
[image:]ISO/IEC JTC 1/SC 29/WG 03 N1058

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Technology under Consideration on ISO/IEC 23008-12
Status:	Approved
Date of document:	2023-10-31
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	25 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N1058
October 2023 – Hannover, DE
	Title
	Technology under Consideration on ISO/IEC 23008-12

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	23211

Abstract
This document collects following candidate technologies for the High Efficiency Image File Format (HEIF) (ISO/IEC 23008-12).

Table of Contents
1	Region annotations for image sequence or video tracks	3
1.1	Region extrapolation (from m60304, MPEG#139, Issue#76)	3
1.1.1	Overview	3
1.1.2	Text Proposal	3
1.2	Region interpolation (from m59508, MPEG#138, Issue#69 comment#60556)	6
1.2.1	Text Proposal	6
1.2.2	Discussion	7
2	Region annotation for image items	7
2.1	Combination of regions (from m62028, MPEG#141, Issue#88)	7
2.1.1	Summary/Motivation	7
2.1.2	Text Proposals	8
3	Matrix-based transformation for image items	9
4	Signaling for pre-derived coded image items	9
5	On HDR signaling alignment with ISO 22028-5 (from m62055, MPEG#141, Issue#86)	9
5.1	Motivation	9
5.2	Text proposal	10
6	On MPEG/JPEG file embedding (MPEG#141, Issue#87)	12
6.1	Discussion	12
6.2	Initial text proposal	12
7	Extending pixi for more use-cases (MPEG#143-144, Issue#95 and #109)	12
7.1	Pixel information	12
7.1.1	Definition	12
7.1.2	Syntax	13
7.1.3	Semantics	13
8	Derived item for 4:4:4 upsampling (MPEG #144, issue #110)	14
8.1	Introduction	14
8.2	Proposed solution	17
9	Disparity adjustment property for frame-packed stereo pair (MPEG #144, issue #111)	19
10	Region Partition Group (MPEG #144, issue #115)	19
10.1	Introduction	19
10.2	Region Partition Group	19
10.2.1	Overview	19
10.2.2	Syntax	21
10.2.3	Semantics	21

[bookmark: _Toc149852141]Region annotations for image sequence or video tracks
[bookmark: _Toc126167291][bookmark: _Toc126167485][bookmark: _Toc126167641][bookmark: _Toc126242549][bookmark: _Toc134701512][bookmark: _Toc142008468][bookmark: _Toc142011499][bookmark: _Toc142013214][bookmark: _Toc142013272][bookmark: _Toc126167292][bookmark: _Toc126167486][bookmark: _Toc126167642][bookmark: _Toc126242550][bookmark: _Toc134701513][bookmark: _Toc142008469][bookmark: _Toc142011500][bookmark: _Toc142013215][bookmark: _Toc142013273][bookmark: _Toc117776781][bookmark: _Toc149852142]Region extrapolation (from m60304, MPEG#139, Issue#76)
[bookmark: _Toc117776782][bookmark: _Toc149852143]Overview
[image: A black background with white squares

Description automatically generated]
[bookmark: _Ref126163915]Figure 1: example region description for tracks using extrapolation
Figure 1 shows an example of describing several regions using extrapolation. The video track shown at the top contains two regions, an elliptic one and a rectangular one. The elliptic one is present in the four first samples of the video track and moves to the right of the image. The rectangular one is present in all the samples of the video track and moves to the left of the image.
The region track shown at the bottom describes these two regions. In a first sample, corresponding to the first sample of the video track, these two regions are described with their positions and sizes and the evolution of their respective positions and sizes. There are no region samples corresponding to the three following video samples. The region sample corresponding to the fifth video sample signals that the interpolation of the elliptic region ends.
[bookmark: _Toc149852144]Text Proposal
Update the definition of a region track (section 7.5.4.1) by adding the following paragraphs:
The geometry of a region may be defined by specifying the shape, position and size of the region in a sample of the region track. The geometry of a region may also be defined as an initial geometry and its evolution over time by specifying the initial geometry of the region and its evolution in a sample of the region track.
The evolution of a region over time is optional. It can be represented by the evolution speed of some of its parameters inside the reference space. The evolution speed of the parameters is signaled using a scaling factor for increasing its precision. The parameters defining the evolution of a region depend on the geometry of the region as follows:
—	When the geometry of a region is represented by a point, the evolution of the region is defined by the evolution of the position of this point.
—	When the geometry of a region is represented by a rectangle or an ellipse, the evolution of the region is defined by the evolution of the position and the size of the rectangle or ellipse.
—	When the geometry of a region is represented by a polygon or a polyline, the evolution of the region is defined by the evolution of the position of each point of the polygon or polyline. The number of points in the polygon or polyline doesn’t change.
—	When the geometry of a region is represented by a mask, the evolution of the region is defined by the evolution of the position of the mask.
The evolution of a region stops when another sample contains a region with the same region identifier. The evolution of a region shall stop for each sync sample of the source track.
[bookmark: _Hlk126164031]Update the Sample format (section 7.5.4.2.1) with the following paragraph
[bookmark: _Hlk126164078][bookmark: _Hlk108189017]When the extrapolate flag is set to 1 for a region inside a sample of a region track, the region is an evolving region defined by an initial geometry and its evolution over time.
The value of each evolving parameter defining the geometry of the region at a given composition time T can be computed as follows:

where:
· [bookmark: _Hlk108189803]param0 is the initial value of the parameter as defined in the initial geometry of the region at time T0.
· Δparam is the evolution of the parameter as defined in the evolution of the region.
· evolution_scale is a scaling factor for the evolution values equal to , where is the field_size and is equal to ((RegionTrackConfigBox.field_length_size & 1) + 1) * 16.
· T0 is the composition time of the sample defining the evolving region.
· ΔT is the duration of the sample defining the evolving region.
Update the syntax of Sample format (section 7.5.4.2.2) as follows
aligned (8) class RegionSample {
	unsigned int field_size = ((RegionTrackConfigBox.field_length_size & 1) + 1) * 16;
// this is a temporary, non-parsable variable
	unsigned int(32) region_count;
	for (r=0; r < region_count; r++) {
		unsigned int(32) region_identifier;
		unsigned int(8) geometry_type;
		unsigned int(1) extrapolate;
		unsigned int(7) reserved;
		if (geometry_type == 0) {
			// point
			signed int(field_size) x;
			signed int(field_size) y;
			if (extrapolate == 1) {
				signed int(field_size) delta_x;
				signed int(field_size) delta_y;
			}
		}
		else if (geometry_type == 1) {
			// rectangle
			signed int(field_size) x;
			signed int(field_size) y;
			unsigned int(field_size) width;
			unsigned int(field_size) height;
			if (extrapolate == 1) {
				signed int(field_size) delta_x;
				signed int(field_size) delta_y;
				signed int(field_size) delta_width;
				signed int(field_size) delta_height;
			}
		}
		else if (geometry_type == 2) {
			// ellipse
			signed int(field_size) x;
			signed int(field_size) y;
			unsigned int(field_size) radius_x;
			unsigned int(field_size) radius_y;
			if (extrapolate == 1) {
				signed int(field_size) delta_x;
				signed int(field_size) delta_y;
				signed int(field_size) delta_radius_x;
				signed int(field_size) delta_radius_y;
			}
		}
		else if (geometry_type == 3 || geometry_type == 6) {
			// polygon or polyline
			unsigned int(field size) point_count;
			for (i=0; i < point_count; i++) {
				signed int(field_size) px;
				signed int(field_size) py;
			}
			if (extrapolate == 1) {
				for (i=0; i < point_count; i++) {
					signed int(field_size) delta_px;
					signed int(field_size) delta_py;
				}
			}
		}
		else if (geometry_type == 4) {
			// referenced mask
			signed int(field_size) x;
			signed int(field_size) y;
			unsigned int(field_size) width;
			unsigned int(field_size) height;
			unsigned int(field_size) track_mask_idx;
			if (extrapolate == 1) {
				signed int(field_size) delta_x;
				signed int(field_size) delta_y;
			}
		}
		else if (geometry_type == 5) {
			// inline mask
			signed int(field_size) x;
			signed int(field_size) y;
			unsigned int(field_size) width;
			unsigned int(field_size) height;
			unsigned int(8) mask_coding_method;
			if (mask_coding_method != 0)
				unsigned int(32) mask_coding_parameters;
			bit(8) data[];
			if (extrapolate == 1) {
				signed int(field_size) delta_x;
				signed int(field_size) delta_y;
			}
		}
		else if (geometry_type == 7) {
			// empty region
		}
	}
}
Update the semantics of Sample format (section 7.5.4.2.3) with the following text:
7: the region is an empty region used for signalling the end of the evolution of a previous region with the same region identifier.
Other values are reserved.
extrapolate is a flag indicating whether the geometry changes of the region are specified or not. When equal to 0, it indicates that no geometry changes are specified for the region. When equal to 1, it indicates that both the geometry and the geometry changes are specified for the region.
(…)
evolution_scale is the scaling factor for the specification of the evolution values, equal to , where is the field_size and is equal to ((RegionTrackConfigBox.field_length_size & 1) + 1) * 16.
delta_x, delta_y specify, in 1/evolution_scale units of the reference space, the evolution of the x and y fields for the region.
delta_width, delta_height specify, in 1/evolution_scale units of the reference space the evolution of the width and height fields for the region.
delta_radius_x, delta_radius_y specify, in 1/evolution_scale units of the reference space the evolution of the radius_x and radius_y fields for the region.
delta_px, delta_py specify, in 1/evolution_scale units of the reference space the evolution of the px, py fields for a point of the region.

