ISO/IEC 23090-14:2024(E)
		ISO/IEC 23090-14:2024(E)
ISO/IEC 23090-14:2024(E)
Second edition
2024-02
Information technology — Coded representation of immersive media —
Part 14:
Scene description
Technologies de l'information — Représentation codée de média immersifs —
Partie 14: Description de scènes

© ISO/IEC 2024 – All rights reserved
© ISO/IEC 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
E-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland
Contents
Foreword	ix
Introduction	x
Part 14: Scene description	1
1	Scope	1
2	Normative references	1
3	Terms, definitions, abbreviated terms, and conventions	2
3.1	Terms and definitions	2
3.2	Abbreviated terms	3
3.3	Conventions	4
3.3.1	General	4
3.3.2	Arithmetic operators	4
3.3.3	Logical operators	4
3.3.4	Relational operators	4
3.3.5	Bit-wise operators	4
3.3.6	Assignment operators	5
3.3.7	Other operators	5
3.3.8	Order of operation precedence	5
3.3.9	Text description of logical operations	6
4	Overview and architecture	8
4.1	Overview	8
4.2	Architecture	8
4.3	Timing model	12
5	Scene description extensions	12
5.1	General	12
5.1.1	Overview of extensions	12
5.1.2	Formatting and typing	13
5.2	Generic extensions	14
5.2.1	MPEG_media extension	14
5.2.2	MPEG_accessor_timed extension	17
5.2.3	MPEG_buffer_circular extension	20
5.2.4	MPEG_scene_dynamic extensions	22
5.3	Visual Extensions	24
5.3.1	MPEG_texture_video extensions	24
5.3.2	MPEG_mesh_linking extensions	25
5.4	Audio extensions	27
5.4.1	MPEG_audio_spatial extensions	27
5.5	Metadata extensions	30
5.5.1	MPEG_viewport_recommended extensions	30
5.5.2	MPEG_animation_timing extensions	31
6	Media access function and buffer API	32
6.1	General	32
6.2	Media access function API	33
6.3	Buffer API	36
7	Carriage formats	38
7.1	General	38
7.2	Carriage format for glTF JSON and JSON patch	39
7.2.1	General	39
7.2.2	glTF patch config box	40
7.3	Carriage format for glTF object and glTF source object as non-timed item	40
7.3.1	General	40
7.3.2	glTF Items	40
7.3.3	glTF source items	41
7.4	Carriage format for mesh correspondence values	42
7.4.1	General	42
7.4.2	Vertices correspondence sample entry	42
7.4.3	Vertices correspondence sample format	43
7.5	Carriage format for pose and weight	43
7.5.1	General	43
7.5.2	Pose transformation sample entry	44
7.5.3	Pose transformation sample format	44
7.6	Carriage format for animation timing	45
7.6.1	General	45
7.6.2	Animation sample entry	45
7.6.3	Animation sample format	45
7.7	Sample redundancies	47
7.8	Brands	47
Annex A (informative) JSON schema reference	48
A.1	General	48
A.2	JSON schema for MPEG_media	48
A.3	JSON schema for MPEG_accessor_timed	48
A.4	JSON schema for MPEG_buffer_circular	48
A.5	JSON schema for MPEG_scene_dynamic	48
A.6	JSON schema for MPEG_texture_video	48
A.7	JSON schema for MPEG_mesh_linking	48
A.8	JSON schema for MPEG_audio_spatial	48
A.9	JSON schema for MPEG_viewport_recommended	49
A.10	JSON schema for MPEG_animation_timing	49
Annex B (normative) Attribute registry	50
Annex C (normative) Support for real-time media	51
Annex D (normative) Audio attenuation functions	53
D.1	General	53
D.2	No attenuation (no_attenuation)	53
D.3	Inverse distance attenuation (inverse_distance)	53
D.4	Linear distance attenuation (linear_distance)	53
D.5	Exponential distance attenuation (exponential_distance)	53
D.6	Custom attenuation	53
Annex E (informative) Linking a dependent mesh and its associated shadow mesh	54
Annex F (informative) glTF extension usage examples	56
F.1	MPEG_media	56
F.2	MPEG_accessor_timed	56
F.3	MPEG_buffer_circular	56
F.4	MPEG_scene_dynamic	56
F.5	MPEG_texture_video	56
F.6	MPEG_mesh_linking	56
F.7	MPEG_audio_spatial	57
F.8	MPEG_viewport_recommended	57
F.9	MPEG_animation_timing	57
F.10	Full example	57
F.11	MPEG_primitive_V3C	57
F.12	MPEG_sampler_YCbCr	57
Annex G Support for MPEG-I Media	58
G.1	MPEG_primitive_V3C extension	58
G.1.1	General	58
G.1.2	Semantics	59
G.1.3	Configuration Data Buffer Format	61
G.1.4	Atlas Data Buffer Format	62
G.1.5	Common atlas data	65
G.1.6	Processing Model	68
G.2	MPEG_sampler_YCbCr extension	68
G.2.1	General	68
G.2.2	Semantics	68
G.2.3	Processing Model	69
Bibliography	70

[bookmark: _Toc141653530]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).
ISO and IEC draw attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC had received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.
This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
A list of all parts in the ISO 23090 series can be found on the ISO and IEC websites.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.
[bookmark: _Toc141653531]Introduction
This document defines the MPEG-I Scene Description. It provides an architecture for the MPEG-I Scene Description, a set of extensions based on ISO/IEC 12113, a set of APIs, and storage formats for scene description documents and scene description updates documents.
ISO/IEC 23090-14:2024(E)
		ISO/IEC 23090-14:2024(E)

1		© ISO/IEC 2024 – All rights reserved
© ISO/IEC 2023 – All rights reserved		1
Information technology — Coded representation of immersive media —
[bookmark: _Toc134023140][bookmark: _Toc141653532]Part 14:
Scene description
[bookmark: Section_sec_1][bookmark: _Toc141653533]Scope
This document specifies extensions to existing scene description formats in order to support MPEG media, in particular immersive media. MPEG media includes but is not limited to media encoded with MPEG codecs, media stored in MPEG containers, MPEG media and application formats as well as media provided through MPEG delivery mechanisms. Extensions include scene description format syntax and semantics and the processing model when using these extensions by a Presentation Engine. It also defines a Media Access Function (MAF) API for communication between the Presentation Engine and the Media Access Function for these extensions. While the extensions defined in this document can be applicable to other scene description formats, they are provided for ISO/IEC 12113.
[bookmark: Section_sec_2][bookmark: _Toc141653534]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 12113, Information technology — Runtime 3D asset delivery format — Khronos glTF™ 2.0
ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format
ISO/IEC 21778, Information technology — The JSON data interchange syntax
IEEE 754-2019, IEEE Standard for Floating-Point Arithmetic
IETF RFC 6902, JavaScript Object Notation (JSON) Patch
IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format
ISO/IEC 23090-10, Information technology — Coded representation of immersive media — Part 10: Carriage of visual volumetric video-based coding data
ISO/IEC DIS 23090-5/DAmd 1, Information technology – Coded Representation of Immersive Media – Part 5: Visual Volumetric Video-based Coding (V3C) and Video-based Point Cloud Compression (V-PCC)
[bookmark: _Ref116910653]ISO/IEC DIS 23090-12/DAmd.1, Information technology — Coded representation of immersive media — Part 12: MPEG immersive video — Amendment 1: V3C extension mechanism
Khronos, Vulkan 1.3.221 – A Specification (with all registered Vulkan extensions), https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
Khronos, EXT_lights_image_based, https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Vendor/EXT_lights_image_based
Khronos, The OpenXR Specification https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html

IETF RFC 7946, The GeoJSON Format RFC 7946: The GeoJSON Format (rfc-editor.org)
[bookmark: Section_sec_3][bookmark: _Toc141653535]Terms, definitions, abbreviated terms, and conventions
[bookmark: Section_sec_3.1][bookmark: _Toc141653536]Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 12113 and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
ISO Online browsing platform: available at https://www.iso.org/obp
IEC Electropedia: available at https://www.electropedia.org/
[bookmark: Section_sec_3.1.1]3.1.1
asset
3D scene described by a scene description document (3.1.10) together with corresponding scene description data (3.1.9)
[bookmark: Section_sec_3.1.2]3.1.2
node
element in the scene graph (3.1.12)
[bookmark: Section_sec_3.1.3]3.1.3
media access function
function that retrieves and prepares media for rendering on request by the presentation engine (3.1.7)
[bookmark: Section_sec_3.1.4]3.1.4
media pipeline
chain of media processing components to process media
[bookmark: Section_sec_3.1.5]3.1.5
object
node in a scene description document (3.1.10)
[bookmark: Section_sec_3.1.6]3.1.6
patch document
document that contains update instructions
Note 1 to entry: For example, update instruction can be provided as defined in RFC 6902.
[bookmark: Section_sec_3.1.7]3.1.7
presentation engine
engine that processes and renders the asset (3.1.1)
[bookmark: Section_sec_3.1.8]3.1.8
scene activation time
time on the media timeline at which the scene described by a scene description document (3.1.10) takes effect in the presentation engine (3.1.7)
[bookmark: Section_sec_3.1.9]3.1.9
scene description data
binary data that is described by scene description document (3.1.10)
[bookmark: Section_sec_3.1.10]3.1.10
scene description document
document describing a 3D scene
Note 1 to entry: For example, scene description document is containing description of node hierarchy, materials, cameras, as well as description information for meshes, animations, and other constructs.
[bookmark: Section_sec_3.1.11]3.1.11
scene description update
patch document (3.1.6) to a scene description document (3.1.10) or a scene description document (3.1.10)
[bookmark: Section_sec_3.1.12]3.1.12
scene graph
data structure used to represent objects (3.1.5) in a 3D scene and their hierarchical relationships
[bookmark: Section_sec_3.1.13]3.1.13
timed accessor
accessor defined in ISO/IEC 12113 that has an MPEG_accessor_timed extension and is used to describe access to timed data
[bookmark: Section_sec_3.1.14]3.1.14
timed data
timed media
media, which when decoded results in content, possibly containing internal timing values, to be presented at a given presentation time and for a certain duration
3.1.15
Augmented Reality (AR)
technique of composing a view from virtual objects and the user’s real-world environment
3.1.16
trackable
real-world object that can be tracked by the XR runtime
3.1.17
AR anchor
real-world pose in the trackable space
3.1.18
avatar
virtual representation of a user
3.1.19
T-pose
Default body pose of a 3D model’s skeleton

[bookmark: Section_sec_3.2][bookmark: _Toc141653537]Abbreviated terms
	3D
	Three-Dimensional

	3DoF
	Three Degrees of Freedom

	6DoF
	Six Degrees of Freedom

	API
	Application Programming Interface

	AR
	Augmented Reality

	DASH
	Dynamic Adaptive Streaming over HTTP

	dB
	Decibel

	DSR
	Diffuse to Source Ratio

	EOM
	Enhanced Occupancy Mode

	ERP
	Equirectangular projection

	glTF
	Graphics Language Transmission Format

	HOA
	Higher Order Ambisonics

	ISOBMFF
	ISO Base Media File Format

	JSON
	JavaScript Object Notation

	MAF
	Media Access Function

	MPEG
	Moving Picture Experts Group

	MIV
	MPEG immersive video

	IDL
	Interface Definition Language

	PCM
	Pulse-Code Modulation

	PLR
	Point Local Reconstruction

	RT60
	60 dB Reverberation Time

	SDP
TRS
	Session Description Protocol
translation, rotation and scale

[bookmark: Section_sec_3.3][bookmark: _Toc141653538]Conventions
[bookmark: Section_sec_3.3.1][bookmark: _Toc141653539]General
The mathematical operators used in this document are similar to those used in the C programming language. However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0.
[bookmark: Section_sec_3.3.2][bookmark: _Toc141653540]Arithmetic operators
	+
	addition

	−
	subtraction (as a two-argument operator) or negation (as a unary prefix operator)

	*
	multiplication, including matrix multiplication

	/
	integer division with truncation of the result toward zero. For example, 7 / 4 and −7 / −4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.

	÷
	division in mathematical equations where no truncation or rounding is intended.

[bookmark: Section_sec_3.3.3][bookmark: _Toc141653541]Logical operators
	!
	Boolean logical "not".

[bookmark: Section_sec_3.3.4][bookmark: _Toc141653542]Relational operators
	>
	Greater than.

	>=
	Greater than or equal to.

	<
	Less than.

	<=
	Less than or equal to.

	==
	Equal to.

	!=
	Not equal to.

[bookmark: Section_sec_3.3.5][bookmark: _Toc141653543]Bit-wise operators
	~
	bit-wise "not".	
When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

	&
	bit-wise "and".	
When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

	|
	bit-wise "or".	
When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

	^
	bit-wise "exclusive or".	
When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

	x >> y
	arithmetic right shift of a two's complement integer representation of x by y binary digits.
This function is defined only for non-negative integer values of y. Bits shifted into the MSBs as a result of the right shift have a value equal to the MSB of x prior to the shift operation.

	x << y
	arithmetic left shift of a two's complement integer representation of x by y binary digits.
This function is defined only for non-negative integer values of y. Bits shifted into the LSBs as a result of the left shift have a value equal to 0.

[bookmark: Section_sec_3.3.6][bookmark: _Toc141653544]Assignment operators
	=
	assignment operator.

	++
	increment, i.e. x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the variable prior to the increment operation.

	--
	decrement, i.e. x-- is equivalent to x = x − 1; when used in an array index, evaluates to the value of the variable prior to the decrement operation.

	+=
	increment by amount specified, i.e. x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3).

	−=
	decrement by amount specified, i.e. x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3).

[bookmark: Section_sec_3.3.7][bookmark: _Toc141653545]Other operators
	y..z
	range operator/notation.	
This function is defined only for integer values of y and z. When z is larger than or equal to y, it defines an ordered set of values from y to z in increments of 1. Otherwise, when z is smaller than y, the output of this function is an empty set. If this operator is used within the context of a loop, it specifies that any subsequent operations defined are performed using each element of this set, unless this set is empty.

[bookmark: Section_sec_3.3.8][bookmark: _Toc141653546]Order of operation precedence
When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
Operations of a higher precedence are evaluated before any operation of a lower precedence.
Operations of the same precedence are evaluated sequentially from left to right.
Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.
NOTE	For those operators that are also used in the C programming language, the order of precedence used in this document is the same as used in the C programming language.
[bookmark: Table_tab_1]Table 1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)
	operations (with operands x, y, and z)

	"x++", "x--"
	

	"!x", "−x" (as a unary prefix operator)
	

	
	

	"x * y", "x / y", "x ÷ y", "x % y"
	

	"x + y", "x − y" (as a two-argument operator)
	

	"x << y", "x >> y"
	

	"x < y", "x <= y", "x > y", "x >= y"
	

	"x == y", "x != y"
	

	"x & y"
	

	"x | y"
	

	"x && y"
	

	"x || y"
	

	"x ? y : z"
	

	"x..y"
	

	"x = y", "x += y", "x −= y"
	

[bookmark: Section_sec_3.3.9][bookmark: _Toc141653547]Text description of logical operations
In the text, a statement of logical operations as would be described mathematically in the following form:
 if(condition 0)
 statement 0
 else if(condition 1)
 statement 1
 ...
 else /* informative remark on remaining condition */
 statement n

· may be described in the following manner:
· ... as follows / ... the following applies:
· If condition 0, statement 0
· Otherwise, if condition 1, statement 1
· ...
· Otherwise (informative remark on remaining condition), statement n
Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".
In the text, a statement of logical operations as would be described mathematically in the following form:
 if(condition 0a && condition 0b)
 statement 0
 else if(condition 1a || condition 1b)
 statement 1
 ...
 else
 statement n

· may be described in the following manner:
· ... as follows / ... the following applies:
· If all of the following conditions are true, statement 0:
condition 0a
condition 0b
· Otherwise, if one or more of the following conditions are true, statement 1:
condition 1a
condition 1b
· ...
· Otherwise, statement n
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0)
statement 0
if(condition 1)
statement 1
may be described in the following manner:
When condition 0, statement 0
When condition 1, statement 1
In addition, a “continue” statement, which is used within loops, is defined as follows:
The “continue” statement, when encountered inside a loop, jumps to the beginning of the loop for the next iteration. This results in skipping the execution of subsequent statements inside the body of the loop for the current iteration. For example:
 for(j =0; j < N; j++) {
 statement 0
 if(condition 1)
 continue
 statement 1
 statement 2
 }

is equivalent to the following:
 for(j =0; j < N; j++) {
 statement 0
 if(!condition 1) {
 statement 1
 statement 2
 }
 }

[bookmark: Section_sec_4][bookmark: _Toc141653548]Overview and architecture
[bookmark: Section_sec_4.1][bookmark: _Toc141653549]Overview
This document enables inclusion of timed media in a scene description. This is achieved through first defining features of a scene description that describe how to get the timed media, and second how a rendering process expects the data once it is decoded. In this version of the document, the features are defined as extensions to the glTF format defined in ISO/IEC 12113, see Clause 5.
In addition to the extensions, which provide an integration of timed media with the scene description, the document describes a reference scene description architecture that includes components such as Media Access Function, Presentation Engine, Buffer Control & Management, and Pipelines. To enable cross-platform/cross-vendor interoperability, the document defines Media Access Function (MAF) API and Buffer API, see Clause 6. The MAF API provides an interface between the Media Access Function and the Presentation Engine. The Buffer API is used to allocate and control buffers for the exchange of data between Media Access Function and Presentation Engine.
Not only the timed media described by the scene description may change over the time but also the scene description itself. The document defines how such change of a scene description document is signalled to the Presentation Engine.
Finally, a scene description may be stored, delivered, or extended in a way that is consistent with MPEG formats. The document defines a number of new features that allow a carriage utilizing ISO/IEC 14496-12 and its derived specifications, see Clause 7.
[bookmark: Section_sec_4.2][bookmark: _Toc141653550]Architecture
The scene description is consumed by a Presentation Engine to render a 3D scene to the viewer. The extensions defined in this document, allow for the creation of immersive experiences using timed media. The scene description extensions are designed with the goal of decoupling the Presentation Engine from the Media Access Function. Presentation Engine and Media Access Function communicate through the Media Access Function API, which allows the Presentation Engine to request timed media required for the rendering of the scene. The Media Access Function will retrieve the requested timed media and make it available in a timely manner and in a format that can be immediately processed by the Presentation Engine. For instance, a requested timed media asset may be compressed and residing in the network, so the Media Access Function will retrieve and decode the asset and pass the resulting decoded media data to the Presentation Engine for rendering. The decoded media data is passed in form of buffers from the Media Access Function to the Presentation Engine. The requests for timed media are passed through the Media Access Function API from the Presentation Engine to the Media Access Function.
Figure 1 depicts the reference architecture.
[image:]
[bookmark: Figure_fig_1]Figure 1 — Scene description reference architecture
The interfaces (MAF API, Buffer API) and extensions to ISO/IEC 12113 are within the scope of this document.
The following principles apply:
The format of the buffers shall be provided by the scene description document and shall be passed to the MAF through the Media Access Function API
Pipeline shall perform necessary transformations to match the buffer format and layout declared in the scene description for that buffer
The fetching of scene description document and scene description updates may be triggered by the MAF.
Figure 1 depicts the reference architecture for scene description. The corresponding procedures are described as follows:
a) The Presentation Engine receives and parses the scene description document and following scene description updates
b) The Presentation Engine identifies timed media that needs to be presented and identifies the required presentation time
c) The Presentation Engine then uses the MAF API to request the media and provides the following information:
1) where the MAF can find the requested media
2) what parts of the media and at what level of detail
3) when the requested media has to be made available
4) in which format it wants the data and how it is passed to the Presentation Engine
d) The MAF instantiates the media fetching and decoding pipeline for the requested media at the appropriate time.
1) It ensures that the requested media is available at the appropriate time in the appropriate buffers for access by the Presentation Engine
2) It ensures that the media is decoded and reformatted to match the expected format by the Presentation Engine as described by the scene description document
The exchange of data (media and metadata) shall be done through buffers (circular and static buffers). The buffer management shall be controlled through the Buffer API. Each buffer should contain sufficient header information to describe its content and timing.
The information provided to the Media Access Function by the Presentation Engine allows it to
Select the appropriate source for the media (multiple could be specified) and the MAF may select based on preferences and capabilities. Capabilities may for example be decoding capabilities or supported formats. Preferences may for example be user settings.
For each selected source,
e) access the media by using a media access protocol.
f) setup the media pipeline to provide the information in the correct buffer format
The MAF may obtain additional information from the Presentation Engine in order to optimize the delivery, for example the required quality for each of the buffers, the exact timing information, etc.
The Media Access Function shall setup and manage the pipeline for each requested media or metadata. A pipeline takes as input one or more media or metadata tracks and outputs one or more buffers. The pipeline shall perform all the necessary processing, such as streaming, demultiplexing, decoding, decryption, and format conversion to match the expected buffer format. The final buffer or set of buffers are then used to exchange data with the Presentation Engine.
An example of pipelines setup is depicted in Figure 2 for the case of a V-PCC compressed point cloud object that is referenced in the scene description. Pipeline #1 creates four video decoders and one patch data decoder. The pipeline is also responsible for processing this data and performing 3D reconstruction based on the received information. The reconstructed data is then fed to the final buffer that is accessed by the Presentation Engine. Pipeline #2 on the other hand is not performing the 3D reconstruction process and provides decoded raw data onto the buffers, which are accessed by the Presentation Engine.
[image:]
[bookmark: Figure_fig_2]Figure 2 — An example of pipelines in scene description
[bookmark: Section_sec_4.3][bookmark: _Toc141653551]Timing model
A scene and all contained nodes share a global common presentation timeline. An initial glTF document is used as an entry point for consuming a 3D scene. The scene activation time of that document may be set externally or may be determined by the user and is considered the presentation time T0 of the 3D scene. Each media is started at time T0 + Tinit, where Tinit is equal to startTime, when present, or equal to the earliest time at which the media is available if autoplay is equal to true and autoplayGroup is not present, or the earliest time at which all media with the same autoplayGroup are available.
The first sample of each media consumed at T0 + Tinit is the one with presentation time equal to startTimeOffset. The media is consumed up to the sample with presentation time equal to the endTimeOffset, when present, or up to the last sample present in the media. When loop is set to true, at each loop the timeline is increased by adding the endTimeOffset – startTimeOffset, when endTimeOffset is present, or duration – startTimeOffset, when endTimeOffset is not present.
When a scene is updated through patch document to a scene description document or a scene description document, the media timeline remains unchanged and continues to be evaluated in respect to the T0, i.e. the activation time of the initial glTF document used as an entry point for consuming the 3D scene.
Animations described by the scene description document may be controlled (e.g., activated, paused, stopped) through MPEG_animation_timing extension. The activation timing of control events is identified by the timing of a sample in a metadata track. Once an animation event is activated the timeline of the animation is determined by animation data in the scene description data and the information provided by the animation sample in the metadata track (e.g., speed, start_frame, end_frame).
All static media of a scene are assumed to be presented at time T0. Timed media shall start at the indicated T0 + Tinit. An object that has timed media components, shall not be rendered until the indicated T0 + Tinit of these components. T0 + Tinit of all the timed media components of the same object shall be equal.
Any extensions that include new primitive attributes shall register the attributes in Annex B.
[bookmark: Section_sec_5][bookmark: _Toc141653552]Scene description extensions
[bookmark: Section_sec_5.1][bookmark: _Toc141653553]General
[bookmark: Section_sec_5.1.1][bookmark: _Toc141653554]Overview of extensions
An extension mechanism that allows to extend glTF 2.0 with new capabilities is defined in ISO/IEC 12113. A glTF node may have an optional extensions property that lists the extensions that are used by this node. All extensions that are used in a glTF document shall be listed in the top-level extensionsUsed array object, while extensions that are required to correctly load/render the scene shall also be listed in the extensionsRequired array.
A number of extensions, listed in Table 2, that enable support for timed media, are specified in subclauses 5.2, 5.3, 5.4, and 5.5. Extensions can be defined under Vendor, EXT, KHR, or KHX namespaces. The extensions defined in this document are under the vendor-specific extension namespaces with an MPEG prefix. Examples of how to use the extensions are provided in Annex F.
[bookmark: Table_tab_2]Table 2 — ISO/IEC 12113 extensions defined in this document
	Extension Name
	Brief Description
	Type
	Subclause

	MPEG_media
	Extension for referencing external media sources.
	Generic
	5.2.1

	MPEG_accessor_timed
	An accessor extension to support timed media.
	Generic
	5.2.2

	MPEG_buffer_circular
	A buffer extension to support circular buffers.
	Generic
	5.2.3

	MPEG_scene_dynamic
	An extension to support dynamic scenes.
	Generic
	5.2.4

	MPEG_texture_video
	A texture extension to support video textures.
	Visual
	5.3.1

	MPEG_mesh_linking
	An extension to link two meshes and provide mapping information
	Visual
	5.3.2

	MPEG_audio_spatial
	Adds support for spatial audio.
	Audio
	5.4.1

	MPEG_viewport_recommended
	An extension to describe a recommended viewport.
	Metadata
	5.5.1

	MPEG_animation_timing
	An extension to control animation timelines.
	Metadata
	5.5.2

Figure 3 depicts the glTF 2.0 hierarchy that includes the extensions defined in this document.
[image: A screenshot of a computer

Description automatically generated]
[bookmark: Figure_fig_3]Figure 3 — An overview of the glTF document structure with MPEG extensions defined in this document
[bookmark: Section_sec_5.1.2][bookmark: _Toc141653555]Formatting and typing
For binary data fields the following applies. The read_bits(n) function reads the next n bits from the buffer data and advances the data pointer by n bit positions. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the data pointer.
The following types specify the types and parsing process for binary data fields:
bits(n) fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this descriptor is specified by the return value of the function read_bits(n)
bits(n)[m] array of m fixed-pattern bit strings with length of n bits.
uint(n) unsigned integer using n bits. The parsing process for this descriptor is specified by the return value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with the most significant bit written first.
int(n) signed integer using n bits. The parsing process for this descriptor is specified by the return value of the function read_bits(n) interpreted as a two's complement integer representation with the most significant (left) bit written first. In particular, the parsing process for this type is specified as follows:
 int(n) {
 value = read_bits(n)
 if(value < (1 << (n – 1)))
 return value
 else
 return (value | ~((1 << (n – 1)) – 1))
 }

float(n) binary floating point value using n bits. The parsing process for this descriptor is as specified in IEEE 754-2019.
For JSON data fields, the following type definitions apply:
number: primitive type defined in ISO/IEC 21778
string: primitive type defined in ISO/IEC 21778
boolean: primitive type defined in ISO/IEC 21778
array: structured type defined in ISO/IEC 21778
object: structured type defined in ISO/IEC 21778
[bookmark: Section_sec_5.2][bookmark: _Toc141653556]Generic extensions
[bookmark: Section_sec_5.2.1][bookmark: _Toc141653557]MPEG_media extension
[bookmark: Section_sec_5.2.1.1]General
The MPEG media extension, identified by MPEG_media, provides an array of media items referenced in a scene description document.
When present, the MPEG_media extension shall be included as a top-level extension.
[bookmark: Section_sec_5.2.1.2]Semantics
The definition of all objects within MPEG_media extension is provided in Tables 3 to 6.
[bookmark: Table_tab_3]Table 3 — Definitions of top-level objects of MPEG_media extension
	Name
	Type
	Default
	Usage
	Description

	media
	array
	N/A
	M
	An array of items that describe the external media, referenced in this scene description document.

[bookmark: Table_tab_4]Table 4 — Definitions of item in the media array of MPEG_media extension
	Name
	Type
	Usage
	Default
	Description

	name
	string
	O
	N/A
	The user-defined name of the media.

	startTime
	number
	O
	N/A
	The startTime gives the time at which the rendering of the timed media will begin. The value is provided in seconds.
In the case of timed textures, the static image should be rendered as a texture until the startTime is reached. A startTime of 0 means the presentation time of the current scene.

	startTimeOffset
	number
	O
	0
	The startTimeOffset indicates the time offset into the source, starting from which the timed media shall be generated. The value is provided in seconds, where 0 corresponds to the start of the source.

	endTimeOffset
	number
	O
	N/A
	The endTimeOffset indicates the end time offset into the source, up to which the timed media shall be generated. The value is provided in seconds. If not present, the endTimeOffset corresponds to the end of the source media.

	autoplay
	boolean
	O
	False
	When present and set to True, it specifies that the media will start playing as soon as it is ready.

When present and set to True, startTime shall not be present or shall be ignored by the client.

Rendering of all media for which the autoplay flag is set to True should happen simultaneously.

When set to False, it indicates that the media may be controlled by the functions in Scene Description such as interactivity.

	autoplayGroup
	integer
	O
	N/A
	All media that have the same autoplayGroup identifier shall start playing synchronously as soon as all autoplayGroup media are ready.
autoplayGroup is only allowed if autoplay is set to True.

	loop
	boolean
	O
	False
	Specifies that the media will start over again, every time it is finished. The timestamp in the buffer shall be continuously increasing when the media source loops, i.e. the playback duration prior to looping shall be added to the media time after looping.

	controls
	boolean
	O
	False
	Specifies that media controls should be displayed (such as a play/pause button etc).

	alternatives
	array
	M
	
	An array of items that indicate alternatives of the same media (e.g. different video codecs used)

NOTE	The client can select items (i.e. U and track) included in alternatives depending on the client’s capability.

