
ISO/IEC JTC 1/SC 29/WG 03 N1063[image:]

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Exploration on low-overhead HEIF-compatible image file format
Status:	Approved
Date of document:	2023-11-03
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	27 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N1063
October 2023 – Hannover, DE
	Title
	Exploration on low-overhead HEIF-compatible image file format

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	23216

1
Introduction
[bookmark: bookmark=id.30j0zll][bookmark: bookmark=id.gjdgxs]The High Efficiency Image Format (HEIF) [1] is based on ISOBMFF [2] and provides generic structures for the storage of image items and sequences. These can be compressed using any codec, and HEIF defines metadata necessary for a wide range of applications, making it a perfect foundation for many platforms.
However, as with all technologies, there is always room for improvement. While HEIF's initial design was impressively versatile, it didn't anticipate every potential use-case. A clear inefficiency emerges when considering its header size, which remains large even especially for smaller images. This results in unnecessary overhead for such image files. To put this into perspective, GitHub Issue#59 highlighted the issue with HEIF headers, which consistently remain at a minimum of 300 bytes. For smaller images, this becomes a significant portion of the file. In this exploration, our goal is to gather and thoroughly evaluate potential solutions to this challenge. Additionally, we'll be identifying relevant use-cases and requirements. Through a systematic approach, we aim to pinpoint the most appropriate solution that enhances the HEIF framework, optimizing it further for compact image formats.
2 [bookmark: bookmark=id.1fob9te][bookmark: bookmark=id.3znysh7]Use-cases
In this section we collect a potential list of use-cases. Such use cases include:
· Web Applications with Numerous Icons and Thumbnails: Modern web applications use a wide variety of icons, thumbnails, and small images. When these images are stored in HEIF, the accumulated overhead from each image's header can result in significantly wasted storage and bandwidth.
· Mobile Applications: Many mobile applications frequently utilize small icons and thumbnail images for a better user interface and experience. These applications would greatly benefit from a compact HEIF header, allowing for faster loading times and reduced bandwidth consumption when fetching these images. Additionally, some mobile applications operate in environments with limited bandwidth, making the efficiency provided by a compact HEIF format even more valuable.
· Embedded Systems and IoT: Devices with limited storage capabilities, such as certain embedded systems and IoT devices, can benefit from reduced HEIF headers, allowing them to store more images in the same space.
· Instant Messaging and Social Media Apps: Users share billions of emojis, stickers, and GIFs daily. If these are stored or shared in HEIF format, even a minor reduction in header size can lead to huge savings in bandwidth and storage on a global scale.
· Content Delivery Networks and Content Management Systems: Servers and web deployment services manipulate vast quantities of images, often without decoding the pixels but needing metadata such as image dimensions. A trivially parseable header would save resources at scale and may improve security.
· Extended Reality (XR) Applications: XR applications often use small images or icons over real-world views. The efficiency of these small images can be useful for maintaining XR application performance
3 Requirements
Below is a list of tentative requirements currently being discussed by the group:
· Header Size Reduction: The primary requirement is to substantially reduce the HEIF header size for small images, aiming for a size considerably less than the current 300 bytes.
· Compatibility: Even with a reduced header, files should still be identifiable as HEIF.
· Simplicity: The header should only cater to the most common use-cases for small images. This includes supporting a single coded item with 1, 3, and potentially 4 channels. It should also support an optional second coded item for alpha and NCLX colour.
· Exclusion of Non-Essential Features: The base format of reduced header mode should omit non-essential features like tiling/overlay, image collections/sequences, auxiliary images (excluding alpha), and groups. It can be constructed in a manner that allows for future extensibility to incorporate additional features that are reasonable for such a reduced header representation.
· Optional Exclusion of Additional Features: If these requirements do not significantly impact the header size, they may be considered. However, for utmost efficiency, thumbnails and other non-essential metadata should probably be excluded.
· Structured Layout for Streamed Decoding: For optimized streamed or incremental decoding, the format might enforce a specific sequence, such as placing alpha first.
· Round-tripping: It should be possible to translate the compact HEIF representation into non-compact representation, and back.
· Mixed Reduced Header HEIF and ISOBMFF: It would be desirable to allow the presence of reduced header HEIF and ISOBMFF-compliant media in the same file. For example, a file could contain a reduced-header HEIF image and an associated audio track to be played with the image.	Comment by Miska Hannuksela 01: http://mpeg.expert/software/MPEG/Systems/FileFormat/HEIF/-/issues/107#note_84726
The group is currently focusing on the aspect of compatibility to answer the question if the HEIF file with a minimized top level box that replaces the Metabox is still considered as a HEIF compatible file. It was noted that a very similar approach was already implemented in WG3 during the development of the 7th edition of ISOBMFF (ISO/IEC 14496-12 6th edition DAM 4). This involved the concept of compressing top-level boxes, such as substituting the 'moov' box with a compressed '!mov' box which mirrors the proposal from section 4.2. It is worth noting that when ISOBMFF was extended to define compressed boxes, the process remained within the domain of WG3 and was deemed an improvement on existing technology developed by WG3 and did not require the involvement of the requirements working group, which is generally not engaged in incremental optimizations of a standard.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3]Furthermore, the shall requirements of the HEIF and ISOBMFF specifications were studied with the following findings:
[bookmark: OLE_LINK4][bookmark: OLE_LINK5]1) The existing language in the HEIF specification mandates the inclusion of a Metabox at the file level. It has been recognized that permitting the inclusion of a minified version of this box would necessitate only minimal modifications to the specification.
It has been discussed that the minimized top-level box may be interpreted or treated as analogous to the Metabox, implying its virtual presence within a file. Additionally, it has been acknowledged that any extension to the current Metabox would necessitate a revision of the ISOBMFF. Given the existing discrepancy in the Metabox structure between ISOBMFF and QuickTime File Format, pursuing this method is deemed to have a reduced likelihood of success.
2) It was identified that if a minimized top-level box is introduced, the mime type image/heif can not be used. However most derived specifications use their own mime types. Additionally, the 'mini' box could only be used in future, not-yet-registered mime types (HEIF+AV2 specification for example) to avoid breaking any existing mime type and to avoid registering new mime types for existing container/codec pairs.
Also, a requirements document on image items was studied [6] and the following changes were agreed to be included in the output document from WG2:
In section 1.1.1, change the sentence:
Size taken by the picture matters as it relates to upload duration as well as the amount of transferred bytes.
To:
Size taken by the picture matters as it relates to upload and download duration as well as the amount of transferred bytes.
In section 1.2.5, change the sentence:
The goal is to view the image in as high of a resolution/quality as possible, e.g. 16-bit lossless (lossless is mandatory in several categories of medical usage).
To
The goal is to view the image in as high of a resolution/quality as possible, e.g. 16-bit lossless (lossless is mandatory in several categories of medical usage, Monochrome/4:0:0 is a common color format).
After requirement 6 in section 2, add the following new requirement and renumber the requirements under Related to Coding: as needed:
7. HEVC still pictures should be competitive with regards to compression ratio compared to existing image file formats.
4 Initial proposals
At MPEG#143, the File Format group received two distinct proposals aiming to resolve this problem. These are detailed in the following subsections.
4.1 MetaBox extension and a new normative Annex
Nokia, in m64322, introduced a proposal centered on the extension of the MetaBox which allows to create a file without an ItemLocationBox, and a definition of a new normative Annex, which describes the reduced header mode including the file structure and the reader/player operation for a single image item and an optional auxiliary image item.
Initial discussion on this proposal is gathered in the GitLab issue #104.
4.1.1 Proposal
4.1.1.1 Changes to MetaBox
Define MetaBox with a new version=1. This version allows to create a file without an ItemLocationBox and requires readers to handle files without ItemLocationBox.
4.1.1.1.1 Definition
[bookmark: _heading=h.2et92p0]Box Type:	'meta'
Container:	File, Segment, MovieBox, TrackBox, MovieFragmentBox or TrackFragmentBox
Mandatory:	No
Quantity:	Zero or one (in File, MovieBox, and TrackBox),
		Zero or one (in Segment, MovieFragmentBox or TrackFragmentBox)
A common base structure is used to contain general untimed metadata. This structure is called the MetaBox as it was originally designed to carry metadata, i.e. data that is annotating other data. However, it is now used for a variety of purposes including the carriage of data that is not annotating other data, especially when present at ‘file level’. The handling of metadata in movie fragments is described in 8.8.17.