[bookmark: _Toc149852145]Region interpolation (from m59508, MPEG#138, Issue#69 comment#60556)
[Ed. (FD)This section only contains parts of the contribution requiring further discussion, i.e., the interpolate flag in sample format for region tracks]
[bookmark: _Toc149852146]Text Proposal
X.X Region track and region annotations for an image sequence or video track
X.X.3 Sample format
X.X.3.1 Definition
[bookmark: _Hlk98949953]This subclause defines the sample format for region track. A sample of a region track defines one or more regions.
X.X.3.2 Syntax
[bookmark: _Hlk98949969]aligned (8) class RegionSample {
	unsigned int field_size = ((RegionTrackConfigBox.field_length_size & 1) + 1) * 16;
// this is a temporary, non-parsable variable
	unsigned int(7)reserved;
	unsigned int(1)interpolate;
	unsigned int(16) region_count;
	for (r=0; r < region_count; r++) {
		(…)
	}
}
X.X.3.3 Semantics
[bookmark: _Hlk98949990]interpolate indicates the continuity in time of the successive samples. When true, the application may linearly interpolate values of the region geometries between the previous sample and the current sample. When false, there shall not be any interpolation of values between the previous and the current samples.
NOTE 1	When using interpolation, it is expected that the interpolated samples match the presentation time of the samples in the referenced source track. For instance, for each video sample of a video track, one interpolated region sample is calculated.
(…)
[bookmark: _Toc149852147]Discussion
About the interpolate flag: The purpose is to avoid declaring a sample in the region track for each sample of the media track when regions are moving linearly between two positions. Imagine a sample A in the region track with a region at a starting position A and this region is moving linearly to the arrival position B nine samples later. Instead of declaring ten samples in the region track, you can only declare two samples, sample A with a duration corresponding to nine samples in the media track, followed by sample B providing the arrival position B. We should clarify that since the interpolate flag applies to all regions in the sample, the number of regions shall be the same in sample A and B.
[bookmark: _Toc149852148]Region annotation for image items
[bookmark: _Toc149852149]Combination of regions (from m62028, MPEG#141, Issue#88)
[bookmark: _Toc149852150]Summary/Motivation
This contribution proposes two extensions for region annotation feature:
1. The ability to associate annotations to a region defined as the union of several regions
A new type of derived region item (items 100 and 101 in Figure 1) is defined to allow grouping several regions to signal that those regions are part of a group and to be able to annotate this group as a whole (e.g. these persons are part of the same family)
2. The ability to indicate a relation between several regions
A new type of entityToGroup is defined to allow signaling that a region item (person in figure 2 below) represents/covers an area including several other regions (as an aggregation) (left arm, right leg, etc...). In terms of geometry, the inclusion does not need to be total.
	[image:]
	[image:]

	Figure 1 - Example of union of regions
	Figure 2 – Example of inclusion relationship

[bookmark: _Toc149852151]Text Proposals
Proposal 1: Union of regions
Add the following section in section 6.11 Derived region items
6.11.2.2 Union derivation
[bookmark: _Hlk114657934]An item with an item_type value of 'cbrg' defines a derived region item that corresponds to the union of all the regions represented by one or more input region items.
The input region items are specified in a SingleItemTypeReferenceBox of type 'drgn' for this derived region item within the ItemReferenceBox. In the SingleItemTypeReferenceBox of type 'drgn', the value of from_item_ID identifies the derived region item of type 'cbrg' and the values of to_item_ID identify the input region items.
The union derived region item is associated with the image item inside which the regions are defined using an item reference of type 'cdsc' from the union derived region item to the image item.
The region resulting from this derived region item is the union of all the regions of each input region item after being applied to the referenced image item as specified in 6.10.1.1.
Proposal 2: relations between region items
Add the following section in section 6.10 Region items and region annotations
6.10.4 Region Entity Group
6.10.4.1 'corg' Entity Group
[bookmark: _Hlk114666628]A compound region entity group ('corg') associates one main region item with one or more region items. It indicates an inclusion relationship between a main object covered by regions of a main entity and other objects covered by regions described by one or more other entities, the main object logically including the other objects.
NOTE	For example, a compound region entity group can be used to associate a main region corresponding to a car with regions corresponding to wheels to indicate that the car is logically including the wheels.
The entities in a compound region entity group shall be region items. The number of entities in a compound region entity group shall be at least 2. The first entity_id value shall indicate the main region item. It indicates the region covering the main object that is logically including the objects covered by the regions described by the second and following entity_ids.
This inclusion relationship does not convey information at the geometry level. A main region signalled as including others regions by a compound entity group may or may not geometrically include the other regions.
[[Ed. (FM): MPEG#141: it was questioned:
· Can the Figure 1 in the proposal be achieved for example using mask items where all the regions belonging to a group is part of the mask item.
· Is there a restriction for any of the proposals that the separate regions must all be derived from a single image item?”]]
[bookmark: _Toc149852152]Matrix-based transformation for image items
[[Ed. (FD): MPEG#129: it was questioned:” Should we also add ‘matrix’ as an image derivation in the HEIF? “. It was warned that “We would need to be clear about the meaning of outputs that don’t have horizontal and vertical sides; if that’s overlaid, the meaning is clear, but what if it’s supposed to be displayed?”]]
[bookmark: _Toc149852153]Signaling for pre-derived coded image items
Replace the clause 6.4.7 with the following text:
[bookmark: _Toc519868514]6.4.7	Pre-derived coded images
[Ed. (FD): In the following, differences with HEIF 2nd edition (w18310) are highlighted in blue]
If a coded image has been derived from others — for example, a composite HDR image derived from exposure-bracketed individual images, or a panorama derived from a set of images — then it shall be linked to those images by item references of type 'base'. Item references may be from the coded image to all images it derives from, or when unique IDs are used, from the coded image to all entity groups or images it derives from. When unique IDs are used, a to_item_ID value in the SingleItemTypeReferenceBox or SingleItemTypeReferenceBoxLarge is resolved to an item identifier whenever the embedding MetaBox contains an item with such identifier, and is resolved to an entity group identifier otherwise.
An image item including a 'base' item reference is referred to as a pre-derived coded image.
NOTE	In this version of this document, the exact derivation process used to produce the image is not described.
[[Ed. (FD): At MPEG#129, it was commented that “The slight snag here is defining what it means when the entity group does NOT imply a single output (e.g. a slide show); what does pre-derivation mean?]]

Add the following clause as section 6.4.7.1:
6.4.7.1 Signaling of the derivation method for pre-derived coded image items
A pre-derived coded image shall be linked to images it derives from by an item reference of type 'base' to the entity group containing all images the pre-derived coded images derives from. The grouping_type of the EntityToGroupBox specifies the purpose of grouping and implicitly signals the type of the derivation operation which was applied to generate the pre-derived coded image.
[[Ed. (FM): At MPEG#126, it was commented that “we somehow need to indicate the derivation operation, rather than the nature of the input set”]]
[[Ed. (FD): At MPEG#129, it was commented that “We could allow a pre-derivation of the implied derivation of that entity group.”]]
[bookmark: _Toc149852154]On HDR signaling alignment with ISO 22028-5 (from m62055, MPEG#141, Issue#86)
[bookmark: _Toc149852155]Motivation
ISO TC42 is developing specification ISO 22028-5 [1], which defines a set of colour image encodings for use in storage, transmission, and display of HDR and WCG digital still images. The purpose of this proposal is to initiate the alignment process with the definitions from the ISO 22028-5 and to provide the signaling for the related metadata at MPEG.
Reference viewing environment metadata
To properly interpret the color appearance of images encoded in a color image encoding, ISO 22028-1 specifies the reference image viewing environment that can be used to provide context for interpreting the intended color appearance of the encoded image colorimetry.
For cases where the image is to be viewed in an actual viewing environment significantly different than the specified reference image viewing environment, it might be desirable to use a colour appearance transform to determine corresponding image colorimetry that would produce the intended colour appearance in the actual viewing environment.
ISO 22028-5 [1] specifies parameters to establish a reference viewing environment in which images with display viewing colorimetry are intended to be viewed. These parameters include luminance of surround and periphery as well as color temperature of both.
Nominal diffuse white luminance
This data might be used by tone mapping algorithms at display time, to compensate differences between the reference display and the display of the user.
Additional metadata
Additional metadata for handling new transfer characteristics will also need to be defined as indicated in [2].
1. [bookmark: _Ref116506941]ISO TC 42/WG 23, TS 22028-5 "Photography and graphic technology — Extended colour encodings for digital image storage, manipulation and interchange — Part 5: High dynamic range and wide colour gamut image encoding for still images (HDR/WCG)"
1. [bookmark: _Ref124458235]N. Bonnier, D. Concion, D. Podborski, J. Roland, A. Tourapis: "ISO 22028-5 impact on CICP", m62260
[bookmark: _Toc149852156]Text proposal
X..Y	Reference viewing environment
The reference viewing environment applies to display-viewing colorimetry, not to scene-referred colorimetry. It specifies the luminance and chromaticity parameters for the “surround” and “periphery” of the display. The “surround” is the area surrounding a display that can affect the adaptation of the eye, typically the wall or curtain behind the display, while “periphery” is the remaining environment outside of the surround.
X.Y.1	Syntax
	Box type:
	'reve'