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

[bookmark: Table_tab_5]Table 5 — Definitions of items in the alternatives array of MPEG_media extension
	Name
	Type
	Default
	Usage
	Description

	mimeType
	string
	N/A
	M
	The media's MIME type.
The profiles parameter, as defined in IETF RFC 6381, may be included as a part of the mimeType to specify the profile of the media container. (e.g. the profiles parameter indicates the DASH profile when the uri specifies a DASH manifest)

	uri
	string
	N/A
	M
	The uri of the media. Relative paths are relative to the .gltf file. If the reference media is a real-time media stream, then the uri shall follow the referencing scheme as specified in Annex C. If the tracks element is present, the last part of the URI (i.e. the stream identifier such as the mid) is provided by the tracks information.

	tracks
	array
	N/A
	O
	An array of items that lists the components of the referenced media source that are to be used. These can e.g. be a track number of an ISOBMFF, a DASH/CMAF SwitchingSet identifier, or a media id of an RTP stream.

	extraParams
	object
	N/A
	O
	An object that may contain any additional media-specific parameters.

[bookmark: Table_tab_6]Table 6 — Definitions of items in the tracks array of MPEG_media.alternative extension
	Name
	Type
	Default
	Usage
	Description

	track
	string
	N/A
	M
	URL fragment to access the track within the media alternative.
The URL structure is defined for the following formats:
DASH: Using MPD Anchors (URL fragments) as defined in ISO/IEC 23009-1:2022, Annex C (Table C.1).
ISOBMFF: URL fragments as specified in ISO/IEC 14496-12:2022, Annex C.
SDP: stream identifier of the media stream as defined in Annex C.
When V3C data is referenced in the scene description document as in item in MPEG_media.alternative.tracks and the referenced item corresponds to an ISBOBMFF track, the following applies:

	
	
	
	
	
	· For single-track encapsulated V3C data, the referenced track in MPEG_media shall be the V3C bitstream track.
· For multi-track encapsulated V3C data, the referenced track in MPEG_media shall be the V3C atlas track.

	codecs
	string
	N/A
	M
	The codecs parameter, as defined in IETF RFC 6381, of the media included in the track.
When the track includes different types of codecs (e.g. the AdaptationSet includes Representations with different codecs), the codecs parameter may be signaled by comma-separated list of values of the codecs.

The JSON schema for the MPEG_media extension is provided in A.2.
[bookmark: Section_sec_5.2.1.3]Processing model
Processing of the MPEG_media extension depends on the referenced media. In general, media in the MPEG_media extension may be referenced by a circular buffer or by another extension defined in this document (e.g. MPEG_scene_dynamic). The Presentation Engine selects the media that is required at one of the available alternatives and is responsible for synchronization. The MAF instantiates the media fetching and two options exist. When the media in the MPEG_media extension is referenced by a circular buffer, the processing pipeline instantiated by the MAF decodes the media and reformats it to match the expected format by the Presentation Engine. This processing may also require setting some information about the header information from the MPEG_accessor_timed as defined in Table 8 appropriately based on the data included in the media. This might depend on the reference media and information in the scene description document (e.g., information in the accessor pointing to the circular buffer). When the media in the MPEG_media extension is referenced by another extension, the media is expected to be directly processed by the Presentation Engine.
[bookmark: Section_sec_5.2.2][bookmark: _Toc141653558]MPEG_accessor_timed extension
[bookmark: Section_sec_5.2.2.1]General
An accessor specified in ISO/IEC 12113 defines the types and layout of the data as stored in a buffer that is viewed through a bufferView. When timed media is accessed in a buffer, the data in the buffer is expected to change dynamically with time. Timed accessor extension allows to describe access to dynamically changing data used in scene. The timed accessor is an extension to regular accessors to indicate that the underlying data buffer is dynamic.
Timed accessors may have two bufferViews, one inherited from the containing accessor and the second in the MPEG_accessor_timed extension. The former shall be used to reference the timed media data. The latter, when present, shall point to the timed accessor information header. The absence of a bufferView inside the MPEG_accessor_timed extension shall indicate that no timed accessor information header is present in the buffer. When both bufferViews are present, they shall point to the same buffer element. Accessors that include the "MPEG_accessor_timed" extension shall only point to buffers that include the "MPEG_buffer_circular" extension.
The accessor.bufferView field, in an accessor that has the MPEG_accessor_timed extension, as well as the timed accessor information header fields apply to the data of each frame within the circular buffer.
The timed accessor extension is identified by MPEG_accessor_timed. When present, the MPEG_accessor_timed extension shall be included as extension of an accessor object defined in ISO/IEC 12113.
[bookmark: Section_sec_5.2.2.2]Semantics
The definition of all objects within MPEG_accessor_timed extension is provided in Table 7.
[bookmark: Table_tab_7]Table 7 — Definition of MPEG_accessor_timed extension
	Name
	Type
	Default
	Usage
	Description

	immutable
	boolean
	True
	O
	This flag equal to false indicates the accessor information componentType, type, and normalize may change over time. The changing values of componentType, type and normalize are provided through accessor information header.
This flag equal to true indicates the accessor information componentType, type, and normalize do not change over time and are not present in the accessor information header.

	bufferView
	integer
	N/A
	O
	This property provides the index in the bufferViews array to a bufferView element that points to the timed accessor information header as described in Table 8. byteLength field of the bufferView element indicates the size of the timed accessor information header. The buffer properties in the bufferView element shall point to the same buffer as the bufferView in the containing accessor object.
In the absence of the bufferView attribute, it shall be assumed that the buffer has no dynamic header. In that case, the immutable flag shall be present and shall be set to True.

	suggestedUpdateRate
	number
	25.0
	O
	The suggestedUpdateRate provides the frequency at which the Presentation Engine is recommended to poll the underlying buffer for new data. The rate is provided in number of changes per second.

The timed accessor information header, when present, contains information required to properly access the media data in the buffer the accessor is pointing to. The timed accessor information header may change during the presentation of the scene. The timed accessor information header is provided as binary data as part of the buffer data and is accessible through the bufferView of the MPEG_accessor_timed extension.
Table 8 describes the syntax and semantics of the timed accessor information header.
[bookmark: Table_tab_8]Table 8 — Definition of timed accessor information header fields
	timed_accessor_information_header() {
	Descriptor

	 timestamp_delta
	f(32)

	 if (!immutable) {
	

	 componentType
	u(32)

	 type
	u(8)

	 normalized
	u(1)

	 reserved_zero_bit
	u(7)

	 }
	

	 byteOffset
	u(32)

	 count
	u(32)

	 max
	size(componentType)*	
components

	 min
	size(componentType)*	
components

	 bufferViewByteOffset
	u(32)

	 bufferViewByteLength
	u(32)

	 bufferViewByteStride
	u(32)

	}
	u(32)

timestamp_delta - provides a delta in seconds that is added to the timestamp field of the corresponding buffer frame in the referenced buffer to determine the timestamp of the referenced timed media. When accessor information header is not present, the value of timestamp_delta is inferred to be equal to 0. The sum of timestamp_delta and the timestamp field of the corresponding buffer frame shall be smaller than the timestamp field of any other following buffer frame in the buffer.
componentType - corresponds to the accessor property componentType as defined in ISO/IEC 12113.
type - The field correspond to the accessor properties type as defined in ISO/IEC 12113 with following modification:
type equal to 0 indicates SCALAR as defined in ISO/IEC 12113.
type equal to 1 indicates VEC2 as defined in ISO/IEC 12113.
type equal to 2 indicates VEC3 as defined in ISO/IEC 12113.
type equal to 3 indicates VEC4 as defined in ISO/IEC 12113.
type equal to 4 indicates MAT2 as defined in ISO/IEC 12113.
type equal to 5 indicates MAT3 as defined in ISO/IEC 12113.
type equal to 6 indicates MAT4 as defined in ISO/IEC 12113.
normalized - corresponds to the accessor property normalized as defined in ISO/IEC 12113.
reserved_zero_bit - shall be equal to 0 in the timed accessor header information conforming to this version of this document. Other values are reserved for future use by ISO/IEC.
byteOffset - corresponds to the accessor property byteOffset as defined in ISO/IEC 12113.
count - corresponds to the accessor property count as defined in ISO/IEC 12113.
max - corresponds to the accessor property max as defined in ISO/IEC 12113. The max array sizes depend on the number of components as defined by the type defined in ISO/IEC 12113.
min - corresponds to the accessor property min as defined in ISO/IEC 12113. The min array sizes depend on the number of components as defined by the type defined in ISO/IEC 12113.
bufferViewByteOffset - corresponds to the bufferView property byteOffset defined in ISO/IEC 12113.
bufferViewByteLength - corresponds to the bufferView property byteLength defined in ISO/IEC 12113.
bufferViewByteStride - corresponds to the bufferView property byteStride fields defined in ISO/IEC 12113.The size() function returns the number of bits for a given componentType as defined by the Accessor Data Types table in ISO/IEC 12113.
The fields bufferViewByteOffset, bufferViewByteLength, and bufferViewByteStride update information of the bufferView referenced by the accessor containing the MPEG_accessor_timed extension and they provide a description of how to access the corresponding media data in the buffer.
The JSON schema for the MPEG_accessor_timed extension is provided in A.3.
[bookmark: Section_sec_5.2.2.3]Processing model
For timed and dynamic data access, the MPEG_accessor_timed shall be used to describe access to the timed data. The Presentation Engine shall extract the information about the sample format from the accessor and, when present, the configuration of the header information from the MPEG_accessor_timed and pass it to the MAF. The MAF shall provide the information in the requested format in the buffers.
The timed accessor information header shall be present when at least some of the accessor information is dynamic. The presence of a timed accessor information header shall be signalled by the presence of the bufferView attribute in the MPEG_accessor_timed extension.
If present, the MAF shall insert the timed accessor information header prior to the corresponding data in the buffer frame. The offset, length, and stride of the data in the buffer frame may change from buffer frame to buffer frame and shall be signalled as part of the timed accessor information header.
A buffer shall not mix data from dynamic and static components, i.e. components that have a timed accessor information header and other components that do not have a timed accessor information header.
The Presentation Engine shall overwrite the accessor and buffer view information view that are described or referenced by an accessor that has the MPEG_accessor_timed extension, which itself includes a bufferView reference. In other words, the dynamic accessor and buffer view information take precedence over the static accessor and buffer view information present in the scene description.
[bookmark: Section_sec_5.2.3][bookmark: _Toc141653559]MPEG_buffer_circular extension
[bookmark: Section_sec_5.2.3.1]General
In order to support timed data access, the buffer element is extended to provide functionality of a circular buffer. The extension is named MPEG_buffer_circular and may be included as part of the "buffers" structures. Buffers that provide access to timed data shall include the MPEG_buffer_circular extension.
When MPEG_buffer_circular extension is present in a buffer element, the buffer element property uri shall not be present and the buffer element property byteLength shall indicate the maximum possible size of the buffer that may be needed to accommodate for the number of buffer frames indicated by count value.
When present, the MPEG_buffer_circular extension shall be included as extension of a buffer object defined in ISO/IEC 12113.
[bookmark: Section_sec_5.2.3.2]Semantics
The definition of all objects within MPEG_buffer_circular extension is provided in Table 9.
[bookmark: Table_tab_9]Table 9 — Definition of MPEG_buffer_circular extension
	Name
	Type
	Default
	Usage
	Description

	count
	integer
	2
	O
	The count field provides the recommended number of sequential buffer frames to be offered by a circular buffer to the presentation engine.
This information may be used by the MAF to setup the circular buffer towards the Presentation Engine.

	media
	integer
	N/A
	M
	Index of the media entry in the MPEG_media extension, which is used as the source for the input data to the buffer.

	tracks
	array
	N/A
	O
	Index of a track of a media entry, indicated by media and listed by MPEG_media extension, used as the source for the input data to this buffer.
When tracks element is not present, the media pipeline should perform the necessary processing of all tracks of the MPEG_media entry, referenced by the media property, to generate the requested data format of the buffer.
When tracks array contains multiple tracks, the media pipeline should perform the necessary processing of all referenced tracks to generate the requested data format of the buffer.

	
	
	
	
	If the track attribute is present and there are multiple "alternatives" (i.e. indicating equivalent content) in the referenced media, then the selected track shall be present in all alternatives.
NOTE: When more than one track is listed by tracks element, the corresponding buffer is in active state and the MAF is informed that the corresponding tracks are needed as source for the input buffer, then the MAF can optimize the delivery of multiple tracks.

The JSON schema for the MPEG_buffer_circular is provided in A.4.
[bookmark: Section_sec_5.2.3.3]Processing model
Frames of the buffer may differ in length based on the amount of data for each frame. A read and a write pointer are maintained for each circular buffer. By default, read and write access to the buffer will be served from the frame that is referenced by the read or write pointer respectively. Access to a particular frame index or timestamp should be supported.
The frames are read at the read pointer for rendering. New incoming frames from one or more media decoders are inserted at the write pointer. When present (i.e. when bufferView is included in the MPEG_accessor_timed extension of an accessor referencing this buffer) the timed accessor information header is included in the buffer frame as required, i.e. as indicated by the corresponding timed accessor. Prior data in that frame will be overwritten and the frame buffer should be resized accordingly.
Figure 4 depicts the buffer structure:
[image:]
[bookmark: Figure_fig_4]Figure 4 — An example of circular buffer operation with count value equal to 8
The buffer management ensures that Timestamp(write_pointer) > Timestamp(read_pointer) where Timestamp(pointer) is a function that returns the timestamp assigned to the buffer frame associated with that pointer. When overwriting existing data in a buffer frame with new data, the buffer management ensures that the read_pointer is moved to a buffer frame with the earliest timestamp in the buffer. This may result in data drop but it ensures that no concurrent read and write access to the same buffer frame is performed.
[bookmark: Section_sec_5.2.4][bookmark: _Toc141653560]MPEG_scene_dynamic extensions
[bookmark: Section_sec_5.2.4.1]General
MPEG_scene_dynamic extension allows to indicate that the scene description document may be updated. MPEG_scene_dynamic extension points to MPEG_media extension element that contains URL information to access scene document updates. For example, scene document updates may be provided as samples of a track or items as defined in Clause 7.
Scene updates shall be expressed as a scene description document or as a patch document using the JSON Patch protocol as defined in IETF RFC 6902. ISOBMFF-based carriage format for both scene description documents and patch documents using JSON patch protocol is specified in subclause 7.2. The glTF extensions MPEG_media and MPEG_scene_dynamic shall be used in order to expose the dynamic scene updates, as described in subclause 5.2.1 and 5.2.4.
After successfully performing an update operation, the resulting scene graph shall be consistent, i.e. syntactically valid and all references shall be correct. ISO/IEC 12113 uses the order of elements for referencing, therefore particular care should be used with update operations that change the order of elements in the graph, such as move and remove operations. The client shall update all references after every successful scene document update operation.
When a patch document contains update to nodes that does not match any node of the active scene document, the update command of this node shall be discarded.
When present, the MPEG_scene_dynamic extension shall be included as extension of a scene object defined in ISO/IEC 12113.
[bookmark: Section_sec_5.2.4.2]Semantics
The extension MPEG_scene_dynamic links to one of the entries listed in MPEG_media. The definition of all objects within MPEG_scene_dynamic extension is provided in Table 10.
[bookmark: Table_tab_10]Table 10 — Definition of top-level objects of MPEG_scene_dynamic extension
	Name
	Type
	Default
	Usage
	Description

	media
	integer
	N/A
	M
	Provides the index of the media described in the MPEG_media extension and which will contain the scene update data.

	track
	integer
	N/A
	O
	Provides the index of a track of a media object, referenced by media attribute and listed by MPEG_media extension. The track samples contain scene description updates and provide timing to perform these updates.
If track is not provided, it shall be assumed that all tracks provided by the referenced media object are used to provide the update samples.

The JSON schema for the MPEG_scene_dynamic extension is provided in A.5.
[bookmark: Section_sec_5.2.4.3]Processing model
The Presentation Engine parses the scene description document and maintains a representation of the scene graph in memory. The Presentation Engine receives scene description updates together with scene activation times. For example, the scene description updates can be provided as samples of an ISOBMFF track, as specified in Clause 7. In that case the scene activation time of a scene description update is indicated by the presentation time of the corresponding sample. When the sample becomes active, the Presentation Engine shall load the sample data and trigger the scene update to be performed. The scene description updates themselves modify the scene graph representation in memory and it can add new media to the scene. The timing for the newly added or updated media is determined by the metadata in the updated scene description document. If the scene description update contains an insertion of new glTF nodes and/or potential modifications to existing glTF nodes, the Presentation Engine should fetch any new content , e.g. using the MAF, associated with the scene description update and present the new content accordingly.
Each update operation shall either consist of a JSON Patch document for partial updates or a scene description document for a complete update. All update operations of a JSON Patch document shall be considered as a single timed transaction.
When a patch document contains update to nodes that does not match any node of active scene document, the update command of this node shall be discarded. When all update commands have been processed or discarded, the update operation shall be considered completed.
The fetching of updates and the activation of certain nodes may be triggered by different factors including the following:
Wallclock time
Presentation time
Interaction event
For live presentations, it is expected that presentation of the newly added glTF objects (e.g., new live media and potentially other dynamic objects) included in the scene during the scene updates will be synchronized with the scene presentation timeline via timing information (e.g., timestamps, etc.) included in the corresponding media formats and containers.
[bookmark: Section_sec_5.3][bookmark: _Toc141653561]Visual Extensions
[bookmark: Section_sec_5.3.1][bookmark: _Toc141653562]MPEG_texture_video extensions
[bookmark: Section_sec_5.3.1.1]General
MPEG texture video extension, identified by MPEG_texture_video, provides the possibility to link a texture object defined in ISO/IEC 12113 to a video source. The MPEG_texture_video extension provides a reference to the timed accessor, i.e. accessor with MPEG_accessor_timed extension, where the decoded timed texture will be made available.
When present, the MPEG_texture_video extension shall be included as extension of a textures object defined in ISO/IEC 12113.
When the MPEG_texture_video extension is not supported, the standard texture glTF element can be used as fallback.
NOTE	When MPEG_texture_video extension is supported, the decoded video frames are used as textures starting from the time indicated in the corresponding MPEG_media.media.startTime. If MPEG_media.media.startTime is greater than 0, the static image frame indicated be texture.source element can be used until MPEG_media.media.startTime.
[bookmark: Section_sec_5.3.1.2]Semantics
The definition of all objects within MPEG_texture_video extension is provided in Table 11.
[bookmark: Table_tab_11]Table 11 — Definition of top-level objects of MPEG_texture_video extension
	Name
	Type
	Default
	Usage
	Description

	accessor
	integer
	N/A
	M
	Provides a reference to the accessor, by specifying the accessor's index in accessors array, that describes the buffer where the decoded timed texture will be made available.
The accessor shall have the MPEG_accessor_timed extension.
The type, componentType, and count of the accessor depend on the width, height, and format.

	width
	integer
	N/A
	M
	Provides the maximum width of the texture.

	height
	integer
	N/A
	M
	Provides the maximum height of the texture.

	format
	string
	RGB
	O
	Indicates the format of the pixel data for this video texture. The allowed values are: RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, DEPTH_COMPONENT. The semantics of these values are defined in Table 8.3 of OpenGL® a specification.[2]
Additionally, YCbCr formats are supported. The semantics for the YCbCr formats are defined in Table 76 in Vulkan specification [Vulkan 1.3]. A sampler with the MPEG_sampler_YCbCr extension shall be linked to a YCbCr texture.
Note that the number of components shall match the type indicated by the referenced accessor. Normalization of the pixel data shall be indicated by the normalized attribute of the accessor.

	a	OpenGL® is the trademark of a product supplied by Khronos. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

The JSON schema for the MPEG_texture_video extension is provided in A.6.
[bookmark: Section_sec_5.3.1.3]Processing model
When meshes, or any other element in scene description document, reference a texture element that contains MPEG_texture_video it gets the texture data provided in the buffer as described by the accessor indicated in the MPEG_texture_video extension. A new frame from the buffer should be read for each rendering cycle. If no new frame is available, the previous frame should be presented. The texture data stored into the buffer shall have the format indicated by the format attribute indicated by the MPEG_texture_video extension. When the picture size output by the media decoder are different from the size indicated by the width and height indicated by the MPEG_texture_video extension, two approaches are possible, when storing the decoded texture samples into the circular buffer. The first approach consists of storing the decoded texture samples into the buffer frames at the width and height indicated by the MPEG_texture_video extension. This requires that the size of the texture provided by the media decoder is reformatted, for example by MAF. The second approach consists of storing the decoded texture samples into the buffer frames at the width and height output by the decoder. In this case, the actual width and height of the picture shall be provided to the renderer, e.g. through the buffer frame header as specified in Table 24 if MAF is used.
NOTE	Some implementations require the texture data stored within the buffer to have a static size as they cannot properly handle dynamically changing texture data formats. This requires the MAF or media decoders to generate the texture data at a static format and make it available at the buffers. On the other hand, other implementations can benefit of performing the size conversion by themselves in a more efficient manner and can cope with dynamically changing picture sizes in the underlying buffer. Derived specifications can mandate to operate in one of the two specified modes.
[bookmark: Section_sec_5.3.2][bookmark: _Toc141653563]MPEG_mesh_linking extensions
[bookmark: Section_sec_5.3.2.1]General
MPEG mesh linking extension, identified by MPEG_mesh_linking, provides the possibility to link a mesh to another mesh in a glTF asset.
The shadow mesh corresponds to regular mesh data as defined by ISO/IEC 12113 without the MPEG_mesh_linking extension. The dependent mesh can be transformed/animated by relying on the shadow mesh. The MPEG_mesh_linking extension included into the dependent mesh links the dependent mesh and the shadow mesh and provides with the data and information which is used to achieve the ability to animate the dependent mesh. Hence, the shadow mesh is present in the glTF assets to assist in achieving the ability to apply transformation onto the dependent mesh.
When present, the MPEG_mesh_linking extension shall be included as extension of a mesh object defined in ISO/IEC 12113.
When the MPEG_mesh_linking extension is not supported, the dependent mesh can be rendered as a regular timely updated mesh sequence of frames.
NOTE	A reasonable backup when the extension is not understood is to render the dependent mesh without performing any animation. In such a case, the shadow mesh is not rendered and therefore is not added as a node in the scene.
[bookmark: Section_sec_5.3.2.2]Semantics
The definition of all objects within MPEG_mesh_linking extension is provided in Table 12.
[bookmark: Table_tab_12]Table 12 — Definition of top-level objects of MPEG_mesh_linking extension
	Name
	Type
	Default
	Usage
	Description

	correspondence
	integer
	N/A
	M
	Provides a reference to the accessor, by specifying the accessor's index in accessors array, that describe the buffer where the correspondence values between the dependent mesh and its associated shadow mesh will be made available.
The componentType of the referenced accessor shall be as indicated in subclause 7.4 and the type shall be SCALAR.

	mesh
	integer
	N/A
	M
	Provides a reference to the shadow mesh, by specifying the mesh index in meshes array, associated to the dependent mesh for which the correspondence values are established.

	pose
	integer
	N/A
	M
	Provides a reference to the accessor, by specifying the accessor's index in accessors array, that describe the buffer where the transformation of the nodes associated to the dependent mesh will be made available.
The componentType of the referenced accessor shall be FLOAT and the type shall be MAT4.

	weights
	integer
	N/A
	O
	Provides a reference to the accessor, by specifying the accessor's index in accessors array, that describe the buffer where the “weights” to be applied to the morph targets of the shadow mesh associated to the dependent mesh will be made available.
The componentType of the referenced accessor shall be FLOAT and the type shall be SCALAR.

The JSON schema for the MPEG_mesh_linking extension is provided in A.7.
[bookmark: Section_sec_5.3.2.3]Processing model
The processing model could be as follows:
The corresponding shadow mesh for a dependent mesh is identified as provided by “mesh” in the MPEG_mesh_linking extension of the dependent mesh.
At runtime the Presentation Engine reads the corresponding frames from the circular buffers that the accessors with MPEG_accessor_timed extension point to as indicated by “correspondence”, “pose” and “weights”. The Presentation Engine glues each vertex of the dependent mesh to a face of the shadow mesh indicated by the correspondence value for the particular position and pose of the dependent mesh at that time instant. The render engine records the distance of each vertex of the dependent mesh to the plane of its corresponding shadow mesh face and records the position of the point onto which the vertex of the dependent mesh is projected within the associated face of the shadow mesh, i.e. the point within the face to which the distance is computed. With this parametrization between the two meshes, a transformation of the shadow mesh can directly be transferred to the dependent mesh.
The shadow mesh indicated as defined in ISO/IEC 12113 can transformed by means of using mesh primitives for skinning and pose-dependent morph targets.
The first step consists of linking the shadow mesh and the dependent mesh at the current pose of the dependent mesh. For this purpose, the shadow mesh is transformed to the same position and pose as the dependent mesh as provided by the data in the frames in the circular buffer corresponding to “pose” and “weights” in the MPEG_mesh_linking extension. This transformation is performed as any other transformation by means of using mesh primitives for skinning and pose-dependent morph targets. Then, the correspondence values for each of the vertices in the dependent mesh, as provided by the frames in the circular buffer corresponding to correspondences, indicating a mapping to a face of the shadow mesh is used to determine the relative location of each vertex in the dependent mesh to the associated face of the shadow mesh as explained above and in more detail in Annex E.
With the relative locations representing the linked meshes, as a second step the shadow mesh at its original position and pose is transformed as indicated by animations. With the shadow mesh at the target position and pose, the dependent mesh is transformed by following the relative locations of each vertex with respect the associated faces of the shadow mesh, explained in more detail in Annex E.
[bookmark: Section_sec_5.4][bookmark: _Toc141653564]Audio extensions
[bookmark: Section_sec_5.4.1][bookmark: _Toc141653565]MPEG_audio_spatial extensions
[bookmark: Section_sec_5.4.1.1]General
The MPEG audio extension adds support for spatial audio.
When present, the MPEG_audio_spatial extension shall be included as extension of a camera object, or a scene object defined in ISO/IEC 12113.
When MPEG_audio_spatial extension is included as an extension for a node object, either MPEG_audio_spatial.source or MPEG_audio_spatial.listener properties of the extension shall be present. When MPEG_audio_spatial extension is included as an extension at a glTF file level extension, MPEG_audio_spatial.reverb property shall be present.
The MPEG_audio_spatial extension supports three different object types:
source: an audio source that provides input audio data into the scene. Mono objects and HOA sources (as defined in ISO/IEC 23008-3:2022, Annex F.1) are supported in this version of the document.
· Type: 'Object' or 'HOA'
· HOA audio sources shall ignore the parent node's position and be rendered only in 3DoF.
 Moreover, an audio source may be a cluster audio source, which denotes a pre-mixed representation of a selection of audio sources. To indicate a cluster audio source, the isCluster flag should be set equal to True.
reverb: A reverb effect can be attached to the output of an audio source. Several reverb units can exist and sound sources can feed into one or more of these reverb units. An audio renderer that does not support reverb shall ignore it if the bypass attribute is set to true. If the bypass attribute is set to false, the audio renderer shall return an error message
listener: An audio listener represents the output of audio in the scene. A listener should be attached to a node in the scene. It is recommended to have the audio listener in a node that is a child node of the camera. By being a child node of the camera, additional transformations can be applied to the audio listener relative to the transformation applied to the parent camera.
Figure 5 depicts the processing chain for audio in a scene.
[image: A diagram of a microphone and a sound wave

Description automatically generated]
Figure 5 — An example of the processing chain for audio in a scene
The specification of any audio effect processing is outside the scope of this document.
The characteristics of a listener depend on the actual output devices available to the audio renderer.
[bookmark: Figure_fig_5][bookmark: Section_sec_5.4.1.2]Semantics
The definition of all objects within MPEG_audio_spatial extension is provided in Tables 13 to 18.
[bookmark: Table_tab_13]Table 13 — Definition of objects of MPEG_audio_spatial extension
	Name
	Type
	Default
	Usage
	Description

	sources
	array
	N/A
	O
	an array of source objects that are attached to the current node.

	listener
	object
	N/A
	O
	a listener object that places an audio listener node in the scene that should be attached to a parent camera node. The audio listener characteristics depend on the available audio output devices.

	reverbs
	array
	N/A
	O
	an array of reverb objects.

