet).
The triplet is valid if no speaker node is found inside the triplet. In this case the speaker node indices and the inverse matrix of the triplet are stored.
[bookmark: _Ref100674177]Determining how to distribute virtual speaker node energies
A determination of how the virtual LS node energies are distributed to real LS node energies is then performed.
For energy distributing virtual node, the energy of the virtual node is divided equally to all real speaker nodes connected to the virtual node. The division gain is, for the neighbour n of total of N neighbours
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The exponent 0.8 was obtained by listening and selecting a value which provides good audio quality over a range of test signals.
Forming the triplet selection table
A triplet selection table is then formed. This is done by searching for all possible azimuth and elevation combinations, with resolutions of 2 degrees and 5 degrees, respectively, the LS triplet into which this azimuth and elevation direction falls. The triplet selections are stored into m_tripletSelect. 
Stage processing
The LS gains for each input item at the panning direction azi, ele are determined as follows. The triplet corresponding to the direction azi, ele is obtained by table lookup from m_triplectSelect. The panning vector is obtained as 
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where aziRad and eleRad are azi and ele in radians. The panning gains g are solved as described in the clause 6.6.25.3, using the precalculated inverse matrix obtained from the triplet data. If a virtual LS node is part of the selected triplet, then the virtual LS node energy is distributed to its real LS node neighbors with the division gains calculated in clause 6.6.25.3.5.6 multiplied with the virtual LS node gain. 
If spreadAuxiliarySourceCount > 0, multiple direction amplitude panning is used to add auxiliary panned sources around the actual source to create an extended or spread sound perception. In this case, the direction azi and ele and spreadGain for the spreadIndexth auxiliary source are calculated as
angle = 2 * pi * spreadIndex / spreadAuxiliarySourceCount;
azi += spreadRadiusDeg * cos(angle);
ele += spreadRadiusDeg * sin(angle);
spreadGain = spreadGainFraction / spreadAuxiliarySourceCount;
If oldGainWeight > 0, gain smoothing is applied to obtain smoothed gains gsmoothed=oldGainWeight * gprevious + (1-oldGainWeight) * g, where gprevious are the gains from the previous frame. After smoothing the gsmoothed are normalized.
The panning gains are stored into m_targetChannelGains. 
In case the input item gain is zero, spreadGain shall be set to 0 as well as all m_targetChannelGains.
Linear interpolation within the block B is applied to ensure that the gain value changes smoothly between buffers. To accomplish this, previous panning gains are stored at previousChannelGains and a linear fade-in is done within each block from previousChannelGains to m_targetChannelGains and previousChannelGains are updated. The gain value to be applied to each audio sample is stored in the variable gain.
If spreadGain > 0 it is multiplied with gain.
[bookmark: _Ref100483575]Panner default directions
defaultDirection = {{90, 0},
{-90, 0},
{114, 20},
{-60, -6},
{85, -44},
{-130, -21},
{49, 41},
{-67, 52},
{154, -9},
{-48, -55},
{19, -31},
{-162, 21},
{151, 73},
{-9, 20},
{180, -63 }};
[bookmark: _Ref157269534]Directional Focus of the Panning Stage
When the parameter hasDirectionalFocus provided by the Accessibility User Interface (Annex B.5) is set to true, a directional focus effect is applied, and the panned LS gains are weighted using the following algorithm. (See also visualization in Figure 72):
directionalFocusAperture		Opening angle of the directional focus’ main lobe in degree.   
startStopbandAngle	Angle in degree where the stopband starts: directionalFocusAperture +directionalFocusTransitionWidth
stopbandGainLinear 		Linear gain computed as 		
		pow(10.0, -0.05 * directionalFocusStopbandAttenuationDb)
coefA	Variable to compute the attenuation in the transition band:		


The Angular distance angDist in degrees between the direction of each panned LS and the frontal viewing direction is computed as:

with  and  being the azimuth and elevation angles in radians per LS as defined in speakerNodeDirections.
Based on based on angDist the gain g of the particular LS is scaled as:
if (angDist > directionalFocusAperture) {
	if (angDist >= startStopbandAngle) {
       	gain *= stopbandGainLinear;
       } else { 
		gain *= pow(10.0, coefA * (angDist - directionalFocusAperture));
    	}
}
[bookmark: _Toc157435564][bookmark: _Toc158837432][bookmark: _Toc158920699][bookmark: _Toc158921853][bookmark: _Toc159000046][bookmark: _Toc159582062][bookmark: _Toc117076369][bookmark: _Toc131497390][bookmark: _Toc132126394][bookmark: _Toc132225963][bookmark: _Toc135210151][bookmark: _Ref159231521][bookmark: _Ref164951877][bookmark: _Ref164951921][bookmark: _Ref164951982][bookmark: _Toc166076641]Multi-point higher order ambisonics (MP-HOA)
General
The Multi-Point Higher Order Ambisonics (MP-HOA) stage renders multiple HOA sources simultaneously and creates a 6 Degrees-of-Freedom (6DoF) listening experience for the listener. Figure 85 shows an example situation where a listener is experiencing an audio scene comprises five HOA sources. The aim is to create a binaural output signal at the listener position in the Audio Scene and orientation based on the HOA source positions, orientations and audio signals and provided HRIRs. 


[bookmark: _Ref101188113]Figure 85 — A top-down view of a listener with a position and orientation in a scene comprising five HOA sources with different positions and orientations.
Figure 86 shows a block diagram describing the input and output of the MPHOA stage. The MP-HOA stage performs MP-HOA processing for each HOA group defined in hoaGroups() of payloadScene(). The MP-HOA stage receives as input a set of input audio signals  (one for each HOA source i) and their associated positions and orientations, the listener position  in the Audio Scene and a set of provided HRIRs. As output, the MP-HOA stage provides a binaural output signal 



[bookmark: _Ref101188172]Figure 86 — The MP-HOA stage provides binaural output  for each HOA Group. The binaural output is provided based on audio and metadata for HOA Sources belonging to the HOA group.
Data elements and variables
	listener position (x, y, z) for frame j
	listener orientation (yaw, pitch, roll) for frame j
	position of HOA source i, hoaSourcePositionX, hoaSourcePositionY and hoaSourcePositionZ from hoaSources() in payloadScene()
	orientation of HOA source i, hoaSourceOrientationYaw, hoaSourceOrientationPitch and hoaSourceOrientationRoll from hoaSources() in payloadScene()
 	Ambisonics to binaural decoding matrix. 
	audio signal of HOA source i for audio frame j in ESD format, 
	audio signal of HOA source i for audio frame j in HOA format, 
	audio signal of HOA source i for subframe k of audio frame j in ESD format, 
	audio signal of HOA source i for subframe k for audio frame j in HOA format, 
	time-frequency domain signal of HOA source i for subframe k of the jth audio frame, 
	time-frequency domain signal of HOA source i for subframe k of the jth audio frame for frequency bin b, 
	ESD to HOA conversion matrix  for frequency bin b
	audio frame length, 256 samples
	sub-frame length, 128 samples
	number of HOA sources in HOA group, coSourceCount element in hoaGroups() in payloadScene()
	number of audio channels in the audio signal for an HOA source, inputChannelsCount from audioStreams() in payloadScene()
	number of subframes per audio frame, 2
	number of frequency bins for time-frequency domain signals of HOA sources, 133
			HRTF at frequency bin b for direction index d, (
	covariance matrix (1st order) for HOA source i for subframe k of audio frame j for frequency band b, 
 	Barycentric coordinates for triangle n and current listener position. (
	ith triangle of the triangulation of the HOA source space
	number of triangles in the triangulation of the HOA source space	 triangle, which the listener is in, for frame j.
 	active triangle for frame j
	chosen triangle for frame j
	Triangle track record.
 	Length of triangle track record
	chosen spatial metadata interpolation weights for subframe k of frame j, 
	spatial metadata interpolation weights for active triangle for frame j, 
	interpolated spatial metadata interpolation weights for active triangle for subframe k of frame j, 
 	sound field intensity vector for HOA source i for subframe k of audio frame j for frequency band b
	energy for HOA source i for subframe k of audio frame j for frequency band b
 	Average (over sub-frames) energy for HOA source i and audio frame j for frequency band b.
	azimuth parameter for HOA source i for frame j and frequency bin b
	elevation parameter for HOA source i for frame j and frequency bin b
	direct-to-total energy ratio parameter for HOA source i for frame j and frequency bin b
	azimuth parameter for HOA source i for sub-frame k of frame j and frequency bin b
	elevation parameter for HOA source i for sub-frame k of frame j and frequency bin b
	spatial metadata in vector form for HOA source i for sub-frame k of frame j and frequency bin b
	rotated spatial metadata in vector form for HOA source i for sub-frame k of frame j and frequency bin b
	rotation matrix corresponding to the listener orientation for frame j
	rotation matrix corresponding to the HOA source i orientation for frame j
	interpolated spatial metadata vector for sub-frame k of frame j and frequency bin b
	interpolated azimuth parameter for sub-frame k of frame j for frequency bin b
	interpolated elevation parameter for sub-frame k of frame j for frequency bin b
	interpolated direct-to-total energy ratio parameter for sub-frame k of frame j for frequency bin b
	interpolated energy parameter for sub-frame k of frame j for frequency bin b
	signal interpolation EQ gain value for sub-frame k of frame j for frequency bin b
	Max value for EQ gain for signal interpolation, constant value 4.0
	index of chosen HOA source for signal interpolation
	distance threshold multiplier for HOA source switching in signal interpolation, constant value 1.2
	channel c of interpolated audio signal for sub-frame k of frame j for frequency bin b
	rotated interpolated audio signal for frame j and frequency bin b (prototype signal for mixing)
	covariance matrix of protype signal for frame j and frequency bin b
	matrix with diagonal elements from 
	recursion smoothing coefficient, constant value 0.9
	direct portion of target covariance matrix for frame j and frequency bin b
	diffuse portion of target covariance matrix for frame j and frequency bin b
	target covariance matrix for frame j and frequency bin b
	mixing matrix for frame j and frequency bin b
 	residual mixing matrix for frame j and frequency bin b
	mixing matrix parameter for sub-frame k of frame j for frequency bin b
 	residual mixing matrix parameter for sub-frame k of frame j for frequency bin b
	output time-frequency domain signal for sub-frame k of frame j for frequency bin b
	binaural output signal from frame j

Stage description
Figure 87, below shows a block diagram with the required processing steps taken in the MP-HOA stage to obtain the binaural output signal. 
 


[bookmark: _Ref101188220]Figure 87 — An overview of the main processing steps in the MP-HOA stage. The blocks shown here are explained in separate sections below (Pre-processing in 6.6.26.3.1, Position pre-processing in 6.6.26.3.1.5, spatial analysis in 6.6.26.3.3, Signal and Spatial metadata interpolation in 6.6.26.3.4 and Mixing and Output in 6.6.26.3.5).
[bookmark: _Ref101201021]Pre-processing
[bookmark: _Ref101192096]Triangulation of HOA source space
The HOA source space is triangulated using Delaunay triangulation. HOA source positions are provided as input to the Delaunay triangulation. The output of the triangulation is a set of triangles . Each  is a sorted (lowest to highest) list of indices of the HOA sources defining the triangle. See Figure 88 for an example. Any triangle edges that are too long (4m) are removed and their corresponding triangles are omitted (see clause 6.6.26.4.1.2).
For scenes having hoaGroups() in Scene plus payload (6.3.2.10) with only two HOA sources (referred to as scenes with two HOA sources), the Delaunay triangulation is skipped. Instead, a single triangle,  is created from the two sources ( and ) present in the scene.
For scenes having hoaGroups() in Scene plus payload (6.3.2.10) with only a single HOA source (referred to as scenes with one HOA source), the Delaunay triangulation is skipped. Instead, a single triangle, T_1={1,1,1} is created from the single source () present in the scene.





[bookmark: _Ref101188268]Figure 88 — An example triangulation of HOA source space.
[bookmark: _Ref101191592]Calculate HRTFs from HRIRs
The provided HRIRs shall be passed through a Short-time Fourier transform to obtain HRTFs. The STFT shall be configured with a frame hop of 128 samples and band centre frequencies according to A.10.  For each HRIR direction , a corresponding HRTF, , of with frequency bins shall be calculated. 
A grid of directions shall then be determined. The grid shall be formed of azimuth and elevation pairs at a constant resolution for each (2 degrees for azimuth and 5 degrees for elevation). This results in a grid of 6480 directions. For each HRIR (and HRTF) direction , the closest grid direction is determined . This information is stored in a list which provides a mapping from a grid direction  to an HRIR direction .
Thus, an HRTF corresponding to a direction defined by azimuth  and elevation   may be expressed as
	
	(440)


where  and  are the rounded azimuth   and elevation  values to the nearest grid points and   is a mapping between the rounded azimuth and elevation values and the HRTF direction grid indices. 
[bookmark: _Ref164949200]Obtain ambisonics to binaural conversion matrix
An Ambisonics to binaural conversion matrix  is determined for each frequency bin using the magnitude least-squares (MagLS) approach. See [9] for more information.
For frequency bins , whose centre frequencies fall below 1500Hz,  is obtained by linearly solving
	
	(441)


In the above equation, 
	
	(442)


where  and  are the (complex) values of the HRTF for direction  in the grid of directions (6.6.26.3.1.2) and frequency bin b for the left and right ear respectively.
 is obtained by calculating, for every direction  in the grid of directions a set of spherical harmonics   for each spherical harmonics order  and degree  using the following equation:

where  is the Legendre function of order  and degree . The Legendre functions are present without the Condon-Shortley phase.
is constructed so that the spherical harmonics for a direction  are found in the ith column of the matrix. The spherical harmonics are ordered in the columns first by order and second by degree in ascending order.


for each spherical harmonics order n and degree .
For frequency bins ,  with centre frequencies equal to or above 1500Hz,  is obtained iteratively by calculating the angle 

and then linearly solving:

[bookmark: _Ref131676059][bookmark: _Hlk131681426]Determine frequency bands
If hoaGroupHasFreqBandConfig is set to true, a set of frequency bands shall be created. A frequency band  combines together a set of frequency bins  and is defined by an upper frequency limit bin index  and a lower frequency bin index . Frequency band  contains the frequency bins . The frequency bands shall be determined as follows.
First, set the quantized upper frequency limit for the first frequency band,  as follows:
	
	(443)


Then, iteratively determine the quantized upper frequency limits for frequency bands  by first calculating the upper frequency limit and then quantizing it to the closest frequency in the band center frequency table (). 
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	(445)

	
	(446)

	
	(447)


where  is the width for the ERB bands.  is signaled by intermediateBandsERBWidth shall be defined as:
	
	(448)


The above process is continued until . During the iteration, if  is equal to the one calculated on the previous iteration ,  is set to  and . 
A single frequency band shall be used for frequencies above ]. For this band,  is appended with the value  and the quantized upper frequency limit for this band is set to . 
The lower frequency bands (for which  shall be replaced with single bin bands, where  
After adding the single high frequency band and the single bin bands, the  values shall be updated:
	
	(449)


The lower frequency bin indices  shall be obtained as follows:
	
	(450)


[bookmark: _Hlk131681475]If hoaGroupHasFreqBandConfig is set to false, no frequency bands shall be created.
[bookmark: _Ref101194684]Automatic Rescaling
[bookmark: _Hlk163992286]During the initialization of the MP-HOA stage, the HOA Source positions are rescaled when the HOA Group has a parent anchor and autoRescale is set to True in the parent anchor. Bounding boxes,  and , are obtained respectively for the HOA Group region defined in the virtual scene, and for the physical listener space where the playback is to occur. Each box has  sides corresponding to height, width, and depth. The max and min values for each region dimension are also obtained. The tolerance values set the percentage of  that remains outside of  and are used to limit the amount of automatic rescaling performed. The process for automatically determining the rescaling factors is as follows:
	determine_rescale(, , tolerance){
             for (i = 0; i < ; i++){
rescale[i] = ([i] - [i]) / 
                                 (([i] * (1 - tolerance[i*2]))
                                         - [i] * (1 - tolerance[i*2+1]);
                    if (rescale[i] > 1.0) {rescale[i] = 1.0;}
}    
Then at the initialization of the HOA translator, the rescale factors are applied to the source positions with an offset so that the rescaling is performed with respect to the anchor position.
Determine interpolation weights
This section corresponds to the Position pre-processing block of Figure 87. It takes as input the listener position as well as the HOA source positions. In addition, the triangulation data from the pre-processing stage is received as input. From these, a set of interpolation weights  that are used to control signal and spatial metadata interpolation are determined.
[bookmark: _Ref159231676]Determine active triangle
For each frame of audio data , an active triangle  and a set of interpolation weights  for the triangle shall be determined. First, the triangle  in which the listener is in is found. Then, a matrix  is created for each triangle :
	
	(451)


where  and  are the x- and y-coordinates of the position of the mth HOA source defining the triangle . Then, Barycentric coordinates  for each triangle are obtained linearly solving the following formula:
	
	(452)


where  is the listener position on the x-y plane. 
A triangle , for which all Barycentric coordinates (elements of are positive is the triangle in which the listener is located and is set as the active triangle . The Barycentric coordinates are used as the interpolation weights for the HOA sources belonging to the triangle . Interpolation weights for all other HOA sources are set to 0. The interpolation weights are stored in a vector .
[bookmark: _Ref159231697]Interpolation of interpolation weights
The interpolation weights shall then be interpolated over the current and previous frames as shown below to obtain interpolation weights for each subframe  of frame .
	
	(453)


[bookmark: _Ref101191123]Determine chosen weights and triangle
The active triangle  and the weights ,  and  shall be stored in a triangle track record TRR. The TRR is a list of active triangle and weight information from the current and previous audio frames. The length of the TRR is the number of audio frames required to provide a single frame of STFT output.
	
	(454)


The TRR is used to handle the case when a listener moves from one triangle into another. Special care is needed in this situation as the STFT (see 6.6.26.3.3.4) is not performed for every HOA source for every audio frame j. It is only performed for HOA sources which are required to compute the interpolated spatial metadata for audio frame j. When STFT output requires more audio data than what is available in a single audio frame, an HOA source cannot be used for spatial metadata processing until enough audio data has been accumulated.
Whenever a listener enters a triangle which has an HOA source for which the STFT buffers are not up-to-date, the last calculated interpolation weights from the previous triangle are used. When the listener has remained in the new triangle long enough for STFT to provide meaningful output, new interpolation weights are calculated based on the new triangle. For the first frame after the listener has remained long enough in the new triangle, the interpolation weights are calculated by interpolating between the last interpolation weights of the previous triangle and the first interpolation weights of the new triangle. The process is shown below and in Figure 89. 
    determine_chosen_weights() {
        # shift TRR values for frame
        for (i=; i > 1; i--)  {
             = ;
       }
       ;
        isTriangleSwitched = False;
        for (i=1; i <= ; i++)  {
           # go through track record      
           ;
           if (== ) {
                # previous chosen triangle T_c(j-1) found in track record
                ;
                return;
            }
        }
        # previous chosen triangle T_c(j-1) was NOT found in track record, listener 
        # has been in new triangle for a long enough time
        isTriangleSwitched = True;
        ;
        for (k=1; k <= ; k++)  {
             
        }
        
    }



[bookmark: _Ref101188651]Figure 89 —Interpolation weight determination when the listener moves from a triangle to another.  a) The listener has remained in triangle {m1, m2, m4} at least 6 frames, STFT has been calculated for HOA sources m1, m2 and m3 and provides meaningful output. For m3, STFT has not been calculated and the buffers are not up-to-date. Interpolation weights calculated for the latest frame (j)are used. b) The listener moves to triangle {m2, m3, m4}, the signal for HOA source m3 is now fed into STFT, but for it the buffer is not yet full. In this case interpolation weights from the last frame of the previous triangle (j-2) are used. c) The STFT buffer for m3 fills and interpolation weights are calculated for both triangles. The interpolation weights used for this frame are interpolated between the interpolation weights of frames (j-5) and (j-4). d) The listener has remained in triangle {m2, m3, m4} for a while, STFT has been calculated for HOA sources m2, m3 and m4 and provides meaningful output. Interpolation weights are calculated based on listener position in frame j.
[bookmark: _Ref101191389]Determine HOA source for signal interpolation 
The HOA source  which is chosen for signal interpolation for frame j shall be determined based on the chosen weights , previous chosen HOA source  and the chosen triangle  as follows:
    determine_closest_HOA_source() {
         
        if ( and ) {
            if distance_between() > *distance_between {
                 =  
            } else {
                 =  
        } else {
             =  
        }
    }

distance_between() function calculates the Euclidean distance between the HOA Sources  and .  is a distance threshold multiplier (1.2).
[bookmark: _Ref101191280]Crossfade
If the chosen HOA source is changed, crossfade shall be started. For this, fade-in and fade-out weights ( and  and fade-out bands  shall be calculated. The fade-in weights, fade-out weights and fade-out bands are used in metadata and signal interpolation during cross-fade (see sections 6.6.26.3.4.1 and 6.6.26.3.4.2).
    check_cross_fade_start() {
        if (crossFadeInProgress) {
            get_fade_out_bands()
        } else {
            if ( !=  ) {
                if (isTriangleSwitched) {
                    for (k = 1; k <= ; k++) {
                        
                    }
                } else {
                    
                }
                
                crossFadeInProgress = True;
                framesUntillCrossFadeStart = 6;
                get_fade_out_bands()
            }
        }
   }
get_fade_out_bands() is used to obtain a list of fade-out bands . The size of the list is decreased as the cross-fade progresses. isTriangleSwitched is determined in determine_chosen_weights(), described above.
   get_fade_out_bands() {
       cfBandLow = {0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, \
                    27, 32, 37, 43, 50, 57, 66, 76, 88, 101, 116}
       cfBandHigh = {1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 19, 22, 26,\
                     31, 36, 42, 49, 56, 65, 75, 87, 100, 115, 132}
       cfBandSwaporder = {7, 1, 2, 22, 21, 12, 18, 0, 5, 9, 8, 14, 13, \
                          23, 15, 20, 19, 4, 16, 17, 10, 11, 3, 6}

       for (k = 1; k <= ; k++) {
          if (framesUntilCrossFadeStart > 0) {
             framesUntilCrossFadeStart--;
          }
          if (h->framesUntilCrossFadeStart == 0) {
              ++h->crossFadeProgressIndx;
          }
          for (int cfIdx = crossFadeProgressIndx; cfIdx < cfLen; ++cfIdx) {
              bandIdx = crossfadeBandSwaporder[cfIdx]
              for (band = h->cfBandLow[bandIdx]; band <= h->cfBandHigh[bandIdx]; ++band) {
                   band
              }
          }
      }
   }

Crossfade is stopped when crossFadeProgressIndx == cfLen, by setting crossFadeInProgress = False.
[bookmark: _Ref101195615]Spatial analysis
General
This section corresponds to the Spatial analysis block in Figure 87. As input, the block retrieves the set of audio signals corresponding to the HOA sources that are found in the TRR. As output, for each HOA source, a set of spatial metadata parameters, namely, azimuth, elevation, direct-to-total energy ratio and energy are calculated. 
HOA format conversion
The input source signals, which are in the Equivalent Spatial Domain (ESD) representation shall be converted to Higher-Order Ambisonics (HOA) signals. This is achieved by multiplying the ESD signals with a conversion matrix . The conversion matrix is obtained as specified in [7] and [8]. . 
	
	(455)


where  is  a  matrix of containing the ESD input signals for HOA source i and frame index j,  is the  conversion matrix and  is the matrix of output HOA signals for HOA source i and frame index j.
Sub-framing
The frames of HOA signals shall be divided into  sub-frames of equal length.
	
	(456)


where  is the HOA signal corresponding to the kth subframe.
[bookmark: _Ref101188580][bookmark: _Hlk132231886]Time-frequency domain conversion
A Short-time Fourier Transform is used to convert HOA format signals into time-frequency domain. For each subframe k of audio frame j and for each HOA Source i that is a part of a triangle found in the triangle track record (TRR, see clause 6.6.26.3.2.3) , a time-frequency domain signal matrix  shall determined with the STFT forward transformation. STFT shall be configured with a hop size of 128 samples and band center frequencies according to A.10.   is a   matrix containing the time-frequency domain signals of length   for each HOA channel. For the HOA source that has been chosen for signal interpolation, STFT shall be run for all channels and   is a   matrix containing the time-frequency domain signals of length  for each HOA channel. For all other HOA sources found in the triangle track record, STFT shall be run for only the first four channels (FOA) and  is a   matrix containing the time-frequency domain signals of length  for the first four channels. During cross-fade (6.6.26.3.2.5), the HOA source that is the target of the crossfade, STFT shall also be run for all channels. 
Signal analysis vector
A signal analysis vector  shall be calculated from the time-frequency domain signals  as follows for each frequency bin b:

	
	(457)


where  is the value in matrix corresponding to channel  and frequency bin . 
Intensity vector
An inverse sound field intensity vector that points to the opposing direction of the propagating sound shall be calculated from the signal analysis vector for frequency bins  as follows.
	
	(458)


where  denotes the complex conjugate of .  is signaled by  highestSingleBinBandsIndex.
Signal energy
Signal energy shall be calculated from the analysis vector for each frequency bin   as follows:
	
	[bookmark: _Ref101195787](459)


[bookmark: _Ref131593732]Average intensity vector and energy
An average (over sub-frames) intensity vector and energy shall be calculated as follows. 
	
	(460)

	
	(461)



Azimuth and elevation
The direction of the average intensity vector shall be expressed as azimuth and elevation as follows: 
	
	[bookmark: _Ref101195758](462)

	
	[bookmark: _Ref101195771](463)


where  is the nth element of the average intensity vector  ,  is the azimuth and  is the elevation.
Direct-to-total energy ratio
The direct-to-total energy ratio shall be calculated from the average intensity vector and signal energy.
	
	[bookmark: _Ref101195780](464)


Copy energy to subframes
The obtained energy  for the jth frame is used as the as the energy for all sub-frames k for the jth frame.
	

	(465)


[bookmark: _Ref101201088]Interpolation
To enable a 6DoF listening experience, the spatial metadata and time-frequency domain audio signal at the listener position for sub-frame k of frame j, shall be estimated. 
[bookmark: _Ref101188870]Metadata interpolation
This section describes the processing done in the Spatial metadata interpolation block of Figure 87. As input this block receives the spatial metadata calculated in the Spatial analysis block and the chosen interpolation weights  (calculated based on the listener position HOA source positions). As output, the Spatial metadata interpolation block provides interpolated spatial metadata parameters at the listener position.
 
The estimation of the spatial metadata at the listener position shall be done by a weighted interpolation (using the chosen interpolation weights , see clause 6.6.26.3.2.3) of the calculated spatial metadata.

For interpolation, the spatial metadata for the HOA sources is converted into vector form. 
	
	(466)



The spatial metadata data vectors shall be rotated according to the orientation of the HOA sources and the listener’s head. 
	
	[bookmark: _Ref101195461](467)


where  and  are 3x3 rotation matrices for the listener head and source orientations, respectively for frame j. 
The rotation matrices are obtained using OpenGL conventions as shown below.
	
	(468)


where
	
	(469)
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For  the yaw, pitch and roll values are flipped as rotating the head means that source directions move in the opposite direction. For , the yaw, pitch and roll values are the hoaSourceOrientationYaw, hoaSourceOrientationPitch and hoaSourceOrientationRoll values from hoaSources() in payloadScene().
A weighted average spatial metadata vector, , shall be calculated for frequency bins  using the interpolation weights  (see clause 6.6.26.3.2.3)  and the rotated spatial metadata vector. 
	
	(472)


If a cross-fade is in progress (see clause 6.6.26.3.56.6.26.3.2.5), the weighted average spatial metadata vector shall be obtained using the following equation.
	
	(473)


A low frequency limit index  for spatial metadata averaging shall be calculated as follows. First, the center frequency for frequency bin    (see A.10) is determined.   is then rounded to the closest one-third-octave band center frequency. The third octave center frequencies shall be as defined in the ISO 266 (Acoustics — Preferred frequencies). The index of the closest one-third-octave frequency   shall be determined from the table in A.11.
  is then obtained as follows:
   if () {
      
      if ( {
         
	  }
   } else if () {
     
   } else {
	 
   }

Interpolated spatial metadata shall then be calculated based on the weighted spatial metadata vector as shown below. 
Azimuth shall be calculated for frequency bins  as follows:
	
	(474)


and, for frequency bin +1 azimuth shall be calculated as follows:
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Elevation shall be calculated for frequency bins  as follows:
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and, for frequency bin +1 elevation shall be calculated as follows:
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Direct-to-total energy ratio shall be calculated for frequency bins  as follows:
	
	(478)


and, for frequency bin +1 direct-to-total energy ratio shall be calculated as follows:
	
	(479)



Energy shall be calculated for all frequency bins  as follows:
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If a crossfade is in progress, the energy shall be obtained as follows:
	

	(481)


[bookmark: _Ref101188895]Signal interpolation
This section corresponds to the Signal interpolation block of Figure 87 It receives the time-frequency domain signal corresponding to the HOA source chosen for interpolation (in the Position pre-processing block) and the energy parameters calculated in the Spatial analysis block and provides as output the interpolated signal at the listener position.
Signal interpolation shall be done by taking the chosen HOA source, , to the listener position and applying equalization to it. The EQ gain   is calculated based on the interpolated signal energy  and the energy of the HOA source  (see clause 6.6.26.3.2.4)  as follows:
	
	(482)


where  is the maximum EQ gain value (4.0).
The interpolated signal  is obtained by applying the gain over all frequency bins b and signal channels c as follows:
	
	(483)


where  is index of the HOA source chosen for interpolation (see clause 6.6.26.3.2.4).
During a crossfade (see clause 6.6.26.3.2.5), the above two equations are replaced with the following.
	
	(484)

	
	(485)


[bookmark: _Ref101191252]Binaural output
General
To obtain binaural output from the interpolated spatial metadata and signal, a prototype signal is generated from the interpolated signal, on which optimal mixing is performed to obtain an output signal in agreement with the interpolated spatial metadata. This section corresponds to the Mixing block of Figure 87.
Prototype signal generation
The interpolated signal shall be rotated according to the listeners head orientation and the orientation of the HOA source from which the interpolated signal was obtained. First,  rotation matrices for the listener’s head orientation   and the orientation of the HOA source from which  the interpolated signal was calculated from are obtained.  These are then multiplied to obtain a rotation matrix  . See clause 6.6.26.3.4.1 for details on calculating  and .
	
	(486)


From , a spherical harmonics rotation matrix   shall be calculated according to 6.6.23.3.2.2. The prototype signal  for frame j and all frequency bins b is then obtained as follows:
	
	(487)


where  is the Ambisonics to binaural matrix for frequency bin b, calculated in the pre-processing phase.
[bookmark: _Ref101195905]Optimal mixing
1.1.1.1.3.1.3 [bookmark: _Ref126836914]Signal and target covariance matrices
Mixing matrices that are used to obtain the final binaural output shall be calculated using optimal mixing, see Vilkamo [10] for more information. First, covariance matrices  and  shall be estimated (frequency bin-wise) from binaural time-frequency domain signal  and interpolated spatial metadata, respectively. A recursive averaging scheme shall be applied when calculating both  and .
To obtain , first the covariance matrix for  shall be calculated as shown below for frequency bins . 
	
	(488)


For frequency bins , only the diagonal values shall be calculated:
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Recursive averaging shall then be applied to obtain  for the current frame j as follows.
	
	(491)


where  is the recursion smoothing coefficient.
 shall be obtained from the interpolated spatial metadata and HRTF data . Direct portion of  shall be obtained as follows:
	
	(492)


where  is the value of the HRTF for frequency bin b, d is the direction index corresponding to the interpolated azimuth and elevation , (see 6.6.26.3.1.2). For frequency bins , only the diagonal values shall be calculated:
	
	(493)


where  is precalculated and reused for each frequency bin  and shall be defined as follows:
	
	(494)



The diffuse portion of  shall be calculated as follows.
	
	[bookmark: _Ref132366413](495)


and
	
	(496)


where:
	
	(497)


where the sum shall be calculated over all direction indices (see 6.6.26.3.1.2).  shall then be obtained by summing  and :
	
	(498)


Recursive averaging shall then be applied to obtain  for the current frame j as follows.
	
	(499)


where  is the recursion smoothing coefficient.

1.1.1.1.3.1.4 Covariance matrices for frequency bands
If hoaGroupHasFreqBandConfig is set to true, the frequency bin specific signal covariance matrices  and  shall be averaged to obtain frequency band specific signal covariance matrices  and   as follows:
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	(501)


where  and  shall define the upper and lower frequency band limit indices (see 6.6.26.3.1.4). 
If hoaGroupHasFreqBandConfig is set to false, the frequency band specific signal covariance matrices shall not be calculated. 
Note that in the following description it is assumed that frequency bands have been created. However, in the case of no frequency bands, the frequency band indices  shall  be substituted with frequency bin indices . Calculations in 6.6.26.3.5.3.9 shall be skipped in this case.
1.1.1.1.3.1.5 Configure mixing matrix calculation
Mixing matrices  and  shall be calculated based on the covariance matrices  (target covariance at listener position) and  (covariance of interpolated signal) such that the covariance matrix of the output , obtained by mixing , is aligned with .
For each frequency band , mixing matrix calculation shall be configured by the function determine_computed_mixing_matrices() as follows:
determine_computed_mixing_matrices()
{
    band = bottomBandIndex(
    if (h->freqVec[band] < h->lowerBandFreqLimit) {
        useOptimalMixingForM = true;
        useOptimalMixingForMr = true;
        useEnergyFLAG = false;
    } else if (band < h->maxFreqLimitIndex) {
        useOptimalMixingForM = true;
        useOptimalMixingForMr = false;
        useEnergyFLAG = true;
    } else {
        useOptimalMixingForM = false;
        useOptimalMixingForMr = false;
    }
};
1.1.1.1.3.1.6 [bookmark: _Ref126927118]Calculate mixing matrix,useOptimalMixingForM == true, useEnergyFLAG == false
For frequency bands , for which useOptimalMixingForM is true, the covariance matrices shall be normalized as follows:
	
	[bookmark: _Ref126926610](502) 


and
	
	(503) 


where
	
	(504) 


where
	
	(505) 


Then, the normalized target covariance matrix  is decomposed with Cholesky decomposition as:
	
	(506) 


where
	
	(507) 

	
	(508) 

	
	(509) 


The normalized input covariance matrix   shall be decomposed with eigendecomposition as:
	
	(510) 


where  consists of the eigenvalues of  on the diagonal.  shall be constructed from the eigenvectors of  as:
If  :
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else:
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If  :
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else:

	

	(517) 

	

	(518) 

	
	(519) 



If the input matrix  is close to a zero matrix or to an identity matrix with a gain, the  matrix shall be set as an identity matrix. The decomposition shall be further continued with:
	
	(520) 

	
	(521) 


A matrix  is calculated based on the decomposition:
	
	(522) 


where  is a normalization matrix formulated from the channel energies:

	
	(523) 




and  is an identity matrix. he nearest orthonormal matrix  to  is searched, where . The term  shall be decomposed with eigendecomposition:

	
	(524) 



The decomposition is performed similarly as for  above. The eigenvalues for  shall be obtained with:
	
	(525) 


which results in the decomposition of:
	
	(526) 


The orthonormal matrix  shall be obtained with:
	
	(527) 


The optimal mixing matrix  shall be obtained with:
	
	(528) 


 represents a regularized matrix of  and is obtained by regularizing the  term in 
. The diagonal values for the regularized term shall be obtained with:
	
	(529) 

	
	(530) 


where  is a regularization factor. Because  is orthogonal, the inversion of  can be written as:
	
	(531) 


 The mixing matrix shall then be obtained with:
	
	[bookmark: _Ref126926641](532) 

	A residual matrix  shall be computed as follows:

	[bookmark: _Ref126926804](533) 


1.1.1.1.3.1.7 Calculate mixing matrix, useOptimalMixingForM == true, useEnergyFLAG == true
The same procedure as described in 6.6.26.3.5.3.4 (equations (502) to (532)). The residual matrix calculation shall be replaced with the following compensation:
	
	(534) 


1.1.1.1.3.1.8 Calculate mixing matrix, useOptimalMixingForM == false
When useOptimalMixingForM is set to false, the mixing matrix  is a diagonal matrix with the diagonal elements that shall be calculated as:
	
	(535)


where
	
	[bookmark: _Ref126931933](536)


1.1.1.1.3.1.9 Calculate residual mixing matrix, useOptimalMixingForMr==true
The residual mixing matrix  shall be calculated using the equations (502) to (532), but with  replaced with  calculated above in (533). And  replaced with  (see equation (536).
1.1.1.1.3.1.10 Calculate residual mixing matrix, useOptimalMixingForMr==false
When useOptimalMixingForMr is false, the residual mixing matrix  is a zero matrix.
1.1.1.1.3.1.11 [bookmark: _Ref127192918]Copy to frequency bands
Frequency bin specific mixing matrices shall be obtained from the requency band specific mixing matrices as follows:
	
	(537)

	
	(538)


1.1.1.1.3.1.12 Equalize mixing matrices
Equalization shall be applied on the mixing matrices as follows:
	
	(539)

	
	(540)


1.1.1.1.3.1.13 Linear interpolation of mixing matrices
Linear interpolation between the obtained mixing matrices  and  and the mixing matrices from the previous audio frame  and   shall be used to obtain mixing matrices for the sub-frames as follows:
	
	(541)

	
	(542)



Binaural output
The output time-frequency domain signal for the sub-frame k of audio frame j and frequency bin b shall then be obtained using the following equation:
	
	(543)


where  is a decorrelated time-frequency domain signal obtained from a buffer of previous binaural signals B obtained as follows:
    for (b = 1; b <=; b++) {
        for (c = 1; c <=; c++) {
	         delay=decorrelationDelays(b* + c)
            ) = 
         }
    }

decorrelationDelays() is calculated during the initialization as follows. First, for each frequency band b, determine a delay range, which is defined by   and .
	
	(544)


 
	
	(545)


 
For each frequency bin b, the range of values between  and  is divided into as many intervals of equal length as there are output channels (c). Each of these intervals is then randomly assigned to each channel. The delay value for frequency bin b and channel c is then randomly chosen from this interval and inserted into decorrelationDelays(). freqVec[b] holds the channel center frequencies.

As a final step,  the binaural time-frequency domain signal  shall be converted into a time domain signal  with the afSTFT backward transformation.
[bookmark: _Ref133503278]Exterior rendering
The triangulation process in 6.6.26.3.1.1 creates a capturing region (see Figure 88). When the listener is inside the region, he is enclosed by a triangle defined by set of HOA sources. When the listener moves outside of the region, the listener is no longer enclosed by a triangle. Thus, an alternate processing scheme is required for obtaining interpolation weights. When the listener is outside of the region (exterior rendering mode), the listener position shall be projected to the edge of the capturing region, and the spatial metadata values of the sources shall be modified accordingly.
		projected listener position (x, y, z)
		position (x, y, z) of the  HOA source
		exterior edge formed by the HOA sources  and 
		valid exterior edges, that enclose the capturing region after long edges are omitted
		original exterior edges (includes the omitted edges)
		omitted exterior edges
	 	normal at the projected listener position
		normal of the  HOA source
		normal of the exterior edge formed by the HOA sources  and 
		radius of projection circle, constant value 4.0m	

Initialization
[bookmark: _Ref133503207]Original exterior edges
Figure 90 represents a capturing region after the triangulation process. The edges connecting the outermost HOA sources form the exterior edges. In Figure 90, the exterior edges are . These are denoted as .


[bookmark: _Ref101192595]Figure 90 — Triangulation of a capturing region
[bookmark: _Ref101188406]Omitted exterior edges
The triangulation process can produce triangles that have long edges. This leads to ineffective spatial interpolation between the connected HOA sources. For improved audio quality, these long edges shall be omitted. This case is shown in Figure 91, where the edge  and the related triangle  is omitted. 


[bookmark: _Ref101192968]Figure 91 — Triangulation of a capturing region, omitting the edge 
The omitted edges are used in the exterior processing, denoted as  The new valid exterior edges are denoted as  In Figure 91,  and  remains the same from the original processing. All the edges are sorted in a traversing order that encloses the capturing region, when the edges are processed sequentially.
[bookmark: _Ref164769981]Exterior edge normals
For the edges in  and , the edge normals are the normals pointing outwards from the capturing region. In Figure 92,  and  represent these normals.
In , after omitting long exterior edges, there can be some edges, that form a non-convex hull for the exterior shape. For these edges, the normal of the omitted edge shall be used. In Figure 92, the edge  is omitted. The normals   and    are replaced with  .


[bookmark: _Ref101193014]Figure 92 — Normals of the exterior edges
[bookmark: _Ref133503224]Exterior HOA source normals
For the HOA sources on the edge of the capturing region, the normals shall be calculated as:
	
	(546)


where  and  are the normals of the connecting edges, and  is the resulting normal for the edge HOA source. The edge normals are searched within . For HOA sources that are inside a non-convex shape, the normals shall be replaced with the normals of the omitted edges. This is shown in Figure 93.


[bookmark: _Ref101193979]Figure 93 — Normals of the exterior HOA sources
Projection of the listener position
[bookmark: _Ref132230391]Find closest HOA source
The closest HOA source to the listener shall be determined by the squared horizontal distance:
	
	(547)


where  is the squared horizontal distance from the listener position  to an HOA source position , and  and  mark the horizontal components of both positions.
[bookmark: _Ref101194575]Find closest exterior edge
The distance from the listener position to an exterior edge is determined by a line parallel to the edge normal. The calculations are computed in the horizontal plane, left un-noted in the following equations for simplicity. An edge vector between two HOA sources is determined by:
	
	(548)


and normalized by:
	
	(549)


The listener position in the first HOA source space shall be given by:
	
	(550)


The dot product between the normalized edge vector and the edge normal  is:
	
	(551)


The distance from the listener position to the edge shall be given by:
	
	(552)


The edge weight shall be given by:
	
	[bookmark: _Ref101194474](553)


If the listener is positioned outside all the valid and omitted triangles, the closest edge shall be searched within . This is the case for the listener position  in Figure 94. 
If the listener is inside an omitted triangle, only the  edges shall be processed. This is the case for the listener position  in Figure 94. The distance to the edge  is calculated parallel to the normal .
When searching edges within , it is possible, that the closest edge to the listener is an omitted edge. This is the case for the listener position  in Figure 94, where the edge  is omitted. In this case, the distance to the closest edge shall be the distance to the omitted edge,  in Figure 94, but the listener is projected to an edge that can be found in . In Figure 94, it is the edge  for . The process of projecting the listener to an exterior is explained in Figure 94.


[bookmark: _Ref101194022]Figure 94 — Distances and edge weights to exterior edges and HOA sources
Listener projection to the closest exterior HOA source
If an exterior HOA source is closer to the listener than any of the exterior edges, the listener shall be projected on top of the HOA source as:
	
	(554)


Listener projection to the closest exterior edge
If an exterior edge is closer to the listener than any of the exterior HOA sources, the listener shall be projected to the edge as:
	
	(555)


where  and  are the positions of the HOA sources forming the edge and  is the edge weight calculated with Equation (553).
The closest edge to the listener can be an omitted edge, as explained at the end of 6.6.26.4.2.2. In this case, the listener shall be projected to an exterior edge, that can be found in in . In Figure 94, the closest edge for the listener position  is , which is not found in . The listener is therefore projected to the edge .
Interpolation weights for the projected listener position
In the exterior rendering, the interpolation weights  (as in 6.6.26.3.1.5) are calculated from the projected listener position. If the listener is projected on top of an HOA source, the weight for the projected HOA source shall be set to 1, and the rest of the weights shall be set to 0.
If the listener is projected to an exterior edge, the interpolation weights are obtained directly from the exterior weights:
	
	(556)

	
	(557)



where  is the exterior weight between two HOA sources, calculated with Equation (553). Weights  and  are the weights for the HOA sources connecting the projected edge.
[bookmark: _Ref133503247]Calculate the normal for the projected listener position
If the listener is projected on top of an HOA source, the normal of the HOA source shall be used as the projected listener normal:
	
	(558)


If the listener is projected to an exterior edge, the normals of the connected HOA sources shall be interpolated at the listener position to obtain the projected listener normal:
	
	(559)


[bookmark: _Ref131593830]Adjust the spatial metadata outside the capturing region
Modify the DOA and direct-to-total energy ratio values
A unit DOA vector from the projected listener position to the edge of the projection circle is:
	
	(560)


and the weighted vector:
	
	(561)


where  and  represent the interpolated azimuth and elevation angles, respectively, and  is the radius of a projection circle. The value for  is set by the bitstream parameter exteriorRenderingProjectionRadius.  A modified DOA vector from the original listener position to the edge of the projection circle shall be obtained with:
	
	(562)


and the unit-length version with:
	
	(563)


The DOA modification is shown in Figure 95. The direct-to-total energy ratio value shall be modified as:
	
	(564)


where  is the interpolated direct-to-total energy ratio value.


[bookmark: _Ref101194944]Figure 95 — Modified DOA vector
Apply directional weighting
Directional weighting is applied to more heavily modify parameters from sound sources outside the capturing region, while applying less modifications to sources inside the capturing region. The directional weighting shall be calculated as:
	
	(565)


The weighted modified DOA shall be calculated as:
	
	(566)


and the direct-to-total energy ratio shall be calculated as:
	
	(567)


 will always be less than or equal to the original interpolated direct-to-total value , meaning that sound sources will be rendered equally or more diffuse during exterior rendering. As the listener gets closer to a projection ( on the circle, diffuseness increases.  goes to zero, i.e. fully diffuse, when is zero.
Apply head rotation
In exterior rendering, the rotation in 6.6.26.3.4.1 (467) is skipped and the head rotation is applied after the exterior processing as:
	
	(568)


The modified spatial metadata values shall be calculated as in 6.6.26.3.3 (see (462), (463), (464) and (459)) and saved to the interpolated metadata buffers for the next steps of the processing.
[bookmark: _Ref101201389]Diffuse weighting for the covariance matrix 
The diffuse exterior weight shall be calculated as:
	
	(569)


where and  are the listener position and the projected listener position in the horizontal plane. In exterior rendering, the diffuse covariance matrix in 6.6.26.3.5.3 (equation (495)) shall be replaced with:
	
	(570)



	
	(571)



	
	(572)



	
	(573)


where  is the norm of the nth binaural channel.
Rendering of informed sources
When informed sources (hoaGroupHasInformedSources == True) are present informed source processing shall be performed. Informed source processing modifies the target covariance matrix  computation described in 6.6.26.3.5.3.1.
[bookmark: _Hlk131591902]Pre-processing for informed sources
Geometric parameters


[bookmark: _Ref126832944]Figure 96 — An example MPHOA scene with three HOA sources , one interior informed source  and one exterior informed source .
Figure 96 shows an example scenario with three HOA sources and two informed sources, one inside and one outside the triangulated capturing area. For each HOA source position , a vector to each informed source position  is calculated as:
	
	(574)


The vectors are rotated according to the orientation of each HOA source:
	
	(575) 


where  is the rotation matrix for HOA source  in OpenGL convention. The time delay in samples for each HOA source and informed source pair shall be obtained with:
	
	(576) 


where  is the speed of sound and  the sampling rate. The delay between two HOA sources  and  for a single informed source shall be obtained with:
	
	(577) 


The delay in short-time Fourier transform (STFT) hop sizes shall be obtained with:
	
	[bookmark: _Ref126911351][bookmark: eq_delay_hop](578) 


where  is the set hop length. 
For each informed source , the closest HOA source  shall be determined by the length of . The attenuation gain between  and some other HOA source  for informed source  shall be obtained with:
	
	[bookmark: _Ref126911315][bookmark: eq_g_att](579) 


Geometric processing for exterior informed sources
If an informed source is located outside the triangulated capturing area, additional parameters shall be calculated. In Figure 96, the source  is located outside the capturing area. The projected position of the source is at , and the distance to the projected position from the original position is . The distance to the closest HOA source, , shall be compared to  and the shorter distance is saved as the exterior distance  for . 
The distance calculations shall be executed similarly as in 6.6.26.4.2.1 and 6.6.26.4.2.2, when looking for the closest HOA sources and exterior edges for the listener position. Only the valid exterior edges  and normals  shall be considered for the exterior informed source calculations.
The exterior distances shall be calculated for all the exterior informed sources in the scene. The average distance to all the exterior informed sources is saved for later processing.
	
	(580) 


Pre-processing for beamforming
For each informed source , beamforming weights  that focus the beam pattern from the closest HOA source  towards the informed source  are determined. Real spherical harmonics shall be used as the basis for the beamforming weights, determined as:
	
	(581) 


where  is the direction of interest in azimuth and inclination angles,  is the order ,  is the degree  and  is the Legendre function of order  and degree . The Legendre functions are present without the Condon-Shortley phase.  is the order of the input HOA signal, see Rafely [12] for more information. 
For each HOA source  and informed source  pairs, the direction  is obtained from . Denoting  as the set of the real spherical harmonic functions for the pair  for all the orders  and degrees , the beamforming weights shall be obtained from the normalized real spherical harmonics:
	
	[bookmark: _Ref126911457][bookmark: eq_beamforming_weights](582) 


For each HOA source  and informed source  pairs, the outer product of  and  shall be calculated up to order 1:
	
	[bookmark: _Ref126911321][bookmark: eq_yy](583) 


Determine active informed sources
For each frame , active informed sources shall be determined by their distance to the listener position. The mean listener position shall be calculated from the current and previous frame positions:
	
	(584) 


The distance between the mean listener position and each informed source is:
	
	(585) 


If an informed source  is close enough to the listener position, i.e., , and the distance between the informed source m and its closest HOA source is small enough, i.e.  the source shall be marked as a candidate for active sources.  is signaled as lpdInformedSourceEnableThreshold and  is signaled as hpdInformedSourceEnableThreshold. If the number of candidate active sources exceeds the maximum number of active informed sources , (signaled with maxSimulInformedSources) candidate active informed sources are chosen in priority order (informed source priority is signaled with priorityValue) such that number of active informed sources does not exceed . The closest HOA source for each candidate shall be stored in list of source arrays : 
	
	(586) 


where  represents the closest HOA source for the  informed source and  is the number of candidates for the current frame . The list  is stored in a source track record , which stores  from the current and previous audio frames:
	
	(587) 


Each HOA source  found in  is transformed via STFT (see 6.6.26.3.3.4) during the current processing loop.  limits the number of previous frames saved in the track record. The limit  is the minimum number of frames required to obtain output from the STFT processing, similarly as in the case of the triangle track record  in 6.6.26.3.2.3.
In order to be sure that the STFT has been processed long enough for an HOA source  in , the HOA source shall be searched from the last entries of  and . If the HOA source is found from the end of either of the track records, the associated informed source  shall be marked as an active source. The further informed mode processing shall be performed only to the active sources . If no source is active, the original MPHOA processing shall be performed instead of the informed mode processing.
Obtain beamformed source signals
The beamformed source signal for an informed source  shall be obtained with:

	
	(588) 



where  shall be the beamforming weights for the closest HOA source, obtained with Equation (582) and  is the input signal of the closest HOA source in time-frequency domain for frame , sub-frame  and frequency band .
Post-filter source signals
The post-filtered source signal shall be obtained with:
	
	(589) 



where  is a post-filter gain. A cross-pattern coherence (CroPaC) based post-filter shall be used, calculated as:
	
	(590) 


where  is the energy from the first four channels of .  is a figure-of-eight beamformer applied to the source signal:
	
	[bookmark: eq_figure_of_8_beamformer](591) 


The values for the post-filter are limited as:
	
	(592) 


The obtained source signals shall be stored in a source signal buffer for time-alignment purposes (see 6.6.26.5.5). The buffer holds the source signals for the previous  subframes.

[bookmark: _Ref126849454]Time-align source signals
Each post-filtered informed source signal  shall be time-aligned at each HOA source position as:
	
	(593) 


where  marks the time-aligned audio frame:
	
	(594) 


 is the defined maximum number of delayed hops for the scene.  is the delay between some HOA source  and the closest HOA source  for the informed source . The delay shall be calculated in the pre-processing phase in Equation (578).
The informed source signals shall be time-aligned similarly at the listener position:
	
	(595) 


where  indicates the closest HOA source to the listener. 
Estimate HOA-to-source SCMs
The signal covariance matrices (SCM) for the signals from the HOA arrays towards the informed sources shall be obtained with:
	
	(596) 


where  is the energy of the time-aligned signal  for the whole frame ,  shall be obtained from Equation (579)  and  from Equation (583).
Estimate listener-to-source SCM
The rotated vector from the listener to an informed source  shall be:
	
	(597) 


where  is the head rotation matrix, which is formed from the flipped yaw, pitch and roll angles of the head orientation. The energy for the time-aligned signal  for the whole frame  shall be marked as . The attenuation gain shall be calculated as:
	
	(598) 


where  determines the distance from the source, where the attenuation gain stops growing, when the listener moves closer to the source.
The SCM from the listener towards an informed source shall be calculated with:
	
	(599) 


where  is the HRTF from the listener towards the informed source .
Spatial analysis
Spatial metadata parameters for the source signals shall be extracted from the HOA-to-source SCMs. The intensity vector in a cartesian (x, y, z) order for a single sub-frame is:
	
	(600) 


where  is the number of sub-frames in one processing frame. The energy for a single sub-frame shall be obtained with:
	
	(601) 


The intensity vector  and energy  for the original HOA signal shall be obtained from the spatial analysis block (see 6.6.26.3.3). The average values over sub-frames shall be used, see 6.6.26.3.3.8.
Compute residual parameters
The residual spatial parameters shall be obtained from the subtraction between the original HOA parameters and the HOA-to-source model parameters:
	
	(602) 

	
	(603) 


The azimuth direction-of-arrival (DOA) is:
	
	[bookmark: eq_azimuth](604) 


and elevation:
	
	[bookmark: eq_elevation](605) 


The direct-to-total energy ratio (DTR) is:
	
	[bookmark: eq_dtr](606) 


The residual metadata shall be interpolated similarly as explained in 6.6.26.3.4.1, resulting in , ,  and .
In the exterior rendering, the metadata adjustment process explained in 6.6.26.4.5. is slightly modified. Namely, if the bitstream parameter adaptiveExteriorRenderingProjectionRadius is true, the radius of the exterior projection circle  shall be modified based on the distance to the exterior informed sources. The distance to the closest active exterior informed source shall be used as the projection radius. If there are no active exterior informed sources, the average distance to all the exterior informed sources () shall be used. If there are no exterior informed sources in the scene or if adaptiveExteriorRenderingProjectionRadius is false, the projection radius set by the bitstream parameter exteriorRenderingProjectionRadius shall be used.
Build target SCM
The target SCM shall be built from separate SCMs for the source and residual signals. The two SCMs contain contribution from the informed sources (source SCM) and non-informed sources (residual SCM).   shall be used as the source SCM. The residual SCM  shall be built from the interpolated residual metadata as:
	
	(607) 

	where the direct signal part shall be calculated as:
	

	
	[bookmark: eq_dir_Cy](608) 


and the diffuse part as shall be calculated as:
	
	[bookmark: eq_diff_Cy](609) 


where  is the diffuse field covariance matrix (see 6.6.26.3.5.3). The new target SCM for the current processing frame shall be obtained by combining the source and residual SCMs:
	
	(610) 


Recursive averaging shall be applied to obtain the target SCM , similarly as in 6.6.26.3.5.3.

[bookmark: _Ref159231811]Rendering for scenes with two HOA sources
General
In the case of a scene with only two HOA sources, the rendering shall follow the description in section 6.6.26.4, but with the exceptions described in the following subsections. With such scenes, the listener is never inside the triangulated HOA source area, thus exterior rendering (see 6.6.26.4) is always performed when the listener is inside the HOA group extent.
Exterior edges and HOA sources
The exterior edge definitions in Sections 6.6.26.4.1.1 and 6.6.26.4.1.2 shall be replaced with the following.
The exterior edges  and the original exterior edges  shall be the edges connecting (in both directions) the two HOA sources  and . 
	
	(611)

	
	(612)



Exterior HOA source normals
Calculation of the exterior HOA source normals of Section 6.6.26.4.1.4 shall be replaced with the following.
The exterior HOA source normals for the HOA sources  and  shall be calculated as follows:
	
	(613)

	
	(614)


Calculate the normal for the projected listener position
The listener normal calculation of Section 6.6.26.4.4for the case when the listener is projected to an exterior edge shall be replaced with the following.
The listener normal  shall be calculated as follows when the listener has been projected on an exterior edge :
	
	
(615)


where 
	
	
(616)



and 
	
	(617)


Rendering for scenes with a single HOA source
General
In the case of a scene with only a single HOA source, the rendering shall follow the description in section 6.6.26.4, but with the exceptions described in the following subsections.
	Exterior edge determination
No exterior edges, as defined in Sections 6.6.26.4.1.1 and 6.6.26.4.1.2 shall be calculated as there are no edges in the HOA source space.
	Exterior HOA source and edge normal calculation
Exterior HOA source and edge normal calculation of Sections 6.6.26.4.1.3 and 6.6.26.4.1.4 shall be skipped.
	Listener normal calculation
The listener normal calculation of Section 6.6.26.4 shall be replaced with the following. For scenes with a single HOA source, the listener normal shall be a (normalized) vector pointing from the single HOA source position to the listener position:

	
	(618)



[bookmark: _Ref163036859][bookmark: _Ref163036888][bookmark: _Toc166076642]Low-complexity MP-HOA
The low-complexity profile of the MP-HOA renderer stage provides an alternative way to render multiple HOA sources for a 6DoF listening experience using fewer computations than the default profile described in Section 6.6.26. As in other rendering stages, HOA sources comprise multichannel signals and metadata which includes the HOA source position, among other parameters. In practice, these multichannel signals typically originate from a recording of an acoustic scene with one or more microphone setups, wherein each of the one or more microphone setups comprises one or more microphones and the HOA source position corresponds to the center position of the respective microphone setup. A block diagram of this renderer stage is shown in Figure 97. The rendering steps are listed below.
[image: ]
[bookmark: _Ref154074890][bookmark: _Ref156898788]Figure 97— Block diagram of low-complexity MP-HOA renderer stage.
Data elements and variables
	number of virtual loudspeaker objects (VLOs) of HOA source 
	number of input channels of HOA source 
	equivalent spatial domain (ESD) signal of VLO  of HOA source  for frame 
	position of HOA source i, hoaSourcePositionX, hoaSourcePositionY and hoaSourcePositionZ from hoaSources() in payloadScene()
	azimuth of VLO  of HOA source i
	elevation of VLO  of HOA source i
	azimuth of node  of the ESD representation for  channels
	elevation of node  of the ESD representation for  channels
	VLO radius of HOA source 
	statistical average of the distances between HOA source  and its neighbors
	directivity factor of HOA source 
	reverberation factor of HOA source 
	bitstream-defined scene-wide scaling factor for the VLO radius
	position of VLO  of HOA source i
	orientation of HOA source i, hoaSourceOrientationYaw, hoaSourceOrientationPitch and hoaSourceOrientationRoll from hoaSources() in payloadScene()
	3×3 rotation matrix calculated from the HOA source orientation according to Section 6.6.26.3.4.1.
 	VBAP look-up table
	number of VBAP nodes
	highest number of channels across all HOA sources in the scene
	minimum phase spectra of the left and right head-related impulse responses (HRIRs) for the direction corresponding with VBAP node 
	cut-off frequency for the frequency-dependent time alignment HRTF preprocessing
	interaural time difference (ITD) in samples of the HRIRs for the direction corresponding with VBAP node 
	maximum ITD in samples across all HRIRs corresponding to VBAP node directions
	frequency-dependent weighting applied in the HRTF pre-processing
	smoothing factor used in the HRTF pre-processing
	interpolation weights of HOA source  for frame 
	listener position (x, y, z) for frame j
	listener orientation (yaw, pitch, roll) for frame j
	position of VLO  of HOA source  relative to the listener position for frame j, also represented as 
	transpose of a 3x3 rotation matrix for the listener head orientation for frame , calculated according to Section 6.6.26.3.4.1
	azimuth of VLO  of HOA source  relative to the listener position for frame j
	elevation of VLO  of HOA source  relative to the listener position for frame j
	VBAP weights of VLO  of HOA source  for frame j
	cross-fading envelope function for VBAP node  and VLO  of HOA source  for frame j
	block size in samples
	VBAP signal buffer of node  for frame j
	binaural output signal for frame j
	left and right head-related impulse responses (HRIRs) for the direction corresponding with VBAP node 
	timbre-correction filter
[bookmark: _Ref150941178]Pre-processing
Triangulation of HOA source space
Triangulation of the HOA source space shall be performed as described in Section 6.6.26.3.1.1.
Initialization of virtual loudspeaker objects (VLOs)
A set of virtual loudspeaker objects (VLOs), which are abstract sound output objects within a virtual free field, shall be assigned to each HOA source. The virtual free field is defined as a virtual sound field that consists of direct sound without reverberant sound. The number of VLOs () in each set shall be equal to the number of channels () of the Equivalent Spatial Domain (ESD) signal () of the corresponding HOA source. Therefore, for the  HOA source:
	
	(619)


Each set of VLOs shall be arranged in a sphere with center at the corresponding HOA source’s position (). The azimuth and elevation of each VLO relative to the sphere center shall be given by the corresponding ESD representation which is already used by the MPEG-H encoder and decoder (see ISO/IEC ISO/IEC 23008-3 (MPEG-H Part 3), Tables F.2 to F.5). Therefore, for the  VLO of the  HOA source, the azimuth () and elevation () shall be given by: 
	
	(620)

	
	(621)


The radius of the sphere () for a given set of VLOs shall be calculated as a statistical average (e.g. median) of the distances between the corresponding HOA source’s position and each of its neighbor HOA sources’ positions (), multiplied by a directivity factor (), a reverberation factor (), and a bitstream-defined scene-wide scaling factor (distanceFactor).
	
	(622)


The directivity factor is a HOA-source-specific scaling factor which shall be adjusted depending on the directivity order of the corresponding microphone setup, i.e. mapped to the spherical harmonics order of the HOA source. A map between HOA source order and directivity factor is defined in Table 150.
[bookmark: _Ref165024612]Table 150— Value of directivity factor diri depending on HOA source order
	HOA source order
	

	1
	1.5

	2
	1.25

	3 or higher
	1.0



The reverberation factor is a HOA-source-specific scaling factor which shall be adjusted depending on the reverberation level of the rendered room, which is characterized by the broadband diffuse-to-source energy ratio () associated to the acoustic environment containing the HOA source.
If payloadReverb (6.2.8) is available in the bitstream and the flag revPresent is set to “true”,  shall be derived from the frequency-dependent diffuse-to-source energy ratio (revDSR) of the corresponding acoustic environment by calculating a weighted average across frequencies, as follows:
	totalWidthERB = 0;
for (b = 0; b < numFreqBins; b++) {
	if (b == 0) {
		widthERB[b] = Hz2ERBRateScale(fcBs[b+1]) – Hz2ERBRateScale(fcBs[b]);
	} else if (b == numFreqBins – 1) {
		widthERB[b] = Hz2ERBRateScale(fcBs[b]) – Hz2ERBRateScale(fcBs[b-1]);
	} else {
		widthERB[b] = 0.5 * (Hz2ERBRateScale(fcBs[b+1]) - Hz2ERBRateScale(fcBs[b-1]));
	}
	totalWidthERB += widthERB[b];
}
DSRi = 0;
for (b = 0; b < numFreqBins; b++) {
	DSRi += revDSR[b] * widthERB[b] / totalWidthERB;
}


where source frequency grid fcBs is the vector (fgdCenterFreq[g]) of size numFreqBins = fgdNrBands[g] containing the frequencies of the grid associated with the DSR values from the bitstream. Then,  shall be calculated as:
	
	(623)


where  is the average  across all HOA sources.
Function Hz2ERBRateScale(f)shall be:
erb = Hz2ERBRateScale(f) {
	erb = 21.4 * log10(1 + 0.00437*f)
}
If payloadReverb is not available in the bitstream or the flag revPresent is set to “false”,  shall be set to 1 for all HOA sources, which corresponds to an acoustic environment where the critical distance is constant across space.
The absolute position of each VLO () shall be then calculated by rotating its relative coordinates by the HOA source orientation () and adding them to the HOA source position, as follows:
	
	(624)


where  is a 3×3 rotation matrix calculated from the HOA source orientation according to Section 6.6.26.3.4.1.
Vector-based amplitude panning initialization
A vector-based amplitude panning (VBAP) weight lookup table () shall be then constructed, containing VBAP weights for each direction within a spherical grid with 1-degree resolution in azimuth and elevation. A set of VBAP nodes shall be then defined, working as an additional layer of virtual loudspeakers that enables efficient binaural rendering. The number of VBAP nodes (), defined as the number of virtual loudspeakers in said layer, shall depend on the highest number of channels the HOA sources () and the bitstream-defined panningGridOrder parameter, as follows:
	
	(625)


The spatial distribution of VBAP nodes shall follow the ESD representation specification for the corresponding number of nodes, as used by the MPEG-H encoder and decoder (see ISO/IEC ISO/IEC 23008-3 (MPEG-H Part 3), Tables F.2 to F.5). The calculation of the VBAP weights to be stored in the table shall be done in the same way as described in Section 6.6.25, except that an exponent of 1 shall be applied at the energy distribution step.
Calculation of HRTFs from HRIRs
The calculation of HRTFs from HRIRs shall be performed as described in Section 6.6.26.3.1.2, with the grid of HRIR directions being defined by the VBAP nodes’ directions. In order to reduce timbral coloration of the binaural rendering, the HRIRs shall be pre-processed via frequency-dependent time-alignment, as follows. First, the interaural time differences for each  direction (, where  is the VBAP node index, ranging from 1 to the number of VBAP nodes, ) shall be estimated by applying a second-order low-pass IIR filter (frequency cut-off: 750 Hz, Q-factor: 0.7071) to the corresponding left and right HRIRs (), then calculating the cross-correlation between the two, and finding the sample where the resulting value is maximum. Next, the minimum-phase spectra of the HRIRs () shall be obtained, following Equations (362) and (363) from Section 6.6.20.2. Finally, the ITDs shall be re-inserted on a frequency-dependent basis, ensuring that they are preserved for frequencies below a given cut-off ( is recommended) and removed above it. This shall be done by applying a phase-shift in the frequency domain, as described in the following Equations (note that the “left” and “right” superscripts have been omitted for brevity):
	
	(626)

	
	(627)


[bookmark: _Ref150940953]where IDFT is the inverse discrete Fourier transform,  is the angular frequency,  is the maximum ITD value in samples across the whole grid of directions,  is a frequency-dependent weight in the range  that controls the amount of phase shift, and  is a scalar smoothing factor (e.g.,  applies a 1-octave smoothing).
[bookmark: _Ref163036413]Stage update
The active triangle shall be determined and interpolation weights shall be calculated for the current frame () for each HOA source () using barycentric coordinates, as described in Section 6.6.26.3.2.1 and Section 6.6.26.3.2.2.
Then, each VLO shall be assigned a weight based on its corresponding HOA source’s interpolation weight, as follows:
	
	(628)


Then, the position of each VLO relative to the current listener position () and current listener orientation () shall be calculated as follows:
	
	(629)


where  is the transpose of a 3x3 rotation matrix for the listener head orientation for frame , calculated according to Section 6.6.26.3.4.1.
Then, the relative azimuth and elevation of each VLO shall be calculated from the cartesian coordinates:
	
	(630)

	
	(631)


Finally, the VBAP weights for each VLO () shall be obtained from the VBAP weight look-up table, based on its relative azimuth and elevation, and they shall be multiplied by the corresponding VLO weights . 
	