	Property type:
	Descriptive item property

	Container:
	ItemPropertyContainerBox

	Mandatory (per item):
	No

	Quantity (per item):
	At most one

class ReferenceViewingEnvironmentBox extends ItemFullProperty('reve', 0, 0){
	unsigned int(32) surround_luminance;
	unsigned int(16) surround_light_x;
	unsigned int(16) surround_light_y;
	unsigned int(32) periphery_luminance;
	unsigned int(16) periphery_light_x;
	unsigned int(16) periphery_light_y;
}
X.Y.2	Semantics
surround_luminance specifies the luminance of the surround in units of 0.0001 candelas per square metre.
[Ed. note]: disallowing 0 could be considered.
surround_light_x and surround_light_y specify the normalized x and y chromaticity coordinates, respectively, of the environmental reference surround light in the nominal viewing environment. These parameters are according to the CIE 1931 definition of x and y as specified in ISO 11664-1 (see also ISO 11664-3 and CIE 15) and are in normalized increments of 0.0001. The values of surround_light_x and surround_light_y shall be in the range of 0 to 10 000, inclusive.
periphery_luminance specifies the luminance of the periphery in units of 0.0001 candelas per square metre.
[Ed. note]: disallowing 0 could be considered.
periphery_light_x and periphery_light_y specify the normalized x and y chromaticity coordinates, respectively, of the environmental reference periphery light in the nominal viewing environment. These parameters are according to the CIE 1931 definition of x and y as specified in ISO 11664-1 (see also ISO 11664-3 and CIE 15) and are in normalized increments of 0.0001. The values of periphery_light_x and periphery_light_y shall be in the range of 0 to 10 000, inclusive.
X.Z	Nominal Diffuse White
X.Z.1	Syntax
	Box type:
	'ndwt'

	Property type:
	Descriptive item property

	Container:
	ItemPropertyContainerBox

	Mandatory (per item):
	No

	Quantity (per item):
	At most one

class NominalDiffuseWhiteBox extends ItemFullProperty('ndwt', 0, 0){
	unsigned int(32) diffuse_white_luminance;
	unsigned int(16) diffuse_white_light_x;
	unsigned int(16) diffuse_white_light_y;
}
X.Z.2	Semantics
diffuse_white_luminance indicates the default nominal diffuse white luminance in units of 0.0001 candelas per square metre.
[Ed. note]: disallowing 0 could be considered.
diffuse_white_light_x and diffuse_white_light_y specify the normalized x and y chromaticity coordinates, respectively, of the environmental reference periphery light in the nominal viewing environment. These parameters are according to the CIE 1931 definition of x and y as specified in ISO 11664-1 (see also ISO 11664-3 and CIE 15) and are in normalized increments of 0.0001. The values of periphery_light_x and periphery_light_y shall be in the range of 0 to 10 000, inclusive and should be the same as the chromaticity coordinates of the white point of the content.
[Ed. note]: We could also add a note mentioning that values diffuse_white_light_x = 3 127 and diffuse_white_light_y = 3 290 could be used to signal D65.
[bookmark: _Toc149852157]On MPEG/JPEG file embedding (MPEG#141, Issue#87)
[bookmark: _Toc149852158]Discussion
During MPEG 140 (cf. ISOBMFF/Issue#146), the potential improvement of ISOBMFF 8th edition was extended with a definition of the UUID (see text in section 6.2 below) to enable embedding an ISO base media file within another file. One of these use-cases would be to embed ISOBMFF in JPEG based on JUMBF ISO/IEC 19566-5, which would also allow HEIF files to be embedded into a JPEG file.
At MPEG#141, it was decided to remove the proposed text from ISOBMFF 8th edition for further study in HEIF. It was pointed out that embedding HEIF into JPEG may lead to sub-optimal encapsulation and compatibility issues. Uses cases were also questioned.
[bookmark: _Ref126240931][bookmark: _Toc149852159]Initial text proposal
[Ed.(FM): The text below was initially included into potential improvement of ISOBMFF 8th edition clause 6.8 at MPEG#140 and then removed at MPEG#141 for further study]
6.8	UUID value for embedded ISO base media files
When embedding an ISO base media file into a file compliant to another file format that needs a UUID to identify the format of the embedded file, the UUID to identify the ISO base media file shall be equal to 0x49534F30-0011-0010-8000-00AA00389B71.
NOTE	This UUID enables embedding an ISO base media file within a file conforming to the JPEG Universal Metadata Box Format (JUMBF, ISO/IEC 19566-5). The JUMBF Content Type in the JUMBF Description box is set equal to the UUID specified above in this subclause. The JUMBF superbox contains a single content box that contains the ISO base media file.
Non-droppable predicted frames (MPEG#142, HYPERLINK "https://mpeg.expert/software/MPEG/Systems/FileFormat/HEIF/-/issues/90" Issue#90)
Section B.3.2 in the HEIF specification prohibits the use of non-droppable predicted frames in HEIC sequences. This leaves a lot of coding gains off the table for sequences meant to be used as animations. At MPEG #142 it was proposed to relax this requirement into a recommendation.
The group agreed to allow relaxing of the rule, and add a note in the ccst box. The recommendation to use I frames every X seconds is expected to be further restricted in derived specifications and should not appear in HEIF specification.
Proposal
Relax text in Section B.3.2:
For a track containing an HEVC image sequence, either all samples should be sync samples or the all_ref_pics_intra field in the CodingConstraintsBox specified in REF _Ref431905885 \r \h * MERGEFORMAT 7.2.3 should be set to one.
[bookmark: OLE_LINK2]The suggested modification can be applied to the relevant sections for AVC, VVC, and EVC. Alternatively, consider relocating the text to a general section to prevent repetition. Another option is to remove this text, along with the associated paragraphs for AVC, VVC, and EVC, completely.
Add a note to Section 7.2.3.4:
all_ref_pics_intra: This flag when set to one indicates the restriction that samples that are not sync samples, if any, are predicted only from sync samples.
NOTE 1	 When there are inter predicted images in the track and all_ref_pics_intra is equal to 1, then these images are all predicted from intra coded images.
[bookmark: OLE_LINK1]NOTE2	When a track contains inter-predicted images and the value of all_ref_pics_intra is equal to 0, it is possible for inter-predicted images to be derived from non-intra coded images. In such cases, derived specifications may suggest guidelines for the frequency of sync samples.

Image Overviews in HEIF (MPEG#143, HYPERLINK "https://mpeg.expert/software/MPEG/Systems/FileFormat/HEIF/-/issues/102"Issue#102)
Introduction
The ability to efficiently access large still images over a network connection benefits from specific arrangement of pixel content within an image. Gridding within HEIF allows specific regions with pixels in close proximity to be accessed via efficient packaging, addressing and delivery. A similar capability is available through the tiling of uncompressed images via ISO/IEC 23001-17. This supports downloading sections of an image with manageable amounts of content appropriate for display on a given display size, whether it be a small phone device or a large 4K display. This approach avoids the need for having to download an entire image first before displaying content. When panning across a large image space, additional tiles are downloaded when the panning action reaches an additional tile. Tiles are cached on the receiving machine to facilitate efficient revisits to the areas already downloaded.
[image: Graphical user interface

