
Technology under Consideration for
ISO/IEC 23090-14

WG3 Scene Description BoG

MDS23201_WG03_N01048

Table of Contents
1. Extensions . 1

1.1. MPEG_camera_control. 1

1.1.1. General . 1

1.1.2. Semantics . 1

1.1.3. Processing Model. 3

1.1.4. Example. 3

1.2. Multi-user interactivity . 4

1.2.1. Introduction . 4

1.2.2. References. 6

1.3. MPEG_material_acoustic. 6

1.3.1. General . 6

1.3.2. Semantics . 6

1.3.3. Processing Model. 9

2. ISOBMFF. 11

2.1. Improvements for MPEG-I SD random access description. 11

2.1.1. General . 11

2.1.2. Characteristics of random access points of MPEG-I Scene Description 11

2.1.3. Description and processing of random access points . 11

2.1.4. Proposed text improvements . 12

2.2. On sample formats for lighting information . 13

2.2.1. Introduction . 13

2.2.2. Lighting information signalling . 14

2.2.3. Proposals. 15

3. Codec Support . 24

3.1. Dynamic mesh support in scene description. 24

3.1.1. Introduction . 24

3.1.2. Design . 24

3.1.3. Assets and Implementation . 24

3.2. Support for multiple atlases for MIV applications (MPEG142) . 25

3.2.1. Multiple atlases . 25

3.2.2. References . 32

3.3. On G-PCC support . 33

3.3.1. Consideration on in-GPU processing . 33

3.3.2. Proposal. 34

3.3.3. Reference . 35

3.3.4. Annex. Proposed MPEG extension . 35

4. Data Formats . 39

4.1. Support of glTF CBOR binary format . 39

4.1.1. Problem Statement . 39

4.1.2. Benefit of CBOR file/data format: . 39

4.1.3. CBOR data size comparison example: . 39

4.1.4. Use Cases . 39

4.1.5. Potential Solutions . 40

4.1.6. Open Issue Discussion . 41

5. Interfaces . 42

5.1. On DASH Dynamic Bitrate Adaption with Viewpoint Update . 42

5.1.1. Problem Statement . 42

5.1.2. Use Cases . 42

5.1.3. Current Scene Description Support and Gasps . 43

5.2. Supporting Multiple Viewers in the Media Access Function . 44

5.2.1. General . 44

5.2.2. Proposed Updates to MAF API . 45

5.3. CoAP API support in MAF . 46

5.3.1. General . 46

5.3.2. MAF as CoAP Client . 46

5.3.3. MAF as HTTP-CoAP Proxy. 46

5.4. An Abstract API for Driving External Renderers . 47

5.4.1. Render Lock-in API. 47

6. MPEG-I Audio in Scene Description. 49

6.1. Immersive audio extension . 49

6.1.1. Introduction . 49

6.1.2. Background . 49

6.1.3. MPEG-I immersive audio support. 50

6.1.4. References . 54

6.2. MPEG-I Audio in Scene Description . 54

6.2.1. General . 54

6.3. Establishing a Mapping between Audio and MPEG-I Scenes . 56

6.3.1. General . 56

6.3.2. Extension for Audio Node Mapping . 56

7. Reference Software . 58

7.1. Thoughts on trimesh playback of AR scenes . 58

7.1.1. General . 58

7.1.2. AR Sessions recording and format . 58

7.1.3. AR Session playback in trimesh. 62

8. Interactivity framework . 63

8.1. On event-based scene update . 63

8.1.1. General . 63

8.1.2. A use case for event based updates . 64

8.1.3. JSON patch limitations. 65

8.1.4. Semantics for event-based update . 66

8.2. Physic Support. 67

8.2.1. Introduction . 67

8.2.2. Analysis of the physic simulation consistency between game engines with the current

parameters . 68

8.2.3. Analysis with new physics parameters . 69

8.2.4. Proposed changes to SD physic support . 73

9. Collected problem statements and industry needs . 78

9.1. On the support of real environment data. 78

9.1.1. General . 78

9.1.2. Representation of the real environment. 78

9.1.3. Storing a representation of the real environment . 79

9.1.4. Examples of framework for real environment handling . 80

9.2. Semantic representation. 83

9.2.1. Semantic Expression for 3D contents . 83

Appendix A: Disclaimer . 85

Chapter 1. Extensions

1.1. MPEG_camera_control
Source: m56337, m57409

1.1.1. General

The scene description may describe a set of paths through which the camera is allowed to move.
The paths may be described as a set of anchor points that are connected through path segments. For
enhanced expressiveness of the camera control, each path segment may be enhanced with a
bounding volume that allows some freedom in motion along the path. The Figure 1 depicts this
behavior.