	(632)


[bookmark: _Ref150940967]Stage processing
For an efficient rendering, the input stream of ESD signals shall be encoded into a reduced set of VBAP signals based on the listener position and the VLO positions.
Thus, each VLO shall be assigned an ESD signal ()). This signal shall be mapped to the corresponding VBAP nodes (up to three), as follows.
To ensure a smooth transition between frames, an envelope function shall be calculated for each VLO, based on its VBAP weights for the current and previous frames. Therefore, for the  VBAP node (where  is the VBAP node index, ranging from 1 to the number of VBAP nodes, ), the envelope function () shall be calculated as:
	
	(633)


where  is the block size.
Then, for each VBAP node, a VBAP signal buffer shall be constructed by adding the corresponding weighted ESD signals as:
	
	(634)


where  indicates element-wise multiplication.
Each of these VBAP signal buffers shall be filtered with the corresponding pair of HRIR filters and the result shall be added to the output binaural signal (): 
	
	(635)


Finally, equalization may be applied to both channels of the output binaural signal by means of an IIR or FIR filter:
	
	(636)


The output binaural signal shall be assigned to a Downmix RI, which is the output of the rendering stage.
[bookmark: _Ref150941075]Exterior rendering
When the listener is outside the region enclosed by triangle defined by a set of HOA sources, the rendering shall follow the description in Section 6.6.27.3 and Section 6.6.27.4 with the exception that the interpolation weights are calculated according to section 6.6.26.4.
Rendering of informed sources
Informed sources are not supported by the low-complexity MP-HOA rendering profile.
Rendering for scenes with two HOA sources
In the case of a scene with only two HOA sources, the rendering shall follow the description in Section 6.6.27.5 with the exceptions described in Section 6.6.26.6.

[bookmark: _Ref100563597][bookmark: _Ref100564172][bookmark: _Ref100564199][bookmark: _Ref100564217][bookmark: _Toc117076370][bookmark: _Toc131497391][bookmark: _Toc132126395][bookmark: _Toc132225964][bookmark: _Toc135210152][bookmark: _Toc166076643]Binaural spatializer
[bookmark: _Ref158833574]General
The direction-dependent characteristics of sound reaching the ears of a listener can be emulated for point sources using head-related impulse response (HRIR) filters. The Binaural Spatializer creates a binaural downmix of all remaining spatialized RIs (all remaining primary and secondary RIs of type Primary, Reflection, Diffraction, Representative, Nondiegetic). For this, the single-channel signal associated with each of these RIs is convolved with two-channel HRIRs according to the listener-relative location of the RI and the resulting binaural stereo signals are summed to form the final auralized output signal.
When the value of “PanningHRIRConvolution” of Renderer DSP configuration is 1, HRIR convolution by panning is activated. For this, the single-channel signal associated with each of these RIs is first distributed for panning to pre-defined representative positions as virtual loudspeakers based on the directions from the listener to the RIs and the directions from the listener to the representative positions. To perform the panning, appropriate time shifts and gains for each of the left and right ears are applied to the RIs, where the shift and gain parameters are pre-computed and stored in a separate table during the initialization of the Binaural Spatializer. The table is called “SG table”. Panned signals are then summed at the representative positions and convoluted with HRIRs according to the listener-relative locations of the representative positions. The resulting binaural signals are then summed to form the final auralized output signals. The concept of the panning operation is shown in Figure 98, which is an example case where the signals of audio objects (RIs) located between two representative positions are distributed to each of the two representative positions.

[bookmark: _Hlk107682159][image: ]
[image: ダイアグラム  自動的に生成された説明]

[bookmark: _Ref159006248]Figure 98— Concept of HRIR convolution by panning
The spatialization can be bypassed using the RI type Downmix or Airflow. RIs of these type shall have an associated two-channel signal, which is directly added to the final binaural output signal. Preceding stages that create Downmix RIs (e.g. the Homogeneous Exent or HOA Stages) shall provide corresponding signals that are auralized and/or can directly be played to the listener via headphones.
[bookmark: OLE_LINK23][bookmark: OLE_LINK24]Data elements and variables
[bookmark: OLE_LINK29][bookmark: OLE_LINK30]Stage description
[bookmark: _Ref99454678][bookmark: OLE_LINK31][bookmark: OLE_LINK32]HRIR interface
External HRIRs are provided in the SOFA format [13].  In addition, the Binaural Spatializer expects the SOFA file to follow these conventions:
· The SOFA file shall be saved according to the SimpleFreeFieldHRIR convention version 1.0.
· The sampling rate of the filters in the SOFA file shall match the sampling rate of the current Renderer DSP configuration.
· The SOFA should contain a sufficient resolution of measurement locations (min. 2 degrees in the azimuth) to support perceptually smooth spatial rendering.
· The SOFA file may contain HRIRs measured at different distances to the listener.
· The following metadata in the SOFA file is ignored and the default value is assumed: ListenerUp, ListenerView, EmitterPosition, ReceiverPosition, ListenerPosition, SourceUp, SourceView, Data.Delay
· The HRIR filters in the SOFA file are used as-is. Preprocessing like normalization, diffuse-field or headphone equalization, etc. should be done outside of the Renderer. Furthermore, the supplier of HRIR filters should avoid excessive group delay in the filters, as this adds to the overall DSP processing delay.

The available measurement locations in the SOFA file are stored in a 3-dimensional k-d tree data structure, Bentley [14] using listener-relative Cartesian coordinates. This way, a look-up of the nearest available HRIR for a given listener-relative location can be performed efficiently and independent of the measurement distances provided in the SOFA file.
The length of the HRIR filter may be windowed to a length of 128 samples for binauralizing secondary RIs to reduce computational complexity.

[bookmark: _Ref152941482]Initialization of panning parameters for HRIR convolution by panning
General
In the initializeSpatializer(), initialization of HRIR convolution by panning is conducted, where panning parameters are computed and stored in a SG table. Creation method of a SG table is shown in the chapters  6.6.28.3.2.2- 6.6.28.3.2.5

[bookmark: _Ref152939982]Selection of representative HRIRs
Representative HRIRs corresponding to the virtual loudspeakers mentioned in 6.6.28.1 are selected from the provided HRIR data set. Suppose that azimuth angles of HRIRs are measured counterclockwise on condition that the HRIR right in front of a listener is 0 degree. 

The selection process is as shown below:
First, choose six HRIRs from the provided HRIR dataset with azimuth angles closest to k * 60 + 30 degrees (k = 0, 1, 2, 3, 4, 5) on the horizontal plane. If there are no HRIRs on the horizontal plane, opt for HRIRs with elevation angles close to 0 degree. If multiple candidates appear for a single k value, the one having smaller azimuth angle is prioritized within the range of 0 to 180 degrees, and the one having larger azimuth angle is prioritized within the range of 180 to 360 degrees.  Next, choose an HRIR with an elevation angle closest to 90 degrees within the range of 0 to 90 degrees on the median plane. If there are no HRIRs on the median plane, choose one with an azimuth angle close to 0 degree. This is regarded as a zenith.  Finally choose an HRIR with an elevation angle closest to -90 degrees within the range of 0 to -90 degrees on the median plane. If there are no HRIRs on the median plane, choose one with an azimuth angle close to 0 degree. This is regarded as a nadir.
In this way, 6 representative HRIRs from horizontal plane, and zenith and nadir HRIRs are picked, resulting in total of 8 representative HRIRs.

Low Pass Filtering of HRIRs
Before computing the shift values and gain values to be stored in a SG table for panning audio signals to representative directions, all the HRIR data in the provided HRIR data sets are low pass filtered by an FIR filter with the coefficients given in Table 151.  Frequency response of the magnitude of the FIR filter is shown in Figure 99.

[bookmark: _Ref158832423][bookmark: _Ref152954562]Table 151— Coefficients of Low Pass Filter
	LPFCoeff[0]
	0.0315095432760708

	LPFCoeff[1]
	-0.0472082307959231

	LPFCoeff[2]
	-0.0504311478995756

	LPFCoeff[3]
	0.00529714829513192

	LPFCoeff[4]
	0.130896073599700

	LPFCoeff[5]
	0.266767170948375

	LPFCoeff[6]
	0.325763238942777

	LPFCoeff[7]
	0.266767170948375

	LPFCoeff[8]
	0.130896073599700

	LPFCoeff[9]
	0.00529714829513192

	LPFCoeff[10]
	-0.0504311478995756

	LPFCoeff[11]
	-0.0472082307959231

	LPFCoeff[12]
	0.0315095432760708
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[bookmark: _Ref159006300]Figure 99— Frequency response of the Low Pass Filter

In the following description, a time domain waveform of low pass filtered version of an HRIR is defined to be a vector, whose components are sample values of the waveform with the sampling rate of 48kHz. Notations below are used.

   : a vector of an HRIR of the first representative position
   : a vector of an HRIR of the second representative position
  : a vector of an HRIR of the third representative position  
   : a vector of an HRIR from the provided HRIR dataset closest to the original audio object.

Here  ,  , and  are selected from the 8 representative HRIRs by the steps below:
Select two HRIRs on the horizontal plane having the most and the 2nd most closest azimuth angle to  . Then select the zenith or the nadir HRIR depending on the elevation of  .  If the elevation angle of  is positive or 0, the zenith is chosen, and if the elevation angle of  is negative, the nadir is chosen.

The approximation of  using  ,  , and is done by the two steps shown in 6.6.28.3.2.4 and  6.6.28.3.2.5.  Note that the time shift values and gain values to approximate using  ,  , and  are used to distribute a signal of the original audio object to the representative positions to conduct the panning.

[bookmark: _Ref152940175]Computation of time shift parameters
Make time shifts to  , , and  to maximize the cross correlations between  and,   and,  and, respectively. The resultant vectors are referred to as  ,   , and .  The time shift values corresponding to   , , and   for each of all the provided HRIR data set covering the entire sphere are computed and stored in the SG table. The values are used as “appropriate shift values” explained in  6.6.28.1.

[bookmark: _Ref152940024]Computation of gain parameters
Define a vector  as,

= 

which approximates the target vector  , where ,  and  are scalar weight values. The magnitude of the error vector  =  is minimized by solving,



The result is,



where  denotes the inner product of  and , and  denotes the inverse matrix of matrix   The values ,  and   are computed for each of all the provided HRIR data set covering the entire sphere, and they are stored in the SG table to be used as “appropriate gain values” explained in 6.6.28.1.

HRIR convolution
General
The configuration parameter “PanningHRIRconvolution” is first checked by the renderer.  When the value of “PanningHRIRconvolution” is 0, regular HRIR convolution explained in chapter 6.6.28.3.3.2 is conducted.  When the value of “PanningHRIRconvolution” is 1, HRIR convolution by panning explained in chapter 6.6.28.3.3.3 is conducted. 

[bookmark: _Ref158833672][bookmark: OLE_LINK37][bookmark: OLE_LINK38]Regular HRIR convolution
In the processBlock() routine of the Binaural Spatializer, the signals associated with all remaining and active RIs are filtered with the respective HRIRs using fast stereo convolution (A.13). The binauralized stereo output of each filter is summed in a stereo output buffer. The signals associated with Downmix RIs are summed to the same buffer without further processing.
If the listener-relative location of an auralized RI changes (e.g. item.changed & ItemProperty::Location == true, cf. (6.4.2.4) in an update()call, the correct HRIR is selected using a nearest-neighbour search as outlined in clause 6.6.28.3.1.  For this, the RI location in global coordinates is transformed to listener-relative coordinates. If the nearest HRIR changed from the previous update() call, the new filter is prepared and partitioned in update() according to (A.13) and the filter exchange is performed in the next processBlock() call.

[bookmark: _Ref153388693]HRIR convolution by panning
When the HRIR convolution by panning is activated, according to the relative directions of RIs from a listener, RIs are time shifted and gain adjusted, and summed at pre-defined representative directions. The values of time shift and gain adjustment are taken from the SG table created in section 6.6.28.3.2. Summed results for each of the representative directions are then convoluted with HRIRs of those representative directions respectively. The process of HRIR convolution by panning is shown below. 
In the update() of the binaural spatializer process, the item type of each RI is checked.  RIs with item types of Primary, Reflection, Diffraction, Representative, and Nondiegetic are subject to HRIR convolution by panning.  Memory areas for the arrays to store the panning parameters（time shift and gain values）and other data for panning processing for the RIs are allocated.  When a listener-relative location of a RI is different from that of the previous update() step, and the selected SOFA index nearest to the location is different from that of the previous update() step, panning parameters for each of the RIs to be used at corresponding representative positions are set according to the locations of the RIs.  A “change flag” is then set to show that panning parameters are changed.  The flowchart of the update() is shown in Figure 100.
 In the processBlock() of the Binaural Spatializer process, time shifts and gain multiplications are applied to the source signals to make distributed signals at the representative positions.  These distributed signals are added up at each of the representative positions. When panning parameters of a RI in a current frame are not identical to those of a previous frame, the “change flag” of the RI was set in update().  If a “change flag” is set, time domain cross fading is conducted.  If panning parameters of a RI are identical to those of the previous frame, i.e., if the “change flag” is not set, cross fading is not conducted with regard to such a RI.  A reset of the “change flag” is done every frame. Copying signal data of RIs of the previous frame to a delay buffer is done every frame. In this way, signals at representative positions are created and convolved with the HRIRs of the representative positions. The flowchart of the processBlock() is shown in Figure 101.  

  [image: ]


[bookmark: _Ref158832560]Figure 100— Flowchart of update() for HRIR convolution by panning



[image: ] 

[bookmark: _Ref153394891]Figure 101 — Flowchart of processBlock() for the HRIR convolution by panning


[bookmark: _Ref163094227][bookmark: OLE_LINK27][bookmark: OLE_LINK28]Dispersion filter generation and processing 
Acoustic reflections and sound propagation in the air do not behave fully linear. By applying a purposefully designed filter, the effect of acoustic dispersion can efficiently improve the perception of early reflection simulations and enhance plausibility and realism with very moderate cost in computational complexity. The signal flow diagram is seen in Figure 102.



[bookmark: _Ref99287355][bookmark: _Ref98247798][bookmark: OLE_LINK41][bookmark: OLE_LINK42]Figure 102 — Dispersion signal filter flow after the binauralized output of early reflections (ER) and diffracted sound (DF); together with direct sound (DS) and late reverberation (LR) to complete the headphone output signal

The dispersion filter is generated from two vectors of 1440 samples of partially decorrelated white noise  and , (see A.9 Dispersion filter coefficient template), which corresponds to 30 ms at 48 kHz sampling rate. In the function configureDispersionFilter()the following parameters can be set:
enableDispersionFilter 	Boolean flag that allows to enable or disables (pass-thru) the dispersion filter processing
enableDispersionFilterER 	Boolean flag that enables or disables (pass-thru) the dispersion filter processing for early reflections sounds
enableDispersionFilterDiffr 	Boolean flag that enables or disables (pass-thru) the dispersion filter processing for diffracted sounds
dispersionFilterLengthMSec	Parameter to configure the duration of the dispersion filter in msec. The maximum value is 30.
dispersionFilterGaindB 	Parameter to configure the dispersion filter gain in dB
enableSpatialDispersion	Parameter to enable spatial dispersion 

When there is no payloadDispersion() present in the bitstream, the following default values apply:
enableDispersionFilter = true
enableDispersionFilterEnableER = true
enableDispersionFilterDiffr = false
dispersionFilterLengthMsec = 15
dispersionFilterGaindB = 0 
enableSpatialDispersion = true
	
Based on the configuration parameter, the Dispersion Filter is generated as follows:
1. Depending on the state of the enableSpatialDispersion parameter, taking the first filterlength Samples from  and  with
		filterlength = int(dispersionFilterLengthMsec * fs / 1000.0);

for (int i = 0; i < filterlength; i++) {
     S_1(i) = T_1(i);
     S_2(i) = T_1(i);
	   if (enableSpatialDispersion)
     	S_2(i) = T_2(i);	   
}

2. Individual L2 normalization of  and :
w_1 = 0;
w_2 = 0;
for (int i = 0; i < filterlength; i++) {
    w_1 += S_1(i)*S_1(i);
    w_2 += S_2(i)*S_2(i);
}
w_1 = 1 / sqrt(w_1);
w_2 = 1 / sqrt(w_2);

3. Temporal weighting of  and 
for (int i = 0; i < filterlength; i++) {
   g = 1.0 - sqrt(i/filterlength);
   S_1(i) *= w_1 * g;
   S_2(i) *= w_2 * g;
}

4. Final gain adjustment  
w_1 = 0.0;
w_2 = 0.0;
for (int i = 0; i < filterlength; i++) {
    w_1 += S_1(i)*S_1(i);
    w_2 += S_2(i)*S_2(i);
}
	
w = pow(10.0,dispersionFilterGainDb*0.05) / sqrt(max(w_1, w_2));

for (int i = 0; i < filterlength; i++) {
    S_1(i) *= w;
    S_2(i) *= w;
}

As shown in Figure 102, the final FIR filters and  are applied to the left and right channel, respectively.
Headphones equalization
General
This binaural spatializer supports personalized headphones frequency response equalization to account for differences between the local listener's headphones and a target, which can be the content creator headphones, when provided. It compensates the differences between the scene author’s intent and the listener’s reproduction equipment.
Headphones equalization is carried out within the Binaural spatializer. Listener headphones data is provided through the local configuration interface as specified in section 6.4.2.7. It shall be provided as either frequency-dependent gains, as a cascade of second order (biquad) parametric filters, or as a frequency dependent preset. If a preset is specified, the corresponding frequency-dependent gain data is given in A.17.
A default target spectrum is defined, which can be overwritten with the content creator’s headphones data via the bitstream in the configuration payload, given in Table 5, or via the local configuration interface.
Initialization
At initialization, if listener specific equalization data is provided a FIR filter shall be constructed to equalize the listener headphones frequency response to that of the content creator. During playback, the binauralized output signals are filtered using this constructed filter. To minimize any processing delays the FIR filter shall be designed as a minimum-phase filter. The filter shall be designed using the frequency sampling design method. 
[bookmark: _Ref164411151]Conversion of parametric filters
If the listener headphone equalization data or the target equalization data is specified using a cascade of parametric filters they shall first be converted to a vector of frequency-specific gains, prior to construction of the filters. This shall be done by first calculating the coefficients of the transform function given in (637)
	
	[bookmark: _Ref161762562](637)



The following pseudo code describes how the coefficients shall be calculated.

void calcBiquadCoeffs(string filterType, double fc, double Q, double peakGain, double sampleRate)
{
Fc_norm = fc / sampleRate;
K = tan(pi * Fc);
if (filterType == “peak”){
		if (peakGain >= 0){
			norm = 1 / (1 + 1 / Q * K + K * K);
       	b0 = (1 + V / Q * K + K * K) * norm;
       	b1 = 2 * (K * K - 1) * norm;
       	b2 = (1 - V / Q * K + K * K) * norm;
       	a1 = a1;
       	a2 = (1 - 1 / Q * K + K * K) * norm;
		} else {
       	norm = 1 / (1 + V / Q * K + K * K);
       	b0 = (1 + 1 / Q * K + K * K) * norm;
       	b1 = 2 * (K * K - 1) * norm;
       	b2 = (1 - 1 / Q * K + K * K) * norm;
       	a1 = a1;
			a2 = (1 - V / Q * K + K * K) * norm;
			}
} else if(filterType == “lowshelf”){
		if (peakGain >= 0) {
					norm = 1 / (1 + sqrt(2) * K + K * K);
					b0 = (1 + sqrt(2 * V) * K + V * K * K) * norm;
					b1 = 2 * (V * K * K - 1) * norm;
					b2 = (1 - sqrt(2 * V) * K + V * K * K) * norm;
					a1 = 2 * (K * K - 1) * norm;
					a2 = (1 - sqrt(2) * K + K * K) * norm;
} else {
					norm = 1 / (1 + sqrt(2 * V) * K + V * K * K);
					b0 = (1 + sqrt(2) * K + K * K) * norm;
					b1 = 2 * (K * K - 1) * norm;
					b2 = (1 - sqrt(2) * K + K * K) * norm;
					a1 = 2 * (V * K * K - 1) * norm;
					a2 = (1 - sqrt(2 * V) * K + V * K * K) * norm;
			}
			} else if (filterType = “highshelf”){
if (peakGain >= 0) {
					norm = 1 / (1 + sqrt(2) * K + K * K);
					b0 = (V + sqrt(2 * V) * K + K * K) * norm;
					b1 = 2 * (K * K - V) * norm;
					b2 = (V - sqrt(2 * V) * K + K * K) * norm;
					a1 = 2 * (K * K - 1) * norm;
					a2 = (1 - sqrt(2) * K + K * K) * norm;
} else {
					norm = 1 / (V + sqrt(2 * V) * K + K * K);
					b0 = (1 + sqrt(2) * K + K * K) * norm;
					b1 = 2 * (K * K - 1) * norm;
					b2 = (1 - sqrt(2) * K + K * K) * norm;
					a1 = 2 * (K * K - V) * norm;
					a2 = (V - sqrt(2 * V) * K + K * K) * norm;
}
			}
	}

Subsequently, the magnitude of the filter for a specific frequency shall be calculated from the filter coefficients using the following pseudocode:

	filterMagnitude(double f, double b0, double b1, double b2, double a1, double a2){
			double w = 2.0 * pi * f;
    			double numerator = b0 * b0 + b1 * b1 + b2 * b2 + 2.0 * (b0 * b1 + b1 * b2) *
								cos(w) + 2.0 * b0 * b2 * cos(2.0 * w);
    			double denominator = 1.0 + a1 * a1 + a2 * a2 + 2.0 * (a1 + a1 * a2) * cos(w) +
								2.0 * a2 * cos(2.0 * w);
	    	double magnitude = sqrt(numerator / denominator);
    		}

The gains for the subsequent FIR filter design shall be determined according to the following pseudo code:
for (n = 0; n < Ntaps; n++) {
	gains[n] = filterMagnitude(f[n], b0, b1, b2, a1, a2);
}
where b0, b1, b2, a1, a2 shall be as calculated in calcBiquadCoeffs().
[bookmark: _Ref164411167]Design of an EQ filter given a target response
The filter shall be specified by the length of the filter as a power of two ( with  an integer number), the sample rate and the target frequency response given by a frequency vector and a gain vector that shall have equal lengths. Using the frequency sampling method, first a linear phase FIR filter shall be designed, which shall then be converted to a minimum phase filter using the Hilbert transform. The frequencies can be chosen freely, but the values must be increasing. 
To design the linear phase filter, the target curve gains shall first be linearly interpolated to a frequency axis having a length Nf  equal to the first power of 2 greater than the specified filter length. Then for each interpolated frequency the linear phase shall be determined, and the inverse FFT shall be taken to obtain the impulse response. Finally, a Hamming window is applied to prevent aliasing. 
To obtain the minimum-phase filter, the impulse response shall first be zero-padded to at least twice the length of the filter, and the FFT taken of it. Then the Hilbert transform is taken of the natural log of the absolute spectrum. The result is transformed back to the time domain.
The following pseudo method describes how the filter shall be designed from the interpolated frequency and gain vectors of the user and content creator:

/*! Designs a minimum phase filter given a frequency vector and a gain using the frequency sampling method.
frequency vector f runs from [DC ... nyquist] in (Hz)
gain vector contains gains per frequency  (dimensionless)
returns b, vector of length Ntaps with the filtercoefficients.
*/
Buffer& b FIR2MinphaseFilter(Buffer& userFrequencies, Buffer& userGains, Buffer& creatorFrequencies, Buffer& creatorGains)
{
    // Linearly interpolate the desired responses on a onesided spectrum
    // with a uniform mesh wn of length Ntaps
    piecelin(userFrequencies, userGains, wn, userk);
    piecelin(creatorFrequencies, creatorGains, wn, creatork);


    // get transfer function and limit dynamic range between -20 and +20 dB
    for (int n = 0; n < Nf; n++){
        k[n]=creatork[n]/userk[n];
        k[n]=max(k[n], 0.1);
        k[n]=min(k[n], 10.0);
    }

    // Adjust the phases of the coefficients so that the first `Ntaps` of the
    // inverse FFT are the desired filter coefficients.
    for (int_t n = 0; n < Nf; n++) {
        H[n] = k[n] * exp(wn[n] * complex(0.0f, -((Ntaps - 1) * pi)) / fs);
    }

    // inverse fft of onesided spectrum
    h = real(ifft(H));

    // crop and apply window on impulse response
    for (int n = 0; n < Ntaps; n++) {
       b[n] = h[n] * (0.54 - 0.46 * cos(2 * pi * n / Ntaps));
    }

    // get minimumphase of impulse response
    b = minimumPhase(b);
}

The following pseudo code describes how the piecewise linear interpolation shall be implemented:

Buffer& v = piecelin(Buffer& x, Buffer& y, Buffer& u)
    // elementwise piecewise linear interpolation
    // evaluates values in y at points x at query points u 
    
    int K = length(y) - 1;
    int N = length(u);      

    // get derivative dy/dx
    for (int k = 0; k < K; k++){
        dydx[k]=(y[k + 1] - y[k]) / (x[k + 1] - x[k]);
    }

    // get interpolated values
    int k = 0;
    for (int n = 0; n < N; n++){
        // get subinterval index 
        while ((k < K) && (u[n] >= x[k + 1])){
            k++;
			}

        // linear interpolation
        v[n] = y[k] + (u[n] – x[k]) * dydx[k];
    }
}

The following pseudo method describes how a minimum phase filter shall be calculated from the linear phase filter of length Ntaps:

Buffer& r = minimumPhase(Buffer& b)
{
    // zeropad by setting vector b(Ntaps .. 2*Ntaps) to zero
    for (int n = Ntaps; n < 2 * Ntaps; n++) {
        b[n] = 0;
    }

    // go to frequencydomain
    Hin = fft(b);

    // ln amplitude (eps= small number preventing division by zero)
    for (int n = 0; n < 2 * Ntaps; n++) {
        Hin[n] = ln(abs(Hin[n]) + eps);
    }

    // hilbert
    Hout = hilbert(Hin);

    // exp(conj())
    for (int n = 0; n < 2 * Ntaps; n++) {
        Hout[n] = exp(conj(Hout[n]));
    }	

    // go back to timedomain
    out = real(ifft(Hout));

    // remove zeropadding
    for (int n = 0; n < Ntaps; n++) {
       r[n] = out[n];
    }
}

where conj(c) returns the complex conjugate of c and , and ln is the natural logarithm. The Hilbert transform shall be calculated according to the following pseudo code:

Buffer& out = hilbert(Buffer& b)
{
		// go to frequencydomain
		H = fft(b);

		Nyquist = Ntaps/2
    for (int n = 1; n < Nyquist; n++) {
       H[n] = H * 2.0;
    }
    for (int n = Nyquist + 1; n < Ntaps; n++) {
       H[n] = 0.0;
    }

    // go back to timedomain
    out = real(ifft(H));
		}


Audio Processing
For applying the filters the uniformly partitioned overlap-save convolution method as specified in section A.13.1  shall be used. The filters shall be applied as the final step in the binauralized rendering, directly prior to output.
Spectral Compensation for Accessibility 
General
Hearing impairments are usually governed by frequency-dependent spectral hearing loss. To mitigate for that during rendering, it is possible to configure an equalizer for each ear individually.  
Initialization
At initialization, an individual FIR filter shall be constructed for each ear to mitigate the spectral hearing loss of a listener. The frequency dependent compensation weights are configured via the AccessibilitEqLeft and AccessibilityEqRight configuration parameter as listed in Table 142. 
During playback, the binauralized output signals are filtered using this constructed filter. To minimize any processing delays the FIR filter shall be designed as a minimum-phase filter. If both headphone compensation as well as spectral compensation for accessibility is applied, the filter design shall first combine both filter curves and then design a joint minimum-phase filter. If the resulting filters of the left and right ear are not phase-aligned (due to different spectral weights), the phase of the two filters shall be phase-corrected as defined in clause 0.
Design of the spectral compensation FIR filter 
First, the linear-phase spectral compensation filter curves for both ears shall be designed from the parameters AccessibilityEqLeft/Right (see Table 142) which provide either parametric filters (which are parsed as a described in clause 6.6.28.3.5.3) or directly via the filtergain definition, resulting in the parameters accessEqGains and  accessEqFrequencies that describe the linear gain and frequency values. The filter design combines the headphone equalization and spectral compensation using the following extended version of FIR2MinphaseFilter as introduced in clause 6.6.28.3.5.4: 
/*! Designs a minimum phase filter given a frequency vector and a gain using the frequency sampling method.
frequency vector f runs from [DC ... nyquist] in (Hz)
gain vector contains linear gains per frequency (dimensionless)
returns b, vector of length Ntaps with the filtercoefficients.
*/
Buffer& b FIR2MinphaseFilter(Buffer& userFrequencies, Buffer& userGains, Buffer& creatorFrequencies, Buffer& creatorGains, Buffer& accessEqFrequencies, Buffer& accessEqGains)
{
    // Linearly interpolate the desired responses on a onesided spectrum
    // with a uniform mesh wn of length Ntaps
    piecelin(userFrequencies, userGains, wn, userk);
    piecelin(creatorFrequencies, creatorGains, wn, creatork);
	   piecelin(accessEqFrequencies, accessEqGains, wn, accessEqk);
 
 
    // get transfer function and limit dynamic range between -20 and +20 dB
    for (int n = 0; n < Nf; n++){
        k[n] = accessEqk[n] * creatork[n] / userk[n];
        k[n] = max(k[n], 0.1);
        k[n] = min(k[n], 10.0);
    }
 
    // Adjust the phases of the coefficients so that the first `Ntaps` of the
    // inverse FFT are the desired filter coefficients.
    for (int_t n = 0; n < Nf; n++) {
        H[n] = k[n] * exp(wn[n] * complex(0.0f, -((Ntaps - 1) * pi)) / fs);
    }
 
    // inverse fft of onesided spectrum
    h = real(ifft(H));
 
    // crop and apply window on impulse response
    for (int n = 0; n < Ntaps; n++) {
       b[n] = h[n] * (0.54-0.46*cos(2*pi*n/Ntaps));
    }
 
    // get minimumphase of impulse response
    b = minimumPhase(b);
}

The following rules shall apply:
1. When no parameter AccessibilityEqLeft (see Table 142) is provided, no spectral compensation filtering shall be applied. 
2. When only AccessibilityEqLeft (the filter for the left ear, see Table 142) is provided but not AccessibilityEqRight (filter for the right ear), the right ear filter shall be designed with the definition of the left ear filter AccessibilityEqLeft. 
3. When both parameters AccessibilityEqLeft and AccessibilityEqRight are provided, the spectral compensation filter for the left ear shall be designed based on AccessibilityEqLeft and the spectral compensation filter for the right ear shall be designed based on AccessibilityEqRight.
4. When no creator headphone EQ target response is provided, the EQ target response shall be set to 1.0 for all frequency bins.
When no user headphone response data is provided, the user EQ response shall be set to 1.0 for all frequency bins.
[bookmark: _Ref163670437]Cross-filter Phase Alignment
To reduce phase differences between the left ear and the right ear filters, which may lead to binaural localization artifacts, the phase differences between these filters removed as described in the following pseudo code:
1. Zero-pad the left and right ear FIR filter to at least twice the length of the filter (Ntaps), and apply FFT to obtain H_left and H_right, with Nds being the length of the vector H_left and H_right.  
2. Compute phase of the cross-power spectrum and align phase of H_left and H_right with i being the imaginary number:
for (n=1; n<Nds; n++){
	phi = angle(H_left[n] * conj(H_right[n]));
	if (phi > 0)
			H_left[n] *= exp(-phi*i);
	else
			H_right[n] *= exp(phi*i);
}
3. IFFT of H_left and H_right to obtain FIRs h_left and h_right
4. Check for possible wrap-around samples in the time domain and add time shift if needed:
kl = 1;
t = max(abs(h_left)) * 0.0001;
while (abs(h_left[Nds-kl]) > t)
		kl++;
kr = 1;
t = max(abs(h_right)) * 0.0001;
while (abs(h_right[Nds-kr]) > t)
		kr++;
shiftSamp = max(kr, kl)-1;
	if (shiftSamp){
		phi = -shiftSamp * 2 * pi / Nds;
		for (n=1; n<Nds, n++){
				H_left[n] *= exp(n*phi*i);
				H_right[n] *= exp(n*phi*i); 
		}
		h_left = ifft(H_left);
		h_right = ifft(H_right);
	}

5. Truncate h_left and h_right by keeping the first Ntaps real-value time-domain samples.


Audio Processing
For applying the filters, the uniformly partitioned overlap-save convolution method as specified in section A.13.1 shall be used. The filters shall be applied as the final step in the binauralized rendering, directly prior the end-of-chain limiter.

[bookmark: _Toc131497392][bookmark: _Toc132126396][bookmark: _Toc132225965][bookmark: _Toc135210153][bookmark: _Toc166076644]Adaptive loudspeaker rendering
General
Preface
As an alternative to rendering and binauralizing the output to headphones, the playback over loudspeakers is specified. In this operation mode, the binaural spatializer (HRTF based renderer) is replaced with a dedicated loudspeaker-based renderer.
For a high quality listening experience, loudspeaker setups assume the listener to be situated in a dedicated fixed location, the so-called sweep spot. Typically, within a 6DOF playback situation, the listener is moving. Therefore, the 3D spatial rendering has to be instantly and continuously adapted to the changing listener position. This is achieved in two hierarchically nested technology levels:
· Gains and delays are applied to the loudspeaker signals such that at the loudspeaker signals reach the listener position at a similar gain and delay. Optionally a high shelving compensation filter is applied to each loudspeaker signal related to the current listener position and the loudspeakers’ orientation with respect to the listener.  This way, as a listener moves to positions off-axis for a loudspeaker or further away from it, high frequency loss due to the loudspeaker’s radiation high-frequency pattern is compensated.
· Due to the 6DoF movement, the angles between loudspeakers, objects and the listener change as a function of listener position. Therefore, the 3D amplitude panning algorithm is updated in real-time with the relative positions and angles of the varying listener position and the fixed loudspeaker configuration as set in the LSDF. All coordinates (listener position, source positions) are transformed into the listening room coordinate system.
Physical compensation level (Level 1)
Level 1: real-time updated compensation of loudspeaker (frequency-dependent) gain & delay enables ‘enhanced rendering of content’. By exploiting the tracked user position information, the listener can move within a large “sweet area” (rather than a sweet spot) and experience a stable sound stage in this large area when listening to legacy content (e.g. stereo, 5.1, 7.1+4H). For immersive formats (i.e., not for stereo), the sound seems to detach from the loudspeakers rather than collapse into the nearest speakers when walking away from the sweet spot, i.e. a quality somewhat close to what is known from wavefield synthesis, but for a single-user experience. For stereo reproduction, the technology offers left-right sound stage stability for a wide range of user positions (i.e. the range between the left and right loudspeakers at arbitrary distance).

[image: ]
Figure 103 — Overview of the Level 1 system with its main components and parameters.

The gain compensation in Level 1 is based on an amplitude decay law. In free field, the amplitude is proportional to 1/r, where r is the distance from the listener to a loudspeaker (1/r corresponds to 6dB decay per distance doubling). In a room, due to the presence of acoustic reflections and reverberation, sound is decaying more slowly as the distance to a loudspeaker increases. Therefore nearfield decay, farfield decay,  and critical distance parameters are used to specify decay rate as a function of distance to a loudspeaker. Additionally there is a nearfield-farfield transition parameter beta. The larger beta is, the faster is the transition between nearfield and farfield decay.
[image: ]
Figure 104 — Gain compensation as a function of distance. In the reverberant field, the gain change is smaller than in the free-field.

The delay compensation in Level 1 computes the propagation delay from each loudspeaker to the listener position and then applies a delay to each loudspeaker to compensate for the propagation delay differences between loudspeakers. Delays are normalized (offset added or subtracted) such that the smallest delay applied to a loudspeaker signal is zero.
Object rendering level (Level 2)
Level 2:  user-tracked object panning enables rendering of point sources (objects, channels) within the 6DoF play space and requires Level 1 as a prerequisite. Thus, it addresses the use case of ‘6DoF VR/AR rendering’.
A 3D amplitude panning algorithm is used which works in loudspeaker layers, e.g. horizontal and height layers. Each layer applies a 2D panning algorithm for the projection of the object onto the layer. The final 3D object is rendered by applying amplitude panning between the two virtual objects from the 2D panning in the two layers.
When an object is located above the highest layer, then 2D panning is applied in that layer. The final 3D object is rendered by applying amplitude panning between the virtual object from the 2D panning and an (non-existent) object in an upper vertical direction. The signal of the vertical object is equalized to mimic timbre of top sound and distributed to the loudspeakers of the highest layer.
When an object is located below the lowest layer, then 2D panning is applied in that layer. The final 3D object is rendered by applying amplitude panning between the virtual object from the 2D panning and an (non-existent) object in a lower vertical direction. The signal of the vertical object is equalized to mimic timbre of bottom sound and distributed to the loudspeakers of the lowest layer.
The vertical panning as described, is equally applicable to loudspeaker setups with one layer such as 5.1 and with multiple layers such as 7.4.6.
Levels 1 and 2 applied to object rendering faithfully renders MPEG-I scenes similar to headphone reproduction. Note that RIs of type Nondiegetic are point sources and are rendered accordingly, enabling also reverb to be rendered over loudspeaker inside an AE. 
Physical compensation level (Level 1)
Data elements and variables
Variables
SFREQ_MIN		minimum sample rate [Hz] = 44100
SFREQ_MAX		maximum sample rate [Hz] = 48000
VSOUND		speed of sound in air [m/s] = 340.0
MAX_DELAY		maximum delay [samples] = 960
OVERHEAD_GAIN		overhead [lin] = 0.25
framesize		number of samples per frame, default: 256
sfreq_Hz		sampling frequency of input audio, default: 48000
nchan		number of channels (loudspeakers)
max_delay		maximum delay [samples], default: MAX_DELAY
bypass_on		0: normal operation, 1: bypass, default: 0
ref_proc		0: normal operation, 1: processing like for sweet spot, default: 0
cal_system		0: normal operation, 1: calibrated system, default: 0
gain_on		0: gain off, 1: on, default: 1
delay_on		0: delay off, 1: on, default: 1
decay_1_dB			nearfield sound decay per distance doubling [dB], corresponds to LSDF parameter LoudspeakerSetup::LevelCompensation::slope1
decay_2_dB			farfield sound decay per distance doubling [dB], corresponds to LSDF parameter LoudspeakerSetup::LevelCompensation::slope2
beta		nearfield-farfield transition, >1 faster transition, corresponds to LSDF parameter LoudspeakerSetup::LevelCompensation::beta
crit_dist_m			critical distance [m], corresponds to LSDF parameter LoudspeakerSetup::LevelCompensation::criticalDistance
max_m_s		maximum rate of delay change [v in m/s], default: 1
max_m_s_s		maximum rate of delay 2nd order change [a in m/s], default: 1
gain_ms		gain smoothing time constant [ms], default: 40
sweet_spot		sweet spot position [m,m,m]
spk_pos		loudspeaker coordinates [m,m,m]
listener_pos		listener coordinates [m,m,m]
eq_on       		loudspeaker directivity compenstation eq 0: off, 1: on
eq_freq_Hz          			high shelving frequency [Hz], corresponds to LSDF parameter LoudspeakerSetup::DirectivityCompensation::eqFreq
eq_gain_dB          			high shelving gain [dB], corresponds to LSDF parameter LoudspeakerSetup::DirectivityCompensation::eqGainDb
eq_angle_start_deg      	off-axis-angle [degree] below which 0 dB eq, corresponds to LSDF parameter LoudspeakerSetup::DirectivityCompensation::eqAngleStart
eq_angle_range_deg      	off-axis-angle [degree] above which eq_gain_dB eq, corresponds to LSDF parameter LoudspeakerSetup::DirectivityCompensation::eqAngleRange
eq_warp             		eq_angle_start_deg-eq_angle_range_deg transition warping (1 = neutral)

All coordinates are relative to the listening room as defined in the LSDF file. These parameters are stored in the following data structures:
Public data structures
typedef struct rendering_gd_cfg {
    int         framesize;              
    float       sfreq_Hz;               
    int         nchan;                  
    float       max_delay;              
} rendering_gd_cfg_t;

typedef struct rendering_gd_rt_cfg {
    int         bypass_on;              
    int         ref_proc;               
    int         cal_system;             
    int         gain_on;                
    int         delay_on;              
    float       decay_1_dB;               
    float       decay_2_dB;               
    float       crit_dist_m;            
    float       beta;            
    float       max_m_s;                
    float       max_m_s_s;              
    float       gain_ms;                
    float       sweet_spot[3];          
    float       spk_pos[NCHANMAX][3];   
    float       listener_pos[3];
    int         eq_on;
    float       eq_freq_Hz;
    float       eq_gain_dB;
    float       eq_angle_start_deg;
    float       eq_angle_range_deg;
    float       eq_warp;        
} rendering_gd_rt_cfg_t;

Internal parameters that are calculated from the above listed parameters and states are stored in the following structure:
Internal data structure
typedef struct {
    /* static parameters */
    float               sfreq_Hz;
    int                 nchan;
    int                 framesize;
    /* real-time parameters */
    int                 bypass_on;
    int                 gain_on;
    float               delta_gi;
    float               delta_gd;
    float               gain_alpha;
    float               delay_delta;
    float               delay_delta2;
    int                 eq_on;
    il_biquad_cf_t      iircoefs[NCHANMAX];
    /* state */
    float               delay0[NCHANMAX];
    float               delay[NCHANMAX];
    float               gain0[NCHANMAX];
    float               gain[NCHANMAX];
    il_biquad_st_t      iirmem[NCHANMAX];
} rendering_gd_data_t;

Stage description 
Initialize
The loudspeaker setup and its associated compensation parameters is loaded from the given LSDF file described in annex B.3.

A structure of type rendering_gd_cfg_t is initialized with default values and the nchan field is set to the number of loudspeakers in the loudspeaker setup.

A structure of type rendering_gd_rt_cfg_t is initialized with default values. The loudspeaker positions from the LSDF file are stored in the field spk_pos. If the ReferencePoint element was given in the LSDF file, its coordinates are stored in the field sweet_spot. The field cal_system is set to the value of the attribute calibrated if present.

The aforementioned structures are passed to the rendering_gd_init function.

int rendering_gd_init(
        rendering_gd_data_h          *handle,
        rendering_gd_cfg_t           *cfg,
        rendering_gd_rt_cfg_t        *rt_cfg
        )
{
    int err = 0;

    rendering_gd_data_t *data = NULL;

    if ((cfg->sfreq_Hz < SFREQ_MIN) || (cfg->sfreq_Hz > SFREQ_MAX)) {
        return -7;
    }

    data = (rendering_gd_data_t *)calloc(1, sizeof(rendering_gd_data_t));
    if (data == NULL) {
        return -1;
    }
    *handle = data;

// Obviously these parameters need to be stored permanently as they are needed for processing

    /* init */
    data->sfreq_Hz =    cfg->sfreq_Hz;
    data->nchan =       cfg->nchan;
    data->framesize =   cfg->framesize;

// Return max delay parameter, needed for init of MPEG delay lines

    cfg->max_delay =    MAX_DELAY;

// Compute internal parameters

    /* set rt parameters */
    err = rendering_gd_updatecfg(data, cfg, rt_cfg);
    if (err)
        return err;

// Set state to neutral

    /* reset state */
    rendering_gd_audioreset(data);

    return 0;
}
Release
void rendering_gd_done(
        rendering_gd_data_h          handle
        )
{
    rendering_gd_data_t   *data = (rendering_gd_data_t *)handle;

    free(data);
}
Reset
Flush all internal buffers:
void rendering_gd_audioreset(
        rendering_gd_data_h         handle
        )
{
    int i;

    rendering_gd_data_t   *data = (rendering_gd_data_t *)handle;

    for (i = 0; i < data->nchan; i++) {
        data->gain[i] =     data->gain0[i];
        data->delay[I] =    data->delay0[i];
    }

    ZEROMEM(data->iirmem, sizeof(data->iirmem));
}
Update real-time parameters
In the update thread, the virtual listener position is transformed into the listening room coordinate system. This is only relevant for VR scenes, in AR scenes the two coordinate systems coincide.
All further processing happens in the audio thread.
The structure of type rendering_gd_rt_cfg_t  is updated by setting the listener_pos field to the listener position (in the listening room coordinate system).
The structure is then passed to the rendering_gd_updatecfg function:

int rendering_gd_updatecfg(
        rendering_gd_data_h          handle,
        rendering_gd_rt_cfg_t        *rt_cfg
        )
{
    int     i, err = 0;
    float   lpos_x, lpos_y, lpos_z, r_ref;

    rendering_gd_data_t   *data = (rendering_gd_data_t *)handle;

 
    data->bypass_on =   rt_cfg->bypass_on;
    data->gain_on =     rt_cfg->gain_on;


    /* reference readius is first loudspeaker's distance */
    {
        float x, y, z;
        x = rt_cfg->sweet_spot[0] - rt_cfg->spk_pos[0][0];
        y = rt_cfg->sweet_spot[1] - rt_cfg->spk_pos[0][1];
        z = rt_cfg->sweet_spot[2] - rt_cfg->spk_pos[0][2];
        r_ref = sqrt(x*x+y*y+z*z);
    }

    /* listener position */
    lpos_x = rt_cfg->listener_pos[0];
    lpos_y = rt_cfg->listener_pos[1];
    lpos_z = rt_cfg->listener_pos[2];

// For the reference processing option, the listener position is set to the sweet spot.

    if (rt_cfg->ref_proc) {
        /* set listener position to sweet spot, to below evoke sweet spot processing */
        lpos_x = rt_cfg->sweet_spot[0];
        lpos_y = rt_cfg->sweet_spot[1];
        lpos_z = rt_cfg->sweet_spot[2];
    }

    /* update gain delay calibration */
    for (i = 0; i < data->nchan; i++) {
        float r, x, y, z;

For each loudspeaker the compensation gain and delay is computed. The reference distance r_ref (computed above) is the distance at which gain and delay compensation are zero (dB, samples). Based on the loudspeaker's distance to listener r and reference distance r_ref, gain and delay compensation are computed.

        /* vector: listener position - loudspeaker */
        x = lpos_x - rt_cfg->spk_pos[i][0];
        y = lpos_y - rt_cfg->spk_pos[i][1];
        z = lpos_z - rt_cfg->spk_pos[i][2];
        r = sqrt(x*x+y*y+z*z);

In freefield sound decays by 6dB per distance doubling. Often, in a room, decay is approximated by using less decay, e.g. 4dB per distance doubling. Alternatively, one can consider critical distance (hall radius). When one is near a loudspeaker, decay is decay_1_dB per distance doubling. Beyond the critical distance crit_dist_m sound is only decaying slowly, as specifyable by decay_2_dB. The transition between the fast and slow decay is determined by the beta parameter. A beta > 1 causes a fast transition between decay_1_dB and decay_2_dB and a beta < 1 provides a slow transition.
Gain compensation compensates gain changes due to the described sound decay.

        /* gain relative to 0dB at r_ref */
        {
            float pow_nf_cd, pow_ff_cd, pow_nf, pow_ff, pow_ref, scale;
            /* power at critical distance with decay 1 */
            pow_nf_cd = pow(r_ref / rt_cfg->crit_dist_m, 2.0f * rt_cfg->decay_1_dB/6.0);

            /* power at critical distance with decay 2 */
            pow_ff_cd = pow(r_ref / rt_cfg->crit_dist_m, 2.0f * rt_cfg->decay_2_dB/6.0);

            /* nearfield power at distance r */
            pow_nf = pow(r_ref / (r+1e-20f), 2.0 * rt_cfg->decay_1_dB/6.0);

            /* farfield power at distance r */
            pow_ff = pow(r_ref / (r+1e-20f), 2.0 * rt_cfg->decay_2_dB/6.0);

            /* scale pow_ff to be same as pow_nf at critical distance */
            scale = pow_nf_cd / pow_ff_cd;
            pow_ff *= scale;

            /* power at r_ref */
            pow_ref = powf(1.0f + powf(scale, rt_cfg->beta), (1.0f/rt_cfg->beta));
            pow_ref = il_fminf(pow_ref, 1.0f/(OVERHEAD_GAIN*OVERHEAD_GAIN));

            /* compenstation gain */
            data->gain0[i] = powf(powf(pow_ref,rt_cfg->beta) / (powf(pow_ff,rt_cfg->beta) +
				powf(pow_nf,rt_cfg->beta)), 0.5f/rt_cfg->beta) * OVERHEAD_GAIN;
        }

Depending on distance of loudspeaker to listener position, sound transmission time is varying. These variations are compensated by applying delays. An offset MAX_DELAY/2 is added to the compensation delays, such that they are always positive.

        /* negative of delay from spk to listener */
        if (rt_cfg->delay_on) {
            data->delay0[i] = MAX_DELAY/2 - (r-r_ref) / VSOUND * data->sfreq_Hz;
            data->delay0[i] = fminf(data->delay0[i], MAX_DELAY-1);
            data->delay0[i] = fmaxf(data->delay0[i], 0.0);
        } else {
            data->delay0[i] = MAX_DELAY/2;
        }
    }

An overhead is used, determined by OVERHEAD_GAIN. That is, this system can amplify signals, when a listener is far away from a loudspeaker up to a factor of 1/OVERHEAD_GAIN. Ifthe gains surpass this value, then all gains across the channels are scaled with the same factor such that the largest gain is 1.0 (0 dB). This corresponds to inter-channel linked limiter action.

    /* limit gains to 0dB (linked "limiter action") */
    {
        float mx = 0.0f;
        for (i = 0; i < data->nchan; i++) {
            mx = il_fmaxf(data->gain0[i], mx);
        }
        if (mx > 1.0f) {
            for (i = 0; i < data->nchan; i++) {
                data->gain0[i] /= mx;
            }
        }
    }

Number of samples the delay is allowed to change from frame to frame is computed as a function of maximum allowed movement velocity max_m_s

    /* samples per frame for specified speed */
    data->delay_delta = (float)data->framesize*rt_cfg->max_m_s/VSOUND;
    data->delay_delta = MAX(data->delay_delta, 1.0/FD_IDX_MAX);

Number of samples the delay change is allowed to change from frame to frame is computed as a function of maximum allowed movement acceleration max_m_s_s

    /* samples per frame delay change for specified acceleration */
    data->delay_delta2 = (float)data->framesize*rt_cfg->max_m_s_s/VSOUND;
    data->delay_delta2 = MAX(data->delay_delta2, 1.0/FD_IDX_MAX);

Gains are smoothed with singe-pole averaging. The averaging constant is computed as a function of the smoothing time constant gain_ms

    /* gain smoothing constant */
    data->gain_alpha  =  1.f - expf(- 1.f / (1e-3f * rt_cfg->gain_ms * data->sfreq_Hz));

Calibrated system option cal_system is used when we are operating on a system which applies already its own optimal gains and delays (and etc.) for the sweet spot. In this case, we are additionally computing the gain and delay compensation of the sweet spot is computed (above we computed these were computed for the listener position). What in this case is applied, is the difference between the two computations is applied.

    /* make sweet spot action zero for calibrated systems */
    if (rt_cfg->cal_system) {
        float gain_ss, delay_ss; /* sweet spot gain/delay */

        /* set listener position to sweet spot, and compute below sweet spot gains/delays */
        lpos_x = rt_cfg->sweet_spot[0];
        lpos_y = rt_cfg->sweet_spot[1];
        lpos_z = rt_cfg->sweet_spot[2];
        for (i = 0; i < data->nchan; i++) {
            float r, x, y, z;

            /* vector: listener position – loudspeaker */
            x = lpos_x – rt_cfg->spk_pos[i][0];
            y = lpos_y – rt_cfg->spk_pos[i][1] ;
            z = lpos_z – rt_cfg->spk_pos[i][2] ;
            r = sqrt(x*x+y*y+z*z) ;

            /* negative of delay from spk to listener */
            delay_ss = - (r-r_ref) / VSOUND * data->sfreq_Hz;

            /* gain relative to 0dB at r_ref */
            {
                float pow_nf_cd, pow_ff_cd, pow_nf, pow_ff, pow_ref, scale;

                /* power at critical distance with decay 1 */
                pow_nf_cd = pow(r_ref / rt_cfg->crit_dist_m, 2.0f * rt_cfg->decay_1_dB/6.0);

                /* power at critical distance with decay 2 */
                pow_ff_cd = pow(r_ref / rt_cfg->crit_dist_m, 2.0f * rt_cfg->decay_2_dB/6.0);

                /* nearfield power at distance r */
                pow_nf = pow(r_ref / (r+1e-20f), 2.0 * rt_cfg->decay_1_dB/6.0);

                /* farfield power at distance r */
                pow_ff = pow(r_ref / (r+1e-20f), 2.0 * rt_cfg->decay_2_dB/6.0);

                /* scale pow_ff to be same as pow_nf at critical distance */
                scale = pow_nf_cd / pow_ff_cd;
                pow_ff *= scale;

                /* power at r_ref */
                pow_ref = powf(1.0f + powf(scale, rt_cfg->beta), (1.0f/rt_cfg->beta));
                pow_ref = il_fminf(pow_ref, 1.0f/(OVERHEAD_GAIN*OVERHEAD_GAIN));

                /* compenstation gain */
                gain_ss = powf(powf(pow_ref,rt_cfg->beta) / (powf(pow_ff,rt_cfg->beta) +
								powf(pow_nf,rt_cfg->beta)), 0.5f/rt_cfg->beta);
            }

            /* remove action from sweet spot (because calibrated system */
            if (rt_cfg->delay_on) {
                data->delay0[i] -= delay_ss;
                data->delay0[i] = fminf(data->delay0[i], MAX_DELAY-1);
                data->delay0[i] = fmaxf(data->delay0[i], 0.0);
            }
            data->gain0[i] /= gain_ss;
        }
        /* limit gains to 0dB (interchannel-linked limiter action) */
        {
            float mx = 0.0f;
            for (i = 0; i < data->nchan; i++) {
                mx = il_fmaxf(data->gain0[i], mx);
            }
            if (mx > 1.0f) {
                for (i = 0; i < data->nchan; i++) {
                    data->gain0[i] /= mx;
                }
            }
        }
    }

For each loudspeaker the angle is computed, indicating how much off axis the listener position is for that loudspeaker. Based on this angle, a high shelving filter is computed to compensate high frequency loss for off-axis listening.

    /* update eq */
    data->eq_on =       rt_cfg->eq_on;
    for (i = 0; i < data->nchan; i++) {
        float ux, uy, uz, ur, vx, vy, vz, vr, angle, gain, r;

        if (rt_cfg->spk_dir[i][0] > 1000.0f) {
            /* reference pos for angles is sweet spot */
            ux = rt_cfg->sweet_spot[0] - rt_cfg->spk_pos[i][0];
            uy = rt_cfg->sweet_spot[1] - rt_cfg->spk_pos[i][1];
            uz = rt_cfg->sweet_spot[2] - rt_cfg->spk_pos[i][2];
        } else {
            /* reference pos for angles */
            ux = rt_cfg->spk_dir[i][0] - rt_cfg->spk_pos[i][0];
            uy = rt_cfg->spk_dir[i][1] - rt_cfg->spk_pos[i][1];
            uz = rt_cfg->spk_dir[i][2] - rt_cfg->spk_pos[i][2];
        }
        ur = sqrt(ux*ux+uy*uy+uz*uz);

        vx = lpos_x - rt_cfg->spk_pos[i][0];
        vy = lpos_y - rt_cfg->spk_pos[i][1];
        vz = lpos_z - rt_cfg->spk_pos[i][2];
        vr = sqrt(vx*vx+vy*vy+vz*vz);

        angle = (ux*vx+uy*vy+uz*vz)/(ur*vr+1e-20f);
		// condition, otherwise with ref proc, can be 1.0000...0001, and acos on win undefined
        angle = fminf(angle, 1.0f); 
        angle = acos(angle) * 180.0f / M_PI;

        r = (angle - rt_cfg->eq_angle_start_deg)/(il_fmaxf(rt_cfg->eq_angle_range_deg –
				rt_cfg->eq_angle_start_deg, 1e-20f));
        r = il_fmaxf(il_fminf(r, 1.0f), 0.0f);
        r = powf(r, rt_cfg->eq_warp);
        gain = r * rt_cfg->eq_gain_dB;

        il_biquad_hfshelving2(&data->iircoefs[i], rt_cfg->eq_freq_Hz, gain, 
									data->sfreq_Hz);
    }

    return err;
}
Audio processing
After rendering_gd_updatecfg has been called, the function rendering_gd_process is called, specifying the input and output buffers:
void rendering_gd_process(
        rendering_gd_data_h     handle,
        float                   **x,            /* in:  input audio */
        float                   **y             /* out: output audio */
        )
{
    float                   *x[NCHANMAX];
    float                   *y[NCHANMAX];
    int                     n, ch;
    rendering_gd_data_t     *data = (rendering_gd_data_t *)handle;

    /* bypass */
    if (data->bypass_on) {
        for (ch = 0; ch < data->nchan; ch++) {
            for (n = 0; n < data->framesize; n++) {
                y[ch][n] = x[ch][n] * OVERHEAD_GAIN;
            }
        }
    } else

    /* apply gain per channel */
    for (ch = 0; ch < data->nchan; ch++) {
        float   *in, *out, fdelay, fdelay_prev, fdstate[FD_ORDER];
        int     i, ptr, ptr_prev;

        in =    x[ch];
        out =   y[ch];

Apply gains with single-pole averaging:

        /* apply gain with smoothing */
        {
            float alpha, g, gt;

            alpha = data->gain_alpha;
            if (data->gain_on) {
                gt = data->gain0[ch];
            } else {
                gt = OVERHEAD_GAIN;
            }
            g = data->gain[ch];
            for (i = 0; i < subframe; i++) {
                out[i] *= g;
                g = alpha*gt + (1.0f-alpha)*g;
            }
            data->gain[ch] = g;
        }

        /* apply eq */
        if (data->eq_on) {
            il_biquad_filter(data->iircoefs[ch], &data->iirmem[ch], out, out, subframe);
        }
    }

Compute delays for external delay lines. The delay change per frame, and 2nd order delay change per frame is limited, to reduce artefacts and pitch-shifting:
    /* compute smoothed delay for external delay lines */
    for (ch = 0; ch < data->nchan; ch++) {
        float fdelay;

        /* limit delay change */
        if (data->delay_sm[ch] > data->delay0[ch]) {
            fdelay = fmaxf(data->delay0[ch], data->delay_sm[ch]-data->delay_delta);
        } else {
            fdelay = fminf(data->delay0[ch], data->delay_sm[ch]+data->delay_delta);
        }
        /* limit delay change 2nd order */
        if (fabsf(fdelay – data->delay_sm[ch]) > data->delay_delta2) {
            if (fdelay > data->delay_sm[ch]) {
                fdelay = data->delay_sm[ch] + data->delay_delta2;
            } else {
                fdelay = data->delay_sm[ch] – data->delay_delta2;
            }
        }
        /* save current target values */
        data->delay_sm[ch] = fdelay;
    }

    return data->delay_sm;
}

The returned delay value for each output channel is used as target value for an associated variable delay line, which applies the appropriate delay to the corresponding output signal. These output delay lines use the same implementation as the VDLs described in clause 6.6.17.3.2.5.
Object rendering level (Level 2)
Data elements and variables
Variables
SFREQ_MIN	minimum sample rate [Hz] = 44100
SFREQ_MAX	maximum sample rate [Hz] = 48000
FRAMESIZE_MAX	maximum frame size sample rate [samples] = 512
NOBJMAX	maximum number of audio objects = 256
NCHANMAX	maximum number of output channels = 16
NLAYERS	number of loudspeaker layers = 2
BIT_L1	rendering bit layer 1 = (1<<0)
BIT_L2	rendering bit layer 2 = (1<<1)
BIT_BOTTOM	rendering bit bottom = (1<<2)
BIT_TOP	rendering bit top = (1<<3)
BIT_LFE	rendering bit LFE = 0 (LFE not used)

Public data structures
typedef struct rendering_pan_cfg {
    int         framesize;              /* in:  number of samples per frame */
    float       sfreq_Hz;               /* in:  sampling frequency of input audio */
    int         nchan;                  /* in:  number of channels (loudspeakers) */
    int         nobj;                   /* in:  number of objects to amplitude pan */
} rendering_pan_cfg_t;
Real-time updatable parameters:
typedef struct rendering_pan_rt_cfg {
    int         bypass;                 /* 0: normal operation, 1: bypass */
    int         ref_proc;               /* 0: normal operation, 1: processing like for sweet spot */
    float       gain_ms;                /* gain smoothing time constant [ms] */
    float       sweet_spot[3];          /* sweet spot position [m,m,m] */
    float       listener_pos[3];        /* listener coordinates [m,m,m] */
    float       spk_pos[NCHANMAX][3];   /* loudspeaker coordinates [m,m,m] */
    /* spk_layer[NCHANMAX]:
        Each speaker can have these bits/flags
            bit0 (1):   loudspeakers for layer 1 panning
            bit1 (2):   loudspeakers for layer 2 panning
            bit2 (4):   loudspeakers for bottom direction panning
							(usually these have also bit0 and/or bit1 set)
            bit3 (8):   loudspeakers for top direction panning
							(usually also bit0 and/or bit1 are set)
            bit4 (16):  exclude loudspeaker for low-band processing
    */
    int         spk_layer[NCHANMAX];
    float       obj_pos[NOBJMAX][3];    /* object coordinates [m,m,m] */
    int         obj_type[NOBJMAX];      /* 0: inactive, 1: active,
												(future values: hom. Ext.) */
    float       l_obj_min;              /* minimum distance listener-object [m]
                                           object will fly over/under listener at this
 											   distance, instead of going through listener */
    int         ele_eq;                	/* 0: off, 1: default top/bottom eqs, 
											   2, 3: alternative eqs */
    float       ele_thr_deg;            /* 0..180 => elevation threshold 
											  (0=off, >=90=elevation off) */
} rendering_pan_rt_cfg_t;
Internal data structures
typedef struct {
    /* static parameters */
    float               sfreq_Hz;
    int                 nchan;
    int                 nobj;
    int                 framesize;
    /* real-time parameters */
    int                 bypass;
    int                 layer_spks[NLAYERS][NOBJMAX][2];
    float               layer_gains[NLAYERS][NOBJMAX][2];
    float               pan_gains0[NOBJMAX][NCHANMAX];
    float               gain_alpha;
    int                 bottom_top[NOBJMAX];
    float               pan_gains0_bottom_top[NOBJMAX][NCHANMAX];
    il_biquad_cf_t      iircoefs_top[3] ;
    il_biquad_cf_t      iircoefs_bottom[3] ;
    /* state */
    float               pan_gains[NOBJMAX][NCHANMAX];
    int                 obj_type[NOBJMAX];
    float               pan_gains_bottom_top[NOBJMAX][NCHANMAX];
    float               tmp[FRAMESIZE_MAX];
    il_biquad_st_t      iirmem_top[NOBJMAX][5];
    il_biquad_st_t      iirmem_bottom[NOBJMAX][4];
} rendering_pan_data_t;
Stage description
Internal functions
void tangent_law(float alpha, float alpha0, float* a1, float* a2)
{
    float sinsum, sindif, den;

    // alpha0 => zero, gave very large gain, so added these safety range conditions
    alpha0 =    il_fmaxf(alpha0, 2.0);
    alpha =     il_fminf(alpha, alpha0);
    alpha =     il_fmaxf(alpha, -alpha0);

	alpha =     alpha * M_PI / 180.0;
    alpha0 =    alpha0 * M_PI / 180.0;

    sinsum =    sin(alpha0 + alpha);
    sindif =    sin(alpha0 – alpha);
    den =       sqrt(sinsum * sinsum + sindif * sindif);
    *a1 =       sinsum / den;
    *a2 =       sindif / den;
}

void object_flush(
        rendering_pan_data_h     handle,
        int                      index
        )
{
    int ch;

    rendering_pan_data_t     *data = (rendering_pan_data_t *)handle;

    for (ch = 0; ch < data->nchan; ch++) {
        data->pan_gains0[index][ch] = 0.0f;
        data->pan_gains[index][ch] = 0.0f;
        data->pan_gains0_bottom_top[index][ch] = 0.0f;
        data->pan_gains_bottom_top[index][ch] = 0.0f;
    }
    for (ch = 0; ch < 5; ch++) {
        ZEROMEM(&data->iirmem_top[index][ch], sizeof(il_biquad_st_t));
    }
    for (ch = 0; ch < 4; ch++) {
        ZEROMEM(&data->iirmem_bottom[index][ch], sizeof(il_biquad_st_t));
    }}
Configure
Get default parameters:

int rendering_pan_defaultcfg(
        rendering_pan_rt_cfg_t        *rt_cfg,
        int                           cicp_layout   /* in:  MPEG spk layout (0 = not defined) */
        )
{
    int i;

    if (rt_cfg != NULL) {

For experimentation (default off):

        rt_cfg->bypass =            0;
        rt_cfg->ref_proc =          0;

These are default tuning parameter values:

        rt_cfg->gain_ms =           40.0f;
        rt_cfg->l_obj_min =         0.4 ;
        rt_cfg->ele_eq   =          1;
        rt_cfg->ele_thr_deg   =     0.0;

Set for each supported loudspeaker setup the internal layer bits of this renderer:

        /* set layer assignments based on CICP layout */
        if (cicp_layout != 0) {
            /* reset layers */
            for (i = 0; i < NCHANMAX; i++) {
                rt_cfg->spk_layer[i] = 0;
            }
            /* set layers according to loudspeaker setup */
            switch (cicp_layout) {
            case 1:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 2:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 3:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 4:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 5:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 6:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 7:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_LFE;
                rt_cfg->spk_layer[3] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[6] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[7] = BIT_L1;
                rt_cfg->spk_layer[8] = BIT_L1;
                break;
            case 8:
                // seems to be not used in MPEG-I
                break;
            case 9:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[3] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 10:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[3] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 11:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 12:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[2] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[6] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[7] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                break;
            case 13:
                // bottom layer panning not supported, so the bottom layer is used for bottom rendering only
                // 24-channels, NCHANMAX too small, for now it is not defined
                break;
            case 14:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM | BIT_TOP;
                rt_cfg->spk_layer[6] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[7] = BIT_L2 | BIT_TOP;
                break;
            case 15:
                // bottom layer panning not supported, so the bottom layer is used for bottom rendering only
                rt_cfg->spk_layer[0] = BIT_L1;
                rt_cfg->spk_layer[1] = BIT_L1;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[3] = BIT_BOTTOM;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[6] = BIT_BOTTOM;
                rt_cfg->spk_layer[7] = BIT_L1;
                rt_cfg->spk_layer[8] = BIT_L1;
                rt_cfg->spk_layer[9] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[10] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[11] = BIT_L2 | BIT_TOP;
                break;
            case 16:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[6] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[7] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[8] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[9] = BIT_L2 | BIT_TOP;
                break;
            case 17:
                // voice of god is not supported at this point, so it is just ignored for now
                // solution: set BIT_TOP for voice of god and clear for all channels
                // (but then eq has to be switched off, and TODO: testing)
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[2] = BIT_L1;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[6] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[7] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[8] = BIT_L2;
                rt_cfg->spk_layer[9] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[10] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[11] = 0;
                break;
            case 18:
                // voice of god is not supported at this point, so it is just ignored for now
                // solution: set BIT_TOP for voice of god and clear for all channels
                // (but then eq has to be switched off, and TODO: testing)
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[2] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[6] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[7] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[8] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[9] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[10] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[11] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[12] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[13] = 0;
                break;
            case 19:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[2] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[6] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[7] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[8] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[9] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[10] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[11] = BIT_L2 | BIT_TOP;
                break;
            case 20:
                rt_cfg->spk_layer[0] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[1] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[2] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[3] = BIT_LFE;
                rt_cfg->spk_layer[4] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[5] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[6] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[7] = BIT_L1 | BIT_BOTTOM;
                rt_cfg->spk_layer[8] = BIT_L2;
                rt_cfg->spk_layer[9] = BIT_L2;
                rt_cfg->spk_layer[10] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[11] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[12] = BIT_L2 | BIT_TOP;
                rt_cfg->spk_layer[13] = BIT_L2 | BIT_TOP;
                break;
            }
        } else {
            return -1;
        }
    }

    return 0;
}
Initialize
int rendering_pan_init(
        rendering_pan_data_h          *handle,
        rendering_pan_cfg_t           *cfg,
        rendering_pan_rt_cfg_t        *rt_cfg
        )
{
    int i, err = 0;

    rendering_pan_data_t *data = NULL;

    if ((cfg->sfreq_Hz < SFREQ_MIN) || (cfg->sfreq_Hz > SFREQ_MAX)) {
        return -7;
    }

    if (cfg->framesize > FRAMESIZE_MAX) {
        return -1;
    }

    data = (rendering_pan_data_t *)calloc(1, sizeof(rendering_pan_data_t));
    if (data == NULL) {
        return -1;
    }
    *handle = data;

    /* zero out data */
    ZEROMEM(data, sizeof(rendering_pan_data_t));

    /* init */
    data->sfreq_Hz =    cfg->sfreq_Hz;
    data->nchan =       cfg->nchan;
    data->framesize =   cfg->framesize;
    data->nobj =        cfg->nobj;
    for (i = 0; i < NOBJMAX; i++) {
        data->obj_type[i] = 1;
    }

    /* set rt parameters */
    err = rendering_pan_updatecfg(data, cfg, rt_cfg);
    if (err) {
        return err;
    }

    /* reset state */
    rendering_pan_audioreset(data);

    return 0;
}
Release
void rendering_pan_done(
        rendering_pan_data_h          handle
        )
{
    rendering_pan_data_t   *data = (rendering_pan_data_t *)handle;

    free(data);
}
Reset
Flush all internal buffers:

void rendering_pan_audioreset(
        rendering_pan_data_h         handle
        )
{
    int                     o, c;
    rendering_pan_data_t    *data = (rendering_pan_data_t *)handle;

    for (o = 0; o < data->nobj; o++) {
        for (c = 0; c < data->nchan; c++) {
            data->pan_gains[o][c] = data->pan_gains0[o][c];
            data->pan_gains_bottom_top[o][c] = data->pan_gains0_bottom_top[o][c];
        }
    }
    ZEROMEM(data->iirmem_top, sizeof(data->iirmem_top));
    ZEROMEM(data->iirmem_bottom, sizeof(data->iirmem_bottom));
}
Update real-time parameters
This function shall be called after rendering_pan_init() has been called.