Description automatically generated with medium confidence]
Figure STYLEREF 1 \s 1 SEQ Figure * ARABIC \s 1 1: Implementation of overviews in HEIF
While panning is supported by tiling, the ability to zoom and pan requires access to the imagery in a multi-resolution manner. To view the full field-of-view of a large image requires binning to squeeze the image onto a smaller pixel canvas. The creation of a multi-resolution image pyramid, or set of “overviews”, allows for efficient navigation via both pan and zoom operations.
This contribution proposes the creation of a pre-derived coded image type to support the implementation of overviews with HEIF imagery as well as an entity group to hold a base image and set of overviews, and a descriptive item property to facilitate communication of addressing information for individual tiles throughput the entire pyramid.
Use cases
Applications accessing large imagery files over a network interface benefit from the implementation of multi-resolution overviews. This technique supports byte range addressing through a browser interface. Scanning satellite imagery in a wide variety of applications, ranging from mapping, to hiking and fitness apps, finding the nearest coffee shop, to real-estate apps benefit.
Requirements
Requirements for the implementation of overviews and a pyramid within HEIF include:
· The ability to create tiled images, using either codec defined tiling or image grids
· The ability to choose the resolution of the common tile size for all images in a pyramid. i.e. 512 x 512, 1024 x 1024, etc.
· The ability to work with any image item format, regardless of color format, number of components, dynamic range, or pixel format
· A mechanism allowing region items (‘rgan’) to scale properly across the overview levels. Provide a mechanism to report this information for a region item at each level.
· Provide referencing and properties, as necessary, to label the features and relationships between all the multi-resolution images to facilitate remote indexing and byte range addressing in a straight-forward manner.
· An annotation mechanism that scales with the overviews.
[bookmark: _Toc142008494][bookmark: _Toc142011525][bookmark: _Toc142013240][bookmark: _Toc142013298][bookmark: _Toc142008495][bookmark: _Toc142011526][bookmark: _Toc142013241][bookmark: _Toc142013299][bookmark: _Toc142008496][bookmark: _Toc142011527][bookmark: _Toc142013242][bookmark: _Toc142013300][bookmark: _Toc142008497][bookmark: _Toc142011528][bookmark: _Toc142013243][bookmark: _Toc142013301][bookmark: _Toc142008498][bookmark: _Toc142011529][bookmark: _Toc142013244][bookmark: _Toc142013302][bookmark: _Toc142008499][bookmark: _Toc142011530][bookmark: _Toc142013245][bookmark: _Toc142013303][bookmark: _Toc142008500][bookmark: _Toc142011531][bookmark: _Toc142013246][bookmark: _Toc142013304][bookmark: _Toc142008501][bookmark: _Toc142011532][bookmark: _Toc142013247][bookmark: _Toc142013305][bookmark: _Toc142008502][bookmark: _Toc142011533][bookmark: _Toc142013248][bookmark: _Toc142013306]Implementation Approach
· Overviews are generated as pre-derived coded images, to facilitate byte range addressing to access any content of interest with minimal processing activity.
· Allow ‘grid’ derived images to support the tiling function of an overview. Because of the need for byte range addressing, the source image item defines the tiling for a grid.
· Allow codec specific tiling to support the implementation of tiling in overviews.
· Generate a series of multi-resolution, scaled images, with consistent tiling at each layer, and covering all the desired resolution scales.
· Leverage references and properties as needed to generate a full and efficient solution.
· Of note, for JPEG 2000 and HTJ2K, because of how the underlying wavelet compression works, imagery can be extracted from the main base image item with varying resolution. As a result, they use a different mechanism than described in this contribution.
Proposal
· Upon generation of a satisfactory approach with group consensus, complete the design, document the approach, and submit for inclusion into amendment to 23008-12.
Draft Implementation
6.4.10 Image overviews
6.4.10.1 Definition
An overview is a pre-defined coded image item whose reconstructed image is formed from generating a lower resolution, ‘binned’ version of a base image item. For overviews, the base item is a tiled image item. The tiling may be implemented using a feature of a specific codec, or by using a gridded image item. When a gridded image item is used, the input items to the grid define the tiles. Derived image items shall not be used as inputs to the image grid, due to the need for in place byte range accessing of content. Individual tiles shall be written contiguously in memory, thereby allowing access with a single read or write action.
The overview item shall be tiled using the same tiling scheme as the base image. i.e. if tiles in the base image are X by Y pixels, they are X by Y pixels in the overview. In cases where the binned resolution results in a fractional, or incomplete tile at the end of a row (column), the last tile in a row (column) of tiles shall be padded with values of zero at the end of the row (column) to complete the last tile in the row (column). If necessary, the clean aperture transformative property (‘clap’) may be applied to crop padded rows and/or columns. The number of tiles in a row (column) of tiles is determined by dividing the width (height) of the overview image by the tile size in X (tile size in Y) and rounding up.
An image pyramid is generated by stacking a series of progressively binned overviews and creating an entity group of type ‘pymd’. Each overview is referenced to the original full resolution base image, using a reference of type ‘base’ and each overview indicates its amount of binning by its overview level. An essential property of type ‘pmdp’ carries details on the storage location of the internal tiles for the overviews and base image making up a full pyramid. This enables simple query and quick navigation and access to specific tiles of interest in the set of overviews. The image format of the overviews is the same as the base image item. i.e. number of bands, bit depth, color format, etc.
Region items associated with the base image may be replicated for individual overviews using an appropriate scaling associated with the level of binning for a particular overview and referenced to the specific overview.
NOTE 1 In this version of the document, the exact derivation process (approaches such as the sum, average, median, minimum, or maximum value of a binned region) used to produce an overview from the base image is left to the implementer.
NOTE 2 When removing or modifying an item that is marked as the base image of an overview image, the content of associated image overview items might need to be rewritten.
[bookmark: _Toc149738596][bookmark: _Toc149852195]
6.5.37 Image Pyramid Information
6.5.37.1 Definition
Box type: 'pmdp'
Property type: Descriptive item property
Container: ItemPropertyContainerBox
Mandatory (per associated item_ID): Yes, for a pyramid entity group
Quantity (per associated item_ID): At most one
The ImagePyramidInformation descriptive item property provides a manifest of addressing information for the individual tiles inside the overviews and base image item of an image pyramid. Image items are listed in the ordering given in the image pyramid entity group, which is from the lowest resolution overview to the base image. Tiles and addresses are listed in row major order. Addressing of tiles is zero based, with the first tile at (0,0)
essential shall be equal to 1 for a 'pmdp' item property.
The 'pmdp' item property, shall be associated to an image pyramid entity group.
6.5.37.2 Syntax
aligned(8) class ImagePyramidInformationProperty
extends ItemFullProperty('pmdp', version = 0, flags = 0){
unsigned int(8) num_layers;
unsigned int(16) tile_size_x;
unsigned int(16) tile_size_y;
for(i=1;i<=num_layers;i++){
	unsigned int(8) layer_num = i;
	unsigned int(32) item_ID;
	unsigned int(8) layer_binning;
	unsigned int(16) tiles_in_layer_row;
	unsigned int(16) tiles_in_layer_column;
	for (j=0;j<tiles_in_layer_row;j++){
		for(k=0;k<tiles_in_layer_column;k++){
	unsigned int(16) row_tile_num=j;
		unsigned int(16) column_tile_num=k;
	unsigned int(64) tile_offset;
		unsigned int(32) tile_byte_count;
	}
	}
}
}
[bookmark: _Toc149738629][bookmark: _Toc149852228]
6.5.37.3 Semantics
num_layers: Signals the number of overviews plus the layer for the base image.
tile_size_x: the size of a tile in the width dimension for all levels of the pyramid.
tile_size_y: the size of a tile in the height dimension for all levels of the pyramid.
layer_num: Signals a layer, starting at ‘1’ for the lowest resolution overview, associated with the following tile information.
item_ID: The item_ID for the image at the indicated layer of the pyramid.
layer_binning: Specifies the level of binning between the base image and the overview in the indicated layer of the pyramid. A 2x2 binning is defined to be a layer_binning of 2, a 4x4 binning is defined to be 4, etc. The width and height for an overview with layer_binning of 2 is half the width and half the height of the base image, etc. A base image has a layer_binning of 1.
tiles_in_layer_row: Signals the number of tiles in a row of a specific layer.
tiles_in_layer_column: Signals the number of tiles in a column of a specific layer.
row_tile_num: The current row index for the tile information that follows
column_tile_num: The current column index for the tile information that follows
tile_offset: Indicates the location of a specific tile in a specific layer
tile_byte_count: Indicates the size of a stored tile in a specific layer
[bookmark: _Toc149738643][bookmark: _Toc149852242]
6.8.10 Image Pyramid Entity Group
The image pyramid entity group ('pymd') indicates a set of entities, formed as a base image and a series of progressively binned overview images, which together form an image pyramid. Each overview is referenced to the original full resolution base image, using a reference of type ‘base’. An essential property of type ‘pmdp’ carries details on the set of images and the storage location of the internal tiles for the overviews and base image making up a full pyramid. This enables simple query and quick navigation and access to specific tiles of interest in the set of overviews. The image format of the overviews is the same as the base image item. i.e. number of bands, bit depth, color format, etc.
This entity group shall contain entity_id values that point to a base image and a set of overview items and shall contain no entity_id values that point to tracks. The input items shall be listed in the order of lowest resolution overview to the highest resolution overview, followed finally by the base image item of the pyramid.
[bookmark: _Toc149738647][bookmark: _Toc149852246]
There may be multiple image pyramid entity groups in the same file with different group_id values. An ImagePyramidInformationProperty shall be associated with the image pyramid entity group, and it shall be marked as essential.
[bookmark: _Toc142011537][bookmark: _Toc142013252][bookmark: _Toc142013310][bookmark: _Toc142011538][bookmark: _Toc142013253][bookmark: _Toc142013311][bookmark: _Toc142011539][bookmark: _Toc142013254][bookmark: _Toc142013312][bookmark: _Toc149852248]Extending pixi for more use-cases (MPEG#143-144, Issue#95 and #109)
The initial proposal to extend the pixel information property 'pixi' was introduced in m63650. It was further updated in m64755. and is included in this section. During MPEG#1443 it was discussed that adding chroma siting information might also be beneficial and that this could be done by extending the existing table in CICP with more subsamplings. that improved signaling methods could be introduced, such as using box versioning instead of flags. In addition, the group is encouraged to make further suggestions on how 'pixi' can be extended to cover signaling for floating point, alpha (pre-multiplied or not), signed integers, phase shift for subsampled content, etc.The proposal from m64755 is included below, with the changes mentioned in issue #109 included.
The tables for subsampling_type and subsampling_location should ideally be added to the CICP spec and instead referenced from HEIF.
[bookmark: _Toc149852249]Pixel information
[bookmark: _Toc149852250]Definition
	Box type:
	'pixi'

	Property type:
	Descriptive item property

	Container:
	ItemPropertyContainerBox

	Mandatory (per item):
	No, unless the premultiplied alpha is present in the associated image

	Quantity (per item):
	At most one

	
	

The PixelInformationProperty descriptive item property indicates the number and bit depth of colour and alpha/depth components, if present, in the reconstructed image of the associated image item.
The following flags are allowed to be set in the px_flags only if version 12 is used:
0x000001	alpha-presenthas_alpha: indicates that the coded item contains both color/monochrome pixels and alpha.
0x000002	premultiplied-alphaalpha_is_premultiplied: indicates that the colour/monochrome pixels are premultiplied with the alpha. If this flag is set, the PixelInformationProperty box shall be marked essential. This flag shall be 0 unless alphapresent has_alpha is non-zero. If this flag is used, alphapresenthas_alpha shall be set.
0x000004	is-floating-pointhas_subsampling: indicates that the channels are IEEE 754 floating-point values rather than integersindicates that the PixelInformationProperty contains subsampling information. When this flag is set, bits_per_channel shall only take values 16, 32, 64, 128 or 256.	Comment by Alexis Tourapis: It seems possible to me that floating point channels could be combined with integer ones. Should that be supported? Also, one could use not only transparency but also depth. The description seems to be mostly about alpha though. Should we generalize?