When a HandlerBox is present, it applies to all items without a HandlerProperty and may provide additional requirements on items with a HandlerProperty with different handler_type than the one in the HandlerBox.
When the MetaBox contains a PrimaryItemBox and a HandlerBox, and the item indicated by the PrimaryItemBox has a HandlerProperty, the HandlerBox and the HandlerProperty of the primary item shall identify the same handler type.
When the MetaBox does not contain a PrimaryItemBox, then MetaBox is required to contain a HandlerBox indicating the structure or format of the MetaBox contents.
When the item indicated by PrimaryItemBox does not have a HandlerProperty, but has an ItemInfoEntry with an item_type, the handler type in HandlerBox may be the same as the item_type.
The other boxes defined here may be defined as optional or mandatory for a given format. If they are used, then they shall take the form specified here. These optional boxes include a DataInformationBox, which documents other files in which metadata values (e.g. pictures) are placed, and an ItemLocationBox, which documents where in those files each item is located (e.g. in the common case of multiple pictures stored in the same file).
[bookmark: _heading=h.tyjcwt]At most one MetaBox may occur at each of the file level, segment, movie level, or track level.
If an ItemProtectionBox occurs, then some or all of the metadata, including possibly the primary resource, may have been protected and be un-readable unless the protection system is taken into account.
NOTE The MetaBox is unusual in that it is a container box yet extends FullBox, not Box.
Metadata items are identified by item_ID. Within a given MetaBox, a given item_ID shall uniquely refer to a single item. When an item is updated in movie fragments, the item_ID refers to the latest received version.
Derived specifications may further restrict the criteria for uniqueness: unique among the item_IDs in both file and movie-level boxes, or unique within that set extended with the track_ID of the tracks in a movie box. The item_ID value of 0 should not be used, and shall not be used when the set is extended to include track_IDs.
There are three scopes for item_IDs: file and segments; MovieBox and MovieFragmentBox; and TrackBox and TrackFragmentBox. In other words, there shall be only one item with a given item_ID within a given scope (e.g. in the TrackBox and all TrackFragmentBox with the same track_ID).
version shall not be equal to 1 in a movie-level or track-level MetaBox.
When version is equal to 1 and the ItemLocationBox is absent, the file shall obey the following constraints:
The file shall contain one and only one MediaDataBox or IdentifiedMediaDataBox per each item.
· The file shall not contain MediaDataBox(es) or IdentifiedMediaDataBox(es) that contain data other than item data.
· The order of MediaDataBox(es) and IdentifiedMediaDataBox(es) in the file shall be in ascending order of item IDs.
· The item data for the primary item shall be present in the first MediaDataBox (when present) or IdentifiedMediaDataBox (when present), whichever is earlier in the file.
· Each item shall have only one extent.
· There shall be no other data than the item data in the MediaDataBox or IdentifiedMediaDataBox.
When version is equal to 1 and the ItemLocationBox is absent, a file reader shall resolve the item data as follows:
· The list of item ID values in ascending order is obtained from the ItemInfoBox.
· The item data for the first item in the list of item ID values is located in the first MediaDataBox (when present) or IdentifiedMediaDataBox (when present), whichever is earlier in the file. Item data for each subsequent item in the list of item ID values is resolved to be the box payload of the next MediaDataBox or IdentifiedMediaDataBox in file order.
NOTE MetaBox with version equal to 1 can be used in an item file, such as a HEIF file with a single image item, to avoid the overhead for an ItemLocationBox.
4.1.1.1.2 Syntax
[bookmark: _heading=h.3dy6vkm]aligned(8) class MetaBox (handler_type)
	extends FullBox('meta', version, 0)
{
	HandlerBox(handler_type)	theHandler;
	PrimaryItemBox		primary_resource; 	// optional
	DataInformationBox	file_locations;		// optional
	ItemLocationBox		item_locations;		// optional
	ItemProtectionBox	protections;		// optional
	ItemInfoBox			item_infos;		// optional
	IPMPControlBox		IPMP_control;		// optional
	ItemReferenceBox		item_refs;			// optional
	ItemDataBox			item_data;			// optional
	Box	other_boxes[];						// optional
}
4.1.1.2 Guidelines for reduced header mode (Annex O)
(normative)
Guidelines for reduced header mode
[bookmark: _heading=h.1t3h5sf]Overview
This annex gives guidelines to enable the compact item header or reduced header mode in file structures and the reader/player operation for reduced header mode. The reduced header mode enables storage of a single image item and optionally an auxiliary image item for alpha planes with a compact representation of the image file format.
[bookmark: _heading=h.4d34og8]File structure
The following file creation guidelines enable the reduced header mode.
The brands with which a file is compatible are recorded in the file in the usual way using the FileTypeBox. The file-level MetaBox should precede the MediaDataBox(es) or IdentifiedMediaDataBox(es), whichever is earlier in file. The file-level MetaBox shall be with version=1.
The MetaBox documents the information related to a single image item and optionally an auxiliary image item for alpha planes.
The MetaBox contains the ItemProtectionBox if either the single image item or the auxiliary image item or both are protected.
The MetaBox contains the ItemInfoBox, which provides information about the single image item and optionally an auxiliary image item for alpha planes. The item_IDs in ItemInfoBox uniquely refer to image items in MetaBox.
When both the single image item and the auxiliary image item for alpha planes are present in MetaBox the item_IDs in ItemInfoBox are set such that the single image item has the lowest item_ID value among the image items.
When only a single image item or both the single image item and the auxiliary image item for alpha planes are present in MetaBox they have only one extent.
When only a single image item is present, the file contains one and only one MediaDataBox or IdentifiedMediaDataBox, the item data for the item is present in the MediaDataBox or IdentifiedMediaDataBox, and there is no other data than the item data in the MediaDataBox or IdentifiedMediaDataBox.
When both the single image item and the auxiliary image item for alpha planes are present, the file contains two MediaDataBoxes or two IdentifiedMediaDataBoxes. The MediaDataBox or IdentifiedMediaDataBox of the primary item should precede the MediaDataBox or IdentifiedMediaDataBox of the auxiliary item in the file.
The MetaBox contains the ItemPropertiesBox to associate items with item properties.
[bookmark: _heading=h.2s8eyo1]Reader/Player operation
This clause provides guidelines for readers/players that use reduced header mode.
If a file contains the MetaBox with version=1, then a reader/player concludes that the file is in reduced header mode
When a file is in reduced header mode and does not contain the ItemLocationBox the reader/player concludes that the items have only one extent. The reader/player obtains the list of item_ID values in ascending order from the ItemInfoBox. The reader/player obtains the item data for the first item from the list of item_ID values from the first MediaDataBox (when present) or IdentifiedMediaDataBox (when present), whichever is earlier in the file. The reader/player obtains the item data for each subsequent item in the list of item_ID values from the resolved box payload of the next MediaDataBox or IdentifiedMediaDataBox in file order.
4.2 [bookmark: _Ref149869524]Condensed Minimized image item
In m64572, Apple Inc. and Google LLC first proposed a different approach. They introduced a new minimized condensed image item (initially called condensed image item) designed to represent the essential information for small images, with the goal to maintain the format's performance and capability. If required, Tthat essential information can be used to expand the condensed minimized image item into a regular HEIF file.
Initial discussion on this proposal is gathered in the GitLab issue #105.
A prototype of this proposal can be found in this pull request.
During MPEG meeting #144 further refinements and clarifications were made in m64748 and discussed in GitLab issue #106 as well as during the MPEG meeting. The proposal below is updated accordingly.
4.2.1 Overview
The following are example payload sizes for a medium quality image at various resolutions:
· 640x480:	10.5 kB
· 320x240:	4.4 kB
· 160x120:	1.7 kB
· 80x60:		0.6 kB
· 40x30:		0.3 kB
The current HEIF file structure adds around 300 bytes of headers to the payload. For example, for images with a 40x30 resolution, this could lead to a ~2x file-size increase [4].
This contribution proposes a new Condensed Minimized Image Item Box ('coni''mini'), which is intended to minimize data overhead in the structure of a HEIF file. The goal is to allow minimal overhead for the following very common file types:
· 1/3-channel opaque images
· 1/3-channel translucent images with alpha (supporting codecs with native alpha channel support that can handle interleaved alpha and codecs without native alpha channel support requiring a separate auxiliary alpha image)
· Images with Exif and XMP metadata
· Images with NCLX or ICC profiles
Transformative item properties like 'imir', 'irot', and 'clap' can be used via the 'hasExtendedMetahas_extended_meta' field. But since the main goal of this contribution is to achieve small file sizes, rotation and cropping should be baked in rather than done at decode time. Therefore, they don't get explicit fields in the syntax structure defined.
Below is an example file structure, which shows how the CondensedImageBoxMinimizedImageBox is used in a file:
{
	('ftyp' "File Type Box", size = 20) {
		Major brand: 'abcd'
		Minor version: 0
		Compatible brands: 'abcd'
 }
	('coni''mini' "Condensed Minimized Image Item Box", size = nnn) {
		...
	}
	(Optional 'moov'/'mdat')
}