[bookmark: Table_tab_14]
Table 14 — Definition of source object of MPEG_audio_spatial.source extension
	Name
	Type
	Usage
	Default
	Description

	id
	integer
	M
	
	Unique identifier of the audio source in the scene.

	type
	string
	M
	
	Indicates the type of the audio source.
The value “Object” indicates mono object
The value “HOA” indicates HOA object

	targetSampleRate
	number
	M
	
	Provides the target audio sampling rate that is expected to be supplied by the media pipeline of the corresponding audio source. If the sampling rate of one of the selected media source alternatives differs from this value, then the media pipeline shall perform resampling to match the target sample rate.

	pregain
	number
	O
	0.0
	Provides a level-adjustment in dB for the signal associated with the source.

	playbackSpeed
	number
	O
	1.0
	Defines the playback speed of the audio signal. A value of 1.0 corresponds to playback at normal speed. The value shall be between 0.5 and 2.0.

	attenuation
	enumeration
	O
	“linearDistance”
	Indicates the function used to calculate the attenuation of the audio signal based on the distance to the source.
The value "noAttenuation" indicates that no attenuation function should be used.
The value "inverseDistance" indicates that the inverse distance function should be used.
The value "linearDistance" indicates that the linear distance function should be used.
The value "exponentialDistance" indicates that the exponential distance function should be used.
The value "custom" indicates that a custom function should be used. The definition of custom functions is outside of the scope of this document.
The attenuation functions and their parameters are specified in Annex D.

	attenuationParameters
	array
	O
	N/A
	Array of parameters that are input to the attenuation function. The semantics of these parameters depend on the attenuation function itself.

	referenceDistance
	number
	O
	1.0
	Provides the distance in meters for which the distance gain is implicitly included in the source signal after application of pregain.
When type equals ‘HOA’, the element shall not be present.

	accessors
	array
	M
	
	Provides an array of accessor references, by specifying the accessors indices in accessors array, that describe the buffers where the decoded audio will be made available.

	reverbFeed
	array
	O
	N/A
	Provides one or more pointers to reverb units, optionally extended by a floating point scaling factor.
A reverb unit represents a reverberation audio processor that is configured by the metadata from a single reverb object. Typically, a reverb object represents reverberation properties of a single room.

	reverbFeedGain
	array
	O
	N/A
	Provides an array of gain [dB] values to be applied to the source’s signal(s) when feeding it to the corresponding reverbFeed.
The array shall have the same number of elements as the reverbFeed array field.

	isCluster
	boolean
	False
	O
	Specifies if the audio source is a pre-mixed representation of a selection of audio sources.

	clusterProperties
	object
	N/A
	O
	A sourceClusterProperties object that contains cluster properties. This object must be defined, when the isCluster attribute is set to True.

[bookmark: Table_tab_15]Table 15 — Definition of listener objects of MPEG_audio_spatial.listener extension
	Name
	Type
	Default
	Usage
	Description

	id
	integer
	N/A
	M
	unique identifier of the audio listener in the scene.

[bookmark: Table_tab_16]Table 16 — Definition of reverb object of MPEG_audio_spatial.reverb extension
	Name
	Type
	Default
	Usage
	Description

	id
	integer
	N/A
	M
	unique identifier of the audio reverb unit in the scene.

	bypass
	boolean
	True
	O
	indicates if the reverb unit can be bypassed if the audio renderer does not support it.

	properties
	array
	
	M
	Array of items that contains reverbProperties objects describing reverb unit specific parameters

	predelay
	number
	0.0
	O
	Delay [seconds] from onset of source to onset of late reverberation for which DSR is provided.

[bookmark: Table_tab_17]Table 17 — Definition of reverbProperty object of MPEG_audio_spatial extension
	Name
	Type
	Default
	Usage
	Description

	frequency
	number
	N/A
	M
	Frequency for the provided RT60 and DSR values.

	RT60
	number
	N/A
	M
	RT60 values (in seconds) for the frequency provided in the ‘frequency’ field.

	DSR
	number
	N/A
	M
	Diffuse-to-Source Ratio value [dB] for the frequency provided in the ‘frequency’ field. See explanatory text in subclause 5.4.1.3.

Table 18 – Definition of sourceClusterProperties object of MPEG_audio_spatial extension
	Name
	Type
	Usage
	Default
	Description

	sourceId
	array
	M
	
	Array of integers that contains the unique identifiers of the audio sources contained in this cluster.

	radius
	number
	O
	0.0
	Distance in meters used to encompass the audio sources contained in this cluster.

The JSON schema for the MPEG_audio_spatial extension is provided in A.8.
[bookmark: Section_sec_5.4.1.3]Processing model
The 60 dB reverberation time, short RT60, is defined as the time it takes for the sound pressure level in a room to reduce by 60 dB, measured after a generated steady-state test signal is abruptly ended. It is defined for a specific frequency as an attribute RT60 and specified in seconds.
The pre-delay time indicates the delay between the emission at the source and the onset of the diffuse late reverberation part of a signal (i.e. the sound after the early reflections) and is specified in seconds. It is frequency-independent.
The Diffuse-to-Source-Ratio (DSR) specifies the level of the diffuse reverberation relative to the level of the total emitted sound. This can be determined while making an RT60 measurement. It is defined for a specific <frequency> as an attribute DSR and can be computed when dividing the total diffuse reverb energy by the total emitted energy.
For example, a value of 0 indicates direct sound only, while large values will describe an almost completely reverberant (wet) acoustic environment. Note that the DSR values do not influence the amplitude of the direct sound in the process of rendering. While DSR is a general description of a room’s acoustic properties, rendering reverberation using DSR requires taking into account the source’s directivity pattern to find the total emitted energy from the PCM signal’s reference level. DSR values are independent of directivity and may be determined with a source of any directivity, e.g. an omni-directional source. The total diffuse reverb energy denotes the reverberation energy at any point in the region for which the acoustic environment is defined and is therefore directly linked to the PCM signal’s reference level.
[bookmark: Section_sec_5.5][bookmark: _Toc141653566]Metadata extensions
[bookmark: Section_sec_5.5.1][bookmark: _Toc141653567]MPEG_viewport_recommended extensions
[bookmark: Section_sec_5.5.1.1]General
Recommended viewport extension, identified by MPEG_viewport_recommended, provides dynamically changing recommended viewport information which includes translation and rotation as well as the intrinsic camera parameter of the camera object. The client may render the viewport according to the dynamically changing information.
When present, the MPEG_viewport_recommended extension shall be included as extension of a scene object defined in ISO/IEC 12113.
NOTE	Another approach to achieve recommended viewport is to define an animation for a node with attached camera. The approach, however, does not support dynamically changing intrinsic camera and can only be defined during the creation of glTF object.
[bookmark: Section_sec_5.5.1.2]Semantics
The definition of all objects within MPEG_viewport_recommended extension is provided in Table 18.
[bookmark: Table_tab_18]Table 18 — Definition of MPEG_viewport_recommended extension
	Name
	Type
	Default
	Usage
	Description

	name
	string
	N/A
	O
	Label of the recommended viewport

	translation
	integer
	N/A
	O
	Provides a reference to accessor where the timed data for the translation of camera object will be made available. The componentType of the referenced accessor shall be FLOAT and the type shall be VEC3, (x, y, z).

	rotation
	integer
	N/A
	O
	Provides a reference to accessor where the timed data for the rotation of camera object will be made available. The componentType of the referenced accessor shall be FLOAT and the type shall be VEC4, as a unit quaternion, (x, y, z, w).

	type
	string
	“perspective”
	O
	provides the type of camera.

	parameters
	integer
	N/A
	O
	Provides a reference to a timed accessor where the timed data for the perspective or orthographic camera parameters will be made available. The componentType of the referenced accessor shall be FLOAT and the type shall be VEC4.

	
	
	
	
	When the type of the camera object which includes this extension is perspective, FLOAT_VEC4 means (aspectRatio, yfov, zfar, znear).
When orthographic type, FLOAT_VEC4 means (xmag, ymag, zfar, znear).
The requirements on the camera parameters from ISO/IEC 12113 shall apply.

The JSON schema for the MPEG_viewport_recommended extension is provided in A.9.
[bookmark: Section_sec_5.5.1.3]Processing model
When a scene contains MPEG_viewport_recommended extension, renderer should manipulate camera object parameters and position based on data provided in the buffers described by the accessors indicated in the MPEG_viewport_recommended extension.
NOTE	This document does not specify how the data is transmitted or made available at the respective circular buffers. A possible approach is that the MPEG_media extension includes a media corresponding to a metadata track carrying the necessary information, which would be made available at the right format in the referenced timed accessors.
[bookmark: Section_sec_5.5.2][bookmark: _Toc141653568]MPEG_animation_timing extensions
[bookmark: Section_sec_5.5.2.1]General
Animation timing extension, identified by MPEG_animation_timing, enables alignment between media timelines and animation timelines defined by ISO/IEC 12113. Using the extension narrated stories can be created. The animation timing metadata allows simultaneous pausing and other manipulation of animations defined in ISO/IEC 12113 and timed media. By manipulating the global timeline for narrated content, the animation defined in ISO/IEC 12113 and timed media can be manipulated as well.
When present, the MPEG_animation_timing extension shall be included as extension of a scene object defined in ISO/IEC 12113.
[bookmark: Section_sec_5.5.2.2]Semantics
The definition of all objects within MPEG_animation_timing extension is provided in Table 19.
[bookmark: Table_tab_19]Table 19 — Definition of MPEG_animation_timing extension
	Name
	Type
	Default
	Usage
	Description

	accessor
	integer
	N/A
	M
	Provides a reference to the accessor, by specifying the accessor's index in accessors array, that describes the buffer where the animation timing data will be made available. The sample format shall be as defined in subclause 7.6.3.
The componentType of the referenced accessor shall be BYTE and the type shall be SCALAR.

The JSON schema for the MPEG_animation_timing extension is provided in A.10.
[bookmark: Section_sec_5.5.2.3]Processing model
When the MPEG_animation_timing extension is present in the scene description document, the Presentation Engine should adjust the glTF animation state based on the data provided in the buffer referenced by the accessor attribute of the MPEG_animation_timing extension.
[bookmark: Section_sec_6][bookmark: _Toc141653569]Media access function and buffer API
[bookmark: Section_sec_6.1][bookmark: _Toc141653570]General
Scene description document may be an entry point for an immersive media application. In such case the Presentation Engine receives the scene description document or a URL to a scene description document, which is downloaded.
The Presentation Engine parses the JSON-formatted scene description to build a scene graph in memory. It then iterates through all objects in the node and determines the associated media sources and their buffer formats and timing information.
The Presentation Engine then initializes the Media Access Function. For each attribute of each object, it requests the creation of a media pipeline for the processing of the corresponding media source. The Presentation Engine may choose either to pass a buffer handler for an existing circular buffer to the MAF or it may rely on the MAF to allocate the circular buffer.
The Presentation Engine then invokes the startFetching operation for the media pipeline ahead of the requested presentation time of the corresponding object.
The reference Media Access Function API and the Buffer API to create the media pipelines is provided in subclauses 6.2 and 6.3, respectively. Figure 6 shows a high-level overview of a typical processing procedure.
[image:]
[bookmark: Figure_fig_6]Figure 6 — High-level overview of a scene description processing procedure
[bookmark: Section_sec_6.2][bookmark: _Toc141653571]Media access function API
The MAF API is an API defined by this document. A Media Access Function as defined in this document shall support the MAF API to interface with the Presentation Engine.
The following methods are offered through API defined in Table 20.
[bookmark: Table_tab_20]Table 20 — Description of MAF API
	Method
	State after Success
	Description

	initialize()
	READY
	The Presentation Engine initializes a new media pipeline. It provides information related to the requested media or metadata. The MAF will setup the media pipeline and allocate the buffers, if they have not been allocated by the Presentation Engine.

	startFetching()
	ACTIVE
	Once initialized and in READY state, the Presentation Engine may request the media pipeline to start fetching the requested data.

	updateView()
	ACTIVE
	update the current view information. This function is called by the Presentation Engine to update the current view information, if the pose or object position have changed significantly enough to impact media access. It is not expected that every pose change will result in a call to this function.

	stopFetching()
	READY
	The Presentation Engine may request to stop data fetching through this media pipeline. If subsequently, startFetching is called again, the stream fetching will resume from the current point, unless a start time is provided.

	destroy()
	IDLE
	Finally, the Presentation Engine may request to destroy this media pipeline and free any associated resources.

The pipeline interface defined using the IDL syntax specified in ISO/IEC 19516 is as follows:
interface Pipeline {
 readonly attribute Buffer buffers[];
 readonly attribute PipelineState state;
 attribute EventHandler onstatechange;
 void initialize(MediaInfo mediaInfo, BufferInfo bufferInfo[]);
 void startFetching(TimeInfo timeInfo, ViewInfo viewInfo);
 void updateView(ViewInfo viewInfo);
 void stopFetching();
 void destroy();
};

The data types defined using the IDL syntax specified in ISO/IEC 19516 are as follows:
interface MediaInfo {
 attribute String name;
 attribute AlternativeLocation alternatives;
};

interface AlternativeLocation {
 attribute String mimeType;
 attribute Track tracks[];
 attribute uri;
};

interface Track {
 attribute String track;
 attribute integer id;
 attribute integer bufferId;
};

interface TimeInfo {
 attribute double startTime;
 attribute double timeOffset;
 attribute boolean autoplay;
 attribute boolean loop;
};

interface BufferInfo {
 typedef enum ColorFormat {RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, DEPTH_COMPONENT};
 typedef struct OutputMedia {
 unsigned long width;
 unsigned long height;
 ColorFormat format;
 unsigned long sampleRate;
 }
 attribute integer bufferId;
 attribute BufferHandle handle;
 attribute unsigned long componentType;
 attribute SampleType type;
 attribute integer offset;
 attribute integer stride;
 attribute AttributeType attributeType;
 attribute OutputMedia outputMedia;
};

interface ViewInfo {
 attribute Pose pose;
 attribute Camera camera;
 attribute Transform objectTransform;
};

interface Pose {
 attribute Position position
 attribute Quaternion orientation;
};

interface Camera {
 readonly attribute CameraProjectionType type;
 readonly attribute PerspectiveCameraViewingVolume;
 readonly attribute OrthographicCameraViewingVolume;
 readonly attribute double zNear;
 readonly attribute double zFar;
};

enum CameraProjectionType {"PERSPECTIVE", "ORTHOGRAPHIC"};

interface PerspectiveCameraViewingVolume {
 double aspectRatio;
 double yFov;
};

interface OrthographicCameraViewingVolume {
 double xmag;
 double ymag;
};

typedef Transform float[4][4];

typedef SampleType {"SCALAR", "VEC2", "VEC3", "VEC4", "MAT2", "MAT3", "MAT4"};

enum AttributeType {"ATTRIB_NORMAL","ATTRIB_POSITION","ATTRIB_COLOR", "ATTRIB_TEXCOORD","ATTRIB_INDEX","ATTRIB_TANGENT", "ATTRIB_WEIGHTS", "ATTRIB_JOINTS", "ATTRIB_PCM", "ATTRIB_METADATA"}

Semantics of componentType and type corresponds to the semantics of accessor properties componentType and type, respectively, defined in ISO/IEC 12113.
Table 21 provides semantics for the defined interfaces and their parameters:
[bookmark: Table_tab_21]Table 21 — API Structure and Parameter Semantics
	Parameter Name
	Description

	Pipeline
	Provides a representation of a media pipeline that stores its current pipeline state PipelineState and keeps track of the output buffers of that pipeline.
The PipelineState may be IDLE, READY, ACTIVE, or ERROR. A pipeline in IDLE state means it has not been initialized yet. The READY state indicates that the pipeline has been initialized and is ready to start fetching media. When in ACTIVE state, the pipeline is actively fetching media. The ERROR state indicates that the pipeline has encountered an error that stopped the media access.
The EventHandler holds a pointer to a callback function, which will be called upon a change in the PipelineState.

	MediaInfo
	The MediaInfo carries information about the location of the media that the pipeline is to access. The MediaInfo carries the same information as provided by the MPEG_media extension. A MediaInfo maybe assigned a name. It has to provide at least one location in the alternatives array. Each alternative contains a MIME type, a set of tracks, and the URI that can be used to access the media in that alternative.
The tracks indicate which streams/tracks/representations from the referenced media alternative are to be accessed by this pipeline. If none is specified, it shall be assumed that all components of the referenced media alternative are to be accessed.

	TimeInfo
	The TimeInfo indicates the time point at which the media is to be accessed and when to start the media access. The semantics of each field is identical to that provided in the MPEG_media extension.

	BufferInfo
	The BufferInfo provides information about the expected format of the output buffer of the media pipeline.
The buffer may be allocated by the MAF or by the Presentation Engine. The handler is used to read or pass a reference to an allocated buffer. If allocated by the MAF, then only read access shall be allowed. If the pipeline is initialized without a valid buffer handler, then the MAF shall allocate the buffer.
the buffer format information in componentType, type, offset, and stride shall correspond to componentType, type, offset, stride in the corresponding accessor and bufferView.
The attributeType shall correspond to the corresponding primitive attribute. ATTRIB_PCM indicates PCM audio data. ATTRIB_METADATA indicates the presence of binary metadata, of which the format is dependent on the referencing component/extension.
The BufferHandle holds a handle for a buffer, which can be used to access the buffer.

	ViewInfo
	The ViewInfo represents the current positions of the object for which the media is accessed and the viewer’s pose. This information is useful to adjust the media access to the visibility of the object. For example, a far object may be accessed at a lower Level of Detail (LoD).
The ViewInfo.pose contains the pose information of the viewer, provided as a position and oritentation.
ViewInfo.camera provides also the intrinsic properties of the camera used by the Presentation Engine. The information about the intrinsic properties includes the type of camera projection. (e.g., perspective, orthographic, etc.) and related parameters. A camera may have intrinsic parameters such as distance to near and far clipping planes, aspect ratio, y-FoV (for perspective projection camera), and width and height of the viewing volume (for orthographic projection camera).
The ViewInfo.objectTransform contains the position and orientation of the object as a transform (a 4x4 matrix as defined by ISO/IEC 12113). All information shall use the scene’s coordinate system.

The MAF may use the ViewInfo to optimize the streaming of the requested media, e.g. by adjusting the level of detail (number of polygons/points, texture resolution etc.) .), or by choosing a cluster audio source (i.e., a pre-mixed representation of a selection of audio sources) instead of the audio sources contained in this cluster individually, based on the distance to and/or the orientation of the viewer. The BufferInfo contains information about each Buffer and describes the format of the samples and frames that are stored in that buffer. One or more tracks from the MediaInfo may feed into the same buffer. The link between the track that provides the actual media and the buffer that will store the output of the media pipeline is established through the bufferId attribute.

[bookmark: Section_sec_6.3][bookmark: _Toc141653572]Buffer API
The Buffer API is used by the Presentation Engine and the MAF to allocate and control buffers for the exchange of data between the Presentation Engine and the MAF through media pipelines.
The Buffer API offers the methods indicated in Table 22.
[bookmark: Table_tab_22]Table 22 — Description of buffer API
	Method
	Description

	allocate()
	Allocates a buffer for the data exchange between the MAF and the Presentation Engine.

	writeFrame()
	writes a frame to the buffer. The write pointer moves to the next frame.

	readFrame()
	reads a frame from the buffer. If no timestamp is provided, the buffer pointer moves to the next frame. Otherwise, the read pointer remains unchanged. If the buffer is empty, an error is returned.
Prior frames may still be accessed using their timestamp as long as they are not overwritten.

	releaseFrame()
	Informs the buffer management that the data in the buffer frame at the specified index may be overwritten by the write process.

	free()
	Destroys the buffers and frees any resources associated with it.

When allocating a buffer, sufficient information is provided about the buffer configuration. This includes the maximum size of the buffer, the static information in the buffer header, the number of frames in the buffer for circular buffers, and the update rate of the buffer.
The Buffer API interface defined using the IDL syntax specified in ISO/IEC 19516 is as follows:
interface CircularBuffer {
 readonly attribute Frame frames[];
 readonly attribute integer count;
 readonly attribute integer read_idx;
 readonly attributre integer write_idx;
 attribute integer headerLength;
 attribute EventHandler onframewrite;
 attribute EventHandler onframeread;
 void allocate(int count);
 void writeFrame(Frame frame);
 Frame readFrame(optional double timestamp);
 void releaseFrame(int index);
 void free();
};

interface Frame {
 typedef struct ExtraParameters {
 unsigned long width;
 unsigned long height;
 }
 attribute unsigned long index;
 attribute unsigned long long timestamp;
 attribute unsigned long length;
 attribute octet[length] data;
 attribute ExtraParameters extraFrameInfo;
};

Table 23 provides semantics for the defined interfaces and their parameters:
[bookmark: Table_tab_23]Table 23 — API structure and parameter semantics
	Parameter Name
	Description

	count
	The number of frames contained in this circular buffer.
Each frame of the buffer will hold data at a particular time instance and will be identified by an index in the range of [0, count-1]. The index, timestamp and length of the frame are signaled as the frame metadata.

	read_idx
	The index of the frame that can be read. If the read_idx is equal to the write_idx, then it shall be assumed that there is currently no frame available to be read.

	write_idx
	The index of the frame at which a write operation can be performed.

	headerLength
	This provides the length in bytes of the buffer frame header that is available at the start of every frame in the buffer as specified in Table 24. A headerLength of 0 indicates that there is no buffer header.
When the buffer API is used, the buffer frame header shall not be present as part of the buffer frame data. For implementations that do not use the Buffer API, the buffer frame header information may be provided as part of the buffer frame data.

	Frame
	provides information about a frame in the buffer. The index is the position of the frame in the buffer. The timestamp corresponds to its presentation timestamp. The length corresponds to the length of the buffer.
The semantics of the Buffer Frame fields are provided in Table 24.
Note that the timestamp format is inherited from the accessed media and as such can be an NTP timestamp, a 0-offset timestamp, or any other format.

[bookmark: Table_tab_24]Table 24 — Syntax and semantics of the buffer frame header
	Syntax
	Length (bits)
	Type
	Semantics

	index
	8
	uint(8)
	The index of the current buffer frame. The index is a value between 0 and count -1.

	timestamp
	64
	uint(64)
	Provides the base timestamp of the data that is contained in this buffer frame. Together with the timestamp_delta in the timed accessor information header, when present, it provides the timestamp of the data within the buffer frame. The 32 most significant bits represent the seconds part and the 32 least significant bits represent the fraction of a second part.
The timestamp field is not necessarily a wallclock time and the interpretation of this field is left to the Presentation Engine.

	length
	32
	uint(32)
	The length of the data of this buffer frame, including the accessor information header fields defined in Table 8.

	extra_frame_info_flags
	8
	uint(8)
	A set of flags that indicate additional information related to this buffer frame.

	if (extra_frame_info_flags & 0X01 == 1)
	
	
	If the dimensions flag is set, then the buffer frame contains texture data and the related width and hight parameters are provided.

	
	width
	32
	uint(32)
	The width of any texture data stored within the buffer frame

	
	height
	32
	uint(32)
	The height of any texture data stored within the buffer frame

[bookmark: Section_sec_7][bookmark: _Toc141653573]Carriage formats
[bookmark: Section_sec_7.1][bookmark: _Toc141653574]General
Clause 7 describes the carriage formats related to scene description. The scene description documents and scene description updates may be stored as samples of a track in ISOBMFF as defined in subclause 7.2, or as items as defined in subclause 7.3. Carriage for a mesh correspondence, pose and weights that are utilized by MPEG_mesh_linking extension is defined in subclauses 7.4 and 7.5. Carriage for an animation timing, that is utilized by MPEG_animation_timing extension, is defined in subclause 7.6.
Figure 7 shows an example relationship between items and tracks stored as one file. In the example JSON glTF file and a file representing glTF binary buffer are stored as items of a single file. The same file also contains tracks that can be reference from glTF file using the extensions defined in this document, such as MPEG_media, MPEG_buffer_cirrcular and MPEG_scene_dynamic.
[image:]
[bookmark: Figure_fig_7]Figure 7 — Data relationship between the glTF .json stored as item and patch updates as a track.
[bookmark: Section_sec_7.2][bookmark: _Toc141653575]Carriage format for glTF JSON and JSON patch
[bookmark: Section_sec_7.2.1][bookmark: _Toc141653576]General
A track with samples containing glTF JSON documents and JSON patch document shall be stored as metadata media defined in ISO/IEC 14496-12 and shall fulfil the following condition:
'meta' handler type shall be used in the HandlerBox of the MediaBox.
The sample entry format shall be 'mett' and:
mime_format field shall be set to model/gltf+json,
content_encoding field when present shall contain either an empty string or a value allowed in HTTP's Content-Encoding header.
GLTFPatchConfigBox may be present in the sample entry.
Samples containing glTF JSON documents shall be marked as a sync sample and shall use UTF-8 encoding as defined in IETF RFC 8259
Samples containing JSON patch documents shall not be marked as sync sample and shall use UTF-8 encoding as defined in IETF RFC 8259
Samples may have the sample_has_redundancy flag set to 1, in which case processing is applied as discussed in subclause 7.7.
The presentation time of a sample identifies the scene activation time for scene resulting from loading glTF JSON document or resulting from applying the JSON patch document contained in the sample as indicated by update_mode in the GLTFPatchConfigBox to the active scene description document. When the GLTFPatchConfigBox is not present non-sync samples shall be applied as specified by update_mode equal to 0.
NOTE	The update of the scene description document as well as the fetching of the assets of possible new nodes to be rendered are expected to take place sufficiently ahead of time so that the presentation of the scene can continue without interruption.
[bookmark: Section_sec_7.2.2][bookmark: _Toc141653577]glTF patch config box
[bookmark: Section_sec_7.2.2.1]Definition
	Box Type:
	'glTC'

	Container:
	Sample Entry ('mett')

	Mandatory:
	No

	Quantity:
	0 or 1

The glTF configuration box provides information how to process the samples of tracks with samples contain glTF JSON documents and JSON patch documents.
[bookmark: Section_sec_7.2.2.2]Syntax
class GLTFPatchConfigBox() extends Fullbox ('gltC', 0, 0) {
 unsigned int(3) update_mode;
 unsigned int(5) reserved;
}

[bookmark: Section_sec_7.2.2.3]Semantics
update_mode specifies how to determine the target file associated with the patch documents contained in the non-sync samples of the track. When update_mode is set to 0, the patch document contained in a non-sync sample of the track is to be applied to the glTF JSON document obtained by the processing of the previous sample (sync or non-sync) in decoding order, if any, or to the original glTF file including the metadata track into the MPEG_media extensions (e.g., glTF Object as non-timed item). When update_mode is set to 1, the patch document contained in a non-sync sample is to be applied to the glTF JSON document contained in the previous sync sample in decoding order, if any, or to the original glTF file including the metadata track into the MPEG_media extensions (glTF Object as non-timed item). Values from 2 to 7 are reserved for future use.
[bookmark: Section_sec_7.3][bookmark: _Toc141653578]Carriage format for glTF object and glTF source object as non-timed item
[bookmark: Section_sec_7.3.1][bookmark: _Toc141653579]General
glTF can be stored as items, when there is no specific time associated to the loading of that resource or when the track storage is not appropriate. As defined in ISOBMFF, items are declared in a MetaBox which may be present in the movie header or in movie fragment headers.
Items carrying glTF may serve either as an entry point to the file (e.g. as determined by the application using the ISOBMFF file or when the ISOBMFF is loaded with a URL with fragment identifier identifying that item) or as secondary content loaded by either other items or track samples.
[bookmark: Section_sec_7.3.2][bookmark: _Toc141653580]glTF Items
The brand 'glti' may be used to signal the use of a MetaBox with the following constraints:
It shall be present at the file level.
It shall use a HandlerBox with the handler_type set to 'gltf'
It shall contain a PrimaryItemBox which declares as primary item a resource of type 'model/gltf+json'.
It shall not use any DataInformationBox, ItemProtectionBox or IPMPControlBox.
It shall use a ItemInfoBox 'iinf' with the following constraints:
its version is either 0 or 1;
each item is described by an ItemInfoEntry 'infe' with the following constraints:
its version is set to 0;
its item_protection_index is set to 0;
if the item is referred to by a URL in the content of another item, its item_name is equal to that URL.
It shall use an ItemLocationBox 'iloc' with the following constraints:
its version is set to 1 or 2;
each item is described by an entry and values 0, 1 or 2 may be used for the construction method.
It may use any other boxes (such as ItemReferenceBox 'iref') not explicitly excluded above.
It may contain a GroupsListBox with a EntityToGroupBox with the grouping type 'gltf', containing an array of entity_id which is resolved to this item and to all the tracks in this file referenced by the glTF object stored in this item.
NOTE	This entity grouping helps file parsers to understand the relationships between the item and the tracks present in the file without having to parse the glTF file in the item.
[bookmark: Section_sec_7.3.3][bookmark: _Toc141653581]glTF source items
A glTF Source Object is a scene description source document and can be carried as s glTF Source Item. The brand 'glsi' may be used to signal the use of a MetaBox with the following constraints:
It shall be present at the track level, the containing track shall comply to subclause 7.2.
It shall use a HandlerBox with the handler_type set to 'glsi'
It shall contain a PrimaryItemBox which declares as primary item a resource of type 'application/json'.
It shall not use any DataInformationBox, ItemProtectionBox or IPMPControlBox.
It shall use a ItemInfoBox 'iinf' with the following constraints:
its version is either 0 or 1;
each item is described by an ItemInfoEntry 'infe' with the following constraints:
its version is set to 0;
its item_protection_index is set to 0;
if the item is referred to by a URL in the content of another item, its item_name is equal to that URL.
It shall use an ItemLocationBox 'iloc’ with the following constraints:
its version is set to 1 or 2;
each item is described by an entry and values 0, 1 or 2 may be used for the construction method.
It may use any other boxes (such as ItemReferenceBox 'iref') not explicitly excluded above.
It may contain a GroupsListBox with a EntityToGroupBox with the grouping type 'gltf', containing an array of entity_id which is resolved to this item and to all the tracks in this file referenced by the glTF object stored in this item.
[bookmark: Section_sec_7.4][bookmark: _Toc141653582]Carriage format for mesh correspondence values
[bookmark: Section_sec_7.4.1][bookmark: _Toc141653583]General
A sample in a metadata track is used to provide the correspondence values that are used to map one mesh, i.e. dependent mesh, to another mesh, i.e. shadow mesh. The sample timing of the metadata track defines the time instant of a mesh sample to which the correspondence value applies. The sample format itself contains an integer value that identifies the indexed face of the shadow mesh to which the corresponding vertex applies.
In glTF JSON file, the correspondence values are provided through an extension of a mesh by referring to an accessor with MPEG_accessor_timed extension. The number of correspondence values within a sample and the number of vertices of the corresponding mesh shall be the same.
[bookmark: Section_sec_7.4.2][bookmark: _Toc141653584]Vertices correspondence sample entry
[bookmark: Section_sec_7.4.2.1]Definition
	Sample Entry Type:
	'vcor'