Figure 1. Example of Camera Path Segment with Bounding Volume

Example of Camera Path Segment with Bounding Volume The scene camera, and by consequence
the viewer, will be able to move freely within the bounding volume along the path segment. The
path segment may be described using more complex geometric forms to allow for finer control of
the path.

Furthermore, the camera parameters may be constrained at each point along the path. The
parameters are provided for every anchor point and then used together with an interpolation
function to calculate the corresponding parameters for every point along the path segment.

In fact, the interpolation function applies to all parameters, including the bounding volume.

The camera control extension is a glTF 2.0 extension that defines camera control for a scene. The
camera control extension is identified by “MPEG_camera_control” tag, which shall be included in
the extensionsUsed and should be included in the extensionsRequired of the scene.

1.1.2. Semantics

The MPEG_camera_control extension shall be defined on camera elements. It contains the following
properties:


TODO : auto generate the semantics

schema is needed

1

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/12
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/147

Type Description Required

anchors number Number of anchor
points in the camera
paths.

No

segments number The type of the
bounding volume for
the path segments.
Possible types are:

* BV_NONE: no
bounding volume

* BV_CONE: capped
cone bounding volume,
defined by a circle at
each anchor point.

* BV_CUBOID: a cuboid
bounding volume,
defined by size_x,
size_y,size_z for each of
the 2 faces containing
the two anchor points.

* BV_SPHEROID: a
spherical bounding
volume around each
point along the path
segment. The bounding
volume is defined by
the radius of the sphere
in each dimension,
radius_x, radius_y,
radius_z.

default: BV_NONE

No

boundingVolume number Quaternion describing
the rotation of the
scene in the anchor
space. centerPosition
and orientation are
used as alternatives to
transformation.

default:false

No

2

Type Description Required

cameraIntrinsics boolean When set to true,
indicates that the
intrinsic camera
parameters are
modified at each
anchor point. The
parameters shall be
provided based on the
type of camera as
defined in [glTF 2.0] as
camera.perspective or
camera.orthographic.

No

accessor number The index of the
accessor or timed
accessor that provides
the camera control
information.

No

The camera control information is structured as follows:

• For each anchor point, (x,y,z) coordinates of the anchor points as float numbers

• For each path segment, (i,j) indices of the first and second anchor point of the path segment as
an integer

• If boundingVolume is BV_CONE, (r1,r2) radiuses of circle of first anchor point and second
anchor point. If boundingVolume is BV_CUBOID, (anchor_idx,size_x,size_y,size_z) for each
anchor point of the path segment. If boundingVolume is BV_SPHEROID, (r_x,r_y,r_z) as radius of
the spheroid for each anchor point of the path segment.

• If cameraIntrinsics is true, the intrinsic parameter object.

1.1.3. Processing Model

The Presentation Engine shall support the MPEG_camera_control extension. If the scene provides
camera control information, the Presentation Engine shall limit the camera movement to the
indicated paths, so that the (x,y,z) coordinates of the camera always lie on a path segment or within
the bounding volume of a path segment. The Presentation Engine may provide visual, acoustic,
and/or haptic feedback to the viewer when they approach the boundary of the bounding volume.

1.1.4. Example


TODO : add example

Input needed

3

1.2. Multi-user interactivity
Source: m64014


The group invites for alternative solutions, possibly with also with different design
choices, for example where scene description document is not modified, but other
solutions are used. Alignment with 3GPP is encourage.

1.2.1. Introduction

We propose to address the shared indication and to delegate the generation of the scene update
data to the application server, when the updates must be shared.

For the missing action type, an approach is proposed in the TUC document [6] that need further
investigation that may be addressed in a future phase 3.

1.2.1.1. Solution Overview

Each user receives from the application server an initial scene description file containing a
description of 3D scene objects and interactivity elements.

An event is defined as the activation of a set of triggers referenced in a behavior object as specified
in the MPEG_scene_interactivity extension.

The following description refers to the Figure 2.

When a set of triggers fire at one user’s side (step 2). The behavior information is then sent to the
application server (step 3).