NOTE	It is currently being studied in ISOBMFF TuC if further optimizations on the 'ftyp' box are feasible or not. The current study investigates if the first four bytes of the 'mini' box body can be moved to the minor_version field of the 'ftyp' box and the size of the 'mini' box is reduced by four bytes.
The 'coni''mini' box in this structure serves as the primary container for the image-specific data, housing everything from colour characteristics to codec configurations, and from alpha channel presence to the image data itself.
[bookmark: bookmark=id.17dp8vu][bookmark: bookmark=id.3rdcrjn]The file begins with the 'ftyp' box that carries a brand identifier. To further compress and prevent redundant signalling, the major brand can implicitly signal the codec type and a codec configuration type. This concept can be employed by derived specifications to define their own presets. However, if no codec specific brand exists, the 'coni''mini' brand may be used, in which case 'hasExplicitCodecTypeshas_explicit_codec_types' shall be set to true. This allows for the box to be codec agnostic but also allows optimized codec specific brands to save 8 bytes.
The optional 'moov'/'mdat' boxes can be used when a flag hasExtendedMetahas_extended_meta is set to true and allows for adding additional image items and/or grouping image items to tracks.
4.2.2 Experimental results based on initial proposal from m64572
Below is an example image with a 40x30 P3D65 [3] payload of 300 bytes that has a codec specific 'coni'‘mini’ brand, the overhead on top of the payload and codec config box is:
ftyp: 20 bytes
	- 8 bytes box header
	- 4 bytes major brand (codec specific ‘coni’'mini' brand)
	- 4 bytes minor version
	- 4 bytes compatible brands (codec specific ‘coni’'mini' brand repeated)
coni: 17 bytes
	- 64 bits (8 bytes) for box header
	- 2 bits version
	- 8 bits width
	- 8 bits height
	- 1 bits isFloatis_float
	- 4 bits bitdepth
	- 1 bits is_Monochromemonochrome
	- 1 bits is_FullRangefull_range
	- 2 bits colourTypecolour_type
	- 15 bits NCLX
	- 1 bits hasExplicitCodecTypeshas_explicit_codec_types
	- 8 bits mainItemCodecConfigSize
	- 16 bits mainItemDataSize
	- 1 bits has_Alphaalpha
	- 1 bits hasExtendedMetahas_extended_meta
	- 1 bits has_Exifexif
	- 1 bits has_XMP
	- 1 bits trailing to get byte alignment

The table below provides further example payload sizes for various resolutions:
	Compressed size (8-bit 4:2:0)
	Lossless
	CQ 16
	CQ 32

	640x480
	152.6K
	24.7K
	10.5K

	320x240
	41.9K
	8.6K
	4.4K

	160x120
	12.6K
	3.1K
	1.7K

	80x60
	3.9K
	1.2K
	0.6K

	40x30
	1.2K
	0.4K
	0.3K

	
	
	
	

	% increase 300 bytes headers
	
	
	

	640x480
	0.2%
	1.2%
	2.8%

	320x240
	0.7%
	3.5%
	6.8%

	160x120
	2.4%
	9.6%
	17.8%

	80x60
	7.6%
	25.4%
	47.1%

	40x30
	24.9%
	67.9%
	111.5%

	
	
	
	

	% increase 40 bytes headers
	
	
	

	640x480
	0.0%
	0.2%
	0.4%

	320x240
	0.1%
	0.5%
	0.9%

	160x120
	0.3%
	1.3%
	2.4%

	80x60
	1.0%
	3.4%
	6.3%

	40x30
	3.3%
	9.0%
	14.9%

4.2.3 [bookmark: _heading=h.26in1rg]Proposal
4.2.3.1 Condensed Minimized Image Item Box
4.2.3.1.1 Definition
	Box type:
	'coni''mini'