Int rendering_pan_updatecfg(
        rendering_pan_data_h          handle,
        rendering_pan_rt_cfg_t        *rt_cfg
        )
{
    int     i, k, l, err = 0;
    float   lpos[3], r_ref;
    int     nspks_layer[NLAYERS+2];

    rendering_pan_data_t    *data = (rendering_pan_data_t *)handle;

    data->bypass =          rt_cfg->bypass;

For ref_proc set listener position to sweet spot (for test output without tracking):

    for (i = 0; i < 3; i++) {
        if (rt_cfg->ref_proc) {
            lpos[i] = rt_cfg->sweet_spot[i];
        } else {
            lpos[i] = rt_cfg->listener_pos[i];
        }
    }

    /* gain smoothing constant */
    data->gain_alpha  =  1.f – expf(- 1.f / (1e-3f * rt_cfg->gain_ms * data->sfreq_Hz));

    /* switch objects on or off */
    for (i = 0; i < data->nobj; i++) {
        if (!rt_cfg->obj_type[i] && data->obj_type[i]) {
            /* flush objects which are switched off */
            object_flush(handle, i);
        }
        data->obj_type[i] = rt_cfg->obj_type[i];
    }

A reference radius is computed. An objects signal is rendered with 0dB when the object distance is equal to reference radius.

    /* reference readius for object gain is first loudspeaker’s distance */
    {
        float x, y, z;
        x = rt_cfg->sweet_spot[0] – rt_cfg->spk_pos[0][0];
        y = rt_cfg->sweet_spot[1] – rt_cfg->spk_pos[0][1];
        z = rt_cfg->sweet_spot[2] – rt_cfg->spk_pos[0][2];
        r_ref = sqrt(x*x+y*y+z*z) ;
    }

    /* compute number of loudspeakers in each layer */
    for (l = 0; l < NLAYERS+2; l++) {
        nspks_layer[l] = 0;
        for (k = 0; k < data->nchan; k++) {
            if (rt_cfg->spk_layer[k] & (1<<l)) {
                nspks_layer[l]++;
            }
        }
    }

    /* amplitude panning of objects */
    ZEROMEM(data->pan_gains0, sizeof(data->pan_gains0));
    ZEROMEM(data->pan_gains0_bottom_top, sizeof(data->pan_gains0_bottom_top));
    for (i = 0; i < data->nobj; i++) {
        MTVec3D l_obj, l_spk[NCHANMAX];
        float   angle_spk_spk, angle_obj_spk;
        float   angles[NCHANMAX], angle1, angle2, a1, a2;
        int     idx1, idx2;

        if (!data->obj_type[i]) {
            /* skip inactive objects */
            continue;
        }

        data->bottom_top[i] = 0;  // 0: bottom is used, 1: top is used

        /* listener – object vector */
        l_obj.x = rt_cfg->obj_pos[i][0] – lpos[0];
        l_obj.y = rt_cfg->obj_pos[i][1] – lpos[1];
        l_obj.z = rt_cfg->obj_pos[i][2] – lpos[2];
        /* prevent issues when listener pos = object pos */
        if (mtVectorLength3D(l_obj) < 1e-8) {
            l_obj.x = 1e-8;
        }

To prevent an object moving horizontally through the listener (ear plane), such objects are slightly shifted up or down when getting close to the listener.


        /* as object gets closer to listener move it above / below through listener */
        if (mtVectorLength3D(l_obj) < rt_cfg->l_obj_min) {
            float y;
            y = sqrtf(rt_cfg->l_obj_min*rt_cfg->l_obj_min 
							– l_obj.x*l_obj.x – l_obj.z*l_obj.z);
            if (l_obj.y >= 0) {
                l_obj.y = y;
            } else {
                l_obj.y = -y;
            }
        }

There is either only one layer (horizontal layer) or two layers (horizontal and height layer). Objects are amplitude panned separately in each layer by selecting the two angular closest loudspeakers and applying a tangent panning law between them. When an object is above the highest layer (horizontal layer if there is one layer, height layer if there are two layers), then a virtual top loudspeaker is considered. Similarly, for objects below the lowest layer (horizontal layer), a virtual bottom loudspeaker is considered. Additionally considering these virtual speakers, the system can have up to four layers.

        /* compute angles between listener-object, and listener-loudspeaker directions */
        for (k = 0; k < data->nchan; k++) {
            /* listener - loudspeaker vector */
            l_spk[k].x = rt_cfg->spk_pos[k][0] - lpos[0];
            l_spk[k].y = rt_cfg->spk_pos[k][1] - lpos[1];
            l_spk[k].z = rt_cfg->spk_pos[k][2] - lpos[2];
            /* prevent issues when listener pos = spk pos */
            if (mtVectorLength3D(l_spk[k]) < 1e-10) {
                l_spk[k].x = 1e-8;
            }
            /* angle between listener-object, and listener-loudspeaker directions */
            {
                float l_spk_y, l_obj_y;
                /* projection on loudspeaker layer plane, set y coordinates to zero */
                l_spk_y = l_spk[k].y;
                l_obj_y = l_obj.y;
                l_spk[k].y = 0.0f;
                l_obj.y = 0.0f;
                angles[k] = mtAngleVectorVector(l_spk[k], l_obj);
                l_spk[k].y = l_spk_y;
                l_obj.y = l_obj_y;
            }
        }

        /* panning for each layer */
        for (l = 0; l < NLAYERS; l++) {
            /* find the two loudspeakers best matching object position */
            angle1 = 1e10;
            angle2 = 1e10;
            idx1 = -1;
            idx2 = -1;

Find loudspeaker with smallest angle to the object:

            for (k = 0; k < data->nchan; k++) {
                if (!(rt_cfg->spk_layer[k] & (1<<l))) {
                    /* skip channels of other layers */
                    continue;
                }
                if (angles[k] < angle1) {
                    angle1 = angles[k];
                    idx1 = k;
                }
            }

Find loudspeaker with second smallest angle to the object (on other side of object):

            for (k = 0; k < data->nchan; k++) {
                if (!(rt_cfg->spk_layer[k] & (1<<l))) {
                    /* skip channels of other layers */
                    continue;
                }
                if (k == idx1) {
                    /* skip already selected loudspeaker */
                    continue;
                }
                if (angles[k] < angle2) {
                    {
                        float l_spk_y[2];
                        /* projection on loudspeaker layer plane, set y coordinates to zero */
                        l_spk_y[0] = l_spk[k].y;
                        l_spk_y[1] = l_spk[idx1].y;
                        l_spk[k].y = 0.0f;
                        l_spk[idx1].y = 0.0f;
                        angle_spk_spk = mtAngleVectorVector(l_spk[idx1], l_spk[k]);
                        l_spk[k].y = l_spk_y[0];
                        l_spk[idx1].y = l_spk_y[1];
                    }
                    //angle_obj_spk = mtAngleVectorVector(l_obj, l_spk[k]);
                    angle_obj_spk = angles[k];
                    //if ((angle_spk_spk >= angle1) && (angle_spk_spk >= angles[k])) {
                    if (angle_spk_spk+0.1f >= angle_obj_spk) { // +0.1 numerical
                        angle2 = angles[k];
                        idx2 = k;
                    }
                }
            }

            /* compute amplitude panning gains for object */
            if (idx2 >= 0) {
                float alpha0, alpha;
                alpha0 = 0.5*(angle1+angle2);
                alpha = alpha0 - angle1;

                tangent_law(alpha, alpha0, &a1, &a2);

                /* save layer's panning info */
                data->layer_spks[l][i][0] = idx1;
                data->layer_spks[l][i][1] = idx2;
                data->layer_gains[l][i][0] = a1;
                data->layer_gains[l][i][1] = a2;
            } else {
                /* indicate that layer has not valid panning */
                data->layer_spks[l][i][0] = -1;
            }
        }


        /* pan between layers */
        {

If there is only one horizontal layer, an object results in a phantom object in the horizontal layer. Panning with only one layer (only first layer valid), e.g. 5.1:


            if ((data->layer_spks[0][i][0] >= 0) && (data->layer_spks[1][i][0] < 0)) {
                /* first layer valid */
                float l_obj_l_ang_vertical, l_obj_l_ang;

                /* angle between object and panned object */
                {
                    MTVec3D l_obj_l;

                    /* compute for each layer: listener - pan-direction vector */
                    idx1 = data->layer_spks[0][i][0];
                    idx2 = data->layer_spks[0][i][1];
                    a1 = data->layer_gains[0][i][0];
                    a2 = data->layer_gains[0][i][1];
                    //
                    l_obj_l.x = a1*rt_cfg->spk_pos[idx1][0] 
										+ a2*rt_cfg->spk_pos[idx2][0] - lpos[0];
                    l_obj_l.y = a1*rt_cfg->spk_pos[idx1][1] 
										+ a2*rt_cfg->spk_pos[idx2][1] - lpos[1];
                    l_obj_l.z = a1*rt_cfg->spk_pos[idx1][2] 
										+ a2*rt_cfg->spk_pos[idx2][2] - lpos[2];
                    /* compute angle between panned object and object for layer */
                    l_obj_l_ang = mtAngleVectorVector(l_obj_l, l_obj);
                    /* threshold for elevation */
                    l_obj_l_ang = il_fmaxf(l_obj_l_ang-rt_cfg->ele_thr_deg, 0.0f);
                }

The elevation is modelled by considering a virtual top or bottom source. The object is amplitude panned between its horizontal layer phantom source and virtual top or bottom source.

                /* angle between object and bottom/top direction */
                {
                    // VIVE: y=-1 = bottom direction!
                    MTVec3D vertical;
                    float   l_obj_l_ang_bottom, l_obj_l_ang_top;

                    // bottom
                    vertical.x = 0.0f;
                    vertical.y = -1.0f;
                    vertical.z = 0.0f;
                    l_obj_l_ang_bottom = mtAngleVectorVector(vertical, l_obj);
                    // top
                    vertical.x = 0.0f;
                    vertical.y = 1.0f;
                    vertical.z = 0.0f;
                    l_obj_l_ang_top = mtAngleVectorVector(vertical, l_obj);

                    // min angle
                    l_obj_l_ang_vertical = il_fminf(l_obj_l_ang_bottom, l_obj_l_ang_top);
                    data->bottom_top[i] = 0; // bottom direction
                    if (l_obj_l_ang_top < l_obj_l_ang_bottom) {
                        data->bottom_top[i] = 1; // top direction
                    }
                }
                /* compute panning gains */
                {
                    float alpha0, alpha, a_layer, a_vertical;

                    alpha0 = 0.5*(l_obj_l_ang+l_obj_l_ang_vertical);
                    alpha = alpha0 - l_obj_l_ang;
                    tangent_law(alpha, alpha0, &a_layer, &a_vertical);

                    data->pan_gains0[i][idx1] = a1 * a_layer;
                    data->pan_gains0[i][idx2] = a2 * a_layer;

                    /* contribution for vertical direction */
                    if (a_vertical > 0.01f) {
                        /* distribute power equally to all first layer spks */
                        a_vertical /= sqrtf(nspks_layer[2]); 
                        for (k = 0; k < data->nchan; k++) {
                            if (data->bottom_top[i] && (rt_cfg->spk_layer[k] & 4)) {
                                data->pan_gains0_bottom_top[i][k] += a_vertical;
                            } else if (!data->bottom_top[i] && (rt_cfg->spk_layer[k] & 8)){
                                data->pan_gains0_bottom_top[i][k] += a_vertical;
                            }
                        }
                    }
                }

In the above processing, each object has been transformed to a phantom object in each layer. Based on the height of the object, amplitude panning is applied to the two phantom objects to get one phantom source from both phantom sources matching the object position. Panning with two layers:


            } else if ((data->layer_spks[0][i][0] >= 0) 
							&& (data->layer_spks[1][i][0] >= 0)) {
                MTVec3D l_obj_l[NLAYERS];
                float   l_obj_l_ang[NLAYERS], angle_l_l, alpha, alpha0;
                float a_bottom, a_top;

                a_bottom = 0.0f;
                a_top = 0.0f;

                /* both layers valid */
                for (l = 0; l < NLAYERS; l++) {
                    /* compute for each layer: listener - pan-direction vector */
                    idx1 = data->layer_spks[l][i][0];
                    idx2 = data->layer_spks[l][i][1];
                    a1 = data->layer_gains[l][i][0];
                    a2 = data->layer_gains[l][i][1];
                    //
                    l_obj_l[l].x = a1*rt_cfg->spk_pos[idx1][0] 
                                      + a2*rt_cfg->spk_pos[idx2][0] - lpos[0];
                    l_obj_l[l].y = a1*rt_cfg->spk_pos[idx1][1] 
                                      + a2*rt_cfg->spk_pos[idx2][1] - lpos[1];
                    l_obj_l[l].z = a1*rt_cfg->spk_pos[idx1][2] 
                                      + a2*rt_cfg->spk_pos[idx2][2] - lpos[2];
                    /* compute angle between panned object and object for layer */
                    l_obj_l_ang[l] = mtAngleVectorVector(l_obj_l[l], l_obj);
                }
                angle_l_l = mtAngleVectorVector(l_obj_l[0], l_obj_l[1]);
                /* if direction between layers: tangent law between layers */
                if ((angle_l_l > l_obj_l_ang[0]) && (angle_l_l > l_obj_l_ang[1])) {
                    alpha0 = 0.5*(l_obj_l_ang[0]+l_obj_l_ang[1]);
                    alpha = alpha0 - l_obj_l_ang[0];
                    tangent_law(alpha, alpha0, &a1, &a2);

If the object position is below the lower layer, then the object is amplitude panned between its lower layer phantom source and its virtual bottom source.

                /* panning between layer 0 and bottom direction */
                } else if (l_obj_l_ang[0] < l_obj_l_ang[1]) {
                    /* threshold for elevation */
                    l_obj_l_ang[0] = il_fmaxf(l_obj_l_ang[0]-rt_cfg->ele_thr_deg, 0.0f);
                    l_obj_l_ang[1] = il_fmaxf(l_obj_l_ang[1]-rt_cfg->ele_thr_deg, 0.0f);

                    // VIVE: y=-1 = bottom direction!
                    MTVec3D bottom;
                    float   l_obj_l_ang_bottom;

                    bottom.x = 0.0f;
                    bottom.y = -1.0f;
                    bottom.z = 0.0f;

                    l_obj_l_ang_bottom = mtAngleVectorVector(bottom, l_obj);

                    alpha0 = 0.5*(l_obj_l_ang[0]+l_obj_l_ang_bottom);
                    alpha = alpha0 - l_obj_l_ang[0];
                    tangent_law(alpha, alpha0, &a1, &a_bottom);
                    a2 = 0.0f;

If the object position is above the height layer, then the object is amplitude panned between its height layer phantom source and its virtual top source. 

                /* panning between layer 1 and top direction */
                } else {
                    // VIVE: y=1 = top direction!
                    MTVec3D top;
                    float   l_obj_l_ang_top;

                    data->bottom_top[i] = 1;

                    top.x = 0.0f;
                    top.y = 1.0f;
                    top.z = 0.0f;

                    l_obj_l_ang_top = mtAngleVectorVector(top, l_obj);

                    alpha0 = 0.5*(l_obj_l_ang[1]+l_obj_l_ang_top);
                    alpha = alpha0 - l_obj_l_ang[1];
                    tangent_law(alpha, alpha0, &a2, &a_top);
                    a1 = 0.0f;
                }

According to loudspeakers’ layer bits, virtual top and bottom source signals are rendered through a set of loudspeakers.

                {
                    int spk_1_L1, spk_2_L1, spk_1_L2, spk_2_L2;
                    spk_1_L1 = data->layer_spks[0][i][0];
                    spk_2_L1 = data->layer_spks[0][i][1];
                    spk_1_L2 = data->layer_spks[1][i][0];
                    spk_2_L2 = data->layer_spks[1][i][1];
                    /* pan between layers */
                    data->pan_gains0[i][spk_1_L1] = a1*data->layer_gains[0][i][0];
                    data->pan_gains0[i][spk_2_L1] = a1*data->layer_gains[0][i][1];
                    data->pan_gains0[i][spk_1_L2] = a2*data->layer_gains[1][i][0];
                    data->pan_gains0[i][spk_2_L2] = a2*data->layer_gains[1][i][1];
                    /* modify normalization when signal of two layers goes to same loudspeaker */
                    if ((a1 > 0.05f) && (a2 > 0.05f)) { 
                        /* only if both layers are used */
                        a1 = 1.0f / (a1 + a2);
                        a2 = 1.0f - a1;
                        if (spk_1_L1 == spk_1_L2) {
                            data->pan_gains0[i][spk_1_L1] = a1*data->layer_gains[0][i][0] 
                                         + a2*data->layer_gains[1][i][0];;
                        }
                        if (spk_2_L1 == spk_2_L2) {
                            data->pan_gains0[i][spk_2_L1] = a1*data->layer_gains[0][i][1] 
                                         + a2*data->layer_gains[1][i][1];;
                        }
                        if (spk_1_L1 == spk_2_L2) {
                            data->pan_gains0[i][spk_1_L1] = a1*data->layer_gains[0][i][0] 
                                         + a2*data->layer_gains[1][i][1];;
                        }
                        if (spk_2_L1 == spk_1_L2) {
                            data->pan_gains0[i][spk_2_L1] = a1*data->layer_gains[0][i][1] 
                                         + a2*data->layer_gains[1][i][0];;
                        }
                    }
                    /* contribution for bottom direction */
                    if (a_bottom > 0.01f) {
                        a_bottom /= sqrtf(nspks_layer[2]); 
                        /* distribute power equally to all first layer spks */
                        for (k = 0; k < data->nchan; k++) {
                            if (rt_cfg->spk_layer[k] & 4) {
                                data->pan_gains0_bottom_top[i][k] += a_bottom;
                            }
                        }
                    }
                    /* contribution for top direction */
                    if (a_top > 0.01f) {
                        a_top /= sqrtf(nspks_layer[3]); 
                        /* distribute power equally to all second layer spks */
                        for (k = 0; k < data->nchan; k++) {
                            if (rt_cfg->spk_layer[k] & 8) {
                                data->pan_gains0_bottom_top[i][k] += a_top;
                            }
                        }
                    }
                }
            } else {
                /* no layer valid */
                printf("Panning not valid!\n");
            }
        }
    }

Compute EQs for top/bottom virtual source signals

// compute bottom / top sound equalizers

    for (i = 0; i < 5; i++) {
        il_biquad_unity(&data->iircoefs_top[i]);
    }
    for (i = 0; i < 4; i++) {
        il_biquad_unity(&data->iircoefs_bottom[i]);
    }
    if (rt_cfg->ele_eq == 1) {
    	float sc;
		il_biquad_hfshelving2(&data->iircoefs_top[0], 600.0f, -2.8f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_top[1], 8400.0f, 6.0f, 3.0f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_top[2], 1250.0f, 2.5f, 2.5f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_top[3], 720.0f, -4.0f, 2.5f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_top[4], 13000.0f, -7.0f, 2.5f, data->sfreq_Hz);
		sc = 4.0f/3.0f; // as bottom eq is defined for ele = -45
		il_biquad_lfshelving2(&data->iircoefs_bottom[0], 800.0f, -2.0f*sc, data->sfreq_Hz);
		il_biquad_hfshelving2(&data->iircoefs_bottom[1], 3000.0f, -3.0f*sc, 
									data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_bottom[2], 9000.0f, 4.0f*sc, 3.0f, 
									data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_bottom[3], 6400.0f, -6.0f*sc, 4.0f, 
									data->sfreq_Hz);
    } else if (rt_cfg->ele_eq == 2) {
        il_biquad_peaking(&data->iircoefs_top[0], 800.0f, -10.0f, 2.0f, data->sfreq_Hz);
        il_biquad_peaking(&data->iircoefs_bottom[0], 6000.0f, -10.0f, 1.5f, 
									data->sfreq_Hz);
    } else if (rt_cfg->ele_eq == 3) {
		il_biquad_peaking(&data->iircoefs_top[0], 800.0f, -6.0f, 2.0f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_top[1], 1300.0f, 4.0f, 2.5f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_top[2], 7500.0f, 5.0f, 2.0f, data->sfreq_Hz);
		il_biquad_hfshelving2(&data->iircoefs_bottom[0], 600.0f, -3.0f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_bottom[1], 900.0f, 4.0f, 1.0f, data->sfreq_Hz);
		il_biquad_peaking(&data->iircoefs_bottom[2], 8000.0f, 3.0f, 2.0f, data->sfreq_Hz);
    }

    return err;
}
Audio processing
Process one frame of audio, return one frame of audio:

void rendering_pan_process(
        rendering_pan_data_h     handle,
        float                    **x,             /* in:  input audio */
        float                    **y              /* out: output audio */
        )
{
    int                     framesize;
    rendering_pan_data_t     *data = (rendering_pan_data_t *)handle;

    framesize = data->framesize;

    /* bypass: simply passing objects to output channels */
    if (data->bypass) {
        int c, i, nobj;

        nobj = data->nobj;
        nobj = MIN(nobj, data->nchan);

        for (c = 0; c < nobj; c++) {
            if (!data->obj_type[c]) {
                /* silence inactive objects */
                for (i = 0; i < data->framesize; i++) {
                    y[c][i] = 0.0f;
                }
            }
            for (i = 0; i < data->framesize; i++) {
                y[c][i] = x[c][i];
            }
        }
        for ( ; c < data->nchan; c++) {
            for (i = 0; i < data->framesize; i++) {
                y[c][i] = 0.0f;
            }
        }
        return;
    }

    /* zero output */
    {
        int c, i;
        for (c = 0; c < data->nchan; c++) {
            for (i = 0; i < data->framesize; i++) {
                y[c][i] = 0.0f;
            }
        }
    }

    /* render objects */
    {
        int c, i, o;
        for (o = 0; o < data->nobj; o++) {
            if (!data->obj_type[o]) {
                /* skip inactive objects */
                continue;
            }

Render objects to horizontal and height layers, sample-wise interpolate rendering gains.

            for (c = 0; c < data->nchan; c++) {
                for (i = 0; i < data->framesize; i++) {
                    y[c][i] += data->pan_gains[o][c] * x[o][i];
                    data->pan_gains[o][c] = data->gain_alpha*data->pan_gains0[o][c] 
                                  + (1.0f-data->gain_alpha)*data->pan_gains[o][c];
                }
            }
        }

Apply EQs to top/bottom virtual source signals, render these signals to existing loudspeakers.

        for (o = 0; o < data->nobj; o++) {
            if (!data->obj_type[o]) {
                /* skip inactive objects */
                continue;
            }
            if (data->bottom_top[o]) {
                for (i = 0; i < 5; i++) {
                    il_biquad_filter(
                        data->iircoefs_top[i],
                        &data->iirmem_top[o][i],
                        i == 0 ? x[o] : data->tmp,
                        data->tmp, data->framesize);
                }
            } else {
                for (i = 0; i < 4; i++) {
                    il_biquad_filter(
                        data->iircoefs_bottom[i],
                        &data->iirmem_bottom[o][i],
                        i == 0 ? x[o] : data->tmp,
                        data->tmp, data->framesize);
                }
            }
            for (c = 0; c < data->nchan; c++) {
                for (i = 0; i < data->framesize; i++) {
                    y[c][i] += data->pan_gains_bottom_top[o][c] * data->tmp[i];
                    data->pan_gains_bottom_top[o][c] = 
                          data->gain_alpha*data->pan_gains0_bottom_top[o][c] 
                          + (1.0f-data->gain_alpha)*data->pan_gains_bottom_top[o][c];
                }
            }
        }
    }
}
Filter related functions
For adaptive loudspeaker rendering, several filter design and application functions are called. These functions are listed in the following pseudo code.

Design a unity filter of 2nd order
void il_biquad_unity(
        il_biquad_cf_t          *coefs      /* out: filter coefficients */
)
{
    coefs->b[0] =   1.f;
    coefs->b[1] =   0.f;
    coefs->b[2] =   0.f;
    coefs->a[0] =   0.f;
    coefs->a[1] =   0.f;
}

Design a high frequency shelving filter of 2nd order
void il_biquad_hfshelving2(
        il_biquad_cf_t          *coefs,     /* out: filter coefficients */
        float                   fc,         /* in:  cut-off frequency [Hz] */
        float                   G,          /* in:  gain [dB] */
        float const             sfreq       /* in:  sampling rate [Hz] */
)
{
    double          wd, nrm, phi, sp, cp, V0;

    /* restrict range of cut-off frequency to Nyquist */
    fc =            fminf(fc, sfreq * 0.5f);

    /* shift cut filters cutoff frequency to have symmetric curves as boost filters */
    V0 =            pow(10.0, 0.05 * G);
    V0 =            pow(V0, 1.0/2.0);
    if (G < 0.f)
        wd =        tan(M_PI * fc / sfreq) * V0;
    else
        wd =        tan(M_PI * fc / sfreq);

    /* compute next normalized Butterworth polynomial: s^2 + 2*sin(phi)*s + 1 */
    phi =           M_PI * (2.0 * 0 + 1.0) / (2.0  * 2);
    sp =            sin(phi);
    cp =            cos(phi);

    /* normalization factor */
    nrm =           1.0 / ((wd + sp) * (wd + sp) + cp*cp);

    /* coefficient derivation */
    coefs->a[0] =   (float) (nrm * 2.0 * ((wd + sp) * (wd - sp) - cp*cp));
    coefs->a[1] =   (float) (nrm * ((wd - sp) * (wd - sp) + cp*cp));
    sp *=           V0;
    cp *=           V0;
    coefs->b[0] =   (float) (nrm * ((wd + sp) * (wd + sp) + cp*cp));
    coefs->b[1] =   (float) (nrm * 2.0 * ((wd + sp) * (wd - sp) - cp*cp));
    coefs->b[2] =   (float) (nrm * ((wd - sp) * (wd - sp) + cp*cp));
}

Design a low frequency shelving filter of 2nd order
void il_biquad_lfshelving2(
        il_biquad_cf_t          *coefs,     /* out: filter coefficients */
        float                   fc,         /* in:  cut-off frequency [Hz] */
        float                   G,          /* in:  gain [dB] */
        float const             sfreq       /* in:  sampling rate [Hz] */
)
{
    double          wd, nrm, phi, sp, cp, V0;

    /* restrict range of cut-off frequency to Nyquist */
    fc =            fminf(fc, sfreq * 0.5f);

    /* shift cut filters cutoff frequency to have symmetric curves as boost filters */
    V0 =            powf(10.0, 0.05 * G);
    V0 =            powf(V0, 1.0/2.0);
    if (G < 0.f)
        wd =        tanf(M_PI * fc / (sfreq)) / V0 ;
    else
        wd =        tanf(M_PI * fc / sfreq);

    /* compute next normalized Butterworth polynomial: s^2 + 2*sin(phi)*s + 1 */
    phi =           M_PI * (2.0 * 0 + 1.0) / (2.0  * 2);
    sp =            sin(phi);
    cp =            cos(phi);

    /* normalization factor */
    nrm =           1.0 / ((sp + 1.0/wd) * (sp + 1.0/wd) + cp*cp);

    /* coefficient derivation */
    coefs->a[0] =   (float) (nrm * 2.0 * ((sp + 1.0/wd) * (sp - 1.0/wd) + cp*cp));
    coefs->a[1] =   (float) (nrm * ((sp - 1.0/wd) * (sp - 1.0/wd) + cp*cp));
    sp *=           V0;
    cp *=           V0;
    coefs->b[0] =   (float) (nrm * ((sp + 1.0/wd) * (sp + 1.0/wd) + cp*cp));
    coefs->b[1] =   (float) (nrm * 2.0 * ((sp + 1.0/wd) * (sp - 1.0/wd) + cp*cp));
    coefs->b[2] =   (float) (nrm * ((sp - 1.0/wd) * (sp - 1.0/wd) + cp*cp));
}

Design peaking filter of 2nd order
void il_biquad_peaking(
        il_biquad_cf_t          *coefs,     /* out: filter coefficients */
        float                   fc,         /* cut-off frequency [Hz] */
        float                   G,          /* gain [dB] */
        float                   Q,          /* Q factor */
        float const             sfreq       /* sampling rate [Hz] */
)
{
    double   wd, gd, qd, nrm;

    /* restrict range of cut-off frequency to Nyquist */
    fc =                fminf(fc, sfreq * 0.5f);
    wd =                tanf(M_PI * fc / sfreq);
    gd =                powf(10.0, 0.05 * fabsf(G));
    qd =                1.0 / Q;

    if (G > 0.f) {
        /* normalization factor */
        nrm =           1.0 / (1.0 + wd*qd + wd*wd);
        /* coefficient derivation */
        coefs->b[0] =   (float) (nrm * (1.0 + gd*qd*wd + wd*wd));
        coefs->b[1] =   (float) (nrm * (2.0 * (wd*wd - 1.0)));
        coefs->b[2] =   (float) (nrm * (1.0 - gd*qd*wd + wd*wd));
        coefs->a[0] =   (float) (nrm * (2.0 * (wd*wd - 1.0)));
        coefs->a[1] =   (float) (nrm * (1.0 - qd*wd + wd*wd));
    }
    else if (G < 0.f) {
        /* normalization factor */
        nrm =           1.0 / (1.0 + gd*qd*wd + wd*wd);
        /* coefficient derivation */
        coefs->b[0] =   (float) (nrm * (1.0 + qd*wd + wd*wd));
        coefs->b[1] =   (float) (nrm * (2.0 * (wd*wd - 1.0)));
        coefs->b[2] =   (float) (nrm * (1.0 - qd*wd + wd*wd));
        coefs->a[0] =   (float) (nrm * (2.0 * (wd*wd - 1.0)));
        coefs->a[1] =   (float) (nrm * (1.0 - gd*qd*wd + wd*wd));
    }
    else {
        coefs->b[0] =   1.f;
        coefs->b[1] =   0.f;
        coefs->b[2] =   0.f;
        coefs->a[0] =   0.f;
        coefs->a[1] =   0.f;
    }
}

Apply a biquad IIR filter
void il_biquad_filter(
        il_biquad_cf_t const    coefs,      /* in:      filter coefficients */
        il_biquad_st_t          *state,     /* in/out:  filter memory */
        float const             *in,        /* in:      input signal buffer */
        float                   *out,       /* out:     output signal buffer */
        int const               nsize       /* in:      input signal buffer size */
)
{
    int         k;
    float       xn;
    float       yn, xnd, xndd, ynd, yndd;

    /* load state */
    xnd =       state->xnd;     /* x(n-1) */
    xndd =      state->xndd;    /* x(n-2) */
    ynd =       state->ynd;     /* y(n-1) */
    yndd =      state->yndd;    /* y(n-2) */

    for (k = 0; k < nsize; k++) {

        /* input */
        xn =    *in++;

        /* 2nd order IIR filter */
        yn =    xn * coefs.b[0];
        yn +=   xnd * coefs.b[1];
        yn +=   xndd * coefs.b[2];
        yn -=   ynd * coefs.a[0];
        yn -=   yndd * coefs.a[1];

        /* output */
        *out++ =    yn;

        /* prepare next iteration */
        xndd =  xnd;
        xnd =   xn;
        yndd =  ynd;
        ynd =   yn;
    }

    /* save state */
    state->xnd =    xnd;    /* x(n)   */
    state->xndd =   xndd;   /* x(n-1) */
    state->ynd =    ynd;    /* y(n)   */
    state->yndd =   yndd;   /* y(n-1) */
}


[bookmark: _Toc166076645]Interface for audio utilization information
[bookmark: _Toc166076646]General
The audio source elements that the renderer utilizes varies over time. The HOA sources that are required for rendering 6DoF HOA content (see 6.6.26 and 6.6.27) depends on the listener position. In case of 6DoF HOA rendering according to subclause 6.6.26, the HOA sources that are utilized for rendering are required either at first or at full order. In case of 6DoF HOA rendering according to subclause 6.6.27 all HOA sources that are utilized for rendering required at full order. In addition, interactive audio elements are not used by the renderer when inactive. This subclause describes the renderer output interface for describing the audio elements currently utilized by the renderer.
[bookmark: _Toc166076647]Syntax and semantics of an interface for renderer audio utilization
The output interface shall provide the list of audio elements currently utilized for 6DoF HOA rendering, their used order and interactive audio elements that are currently inactive. The interface may be implemented with the syntax described below.

Table 152 - Syntax of RendererAudioUtilizationInterface()
	Syntax
	No. of bits
	Mnemonic

	RendererAudioUtilizationInterface
	
	

	{
	
	

		for (int i=0;i<activeMPHOASources.size();i++){
	
	

			audioStreamId;
	8..*
	cstring

			processing_level;
	8
	uimsbf

		}
	
	

	
	
	

		for (int j=0;j<notActiveSources.size();j++){
	
	

			audioStreamId;
	8..*
	cstring

	}
	
	



activeMPHOASources.size()		shall indicate the number of active HOA sources utilized for 6DoF HOA rendering in the audio scene.
audioStreamId		shall indicate the identifier of the audio stream used in the audio scene.
processing_level		shall indicate the order of the HOA audio element audio data being processed in the renderer. The maximum value is equal to the maximum HOA order.
notActiveStreams.size()		shall indicate the number of audio streams that are not being utilized for rendering the audio scene. This excludes audio streams related to 6DoF HOA rendering.
[bookmark: _Toc450303222][bookmark: _Toc9996972][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Toc353342675][bookmark: _Toc117076371][bookmark: _Toc131497393][bookmark: _Toc132126397][bookmark: _Toc132225966][bookmark: _Toc135210154][bookmark: _Toc166076648]
(normative)
[bookmark: _Ref100404187][bookmark: _Toc117076372][bookmark: _Toc131497394][bookmark: _Toc132126398][bookmark: _Toc132225967][bookmark: _Toc135210155][bookmark: _Toc166076649]Panner default output positions
OutputDirection = {{90, 0},
{-90, 0},
{114, 20},
{-60, -6},
{85, -44},
{-130, -21},
{49, 41},
{-67, 52},
{154, -9},
{-48, -55},
{19, -31},
{-162, 21},
{151, 73},
{-9, 20},
{180, -63 }};
[bookmark: _Toc166076650]RIR analysis: loudspeaker source directivity factor
In the determination of room acoustic parameters for reverb rendering, the reverberant-to-direct energy ratio is, when applicable, obtained by analysis a room impulse response.  A loudspeaker directivity factor is optionally applied to this ratio, in the case that the measurement was made using a non-omnidirectional loudspeaker. The directivity factor used shall be:
srcLSDirectivity[8] = { 1.1216f, 1.8731f, 3.6854f, 5.4908f, 5.1385f, 6.8701f, 5.1735f, 6.3951f };
The band-wise directivity factor has been calculated by

that is, the energy in the direction of the peak directivity (on-axis, in the case of a loudspeaker), divided by the mean of the energy integrated over all directions. In practice, this was done using a discrete sampling of the tenth-order spherical harmonic representation of the measured directivity of a Genelec 8351A loudspeaker, provided by the Source Directivity Toolkit [20].
[bookmark: _Ref123828843][bookmark: _Toc131497395][bookmark: _Toc132126399][bookmark: _Toc132225968][bookmark: _Toc135210156][bookmark: _Toc166076651]Default acoustic environment presets
Table 153 - Default AE preset 0
	ID
	0

	presetDefaultAEPredelay
	0.154

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	8.78

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.34
	0.0000011143567903

	63
	0.37
	0.0000013400360494

	80
	0.4
	0.0000014650820423

	100
	0.43
	0.0000017083103813

	125
	0.48
	0.0000017244643093

	160
	0.49
	0.0000017406182374

	200
	0.5
	0.0000017567721650

	250
	0.51
	0.0000017729260930

	315
	0.52
	0.0000017890800211

	400
	0.54
	0.0000018052339487

	500
	0.57
	0.0000018213878767

	630
	0.56
	0.0000018375418048

	800
	0.56
	0.0000017422179767

	1000
	0.55
	0.0000016637636401

	1250
	0.52
	0.0000014537780316

	1600
	0.48
	0.0000012278621924

	2000
	0.44
	0.0000009515894828

	2500
	0.42
	0.0000007297347767

	3150
	0.40
	0.0000005045510506

	4000
	0.37
	0.0000002764094252

	5000
	0.35
	0.0000001299161398



Table 154 - Default AE preset 1
	ID
	1

	presetDefaultAEPredelay
	0.300

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	10.0

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.51
	0.0000011143567903

	63
	0.555
	0.0000013400360494

	80
	0.6
	0.0000014650820423

	100
	0.645
	0.0000017083103813

	125
	0.72
	0.0000017244643093

	160
	0.735
	0.0000017406182374

	200
	0.75
	0.0000017567721650

	250
	0.765
	0.0000017729260930

	315
	0.78
	0.0000017890800211

	400
	0.81
	0.0000018052339487

	500
	0.855
	0.0000018213878767

	630
	0.84
	0.0000018375418048

	800
	0.84
	0.0000017422179767

	1000
	0.825
	0.0000016637636401

	1250
	0.78
	0.0000014537780316

	1600
	0.72
	0.0000012278621924

	2000
	0.66
	0.0000009515894828

	2500
	0.63
	0.0000007297347767

	3150
	0.6
	0.0000005045510506

	4000
	0.555
	0.0000002764094252

	5000
	0.525
	0.0000001299161398



Table 155 - Default AE preset 2
	ID
	2

	presetDefaultAEPredelay
	0.300

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	10.0

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.51
	0.0000011143567903

	63
	0.555
	0.0000013400360494

	80
	0.6
	0.0000014650820423

	100
	0.645
	0.0000017083103813

	125
	0.72
	0.0000017244643093

	160
	0.735
	0.0000017406182374

	200
	0.75
	0.0000017567721650

	250
	0.765
	0.0000017729260930

	315
	0.78
	0.0000017890800211

	400
	0.81
	0.0000018052339487

	500
	0.855
	0.0000015373515425

	630
	0.84
	0.0000012872756162

	800
	0.84
	0.0000009921263488

	1000
	0.825
	0.0000007500468282

	1250
	0.78
	0.0000005009678675

	1600
	0.72
	0.0000003849552577

	2000
	0.66
	0.0000003225158752

	2500
	0.63
	0.0000002567920419

	3150
	0.6
	0.0000001778239684

	4000
	0.555
	0.0000000941312271

	5000
	0.525
	0.0000000410830907



Table 156 - Default AE preset 3
	ID
	3

	presetDefaultAEPredelay
	0.300

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	10.0

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.51
	0.0000011143567903

	63
	0.555
	0.0000013400360494

	80
	0.6
	0.0000014650820423

	100
	0.645
	0.0000017083103813

	125
	0.72
	0.0000017244643093

	160
	0.735
	0.0000017406182374

	200
	0.75
	0.0000017567721650

	250
	0.765
	0.0000017729260930

	315
	0.78
	0.0000017890800211

	400
	0.81
	0.0000018052339487

	500
	0.855
	0.0000023973612960

	630
	0.84
	0.0000030719466589

	800
	0.84
	0.0000036005124733

	1000
	0.825
	0.0000041607332893

	1250
	0.78
	0.0000043239432477

	1600
	0.72
	0.0000040140488246

	2000
	0.66
	0.0000031653604276

	2500
	0.63
	0.0000024404777313

	3150
	0.6
	0.0000016766047356

	4000
	0.555
	0.0000009017242929

	5000
	0.525
	0.0000004108309067





Table 157 - Default AE preset 4
	ID
	4

	presetDefaultAEPredelay
	0.077

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	8.78

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.17
	0.0000011143567903

	63
	0.185
	0.0000013400360494

	80
	0.2
	0.0000014650820423

	100
	0.215
	0.0000017083103813

	125
	0.24
	0.0000017244643093

	160
	0.245
	0.0000017406182374

	200
	0.25
	0.0000017567721650

	250
	0.255
	0.0000017729260930

	315
	0.26
	0.0000017890800211

	400
	0.27
	0.0000018052339487

	500
	0.285
	0.0000018213878767

	630
	0.28
	0.0000018375418048

	800
	0.28
	0.0000017422179767

	1000
	0.275
	0.0000016637636401

	1250
	0.26
	0.0000014537780316

	1600
	0.24
	0.0000012278621924

	2000
	0.22
	0.0000009515894828

	2500
	0.21
	0.0000007297347767

	3150
	0.2
	0.0000005045510506

	4000
	0.185
	0.0000002764094252

	5000
	0.175
	0.0000001299161398



Table 158 - Default AE preset 5
	ID
	5

	presetDefaultAEPredelay
	0.077

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	8.78

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.17
	0.0000011143567903

	63
	0.185
	0.0000013400360494

	80
	0.2
	0.0000014650820423

	100
	0.215
	0.0000017083103813

	125
	0.24
	0.0000017244643093

	160
	0.245
	0.0000017406182374

	200
	0.25
	0.0000017567721650

	250
	0.255
	0.0000017729260930

	315
	0.26
	0.0000017890800211

	400
	0.27
	0.0000018052339487

	500
	0.285
	0.0000015373515425

	630
	0.28
	0.0000012872756162

	800
	0.28
	0.0000009921263488

	1000
	0.275
	0.0000007500468282

	1250
	0.26
	0.0000005009678675

	1600
	0.24
	0.0000003849552577

	2000
	0.22
	0.0000003225158752

	2500
	0.21
	0.0000002567920419

	3150
	0.2
	0.0000001778239684

	4000
	0.185
	0.0000000941312271

	5000
	0.175
	0.0000000410830907



Table 159 - Default AE preset 6
	ID
	6

	presetDefaultAEPredelay
	0.077

	presetDefaultAENumDelayLines
	15

	presetDefaultAEDelayRatio
	8.78

	presetDefaultAEDelayMinMs
	38.19

	presetDefaultAEGain
	1.0

	presetDefaultAEDistanceGainDropDb
	6.0

	presetDefaultAEMinimumDistance
	5.0

	Frequency
	RT60
	DSR

	50
	0.17
	0.0000011143567903

	63
	0.185
	0.0000013400360494

	80
	0.2
	0.0000014650820423

	100
	0.215
	0.0000017083103813

	125
	0.24
	0.0000017244643093

	160
	0.245
	0.0000017406182374

	200
	0.25
	0.0000017567721650

	250
	0.255
	0.0000017729260930

	315
	0.26
	0.0000017890800211

	400
	0.27
	0.0000018052339487

	500
	0.285
	0.0000023973612960

	630
	0.28
	0.0000030719466589

	800
	0.28
	0.0000036005124733

	1000
	0.275
	0.0000041607332893

	1250
	0.26
	0.0000043239432477

	1600
	0.24
	0.0000040140488246

	2000
	0.22
	0.0000031653604276

	2500
	0.21
	0.0000024404777313

	3150
	0.2
	0.0000016766047356

	4000
	0.185
	0.0000009017242929

	5000
	0.175
	0.0000004108309067



[bookmark: _Ref116920480][bookmark: _Toc117076373][bookmark: _Toc131497396][bookmark: _Toc132126400][bookmark: _Toc132225969][bookmark: _Toc135210157][bookmark: _Toc166076652][bookmark: _Ref100411796]VR filter design initialization vector
XSTART = {	-0.203920067266352, 0.128787908879483, 0.079837810189545, 0.099929196624988, 
			-0.234180882464493, -0.215314119358636, -0.246411794226213, -0.172436052311266, 
			-0.355835699346580, -0.334387138798732, 0.463930529067942, 0.460226715285694,
			-0.311585344404065, -0.475693438370513, -0.295444453620049, 0.199843614126557,
			0.279514585555530, 0.265907856480316, 0.018417987872943, -0.203199498423778, 
			-0.312278771338748, -0.419258731235125, 0.238440296198970, 0.265907856480316,
			0.018417987872943, -0.278006828910261, 0.370732306177376, -0.293280844660574,
			0.418610907937922, -0.011588811205171, 0.111743862902646, 0.265907856480316,
			0.018417987872943, -0.203199498423778, -0.312278771338748, -0.419258731235125,
			0.238440296198970, -0.058690777104047, -0.341690132287349, 0.379937031201279,
			-0.225913538007775, -0.085764980918949, -0.203920067266352, 0.128787908879483,
			0.079837810189545, 0.099929196624988, -0.234180882464493, -0.215314119358636,
			-0.246411794226213, -0.172436052311266, -0.355835699346580, -0.334387138798732,
			0.463930529067942, 0.460226715285694, -0.311585344404065, -0.475693438370513,
			-0.295444453620049, 0.199843614126557, 0.279514585555530, -0.477066907560919,
			0.077662858129756}
[bookmark: _Ref116991136][bookmark: _Toc117076374][bookmark: _Toc131497397][bookmark: _Toc132126401][bookmark: _Toc132225970][bookmark: _Toc135210158][bookmark: _Toc166076653]Octave band neural network parameters
theta1 = {8.359878713865152e-04,8.547322220158112e-05,-1.658299472673640e-03,-8.897020573858766e-04,1.374055647247520e-03,9.828561674148563e-04,1.223515725462025e-03,-1.352706791125740e-04,2.724056744377736e-04,1.288206991958871e-03,9.499631219219911e-04,-2.469974848592716e-04,-1.141580875010866e-03,-1.295112494331233e-03,-5.978261550422934e-04,-3.034776890279737e-05,-8.632207571268030e-04,1.373229561220072e-04,6.262151869926911e-04,-6.840537319682704e-04};
theta2 = {3.552895209336471e-02,-3.683101094544935e-02,1.544195828729876e-02,1.407231881609986e-02,-1.168004730233060e-03,-1.845297313636336e-02,-1.515047750276116e-02,-2.149486868001570e-02,6.112918761945306e-03,2.420529174998849e-02};
xMin = {-12,-12,-12,-12,-12,-12,-12,-12,-12,-12};
xMax = {12,12,12,12,12,12,12,12,12,12};
tMin = {-1.743401668682568e+01,-2.131708842485039e+01,-2.170441288042948e+01,-2.154042529662784e+01,-2.143074691592492e+01,-2.175557419031379e+01,-2.039338478527605e+01,-1.946007373459756e+01,-1.991523334344047e+01,-1.494945109544445e+01};
tMax = {1.645155259154675e+01,2.288543627872786e+01,2.112323652545153e+01,2.093612436245674e+01,2.143413645157312e+01,2.257964735584436e+01,2.112400872713990e+01,2.034775555368313e+01,1.955805350970688e+01,1.463274290482193e+01};

W1[0] = {-1.249845103906119e-01,5.266457386598127e-01,-1.265557143907060e-01,7.551067725628659e-03,-3.017663214061779e-03,3.963342872930754e-04,2.350432300903882e-03,-1.120885209993510e-03,9.247806821622239e-04,-1.447298285062381e-03};
W1[1] = {-5.544670077519056e-04,2.386676094659368e-04,7.374074945967561e-03,-8.806089429944368e-02,3.741833390649099e-01,-8.938358102566210e-02,6.681568818197932e-03,-2.510890468796177e-03,-6.534703146453762e-04,2.626359751386651e-03};
W1[2] = {5.820373666894878e-01,-1.608550923629943e-01,6.843832526723191e-03,-1.147557131961238e-04,-2.029196670649964e-03,-6.170282969242773e-04,-3.427656648159464e-04,7.664552001633552e-04,-1.225923211224387e-03,-2.340092819962502e-04};
W1[3] = {6.560423380746320e-03,-8.843793100057799e-02,3.687100918092583e-01,-8.851080892205522e-02,9.700292730847760e-03,-3.415750124449459e-03,-9.975800795366122e-04,8.245389408965012e-04,1.477817808765500e-03,3.866488408599131e-04};
W1[4] = {2.293222066592418e-03,-2.708853860889269e-03,-4.324940634069773e-03,-1.142052071251931e-03,5.690213657432463e-03,-9.549478554529714e-03,1.369666644646367e-01,-5.335488374328827e-01,1.241760503804226e-01,5.764867698586685e-03};
W1[5] = {2.112360427730359e-04,-5.081608424528544e-03,-2.770039475388752e-03,2.815059118873478e-03,-2.972762742112710e-03,4.862962280744462e-04,7.359230380200678e-03,-1.151007460191757e-01,5.304724389763745e-01,-9.611719995014199e-02};
W1[6] = {3.359030950933401e-04,1.795270925309229e-04,-4.630404786345881e-04,-2.231517009672016e-03,6.034059076361724e-05,-3.750670884220089e-04,7.573908711449153e-03,-2.270169283055933e-03,-4.480777658373232e-03,-1.052137767662975e-01};
W1[7] = {2.135195640000022e-03,-4.352595982285545e-03,8.777941272376243e-02,-3.682332090459548e-01,8.726269260907039e-02,-2.419028418929964e-03,1.484817060572245e-03,-1.316126408435669e-03,1.089476547538634e-03,-1.625586144777415e-03};
W1[8] = {-4.655428637618245e-03,2.301095736956214e-03,2.697953667631031e-03,-7.489187804290042e-03,9.281173974793475e-02,-3.734112224540869e-01,9.364968575239353e-02,-9.700398498820314e-03,2.711850819791076e-03,5.642200810607369e-04};
W1[9] = {2.274523371536748e-03,-2.540339671592814e-03,-4.013987379835674e-03,-1.119091211970584e-03,5.046791835568902e-03,-7.173193757816045e-03,8.353800928845698e-02,-3.443838571658540e-01,7.446937422591765e-02,5.086483671991818e-03};
W1[10] = {2.842897102199699e-04,-4.701889892732403e-03,-2.554084620367180e-03,2.533365854631808e-03,-2.537052600995105e-03,3.429725026792958e-04,5.351075646560870e-03,-6.038078410518619e-02,3.181793876435340e-01,-4.758646349688016e-02};
W1[11] = {4.816803037359867e-03,-2.317635526578950e-03,-2.828497012243485e-03,8.740315836120593e-03,-1.320999680303542e-01,5.146332879978940e-01,-1.340291964424077e-01,1.130071596372745e-02,-2.620224526789094e-03,-7.186667907996960e-04};
W1[12] = {-1.776615379448316e-04,9.280153737536673e-04,9.233628900040926e-04,1.748818662140622e-03,-1.302533374053542e-05,-8.788171563248662e-04,-4.865567076036258e-03,3.450087387685173e-03,-3.439936090368157e-02,3.213260968713526e-01};
W1[13] = {1.650672570469666e-01,-3.193342430828329e-02,2.398542683578112e-03,-1.056700526743423e-03,-1.688542475643315e-03,-4.642678514278148e-04,-1.044936608882553e-03,4.616220830725696e-04,-1.094462270390874e-03,2.842146381543858e-04};
W1[14] = {7.491421600958060e-04,1.374934358910792e-03,2.692669170432229e-04,-2.719933276471133e-03,1.028161677012390e-02,-9.146118155485616e-02,3.823733463102059e-01,-8.654510766669690e-02,1.846851677706178e-03,1.568221048608851e-03};
W1[15] = {-5.287532964048631e-04,3.176370773997585e-04,8.806971895951808e-03,-1.270908245847784e-01,5.144507101357128e-01,-1.284011983125171e-01,7.910161590454733e-03,-2.480879638715174e-03,-7.395168726949991e-04,2.654398701880602e-03};
W1[16] = {7.926515279394603e-03,-1.277755610042752e-01,5.101376102793813e-01,-1.276976541024332e-01,1.113533818189427e-02,-3.377627283699616e-03,-1.073939905372327e-03,7.641125391644651e-04,1.607138622669868e-03,4.269766151509610e-04};
W1[17] = {-2.105659856222192e-03,5.767043661084203e-03,-1.298122219259415e-01,5.196069503289698e-01,-1.293946470960059e-01,3.751578037219106e-03,-1.529654016436069e-03,1.468910246911912e-03,-1.216170718616350e-03,1.604304656603586e-03};
W1[18] = {-7.192943159633246e-04,-1.392238904331236e-03,-3.060988278888274e-04,2.710021057642362e-03,-1.180104278128020e-02,1.293292606421065e-01,-5.186659128385702e-01,1.237835553214401e-01,-2.718528832983392e-03,-1.872207082265746e-03};
W1[19] = {8.292710864461444e-02,-3.709472738793035e-01,8.359623308008396e-02,-5.999503529834692e-03,2.942383423982314e-03,-3.435960574891508e-04,-2.207387601895270e-03,1.001058654549236e-03,-9.108468781068886e-04,1.328705658582639e-03};