[bookmark: _Toc149852251]Syntax
aligned(8) class PixelInformationProperty

extends ItemFullProperty('pixi', version, px_flags) {

{

	if (version == 0) {

		unsigned int(8) num_channels;

		for (i=0; i<num_channels; i++) {

			unsigned int(8) bits_per_channel;

		}

	}

	else if (version == 1) {

		unsigned int has_alpha = (px_flags & 1);

		unsigned int alpha_is_premultiplied = (px_flags & 2);

		unsigned int has_subsampling = (px_flags & 4);

		unsigned int(8) num_channels;

		for (i=0; i<num_channels; i++) {

			unsigned int(3) channel_idc;

			unsigned int(2) channel_data_type;

			unsigned int(1) channel_label_present;

			unsigned int(2) reserved;

			unsigned int(8) bits_per_channel;

			if (has_subsampling) {

				unsigned int(4) subsampling_type;

				unsigned int(4) subsampling_location;

			}

			if (channel_label_present) {

				utf8string channel_label;

			}

		}

	}

}
aligned(8) class PixelInformationProperty
extends ItemFullProperty('pixi', version, px_flags){
	if (version == 0 || version == 2) {
		unsigned int(8) num_channels;
		for (i=0; i<num_channels; i++) {
			unsigned int(8) bits_per_channel;
		}
	}
	else if (version == 1) {
		unsigned int(8) num_channels;
		for (i=0; i<num_channels; i++) {
			unsigned int(1) channel_is_signed;
			unsigned int(7) bits_per_channel;
		}
	}
}
[bookmark: _Toc149852252]Semantics
num_channels: This field signals the number of channels by each pixel of the reconstructed image of the associated image item.
bits_per_channel: This field indicates the bits per channel for the pixels of the reconstructed image of the associated image item. The permitted values and interpretation for this field depend on the value of the is-floating-point flagchannel_data_type.

has_alpha: If set to 1, one of the channels shall have a channel_idc set to 1.
alpha_is_premultiplied:
has_subsampling:
channel_idc: This field indicates the contents of the channel. A value of 0 indicates colour/grayscale. A value of 1 indicates alpha. A value of 2 indicates depth. Values 3-8 are reserved for future use. At most one channel shall have a channel_idc of 1.
channel_data_type: This field indicates the data type of the channel. A value of 0 indicates unsigned integers. A value of 1 indicates signed integers. A value of 2 indicates IEEE 754 floating-point. The value 3 is reserved. When set to 2, bits_per_channel shall take a value of 16,32, 64 or 128.
channel_label_present: If set to 1, channel_label is present for this channel.
subsampling_type: This field indicates how the channel is subsampled relative to the unsubsampled channels. If has_subsampling is not set, a default value of 15 shall be assumed. If has_subsampling is set, at least one channel shall have a subsampling_type of 0. A value of 0 indicates no subsampling. A value of 1 indicates 2x horizontal subsampling (4:2:2). A value of 2 indicates 2x horizontal and vertical subsampling (4:2:0). A value of 3 indicates 4x horizontal subsampling (4:1:1). A value of 4 indicates 2x vertical subsampling (4:4:0). Values 5-14 are reserved. A value of 15 indicates that subsampling for this channel is undefined.
subsampling_location: This field indicates the location of the channel samples relative to the unsubsampled channels. If subsampling_type is 0, this field shall have a value of 2. If subsampling_type is 15, this field shall have a value of 15. Values 6-14 are reserved. Values are converted to a horizontal and vertical offset compared to unsubsampled channels given the table below, where type is the value of subsampling_type.
	
	value
	type == [1,3] (4:2:2 & 4:1:1)
	type == 2 (4:2:0)
	type == 4 (4:4:0)

	0
	0.0, 0.0
	0.0, 0.5
	0.0, 0.5

	1
	0.5, 0.0
	0.5, 0.5
	0.0, 0.5

	2
	0.0, 0.0
	0.0, 0.0
	0.0, 0.0

	3
	0.5, 0.0
	0.5, 0.0
	0.0, 0.0

	4
	0.0, 0.0
	0.0, 1.0
	0.0, 1.0

	5
	0.5, 0.0
	0.5, 1.0
	0.0, 1.0

	6-14
	Reserved
	Reserved
	Reserved

	15
	Undefined
	Undefined
	Undefined

channel_label: This field is a NULL-terminated string that provides a description of the channel contents.
Tone map derivation item for gain map HDR (MPEG#143, HYPERLINK "https://mpeg.expert/software/MPEG/Systems/FileFormat/HEIF/-/issues/101"Issue#101)
[bookmark: _Toc149852254]Derived item for 4:4:4 upsampling (MPEG #144, issue #110)
[bookmark: _Toc94024595][bookmark: _Toc149852255]Introduction
During the previous 3GPP SA4 meeting a proposal was agreed to be studied on how to utilize the HEIF format to allow chroma enhancement using a derived image concept [2].
The HEIF specification defines a concept called derived images, which permits the signaling of instructions to the decoder on how to combine a set of images together to generate an alternative representation of that same image. The concept could easily be used to enable support of 4:4:4 images even if the decoder is only capable of decoding 4:2:0 images. In this scenario a derived image can be based on a 4:2:0 image and one or more images that contain additional chroma information in the 4:4:4 format. Additional instructions would exist that provide information to the decoder on how to extract this chroma information and how to apply them onto the base image to achieve the desired, 4:4:4, output.
Below we list several use-cases on how the derived image item for chroma enhancement can be used in HEIF:
Figure 1 shows an example of the chroma replacement method where a single enhancement image item may be used that contains both Cb and Cr components stacked together, e.g. in a side by side or over-under representation. Such data are placed in the “luma” plane of that image and dummy data, e.g. a value of 128 for 8 bit data, is added in the “chroma” planes of that same image. This new Cr+Cb enhancement image is then coded independently from the traditional 4:2:0 image and is signalled as a hidden item in HEIF. At the same time the traditional 4:2:0 image item is stored in the same file to allow backwards compatibility with older players. To achieve this the traditional 4:2:0 image item and the new chroma enhancement derived item are placed into the alternative group. During decoding, a player that understands the new chroma enhancement derivation may select to discard the 4:2:0 version of the chroma information and instead replace the subsampled chroma information with the chroma information provided through enhancement image.
[image:]
[bookmark: _Ref148475632][bookmark: _Ref148475576][bookmark: _Ref148475612]Figure 1: Replace method 1. Single enhancement layer using stacking for the creation of a 4:4:4 derived representation
The two chroma planes could also be coded in separate enhancement images if that is desired. A decoder can select to decode one of both enhancement images and augment either one or both components (see Figure 2). The bit-depth of the original content will be retained also for the chroma planes.
[image:]
[bookmark: _Ref148476194]Figure 2: Replace method 2. Multiple enhancement layers for the creation of a 4:4:4 derived representation
In fact, replacement could even be allowed for the luma component, permitting either higher quality luma or even allowing an RGB representation as shown in Figure 3. Here the derived chroma enhancement item reconstructs an RGB image using 3 hidden image items where each item is coded using a 4:2:0 monochrome codec. Similar approach can also be done with alpha component to reconstruct 4:4:4:4 RGBA etc.
[image:]
[bookmark: _Ref148477852]Figure 3: Replace method 3. Replace all components to allow 4:4:4 RGB using monochrome 4:2:0 decoders.
Alternatively, to the replacement approach the enhancement layer could contain residual chroma information that would need to be combined with the original chroma from the base image to generate the final image. However, to avoid discrepancies, the upsampling of those would need to be normative. This could also be extended to RGB support as well with not only the need for upscaling, but also color format conversion. This approach can also be studied, however, it is much more complicated compared to the above use-cases with the replacement method.
[bookmark: PasteStart]All the above approaches allow existing hardware, that supports for example HEVC 4:2:0 profiles, to be used for the delivery of 4:4:4 content. The only requirement would be to perform the reconstruction in software, after decoding of the multiple layers.
[bookmark: _Toc149852256]Proposed solution
To optimally utilize the inherent features of HEIF and provide a seamless experience across both older and newer platforms, we propose the following solution based on the HEIF derived image item combined with the alternative group:
Structured File Organization:
· Primary Image: The conventional 4:2:0 image will be preserved and stored as the primary image item in the HEIF file. This ensures that older decoders, which may not support newer techniques, will have an immediate point of reference and can render the image without complications.
· Derived Image Item: To offer the enhanced chroma representation, an additional derived image item will be embedded within the HEIF file. This derived image will use one or more reference images and will carry instructions detailing the extraction and application of the supplementary chroma information necessary to rebuild the image with enhanced chroma representation.
Implementation of the 'altr' Group:
· Alternative Grouping: Both the primary (4:2:0) and the derived chroma enhancement image items will be incorporated into an 'altr' alternative group. The objective of this grouping is to signify that both image items are interlinked alternatives of each other.
· Priority Setting: Within the 'altr' group, the chroma enhancement derived image will be designated as the initial image (first in order). This placement strategy ensures that parsers which are compatible with the new image derivation approach will inherently opt to display the image with enhanced chroma representation.
· Fallback Mechanism: For older or incompatible players, the system is designed to bypass any unrecognized image derivations and default to the standard 4:2:0 image. This mechanism ensures that the image remains accessible across all platforms, irrespective of their capabilities.
Chroma Replacement in Derived Image:
· Technique: The derived chroma enhancement image item references image items with enhanced chroma information and contains the necessary metadata to allow reconstruction of the image with the enhanced chroma representation.
Optional Chroma Upsampling in Derived Image:
· Technique: As an alternative to the chroma replacement technique, the derived image may carry a clear directive on chroma upsampling using a residual image. This will allow the decoder to comprehend how to interpret and use the supplementary chroma data to reproduce the high-quality 4:4:4 version from the base 4:2:0 image.
In conclusion, the combination of the HEIF derived image item and 'altr' grouping establishes a dynamic and flexible image encoding and decoding system. It not only guarantees the delivery of high-quality 4:4:4 content but also ensures backward compatibility, thus offering an optimal viewing experience across various platforms and devices.
1.1.1 Colour format enhancement derivation
1.1.1.1 Definition
An item with an item_type value of 'cfen' is a colour format enhancement derived image item whose reconstructed image is formed from one or more input images.
The input images are ordered as the SingleItemTypeReferenceBox of type 'dimg' for this colour format enhancement derived image item within the ItemReferenceBox. In the SingleItemTypeReferenceBox of type 'dimg', the value of from_item_ID identifies the colour format enhancement derived image item, and the values of to_item_ID identify the input images. The reference_count gives the number of input image items and shall be greater than one.
The input image item(s) and the colour format enhancement derived image item shall:
· each have a Pixel Information property, an Image Spatial Extents property and a Colour Information property;
· more restrictions that apply to all dependencies
The colour format enhancement derived image item should be signaled as a primary item (non hidden). The first entry signaled by the reference_count array may be signaled as primary item (non hidden). All remaining items signaled by the reference_count array shall be hidden.
NOTE: Both, the colour format enhancement derived image item and the first entry signaled by the reference_count array can be incorporated into an 'altr' alternative group to signify that both image items are interlinked alternatives of each other. The colour format enhancement derived image item can be signaled as the first item in the 'altr' alternative group to allow backwards compatibility, while the second item in the group can store a 4:2:0 coded image.
1.1.1.2 Syntax
aligned(8) class ColourFormatEnhancement {
	unsigned int(8) version = 0;
	unsigned int(8) enhancement_mode;
	if(enhancement_mode == 0) {
		// packed replacement of subsampled chroma
		bit(6) reserved = 0;
		unsigned int(1) cr_first; // 0=cb top or left depending on the mode
		unsigned int(1) packing_mode; // 0=sidebyside; 1=topbottom
	}
	else if(enhancement_mode == 1) {
		// one EL per channel replacement
		for (i=1; i<=reference_count; i++) {
			bit(6) reserved = 0;
			unsigned int(2) channel_id; //
		}
	}
}
1.1.1.3 Semantics
version shall be equal to 0.
enhancement_mode this field determines how the chroma information is provided in referenced image items. When set to 0 the chroma channels are packed into the luma channel using side by side or top bottom packing method. When set to 1 the chroma channels are stored in separate image items.	Comment by Dimitri Podborski: We can provide a table to better visualize different modes. Some range can be reserved for replacement, some for upscaling (if we even want to allow this at all)
	enhancement_mode
	