The behavior information content and format are out of scope of MPEG-SD, but it may include:

• The index of the behavior in the behaviors array defined in the scene description file. The
application server knows the scene and its interactivity features, and it will be able to launch
related actions and generate scene updates based on the specified behavior (step 4).

• Additional information to perform the update, for instance for a user input trigger, a pose
information related to where the gesture has been detected (a 2D position for a touch on a
surface, the 3D position of a user’s hand…)

The application server uses this information to generate and forward scene updates to the all users
(step 5): A scene update content and format are out of scope of MPEG-SD, but it may contain:

• a patch (for instance a JSON patch [3] to update glTF scene graph) to be applied to the scene
graph, adding, deleting, or modifying some nodes.

• an action to be executed by each user (play/stop a media file or an animation, activate a node).
It can be a string describing an action as specified in [2] or the index of an action object in the
actions array defined in the scene description file.

• The new state of some objects of the scene graph (activate, enabled, paused…)

• an identifier of the trigger information that caused the update.

4

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/565

The scene updates are then applied by all the users (step 6)

Figure 2. Shared behavior sequence diagram

1.2.1.2. MPEG-SD semantic for the “shared” parameter

We propose to add a new “shared” parameter to a behavior object: We could have added this
parameter in a trigger or action object, but it would imply duplication if a same trigger/action is
used for shared and non-shared updates.

The table 8.2-9 of the amd2 document should be modified as follow:

Table 1. semantic of behavior

Name Type Usage Default Description

triggers array M Indices of the
triggers in the
triggers array
considered for this
behavior

actions array O [] Indices of the
actions in the
actions array
considered for this
behavior. The
action list may be
empty when the
flag “shared” is set
to true.

Shared Boolean O false Indicate if the
behavior is to be
process locally
only (False) of if it
must also impact
the other
connected users
(True).

…

The following text should be added in the section 8.2.3 of the amd2 document:

When a Presentation Engine parses a behavior object containing a “shared” parameter set to true, it
checks the activation of the referenced trigger. When the triggers become active:

5

• it sends to the application server the behavior information.

When the presentation engine receives a scene update message from the application server, it
updates its scene graph accordingly.

When a Presentation Engine parses a behavior object containing a “shared” parameter set to false
or without a “shared” parameter, it checks the activation of the referenced trigger. When the
triggers become active:

• If the actions list is empty, it raises an error.

• If the actions list is not empty, it executes each action that causes local changes only.

1.2.2. References

[1] Information technology - Coded representation of immersive media - Part14: Scene Description
for MPEG media, ISO/IEC DIS 23090-14 :2021 (E)

[2] ISO/IEC JTC 1/SC 29/WG 3 N0797, Text of ISO/IEC 23090-14 CDAM 2: Support for Haptics,
Augmented Reality, Avatars, Interactivity and Lighting, March 2023

[3] IETF JSON patch: https://datatracker.ietf.org/doc/html/rfc6902/

[4] Technology under Consideration for ISO/IEC 23090-14, May 2023

[5] ISO/IEC JTC 1/SC 29/WG 2 N00230, MPEG-I Phase 2 requirements, July 2022

[6] 3GPP TR26.998 Support of 5G Glass-type AR/MR devices, v18.0.0 (2022-12)

1.3. MPEG_material_acoustic
Source: m64377

1.3.1. General

The acoustic material extension adds support for acoustic materials to a scene. This extension may
be used together with the MPEG_audio_spatial extension, but is not limited to that extension.

When present, the MPEG_material_acoustic extension shall be included as an extension to a
material object as defined in ISO/IEC DIS 12113:2021.

For a primitive that is associated with a visual material, the acoustic material extension shall be
attached to it.

1.3.2. Semantics

The definition of the MPEG_material_acoustic extension is provided in the following table.

6

https://datatracker.ietf.org/doc/html/rfc6902/
https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/568

Name Type Default Usage Description

frequencies array O provides an array
of
MPEG_material_ac
oustic.frequency
objects as defined
in the next table.

accessor integer O As an alternative,
the frequency
characteristics
may be accessible
through an
accessor, which
references a
binary
representation of
the data in a
buffer. The binary
format of the
elements is
provided in table
3.

The definition of the MPEG_material_acoustic.frequency is provided in the following table.

Name Type Default Usage Description

frequency number M The frequency for
associated with
the following
coefficients, with
values between 1
and 24000.

specularReflection number 0.0 O The specular
reflection
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indicates the
energy reflected
back in a distinct
outgoing direction.