W2[0] = {-5.362654975811766e-02,2.610775998229408e-03,-3.479077737471670e-01,-1.661135882441614e+00,2.713084866151550e-03,-8.050026049203143e-03,4.912538454850060e-02,-2.501448126131754e-01,-5.325713266010247e-02,-5.413908591370461e-03,3.710196544179083e-02,-2.786643987916668e-02,1.291192419843890e-02,5.760907986781017e+00,3.450124140329197e-02,2.901909202852385e-02,1.201224336922085e+00,-1.654040699450098e-01,1.180257790613339e-02,2.074188949139317e-01};
W2[1] = {-2.299910666241552e+00,2.241407896564608e-01,-1.612962073878989e-01,9.917453965403393e-02,-2.645343263476570e-03,5.059318927986218e-04,-9.292925039466506e-02,1.159873518382173e+00,6.965488000928281e-02,3.578808175485068e-04,-1.130289625174389e-02,5.110609921296610e-02,-2.127117369872963e-02,2.284871198024709e-01,-2.195523448724401e-02,-1.526760325057060e-01,-1.832418222221722e-01,8.243686413912834e-01,-5.650966004744622e-03,-4.906067294463353e+00};
W2[2] = {-2.193197430837718e-01,-1.328757646185728e+00,2.717121593585667e-01,5.632814204010336e+00,5.692102516170808e-03,9.381392418837359e-03,7.064777367275021e-02,-1.235552641578222e-01,-2.197092387822926e-01,1.590893342710247e-03,-2.865050000937937e-02,-1.488215489651381e-01,2.325055466603200e-02,-9.505819653202172e-01,-3.249844118684987e-02,9.526240505079028e-01,-2.819950745010270e+00,-1.730021936722720e-01,-3.344685950665918e-02,-2.147736614306238e-01};
W2[3] = {8.240792944325345e-01,1.577360767565291e-01,-5.393697413487785e-02,1.883639724555884e-01,-3.453412704425833e-02,-1.377844491567404e-02,-5.203891007499317e-02,-5.419161507390196e+00,1.203934866973946e+00,5.250906555082605e-02,2.500785261207901e-02,8.997071055035865e-01,-3.378219066361068e-02,2.275336320460611e-01,2.054144942567362e-01,-2.034756873216009e-01,-2.191798573484430e-01,-2.605485215656132e+00,1.430379858340748e-01,1.150949995301596e+00};
W2[4] = {-1.142380032568625e-01,5.616960061248720e+00,1.684543844756680e-02,-1.304362361658231e+00,1.031741991076227e-01,2.814507612175948e-02,5.156347938990066e-02,-9.674380034593323e-02,-1.517954269854813e-01,-1.805550304934425e-01,-3.276358432273232e-02,-2.011176244375439e-01,7.461889596709664e-05,-3.358905775648201e-02,-1.293902724098420e+00,-2.847799671683095e+00,9.367378985858679e-01,-1.633690988156630e-01,-9.557695155945171e-01,-1.536757144358032e-01};
W2[5] = {2.007418537812703e-02,2.072982516956859e-01,-4.700074331171047e-03,2.353212219992850e-01,-6.111302795932311e-01,-9.446945338284869e-02,1.656777325757606e-01,1.147555230491997e+00,-5.433297066306639e+00,9.619464721159764e-01,1.785536965834977e-01,-2.743369135443336e+00,5.639080131194836e-02,-6.070299979612768e-02,1.704989623172130e-01,-2.162351140811685e-01,-1.553973303904409e-01,8.183374144452195e-01,2.046902784756062e-01,6.202071772201182e-03};
W2[6] = {2.398920932390386e-03,-1.371771141598966e+00,1.856380627816486e-03,-7.310851057347635e-02,1.170690916300339e-01,5.246175381767495e-01,-6.166191181114852e-01,-1.984501842055680e-01,-1.357715760879329e-01,-3.407614516132427e-02,-8.807286747207850e-01,-1.900184519263931e-01,-1.969012773787292e-01,-2.408888266142615e-02,5.904526010284056e+00,9.810325612060302e-01,5.581177883990580e-02,-1.346649681395594e-01,3.088134054765971e+00,1.855485759596761e-02};
W2[7] = {2.513720681548717e-02,2.803739503250021e-01,-2.985060902592453e-03,-6.504641347102737e-02,2.057994625301883e+00,-1.741465186012960e-01,3.259423741754866e+00,4.516060220355166e-02,1.335998028487334e+00,-5.174738053393857e+00,3.016228178205144e-01,9.732488389831140e-01,1.132089307137149e+00,4.411002630315893e-02,-4.607927580199540e-02,-1.804349186132682e-01,1.864359981290027e-02,3.997508159779085e-02,8.558762630222690e-02,6.681380703501888e-02};
W2[8] = {-3.885378044986900e-02,-1.779770150904100e-02,-1.062362236612843e-03,6.260473998013071e-02,-1.299709727173198e-01,-1.500705760756160e+00,-6.900352211157339e-01,6.763970540966570e-03,-1.809529731329133e-01,3.851344880877086e-01,4.524687261307224e+00,-1.345165787228233e-01,-4.548577818170572e-01,1.733619361416238e-02,-1.228718360589634e+00,2.842739418104910e-02,-2.324280737010848e-02,-5.360357948595969e-03,-9.072437945140798e-01,-1.043669718123008e-01};
W2[9] = {5.276735230234735e-03,-3.657663579523172e-02,-3.955062357293170e-03,-7.066288236455442e-02,-5.188602668681692e-01,5.020777067414161e-01,-1.156262730123498e+01,1.498093672584307e-01,-2.008277460901300e-02,8.486154716430934e-01,-1.502103673069740e+00,1.330127172110584e-02,-1.210328746874824e+00,2.631913866536619e-02,6.777701792298022e-01,1.095176658127521e-02,2.855401754696564e-02,5.923450919222457e-02,3.421226069073460e-01,1.547672672505750e-02};
[bookmark: _Ref100412343][bookmark: _Toc117076375][bookmark: _Toc131497398][bookmark: _Toc132126402][bookmark: _Toc132225971][bookmark: _Toc135210159][bookmark: _Toc166076654]Third-octave band neural network parameters
xMin = {-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12,-12};
xMax = {12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12,12,12,12,12,12,12,12};
tmin = { -2.038870608440465e+01, -2.678849815964725e+01, -2.757636053895062e+01, -2.765344282385239e+01, -2.716098081395197e+01, -2.581423496482778e+01, -2.723128674501405e+01, -2.763868838366484e+01, -2.556399567416048e+01, -2.697758941200400e+01, -2.724126535689017e+01, -2.744919796206791e+01, -2.726143977153325e+01, -2.776948602363049e+01, -2.607297788243555e+01, -2.707771393608530e+01, -2.641589721784473e+01, -2.727456177463340e+01, -2.593256090802651e+01, -2.636116803999377e+01, -2.724430835038541e+01, -2.683941356896038e+01, -2.713223493489686e+01, -2.757544478196990e+01, -2.557585962140894e+01, -2.619087878878048e+01, -2.566657946258719e+01, -2.667127036790179e+01, -2.423212002811150e+01, -2.313463264195814e+01, -1.440222109525858e+01 };
tmax = { 2.054556464737180e+01, 2.678849815952580e+01, 2.756207951039231e+01, 2.765344282376445e+01, 2.667128786973017e+01, 2.613574896932572e+01, 2.619253163804886e+01, 2.733638838582886e+01, 2.723129923844913e+01, 2.723521611285197e+01, 2.793883888941780e+01, 2.727641967392399e+01, 2.819185839678409e+01, 2.728774270391036e+01, 2.814981788805706e+01, 2.672289476327011e+01, 2.670769604382733e+01, 2.736021010100513e+01, 2.667094916920739e+01, 2.551439790715242e+01, 2.779977488507454e+01, 2.679395939402407e+01, 2.837862926608989e+01, 2.757544478197003e+01, 2.680643087380155e+01, 2.578710853870419e+01, 2.708257445180220e+01, 2.698100098770572e+01, 2.423212002811155e+01, 2.313463264195811e+01, 1.440222109525863e+01 };
W1 = { -1.205929942253572e-04, 7.970516355561727e-04, -2.783620092285350e-04, -1.994527534928567e-04, 2.347698439978771e-05, -3.398856773451466e-04, -1.081767877208057e-04, 9.573020933218775e-04, -2.188587324877659e-03, -1.219964682139673e-03, -2.909198620235967e-04, -9.693189427033699e-04, -1.725442934692025e-03, -1.732075723256216e-05, 2.441163606168298e-04, -1.724756448079270e-03, 4.904511943464306e-04, -7.521352565716084e-03, -1.004919694986394e-04, -1.985743001801228e-01, 5.972437269462961e-01, -1.991485417181242e-01, -4.167750123796576e-04, -8.090745796669799e-03, 7.741219308141721e-06, -2.811596778922621e-03, -1.134067915631453e-03, -1.717065905688127e-03, -3.945223811773435e-04, -4.592714525010132e-04, -1.594107676972680e-03, -1.568762859020788e-02, -7.655546781403515e-03, 1.616388768057758e-02, -9.198475375968596e-03, -5.228364384549117e-03, -2.324032792415502e-03, -7.302722261827847e-03, 2.822776635897114e-03, -5.516028267952844e-03, 1.454015343518510e-04, -1.467826249702701e-04, 8.929023381685540e-03, 1.591839086748880e-03, 3.635150415858306e-02, 5.573951393232023e-03, -2.090080963725512e-02, -1.924643726829652e-02, 6.645581883165793e-03, -3.918446446085644e-03, -2.941409180436321e-04, 1.205752538815127e-02, 5.532879751028764e-03, -7.869690805633306e-04, 2.549022366419519e-03, 5.891209968530791e-03, -4.600315159228235e-03, -2.313952100943919e-03, 7.588508399435905e-03, -1.296513252005192e-02, 1.525834633005370e-02, 1.631875137589078e-02, 8.973513744754169e-05, 3.278330202616116e-04, -9.779534047534134e-04, 1.221493998369634e-03, 7.294823867904890e-04, 5.640552177977216e-04, -6.037715592959158e-04, -7.155128612022828e-04, 6.396254473081331e-04, -1.900531728475317e-03, -8.751820044734212e-06, -1.600146129197874e-03, 5.963489921030400e-04, 3.106623796655930e-04, 1.412767385406773e-03, 3.625794700361803e-04, -6.307499604576117e-05, 8.158513556233214e-04, -9.435563540711524e-04, 7.394435167396343e-04, 5.788594173394652e-04, -2.176863080413200e-04, -1.178041946076603e-03, -1.905785973876941e-03, -6.146067379594580e-03, 1.257665239499912e-03, -1.846252236947820e-01, 5.881885558146267e-01, -2.005075579787388e-01, -2.289540939625320e-02, -7.728595525877748e-03, -6.408380044241126e-04, -5.574730257363119e-03, 1.368377887094464e-03, -1.362403525964883e-01, 4.203539405854665e-01, -1.376309041358541e-01, 7.927548330341569e-04, -4.384202804301316e-03, -1.709813709225018e-03, -1.973163989891247e-03, 1.172049423214363e-03, 1.919410312879963e-04, -3.745329655324365e-04, -3.989228446201443e-05, 1.354866822474912e-04, -8.363396087415978e-04, -1.891696196733436e-03, -2.104121664050531e-04, 8.733304722959609e-04, -9.028703227201802e-05, 4.102562071387589e-04, -1.762789638329752e-04, -7.298502758302870e-04, -5.291660379599583e-04, -4.912363715362130e-04, -6.461691936818310e-04, 7.060148833370427e-04, 1.346474889986398e-03, -7.116617672737618e-04, -4.883764275934055e-04, 7.071752440135739e-04, -7.692977569465908e-05, 2.712316220477503e-04, 3.233309633151900e-04, 1.438443823953110e-03, -1.059601453626433e-03, -7.339550363198612e-04, 8.930780837661272e-04, 6.162943205150872e-04, -1.294994723712162e-03, 7.298431968745137e-04, 1.508820167608550e-03, 1.523059703883000e-03, 7.474875881941269e-03, -1.049185268426369e-03, 2.120460132600882e-01, -6.396169958630962e-01, 2.132467414016447e-01, -1.413124914119697e-03, 7.561950387435764e-03, 1.157566489884644e-03, 7.017315923571403e-04, 7.849573995010162e-04, 7.359750125488732e-04, -3.367905757893708e-04, -1.817031677261977e-03, 1.335156442339239e-04, -9.367250957359649e-04, -1.669625729392768e-03, -4.227448411531152e-04, -3.052203703145366e-04, -1.043956292679833e-03, -2.918161066131680e-04, -2.118859729648476e-01, 6.323135709864747e-01, -2.108700089670788e-01, -3.630892524502000e-04, -7.282592503280884e-03, -1.721865402071791e-03, -1.639763803702128e-03, -9.194312745683670e-04, -2.665346625136815e-04, -3.149901068493578e-04, 8.374097779893163e-04, 6.587899549997006e-04, -1.861952947965133e-04, 2.426693953820317e-04, -1.966633747559766e-04, -3.416325747181439e-04, 5.714271035174355e-04, -1.004305427857754e-04, 1.809107182580013e-05, -1.287946971628885e-04, -3.100820235338318e-04, 2.179436256393108e-04, -5.810240261192121e-05, 6.804238337094855e-04, -4.565770897181996e-05, 9.713572910414674e-05, 2.505531269043026e-04, -4.022399107440849e-05, 3.184195021893900e-05, 1.194847959339187e-03, 1.716980514409185e-03, -1.524242800258861e-04, 1.428299115959252e-03, -9.490764413232124e-04, -3.407948750815434e-04, 9.844976058086348e-04, 1.178002673838288e-03, -4.947645932504606e-04, 1.019181799462759e-03, -8.498769924054603e-04, 6.531775856557540e-03, 2.845960259900397e-03, 2.046060824757393e-01, -6.184592513185315e-01, 2.052517278182078e-01, 9.420341381553312e-05, 7.011968791569160e-03, 1.402020870890799e-03, 2.855528395351592e-03, -9.449491592629735e-04, 7.357988294115545e-04, -1.602128607119915e-03, 1.434094755277669e-03, -5.666523335112608e-04, -8.654607197323709e-04, -1.578348325430839e-04, 1.283629815485372e-03, 2.852161054149409e-04, 5.518579196977798e-04, 2.857509705271505e-04, -4.913278741942027e-04, 1.033252993973679e-02, -1.582748746884082e-03, -5.878707398400568e-03, -1.161007038620093e-02, -1.820766494582588e-02, -4.135679462521438e-04, 7.029378872904266e-03, 1.189259322811567e-02, 8.865455764503897e-03, -4.850912246174177e-04, -1.337107634302752e-03, -8.355004763870051e-03, -7.339526006706313e-03, 6.938249100293261e-03, 1.569507600259194e-02, 1.352674839550099e-02, 1.473979781709554e-03, -1.416696312758943e-02, -9.369700623377690e-03, 4.548164194924955e-03, 1.379929137764035e-02, -7.181161776305900e-03, -1.861766231951567e-02, -8.216453879620384e-03, 8.735729395804859e-03, 7.046468172654663e-03, -4.110332386712828e-04, -1.340184324878251e-05, 1.810670942432183e-02, 7.941863674542100e-03, 4.631923825815392e-03, -1.173256204098135e-04, -6.286624104418205e-04, 8.976778859458485e-04, 1.415686477957975e-03, 6.833280511208166e-04, 2.023817832782682e-03, -1.784161480312963e-04, 3.733878271612483e-04, 9.540676561281649e-04, 1.912397842398795e-03, 7.764446104954814e-05, 6.499986198365895e-03, -1.544414239147099e-03, 1.413354192071221e-01, -4.302061392434766e-01, 1.421884770313671e-01, 3.225049807935607e-04, 6.621603964540591e-03, 3.406690757100338e-03, 4.272460928819285e-04, 5.293128200136866e-04, -3.429258132673108e-04, 6.794866675584011e-04, -1.256328461259094e-03, 1.181525832529086e-03, 2.033114111835232e-03, 1.280202245736207e-03, -2.126436268768683e-05, 9.146567163296734e-04, 2.052060981702923e-03, -1.143663074249387e-04, -1.704706822545422e-03, -3.369739894918286e-03, 3.871708588033454e-03, 9.379879567434992e-04, 7.813709751397734e-03, 8.038460558584020e-03, 8.753804081416041e-03, 6.241023814381453e-03, -5.696232075750001e-03, 3.676044399248144e-03, -7.207726902930094e-03, -2.134096773315121e-02, -1.378701216651811e-02, 2.879548232547366e-02, 1.981817795439702e-02, -5.820467940472487e-03, -3.876290152932329e-03, -2.352023874204130e-03, -9.273214391848464e-03, 1.105049845988865e-03, -1.828227455147122e-02, -4.205474296420244e-03, 3.653880338179398e-04, 5.511698564712350e-03, -8.608138064106844e-03, 3.132228428212637e-04, -1.178910610569719e-03, -2.691986597609076e-02, 5.795197484407657e-03, -1.909092698946819e-03, -6.362073366641480e-03, 1.461720440385010e-03, 3.783759020863821e-03, 6.709569754713596e-03, 1.086910223783803e-02, 6.882843426743077e-03, 5.986595031184421e-03, -5.525653292311737e-03, -1.518724635769004e-03, -8.069936367030125e-03, -6.435531808213756e-04, -1.720976691153141e-03, 1.062204927511355e-04, 1.536450288900096e-03, 1.054690273710682e-02, -3.516825106425279e-03, -1.665125795441684e-02, -1.136336253370159e-02, 1.458251624592730e-02, 1.295066857427773e-02, -7.405553402440230e-03, 2.975836605979203e-02, -3.416847035430732e-03, -2.883107082557634e-02, -2.730066442760833e-02, -2.615512503467679e-03, -1.585167710165159e-03, 8.110321210998937e-03, -2.463685094898996e-03, 2.470880630505847e-03, -4.182935380186519e-03, -7.495726602830129e-03, -8.921137644657143e-03, 8.188446224585551e-04, -2.139814588293731e-01, 6.368886492086376e-01, -2.083062123646365e-01, -6.955474777956520e-04, -7.744161939015611e-03, 3.944579271963477e-04, -2.105032499894958e-03, 1.045885802681324e-03, -2.706548034595130e-04, -1.347690202044176e-03, -9.362605243153012e-04, 4.141362754659712e-04, 1.322056987892183e-03, -5.770620065164828e-04, 1.131361252738295e-03, 8.215618036104647e-04, -5.212376233638505e-04, 3.616744653908494e-04, -1.950890152234336e-04, 1.334995023557478e-04, 6.982448365312121e-04, 1.178161985947194e-03, 3.182713834558349e-04, -3.373466052446516e-04, -6.174064474555755e-05, -1.233636560374716e-03, 5.779564387926015e-04, -5.975641114332172e-04, 1.153494885540592e-03, 1.245140852201173e-02, -1.825410310522547e-03, -8.547134122212242e-03, 6.756132063974957e-03, 1.567887323307659e-03, -1.226228745670554e-04, -1.169643763081018e-04, -1.159713652988344e-03, -5.523972885774124e-03, 2.176489074029391e-03, 2.662417399601825e-03, -5.796396837864635e-04, 3.472234898899790e-03, -1.244395292859288e-02, 1.304871477305598e-03, 1.830367265498466e-02, 4.838817936583372e-04, -1.028698828958755e-02, -1.138858085992475e-02, -4.862903048205548e-03, 3.320674709685174e-02, 1.516410485819169e-02, -6.114234036133497e-03, -8.922945913166745e-04, -4.553942790465548e-03, 1.038387500373919e-02, -3.725417525459404e-04, -1.584846496882981e-02, -1.073376091536490e-02, 7.885357662911411e-03, 4.261361970394560e-03, 1.120167471572489e-04, 8.501599938348930e-04, 1.640704875456846e-04, 1.460775037120362e-03, -4.729712087576206e-04, 4.520215013752574e-03, -1.458228787629140e-03, 1.064849405314778e-01, -3.180274432829032e-01, 1.010320360177337e-01, -6.681813736745748e-04, 5.039020667648949e-03, 8.782977332132542e-04, -1.582465377790786e-04, -2.480045424014591e-04, 5.073129035172784e-04, 2.825276960782949e-04, -5.016606524606415e-04, 1.141120908866179e-03, 6.120963092410867e-04, 3.719941789940389e-04, 4.560045518840887e-04, 6.348876299204420e-04, -7.547255362942523e-04, -3.982895078585661e-04, 8.447871909578030e-05, 8.557940308630791e-04, 4.843790122380318e-04, -4.211190770511939e-04, 1.492665277429930e-03, 3.274578376961667e-04, -1.135484000471029e-03, 1.173473985586520e-04, -3.438762376003063e-04, -5.162369517532857e-04, 2.700314611683501e-05, -1.084479339632070e-04, 6.959784378975992e-05, 2.222899462102687e-04, 7.911063231125573e-04, -1.760128810891601e-03, -1.381002109387806e-04, -3.951358655137245e-04, -1.496712043017055e-03, -1.469716167035907e-03, -2.528645886432067e-03, -1.716539659878928e-03, -2.951920410249026e-04, -1.866660146836168e-03, -5.953002380367454e-03, -1.581736652282856e-04, -1.830108514598418e-01, 5.491118781464548e-01, -1.815182145679226e-01, 2.750053418321319e-04, -6.740429107138318e-03, -1.246372055965038e-03, -2.885645395519562e-03, 7.453518434631589e-05, 1.525478852023182e-04, -6.409249765452154e-04, 5.895118917339620e-04, -1.633808076345638e-03, -1.062763169757799e-04, -1.349734551790701e-03, -1.065137659329400e-03, -6.091562804595506e-04, -1.153633879981871e-03, -1.593345846875010e-03, -1.790641698399679e-03, -5.037585297439279e-03, -2.604727783214061e-03, -1.769054288769868e-01, 5.380370478580637e-01, -1.777883478509697e-01, -6.853094749143336e-04, -6.674299388287991e-03, -1.541235013400293e-04, -1.133724864499650e-03, -8.250039848778137e-04, -9.818185578277482e-04, 7.074348611755422e-04, -1.921890771021504e-04, 3.019886308672291e-04, 1.168702900721673e-05, -7.194625611058955e-04, 6.674516307787905e-04, 9.948731780385048e-04, -1.764102962345309e-03, 1.192846442429838e-03, -8.381154967837844e-04, 2.374084566831046e-03, 9.658111968827930e-04, -4.244822549428388e-04, 2.932694183550845e-04, 5.822886209558083e-05, -1.350659226120655e-03, -2.011805210914866e-04, -4.648923050335075e-04, -4.045328879118072e-04, -5.619402627822368e-04, -1.482953940735060e-03, 9.708544346728656e-04, 1.332836561508970e-03, -2.436104741614877e-04, 6.560874300091992e-04, 1.815410644711236e-03, -1.007697731541112e-03, -1.412027555140891e-03, 6.500441899046277e-04, 2.323945148458794e-04, 1.010216157306426e-03, 2.375153676742893e-04, -2.109232734667971e-04, 9.911153365454731e-03, 3.033688190834930e-04, 2.197123716417126e-01, -6.539746565883310e-01, 2.172243234002909e-01, 5.827941110599238e-03, 9.584903141886857e-03, 4.260806377586678e-03, 3.645229041606204e-03, 2.697802255003974e-03, -6.134065507646872e-01, 2.324895114011212e-01, 6.196761033929029e-03, 1.072880963629633e-02, 1.963411728041746e-03, 2.877421488232373e-03, 1.591424449903842e-03, 5.324946778989056e-04, 2.382819892904654e-03, 3.067840828444496e-05, 2.356149734974071e-03, 2.895894359126145e-03, 1.201763734040750e-03, -2.653250813036878e-03, -5.168419545790539e-04, 3.250860797151295e-03, -2.540529557694329e-05, -2.160552849346083e-03, -1.254881632648256e-03, 8.259505293931080e-04, -1.714925985192704e-03, -1.669692873714589e-03, 8.590377923319817e-05, -1.900603781270611e-03, 2.852196292676296e-03, 1.547628722432932e-03, 4.025420775254016e-04, -1.779699829505146e-03, -6.692794330933704e-04, -1.290665299513319e-03, 6.551655635169016e-04, 4.365499101798426e-03, -7.485392129069330e-03, 2.394364574666206e-02, -4.241600065612753e-02, -1.363554904282819e-02, 1.383920616446533e-02, 1.600890197353426e-02, 1.010697151820537e-03, 8.338929721304796e-04, 9.087915333861924e-04, -2.602879212386267e-03, -2.270843780461978e-03, 2.664824057091839e-03, 4.916162618467487e-03, 2.426056185370045e-03, 5.598692897998938e-03, -5.773459122175598e-03, -1.225605542132731e-03, -7.528469705064276e-03, 1.710254670178232e-03, 3.649315242563260e-03, 8.369732259089440e-03, 8.071806778529084e-03, -3.434856626767854e-03, -1.191075315043317e-02, -3.815844049364431e-03, 3.339268187374930e-03, 8.723342411982259e-03, -1.113277874715978e-02, -1.407211796944454e-02, -8.376866942629898e-03, 1.188934466762065e-01, -3.498332865329343e-01, 1.074793654408413e-01, 7.221872802390850e-03, 6.931840048072394e-03, 1.847541342846878e-03, 1.715798563273908e-03, -2.115112935522167e-03, 1.084513041813532e-03, -7.526572732207494e-04, 7.169501358316373e-05, 3.949769338523673e-03, -3.804549225754696e-04, 4.509586187112288e-04, 2.599796778093223e-03, -2.039711797673191e-04, -1.901046358015361e-03, 8.176325453906196e-04, 1.134927789625255e-03, -4.138935223436895e-04, 1.359854437645705e-03, -2.155073832791991e-03, -1.203071875046927e-03, -1.583606874655692e-03, -1.531571567453363e-03, 2.819675067760680e-03, -1.333372230469917e-03, 1.673515125439289e-03, 1.386956409219856e-03, 9.865144398755370e-04, 1.677688361122375e-03, 9.281732445020417e-07, -5.040714059979085e-04, 9.591370731338912e-04, 6.626694183987105e-04, 1.051561223719572e-04, 1.848257233511424e-03, 1.484083306791414e-03, 7.007104667083325e-03, 2.963719375722466e-04, 2.044855125997198e-01, -6.154975692299843e-01, 2.039887930779257e-01, 9.954526556672232e-04, 7.868108445752904e-03, -4.718512090607728e-04, 2.045926265220052e-03, 3.948762975286340e-04, -9.748925381388857e-04, -8.154987844291599e-04, 1.118614821388988e-03, -4.227817567045477e-04, 2.628079519348745e-03, -2.204783596063333e-03, 5.915766457255920e-04, 8.198006523790321e-04, -8.361962237553018e-05, -1.612376677235944e-03, 5.969407889992163e-04, 1.489791848131178e-03, -1.196733266301573e-04, -7.917527232609939e-04, 5.087507886318168e-05, 6.343220218950141e-04, -1.017892761208779e-03, -1.430289833662259e-03, -7.203705525814017e-04, -2.226004440425081e-03, 1.264534543682914e-04, -5.060550391179737e-04, -9.116706176544337e-04, -2.233620805886148e-03, -3.475132472235041e-04, -7.468834089400109e-03, 1.768244306380288e-03, -1.776635413434409e-01, 5.377617810012674e-01, -1.786335633092467e-01, -7.076134115380843e-04, -8.053407235625193e-03, -3.791169183394339e-03, -6.484133175363109e-04, -6.645748341567949e-04, 3.996403092414109e-04, -7.335431038101118e-04, 1.243402818554333e-03, -1.555898520241265e-03, -2.118133293227001e-03, -1.281643637670869e-03, 5.548890917379850e-05, -9.542042126200506e-04, -2.154474408865240e-03, -3.571712009126807e-05, 5.792846686437734e-04, -5.755378364577044e-04, 4.359096235331584e-04, -9.283584195415460e-05, -1.619748547150106e-03, 3.935870900902210e-04, 3.336432153637783e-05, -1.156130437812339e-05, 1.018519820938987e-03, -6.265503005916335e-04, 9.310500526255475e-04, -9.161782848086175e-04, 1.447045006158836e-04, -1.381077698654417e-03, 1.303015770717537e-05, -8.025544326681669e-04, -3.134407444841807e-04, -2.926969210298598e-04, 3.896132789495131e-04, -1.101314879271190e-03, -1.634652147073988e-03, -1.966217356108644e-03, -6.157345896865335e-03, -1.769913803633742e-05, -2.151854763592420e-01, 6.437484128258902e-01, -2.122843778469697e-01, -6.366780723067859e-03, -7.805272684703725e-03, -6.217908632189128e-03, -2.013732590878610e-03, -6.071601027764976e-03, -1.083482449024144e-03, 1.681844126080031e-03, 1.069619497692549e-02, 8.337974166687733e-03, -4.608911522293147e-03, 5.686829078230444e-03, 5.171997803220627e-03, -1.746395484134265e-03, -4.164572335727478e-03, -3.524030077842538e-04, 2.253943830535681e-03, 8.569116614266676e-03, -2.399781010095073e-03, 2.678106536895602e-04, 8.686992827682589e-04, -9.940903532305622e-03, -8.161577599497215e-03, -8.024939376369116e-03, 5.585101907747135e-03, 1.367093286969676e-02, 3.850309013981596e-03, -7.337583680502152e-03, 9.185798206672166e-03, 1.792671795557507e-02, -2.008605327396823e-03, -1.946215746733264e-02, -2.165453913638881e-02, 2.060459374643092e-02, -7.486994823535535e-03, -1.587094640833492e-02, -3.796644694061150e-02, 3.721266783658290e-02, -2.260735732675345e-02, 2.308578510525099e-02, -3.637392696186324e-02, 2.225247773305056e-02, -2.289287232562252e-02, 2.795642710194904e-02, -3.260563731721144e-02, 2.081575489983701e-02, -2.620875169221695e-02, 1.482766639620922e-02, -3.308913020174291e-02, 2.240876520097666e-02, -7.059269086391911e-03, 1.785584437991512e-02, -2.352150760522851e-02, 4.533474032736241e-02, -4.359097209096376e-02, 9.327179255010814e-03, -7.118006927764601e-03, 1.589322726267077e-02, -3.010732319861029e-02, 3.466730158542254e-02, -7.161669850664038e-03, 1.921633052068467e-02, -2.707879791806480e-02, 2.851050087331429e-02, -4.211425707114892e-02, 1.589564950577023e-02, 6.044793701566263e-04, 2.139116506548611e-03, 7.357070213513403e-03, 2.184411682630680e-02, -2.879185379134690e-03, -6.073372727192889e-03, 4.873325972915918e-03, -8.066081085044642e-03, 1.986064134336356e-03, -4.292848106600832e-03, 6.890509900332171e-03, 7.841603302306975e-03, -3.195021513193090e-03, -8.424163194771166e-03, -1.040197099163762e-02, -7.482978327805334e-03, -8.038434867165628e-03, 8.734385332940141e-03, 8.532927524766656e-03, 4.102779123760027e-03, -1.638583566812106e-02, -6.501650951098589e-03, -3.129471078783996e-03, -2.978059084860310e-03, 7.091120859670387e-03, 5.484365885284400e-03, 1.061678620753086e-02, -5.695552881685806e-03, -1.809935058976017e-02, 7.963838659595344e-03, 2.795081669607906e-02, 9.765437431680034e-03, 6.952661251293384e-04, -1.087633675069654e-03, -1.009699359643899e-03, -7.916268197374314e-04, -1.135043299150830e-03, -9.294192302520189e-04, -6.075879664675757e-04, 9.818700881030207e-04, 5.086850780715384e-05, 4.530051805593311e-04, 4.044922058568476e-04, 1.923320606003645e-03, 2.102441102756917e-04, 5.002314436693907e-03, 3.622006532378497e-04, 1.404281903270895e-01, -4.187952702227514e-01, 1.407265854257829e-01, -1.354956537308076e-03, 6.792042009337060e-03, -1.375730106727571e-04, -4.822719130176434e-05, 1.435439819248665e-03, 2.577307305984824e-04, 1.302449774340247e-03, -6.313537811373138e-04, -3.913511252361609e-04, 7.208980422754737e-04, -2.701710995498810e-04, 7.268836125768900e-04, 1.301949077324198e-04, -7.083415082528082e-04, 1.188262466641807e-03, 8.939648311886469e-04, 9.549361565321224e-04, 1.303540988180478e-03, 1.083335134162066e-03, 6.118546136072054e-04, -1.036488979112619e-03, -5.397949830775202e-05, -3.143201132170562e-04, -3.886255240255815e-04, -2.113381440682210e-03, -3.050080125414157e-04, -5.944742604972101e-03, -4.892903109537683e-04, -1.759432082932917e-01, 5.231553853176133e-01, -1.761868709852475e-01, 1.306901680925260e-03, -7.824758760096015e-03, -1.174712132600379e-04, -7.156668713422468e-06, -1.590500451271343e-03, -3.565452515669903e-04, -1.436076721410098e-03, 6.781972692767043e-04, 4.104578635433407e-04, -7.570695003580832e-04, 4.195313801590563e-04, -7.726329560240846e-04, -1.192928122241199e-04, -1.403495728122371e-03, -1.732679749510839e-04, -1.285111072948964e-03, -1.166587611653877e-03, -5.004179580709896e-04, -9.275988310722942e-04, -1.411309996980913e-03, -1.754124147019996e-03, -4.128314236776932e-03, -2.435659012764424e-03, -1.401098642161368e-01, 4.295683724653398e-01, -1.412790035645870e-01, -6.896222776439969e-04, -5.617104406060747e-03, 1.187955054158322e-04, -9.879379920408860e-04, -8.421660291935232e-04, -9.445023918981451e-04, 6.286822706723828e-04, -1.841157108190864e-04, 3.494976488774942e-04, -1.619044886522313e-04, -9.216344223207190e-04, 8.061909040436588e-04, 7.221624965596242e-04, -1.560973321764216e-03, 1.171420272351810e-03, -8.971549363556262e-04, 2.138061642377276e-03, 7.474442363392808e-04, -3.079137155726424e-03, -1.511341451479783e-03, 2.814333249625924e-03, 4.125009556751670e-03, 7.924769053207430e-03, -5.990772197522900e-04, -2.733021379925827e-03, -3.943791007948055e-04, -9.446677284394731e-04, 1.365183480451273e-03, 3.921176522800486e-03, 6.932810882716988e-03, -9.393342261075629e-04, 1.065905746962712e-03, 5.838981269942414e-03, -1.728970193943720e-03, 4.746069413974601e-03, 1.512026641589067e-02, -2.216205799448352e-02, -5.459598022130808e-02, 9.678843608702426e-03, 9.152634033213848e-03, -9.490775640329396e-04, 3.175486638018676e-03, -5.986218148376724e-03, -1.799483041269170e-04, 4.399006554673319e-03, 9.716009260238872e-03, 2.184740665706316e-03, -7.372227780482017e-03, -3.458870167006224e-03, -9.228993388255553e-04, -6.831203048106781e-03, 1.176887906055659e-03, -1.767583634125006e-01, 5.410295005447526e-01, -1.785971297895632e-01, 5.681859300407773e-04, -5.410885058350492e-03, -2.061931392000840e-03, -2.418612929540152e-03, 1.305618717958373e-03, 3.494141269330845e-05, -4.027786489901206e-04, -8.721189091814120e-05, 1.595744671458500e-04, -8.827583769714936e-04, -1.898463436899041e-03, -1.833088626690065e-04, 1.065403526027117e-03, -4.326071891886805e-05, 3.992095469618645e-04, -2.492498162491430e-04, -6.933371198699787e-04, -6.455651398375309e-04, -3.311011484321754e-04, -7.061866439229174e-04, 7.787712609079759e-04, 1.498260578075796e-03, -7.562332780513164e-04, -6.804691244370244e-04, 8.660628894524660e-04, -6.885712722668916e-04, -2.086135968390814e-03, -8.968914743669866e-04, 1.653295447117978e-03, 1.564075542872204e-03, -1.088323838355684e-03, -1.044365968111380e-03, 1.919461311833650e-04, 3.229765446443227e-04, 3.680501646819275e-04, -7.602207135223990e-04, -1.425014467781795e-03, 1.596549111095358e-03, -8.689025844979967e-04, -6.605593466482092e-04, 1.371691881229364e-03, 1.710732311587376e-03, 1.222826422841706e-03, 1.638923998693222e-03, 7.401755514230693e-04, 7.332232082445346e-03, -1.331290804138272e-03, 1.811499594567714e-01, -5.442369609430205e-01, 1.868267744616512e-01, 1.875916914580607e-03, 7.022795113539729e-03, 3.442811007446725e-04, 1.825387758627590e-03, 2.850026992719217e-03, 4.962664353970110e-04, -1.200346877956198e-03, 1.397298891900383e-03, 1.420758426055164e-03, 4.324980586460644e-03, -2.678394109209867e-04, 1.389989095993099e-01, -4.170047550547304e-01, 1.378659180573931e-01, 4.559570381748336e-04, 8.023202255144116e-03, -2.427410757788993e-05, 1.083949662504807e-04, 7.456387712706363e-04, 2.344369016932376e-04, 1.052917110571123e-03, 1.713429648594446e-03, 5.695655497021662e-04, 5.592249900824436e-04, -2.504437193819306e-04, -3.689245017153440e-04, 2.449733193690471e-04, 1.145672167482652e-03, 1.109703825583593e-03, -4.363737724276168e-04, 1.227723623160473e-03, -1.840020944232052e-03, 6.438860335761748e-04, 5.756151606856301e-04, 5.524765780736909e-04, -7.033939669362523e-04, 1.402637609666936e-04, -1.719176083181980e-02, -2.568343137839893e-03, 1.118314567323294e-02, 1.347721100472413e-03, -5.551380562662640e-03, -1.285594848031126e-02, 5.983357728632640e-03, 1.446708236709328e-02, 1.188905862915775e-02, -5.662183837628118e-03, -3.335864830899598e-03, -1.078273152045225e-03, 6.818165400191457e-03, -2.551771212597535e-03, -1.358013742209587e-03, 4.017045394019154e-03, 2.294953008769476e-03, -4.127497445548446e-04, 1.794330369481553e-04, 2.767447881980232e-03, 2.380593815092429e-03, -2.933452749717918e-03, 3.570043009599026e-03, -4.520924919473118e-03, -1.062180837143737e-02, 2.406455298954025e-02, 9.356112976297229e-03, -1.830629860907328e-02, -4.530635606856777e-04, -5.186284910012574e-03, -3.370594925195824e-03, 1.746684111374368e-01, -5.231217740798706e-01, 1.686116294086445e-01, 3.855148893420927e-03, 8.838683913619192e-03, 1.539989938568774e-03, 2.612597520425317e-03, -2.041557806903788e-03, 1.051639906639481e-03, -1.149068802772475e-03, -1.014468570251733e-04, 3.951183963955236e-03, -5.996381502580230e-04, 7.093880456741041e-04, 1.464276451525546e-03, -7.936462601776171e-04, -1.275492625259429e-03, 1.089985476691305e-03, 4.696502544684127e-04, -7.856927599540438e-04, 1.580393068777298e-03, -1.486304332710932e-03, -4.428834706572799e-04, -1.375502450084649e-03, -9.339942994817813e-04, 2.767328935826679e-03, -5.669133034051287e-04, 1.451796262419697e-03, 7.768051304484167e-04, 4.084579131702272e-04, 2.300512476210597e-03, 2.614794909245629e-04, 1.487134729409802e-03, 6.134021339969304e-04, 1.645953030931185e-03, -1.568255419947316e-04, 6.518541234151821e-03, -1.228830986737474e-04, 1.756809504790379e-01, -5.270139125317463e-01, 1.716290571141346e-01, -3.790040473963496e-04, 7.826694026361193e-03, 1.385969329399965e-03, 6.811048937961236e-06, -2.500004168371821e-04, 9.011865583944429e-04, 2.527642258680288e-04, -5.522811255088657e-04, 1.260551084977396e-03, 6.199046030158400e-04, 5.035972014031369e-04, 8.505239961814563e-04, 1.454715301650904e-03, -3.944700841924928e-04, -6.131049825251398e-05, 1.546165051687046e-04, 7.273291765896007e-04, 4.784033294016805e-04, 2.165925827577601e-04, 2.114267394247897e-03, -5.200960898702592e-05, 1.023836383592338e-03, -1.404034792957242e-03, 2.047800226879615e-03, -7.084112797893867e-04, 2.141034954374899e-03, 1.090118532552465e-03, 1.490443963686105e-03, 1.781145128467426e-03, -1.318573918163557e-03, 5.508939270046328e-04, -9.823718177747814e-04, 1.373881969318214e-03, 5.974313843582504e-04, 1.462330511593505e-03, 9.156724288426780e-04, 1.371367070156392e-03, 1.352696863752179e-03, -1.590156644825697e-05, -1.645034981786954e-03, -3.050749785103941e-04, -2.077983168856135e-03, -9.915664535518525e-04, -4.547100793545302e-04, -1.470531995365185e-03, -5.304386046087394e-04, -8.542529368303733e-04, 3.576832984109740e-03, -2.021667245474807e-01, 6.808748208127469e-01, -2.347024000854592e-01, -2.664758742658840e-02, 3.501890095166919e-03, 4.600067943666819e-03, -1.981277642621829e-03, -1.765797895639645e-03, 7.196401589450878e-03, 4.639143192944295e-03, -4.046248953894631e-03, -1.836833005375284e-02, -8.364428686579160e-03, 1.773046961273132e-02, 6.587114414982330e-03, -7.060947464966952e-03, -3.857063732810809e-02, 1.607555406131605e-02, 7.025782691693436e-04, -5.263762122426133e-03, -5.372545863388688e-03, -3.803537117868764e-03, -4.135749989674031e-03, 9.187508134752640e-03, 7.294676325327533e-03, -2.556047157559366e-04, -4.888838055492718e-03, 6.304425118680965e-04, 1.331910279404652e-02, 1.209445558203271e-02, 7.435981452053719e-03, 5.472637275507938e-03, -5.633637745748935e-03, -1.158968114908997e-02, -6.342499407956492e-03, 7.949147957501006e-04, -2.877733007426371e-04, -1.546307676748521e-03, 3.388713023209627e-04, 3.440741035015504e-05, 1.766288631922705e-04, -1.243002329894142e-03, -5.656591732266842e-04, -1.368626522081734e-03, 4.652369597892085e-04, 1.349697889370894e-04, -4.478252118358829e-05, 1.065264477698046e-04, -2.813700617523143e-04, -1.125393941118381e-03, -6.621489428739516e-03, -4.765012384847509e-05, -1.806048472563686e-01, 5.464996373169048e-01, -1.815519919856529e-01, 1.260940328930233e-03, -6.489999975951458e-03, -1.120709612401121e-03, -1.483833358967789e-03, -1.927758752225761e-03, -1.038745502352507e-03, -1.581723147350961e-03, -1.217385055825027e-03, -9.111742339799087e-04, -3.070340725633569e-04, -8.637410156212121e-04, -1.695995015270861e-03, 9.519104231699094e-04, -2.059615471251115e-03, 5.915891532932099e-04, -2.308458414810584e-03, -4.541217683992376e-04, -8.250768503279592e-03, 7.665943066929135e-05, -1.318702249905294e-01, 3.975961606420041e-01, -1.315438265269402e-01, -1.882253323583364e-03, -4.237868989408365e-03, -7.243469023240673e-04, -1.238922929215980e-03, -2.082461647522800e-03, -1.737151378375132e-03, -1.569594633717582e-03, -2.017003058992970e-03, 5.809363168311352e-04, -7.269408260372972e-05, 1.448872180255932e-03, -3.560587569266064e-03, 9.741545214621228e-04, 7.784238833611882e-04, -1.101314261165775e-03, -2.267714886699592e-03, 6.351231156482909e-04, -6.919454095912004e-04, 3.947449961828500e-04, -1.251500294667397e-03, -1.098707970656294e-03, -1.926457480493004e-04, -3.604272416172404e-04, 1.762722398398400e-03, -1.216885671548507e-03, -3.872024899614915e-05, -2.056412209980060e-03, -1.062375556420157e-03, -2.529451996761697e-04, -1.290198429348312e-03, 1.212425248102057e-03, 1.273471570512773e-03, 9.057492954734909e-04, 5.335875288217495e-04, -1.355009837361159e-03, -1.816560865991746e-03, 6.188190380768973e-04, 2.289119225101083e-03, 9.472609999107975e-04, -2.874440374975664e-04, 1.690840550704439e-03, 9.018450857137013e-04, -2.625142274010171e-04, -1.826515934061400e-03, 1.783757728175598e-03, -8.579428154271315e-04, -5.635210772818918e-03, 1.008646987858983e-02, -5.054602263689133e-02, 2.161125462180015e-01, -6.030510455473033e-02, -1.364444369707351e-03, 1.217285987752393e-04, -3.412810226492481e-04, 1.233184220268053e-03, -1.433479585673795e-03, 5.752580238534349e-04, -1.475483494977076e-03, -1.105730786379470e-03, -6.021354995627080e-04, -1.028884509304951e-03, 1.103165347302560e-03, 8.250420582537758e-04, 4.013288631211771e-04, 9.062667807292856e-05, -9.863850034514782e-04, -1.355692478732918e-03, 6.764156647092100e-04, 2.914182854880240e-03, 1.149935981891636e-03, 2.822287435554826e-04, 1.772550790694986e-03, 8.725950766677492e-04, 1.390970578469886e-04, -1.450441514404292e-03, 1.530274723637363e-03, -1.391130276101980e-03, -5.389365157430093e-03, 1.100941697841567e-02, -1.083585501557175e-01, 4.407417762799068e-01, -1.421064015687141e-01, 2.254629929215129e-05, 1.789788622380093e-03, 1.953900031647981e-03, 1.115683720563744e-04, 8.558983754461907e-03, -1.281838950324667e-03, 2.021150658090843e-01, -6.094328856294682e-01, 2.058713819752585e-01, -1.394738519761223e-03, 7.108651017671976e-03, 9.407484937316793e-04, 7.948349792417171e-04, 1.234751611779436e-05, -9.952906838432394e-04, 2.648181121854614e-04, 2.183392103620166e-04, -2.861455286599525e-05, 1.754402574125813e-03, -5.713371994681742e-04, 5.272484154583218e-04, -5.571147068215124e-04, 5.907557327764147e-04, -3.368444652445004e-05, 8.392390038469453e-04, 1.206928090838946e-03, -1.028937284411941e-03, -1.626787674121808e-03, 1.055295463466435e-03, 9.980616507825274e-05, -9.926766577495725e-04, -5.513372333306573e-03, -5.352812748450060e-03, -4.086894682372874e-03, 4.397737465299263e-03, 3.777809379186700e-03, 5.111672523704960e-03, -6.188697375865720e-04, 8.045009016520537e-03, -6.112091652117319e-03, 5.627379017752158e-03, 5.547406872291705e-02, 1.264122755536494e-02, -3.144434718763928e-02, 1.084490090572601e-02, -1.479113188301828e-03, 6.209666469100936e-04, -2.439938159427724e-03, 1.355216182498267e-03, 1.953349206692481e-03, -2.502152241771108e-03, -2.335559706823766e-03, -1.789798609061545e-03, 1.031295269831812e-03, -7.077239444736623e-04, -3.476842843817959e-03, -1.552994629607446e-03, -7.726545751601055e-05, -4.583178108818509e-03, 2.577173731205311e-03, 3.011960218298967e-03, -1.125925355987355e-03, -1.712037681430131e-03, 8.142912122656577e-04, -2.194682584761586e-03, 5.888677951361208e-04, -2.686102250284426e-03, -6.788399270176554e-04, -9.237937550720226e-03, 1.333665986314802e-04, -1.736593278166904e-01, 5.206232243168230e-01, -1.731486220055584e-01, -2.323725222756786e-03, -5.381743671590348e-03, -1.004352144992038e-03, -1.296405789414975e-03, -2.158545244048495e-03, -1.715609445999635e-03, -1.605466938203246e-03, -2.063749616899838e-03, 7.755121768928049e-04, -1.237283233907608e-04, 1.808665708325843e-03, -3.816638191009911e-03, 1.316736412138619e-03, 1.042783509523145e-03, -1.264635045084205e-03, -2.534164255644998e-03, 6.241377719708763e-04, -8.512717008426635e-04, 7.606906209291740e-04, -1.465193026494636e-03, 4.879500890616137e-03, -4.224793039205334e-03, -3.611919174510936e-03, -1.334424691544010e-02, -3.136891212701928e-03, 1.056854049949140e-02, 5.826517708444036e-03, -1.660720852680216e-04, -1.479588566878069e-03, -3.423156239960547e-03, 6.368405691106158e-03, 3.994614895516176e-03, 2.319188432798166e-04, 2.586700645532067e-03, 2.186588201945348e-03, -3.130631634073127e-03, 4.732878292809845e-03, 6.142496742579045e-03, 4.084470096289640e-03, -1.145907373503461e-02, -2.481312266154100e-03, -2.701089485354898e-02, -2.333380773491286e-02, 6.541457173202776e-03, 3.750033942810733e-02, -3.205014074150375e-03, 5.709034728991425e-03, -6.835070765568869e-03, -9.132334657169845e-03, -9.461639399368267e-03, -5.786885169063341e-03, 5.993187196107030e-04, -3.683223873139356e-04, -1.354927898279781e-03, 2.107837247979673e-04, -4.089413328906187e-05, 1.722615597672235e-04, -1.185218889835379e-03, -5.576857734265171e-04, -1.352895051877487e-03, 2.772072840118551e-04, 9.398188108593321e-05, -4.690328184758741e-05, 1.149188581037011e-04, -1.258575874123462e-04, -8.822932433727529e-04, -5.514209671553235e-03, 9.684470623487816e-05, -1.415425114443026e-01, 4.307235358566962e-01, -1.421281299403207e-01, 1.105298616893650e-03, -5.481673131580037e-03, -8.348711353556309e-04, -1.102595695133670e-03, -1.729890332329889e-03, -1.058515075345192e-03, -1.443699810033344e-03, -9.800110108100649e-04, -8.675040344196328e-04, -3.555020826428119e-04, -7.049804704547439e-04, 3.673936179763409e-04, -1.328134010444642e-03, -9.402804772348889e-04, -9.603002190979034e-04, -2.530470591200091e-03, -1.291756230702950e-04, 2.182012085451866e-04, -1.779403863609586e-03, -1.560624475487743e-03, -8.768684366624079e-03, -1.656360190933302e-03, -2.036721272584562e-01, 6.152198598836940e-01, -2.048611687308630e-01, -6.862236274566125e-04, -7.718511916134370e-03, -1.599348049616292e-03, -4.678765322659665e-04, -2.525030224936334e-03, -1.596708574656799e-03, -2.308411642514436e-04, -2.660899838481072e-04, 4.070136843167565e-04, 1.057665676547986e-03, -2.629761126434020e-04, -1.077033447926740e-03, 4.299526892069157e-04, 8.601798397112133e-04, 3.179075487970433e-04, 6.909444884017273e-04, -4.922242106939059e-04, -1.165270055126633e-03, -2.388576717872874e-03, -8.231246111123082e-03, 1.306942607656234e-03, -2.141010964717318e-01, 6.381940136912031e-01, -2.109995710419976e-01, -9.392449964080510e-04, -6.008346459019455e-03, -5.928274716716312e-04, -3.472178030329484e-03, -1.454521978108384e-03, 1.956440401853752e-04, -4.450296973143517e-04, -1.126925095565915e-03, -4.944433488525800e-04, 8.251973371485222e-05, -1.652716117252193e-03, -1.221759670917717e-03, 4.227139014612628e-04, 4.922399126399147e-04, -3.565265248610560e-04, -1.585902326744742e-04, 3.314341530648600e-04, -1.597169571332901e-03, -4.901617565812097e-05, -4.634257233832445e-04, 5.546793030950438e-04, 9.829402743210191e-04, 1.121850024093032e-03, 3.120876164936328e-04, -1.268080498528614e-02, -1.402969392254740e-02, 4.496212230293508e-03, -2.052287331799368e-02, -1.758183547148474e-03, 6.519633824934820e-03, 2.520729435438214e-02, 2.629645371677793e-04, 4.851704327775875e-03, 3.319762067407256e-03, -9.553437505979810e-03, -1.125935452886197e-02, -7.224681214435288e-03, -4.498638534076846e-03, -1.423557216629447e-02, -1.304886378687449e-02, 1.352163331115407e-02, 2.222769880108000e-02, 8.924500540074308e-03, -1.364406672175216e-02, 2.254453141894702e-02, 7.036787421695278e-03, -2.269159878914701e-03, 1.526041832722914e-03, 4.342229220938723e-03, -2.760925782649913e-03, -1.007650710327462e-02, -7.733926753164398e-03, 2.521389281897470e-03, -5.589858700964029e-04, 5.016990847922776e-04, 9.861805680412897e-04, -3.683526596843390e-04, 4.109076832974721e-04, -8.996993121067304e-04, -2.112348582217745e-03, 9.449490351098306e-05, -1.722620588716860e-04, 1.646513009240090e-03, -3.957355610677801e-04, 7.292223711300649e-04, -5.039396046853919e-04, 6.849591909449395e-04, 3.680311120008110e-04, 1.018242405632550e-03, -2.935891869924979e-04, 4.320661635757382e-04, -9.632400210220926e-05, 3.160780154513339e-03, 9.180788805743690e-04, 7.402590349743410e-03, -2.632515856382949e-03, 2.172646347360573e-01, -6.487213217763049e-01, 2.195520166935789e-01, 1.477355395944114e-03, 7.690370605478834e-03, 1.922060423924889e-03, 1.595502540327915e-03, 1.538785269029348e-03, -1.233285433924140e-03, 3.955256443281698e-05, -2.401871903047045e-02, 2.826205060857400e-03, 2.600415043070924e-02, 4.132683507010793e-03, 4.555684886814297e-03, -5.822948470113995e-03, -9.297032983259183e-03, -1.068129181278992e-03, 1.118608190029170e-03, -2.420201910019449e-04, -1.188712958609771e-03, -1.184494583881377e-02, -3.417030591693295e-03, -1.812341814622314e-04, 1.330534152511078e-02, 2.063240299502336e-02, 8.489496129673552e-03, -8.351443925890255e-03, -4.845413227332526e-03, 1.787323115396758e-03, 8.960857689573075e-03, -3.035389100283566e-03, -9.424335883325826e-03, 1.310412904681841e-04, 8.070868495274920e-03, -1.211453449431983e-02, 1.387883787371603e-03, 1.445504794689854e-02, -1.136333941813900e-02, -4.486643322480085e-03, 7.094944450711400e-03, 6.436586369834565e-04, -8.149027363144960e-03, 7.802426892739535e-04, 1.480191170903506e-02, -9.200840367385938e-03, -1.209448891352373e-02, 2.016126806608519e-02, 2.693893186627488e-02, 1.346364625222893e-02, 3.705118322530101e-03, 1.205452617565562e-03, -4.660222565335249e-03, -1.248328177422611e-02, -1.235157203788835e-02, -4.628541433870121e-03, -3.983296643670356e-03, -1.544738877461877e-02, -2.217511331795039e-02, -9.804605411251286e-03, 7.346913297247177e-03, -5.910566423645155e-03, 8.856222514215528e-03, -6.105422791967074e-03, 9.233617546595598e-04, 4.750145476115085e-03, -6.594032100974542e-03, 4.872054976269670e-03, 1.233839470139767e-02, -7.393728706755214e-03, 5.408192763443512e-03, 2.195045944001895e-03, 6.685961044868246e-04, 1.974132138963340e-03, 8.877104120436668e-04, -1.581258118367478e-03, -1.357098041485336e-03, 1.057198757815101e-03, 1.017633790856976e-03, -8.024747466405050e-05, -3.550343972973433e-04, -1.957491379331453e-04, 7.062338299810342e-04, 1.313381614447761e-03, -1.624612665882043e-03, 6.859179898105216e-04, 5.756006888274716e-04, -1.322005147324091e-03, -1.719690916343882e-03, -1.139183707571425e-03, -1.252220505704109e-03, -6.216545109639790e-04, -5.988596981314613e-03, 1.045117150467221e-03, -1.426716346171186e-01, 4.315978952167684e-01, -1.479920100809296e-01, -1.598269951561570e-03, -5.804674889830357e-03, -1.927542795016463e-04, -1.451971089787042e-03, -2.459193449221887e-03, -3.567047996705369e-04, 7.468058194682633e-04, 3.888053543324072e-04, 1.860739693279205e-04, -7.957306258402835e-04, -1.254232388814269e-03, 8.919316343287026e-05, 3.052757638988426e-04, -1.428414398380359e-03, -6.818692537167444e-04, -5.708326907593578e-04, -2.041912109541378e-03, 8.691933203326395e-04, 9.846733264243896e-04, -4.250062453116903e-04, 1.099340204032380e-03, 3.743965298116548e-04, 4.502378568020521e-05, 3.871467962334017e-04, 3.095316325599263e-04, 9.286667897297914e-04, -1.651886071236622e-03, 8.818743781355516e-04, 8.055106845236637e-04, 4.988025748431909e-03, -3.092473553255993e-03, 1.794719646488382e-01, -5.584491505054408e-01, 1.816616570517432e-01, 1.099783946094462e-02, 8.061146571320807e-03, 2.913647627625237e-03, -7.886527558434697e-04, -4.534805972978226e-04, -3.527083979429980e-04, 5.002442627460520e-04, 1.086413209615326e-03, -1.893209793020981e-05, -3.418578699285568e-04, 1.327676424946630e-03, 2.467422587708313e-04, 4.419480833149234e-04, 1.952714546293650e-03, -5.775147327310227e-04, -8.573366308427602e-04, -1.329425549072758e-04, -8.691856783886370e-04, -4.090580023375702e-04, 1.748670278862628e-04, -1.616266224101950e-04, 3.710102681881684e-05, -6.257181576140549e-04, 1.198548987035879e-03, -1.410582841463128e-03, -9.350243709692261e-04, -4.529144942778386e-03, 3.058792499621949e-03, -1.374597492339774e-01, 4.316339221611710e-01, -1.398608720842346e-01, -7.761272179317090e-03, -7.137744708556511e-03, -2.036464672976123e-03, -4.935276706914683e-04, -1.350455601542480e-03, -6.983204040848798e-04, -1.465978467210649e-03, -1.763162068319659e-04, -7.672257698354387e-05, 9.722381625025679e-04, 5.263313686536639e-04, 2.964932459095750e-04, -7.506790061191492e-04, 6.996463147942467e-04, -3.653690808915991e-04, -1.176530985894726e-03, -3.048078045263524e-04, -5.735790100734609e-04, -1.837865155341222e-03, -8.805970795155304e-03, 3.370573381948783e-04, -1.992381360985047e-01, 6.047954776361059e-01, -1.998589860276435e-01, 1.634612848492509e-04, -7.543269958944459e-03, -8.818407885278522e-04, -1.489415502766179e-03, -1.804129944553742e-03, 8.133801978944695e-04, -3.240437898200968e-04, 7.611554335227982e-04, 4.809688247316425e-05, -6.891599165853822e-04, 8.939506749987102e-04, -6.964029408495693e-05, 3.870169661740323e-04, 5.010852249721475e-04, -6.926261085749031e-06, 6.910065060056263e-05, -1.790455699554218e-04, -3.096373573100425e-04, -8.357553041264898e-04, 1.564845456471929e-03, -4.058589802639716e-05, 4.174514099040551e-04, 1.301706871700774e-03, 1.233857509134545e-03, 2.345762449229320e-03, 1.578593956184883e-03, 4.099839931414283e-05, 1.584956748087022e-03, 5.003434587513388e-03, 2.640918254458588e-04, 1.451780609373930e-01, -4.380577376535978e-01, 1.437254010831438e-01, -5.211834720667608e-04, 5.776285634683478e-03, 1.050677332622231e-03, 2.432615649985105e-03, 3.488490041176290e-05, -1.497509322993147e-04, 7.361136795897689e-04, -5.347456197247490e-04, -1.496472103620480e-04, 3.197101658485348e-04, 2.999112644469160e-04, 5.901356360906891e-04, 1.230385169449296e-04, -2.711851168884314e-04, 5.765667399003559e-04, 1.932171033780344e-03, -1.953598007554572e-04, -7.387447565994989e-04, -1.544143800010226e-03, -9.461614460751599e-04, -2.320131622176591e-03, -3.337330534843353e-03, -7.572193810619315e-03, 1.089661008255670e-03, -2.040576434093440e-01, 6.154843371676451e-01, -2.044928322226415e-01, 1.025848223096159e-03, -7.566071872824989e-03, -2.838206554657897e-03, -5.328574083134959e-04, -8.003549760391135e-04, -6.231404861829204e-05, -9.533904782532941e-04, 1.180596592670442e-04, 1.414886953299556e-03, -7.064872511815355e-04, -8.939132654808289e-04, -3.744931204773314e-04, 7.172627466554974e-04, 1.122797869805587e-02, 4.140026039918793e-03, -8.102234303939015e-04, -1.252664731799421e-02, -2.885580594450007e-02, -2.141364922623579e-02, -5.102890147868618e-03, 3.368602896535502e-02, 4.042693179955996e-03, 6.917034453514794e-03, 6.790856044345947e-03, -1.228268690374328e-02, 2.945302086184113e-04, -4.879838470818080e-03, -8.027167114327986e-03, -1.847189629400188e-03, 6.218932961940137e-03, 4.948549150789673e-03, -1.144730352114192e-02, -3.146491076903046e-03, -2.246166622935093e-04, -5.405232272964941e-03, 1.034225799200215e-03, 1.681879594151478e-04, -5.526773711419145e-03, -4.497019880192400e-03, -1.325738779943850e-02, -1.669038491616112e-04, -5.315991261961147e-03, -9.576870262696244e-03, 1.235017696179164e-03, -1.717807270034307e-03, -1.536999484778344e-03, -5.440163877185497e-03, -1.350664220235076e-04, -1.779102465210054e-01, 5.314738073467462e-01, -1.766621557740184e-01, -2.213357696403343e-04, -9.381279950794616e-03, 2.840184489545086e-04, -2.895807285398884e-04, -7.781024551962234e-04, -3.133011160390420e-04, -1.294806143928086e-03, -1.941779023085079e-03, -7.562563447724067e-04, -7.716661677606751e-04, 5.845456798746775e-04, 4.113572236714431e-04, -3.940508397544090e-04, -1.161306440053792e-03, -1.187320283012415e-03, 3.753645702362135e-04, -1.281563923670720e-03, 1.861317269065768e-03, -8.930081289203005e-04, -6.934582333786224e-04, -6.009595687326465e-04, 8.357695167731388e-04, -8.913535216922757e-05, 1.211524179998974e-02, 3.274231287505682e-03, -4.884016703377380e-03, 2.177331861947330e-02, -1.235249923031378e-02, -1.754817319953913e-02, 6.231885723927041e-05, 2.553585467878667e-02, 4.544092229290767e-03, 2.050594783306916e-05, 7.704254981465748e-04, -1.229609709145789e-02, -5.144977072260315e-03, 1.503509591656874e-02, -1.281021423089624e-03, -8.181793331584655e-03, 4.969769765583795e-03, 1.663014481530538e-02, 4.241498443929821e-03, -5.874437741723608e-03, 3.106125805079276e-03, 1.173276232346881e-03, 1.052348236836720e-02, 7.130886238501433e-03, 4.180839064390697e-04, -4.516137026333421e-03, 9.959513910503314e-04, 1.401671584755195e-02, -8.602609045314406e-03, -2.675435750917819e-03, 5.877591261473839e-03 };
theta1 = { -4.040709182625838e-05, -4.334363276254913e-03, 2.502234375834936e-04, -2.594232441081447e-04, 2.831766559941445e-04, 1.233129279742708e-04, 1.055991783898955e-05, 4.685964623026757e-03, 8.640352891365322e-05, 2.357225899828425e-04, 9.879714356307683e-04, -7.355608809040953e-04, 4.197587303330965e-04, 6.229818642920501e-05, 5.791874636295702e-05, -3.247984236835811e-04, -9.086580063187564e-04, 4.552776283204515e-04, -4.720335834437302e-04, -1.214108919732219e-03, -1.189839347177780e-03, -1.399143959824108e-04, -7.528389765394667e-04, 5.793808206295142e-04, 2.355899915609774e-03, -1.333562079620204e-03, 1.197035257429802e-04, -1.321922124452930e-04, -2.391425987318331e-04, -3.224550697297640e-03, -2.730099673879324e-04, -8.859492306105532e-04, 2.461859273686723e-04, 3.028800325778886e-03, -5.256750259698728e-04, 3.826426345219857e-04, -1.432020405453263e-03, -8.799769454858972e-04, -6.659885663602676e-04, -2.257226826883991e-05, -3.452396989901762e-04, -4.027076204209237e-04, -6.680398826431685e-04, 1.380320645185957e-03, 1.067347300296815e-04, 4.709454475683036e-03, -5.647188671326862e-04, 1.521367566961891e-04, 5.770105052131478e-04, 4.983935341502479e-04, -3.089642103470293e-04, 4.757109844192357e-03, 7.086806448907163e-04, 8.644140677842517e-04, -2.268712741545547e-04, 2.407669676096329e-04, 5.267597431597891e-04, -9.067771940188576e-05, 2.237816360600355e-04, 4.336338441499682e-03, -1.878426715409044e-04, -7.124238533178776e-04 };