	0
	packed enhancement image. reference_count = 2

	1
	One enhancement image per item. reference_count > = 1

	... (upsampling modes to investigate)
	

cr_first indicates the ordering of the chroma channels in the packed representation. When set to 0 Cb channel is first, otherwise Cr channel is first.
packing_mode indicates the spatial arrangement of the chroma channels in the packed representation.
channel_id provides the identifier for the channel for the referenced items.
	channel_id
	Mapping

	0
	Y
	R

	1
	Cb
	G

	2
	Cr
	B

	3
	
	A

There is ongoing work to standardize the concept of tone-mapping (and potentially colour-mapping) between two renditions of an image, facilitated by the introduction of a “gain map”. The concept has been proposed as a fresh work item under the ISO's Technical Committee 42 (TC 42), and has been officially accepted as new work item ISO/AWI 21496 1. Adobe has also referenced this concept in one of its white papers with a suggestion to store the gain map as an auxiliary image and the gain map metadata as XMP in HEIF. However, this signalling approach leads to a lot of ambiguities and should not be used in HEIF as there are better ways of signaling this content. This section includes a new HEIF-specific signaling that allow file creators to better express exactly how they want files with gain maps to be parsed and displayed.

[bookmark: _Toc149852257]Disparity adjustment property for frame-packed stereo pair (MPEG #144, issue #111)
During MPEG #144, a new item property that describes disparity adjustment for a stereo pair entity group was proposed. This property was accepted into the (new) working draft for 3rd edition amendment 2. During the discussion, it was mentioned that this property would also be useful for a frame-packed stereo pair as described by OMAF and that the concept of frame-packed stereo pair items should potentially be moved from OMAF to HEIF.
One objection was raised on this that the current StereoVideoBox in OMAF is overly complicated and a bit wasteful and that rather than simply migrate it from OMAF it might be better to define a new dedicated box.
Gain map
[bookmark: _Toc149852259]
[bookmark: _Toc149852260]Region Partition Group (MPEG #144, issue #115)
[bookmark: _Toc149852261]Introduction
The HEIF 2nd edition specification provides the ability to associate region annotations to image items by using region items (‘rgan’). The location of each region is stored in the content of a region item. Therefore, determining which regions apply to an area of an image item requires parsing all the region items associated with this image item.
For a very large image item, HEIF provides mechanisms to split the image data into several parts, using for instance a grid item, or VVC subpictures. However, there is no mechanism to split region items associated with an image item into several groups depending on their location in the image.
Detailed use case description
Techniques are being developed to support the partitioning of image items into regions supporting efficient access to content of interest. Figure 1 provides an example of a set of overviews comprising an image pyramid. This supports efficient panning and zooming by accessing only tiles needed for a user’s desired display. In this case, 1K x 1K tiles are accessed individually rather than having to download the entire 8K x 8K image. The approach utilizes a combination of tiling/grids, an image pyramid, and extent constraints to enable accessing and downloading manageable portions of a large image to facilitate desired responsiveness and performance when the entire image is not needed “all at once”.
When this image is annotated with region items, they may likely be spread across the entire image. When accessing specific regions of the image pyramid, there is a benefit to having an efficient method for associating a subset of region items overlapping the accessed regions of the image. Image region access may include one or more tiles in one or more overview layers in the pyramid.
When the pixel count for the base image is not much larger than a tile size in the image, such as 2K x 2K to 4K x 4K images with tiles of 512 x 512 to 1K x 1K, the ability to associate regions with any specific tile or overview is manageable. For larger images, such as 8K x 8K and up, with large numbers of region items, the association of region items with specific tiles or sets of tiles will suffer in performance.
[image: A screenshot of a grid of a field

Description automatically generated with medium confidence]
[bookmark: _Ref149892399]Figure 1: HEIF overviews and extents.
Especially in mapping and satellite imagery applications, all types of regions (point, ellipse, rectangle, polyline, polygon, and mask) may be present, and the relative size of the regions can vary greatly. A polyline identifying a river or road may stretch across an entire image, while vehicles, buildings, bridges, airports, cities, all vary in size and may span a single pixel to a significant percentage of the entire image. Figure 2 shows a series of region items placed on a satellite image. The yellow cluster and red cluster represent examples where location in the image may dictate creating a region partition group for each set. The blue polyline region item for a road spans the entire top part of the image, so it may be left as a separate region item.
[image: A screenshot of a map

Description automatically generated]
[bookmark: _Ref149897621][bookmark: _Ref149482327]Figure 2: Region items partitioned and applied to an image pyramid.
When navigating a pyramid, a query of tiles and associated regions when moving up the pyramid results in a merging of the regions as the top of the pyramid is reached. In the top level of the pyramid, all regions are clustered into the single tile at this level.
Summary of Design Parameters
The following summarizes key parameters for consideration of the design and implementation for region partition grouping.
· Image types: All forms of uncompressed and compressed imagery supported in HEIF.
· Image sizes: Arbitrarily small to arbitrarily large. Practical limitations on the small side are driven by small displays found on handheld devices (~256x256, 320x240, etc.). Images on the larger side are driven by available sensor technology and the ability to stitch together separate images into a single larger image.
· Tile size: The tile size is driven by the need to match a desired display size and efficient download. Common sizes today are 512x512 and 1Kx1K. As technology advances and network speed and display resolution both increase, tiles may increase in size accordingly.
· Types of regions: all types, including points, ellipses, rectangles, polygons, polylines, and masks
· Number of region items per image: may range from one to tens/hundreds of thousands depending on size of the image and density of objects in a scene. An image of a city, with many vehicles and buildings, is very dense.
· Types of annotation include both text and graphics.
Screen space drives the amount of visible annotations. The amount of annotation associated with a large image may easily exceed the available space to place it on a display without overlap and too much clutter.
Derived Requirements
· There shall be no constraints, other than those already existing within HEIF, placed on the size of an image item (pixel counts), when implementing region partition groups.
· Region partition groups shall function with tiles implemented using internal codec tiling and grids.
· There shall be no constraints, other than those already existing within HEIF, associated with the size or number of tiles in an image when implementing region partition groups.
· Region partition groups shall work with any tile size allowed by HEIF.
· Regions and Region Partition Groups shall apply to all defined layers of an image pyramid when implementing overviews.
· Region items and region partition groups shall maintain association with the same area of the image in each layer of the image pyramid.
· Region items and region partition groups fully contained within a region of an image are indicated as being fully contained.
· Region items and region partition groups intersecting with a region of an image are indicated as having partial overlap with the image region.
· The association of region items, region partition groups, and their associated metadata items with specific tiles and sets of tiles in an image pyramid shall be straight forward and efficient.
· Region items and region partition groups, as well as associated metadata items, are configured/managed in a way to facilitate efficient access, especially over a network interface.
· Regions may be partitioned for the following reasons:
· Proximity – regions near each other
· Classification of content inside regions – vehicles, roads, buildings, gas stations, coffee shops, etc.
· Region Shape – partitioning of points, ellipses, rectangles, polygons, polylines, and masks
· Region Size – clustering of like size regions/objects
· User defined reason
· A metadata item referenced to a region partition group applies to all members of the group.
· Query of a file, including via network access, to determine and identify all region items, region partition groups, and associated metadata items shall be efficient.
· Annotation, both text and graphics, needs to be scalable and support grouping/labeling constructs when moving up and down a pyramid.
Objective Requirements (goals)
· Implement comparable Region Partition Group capabilities for image sequences.