	Container:
	Sample Description Box ('stsd')

	Mandatory:
	No

	Quantity:
	0 or 1

A vertex correspondence entry identifies a track containing vertex correspondence samples.
[bookmark: Section_sec_7.4.2.2]Syntax
aligned(8) class VertexCorrespondenceSampleEntry()
 extends MetadataSampleEntry('vcor') {
 unsigned int(3) precision;
 bits(5) reserved;
}

[bookmark: Section_sec_7.4.2.3]Semantics
· precision specifies the length in bytes of the correspondence values within each sample. The value of precision shall be greater than 0 and smaller or equal to 4.
[bookmark: Section_sec_7.4.3][bookmark: _Toc141653585]Vertices correspondence sample format
[bookmark: Section_sec_7.4.3.1]General
The sample format includes the number of correspondence values, as well as the value itself that applies to each of the vertices.
[bookmark: Section_sec_7.4.3.2]Syntax
aligned(8) class VerticesCorrespondenceSample
{ unsigned int(32) vertex_count;
 for(i = 0; i < vertex_count; i++){
 unsigned int(8 * precision) face_index[i];
 }
}

[bookmark: Section_sec_7.4.3.3]Semantics
· vertex_count specifies the number of vertices of the mesh this sample applies to and the number of face_index[i] values present in the sample
· face_index[i] specifies the index of a face in a shadow mesh to which a vertex with index equal i of dependent mesh is mapped.
[bookmark: Section_sec_7.4.3.4]Processing of correspondence samples
The value of precision in VertexCorrespondenceSampleEntry is constraint as follows. When precision is equal to 1, the componentType of the accessor referenced by correspondence attribute in the corresponding mesh with the MPEG_mesh_linking extension shall be equal to UNSIGNED_BYTE (5121). Otherwise, when precision is equal to 2, the componentType of the accessor referenced by correspondence attribute in the corresponding mesh with the MPEG_mesh_linking extension shall be equal to UNSIGNED_SHORT (5123). Otherwise, when precision is equal to 3 or 4, the componentType of the accessor referenced by correspondence attribute in the corresponding mesh with the MPEG_mesh_linking extension shall be equal to UNSIGNED_INT (5125).
The samples VerticesCorrespondenceSample are processed as follows. vertex_count shall be made available as "count" in the corresponding timed accessor information header fields in the corresponding frame of the circular buffer, which the accessor with the MPEG_accessor_timed indicated by correspondence attribute in the MPEG_mesh_linking extension points to. face_index[i] shall be made available in the corresponding frame of the circular buffer, which the accessor with the MPEG_accessor_timed indicated by correspondence attribute in the MPEG_mesh_linking extension points to using the componenType specified above.
[bookmark: Section_sec_7.5][bookmark: _Toc141653586]Carriage format for pose and weight
[bookmark: Section_sec_7.5.1][bookmark: _Toc141653587]General
A sample in a metadata track is used to provide the pose transformation used onto the shadow mesh and weight values that are used to apply the morph targets of the shadow mesh to transform the shadow mesh to the corresponding position and pose of the dependent mesh. The sample timing of the metadata track defines the time instant of a mesh sample to which the pose and weight information applies. The sample format itself contains the transformations matrix to be applied onto the nodes of the skeleton of the mesh and "weight" values to apply the morph targets of the shadow mesh.
In glTF JSON file, the specified values are provided through an extension of a mesh by referring to an accessor with MPEG_accessor_timed extension. The number of "weight" values within a sample and the number of morph target of the corresponding shadow mesh shall be the same.
[bookmark: Section_sec_7.5.2][bookmark: _Toc141653588]Pose transformation sample entry
[bookmark: Section_sec_7.5.2.1]Definition
	Sample Entry Type:
	'post'

	Container:
	Sample Description Box ('stsd')

	Mandatory:
	No

	Quantity:
	0 or 1

A pose transformation sample entry identifies a track containing pose transformation samples.
[bookmark: Section_sec_7.5.2.2]Syntax
aligned(8) class PoseTransformationSampleEntry()
extends MetadataSampleEntry('post') {
 unsigned int(16) number_of_nodes;
 for(unsigned int i = 0; i < number_of_nodes; i++){
 unsigned int (32) node_index[i];
 }
 unsigned int(16) number_of_morph_targets;
}

[bookmark: Section_sec_7.5.2.3]Semantics
· number_of_nodes specifies the number of nodes for which the transformation is described.
· node_index[i] specifies the index of the nodes array in the glTF file which the i-th node in the sample applies to.
· number_of_morph_targets specifies the number of morph targets for which a weight is provided.
[bookmark: Section_sec_7.5.3][bookmark: _Toc141653589]Pose transformation sample format
[bookmark: Section_sec_7.5.3.1]General
The sample format includes the transformations for each node, as well as weights to be applied to the associated morph targets.
[bookmark: Section_sec_7.5.3.2]Syntax
aligned(8) class PoseTransformationSample {
 for(i = 0; i < number_of_nodes; i++){
 float(32) [16] matrix[i];
 }
 for(i = 0; i < number_of_morph_targets; i++){
 float(32) weight[i];
 }
}

[bookmark: Section_sec_7.5.3.3]Semantics
· matrix[i] specifies the transformation matrix of the i-th node.
· weight[i] specifies the weight to be applied to the i-th morph target.
[bookmark: Section_sec_7.5.3.4]Processing of pose transformation samples
The PoseTransformationSampleEntry is processed as follows. When immutable is set to True and bufferView is not present the accessor within the MPEG_accessor_timed extension indicated by pose attribute or weights attribute in the MPEG_mesh_linking extension, the value of count in the corresponding accessor shall be equal to number_of_nodes or number_of_morph_targets, respectively. Otherwise, the syntax element number_of_nodes shall be made available as count attribute in the corresponding timed accessor information header fields in the corresponding frame of the circular buffer, which the accessor with the MPEG_accessor_timed indicated by pose attribute in the MPEG_mesh_linking extension points to, and syntax element number_of_morph_targets shall be made available as count attribute in the corresponding timed accessor information header fields in the corresponding frame of the circular buffer, which the accessor with the MPEG_accessor_timed indicated by weights attribute in the MPEG_mesh_linking extension points to.
The samples in PoseTransformationSample are processed as follows. matrix[i] shall be made available in the corresponding frame of the circular buffer, which the accessor with the MPEG_accessor_timed indicated by pose attribute in the MPEG_mesh_linking extension points to. Similarly, weight[i] shall be made available in the corresponding frame of the circular buffer, which the accessor with the MPEG_accessor_timed indicated by weight attribute in the MPEG_mesh_linking extension points to.
[bookmark: Section_sec_7.6][bookmark: _Toc141653590]Carriage format for animation timing
[bookmark: Section_sec_7.6.1][bookmark: _Toc141653591]General
A sample in a metadata track is used to manipulate an animation event defined in the glTF JSON file. The sample timing of the metadata track defines, when in the global timeline (i.e. common for audio/video/animation) the animation should be manipulated. The metadata track may be stored in the ISOBMFF file along with other media, which provides utility to align manipulations of glTF animations with the video and audio tracks.
The default duration of the animation would be defined by the animation data in the binary glTF buffer and not by the sample duration of ISOBMFF.
[bookmark: Section_sec_7.6.2][bookmark: _Toc141653592]Animation sample entry
[bookmark: Section_sec_7.6.2.1]Definition
	Sample Entry Type:
	'glat'

	Container:
	Sample Description Box ('stsd')

	Mandatory:
	No

	Quantity:
	0 or 1

An animation sample entry identifies an animation track containing glTF animation samples.
[bookmark: Section_sec_7.6.2.2]Syntax
aligned(8) class glTFAnimationSampleEntry()
 extends MetadataSampleEntry('glat') {
}

[bookmark: Section_sec_7.6.3][bookmark: _Toc141653593]Animation sample format
[bookmark: Section_sec_7.6.3.1]General
The sample format includes controlling parameters for animations defined in the glTF animations array.
[bookmark: Section_sec_7.6.3.2]Syntax
aligned(8) class glTFAnimationSample
{
 unsigned int(1) apply_to_all;
 unsigned int(7) reserved;
 unsigned int(16) num_events;
 for(i=0; i < num_events; i++){
 unsigned int(32) index[i];
 int(32) speed[i];
 unsigned int(8) state[i];
 if(state == 6){
 unsigned int (32) start_frame[i];
 unsigned int (32) end_frame[i];
 }
 unsigned int (8) order_id[i];
 unsigned int(32) num_channels[i];
 for(int j = 0; j < num_channels[i]; j++) {
 int (8) weight[i][j];
 unsigned int (32) channel_index[i][j];
 }
 }
}

[bookmark: Section_sec_7.6.3.3]Semantics
· apply_to_all if equal to 1, the num_events shall equal 1 and the animation event in the sample is applied to all animations in the glTF animations array.
· num_events – specifying number of animation events triggered at the time of the sample.
· index[i] specifies the index value of animation in animation node described in the glTF json file.
· speed[i] specifies a multiplier which indicate the speed of the playout of the animation. A negative value may indicate that the animation should be played in a reverse order, from the end to the start. The speed is stored as signed 15.16 fixed-point value.
· state[i] specifies status of the animation as defined in Table 25.
· start_frame[i] specifies the key frame of the animation used after each loop.
· end_frame[i] specifies the last the key frame of the animation before looping the animation.
· order_id[i] specifies a value to indicate the order in which animations are applied. Animations with lower values are applied before animation with higher values.
· num_channels[i] specifies the number of channels of an animation for which a weight is provided.
· weight[i][j] specifies the weight to be applied to the j-th channel of the animation in units of 1/255.
· channel_index[i][j] specifies the index of the j-th channel of the animation.
[bookmark: Table_tab_25]Table 25 — Definition of the state values in animation sample format
	state value
	identifier
	description

	0
	play
	Play the animation

	1
	stop_at_initial
	Stop the animation and return to the initial state

	2
	stop_at_final
	Stop the animation and keep the final state

	3
	pause
	Pause animation

	4
	restart
	Restart the animation, equivalent to stopping animation and playing it from the beginning.

	5
	update
	Update the animation characteristic, e.g. speed

	6
	loop
	Sets the animation to be applied repeatedly in a loop.

	7
	loop_relative
	Set the animation to be applied repeatedly in a loop with initial object position of the current loop being the final object position of the previous loop

	8..63
	reserved
	Reserved for future use

[bookmark: Section_sec_7.7][bookmark: _Toc141653594]Sample redundancies
For all tracks defined in this document, if a sample has its sample_has_redundancy flag set, it is expected that that sample would only be made available by the ISOBMFF parser to the Presentation Engine if the processing of the file starts with this sample. Otherwise, it is expected that the sample be ignored, and that processing of the current sample is continued for a duration equal to the duration of the ignored sample, as defined in ISO/IEC 14496-12.
[bookmark: Section_sec_7.8][bookmark: _Toc141653595]Brands
The brand 'gltf' may be present among the compatible_brands of the FileTypeBox.
The brand 'gltf' shall be used to indicate that the file is conformant with the file format specified in subclauses 7.2.
The brand 'glti' may be present among the compatible_brands of the FileTypeBox.
The brand 'glti' shall be used to indicate that the file is conformant with the file format specified in subclauses 7.3.

8 [bookmark: _Toc450303222][bookmark: _Toc9996972][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Toc353342675]Advanced Features
8.1 	AR Anchoring
8.1.1	MPEG_anchor extension
AR anchoring allows for the anchoring of the scene or some root nodes into the user’s physical environment to provide an Augmented Reality experience. AR anchoring is supported at the scene level and at the node level, as well as a extension through the definition of the MPEG_anchor extension.
Multiple AR anchoring is then supported by adding the MPEG_anchor extension to several root-levelnodes.
8.1.2	Semantics
The MPEG_anchor extension consists of Trackable and Anchor objects as provided in Table 26. The definition of Trackable and Anchor objects shall be provided within an MPEG_anchor extension at the glTF file level.
Table 26 – MPEG_anchor extension provided at the glTF file level
	Name
	Type
	Usage
	Default
	Description

	trackables
	array(Trackable)
	M
	
	Provides a list of trackables used by the anchor objects.

	anchors
	array(Anchor)
	M
	
	Provides a list of anchors for a scene or for root nodes to enable AR anchoring

The syntax and semantics of the Anchor object is provided in Table 27.
[bookmark: _Ref86155530][bookmark: _Ref146474971]Table 27 – Definition of the Anchor object
	Name
	Type
	Usage
	Default
	Description

	trackable
	integer
	M
	
	Index of the trackable in the trackables array that will be used for this anchor.

	requiresAnchoring
	boolean
	M
	
	Indicates if AR anchoring is required for the rendering of the associated nodes.
If TRUE, the application shall skip the virtual assets attached to this anchor until the pose of this anchor in the real world is known.
if FALSE, the application shall process the virtual assets attached to this anchor

	minimumRequiredSpace
	vec3
	O
	(0,0,0)
	Space required to anchor the AR asset (x, y, z in meters). This space corresponds to an axis-aligned bounding box, placed at the origin of the trackable space and extending along the positive x+,y+, and z+ axes, expressed in the trackable local space. This value shall be compared to the bounding box of the real-world available space associated with the trackable as estimated by the XR runtime.

	aligned
	enumeration
	O
	NOT_USED
	The aligned flag may take one of the following values: NOT_USED=0, ALIGNED_NOTSCALED=1, ALIGNED_SCALED=2.
If ALIGNED_SCALED is set, the bounding box of the virtual assets attached to that anchor is aligned and scaled to match the bounding box of the real-world available space associated with the trackable as estimated by the XR runtime.

	actions
	array(number)
	O
	N/A
	Indices of the actions in the actions array of the interactivity extension to be executed once the pose of this anchor is determined. An example is a setTransform action to place the virtual assets attached to that anchor.

	light
	integer
	O
	N/A
	Reference to an item in the lights array of the MPEG_lights_texture_based extension.

The definition of the Trackable object is provided in the Table 28.
[bookmark: _Ref146475049]Table 28: Definition of the Trackable object
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	
	The type of the trackable as defined in Table 29.

	if (type == TRACKABLE_CONTROLLER) {
	
	
	
	

	 path
	string
	M
	
	A path that describes the action space as specified by the OpenXR specification in clause 6.2. An example is “/user/hand/left/input”.

	}
	
	
	
	

	if (type== TRACKABLE_GEOMETRIC) {
	
	
	
	

	 geometricConstraint
	enumeration
	M
	
	The geometricConstraint flag may take one of the following values:
HORIZONTAL_PLANE=0, VERTICAL_PLANE=1

	}
	
	
	
	

	if (type== TRACKABLE_MARKER_2D OR MARKER_3D) {
	
	
	
	

	 markerNode
	number
	M
	
	Index to the node in the nodes array in which the marker geometry and texture are described.

	}
	
	
	
	

	if (type== TRACKABLE_MARKER_GEO) {
	
	
	
	

	 coordinates
	array
	M
	
	Array of three float numbers giving the longitude, the latitude, and the elevation of the geolocation of the center, that shall be as specified in [GeoJSON] for the point geometry type as follows:
· the longitude in units of decimal degrees. The value is in range of −180.0 to 180.0, inclusive. Positive values represent eastern longitude and negative values represent western longitude.
· the latitude in units of decimal degrees. The value is in range of −90.0 to 90.0, inclusive. Positive value represents northern latitude and negative value represents southern latitude.
· the elevation is in units of meters above the WGS 84 reference ellipsoid.

	}
	
	
	
	

	if (type== TRACKABLE_APPLICATION) {
	
	
	
	

	 trackableId
	string
	M
	
	An application-defined trackable id, that is known to the application.

	}
	
	
	
	

[bookmark: _Ref146475118]Table 29: Definition of the Trackable type
	Trackable type
	Description

	TRACKABLE_FLOOR = 0
	See 8.1.2.1.1

	TRACKABLE_VIEWER = 1
	See 8.1.2.1.2

	TRACKABLE_CONTROLLER = 2
	See 8.1.2.1.3

	TRACKABLE_PLANE = 3
	See 8.1.2.1.4

	TRACKABLE_MARKER_2D = 4
	See 8.1.2.1.5

	TRACKABLE_MARKER_3D = 5
	See 8.1.2.1.6

	TRACKABLE_MARKER_GEO = 6
	See 8.1.2.1.7

	TRACKABLE_APPLICATION = 7
	See 8.1.2.1.8

Table 30: MPEG_anchor object instantiation at the node or scene level
	Name
	Type
	Usage
	Default
	Description

	anchor
	integer
	M
	
	Reference to an item in the anchors array of the MPEG_anchor extension.

8.1.2.1	Trackable Definitions
8.1.2.1.1 TRACKABLE_FLOOR
A trackable of type TRACKABLE_FLOOR is an anchor with a plane that spans the xz-plane in the anchor’s local coordinate system. The origin of the local coordinate system is located at the center of the detected flat rectangular surface considered to be on the floor of the scene. The y-axis of the anchor’s local coordinate system is the plane’s normal vector and the X and Z axes are aligned with the rectangle edges.

[image: Chart

Description automatically generated with medium confidence]

NOTE	This corresponds to the XR_REFERENCE_SPACE_TYPE_STAGE defined in OpenXR in 7.1. Reference Spaces.
8.1.2.1.2 TRACKABLE_VIEWER
A trackable of type TRACKABLE_VIEWER is a trackable that corresponds to the viewer’s pose.
It tracks the primary viewer with the center at the viewer’s position, with +Y up, +X to the right, and -Z forward. This trackable is viewer head locked.
NOTE	This corresponds to the XR_REFERENCE_SPACE_TYPE_VIEW defined in OpenXR in 7.1. Reference Spaces.
8.1.2.1.3 TRACKABLE_CONTROLLER
A trackable of type TRACKABLE_CONTROLLER is a trackable that corresponds to one of the active controllers. Three controller types are defined: grip, aim, and palm.
A grip pose allows applications to reliably render a virtual object held in the user’s hand, whether it is tracked directly or by a motion controller. The grip pose is defined as follows:
· The grip position:
· For tracked hands: The user’s palm centroid when closing the fist, at the surface of the palm.
· For handheld motion controllers: A fixed position within the controller that generally lines up with the palm centroid when held by a hand in a neutral position. This position should be adjusted left or right to center the position within the controller’s grip.
· The grip orientation
· +X axis: When you completely open your hand to form a flat 5-finger pose, the ray that is normal to the user’s palm (away from the palm in the left hand, into the palm in the right hand).
· -Z axis: When you close your hand partially (as if holding the controller), the ray that goes through the center of the tube formed by your non-thumb fingers, in the direction of little finger to thumb.
· +Y axis: orthogonal to +Z and +X using the right-hand rule.
An aim pose allows applications to point in the world using the input source, according to the platform’s conventions for aiming with that kind of source. The aim pose is defined as follows:
· For tracked hands: The ray that follows platform conventions for how the user aims at objects in the world with their entire hand, with +Y up, +X to the right, and -Z forward. The ray chosen will be runtime-dependent, for example, a ray emerging from the palm parallel to the forearm.
· For handheld motion controllers: The ray that follows platform conventions for how the user targets objects in the world with the motion controller, with +Y up, +X to the right, and -Z forward. This is usually for applications that are rendering a model matching the physical controller, as an application rendering a virtual object in the user’s hand likely prefers to point based on the geometry of that virtual object. The ray chosen will be runtime-dependent, although this will often emerge from the frontmost tip of a motion controller.
A palm pose allows applications to reliably anchor visual content relative to the user’s physical hand, whether the user’s hand is tracked directly or its position and orientation is inferred by a physical controller. The palm pose is defined as follows:
· The palm position: The user’s physical palm centroid, at the surface of the palm.

· The palm orientation:
· +X axis: When a user is holding the controller and straightens their index finger, the ray that is normal to the user’s palm (away from the palm in the left hand, into the palm in the right hand)
· -Z axis: When a user is holding the controller and straightens their index finger, the ray that is parallel to their finger’s pointing direction.
· +Y axis: orthogonal to +Z and +X using the right-hand rule.
NOTE	This corresponds to the Standard pose identifiers defined in OpenXR in 6.3.2. Input subpaths.
8.1.2.1.4 TRACKABLE_PLANE
The width and length of a plane span the xz-plane of the anchor instance's local coordinate system. The origin of the local coordinate system is located at the center of the detected flat rectangular surface. The y-axis of the plane anchor is the plane’s normal vector, and the X and Z axes are aligned with the rectangle edges.

[image: Chart, box and whisker chart

Description automatically generated]

8.1.2.1.5 TRACKABLE_MARKER_2D
The width and length of the marker 2D span the xz-plane of the anchor instance's local coordinate system. The origin of the local coordinate system is located at the center of the detected marker 2D surface. The y-axis of the anchor is the plane’s normal vector, and the X and Z axes are aligned with the rectangle edges.

[image: Chart

Description automatically generated with medium confidence]

8.1.2.1.6 TRACKABLE_MARKER_3D
For 3D models, the origin is the center of the mesh. The X, Y, and Z axes correspond to the axes of the world space.
8.1.2.1.7 TRACKABLE_MARKER_GEO
The y-axis matches the direction of gravity as detected by the device's motion sensing hardware, y points downward.
The x- and z-axes match the longitude and latitude directions. -Z points to true north -X points west.

[image: Diagram, radar chart

Description automatically generated]

8.1.2.1.8 TRACKABLE_APPLICATION
The application-defined trackable object must have a right-handed coordinate space.
8.1.3	Processing model
Each trackable provides a local reference space in which an anchor pose can be expressed. This local reference space is right-handed and depends on the type of trackable as described below.
The MPEG_anchor extension shall not be present at scene and node level at the same time in the MPEG-I Scene Description. Upon activation of the XR mode, the Presentation Engine identifies the anchor points associated with the scene or with the root nodes and the related trackables.
If the requiresAnchoring Boolean parameter of an anchor is set to TRUE, the application shall skip the virtual assets attached to this anchor until the pose of this anchor in the real world is known. Otherwise, the application shall process the virtual assets attached to this anchor.
Upon the detection of a trackable within the user’s physical environment, the application creates an XR space and possibly determines the bounding box of the real world available space in which the virtual assets can be added.
If the optional minimumRequiredSpace parameter of the anchor referencing the trackable is present, the application shall skip the virtual assets attached to that anchor if the estimated real world available space is smaller in volume than the minimumRequiredSpace.
Otherwise, the application shall start the tracking, shall launch the actions provided in the actions parameter of the anchor and shall apply the necessary spatial transformations to the virtual assets with respect to the local space of the anchor prior to rendering.
The application could update at runtime a tracking status of each trackable defined in the trackables array at the scene level, for instance as follows:
· A tracking status set to TRUE when the trackable is detected and when its pose is well identified.
· A tracking status set to FALSE when the trackable position is lost (e.g., no more detected).
To provide the flexibility to define an anchor space different than the trackable’s space,
· The TRS of the node having the MPEG_anchor extension defines the relative transformation between the trackable’s space and the anchor space in which the child nodes containing the virtual assets are placed.
· A setTransform action may be defined to affect the scene root nodes in the case of a MPEG_anchor extension. This transformation defines the TRS between the trackable’s space and the anchor space in which all the scene root nodes are placed.
Actions are defined in MPEG_scene_interactivity extension.
If the array of action is not empty, the actions are executed once the pose of anchor is determined. If the tracking status is set to FALSE after being TRUE, actions are not canceled.
8.2 	Interactivity
8.2.1	General
Interactivity is supported at the scene level and at the node level through the definition of two extensions MPEG_scene_interactivity and MPEG_node_interactivity.
When present, the MPEG_scene_interactivity extension shall be included as extension to the scene object.
When present, the MPEG_node_interactivity extension shall be included as extension to node object.
The MPEG_node_interactivity extension is used to complement the interactivity defined at the scene level. One particular case is the definition of the parameters for the physics engine. That is, when an MPEG_node_interactivity extension contains a trigger of type TRIGGER_COLLISION without being referenced by a trigger of type TRIGGER_COLLISION at the MPEG_scene_interactivity extension, this node shall not be considered for collision detection and instead only be used by the physics engine.
8.2.2	Semantics
8.2.2.1	Semantics at scene level
The semantic of the MPEG_scene_interactivity extension is based on the definition of trigger, action and behavior objects as shown in Table 31.
[bookmark: _Ref146415728]Table 31: Semantic of the MPEG_scene_interactivity extension
	Name
	Type
	Usage
	Default
	Description

	triggers
	array
	M
	
	Contains the definition of all the triggers used in that scene.

	actions
	array
	M
	
	Contains the definition of all the actions used in that scene.

	behaviors
	array
	M
	
	Contains the definition of all the behaviors used in that scene. A behavior is composed of a pair of (triggers, actions), control parameters of triggers and actions, a priority weight and an optional interrupt action.

The semantic of a trigger is provided in Table 32.
[bookmark: _Ref146475148]Table 32: Semantic of a trigger
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	
	One element of Table 33 that defines the type of the trigger.

	if (type == TRIGGER_COLLISION){
	
	
	
	

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to be considered for collision determination. Any detection of collision shall activate the trigger

	 primitives
	array(Primitive)
	O
	N/A
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in Table 34.

	}
	
	
	
	

	if (type == TRIGGER_PROXIMITY){
	
	
	
	

	 referenceNode
	number
	O
	Active camera
	Index in the nodes array, of the node to consider for the proximity evaluation.
In the absence of the referenceNode attribute, the active camera managed by the application shall be used.

	 distanceLowerLimit
	number
	O
	0
	Threshold minimum in meters for the proximity calculation, based on the distance between the nodes and the referenceNode.

	 distanceUpperLimit
	number
	M
	
	Threshold maximum in meters for the proximity calculation, based on the distance between the nodes and the referenceNode.

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to be considered. All the nodes shall have a distance from the origin of their local space to
the referenceNode above the distanceLowerLimit and below the distanceUpperLimit to activate the trigger

	[bookmark: _Hlk138717622] primitives
	array(Primitive)
	O
	N/A
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in Table 34.

	}
	
	
	
	

	if (type== TRIGGER_USER_INPUT){
	
	
	
	

	 userInputDescription
	string
	M
	
	Describes the user body part and gesture related to the input. The format shall follow the OpenXR input path description as defined in [OpenXR] section 6. An example is: “/user/hand/left/grip”.

	 nodes
	array
	O
	
	Indices of the nodes in the nodes array to be considered for this user input.

	}
	
	
	
	

	if (type== TRIGGER_VISIBILITY){
	
	
	
	

	cameraNode
	number
	M
	
	Index to the node containing a camera in the nodes array for which the visibilities are determined.
The visibility trigger shall be evaluated only if the related camera is active.

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be considered. All the nodes shall be visible by the camera to activate the trigger.

	}
	
	
	
	

[bookmark: _Ref146474604]Table 33: type of trigger
	Trigger type
	Description

	TRIGGER_COLLISION=0
	Collision Trigger

	TRIGGER_PROXIMITY
	Proximity Trigger

	TRIGGER_USER_INPUT
	User_Input Trigger

	TRIGGER_VISIBILITY
	Visibility Trigger

The semantics of a trigger primitive are defined in Table 9.
[bookmark: _Ref146472428][bookmark: _Ref131152580]Table 34: Semantics of MPEG_scene_interactive.trigger.primitive properties
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	O
	BV_SPHEROID
	Describes the type of primitive used to activate the proximity trigger. The available options are:
BV_CUBOID = 0,
BV_PLANE_REGION = 1, BV_CYLINDER_REGION = 2, BV_CAPSULE_REGION = 3,
BV_SPHEROID = 4
The default is BV_SPHEROID. Semantics are presented in Table 35.

	boundary
	number
	O
	0.0
	Defines the region of intersection within the primitive. if zero, then all area of the primitive activates the trigger. Otherwise, the region of intersection decreases following the normal direction of all sides of the primitive from its centroid. For the capsule primitive, it should be applied over the radius, top, and base attributes.

	transformationMatrix
	array
	O
	[1.0,0.0,0.0,0.0,
0.0,1.0,0.0,0.0,
0.0,0.0,1.0,0.0,
0.0,0.0,0.0,1.0]
	Floating-point 4x4 matrix that defines the initial orientation, translation, and scale of a primitive. Formatted in column-major order. The primitive shall follow x+ for width, y+ for height, z+ for length . The matrix transformation allows to transform any primitive after initialization.

[bookmark: _Ref131152588][bookmark: _Ref146475300]Table 35: Semantical description of each primitive region
	Name
	Type
	Usage
	Default
	Description

	if (type == BV_CUBOID) {
	
	
	
	

	 width
	number
	M
	
	Width of the box.

	 height
	number
	M
	
	Height of the box.

	 length
	number
	M
	
	Length of the box.

	 centroid
	vec3
	M
	
	Centroid 3D coordinate (x,y,z) of the cube.

	}
	
	
	
	

	if (type == BV_PLANE_REGION) {
	
	
	
	

	 width
	number
	M
	
	Width of the plane.

	 height
	number
	M
	
	Height of the plane.

	 centroid
	vec2
	M
	
	Centroid 2D coordinate (x,y) or (x,z) or (y,z) of the plane.