	Container:
	file

	Mandatory:
	No

	Quantity:
	At most one

The condensed minimized image item box provides a more compact way to represent carriage of image items in a file. Its main use case is for very small images where the usage of traditional carriage using the MetaBox would result in considerable overhead compared to the image data payload.
When CondensedImageBoxMinimizedImageBox is present, a file-level MetaBox shall not be present in the file. However, some parts of the body of a MetaBox may be embedded in the CondensedImageBoxMinimizedImageBox when the hasExtendedMetahas_extended_meta flag is set to one.
The major_brand of the FileTypeBox may be specified in derived specifications to signal pre-defined values for infeTypeinfe_type and codecConfigTypecodec_config_type. However, if no such codec specific brand exists, the 'coni''mini' brand may be used, in which case hasExplicitCodecTypeshas_explicit_codec_types shall be set to 1.
A file that contains a MinimizedImageBox shall have major_brand of the FileTypeBox set to 'mini', or to a derived specification’s brand that conforms to the 'mini' brand.
The CondensedImageBoxMinimizedImageBox may be followed by a MovieBox.
The CondensedImageBoxMinimizedImageBox may be followed by a MediaDataBox.
A file with a MinimizedImageBox shall be expanded to a full file-level MetaBox, treated as if the MetaBox was originally present. The rules for expanding MinimizedImageBox to a full MetaBox are described in clause x.x.x.5.
When processing the CondensedImageBox it is expanded to a full MetaBox containing the following boxes:
· HandlerBox with handler_type equal to 'pict'.
· PrimaryItemBox with item_ID set to 1.
· ItemInfoBox containing the following entries:
· ItemInfoEntry with item_ID set to 1 and item_type set to infeType.
· Optional ItemInfoEntry with item_ID set to 2 and item_type set to infeType.
· Optional ItemInfoEntry with item_ID set to 3 and item_type set to Exif.
· Optional ItemInfoEntry with item_ID set to 4 and item_type set to mime and content_type set to 'application/rdf+xml'.
· ItemReferenceBox containing the following entries:
· Optional item type reference with referenceType set to 'auxl', reference_count set to 1, from_item_ID set to 2 and to_item_ID set to 1.
· Optional item type reference with referenceType set to 'cdsc', reference_count set to 1, from_item_ID set to 3 and to_item_ID set to 1.
· Optional item type reference with referenceType set to 'auxl', reference_count set to 1, from_item_ID set to 4 and to_item_ID set to 1.
· ItemPropertiesBox with the following entries:
· ItemPropertyContainerBox with the following properties:
· Property with the type set to codecConfigType and with contents from mainItemCodecConfig
· ImageSpatialExtentsProperty with image_width set to width and image_height set to height from the CondensedImageBox
· PixelInformationProperty with the values from the CondensedImageBox:
num_channels is set to 1 if isMonochrome is 1 and num_channels is set to 3 otherwise. 1 is added to num_channels if hasAlpha is 1 and alphaItemDataSize is 0 (meaning the codec supports native alpha channels).
If isFloat is 0, bits_per_channel is set to bitDepthMinusOne+1 for each channel. Otherwise, bits_per_channel is set to 16, 32, or 64 for each channel for floatPrecision respectively being 0, 1, or 2.
· ColourInformationBox with the values from the CondensedImageBox:
colour_type is set to 'nclx'.
If colourType is set to 0, the colour space is considered to be sRGB and the colour_primaries, transfer_characteristics, and matrix_coefficients are set to 1, 13 and 6 respectively.
If colourType is set to 1 or 2, the colour_primaries, transfer_characteristics and matrix_coefficients are set to colourPrimaries, transferCharacteristics and matrixCoefficients respectively.
If colourType is set to 3, the colour_primaries and transfer_characteristics are set to 2 (unspecified). The matrix_coefficients is set to matrixCoefficients.
· Either another ColourInformationBox with the colour_type set to 'rICC' and with ICC_profile contents being iccData, or a FreeSpaceBox if colourType is not 3.
· Either a property with the type set to codecConfigType and with contents from alphaItemCodecConfig, or a FreeSpaceBox if either hasAlpha or alphaItemDataSize is 0.
· Either an AuxiliaryTypeProperty with aux_type set to urn:mpeg:mpegB:cicp:systems:auxiliary:alpha, or a FreeSpaceBox if either hasAlpha or alphaItemDataSize is 0.
· Either a FreeSpaceBox if either hasAlpha or alphaItemDataSize is 0, or a PixelInformationProperty with the values from the CondensedImageBox for alpha:
num_channels is set to 1.
If isFloat is 0, bits_per_channels is set to bitDepthMinusOne+1. Otherwise, bits_per_channels is set to 16, 32, or 64 for floatPrecision respectively being 0, 1, or 2.
· ItemPropertyAssociationBox with the following entries:
· Item 1 associated with entries 1, 2, 3, 4, 5; all with essential set to 1.
· Optional item 2 associated with entries 2, 6, 7, 8; all with essential set to 1.
· ItemLocationBox with the following entries
· ID 1, with construction_method set to 1, offset set to alphaItemDataSize and length set to mainItemDataSize.
· Optional ID 2, with construction_method set to 1, offset set to 0 and length set to alphaItemDataSize
· Optional ID 3, with construction_method set to 1, offset set to mainItemDataSize+alphaItemDataSize, and length set to exifDataSize.
· Optional ID 4, with construction_method set to 1, offset set to mainItemDataSize+alphaItemDataSize+exifDataSize, and length set to xmpDataSize.
· ItemDataBox containing alphaData, mainData, exifData, and xmpData concatenated in that order.
When extended MetaBox is present in CondensedImageBox it may not contain:
· ItemInfoBox entries for items 1, 2, 3 and 4
· ItemLocationBox entries for items 1, 2, 3 and 4
· ItemLocationBox entries for other items using construction method 1
· HandlerBox
· DataInformationBox
· ItemDataBox
· PrimaryItemBox
· An alpha image item auxiliary to the primary item 1
If the extended MetaBox contains ItemPropertyContainerBox (inside ItemPropertiesBox), the following rules apply:
· All properties are appended to the ItemPropertyContainerBox in the extended MetaBox described above.
If the extended MetaBox contains ItemPropertyAssociationBox (inside ItemPropertiesBox), the following rules apply:
· All item property indices refer to the concatenated ItemPropertyContainerBox as synthesized from the CondensedImageBox and the extended MetaBox as described above.
· The CondensedImageBox will always create 8 item properties, so to refer to the first property in the extended MetaBox, ItemPropertyContainerBox, use index 9.
· Any entries for items 1, 2, 3, and 4 are merged into the entries in the extended MetaBox described above.
If the extended MetaBox contains ItemLocationBox, the following rules apply:
· File offsets are offsets in the real file and not in the synthesized file.