[bookmark: _Toc149852262]Region Partition Group
[bookmark: _Toc149852263]Overview
A region partition group lists region items that are contained inside an area of an image. This area is the area covered by the region partition group and is defined as a rectangle in the image.
The area covered by a region partition group can be defined in the region partition group structure itself or can be the area of the image item the region partition group is associated with through an item reference of type ‘rpds’. This item reference goes from the image item to the region partition group.
[image: A diagram of a diagram

Description automatically generated with medium confidence]
Figure 1: Example of two region partition groups (‘rgpa’) associated with an image, the area of the top group is the whole image, while the area of the bottom group is the bottom-centre part of the image
A region partition group associated with an image item should only contain region items associated with the image item or with another image item that this image item is a part of.
[image: A diagram of a grid

Description automatically generated]
Figure 2: Example of two region partition groups (‘rgpa’) associated respectively with a grid and an input item of the grid
When a region item is contained in a region partition group, at least one of its regions shall intersects the area covered by the region partition group.
A region partition group shall list only region items it contains. A region partition group should list all the region items it contains. A region partition group may list only the region items it contains and that are adapted to being rendered when the rendered size of the area covered by the region partition group is greater than or equal to the display area.
When rendering a part of an image item, a renderer may use region partition groups to select which region items to parse and render. The renderer may use region partition groups associated with the image item to render or associated with items corresponding to parts of the image item to render.
[bookmark: _Toc149852264]Syntax
[bookmark: _Hlk147423626]aligned(8) class RegionPartitionGroupBox

	extends EntityToGroupBox(‘rgpa’, version, flags) {

	unsigned int field_size = ((flags & 1) + 1) * 16;

	if (flags & 2 == 2) {

		unsigned int(field_size) reference_width;

		unsigned int(field_size) reference_height;

		unsigned int(field_size) top;

		unsigned int(field_size) left;

		unsigned int(field_size) width;

		unsigned int(field_size) height;

	}

}
[bookmark: _Toc149852265]Semantics
[bookmark: _Hlk147423887]The following flags values are defined to describe the area covered by a group of region annotation items contained in a region partition group:
Value 0x000001, when set specifies that the length of the fields reference_width, reference_height, top, left, width, and height is 32 bits. When not set, it specifies that the length of the fields reference_width, reference_height, top, left, width, and height is 16 bits.
Value 0x000002, when set, specifies that the fields reference_width, reference_height, top, left, width, and height are present. When not set, it specifies that the fields reference_width, reference_height, top, left, width, and height are not present.
reference_width, reference_height specify, in pixel units, the width and height, respectively, of the reference space in which the region partition group is specified.
top, left specify the coordinates of the top-left corner of the area covered by the region partition group relatively to the reference space.
width, height specify the coordinates of the width and the height of the area covered by the region partition group relatively to the reference space.

Gain map data
The current proposal on how to generate the gain map takes two renditions and computes the logarithm of the ratio of each color channel in linear RGB space. The gain-map may optionally be downscaled or reduced to a single component to save space. An affine transform is used to remap this ratio to the range from 0.0 to 1.0, inclusive. An optional custom gamma curve is applied, after which the content is converted to integer values and compressed with a supported codec.
[image: A collage of mountains