	}
	
	
	
	

	if (type == BV_CYLINDER_REGION) {
	
	
	
	

	 radius
	number
	M
	
	Radius of the cylinder.

	 length
	number
	M
	
	Length of the cylinder.

	 centroid
	vec3
	M
	
	Centroid 3D coordinate (x,y,z) of the cylinder

	}
	
	
	
	

	if (type == BV_CAPSULE_REGION) {
	
	
	
	

	 radius
	number
	M
	
	Radius of the capsule.

	 baseCentroid
	vec3
	M
	
	Centroid 3D coordinate (x,y,z) of the base semi-sphere of the capsule.

	 topCentroid
	vec3
	M
	
	Centroid 3D coordinate (x,y,z) of the top semi-sphere of the capsule.

	 }
	
	
	
	

	if (type == BV_SPHEROID) {
	
	
	
	

	 radius
	number
	M
	
	Radius of the sphere.

	 centroid
	vec3
	M
	
	Centre 3D coordinate (x,y,z) of the sphere.

	}
	
	
	
	

The semantic of an action is provided in Table 36.
[bookmark: _Ref146475326]Table 36: Semantic of action
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	
	One element of Table 37 that defines the type of the action.

	delay
	number
	O
	0.0
	Duration of delay in second before executing the action.

	[bookmark: _Hlk91073429]if (type== ACTION_ACTIVATE){
	
	
	
	

	 activationStatus
	enum
	M
	
	ENABLED=0: the node shall be processed by the application
DISABLED =1: the node shall be skipped by the application.

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to set the activation status.

	}
	
	
	
	

	if (type== ACTION_TRANSFORM){
	
	
	
	

	 transform
	
	 M
	
	A 4x4 transformation matrix to apply to the nodes.

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to be transformed.

	}
	
	
	
	

	if (type== ACTION_BLOCK){
	
	
	
	

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to lock their related transforms.

	}
	
	
	
	

	if (type == ACTION_ANIMATION){
	
	
	
	

	 animation
	number
	M
	
	Index of the animation in the animations array to be considered.

	 animationControl
	enumeration
	M
	
	One element of Table 38 that defines the control of the animation.

	}
	
	
	
	

	if (type == ACTION_MEDIA){
	
	
	
	

	 media
	number
	M
	
	Index of the media in the MPEG media array to be considered.

	 mediaControl
	enumeration
	M
	
	One element of Table 39 that defines the control of the media.

	}
	
	
	
	

	if (type == ACTION_MANIPULATE){
	
	
	
	

	 manipulateActionType
	enumeration
	M
	
	One element of Table 40 that defines the action manipulate type.

	 axis
	array
	O
	Up
	(x,y,z) coordinates of the axis used for rotation and sliding. These coordinates are relative to the local space created by the user input described in the userInputDescription. For example a “/user/hand/left/pose” user input trigger creates a local space attached to the user left hand.

	 userInputDescription
	string
	M
	
	Describe the user input related to the manipulation action. The format shall follow the OpenXR input path description as defined in [OpenXR] section 6. An example is: “/user/hand/left/aim/pose”.

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to be manipulated.

	}
	
	
	
	

	if (type == ACTION_SET_MATERIAL){
	
	
	
	

	 material
	number
	M
	
	Index of the material in the materials array to apply to the set of nodes.

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to set their material.

	}
	
	
	
	

	if (type == ACTION_HAPTIC){
	
	
	
	

	 hapticActionNodes
	array(HapticActionNode)
	M
	
	List of haptic action nodes.

	}
	
	
	
	

	if (type == ACTION_SET_AVATAR) {
	
	
	
	

	 avatarAction
	string
	M
	
	The avatarAction is a URN that uniquely identifies the avatar action.
For the MPEG reference Avatar, a set of avatar actions and their respective URNs is defined in Table H.4.3.2 of Annex H.
For example, the URN “urn:mpeg:sd:2023:avatar:actionslist/speech” referenced in Table H.4.3.2 of Annex H sets the optional attributes “microphone” and “media”. Considering only the boolean attribute “microphone”, the nodes in the node array will activate/deactivate their “microphone” ability accordingly when this action is launched.

	 nodes
	array
	M
	
	Indices of the nodes in the nodes array to launch their avatar actions.

	}
	
	
	
	

[bookmark: _Ref146472566][bookmark: _Ref91697516]Table 37: Type of action
	Action type
	Description

	ACTION_ACTIVATE=0
	Set activation status of a node

	ACTION_TRANSFORM
	Set transform to a node

	ACTION_BLOCK
	Block the transform of a node

	ACTION_ANIMATION
	Select and control an animation

	ACTION_MEDIA
	Select and control a media

	ACTION_MANIPULATE
	Select a manipulate action

	ACTION_SET_MATERIAL
	Set new material to nodes

	ACTION_HAPTIC
	Get haptic feedbacks on a set of nodes

	ACTION_SET_AVATAR
	Get avatar related actions

[bookmark: _Ref146472785]Table 38: Control of animation
	Animation Control
	Description

	ANIMATION_PLAY=0
	Play the animation from time 0 or from any other time provided by a control.

	ANIMATION_PAUSE
	Pause the animation

	ANIMATION_RESUME
	Resume the animation from the last pause position.

	ANIMATION_STOP
	Stop the animation

[bookmark: _Ref146472729]Table 39: control of media
	Media Control
	Description

	MEDIA_PLAY=0
	Play the media from time 0 or from any other time provided by a control.

	MEDIA_PAUSE
	Pause the media

	MEDIA_RESUME
	Resume the media from the last pause position.

	MEDIA_STOP
	Stop the media

[bookmark: _Ref146472659]Table 40: Action Manipulate Type
	Action Manipulate Type
	description

	ACTION_MANIPULATE_FREE=0
	The nodes follow the user pointing device and its rotation.

	ACTION_MANIPULATE_SLIDE
	The nodes move linearly along the provided axis by following the user pointing device.

	ACTION_MANIPULATE_TRANSLATE
	The nodes translate by following the user pointing device.

	ACTION_MANIPULATE_ROTATE
	The nodes rotate around the provided axis by following the user pointing device.

	ACTION_MANIPULATE_SCALE
	Performs a central scaling of the nodes by following the user pointing device.

The semantics of a behavior is provided in Table 41.
[bookmark: _Ref146471893]Table 41: semantic of behavior
	Name
	Type
	Usage
	Default
	Description

	triggers
	array
	M
	
	Indices of the triggers in the triggers array considered for this behavior

	actions
	array
	M
	
	Indices of the actions in the actions array considered for this behavior.

	triggersCombinationControl
	string
	M
	
	Set of logical operations to apply to the triggers
A ‘#’ indicates the trigger index, ‘&’ indicates a logical AND operation, ‘|’ a logical OR operation and ‘~’ a NOT operation. Parenthesis are used to group some operations. Such a syntax may give the following string: “#1&~#2|(#3)”.
An empty string is understood as a logical OR between all the triggers.
A regex expression (https://json-schema.org/understanding-json-schema/reference/regular_expressions.html) is specified in the JSON schema to validate this string.

	triggersActivationControl
	enumeration
	M
	
	Indicates when the combination of the triggers shall be activated for launching the actions. One element of Table 42 that defines when the combination of the triggers shall be activated for launching the actions.

	actionsControl
	enumeration
	M
	
	Defines the way to execute the defined actions.
SEQUENTIAL=0: each defined action is executed sequentially in the order of the actions array.
PARALLEL=1: the defined actions are executed concurrently.

	interruptAction
	number
	O
	N/A
	Index of the action in the actions array to be executed if the behavior is still on-going and is no more defined in a newly received scene update.

	priority
	number
	O
	0
	Integer value defining the priority associated to the behavior When several behaviors are in concurrence to affect the same node(s) at the same time, the behavior having the highest priority value shall be processed. The lower priority behavior(s) shall not be processed. In the case of behaviors having the same priority, the application should apply its own criteria.

[bookmark: _Ref146471560]Table 42:Trigger Activation Control
	Trigger Activation Control
	Description

	TRIGGER_ACTIVATE_FIRST_ENTER=0
	Activated when the conditions are first met

	TRIGGER_ACTIVATE_EACH_ENTER
	Activated each time the conditions are first met

	TRIGGER_ACTIVATE_ON
	Activated as long as the conditions are met

	TRIGGER_ACTIVATE_FIRST_EXIT
	Activated when the conditions are first no longer met

	TRIGGER_ACTIVATE_EACH_EXIT
	Activated each time the conditions are no longer met

	TRIGGER_ACTIVATE_OFF
	Activated as long as the conditions are not met

[bookmark: _Ref130999759]Table 43: Semantic of HapticActionNode object
	Property
	Type
	Required
	Default
	Description

	node
	integer
	M
	
	Identifier of the node in the glTF nodes array.

	hapticObject
	integer
	O
	N/A
	Index to a haptic object in the hapticObjects array of the MPEG_haptic extension.

	actionLocation
	integer
	O
	0xFFFFFFFF
	Body part mask specifying where on the body the signal can be rendered.
Possible values are detailed in Table 47.

	washout
	boolean
	O
	False
	Specifies whether the action should trigger a washout (reset to the origin) of the associated devices.

	useCollider
	boolean
	O
	False
	Used with a Collision trigger. If True, the rendering engine shall use collision information to estimate the desired location of the haptic feedback on the body. For haptic materials, the presentation engine retrieves the associated haptic texture media and generates haptic feedback based on texture information and collision position. If false, the signal shall be rendered based on the information specified in the Haptic file.

	materialHapticModality
	array(enum)
	O
	N/A
	List of haptic material modalities that shall be rendered. Possible values are detailed in Table 46.

	hapticActionMedias
	array(HapticActionMedia)
	M
	
	List of Haptic Action Media.

[bookmark: _Ref131000756]Table 44: Semantic of the HapticActionMedia object
	Property
	Type
	Required
	Default
	Description

	mediaIndex
	integer

	M
	
	Index in the accessors array of the associated haptic data.

	perceptionIndices
	array(integer)
	M
	
	Indices of the perceptions of the media that shall be rendered. If the list if empty all perceptions shall be rendered

	hapticModality
	array(enumeration)
	O
	N/A
	List of haptic modalities that can be rendered. Possible values are described in Table 45.

	hapticControl
	enumeration
	O
	HAPTIC_PLAY
	One element of Table 49 that defines the control of the haptic rendering.

	loop
	boolean
	O
	False
	Specifies if the haptic rendering of the data should be continuously looping.

[bookmark: _Ref127171820][bookmark: _Ref146472015]Table 45: List of haptic modalities
	Pressure = 0

	Acceleration

	Velocity

	Position

	Temperature

	Vibrotactile

	Water

	Wind

	Force

	Electrotactile

	Vibrotactile Texture

	Stiffness

	Friction

	Other

[bookmark: _Ref127171917]
[bookmark: _Ref146473198]Table 46: List of haptic Material Modalities
	Stiffness = 0

	Friction

	Vibrotactile Texture

	Temperature

	Vibration

	Custom

[bookmark: _heading=h.4i7ojhp][bookmark: _Ref116566448][bookmark: _Ref116365499][bookmark: _Ref146473146][bookmark: _Ref116365293]Table 47: Body part masks
	
	Name
	Body_part_mask (binary)
	Hexadecimal
	Decimal

	0
	Unspecified
	00000000000000000000000000000000
	0x00000000
	0

	1
	Head Face
	00000000000000000000000000000001
	0x00000001
	1

	2
	Head Back/Neck/Ears
	00000000000000000000000000000010
	0x00000002
	2

	3
	Mouth Bag
	00000000000000000000000000000100
	0x00000004
	4

	4
	Lower Jaw
	00000000000000000000000000001000
	0x00000008
	8

	5
	Upper Jaw
	00000000000000000000000000010000
	0x00000010
	16

	6
	Eye Left
	00000000000000000000000000100000
	0x00000020
	32

	7
	Eye Right
	00000000000000000000000001000000
	0x00000040
	64

	8
	Chest Front
	00000000000000000000000010000000
	0x00000080
	128

	9
	Chest Back
	00000000000000000000000100000000
	0x00000100
	256

	10
	Upper Arm Left
	00000000000000000000001000000000
	0x00000200
	512

	11
	Lower Arm Left
	00000000000000000000010000000000
	0x00000400
	1 024

	12
	Hand Left
	00000000000000000000100000000000
	0x00000800
	2 048

	13
	Upper Arm Right
	00000000000000000001000000000000
	0x00001000
	4 096

	14
	Lower Arm Right
	00000000000000000010000000000000
	0x00002000
	8 192

	15
	Hand Right
	00000000000000000100000000000000
	0x00004000
	16 384

	16
	Abdomen Front
	00000000000000001000000000000000
	0x00008000
	32 768

	17
	Abdomen Back
	00000000000000010000000000000000
	0x00010000
	65 536

	18
	Upper Leg Left
	00000000000000100000000000000000
	0x00020000
	131 072

	19
	Lower Leg Left
	00000000000001000000000000000000
	0x00040000
	262 144

	20
	Foot Left
	00000000000010000000000000000000
	0x00080000
	524 288

	21
	Upper Leg Right
	00000000000100000000000000000000
	0x00100000
	1 048 576

	22
	Lower Leg Right
	00000000001000000000000000000000
	0x00200000
	2 097 152

	23
	Foot Right
	00000000010000000000000000000000
	0x00400000
	4 194 304

	24-32
	Reserved
	00000000010000000000000000000000 - 10000000000000000000000000000000
	0x00800000 -0x80000000
	8 388 608 - 2 147 483 648

[bookmark: _heading=h.2xcytpi][bookmark: _Ref116566498]
Table 48: Examples of body part combinations
	Name
	Body_part_mask (binary)
	Hexadecimal
	Decimal

	Right arm
	00000000000000000111000000000000
	0x00007000
	28 672

	Left arm
	00000000000000000000111000000000
	0x00000E00
	3 584

	Right leg
	00000000011100000000000000000000
	0x00700000
	7 340 032

	Left leg
	00000000000011100000000000000000
	0x000E0000
	917 504

	Upper body
	00000000000000011111111111111111
	0x0001FFFF
	131 071

	Lower body
	00000000011111100000000000000000
	0x007E0000
	8 257 536

	Full body
	11111111111111111111111111111111
	0xFFFFFFFF
	4 294 967 295

[bookmark: _Ref146472066]Table 49: List of Haptic controls
	Haptic Control
	Description

	HAPTIC_PLAY = 0
	Start the rendering of the haptic data from time 0 or from any other time provided by a control

	HAPTIC_PAUSE
	Pause the rendering of the haptic data

	HAPTIC_RESUME
	Resume the rendering of the haptic data from the last pause position.

	HAPTIC_STOP
	Stop the rendering of the haptic data

8.2.2.2	Semantics at node level
In complement to the interactivity objects defined in the glTF scene-level extension, some additional data could be provided at the level of the affected glTF nodes to specialize the trigger activation.
The semantic of the MPEG_node_interactivity extension is shown in Table 50.
[bookmark: _Ref146471439]Table 50: Semantic of the MPEG_node_interactivity extension
	Name
	Type
	Usage
	Default
	Description

	triggers
	array
	M
	
	Array of node triggers (as defined in Table 26). Only distinct types are allowed.
The minimum size of this array is 1, and the maximum size is size of trigger types as defined in this specification.

[bookmark: _Ref146472200]Table 51: Semantic of the MPEG_node_interactivity.trigger extension
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	
	One element of Table 8 that defines the type of the trigger.

	if (type == TRIGGER_COLLISION){
	
	
	
	

	collider
	integer
	M
	
	the index of the mesh element that provides the collider geometry for the current node.
The collider mesh may reference a material.

	isStatic
	boolean
	M
	
	If True, the collider is defined as a static collider.

	usePhysics
	boolean
	M
	
	Indicates if the object shall be considered by the physics simulation.

	if (usePhysics) {
	
	
	
	

		useGravity
	boolean
	M
	
	Indicates if the gravity affects the object

		mass
	number
	M
	
	Mass of the object in kilogram.

		restitution
	number
	M
	
	Provides the ratio of the final to initial relative velocity between two objects after they collide.

		staticFriction
	number
	M
	
	Unitless friction coefficient as defined in the Coulomb friction model. Friction is the quantity which prevents surfaces from sliding off each other. StaticFriction is used when the object is lying still. It will prevent the object from starting to move.

	 	dynamicFriction
	number
	M
	
	Unitless friction coefficient as defined in the Coulomb friction model. When a large enough force is applied to the object, the dynamicFriction is used, and will attempt to slow down the object while in contact with another.

	}
	
	
	
	

	[bookmark: _Hlk138717683]primitives
	array(Primitive)
	O
	N/A
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in Table 9.

	}
	
	
	
	

	if (type == TRIGGER_PROXIMITY){
	
	
	
	

	allowOcclusion
	boolean
	M
	
	Indicates if occlusion by other nodes should be considered

	upperDistanceWeight
	number
	O
	1
	The weight applied
to the distanceUpperLimit parameter defined at scene level

	lowerDistanceWeight
	number
	O
	1
	The weight applied
to the distanceLowerLimit parameter defined at scene level

	primitives
	array(Primitive)
	O
	N/A
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in Table 9.

	}
	
	
	
	

	if (type ==TRIGGER_USER_INPUT){
	
	
	
	

	userInputParameters
	array
	M
	
	Provides additional information related to the user inputs (eg “max speed = 0.5”)

	}
	
	
	
	

	if (type== TRIGGER_VISIBILITY){
	
	
	
	

	allowsPartialOcclusion
	boolean
	M
	
	The visibility computation shall take into account both the occultation by other node(s) and the camera frustrum. If the allowsPartialOcclusion Boolean is TRUE, then a partial visibility of this node activates the trigger.
If the allowsPartialOcclusion Boolean is FALSE, then this node shall be fully in the camera frustrum and not be occluded by any other node(s) except the nodes listed in the nodes array to activate the trigger.

	nodes
	array
	O
	N/A
	Set of nodes that shall not be considered for the visibility computation, when the allowsPartialOcclusion is FALSE.

	mesh
	number
	O
	N/A
	Index of the mesh in the scene meshes array that will be used to compute visibility.

	}
	
	
	
	

8.2.3	Processing model
When a scene description file becomes available, the Presentation Engine
· parses the related glTF file
· creates each behavior composed of triggers and actions described at the interactivity scene level extension
· specializes the trigger for each affected node with the additional data provided at the interactivity node level extension if present
At runtime, the presentation Engine iterates on each behavior and performs the following tasks:
· checks the activation status of each trigger of this behavior by following the procedure detailed in Figure 8,
· checks the logical combination of these trigger status,
· if this status satisfies the triggersActivationControl value, launches the corresponding actions.

[image: A picture containing graphical user interface

Description automatically generated]
[bookmark: _Ref146476449][bookmark: _Ref113870174]Figure 8: processing model for the activation of a single trigger
When several behaviors are in concurrence to affect the same node(s) at the same time, the behavior having the highest priority value shall be processed. The lower priority behavior(s) shall not be processed. In the case of behaviors having the same priority, the application should apply its own criteria.
When a new scene description update is received, the application follows the procedure detailed in Figure 9. An on-going behavior corresponds to a behavior:
· having its triggers status verifying the triggersActivationControl value for that frame,
· or having previously launched a play action related to a media/animation,
· or having previously launched an action with a delay not yet expired.
To check if the behavior is still defined, the application should check if the operations contained in the json patch document of the scene update lead to:
· removal of this behavior in the behaviors array.
· modification of any parameter of this behavior (e.g. by adding a new trigger, by changing the trigger activation control,…).
· removal of any of the referenced nodes by the action.
The application shall process the interrupt action only if the timing requirement of the scene update is met.
[image:]
[bookmark: _Ref146476521][bookmark: _Ref91852496]Figure 9: Processing model when a new scene description update is received.
If the usePhysics Boolean is TRUE on any of the collision trigger extensions defined at the node level, the application should handle a physics simulation. When a collision occurs between two nodes, the application should calculate the combination of the restitution, static friction and dynamic friction values based on the values provided by the collision trigger extension of the two nodes.

8.3	Avatar
8.3.1	General
[bookmark: _Hlk125030471]Signaling an avatar at a node level is achieved by the definition of the MPEG_node_avatar extension.
Depending on the input components and the offline model, the proper avatar reconstruction and animation needs to be instantiated to generate the final dynamic/animated 3D mesh of the avatar.
When considering describing a user’s avatar in scene description, the following requirements are derived:
· The avatar may be reconstructed/animated from a wide range of Avatar representations,
· The reconstructed/animated avatar representation abides by the supported primitives in scene description,
· It is possible to associate interactivity triggers with different parts/segments of the user avatar (e.g. hand or finger) using the node interactivity triggers.

To address these requirements, the avatar reconstruction/animation is assumed to be independent of the avatar rendering. This design aligns with the principles and architecture of this specification. Irrespective of the chosen avatar representation format, the Presentation Engine is then only required to render the reconstructed avatar in one of the supported 3D formats, such as a dynamic mesh. The Figure 10 depicts how this approach.
[image:]
Figure 10: Avatar media pipeline
The MPEG_node_avatar extension shall be included as extension to node object. All referenced mesh elements by this node will be reconstructed from an avatar representation.
8.3.2	Semantics
The application identifies the avatar format and reconstruction method based on the type of the MPEG_node_avatar extension. The default type is defined in Annex H of this specification.
[bookmark: _Ref131770445]Table 52: Description of MPEG_node_avatar extension
	Name
	Type
	Usage
	Default
	Description

	type
	string
	M
	
	The type of the avatar representation is provided as a URN that uniquely identified the avatar representation scheme. The avatar representation scheme defines the format of all components that are used to reconstruct and animate the avatar. The reference MPEG avatar URN is defined in section 8.3.3.

	mappings
	array(Mapping)
	M
	
	The mapping between child nodes and their associated avatar path. Note that the corresponding path for a parent node shall be a prefix of the path of its child nodes.

The Mapping object is defined as follows:
Table 53: Description of Mapping object
	Name
	Type
	Usage
	Default
	Description

	 path
	AvatarPath
	M
	
	Provides the Avatar path for this node as described in clause 8.3.4.

	 node
	integer
	M
	
	The index of the child node of the mesh part that corresponds to the label in the path.

8.3.3	MPEG reference avatar
The MPEG reference avatar is identified by “urn:mpeg:sd:2023:avatar” as avatar type. The reference avatar framework builds on the reference avatar as defined in Annex H.
8.3.4	Avatar path definition
The avatar path allows the addressing of every segment in an avatar, which allows for associating them with interactivity triggers and skeleton animations.
Table 54: Avatar paths
	"full_body": {
	"upper_body":{
		"head":{
			"face":{
				"mouth",
				"lower_jaw",
				"upper_jaw",
				"eye_right",
				"eye_left"
			},
			"neck",
			"ear_right",
			"ear_left",
			"back"
		},
		"thorax":{
			"chest_front",
			"chest_back",
			"shoulder_front_right",
			"shoulder_front_left",
			"shoulder_back_right",
			"shoulder_back_left"
		},
		"arm_right":{
			"upper_arm_right",
			"lower_arm_right",
			"hand_right":{
				"thumb_proximal_right":{
					"thumb_intermediate_right":{
						"thumb_distal_right"
						}
				},
				"index_proximal_right":{
					"index_intermediate_right":{
						"index_distal_right":{
							"index_top_right"
						}
					}
				},
				"middle_proximal_right":{
					"middle_intermediate_right":{
						"middle_distal_right":{
							"middle_top_right"
						}
					}
				},
				"ring_proximal_right":{
					"ring_intermediate_right":{
						"ring_distal_right":{
							"ring_top_right"
						}
					}
				},
				"litttle_proximal_right":{
					"litttle_intermediate_right":{
						"litttle_distal_right":{
							"litttle_top_right"
						}
					}
				}
			}
		},
		"arm_left":{
			"upper_arm_left",
			"lower_arm_left",
			"hand_left":{
				"thumb_proximal_left":{
					"thumb_intermediate_left":{
						"thumb_distal_left"
						}
				},
				"index_proximal_left":{
					"index_intermediate_left":{
						"index_distal_left":{
							"index_top_left"
						}
					}
				},
				"middle_proximal_left":{
					"middle_intermediate_left":{
						"middle_distal_left":{
							"middle_top_left"
						}
					}
				},
				"ring_proximal_left":{
					"ring_intermediate_left":{
						"ring_distal_left":{
							"ring_top_left"
						}
					}
				},
				"litttle_proximal_left":{
					"litttle_intermediate_left":{
						"litttle_distal_left":{
							"litttle_top_left"
						}
					}
				}
			}
		}
	}
	"lower_body":{
		"pelvis":{
			"pelvis_front":{
				"pelvis_front_right",
				"pelvis_front_left"
			},
			"pelvis_back":{
				"pelvis_back_right",
				"pelvis_back_left"
			}
		},
		"leg_right":{
			"upper_leg_right",
			"lower_leg_right",
			"foot_right":{
				"toes_right"
			}
		},
		"leg_left":{
			"upper_leg_left",
			"lower_leg_left",
			"foot_left":{
				"toes_left"
			}
		}
	}
}

8.3.5	Processing model
Each avatar in a scene is represented by a node that contains the MPEG_node_avatar extension. When present in a node, it means that all referenced mesh elements by this node will be reconstructed from an avatar representation.
8.4 	Lighting
8.4.1	General
This document defines types of light sources with their corresponding extensions:
· The image-based lights via the MPEG_lights_texture_based extension
· The punctual lights via the MPEG_light_punctual extension
The MPEG_lights_texture_based extension defines image-based lights in a glTF scene. This extension expands the functionalities of the EXT_lights_image_based extension by enabling the lighting information to vary over time. The lighting information in the MPEG_lights_texture_based extension comprises two timed dependent sequences that are:
· a video sequence wherein each frame represents the specular radiance information
· a timed metadata sequence where each sample of the sequence represents irradiance information
At each time instance of the glTF scene rendering, the corresponding specular radiance decoded frame and the irradiance sample provide the necessary information to apply image-based lighting rendering techniques.
Regarding the punctual lights extension, identified by MPEG_light_punctual, it provides the ability to differentiate between phyiscal and virtual light sources present as KHR_lights_punctual elements as well as providing accessor to retrieve timed dependent information it.
8.4.2	Semantics
8.4.2.1	Semantics of the MPEG_lights_texture_based extension
When present, the MPEG_lights_texture_based extension shall be included as a glTF file level extension and as a scene level extension.
The definition of all objects within MPEG_lights_texture_based extension is provided in Table 55.
[bookmark: _Ref146475467]Table 55: Definitions of glTF file level objects of MPEG_lights_texture_based extension
	Name
	Type
	Usage
	Default
	Description

	lights
	array
	M
	
	An array of items that describe the texture-based light sources, referenced in this scene description document.

Table 56: Definitions of item in the lights array of MPEG_lights_texture_based extension
	Name
	Type
	Usage
	Default
	Description

	name
	string
	O
	N/A
	Name of the light

	nature
	enumeration
	O
	PHYSICAL
	Indicates whether the lighting information corresponds to
· PHYSICAL = 0: a physical light,
· VIRTUAL = 1: a virtual light,
· PHYSICAL_VIRTUAL = 2:both physical and virtual,
UNKNOWN = 3: unknown. In case of a physical light source, an AR anchor that refers to this light source should be present.

	position
	array
	O
	(0,0,0)
	Position of both light and reflection probes associated with the lighting information.
In the absence of this position, the lighting information is assumed to be global (i.e. for the entire scene) for which the center is the scene origin.
When an anchor refers to a light source, the position of the anchor takes precedence over this position attribute.

	 projection
	numeration
	O
	EQUIRECTANGULAR
	Provides the projection typeof the specular images. The type may be either
· EQUIRECTANGULAR = 0,
· CUBEMAP = 1
In the latter case, the 6 faces of the radiance map should be packed according to the order described by Table 10 of the ISO/IEC 23090-7 specification.

	rotationAccessor
	integer
	O
	N/A
	Provides a reference to the accessor giving a sequence of quaternions as described in rotation of in EXT_lights_image_based.
When an anchor refers to a light source, the rotation of the anchor takes precedence over this rotation attribute.
In the absence this rotation_accessor, there is no rotation to apply to the irradiance map and specular images.

	intensityAccessor
	integer
	O
	N/A
	Provides a reference to the accessor giving a sequence of intensity values as described in intensity of in EXT_lights_image_based.
In the absence this intensity_accessor, the intensity of the light is 1.0.

	irradianceAccessor
	integer
	M
	N/A
	Provides a reference to the accessor giving a sequence of irradiance coefficient samples. Irradiance coefficients are defined as in irradianceCoefficients of EXT_lights_image_based.
An irradiance coefficients sample is an array of 27 values of floating-point type corresponding to 9 vectors of 3 components, one per RGB channels. The coefficients are stored in the RGB order and from low to high order channel-major fashion i.e. [r0, g0, b0,r1, g1, b1, ...].
See Khronos EXT_lights_image_based for the definition of the irradiance coefficient sample.

	specularImages
	array
	M
	N/A
	Provides a list of references to textures providing specular images (environment map).
The length of the array shall be equal to “1” or “6”.
When the length of the array is equal to “1”, the specular images are provided in a packed format as defined by the projection attribute.
When the length of the array is equal to “6”, the projection attribute shall be of type cubemap and the order of faces are TBD.

Table 57: Definitions of objects at the scene level of MPEG_lights_texture_based
	Name
	Type
	Usage
	Default
	Description

	light
	array(integer)
	M
	
	Reference to an item in the lights array of the MPEG_lights_texture_based extension.