4.2.3.1.2 Syntax
aligned(8) class MinimizedImageBox extends Box('mini') {
	bit(2) version;
	sqlite_varint width_minus_one;
	sqlite_varint height_minus_one;
	// Colour and bit-depth
	bit(1) is_float;
	if (is_float) {
		bit(2) float_precision;
	}
	else {
		bit(4) bit_depth_minus_one;
	}
	bit(2) subsampling;
	if (subsampling >= 2) {
		bit(1) is_centered;
	}
	bit(1) full_range; // TBD integer based in CICP, exclude if float
	bit(2) colour_type;
	if (colour_type == 0) {
		colour_primaries = 1;
		transfer_characteristics = 13;
		matrix_coefficients = 6;
	}
	else if (colour_type == 1) {
		bit(5) colour_primaries;
		bit(5) transfer_characteristics;
		if (subsampling > 0) { // if not monochrome
			bit(5) matrix_coefficients;
		}
		else {
			matrix_coefficients = 2;
		}
	}
	else if (colour_type == 2) {
		bit(8) colour_primaries;
		bit(8) transfer_characteristics;
		if (subsampling > 0) { // if not monochrome
			bit(8) matrix_coefficients;
		}
		else {
			matrix_coefficients = 2;
		}
	}
	else {
		colour_primaries = 2;
		transfer_characteristics = 2;
		if (subsampling > 0) { // if not monochrome
			bit(8) matrix_coefficients;
		}
		else {
			matrix_coefficients = 2;
		}
		sqlite_varint icc_data_size_minus_one;
	}
	// Item metadata
	bit(1) has_explicit_codec_types;
	if (has_explicit_codec_types) {
		unsigned int(32) infe_type;
		unsigned int(32) codec_config_type;
	}
	sqlite_varint main_item_codec_config_size;
	sqlite_varint main_item_data_size_minus_one;
	// Other items
	bit(1) has_alpha;
	if (has_alpha) {
		bit(1) alpha_is_premultiplied;
		sqlite_varint alpha_item_codec_config_size;
		sqlite_varint alpha_item_data_size;
	}
	Boolean has_separate_alpha_item = has_alpha && alpha_item_data_size > 0;
	bit(1) has_extended_meta;
	if (has_extended_meta) {
		sqlite_varint extended_meta_size_minus_one;
	}
	bit(1) has_exif;
	if (has_exif) {
		sqlite_varint exif_data_size_minus_one;
	}
	bit(1) has_xmp;
	if (has_xmp) {
		sqlite_varint xmp_data_size_minus_one;
	}
	// Pad bits until byte-aligned
	trailing_bits();
	// Payload data
	// Codec config body data for alpha and main
	if (has_alpha && alpha_item_codec_config_size > 0) {
		unsigned int(8) alpha_item_codec_config[alpha_item_codec_config_size];
	}
	unsigned int(8) main_item_codec_config[main_item_codec_config_size];
	// Extended 'meta' box
	if (has_extended_meta) {
		unsigned int(8) extended_meta[extended_meta_size_minus_one + 1];
	}
	// ICC profile data
	if (colour_type == 3) {
		unsigned int(8) icc_data[icc_data_size_minus_one + 1];
	}
	// Alpha and main elementary stream payloads
	if (has_separate_alpha_item) {
		unsigned int(8) alpha_data[alpha_item_data_size];
	}
	unsigned int(8) main_data[main_item_data_size_minus_one + 1];
	// Metadata payloads
	if (has_exif) {
		unsigned int(8) exif_data[exif_data_size_minus_one + 1];
	}
	if (has_xmp) {
		unsigned int(8) xmp_data[xmp_data_size_minus_one + 1];
	}
}
aligned(8) class CondensedImageBox extends Box('coni') {
	bit(2) version;
	width = sqlite_varint() + 1;
	height = sqlite_varint() + 1;

	// Colour and bit-depth
	bit(1) isFloat;
	if (isFloat) {
		bit(2) floatPrecision; // 0==half-float, 1==float, 2==double, 3==?
	}
	else {
		bit(4) bitDepthMinusOne;
	}
	bit(1) isMonochrome;
	if (isMonochrome == 0) {
		bit(1) isSubsampled;
	}
	bit(1) fullRange;
	bit(2) colourType;
	if (colourType == 0) {
		// sRGB colour space
		colourPrimaries = 1;
		transferCharacteristics = 13;
		matrixCoefficients = 6;
	}
	else if (colourType == 1) {
		bit(5) colourPrimaries;
		bit(5) transferCharacteristics;
		bit(5) matrixCoefficients;
	}
	else if (colourType == 2) {
		bit(8) colourPrimaries;
		bit(8) transferCharacteristics;
		bit(8) matrixCoefficients;
	}
	else {
		bit(8) matrixCoefficients;
		iccDataSize = sqlite_varint();
	}

	// Item metadata
	bit(1) hasExplicitCodecTypes;
	if (hasExplicitCodecTypes) {
		unsigned int(32) infeType;
		unsigned int(32) codecConfigType;
	}
	mainItemCodecConfigSize = sqlite_varint();
	mainItemDataSize = sqlite_varint() + 1;

	// Other items
	bit(1) hasAlpha;
	if (hasAlpha) {
		// Alpha has the following requirements:
		// Same dimensions, bit depth, codec as main
		// Monochrome
		// If hasAlpha is 1 and alpha size is 0, it means that main image codec
		// supports interleaved alpha
		bit(1) alphaIsPremultiplied;
		alphaItemCodecConfigSize = sqlite_varint();
		alphaItemDataSize = sqlite_varint() + 1;
	}
	bit(1) hasExtendedMeta;
	if (hasExtendedMeta) {
		extendedMetaSize = sqlite_varint() + 1;
	}

	bit(1) hasExif;
	if (hasExif) {
		exifDataSize = sqlite_varint() + 1;
	}

	bit(1) hasXMP;
	if (hasXMP) {
		xmpDataSize = sqlite_varint() + 1;
	}

	// Pad bits until byte-aligned
	trailing_bits();