W2 = { -1.996642255962705e-03, 6.533161067900498e-01, 8.980854542024246e-04, -2.411385571216547e-01, 3.455579399917825e-03, -1.042213982478371e-01, -4.395988420053862e-03, -6.463360645891283e-01, -1.529999859792100e-02, -1.767587567915116e-01, -1.546700748255420e-01, -4.393635751175210e-02, -1.092322795175040e+00, 4.330115639190463e-02, -3.162778022299243e-03, 8.060548614613115e-03, 7.961518559528532e-03, -4.824200036886555e-02, -8.351346115496863e-01, -4.261464556787697e-02, -1.391923864323977e-03, -1.013124532197378e-02, -9.319927773491428e-03, 3.652064857371423e-01, -4.936729355228737e-02, -2.868473214381957e-01, 8.141400467017142e-02, 5.024047858469333e-02, -1.846927726620535e-02, 3.195780795409612e-01, 8.735555124145772e-02, 1.642179788046037e-03, 1.700416104994843e-02, 1.680883565254008e+00, -3.910937595396267e-02, -1.650641287510473e-02, 1.352965718676733e-03, 3.765449634313841e-02, -3.288086416539012e-03, 6.953854870336273e-02, 4.603320869264475e-02, -1.985691042871129e-03, -5.014544223712808e-03, 3.853406537402722e-01, -3.007580204049762e-02, -2.293369810010372e-01, -1.284937818291023e-03, 1.866473443772825e-03, 1.376299459502022e-03, 7.279238718922308e-01, -5.700677799552138e-03, 1.683870245355023e+00, 2.936348287071912e-01, -4.982186220017944e-04, -1.662905915107177e-02, -3.289309786612213e-02, -6.250517684701981e-03, -1.550958652847698e-02, 6.044012497414674e-03, -3.072571350823907e-01, 7.531659299001708e-03, -1.355395484310158e+00, -2.843527503867042e-02, 3.071372550502658e-01, 3.809530872111109e-03, -1.941630306880170e-01, -2.148885688885688e-02, -1.900018792763234e-02, 3.836152178227230e-03, -1.951187666886245e-01, -9.690615247996037e-02, -6.237588983641836e-01, 9.899857288951188e-01, 1.370466431024314e-03, -3.190002728755517e-01, 2.948513828174787e-01, -4.020450713001836e-02, -2.441433450148164e-01, -1.386170306680573e-04, -1.309648288448391e-02, 4.817806799061747e-01, -2.485094664951634e-02, 1.228975984458620e-03, -3.670691718345032e-02, -1.883799911011940e-02, 4.495101745427016e-01, -8.640621332998118e-03, 4.193492291304189e-01, -2.105267992278304e-02, 3.017037246456832e-02, 3.066071712166961e-01, -1.092077471727780e-01, 1.450134990061463e-01, -5.877899540453908e-02, -4.027012891213232e-01, 7.905238865427782e-01, 1.968907080935915e-02, -1.610575316762538e-01, 4.035711978802758e-03, -7.624763541864654e-02, 2.498824658627574e-03, -3.621980238043119e-01, 1.249843971670726e-01, -2.259079457990544e-02, -4.651208552591025e-03, -2.481251198284979e-01, 2.744723116934224e-01, 1.406934161955796e-01, -4.258646826687814e-02, -4.215946193122513e-02, 2.706261957952878e-03, -8.699087532483742e-01, -2.206714975779687e-02, -1.879631884055571e-01, 5.323931243479040e-03, -2.808796057337696e-02, 2.653877425892467e-02, 5.968672049731625e-03, -2.575143775844747e-02, -7.058821403424501e-02, 5.256791916118175e-03, -4.059701004364117e-01, -2.527662016097882e-01, -2.010101776194002e-01, 9.220343531491891e-03, -5.294683839625445e-01, -2.097450045950805e-02, -8.233752808249684e-02, 2.837652081020033e-03, 2.511686552311551e-03, 1.467705391474721e-04, -2.784780511480171e-01, -6.341769627983902e-02, 2.882190265480269e-01, -5.930986558222982e-02, -1.380741775149856e-02, -8.500987785144694e-01, -7.548939488202810e-02, 6.099442194674727e-02, 1.001784810363440e-02, -2.844222466310305e-02, -1.705272263976603e-02, 3.878784505703998e-01, 1.070794091428463e-01, 2.607311637946464e-04, -4.723839787606907e-02, 4.968974513046207e-02, 1.220414939030817e+00, 2.449352756463374e-02, -2.153361861727965e-01, 1.458277703362606e-02, 2.730763795621494e-02, 1.168101914843425e-02, 3.512105606274535e-01, 3.014850161511897e-02, 1.153703940617483e-01, 1.049079149674455e-02, -1.285935152457092e+00, -6.050509654355781e-02, -3.511090337253417e-03, -3.264432637797914e-02, -9.385321137008951e-02, -5.266814181954431e-02, 1.167655673451394e-01, 3.008878944867748e-01, -1.041377650541992e-01, -3.578479085629369e-02, 2.804760391933098e-01, -6.584905606582693e-02, -1.407177283131132e+00, 1.178827371729074e-01, 9.048456613462874e-03, -4.412342091790106e-03, 1.229563116761598e-01, 4.214707520652853e-02, 4.457641246328252e-01, -3.298533709846045e-01, 1.319700206203482e-01, 3.373501988291914e-02, 1.375755001370427e-01, 4.909257202127667e-03, 1.636437853433680e-01, 7.877874169425510e-03, 1.335386764532285e-02, 4.236736088466311e-02, -6.785544121657104e-02, -1.472606164587244e-02, 3.328706701987700e-01, -3.695464758164551e-02, -4.690030901300670e-02, 6.350209595864641e-03, -8.518042303884477e-03, 1.802736814039234e-02, -5.715671855314735e-01, 1.634077938167171e-02, 1.926066100732822e-01, 8.094489325527067e-02, -5.797953822228364e-03, 3.474736078873229e-01, -5.074267754567587e-02, 7.419208363861460e-03, 5.936597977232824e-02, -6.082539748312106e-02, -8.583908782063223e-03, 3.371672992949080e-01, -1.032874933774984e-02, -5.306093518544361e-03, -2.089851895294529e-02, 2.069133529807930e-02, -3.937135657598592e-01, 2.119861907719643e-02, -5.021798323701574e-01, -6.553144243673364e-02, -3.842994667850919e-02, -8.593742183762249e-02, 3.589795108822367e-01, 2.015136837676991e-02, 9.845441143856998e-02, 2.284915340740470e-02, -4.371519088853289e-01, -1.013409988293172e-02, 1.558300973054823e-02, 4.044467754744135e-02, -5.232266541433687e-02, 1.778519763890245e-02, 7.519263934012158e-03, 1.087444404994384e-01, 1.898313333697206e-02, -5.116248333573270e-03, -1.029766868706956e-01, -5.826978484851995e-03, -2.588679704671805e-01, 3.867753128402895e-03, -9.652676383185111e-03, 3.563208957688829e-03, -1.441313674868038e-01, 7.287434756829286e-03, 4.616617534715984e-01, 5.493039298555731e-01, 1.616601248620563e-01, 4.155157958883369e-01, 6.966164796874826e-01, 7.914346685549694e-03, 6.276758176859513e-02, 1.480923539118087e-02, -6.651013712185053e-02, 1.647012926377102e-02, -2.354891804584505e-02, -3.826859530213865e-03, 7.513874408496892e-01, 9.923245306250404e-04, -1.253812280772240e-01, 2.567695544181782e-03, -5.089728186515660e-03, -3.486534359784669e-03, 2.039947617120247e-01, -1.816145939691417e-01, 2.942460523263855e-02, -5.911258407752471e-01, 2.607787126100282e-02, 3.769459223253542e-01, -5.761605718681826e-03, 1.796621021445795e-01, 1.625888376864817e-02, 1.930014075952781e-02, 4.305049822137896e-03, 3.114861388719970e-01, -1.287899577983195e-01, 8.500816691080082e-03, -1.306270784066528e-01, 7.902614693751839e-03, 1.837578022748467e-02, 3.105952708250654e-02, 5.884403587137149e-01, 1.167562822082591e-01, 9.763016854580234e-02, -6.207029311129039e-03, -4.661055129444143e-01, 1.309986018543766e-01, 1.507546040754588e-01, -2.322411073059695e-01, -7.858051271051484e-01, 7.156468258521467e-02, -1.793401820885165e-02, 2.090042031543334e-03, -3.813176530028138e-01, -6.403321545817501e-03, 1.126653638105361e-01, -2.950486594317950e-01, 4.264595562006027e-02, -3.149681175829996e-03, 3.341862384545721e-01, -6.090535595870035e-02, 1.109731496711259e-01, 1.962552976168091e-03, 2.201117096278010e-02, 1.034771585810586e-02, -1.502050503556907e-01, 1.309791288811544e-02, 5.697145510795101e-02, 4.390132806982461e-01, 1.440811772027957e-01, -2.690908052024032e-02, -7.121209564499630e-03, -2.694702703713535e-02, 3.042266240541057e-01, 2.090965982562850e-02, 2.625744922624466e-01, -1.340909948918358e-01, -1.823257148035851e-01, -8.883257461830012e-03, -3.145141837746639e-01, 1.420563118675712e-03, 9.665092086117133e-02, 2.296672443259664e-02, 1.379141167541146e-02, 1.606230006765555e-02, 7.796373894238534e-01, -3.451024541631265e-01, 4.383201113033716e-01, -5.044837523834727e-02, -4.081665597114145e-03, -7.082151683597587e-02, -9.949876955660242e-02, 2.307571994208829e-02, 4.956941452613893e-02, 1.341103685219880e-02, 1.097395912114027e-02, -1.666569333901549e-01, 5.385196020386415e-02, -7.549135065661352e-03, -2.779595055147147e-01, -1.188385819457356e-02, 1.982223601850807e-01, -1.310670860606017e-02, -8.344107058618148e-01, 2.564668189800342e-01, 2.105618829079274e-01, -7.232756897843164e-03, 2.024789985965708e-01, -9.110314324478343e-02, 2.183980306337576e-03, 1.593634514311471e-01, 6.983794627016697e-02, -2.387492207055383e-02, 4.421082247759816e-02, -7.982743907902141e-03, 7.334636335984107e-01, -8.771261890167563e-02, 9.332846818352269e-02, 2.954998933446204e-01, -5.676735020221375e-02, -1.974597757628670e-02, -7.064455949463068e-03, -5.638448268639682e-02, 5.198785520994770e-03, 1.784653109036030e-01, 3.459727222017527e-02, -1.489332019456957e-03, -5.569442271980882e-01, -1.219129303265338e-02, 9.213029490670130e-02, -2.806302424396248e-01, 1.603808540027918e-02, -2.507832209275034e-02, -6.355534496204869e-02, -2.095064148145070e-02, 1.703969242916337e-02, 4.267295723103979e-02, 1.367806431571900e-01, 1.183661210627961e-01, -2.400581959956314e-01, -2.789504132404031e-02, -7.627726541249915e-01, -3.144144270875241e-02, -1.007937595294425e-01, -4.249237178601768e-03, -1.924368475340966e-03, 6.748878017654045e-04, -2.626508499850060e-01, -1.077773728889151e-02, 1.036557247242517e+00, 1.145994408895596e+00, -1.291062532021863e-03, 1.613872003327271e-01, 1.240577078586181e-01, 4.001063942487465e-01, 1.591948417774149e-02, -2.109413043656860e-01, -6.915809118782094e-05, 8.946761916790750e-01, -4.788212074153057e-03, 1.470484652761663e-03, -2.538353739186826e-03, 6.255137318325493e-02, -2.918313250108406e+00, -1.111782248775766e-01, -9.969539333621472e-01, -1.088311930907010e-01, -5.763525308349889e-02, -2.580408640018035e-02, 8.230240365789698e-01, 4.762315078264313e-02, 5.211820720305743e-01, 6.129402421128916e-03, 1.872622348683838e+00, 3.646098532877166e-03, -3.267276204049049e-02, -2.183044216307192e-02, -4.925646725478799e-01, -2.755367803000049e-02, -8.066625428971232e-02, 4.349490330058524e-02, -2.318683362722800e-02, -2.395874626921793e-03, 7.468682667367869e-01, 3.561710599355716e-02, -4.178668923421791e+00, 3.853542417848244e-02, 1.273132546012280e-03, -2.825879340856859e-03, -2.563069466220119e-01, 1.567573758423259e-01, -1.428007602944183e+00, -3.223163227555128e-01, 1.132062253313130e+00, 3.550299503536803e-01, 3.014289282557592e-01, -1.514904268080160e-03, 7.916454710718691e-01, 6.608701285744577e-05, 9.500639931045751e-02, 2.870351770990774e-03, -1.044026422984587e+00, -4.116707134542380e-04, -1.736442395431110e-01, -3.151847913075076e-03, 6.938800359573730e-02, -2.485255339457559e-03, 6.841596458990291e-03, -1.158480523489162e-02, 3.835320520007616e-01, 6.746914177981082e-02, 4.586734652976817e-01, -8.432901712923983e-02, 9.421934063649584e-03, -1.092444780848308e-01, -1.878690757980903e+00, 3.739552912983182e-02, -1.759510444498919e-01, -1.271706010156516e-03, -4.014186147685335e-04, -5.658488394934916e-02, 1.005869422459320e-02, -1.645444757220955e-01, 4.874650463573055e-02, -1.469836941907480e-03, -1.225927496912096e-01, 1.228979914390910e-01, -9.870543819521095e-02, 8.018461804636423e-03, 5.331613375068985e-03, 3.900488769495641e-01, -9.003137836021417e-02, 9.176662039660758e-03, -1.821822980980366e-02, 1.078743140785314e+00, 1.625144299937336e-01, -7.745463481462126e-03, 7.782606442950385e-01, -3.908518608443471e-04, -1.174786764927631e-01, -3.700633761486702e-02, 3.668097339232106e-01, -3.830831284841120e-03, 1.529943872874339e-03, 6.925803099845676e-02, -8.990858250334834e-01, -2.581238412718178e-01, -1.960244929550358e-01, 6.903659630537819e-02, 3.228371992852501e-02, 3.134614939982949e-02, 4.090696788922207e-01, 1.995319841205152e-03, 3.348100525052074e-02, 4.996953973647235e-01, -4.239592417561089e-02, 2.708364486765645e-02, 4.777969509596975e-02, -4.188922179812023e-03, 6.878817458642449e-02, 2.067360218430782e-03, 1.820446566232288e-01, 8.039386174855689e-01, 3.873756013728404e-01, 1.896745823762283e-03, 1.308914536546778e+00, -2.569568371388083e-03, 3.284873934120217e-02, -2.711334604996257e-02, -2.831944475788951e-04, 7.257553441099157e-02, -1.225307136386466e+00, 8.327394133169740e-01, -2.363843815747847e+00, 6.437873298572744e-01, 1.015704595407114e-03, -7.390927562173302e-02, -3.230881886538142e-01, -6.387772301298968e-02, 5.942266014434266e-01, -1.535891635716124e-03, -6.111259095101314e-04, 6.638310001795730e-01, -3.868348859723578e-03, -1.889837946375017e-01, 7.235405935975109e-01, -8.767361314943894e-04, 1.720645620727486e+00, 1.303219512698144e-01, -3.418212242350215e-01, -2.407828890198473e-01, -8.034348011083199e-02, -1.276022752725003e+00, 2.671738035748362e-01, -1.050075384495671e-02, 2.963241972787949e-02, -1.578240178579993e-01, 1.330891028779171e+00, 2.516319700511796e-03, 1.970321067821151e-02, 1.939029863374622e-03, -3.677063524922876e+00, 6.194542180867035e-02, 1.008778674697478e+00, -8.999262527901773e-02, 2.390964330238547e-02, -1.318304982270957e-02, -2.248769487665055e+00, -4.317578305535715e-01, 1.380472869134473e+00, -8.884281916282281e-02, -2.739598095426373e-01, -3.870242023124395e-04, -2.381433764212052e+00, -2.227990412190465e-03, -1.634460895335149e+00, -7.628240043489777e-01, 5.828349741482506e-02, 4.531086457423260e-02, 8.022545389206381e-02, 5.005179072446414e-03, -1.144525745589560e-01, 1.012579849039429e-02, -1.578998160748821e+00, -7.889894423799819e-02, -5.896832691538300e-01, -2.382424264530444e-02, 6.783892326302859e-01, 1.202697882514733e-02, 1.227934407543181e-02, -4.652830770640403e-02, -1.946429892273157e-02, 5.115379472753677e-02, 5.900976873498846e-02, 4.989373801816715e-03, -2.814932835067784e-01, 6.552069871730297e-01, -1.314586983155555e-02, -6.470005533876130e-01, -1.235806806376839e-01, 5.012371935446717e-02, 1.646581759933627e-01, -3.563252219771805e-03, -4.591316999850805e-04, 2.396026383050391e-01, 1.680983633045684e-02, -1.054482776274123e-02, -6.320006813179275e-03, 3.477598873515795e-03, 9.804457071849857e-01, 1.933532559236254e-02, 5.424140980437751e-03, 1.311288316994668e-01, 1.410220333506322e-01, -3.036621624122928e-01, -4.670139031102669e-01, 8.958950392882086e-03, 1.428674275991042e-02, 1.046285153414688e-01, 2.208006368295259e-01, 9.728451162529610e-03, 7.832293390462718e-02, -6.345277695738673e-03, 1.913234935147642e-01, -1.603285303764043e-01, 1.319169343364257e-01, 2.120118973838958e-01, -6.471056753794545e-02, 1.985917872371484e-02, -2.509641068305221e-01, -1.047383028139277e-01, -4.530975318552051e-01, 1.700913324214625e-01, -3.404634566028963e-02, 2.983693872842786e-02, -4.337903979972892e-01, -1.019947367844411e-02, -6.356716915312435e-01, 1.749547349529951e-01, 4.395287043787972e-02, 3.239696326556719e-03, 3.844599912682328e-02, -4.858081008294554e-02, 8.502585927723103e-02, 2.551079576909405e-03, 4.778354125175562e-01, 8.951095206904829e-02, 2.427497789245540e-01, 7.207163923120754e-03, -2.920126196809849e-01, -3.528177268426095e-04, -3.084526976095336e-01, 5.160126079542848e-03, -5.064982071579686e-02, 1.826334862894428e-03, 8.233806385800158e-01, -5.044120529686077e-02, 1.332350949405749e-01, -1.185977554272914e-02, 2.272640285008441e-02, -4.821116356642526e-01, 1.612144299349560e-01, -1.260708574680308e-01, -1.177727398117522e-02, -1.776065219919190e-02, 7.299295962935234e-03, 1.089635192596545e+00, -1.902128095842056e-01, -2.077788651905406e-02, -4.345438096859476e-02, 9.227795900570629e-03, 2.492101746898429e-01, -5.472244966834737e-03, 4.306424814571431e-01, 6.590209466531742e-02, 4.991316642049792e-02, 8.422964775977666e-02, 8.228651475692315e-02, 2.659136379577150e-01, -9.305296038373498e-02, -2.262550862475395e-01, 3.632836447177104e-01, 1.398869330842467e-01, 1.085605648603106e-02, -8.897564606958184e-03, -1.067075367800130e-01, -6.272294215689843e-02, -1.398303563884568e-01, 1.832592329669251e-01, -4.943494458317940e-02, 6.364320761603044e-02, -2.735598370530470e-01, 6.896788437291894e-02, -5.714530562831046e-01, 1.426951850536945e-01, 1.590050087800490e-02, 3.029169236572758e-02, 1.254249065952280e-01, 9.243020026218811e-03, 4.076688173659767e-01, -4.292148802418438e-02, -1.151952349833908e-01, 1.691839742196301e-02, 3.532936900091711e-02, 2.148301242659528e-02, -1.790073885327051e-01, 2.671424100845659e-03, 7.971278952539019e-01, -1.788247475356448e-01, 7.300098340244093e-01, 1.401739874436763e-02, -3.285389143067109e+00, -1.692858503706489e-03, -8.919592594602420e-02, 2.567551993234069e-01, -1.510815659279383e-03, -1.906147361256677e-01, 1.703511791826050e+00, 1.028205337543294e+00, 1.529703343331187e-01, -2.309686941686054e+00, -1.226456194012625e-03, 2.272126938158442e+00, 1.366325761207744e-01, -4.868854395442874e-02, -1.165274140461829e-01, -2.280694704491991e-04, -1.777894109783241e-04, 1.204256916593594e-01, 3.540854290261953e-02, -1.033151162122708e-02, 4.559188896178855e-01, 6.345686791152756e-04, -3.910356146102774e-01, -2.090291297195132e-01, -5.927955587395723e-01, 1.351139398495447e+00, 6.275392648220269e-01, 3.095323968534902e-01, 3.368070290699779e-01, 4.196392915062144e-02, -7.069635974369175e-02, 3.976857654650433e-02, 9.401562963392526e-02, -1.173572553791791e-02, -3.755648947879132e-02, -1.108423208008230e-03, -1.067413463786564e+00, -2.846237334826784e-01, 8.587881713516460e-02, 2.145544085760792e-01, -2.811471522621217e-02, -1.753797470340722e-03, 3.863145003840818e-01, -3.149695932345497e-02, 2.409982855663214e-01, 6.244632519945963e-01, 3.385599353439755e-02, -4.537823673698958e-05, -6.304995245518920e-01, -5.610128181423089e-03, 4.023935199767983e+00, -6.855467771545819e-01, -1.276762055816481e-01, -3.294780640098009e-02, -6.140704382495291e-02, 4.131412583136297e-02, -1.129510372130115e-01, 1.920054055191489e-01, -3.923264874540926e-01, 2.293213932954184e-02, -7.483177830418096e-01, 3.836038175436493e-03, 3.258072995290570e-01, -7.026680969375983e-04, 1.012539946148227e+00, -1.121446248997078e-03, -3.084291142930960e-02, 1.691388266452525e-03, 1.291019753922421e+00, -3.779616633025819e-02, -1.054398325481606e+00, -6.474643775748191e-01, -1.706476599103612e-01, -3.301580493609160e-01, 1.273667008309306e+00, -1.025367230789766e-03, 6.311656892984521e-02, 1.518990720736610e-03, 7.325703259811232e-03, -2.002559732949172e+00, 2.990617151741060e-01, 1.292142594514287e-02, -2.002983428689003e-02, 9.566075074994410e-04, 4.025902140097987e-01, 1.737428453076957e-01, -1.087927152893332e+00, -1.781848926732821e-02, -5.463620027113446e-03, -1.358196598096841e-01, -1.061762865179218e-01, -4.083045270500107e-01, -5.384925497680271e-02, -1.198731919350945e+00, 1.855970516687459e+00, -4.098015844963367e-02, -2.623754256415055e-01, -6.290121720148789e-04, -5.228521828340850e-01, 1.252067718525984e-02, -2.469036489190293e-01, 4.588707589996822e-02, -3.173716626451961e-03, 1.957584990288974e-01, -7.547886492128035e-01, 6.232037573483962e-02, -8.621318171566893e-01, -3.396242686707793e-02, -1.636077019493328e-03, 2.430203156574545e-01, -8.508646154763684e-01, -8.870489884747903e-04, 7.122597884182670e-01, 5.119971652425823e-01, -1.040124220674493e-01, 3.775460101958865e-02, 8.209663278921372e-02, 1.120977821212406e-04, -5.676509470142230e-03, -7.761378112687726e-04, 4.501728660621581e+00, -5.203452026968279e-01, 2.319058849813940e+00, -4.908825505241441e-04, 3.660310834930538e+00, -7.139268669769948e-04, -3.908164071680760e-02, -1.714352360573842e-01, -6.092215084892185e-04, 2.714420553445312e-01, 1.276186026487824e+00, 1.272628835450599e+00, 3.175859338282347e+00, 6.375142311406151e-01, 1.171875978697669e-04, -9.333628617840070e-01, -2.482996194028981e-01, -4.885555165240623e-02, 6.928254842704179e-01, 1.964610736507380e-03, -1.920315245183245e-03, 7.131708963064938e-02, -8.599138299841372e-02, -3.324128290044671e-02, 5.973797813305338e-01, 6.694636237327584e-04, 4.317309811774903e-01, -9.757542379260735e-02, -1.449334418531391e+00, -9.007414961136787e-01, -4.510439896416359e-01, -7.666599975392524e-01, 5.440711665295094e-01, 2.101891271777029e-02, -6.174639733679098e-03, -1.508066544107257e-01, -3.079989976356450e-01, 2.372027670241202e-02, 5.263048806649245e-02, -9.035712985656245e-05, 1.684304597953136e+00, -1.444048639585016e-01, -1.545222110594253e-01, 1.133971760330352e-01, -1.430953532785730e-02, -7.098832996653300e-03, 1.733626474220235e-02, 1.228450704348450e-01, -2.802876764962813e-01, 3.036871897830450e-01, -7.187043259716948e-02, 3.833673699765373e-03, -1.001605444713842e+00, -1.573696243576189e-03, -1.036894107951434e+00, -1.108447347377732e+00, -1.171670007561581e-02, -4.925143066607256e-02, -9.325034775047737e-02, 8.397511277522567e-03, -9.204289465085344e-02, 3.951936117718373e-02, -4.969645923761144e-02, -7.144134558336404e-02, 1.764590979042000e+00, 1.998137737358841e-03, -1.049994630063051e-01, 4.659549657960530e-03, -8.815502447297322e-03, 8.189828299155129e-03, -1.309454231319691e-03, 2.666157257033264e-02, 1.754955848916213e-01, 1.179075897912152e-01, 1.409962200379813e+00, 7.072264604282361e-02, -2.771559648625388e-03, -2.816529527476047e-01, -9.021113989249655e-01, -2.367438790610348e-02, -5.497837237719038e-01, 2.065147723582142e-03, -2.667936134346480e-03, -5.651786755033142e-01, -6.883489240421922e-02, -2.762694810704237e-01, 2.081574111581409e-02, 1.732174641709930e-03, 3.621741250852354e-02, -1.948740574160632e-01, -7.633439089577168e-01, 1.512889839758489e-01, 7.479048725528609e-02, 1.190905655788967e+00, 2.268667457622723e-01, -1.496756746828198e-03, 4.554682856469430e-03, 3.228083379985610e-01, 6.152866062718388e-01, 1.853011210658407e-02, 4.988479211112418e-01, -1.188891894601789e-03, -8.534368457076045e-01, -4.724187028566678e-02, 9.285714012937287e-01, 1.844586495328959e-01, -2.892649046588635e-02, 3.158599227704659e-02, -4.670104667828641e+00, -3.277975819555786e-01, 1.681920868857914e-01, 9.348686721784123e-02, -1.895762307436520e-01, -6.599115132905780e-03, 7.871919068761559e-01, -1.638325669876519e-03, 9.714781054265988e-02, 3.375315532022198e-01, 1.120316555910403e-02, -3.633715683419585e-02, -5.689677586612603e-02, 2.140573993667485e-03, -4.810202484467942e-02, 1.306255264284838e-03, -9.439317955242069e-01, 1.165084080118983e-01, 4.522138621159040e-01, 2.950388789575181e-05, 1.888444632946642e-01, 2.676573431170022e-01, -6.444337657210478e-02, 9.814600924873999e-04, 3.428662588438098e-03, -2.493012462493269e-03, 3.550716827434429e-01, 3.884259458104645e-02, 2.668151760628920e+00, -7.103943583239483e-01, -4.080473117768299e-04, 2.357067731583463e+00, 4.929246149791952e-02, -2.435523366421359e-02, -7.663917501448972e-02, 1.660252010493132e-02, 1.020139077892688e-03, -1.151828996965191e+00, 6.263896688972992e-02, -4.094164197677587e-04, 2.206412023053022e-02, -1.348074767163337e-01, 1.457315318324143e+00, 6.330759283960960e-02, 2.343876332719083e+00, 1.184530496753111e-01, 6.717952204660334e-02, 1.383959563298049e-01, -1.111467151428767e+00, 3.835085369809967e-02, -6.503911258982813e-02, -7.491846288531008e-02, 2.008584934917660e+00, -2.282317166891865e-02, -1.308921929441154e-02, 3.271115496750770e-02, -7.708527868624589e-01, -1.904784029951980e-02, -3.626938771984629e-02, 3.054116229477652e-01, -3.313270221718939e-01, 1.428677692491102e-03, 2.051083608537995e-01, 2.285627030678038e-02, -1.492550008410455e-01, 3.826960440368332e-02, -2.346216949819737e-04, 2.256556151034390e-03, 5.130050299405043e-01, 6.028599879808429e-03, -1.846969992104479e+00, -1.392116145646126e+00, -1.825676168793108e-01, 4.650429495819302e-01, 9.769369276091741e-01, -6.367925859831141e-04, -3.347111169166436e-02, 1.398501987124755e-03, 1.122538018754719e+00, -4.126025642210100e-02, -1.315654075189609e+00, 3.218703478843536e-02, -6.609807003556659e-02, 2.344184408544649e-03, 1.324314622170226e-02, -3.216134287725262e-02, 5.918455466807550e-03, -1.864359393657539e-03, -2.939495815253970e-01, -2.810964819345756e-01, -2.756754743392026e-02, 4.838116687609020e-01, 1.381994832632525e-04, -5.041885168442106e-01, -1.959700150696499e-01, -1.571898928607745e-02, 1.003173188799446e-01, 1.301615383766885e-02, -5.161707582113721e-03, -3.804738726069982e-01, 5.899940572008550e-02, 6.374657207178471e-03, -1.576898874184594e-01, -1.097498632132760e-02, -6.928049818987870e-01, -2.239755704711568e-04, 3.382498460442686e-01, 3.787202986542851e-01, 2.825694017477116e-01, -1.011181076648469e-01, -8.567153962187983e-01, 1.365881985128226e-02, -1.347059799255533e-02, -5.882708573864250e-02, 3.411585068101088e-01, -2.558816520615538e-02, 6.831518587650377e-02, 9.748319288100209e-03, 4.754081436092609e-01, -2.488480065862113e-01, 3.547051006667731e-01, -1.207647711104446e-01, 4.292844241650776e-02, -1.802999018381527e-02, 1.706839894159074e-01, -2.254588161179595e-01, 4.705330354107143e-01, 2.884052406211572e-01, 3.249104071647249e-02, 8.556530183871182e-03, 1.019920790588513e-01, -2.686771451304976e-02, -4.706891673923835e-02, 8.683403154274118e-02, 2.972215460039941e-02, -1.749227561110064e-02, -6.251637647049212e-02, -2.435440101517880e-02, -1.421509317414143e-01, -2.514920645098305e-02, 6.875553214849423e-03, 1.445140174896824e-03, 1.835170472880900e-01, -1.709877451923485e-03, 1.727433603063619e+00, -1.112382847234287e-02, 1.724008025149787e-01, 6.928276462174159e-04, -7.108533885355163e-04, 1.358920804207849e-03, 5.830242244821497e-01, 3.342883400071889e-02, -2.736787136387717e-02, -4.948626500863306e-01, -1.418370386831755e-03, 1.197656084085271e+00, -1.355206492091905e-01, 2.001217344621883e-02, -2.587729532511412e-02, -5.470909706492081e-03, -6.787379925460925e-04, -1.464651619812634e+00, -4.457205156387511e-02, 2.027170085277506e-03, 1.608676028266389e-02, 4.891647600716068e-03, -2.132427780039209e+00, 3.295585603412840e-02, 1.472271389569656e+00, 9.553357229691342e-02, 5.169092379949462e-02, 3.862573729959089e-02, -5.853002579585121e-01, -9.017736750175946e-02, -5.334584676489940e-02, -1.735695055162198e-01, -9.938638158217237e-01, 1.365098411352990e-02, 3.091055757650778e-02, 2.111986073144793e-02, -1.055805906761907e+00, 3.945117674078922e-02, -2.263531868874109e-02, -1.343250919593967e+00, 2.927264851213643e-01, -2.132807279918495e-04, -1.307102158028199e-02, 1.245106263751247e-02, -1.970940748633627e-01, -6.828918672884451e-02, -1.048927307798165e-03, -1.323630231869252e-03, 3.172902275866677e-01, -3.263376575158663e-03, 2.795270071651645e-01, 5.092280741322223e-01, -8.447177742662179e-02, -3.563259914873498e-02, -5.428556339596680e-02, 2.889495079668125e-03, 4.138808775777304e-02, 9.618300658475458e-04, -6.528523966687019e-01, -9.406087680473194e-02, -3.896989902751298e-01, 4.735186334786800e-03, 1.509494984288876e-01, 1.217675706374059e-03, -3.360160108194750e-01, -1.524995627467801e-03, 3.134921874494000e-02, -1.890163440762148e-04, -5.590678612746492e-01, 6.991498871524697e-02, 1.351900309323050e-01, -2.389967910781034e-01, -1.315624974946813e-01, -1.412282253056296e-01, -2.026117722183683e-02, -1.614567843303701e-02, 1.282343158777564e-02, -2.255810277179731e-03, -6.685675043752885e-02, -8.163949251184746e-01, 1.533756187749772e+00, 7.281152553769906e-04, 4.817048280605364e-02, 1.294185224657004e-03, 1.384768754942655e-01, 9.649253284679561e-02, -4.842091148968450e-01, -8.429934378919655e-02, -6.396160287862360e-02, -3.424341332918016e-02, 2.777204859310373e-01, 1.611675966882539e-01, -3.188309228137246e-02, 2.395007537143887e-02, 4.519209637346825e-01, -7.123733029943219e-01, 1.515569216943325e-02, 4.200007110151459e-03, -1.145235004853948e-01, 1.175003597611853e-02, 2.530812592409149e-03, -8.727306685762097e-03, 7.646946655876739e-03, 2.151935439426481e-02, 1.632497469908744e-01, -4.564748476944948e-03, -5.751178594787710e-02, -7.827905127683249e-03, -5.694070265900728e-03, -3.276710276638821e-02, 5.044690392707759e-01, 4.650450999892042e-03, 3.625896713274421e-01, 2.621352395191486e-01, -6.648564368352898e-02, 3.075238264812014e-02, 6.537344911439874e-02, 1.224623431530434e-02, -1.914206344992567e-02, -7.197000452581996e-03, -2.401293488474877e-01, -1.151868945950714e-02, -2.218349964265547e-01, 2.428201828820825e-03, -6.348577487798791e-01, 3.217681471814701e-04, -1.167697639858664e+00, -6.215537141008573e-04, -6.061623039932163e-02, 1.418851945503638e-03, -1.896437829138069e+00, 5.042962440333198e-02, 6.544984632769708e-01, 7.594293098391872e-01, -2.603836441562964e-01, 6.466162242804422e-01, -6.583727410446746e-02, -6.042121604688973e-03, -1.961405306876557e-02, -1.020354894533537e-03, -1.023591936564298e-02, -4.820969597473259e+00, 1.162050648944715e+00, -4.425673776757970e-03, 2.479633411794665e-02, 2.648563022862693e-04, 5.679310221829355e-01, -1.212049365865609e-01, -1.691265764442624e+00, 5.295943144149687e-02, 3.240323108428277e-02, 5.045238278241700e-02, 6.408079294135790e-01, 4.835378909934260e-01, -2.220215698038213e-02, -7.691343191991903e-01, 6.940177977750106e-01, -6.956928138953513e-01, -1.811157026465456e-03, -5.784545080409830e-05, 2.508749520608821e-01, 5.122472715200334e-02, 1.297811278373003e-01, 9.910812168418000e-02, -1.146987028975378e-02, -4.094741869006974e-02, 3.704426944862668e-02, -4.910405024045930e-02, -7.801709696214125e-01, -9.955612556484157e-02, 1.559147803608305e-03, 1.764893656944739e-01, -1.122020485012500e+00, 1.140751977282355e-04, 1.146597632838067e+00, 4.034781256189245e-01, -3.902329411206093e-02, -5.091638328428328e-02, -1.006996277942689e-01, 8.452749101421673e-04, -1.501003801922188e-02, 1.135098593566528e-03, -7.640533664963250e-02, -3.543286197426353e-01, 1.647050727826202e+00, 1.888963537862793e-02, 6.025881811941110e-01, -2.398948990400335e-02, 1.559056122957405e-01, -2.814249510965683e-02, 1.702558553097617e-02, 1.915879969461765e-02, -1.124530159440697e-01, -9.063182408844861e-02, 3.713334038187128e-01, 2.373771827155624e-02, -1.942048048425898e-03, 1.273292204052110e-01, 1.226344070532080e-01, 5.475963600386271e-02, -1.218988695473424e-01, -7.608693743136039e-03, 7.679303286091385e-03, -4.999339728036462e-01, 1.575553669837195e-02, -1.209264523952374e-02, -5.158770658746738e-02, 1.536020417877580e-02, -7.360996111269096e-01, 1.509801268436062e-02, -4.090541719270864e-01, 2.390078940361184e-01, 1.985755375361264e-01, 1.719156043948790e-01, -6.717485402728668e-01, -1.278205220065831e-01, 7.232191843161943e-02, 1.249326217570527e-02, -9.008016560922169e-01, -2.111330704330142e-02, -5.344778643871540e-02, 5.434430873576345e-04, -8.685855294117062e-01, -1.287667965597599e-01, -3.233370263182226e-01, -2.503652496700242e-01, 4.450042487205071e-02, 1.283002790397694e-02, -8.630751793836342e-02, 2.232753145789838e-01, 1.453337528796738e-01, 1.633106828230159e-01, -2.576156268028545e-02, -2.655186488041622e-02, 3.350907925836369e-01, -5.949935369427287e-04, -1.735464546874634e-01, 9.483665614942435e-02, 9.133913099479084e-02, 1.176811775910907e-02, 2.499309149004325e-02, -1.931446787216635e-02, 6.244476226059156e-02, 1.686139977341222e-03, -2.949811252506541e-01, -3.841455076153256e-02, -1.651247058137641e-02, 5.639440446326911e-02, -6.319367442422189e-01, -3.601863226687813e-03, -4.483851593978613e-02, -7.253028737940185e-03, -2.256904813311748e-02, -2.861038500192512e-02, -5.637410897684204e-01, 3.613815577533685e-02, -6.629498449989503e-01, -2.747220877835249e-01, -2.421193800770035e-02, -1.033651866385387e+00, 9.043899443987587e-02, 1.437175105378944e-01, -1.253651528825044e-01, 1.836009581617018e-02, 2.472501047013087e-03, 9.808793037622619e-02, 1.056420904394971e-01, 1.890752171603541e-02, 7.116687215862005e-02, 1.883010181384511e-02, 8.526126813838791e-01, 1.365171131810883e-02, 9.051544901139755e-02, -1.266689703124064e-02, -2.228688751754779e-02, 1.289034772577563e-01, -1.326880943370098e-02, 1.938773049330201e-02, 2.297765128725060e-01, -8.558986606391684e-03, -5.404362680598626e-02, -1.627297016621592e-02, -1.913454441870537e-02, -7.191692798260272e-03, -5.299354581156072e-02, -2.447245861799805e-02, -2.239750960980460e-02, 1.516575756096770e-01, -2.595551598692042e-02, -1.420592250954459e-03, 7.222772858173808e-02, -6.122444166931136e-05, 3.586951504191592e-01, 1.138295455220039e-03, -3.154020891527590e-03, 2.009306051109089e-02, -4.356190799277567e-01, 6.260771283657804e-03, 2.315859915785522e-01, -4.980741164033253e-01, 2.944497299286816e-01, 1.129227532936713e-02, 7.071211911996704e-02, 1.308570591627288e-02, 1.374770375828449e-01, -2.716319796768239e-02, 6.571233819318439e-01, 3.586417930437547e-02, 4.068782659173137e-01, 3.316826511099608e-02, -9.508216992601218e-01, -2.642659835365838e-03, -2.828680564995227e-02, -1.683150101653520e-01, -3.244546797551621e-04, -3.844557841655272e-02, -1.315693387739482e+00, -7.588170931778239e-01, -6.555017948905232e-01, 1.520661963245580e+00, 9.472480708623124e-04, -1.604213835426590e+00, 2.354114861492343e-02, -9.553845939827710e-02, -7.988485981054302e-02, -3.530931221581281e-03, 1.251176569672397e-03, -9.130455656161586e-01, 1.101480998913444e-02, -7.694351278982332e-04, -3.733765695818416e-01, 2.330872228852843e-03, -1.549172821222827e+00, -1.859711249163215e-01, 1.042553223438833e+00, 1.381820395559682e+00, 6.418441038279230e-01, 1.573320882642233e-01, 9.597034895282387e-01, 1.627373341924020e-02, 2.856191316266287e-02, -1.821363313069482e-02, 6.175195512772754e-01, -7.440488379994714e-04, -4.502595457111243e-03, -1.172024748135961e-03, -6.203608587849779e-01, 6.053271518651828e-01, 5.746966469539778e-02, 1.357544290634883e-01, -1.540880487753322e-02, 2.672978120635073e-03, 2.907778793026973e-01, -2.493588827320280e-02, 1.160946061281866e+00, -1.341308305483362e+00, 9.445966115487770e-03, -2.063357725439160e-03, 3.065265640137274e+00, -9.004233679588669e-03, -7.142952418512103e-01, -2.380313487328205e+00, 7.095402719018784e-02, -4.096615861143414e-02, -8.148767877356537e-02, 2.012381494496679e-01, -2.651931437600367e-01, -2.797858400995573e-01, 1.451771731737868e-01, -1.305572970086154e-02, 2.966942086242038e+00, -8.785936732880403e-02, 4.416681394947530e-02, 4.171792917295421e-04, 1.053815640221387e-01, -3.609591404014569e-02, -2.280070287996965e-04, -5.856170738578892e-03, -6.922483933898399e-02, -1.409362846107629e-01, -4.407189065859392e-01, 6.164222727121309e-01, -2.005934515210212e-03, -1.065837718898862e+00, -5.487189333912946e-02, 6.262423016296432e-01, -4.864287534893082e-02, -1.079636626679087e-02, -2.420669347913374e-04, 2.667688389403902e-01, 4.730158649552720e-02, -2.793433395735212e-04, -6.705657285652454e-02, 8.890684164640207e-03, 3.671238884309174e-01, -1.372287941399460e-01, -8.752889988776349e-01, -6.457924166599679e-01, -3.062465679478088e-01, 9.223714305928127e-02, -5.400789687517849e+00, -5.546904191521090e-02, 9.379080479175468e-02, 6.655894853109613e-02, 4.065094646964874e-01, -1.386098569036849e-02, 1.882215380938359e-02, 1.720927888205653e-03, 4.458444072643041e-01, 5.417748552458647e-01, 1.252795528050357e-01, -3.786471279042870e-02, 1.058641003484469e-02, 2.479504608475542e-03, 5.241553526871553e-01, -6.182973598333729e-02, -5.960056527733546e-01, -1.210020353763083e+00, 2.577512759850423e-03, 5.079804082759900e-05, -1.337360931281041e+00, -3.264609650506736e-02, 2.899660081158574e-01, 6.851356455223370e-01, 2.689097571748027e-01, -2.360255023659019e-02, -4.029630309539078e-02, -3.023542812238483e-01, 6.680794452315074e-01, 1.960869552124459e-01, -5.248034015201275e-01, 3.222297016815501e-02, -6.620964204424604e-01, 2.211939186286205e-02, 5.538382163569456e-01, 2.726512678374410e-02, -5.066483066315287e-02, 1.810306739385907e-02, -2.607430685603864e-02, 2.914552011148277e-02, -1.592952669598084e-01, 2.245756547774179e-03, 7.823665678314569e-01, -4.396433853391822e-01, -2.376905839076441e-02, 4.972070544938101e-01, -1.048984070085148e-01, 6.433042235426621e-02, 4.561489801913091e-03, 2.655595011333026e-02, -1.881896453215779e-02, -5.834936481352696e-01, 5.641464140178554e-02, -2.115328195307499e-02, -5.561038605319819e-02, -1.289429472138855e-03, -8.555817359637882e-02, -8.819812011382361e-04, 9.805547677857446e-01, 9.598019669665117e-02, 4.816903974088077e-02, 5.652570505621904e-02, -1.256359358260046e-01, 3.201411586314930e-02, 3.661196933859927e-02, -9.366838843072260e-02, -1.765422076050166e-01, -2.628688653426391e-02, 4.271544050569335e-02, 1.926176521788903e-02, 5.887014281846800e-02, -1.470646251229915e-02, -8.331116154310444e-02, -2.015264608815855e-01, 4.619588562411811e-02, 1.903161679690271e-03, -6.254190936128341e-01, 4.817049472543603e-02, 2.701003754838813e-01, 5.542297296071046e-02, -4.821953377308620e-03, 2.030363598778862e-02, -3.320930018632617e-01, -3.255429237556558e-03, 1.025243493370598e+00, -3.161521088401112e-03, -4.334738572696369e-03, -5.473449291690800e-02, -6.043886638124345e-02, 1.369456584640595e-02, 6.303892257695451e-02, 1.075022803643271e-02, -2.442557794247559e-01, -3.239672846596801e-02, 4.693816011532658e-01, 2.499481527731050e-02, -1.076442708546655e-01, 2.312639729736217e-02, -4.890753714639512e-02, -4.448943762081060e-03, 2.823116602796851e-02, 3.081626591101055e-02, 5.306617861185736e-02, -1.185298896438589e-02, 5.947326805645821e-01, -4.951410236898411e-01, 3.519944487706240e-02, -4.194770793752087e-01, 8.977766594037097e-02, 6.266359373966467e-02, 2.673050337317160e-02, 1.256846575213129e-02, 4.299739362437606e-03, 5.547941540707612e-01, -1.050382032920758e-01, -2.233997866466443e-02, -4.304960711344160e-02, 6.920084120899140e-03, 8.705660120551578e-01, -1.482610302709281e-02, -4.584407224870131e-01, 1.193921542474090e-01, 9.017345307151572e-02, -1.066965037668198e-02, 1.514927289451519e-01, 3.277034528805253e-02, 9.594084798586719e-02, 3.112982305917485e-02, 1.496744960762402e-01, 2.239423173424554e-02, -4.603273284856364e-02, 1.465356811718266e-03, 3.090739689058835e-01, -1.359203686763431e-01, -1.897100107438419e-01, 2.143770760840013e-01, -3.955339144783997e-02, 2.232078559011863e-02, -2.655205710628462e-01, 1.468337977463791e-01, 5.312238676822402e-01, 2.306930008775912e-01, -1.972296669629678e-02, -3.453477993841944e-02, 2.947169076007924e-01, 4.289839259987930e-03, -7.058298043241547e-01, 1.411822374344396e-01, 1.139485483391002e-01, -1.378316323367882e-02, 2.996997417056905e-02, 1.134003167502668e-03, 5.621539976593518e-02, 8.150633410695815e-03, -6.246237107423623e-01, -6.780943825615428e-02, 1.669196159239207e-01, -1.984359993839907e-01, 2.337607139110437e-01, -1.132445928519323e-02, 7.182541020341436e-02, 7.086376777441181e-04, -3.500962432154025e-04, 2.182663080841672e-03, 2.317630661160643e+00, 1.407174544747583e-01, -8.778833265860880e-01, 3.440850472800153e+00, 1.242491012492166e-03, 6.749256573756351e-01, 1.392602315828635e-01, -5.285064994921106e-01, -2.727560540918236e-03, 1.594425294651738e-01, -1.589848711663766e-03, -1.489440474925534e+00, -3.424428627354266e-02, -1.672958450353865e-03, 7.431628146556325e-02, -2.569700732425893e-02, -5.368900279272697e-01, -2.162613950846662e-01, -4.389317530498946e-01, -5.546708704013155e-02, -3.915542520164404e-02, 6.606513486346471e-03, -4.677680263718957e-01, -3.355614869117321e-02, 5.006067433578983e-01, -7.339630924170051e-02, -8.361851630884791e-02, 1.131467850651690e-02, -3.281846878837295e-02, -5.892518517796780e-03, -2.218330273130075e-01, 9.503742176611892e-02, 9.738178890785285e-02, 3.193046421341148e-02, -1.036363153503917e-02, 2.109286513702890e-04, -2.894598773662941e-01, -4.621092250036424e-02, 3.164153937178884e+00, -2.677288850585673e-01, -8.035938264250435e-04, 2.897797224783516e-03, 5.608612250481934e-01, -2.247751653948549e-01, 1.597952457708169e+00, 7.326128134695411e-01, 1.125650676049371e+00, -7.907908521704003e-02, -2.339057696213743e-01, -2.605046135927228e-02, -1.139847339553409e+00, -1.081303435511911e-02, 6.536046686130255e-01, -3.763809028487276e-02, -1.019381994516780e+00, 1.965072320738966e-03, 4.397517889282858e-01, -1.425566361720662e-03, -9.810370500570991e-01, 3.988179207899656e-03, -9.021555984278765e-03, 5.786833658671642e-03, -1.799420292764344e+00, -5.697350238899416e-03, -4.475904037849700e-01, 1.148688101518609e-01, -3.003483425908329e-02, 3.851971631763223e-01, -1.269318743141445e+00, 6.611240116830838e-02, 1.632368078767500e-01, 7.788898942090728e-04, 2.967287647374705e-03, -7.409330063415938e-01, 2.512425068439296e-01, 3.295840046020698e-02, -7.724100325149304e-03, -1.110410374430591e-03, -2.383817981909049e-01, 1.728966592578308e-01, 4.640596799302906e-01, -8.643274194318948e-02, -4.634973859228139e-02, -3.891913358313737e-01, 3.528977404002624e-01, 4.517243545093139e-01, 7.446400097585263e-03, -1.302305563652431e+00, -2.456839722215691e+00, -6.687374704221487e-02, 1.994932394922664e-01, 1.063297852587919e-04, 2.038449526983730e+00, -3.264783000059452e-02, 1.243597235869823e+00, -9.044501853502104e-02, 1.118513797036171e-02, -2.788059110391075e-01, -1.627238799047551e-01, -8.872485109356308e-01, -7.742990105970169e-01, 6.198568773557114e-02, -8.115964607845597e-03, -1.742844276697178e-01, -9.588402518420375e-01, -8.950069218392530e-04, 1.448642753337438e-01, -2.484635721272136e+00, 9.351237462473842e-03, 6.013470841589264e-02, 1.198847338313983e-01, -1.783083703982064e-03, 1.146885326682845e-01, -9.866130050162577e-04, -6.097172087311726e-01, -5.699741775193078e-01, -3.492072643428161e+00, 3.249659680748579e-01, -1.346240598221266e+00, -2.766926483105543e-03, -5.342659626377108e-02, 8.406889244713433e-03, 1.658548636545083e-03, 1.178199266350360e-03, -1.908599287726471e+00, 4.964370894317352e-02, 1.754072196885621e+00, -2.704729684755720e+00, -2.002336298296977e-04, -3.604038187706820e+00, 4.979554284337153e-02, -6.176639266705726e-01, -6.205363001664661e-02, 3.171267217358471e-02, 1.138170698690141e-03, -5.792375867713843e-01, 1.463698216687435e-01, 1.265793721048456e-03, 1.835926732984933e-02, -9.565049059169061e-03, -1.753574091856326e+00, -1.322152056588493e-01, 8.369525127946056e-01, 3.021521864323127e-01, 1.112878980025618e-01, 1.080407527117506e-01, -1.285537871248937e+00, 2.820806995123489e-02, -2.973995423832561e-01, -1.476287557940891e-01, 7.299617344288688e-01, -4.815221985414948e-02, -1.539726433804626e-02, -4.275874434181399e-05, -7.788853809680261e-01, -5.791210766422537e-01, 1.478099356614941e-01, 4.997776067929623e-02, -1.012527756827649e-02, -4.490114287190866e-03, 1.040939612152048e-01, -7.244082936035004e-02, 1.117946337869876e+00, 5.805732768882331e-01, -2.132218970165402e-03, 7.593105734355111e-04, -1.850827371001962e+00, 1.743590386269324e-01, -4.644228267480733e-01, -3.296047574815744e-01, -6.415697421643616e-01, -7.746862532868455e-02, -1.753192330348178e-01, 8.261686349952853e-02, -1.324764874402670e+00, -3.215315983137512e-02, -2.792270647795160e-01, -7.198798446084620e-02, 2.226550239974559e-02, 4.563357372275617e-03, 9.918621911384716e-01, 2.588304111771410e-02, 3.750239048624660e-02, -4.650890083034172e-03, -5.898868908584831e-03, 7.807214542793878e-03, -6.425752233028363e-01, -5.762016300456738e-02, 9.206794765379764e-02, -6.627500409376437e-01, -1.933907431608155e-02, 1.012373636482190e+00, -4.142179612937244e-02, -1.698196386965861e-01, -6.114361540439865e-02, -2.732317238751191e-02, -1.246328563871484e-03, -2.051718984446423e-01, 1.457069335138158e-02, 1.618213846318052e-02, -3.262177109841442e-02, 1.261382836040549e-02, 1.462686314651073e-01, 3.160987628583222e-02, 1.607889050650822e-01, 4.090985788343716e-02, 8.530830567416491e-02, 3.483112211747279e-02, 2.739733850328607e-01, -6.124175992409207e-02, -1.648518945024910e-01, 4.874293228160172e-02, -2.326114829783094e-01, -1.439220627340572e-02, -8.621480818815487e-03, 1.816855166761703e-02, -9.635538615306550e-03, -9.474951345023645e-02, -8.543650151098903e-02, -1.886919090102595e-01, 3.511564356772236e-02, -2.267723249314271e-02, 2.959939748492309e-02, 4.646376481338788e-02, -5.380351252781280e-01, 2.479093356765475e-01, -1.399396696715356e-02, -5.745738821669352e-03, -3.354631954816531e-01, 2.660130570812339e-02, -3.744634448468742e-01, 5.596113197549948e-02, -2.469589041189257e-01, 4.210874089275727e-02, 1.106874125844043e-01, 2.773340122674793e-02, -2.009678906230734e-01, 3.121540071994616e-02, -3.995885909258017e-02, 5.251376361281947e-02, -5.343990836256589e-01, -1.333186312857893e-02, -3.648344057486968e-02, -6.027430463087145e-02, -7.103261050035254e-03, -8.058624070545823e-03, -1.814951001430193e-03, 1.898249454136581e-02, -2.434428224189612e-01, -8.954127774626197e-02, -2.838419943308310e-01, 3.740088010407500e-01, -5.030243566082312e-03, -4.219909481847584e-01, 6.644757587431866e-03, -4.044985995103618e-02, 4.826978891077818e-02, -6.155504412774271e-03, -2.564812787480035e-03, 5.824829112743324e-01, 3.851708116292699e-03, -1.845355822842587e-03, -7.522706133868770e-02, 5.326629722828456e-03, 3.530284798426510e-01, -5.359241276231578e-03, -7.943271665929713e-01, 1.455580806599541e-04, 3.870233758424756e-02, -7.107857234983504e-02, 2.542671526023310e-01, -1.212869487158952e-03, -2.864057030343430e-02, 6.951506706810977e-02, -2.434045755731212e-02, -2.171872188374117e-03, -2.792445539357734e-03, -2.044853516525911e-02, 5.896868378969097e-01, -5.522417234752479e-02, -3.904044828416774e-02, -3.548390348584042e-01, 1.195232423579224e-01, -3.844014306092288e-03, -8.826157198787966e-02, 2.324583085920229e-02, -1.169292544302797e-01, 1.004265738767567e-01, -3.527077968285026e-03, 5.094164626784192e-03, -4.441631453238029e-01, -1.648216301664709e-04, 1.500869084133802e-01, 1.787081364081720e-01, -2.648473990200502e-02, -4.675206019999706e-02, -1.345512560820570e-01, -1.206277585191718e-02, -4.112733660073677e-02, 1.758280299221906e-02, -4.122162385667398e-02, 4.831209520132407e-02, 3.125436504622622e-01 };
theta2 = { -4.681097172966038e-03, 3.873987688213609e-03, 5.651541825710441e-03, 7.516398578663715e-03, 4.188686272022755e-03, -5.420886742251522e-03, 1.645038182948392e-02, -3.565207316682262e-03, 1.567085340042967e-02, 4.105204344381021e-03, -7.261793735823108e-03, -3.948089706158554e-02, -2.847673430554983e-02, 1.992409583846194e-02, 3.102836223786604e-03, -6.025267760918994e-03, -2.077143098119519e-03, 9.561991396836288e-03, 5.857521956586932e-03, 4.747273310667786e-04, 4.394644126429145e-03, -1.031901790135007e-02, 2.418210198883934e-03, -1.622248357969865e-02, 3.023886303455862e-03, 9.014716461247517e-04, -4.175646437591368e-02, 2.571983590294981e-02, 1.243529498193873e-03, 1.039355790329568e-02, 5.930352971212425e-04 };
W3 = { -5.516356679934454e+00, 5.200320397767753e-01, -4.689445730414280e-02, -1.044941738428322e-01, 4.605007472667124e-01, 4.242079892835774e-01, -1.043995317143338e-01, 4.923605946685692e-02, 9.956620279799171e-02, -9.218523436770369e-02, -3.622849366156606e-01, 1.001666656816373e-01, -7.061539721544691e-02, -2.203509339921301e-03, -1.604000346554732e-02, 1.039063948878520e-01, 2.565099697086555e-01, 9.039024882484016e-02, 7.898617071411853e-01, 3.463663374584407e-01, -2.580383035123807e-01, -1.237400009747178e-02, -3.605054073457185e-02, -1.738900640240282e-02, -5.576085373233922e-02, -2.696206479970501e-01, -5.708993646704854e-03, -6.329594436148225e-02, 4.548721923096406e-02, -1.573805380616415e-01, 2.555413012813357e-01, 4.242392433739120e-01, -9.688446737318904e-02, -1.542213953054987e-01, 1.213341203990467e-01, -4.115160290531990e-02, -5.816253343654336e-01, -1.505122934775358e-02, 1.689510343557294e-02, -2.926895325528937e-02, -1.182513014464961e-01, 2.402177431534765e-01, -3.341715680339853e-02, 4.875948475023915e-02, 4.869597028519362e-03, 8.707171904062252e-03, -7.528187509532392e-04, -1.573222263833356e-01, -9.577940555559347e-02, -3.035930716384725e+00, -2.378989193549228e-01, -5.644543112213428e-02, 7.886438827882834e-02, 2.227075393051942e-02, 1.075360530495559e-02, 2.179263147595798e-01, 6.798071825204112e-02, -8.667710531126027e-03, 2.051522937336258e-02, 1.321940968162999e-02, 1.251399573118274e-01, 1.214809796160896e-01, 7.506299844933129e-01, 2.870017535104073e+00, 1.989517694264986e+00, 2.438213704221110e-01, 4.595946858221656e-01, -1.522069451010890e+00, 6.388331383360794e-02, 6.567921767042657e-03, 9.115532533424166e-02, 4.958296732310795e-01, 1.413524256732700e+00, 1.145583749381743e-01, -5.222975687276020e-01, 3.559509355313455e-02, -1.760997971256417e-01, 2.420719603559991e-01, 1.462448603063721e+00, -2.073408732416017e-01, 1.619676449964513e+00, -1.254607609325150e+00, -2.471134860065385e+00, 9.186276862456420e-01, -6.993149397460384e-02, 3.692198792666383e-02, 3.949314523909000e+00, -2.302787406234970e+00, -9.917961464101063e-02, -3.541998370517052e-01, -8.476138623376740e-02, -3.972964280407547e-01, 1.839708919189076e+00, -3.302561215810920e-02, 1.305477688651161e-02, -1.249125356176600e-01, 3.043585221527568e-02, 9.264142199170693e-02, -3.768772492197685e-02, -1.195735089302163e-02, -6.861570817915180e-03, -3.531150218878629e-03, 9.590474037371672e-03, 1.624599228071592e-01, 1.263215237472702e-03, -1.620659191573521e-02, 4.952204138331887e-03, 5.953820638595650e-03, -1.591727867928532e-02, -7.100946427890949e-02, -2.293731312852582e-02, 3.734224267249165e-02, 2.229816033695629e+00, 2.080799265695785e-02, 5.131139557723449e-02, -1.677311293693593e-02, 3.029450504031766e-03, -8.254544307194067e-02, -2.135485086407742e-02, 5.498045576101313e-03, 2.629239457660338e-02, 5.198720007394421e-03, -2.915518979548853e-02, -4.718704470079813e-02, -1.160071690842331e-01, 2.117334361582972e-01, 2.741111713774456e+00, -2.090479437794621e-01, -2.311874052413095e+00, 5.243864781881996e-01, -2.728193234038395e-02, 6.548211512870172e-01, 8.629531748375928e-02, -1.337839665346318e+00, -5.670606932578590e+00, 6.305239968916448e-02, 1.446445772173240e+00, 1.143456697433007e-01, -1.454156110132546e-01, 4.623059452966836e-02, 1.267823874558024e+00, -1.860631294739257e-01, -5.791175370571676e-01, -1.330947768845634e+00, 1.315085001812539e-02, -1.623348740800221e+00, 5.253765925005474e-02, -9.925377436518622e-02, 6.297663905003700e-01, 1.304135285812514e-01, -1.295278656129007e-04, -6.417556674417448e-01, -4.122913375913364e-03, 5.756194153576407e-01, -2.553037141143334e-01, -2.318418713028590e-02, -6.283222716631762e-02, -6.311805093351343e-02, -1.286228691494305e-02, 3.734449887382590e-02, 2.344245760649218e-02, -1.558672560006930e-02, 9.245059599165962e-03, -5.930033903310488e-03, 1.325691135526001e-01, 1.790583812367648e-01, 1.274106677898500e-02, -2.490584330090092e+00, -9.252453737130309e-03, -1.089424653101065e-02, 3.334822050263238e-03, 4.407181944306882e-02, 3.091374465789710e-03, 8.857417543878679e-03, 3.993624966512295e-03, -1.115035742558628e-02, 1.903420214458434e-01, 1.216947710176003e-02, 6.429168064042872e-03, 4.289931975610280e-02, -1.226816256039781e-01, -9.428625380744175e-04, -2.314520070470511e-02, 4.410094104371418e-03, 7.600298475146568e-02, 8.843384030254585e-02, -2.578377462561542e-01, 2.437536158540534e+00, 1.124352322901799e+00, -5.356235446562015e-02, 1.952688462378598e+00, -2.246227930310182e+00, -6.057533335664932e-02, 1.916895114705428e-01, 3.013687536797977e-01, -3.208566147691510e+00, 1.456657033317878e+00, 8.008005590031131e-02, 1.412653943007718e+00, 1.006603188855042e-01, -4.054578602114862e-01, -1.035719699107671e-01, 1.360036006516349e+00, -1.276659452142268e-01, 5.494056276194743e-03, 6.288084826721667e-01, 1.522887273169112e-01, -3.065468223249055e+00, -1.195413629673929e-02, 1.622108570999387e-02, -1.018524339015672e+00, 4.148618456809472e+00, -5.270209085790526e-03, 1.294119155603845e+00, -4.292656946342231e-02, -1.530490275852237e+00, -5.852291268328881e-01, -4.135849006593857e-03, 3.160553739625479e-02, 7.079793706164864e-02, -2.916166138823899e-02, -8.078241392486460e-02, 3.382704894770906e-02, -2.172423337840891e-03, -2.918735459627662e-02, -2.194079808393774e-03, -2.758060837163634e-02, -1.039128440256875e-01, 2.027625743033131e-02, -1.475467153823252e-02, 8.150659628776048e-03, -3.057659233010895e-02, 1.241915917105222e-02, 9.725158257002997e-02, -2.714482650181954e-03, -3.343179081001322e-02, -3.312878655410900e-02, 4.797626556893722e-04, 8.594011750038527e-02, -1.458251552589537e-02, -3.176660528336470e-03, 5.066368960867497e-02, -7.516338277834712e-02, -1.452670536276358e-02, -2.300176619770479e+00, -1.200589097356030e-02, 2.669444640160268e-02, 6.075926483690253e-03, -1.392154631049473e-02, 8.107673577763976e-02, 9.289297086093117e-04, -5.051330123862036e-02, -1.241397467081461e-01, 4.881366542129235e-02, -1.060636957153584e-02, 2.701409912013892e+00, 1.608898208440613e-02, -4.644680952670978e-02, 7.891652563583366e-02, -5.969422957610424e-03, -1.041669801111873e-02, -3.503569930925119e-03, -5.754725415856607e-03, -1.290722066061060e-02, -5.720282535750969e-03, 3.329077759592237e-02, 6.263899709942693e-03, 1.330661316200181e-02, 1.913985734864596e-02, 2.407686728362626e-02, 2.488825646413029e-02, -4.232150238479834e-03, 2.453715325637921e-02, 1.856605356375551e-01, 1.803643978479117e-02, 1.175375928018536e-01, -2.020960359716559e-02, 8.419124316907088e-02, -2.900356457776385e-02, 7.298379890135451e-02, -2.935692011186979e+00, 1.052385461210733e+00, 5.035705262047637e-01, 2.858180520178148e+00, 8.469086468547412e-01, -1.343757798170472e-01, -1.953049475093819e+00, 7.358689203116963e-01, -6.379549300479470e-01, -4.845707979716479e-01, 6.888589658829268e-02, -2.984310335244645e-01, 5.700532292126375e-01, 1.332359070250976e+00, -2.266475324027292e-03, 3.726074099366356e+00, -1.398123214755792e-01, 4.124984619691407e-02, 8.593125473430363e-02, -3.895059792650118e+00, -3.251834219180278e-01, 1.155489216510221e-01, 8.790315824826324e-02, -1.986543600399100e+00, -2.665639242880599e+00, -8.091447587680851e-02, -3.596480925195987e-02, -1.611140982557381e-01, 4.895276340717770e-01, -6.382821304687512e-01, -1.352079042678775e-02, 1.174948704103876e-01, 1.852636734133261e-01, -8.623256534181872e-02, -1.080833206306507e-01, -2.301978656223134e-02, -3.881616825785660e-02, 7.367032734771096e-02, 4.657198894222246e-02, -1.825012722124633e-01, 1.051168825824673e-01, 1.852596557055195e-02, 1.578961453204185e-02, 5.064769240827521e-02, -2.313786689178589e+00, -2.148764324311910e-03, 9.768782673324000e-02, 5.302294891296976e-02, 1.524401459275865e-02, 1.656950405445232e-02, -4.583659010618678e-02, 3.852184323016616e-02, -3.379899546029979e-03, 3.461089111631725e-02, 2.942911459436014e-03, 2.131602319999905e-01, 1.638199739629190e-02, -5.065273850799545e-02, -2.841075470585572e-02, 1.243265998591520e-01, -6.686822436791937e-02, -6.501071301562145e-02, 4.560848057418829e+00, -3.416767822665662e-02, -6.815335959730277e-01, 1.822644469105090e+00, -5.700159641453760e-01, -7.796288837348053e-02, 7.712377478502428e-01, -1.292800942169229e+00, -1.907340647380634e+00, -1.557318352592042e+00, 3.820901642636881e-01, -1.495985006145540e-01, 1.704029220138384e-01, 1.256808967135362e+00, -5.694989647642487e-02, -2.429396109148118e-01, 5.773024118942355e-02, -4.875654086040529e-02, 5.219768332637000e-02, 4.586076027835709e-01, 3.036897090092384e+00, 1.347682353750311e-01, -1.263236698114622e-02, -3.029152869232190e+00, -1.030684298866978e+00, 8.481263809350206e-03, -4.898766749030051e-01, -9.562792297433299e-02, 2.654879614185820e+00, -6.557524359918530e-01, 1.699033530273710e-02, -1.911095201884631e-01, 8.088653902230980e-02, -3.550286982329450e-02, 8.501056930987997e-03, 2.709601859557087e-02, -7.790245822773940e-03, 4.578011345578417e-03, 2.282364917627234e+00, -1.653556957060099e-03, 3.706384009874544e-03, 1.189176418801913e-02, 1.233875609939916e-02, -2.131986217722230e-02, -2.596425403065610e-02, 1.875973178639575e-02, 1.043758920210027e-01, -5.080046060940947e-02, -1.162494465328437e-02, 2.558077978855505e-03, 1.286148325946690e-02, -9.073801713106228e-02, 1.062969879252957e-03, 1.318800992204787e-02, 1.915366645085019e-03, -7.011194130253641e-02, 2.923778005175829e-03, -2.673184662500481e-02, 1.779873988996846e-03, -1.361749874150179e-02, -5.220929581524586e-02, -2.467104370788145e-02, 8.141698212399724e-02, -1.123128191196475e-02, -1.117752574520463e-02, -5.739903356265260e-02, -1.209372255250428e-01, 8.940650807607238e-03, 7.204573799313998e-03, -4.709361190169187e-02, -5.464851103038131e-02, -2.687033472176634e-04, 1.933803849181314e-02, -1.519193364980759e-02, 2.276463445653415e+00, -8.983921955583334e-03, 1.799290704990957e-03, 8.358804678493960e-02, 4.517812846398125e-03, -1.098765368222323e-02, -9.126415179022698e-03, -1.913602549959163e-02, 9.295203183285357e-02, -2.253043828418583e-02, -2.402221352451121e-03, -6.874963267386269e-02, 7.151674190757799e-03, -2.370220824084105e-02, 6.830319110705859e-03, -8.897521161976776e-03, 3.168872454075142e-02, -9.134254815233556e-02, 2.523775847840022e-01, 2.189516982796627e-01, 1.265000357614477e+00, 3.813333300331104e-01, 9.716463449918549e-01, 5.755169462197010e+00, -4.235434906613042e-02, 2.199955300652899e-01, 1.664955176731091e-01, -2.420820892981566e+00, 2.187452797766546e+00, -1.184385118955247e+00, 1.789316645231163e-01, -1.193517645257741e+00, -5.035612489487818e-01, 1.322399272312175e-01, 1.032651891014004e+00, 5.657141134561808e-02, 1.903483873999324e-01, -5.408732675830006e-02, 9.139522136020214e-01, -1.333443630157832e+00, 6.433370276929542e-01, 2.272055902287008e-01, 2.123159204590766e+00, 8.888237680403474e-01, -9.427868549442577e-02, -1.601311299842358e-01, -2.188930399330685e-01, 1.144409185355139e+00, 9.208757258740249e-01, -1.902306237046251e-02, 5.255235677493810e-02, -5.075266827040253e-02, -1.401695689779318e-02, 9.175607768978646e-02, -1.433373646257809e-01, 2.976239761610089e-02, -1.052295174424868e-02, 1.998496695696379e-02, 1.632301374011723e-01, -8.671680784388905e-02, 2.331005699731199e+00, -4.794852887914825e-03, 3.509655726310077e-02, 2.060936170534835e-02, -4.508676396663166e-03, 8.574008716571951e-02, -1.048735759522515e-02, -1.242315945086551e-02, 1.579318102922135e-02, -1.324322830629080e-02, -3.832167255736095e-03, 7.260343545333472e-03, -2.622649684599309e-03, -1.355542876750486e-01, 3.459699285191803e-02, -3.371540067239240e-03, -4.032221922199494e-03, 7.069355252156191e-03, 6.241422302351751e-02, -3.028390149209018e-02, -2.632596074138317e-01, -1.215906905357522e+00, 5.086067043503035e-01, -3.585341486767067e-01, -2.526178768954079e+00, -1.691310640962673e+00, -3.010934066824844e-01, 1.767047695165471e-01, 5.030241041755369e-01, -5.665933151067741e+00, 1.273863511682364e+00, -1.328240109457488e+00, -3.051300697406687e-02, 7.391281748080251e-01, -9.791699779523104e-02, 3.113570823427352e-02, -2.167023980386502e-01, -1.822283232237907e-02, -3.306634227686660e-02, 6.433131663310536e-02, -1.301539649675994e+00, 1.643569427124421e+00, -1.204439811961882e+00, 6.212246816922150e-01, -3.529275106468152e-01, -1.653189136063725e+00, -4.879300603737470e-02, -1.808371380859533e-01, -3.865425113479069e-01, -1.000921669200890e+00, -1.768676013453425e+00, 1.143679942205015e-02, 4.433664400103388e-02, 8.044127623934828e-02, 3.307346804957803e-03, 3.318668887368877e-02, 2.491786928523673e-01, -1.063968478909860e-02, 2.016237014072001e-02, 4.490212458835077e-02, -3.191361768549431e-02, 3.660512214629014e-02, 2.931974774829562e-03, 4.256017095263890e-03, 2.838041158010598e-02, -1.672997385698240e-02, -8.817080626092743e-03, 8.393395050303100e-03, 7.220800811739046e-02, 1.364038805129171e-03, 6.097803777940338e-03, -1.219973549280824e-01, -3.440287925586861e-02, 2.324944342761407e+00, 4.673189718109556e-02, -1.106940025370746e-02, 1.089230984298667e-01, 9.833463118113218e-03, -2.036430749673764e-02, -2.926419394163693e-02, 1.891342829617269e-01, -4.146857568936717e-02, 1.170356770549589e-01, 7.143374704621557e-01, 3.657101205835491e-01, -6.782957898199240e-01, -1.660437083414187e+00, -5.110129452529284e-01, 5.957459155318162e-03, -1.653371731379313e-03, 1.229815760008475e-01, 6.792535418862856e-01, 9.672397996430141e-01, 5.909863178139479e-01, -1.340146202985115e-01, 1.456839097023499e-01, -1.638921142985322e-01, 7.193907510570677e-02, 5.715875063626046e+00, 5.613292704602904e-02, -1.340791939657742e-01, -3.793697931177987e-02, 3.245475140768379e+00, 1.773169342934218e+00, -1.226575825079082e+00, -1.191476320664937e+00, -6.631646308112444e-01, 3.750581174517191e-01, -4.742573415760812e-01, -1.180070774703379e-01, -1.356200083119097e-01, 6.952564453620576e-02, -6.424583709189158e-01, -2.738633314678398e-02, 2.029908657222900e-02, 2.860071790748218e-02, -3.947389516502009e-02, -4.828394739858812e-02, -4.555183201386388e-02, -4.420780710255919e-03, 1.923197850911862e-02, 3.260661301066586e-02, -2.001274353646263e-01, -9.697461398779398e-03, -4.219789043101772e-03, -7.802840096119818e-03, 2.911618562203258e-02, -1.148259256742562e-02, 8.401998374687830e-03, 3.443228161991630e-02, -1.451146158722591e-02, -1.920034642388975e-02, 6.404321636546353e-03, -1.231474664284349e-01, -9.871627528791178e-03, -2.771607831066794e-03, 2.361621088507305e+00, 4.241537832251353e-02, -1.353175011660360e-02, -2.874488728919146e-02, -1.256357838519620e-02, 4.706705533557832e-02, 2.331796577481240e-02, -3.133566152938492e-02, 2.704612032901450e-03, 7.363623650844588e-02, 3.511413921866435e-02, 9.531166861921882e-04, 2.235280966376720e-02, 8.459375602763317e-02, 8.428127006570994e-03, 5.482833448660761e-03, 1.432540753379479e-02, -2.511949074372376e-02, -8.268296533661836e-02, 1.117209975109269e-02, -1.015309670775610e-02, 1.139609046490511e-02, -6.818279850380627e-04, 2.190874747580251e-03, 8.800412356223501e-02, 9.970165429733682e-02, 2.715422400493425e-04, -8.650826117767865e-03, -1.152673113842104e-01, 1.761190636633580e-01, 2.811848400372248e-02, -3.199423942179686e-02, -3.346003415713619e-02, 7.477769081719798e-02, -1.635048813825511e-02, -6.578665855271716e-03, -2.173978435535755e+00, 5.916471617180392e-03, -9.757853342324145e-02, -5.139067639854734e-01, -3.825017568805527e-01, 1.740033955152706e+00, 1.212024797058593e-01, -1.785990376335731e+00, -7.976715704758078e-01, -5.738043757874323e-01, 1.224587242586470e-01, 7.883375122352243e-02, -9.928798124011956e-01, 2.372016193659034e+00, 6.822804215519512e-02, 1.062883055565731e-01, 3.421095313720900e-02, -5.418065354170329e-02, -2.035681388314440e-01, -1.714330699306885e-01, 1.664842221325949e-01, 7.475909780958263e-03, 1.160267608037874e-01, -1.628379403047166e+00, -2.515186932714680e+00, 5.234850632063034e-01, 5.145328531100059e-02, -1.511556358591843e+00, 4.092745109391054e-01, 1.382444927768512e+00, -1.393125596933844e-01, 1.000996876720065e+00, 5.451195694444346e+00, 6.311378227969062e-01, 1.507434589842196e-02, 5.507946973430612e-02, 1.308499230766867e-02, -6.793887556270158e-02, -9.813759680170783e-02, 9.881196393261689e-02, -1.795855725646571e-02, -9.175703191513946e-04, 1.646460943037720e-02, -3.165159195547048e-02, 7.769797609925945e-02, -6.674569504417214e-03, -6.707983646442408e-04, 1.595819722881499e-02, -5.279551068413883e-03, 2.384397635281444e-03, 7.272432441507211e-02, 1.015442213148731e-01, 1.515843856291720e-02, -4.117579714709847e-03, -9.789513603963880e-02, 3.631461962356623e-02, 1.462749446542736e-02, 3.668190183580839e-02, -2.971209634341327e-02, 1.543836524000380e-02, -2.351531661442466e+00, -2.631712506656511e-03, -1.781991491247008e-02, 9.589770688204571e-03, -8.632286429533292e-03, -2.414075040465659e-01, -1.951547664821709e+00, 9.797508095013429e-01, 3.355797390821604e-01, 2.073583028464535e+00, -7.269066142458114e-01, 1.482687603849931e+00, -2.233015559454566e-02, 1.038435232287648e-01, -7.322395995641146e-01, -3.865317044508458e-01, -6.660592886896535e-02, 3.259241628113207e-02, -9.690571384289266e-04, 4.353757900298755e-02, -5.089952609808982e-01, 2.937694564844013e-01, 1.625406452285607e-01, -1.008761739058139e-01, 2.565755927362965e-02, -2.547471459474634e-01, 4.478652879179613e+00, 1.699061729315105e-01, 4.458931048826866e-01, 2.265999112081026e+00, 3.863148282755935e+00, 1.402085209376141e+00, -9.695123557233130e-02, -5.911466331451913e-01, 1.828092030437996e+00, -1.449462594897241e+00, -2.567941932268602e-03, -2.321452462957578e-02, 1.040197011704400e-01, 4.899561413303790e-02, -2.101004277043047e-01, 1.634638376963961e-01, -2.601004225965503e+00, -2.250586286406173e-02, 4.069440255976944e-02, -8.905798726139191e-02, 2.258009899560715e-01, 1.727039031444059e-03, -8.122655964504738e-03, 6.043594606765087e-02, -1.802730667517859e-02, -7.187703651014749e-02, 8.356539281995441e-02, 2.017288693462863e-01, 2.708770075446747e-02, -1.105930867360040e-02, -1.229690670451051e-01, 1.671338495580313e-01, 2.656305120075714e-02, 3.666568007666407e-02, -1.801101105290764e-01, 1.081615675675685e-01, -2.960122183734873e-02, 1.188183992451220e-02, -1.392858818682945e-02, 2.436507372233264e-01, -1.471353306296003e-01, 3.553941749776230e-01, 1.798473582807496e+00, -4.118053533095349e+00, -3.579845547154202e+00, -2.096200279200767e+00, 1.530431122931736e+00, 1.288185126337671e+00, 3.886681409712089e-02, 9.961960807855540e-02, -2.544604397094334e-02, -9.421811848415695e-01, 7.517982307238205e-02, -5.753024273534744e-02, 9.218102221470839e-02, -5.321892524420766e-02, 1.203630122989498e-01, 1.456222692386163e+00, 6.245421913185243e-01, 1.774805214351885e-01, -4.154737747118108e-02, -3.883154373644734e+00, -6.130449259166966e-01, 1.115957415189399e-01, 4.678778459561121e-02, 1.181787631481672e+00, 1.601770727717407e+00, -6.540655428055705e-01, -3.676658930642088e-02, -1.731173281268848e-01, 1.361952206147629e+00, -1.470802058918329e-01, -2.084124009723895e-01, 7.809740894099438e-01, -9.815725684572834e-01, 5.764488724303813e+00, -1.779364392038660e+00, 9.518389025030248e-01, 1.076905166550247e-01, 1.385865755445472e-02, 8.789564343258072e-02, -9.847749550753687e-01, 4.828823901556712e-01, -7.741277671296710e-03, 2.607882587836585e-02, 4.762757025791896e-02, -8.821480625130501e-02, 9.265785969106756e-01, 1.451786979851499e+00, 1.521916017559892e+00, -2.318069656418176e-02, -7.478781282362441e-02, -3.295568674874593e-01, 1.676919432526015e+00, -7.902795037352392e-02, 1.114247111178208e-01, -1.580544046231608e+00, 3.586417486608359e-01, -2.826058759870467e-01, 1.448732043846696e-02, -1.704955478038178e-01, -1.045873629064557e+00, 2.649064335961540e-01, -2.891333693064341e-02, 1.532862062130396e-01, 2.276457337494744e-01, -7.221204592768189e-02, -1.369791018820597e-01, 2.313507652625108e-01, -3.073190373080292e-02, 4.186331163664930e-03, 2.713205828777434e-03, 1.127308261720312e-01, 6.236458100781282e-02, 1.588908474595202e-02, 6.959928984248169e-03, 1.494333818615647e-02, 7.219749241878258e-03, -2.563232057107444e+00, 1.256456830016648e-02, 3.656474053911821e-01, 3.635878891370457e-02, 1.898743612513639e-02, -3.065966540864692e-01, 1.621440705118586e-01, 4.426548304272343e-03, 1.154815614513680e-02, -2.274918067671579e-01, 2.931348567464007e-01, -1.729026236380158e-02, -4.109905912937780e-02, -2.189026978032371e-02, 4.042093078141847e-02, -3.999845405869226e-01, 2.523682832604260e-01, 1.626722811597221e+00, 6.306555033387683e+00, -1.448284816828466e+00, -5.343325070438874e+00, 4.380416502606752e+00, -6.726811266709904e-01, -2.104828549794457e-01, -4.202695086445622e-02, 2.602615703649290e+00, 2.200459585983410e+00, 2.193782278269442e-02, -8.562280668123841e-02, 5.915818171864080e-02, -4.765589609387593e-02, 1.460771366698983e+00, -1.872084353837619e+00, 9.072700611867537e+00, 1.589888788470997e-01, 9.244640944294037e-02, -4.899345303412207e+00, 4.077056541733421e+00, 5.877659636046067e-02, 1.179699893443666e-01, -5.276579708905818e+00, 4.881802983815964e+00, -3.252038494604634e-02, -8.889380274934559e-02, -1.164160372759622e-01, -2.744842003910990e+00, 9.033511671529895e-01, -1.684592634389632e-01, 3.276374190372613e-01, -7.700282760527852e-01, 4.878876039200851e-01, 1.063143691858050e+00, -1.214588497551615e-01, 4.198099829581412e-02, 4.521244160632727e-02, -6.202709530013615e-02, 4.721302822159657e-01, -4.494805144322342e-01, -2.546483932673370e-03, 5.108880321941218e-02, 1.023863971964588e-01, -7.122211814025865e-02, -9.680638782264088e-01, 4.674669859616559e-01, -4.252766329515346e+00, -5.399564399053130e-02, -7.342260537143681e-02, 1.389666100829384e+00, -1.982976956259845e+00, -3.193114949632313e-02, 1.800482717209063e-02, 1.690183771859884e+00, -1.516708179037768e+00, -5.079020641475498e-02, -6.821864706862688e-02, -4.497636724277843e-03, 1.592133441302178e+00, -7.064168658213657e+00, -7.842522657409151e-02, -3.192000309737120e-01, -4.325917638786400e-01, -1.060544678354059e-01, 8.480743340130789e-01, -6.768690062399328e-01, 5.767348345776516e-02, 5.405474396383981e-02, 4.162801460434278e-02, -3.549462915860515e-01, -3.089065208398677e-01, 3.594399223650170e-03, 2.787355548958687e-03, -4.317632504573049e-03, 1.637952693720236e-02, 6.605419823272347e-02, 3.162583896784267e-01, 4.271586545711717e+00, -7.994893204620672e-02, -8.578761264357080e-03, 6.920214475693924e-01, -5.826730350989723e-01, -1.584728338528852e-02, -7.713554171449697e-03, 7.172390718776381e-01, -7.197426804679755e-01, 2.213659150190142e-02, -2.795918998711060e-02, 4.137773266545860e-02, 1.611833100416015e-01, 7.087146109478260e-02 };
theta3 = { -2.587314312816550e-03, 1.263149387263797e-02, -1.938670944587279e-02, 1.506819534571759e-03, 8.930614848947263e-03, -5.142967110828502e-03, 1.069874890012597e-03, 4.461117554509239e-03, -2.937530338670139e-02, -1.269462686017623e-02, -1.397089613138689e-02, 2.267940535981259e-02, -1.688516390458924e-02, 1.009995691450546e-02, -5.095993818065537e-02, 5.908500773063745e-03, 1.398005376235503e-02, 4.679388627918362e-04, -9.826563556498394e-03, 1.664790422269319e-02, -9.947476794843426e-03, 1.905987048805634e-02, -2.085015465173271e-02, 3.557098751065305e-02, -2.511479243592302e-02, 1.143294254705308e-02, -3.160886091854637e-02, -2.481353796677534e-03, 6.390274250754066e-02, -2.666895646994289e-02, -1.264933715220511e-02 };
[bookmark: _Ref100412369][bookmark: _Toc117076376][bookmark: _Toc131497399][bookmark: _Toc132126403][bookmark: _Toc132225972][bookmark: _Toc135210160][bookmark: _Toc166076655]Third-octave GEQ design filter bandwidths
f_B_m = { 9.178, 11.56, 14.57, 18.36, 23.13, 29.14, 36.71, 46.25, 58.28, 73.43, 92.51, 116.6, 146.9, 185.0, 233.1, 293.7, 370.0, 466.2, 587.4, 740.1, 932.4, 1175, 1480, 1865, 2350, 2846, 3502, 4253, 5038, 5689, 5570 };
[bookmark: _Ref146716712][bookmark: _Toc166076656]Constants for feedback matrix calculation
numDelayLines = 3:
m_hasPositiveFeedbackGain = {1};
m_hasNegativeFeedbackGain = {0,2};
m_alpha = -0.1666666667;