The JSON schema for the MPEG_lights_texture_based extension is provided in A.14.
8.4.2.2	Semantics of the MPEG_light_punctual extension
When present, the MPEG_light_punctual extension shall be included as a glTF file level extension.
The definition of all objects within MPEG_light_punctual extension is provided in Table 58.
Table 58 – Definition of glTF file objects of MPEG_light_punctual extension
	Name
	Type
	Usage
	Default
	Description

	light
	integer
	M
	
	Index of the item in the array of the lights parameter of the KHR_lights_punctual extension

	nature
	numeration
	M
	
	Indicates whether the lighting information corresponds to
· PHYSICAL = 0: a physical light,
· VIRTUAL = 1: a virtual light,
· PHYSICAL_VIRTUAL = 2:both physical and virtual,
· UNKNOWN = 3: unknown.
In case of a physical light source, an AR anchor that refers to this light source should be present

	color_accessor
	integer
	O
	N/A
	Provides a reference to the accessor giving a sequence of color value as described in color of in KHR_lights_punctual.
In the absence of the accessor, the value in the referenced light is considered as the constant value for the rendering duration.

	intensity_accessor
	integer
	O
	N/A
	Provides a reference to the accessor giving a sequence of intensity value as described in intensity of KHR_lights_punctual.
In the absence of the accessor, the value in the referenced light is considered as the constant value for the rendering duration.

	range_accessor
	integer
	O
	N/A
	Provides a reference to the accessor giving a sequence of range value as described in range of in KHR_lights_punctual.
In the absence of the accessor, the value in the referenced light is considered as the constant value for the rendering duration.

The JSON schema for the MPEG_light_punctual extension is provided in A.15.
8.4.3	Processing model
When a scene description document contains light source defined in the MPEG_lights_texture_based extension or the MPEG_light_punctual extension, the renderer should take into consideration this lighting information when rendering the view of the scene. The operations to be applied depends on the context of the application, e.g. if it is a VR or an AR application. In addition, the renderer should also consider whether the lights are virtual or physical based on the value of the nature field.
For instance, when the scene contains both physical and virtual lighting information, such as in AR applications, then the renderer should relight the virtual elements of the scene (e.g. virtual objects) present in the scene with both physical and virtual lighting information. Regarding the real elements of the scene, the renderer should only relight them using the virtual lighting information since, by definition, the real elements of the scene are already illuminated by the physical light sources in the scene.
Regardless of the application type, when the lighting information is parsed, the Presentation Engine places the image-based light in the scene based on the rotation, intensity and irradiance values, as well as setting the specular images in the lighting model
The Presentation Engine places the punctual lights using the same processing model as the KHR_lights_punctual elements and retrieves timed dependent information through the color, intensity and range accessors.
Depending on the view pose, the render should illuminate each object of the scene by the lights surrounding the objects, possibly by interpolating the lighting contribution based on the relative distance.

[bookmark: Annex_sec_A][bookmark: _Toc141653596]
(informative)

JSON schema reference
[bookmark: Annex_sec_A.1][bookmark: _Toc141653597]A.1		General
JSON schemas glTFChildOfRootProperty.schema.json, glTFProperty.schema.json, and glTFid.schema.json references in subclauses 5.2, 5.3, 5.4, and 5.5 are defined in ISO/IEC 12113.
[bookmark: Annex_sec_A.2][bookmark: _Toc141653598]A.2	JSON schema for MPEG_media
MPEG_media.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_media.schema.json.
MPEG_media.media.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_media.media.schema.json.
MPEG_media.media.alternative.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_media.media.alternative.schema.json.
MPEG_media.media.alternative.track.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_media.media.alternative.track.schema.json.
[bookmark: Annex_sec_A.3][bookmark: _Toc141653599]A.3		JSON schema for MPEG_accessor_timed
MPEG_accessor_timed.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_accessor_timed.schema.json.
[bookmark: Annex_sec_A.4][bookmark: _Toc141653600]A.4		JSON schema for MPEG_buffer_circular
MPEG_buffer_circular.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_buffer_circular.schema.json.
[bookmark: Annex_sec_A.5][bookmark: _Toc141653601]A.5		JSON schema for MPEG_scene_dynamic
MPEG_scene_dynamic.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_scene_dynamic.schema.json.
[bookmark: Annex_sec_A.6][bookmark: _Toc141653602]A.6		JSON schema for MPEG_texture_video
MPEG_texture_video.schema.json schema is downloadable from
https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_texture_video.schema.json.
[bookmark: Annex_sec_A.7][bookmark: _Toc141653603]A.7		JSON schema for MPEG_mesh_linking
MPEG_mesh_linking.schema.json schema is downloadable from
https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_mesh_linking.schema.json.
[bookmark: Annex_sec_A.8][bookmark: _Toc141653604]A.8		JSON schema for MPEG_audio_spatial
MPEG_audio_spatial.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_audio_spatial.schema.json.
MPEG_audio_spatial.source.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_audio_spatial.source.schema.json.
MPEG_audio_spatial.reverb.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_audio_spatial.reverb.schema.json.
MPEG_audio_spatial.reverb.property.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_audio_spatial.reverb.property.schema.json.
MPEG_audio_spatial.listener.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_audio_spatial.listener.schema.json.
[bookmark: Annex_sec_A.9][bookmark: _Toc141653605]A.9		JSON schema for MPEG_viewport_recommended
MPEG_viewport_recommended.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_viewport_recommended.schema.json.
MPEG_viewport_recommended.viewport.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_viewport_recommended.viewport.schema.json.
[bookmark: Annex_sec_A.10][bookmark: _Toc141653606]A.10	JSON schema for MPEG_animation_timing
MPEG_animation_timing.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/MPEG_animation_timing.schema.json.
A.11 JSON schema for MPEG_anchor
MPEG_anchor schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_anchor.schema.json.
A.12 JSON schema for MPEG_haptics
MPEG_haptics.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_haptics.schema.json.
A.13 JSON schema for MPEG_scene_interactivity and MPEG_node_interactivity
MPEG_scene_interactivity schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_scene_interactivity.schema.json
MPEG_node_interactivity schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_node_interactivity.schema.json
A.14 	JSON schema for MPEG_avatar
MPEG_avatar schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_avatar.schema.json
A.15		JSON schema for MPEG_lights_texture_based
[bookmark: _heading=h.jmlgjamuphiv][bookmark: _heading=h.xq80h18jsurw][bookmark: _heading=h.bxxwcaz6ouk6]MPEG_lights_texture_based schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_lights_texture_based.schema.json
A.16		JSON schema for MPEG_light_punctual
MPEG_light_punctual schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_light_punctual.schema.json
[bookmark: Annex_sec_B][bookmark: _Ref136464293][bookmark: _Toc141653607]
(normative)

Attribute registry
Table B.1 provides a registry of the MPEG-defined attributes and their semantics. Attributes defined by MPEG shall use the _MPEG prefix and namespace and shall be registered in this table. A registry shall provide at least a name, the accessor type, component type, and a description. It is recommended that they also provide an example shader program in the OpenGL® Shading Language (GLSL).
[bookmark: Table_tab_B.1]Table B.1 — MPEG attribute registry
	Name
	Accessor type(s)
	Component type(s)
	Description
	Reference and example shader program

	_MPEG_V3C_ATTR_REFLECTANCE
	scalar
	5123
	indicates the reflectance information that is associated with each point in a volumetric frame.
	

	_MPEG_V3C_ATTR_MATERIAL_ID
	scalar
	5123
	indicates a supplemental information that identifies material type of a point in a volumetric frame.
	

	_MPEG_V3C_ATTR_TRANSPARENCY
	scalar
	5123
	indicates the transparency information that is associated with each point in a volumetric frame.
	

[bookmark: Annex_sec_C][bookmark: _Toc141653608]
(normative)

Support for real-time media
This Annex defines a URL scheme that shall be used when referencing in the MPEG_media extension external media streams that are delivered over RTP/SRTP:
 url = scheme ":" hier-part "?" query
 scheme = "rtp" / "srtp" / "rtmedia"
 hier-part = "//" host [":" port]
 host = IP-literal / reg-name / "@"
 query = stream-identifier *("&" parameter)
 stream-identifier = mid / label / index
 mid = "mid=" identification-tag
 label = "label=" pointer
 index = "index=" num-val
 parameter = key "=" value
 key = char-val
 value = char-val / num-val

This scheme allows for addressing media streams without actually knowing the values for the protocol scheme, hostname, or port. It requires the presence of a stream-identifer in the query part. However, it doesn’t dictate a specific type of identifier. It allows for the usage of the Media Stream Identification scheme (RFC 5888), a labeling scheme (RFC 4575), or a 0-based indexing scheme. The SDP of the session that carries the referenced media stream shall have the corresponding stream identifier, in case mid or label reference is used, or it shall contain the media stream in the correct position, in case an index reference is used.
The ABNF format for URI as defined in RFC3986 defines the syntax for IP-literal and reg-name. The ABNF syntax as well as the definition for char-val and num-val are defined in RFC 5234. RFC 5888 defines the syntax for identification-tag. RFC 4574 defines the syntax for pointer.
The following is an example of a URL that references a real-time media stream for which neither the host and port, nor the protocol scheme is yet known.
 rtmedia://@?label=depth1

The following example is for a reference to a media stream, where the protocol scheme, destination IP address, port number, and the mid are known.
 srtp://192.168.100.100:9000?mid=2

The corresponding SDP description may be as follows:
 m=video 9000 UDP/TLS/RTP/SAVPF 96
 c=IN IP4 192.168.100.100
 a=rtpmap:96 H265/90000
 a=fmtp:96 profile-id=1; level-id=153; sprop-
 vps=QAEMAf//AWAAAAMAgAAAAwAAAwBdLAUg; sprop-
 sps=QgEBAWAAAAMAgAAAAwAAAwBdoAKAgC0WUuS0i9AHcIBB; sprop-
 pps=RAHAcYDZIA==
 a=rtcp:9 IN IP4 0.0.0.0
 a=mid:2
 a=recvonly
 a=rtcp-mux

[bookmark: Annex_sec_D][bookmark: _Toc141653609]
(normative)

Audio attenuation functions
[bookmark: Annex_sec_D.1][bookmark: _Toc141653610]General
This Annex defines a set of audio source attenuation functions and their parameters. The attenuation functions defined in this document are defined according to the corresponding clamped attenuation models as defined by Reference [5]. If the attenuation function cannot be evaluated for a distance, then the audio signal shall not be attenuated.
For all the attenuation functions defined in this document, distance represents the distance between the audio source and the audio listener and the reference distance is provided through referenceDistance property as defined in Table 14. The attenuation function is used to determine the distance gain.
[bookmark: Annex_sec_D.2][bookmark: _Toc141653611]No attenuation (no_attenuation)
This attenuation function results in a distance gain of 1.0, thus corresponding to no attenuation.
[bookmark: Annex_sec_D.3][bookmark: _Toc141653612]Inverse distance attenuation (inverse_distance)
The inverse distance attenuation function ida(d, md, rf) is defined as follows:

Where md is maximum distance, rf is roll factor, rd is reference distance, and d is the distance for which the distance gain is calculated.
[bookmark: Annex_sec_D.4][bookmark: _Toc141653613]Linear distance attenuation (linear_distance)
The linear distance attenuation function lda(d, md, rf) is defined as follows:

Where md is maximum distance, rf is roll factor, rd is reference distance, and d is the distance for which the distance gain is calculated.
[bookmark: Annex_sec_D.5][bookmark: _Toc141653614]Exponential distance attenuation (exponential_distance)
The exponential distance attenuation function eda(d, md, rf) is defined as follows:

Where md is maximum distance, rf is roll factor, rd is reference distance, and d is the distance for which the distance gain is calculated.
[bookmark: Annex_sec_D.6][bookmark: _Toc141653615]Custom attenuation
The custom attenuation function is identified through a mandatory input parameter “identifier” and a set of custom parameters.
[bookmark: Annex_sec_E][bookmark: _Toc141653616]
(informative)

Linking a dependent mesh and its associated shadow mesh
Each vertex of the dependent mesh at time t is represented by vd,i(t) with i=0..Nd(t) – 1 with Nd(t) being the number of vertices of the dependent mesh at time t.
Each vertex of the shadow mesh is represented by vs,i with i=0.. Ns – 1 with Ns being the number of vertices of the shadow mesh. Note that the shadow mesh is static and therefore it does not depend on the time.
Wj(t) represents the weight for the j-th morph targets (mj) that needs to be applied at time t.
The mesh primitive of the shadow mesh contains attributes that are required for the vertex skinning. Particularly, these are the “JOINTS_0” and the “WEIGHTS_0” attributes, with “JOINTS_0” indicating for each vertex which of the K joints has an influence on a vertex during the skinning process and the “WEIGHTS_0” attribute indicating how strongly each joint influences each vertex. With these attributes, weights αk,i for the transformation Tk of a vertex i due to joint k can be determined.
The skinning operation is applied on the vertices of the shadow mesh after applying the offset determined by the morph targets as in (E.1).
[bookmark: disp-formula_formula_E.1]	(E.1)
At this point the shadow mesh is at the same position and pose as the dependent mesh. Using the correspondence information, each vertex of the dependent mesh vd,i(t) at time t is mapped to the ci(t)-th face, where ci(t) is the correspondence value indicated for the i-th vertex of the dependent mesh at time t. The three vertices corresponding to each face of the shadow mesh at the same position as the dependent mesh and indicated by a correspondence value ci(t)-th are represented by v’s,j(t), v’s,k(t) and v’s,l(t).
The distance from vd,i(t) to the plane defined by v’s,j(t), v’s,k(t) and v’s,l(t) and the projected point within the given face pi(t) is computed as follows.
The orthonormal vector to the ci(t)-th face is defined as:
	(E.2)
whereis representing the cross product of two vectors.
The vector (v’s,j(t) – vd,i(t)) is projected ontoand added to the vertex vd,i(t) to determine the point pi(t).
	(E.3)
And the distance to the plane is determined as:
	(E.4)
The sign si of the product of the orthonormal vectorand the vector normalized is computed:
	(E.5)
Finally, the projected point pi(t) is transformed to barycentric coordinates as follows:
	(E.6)
	(E.7)
[bookmark: disp-formula_formula_E.8]	(E.8)
whereis representing the cross product of two vectors.
	(E.9)
Thus, when the ci(t)-th face of the shadow mesh is transformed by an animation, the computed barycentric coordinate can be used at that face represented by v’’s,j(t), v’’s,k(t) and v’’s,l(t) and using the corresponding point and the computed distance the corresponding vertex of the dependent mesh v’d,i(t) can be determined at the same relative position as follows.
[bookmark: disp-formula_formula_E.10]	(E.10)
	(E.11)
[bookmark: disp-formula_formula_E.12]	(E.12)
[bookmark: Annex_sec_F][bookmark: _Toc141653617]
(informative)

glTF extension usage examples
[bookmark: Annex_sec_F.1][bookmark: _Toc141653618]MPEG_media
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_media.json, two media items are listed by MPEG_media extension. The first media item contains only one item within alternatives, which is a DASH manifest that contains one track. Even though there are no alternatives at the media level, DASH manifest may still have different Representations within the Adaptation Set (but this is outside of the scope of the extension). The second media item contains two items within the alternatives. The first one lists an ISOBMFF file that contains data compressed using AVC codec, while the second one lists an mp4 file that contains data compress using HEVC codec. However, each track item may contain different information, which depends on the structure of the ISOBMFF file.
[bookmark: Annex_sec_F.2][bookmark: _Toc141653619]MPEG_accessor_timed
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_accessor_timed.json a usage of MPEG_accessor_timed is presented.
[bookmark: Annex_sec_F.3][bookmark: _Toc141653620]MPEG_buffer_circular
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_buffer_circular.json a usage of MPEG_buffer_circular is presented.
[bookmark: Annex_sec_F.4][bookmark: _Toc141653621]MPEG_scene_dynamic
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_scene_dynamic.json, the media object includes the patch document format file name and its track index. The mimeType indicates that the data is patch information for dynamic scene updates.
[bookmark: Annex_sec_F.5][bookmark: _Toc141653622]MPEG_texture_video
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_texture_video.json, two texture items are listed. Each texture item use MPEG_texture_video extension. The first texture item is expected to be available in buffer indicated by accessor 2. The second texture item is expected to be available in buffer indicated by accessor 3.
[bookmark: Annex_sec_F.6][bookmark: _Toc141653623]MPEG_mesh_linking
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_mesh_linking.json, two mesh items are listed. The second mesh item uses MPEG_mesh_linking extension. Mesh at mesh.index: 0, is the shadow mesh. The primitive information such as JOINTS, WEIGHTS for the mesh of the shadow mesh is available. The mesh entity at index:0 also includes morph targets which are applied in order to correct artefacts introduced during the skinning operation. The mesh entity at mesh.index: 1, is the dependent mesh (e.g., volumetric scan object). The extension “MPEG_mesh_linking” includes the mapping information in “correspondence” which can be determined using the accessor index. The extension includes the mesh.index value indicating the shadow mesh to which the dependent mesh including the extension is linked and to which the mapping information corresponds to. The extension also includes “pose” and “weights” attributes which indicate the accessors with the transformations of the pose of the dependent mesh at a particular time and the weights to be used for each of the morph targets of the shadow mesh for that particular pose.
[bookmark: Annex_sec_F.7][bookmark: _Toc141653624]MPEG_audio_spatial
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_audio_spatial.json, a usage of MPEG_audio_spatial is presented.
[bookmark: Annex_sec_F.8][bookmark: _Toc141653625]MPEG_viewport_recommended
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_viewport_recommended_01.json, one camera object is listed. This camera object uses MPEG_viewport_recommended extension. It is expected that recommended viewport information will be available in the buffer indicated by timed accessors 0, 1, and 2.
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_viewport_recommended_02.json, one media object is listed. This media object includes the recommended viewport file name and its track index. The mimeType indicates that the data is recommended viewport information.
[bookmark: Annex_sec_F.9][bookmark: _Toc141653626]MPEG_animation_timing
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_MPEG_animation_timing.json, a usage of MPEG_animation_timing is presented.
[bookmark: Annex_sec_F.10][bookmark: _Toc141653627]Full example
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/example_full_01.json, a usage of MPEG_media, MPEG_buffer_cricular, MPEG_accessor_timed, MPEG_audio_spatial, and MPEG_animation_timing extensions is presented.

[bookmark: _Toc141653628]MPEG_primitive_V3C
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/amd/1/example_MPEG_primitive_V3C, a usage of the MPEG_primitive_V3C is presented.
[bookmark: _Toc141653629]MPEG_sampler_YCbCr
In the example downloadable from https://standards.iso.org/iso-iec/23090/-14/ed-1/en/amd/1/example_MPEG_sampler_YCbCr, a usage of the MPEG_sampler_YCbCr extension is presented.

[bookmark: _Toc71216160][bookmark: _Toc92097342][bookmark: _Toc141653630]
Support for MPEG-I Media

A.1 [bookmark: _Toc141653631] 	MPEG_primitive_V3C extension
A.1.1 [bookmark: _Toc141653632]General
In order to support V3C compressed objects in MPEG-I scene description, the MPEG_media extension is used to refer to V3C compressed bitstreams.
The presentation engine may support the operations to perform the 3D reconstruction of decoded V3C components as indicated in the Figure 2. The presentation engine accesses the decoded V3C data through buffers.
The syntax of the V3C object is provided as an extension to mesh.primitive in a scene description format. The extension refers to the decoded data of a V3C object. Each decoded V3C component is signalled using properties defined in the MPEG_primitive_V3C extension. The extension is specific to objects coded with a V3C compression scheme (i.e., ISO/IEC 23090-5 [2] or ISO/IEC 23090-12 [3]).
Usage of the extension must be listed in the extensionsUsed top-level glTF property.
 "extensionsUsed": [
 "MPEG_primitive_V3C"
]
Figure G.1 depicts the structure of the V3C mesh compression extension:
[image: A screenshot of a computer

Description automatically generated]
Figure G.1 Example structure of V3C compressed primitive
If the Presentation Engine does not support the MPEG_primtive_V3C extension, It shall request the reconstructed raw data as described by the primitive attributes.
A.1.2 [bookmark: _Toc141653633]Semantics
An MPEG_primitive_V3C extension refers to several V3C components, containing the decoded projected maps and metadata necessary such as atlas data for the 3D reconstruction process.

Table G.1 provides a list of the possible components and their description:
Table G.1 MPEG_primitive_V3C properties
	Name
	Type
	Default
	Usage
	Description

	_MPEG_V3C_CONFIG
	Integer
	N/A
	M
	This component provides a reference to a timed accessor that contains configuration information that is applicable to a sequence of frames of the V3C decoded mesh primitive. The binary format of the configuration buffer is provided in clause G.1.3.

	_MPEG_V3C_AD
	Object
	N/A
	M
	this component shall reference a timed accessor that provides the V3C atlas data buffer. The atlas buffer format is defined in clause G.1.4. Future specifications of the atlas data buffer format shall use a different version.
Exactly one atlas component shall be present, irrespective of the version.

	_MPEG_V3C_GVD_MAPS
	array(integer)
	N/A
	M
	this component shall provide an array of video texture references, each of which corresponds to one map of the decoded geometry video data.

	_MPEG_V3C_OVD_MAP
	integer

	N/A
	O
	this component shall provide a video texture reference, which corresponds to the decoded occupancy video data map.

	_MPEG_V3C_AVD
	array(object)
	N/A
	O
	this component shall provide an array of objects, each of which describing an attribute component of the V3C compressed mesh primitive. The properties of the components are described in Table G.2.

	_MPEG_V3C_CAD
	Object
	N/A
	CM
	This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

	Legend:
	For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory.

The _MPEG_V3C_AD object shall have the structure as describe in Table G.2:
Table G.2 Properties of _MPEG_V3C_AD object
	Name
	Type
	Default
	Usage
	Description

		buffer_format
	String
	"baseline”
	O
	provides an identifier of the associated atlas data buffer format. A list of supported atlas data buffer formats is provided in Table G.4.

		accessor
	Integer
	N/A
	M
	This provides the index of the timed accessor that provides access to the atlas data buffer.

The _MPEG_V3C_AVD object shall have the following structure:

Table G.3 Properties of _MPEG_V3C_AVD object
	Name
	Type
	Default
	Usage
	Description

		type
	uint8
	0
	O
	provides the type of the attribute as defined by the “V3C attribute types” in ISO/IEC 23090-5.

		maps
	array(integer)
	N/A
	M
	This array shall provide a list of video texture references, each of which corresponds to one map of the decoded attribute video data.

Each mesh primitive shall reference exactly one atlas data buffer.

Different buffer formats with unique string identifier for the atlas data are defined in Table G.4.
[bookmark: _Ref117110568]Table G.4 List of atlas data buffer formats
	buffer_format
	Description

	baseline
	The configuration data is defined in Table G.5 and the corresponding atlas data buffer format is defined in Table G.6.

	extended
	Atlas data with common atlas parameters and and PROJECTED patch type application-specific data with PLR information, EOM patch type application-specific data, and RAW patch type application-specific data. The configuration data format is defined in G.5 and the corresponding atlas data buffer format is defined in Table G.7.

	miv
	Atlas data with common atlas parameters and PROJECTED patch type application-specific parameters for MIV. The configuration data format is defined in G.5 and the corresponding atlas data buffer format is defined in Table G.8.

A.1.3 [bookmark: _Toc141653634]Configuration Data Buffer Format
The configuration data buffer is binary formatted data that provides static configuration data that is applicable for the V3C compressed primitive. The data shall comply to the following format:
Table G.5 Configuration data buffer format
	Field
	Type
	Description

	frame_width
	uint16
	indicates the frame width in luma samples of the atlas and all other associated V3C components.

	frame_height
	uint16
	indicates the frame height in luma samples of the atlas and all other associated V3C components.

	map_count
	uint8
	indicates the number of maps used for encoding the geometry and attribute data for the current atlas.

	patch_packing_block_size
	uint8
	specifies the value of the variable PatchPackingBlockSize in ISO/IEC 23090-5, that is used for the horizontal and vertical placement of the patches within the current atlas.

A.1.4 [bookmark: _Toc141653635]Atlas Data Buffer Format
The atlas data buffer is binary formatted data that shall comply to the following formats in Table G.6, Table G.7 and Table G.8 depending on the buffer format for the atlas data. The atlas buffer format for “buffer_format” value “baseline” is described in Table G.7.
Table G.6 Atlas data buffer format for buffer_format:baseline
	Field
	Type
	Description

	patch_count
	uint16
	provides the total number of patches.

	for(i=0;i<patch_count;i++) {
	
	

		2d_pos_x
	Float
	specifies the x-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_pos_y
	Float
	specifies the y-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_size_x
	Float
	specifies the width of the current patch.

		2d_size_y
	Float
	specifies the height of the current patch.

		3d_offset_u
	Float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the tangent axis.

		3d_offset_v
	Float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the bi-tangent axis.

		3d_offset_d
	Float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the normal axis.

		patch_projection_id
	uint8
	specifies the identifier of the projection mode and the index of the normal to the projection plane of the current patch.

		patch_orientation
	uint8
	specifies the index of the patch orientation of the current patch.

		lod_scale_x
	uint16
	specifies the LOD scaling factor to be applied to the tangent axis of the current patch.

		lod_scale_y
	uint16
	specifies the LOD scaling factor to be applied to the bi-tangent axis of the current patch.

	}
	
	

The atlas buffer format for “buffer_format” value “extended” is described in Table G.7.
Table G.7 Atlas data buffer format for buffer_format:extended
	Field
	Type
	Description

	patch_count
	uint16
	provides the total number of patches.

	for (i=0;i<patch_count;i++) {
	
	

		patch_type
	uint8
	specifies the type of patch

		2d_pos_x
	float
	specifies the x-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_pos_y
	float
	specifies the y-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_size_x
	float
	specifies the width of the current patch.

		2d_size_y
	float
	specifies the height of the current patch.

		3d_offset_u
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the tangent axis.

		3d_offset_v
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the bi-tangent axis.

		3d_offset_d
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the normal axis.

		patch_projection_id
	uint8
	specifies the identifier of the projection mode and the index of the normal to the projection plane of the current patch.

		patch_orientation
	uint8
	specifies the index of the patch orientation of the current patch.

		lod_scale_x
	uint16
	specifies the LOD scaling factor to be applied to the tangent axis of the current patch.

		lod_scale_y
	uint16
	specifies the LOD scaling factor to be applied to the bi-tangent axis of the current patch.

		if (patch_type == PROJECTED) {
	
	

		plri_map_present
	bool
	specifies if the plr information is present

		if (plri_map_present) {
	
	

			plrd_level
	bool
	specifies the level of PLR data for a patch

			if (plr_level == 0) {
	
	

				 for (b = 0; b < blockcount < b++) {
	
	

					plrd_present_block_flag
	bool
	specifies whether the PLR data is present for a block

					if (plrd_present_block_flag == 1) {
	
	

						plrd_block_mode
	uint8
	specifies the mode of PLR data for a block

					}
	
	

				}
	
	

			} else {
	
	

				plrd_present_patch_flag
	bool
	specifies whether the PLR data is present for the patch

				if (plrd_present_patch_flag) {
	
	

					plrd_patch_mode
	uint8
	specifies the mode of the PLR data for the patch

				}
	
	

			}
	
	

		}
	
	

		else if (patch_type == EOM)
	
	

			eom_patch_count
	uint8
	 specifies the number of patches that may be associated with the current patch

			eom_points
	uint8
	 specifies the number of EOM coded points in the patch associated with the current patch

			associated_patch_index
	uint8
	 specifies the index of the i-th patch associated with the current patch

		}
	
	

		else if (patch_type == RAW)
	
	

			raw_points
	uint8
	 specifies the number of RAW coded points in the current patch

		}
	
	

	}
	
	

Note: The calculation of blockCount is specified in function BlockCnt (xSize, ySize) in clause 8.4.7.9 of ISO/IEC 23090-5. The arguments to the function are patch dimensions, i.e., 2d_size_x, and 2d_size_y.

The atlas buffer format for “buffer_format” value “miv” is described in Table G.8.
Table G.8 Atlas data buffer format for buffer_format:miv
	Field
	Type
	Description

	patch_count
	uint16
	provides the total number of patches.

	for(i=0;i<patch_count;i++) {
	
	

		2d_pos_x
	float
	specifies the x-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_pos_y
	float
	specifies the y-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_size_x
	float
	specifies the width of the current patch.

		2d_size_y
	float
	specifies the height of the current patch.

		3d_offset_u
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the tangent axis.

		3d_offset_v
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the bi-tangent axis.

		3d_offset_d
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the normal axis.

		patch_projection_id
	uint8
	specifies the identifier of the projection mode and the index of the normal to the projection plane of the current patch.

		patch_orientation
	uint8
	specifies the index of the patch orientation of the current patch.

		lod_scale_x
	uint16
	specifies the LOD scaling factor to be applied to the tangent axis of the current patch.

		lod_scale_y
	uint16
	specifies the LOD scaling factor to be applied to the bi-tangent axis of the current patch.

		patch_view_index
	uint8
	specifies the index in the buffer format for the view parameter

		patch_entity_id
	uint8
	specifies the patch entity ID for the current patch

		patch_depth_occ_threshold
	uint8
	specifies the threshold below with the occupancy value is defined to be unoccupied for the current patch

		tile_patch_texture_offset_1
	uint8
	specifies the offset applied to the first component sample values of the attribute for the current patch

		tile_patch_texture_offset_2
	uint8
	specifies the offset applied to the second component sample values of the attribute for the current patch

		tile_patch_texture_offset_3
	uint8
	specifies the offset applied to the third component sample values of the attribute for the current patch

	}
	
	

A.1.5 [bookmark: _Ref116910761][bookmark: _Toc141653636]Common atlas data
G.1.5.1 	Overview
The common atlas data is common to all atlases and shall correspond to the Common Atlas Data in ISO/IEC 23090-5.