	// Actual data
	unsigned int(8) alphaItemCodecConfig[alphaItemCodecConfigSize]; // Codec config body data
	unsigned int(8) mainItemCodecConfig[mainItemCodecConfigSize]; // Codec config body data
	unsigned int(8) extendedMeta[extendedMetaSize]; // Embedded 'meta' box
	unsigned int(8) iccData[iccDataSize]; // ICC profile data
	unsigned int(8) alphaData[alphaItemDataSize]; // Alpha elementary stream
	unsigned int(8) mainData[mainItemDataSize]; // Main image elementary stream
	unsigned int(8) exifData[exifDataSize]; // Exif metadata
	unsigned int(8) xmpData[xmpDataSize]; // XMP metadata
}
4.2.3.1.3 Semantics
version:	 version of the MinimizedImageBox. The current version shall be set to 0.
width_minus_one: specifies the width minus one of the reconstructed image in pixels, as specified in ImageSpatialExtentsProperty in clause 6.5.3
height_minus_one: specifies the height minus one of the reconstructed image in pixels, as specified in ImageSpatialExtentsProperty in clause 6.5.3
is_float: specifies whether float_precision or bit_depth_minus_one is signalled. If is_float is set to 1, it indicates that the float_precision is signalled, otherwise bit_depth_minus_one is signalled.
float_precision: specifies the format of floating-point numbers used for the pixel values as defined by IEEE 754-2008. The values 0, 1, and 2 correspond to half-precision float (binary16), single-precision float (binary32), and double-precision float (binary64) formats, respectively. Other values are reserved for a future specification. When is_float is set to 0, the value is undefined.
bit_depth_minus_one: indicates the number of bits, minus one, per channel for the pixels of the reconstructed main and alpha image items, as specified in PixelInformationProperty in clause 6.5.6.
subsampling: when set to 0, indicates that there is exactly one channel of coded colour samples, as specified by the num_channels field of the PixelInformationProperty in clause 6.5.6. When set to a non-zero value it indicates that there are exactly three channels of coded colour samples. A value of 1 indicates that there is no subsampling of chroma (i.e. 4:4:4). A value of 2 indicates that chroma is subsampled by a factor 2 horizontally (i.e. 4:2:2). A value of 3 indicates that chroma is subsampled both horizontally and vertically by a factor 2 (i.e. 4:2:0).If has_alpha is 1 and alpha_item_codec_config_size is 0, the number of channels will be two and four respectively.
EDITORS NOTE: Add language to indicate how this translates to the newly proposed `pixi` that contains subsampling.
is_centered: 0 indicates that the chroma samples are co-located with the luma samples. A value of 1 indicates that the chroma samples are centered between the luma samples.
EDITORS NOTE: Add language to indicate how this translates to the newly proposed `pixi` that contains subsampling.
full_range: carries a VideoFullRangeFlag value as defined in ISO/IEC 23091-2
colour_type: specifies the colour encoding type. When set to 0 it indicates the default values of MIAF (1/13/6). When set to 1 or 2 it implies the on-screen colours as signalled in ColourInformationBox with colour_type='nclx'. When set to 3 it indicates that an ICC Profile and matrix coefficients are present.
colour_primaries: carries a ColourPrimaries value as defined in ISO/IEC 23091-2
transfer_characteristics: carries a TransferCharacteristics value as defined in ISO/IEC 23091-2
matrix_coefficients: carries a MatrixCoefficients value as defined in ISO/IEC 23091-2
icc_data_size_minus_one: specifies the size of ICC profile data minus one when the colour_type field indicates it is present in bytes. Undefined if the value of colour_type is not equal to 3.
has_explicit_codec_types: when set to 1 indicates that both infe_type and codec_config_type are explicitly signalled, otherwise their types are implied from the major_brand of the FileTypeBox. Shall be set to 1 if major_brand does not explicitly specify their default values.
infe_type: corresponds to the item_type field of the version 2 of the ItemInfoEntry box. Defined by the major brand if has_explicit_codec_types is set to 0.
codec_config_type: corresponds to the codec configuration box type. Defined by the major brand if has_explicit_codec_types is set to 0.
main_item_codec_config_size: specifies the size of the configuration for the main image item.
main_item_data_size_minus_one: specifies the size minus one of the data for the main image item in bytes.
has_alpha: when set to 0 indicates that the image is opaque, otherwise the image has an alpha layer, whether the codec has native translucency support or an auxiliary image item is used.
alpha_is_premultiplied: when set to 1 indicates that main values are pre-multiplied by alpha, otherwise main values are not pre-multiplied.
alpha_item_codec_config_size: specifies the size of the configuration for the alpha image item in bytes. When set to 0 indicates that the codec does not need any configuration data for alpha or can reuse the one from the main image. The value is set to 0 if has_alpha is 0.
alpha_item_data_size: specifies the size of the data for the alpha image item in bytes. If has_alpha is set to 1, the value 0 indicates that the codec has native translucency support and that the alpha samples are coded alongside the colour samples in the main_data chunk. Zero if has_alpha is not set to 1.
has_extended_meta: when set to 1 indicates the presence of extended metadata within the MinimizedImageBox, otherwise it indicates the absence of it.
extended_meta_size_minus_one: specifies the size minus one of the extended metadata in bytes. Undefined if has_extended_meta is not set to 1.
has_exif: when set to 1 indicates the presence of an Exif metadata chunk, otherwise it indicates the absence of it.
exif_data_size_minus_one: specifies the size minus one of the Exif metadata in bytes. Undefined if has_exif is not set to 1.
has_xmp: when set to 1 indicates the presence of an XMP metadata chunk, otherwise it indicates the absence of it.
xmp_data_size_minus_one: specifies the size minus one of the XMP metadata in bytes. Undefined if has_xmp is not set to 1.
trailing_bits: padding bits to ensure payloads are 8-bit aligned. Shall be 0.
alpha_item_codec_config: specifies the optional alpha image codec configuration data. When has_alpha is set to 0 or alpha_item_codec_config_size is 0, alpha_item_codec_config is not present.
main_item_codec_config: specifies the main image item codec configuration data. When main_item_codec_config_size is 0, main_item_codec_config is not present.
extended_meta: specifies the extended metadata that may be optionally included within a file. When the has_extended_meta flag is set to 0, the extended_meta field is not present. Conversely, if the extended_meta is present within a file, the readers shall support and correctly process the extended_meta field.	Comment by Dimitri Podborski: http://mpeg.expert/software/MPEG/Systems/FileFormat/HEIF/-/issues/106#note_84684
icc_data: specifies the optional ICC profile data. When colour_type is not set to 3 icc_data is not present.
alpha_data: specifies the optional alpha image data. When has_alpha is set to 0 or alpha_item_data_size is 0, alpha_data is not present.
main_data: specifies the main image data.
exif_data: specifies the optional Exif metadata. When has_exif is set to 0 exif_data is not present.
xmp_data: specifies the optional XMP metadata. When has_xmp is set to 0 xmp_data is not present. version:	 version of the CondensedImageBox. The current version shall be set to 0.
width: specifies the width of the reconstructed image in pixels, as specified in ImageSpatialExtentsProperty in clause 6.5.3
height: specifies the height of the reconstructed image in pixels, as specified in ImageSpatialExtentsProperty in clause 6.5.3
isFloat: specifies whether floatPrecision or bitDepthMinusOne are signalled. If isFloat is set to 1 indicates that the floatPrecision is signalled, otherwise bitDepthMinusOne is signalled.
floatPrecision: specifies the format of floating-point numbers used for the pixel values as defined by IEEE 754-2008. The values 0, 1, and 2 correspond to half-precision float (binary16), single-precision float (binary32), and double-precision float (binary64) formats, respectively. Other values are reserved for a future specification. When isFloat is set to 0, the value is undefined.
bitDepthMinusOne: plus 1 indicates the maximum number of bits per channel for the pixels of the reconstructed image of every associated image item.
isMonochrome: when set to 1 indicates that there is exactly one channel of coded colour samples, otherwise there are exactly three channels of coded colour samples.
isSubsampled: 0 indicates that there is the same number of samples in each colour channel. 1 indicates that the chroma planes are subsampled compared to the luma plane (4:2:0). Set to 0 if isMonochrome is 1. The meaning of the value of isSubsampled shall match the contents of the mainItemCodecConfig.
fullRange: carries a VideoFullRangeFlag value as defined in ISO/IEC 23091-2
colourType: specifies the colour encoding type. When set to 0 indicates sRGB. When set to 1 or 2 it implies the on-screen colours as signalled in ColourInformationBox with colour_type='nclx'. When set to 3 it indicates that an ICC Profile is present.
colourPrimaries: carries a ColourPrimaries value as defined in ISO/IEC 23091-2
transferCharacteristics: carries a TransferCharacteristics value as defined in ISO/IEC 23091-2
matrixCoefficients: carries a MatrixCoefficients value as defined in ISO/IEC 23091-2
iccDataSize: specifies the size of ICC profile data when the colourType field indicates it is present in bytes. Set to 0 unless colourType is 3.
hasExplicitCodecTypes: when set to 1 indicates that both infeType and codecConfigType are explicitly signalled, otherwise their types are implied from the major_brand of the FileTypeBox.
infeType: corresponds to the item_type field of the version 2 of the ItemInfoEntry box. Defined by the major brand if hasExplicitCodecTypes is set to 0.
codecConfigType: corresponds to the codec configuration box type. Defined by the major brand if hasExplicitCodecTypes is set to 0.
mainItemCodecConfigSize: specifies the size of the configuration for the main image item.
mainItemDataSize: specifies the size of the data for the main image item in bytes.
hasAlpha: when set to 0 indicates that the image is opaque, otherwise the image has an alpha layer, whether the codec has native translucency support or an auxiliary image item is used.
alphaIsPremultiplied: when set to 1 indicates that alpha values are pre-multiplied, otherwise alpha values are not pre-multiplied.
alphaItemCodecConfigSize: specifies the size of the configuration for the alpha image item in bytes. When set to 0 indicates that the codec does not need any configuration data for alpha or can reuse the one from the main image. The value is set to 0 if hasAlpha is 0. The value shall be 0 if alphaItemDataSize is 0.
alphaItemDataSize: specifies the size of the data for the alpha image item in bytes. If hasAlpha is set to 1, the value 0 indicates that the codec has native translucency support and that the alpha samples are coded alongside the colour samples in the mainData chunk. Shall be set to 0 if hasAlpha is 0.
hasExtendedMeta: when set to 1 indicates the presence of an extended MetaBox within the CondensedImageBox, otherwise it indicates the absence of it.
extendedMetaSize: specifies the size of the extended metadata in bytes.
hasExif: when set to 1 indicates the presence of an Exif metadata chunk, otherwise it indicates the absence of it.
exifDataSize: specifies the size of the Exif metadata in bytes.
hasXMP: when set to 1 indicates the presence of an XMP metadata chunk, otherwise it indicates the absence of it.
xmpDataSize: specifies the size of the XMP metadata in bytes.
trailing_bits: shall be 0.
alphaItemCodecConfig: specifies the optional alpha image codec configuration data. When hasAlpha is set to 0 alphaItemCodecConfig is not present.
mainItemCodecConfig: specifies the main image item codec configuration data.
extendedMeta: specifies the optional extended metadata. When hasExtendedMeta is set to 0, extendedMeta is not present.
iccData: specifies the optional ICC profile data. When colourType is not set to 3 iccData is not present.
alphaData: specifies the optional alpha image data. When hasAlpha is set to 0 alphaData is not present.
mainData: specifies the main image data.
exifData: specifies the optional Exif metadata. When hasExif is set to 0 exifData is not present.
xmpData: specifies the optional XMP metadata. When hasXMP is set to 0 xmpData is not present.