numDelayLines = 7:
m_hasPositiveFeedbackGain = {1, 2, 4};
m_hasNegativeFeedbackGain = {0, 3, 5, 6};
m_alpha = -0.0923495156;

numDelayLines = 15:
m_hasPositiveFeedbackGain = {1, 2, 3, 5, 6, 9, 11};
m_hasNegativeFeedbackGain = {0, 4, 7, 8, 10, 12, 13, 14};
m_alpha = -0.05;

numDelayLines = 31:
m_hasPositiveFeedbackGain = {1, 2, 3, 4, 6, 7, 9, 12, 13, 19, 20, 21, 24, 28, 30};
m_hasNegativeFeedbackGain = {0, 5, 8, 10, 11, 14, 15, 16, 17, 18, 22, 23, 25, 26, 27, 29};
m_alpha = -0.0265555905;

numDelayLines = 63:
m_hasPositiveFeedbackGain = {1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 17, 19, 20, 25, 27, 28, 29, 33, 34, 36, 37, 39, 42, 46, 49, 50, 53, 55, 57};
m_hasNegativeFeedbackGain = {0, 6, 11, 12, 16, 18, 21, 22, 23, 24, 26, 30, 31, 32, 35, 38, 40, 41, 43, 44, 45, 47, 48, 51, 52, 54, 56, 58, 59, 60, 61, 62};
m_alpha = -0.0138888889;
[bookmark: _Ref100932019][bookmark: _Toc117076377][bookmark: _Toc131497400][bookmark: _Toc132126404][bookmark: _Toc132225973][bookmark: _Toc135210161][bookmark: _Toc166076657]Dispersion filter coefficient template
T_1 = { 1.8851, 1.3414, -0.94643, -0.0022999, 0.98879, 1.4412, 0.90585, -0.20469, 1.8207, 0.59234, -0.49456, 0.75898, -0.71271, 0.15531, 1.4836, 0.55975, 0.92137, 0.25426, -0.42576, 0.49106, -0.12198, 0.17224, 0.88671, 0.21324, 0.14227, -0.93968, -0.066212, -0.0932, -0.66966, 1.9493, 0.91102, -0.36128, 0.66588, -0.68229, 1.4441, 1.9007, 0.28748, 0.78619, -2.142, -1.5365, 0.29466, -0.6012, -1.1083, -1.2338, -0.47357, 0.21661, 0.25799, 0.50719, -0.30746, 0.22622, 0.60989, 0.46916, -1.1549, -0.31592, -0.11128, -1.3765, 0.77415, -0.86679, 0.30029, 1.409, -0.32353, -0.44088, -0.92876, 0.25209, 2.9322, -0.44763, -0.21962, 2.0233, -1.2859, -1.0554, 1.3965, 0.88539, -0.99837, -0.80886, -0.82709, -0.50952, -1.2025, 0.82418, 2.0891, 0.49768, 0.35544, 0.55602, 2.4414, 1.4896, -1.9328, -1.3886, 0.62531, 2.3308, 0.21226, -1.5505, 1.4585, -0.42583, -2.1545, -0.23733, -0.0047392, 0.99103, 0.15236, 0.41017, -0.71493, 0.67415, 1.477, -2.075, -0.91026, -0.80227, -0.64036, 0.50027, 0.4737, -0.037732, -1.4948, -1.1626, -0.97111, -0.23079, 2.158, -0.93907, 0.62561, 2.8619, -1.2238, 0.68249, -0.22967, -2.3132, 0.54088, 0.22264, -0.14336, -1.8643, 1.6966, 0.81241, -2.6671, -0.26208, -0.2364, 0.54183, 1.8319, 0.92692, -0.16398, -0.042301, 1.0194, 0.59384, -0.17035, 0.42828, -0.46514, -1.5001, 1.1012, -0.67172, -1.6165, 0.16067, -0.43493, 0.36332, 0.17062, 0.31841, 0.010483, 1.7787, 0.46583, -0.74559, 0.1499, -0.062328, 0.036548, -0.71394, -1.2466, -0.28818, 0.49365, 0.096309, -1.5605, -0.4777, 1.3364, -1.2375, -0.53021, 0.86708, -0.70674, -1.1301, -1.0483, -1.0366, 1.2537, 1.5829, 0.42856, 0.41962, 0.33163, 0.87747, 0.79698, 0.58817, 0.42938, -0.54925, -1.7494, 0.57535, 2.1975, -0.30985, 0.19281, 0.53724, 0.97838, -1.1005, -0.45414, 0.42717, -0.5864, -1.2376, -0.89444, 1.3916, 1.0278, -1.2451, -0.31968, 1.004, -0.10647, 0.10862, 1.2345, 1.581, -0.24568, -1.2426, -0.16336, 0.18966, 0.93218, 1.4373, -1.0878, -0.57004, 1.887, -0.52739, -0.74903, 1.1521, 1.0992, 1.1928, -0.80639, 0.025742, 1.0172, 0.58679, 0.094761, -0.2504, -0.40399, -1.5525, -0.1376, -1.1622, -0.50813, 0.063796, -1.7861, 1.0683, -0.086027, 0.61956, 1.3082, -1.755, -0.95426, 1.1732, 1.513, 0.24195, -0.68367, -0.1487, -0.87765, -2.0024, -1.1004, 1.1408, 2.1504, 1.5583, -0.50169, -0.51793, -0.036382, -0.57687, -1.822, -1.6994, 0.28333, 0.048964, -0.12792, -2.4738, -1.5254, -0.22522, -0.46277, 1.2754, -1.6316, -1.4512, -0.29362, -1.5579, 1.7222, 1.0675, 0.39094, 0.80198, -0.019308, 0.32201, -2.0857, -2.1224, -0.1415, -0.25619, 0.15049, 0.68237, -0.22002, 0.50058, -0.2647, 0.95616, 2.1124, -0.47257, 0.53084, 3.0057, 0.52129, -0.71536, 1.6155, -0.13791, -0.46119, -0.93999, -2.8265, -1.4292, -1.1573, -0.26923, 0.39585, 0.39784, 1.511, 1.3157, 1.3648, 0.34196, 0.14936, -0.64408, -0.40062, 0.59027, 0.91135, -0.45745, 0.91117, 0.67185, -1.5215, 0.17215, 1.3194, -1.1268, -0.89613, 0.43674, 1.2104, 2.2666, -1.2025, -0.68112, 0.93081, 1.3322, -0.37393, -0.34653, 0.074589, -0.23802, 0.6611, -1.2193, -0.068246, 0.19256, -0.56603, -1.5555, -1.4625, 0.49081, 0.22211, -0.58461, -1.3616, 0.22747, 1.273, 0.13213, 1.2471, 0.42381, 0.44023, 0.30176, 0.1964, 0.63784, -0.46852, -0.78287, -0.51291, -1.1121, -1.533, 2.2722, 0.30738, -0.051575, 1.1377, -1.3299, 1.199, 0.27247, -0.16592, -0.32467, -2.1976, 0.79707, 0.45171, -0.11396, 1.5281, 0.74011, -1.3266, -1.2091, 1.9386, 0.77081, 1.2352, 1.1044, 0.79787, 0.81993, -0.63923, 0.0014934, 1.0363, 0.26782, -2.1945, -0.82959, 1.1231, -0.91429, 0.56731, -0.3239, -0.90184, 1.216, 0.63775, -1.0125, -0.56066, 0.30611, -0.26593, 0.66461, 0.96967, 1.0736, 1.6628, 0.81802, -0.22736, 0.20303, 0.89797, -0.4333, 0.69114, -0.2852, -1.4395, -0.32792, -1.0594, 0.036372, 0.31747, 0.16395, -0.62495, -0.2948, 0.52609, -0.72596, -1.4849, 1.3737, 2.2942, -0.83944, -0.33261, -0.67935, 0.2632, 0.64378, 0.070675, -0.83187, -1.3621, 0.55969, -0.46518, -1.2697, -0.92838, -1.1305, -0.35009, -1.5699, -1.2397, -0.024887, -0.746, 0.78995, 0.11261, -0.7189, 0.27577, 1.6429, -0.04819, 0.48135, 0.753, -0.89835, -0.93653, -0.67369, 0.29632, -0.41486, -0.78646, -0.16357, 1.6531, -1.6816, -0.023137, 1.2885, -0.22256, 1.3262, -0.31439, -0.83153, -0.8038, -0.16468, 0.73468, 0.80747, -0.93496, -1.2389, 1.3676, 2.4885, 0.0075579, -3.3601, 0.42406, 0.95879, 0.18042, 0.048067, -0.73255, 2.1972, 0.046881, -0.25773, 2.6769, 1.0329, 1.0814, 1.1006, -1.2349, -0.29112, 0.92271, 1.9965, 0.51026, -1.5237, -0.034136, 0.7268, 1.1458, 0.03347, 0.11994, 1.1223, 0.22669, -0.15446, 0.47807, 0.33524, 0.036938, -0.12337, -1.1922, -0.082579, -0.54891, 0.01796, 0.73568, -0.6512, -0.39291, 1.2906, 0.47413, -0.5478, -1.2419, 0.45106, 0.87875, 0.44776, -0.32967, 0.077977, -0.18238, -0.14245, -0.31018, -2.4049, -1.9576, -1.5272, 1.4696, -0.066605, 0.35396, 3.6372, 0.30864, -0.60084, -0.74512, -1.0826, 0.45355, 1.0313, -0.27307, -0.41372, 0.66811, 1.3798, 1.6432, -0.61296, -1.8251, -1.3808, 0.15039, 0.44825, 0.1049, -0.19996, 1.5007, -0.074169, -0.47377, 2.324, 1.244, -0.9842, -1.3003, -1.2345, 0.021463, -0.19201, -0.057094, 0.47427, -0.18103, 0.36028, 0.89696, 0.0002241, -0.34101, -2.0678, -0.35073, 2.0354, -0.41844, 0.17491, -0.87469, -0.98279, 1.3595, -0.17279, -0.50881, 0.91399, -1.2112, 0.43936, 1.013, 0.78833, -0.19166, -0.56061, -0.35643, 1.1484, 0.34582, 0.13736, 2.0375, -0.50189, -0.62823, 1.2324, 0.028023, -1.6654, 1.0996, 0.89769, -0.57706, 0.23164, 0.502, 1.5745, -1.1387, -2.0202, 0.081976, -0.61196, -1.0216, -0.03905, -0.03142, 0.16238, -0.54101, 2.2796, 1.8255, 0.35508, 1.0244, -0.090408, -1.7015, -1.1112, -0.23899, 0.45999, 0.32527, -1.743, 0.93785, 0.383, 0.0011851, 1.0963, -1.0476, 0.21869, 1.8064, 0.7521, 0.031923, -1.0341, 0.87797, -1.1746, -0.73876, 0.64769, 0.55481, 0.2874, -0.38528, -0.27698, -0.92587, 2.7035, 0.10127, 0.10259, 0.84137, -1.4944, 1.1726, 1.0888, 0.73451, 1.1671, 0.76776, 0.82625, -0.6032, -1.26, -0.97156, -0.40604, -1.2246, -1.6539, -1.7923, -0.36546, -1.1928, -0.68116, 2.009, -0.98855, -1.2862, 0.70962, -1.3275, 0.54642, 2.3815, -0.03765, -0.92236, -1.9742, -0.086957, 1.5332, -1.1357, 0.43163, 0.27794, -0.653, -0.025559, -0.33756, -0.11669, -1.0553, -0.097422, -0.46209, -1.7241, 0.37894, 1.4668, -3.0278, -0.59254, 0.17241, 0.14883, 0.39733, -0.88392, 0.97449, -0.71204, -0.044824, -0.9691, -0.78373, 0.097861, 1.1341, 1.17, -1.4466, 0.23358, -0.10334, 0.75049, 0.91693, -0.83555, 0.73117, -0.21269, 0.79311, 1.2242, 0.88908, 0.75052, 0.26755, 0.56912, -1.251, -0.16399, 0.34424, -1.2486, -0.66139, 0.8219, 0.68039, 1.4426, -1.5162, -1.3877, 0.21503, -0.042725, 2.7976, 0.71211, 0.013552, -0.3893, -2.366, 0.26273, 1.6795, 0.83604, -0.47941, -0.5707, 1.0274, 0.88531, -0.48918, 0.57961, 0.82575, 1.3595, 0.16566, 1.1078, -0.33823, -1.404, 0.69607, -1.8622, 0.074717, 1.4778, -1.8682, -2.0655, 0.7506, 1.3301, -0.6443, 0.23906, 0.52738, -0.85608, 1.362, -0.93056, 0.58876, 2.7884, -0.51813, -0.46731, 0.10754, -0.98527, -0.33371, -0.088166, -0.83007, 0.040104, 0.78619, -0.085668, -0.44826, 0.24394, -0.67234, 0.82832, 0.17496, 0.13062, 2.8271, 1.4975, -0.40908, 0.1359, 0.9072, -1.7599, -0.5453, 2.1171, -0.014887, -2.5589, -0.57775, 1.6834, -0.080809, 0.093551, 0.61804, -1.0751, -1.2765, -1.3712, -0.51046, -1.0615, -1.1314, 0.4715, -0.21498, 0.97776, -1.1221, -0.48521, -1.4482, -0.21924, 1.2974, -0.28956, 1.7851, 0.071719, 0.6046, -0.29271, -0.17605, 0.9617, -1.5625, -0.052854, -0.95211, -1.1408, -0.11444, 1.1291, -0.10331, -1.2746, 0.3409, 1.1205, -0.007955, 0.72281, -0.5432, -1.0362, 0.70673, -1.4891, -1.4421, -0.79956, 0.34391, 1.7518, -1.2119, -1.0638, 3.0957, 1.0524, -1.5077, 0.40659, -0.13836, 0.70665, 0.1415, -1.6408, -0.21954, -1.9064, -1.1034, -0.22287, -2.893, 0.64603, 0.54533, -0.37797, 2.0813, 0.0096322, 1.4301, 1.544, 0.26251, -0.60614, -0.81926, -0.055482, -0.19908, -0.40061, -1.3979, -0.22105, -0.49838, -0.18867, 0.2221, 1.195, 0.92599, -0.47433, -1.0105, -1.0042, 0.5298, -1.0114, 0.12258, -0.55754, -2.2667, 1.9457, 1.1418, 0.47313, -0.16508, -1.1121, 1.1526, -1.5508, 0.085199, 1.257, -0.032102, 0.25237, 1.5262, 0.74626, -0.67467, 0.5987, -2.4428, -0.96545, 1.0493, 0.84523, -0.71383, 0.64297, -0.91477, -0.90476, -0.076182, -0.52942, 0.71457, -0.44154, 1.8578, 0.46729, 1.1348, 1.0283, -1.7163, 0.3485, -0.56561, -1.9252, -1.6894, 0.33806, 1.1391, 0.019754, 0.075867, -0.40031, -1.2373, -0.55594, 1.8686, -0.18068, -0.32389, -1.1951, -1.3943, 1.0211, 0.86427, 0.41696, -0.064811, -0.52159, -1.4744, 0.10421, 1.4487, 1.3691, 0.30712, 0.51162, 1.143, -0.69583, 0.99675, -0.7941, -1.7184, 0.49574, -0.5451, -0.40853, 0.054156, 0.29137, 0.1873, 0.87522, -0.26537, -0.21206, 1.0851, 0.77455, -0.52056, 0.21701, 0.55345, -0.26027, -0.21041, 0.72292, 0.74644, -0.92501, 0.95202, 0.33238, -1.3193, -0.60032, -0.58882, -0.36836, -0.45182, -0.11879, 1.2434, -1.0261, -1.6561, -0.58256, -1.8611, 1.5295, 0.8271, -1.5577, 0.97718, 1.1691, 0.032562, 0.021012, -0.73012, -0.69482, -0.95646, 0.25551, 0.57942, -0.020484, -1.4317, -1.0873, 0.93029, 0.68092, 1.3767, -0.4535, 0.031838, 0.10265, -0.062462, 0.1742, -0.76579, -1.0554, -1.7138, 0.92156, 0.5084, 0.61305, 0.38835, -1.4137, -0.16386, -0.60906, 0.99488, -0.15377, -0.43294, 0.63945, -0.93808, 0.046884, 0.28169, -0.35728, -0.0070352, -1.3972, 0.081111, -0.67337, -1.5621, 0.039233, 0.24375, -0.39277, 0.44538, -0.21229, 1.0072, 0.7884, -0.49646, 1.4641, 0.37058, -0.029677, 0.22157, 0.87804, 0.44536, 0.19623, 1.4059, 0.13539, 1.9609, 0.90209, -0.01327, -1.9248, -1.9553, 1.6211, 0.99334, -0.2009, -1.9405, 1.3016, 0.2025, -0.23645, 0.90779, -0.87049, -1.2309, -0.48495, 1.0632, -0.77715, -0.43676, 1.1997, 2.1881, 0.66908, 1.3644, 1.4551, -1.3083, 0.45117, 0.098604, 0.19604, 0.48614, -2.0011, 1.4728, 1.9863, 0.32458, 1.5602, -0.73228, -0.90268, -0.18635, -1.4851, -0.47345, 1.4504, -0.22424, -1.1756, 0.96195, 0.5339, 0.78421, 1.1679, -0.90154, 0.59978, 1.1049, -0.4953, -0.73007, 0.34732, -0.039512, -1.1357, 0.67044, -0.88231, 0.69941, 0.9471, -1.9209, -0.57087, -1.6958, -0.138, -0.56867, -0.85448, 0.32733, -1.104, -0.088407, -0.22002, -0.46841, 0.15759, -0.37281, -1.5106, 1.1484, -0.5359, 0.054622, 1.5979, -0.35963, 3.6665, 0.18604, -1.4568, -1.5638, -1.1508, 0.22391, -0.047055, 0.71316, -0.74877, 0.56384, 2.2421, 0.85364, 0.56248, -0.87945, -1.1682, 0.9451, 0.6915, -0.077629, -1.1818, -0.17716, -1.6785, -1.3966, -0.00312, 2.2395, 1.3149, -0.18159, 0.57985, -0.94257, 0.66172, 1.7027, -0.31718, -0.94815, 0.64889, 0.36113, -1.784, -1.1272, 2.5596, -0.18054, -1.2766, 1.9195, 0.63457, 1.5751, 2.1586, -1.1666, -2.3267, -1.5599, -0.16989, 0.23129, 0.10809, -0.099515, -0.1756, 0.39558, 2.3103, 1.1172, 1.4088, -0.61327, -0.13879, 0.1258, -0.89995, 1.9482, 0.62827, 1.2225, 0.37326, -0.38694, 0.77359, 0.37657, 0.47068, -1.0603, -1.0868, -1.1322, -0.40877, 0.24499, -2.3171, -0.12558, -0.25279, -1.3003, 1.2074, 1.0945, 1.8136, 2.5855, 1.6878, 0.24752, 0.69339, 2.0613, -0.85689, -1.4839, 0.49037, -1.4878, 1.6408, 0.98252, -3.1073, 1.4137, 0.59122, -1.7983, 0.95415, -0.59267, 0.028297, 0.075472, 0.69037, 1.7256, 1.2552, 1.4722, 0.53618, 0.65475, 1.8263, 1.3225, -0.50106, 0.34231, 0.98076, -1.2248, 0.086563, 0.70364, -1.1404, 1.4855, 0.63401, -1.0052, -0.56062, 1.4559, -0.18931, -1.3686, -1.2008, -0.33159, -0.28738, -0.5392, -1.3028, -3.2032, -1.2642, 0.28874, 1.2, -0.85951, -0.3494, -0.73112, -0.15607, 1.7478, 1.0546, 0.18679, -1.7647, 1.2978, 0.47215, 0.51319, -2.0868, -2.4207, 0.079512, 0.16965, -1.0297, -0.84355, -0.73938, 0.33954, 1.4896, 1.1705, 0.76244, 0.58082, 1.8582, -1.3445, -0.68385, 0.32823, 1.4576, 1.4928, -1.4179, 0.39287, 1.9265, -1.7712, -1.8243, 1.1277, 1.1727, 1.1575, 0.12053, 2.7316, 1.96, -0.5638, 0.8561, -0.028812, -1.0375, -1.3379, 0.86438, 0.10214, -1.4781, 0.21744, -0.04637, -2.485, -2.0821, 0.38918, -0.69387, -2.4561, -0.7664, 0.94953, -0.19945, -1.2875, 0.21535, 2.0149, 1.7681, 1.0109, 0.053485, 0.88251, -0.14319, 0.16218, 0.038135, 0.70807, -0.13572, 0.049937, -1.0621, -0.9522, 1.071, -2.0988, -0.46026, -0.162, -0.2635, -1.1812, -0.083951, -0.12916, -1.0836, -1.5345, -1.5286, 0.75613, -1.0262, 0.17711, 2.4183, 1.9178, 0.45965, 1.3011, -1.1437, -0.080648, 1.662, 1.3997, -0.97531, -0.33742, 2.3715, -1.5555, 0.061547, 0.29282, -0.14715, -0.21413, 1.491, 0.67859, -1.0014, -0.63877, 0.29502, -0.39921, -1.5649, -1.4655, -1.0633, 0.060291, 1.2752, 1.5975, 0.66559, 0.79621, -0.27771, 3.9322, -0.17422, -2.8988, -0.64256, -0.035866, 0.45182, 1.7466, -0.4418, -1.6681, 0.32632, 0.088848, -0.13264, -2.6827, -0.039628, 0.14426, -2.4108, -0.31075, 0.22664, 1.3976, 0.38042, -0.6491, 0.56804, -0.6117, -0.163, -1.4403, 0.6444, 0.32245, -0.50725, 1.6954, -1.4665, -0.74155, -1.5187, 0.48159, 0.19066, -1.9828, 0.37601, -2.1533, -0.24562, -0.18498, 0.37735, 3.3855, -0.17819, 1.9374, -1.4737, -0.46226, 0.39557, 0.041312, 1.666, -0.15342, 0.082775, 0.2045, 0.29464, -0.36529, 0.67643, 1.8706, 1.2919, -0.26429, -0.23554, -0.59964, -0.26342, -0.87437, -0.30131, 0.060096, 0.994, 0.26277, 0.56049, 2.3882, -0.78876, 0.24919, 0.77415, 1.1389, -0.63739, -0.16345, 1.0443, -1.3892, -0.97766, 0.12252, -0.84555, -1.1002, -0.6454, -0.35156, 0.012707, 0.21588, -0.66209, 1.0655, 1.6524, -0.98077, -0.23999, 0.4741, 0.87485, 0.72076, 0.88723, -0.43524 };

T_2 = { 0.33704, 1.8552, 1.5559, 1.1498, 0.29595, -0.8019, 0.52389, -0.66144, 0.54709, 2.5769, -0.87282, -0.24696, 0.22304, -0.064749, 1.5146, 0.88741, 0.56086, 0.16268, 1.1603, -0.60712, -0.34242, 1.5964, 0.72092, 0.39141, -0.84366, -0.84313, 0.74418, 0.053387, -0.10267, -0.82628, 0.68397, 2.3725, -0.55335, -0.41403, 1.9029, 0.63753, -0.4045, 0.78201, 0.56852, -1.12, -1.7211, -0.47454, -1.3491, -1.0273, -0.279, 0.53526, 0.52262, -0.52169, -0.29594, -0.30505, 0.4919, -0.21775, 0.15409, 0.85339, -0.50445, -1.1324, 0.092041, 0.58563, 0.39248, -1.4605, -0.20777, 1.5919, -0.86334, 0.84079, 1.5304, -0.94995, -0.63923, 2.609, -0.41717, -1.5121, 1.5954, -0.84186, 0.25923, 0.32429, -2.4553, -0.14961, 1.009, -0.66521, 1.4325, 1.4663, 0.80996, -1.0873, 0.82252, 0.54403, -1.2881, 1.0047, -0.41165, 1.266, 0.23886, -0.49206, 1.0506, -0.83075, -0.97906, -0.34056, -0.034318, 0.41944, 0.11133, 0.90768, 0.62157, 0.39752, -0.13391, -0.57207, -1.8574, -0.23518, -0.51491, -0.46862, 1.7918, -1.8901, -1.4628, -1.026, -0.65574, 1.0677, 0.77964, 0.47473, 1.3111, 1.0101, 0.016137, -0.30027, -1.5499, -1.531, 0.21709, 0.02692, 0.33537, -0.11021, -0.51926, 0.91416, -1.1898, -1.0827, -0.69013, 1.6389, 1.4012, 0.56894, 0.45598, 1.4704, 1.2893, -1.2394, -0.24188, -1.2206, 0.11813, 0.38838, -0.50556, 0.26342, 0.03092, -0.35421, -0.58325, 0.24278, 1.3958, -0.29391, -1.1698, 0.98864, 0.95754, -0.28964, -1.1917, 0.58401, 1.6481, -0.20266, -2.0118, -0.80588, 0.13727, 0.68899, 0.21898, 0.086773, -1.2007, -0.77953, 0.78799, -1.3044, -0.95748, -0.94668, -0.46495, -0.68115, -0.50627, 1.4451, 1.307, 0.83167, 0.49846, 0.34255, 1.053, -0.3802, -1.471, 1.6847, 0.7785, -0.87307, 1.1198, -0.49134, -0.45272, 1.9656, -0.78851, -0.7673, 1.2983, 0.36764, -1.3388, -1.3338, -0.14936, -0.53219, 1.2894, 0.71968, 0.77959, -0.47448, -1.7105, 0.32192, 1.599, 1.0707, 0.019071, 0.62937, 0.0046704, -1.0743, -0.26611, 1.4551, -0.20943, 1.1382, 1.0842, -1.2566, 1.9956, 0.51984, 0.019087, 0.78675, 0.3818, 0.00049256, 0.65056, 0.50333, -1.5187, 1.7538, -1.161, -2.7199, 1.2423, -2.0084, -0.58767, 0.94025, -0.21432, 0.33092, 0.029031, -0.8362, -0.52163, -1.1983, 0.70371, 1.9852, -0.78991, 1.5322, 0.41272, -1.975, -0.42063, -0.94821, -1.1931, 1.2805, 0.48645, 0.2869, 1.1124, -1.2244, -1.1608, 0.10938, 0.33888, -1.639, -2.2469, 1.2495, 0.86219, -2.0408, -1.6087, -0.45979, -0.45242, -0.99223, -1.1851, -2.1266, -0.74243, 1.9099, 1.0189, 1.1119, -0.15854, -0.6576, 0.93811, -0.70401, -0.79916, -0.69329, -1.8685, -0.084733, -0.12283, -0.051298, 0.38029, -0.67276, 1.8527, 2.2858, -0.49767, 0.32174, 2.1044, 3.1248, -0.071749, -1.0253, 2.0693, -1.0513, -1.2872, -0.75784, -1.5602, 0.45591, -0.48604, -2.3631, -0.87964, 0.6573, 1.5335, 2.7387, 0.28443, 0.21852, 0.10627, -0.12449, 0.20125, -0.028731, 0.65568, 0.1833, 1.4757, 0.24608, -0.73643, -0.98884, -0.24246, -0.72545, -0.095471, 1.2128, -0.47347, 2.1234, 1.6192, -1.2881, -0.083671, -0.2872, -1.5767, 1.184, -0.14623, -0.53203, 1.5546, -0.75153, 0.075176, -0.29992, -0.88358, -0.11278, 0.29812, -0.68469, -3.0627, -0.49166, 0.19398, 0.068504, 1.2363, 0.26959, 0.025349, 0.33712, 0.53274, 0.45818, 0.65563, 0.66046, 0.26902, -0.84743, -1.589, -0.086598, -0.011354, -0.88862, 0.77249, -0.87089, 1.7522, 1.4763, -1.7303, 0.56167, -0.33832, 0.46719, -0.59106, -0.36334, 1.3962, 0.28315, -1.1496, 0.63594, 1.517, -2.0234, 0.44827, 1.6261, 1.2468, 1.817, -0.95394, 0.71779, 0.77603, 0.77744, 1.194, -0.69959, -0.93329, -0.92455, 0.30441, -0.049116, -0.13609, 0.55469, -0.6371, -1.5834, 1.4743, -0.24954, -0.40993, 0.38456, -0.092218, 0.95002, -0.21552, -0.089123, 2.0048, 0.81859, -0.47682, 0.72501, 1.0292, 0.58896, -0.78309, -0.31489, -1.3425, 0.54391, 1.2229, -1.3552, -0.61795, -0.061518, -0.49812, -1.732, 1.1944, 1.1786, -0.77453, 0.44529, 0.89877, -0.48052, 0.23, -0.010488, -0.45732, -0.50447, 1.0143, 1.4025, -1.03, -1.2556, -0.36858, 0.91854, -2.3942, -2.6824, -0.31797, -1.8175, 0.51033, 0.22296, -0.75284, -0.67553, 0.48786, -0.32356, 0.085113, 1.5534, -0.34831, -0.37006, 1.1978, -0.0027619, -1.4551, -0.81313, -0.95102, 0.61799, -0.088164, -0.9666, 0.0059797, -0.76823, 1.2901, -0.31528, -0.39783, 1.3573, -0.27944, -0.48675, 0.60418, 0.31995, 0.37287, -0.14901, -1.1554, -0.34517, 1.3302, 0.57795, 0.092785, -0.55833, -0.34171, -0.22151, 0.66335, 0.49831, -0.80389, 1.4837, 0.59337, 0.23949, 2.0932, 0.19687, -0.83747, 1.9598, 0.49214, 0.84913, 0.2026, -0.19694, 0.17104, -0.88549, 1.2027, 2.1284, 0.78125, -0.17787, -1.1086, 0.95265, 1.6233, -1.1052, 0.011355, -0.88489, 0.58229, -0.18906, -0.64274, 0.80716, -0.46034, -0.17627, -0.42372, 1.5244, 0.089254, -0.64681, 0.0078003, -0.55643, 0.70197, -0.29594, -0.22835, 0.66337, 0.63272, 0.72066, -0.21104, -2.2308, 0.29007, -1.0276, -1.6288, -0.18517, 0.34936, -0.28661, 0.12428, 2.7762, 0.062884, -0.25702, -1.0724, -1.4431, 1.5073, -0.44252, -0.97865, 0.40451, 1.4464, 0.24852, -0.013475, 1.105, -0.67392, 0.2782, -1.3171, -1.2994, 1.3763, -0.017518, 0.69087, 0.36684, 0.50159, 1.299, 0.5254, -0.62122, -1.3943, -1.7058, 0.52703, 0.74739, 0.0106, -0.044392, 0.0050638, 1.1411, -0.54949, -0.4152, 0.77568, -0.68106, 0.33867, 0.92296, -0.46335, -0.30179, -1.6231, -1.6172, 1.0904, -0.90463, 0.38892, 1.7374, -0.87816, 0.85408, 0.49735, 1.1521, -1.377, -1.2081, 0.29667, -0.40238, 1.3198, 1.2231, 1.1266, 1.1561, -0.15888, 0.35422, 0.79558, -0.42835, -1.2696, -0.29916, 0.64598, 0.075794, 0.34819, 0.64148, 0.17849, 1.093, -1.1214, -2.1301, -1.401, -0.5865, 0.487, 1.0779, 0.51937, 0.70704, 1.1146, 1.4153, 0.74479, -0.60093, 0.12953, -0.249, 0.18788, -0.61264, -0.42081, 0.55264, -1.1526, -0.22557, -0.3344, 0.63683, 1.0571, 0.074912, 0.82951, 0.19649, 0.37998, -0.32912, -0.50012, -0.087908, -1.8437, 0.18846, 1.6438, 0.70178, -0.68383, 0.32705, -0.59778, -0.069792, 0.49, 1.0508, 1.0392, -1.3976, 0.73296, 0.8593, 1.0681, 0.62332, 0.2509, 1.4719, 0.38228, -0.22802, -1.5836, -1.967, -0.93725, -0.10295, -1.0985, -1.6327, -0.070733, -0.6365, 0.59223, -0.26226, -2.1457, -0.96183, 0.58327, 0.2515, 0.13263, 0.72086, 0.38575, 0.73918, -0.75213, -0.55062, -0.99559, 0.89334, 0.92862, -0.39449, -2.1194, -1.1847, 1.6586, -0.5555, -1.8634, 0.13825, -0.41866, -1.7278, 1.4808, 0.65387, -2.5345, -1.7106, 2.0064, 1.1408, -2.0511, 0.59862, 0.21942, -1.9931, 0.76636, -0.69259, -1.1741, 0.5761, 0.96149, -0.17797, -0.95562, 0.61296, 1.0413, -0.085247, -0.74634, 0.11808, 0.77916, 1.183, 0.89734, 1.1209, 0.65507, 0.17496, 0.82561, -0.035875, 0.91258, 0.9509, -2.0915, -1.2121, -0.30108, -0.38053, 0.55359, -0.49203, -0.039222, 0.41694, 0.60789, 1.4381, 1.2282, -0.81418, -1.3535, -1.0761, 1.7111, -0.55229, 0.59931, 3.0443, -0.32315, -0.78287, -0.23602, 1.7729, 0.93005, -0.3961, 1.1237, 1.0485, -0.80548, -0.027681, -1.1923, -0.40887, -0.79284, -0.55238, 0.70318, 1.2776, -0.019774, -0.90922, 0.65507, -0.9209, 0.066807, 0.51621, -2.2343, 1.3425, 0.8099, -0.95493, 1.0883, 0.14033, 1.2051, -0.094286, -0.38591, -0.74, -2.2652, 0.52709, 0.40585, 0.16463, -0.54107, -1.0449, 1.2798, 0.71493, 0.84614, -0.17936, 0.46717, 1.6372, 1.0552, 1.1256, 0.47366, -0.86937, -1.0255, 1.2103, 0.17531, -1.464, -1.2289, -0.56568, 0.37409, -0.041711, 1.5229, 0.47519, -0.16121, -1.6774, -1.9766, 0.86582, -1.0764, -1.0976, 0.55111, -1.5532, 0.43097, 0.78801, -2.3539, -1.667, 1.0349, 0.20383, 0.13893, 0.70712, -0.16359, 0.9384, -0.7775, 0.50179, 1.4519, -1.4373, -0.30179, -0.74156, -0.54495, -0.37917, 0.69651, -0.62169, 1.2675, 0.79003, -1.271, -0.6222, 0.021504, 0.44991, -0.94106, -1.9431, 0.11631, 1.047, -1.1258, -0.18238, 0.58775, -0.23439, 0.33059, 1.8423, 0.34121, -0.81267, 0.05624, 0.15172, -1.5359, -0.55776, 0.1886, -0.27966, -1.2302, -1.86, -0.25435, -1.1575, -0.32568, 1.3999, -0.52897, 0.81488, -0.0076271, 0.70344, -0.028607, -0.8689, 2.6373, -0.90456, -1.5622, 0.78061, -0.15256, -0.42505, 0.96154, -0.12014, -0.32566, 0.41901, -0.33607, 1.507, -0.77138, -1.5959, 1.0757, -0.97569, -0.91751, 0.15427, -1.4128, 0.64319, 0.77505, 0.35153, -0.068519, -0.13968, -0.38263, -1.197, 0.98241, 0.9884, -0.52542, 0.043785, 0.58224, 0.30032, 1.0727, 0.45644, -1.9095, -0.13341, 0.23684, -0.43355, 0.59424, -0.16034, 0.60438, 0.54342, -0.79794, -0.84868, 0.4583, -0.43446, -0.2027, 0.29193, 1.3834, 1.0838, 0.60274, -0.20582, -1.1924, 0.29398, -2.1465, -0.86608, -0.010905, -0.10809, 0.5573, 0.72338, 0.11933, -0.25956, -1.2342, -0.48209, -1.1702, 0.8056, 1.3086, -2.0599, 0.17172, -0.811, 0.75286, 2.1094, -1.4289, 0.30489, -0.54365, -0.11663, 1.8204, 1.5472, 1.3812, -0.23902, -0.75983, -0.56053, 0.19655, -0.11889, -0.024891, -1.0343, -1.3407, -0.34606, 0.078127, 1.787, 0.052711, -0.99729, 1.212, -0.71616, 0.7305, 0.92835, 0.53485, 0.036136, -0.12721, 0.31347, -0.19024, 1.6087, -0.059717, 0.28888, 0.18797, -1.4319, -0.99523, -1.5278, -1.8524, 2.4909, 0.96329, -1.9591, -0.45869, -0.35718, -0.39169, -0.95629, -0.83167, -0.88986, 0.55599, 0.9224, 1.0862, 0.79843, 0.60553, -0.528, -0.54671, -0.38303, -0.9454, -0.078765, -0.95739, 1.075, 0.61077, -0.98378, -0.6026, -0.24061, 1.1547, 1.3901, -0.72881, -0.16609, -1.8277, -0.35833, 1.1332, -1.7111, 0.82531, 1.059, 0.13715, 0.75059, 1.0543, -2.2335, -1.5594, -0.045526, 0.2567, 0.39568, -0.50714, 0.041196, 0.17957, -0.011558, -2.6584, -1.0323, 1.9567, -0.18367, -0.88119, -1.7847, -0.38159, 0.3368, 0.4363, 0.1516, -1.3689, 0.50722, 0.93187, 1.5275, 0.17389, 0.2949, 0.40645, 0.36684, 0.88846, 1.4203, 0.76952, 0.10855, 0.26894, 2.3895, 0.25376, -1.6953, -0.12518, -0.93675, -0.2145, -0.16332, 0.41978, 0.33395, -1.8554, 1.1659, 1.8946, -1.5105, -0.061268, 0.10337, -0.8616, -0.43875, -1.3936, 1.3585, 2.1239, 1.1395, 0.82367, -0.21878, 1.0791, 0.38356, 0.34319, 0.70683, -0.62383, -0.056037, 0.42804, 0.14634, 0.69401, 1.227, 2.3897, -1.361, -0.14217, -0.52936, -1.656, -1.8544, 1.3218, 1.7732, -0.52906, 1.7429, -0.92599, 0.08697, 1.3273, 0.33381, 0.73708, -0.038159, -0.45331, 0.59648, -0.7201, 0.46711, 0.93125, -2.4249, 0.39834, 1.7964, -0.31333, -1.7536, -0.96653, -1.7653, -1.2899, 0.78943, -0.1746, -0.15463, -1.1354, -1.5331, -0.26345, -0.66208, 0.20485, -0.15815, -0.7595, 0.39711, -0.65171, 1.5399, 1.4928, -0.20195, 0.68991, 0.28685, 0.098254, -1.7425, -1.4003, 0.35139, 0.26994, 1.1136, 0.44249, -0.65781, 0.63859, -0.96194, 1.6689, 0.30808, 0.11181, 1.3207, -2.2637, 1.0982, 0.37232, -0.86763, -0.28191, -1.0983, -0.41028, 1.1885, 1.1597, -0.85041, 1.0035, 0.050844, 0.38651, 0.79874, -0.12508, 0.32351, -0.86048, 0.8073, -0.36111, -0.65969, 0.33931, -0.45306, 2.0425, 1.2442, -1.3958, 1.0821, 0.49311, 0.036128, -0.88861, -2.01, 1.3543, 0.28695, -2.2478, -0.13565, -0.071995, 1.7661, 1.6821, 0.33885, 0.57322, -0.0061708, 0.80808, 0.23508, -0.34033, 1.0234, 1.7307, -0.12226, 0.021101, 0.36503, 0.54197, 0.57415, -0.4611, -0.56372, -1.1684, 0.027439, 0.15537, -0.9306, -2.0143, -0.38769, -0.27463, -1.5039, 1.2383, 1.0166, 1.6031, 1.0427, 2.5844, 0.71155, -0.54751, 1.6813, 0.65732, -0.59946, -0.85848, 0.1142, 0.88508, 1.0068, -1.7088, -0.67397, 0.36077, -0.033055, -0.47782, -0.33132, 1.6336, 1.4813, -0.85975, 1.8087, 1.3929, -0.13376, 1.2894, 0.69987, 1.1426, 2.1059, -0.36684, -1.0949, 1.1906, 0.089333, 0.17633, 0.13397, 0.72654, 2.2442, -1.654, 0.10799, -0.23958, -0.70555, -0.94461, -0.085478, 1.4369, -1.3882, -2.3178, -1.8045, -1.2788, -0.70669, 0.16231, -0.68577, 1.1149, -0.66789, -1.3089, -0.91223, -0.065167, 0.42725, 1.064, 0.38384, 0.069534, 0.37599, 0.37596, -0.60273, -1.552, -1.4075, 0.0076051, 0.2854, -1.1357, -0.84781, -0.44064, 1.0737, -0.22861, 0.73523, 0.77984, 0.5365, 0.45187, -1.4949, 1.2603, 1.8745, 0.19604, -0.067873, 1.1009, 1.2712, -0.74435, -0.2481, -0.49231, -0.21557, 0.79266, 1.0207, 1.5139, 1.6367, 0.84882, -0.54459, 1.3408, -0.28398, -1.4471, -1.9498, 1.0679, 1.4374, -1.0639, 0.82198, -1.242, -1.5331, -1.0809, -2.7287, -0.94559, -0.1898, -0.43659, -0.0082367, -1.1914, -0.42594, 1.1755, 0.91157, 1.3659, 0.66957, 0.55832, 0.63291, 1.0257, 0.72418, -2.02, 0.003046, 1.9944, -0.90001, 0.043342, -1.2348, -0.27117, -0.94613, -0.25462, 0.077065, -2.0894, -0.221, -1.9531, -1.3847, 0.80325, -0.21443, -1.9434, -1.309, 0.5086, 1.8988, 1.8301, 1.2468, -0.32472, 1.4931, 1.2705, -0.085228, -0.31084, -0.31576, 1.6693, -0.47475, 1.0311, 0.63006, -0.44175, 0.65529, -0.92325, 0.28645, 0.45158, 1.1932, 0.73085, -1.9236, 0.81218, -0.58016, -2.0183, -0.58721, -0.30354, 0.18068, -0.1505, 0.12707, 1.5491, 1.4981, 0.62685, 2.0135, -1.1446, -0.39161, -0.259, -0.7951, 1.3221, -0.65827, 0.15617, -0.30129, -2.3034, 0.854, -0.43808, -1.6036, -0.68123, -2.0963, 1.892, -0.78227, -0.93879, -0.43246, 0.52054, 0.4836, -1.4507, 0.77917, -0.83623, -1.4031, 0.84757, 0.57253, -0.027712, 1.3238, -1.5286, -0.64992, 0.8009, -0.43247, -0.45119, -1.0307, -0.96312, -2.1582, 0.37888, 0.72913, 0.14049, 3.1725, 1.1284, 0.23249, -0.94105, -0.72276, 0.60969, -0.81174, 0.73446, 2.0861, -0.3353, 0.39472, 0.87566, -0.09792, -1.1364, 1.9492, 2.0596, -0.57767, -0.19193, -0.9996, -0.69024, 0.37739, -0.45541, -0.37005, 1.3886, 0.33196, -0.0068382, 0.99834, 1.8246, 0.37572, 0.76989, 0.3298, -1.0552, -0.17576, -0.37864, 0.21822, 0.0091368, -1.3222, -0.39459, -0.013082, -0.22519, -1.452, -1.4705, 0.21574, 0.48951, 1.2735, 0.99043, -0.68052, -0.27068, -0.10329, 1.0468, 0.40699, 0.74148, -1.1751 };
[bookmark: _Ref100674543][bookmark: _Ref101201483][bookmark: _Toc117076378][bookmark: _Toc131497401][bookmark: _Toc132126405][bookmark: _Toc132225974][bookmark: _Toc135210162][bookmark: _Toc166076658]freqVec(b) - STFT Band center frequencies
	bin index
	center frequency
	bin index
	center frequency
	bin index
	center frequency

	0
	0.000000000
	51
	8812.499997984
	102
	18374.999996125

	1
	140.644316361
	52
	9000.000008860
	103
	18562.499990092

	2
	234.355478108
	53
	9187.500004401
	104
	18749.999991865

	3
	328.144332285
	54
	9375.000001529
	105
	18937.499986965

	4
	421.855497937
	55
	9562.500006565
	106
	19124.999985762

	5
	515.644326841
	56
	9750.000006335
	107
	19312.499985261

	6
	609.355515147
	57
	9937.499999557
	108
	19499.999989766

	7
	703.144330614
	58
	10125.000002928
	109
	19687.499988292

	8
	796.855543885
	59
	10312.500002384
	110
	19874.999989851

	9
	937.500032020
	60
	10500.000004406
	111
	20062.499978542

	10
	1125.000017338
	61
	10687.500002820
	112
	20249.999981602

	11
	1312.500035449
	62
	10875.000001403
	113
	20437.500005879

	12
	1500.000075751
	63
	11062.500002219
	114
	20625.000004853

	13
	1687.500031782
	64
	11250.000001097
	115
	20812.500015815

	14
	1875.000024239
	65
	11437.500001292
	116
	20999.999958305

	15
	2062.499975101
	66
	11625.000000815
	117
	21187.499980259

	16
	2250.000053703
	67
	11812.500000140
	118
	21374.999997733

	17
	2437.500044271
	68
	12000.000000000
	119
	21562.499955794

	18
	2625.000002315
	69
	12187.499999584
	120
	21749.999946298

	19
	2812.500019782
	70
	12374.999999473
	121
	21937.500025004

	20
	3000.000041692
	71
	12562.499999294
	122
	22124.999975461

	21
	3187.499983930
	72
	12749.999998799
	123
	22312.499968567

	22
	3374.999995137
	73
	12937.499997514
	124
	22499.999924162

	23
	3562.499994173
	74
	13124.999998543
	125
	22687.499964503

	24
	3750.000018557
	75
	13312.499997602
	126
	22874.999982475

	25
	3937.500021643
	76
	13499.999995904
	127
	23062.499968048

	26
	4125.000009859
	77
	13687.499996961
	128
	23249.999976609

	27
	4312.500011528
	78
	13874.999996550
	129
	23437.499982579

	28
	4500.000010423
	79
	14062.500000495
	130
	23624.999922020

	29
	4687.500014446
	80
	14249.999993960
	131
	23812.499893152

	30
	4875.000013588
	81
	14437.499993440
	132
	24000.000000000

	31
	5062.500013570
	82
	14624.999997861
	
	

	32
	5250.000007575
	83
	14812.499995461
	
	

	33
	5437.500010288
	84
	14999.999991137
	
	

	34
	5625.000004178
	85
	15187.500001756
	
	

	35
	5812.500003421
	86
	15374.999999428
	
	

	36
	6000.000005158
	87
	15562.500000999
	
	

	37
	6187.500003404
	88
	15749.999993809
	
	

	38
	6375.000003488
	89
	15937.499992382
	
	

	39
	6562.500007191
	90
	16124.999995683
	
	

	40
	6750.000005972
	91
	16312.499995240
	
	

	41
	6937.500008499
	92
	16499.999994365
	
	

	42
	7125.000006936
	93
	16687.499991354
	
	

	43
	7312.500008549
	94
	16874.999992234
	
	

	44
	7500.000005032
	95
	17062.499991361
	
	

	45
	7687.500004875
	96
	17249.999994298
	
	

	46
	7875.000004878
	97
	17437.499992410
	
	

	47
	8062.500007586
	98
	17624.999995960
	
	

	48
	8250.000006218
	99
	17812.499995945
	
	

	49
	8437.499999805
	100
	17999.999994836
	
	

	50
	8625.000000113
	101
	18187.499996913
	
	


[bookmark: _Ref131594738][bookmark: _Toc132126406][bookmark: _Toc132225975][bookmark: _Toc135210163][bookmark: _Toc166076659][bookmark: _Toc117076379][bookmark: _Toc131497402]Closest center frequency bin for each one-third octave band frequency
	bin index
	center frequency

	0
	16.0

	0
	20.0

	0
	25.0

	0
	31.5

	0
	40.0

	0
	50.0

	0
	63.0

	1
	80.0

	1
	100.0

	1
	125.0

	1
	160.0

	2
	200.0

	2
	250.0

	3
	315.0

	4
	400.0

	5
	500.0

	6
	630.0

	8
	800.0

	9
	1000.0

	11
	1250.0

	13
	1600.0

	15
	2000.0

	17
	2500.0

	21
	3150.0

	25
	4000.0

	31
	5000.0

	38
	6300.0

	47
	8000.0

	57
	10000.0

	71
	12500.0

	89
	16000.0

	111
	20000.0


[bookmark: _Toc132126407][bookmark: _Toc132225976][bookmark: _Toc135210164][bookmark: _Toc166076660]EQbin
Binaural EQ EQbin (see Clause 6.6.26.3.5.3)
	bin index
	EQbin(b)
	bin index
	EQbin(b)
	bin index
	EQbin(b)

	0
	0.9260
	51
	1.6291
	102
	1.5237

	1
	0.9125
	52
	1.5511
	103
	1.3058

	2
	0.9081
	53
	1.4354
	104
	1.2100

	3
	0.9125
	54
	1.2503
	105
	1.1955

	4
	0.9353
	55
	1.0908
	106
	1.2367

	5
	0.9539
	56
	1.0447
	107
	1.1854

	6
	0.9851
	57
	1.0882
	108
	1.2017

	7
	0.9864
	58
	1.0956
	109
	1.4122

	8
	1.0052
	59
	1.1305
	110
	1.6408

	9
	0.9861
	60
	1.2584
	111
	1.7691

	10
	0.8966
	61
	1.2681
	112
	1.5915

	11
	0.8599
	62
	1.3551
	113
	1.5407

	12
	0.8723
	63
	1.5122
	114
	1.5362

	13
	0.9705
	64
	1.5078
	115
	1.5532

	14
	1.1584
	65
	1.4253
	116
	1.5277

	15
	1.3672
	66
	1.5348
	117
	1.4606

	16
	1.4724
	67
	1.5593
	118
	1.5091

	17
	1.4113
	68
	1.5143
	119
	1.5231

	18
	1.3476
	69
	1.5152
	120
	1.6351

	19
	1.2923
	70
	1.6453
	121
	1.8617

	20
	1.2496
	71
	1.6941
	122
	1.9810

	21
	1.2379
	72
	1.6581
	123
	1.9883

	22
	1.2737
	73
	1.7024
	124
	1.8054

	23
	1.3830
	74
	1.4535
	125
	1.6002

	24
	1.5525
	75
	1.3868
	126
	1.5267

	25
	1.7644
	76
	1.3063
	127
	1.4320

	26
	1.8759
	77
	1.2892
	128
	1.3283

	27
	2.0243
	78
	1.4462
	129
	1.1892

	28
	2.1751
	79
	1.3555
	130
	1.0683

	29
	2.1952
	80
	1.3570
	131
	1.0110

	30
	2.0104
	81
	1.3459
	132
	0.9367

	31
	1.8608
	82
	1.3748
	
	