G.1.5.2 	MIV extension to CAD
Some of the common atlas data information which is common for the atlases in a V3C bitstream is specified in ISO/IEC 23090-12 such as view parameters. The syntax for the MIV extension to common atlas data is specified ISO/IEC 23090-12. It includes a list of view parameters which can be used during the rendering process (Annex H.1 in ISO/IEC 23090-12). An MIV_view_parameters property is defined for the _MPEG_V3C_CAD object as shown in Table G.9.
The _MPEG_V3C_CAD object can be extended to describe additional properties that may be introduced in future iterations of ISO/IEC 23090-5 or in extensions to that specification.
[bookmark: _Ref117110429]Table G.9 Definition of properties defined in _MPEG_V3C_CAD in MPEG_V3C extension
	Name
	Type
	Default
	Usage
	Description

	MIV_view_parameters
	integer
	N/A
	O
	This component provides a reference to a timed-accessor that contains the view parameters stored in the common atlas data that is applicable to a sequence of frames of the V3C decoded mesh primitive. The buffer format for the view parameters is described in Table G.10.

	Legend:
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory.

G.1.5.3. Buffer format for MIV view parameters
Table G.10 describes the binary buffer format for view parameters.
[bookmark: _Ref117110473]Table G.10 Buffer format for view parameters
	Field
	Type
	Description

	num_views
	uint16
	number of views

	for (int p = 0; p < num_views ; p++) {
	
	

		view_id_to_index
	uint8
	mapping of the id associated with each view

		view_in_paint_flag
	bool
	specifies if the view is an inpaint view

		view_pos_x
	uint8
	specifies in scene units the x-coordinate of the location of the view with view index equal to v.

		view_pos_y
	uint8
	specifies in scene units the y-coordinate of the location of the view with view index equal to v.

		view_pos_z
	uint8
	specifies in scene units the z-coordinate of the location of the view with view index equal to v.

		view_quat_x
	uint8
	specifies the x components for the rotation of the view with view index equal to v using the quaternion representation

		view_quat_y
	uint8
	specifies the y components for the rotation of the view with view index equal to v using the quaternion representation

		view_quat_z
	uint8
	specifies the z components for the rotation of the view with view index equal to v using the quaternion representation

		view_quat_w
	uint8
	specifies the w components for the rotation of the view with view index equal to v using the quaternion representation

		view_type
	uint8
	specifies the projection method of the view

		projection_plane_width
	uint8
	specifies the horizontal resolution of projection plane

		projection_plane_height
	uint8
	specifies the vertical resolution of the projection plane

		if (view_type == 0) {
	
	equirectangular projection

			erp_phi_min
	float32
	specifies the minimum longitude range for an ERP projection in units of degrees

			erp_phi_max
	float32
	specifies the maximum longitude range for an ERP projection in units of degrees

			erp_theta_min
	float32
	specifies the minimum latitude range for an ERP projection in units of degrees

			erp_theta_max
	float32
	specifies the maximum latitude range for an ERP projection in units of degrees

		} else if (view_type == 1) {
	
	perspective projection

		perspective_focal_hor
	float32
	specifies in luma samples position units the horizontal components of the focal of a perspective projection of the view with view index

		perspective_focal_ver
	float32
	specifies in luma samples position units the vertical components of the focal of a perspective projection of the view with view index

		perspective_principal_point_hor
	float32
	specifies in luma sample positions the horizontal coordinates of the principal point of a perspective projection of the view

		perspective_principal_point_ver
	float32
	specifies in luma sample positions the vertical coordinates of the principal point of a perspective projection of the view

		} else if (view_type -== 2) {
	
	orthographic projection

		ortho_height
	float32
	specifies in scene units the vertical dimensions of the captured part of the volumetric frame

		ortho_width
	float32
	specifies in scene units the horizontal dimensions of the captured part of the volumetric frame

		}
	
	

		quantization_law
	uint8
	specifies the type of depth quantization method of the view

		if (quantization_law == 0) {
	
	

		norm_dis_low
	uint8
	specifies the normalized disparity of the lowest signalled geometry value

		norm_dis_high
	uint8
	specifies the normalized disparity of the highest signalled geometry value

		}
	
	

		depth_occ_threshold
	uint8
	specifies the default occupancy threshold used in the occupancy value extraction process

		pp_root
	bool
	specifies whether the view has a parent in the pruning graph at the encoder stage

		 if (!pp_root) {
	
	

			pp_num_parents
	uint8
	specifies the number of parents of the view in the pruning graph at the encoder stage

			for (int i = 0; i < pp_num_parents; i++) {
	
	

				pp_view_parent_idx
	uint8
	specifies the index of the i-th parent view in the pruning graph at the encoder stage.

			}
	
	

		}
	
	

	}
	
	

A.1.6 [bookmark: _Toc141653637]Processing Model
G.1.6.1 	General
The Presentation Engine is equipped with a graphics processing unit (GPU). The loader in the Presentation Engine will parse the MPEG-I scene description file. If the loader supports the reconstruction of V3C objects and accepts the MPEG_primitive_V3C extension, then the loader in the presentation engine will process the MPEG_primitive_V3C extension for a mesh element that contains the extension. The presentation engine will then request the MAF to supply the decoded V3C data indicated by the extension in the associated buffers. The decoded V3C data provided by the properties specified by the MPEG_primitive_V3C extension are then loaded to the GPU memory.
An implementation (e.g., a shader implementation) is run on the decoded V3C data to generate the final 3D reconstructed object. The logic of 3D reconstruction is facilitated by using the V3C information such as atlas, geometry, and occupancy. The 3D object can be further textured using the texture information with different V3C attributes.
Since the MPEG_primitive_V3C extension is expressed at the mesh-level, a node referencing a mesh with the MPEG_primitive_V3C extension will position the object in the scene graph for rendering.
The transformation parameters in the V3C bitstream as defined in H.8.3.6.3.3 shall be ignored.
G.1.6.2 	MIV support
MIV is a special case of the V3C representation in MPEG-I scene description as meshes. The MPEG-I scene description author will supply the viewing space boundaries in the accessor referred to by the “POSITION” attribute of a mesh. The viewing space boundaries are conveyed by the MIV bitstream. The texture of the MIV content is directly passed to the renderer based on different camera views in the viewing space. The information for the camera views is stored in the atlas property of the MPEG_primitive_V3C extension.
A.2 [bookmark: _Ref99636455][bookmark: _Toc141653638] 	MPEG_sampler_YCbCr extension
A.2.1 [bookmark: _Toc141653639]General
A sampler-level extension is described to sample a video texture natively in parallel processing devices such as GPUs. This extension shall be present if the format of the referencing video texture is set to YCbCr.
A texture object in the textures array may use a sampler with the “MPEG_sampler_YCbCr” sampler extension to provide information to the Presentation Engine to sample the video texture when the texture format is a chroma format such as YCbCr.

A.2.2 [bookmark: _Toc141653640]Semantics
Table G.11 provides a description of the properties defined in the MPEG_sampler_YCbCr sampler extension.
[bookmark: _Ref99635642]Table G.11 MPEG_sampler_YCbCr semantic
	Name
	Type
	Default
	Usage
	Description

	ycbcrModel
	integer
	1
	O
	Describes the color matrix for conversion between color models. The supported formats are defined by the VkSamplerYcbcrModelConversion enumeration in clause 13.1 of Vulkan 1.3.

	ycbcrRange
	integer
	0
	O
	Describes whether the encoded values have headroom and foot room, or whether the encoding uses the full numerical range.

	chromaFilter
	integer
	0
	O
	Describes the filter for chroma reconstruction.

	components
	array(integer)
	[0,0,0,0]
	O
	Applies a swizzle to the [r,g,b,a] components based on VkComponentSwizzle enums prior to range expansion and color model conversion. If present, the array shall include 4 values, each of which corresponding to the r,g,b,a components in order of appearance.

	xChromaOffset
	integer
	0
	O
	Describes the sample location associated with downsampled chroma components in the x dimension. xChromaOffset has no effect for formats in which chroma components are not downsampled horizontally.

	yChromaOffset
	integer
	0
	O
	Describes the sample location associated with downsampled chroma components in the y dimension. yChromaOffset has no effect for formats in which the chroma components are not downsampled vertically.

A.2.3 [bookmark: _Toc141653641]Processing Model
The MPEG_sampler_YCbCr extension provides relevant configuration information for the native YCbCr device extensions or shader compiler to read and sample a YCbCr texture.

G.3 	Support for MPEG-I Haptics
G.3.1	General
The MPEG_haptic and MPEG_haptic material extensions provide the ability to define the integration of haptics in a glTF scene . The extensions are depicted in Figure G.3-1 and are defined as follows:
MPEG_haptic:
· At the glTF file level: The extension contains an array defining every haptic object
MPEG_haptic_material:
· At the glTF file level: The extension contains an array defining all texture-based haptic data
At the mesh level: The extension contains a single reference to the array of the same extension at the glTF file level

[image: A screenshot of a computer

Description automatically generated]
Figure G.3-1: extensions for haptics among all MPEG extensions to glTF
The following table provides use cases for haptic signals:
	Use Case
	Haptic Data
	Rendering behavior

	Touch the surface of a wall and feel a texture
	A Texture perception is defined describing a surface friction pattern.
	Upon collision between a body part and the textured wall, the Texture track of the media is read based on the displacement of the body part on the surface.

	Press a button to get stiffness feedback
	A Stiffness/force feedback perception is defined describing a force curve profile.
	When the button is pressed, the force profile curve is read based on the pressure depth of the button.

	Opening a door and feeling friction of the door with the floor
	A Texture perception is defined describing a surface friction pattern.
	When the door is moving, the Texture track of the media is read based on the displacement of the door (rotation angle converted to distance traveled).

	Walking in a street and at some time rain is falling on the user body
	Localized vibrations are defined to simulate raindrop
	Upon time event “rain starts” vibrations patterns are synthesized and rendered on the appropriate device.

G.3.2	 Semantics for MPEG_haptic
The MPEG_haptic extension allows the support of haptic data as defined in ISO/IEC 23090-31 [10]. It is an independent haptic media like an audio content or an image. This extension is attached at the the glTF file level and stores the haptic data contained in the scene.
As detailed in G.3-1, the MPEG_haptic extension contains an array of haptic objects. The data for each element of the array is detailed in Table G.3-2, it contains a list of accessors to medias in the MPEG_media extension.
[bookmark: _Ref140164977]Table G.3-1: Semantic description of the MPEG_haptic extension at the glTF file level
	Name
	Type
	Default
	Description

	hapticObjects
	Array<MPEG_Haptics.hapticObject>
	N/A
	Provides a list of haptic elements at the glTF file level to enable haptic support

Table G.3-2: Semantic description of the MPEG_haptics.hapticObject items of the hapticObjects array from the MPEG_haptic extension
	Name
	Type
	Default
	Description

	accessors
	array<integer>
	N/A
	Array of accessors to one or more media sources in MPEG_media.media array containing haptic media files.

The data referenced by the accessors is stored in dedicated Haptic buffers. The Haptic buffer formats corresponds to the HMPG binary format detailed in ISO/IEC 23090-31.

G.3.3	Semantics MPEG_haptic_material
The MPEG_haptic_material extension defines the association of haptic media with the interactivity extension. The haptic texture associated with a 3D object does not contain RGB values but haptic values. These values are exploited directly by the haptic renderer. The extension also uses the concept of taxels. Each pixel of the texture can be mapped to a distinct spatial (or temporal) signal as illustrated in Figure G.3-2.
[image: Diagram

Description automatically generated with medium confidence]
Figure G.3-2: Grid of taxels, mapping pixels to different haptic textures
An array of textures for each haptic property is used. An haptic texture can be provided both as a traditional 2D texture and as a taxel map in the same file, giving the possibility to the rendering engine to choose the most appropriate.
Additional information is added to each element of the haptic texture arrays for the rendering engine to adequately interpret a texture. Each array element then contains a haptic texture and a texture type expressed as an Enumeration. Possible values of the enumeration are:
· HIGH_RESOLUTION: The haptic texture is a high resolution 2D texture directly storing haptic values
· LOW_RESOLUTION: The haptic texture is a low resolution 2D texture directly storing haptic values
· REFERENCE: The haptic texture is a 2D taxel map containing references to haptic signals. Each pixel of the texture corresponds to an index in the accessors array of the MPEG_haptic extension.
· OTHER: Unknown proprietary texture format.
To interpret the data contained in 2D textures, the bit depth and range of these textures are specified according to the following tables.
The following table gives the bit depth and range values for each haptic property for low resolution haptic textures:
	Haptic map
	Format
	Range
	Resolution

	stiffness
	8-bit
	0-10000 N.s −1 /m.s −1
	40 N.s −1 /m.s −1

	friction
	8-bit
	±5
	0.04

	vibrotactileTexture
	8-bit
	±10
	0.08

	temperature
	8-bit
	[-50:+75]°C
	0.5°C

	vibration
	8-bit
	[0-1]
	0,004

	custom
	8-bit
	0-255
	1

The following table gives the bit depth and range values for each haptic property for high resolution haptic textures:
	Haptic map
	Format
	Range
	Resolution

	stiffness
	16-bit
	0-10000 N.s −1 /m.s −1
	0.15 N.s −1 /m.s −1

	friction
	16-bit
	±100
	0.003

	vibrotactileTexture
	16-bit
	±100
	0.0015

	temperature
	16-bit
	[-100:+150]°C
	0.004°C

	vibration
	8-bit (amplitude)
8-bit (frequency)
	[0-1]
[0-300] Hz
	0.004
1.17Hz

	custom
	16-bit
	0-65535
	1

For the high-resolution texture, values of each texture map pixel are divided in two: the first byte contains the magnitude value and the second byte contains the frequency.
As detailed in Table G.3-5, at the glTF file level, the MPEG_haptic_material extension contains an array of haptic materials. The data for each element of the array is detailed in Table G.3-6, it contains multiple lists of textures (each combined with an enumeration) associated to different haptic properties.
[bookmark: _Ref140165391]Table G.3-5: Semantic description of the MPEG_haptic_material extension at the glTF file level
	Name
	Type
	Default
	Description

	materials
	Array<MPEG_haptic_material.material>
	N/A
	Provides a list of haptic materials at the glTF file level to enable haptic support.

The following table describes the list of haptic properties of the extension:
[bookmark: _Ref140165415]Table G.3-6: Semantic description of the MPEG_haptics_material.material items of the materials array from the glTF file level MPEG_haptic_material extension
	Name
	Type
	Default
	Description

	haptic
	integer
	N/A
	Index to an element of the hapticObjects array of the MPEG_haptic extension. This is used for “Reference” textures to access the haptic information.

	stiffness
	array<enumeration, textureInfo>
	NULL
	It determines the perceived stiffness of a surface. Which means the force perceived by the user opposed to the normal penetration of a material by a body part.
It is described with a texture storing the stiffness coefficients. The suggested rendering model is :
F = kx where k is the value of stiffness for the displacement x along the asset stiffness function. This model is valid for an isotropic material.

	friction
	array<enumeration, textureInfo>
	NULL
	It indicates the perceived friction, which is a force opposing the movement of a body part sliding on a surface.
It is described with a texture storing the coefficient of friction.
The suggested rendering model is:
F_f = mu * Fn where mu is the coefficient of friction, and Fn is the normal applied force by the body part on the surface.

	vibrotactileTexture
	array<enumeration, textureInfo>
	NULL
	It indicates the perceived texture by a body part while sliding on a surface.

	temperature
	array<enumeration, textureInfo>
	NULL
	It indicates the perceived temperature of an object.
It is described with a texture storing the temperature distribution.

	vibration
	array<enumeration, textureInfo>
	NULL
	It indicates a vibration signal.
It is described with a texture storing the amplitude and / or frequency of the signal.

	custom
	array<enumeration, textureInfo>
	NULL
	Texture containing custom haptic data.

As detailed in Table G.3-7 at the mesh level, the MPEG_haptic_material extension contains a single reference to an element of the materials array detailed in Table G.3-5.
[bookmark: _Ref140165794]Table G.3-7: description of the MPEG_Haptic_material extension at the mesh level
	Name
	Type
	Default
	Description

	hapticMaterialIndex
	Integer
	N/A
	Reference to an item in the materials array of the MPEG_haptic_material extension defined at glTF file level

G.3.4	Processing Model
When a scene description file becomes available, the Presentation Engine
· parses the related glTF file.
· detects if the MPEG_haptic and MPEG_haptic_material extension is used.
· identifies nodes associated with haptics by analyzing the haptic actions defined in the interactivity extension.
· identifies haptic media in the MPEG_media extension where the autoplay property is set to true or the startTime property is defined.
At runtime:
· the presentation engine renders the identified haptic media based on the autoplay or startTime property.
· when behaviors launch a haptic action following the trigger activation, the presentation engine retrieves the haptic data specified in the associated haptic object through the MAF API.
· the presentation engine then renders the data based on the properties specified in the associated haptic action.
Figure G.4.4-1 provides a simplified example of a glTF scene combning the interactivity and haptics extensions. Haptic information is stored at the glTF file level with the MPEG_haptic and MPEG_haptic_material extensions.
 [image: A screenshot of a computer program

Description automatically generated]
Figure G.4.4-1: Example of glTF scene using MPEG_haptic and MPEG_haptic_material extensions
The relation between a node in the scene and haptic data from the MPEG_haptic extension is established in the MPEG_interactivity extension through haptic actions. Interactive haptic feedback is produced by defining behaviors with triggers (e.g collisions, proximity, etc.) and haptic actions. For each node in a haptic action, the associated Haptic data is defined either through a reference to an element of the MPEG_Haptic extension (action A1 and node1 in Figure G4.4-1) or through a MPEG_haptic_material attached to a mesh of the node (action A2 and node2 in Figure G4.4-1). When a haptic action is triggered, the associated haptic data shall be rendered according to the properties specified in the action.
Examples of how haptics would be driven by spatial displacement actions and additional parameters to tune the rendering are provided bellow.
	Action
	Default haptic behavior
	Override haptic parameters

	None
	N/A
	N/A

	Free movement
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Free position, fix rotation
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Free position, pivot rotation
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Sliding
	Read Texture based on slider displacement distance as input.
	Rescale the haptics rendering independent variable by an arbitrary length.

	Rotation around pivot
	Read Texture based on distance traveled during the rotation.
	Rescale the haptics rendering independent variable by an arbitrary length.

	Button
	Read force feedback curve based on the current depth of the button.
	Rescale the haptics rendering independent variable by an arbitrary length.

Spatial displacement does not need to drive time-based haptic feedback (such as vibrations).

[bookmark: _Toc116678820]
Reference avatar
(Informative)
H.1	Introduction
This Annex provides a description of a reference topology for the representation of humanoid avatars. The number of vertices and triangles is defined, with the associated semantics. Different levels of detail (LoD) from the same topology are also defined. The associated glTF files are downloadable from MPEG Content Repository (https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/MPEGRefAvatarModel-Morgan)
The reference avatar detail in this informative document is identified by the URN “urn:mpeg:sd:2023:avatar” as an avatar type.
[bookmark: _Toc116678821]H.2	Body Model
H.2.1	 General
The reference body avatar (Figure H.1) comes with its own mesh topology modeled as a female (right side) or a male body (left side). The body base mesh is composed of three levels of details. As described in Figure H.1, the density of the vertex is not the same for the body and the face, because the latter requires more accuracy for realism.
The different parts are described in more detail in the following sections.
[image: A green grid on a person's head

Description automatically generated][image: A green wireframe of a person

Description automatically generated] [image: A person in a body suit

Description automatically generated]Female
Male

[bookmark: _Ref116654430]Figure H.1: Full body mesh topology (Right side: female version, Left side: male version). The neutral genre face is zoomed for better visualization (right picture).
[bookmark: _Ref114126863][bookmark: _Toc116678822]H.2.1	Level of Details
The reference body avatar is structured in three levels of details (mesh resolution): Low, Medium and High (see Figure H.2). The goal of these different resolutions is to ensure that the mesh topology is supported on the runtime platform (mobile, PC, HMD etc.).
Each level is described and referenced as:
· High Resolution (referenced as Morgan_HD)
· 53,695 vertices and 56,496 quad faces (106,952 triangular faces).
· Medium Resolution (referenced as Morgan_MD)
· 13,225 vertices and 13,196 quad faces (26,356 triangular faces)
· Corresponds to 25% of the HD mesh
· Low Resolution (referenced as Morgan_SD)
· 5,366 vertices and 5,300 quad faces (10,571 triangular faces).
· Corresponds to 90% of the HD mesh
The mesh decimation ensures that vertices positions are consistent between levels. All SD mesh vertices are on the MD mesh and all MD mesh vertices are on the HD mesh.
[image: A group of men in a line

Description automatically generated]
[bookmark: _Ref116654837]Figure H.2: Levels of details of Morgan - From left to right: High (50k), Medium (12k) and Small (5k).
The associated files are named morgan_SD.gltf, morgan_MD.gltf and morgan_HD.gltf.
[bookmark: _Toc116678823]H.2.3	Body Semantics
The body is divided into 18 semantic areas allowing to directly refer to them for specific use cases and applications.
Figure H.3, Figure H.4, and Figure H.5 describes those 18 areas for respectively the front body, the back of the body and the head. The corresponding semantics and vertex coordinates are given by Table H.1. The numbering and order are the same as in the reference glTF file provided. It allows easy access to parts of the body by any applications, even without knowing the model.
The provided semantic list relates to the High Resolution level, aka Morgan_HD.
[image: A person in a garment

Description automatically generated with medium confidence] [image: A person wearing a garment

Description automatically generated with medium confidence]

[bookmark: _Ref116654968]Figure H.3: front view of body semantic areas (left: areas, right: wireframe areas).
[image: A person wearing a garment

Description automatically generated with medium confidence] [image: A person wearing a garment

Description automatically generated with medium confidence]
[bookmark: _Ref116654969]Figure H.4: back view of body semantic areas (left: areas, right: wireframe areas).

[image: A person's face with different colored eyes

Description automatically generated] [image: Icon

Description automatically generated] [image: A black silhouette of a person with different colored eyes

Description automatically generated]

[image: A picture containing mask

Description automatically generated] [image: A face with a grid on it

Description automatically generated with medium confidence] [image: A blue and red grid face

Description automatically generated]
[bookmark: _Ref116654971]Figure H.5: front view of the head. Top line: segmentation areas, bottom line: wireframe areas. (Left) complete head view with the face (white), left eye (red) and right eye (olive green) - (Middle) internal view without the face with the mouth bag (blue) - (Right) view without the face and the mouth bag - upper jaw (light green) and lower jaw (purple).

[bookmark: _Ref116655272][bookmark: _Ref116896698]Table H.1: Semantics table – The visual and geometric details of each semantic area are provided. For each of them, the number of vertices, quad and triangular faces are provided with the ID ranges covered by the areas.

	Semantic Name
	Color
	Color (r,g,b)
	# of vertices
	Vertex ID
	# of quad faces
	# of tri faces
	Face ID (quad)

	
	
	
	
	
	
	
	
	

	Full
	None
	
	53698
	[0:53697]
	46244
	97296
	[0:46243]
	

	- Upper Body
	/
	/
	46340
	[0:46339]
	45504
	93584
	[0:45503]
	

	- - Head
	/
	/
	36584
	[0:36583]
	36184
	72328
	[0:36183]
	

	- - - Face
	
	(1, 1, 1)
	6873
	[0:6872]
	6785
	13570
	[0:6784]
	

	- - - Back/Neck/Ears
	
	(0, 0, 0)
	4535
	[6873:11407]
	4454
	8908
	[6785:11238]
	

	- - - Mouth Bag
	
	(0, 0.5, 0.5)
	791
	[11408:12198]
	757
	1514
	[11239:11995]
	

	- - - Lower Jaw
	
	(0.5, 0, 0.5)
	10440
	[12199:22638]
	10380
	20760
	[11996:22375]
	

	- - - Upper Jaw
	
	(0.5, 1, 0.5)
	11107
	[22639:33745]
	11040
	22080
	[22376:33415]
	

	- - - Eye Left
	
	(0.5, 0, 0)
	1419
	[33746:35164]
	1384
	2748
	[33416:34799]
	

	- - - Eye Right
	
	(0.5, 0.5, 0)
	1419
	[35165:36583]
	1384
	2748
	[34800:36183]
	

	- - Thorax
	/
	/
	1828
	[36584:38411]
	1636
	3272
	[36184:37819]
	

	- - - Chest
	
	(0.5, 1, 0)
	936
	[36584:37519]
	892
	1784
	[36184:37075]
	

	- - - Upper Back
	
	(0.5, 0, 1)
	486
	[37520:38005]
	426
	852
	[37076:37501]
	

	- - - Shoulders
	/
	/
	406
	[38006:38411]
	318
	636
	[37502:37819]
	

	- - - - Shoulder Front
	/
	/
	182
	[38006:38187]
	138
	276
	[37502:37639]
	

	- - - - - Shoulder Front Left
	
	(0.5,1,1)
	91
	[38006:38096]
	69
	138
	[37502:37570]
	

	- - - - - Shoulder Front Right
	
	(0.5,0.5,1)
	91
	[38097:38187]
	69
	138
	[37571:37639]
	

	- - - - Shoulder Back
	/
	/
	224
	[38188:38411]
	180
	360
	[37640:37819]
	

	- - - - - Shoulder Back Left
	
	(0.5,0.5,1)
	112
	[38188:38299]
	90
	180
	[37640:37729]
	

	- - - - - Shoulder Back Right
	
	(0.5,1,1)
	112
	[38300:38411]
	90
	180
	[37730:37819]
	

	- - Arm Left
	/
	/
	3553
	[38412:41964]
	3472
	7136
	[37820:37681]
	

	- - - Upper Arm Left
	
	(1, 0.5, 1)
	320
	[38412:38731]
	288
	576
	[37502:37789]
	

	- - - Lower Arm Left
	
	(1, 0, 0)
	512
	[38732:39243]
	480
	960
	[37790:38269]
	

	- - - Hand Left
	
	(0, 1, 0)
	2721
	[39244:41964]
	2704
	5408
	[38270:40973]
	

	- - Arm Right
	/
	/
	3553
	[41965:45517]
	3472
	7136
	[40974:44445]
	

	- - - Upper Arm Right
	
	(1, 0, 1)
	320
	[41965:42284]
	288
	576
	[40974:41261]
	

	- - - Lower Arm Right
	
	(0, 1, 1)
	512
	[42285:42796]
	480
	960
	[41262:41741]
	

	- - - Hand Right
	
	(0, 1, 0.5)
	2721
	[42797:45517]
	2704
	5408
	[41742:44445]
	

	- - Abdomen
	/
	/
	822
	[45518:46339]
	740
	3712
	[45504:46243]
	

	- - - Abdomen Front
	
	(0, 0, 1)
	420
	[45518:45937]
	382
	764
	[45504:45885]
	

	- - - Lower Back
	
	(0.5, 0.5, 0.5)
	402
	[45938:46339]
	358
	716
	[45886:46243]
	

	- Lower Body
	/
	/
	7358
	[46340:53697]
	7054
	14108
	[45504:52557]
	

	- - - Pelvis
	/
	/
	1036
	[46340:47375]
	900
	1800
	[45504:46403]
	

	- - - - Pelvis Front
	/
	/
	512
	[46340:46851]
	443
	886
	[45504:45946]
	

	- - - - - Pelvis Front Left
	
	(1,0,0.5)
	266
	[46340:46605]
	231
	462
	[45504:45734]
	

	- - - - - Pelvis Front Right
	
	(0,0,0.5)
	246
	[46606:46851]
	212
	424
	[45735:45946]
	

	- - - - Pelvis Back
	/
	/
	524
	[46852:47375]
	457
	914
	[45947:46403]
	

	- - - - - Pelvis Back Left
	
	(0,0,0.5)
	252
	[46852:47103]
	219
	438
	[45947:46165]
	

	- - - - - Pelvis Back Right
	
	(1,0,0.5)
	272
	[47104:47375]
	238
	476
	[46166:46403]
	

	- - Leg Left
	/
	/
	3161
	[47162:50322]
	3077
	6154
	[46244:49320]
	

	- - - Upper Leg Left
	
	(0.5, 0.5, 1)
	681
	[47162:47842]
	650
	1300
	[46244:46893]
	

	- - - Lower Leg Left
	
	(1, 0.5, 0)
	815
	[47843:48657]
	780
	1560
	[46894:47673]
	

	- - - Foot Left
	
	(1, 1, 0)
	1665
	[48658:50322]
	1647
	3294
	[47674:49320]
	

	- - Leg Right
	/
	/
	3161
	[50323:53483]
	3077
	6154
	[49321:52397]
	

	- - - Upper Leg Right
	
	(1, 0.5, 0.5)
	681
	[50323:51003]
	650
	1300
	[49321:49970]
	

	- - - Lower Leg Right
	
	(0, 0.5, 0)
	815
	[51004:51818]
	780
	1560
	[49971:50750]
	

	- - - Foot Right
	
	(1, 1, 0.5)
	1665
	[51819:53697]
	1647
	3294
	[50751:46243]
	

[bookmark: _Toc116678824]H.2.4	Base UV
The reference avatar comes with its own UV coordinates. It is based on UDIM (U-Dimension, an enhancement to the UV mapping and texturing workflow that makes UV map generation easier and assigning textures simpler) which consists of a tile system where each tile is a different texture with its own UV space.
The following look-up table provides the link between the tile on the bottom UDIM map and the corresponding body parts:
	Upper Jaw
	Lower Jaw
	Right Eyeball
	
	Left Iris

	Face
	Body
	Left Eyeball
	· Right Lens
· Left Lens
	Right Iris

The UDIM map for the full morgan’s body is illustrated in Figure H.6, and provided with the associated file morgan_HD.gltf. The medium resolution morgan_MD.gltf and low resolution morgan_SD.gltf of the mesh also comes with their similar but decimated UDIM map.
[image: A picture containing background pattern

Description automatically generated]
[bookmark: _Ref116674876]Figure H.6: UDIM map of the full body - It goes from UV space (0-1/0-1) on the bottom left corner to UV space (4-5/1-2) to the upper right corner.