Description automatically generated]
Figure SEQ Figure * ARABIC 1: Gain map generation process
From the point of view of the codec or container, the gain map data:
· is 1 or 3 channels of integers.
· uses undefined colour primaries (CICP value 2), or potentially the primaries used when computing the ratio assuming that both the base rendition and the alternate rendition have the same colour primaries.
· may use a CICP defined transfer function or may use the undefined transfer function (CICP value 2). If a custom gamma curve is used, it will be signaled in the gain map metadata.
· may use a YCbCr matrix and chroma subsampling to achieve better compression.
Gain map metadata
The HYPERLINK "https://helpx.adobe.com/content/dam/help/en/camera-raw/using/gain-map/jcr_content/root/content/flex/items/position/position-par/table/row-3u03dx0-column-4a63daf/download_section/download-1/Gain_Map_1_0d12.pdf"Adobe white paper lists the following metadata as being needed to dynamically apply the gain map to the base rendition:
· Version
· BaseRenditionIsHDR (Boolean)
· HDRCapacityMin (float)
· HDRCapacityMax (float)
· GainMapMin[numChannels] (float)
· GainMapMax[numChannels] (float)
· Gamma[numChannels] (float)
· OffsetSDR[numChannels] (float)
· OffsetHDR[numChannels] (float)
The names and exact meaning of these fields may change as the ISO work item is finalized. We can generalize this as saying that we need to be able to store the following in HEIF:
· A version.
· Potentially some Boolean flags.
· Signaling floating point values as rational numbers (see section REF _Ref140061390 \r \h 5.3 for more details).
· Floating point/rational values that are not per channel.
· Arrays of 1 or 3 floating point/rational values for values that apply to each channel of the gain map.
HEIF storage
Instead of using an auxiliary image as suggested in the HYPERLINK "https://helpx.adobe.com/content/dam/help/en/camera-raw/using/gain-map/jcr_content/root/content/flex/items/position/position-par/table/row-3u03dx0-column-4a63daf/download_section/download-1/Gain_Map_1_0d12.pdf"Adobe white paper, it was proposed to create a new dedicated derived item type, which we will refer to as a tmap derived item. A HEIF file using this concept would consist of the following parts:
1. The base rendition image item (referred to as item 1).
2. The gain map data stored as a hidden image item (referred to as item 2).
3. A tmap derived item referencing items 1 and 2 (referred to as item 3).
4. An altr entity group that signals that the items 1 and 3 are alternative renditions of each other.
The gain map metadata is stored in the box body of item 3 (the tmap item) and therefore does not need any extra items.
Below is an example file layout for a file with an HDR base rendition, a 3-channel 10-bit gain map, and regular Exif and XMP metadata attached to the main image item:
('ftyp' "File Type Box") {...}
('meta' "Meta Box") {
 Version: 0, Flags: 0x000000
 ('hdlr' "Handler Reference Box") {...}
 ('pitm' "Primary Item Box") {
 Version: 0, Flags: 0x000000
 Item ID: 1
 }
 ('iinf' "Item Information Box") {
 Version: 0, Flags: 0x000000
 Entry count: 5
 ('infe' "Item Info Entry") {
 Item ID: 1
 Item protection index: 0
 Item type: 'hvc1'
 Item name: "Base rendition"
 }
 ('infe' "Item Info Entry") {
 Item ID: 2
 Item protection index: 0
 Item type: 'Exif'
 Item name: "Exif metadata"
 }
 ('infe' "Item Info Entry") {
 Item ID: 3
 Item protection index: 0
 Item type: 'mime'
 Item name: "XMP metadata"
 Content type: application/rdf+xml
 Content encoding: None
 }
 ('infe' "Item Info Entry") {
 Item ID: 4 (Hidden)
 Item protection index: 0
 Item type: 'hvc1'
 Item name: "Gain Map image"
 }
 ('infe' "Item Info Entry") {
 Item ID: 6
 Item protection index: 0
 Item type: 'tmap'
 Item name: "Tone-mapped representation"
 }
 }
 ('iloc' "Item Location Box") {
 Version: 1, Flags: 0x000000
 Offset size: 4
 Length size: 4
 Base offset size: 0
 Index size: 0
 Item count: 5
 Item ID: 1
 Construction method: 0, Data reference index: 0
 Extent 1/1: Offset 757, Length 1712907
 Item ID: 2
 Construction method: 0, Data reference index: 0
 Extent 1/1: Offset 1713664, Length 796
 Item ID: 3
 Construction method: 0, Data reference index: 0
 Extent 1/1: Offset 1714460, Length 28276
 Item ID: 4
 Construction method: 0, Data reference index: 0
 Extent 1/1: Offset 1742736, Length 752121
 Item ID: 6
 Construction method: 1, Data reference index: 0
 Extent 1/1: Offset 0, Length 70
 }
 ('iprp' "Item Properties Box") {
 ('ipco' "Item Property Container Box") {
 ('ispe' "Image Spatial Extents") {
 Version: 0, Flags: 0x000000
 Image Width: 2400
 Image Height: 3000
 }
 ('pixi' "Pixel Information Box") {
 Version: 0, Flags: 0x000000
 Bits per Channel: {10, 10, 10}
 }
 ('hvcC' "HEVC Decoder Configuration Record") {...}
 ('colr' "Colour Information Box") {
 colour_type: 'nclx'
 colour_primaries: 9
 transfer_characteristics: 16
 matrix_coefficients: 9
 full_range_flag: 1
 }
 ('clli' "Content Light Level Box") {
 max_content_light_level: 1459
 max_pic_average_light_level: 75
 }
 ('ispe' "Image Spatial Extents") {
 Version: 0, Flags: 0x000000
 Image Width: 1200
 Image Height: 1500
 }
 ('hvcC' "HEVC Decoder Configuration Record") {...}
 ('colr' "Colour Information Box") {
 colour_type: 'nclx'
 colour_primaries: 1
 transfer_characteristics: 13
 matrix_coefficients: 6
 full_range_flag: 1
 }
 ('colr' "Colour Information Box") {
 colour_type: 'nclx'
 colour_primaries: 2
 transfer_characteristics: 2
 matrix_coefficients: 6
 full_range_flag: 1
 }
 }
 ('ipma' "Item Property Association") {
 Version: 0, Flags: 0x000000
 Entry count: 3
 Item ID: 1
 Association count: 5
 Property Index: 1, Essential: No
 Property Index: 2, Essential: No
 Property Index: 3, Essential: Yes
 Property Index: 4, Essential: Yes
 Property Index: 5, Essential: No
 Item ID: 4
 Association count: 3
 Property Index: 6, Essential: No
 Property Index: 2, Essential: No
 Property Index: 7, Essential: Yes
 Property Index: 9, Essential: Yes
 Item ID: 6
 Association count: 3
 Property Index: 1, Essential: Yes
 Property Index: 2, Essential: No
 Property Index: 8, Essential: Yes
 }
 }
 ('iref' "Item Reference Box") {
 Version: 0, Flags: 0x000000
 Reference type: 'cdsc' (Content Describes (Metadata))
 From item ID: 2
 Reference count: 1
 To item ID: 1
 Reference type: 'cdsc' (Content Describes (Metadata))
 From item ID: 3
 Reference count: 1
 To item ID: 1
 Reference type: 'dimg' (Derived Image)
 From item ID: 6
 Reference count: 2
 To item ID: 1
 To item ID: 4
 }
 ('idat' "Item Data Box") {
 Assumed tmap box data at offset 0:
 Version: 0, Flags: 3
 Components: 3; Base is HDR: True
 HDRCapacityMin: 0/1
 HDRCapacityMax: 28/10
 GainMapMin: (0/1, 0/1, 0/1)
 GainMapMax: (275377/100000, 2751731/1000000, 2743773/1000000)
 Gamma: (311087/1000000, 317914/1000000, 286524/1000000)
 OffsetSDR: (1/64, 1/64, 1/64)
 OffsetHDR: (1/64, 1/64, 1/64)
 }
 ('altr' "Alternate Group Box") {
 Version: 0, Flags: 0x000000
 group id: 7
 num entities in group: 2
 entity id 1
 entity id 6
 }
}
('mdat' "Media Data Box") {...}
Tone-map derivation
Definition
An item with an item_type value of 'tmap' defines a derived image item whose reconstructed image is formed from one base input image and a secondary input image that will be referred to as a gain map input image.
The input images are given by the SingleItemTypeReferenceBox of type dimg for this derived image item within the ItemReferenceBox. In the SingleItemTypeReferenceBox of type dimg, the value of from_item_ID identifies the derived image item of type tmap, the value of reference_count shall be equal to 2, and the values of to_item_ID identify the input images, of which the first is considered as the base input image and the second as the gain map input image. The gain map input image may have different dimensions than the base as documented in ISO/AWI 214961.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Reconstruction is done by applying the gain map to the base image according to ISO/AWI 214961. As described in ISO/AWI 214961, the gain map may be scaled by a weight during application in order to adjust for local viewing conditions.
The base input image shall be associated with a colr item property.
The gain map input image shall be associated with a colr item property of type nclx. This property documents how to reverse any colour transformations that the encoder may have done for coding gains. The colour_primaries field shall be set to 2 unless both renditions use the same colour primaries, in which case it may be set to that value. The transfer_function field shall only differ from 2 if Gamma in the tmap box body is set to 1.0.
A tmap derived item shall be associated with a colr item property. This property describes the colour properties of the reconstructed image if the gain map input item is fully applied according to ISO/AWI 214961.
[Ed note: The ISO/AWI 21496-1 will guide the definition of the base colour space, the other rendition colour space, and the working colour space. Subsequently, the colr boxes referenced here will be associated with these defined terms.]
The base input image and the tmap derived item should be associated with clli item properties as appropriate to further document the optimal viewing conditions of each representation.
NOTE 1: The gain map input image should be marked as not displayable by setting (flags & 1) equal to 0 in its infe entry.
NOTE 2: Backwards compatibility with parsers that do not support the tmap derivation may be achieved by placing the main input image item and the tmap derivation item in an altr entity group.
Syntax
aligned(8) class ToneMapImage {
	unsigned int(8) version = 0;
	if(version == 0) {
		unsigned int(8) flags; // 1 or 3
		int ChannelCount = (flags & 1)*2 + 1; // temp/nonparsable variable
		Boolean BaseIsHDR = (flags & 2) != 0; // temp/nonparsable variable
		unsigned int(32) HDRCapacityMinNumerator;
		unsigned int(32) HDRCapacityMinDenominator;
		unsigned int(32) HDRCapacityMaxNumerator;
		unsigned int(32) HDRCapacityMaxDenominator;
		unsigned int(32) GainMapMinNumerator [ChannelCount];
		unsigned int(32) GainMapMinDenominator [ChannelCount];
		unsigned int(32) GainMapMaxNumerator [ChannelCount];
		unsigned int(32) GainMapMaxDenominator [ChannelCount];
		unsigned int(32) GammaNumerator [ChannelCount];
		unsigned int(32) GammaDenominator [ChannelCount];
		unsigned int(32) HDROffsetNumerator [ChannelCount];
		unsigned int(32) HDROffsetDenominator [ChannelCount];
		unsigned int(32) SDROffsetNumerator [ChannelCount];
		unsigned int(32) SDROffsetDenominator [ChannelCount];
	}
}
Semantics
version shall be equal to 0. Readers shall not process a ToneMapImage with an unrecognized version number.
(flags & 1) equal to 1 specifies that the channel count of the gain map input is 3, while a value of 0 specifies that the channel count of the gain map input is 1.
(flags & 2) equal to 2 specifies that the base input image is the HDR rendition according to ISO/AWI 214961.
HDRCapacityMin in ISO/AWI 214961 is expressed as HDRCapacityMinNumerator/HDRCapacityMinDenominator.
HDRCapacityMinDenominator shall not be 0.
HDRCapacityMax in ISO/AWI 214961 is expressed as HDRCapacityMaxNumerator/HDRCapacityMaxDenominator.
HDRCapacityMaxDenominator shall not be 0.
GainMapMin in ISO/AWI 214961 is expressed per-channel as GainMapMinNumerator[i]/GainMapMinDenominator[i].
GainMapMinDenominator[i] shall not be 0.
GainMapMax in ISO/AWI 214961 is expressed per-channel as GainMapMaxNumerator[i]/GainMapMaxDenominator[i].
GainMapMaxDenominator[i] shall not be 0.
Gamma in ISO/AWI 214961 is expressed per-channel as GammaNumerator[i]/GammaDenominator[i].
GammaDenominator[i] shall not be 0.
HDROffset in ISO/AWI 214961 is expressed per-channel as HDROffsetNumerator[i]/HDROffsetDenominator[i].
HDROffsetDenominator[i] shall not be 0.
SDROffset in ISO/AWI 214961 is expressed per-channel as SDROffsetNumerator[i]/SDROffsetDenominator[i].
SDROffsetDenominator[i] shall not be 0.
[bookmark: _Toc142013265][bookmark: _Toc142013323]

image2.png

image3.png

image4.png

image5.png

image6.png

image7.svg
 Y Cb Cr Y = Cb + Cr packed Virtual Cb Virtual Cr Traditional 4:2:0 image item Cb + Cr enhancement image Traditional 4:2:0 image item (hidden) Chroma enhancement derived item 'altr' group Enhanced 4:4:4 image item Metadata Take Y from first reference (Y channel) Unpack second reference (Y channel) Take Cb from top Take Cr from bottom

image8.png

image9.svg
 Y Cb Cr Y = Cb Virtual Cb Virtual Cr Traditional 4:2:0 image item Cb enhancement image Traditional 4:2:0 image item (hidden) Y = Cr Virtual Cb Virtual Cr Cr enhancement image Traditional 4:2:0 image item (hidden) Chroma enhancement derived item 'altr' group Enhanced 4:4:4 image item Metadata Take Y from first reference (Y channel) Take Cb from second reference (Y channel) Take Cr from the third reference (Y channel)

image10.png

image11.svg
 Y Cb Cr Y = R Virtual Cb Virtual Cr Traditional 4:2:0 image item Red channel image Traditional 4:2:0 image item (hidden) Y = G Virtual Cb Virtual Cr Green channel image Traditional 4:2:0 image item (hidden) Chroma enhancement derived item 'altr' group Enhanced 4:4:4 RGB image Metadata Take R from first reference (Y channel) Take G from second reference (Y channel) Take B from the third reference (Y channel) Y = B Virtual Cb Virtual Cr Blue channel image Traditional 4:2:0 image item (hidden)

image12.png

image13.png

image14.png

image15.png

image16.png

image1.jpeg