The data type sqlite_varint() function will also need to be defined in HEIF. Its original definition can be found here. However, https://www.sqlite.org/src4/doc/trunk/www/varint.wikiit was noted that its definition could be further modified to better suit the use-case for SlimHEIF and its initial design could look like this:
aligned(8) class SQLiteSlimVarInt {
	unsigned int(8) a0;
	if(a0 > 245) {
		unsigned int(8) a1;
	}
	if(a0 > 253) {
		unsigned int(8) ax[a0-253]; // 1 or 2 bytes
	}
	// the following is non parsable stuff to show how to compute size
	int outputValue = 0; // non-parable variable
	switch(a0) {
		case 0 ... 245:
			outputValue = a0;
			break;
		case 246 ... 253:
			outputValue = 246+256*(a0-246)+a1;
			break;
		case 254:
			outputValue = 2294+256*a1+ax[0];
			break;
		case 255:
			outputValue = a1<<16 + ax[0]<<8 + ax[1];
			break;
	}
};
The SlimHEIF optimized version of sqlite_varint can be determined based on the following data gathered from the web images. For all fields where sqlite_varint is used we find the following values for the sizes of the fields:

[image:]
Figure 1: Results on 429 curated PNGs with various natural and artificial contents
[image: A screenshot of a white table

Description automatically generated]
Figure 2: Results on 50k PNGs from the Web
[image: A screenshot of a white table

Description automatically generated]
Figure 3: Results on 100k JPEGs from the Web
extended_meta is likely used for EXIF rotation only.	Comment by Dimitri Podborski: Yannis: If Exif is only here for that, it should be replaced by an 'irot' box. Maybe add a precision towards ignoring extended_meta stats here
*among non-zero values
Based on this the optimized allocation of bits in SQLiteSlimVarInt can be determined.

x.x.x.4	extended_meta payload requirements
The extended_meta payload may contain any of the boxes normally allowed in a file-level MetaBox with the following restrictions:
· It shall have no HandlerBox
· It shall have no DataInformationBox
· It shall have no ItemDataBox
· It shall have no ItemInfoBox entries for items 1 to 16
· It shall not have ItemPropertyAssociationBox box entries for items 1 to 16 that add associations to item property indices 1 to 16.
· It may have an ItemLocationBox. If present, any offsets specified shall be offsets in the actual file, not after applying 1.1.1.5 MetaBox equivalence.
· It shall have no ItemLocationBox entries for items 1 to 16
· It shall have no ItemLocationBox entries for other items using construction method 1.
It shall have no ItemReferenceBox entry that adds an alpha auxiliary item to item 1.
x.x.x.5	MetaBox equivalence
A MinimizedImageBox has a one-to-one mapping to a full MetaBox. This means that parsers processing a MinimizedImageBox shall treat it as if it was replaced by this equivalent full MetaBox.
This expanded MetaBox shall have version = 0 and flags = 0. The expanded MetaBox shall have the sub-boxes described by the following sections.
1. HandlerBox
The expanded MetaBox shall have a HandlerBox with handler_type equal to 'pict'.
0. PrimaryItemBox
If extended_meta contains a PrimaryItemBox, this box is used in the expanded MetaBox.
If no such box is present, the expanded MetaBox shall have a PrimaryItemBox with item_ID set to 1.
0. ItemInfoBox
The expanded MetaBox shall have an ItemInfoBox containing the following entries:
· ItemInfoEntry of version 2 with item_ID set to 1 and item_type set to infe_type. All other fields are set to null or 0 as appropriate.
· If has_separate_alpha_item is 1, ItemInfoEntry with item_ID set to 2 and item_type set to infe_type. All other fields are set to null or 0 as appropriate.
· If has_exif is 1, ItemInfoEntry with item_ID set to 3 and item_type set to Exif. All other fields are set to null or 0 as appropriate.
· If has_xmp is 1, ItemInfoEntry with item_ID set to 4 and item_type set to mime and content_type set to 'application/rdf+xml'. All other fields are set to null or 0 as appropriate.
If extended_meta contains an ItemInfoBox, its entries shall be appended to the entries described above.
0. ItemReferenceBox
The ItemReferenceBox is populated with the following entries:
· If ItemInfoBox has an entry for item_ID 2: Item type reference with referenceType set to 'auxl', reference_count set to 1, from_item_ID set to 2 and to_item_ID set to 1.
· If ItemInfoBox has an entry for item_ID 2 and alpha_is_premultiplied is set to 1: Item type reference with referenceType set to 'prem', reference_count set to 1, from_item_ID set to 1 and to_item_ID set to 2.
· If ItemInfoBox has an entry for item_ID 3: item type reference with referenceType set to 'cdsc', reference_count set to 1, from_item_ID set to 3 and to_item_ID set to 1.
· If ItemInfoBox has an entry for item_ID 4: item type reference with referenceType set to 'cdsc', reference_count set to 1, from_item_ID set to 4 and to_item_ID set to 1.
If extended_meta contains an ItemReferenceBox, its entries shall be appended to the entries described above.
If the resulting ItemReferenceBox contains at least one entry, it shall be added to the expanded MetaBox. An empty ItemReferenceBox shall be ignored.
0. ItemPropertiesBox
The expanded MetaBox shall have an ItemPropertiesBox containing an ItemPropertyContainerBox and an ItemPropertyAssociationBox.