[bookmark: _Toc116678825]H.2.5	Base Skeleton
Skeleton’s joints are identified by names and hierarchy with the following structure and naming convention to enable the identification of the avatar skeleton (see complete nomenclature in Table H.2).
H.2.5.1 Complete Skeleton
Morgan’s skeleton is composed of 63 joints, and Figure H.7 precisely depicts the place of the skeleton’s joints in the hierarchy.

	Body Hierarchy (25 joints)
	Left hand hierarchy (19 joints)
	Right hand hierarchy (19 joints)

	Hips
--- Spine
--- --- Chest
--- --- --- UpperChest
--- --- --- --- Shoulder_Left
--- --- --- --- --- UpperArm_Left
--- --- --- --- --- --- LowerArm_Left
--- --- --- --- --- --- --- Hand_Left
--- --- --- --- --- --- --- --- See below
--- --- --- --- Shoulder_Right
--- --- --- --- --- UpperArm_Right
--- --- --- --- --- --- LowerArm_Right
--- --- --- --- --- --- --- Hand_Right
--- --- --- --- --- --- --- --- See below
--- --- --- --- Neck
--- --- --- --- --- Head
--- --- --- --- --- --- Eye_Left
--- --- --- --- --- --- Eye_Right
--- --- --- --- --- --- Jaw
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- --- --- --- Toes_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right
--- --- --- --- Toes_Right
	

(Hand_Left)
--- ProximalThumb_Left
--- --- IntermediateThumb_Left
--- --- --- DistalThumb_Left
--- ProximalIndex_Left
--- --- IntermediateIndex_Left
--- --- --- DistalIndex_Left
--- --- --- --- TopIndex_Left
--- ProximalMiddle_Left
--- --- IntermediateMiddle_Left
--- --- --- DistalMiddle_Left
--- --- --- --- TopMiddle_Left
--- ProximalRing_Left
--- --- IntermediateRing_Left
--- --- --- DistalRing_Left
--- --- --- --- TopRing_Left
--- ProximalLittle_Left
--- --- IntermediateLittle_Left
--- --- --- DistalLittle_Left
--- --- --- --- TopLittle_Left
	

(Hand_Right)
--- ProximalThumb_Right
--- --- IntermediateThumb_Right
--- --- --- DistalThumb_Right
--- ProximalIndex_Right
--- --- IntermediateIndex_Right
--- --- --- DistalIndex_Right
--- --- --- --- TopIndex_Right
--- ProximalMiddle_Right
--- --- IntermediateMiddle_Right
--- --- --- DistalMiddle_Right
--- --- --- --- TopMiddle_Right
--- ProximalRing_Right
--- --- IntermediateRing_Right
--- --- --- DistalRing_Right
--- --- --- --- TopRing_Right
--- ProximalLittle_Right
--- --- IntermediateLittle_Right
--- --- --- DistalLittle_Right
--- --- --- --- TopLittle_Right

[bookmark: _Toc125723043][bookmark: _Ref116675207]H.2.5.2 	Example of Skeletal Hierarchies
Table H.01: Skeleton joints nomenclature
	Simplified
	
	Simplistic

	Body Hierarchy (24 joints)
	
	Body Hierarchy (15 joints)

	Hips
--- Spine
--- --- UpperChest	
--- --- --- Shoulder_Left
--- --- --- --- LowerArm_Left
--- --- --- --- --- Hand_Left
--- --- --- --- --- --- ProximalThumb_Left
--- --- --- Shoulder_Right
--- --- --- --- LowerArm_Right
--- --- --- --- --- Hand_Right
--- --- --- --- --- --- ProximalThumb_Right
--- --- --- --- Neck
--- --- --- --- --- Head
--- --- --- --- --- --- Eye_Left
--- --- --- --- --- --- Eye_Right
--- --- --- --- --- --- Jaw
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- --- --- --- Toes_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right
--- --- --- --- Toes_Right
	
	Hips
--- UpperChest
--- --- Shoulder_Left
--- --- --- LowerArm_Left
--- --- --- --- Hand_Left
--- --- Shoulder_Right
--- --- --- LowerArm_Right
--- --- --- --- Hand_Right
--- --- --- Head
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right

[image:]
[bookmark: _Ref116675397]Figure H.7: Position of the joints for the MPEG reference geometrical model.

[bookmark: _Toc116678826]H.3	Face Model
H.3.1	 General
The reference facial avatar consists of a base topology and a gender-neutral morphology. It corresponds to the “head area” in the semantics Table H.1 and its geometry is displayed in Figure H.8. The facial morphology comes from a combined dataset of high-resolution face scans (males and females) mapped to the same base topology using 3D reconstruction facial technique, and thus does not correspond to an existing person nor cannot allow the reconstruction of one person's image.
[image: Diagram

Description automatically generated with low confidence][image: A wireframe of a head

Description automatically generated][image: A wireframe of a head

Description automatically generated]
[bookmark: _Ref116676112]Figure H.8: MPEG Morgan faces (right to left: front, back and right profile).

[bookmark: _Toc116678827]H.3.2	Base Mesh
The corresponding topology is depicted in Figure H.8. The base face mesh is composed of 36,584 vertices / 36,362 quad faces (and 72,784 triangular faces). As illustrated on Figure H.9, four internal parts are added:
· a mouth bag (Figure H.9a)
· an upper (Figure H.9b) and lower jaw (H.9c)
· two eyeballs (Figure H.HH.9d)
Topological details of these specific parts can be found in the table H.1.

[image: A close-up of a dress

Description automatically generated with low confidence]

[bookmark: _Ref116676421]Figure H.9: MPEG Morgan’s face details
((a) mouth bag,
(b) upper jaw,
(c) lower jaw,
(d) eyeballs).

[bookmark: _Toc116678828]H.3.3	Facial Blend Shapes
The facial expression shapes naming is close but not equal to the FACS naming convention defined and used in anatomy to classify human facial motions.
Shapes are separated into Left (“_L”) and Right (“_R”) components. And sometimes these last components have been split into (“_1”) and (“_2”) sub---components to increase the precision.
The shapes of Morgan are given in table H.3.
Table H.3: MPEG Morgan’s facial blend shapes
	AU
	FACS Name
	Morgan shape

	1
	Inner Brow Raiser
	AU1_Inner_Brow_Raiser

	2
	Outer Brow Raiser
	AU2_Outer_Brow_Raiser_L1 + L2 + R1 + R2	

	4
	Brow Lowerer
	AU4_Brow_Lowerer_L + R

	5
	Upper Lid Raiser
	AU5_Upper_Lid_Raiser_L + R

	6
	Cheek Raiser
	AU6_Cheek_Raiser_L + R

	7
	Lig Tightener
	AU7_Lid_Tightener_L + R

	9
	Nose Wrinkler
	AU9_Nose_Wrinkler_L + R

	10
	Upper Lip Raiser
	AU10_Upper_Lip_Raiser_L + R

	11
	Nasolabial Deepener
	AU11_Nasolabial_Deepener_L + R

	12
	Lip Corner Puller
	AU12_Lip_Corner_Puller_L + R

	14
	Dimpler
	AU14_Dimpler_L + R

	15
	Lip Corner Depressor
	AU15_Lip_Corner_Depressor_L + R

	16
	Lower Lip Depressor
	AU16_Lower_Lip_Depressor_L

	17
	Chin Raiser
	AU17_Chin_Raiser

	18
	Lip Pucker
	AU18_Lip_Pucker

	20
	Lip Stretcher
	AU20_Lip_Stretcher_L + R

	22
	Lip Funneler
	AU22_Funneler

	23
	Lip Tightener
	AU23_Lip_Tightener

	24
	Lip Pressor
	AU24_Lip_Pressor

	26
	Jaw Drop
	AU26_Jaw_Drop

	27
	Mouth Stretch
	AU27_Mouth_Stretcher

	28
	Lip Suck
	AU28_Lip_Suck_Low + Up

	29
	Jaw Thrust
	AU29_Jaw_Thrust

	30
	Jaw Sideways
	AU30_Jaw_Sideways_L + R

	31
	Jaw Clencher
	AU31_Jaw_Clencher

	34
	Cheek Puff
	AU34_Cheek_Puff_L + R

	38
	Nostril Dilator
	AU38_Nostril_Dilator

	43
	Eyes Closed
	AU43_Eyes_Closed_L + R

	61
	Eyes Turn Left
	AU61_Eyes_Turn_Left

	62
	Eyes Turn Right
	AU62_Eyes_Turn_Right

	63
	Eyes Up
	AU63_Eyes_Up

	64
	Eyes Down
	AU64_Eyes_Down

All blendshapes are accessible as individual glTF files names with the corresponding AU name and also in a more complete glTF file name morgan_rigged.gltf.
[bookmark: _Toc116678829]H.3.4	Facial Landmarks
A set of 68 semantic facial landmarks is provided (see Figure H.10) for animation and processing. It can be use to drive mesh retargeting algorithm (retopoligization) or to link facial performance tracking solution to Morgan’s face.
The landmarks are accessible in the file morgan_landmarks.txt.
[image:]

[image: Chart

Description automatically generated] [image: Chart

Description automatically generated]
Right Jaw Line				Left Jaw Line
[image: Chart, scatter chart

Description automatically generated] [image: Chart, scatter chart

Description automatically generated]
Mouth					Nose
[image: Chart, radar chart

Description automatically generated] [image: Chart

Description automatically generated]
Left Eye 				Right Eye
[bookmark: _Ref116677601]Figure H.10: MPEG Morgan’s landmarks (global face and close views).

[bookmark: _Toc116678830]H.3.5	Teeth Model
The facial rig also includes an upper and a lower jaw as illustrated in Figure H.11. The lower jaw (right) is composed of 10, 440 vertices and 10, 380 quad faces (20, 760 triangular faces). The upper jaw (left) is composed of 11, 107 vertices and 11, 040 quad faces (22, 080 triangular faces). They both come with their own UV coordinates and associated textures.
Here are the corresponding lines of the semantic Table H.1 to access the upper and lower jaws from the original glTF file.
	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	Lower Jaw
	
	(0.5, 0, 0.5)
	10440
	[12199:22638]
	10380
	20760
	[12174:22553]

	Upper Jaw
	
	(0.5, 1, 0.5)
	11107
	[22639:33745]
	11040
	22080
	[22554:33593]

[bookmark: _Toc110343500][bookmark: _Toc110611488][image: A wireframe of a teeth

Description automatically generated][image: A wireframe of a human teeth

Description automatically generated]
Upper Jaw			Lower Jaw
[image: Map

Description automatically generated with medium confidence] [image: A picture containing mollusk, silhouette

Description automatically generated] [image: Text

Description automatically generated with medium confidence] [image: A picture containing text

Description automatically generated]
Upper UV Map		 Upper Albedo Map 	 Lower UV 		Lower Albedo Map
[bookmark: _Ref116678433]Figure H.11: MPEG Morgan’s teeth model.
[bookmark: _Toc116678831]

H.3.6	Eye Model
The reference avatar comes with a complete eye model depicted in Figure H.12. The eye model follows an anatomical eye model and is composed of three elements: the sclera, the iris, and the lens.
The polygon count is the following:
· lens (201 vertices and 200 quad face (380 triangular faces)
· iris (928 vertices and 896 quad face (1792 triangular faces)
· sclera (290 vertices and 288 quad face (576 triangular faces)
The following extract of the semantic Table H.1 shows left and right eye from the referenced glTF file. The order of ID ranges (vertex or face) is: lens iris sclera.
	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	Eye Left
	
	(0.5,0,0)
	1419
	[33746:35164]
	1384
	2748
	[33594:34977]

	Eye Right
	
	(0.5,0.5,0)
	1419
	[35165:36583]
	1384
	2748
	[34978:36361]

[image: A picture containing antenna

Description automatically generated][image: A wireframe of a donut

Description automatically generated][image: A picture containing device, fan

Description automatically generated]
Sclera				Iris			 	Lens
[image: Circle

Description automatically generated with medium confidence][image: A picture containing web, outdoor object, device, fan

Description automatically generated]
[bookmark: _Ref116678633]Figure H.12: MPEG Morgan’s eyes model.
The sclera corresponds to the eye globe and is displayed as the white area (with blood veins) of the eye. The iris is located inside the sclera and corresponds to the eye diaphragm and is displayed as the unique eye colored pattern of the eye. The lens is located inside the sclera and behind the iris. It corresponds to the lens that projects the light on the cornea (internal back border of the eye globe where the image is created).
The eye model comes with two blend shapes for each eye:
· Pupil_Dilatation – it controls the aperture of the pupil of the eye
· Sclera_Flatness – it controls the degree of flatness of the cornea

[image:] [image: A close up of a person's eye

Description automatically generated with low confidence] 		 [image: Shape

Description automatically generated] [image: Shape

Description automatically generated]
Figure H.13: Pupil Dilation from low (left) to high (right) and Cornea Flatness from low (left) to high (right).
H.4	Interactive Format Description for Interactive Scenes
H.4.1	Model Format
This section illustrates how to signal a type of avatar that can be used under the node extension “MPEG_node_avatar” as additional properties in glTF format. To this end it defines the “extras” of “MPEG_node_avatar” that contains the additional properties describing the Morgan model.
H.4.1.1	Processing Model and Semantics
The application can have the knowledge of what avatar to reconstruct or render given the “model” attribute.
Table H.4.1.1: Morgan model description
	Name
	Type
	Usage
	Default
	Description

	morgan_model
	Object
	O
	N/A
	Avatar model (see Table H.4.1.2). If present refers to the avatar format semantics.

[bookmark: _Ref131770448][bookmark: _Ref126772961][bookmark: _Ref131770420]Table H.4.1-2 – Avatar model description.
	Name
	Type
	Usage
	Default
	Description

	name
	string
	M
	“”
	User-defined name of the 3D object format.

	semantical_type
	string
	M
	“”
	A string to indicate which type of avatar the model refers to, see Table H.4.1.3. A combination of several types is possible e.g., “Humanoid/Aquatic” refers to a human-like avatar with swimming proprieties.

	resolution
	array
	M
	[“”]
	An array of strings that semantically describes each alternative in the “MPEG_media.media” extension reference by the source element in terms of format resolution e.g., low-resolution, medium-resolution, or high-resolution.

	source
	integer
	M
	
	Index to a “MPEG_media.media” extension that defines external media. The “alternative” propriety will be index aligned with the resolution propriety to facilitate the application choice in terms of capability.

Table H.4.1-3: The table presents the higher-level semantical representation depending on styles of avatars and format representation. Several items from this list or from other more detailed representations can be combined to facilitate the client application to parse the format of an avatar.
Table H.4.1-3 Semantical type of an Avatar
	Semantical type

	Humanoid

	Non-Humanoid

	Aquatic

	Aerial

	Terrestrial

	Subterranean

	Arboreal

	Other

The source attribute references a “MPEG_media.media” extension in ISO/IEC 23090-14 Scene description specification, with the intent to have the object “MPEG_media.media.alternative” defined to match the resolution. The “alternative” propriety contains the “uri” and “mimeType” that are used to reference any media input format.
H.4.1.2	glTF Schema Examples
The following glTF example will instantiate a “MPEG_node_avatar” in clients that support this extension, and otherwise, fall back to a standard “MPEG_node” without the semantical avatar node extension. It includes descriptive elements of the Morgan presented in this annex, whose attributes are instantiated within the “extras” of “MPEG_node_avatar”.
	"MPEG_media":[
 {
 "alternatives":[
 {
 "uri": "morgan_reference_low.gltf"
 "mimeType": "mesh/gltf"
 },
 {
 "uri": "morgan_reference_medium.gltf"
 "mimeType": "mesh/gltf"
 },
 {
 "uri": "morgan_reference_high.gltf"
 "mimeType": "mesh/gltf"
 }
]
 }
]
"nodes": [
{
 "extensions": {
 "MPEG_node_avatar": {
 "isAvatar": true,
 "type": "urn:mpeg:sd:2023:avatar",
 "mappings": [
 {
 "path": "full_body/upper_body/arm_left",
 "node": 1
 },
 {
 "path": " full_body/upper_body/arm_right",
 "node": 1
 }
],
 "extras" : {
 "morgan_model" : {
 "name": "MORGAN",
 "semantical_type": "humanoid/terrestrial",
 "resolution": ["low-resolution","medium-resolution","high-resolution"]
 "source": 0
 }
 }
 }
 }
}
]

H.4.2	Metadata Format
This section presents an attribute to identify an avatar socially to facilitate interactions with other avatars or objects in the scene. This attribute contains the identity information of an avatar, such as name, gender, and age. The identity information is not necessarily the accurate information of a real user, but instead an identity attributed to the user’s avatar. The age attribute has additional significance in this proposal because it can be linked with parental permission and content access depending on the application side.
This attribute enables the creation of several avatar representations, which facilitates the description of an avatar in the scene and identifies the type of interactivity with the scene such an avatar have.
These metadata contain sensitive information. A service provider using them should deploy adequate data protection mechanisms to guarantee their security and privacy.
Table H.4.2-1: Semantics of the Morgan metadata property
	Name
	Type
	Usage
	Default
	Description

	morgan_metadata
	object
	O
	“”
	Information about the avatar allows social identification in virtual environments. Table H.4.2-2 provides the semantics of this object.

[bookmark: _Ref131579590]Table H.4.2-2: Semantics of the proposed object extension "metadata".
	Name
	Type
	Usage
	Default
	Description

	name
	string
	M
	
	Name of the avatar

	age
	integer
	M
	
	Age of the avatar

	gender
	string
	O
	“”
	Gender of the avatar

	disability
	array
	O
	[“”]
	Avatar’s physical disability, to indicate any physical impairment, for example, brain injury, spinal cord injuries, amputations, musculoskeletal, hearing loss or visual impairment.

	capability
	array
	O
	[“”]
	A list of avatar abilities, such as the possibility to fly, walk, grasp, jump, and others.

	personality
	array
	O
	[“”]
	A list of characteristics or qualities for an avatar individual character, for example, shy, courageous.
As another example, the Myers-Briggs type can also be used.

	emotion
	array
	O
	[“neutral”]
	An emotional state that reflects an avatar state, for example, admiration, anger, fear, sadness, joy, and others.
Different lists of emotions categories are possible, such as Robert Plutchik’s categories.

	social
	array
	O
	[“”]
	A type of social behavior that the avatar is able to perform, such as conversation or interaction with other 3D environment elements and avatars.

	parental
	array
	O
	[“”]
	Permission content to be accessed by the avatar. This can be any standard method to infer parental permissions such as the ones used in video games and the streaming industry.

H.4.2.1	glTF Schema Examples
The extension “morgan_metadata” specifies by default the avatar attributes that define a base representation of a user avatar preference. This extension allows the possibility to identify and generate user-specific avatars.
The following glTF example will instantiate a “MPEG_node_avatar” in clients that support this extension, and otherwise, fall back to a standard “MPEG_node” without the metadata semantical extension.
	"nodes": [
 {
 "extensions": {
 "MPEG_node_avatar": {
 "isAvatar": True,
 "type": "urn:mpeg:sd:2023:avatar",
 "extras": {
 "morgan_metadata" : {
 "name": "Red",
 "aga": 18,
 "gender": "N/A",
 "disability": ["colorblind", "hearing_loss"],
 "capability": ["walk", "run", "grasp"],
 "personality": ["happy"],
 "emotion": ["admiration", "joy"],
 "social": ["interaction", "conversation"],
 "parental": ["18", "bad_language", "violence", "fear"],
 }
 }
 }
 }
 }
]

H.4.3	Interactive Actions Format
We enhance the actions property of the “MPEG_scene_interactivity” extension by introducing new actions falling in a new “ACTION_SET_AVATAR” action type and grouped in action lists. Each list is uniquely identified by a URN and referenced by the “MPEG_scene_interactivity.avatarAction” property that is required when “MPEG_scene_interactivity.type” is set to “ACTION_SET_AVATAR”.
The semantics of the avatar-related actions are provided below and identified by the following URNs:
· “urn:mpeg:sd:2023:avatar:actionslist:social”
· “urn:mpeg:sd:2023:avatar:actionslist:restricted”
· “urn:mpeg:sd:2023:avatar:actionslist:parental”
· “urn:mpeg:sd:2023:avatar:actionslist:speech”
· “urn:mpeg:sd:2023:avatar:actionslist:capabilities”
· “urn:mpeg:sd:2023:avatar:actionslist:disabilities”
[bookmark: _Ref132181301]Table H.4.3.1: Semantical description of new action properties.
	Name
	Type
	Usage
	Default
	Description

	if (avatarAction == “urn:mpeg:sd:2023:avatar:actionslist:social”){
	
	
	
	

	authorised
	array
	M
	
	One or more elements of Table H.4.3-2 define the type of social actions.

	}
	
	
	
	

	if (avatarAction == “urn:mpeg:sd:2023:avatar:actionslist:restricted”
){
	
	
	
	

	permission_id
	string
	M
	
	Unique string identifier that restricts interaction between nodes without an equal permission_id.

	}
	
	
	
	

	if (avatarAction == “urn:mpeg:sd:2023:avatar:actionslist:parental”){
	
	
	
	

	age
	number
	M
	
	One element of Table H.4.3-4 that define the minimum age recommendation for users given the content of the list of nodes.

	descriptors
	Array
	M
	
	One or more elements of Table H.4.3-5 that add additional explicit semantics of the content present in the list of nodes.

	}
	
	
	
	

	If(avatarAction == “urn:mpeg:sd:2023:avatar:actionslist:speech”){
	
	
	
	

	microphone
	Boolean
	O
	0
	Indicates if the user uses a microphone type of input device for audio. “0” is False and “1” is True. The default value is 0.

	media
	String
	O
	“”
	URI (Uniform Resource Identifier) to media track to play a pre-recorder audio file.

	}
	
	
	
	

	If(avatarAction == “urn:mpeg:sd:2023:avatar:actionslist:capabilities”
){
	
	
	
	

	capabilities
	array
	M
	[]
	One or more elements of Table H.4.3-6 that define the capabilities of an avatar/object.

	}
	
	
	
	

	If(avatarAction == “urn:mpeg:sd:2023:avatar:actionslist:disabilities”){
	
	
	
	

	disabilities
	array
	M
	[]
	One or more elements of Table H.4.3-7 that define the disabilities of an avatar/object.

	}
	
	
	
	

[bookmark: _Ref131599231]Table H.4.3.2: Type of avatar action.
	Action type
	Description

	“urn:mpeg:sd:2023:avatar:actionslist:social”
	Set action of a node.

	“urn:mpeg:sd:2023:avatar:actionslist:restricted”
	Set permissions of a node.

	“urn:mpeg:sd:2023:avatar:actionslist:parental”
	Set parental and content usage permissions of a node.

	“urn:mpeg:sd:2023:avatar:actionslist:speech”
	Set speech active of a node.

	“urn:mpeg:sd:2023:avatar:actionslist:capabilities”
	Set capabilities of a node.

	“urn:mpeg:sd:2023:avatar:actionslist:disabilities”
	Set disabilities of a node.

[bookmark: _Ref131599247]Table H.4.3-3: Type of avatar social actions.
	Social action list
	Description

	“avatar_social_conversation”
	Allow social speaking with users and enable the ability for conversation if not already enabled.

	“avatar_social_interaction”
	Allow interaction between users.

	“avatar_social_other”
	Any other type of social interaction.

[bookmark: _Ref131599262]Table H.4.3-4: Type of avatar age levels.
	“age” list
	Description

	3
	Content suitable for all ages.

	7
	Content with scenes or sounds possibly frightening to younger children.

	12
	Content with violence of graphic non-realistic characters.

	16
	Content with violence that mimics the reality.

	18
	Content design for adults only.

[bookmark: _Ref131599272]Table H.4.3-5: Type of avatar parental descriptors.
	parental descriptors list
	Description

	“violence”
	Contains depiction of violence.

	“bad_language”
	Contains bad language.

	“fear”
	Contains pictures or sounds that may be frightening or scary.

	“gambling”
	Contains elements that encourage or teach gambling.

	“sex”
	Contains sexual posturing.

	“drugs”
	Contains the illustration of the use of illegal drugs, alcohol or tobacco.

	“discrimination”
	The game contains depictions of ethnic, religious, nationalistic or other stereotypes likely to encourage hatred

	“in-game_purchases”
	Offers the option of purchase digital services.

[bookmark: _Ref131599286]Table H.4.3.6: Capabilities semantics.
	Capabilities list
	Description

	“walk”
	The ability to walk.

	“run”
	The ability to run.

	“jump”
	The ability to jump.

	“fly”
	The ability to fly.

	“swim”
	The ability to swim.

	“climb”
	The ability to go over, get on, climb to, to descend objects, such as climb to a chair, climb up the stairs, climb down the stairs, climb the wall etc.

	“grasp”
	The ability to hold objects with hands’ like representations.

	“manipulate”
	The ability to interact and change spatial position of 3D objects by using collision or proximity type of detectors.

	“ride”
	The ability to ride a vehicle or animal, such as motorcycles or horses etc.

	“drive”
	The ability to use a vehicle, such as cars or trucks etc.

	“pilot”
	The ability of piloting a vehicle, such as ships or airplanes.

[bookmark: _Ref131599303]Table H.4.3.7: Disabilities semantics.
	Disabilities list
	Description

	“Cerebral palsy”
	A group of disorders that impact a person's ability to move and maintain balance

	“Spinal cord injuries”
	Spina cord injury indicates the damages to any part of the spinal cord or nerves at the end of the spinal canal. Result in permanent loss of strength, sensation, and function (mobility and feeling)

	“Amputation”
	Indicates removal of part of all of a body part that is enclosed by skin

	“Musculoskeletal injuries”
	Refer to the damage of muscular or skeletal systems, which is usually due to strenuous activities.

H.4.4		Download
The Morgan reference Avatar is available for download under https://content.mpeg.expert/data/MPEG-I/Part14-SceneDescriptions/Morgan.

[bookmark: _Toc141653642]Bibliography
[bookmark: Reference_ref_7][1]	ISO/IEC 23008-3, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio
[bookmark: Reference_ref_8][2]	Khronos, The OpenGL® Graphics System: A Specification (Version 4.6 (Core Profile))
[bookmark: Reference_ref_9][3]	ISO/IEC 19516, Information technology — Object management group — Interface definition language (IDL) 4.2
[bookmark: Reference_ref_10][4]	IETF RFC 6381, The ‘Codecs’ and ‘Profiles’ Parameters for “Bucket” Media Types
[bookmark: Reference_ref_11][5]	OPEN A.L., 1.1 Specification and Reference, [viewed 2022-04-27]. Available at https://www.openal.org/documentation/openal-1.1-specification.pdf
1		© ISO/IEC 2024 – All rights reserved
© ISO/IEC 2024 – All rights reserved		1
image36.png

image37.png

image38.png

image39.emf

The 1

st

 landmark

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.png

image49.jpeg

image50.png

image51.jpeg

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.emf
process the interruptactionison-goingbehavior?yesnonew scenedescriptionisbehaviorstilldefined?yesnocontinue the on-goingbehaviorstop the on-goingbehaviorapplythe new scenedescription

image13.emf

Presentation Engine

Avatar
(Sub-)Node

Vertex Buffer

Texture Buffer

Attribute Buffer

Avatar
(Sub-)Node

Vertex Buffer

Texture Buffer

Attribute Buffer

Avatar
(Sub-)Node

Vertex Buffer

Texture Buffer

Attribute Buffer

Avatar Media Pipeline

Avatar Component
Decoder

Avatar
Reconstruction

Presentation Engine

Avatar

(Sub-)Node

Vertex Buffer

TextureBuffer

Attribute Buffer

Avatar

(Sub-)Node

Vertex Buffer

TextureBuffer

Attribute Buffer

Avatar

(Sub-)Node

Vertex Buffer

TextureBuffer

Attribute Buffer

AvatarMediaPipeline

Avatar Component

Decoder

Avatar

Reconstruction

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.svg
 Hips Spine Chest UpperChest UpperLeg_Left LowerLeg_Left Foot_Left Toes_Left Shoulder_Left UpperArm_Left LowerArm_Left Hand_Left Hand_Right ProximalThumb_Right IntermediateThumb_Right DistalThumb_Right TopIndex_Right Index Middle Ring Little Thumb

image35.png