	32
	1.7755
	83
	1.3809
	
	

	33
	1.6988
	84
	1.4103
	
	

	34
	1.5921
	85
	1.5158
	
	

	35
	1.5094
	86
	1.5419
	
	

	36
	1.4751
	87
	1.4814
	
	

	37
	1.3455
	88
	1.4838
	
	

	38
	1.2756
	89
	1.4973
	
	

	39
	1.2593
	90
	1.5224
	
	

	40
	1.1974
	91
	1.5630
	
	

	41
	1.2166
	92
	1.5617
	
	

	42
	1.2831
	93
	1.5790
	
	

	43
	1.2675
	94
	1.6489
	
	

	44
	1.2008
	95
	1.7983
	
	

	45
	1.1575
	96
	1.9983
	
	

	46
	1.1915
	97
	2.2378
	
	

	47
	1.0990
	98
	2.2779
	
	

	48
	1.1590
	99
	2.3001
	
	

	49
	1.3169
	100
	1.8893
	
	

	50
	1.5064
	101
	1.8594
	
	



[bookmark: _Ref101354243][bookmark: _Ref101354271][bookmark: _Ref101354301][bookmark: _Ref101354320][bookmark: _Toc117076380][bookmark: _Toc131497403][bookmark: _Toc132126408][bookmark: _Toc132225977][bookmark: _Toc135210165][bookmark: _Toc166076661][bookmark: _Toc100930147]Fast convolution
[bookmark: _Toc117076381][bookmark: _Toc131497404][bookmark: _Toc132126409][bookmark: _Toc132225978][bookmark: _Toc135210166][bookmark: _Ref164410023][bookmark: _Ref164411208][bookmark: _Ref165902888][bookmark: _Toc166076662]Uniformly partitioned overlap-save convolution
[bookmark: OLE_LINK57][bookmark: OLE_LINK58]This section describes the process of convolving a digital signal  with a finite impulse response (FIR) filter  of length  to yield an output signal  Fast convolution is possible with the fast Fourier transform (FFT), where  with  as the operator for cyclic convolution. This reduces the algorithmic complexity from  for time domain convolution to  for the fast convolution. This advantage can be leverage in practice, as efficient implementations of the FFT are available for almost any platform.
In a real-time system, the signal  is processed in frames, i.e.,  samples of  are used to produce  samples of  in a single processing step. For fast frame-based convolution in frequency domain, a length  FIR filter is split into  partitions of length . Each partition is zero-padded to length  and transformed to frequency domain via FFT.
For convolution with this uniformly partitioned filter, a single-channel input frame of length  is appended to a fixed-length time domain buffer of length , so that the buffer contains the last two input frames. This buffer is transformed to frequency domain via FFT and written into a frequency delay line (FDL). The FDL contains the last  input buffers in frequency domain, and the spectrum of each filter partition is multiplied with the respective input buffer spectrum from the FDL (see Figure A.1 —). The IFFT of the sum of the multiplied filter partitions contains  samples, of which the last are valid samples of , as the filtering corresponds to the overlap-save method.
[image: ]
[bookmark: _Ref101360689]Uniformly Partitioned Overlap-Save Convolution 
(adapted from Wefers [15] figure 5.9)
When the filter changes (time-varying convolution), one input frame is processed with the previous and the new partitioned filter. The resulting filtered outputs signal are crossfaded with an equal-power crossfade in time domain.
[bookmark: _Toc100930148][bookmark: _Ref101352773][bookmark: _Ref101352790][bookmark: _Ref101354202][bookmark: _Toc117076382][bookmark: _Toc131497405][bookmark: _Toc132126410][bookmark: _Toc132225979][bookmark: _Toc135210167][bookmark: _Toc166076663]Fast stereo convolution
[bookmark: OLE_LINK49][bookmark: OLE_LINK50][bookmark: OLE_LINK46][bookmark: OLE_LINK45][bookmark: OLE_LINK52][bookmark: OLE_LINK51][bookmark: OLE_LINK48][bookmark: OLE_LINK47][bookmark: _Toc116063281]The higher efficiency of complex multiplications can be leveraged in the case where a single-channel input signal is convolved with two different FIR filters (e.g. HRIRs for left and right output channel). The selected left and right filters  and  are combined to yield a complex filter , where  is the imaginary unit. This way, the single-channel input signal can be filtered with both filters using a single uniformly partitioned overlap-save convolution, where the real-to-complex (R2C) FFT is replaced by a complex-to-complex (C2C) FFT. The convolution in frequency domain now requires instead of  complex multiplications and the inverse C2C FFT yields an output signal . The left and right channels for the binaural downmix are then given by  and , respectively.
[bookmark: _Toc116063282][bookmark: _Ref116063562][bookmark: _Ref116144934][bookmark: _Toc117076383][bookmark: _Toc131497406][bookmark: _Toc132126411][bookmark: _Toc132225980][bookmark: _Toc135210168][bookmark: _Toc166076664]Support element lookup tables
Table of countOrIndexLoCode
	countOrIndexLoCode
	Value
	countOrIndexLoCode
	Value
	countOrIndexLoCode
	Value
	countOrIndexLoCode
	Value
	countOrIndexLoCode
	Value

	0111
	0
	001010
	13
	111101
	26
	1101000
	39
	1011011
	52

	100
	1
	001001
	14
	111100
	27
	1100111
	40
	1011010
	53

	01100
	2
	001000
	15
	111011
	28
	1100110
	41
	1011001
	54

	01101
	3
	000111
	16
	111010
	29
	1100101
	42
	1011000
	55

	01010
	4
	000110
	17
	111001
	30
	1100100
	43
	1010111
	56

	01011
	5
	000101
	18
	111000
	31
	1100011
	44
	1010110
	57

	01000
	6
	000100
	19
	1101111
	32
	1100010
	45
	1010101
	58

	01001
	7
	000011
	20
	1101110
	33
	1100001
	46
	1010100
	59

	001111
	8
	000010
	21
	1101101
	34
	1100000
	47
	1010011
	60

	001110
	9
	000001
	22
	1101100
	35
	1011111
	48
	1010010
	61

	001101
	10
	000000
	23
	1101011
	36
	1011110
	49
	1010001
	62

	001100
	11
	111111
	24
	1101010
	37
	1011101
	50
	1010000
	63

	001011
	12
	111110
	25
	1101001
	38
	1011100
	51
	
	



Table of countOrIndexHiCode
	countOrIndexHiCode
	Value

	001
	1

	000
	2

	110
	3

	101
	4

	100
	5

	0111
	6

	0101
	7

	1111
	8

	1110
	9

	01101
	10

	01001
	11

	01000
	12

	011001
	13

	0110001
	14

	0110000
	15



Table of deciSecondsCode
	deciSecondsCode
	Value

	110
	0

	100
	0.1

	101
	0.2

	0110
	0.3

	0111
	0.4

	111
	0.5

	0100
	0.6

	0101
	0.7

	0010
	0.8

	0011
	0.9

	000
	1



Table of millisecondsCode
	milliSecondsCode
	Value
	milliSecondsCode
	Value
	milliSecondsCode
	Value
	milliSecondsCode
	Value
	milliSecondsCode
	Value

	1111010
	0
	10010
	0.02
	10000
	0.04
	10110
	0.06
	10100
	0.08

	1111011
	0.001
	0101001
	0.021
	0111111
	0.041
	0001101
	0.061
	0010011
	0.081

	1111000
	0.002
	0101110
	0.022
	0111100
	0.042
	0000010
	0.062
	0010000
	0.082

	1111001
	0.003
	0101111
	0.023
	0111101
	0.043
	0000011
	0.063
	0010001
	0.083

	1111110
	0.004
	0101100
	0.024
	0110010
	0.044
	0000000
	0.064
	0010110
	0.084

	1111111
	0.005
	0101101
	0.025
	0110011
	0.045
	0000001
	0.065
	0010111
	0.085

	1111100
	0.006
	0100010
	0.026
	0110000
	0.046
	0000110
	0.066
	0010100
	0.086

	1111101
	0.007
	0100011
	0.027
	0110001
	0.047
	0000111
	0.067
	0010101
	0.087

	1110010
	0.008
	0100000
	0.028
	0110110
	0.048
	0000100
	0.068
	1101010
	0.088

	1110011
	0.009
	0100001
	0.029
	0110111
	0.049
	0000101
	0.069
	1101011
	0.089

	11001
	0.01
	10011
	0.03
	10001
	0.05
	10111
	0.07
	10101
	0.09

	1110000
	0.011
	0100110
	0.031
	0110100
	0.051
	0011010
	0.071
	1101000
	0.091

	1110001
	0.012
	0100111
	0.032
	0110101
	0.052
	0011011
	0.072
	1101001
	0.092

	1110110
	0.013
	0100100
	0.033
	0001010
	0.053
	0011000
	0.073
	1101110
	0.093

	1110111
	0.014
	0100101
	0.034
	0001011
	0.054
	0011001
	0.074
	1101111
	0.094

	1110100
	0.015
	0111010
	0.035
	0001000
	0.055
	0011110
	0.075
	1101100
	0.095

	1110101
	0.016
	0111011
	0.036
	0001001
	0.056
	0011111
	0.076
	1101101
	0.096

	0101010
	0.017
	0111000
	0.037
	0001110
	0.057
	0011100
	0.077
	1100010
	0.097

	0101011
	0.018
	0111001
	0.038
	0001111
	0.058
	0011101
	0.078
	1100011
	0.098

	0101000
	0.019
	0111110
	0.039
	0001100
	0.059
	0010010
	0.079
	110000
	0.099



Table of microsecondsCode
	microseconds Code
	Value
	microseconds Code
	Value
	microseconds Code
	Value
	microsecond sCode
	Value
	microseconds Code
	Value

	110111100
	0.00001
	110110110
	0.00021
	110011100
	0.00041
	110101010
	0.00061
	110100000
	0.00081

	10010
	0.00002
	001000
	0.00022
	000110
	0.00042
	011100
	0.00062
	111010
	0.00082

	110111101
	0.00003
	110110111
	0.00023
	110011101
	0.00043
	110101011
	0.00063
	110100001
	0.00083

	10011
	0.00004
	001001
	0.00024
	000111
	0.00044
	011101
	0.00064
	111011
	0.00084

	1101111110
	0.00005
	110110100
	0.00025
	110010010
	0.00045
	110101000
	0.00065
	110100110
	0.00085

	10000
	0.00006
	001110
	0.00026
	000100
	0.00046
	010010
	0.00066
	111000
	0.00086

	1101111111
	0.00007
	110110101
	0.00027
	110010011
	0.00047
	110101001
	0.00067
	110100111
	0.00087

	10001
	0.00008
	001111
	0.00028
	000101
	0.00048
	010011
	0.00068
	111001
	0.00088

	1101111100
	0.00009
	110011010
	0.00029
	110010000
	0.00049
	110101110
	0.00069
	110100100
	0.00089

	10110
	0.00010
	001100
	0.00030
	011010
	0.00050
	010000
	0.00070
	111110
	0.00090

	1101111101
	0.00011
	110011011
	0.00031
	110010001
	0.00051
	110101111
	0.00071
	110100101
	0.00091

	10111
	0.00012
	001101
	0.00032
	011011
	0.00052
	010001
	0.00072
	111111
	0.00092

	110110010
	0.00013
	110011000
	0.00033
	110010110
	0.00053
	110101100
	0.00073
	110111010
	0.00093

	10100
	0.00014
	000010
	0.00034
	011000
	0.00054
	010110
	0.00074
	111100
	0.00094

	110110011
	0.00015
	110011001
	0.00035
	110010111
	0.00055
	110101101
	0.00075
	110111011
	0.00095

	10101
	0.00016
	000011
	0.00036
	011001
	0.00056
	010111
	0.00076
	111101
	0.00096

	110110000
	0.00017
	110011110
	0.00037
	110010100
	0.00057
	110100010
	0.00077
	110111000
	0.00097

	001010
	0.00018
	000000
	0.00038
	011110
	0.00058
	010100
	0.00078
	11000
	0.00098

	110110001
	0.00019
	110011111
	0.00039
	110010101
	0.00059
	110100011
	0.00079
	110111001
	0.00099

	001011
	0.00020
	000001
	0.00040
	011111
	0.00060
	010101
	0.00080
	 
	 



Table of secondsCode
	secondsCode
	Value
	secondsCode
	Value
	secondsCode
	Value
	secondsCode
	Value
	secondsCode
	Value

	0011
	1
	1011
	7
	01011
	13
	10101
	19
	101001
	25

	0001
	2
	1001
	8
	01001
	14
	011111
	20
	0101001
	26

	0000
	3
	1000
	9
	01000
	15
	011110
	21
	0101000
	27

	1111
	4
	01110
	10
	00101
	16
	010101
	22
	1010001
	28

	1101
	5
	01101
	11
	11101
	17
	001001
	23
	10100001
	29

	1100
	6
	01100
	12
	11100
	18
	001000
	24
	10100000
	30



Table of frequencyCode
	frequencyCode
	Value
	frequencyCode
	Value
	frequencyCode
	Value
	frequencyCode
	Value
	frequencyCode
	Value

	100011
	16
	011010
	80
	011111
	400
	1101
	2000
	010100
	10000

	001110
	20
	011011
	100
	1111
	500
	010000
	2500
	010101
	12500

	001111
	25
	0001
	125
	011100
	630
	010001
	3150
	0010
	16000

	1001
	31.5
	011000
	160
	011101
	800
	1010
	4000
	10000
	20000

	001100
	40
	011001
	200
	1100
	1000
	010110
	5000
	10001010
	25000

	001101
	50
	1110
	250
	010010
	1250
	010111
	6300
	10001011
	31500

	0000
	63
	011110
	315
	010011
	1600
	1011
	8000
	1000100
	40000



Table of metersCode
	metersCode
	Value
	metersCode
	Value
	metersCode
	Value
	metersCode
	Value
	metersCode
	Value

	111101
	0
	000001
	20
	010101
	40
	10011110
	60
	11100010
	80

	110010
	1
	000110
	21
	101010
	41
	10011111
	61
	11100011
	81

	110011
	2
	000111
	22
	101011
	42
	10011100
	62
	11100000
	82

	110000
	3
	000100
	23
	101000
	43
	10011101
	63
	11100001
	83

	110001
	4
	000101
	24
	101001
	44
	10010010
	64
	11100110
	84

	110110
	5
	011010
	25
	101110
	45
	10010011
	65
	11100111
	85

	110111
	6
	011011
	26
	101111
	46
	10010000
	66
	11100100
	86

	110100
	7
	011000
	27
	101100
	47
	10010001
	67
	11100101
	87

	110101
	8
	011001
	28
	101101
	48
	10010110
	68
	11111010
	88

	001010
	9
	011110
	29
	10000
	49
	10010111
	69
	11111011
	89

	001011
	10
	011111
	30
	1000100
	50
	10010100
	70
	11111000
	90

	001000
	11
	011100
	31
	1000101
	51
	10010101
	71
	11111001
	91

	001001
	12
	011101
	32
	10001110
	52
	11101010
	72
	11111110
	92

	001110
	13
	010010
	33
	10001111
	53
	11101011
	73
	11111111
	93

	001111
	14
	010011
	34
	10001100
	54
	11101000
	74
	11111100
	94

	001100
	15
	010000
	35
	10001101
	55
	11101001
	75
	11111101
	95

	001101
	16
	010001
	36
	10011010
	56
	11101110
	76
	11110010
	96

	000010
	17
	010110
	37
	10011011
	57
	11101111
	77
	11110011
	97

	000011
	18
	010111
	38
	10011000
	58
	11101100
	78
	11110000
	98

	000000
	19
	010100
	39
	10011001
	59
	11101101
	79
	11110001
	99



Table of hectometersCode
	hectometersCode
	Value

	000
	0

	001
	1

	110
	2

	111
	3

	100
	4

	101
	5

	0110
	6

	0111
	7

	0100
	8

	0101
	9



Table of kilometersCode
	kilometersCode
	Value

	10
	1

	011
	2

	001
	3

	000
	4

	111
	5

	0101
	6

	0100
	7

	1101
	8

	11001
	9

	11000
	10



Table of centimetersCode
	centimetersCode
	Value
	centimetersCode
	Value
	centimetersCode
	Value
	centimetersCode
	Value
	centimetersCode
	Value

	110010
	0
	0100110
	20
	0001010
	40
	0011110
	60
	100010
	80

	110011
	1
	0100111
	21
	0001011
	41
	0011111
	61
	100011
	81

	110000
	2
	0100100
	22
	0001000
	42
	0011100
	62
	100000
	82

	110001
	3
	0100101
	23
	0001001
	43
	0011101
	63
	100001
	83

	110110
	4
	0111010
	24
	0001110
	44
	0010010
	64
	100110
	84

	110111
	5
	0111011
	25
	0001111
	45
	0010011
	65
	100111
	85

	110100
	6
	0111000
	26
	0001100
	46
	0010000
	66
	100100
	86

	110101
	7
	0111001
	27
	0001101
	47
	0010001
	67
	100101
	87

	0101010
	8
	0111110
	28
	0000010
	48
	0010110
	68
	1111010
	88

	0101011
	9
	0111111
	29
	0000011
	49
	0010111
	69
	1111011
	89

	0101000
	10
	0111100
	30
	0000000
	50
	0010100
	70
	1111000
	90

	0101001
	11
	0111101
	31
	0000001
	51
	0010101
	71
	1111001
	91

	0101110
	12
	0110010
	32
	0000110
	52
	101010
	72
	1111110
	92

	0101111
	13
	0110011
	33
	0000111
	53
	101011
	73
	1111111
	93

	0101100
	14
	0110000
	34
	0000100
	54
	101000
	74
	1111100
	94

	0101101
	15
	0110001
	35
	0000101
	55
	101001
	75
	1111101
	95

	0100010
	16
	0110110
	36
	0011010
	56
	101110
	76
	111010
	96

	0100011
	17
	0110111
	37
	0011011
	57
	101111
	77
	111011
	97

	0100000
	18
	0110100
	38
	0011000
	58
	101100
	78
	111000
	98

	0100001
	19
	0110101
	39
	0011001
	59
	101101
	79
	111001
	99


Table of millimetersCode
	millimetersCode
	Value

	000
	0

	001
	1

	0110
	2

	0111
	3

	0100
	4

	0101
	5

	110
	6

	111
	7

	100
	8

	101
	9



Table of orientationCode
	orientationCode
	Value
	Description

	01
	[ 0, 0, 0]
	Default orientation: (yaw, pitch, roll)

	0010
	[ 90, 0, 0]
	Default orientation: (yaw, pitch, roll)

	0011
	[ 180, 0, 0]
	Default orientation: (yaw, pitch, roll)

	0000
	[-90, 0, 0]
	Default orientation: (yaw, pitch, roll)

	0001
	[ 0, 90, 0]
	Default orientation: (yaw, pitch, roll)

	1010
	[ 0, -90, 0]
	Default orientation: (yaw, pitch, roll)

	1011
	[ 0, 0, 180]
	Default orientation: (yaw, pitch, roll)

	110
	N/A
	Default angles transmitted

	111
	N/A
	Explicit angles transmitted

	100
	N/A
	High resolution angles transmitted



Table of defaultYawCode
	defaultYawCode
	Value

	010
	-135

	011
	-90

	000
	-45

	001
	0

	110
	45

	111
	90

	100
	135

	101
	180


Table of defaultPitchCode
	defaultPitchCode
	Value

	11
	-90

	100
	-45

	00
	0

	101
	45

	01
	90



Table of defaultRollCode
	defaultRollCode
	Value

	010
	-135

	011
	-90

	000
	-45

	001
	0

	110
	45

	111
	90

	100
	135

	101
	180



Table of coarseAngleCode
	coarseAngleCode
	Value
	coarseAngleCode
	Value
	coarseAngleCode
	Value
	coarseAngleCode
	Value
	coarseAngleCode
	Value

	   010010 
	-180
	   0111101
	-105
	   101100 
	-30
	   111111 
	45
	   001110 
	120

	   010011 
	-175
	   0110010
	-100
	   101101 
	-25
	   111100 
	50
	   001111 
	125

	   010000 
	-170
	   0110011
	-95
	   100010 
	-20
	   111101 
	55
	   001100 
	130

	   010001 
	-165
	   0110000
	-90
	   100011 
	-15
	   110010 
	60
	   001101 
	135

	   010110 
	-160
	   0110001
	-85
	   100000 
	-10
	   110011 
	65
	   000010 
	140

	   010111 
	-155
	   0110110
	-80
	   100001 
	-5
	   110000 
	70
	   000011 
	145

	   010100 
	-150
	   0110111
	-75
	   100110 
	0
	   110001 
	75
	   000000 
	150

	   010101 
	-145
	   0110100
	-70
	   100111 
	5
	   110110 
	80
	   000001 
	155

	   0111010
	-140
	   0110101
	-65
	   100100 
	10
	   110111 
	85
	   000110 
	160

	   0111011
	-135
	   101010 
	-60
	   100101 
	15
	   110100 
	90
	   000111 
	165

	   0111000
	-130
	   101011 
	-55
	   111010 
	20
	   110101 
	95
	   000100 
	170

	   0111001
	-125
	   101000 
	-50
	   111011 
	25
	   001010 
	100
	   000101 
	175

	   0111110
	-120
	   101001 
	-45
	   111000 
	30
	   001011 
	105
	 
	 

	   0111111
	-115
	   101110 
	-40
	   111001 
	35
	   001000 
	110
	 
	 

	   0111100
	-110
	   101111 
	-35
	   111110 
	40
	   001001 
	115
	 
	 



Table of fineAngleCode
	fineAngleCode
	Value
	fineAngleCode
	Value
	fineAngleCode
	Value
	fineAngleCode
	Value
	fineAngleCode
	Value

	    11100 
	0.1
	    10110 
	1.1
	    001100
	2.1
	    011010
	3.1
	    010000
	4.1

	    11101 
	0.2
	    10111 
	1.2
	    001101
	2.2
	    011011
	3.2
	    010001
	4.2

	    111110
	0.3
	    10100 
	1.3
	    000010
	2.3
	    011000
	3.3
	    010110
	4.3

	    111111
	0.4
	    10101 
	1.4
	    000011
	2.4
	    011001
	3.4
	    010111
	4.4

	    111100
	0.5
	    001010
	1.5
	    000000
	2.5
	    011110
	3.5
	    010100
	4.5

	    111101
	0.6
	    001011
	1.6
	    000001
	2.6
	    011111
	3.6
	    010101
	4.6

	    10010 
	0.7
	    001000
	1.7
	    000110
	2.7
	    011100
	3.7
	    11010 
	4.7

	    10011 
	0.8
	    001001
	1.8
	    000111
	2.8
	    011101
	3.8
	    11011 
	4.8

	    10000 
	0.9
	    001110
	1.9
	    000100
	2.9
	    010010
	3.9
	    11000 
	4.9

	    10001 
	1
	    001111
	2
	    000101
	3
	    010011
	4
	    11001 
	5



Table of coarseGainCode
	coarseGainCode
	Value

	011011011
	-90

	0110100
	-60

	0110101
	-30

	011110
	-24

	011111
	-18

	01110
	-15

	1100
	-12

	111
	-9

	100
	-6

	101
	-3

	00
	0

	010
	3

	1101
	6

	01100
	9

	01101110
	12

	01101111
	15

	01101100
	24

	011011010
	36



Table of fineGainCode
	fineGainCode
	Value
	fineGainCode
	Value
	fineGainCode
	Value
	fineGainCode
	Value
	fineGainCode
	Value

	000110
	-29
	010000
	-23
	001010
	-17
	001100
	-11
	01110
	-5

	000111
	-28
	010001
	-22
	001011
	-16
	001101
	-10
	01111
	-4

	000100
	-27
	010110
	-21
	001000
	-15
	011010
	-9
	0000
	-3

	000101
	-26
	010111
	-20
	001001
	-14
	011011
	-8
	10
	-2

	010010
	-25
	010100
	-19
	001110
	-13
	011000
	-7
	11
	-1

	010011
	-24
	010101
	-18
	001111
	-12
	011001
	-6
	
	



Table of decimalCode
	decimalCode
	Value

	100
	0.1

	101
	0.2

	0110
	0.3

	0111
	0.4

	111
	0.5

	0100
	0.6

	0101
	0.7

	0010
	0.8

	0011
	0.9



Table of dsrCode 
	dsrCode
	Value
	dsrCode
	Value
	dsrCode
	Value
	dsrCode
	Value
	dsrCode
	Value

	10001100
	-150
	011100101
	-121
	011000110
	-92
	110001
	-63
	010010
	-34

	10001101
	-149
	011111010
	-120
	011000111
	-91
	110110
	-62
	010011
	-33

	100011110
	-148
	011111011
	-119
	011000100
	-90
	110111
	-61
	010000
	-32

	100011111
	-147
	011111000
	-118
	011000101
	-89
	110100
	-60
	010001
	-31

	100011100
	-146
	011111001
	-117
	011011010
	-88
	110101
	-59
	010110
	-30

	100011101
	-145
	011111110
	-116
	011011011
	-87
	001010
	-58
	011010010
	-29

	10000010
	-144
	011111111
	-115
	011011000
	-86
	001011
	-57
	011010011
	-28

	10000011
	-143
	011111100
	-114
	011011001
	-85
	001000
	-56
	011010000
	-27

	10000000
	-142
	011111101
	-113
	011011110
	-84
	001001
	-55
	011010001
	-26

	10000001
	-141
	011110010
	-112
	011011111
	-83
	001110
	-54
	011010110
	-25

	10000110
	-140
	011110011
	-111
	011011100
	-82
	001111
	-53
	011010111
	-24

	10000111
	-139
	011110000
	-110
	011011101
	-81
	001100
	-52
	011010100
	-23

	10000100
	-138
	011110001
	-109
	010100
	-80
	001101
	-51
	011010101
	-22

	10000101
	-137
	011110110
	-108
	010101
	-79
	000010
	-50
	010111010
	-21

	011101010
	-136
	011110111
	-107
	100110
	-78
	000011
	-49
	010111011
	-20

	011101011
	-135
	011110100
	-106
	100111
	-77
	000000
	-48
	010111000
	-19

	011101000
	-134
	011110101
	-105
	100100
	-76
	000001
	-47
	010111001
	-18

	011101001
	-133
	011001010
	-104
	100101
	-75
	000110
	-46
	010111110
	-17

	011101110
	-132
	011001011
	-103
	111010
	-74
	000111
	-45
	010111111
	-16

	011101111
	-131
	011001000
	-102
	111011
	-73
	000100
	-44
	010111100
	-15

	011101100
	-130
	011001001
	-101
	111000
	-72
	000101
	-43
	010111101
	-14

	011101101
	-129
	011001110
	-100
	111001
	-71
	101010
	-42
	10001010
	-13

	011100010
	-128
	011001111
	-99
	111110
	-70
	101011
	-41
	10001011
	-12

	011100011
	-127
	011001100
	-98
	111111
	-69
	101000
	-40
	10001000
	-11

	011100000
	-126
	011001101
	-97
	111100
	-68
	101001
	-39
	10001001
	-10

	011100001
	-125
	011000010
	-96
	111101
	-67
	101110
	-38
	
	

	011100110
	-124
	011000011
	-95
	110010
	-66
	101111
	-37
	
	

	011100111
	-123
	011000000
	-94
	110011
	-65
	101100
	-36
	
	

	011100100
	-122
	011000001
	-93
	110000
	-64
	101101
	-35
	
	



Table of delayLineCountCode
	delayLineCountCode
	Value

	100
	3

	01
	7

	00
	15

	11
	31

	101
	63


[bookmark: _Ref161412578]Table of portal2PortalCode
	portal2PortalCode
	Value
	portal2PortalCode
	Value
	portal2PortalCode
	Value

	1000
	-6
	10
	-16
	11000
	-39

	1001
	-7
	11
	-17
	11001
	-42

	1010
	-8
	0
	-18
	11110
	-48

	1011
	-9
	1
	-20
	11111
	-54

	1000
	-10
	110
	-22
	11100
	-60

	1001
	-11
	111
	-24
	11101
	-66

	1110
	-12
	100
	-27
	10110
	-72

	1111
	-13
	101
	-30
	10111
	-78

	1100
	-14
	11010
	-33
	1010
	-90

	1101
	-15
	11011
	-36
	
	



[bookmark: _Ref146640959][bookmark: _Toc166076665]Airflow default frequency profiles
Three defaults are provided, using a combination of different speed, azimuth, and elevation profiles.:
Table of default airflow profile mappings.
	Default Number
	Speed Profile
	Azimuth Profile
	Elevation Profile

	0
	0
	1
	0

	1
	1
	1
	0

	2
	0
	0
	0



Two default velocity-dependent speed profiles are defined.
const SpeedProfiles defaultSpeedProfiles0 = {
    { 0.f,
        { 0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } },
    { 3.6f,
        { 0.000000000000000f, 0.058210321777087f, 0.074131024130092f, 0.098855309465694f,
            0.092257142715476f, 0.087096358995608f, 0.066069344800760f, 0.042169650342858f,
            0.026607250597988f, 0.041686938347034f, 0.023713737056617f, 0.025703957827689f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } },
    { 5.2f,
        { 0.000000000000000f, 0.105925372517729f, 0.139636836105594f, 0.175792361395869f,
            0.158489319246111f, 0.160324539069004f, 0.151356124843621f, 0.105925372517729f,
            0.069984199600227f, 0.056885293084384f, 0.033113112148259f, 0.031260793671240f,
            0.023988329190195f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } },
    { 6.4f,
        { 0.000000000000000f, 0.153108746168203f, 0.144543977074593f, 0.162181009735893f,
            0.164058977319954f, 0.201836636368156f, 0.254097270554930f, 0.248313310529557f,
            0.177827941003892f, 0.108392691402120f, 0.059566214352901f, 0.042657951880159f,
            0.029174270140012f, 0.022646443075931f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } },
    { 7.6f,
        { 0.000000000000000f, 0.389045144994280f, 0.254097270554930f, 0.272270130807791f,
            0.184077200146896f, 0.237137370566166f, 0.316227766016838f, 0.389045144994280f,
            0.416869383470335f, 0.319889510969140f, 0.158489319246111f, 0.082224264994707f,
            0.057543993733716f, 0.048417236758410f, 0.029853826189180f, 0.024547089156850f,
            0.020183663636816f, 0.021877616239496f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } },
    { 8.8f,
        { 0.000000000000000f, 0.653130552647472f, 0.602559586074357f, 0.398107170553497f,
            0.350751873952568f, 0.402717034325459f, 0.512861383991364f, 0.716143410212902f,
            0.645654229034655f, 0.653130552647472f, 0.412097519097330f, 0.242661009508241f,
            0.118850222743702f, 0.074989420933246f, 0.047315125896148f, 0.038904514499428f,
            0.029512092266664f, 0.027861211686298f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } },
    { 9.5f,
        { 0.000000000000000f, 1.000000000000000f, 0.912010839355909f, 0.645654229034655f,
            0.495450190804790f, 0.462381021399260f, 0.518800038928961f, 0.653130552647472f,
            0.749894209332456f, 0.794328234724281f, 0.660693448007595f, 0.441570447353312f,
            0.254097270554930f, 0.156675107010815f, 0.098855309465694f, 0.081283051616410f,
            0.057543993733716f, 0.043151907682776f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f, 0.000000000000000f,
            0.000000000000000f, 0.000000000000000f, 0.000000000000000f } }
};

const SpeedProfiles defaultSpeedProfiles1 = {
    { 0.0,
        { 0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f } },
    { 2.5,
        { 0.000005092005791f, 0.000006900632336f, 0.000009432110693f, 0.000012327893926f,
            0.000013768571649f, 0.000011422703105f, 0.000005092005791f, 0.000003265042877f,
            0.000003127079258f, 0.000002546178748f, 0.000001636397807f, 0.000000690063234f,
            0.000000134010519f, 0.000000006514617f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f } },
    { 5.0,
        { 0.001496142877377f, 0.001932130724140f, 0.002599744534007f, 0.003606337868175f,
            0.004852356241708f, 0.006188018709359f, 0.006667604793840f, 0.005114226348140f,
            0.002146303046534f, 0.000565625465467f, 0.001007093370471f, 0.001231117371727f,
            0.000673559958237f, 0.000364566234870f, 0.000397605366962f, 0.000435153296683f,
            0.000471188518773f, 0.000489349224973f, 0.000471323990286f, 0.000381726075753f,
            0.000239271349497f, 0.000095059565827f, 0.000016297468792f, 0.000000621138043f,
            0.000000003297720f, 0.000000000100000f, 0.000000000100000f, 0.000000000100000f,
            0.000000000100000f, 0.000000000100000f, 0.000000000100000f } },
    { 7.5,
        { 0.051951034630881f, 0.042518504056564f, 0.023092524650082f, 0.011082702747709f,
            0.014740224014510f, 0.020215870905670f, 0.027825971169683f, 0.035377220188290f,
            0.038851991245055f, 0.030132004936994f, 0.012995742071336f, 0.001989110184054f,
            0.000493645557350f, 0.004020371131487f, 0.014186241985814f, 0.001280391940051f,
            0.000656095417394f, 0.000723913741598f, 0.000805988598663f, 0.000909941448295f,
            0.001002775807613f, 0.001063925155869f, 0.001036166061737f, 0.000839126876812f,
            0.000506914119304f, 0.000174087953424f, 0.000021253678937f, 0.000000643304836f,
            0.000000001713468f, 0.000000000100000f, 0.000000000100000f } },
    { 10.0,
        { 0.267636569489333f, 0.284803586843580f, 0.256398484904269f, 0.162759165528627f,
            0.060192925930007f, 0.065087648200385f, 0.090062802021128f, 0.121841561034339f,
            0.157443080882683f, 0.179698914853259f, 0.151197793916446f, 0.074964898022991f,
            0.013439205027281f, 0.000996370611024f, 0.001049346779756f, 0.002996652360232f,
            0.111897800202304f, 0.003820805076652f, 0.001477250652030f, 0.001684887503003f,
            0.001915759152607f, 0.002176677229576f, 0.002433305794620f, 0.002565020905680f,
            0.002384533395304f, 0.001743668950299f, 0.000798161745722f, 0.000185498716540f,
            0.000013172525079f, 0.000000070160215f, 0.000000000100000f } },
    { 12.5,
        { 0.501502066903696f, 0.533669923120632f, 0.480443948208625f, 0.304980960097758f,
            0.112790553340592f, 0.121962369210889f, 0.168761247578815f, 0.228308839894651f,
            0.295019588066788f, 0.336722957521143f, 0.283317060538691f, 0.140470532018433f,
            0.025182616529512f, 0.003498448253642f, 0.003684457739404f, 0.003932544862838f,
            0.004266438154341f, 0.004670441692359f, 0.099862866925050f, 0.067786280289128f,
            0.006726597701381f, 0.007642731096543f, 0.008543803192886f, 0.009006280202113f,
            0.008372553947550f, 0.006122356005497f, 0.002802498924147f, 0.000651321560222f,
            0.000046251261176f, 0.000000246345966f, 0.000000000100000f } },
    { 15.0,
        { 0.939723310564639f, 1.000000000000000f, 0.900264240861151f, 0.571478636671866f,
            0.211348903983665f, 0.228535212360695f, 0.316227766016838f, 0.427809081987638f,
            0.552812844204640f, 0.630957344480193f, 0.530884444230988f, 0.263216130294607f,
            0.047187625606211f, 0.012283722590767f, 0.012936837559659f, 0.013807919016826f,
            0.014980282382062f, 0.016398816265346f, 0.018212236496936f, 0.031622776601684f,
            0.501187233627272f, 0.026835094253010f, 0.029998931149624f, 0.031622776601684f,
            0.029397642214907f, 0.021496765800423f, 0.009840111057611f, 0.002286914878569f,
            0.000162397045938f, 0.000000864967919f, 0.000000000244343f } },
};

Two default sets of azimuth-dependent profiles and one set of elevation-dependent profiles are provided.

const AzimuthProfiles defaultAzimuthProfiles0 = {
    { 0.0f,
        { { 0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f },
            { 0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f } } },
    { 30.0f,
        { { 0.618728327553234f, 0.618728327553234f, 0.787045789695099f, 0.587489352529776f,
              0.934329368257315f, 0.655390285833477f, 0.540132114764635f, 0.431022558004996f,
              0.309741929921658f, 0.285430251378658f, 0.375837404288445f, 0.519995996533516f,
              0.493173803954936f, 0.398565772313401f, 0.461317574560380f, 0.474241985260245f,
              0.401790810848940f, 0.409260659730011f, 0.409260659730011f, 0.409260659730011f,
              0.409260659730011f, 0.409260659730011f, 0.409260659730011f, 0.409260659730011f,
              0.409260659730011f, 0.409260659730011f, 0.409260659730011f, 0.409260659730011f,
              0.409260659730011f, 0.409260659730011f, 0.409260659730011f },
            { 0.416869383470336f, 0.416869383470336f, 0.555904257270404f, 0.418311688651495f,
                0.574777818845522f, 0.500034534976979f, 0.312968047156367f, 0.201372424986239f,
                0.146049474944163f, 0.138038426460288f, 0.171593171012100f, 0.267300640866331f,
                0.272270130807791f, 0.225164541674462f, 0.248885731828239f, 0.242661009508242f,
                0.221309470960564f, 0.226464430759306f, 0.226464430759306f, 0.226464430759306f,
                0.226464430759306f, 0.226464430759306f, 0.226464430759306f, 0.226464430759306f,
                0.226464430759306f, 0.226464430759306f, 0.226464430759306f, 0.226464430759306f,
                0.226464430759306f, 0.226464430759306f, 0.226464430759306f } } },
    { 60.0f,
        { { 0.701455298419971f, 0.701455298419971f, 1.000000000000000f, 0.836565595755810f,
              0.970509967245491f, 0.729457510254568f, 0.382384253658113f, 0.242381796455463f,
              0.178443198854037f, 0.194984459975804f, 0.216023003477475f, 0.281190083039894f,
              0.247742205763329f, 0.222843514927031f, 0.239056193534463f, 0.251767692775886f,
              0.223100220748196f, 0.233345806228100f, 0.233345806228100f, 0.233345806228100f,
              0.233345806228100f, 0.233345806228100f, 0.233345806228100f, 0.233345806228100f,
              0.233345806228100f, 0.233345806228100f, 0.233345806228100f, 0.233345806228100f,
              0.233345806228100f, 0.233345806228100f, 0.233345806228100f },
            { 0.368553041852479f, 0.368553041852479f, 0.698232404077171f, 0.542625251329014f,
                0.678422120498261f, 0.468813382145265f, 0.276375791917037f, 0.204173794466953f,
                0.142724983016489f, 0.135207256319428f, 0.149623565609444f, 0.183442516711773f,
                0.148593564228701f, 0.127350308101666f, 0.195659076793494f, 0.242661009508242f,
                0.279254384123734f, 0.269153480392692f, 0.269153480392692f, 0.269153480392692f,
                0.269153480392692f, 0.269153480392692f, 0.269153480392692f, 0.269153480392692f,
                0.269153480392692f, 0.269153480392692f, 0.269153480392692f, 0.269153480392692f,
                0.269153480392692f, 0.269153480392692f, 0.269153480392692f } } },
    { 90.0f,
        { { 0.185139889420527f, 0.185139889420527f, 0.212569034521711f, 0.175388050184176f,
              0.194984459975805f, 0.112460497396693f, 0.059156163417547f, 0.043802611117036f,
              0.038904514499428f, 0.058748935252978f, 0.085703784523037f, 0.143879857825585f,
              0.159220872705117f, 0.157398286446622f, 0.186208713666287f, 0.202534960682497f,
              0.225164541674462f, 0.245188445380952f, 0.245188445380952f, 0.245188445380952f,
              0.245188445380952f, 0.245188445380952f, 0.245188445380952f, 0.245188445380952f,
              0.245188445380952f, 0.245188445380952f, 0.245188445380952f, 0.245188445380952f,
              0.245188445380952f, 0.245188445380952f, 0.245188445380952f },
            { 0.432513831035009f, 0.432513831035009f, 0.603253707926613f, 0.470435405725976f,
                0.498884487460013f, 0.306902198839116f, 0.123452531517069f, 0.067608297539198f,
                0.038994198667654f, 0.045341929777901f, 0.040318094644347f, 0.082794216371233f,
                0.098174794301998f, 0.115611224219210f, 0.177623326828844f, 0.220292646305346f,
                0.253512863049791f, 0.244343055269397f, 0.244343055269397f, 0.244343055269397f,
                0.244343055269397f, 0.244343055269397f, 0.244343055269397f, 0.244343055269397f,
                0.244343055269397f, 0.244343055269397f, 0.244343055269397f, 0.244343055269397f,
                0.244343055269397f, 0.244343055269397f, 0.244343055269397f } } },
    { 120.0f,
        { { 0.166532882778502f, 0.166532882778502f, 0.312248240622327f, 0.207491351745491f,
              0.260015956316528f, 0.144045601024638f, 0.080445174855213f, 0.060673632958851f,
              0.037583740428844f, 0.048809010124758f, 0.064194822150804f, 0.114947624341984f,
              0.128973355789875f, 0.117489755493953f, 0.180509473713157f, 0.223872113856834f,
              0.257632115700258f, 0.248313310529557f, 0.248313310529557f, 0.248313310529557f,
              0.248313310529557f, 0.248313310529557f, 0.248313310529557f, 0.248313310529557f,
              0.248313310529557f, 0.248313310529557f, 0.248313310529557f, 0.248313310529557f,
              0.248313310529557f, 0.248313310529557f, 0.248313310529557f },
            { 0.393097244907467f, 0.393097244907467f, 0.564936974812303f, 0.443098214489298f,
                0.532108259266795f, 0.296483138952434f, 0.201836636368156f, 0.123168598573636f,
                0.121478662047122f, 0.127790920956629f, 0.231206479017560f, 0.289734358770133f,
                0.365594791613125f, 0.326964046834306f, 0.354405130280993f, 0.266072505979881f,
                0.266685866452148f, 0.257039578276886f, 0.257039578276886f, 0.257039578276886f,
                0.257039578276886f, 0.257039578276886f, 0.257039578276886f, 0.257039578276886f,
                0.257039578276886f, 0.257039578276886f, 0.257039578276886f, 0.257039578276886f,
                0.257039578276886f, 0.257039578276886f, 0.257039578276886f } } },
    { 150.0f,
        { { 0.199296650616472f, 0.199296650616472f, 0.200216562158904f, 0.145881426027535f,
              0.146049474944163f, 0.073029781287336f, 0.040318094644347f, 0.028575905433749f,
              0.021037784397665f, 0.038949330770365f, 0.039856577231340f, 0.086996143306527f,
              0.102683343166809f, 0.120920518294321f, 0.185780445509170f, 0.230409297605585f,
              0.265155109300921f, 0.255564190106414f, 0.255564190106414f, 0.255564190106414f,
              0.255564190106414f, 0.255564190106414f, 0.255564190106414f, 0.255564190106414f,
              0.255564190106414f, 0.255564190106414f, 0.255564190106414f, 0.255564190106414f,
              0.255564190106414f, 0.255564190106414f, 0.255564190106414f },
            { 0.227247963527084f, 0.227247963527084f, 0.329989407910835f, 0.210377843976647f,
                0.203704207770572f, 0.140604752412991f, 0.087297136838811f, 0.066450767290778f,
                0.045551218616574f, 0.053888984537329f, 0.070307231988383f, 0.104231742939330f,
                0.110280823384955f, 0.129867356382916f, 0.199526231496888f, 0.247457146133381f,
                0.284773780017375f, 0.274473234347854f, 0.274473234347854f, 0.274473234347854f,
                0.274473234347854f, 0.274473234347854f, 0.274473234347854f, 0.274473234347854f,
                0.274473234347854f, 0.274473234347854f, 0.274473234347854f, 0.274473234347854f,
                0.274473234347854f, 0.274473234347854f, 0.274473234347854f } } },
    { 180.0f,
        { { 0.347136275887698f, 0.347136275887698f, 0.352776786618874f, 0.252638771013190f,
              0.212569034521711f, 0.112590046889494f, 0.072443596007499f, 0.049317380395494f,
              0.040597566325157f, 0.054954087385762f, 0.073620709749474f, 0.122320711904993f,
              0.127643880881134f, 0.118576874816716f, 0.182179707309187f, 0.225943577022098f,
              0.260015956316527f, 0.250610925303211f, 0.250610925303211f, 0.250610925303211f,
              0.250610925303211f, 0.250610925303211f, 0.250610925303211f, 0.250610925303211f,
              0.250610925303211f, 0.250610925303211f, 0.250610925303211f, 0.250610925303211f,
              0.250610925303211f, 0.250610925303211f, 0.250610925303211f },
            { 0.347136275887698f, 0.347136275887698f, 0.352776786618874f, 0.252638771013190f,
                0.212569034521711f, 0.112590046889494f, 0.072443596007499f, 0.049317380395494f,
                0.040597566325157f, 0.054954087385762f, 0.073620709749474f, 0.122320711904993f,
                0.127643880881134f, 0.118576874816716f, 0.182179707309187f, 0.225943577022098f,
                0.260015956316527f, 0.250610925303211f, 0.250610925303211f, 0.250610925303211f,
                0.250610925303211f, 0.250610925303211f, 0.250610925303211f, 0.250610925303211f,
                0.250610925303211f, 0.250610925303211f, 0.250610925303211f, 0.250610925303211f,
                0.250610925303211f, 0.250610925303211f, 0.250610925303211f } } },
    { 210.0f,
        { { 0.227247963527084f, 0.227247963527084f, 0.329989407910835f, 0.210377843976647f,
              0.203704207770572f, 0.140604752412991f, 0.087297136838811f, 0.066450767290778f,
              0.045551218616574f, 0.053888984537329f, 0.070307231988383f, 0.104231742939330f,
              0.110280823384955f, 0.129867356382916f, 0.199526231496888f, 0.247457146133381f,
              0.284773780017375f, 0.274473234347854f, 0.274473234347854f, 0.274473234347854f,
              0.274473234347854f, 0.274473234347854f, 0.274473234347854f, 0.274473234347854f,
              0.274473234347854f, 0.274473234347854f, 0.274473234347854f, 0.274473234347854f,
              0.274473234347854f, 0.274473234347854f, 0.274473234347854f },
            { 0.199296650616472f, 0.199296650616472f, 0.200216562158904f, 0.145881426027535f,
                0.146049474944163f, 0.073029781287336f, 0.040318094644347f, 0.028575905433749f,
                0.021037784397665f, 0.038949330770365f, 0.039856577231340f, 0.086996143306527f,
                0.102683343166809f, 0.120920518294321f, 0.185780445509170f, 0.230409297605585f,
                0.265155109300921f, 0.255564190106414f, 0.255564190106414f, 0.255564190106414f,
                0.255564190106414f, 0.255564190106414f, 0.255564190106414f, 0.255564190106414f,
                0.255564190106414f, 0.255564190106414f, 0.255564190106414f, 0.255564190106414f,
                0.255564190106414f, 0.255564190106414f, 0.255564190106414f } } },
    { 240.0f,
        { { 0.393097244907467f, 0.393097244907467f, 0.564936974812303f, 0.443098214489298f,
              0.532108259266795f, 0.296483138952434f, 0.201836636368156f, 0.123168598573636f,
              0.121478662047122f, 0.127790920956629f, 0.231206479017560f, 0.289734358770133f,
              0.365594791613125f, 0.326964046834306f, 0.354405130280993f, 0.266072505979881f,
              0.266685866452148f, 0.257039578276886f, 0.257039578276886f, 0.257039578276886f,
              0.257039578276886f, 0.257039578276886f, 0.257039578276886f, 0.257039578276886f,
              0.257039578276886f, 0.257039578276886f, 0.257039578276886f, 0.257039578276886f,
              0.257039578276886f, 0.257039578276886f, 0.257039578276886f },
            { 0.166532882778502f, 0.166532882778502f, 0.312248240622327f, 0.207491351745491f,
                0.260015956316528f, 0.144045601024638f, 0.080445174855213f, 0.060673632958851f,
                0.037583740428844f, 0.048809010124758f, 0.064194822150804f, 0.114947624341984f,
                0.128973355789875f, 0.117489755493953f, 0.180509473713157f, 0.223872113856834f,
                0.257632115700258f, 0.248313310529557f, 0.248313310529557f, 0.248313310529557f,
                0.248313310529557f, 0.248313310529557f, 0.248313310529557f, 0.248313310529557f,
                0.248313310529557f, 0.248313310529557f, 0.248313310529557f, 0.248313310529557f,
                0.248313310529557f, 0.248313310529557f, 0.248313310529557f } } },
    { 270.0f,
        { { 0.432513831035009f, 0.432513831035009f, 0.603253707926613f, 0.470435405725976f,
              0.498884487460013f, 0.306902198839116f, 0.123452531517069f, 0.067608297539198f,
              0.038994198667654f, 0.045341929777901f, 0.040318094644347f, 0.082794216371233f,
              0.098174794301998f, 0.115611224219210f, 0.177623326828844f, 0.220292646305346f,
              0.253512863049791f, 0.244343055269397f, 0.244343055269397f, 0.244343055269397f,
              0.244343055269397f, 0.244343055269397f, 0.244343055269397f, 0.244343055269397f,
              0.244343055269397f, 0.244343055269397f, 0.244343055269397f, 0.244343055269397f,
              0.244343055269397f, 0.244343055269397f, 0.244343055269397f },
            { 0.185139889420527f, 0.185139889420527f, 0.212569034521711f, 0.175388050184176f,
                0.194984459975805f, 0.112460497396693f, 0.059156163417547f, 0.043802611117036f,
                0.038904514499428f, 0.058748935252978f, 0.085703784523037f, 0.143879857825585f,
                0.159220872705117f, 0.157398286446622f, 0.186208713666287f, 0.202534960682497f,
                0.225164541674462f, 0.245188445380952f, 0.245188445380952f, 0.245188445380952f,
                0.245188445380952f, 0.245188445380952f, 0.245188445380952f, 0.245188445380952f,
                0.245188445380952f, 0.245188445380952f, 0.245188445380952f, 0.245188445380952f,
                0.245188445380952f, 0.245188445380952f, 0.245188445380952f } } },
    { 300.0f,
        { { 0.368553041852479f, 0.368553041852479f, 0.698232404077171f, 0.542625251329014f,
              0.678422120498261f, 0.468813382145265f, 0.276375791917037f, 0.204173794466953f,
              0.142724983016489f, 0.135207256319428f, 0.149623565609444f, 0.183442516711773f,
              0.148593564228701f, 0.127350308101666f, 0.195659076793494f, 0.242661009508242f,
              0.279254384123734f, 0.269153480392692f, 0.269153480392692f, 0.269153480392692f,
              0.269153480392692f, 0.269153480392692f, 0.269153480392692f, 0.269153480392692f,
              0.269153480392692f, 0.269153480392692f, 0.269153480392692f, 0.269153480392692f,
              0.269153480392692f, 0.269153480392692f, 0.269153480392692f },
            { 0.701455298419971f, 0.701455298419971f, 1.000000000000000f, 0.836565595755810f,
                0.970509967245491f, 0.729457510254568f, 0.382384253658113f, 0.242381796455463f,
                0.178443198854037f, 0.194984459975804f, 0.216023003477475f, 0.281190083039894f,
                0.247742205763329f, 0.222843514927031f, 0.239056193534463f, 0.251767692775886f,
                0.223100220748196f, 0.233345806228100f, 0.233345806228100f, 0.233345806228100f,
                0.233345806228100f, 0.233345806228100f, 0.233345806228100f, 0.233345806228100f,
                0.233345806228100f, 0.233345806228100f, 0.233345806228100f, 0.233345806228100f,
                0.233345806228100f, 0.233345806228100f, 0.233345806228100f } } },
    { 330.0f,
        { { 0.416869383470336f, 0.416869383470336f, 0.555904257270404f, 0.418311688651495f,
              0.574777818845522f, 0.500034534976979f, 0.312968047156367f, 0.201372424986239f,
              0.146049474944163f, 0.138038426460288f, 0.171593171012100f, 0.267300640866331f,
              0.272270130807791f, 0.225164541674462f, 0.248885731828239f, 0.242661009508242f,
              0.221309470960564f, 0.226464430759306f, 0.226464430759306f, 0.226464430759306f,
              0.226464430759306f, 0.226464430759306f, 0.226464430759306f, 0.226464430759306f,
              0.226464430759306f, 0.226464430759306f, 0.226464430759306f, 0.226464430759306f,
              0.226464430759306f, 0.226464430759306f, 0.226464430759306f },
            { 0.618728327553234f, 0.618728327553234f, 0.787045789695099f, 0.587489352529776f,
                0.934329368257315f, 0.655390285833477f, 0.540132114764635f, 0.431022558004996f,
                0.309741929921658f, 0.285430251378658f, 0.375837404288445f, 0.519995996533516f,
                0.493173803954936f, 0.398565772313401f, 0.461317574560380f, 0.474241985260245f,
                0.401790810848940f, 0.409260659730011f, 0.409260659730011f, 0.409260659730011f,
                0.409260659730011f, 0.409260659730011f, 0.409260659730011f, 0.409260659730011f,
                0.409260659730011f, 0.409260659730011f, 0.409260659730011f, 0.409260659730011f,
                0.409260659730011f, 0.409260659730011f, 0.409260659730011f } } },
    { 360.0f,
        { { 0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
              0.229879370926401f, 0.229879370926401f, 0.229879370926401f },
            { 0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f, 0.229879370926401f,
                0.229879370926401f, 0.229879370926401f, 0.229879370926401f } } }
};

const AzimuthProfiles defaultAzimuthProfiles1 = {
{ 0.0f,
        { { 0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f },
            { 0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f } } },
    { 30.0f,
        { { 0.697629761974222f, 0.697629761974222f, 0.835603018231248f, 0.671042458632901f,
              0.950331226974181f, 0.728408491522093f, 0.630049976930408f, 0.531955128236972f,
              0.415192978147146f, 0.390503562294295f, 0.480009684908112f, 0.612350391724774f,
              0.588504787243298f, 0.501620180363360f, 0.559757601495111f, 0.571478636671867f,
              0.504661297563529f, 0.511681835540308f, 0.511681835540308f, 0.511681835540308f,
              0.511681835540308f, 0.511681835540308f, 0.511681835540308f, 0.511681835540308f,
              0.511681835540308f, 0.511681835540308f, 0.511681835540308f, 0.511681835540308f,
              0.511681835540308f, 0.511681835540308f, 0.511681835540308f },
            { 0.518800038928961f, 0.518800038928961f, 0.643798558586410f, 0.520145684953132f,
                0.660123205654783f, 0.594634359165687f, 0.418432105762394f, 0.300607630262823f,
                0.236251731414293f, 0.226464430759306f, 0.266609119134929f, 0.371749163536557f,
                0.376920709547802f, 0.326869952558687f, 0.352370871042487f, 0.345740296418239f,
                0.322663618591148f, 0.328284214316547f, 0.328284214316547f, 0.328284214316547f,
                0.328284214316547f, 0.328284214316547f, 0.328284214316547f, 0.328284214316547f,
                0.328284214316547f, 0.328284214316547f, 0.328284214316547f, 0.328284214316547f,
                0.328284214316547f, 0.328284214316547f, 0.328284214316547f } } },
    { 60.0f,
        { { 0.766478540162591f, 0.766478540162591f, 1.000000000000000f, 0.874731970892050f,
              0.977799925864087f, 0.789314352732207f, 0.486267226589422f, 0.345441889099858f,
              0.274552245465151f, 0.293426950395597f, 0.316865531946885f, 0.386144630346289f,
              0.351155924516291f, 0.324339617349349f, 0.341881027081702f, 0.355426659637028f,
              0.324619795632621f, 0.335737614242955f, 0.335737614242955f, 0.335737614242955f,
              0.335737614242955f, 0.335737614242955f, 0.335737614242955f, 0.335737614242955f,
              0.335737614242955f, 0.335737614242955f, 0.335737614242955f, 0.335737614242955f,
              0.335737614242955f, 0.335737614242955f, 0.335737614242955f },
            { 0.473015094678584f, 0.473015094678584f, 0.763835783577690f, 0.632229854806186f,
                0.747523757863696f, 0.566565336409729f, 0.381175518739995f, 0.303738609194611f,
                0.232206835516786f, 0.222971830894677f, 0.240574726093395f, 0.280301227735976f,
                0.239331575640539f, 0.213181738713594f, 0.294188031312244f, 0.345740296418239f,
                0.384149259178759f, 0.373680125382116f, 0.373680125382116f, 0.373680125382116f,
                0.373680125382116f, 0.373680125382116f, 0.373680125382116f, 0.373680125382116f,
                0.373680125382116f, 0.373680125382116f, 0.373680125382116f, 0.373680125382116f,
                0.373680125382116f, 0.373680125382116f, 0.373680125382116f } } },
    { 90.0f,
        { { 0.282244183025396f, 0.282244183025396f, 0.313058139566081f, 0.271019163189084f,
              0.293426950395597f, 0.194200346295108f, 0.119949930314938f, 0.095746961354662f,
              0.087599171763312f, 0.119330098744878f, 0.158398111714294f, 0.233614610221893f,
              0.252057717963911f, 0.249890646139567f, 0.283465363348967f, 0.301908263350306f,
              0.326869952558687f, 0.348437589004521f, 0.348437589004521f, 0.348437589004521f,
              0.348437589004521f, 0.348437589004521f, 0.348437589004521f, 0.348437589004521f,
              0.348437589004521f, 0.348437589004521f, 0.348437589004521f, 0.348437589004521f,
              0.348437589004521f, 0.348437589004521f, 0.348437589004521f },
            { 0.533334895487621f, 0.533334895487621f, 0.684502439096536f, 0.568034874449755f,
                0.593608348191371f, 0.412334809789612f, 0.208269176583772f, 0.132586711776056f,
                0.087750580873113f, 0.098259601842788f, 0.089975651500707f, 0.154347642332453f,
                0.175388050184176f, 0.198266801282380f, 0.273605611323968f, 0.321551100290820f,
                0.357272838151929f, 0.347536161443206f, 0.347536161443206f, 0.347536161443206f,
                0.347536161443206f, 0.347536161443206f, 0.347536161443206f, 0.347536161443206f,
                0.347536161443206f, 0.347536161443206f, 0.347536161443206f, 0.347536161443206f,
                0.347536161443206f, 0.347536161443206f, 0.347536161443206f } } },
    { 120.0f,
        { { 0.260690376924823f, 0.260690376924823f, 0.417710122705241f, 0.307432658063637f,
              0.364124582768118f, 0.233816416405714f, 0.151051485272583f, 0.122250318705779f,
              0.085359133929137f, 0.103842467675821f, 0.127533711865269f, 0.197412659832141f,
              0.215216220349500f, 0.200678109001819f, 0.276933184666555f, 0.325461783498046f,
              0.361617966771595f, 0.351762873244939f, 0.351762873244939f, 0.351762873244939f,
              0.351762873244939f, 0.351762873244939f, 0.351762873244939f, 0.351762873244939f,
              0.351762873244939f, 0.351762873244939f, 0.351762873244939f, 0.351762873244939f,
              0.351762873244939f, 0.351762873244939f, 0.351762873244939f },
            { 0.496449411258169f, 0.496449411258169f, 0.651628394060843f, 0.543093993977907f,
                0.623017147429065f, 0.401790810848940f, 0.301127209760909f, 0.207909818841500f,
                0.205766656125932f, 0.213734682309585f, 0.333426412763235f, 0.394911699348976f,
                0.470164679266681f, 0.432389361460998f, 0.459330199671557f, 0.370467402210716f,
                0.371107729492926f, 0.360994013586417f, 0.360994013586417f, 0.360994013586417f,
                0.360994013586417f, 0.360994013586417f, 0.360994013586417f, 0.360994013586417f,
                0.360994013586417f, 0.360994013586417f, 0.360994013586417f, 0.360994013586417f,
                0.360994013586417f, 0.360994013586417f, 0.360994013586417f } } },
    { 150.0f,
        { { 0.298280594494943f, 0.298280594494943f, 0.299312600355623f, 0.236047823318058f,
              0.236251731414293f, 0.140483396911322f, 0.089975651500707f, 0.069502431758880f,
              0.055239533208935f, 0.087674843633931f, 0.089202083840017f, 0.160186163484006f,
              0.181394869714599f, 0.205057189184673f, 0.282976258457614f, 0.332563819955743f,
              0.369508982288584f, 0.359438836681872f, 0.359438836681872f, 0.359438836681872f,
              0.359438836681872f, 0.359438836681872f, 0.359438836681872f, 0.359438836681872f,
              0.359438836681872f, 0.359438836681872f, 0.359438836681872f, 0.359438836681872f,
              0.359438836681872f, 0.359438836681872f, 0.359438836681872f },
            { 0.329135706827428f, 0.329135706827428f, 0.435386541329689f, 0.310634723076088f,
                0.303214523861240f, 0.229614864811236f, 0.160601648946313f, 0.130880516437444f,
                0.098599565242491f, 0.111847170029336f, 0.136536887991945f, 0.183442516711773f,
                0.191370503715938f, 0.216334109374689f, 0.298538261891796f, 0.350852842987021f,
                0.389829768501105f, 0.379205825055067f, 0.379205825055067f, 0.379205825055067f,
                0.379205825055067f, 0.379205825055067f, 0.379205825055067f, 0.379205825055067f,
                0.379205825055067f, 0.379205825055067f, 0.379205825055067f, 0.379205825055067f,
                0.379205825055067f, 0.379205825055067f, 0.379205825055067f } } },
    { 180.0f,
        { { 0.452246276656300f, 0.452246276656300f, 0.457746465951409f, 0.356348553306142f,
              0.313058139566081f, 0.194368104770253f, 0.139636836105594f, 0.104652594586409f,
              0.090443008436831f, 0.113501081567231f, 0.141335090067637f, 0.206835461656757f,
              0.213550208604744f, 0.202069143199226f, 0.278852793796739f, 0.327717776805172f,
              0.364124582768118f, 0.354201176996633f, 0.354201176996633f, 0.354201176996633f,
              0.354201176996633f, 0.354201176996633f, 0.354201176996633f, 0.354201176996633f,
              0.354201176996633f, 0.354201176996633f, 0.354201176996633f, 0.354201176996633f,
              0.354201176996633f, 0.354201176996633f, 0.354201176996633f },
            { 0.452246276656300f, 0.452246276656300f, 0.457746465951409f, 0.356348553306142f,
                0.313058139566081f, 0.194368104770253f, 0.139636836105594f, 0.104652594586409f,
                0.090443008436831f, 0.113501081567231f, 0.141335090067637f, 0.206835461656757f,
                0.213550208604744f, 0.202069143199226f, 0.278852793796739f, 0.327717776805172f,
                0.364124582768118f, 0.354201176996633f, 0.354201176996633f, 0.354201176996633f,
                0.354201176996633f, 0.354201176996633f, 0.354201176996633f, 0.354201176996633f,
                0.354201176996633f, 0.354201176996633f, 0.354201176996633f, 0.354201176996633f,
                0.354201176996633f, 0.354201176996633f, 0.354201176996633f } } },
    { 210.0f,
        { { 0.329135706827428f, 0.329135706827428f, 0.435386541329689f, 0.310634723076088f,
              0.303214523861240f, 0.229614864811236f, 0.160601648946313f, 0.130880516437444f,
              0.098599565242491f, 0.111847170029336f, 0.136536887991945f, 0.183442516711773f,
              0.191370503715938f, 0.216334109374689f, 0.298538261891796f, 0.350852842987021f,
              0.389829768501105f, 0.379205825055067f, 0.379205825055067f, 0.379205825055067f,
              0.379205825055067f, 0.379205825055067f, 0.379205825055067f, 0.379205825055067f,
              0.379205825055067f, 0.379205825055067f, 0.379205825055067f, 0.379205825055067f,
              0.379205825055067f, 0.379205825055067f, 0.379205825055067f },
            { 0.298280594494943f, 0.298280594494943f, 0.299312600355623f, 0.236047823318058f,
                0.236251731414293f, 0.140483396911322f, 0.089975651500707f, 0.069502431758880f,
                0.055239533208935f, 0.087674843633931f, 0.089202083840017f, 0.160186163484006f,
                0.181394869714599f, 0.205057189184673f, 0.282976258457614f, 0.332563819955743f,
                0.369508982288584f, 0.359438836681872f, 0.359438836681872f, 0.359438836681872f,
                0.359438836681872f, 0.359438836681872f, 0.359438836681872f, 0.359438836681872f,
                0.359438836681872f, 0.359438836681872f, 0.359438836681872f, 0.359438836681872f,
                0.359438836681872f, 0.359438836681872f, 0.359438836681872f } } },
    { 240.0f,
        { { 0.496449411258169f, 0.496449411258169f, 0.651628394060843f, 0.543093993977907f,
              0.623017147429065f, 0.401790810848940f, 0.301127209760909f, 0.207909818841500f,
              0.205766656125932f, 0.213734682309585f, 0.333426412763235f, 0.394911699348976f,
              0.470164679266681f, 0.432389361460998f, 0.459330199671557f, 0.370467402210716f,
              0.371107729492926f, 0.360994013586417f, 0.360994013586417f, 0.360994013586417f,
              0.360994013586417f, 0.360994013586417f, 0.360994013586417f, 0.360994013586417f,
              0.360994013586417f, 0.360994013586417f, 0.360994013586417f, 0.360994013586417f,
              0.360994013586417f, 0.360994013586417f, 0.360994013586417f },
            { 0.260690376924823f, 0.260690376924823f, 0.417710122705241f, 0.307432658063637f,
                0.364124582768118f, 0.233816416405714f, 0.151051485272583f, 0.122250318705779f,
                0.085359133929137f, 0.103842467675821f, 0.127533711865269f, 0.197412659832141f,
                0.215216220349500f, 0.200678109001819f, 0.276933184666555f, 0.325461783498046f,
                0.361617966771595f, 0.351762873244939f, 0.351762873244939f, 0.351762873244939f,
                0.351762873244939f, 0.351762873244939f, 0.351762873244939f, 0.351762873244939f,
                0.351762873244939f, 0.351762873244939f, 0.351762873244939f, 0.351762873244939f,
                0.351762873244939f, 0.351762873244939f, 0.351762873244939f } } },
    { 270.0f,
        { { 0.533334895487621f, 0.533334895487621f, 0.684502439096536f, 0.568034874449755f,
              0.593608348191371f, 0.412334809789612f, 0.208269176583772f, 0.132586711776056f,
              0.087750580873113f, 0.098259601842788f, 0.089975651500707f, 0.154347642332453f,
              0.175388050184176f, 0.198266801282380f, 0.273605611323968f, 0.321551100290820f,
              0.357272838151929f, 0.347536161443206f, 0.347536161443206f, 0.347536161443206f,
              0.347536161443206f, 0.347536161443206f, 0.347536161443206f, 0.347536161443206f,
              0.347536161443206f, 0.347536161443206f, 0.347536161443206f, 0.347536161443206f,
              0.347536161443206f, 0.347536161443206f, 0.347536161443206f },
            { 0.282244183025396f, 0.282244183025396f, 0.313058139566081f, 0.271019163189084f,
                0.293426950395597f, 0.194200346295108f, 0.119949930314938f, 0.095746961354662f,
                0.087599171763312f, 0.119330098744878f, 0.158398111714294f, 0.233614610221893f,
                0.252057717963911f, 0.249890646139567f, 0.283465363348967f, 0.301908263350306f,
                0.326869952558687f, 0.348437589004521f, 0.348437589004521f, 0.348437589004521f,
                0.348437589004521f, 0.348437589004521f, 0.348437589004521f, 0.348437589004521f,
                0.348437589004521f, 0.348437589004521f, 0.348437589004521f, 0.348437589004521f,
                0.348437589004521f, 0.348437589004521f, 0.348437589004521f } } },
    { 300.0f,
        { { 0.473015094678584f, 0.473015094678584f, 0.763835783577690f, 0.632229854806186f,
              0.747523757863696f, 0.566565336409729f, 0.381175518739995f, 0.303738609194611f,
              0.232206835516786f, 0.222971830894677f, 0.240574726093395f, 0.280301227735976f,
              0.239331575640539f, 0.213181738713594f, 0.294188031312244f, 0.345740296418239f,
              0.384149259178759f, 0.373680125382116f, 0.373680125382116f, 0.373680125382116f,
              0.373680125382116f, 0.373680125382116f, 0.373680125382116f, 0.373680125382116f,
              0.373680125382116f, 0.373680125382116f, 0.373680125382116f, 0.373680125382116f,
              0.373680125382116f, 0.373680125382116f, 0.373680125382116f },
            { 0.766478540162591f, 0.766478540162591f, 1.000000000000000f, 0.874731970892050f,
                0.977799925864087f, 0.789314352732207f, 0.486267226589422f, 0.345441889099858f,
                0.274552245465151f, 0.293426950395597f, 0.316865531946885f, 0.386144630346289f,
                0.351155924516291f, 0.324339617349349f, 0.341881027081702f, 0.355426659637028f,
                0.324619795632621f, 0.335737614242955f, 0.335737614242955f, 0.335737614242955f,
                0.335737614242955f, 0.335737614242955f, 0.335737614242955f, 0.335737614242955f,
                0.335737614242955f, 0.335737614242955f, 0.335737614242955f, 0.335737614242955f,
                0.335737614242955f, 0.335737614242955f, 0.335737614242955f } } },
    { 330.0f,
        { { 0.518800038928961f, 0.518800038928961f, 0.643798558586410f, 0.520145684953132f,
              0.660123205654783f, 0.594634359165687f, 0.418432105762394f, 0.300607630262823f,
              0.236251731414293f, 0.226464430759306f, 0.266609119134929f, 0.371749163536557f,
              0.376920709547802f, 0.326869952558687f, 0.352370871042487f, 0.345740296418239f,
              0.322663618591148f, 0.328284214316547f, 0.328284214316547f, 0.328284214316547f,
              0.328284214316547f, 0.328284214316547f, 0.328284214316547f, 0.328284214316547f,
              0.328284214316547f, 0.328284214316547f, 0.328284214316547f, 0.328284214316547f,
              0.328284214316547f, 0.328284214316547f, 0.328284214316547f },
            { 0.697629761974222f, 0.697629761974222f, 0.835603018231248f, 0.671042458632901f,
                0.950331226974181f, 0.728408491522093f, 0.630049976930408f, 0.531955128236972f,
                0.415192978147146f, 0.390503562294295f, 0.480009684908112f, 0.612350391724774f,
                0.588504787243298f, 0.501620180363360f, 0.559757601495111f, 0.571478636671867f,
                0.504661297563529f, 0.511681835540308f, 0.511681835540308f, 0.511681835540308f,
                0.511681835540308f, 0.511681835540308f, 0.511681835540308f, 0.511681835540308f,
                0.511681835540308f, 0.511681835540308f, 0.511681835540308f, 0.511681835540308f,
                0.511681835540308f, 0.511681835540308f, 0.511681835540308f } } },
    { 360.0f,
        { { 0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
              0.331989998205157f, 0.331989998205157f, 0.331989998205157f },
            { 0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f, 0.331989998205157f,
                0.331989998205157f, 0.331989998205157f, 0.331989998205157f } } },