The ItemPropertyContainerBox shall have 16 entries as listed below. Any entry for which the condition is not true is replaced with a FreeSpaceBox.

	Entry
	Condition
	Contents

	1
	main_item_codec_config_size is not 0
	Item property with the type set to codec_config_type and with contents from main_item_codec_config

	2
	true
	ImageSpatialExtentsProperty with image_width set to width_minus_one + 1 and image_height set to height_minus_one + 1 from the MinimizedImageBox

	3
	is_float is 0
	PixelInformationProperty with num_channels set to
· 1 if is_monochrome is 1
· 3 otherwise
and bits_per_channels set to bit_depth_minus_one+1.
NOTE: This should be updated once we have an accepted proposal for GitHub issues #69 and #70.

	4
	true
	ColourInformationBox with colour_type set to 'nclx' and colour_primaries, transfer_characteristics, matrix_coefficients and full_range set to the values from the MinimizedImageBox.

	5
	colour_type is 3
	ColourInformationBox with the colour_type set to 'prof' and with ICC_profile contents being icc_data

	6
	has_separate_alpha_item is true and alpha_item_codec_config_size is not 0
	Item property with the type set to codec_config_type and with contents from alpha_item_codec_config

	7
	has_separate_alpha_item is true
	AuxiliaryTypeProperty with aux_type set to urn:mpeg:mpegB:cicp:systems:auxiliary:alpha.

	8
	has_separate_alpha_item is true and is_float is 0
	PixelInformationProperty with num_channels set to 1 and bits_per_channels set to bit_depth_minus_one+1.
NOTE: This should be updated once we have an accepted proposal for GitHub issues #69.

	9
	false
	Reserved

	10
	false
	Reserved

	11
	false
	Reserved

	12
	false
	Reserved

	13
	false
	Reserved

	14
	false
	Reserved

	15
	false
	Reserved

	16
	false
	Reserved

If extended_meta contains an ItemPropertyContainerBox inside an ItemPropertiesBox its entries shall be appended to the entries described above.

The ItemPropertyAssociationBox shall have the entries below. Any association to a FreeSpaceBox shall be dropped.
· Item 1 shall be associated with ItemPropertyContainerBox entries:
· 1, essential
· 2, non-essential
· 3, non-essential
· 4, essential
· 5, essential
· If has_separate_alpha_item is true, item 2 shall be associated with ItemPropertyContainerBox entries:
· 6, essential
· 2, non-essential
· 7, essential
· 8, non-essential
If extended_meta contains an ItemPropertyAssociationBox inside an ItemPropertiesBox, associations for items 1 and 2 shall be appended to the respective entries above, while entries for other items shall be appended as separate entries.
0. ItemLocationBox
The expanded MetaBox shall have an ItemLocationBox of version 1 or version 2 containing the following entries:
· item_ID 1, with construction_method set to 1, offset set to alpha_item_data_size and length set to main_item_data_size_minus_one+1.
· Optional item_ID 2, with construction_method set to 1, offset set to 0 and length set to alpha_item_data_size.
· Optional item_ID 3, with construction_method set to 1, offset set to main_item_data_size_minus_one+1+alpha_item_data_size, and length set to exif_data_size_minus_one+1.
· Optional item_ID 4, with construction_method set to 1, offset set to main_item_data_size_minus_one+1+alpha_item_data_size+exif_data_size_minus_one+1, and length set to xmp_data_size_minus_one+1.
If extended_meta contains an ItemLocationBox, its entries shall be appended to the entries above.
0. ItemDataBox
The expanded MetaBox shall have an ItemDataBox containing alpha_data, main_data, exif_data, and xmp_data concatenated in that order.
0. Other boxes
Other boxes present in the extended_meta that are not explicitly mentioned in the sections above shall be appended as is to the expanded MetaBox.

4.2.4 Alternatives considered
New container format
One of the main use-cases triggering this proposal was specifically for use on the web. The web community did not want a new special-purpose container format.
Providing default values for boxes in 'meta'
There are a number of boxes in HEIF that could be dropped if provided with default values. Examples are PrimaryItemBox, DataInformationBox and others. This was explored, but did not give enough gains.
HEIF as it is currently written is heavily optimized for many items that share properties. This is great for complicated files, but causes severe overhead for single-item files.
Many of the item properties are also written to be optimized for flexibility and extensibility rather than small size. As an example, ImageSpatialExtentsProperty is a FullBox with 32-bit integers for width and height. This means it requires 20 bytes to specify the dimensions of an item, which is a significant number of bytes if the payload itself is only 100 bytes.
The solution to this is to create a new dedicated box with variable length fields. Storing the actual payloads inside this box allows us to get rid of the 8-bytes required for a separate ItemDataBox or MediaDataBox. This also allowed us to mandate a strict payload order within the box, which is one of the features requested for the web in order to make streamed decoding better.
Codec-specific solutions
Various codec-specific solutions were considered, where the specification would instead document how various missing boxes in the MetaBox should be populated directly from the elementary stream. This had a number of drawbacks:
· It was not codec-agnostic and could only be used by a codec that fully specified how these boxes should be populated. A significant amount of work was needed for any new codec/spec that wanted to adopt it.
· It had a number of tricky edge-cases where certain information was ambiguous and hard to fully document in the specification.
uleb128 rather than sqlite_varint for variable length integers
If uleb128 is used instead of sqlite_varint, we would need one extra byte for any range between 128 and 240. uleb128 is more efficient for larger numbers, but for those the difference is less important. sqlite_varint is used to aggressively optimize for minimal file-size.
4.2.5 Examples
[image: A screenshot of a computer program

Description automatically generated]
Figure 4: Opaque item 8-bit sRGB HEIC
[image: A screenshot of a computer

Description automatically generated]
Figure 5: 8-bit sRGB HEIC with pre-multiplied alpha and extended_meta

5 References
[1] [bookmark: _heading=h.lnxbz9]ISO/IEC 23008-12, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 12: Image File Format
[2] [bookmark: _heading=h.35nkun2]ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format
[3] [bookmark: _heading=h.1ksv4uv]SMPTE ST 2113(2019), Colorimetry of P3 Color Spaces
[4] [bookmark: _heading=h.44sinio]MPEGGroup/Fileformat GitHub issue tracker, “HEIF needs a reduced header mode”, https://github.com/MPEGGroup/FileFormat/issues/59
[5] ISO/IEC 23091-2:2019: Information technology — Coding-independent code points — Part 2: Video
[6] [bookmark: _Ref149872498]Requirements for still image coding using HEVC, w13823

image2.png

image3.png

image4.png

image5.png

image6.png

image1.jpg