const ElevationProfiles defaultElevationProfiles0 = {
    { -30.0f,
        { 0.917156297265849f, 0.917156297265849f, 0.671341280053693f, 0.550102162631601f,
            0.644827205614767f, 0.586061715903898f, 0.528376327914776f, 0.565513988819906f,
            0.436961679761170f, 0.377522945080379f, 0.362612985324198f, 0.399892585916292f,
            0.601787762910887f, 0.761102857216751f, 0.655304804833470f, 0.534494637435879f,
            0.497099529755547f, 0.456502701871178f, 0.456502701871178f, 0.456502701871178f,
            0.456502701871178f, 0.456502701871178f, 0.456502701871178f, 0.456502701871178f,
            0.456502701871178f, 0.456502701871178f, 0.456502701871178f, 0.456502701871178f,
            0.456502701871178f, 0.456502701871178f, 0.456502701871178f } },
    { -15.0f,
        { 0.930986433276774f, 0.930986433276774f, 0.839350497745053f, 0.794224632377244f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            0.825930211407267f, 0.694134055646429f, 0.584041022071381f, 0.558397354794353f,
            0.779728399132162f, 0.948294763330940f, 0.933132578652771f, 0.815536404779250f,
            0.745492626509754f, 0.711939931250462f, 0.711939931250462f, 0.711939931250462f,
            0.711939931250462f, 0.711939931250462f, 0.711939931250462f, 0.711939931250462f,
            0.711939931250462f, 0.711939931250462f, 0.711939931250462f, 0.711939931250462f,
            0.711939931250462f, 0.711939931250462f, 0.711939931250462f } },
    { 0.0f,
        { 1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 1.000000000000000f,
            1.000000000000000f, 1.000000000000000f, 1.000000000000000f } },
    { 15.0f,
        { 0.923513721003843f, 0.923513721003843f, 0.761979613868237f, 0.681464681311002f,
            0.738657909027877f, 0.722675534451525f, 0.733573023748635f, 0.740360691366310f,
            0.708668864395584f, 0.634517131621849f, 0.555192195272969f, 0.477466990647510f,
            0.596270539537662f, 0.538819559249321f, 0.398972858490850f, 0.328808739537999f,
            0.299532086887260f, 0.301955783526424f, 0.301955783526424f, 0.301955783526424f,
            0.301955783526424f, 0.301955783526424f, 0.301955783526424f, 0.301955783526424f,
            0.301955783526424f, 0.301955783526424f, 0.301955783526424f, 0.301955783526424f,
            0.301955783526424f, 0.301955783526424f, 0.301955783526424f } },
    { 30.0f,
        { 1.000000000000000f, 1.000000000000000f, 1.000000000000000f, 0.731885852612517f,
            0.808990370719907f, 0.879920330795670f, 0.873863001845037f, 0.674440050607649f,
            0.594899155352234f, 0.464989720749418f, 0.409207280833171f, 0.403592746456686f,
            0.461257406003648f, 0.462320714139681f, 0.412993629184471f, 0.360946929993716f,
            0.397597232046371f, 0.384984595501267f, 0.384984595501267f, 0.384984595501267f,
            0.384984595501267f, 0.384984595501267f, 0.384984595501267f, 0.384984595501267f,
            0.384984595501267f, 0.384984595501267f, 0.384984595501267f, 0.384984595501267f,
            0.384984595501267f, 0.384984595501267f, 0.384984595501267f } },
};

[bookmark: _Ref153541537][bookmark: _Toc166076666]Reverberation Extent Mesh Definitions
Four meshes are defined for the reverberation extents, with 0, 1, 2, or 3 segmentations. 0 segments describes a flat 2D surface, while the segmented versions describe a surface that is curved. The meshes are defined by a list of vertex coordinates, and a list of faces, defined by the vertices that construct them.

For all versions:
hw = portal width / 2
hh = portal height / 2
hd = portal depth / 2
offset = reverb extent offset
ho = offset / 2
irt2 = 1 / sqrt(2)
cos30o = offset * cos (30 * pi / 180)
O segments
VertexCoordinates = {{ -hw - 1.f, hh + 1.f, -hd - offset }, { hw + 1.f, hh + 1.f, -hd - offset },
{ -hw - 1.f, -hh - 1.f, -hd - offset }, { hw + 1.f, -hh - 1.f, -hd - offset }}
FaceVertices = {{ 0, 2, 1 }, { 1, 2, 3 }}

1 Segment
VertexCoordinates = { { -hw, hh, -hd - offset }, { hw, hh, -hd - offset }, { -hw, -hh, -hd - offset },
        { hw, -hh, -hd - offset }, { -hw, hh + offset, -hd }, { hw, hh + offset, -hd },
        { -hw - offset, hh, -hd }, { hw + offset, hh, -hd }, { -hw - offset, -hh, -hd },
        { hw + offset, -hh, -hd }, { -hw, -hh - offset, -hd }, { hw, -hh - offset, -hd } };

FaceVertices = { { 0, 2, 1 }, { 1, 2, 3 }, { 0, 5, 4 }, { 1, 5, 0 },
        { 0, 6, 8 }, { 0, 8, 2 }, { 3, 2, 10 }, { 3, 10, 11 }, { 7, 1, 3 }, { 7, 3, 9 },
        { 4, 6, 0 }, { 5, 1, 7 }, { 2, 8, 10 }, { 9, 3, 11 } };

2 Segments
VertexCoordinates = { { -hw, hh, -hd - offset }, { hw, hh, -hd - offset },
        { -hw, -hh, -hd - offset }, { hw, -hh, -hd - offset }, { -hw, hh + offset, -hd },
        { hw, hh + offset, -hd }, { -hw - offset, hh, -hd }, { hw + offset, hh, -hd },
        { -hw - offset, -hh, -hd }, { hw + offset, -hh, -hd }, { -hw, -hh - offset, -hd },
        { hw, -hh - offset, -hd }, { -hw, hh + (offset * irt2), -hd - (offset * irt2) },
        { hw, hh + (offset * irt2), -hd - (offset * irt2) },
        { -hw, -hh - (offset * irt2), -hd - (offset * irt2) },
        { hw, -hh - (offset * irt2), -hd - (offset * irt2) },
        { -hw - (offset * irt2), hh, -hd - (offset * irt2) },
        { -hw - (offset * irt2), -hh, -hd - (offset * irt2) },
        { hw + (offset * irt2), hh, -hd - (offset * irt2) },
        { hw + (offset * irt2), -hh, -hd - (offset * irt2) },
        { -hw - (offset * irt2), hh + (offset * irt2), -hd },
        { -hw - ho, hh + (irt2 * offset), -hd - ho },
        { hw + (offset * irt2), hh + (offset * irt2), -hd },
        { hw + ho, hh + (irt2 * offset), -hd - ho },
        { -hw - (offset * irt2), -hh - (offset * irt2), -hd },
        { -hw - ho, -hh - (irt2 * offset), -hd - ho },
        { hw + (offset * irt2), -hh - (offset * irt2), -hd },
        { hw + ho, -hh - (irt2 * offset), -hd - ho } };

FaceVertices = { { 0, 2, 1 }, { 1, 2, 3 }, { 5, 4, 12 }, { 5, 12, 13 },
        { 13, 12, 0 }, { 13, 0, 1 }, { 3, 2, 14 }, { 3, 14, 15 }, { 15, 14, 10 }, { 15, 10, 11 },
        { 16, 6, 8 }, { 16, 8, 17 }, { 0, 16, 17 }, { 0, 17, 2 }, { 18, 1, 3 }, { 18, 3, 19 },
        { 7, 18, 19 }, { 7, 19, 9 }, { 21, 16, 0 }, { 12, 21, 0 }, { 22, 18, 7 }, { 18, 22, 23 },
        { 4, 21, 12 }, { 4, 20, 21 }, { 23, 13, 1 }, { 23, 1, 18 }, { 20, 6, 16 }, { 22, 5, 23 },
        { 5, 13, 23 }, { 16, 21, 20 }, { 2, 17, 25 }, { 2, 25, 14 }, { 24, 25, 17 }, { 24, 17, 8 },
        { 14, 25, 10 }, { 25, 24, 10 }, { 3, 15, 27 }, { 3, 27, 19 }, { 27, 15, 11 },
        { 27, 11, 26 }, { 19, 27, 26 }, { 9, 19, 26 } };

3 Segments
VertexCoordinates = { { -hw, hh, -hd - offset }, { hw, hh, -hd - offset },
        { -hw, -hh, -hd - offset }, { hw, -hh, -hd - offset }, { -hw, hh + offset, -hd },
        { hw, hh + offset, -hd }, { -hw - offset, hh, -hd }, { hw + offset, hh, -hd },
        { -hw - offset, -hh, -hd }, { hw + offset, -hh, -hd }, { -hw, -hh - offset, -hd },
        { hw, -hh - offset, -hd }, { -hw, hh + cos30o, -hd - ho }, { hw, hh + cos30o, -hd - ho },
        { -hw, hh + ho, -hd - cos30o }, { hw, hh + ho, -hd - cos30o },
        { -hw, -hh - ho, -hd - cos30o }, { hw, -hh - ho, -hd - cos30o },
        { -hw, -hh - cos30o, -hd - ho }, { hw, -hh - cos30o, -hd - ho },
        { -hw - cos30o, hh, -hd - ho }, { -hw - ho, hh, -hd - cos30o },
        { -hw - cos30o, -hh, -hd - ho }, { -hw - ho, -hh, -hd - cos30o },
        { hw + ho, hh, -hd - cos30o }, { hw + cos30o, hh, -hd - ho },
        { hw + ho, -hh, -hd - cos30o }, { hw + cos30o, -hh, -hd - ho },
        { -hw - cos30o, hh + ho, -hd }, { -hw - ho, hh + cos30o, -hd },
        { -hw - (offset * 0.75), hh + ho, -hd - (offset * 0.4330) },
        { -hw - (offset * 0.4330), hh + cos30o, -hd - (offset * 0.25) },
        { -hw - (offset * 0.25), hh + cos30o, -hd - (offset * 0.4330) },
        { -hw - (offset * 0.4330), hh + ho, -hd - (offset * 0.75) }, { hw + cos30o, hh + ho, -hd },
        { hw + ho, hh + cos30o, -hd }, { hw + (offset * 0.75), hh + ho, -hd - (offset * 0.4330) },
        { hw + (offset * 0.4330), hh + cos30o, -hd - (offset * 0.25) },
        { hw + (offset * 0.25), hh + cos30o, -hd - (offset * 0.4330) },
        { hw + (offset * 0.4330), hh + ho, -hd - (offset * 0.75) }, { -hw - cos30o, -hh - ho, -hd },
        { -hw - ho, -hh - cos30o, -hd },
        { -hw - (offset * 0.75), -hh - ho, -hd - (offset * 0.4330) },
        { -hw - (offset * 0.4330), -hh - cos30o, -hd - (offset * 0.25) },
        { -hw - (offset * 0.25), -hh - cos30o, -hd - (offset * 0.4330) },
        { -hw - (offset * 0.4330), -hh - ho, -hd - (offset * 0.75) },
        { hw + cos30o, -hh - ho, -hd }, { hw + ho, -hh - cos30o, -hd },
        { hw + (offset * 0.75), -hh - ho, -hd - (offset * 0.4330) },
        { hw + (offset * 0.4330), -hh - cos30o, -hd - (offset * 0.25) },
        { hw + (offset * 0.25), -hh - cos30o, -hd - (offset * 0.4330) },
        { hw + (offset * 0.4330), -hh - ho, -hd - (offset * 0.75) } };
FaceVertices = { { 0, 2, 1 }, { 1, 2, 3 }, { 12, 5, 4 }, { 12, 13, 5 },
        { 14, 13, 12 }, { 14, 15, 13 }, { 0, 15, 14 }, { 0, 1, 15 }, { 3, 2, 16 }, { 3, 16, 17 },
        { 17, 16, 18 }, { 17, 18, 19 }, { 19, 18, 10 }, { 19, 10, 11 }, { 20, 6, 8 }, { 20, 8, 22 },
        { 21, 20, 22 }, { 21, 22, 23 }, { 0, 21, 23 }, { 0, 23, 2 }, { 24, 1, 3 }, { 24, 3, 26 },
        { 25, 24, 26 }, { 25, 26, 27 }, { 7, 25, 27 }, { 7, 27, 9 }, { 4, 32, 12 }, { 4, 31, 32 },
        { 4, 29, 31 }, { 33, 14, 32 }, { 14, 12, 32 }, { 31, 29, 30 }, { 30, 29, 28 },
        { 21, 0, 33 }, { 14, 33, 0 }, { 32, 31, 33 }, { 33, 31, 30 }, { 5, 13, 38 }, { 5, 38, 37 },
        { 5, 37, 35 }, { 38, 13, 15 }, { 38, 15, 39 }, { 37, 38, 39 }, { 37, 39, 36 },
        { 35, 37, 36 }, { 35, 36, 34 }, { 39, 15, 1 }, { 39, 1, 24 }, { 36, 39, 24 },
        { 36, 24, 25 }, { 34, 36, 25 }, { 34, 25, 7 }, { 10, 43, 41 }, { 10, 44, 43 },
        { 10, 18, 44 }, { 41, 42, 40 }, { 43, 42, 41 }, { 43, 45, 42 }, { 44, 45, 43 },
        { 44, 16, 45 }, { 18, 16, 44 }, { 40, 22, 8 }, { 42, 22, 40 }, { 42, 23, 22 },
        { 45, 23, 42 }, { 45, 2, 23 }, { 16, 2, 45 }, { 11, 50, 19 }, { 11, 49, 50 },
        { 11, 47, 49 }, { 17, 51, 3 }, { 3, 51, 26 }, { 49, 47, 48 }, { 48, 47, 46 },
        { 48, 46, 27 }, { 46, 9, 27 }, { 51, 48, 26 }, { 26, 48, 27 }, { 51, 50, 49 },
        { 49, 48, 51 }, { 19, 50, 17 }, { 17, 50, 51 }, { 30, 28, 20 }, { 20, 28, 6 },
        { 21, 30, 20 }, { 33, 30, 21 } };

[bookmark: _Ref161839457][bookmark: _Toc166076667]Headphone Equalization Preset Responses
Default preset responses are provided such that the content creator or the user may specify their use in place of measured data. For each frequency response 10 gain values are specified, corresponding to the following centre frequencies given in hertz:

fc = [70, 180, 320, 600, 1000, 3000, 6000, 12000, 14000, 16000];

The presets indexes are defined in Table 16, and the gain values are given in the following  map:

std::map<int, std::vector<float>> gains = { { 0, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
        { 1, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -6.5, -6.5, -6.5, -8.5 } },
        { 2, { 0.0, 0.0, 2.5, 4.5, 4.5, 4.5, 2.5, 0.0, 0.0, 0.0 } },
        { 3, { 7.5, 5.5, 1.5, -0.5, -0.5, -5.5, -6.5, -6.5, -0.5, -0.5 } },
        { 4, { 3.5, 8.5, 4.0, -3.5, -2.5, 1.0, 3.5, 7.5, 10.0, 11.5 } },
        { 5, { 8.0, 8.0, 4.5, 4.5, 0.0, -4.5, -4.5, -4.5, 0.0, 0.0 } },
        { 6, { 5.5, 5.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.5, 5.5 } },
        { 7, { -2.0, 3.5, 5.5, 6.0, 4.0, -1.5, -2.5, -2.5, -2.0, -2.0 } },
        { 8, { 0.0, 0.0, -1.0, -5.5, 0.0, 5.0, 5.0, 0.0, 0.0, 0.0 } },
        { 9, { 6.0, 3.5, -5.0, -7.0, -3.5, 3.0, 7.0, 8.5, 8.5, 8.5 } },
        { 10, { 3.5, 1.0, -1.5, -2.5, -1.5, 3.0, 6.5, 7.5, 8.5, 9.5 } },
        { 11, { -2.5, -4.5, -4.0, -1.0, 3.0, 4.5, 7.0, 7.5, 8.5, 7.5 } },
        { 12, { 7.5, 7.5, 7.5, 4.5, 1.0, -4.0, -7.5, -9.0, -9.5, -9.5 } },
        { 13, { 3.0, 3.0, 1.5, -1.0, -4.0, -5.0, -3.5, -1.0, 2.0, 7.0 } },
        { 14, { -8.5, -8.5, -8.5, -4.0, 2.0, 8.5, 12.5, 12.5, 12.5, 13.5 } },
        { 15, { 5.5, 4.5, 0.0, -6.5, -4.5, 1.0, 6.5, 8.5, 9.5, 9.5 } },
        { 16, { -4.5, 0.0, 3.0, 4.0, 4.5, 4.5, 3.0, 2.0, 2.0, 1.5 } },
        { 17, { 6.0, 4.5, 0.0, -5.0, -4.5, 0.0, 6.0, 7.5, 7.5, 7.0 } } };

[bookmark: _Ref163065514][bookmark: _Toc166076668]Listener Voice Default Directivity Pattern

listenerVoiceDefaultDirectivityData = { 0x7d, 0x81, 0x12, 0xe6, 0xa6,
    0x5e, 0x30, 0x98, 0x3b, 0x7d, 0x57, 0x4a, 0x39, 0x87, 0x88, 0x44, 0xc0, 0x5f, 0x5d, 0x54, 0x09,
    0xb9, 0xb0, 0xc7, 0xd8, 0xed, 0xbc, 0x31, 0xcd, 0x2b, 0x58, 0xb3, 0xe7, 0x07, 0x66, 0xb0, 0x69,
    0x36, 0x9b, 0x7b, 0xe7, 0x56, 0x27, 0x72, 0xf0, 0xf4, 0x5d, 0xa9, 0xfa, 0x2d, 0xce, 0x0d, 0x4d,
    0x16, 0xac, 0x07, 0xcd, 0x33, 0xe0, 0x3d, 0x99, 0xcb, 0x7d, 0x4a, 0x3c, 0x46, 0x15, 0x8e, 0x82,
    0xc2, 0x53, 0x37, 0x8b, 0x3a, 0xba, 0x09, 0x1c, 0x7f, 0x09, 0x4a, 0xc8, 0x2f, 0xc8, 0xce, 0x2e,
    0x1c, 0x47, 0x96, 0xd2, 0xb6, 0x53, 0xc9, 0x68, 0x35, 0xf2, 0xea, 0x9d, 0xbc, 0xfa, 0x73, 0x67,
    0x39, 0x20, 0x03, 0x0c, 0x2c, 0xd0, 0x70, 0x3f, 0x18, 0x07, 0xef, 0x73, 0xe4, 0xdb, 0x3f, 0xc6,
    0x96, 0x67, 0x85, 0xfa, 0xb1, 0x07, 0xce, 0xb4, 0xc4, 0x0b, 0x92, 0x3a, 0xe5, 0x3a, 0x0d, 0x04,
    0x6c, 0x9a, 0xf3, 0xa3, 0x6a, 0x6d, 0x78, 0xf8, 0x48, 0x8b, 0x01, 0xca, 0x1d, 0xe2, 0x46, 0x80,
    0x1d, 0xaf, 0xa3, 0x54, 0x42, 0x54, 0x01, 0x35, 0x99, 0x66, 0x84, 0xee, 0xb5, 0x3e, 0x07, 0x95,
    0x62, 0x9b, 0xa3, 0x56, 0xd5, 0x63, 0x4a, 0x97, 0x32, 0x2a, 0x94, 0xa8, 0xd8, 0xed, 0x3c, 0xb8,
    0xd9, 0x3f, 0x47, 0x26, 0x3b, 0x5d, 0xa3, 0x04, 0x65, 0x75, 0x06, 0x53, 0xba, 0x84, 0x03, 0x85,
    0x7e, 0x91, 0x01, 0xc0, 0x61, 0x6e, 0x6d, 0xe6, 0xf7, 0xa3, 0x6a, 0x5c, 0x99, 0x53, 0x3b, 0xfb,
    0x25, 0xd4, 0000, 0x1d, 0xa9, 0x73, 0x58, 0xb8, 0xa4, 0x42, 0xd8, 0x7c, 0x1a, 0xa2, 0x5d, 0x27,
    0x46, 0xf3, 0x43, 0xdb, 0x23, 0x0e, 0xc0, 0x60, 0x9d, 0x34, 0x84, 0x36, 0x49, 0xe0, 0x84, 0xc2,
    0x27, 0x1e, 0x14, 0x0d, 0xf4, 0x5b, 0x5a, 0x3f, 0x1f, 0x93, 0x94, 0x39, 0x84, 0xa4, 0x62, 0x9d,
    0x02, 0x20, 0xa0, 0x53, 0xde, 0x9e, 0x06, 0xc4, 0x85, 0xa8, 0xcb, 0x87, 0x94, 0xda, 0xaa, 0x37,
    0xcb, 0xd6, 0x92, 0xc3, 0x56, 0xbc, 0x74, 0x36, 0x20, 0x0a, 0xa4, 0xc7, 0x2a, 0xfc, 0xd6, 0x5a,
    0xb3, 0x64, 0x13, 0x52, 0xc5, 0x30, 0x8d, 0x12, 0xe3, 0x73, 0x73, 0xba, 0xbe, 0xc8, 0xbf, 0x26,
    0x34, 0x4a, 0xf4, 0x3d, 0xbc, 0x66, 0x8a, 0xac, 0xe0, 0xe4, 0xa3, 0x64, 0x0a, 0xf4, 0x3e, 0x88,
    0xc6, 0x37, 0x1d, 0x0d, 0x7c, 0x07, 0x6e, 0xca, 0x77, 0xf0, 0x55, 0x56, 0x82, 0x57, 0x20, 0x9e,
    0xd0, 0x1f, 0x34, 0xd3, 0x2d, 0xc0, 0xba, 0xde, 0x2d, 0x3a, 0xb7, 0x54, 0xd9, 0xc5, 0xfa, 0xaf,
    0xd6, 0x3f, 0x84, 0xe1, 0x49, 0x51, 0x51, 0x04, 0xbb, 0xb8, 0xd4, 0xf6, 0x6d, 0x9d, 0x40, 0x47,
    0xae, 0xc8, 0x08, 0xf5, 0x4a, 0x9b, 0xdf, 0xed, 0xdf, 0xc7, 0x01, 0x47, 0x56, 0x92, 0xf2, 0x16,
    0xe5, 0x68, 0x28, 0x40, 0x86, 0x03, 0xb6, 0x8d, 0xe1, 0x0e, 0x16, 0x1b, 0xdc, 0x3a, 0xa0, 0x3f,
    0xe2, 0xe5, 0x90, 0xfc, 0000, 0x9b, 0x65, 0x44, 0x50, 0x5b, 0x55, 0x08, 0x90, 0xea, 0x6e, 0x62,
    0xce, 0xa4, 0x51, 0x09, 0x68, 0xd2, 0xf3, 0xd2, 0x03, 0x7c, 0xfb, 0xc5, 0x58, 0x75, 0xa0, 0xe2,
    0x0e, 0x92, 0x9e, 0x68, 0x4d, 0x1b, 0x88, 0x42, 0x7b, 0x84, 0x30, 0x03, 0xc4, 0x4f, 0x8a, 0xa8,
    0x88, 0xdc, 0x44, 0x80, 0xf4, 0x40, 0xf9, 0x25, 0x80, 0x36, 0x41, 0x0a, 0x09, 0x69, 0xae, 0x7f,
    0x27, 0xb3, 0x81, 0x87, 0x14, 0x23, 0xc8, 0x98, 0xa6, 0xfd, 0xa2, 0x3b, 0x8e, 0x26, 0x1b, 0x5b,
    0x6a, 0xfa, 0x90, 0x7c, 0xd9, 0x2d, 0xa5, 0x4b, 0xc7, 0x46, 0xc1, 0x87, 0xe4, 0xf7, 0x1d, 0x6d,
    0x0c, 0x4b, 0x6f, 0x1f, 0xdf, 0xd7, 0xf5, 0x07, 0x81, 0xb0, 0x98, 0xd1, 0x9f, 0x7b, 0x4e, 0x35,
    0xa6, 0xea, 0xf3, 0x39, 0x4b, 0x6a, 0x98, 0x24, 0x6d, 0x2a, 0x38, 0xb1, 0xd2, 0xfe, 0xc9, 0x5e,
    0x44, 0x70, 0x15, 0x63, 0xf2, 0x33, 0x73, 0x48, 0x1e, 0x71, 0xaf, 0x24, 0x3b, 0x7c, 0x28, 0x3d,
    0xb2, 0xae, 0x4f, 0x9a, 0x10, 0x7d, 0x2e, 0xab, 0x2b, 0xd2, 0x84, 0x6e, 0x34, 0xc6, 0xec, 0x81,
    0xb9, 0000, 0xa1, 0xa4, 0x19, 0x3c, 0xe5, 0x4c, 0xa2, 0xae, 0x67, 0xb0, 0x26, 0xb5, 0xd4, 0xac,
    0x4d, 0x32, 0x97, 0xd5, 0xe6, 0x80, 0x35, 0xad, 0x70, 0x1a, 0x69, 0xea, 0xb8, 0x71, 0x3e, 0x32,
    0x81, 0xea, 0x4a, 0xf4, 0x48, 0xad, 0x19, 0xca, 0x84, 0xcd, 0x75, 0x86, 0xba, 0x0d, 0xa6, 0x44,
    0x44, 0x85, 0x75, 0x6e, 0x22, 0x9f, 0x3a, 0xac, 0xc9, 0xcd, 0x6a, 0xd5, 0x57, 0x58, 0xaa, 0x6a,
    0x91, 0x54, 0xab, 0x88, 0x18, 0x29, 0x02, 0x80, 0x59, 0x12, 0x84, 0x9a, 0x16, 0x6e, 0xb0, 0x29,
    0xba, 0x58, 0x67, 0x91, 0xe1, 0x3e, 0xb2, 0xaf, 0xc4, 0x1d, 0x9f, 0x57, 0x33, 0x7d, 0x91, 0xe2,
    0xc8, 0x6a, 0x09, 0x27, 0xcb, 0xa4, 0x88, 0x28, 0xa7, 0x8f, 0xad, 0xf7, 0x3b, 0x0e, 0x01, 0x7a,
    0x6e, 0x8b, 0xb1, 0xcb, 0x6b, 0x0c, 0x9b, 0x1c, 0x1b, 0x34, 0x3b, 0x9a, 0xfa, 0x8c, 0xe9, 0xb0,
    0xe0, 0x06, 0x7b, 0xf9, 0x25, 0x86, 0x35, 0x76, 0x9f, 0x70, 0x1b, 0xbe, 0xc1, 0xc8, 0x5d, 0xbe,
    0x40 };
[bookmark: _Ref164955821][bookmark: _Ref164955832][bookmark: _Toc166076669]Portal LoS Data Decoder Tables

CDV_URLC =
{ 0,3782,7564,11346,15128,17436,19744,22052,24360,26054,27748,29442,31136,32241,33346,34451,35556,36710,37864,39018,40172,40736,41300,41864,42428,42722,43016,43310,43604,43898,44192,44486,44780,45246,45712,46178,46644,47012,47380,47748,48116,48312,48508,48704,48900,48998,49096,49194,49292,49365,49438,49511,49584,49780,49976,50172,50368,50417,50466,50515,50564,50662,50760,50858,50956,51103,51250,51397,51544,51642,51740,51838,51936,51960,51984,52008,52032,52130,52228,52326,52424,52448,52472,52496,52520,52667,52814,52961,53108,53181,53254,53327,53400,53473,53546,53619,53692,53790,53888,53986,54084,54206,54328,54450,54572,54670,54768,54866,54964,55013,55062,55111,55160,55258,55356,55454,55552,55601,55650,55699,55748,55772,55796,55820,55844,55942,56040,56138,56236,56260,56284,56308,56332,56356,56380,56404,56428,56452,56476,56500,56524,56597,56670,56743,56816,56840,56864,56888,56912,56961,57010,57059,57108,57132,57156,57180,57204,57253,57302,57351,57400,57473,57546,57619,57692,57716,57740,57764,57788,57861,57934,58007,58080,58104,58128,58152,58176,58225,58274,58323,58372,58421,58470,58519,58568,58617,58666,58715,58764,58862,58960,59058,59156,59278,59400,59522,59644,59668,59692,59716,59740,59764,59788,59812,59836,59860,59884,59908,59932,59956,59980,60004,60028,60052,60076,60100,60124,60148,60172,60196,60220,60269,60318,60367,60416,60440,60464,60488,60512,60536,60560,60584,60608,60632,60656,60680,60704,60728,60752,60776,60800,60824,60848,60872,60896,60920,60944,60968,60992,61041,61090,61139,61188,61319,61450,61581,63496,65536}


CDV_SPRC=
 { 0,15,30,45,60,75,90,105,120,135,150,165,180,195,210,225,240,255,270,340,410,480,550,643,736,829,899,969,1039,1109,1202,1295,1388,1458,1528,1598,1668,1761,1854,1947,2017,2087,2157,2227,2297,2367,2437,2507,2600,2693,2786,2856,2926,2996,3066,3159,3252,3345,3415,3485,3555,3625,3718,3811,3904,4044,4184,4324,4464,4557,4650,4743,4813,4883,4953,5023,5233,5443,5653,5863,5956,6049,6142,6212,6282,6352,6422,6515,6608,6701,6771,6841,6911,6981,7168,7355,7542,7682,7822,7962,8102,8242,8382,8522,8662,8755,8848,8941,9292,9643,9994,10345,10720,11095,11470,12102,12734,13366,13998,14841,15684,16527,17370,18213,19056,19899,20367,20835,21303,21654,22005,22356,22707,22917,23127,23337,23547,23640,23733,23826,23896,23966,24036,24106,24199,24292,24385,24525,24665,24805,24945,25038,25131,25224,25294,25364,25434,25504,25644,25784,25924,26064,26157,26250,26343,26413,26483,26553,26623,26716,26809,26902,26972,27042,27112,27182,27275,27368,27461,27531,27601,27671,27741,27834,27927,28020,28090,28160,28230,28300,28370,28440,28510,28580,28673,28766,28859,28929,28999,29069,29139,29232,29325,29418,29488,29558,29628,29698,29791,29884,29977,30047,30117,30187,30257,30327,30397,30467,30537,30630,30723,30816,30886,30956,31026,31096,31189,31282,31375,31445,31515,31585,31655,31748,31841,31934,32004,32074,32144,32214,32307,32400,32493,48947,65536}

[bookmark: _Ref163838859][bookmark: _Toc166076670]Reverberator output directions
Reverberator output directions are provided here for the spherical designs with a number of azimuth-elevation pairs suitable for each supported output channel count, namely 15, 31, and 63 channels. Note that these designs are t-designs rotated such that a pair of directions lies on the horizontal plane, oriented symmetrically around the forward axis.
dirs_t_fwpair_15_deg[15][2] = {
            { 82.658851354417308f, 45.776701836081472f },
            { -103.211797148889076f, -20.996660207713223f },
            { 62.447049548527559f, 0.000000000000002f },
            { 172.658851354417294f, -0.000000000000009f },
            { -5.115301174902946f, -55.075721661607460f },
            { -139.498775509469226f, 12.794209241377812f },
            { 14.604676412414083f, -12.794209241377812f },
            { -119.778797922152194f, 55.075721661607460f },
            { 97.341148645582692f, -30.446384317065231f },
            { -62.447049548527559f, 0.000000000000002f },
            { 137.764752257362176f, 30.446384317065224f },
            { -21.682301948166053f, 20.996660207713226f },
            { 152.447049548527559f, -45.776701836081472f },
            { -11.552377423280149f, 69.731081550693503f },
            { -113.341721673774956f, -69.731081550693489f } };

dirs_t_fwpair_31_deg[31][2] = {
            { -21.227914684628225f, -0.000000000000004f },
            { 144.166146415942535f, -39.058501810257034f },
            { -0.000000042133876f, 32.319159519795448f },
            { 160.696218451645649f, -8.646319455760947f },
            { 46.092132941458154f, 35.592827198843139f },
            { -46.092133060988431f, 35.592827131173195f },
            { -165.285328486345094f, -6.013873952385691f },
            { 35.341081142546805f, -41.005150567886659f },
            { 136.549914552511922f, 30.894355659464448f },
            { 21.227914684628200f, 0.000000000000007f },
            { -64.555276959969802f, 7.303982613202332f },
            { -139.462967778490594f, 32.677072071279753f },
            { -174.435316727748955f, -61.771453724156927f },
            { -0.000000217873171f, 70.344154027604731f },
            { -90.004136402389676f, -60.304065739604162f },
            { 156.161941041166216f, 65.716199543234879f },
            { -121.572244417656435f, -2.398536477252398f },
            { 53.378132586776388f, -7.684054402112428f },
            { -144.464385588860097f, -33.806320503878077f },
            { -5.000092606567491f, -72.215563373533598f },
            { -177.969313143670092f, 29.976473465812681f },
            { -10.970804291206807f, -31.495601569421947f },
            { 86.057785094463583f, 12.162232881350828f },
            { -94.105804021871819f, -21.464815261831014f },
            { 87.526615506354688f, 49.121590079422631f },
            { -54.075652088035646f, -29.406603527914680f },
            { 123.665584936594925f, 0.429138722951919f },
            { -100.673331810731455f, 66.536017458738542f },
            { 92.484356152494456f, -24.124555266313592f },
            { -96.656013946955284f, 28.545378419433657f },
            { 92.030804464154855f, -56.947682877906125f } };

dirs_t_fwpair_63_deg[63][2] = {
            { 113.697644297577199f, 75.586367185940546f },
            { 166.310646192394728f, -77.684915450136458f },
            { -17.389103694898271f, 16.199603089248804f },
            { 158.822754037832453f, -12.645966321239733f },
            { 60.358089557801456f, -61.633632065821807f },
            { -55.400505826335845f, 72.236746983300861f },
            { -138.621699406575971f, 18.136412679207336f },
            { 58.826283607279628f, -1.414381990856097f },
            { -140.436766467579957f, 39.290274137497249f },
            { -49.081811554803778f, -37.081634002506441f },
            { -162.016399094256514f, 11.539415068276861f },
            { 14.462909900643668f, 0.000000000000016f },
            { -96.689514963231886f, 58.590970970599642f },
            { 121.385234198446426f, -35.154804586166392f },
            { -39.884596536300933f, -18.186308271001522f },
            { 29.176384353080813f, 18.573181877103718f },
            { -143.929354548781674f, 60.389893911892045f },
            { 90.113195006351290f, 26.173048875247730f },
            { -86.026684054801592f, -4.064365329271832f },
            { 107.359577791370299f, 40.970430011138482f },
            { -158.378140809581964f, -9.362257369704528f },
            { 59.201385791935110f, 15.036228755803268f },
            { -154.251908659831230f, -30.221887395193693f },
            { 7.331796515755554f, 67.240009845692171f },
            { -68.418666082070501f, 6.579590634863780f },
            { -90.418339489950952f, -24.173441813919823f },
            { 92.850643546644875f, 5.790286144586245f },
            { 29.499830538080069f, -15.138225248667363f },
            { 52.052426573120464f, 41.363214877831737f },
            { 109.539653840480028f, -6.242935338992117f },
            { -48.769156080158716f, 0.413993055858015f },
            { 177.107021781366853f, 41.812771277039012f },
            { -63.314596947338423f, -70.552282445636862f },
            { -58.937151467299643f, 40.255558615281394f },
            { 170.546592751151849f, -0.995005064330493f },
            { -75.184580491607932f, -40.262910557670033f },
            { -121.137777758556467f, -41.683881870833638f },
            { -3.116505077969357f, -24.715273106713525f },
            { 171.423156108720008f, 26.037622270870678f },
            { 175.861985785744793f, -56.730887113546807f },
            { 178.356183795915598f, -35.585540530141550f },
            { 46.779122330655440f, -29.137637580452569f },
            { 151.274088900546161f, 64.484910903387217f },
            { 88.207759148636541f, -34.876563400358158f },
            { -89.801268305889096f, 30.053225210144532f },
            { 77.656926399373148f, -21.278351389684364f },
            { -17.821507128036220f, -66.949086169393908f },
            { 132.771099505294984f, 35.665865658227233f },
            { -42.401567716459439f, 30.718049375001772f },
            { 129.638946492271032f, -1.716547557921829f },
            { 12.475304819954122f, 33.661183083303406f },
            { 29.965758471370243f, -48.848969323800397f },
            { -116.840219983601131f, -1.288753780714446f },
            { -14.462909900637902f, 0.000000000000003f },
            { 139.940681600195944f, 16.136446227182592f },
            { -122.541856340902655f, -58.114702705768522f },
            { 65.287791671586234f, 55.343181967946883f },
            { -10.454909013743984f, 45.637942442249106f },
            { 106.651521415697275f, -62.578150231561231f },
            { -126.085866385379063f, -14.978780360888869f },
            { 141.473502636798969f, -34.649424345748770f },
            { -107.014661653642463f, 24.017281223767185f },
            { -9.370605842054440f, -40.314579424013793f } };


[bookmark: _Toc117076384][bookmark: _Toc131497407][bookmark: _Toc132126412][bookmark: _Toc132225981][bookmark: _Toc135210169][bookmark: _Toc166076671]
(informative)
[bookmark: _Toc96955476][bookmark: _Toc117076385][bookmark: _Toc131497408][bookmark: _Toc132126413][bookmark: _Toc132225982][bookmark: _Toc135210170][bookmark: _Toc166076672]Encoder overview
The encoder parses the Immersive Audio Encoder Input Format (EIF) scene description file into readable data structures and generates different categories of side information as well as the scene description. Finally, it codes and serializes the data to create an MHAS bitstream file.
In this bitstream, the encoder represents different categories of side information as separate payloads elements bundled in an MHAS payload packet. These payloads are used to enrich renderer stages with extra data for higher quality rendering. The side information is often represented as a pair – the identifier (ID) of the entity as authored in the scene description coupled with the side information itself. For example, the encoder encodes reverberation parameters and couples them with the AcousticEnvironment ID found in the scene description. An AcousticEnvironment describes the spatial zones for which reverberation parameters are defined.
A block diagram of the scene description encoder is provided in the Figure A.2 —. The first major step in the encoding process is to parse the scene description file and provide readable data structures as Scene Entities to the different modules of the encoder. A short description of some of the encoding modules and the associated parameters for their respective bitstream payload elements is provided in the following.


[bookmark: _Ref101360620][bookmark: _Ref100831980]Encoder overview
[bookmark: _Ref89964660][bookmark: _Toc117076386][bookmark: _Toc131497409][bookmark: _Toc132126414][bookmark: _Toc132225983][bookmark: _Toc135210171][bookmark: _Toc166076673]Encoder modules
[bookmark: _Toc117076387][bookmark: _Toc131497410][bookmark: _Toc132126415][bookmark: _Toc132225984][bookmark: _Toc135210172][bookmark: _Toc166076674]Scene Configuration parameters
The maximum propagation delay that can be rendered on RIs should be chosen larger than the delay introduced by the maximum possible distance between listener location and a RI location in the scene. This maximum delay is configured by delayBufferSize (cf. Table 10). delayBufferSize should be chosen as small as possible for a given scene to avoid unnecessarily large memory consumption for delay buffers on the renderer host system.
The configuration parameter gainCullingThreshold sets a threshold at which a RI with a large attenuation (e.g., due to large distance attenuation) is deactivated. With parameter values ranging from 0 to 7, deactivation thresholds between -100 dB and -30 dB can be signaled in increments of 10 dB.
The boolean flag enableCullingReflectionRI enables (true) or disables (false) the Reflection RI culling. If Voxel-based early reflection is used, this flag is set to false.
[bookmark: _Ref101275632][bookmark: _Ref101275650][bookmark: _Toc117076388][bookmark: _Toc131497411][bookmark: _Toc132126416][bookmark: _Toc132225985][bookmark: _Toc135210173][bookmark: _Toc166076675]Audio plus metadata creation
Audio Plus metadata contains additional audio source characterization parameters like distanceGainModel, hasDiffuseness, and diffuseness, for audio sources with extent, based on analysis of the audio signals themselves. This is for example used in the Heterogeneous rendering stage (6.6.15) to improve the rendering of Heterogeneous sources, which are sources that have an extent and more than one audio channel. This includes both object sources with more than one source channel and HOA sources with an extent and both an interior and exterior representation.
The parameter distanceGainModel makes it possible to control the distance gain behaviour so that it either follows the distance gain fall-off of a point-source or that it follows a distance gain model based on the size of the extent of the audio element. The parameter can be used as a design parameter set manually by the content creator or can be automatically set by the encoder by an analysis of the audio signals provided for the audio element.
The parameter diffuseness describes the amount of correlation between the different channels of the audio signals of the Audio Element. This can be used as a design parameter to control the diffuseness of an audio element or can be automatically set by the encoder by measuring the mean correlation between the channels over time.
[bookmark: _Toc117076389][bookmark: _Toc131497412][bookmark: _Toc132126417][bookmark: _Toc132225986][bookmark: _Toc135210174][bookmark: _Toc166076676]Reverberation parametrization
Reverberation in each Acoustic Environment (AE) is described based on its parameters, such as RT60, predelay and diffuse-to-source energy ratio (DSR) and are associated to the AE with an identifier. 
[bookmark: _Toc117076390][bookmark: _Toc131497413][bookmark: _Toc132126418][bookmark: _Toc132225987][bookmark: _Toc135210175][bookmark: _Toc166076677]Default acoustic environment (Default AE)
The bitstream may contain metadata for a Default AE. There are either several pre-defined presets (see A.3) to choose from and modify, or the possibility to define an entire customized Default AE.

	Preset name
	ID
	Description

	Default
	0
	Medium sized space with moderate reflective surfaces

	LargeNeutral
	1
	Large sized space with moderate absorbent reflective surfaces

	LargeDark
	2
	Large sized space with highly absorbent reflective surfaces

	LargeBright
	3
	Large sized space with less absorbent reflective surfaces

	SmallNeutral
	4
	Small sized space with moderate absorbent reflective surfaces

	SmallDark
	5
	Small sized space with highly absorbent reflective surfaces

	SmallBright
	6
	Small sized space with less absorbent reflective surfaces



This metadata is used by the renderer to apply generic acoustic properties when the listener is not inside an EIF specified AE. The Default AE uses the same parameters as utilized for the EIF specified AE to control the Reverberation modules.
[bookmark: _Toc117076391][bookmark: _Toc131497414][bookmark: _Toc132126419][bookmark: _Toc132225988][bookmark: _Toc135210176][bookmark: _Ref164855142][bookmark: _Toc166076678]Low complexity early reflection parametrization
As an alternative to the full-blown geometry-based calculation of early reflections (ERs) in the renderer, the bitstream can also contain parameters for so-called low complexity early reflections that can be created in the renderer without complex geometry-based calculations.
Specifically for outdoor scenes, a new pattern with four roughly cross-positioned ERs is designed. The different distances are defined here by a predelay time and a compression factor, which are derived from geometry analysis of the scene. 
Usage of ER patterns for outdoor environments known is highly individual and dependent on the physical setup of the scene. The geometrical analysis described hereafter captures perceptually important characteristics of the outdoor scene, which are relevant to the perception of ERs:
From a central listening point, concentric rings are positioned. The area of the rings, defined by radius and height, represents the maximum possible reflection energy at this distance, see Figure 105. There is a spacing d between the rings (e.g. 3m). Rays with an angular spacing α (e.g. 6°) are sent out from the analysis point. The first surfaces that hit are counted to the existing reflection surface at this distance and summed up over the ring. 


[bookmark: _Ref85823464]Figure 105: Geometrical outdoor scene analysis. a) Top view of rings around an analysis point. b) Side view around an analysis point with rings of increasing height.


[bookmark: _Ref86050882]Figure 106: Mesh of analysis points in top a) and side b) view. The dot-dashed line indicates the user reachable area of a scene.
There are a number of analysis points (e.g. 9) positioned in the inner part of a user reachable area, see Figure 106. It is a 3D mesh, because some of the points are inside the geometrical mesh of the scene and have to be deselected. The data over all mesh points are averaged and the distribution is analyzed. It represents the reflective outdoor energy over space and distance, see 107. 


[bookmark: _Hlk155895241][bookmark: _Ref85823574]Figure 107: Distribution of reflection surface area over distance, averaged over several analysis points
[bookmark: _Hlk155895225]The amplitudes a1 and a2 - together with their distances - are the input values to calculate the outdoor ER pattern values, see (638)..(643). 
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Theses values can be the starting values for a tuning of the parameters by ear.

[bookmark: _Ref101283401][bookmark: _Toc117076392][bookmark: _Toc131497415][bookmark: _Toc132126420][bookmark: _Toc132225989][bookmark: _Toc135210177][bookmark: _Toc166076679]Portal creation in implicit portal mode
This section describes how the encoder generates portals based on the acoustic environments (AEs) in a scene. An important concept to keep in mind here is that a portal is a representation of an AE in the implicit portal mode, whereas in the explicit portal mode the portal represents the oppening between AEs. When the listener is not in a particular AE, but it is still acoustically relevant, it will be represented as a portal. 
There are three steps covering the main processes of generating portals:
[bookmark: _Toc117076393][bookmark: _Toc131497416][bookmark: _Toc132126421][bookmark: _Toc132225990][bookmark: _Toc135210178][bookmark: _Toc166076680]Creation of the geometry of the portal
One portal geometry with unique portalExtentId is generated from each AE in the scene. Its geometry can be obtained by shrinking the geometry of the corresponding portalParentEnvironment slightly, this is done to avoid overlap between the geometry of the portal and potential occluding boundaries (e.g. walls), as illustrated in Figure 108.


[bookmark: _Ref108017195]Figure 108 — A bird eye 2D view of how a portal is shrunken from an AE
[bookmark: _Toc117076394][bookmark: _Toc131497417][bookmark: _Toc132126422][bookmark: _Toc132225991][bookmark: _Toc135210179][bookmark: _Toc166076681]Identification of the connection state between two portals
There are three possible states of connection between two AEs: not connected, connected with an opening, connected with an occluder (or in other words: closed), which are demonstrated in Figure 109 to Figure 111 respectively. This step utilizes raytracing and voxelization techniques to identify potential empty spaces or geometries between each pair of AEs or between one AE and the ‘outside’ environment. Furthermore, it provides the information of isConnectedWithOpening, and if this variable is true, also the location of the opening, i.e. openingPosX, openingPosY and openingPosZ.


[bookmark: _Ref108017228]Figure 109 — A bird eye 2D view of two AEs that are not connected


Figure 110 — A bird eye 2D view of two connected AEs with an opening


[bookmark: _Ref108017255]Figure 111 — A bird eye 2D view of two AEs connected with an occluder
[bookmark: _Toc117076395][bookmark: _Toc131497418][bookmark: _Toc132126423][bookmark: _Toc132225992][bookmark: _Toc135210180][bookmark: _Toc166076682] Creation of the portal struct containing all its metadata to be encoded
All the metadata obtained through the above two steps are organized into a structure for bitstream serialization. This step takes care of a) creating one portal struct with unique portalId for each portal geometry, b) assigning them under relevant acousticEnvironmentId (portals are relevant for a specific acoustic environment if they are not created from the given AE), and c) calculating portalFactor for each opened connection based on the area of the opening, volume of the source AE and the absorption coefficient of the source AE estimated from RT60. 
Portal bitstream parameters are sent for each acoustic environment to describe the rendering of late reverberation between and outside of acoustic environments.
[bookmark: _Ref163216098][bookmark: _Toc166076683]Line-of-sight data creation in explicit portal mode
In the explicit portal mode, a voxel grid of line-of-sight (LoS) data is used to accelerate calculations of LoS from source to portals. The LoS affects the level of reverberation a source audio signal causes through a portal in a connected reverberant environment such that reverberation level is lower when there is no LoS. This section describes the encoder side processing to create the LoS voxel grids.
Grids of LoS voxels is created the encoder to represent the visibility of each sound source at positions of the grid towards portals to be used for controlling energy propagation of sources through the portals to reverberation in the renderer. The voxel grids support both static and dynamic sources as long as the source is within the LoS-area-grid.
The encoder obtains AudioScene acoustic environment (AE) geometries. A bounding geometry is created around each AE to be the voxel grid area where LoS is calculated. Each AE bounding geometry is limited in height to a certain value (2m) and the x and z extents are expanded by a certain amount to add some tolerance to the voxel grid (1m, 1m).
For portals which are connected only a single AE, an outside LoS voxel grid is created. This is to cover audio source positions outside the AE. The outside LoS grid is set to cover an extended bounding geometry of the AE such that the AE bounding geometry is expanded by 10m over the x and z axes so that it covers the AE and some area around it. 
The bounding geometry is divided into a voxel grid and the center of each voxel is used as the LoS checking point. The resolution of the LoS grid depends on the number of voxels with more voxels leading to a biffer resolution.
Los-check is performed from each of the voxel centers. To improve computational performance, only meshes that have a certain percentage of vertices inside the bounding geometry are taken into account when performing the LoS check. The LoS-check is performed as follows:
Using a ray tracing routine, n rays are shot from each voxel center towards the vertices of the open face of each portal. Based on ray hits, a los_ratio = rays passed / rays occluded is calculated. This approach is used for all the distributed points and all portals producing a set of approximated LoS values for each point and portal combination. The amount of rays is dependent on number of vertices in the open portal faces. The open portal faces are the ones which a ray cast along the the portal normal passes. Line of sight can be converted into a boolean value by setting a threshold of the percentage of rays needed to hit portal vertices within a tolerance conclude that a LoS exists.
LoS values are stored as a binary array for each portal in the AE. Knowing the extents of the voxel grid and the voxel size, a voxel representation can be formed. Voxel index can be derived from position of the sound source, which can used to check LoS value for that voxel.
Before writing the LoS-data into the payloadPortal of the bitstream, the truth array of the portal gets converted into multidimensional array based on populated geometry extents, producing several 2D planes of binary values. The 2D planes are treated as bitmasks, each of which is compressed by using lossless run-length-encoding with entropy encoding and the coded data is written into bitstream. Decoding is done by the renderer producing the original binary-array for each portal.
[bookmark: _Toc117076397][bookmark: _Toc131497420][bookmark: _Toc132126425][bookmark: _Toc132225994][bookmark: _Toc135210182][bookmark: _Toc166076684]Source/geometry staticity analysis
The staticity data describes whether or not an audio source or geometry is static - meaning that it remains unchanged - throughout the duration of the scene. The Source/Geometry Staticity Analysis evaluates all of the updates in the scene description and tags each audio source (hoaSource, channelSource, objectSource) and geometry (mesh, box, sphere, cylinder) with staticity data.
[bookmark: _Toc117076398][bookmark: _Toc131497421][bookmark: _Toc132126426][bookmark: _Toc132225995][bookmark: _Toc135210183][bookmark: _Toc166076685]Diffraction edges and paths analysis
The bitstream may contain data which facilitate accelerated rendering for the Renderer Diffraction stage (6.6.10). Specifically, this can include diffraction edges on all the geometry and paths between sources and the listener, based on an analysis of the scene description.
[bookmark: _Toc117076399][bookmark: _Toc131497422][bookmark: _Toc132126427][bookmark: _Toc132225996][bookmark: _Toc135210184][bookmark: _Toc166076686]Early reflection surfaces and sequences analysis
Similarly, the bitstream can contain acceleration data for Early Reflection stage (6.6.6) in the Renderer. Specifically, this can include lists of the relevant reflection surfaces on all of the geometry and the possible sequences of reflection between them, based on an analysis of the scene description.
[bookmark: _Toc117076400][bookmark: _Toc131497423][bookmark: _Toc132126428][bookmark: _Toc132225997][bookmark: _Toc135210185][bookmark: _Toc166076687]Module data collection
The output of each encoding module (portal creation, diffraction data, early reflection sequences, etc.) is stored in the Module Data Collection processing block.
[bookmark: _Toc117076401][bookmark: _Toc131497424][bookmark: _Toc132126429][bookmark: _Toc132225998][bookmark: _Toc135210186][bookmark: _Toc166076688]Module data serialization
The Module Data Serialization block serializes the collected module data to be written in the bitstream that is finally transmitted in the MHAS payload packet (5.2.1.2.5).
[bookmark: _Ref108445024][bookmark: _Ref108445047][bookmark: _Toc117076402][bookmark: _Toc131497425][bookmark: _Toc132126430][bookmark: _Toc132225999][bookmark: _Toc135210187][bookmark: _Toc166076689]Listener space description format (LSDF)
The Listener Space Description Format (LSDF) provides listening space environment information directly to the Renderer. The specification of the LSDF is contained in Annex C of ISO/IEC 23090-34, Immersive audio reference software.
[bookmark: _Ref108015980][bookmark: _Toc117076405][bookmark: _Toc131497433][bookmark: _Toc132126438][bookmark: _Toc132226007][bookmark: _Toc135210195][bookmark: _Toc166076690]Encoder input format (EIF)
The encoder input format (EIF) contains information describing an MPEG-I 6DoF Audio scene. The specification of the EIF is contained in Annex B of ISO/IEC 23090-34, Immersive audio reference software.
[bookmark: _Ref157267081][bookmark: _Toc166076691]Accessibility User Interface
This clause specifies a user interface for providing accessibility-related user data to MPEG-I.
	<AcousticSceneAdjustments>

	This field describes the user input parameter to adjust relevant scene-related parameter for rendering.

	Attribute
	Type
	Flags
	Default
	Description

	erAttenuationDb
	Float
	O
	0
	Amount of early reflection level reduction in decibel.   

	reverbAttenuationDb
	Float
	O
	0
	Amount of reverb level reduction in decibel.

	distanceExponent
	Float
	O
	1.0
	Input parameter to adjust a as further described in clause 6.6.17.4.3.1 

	<DirectionalFocus>

	This field describes the user input parameter for the directional focus as further described and applied in clause 6.6.18 and 6.6.25.5


	Attribute
	Type
	Flags
	Default
	Description

	hasDirectionalFocus
	Bool
	O
	False
	Flag to indicate if the directional focus is enabled.       

	directionalFocusAperture
	Float
	O
	30.0
	Opening angle of the directional focus’ main lobe in degree.   

	directionalFocusTransitionWidth
	Float
	O
	30.0
	Width of the transition region between main lobe and stopband in degree.

	directionalFocusStopbandAttenuationDb
	Float
	O
	20.0
	Directional gain reduction in the stopband in decibel.

	hasNondefaultFocusDirection
	Bool
	O
	False
	Flag to indicate if the directional focus has a non-default direction.

	directionalFocusDirectionYaw
	Float
	O
	0
	Yaw angle of the primary direction of the directional focus with respect to the frontal head orientation in degree.

	directionalFocusDirectionPitch
	Float
	O
	0
	Pitch angle of the primary direction of the directional focus with respect to the frontal head orientation in degree.



[bookmark: _Ref163574891][bookmark: _Toc166076692]Guidance on Own Voice Usage – Influence of System Delay
The integration of locally captured audio allows the user voice and other real time signals to be rendered in the scene the same way as any other audio source. With this feature the immersion of the user into the scene is increased. It is a pre-requirement for SocialVR. 
The parametrization of direct sound, early reflection, and reverb level especially for the own voice is highly dependent on the level of the locally captured signal. As seen from Figure 112, the level of the person speaking, the sensitivity of the used microphone and the input gain of the microphone amplifier has a significant influence on the input signal. For a consistent experience a headset with a fixed distance between mouth and microphone is highly recommended. Furthermore, it was observed that the parametrization of direct sound, early reflection and reverb level was subjective to the individual listener and could be scene dependent. Only by introducing a user interface for these parameters a plausible and satisfying fusion of the own voice into a scene for all listeners is possible. 
[image: A computer screen shot of a computer
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[bookmark: _Ref164862574]Figure 112 — Overview diagram of complete renderer chain for locally captured audio with listener’s voice and all involved data files.
[bookmark: _Hlk163911305][bookmark: _Hlk163911636]Humans hear their own voice over bone conduction and over the air-conducted path. For the AR/VR simulation of the own voice, this is captured by a microphone close to the mouth, recorded by a sound device converted into the digital domain, processed by the MPEG-I renderer, converted back into the analogue domain and played back over the reproduction device, normally the headphone. This processing chain has some significant delay. The natural over the air path is reduced by the headset depending on its type. It can be completely open, then no extra electrical direct sound path is necessary and desirable over the headset. It can be a closed headphone, damping e.g. 20 dB of the air path. In this case the direct part should be reproduced over the headset. The mouth to ear distance is about 10 cm, resulting in a natural acoustic latency of ~0,3 ms. The current MPEG-I implementation, with a block length 256 samples and fs = 48 kHz, has a minimum latency of 22 ms (2x AD/DA conversion, 2x processing block length, plus processing delay). The bone conduction of the own voice stays the same as in the natural case without extra delay. The late contribution of the electrical reproduced direct sound part is perceived individually different: some subjects like a natural timbre balance of the direct sound part over headset (resulting in a high direct sound gain), some subjects like a lower direct sound gain, not to be annoyed by the latency. Therefore, the possibility to adjust direct sound gain is very important. 
There is a long history of investigations on the effects of so-called sidetone in telephony. The influence of level and delay of the sidetone on intelligibility was already quantified in [21]. Intelligibility was only degraded statistically significant for delays ≥ 100 ms. The audibility of delayed signal in the presence of direct signal, as a function of delay and relative level is presented in Figure 4. A curve about the preferred (delayed) direct sound level is not known, but it will lie above the here presented curve and will also be delay dependent. 
[image: A graph of a function
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Figure 113 — Audibility of delayed signal in the presence of direct signal, as a function of delay and relative level, [17].
The total round-trip delay in a practical hard- and software implementation can vary widely. This is beside the personal level preference a further reason to keep the gain values variable. In general, it is recommended to keep the round-trip delay below 100 ms.
The following values are recommended for listenerVoice scene object attributes as default for reproduction with closed headphones: 
· directGainDb:		-17 dB (0.14 linear)
· erGainDb:				-13 dB (0.22 linear)
· itemReverbGain:		-6 dB (0.50 linear)
For open headphones, it is recommended to set the default value for directGaindB lower. Since the reproduction is hardware dependent, default values should be adapted to the respective hardware setup in case it is known. The optimal set of gain values may also be scene dependent. It can be helpful to give guidance to the user, when the used scenes or kind of scenes (indoor or outdoor) are known.
It can be useful to provide an overall gain parameter via a UI to a user, that only changes the overall gain offset but keeps the relative differences of the individual attributes.
It is additionally assumed that locally captured audio will be pre-processed by some kind of acoustic front end that delivers the signals at a certain maximum loudness level. Such a front end is not part of the MPEG-I specification. The processing delay of such a pre-processor has to be considered as well.
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