7

Name Type Default Usage Description

diffuseScattering number 0.0 O The diffused
scattering
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indiates the
energy that is
diffusely scattered
back from the
material.

transmission number 0.0 O The transmission
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indiciates the
energy which
passes through the
material without
changing the
direction of the
sound.

coupling number 0.0 O The coupling
coefficient for this
frequency, with a
range of values
between 0.0 and
1.0. Indiciates the
energy which
excites vibrations
in the structure
and is reemitted
by the entire
structure.

The binary format of the samples of the frequency characteristics is given in the following table.

Syntax Length (bits) Type Semantics

frequency 16 uint(16) The frequency for
associated with the
following coefficients,
with values between 1
and 24000.

8

Syntax Length (bits) Type Semantics

specularReflection 32 float The specular reflection
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indicates the
energy reflected back
in a distinct outgoing
direction.

diffuseScattering 32 float The diffused scattering
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indiates the
energy that is diffusely
scattered back from the
material.

transmission 32 float The transmission
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indiciates the
energy which passes
through the material
without changing the
direction of the sound.

coupling The coupling
coefficient for this
frequency, with a range
of values between 0.0
and 1.0. Indiciates the
energy which excites
vibrations in the
structure and is
reemitted by the entire
structure.

1.3.3. Processing Model

An acoustic material is described via that a list of elements, where each element holds four
coefficients and an associated frequency.

The coefficients are:

• specular reflection, which represents the energy being reflected in a distinct outgoing direction
from the direct sound.

9

• diffused scattering, which represents energy being diffusely scattering back from the material.

• transmission, which represents the energy that is passed through the material without changing
the direction.

• coupling, which represents the energy that excites vibrations in the structure and is re-emitted
by the entire structure.

The sum of these four coefficients, per frequency, must be less than or equal to 1, and be greater
than or equal to 0. The difference between 1 and the sum of the four coefficients, per frequency,
represents the energy that is dissipated into heat.

10

Chapter 2. ISOBMFF

2.1. Improvements for MPEG-I SD random access
description
Source: m58853

2.1.1. General

For random access of the MPEG-I Scene Description data in a ISOBMFF file tracks, play of the track
must start from either a sync sample or a redundant coding sample containing glTF JSON
document. Draft FDIS of ISO/IEC 23090-14 Scene Description for MPEG Media indicates that glTF
JSON documents shall be marked as sync samples and potential usage of redundant samples for
random access but it does not provide detailed descriptions on how to process such samples for
random access. This contribution proposes improvements on such description to avoid any
confusion by the readers.

2.1.2. Characteristics of random access points of MPEG-I Scene Description

For traditional audio-visual media data, sync samples are simply considered as random access
points as processing of a sync sample is same for a decoder playing a sync sample as the first
sample and a decoder already processed other sync samples and non-sync samples. When a sync
sample of traditional audio-visual media data is processed the result of previously processed
samples does not have to be preserved as they are not used for decoding of a sync sample and a
decoder is fully refreshed regardless of the status of the decoder before processing a sync sample.
This processing model cannot be simply applied to the processing of a sync sample of scene
description data as the status of Presentation Engine should not be fully refreshed and the status of
Presentation Engine before processing a sync sample needs to be preserved for efficient processing.
Therefore, appropriate processing model of sync sample of scene description needs to be described.

Table 1. Comparison of characteristics of sync samples characteristics of sync samples traditional
audio-visual media scene description data dependency to the previous samples No No continuity of
the decoder status No Yes

As shown in the Table 1, characteristics of sync sample of traditional audio-visual data and scene
description data are different. For traditional audio-visual media, sync samples are not dependent
to the previous samples and continuity of the data from the previous sample does not exist.
However, for scene description data, sync samples are not dependent to the previous samples but
continuity of the data from the previous sample may exist.

2.1.3. Description and processing of random access points

2.1.3.1. Random access points with sync samples

One type of random access point is sync sample. Currently, the specification is silent about the case
of having a sync sample in the middle of a track and how such samples should be process by a
Presentation Engine already in the processing of that track without breaking continuity of the

11

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/246

Presentation Engine. So, there must be description about how to process sync samples by a
Presentation Engine already in the processing of a track. In this case, an ISOBMFF file track
carrying scene description data can have more than one sync sample and all of each sync samples
will contain a glTF JSON document which defines the status of the nodes at the presentation time of
the sync sample. The Presentation Engine which has not processed any sample before the current
sync sample can process a sync sample as normal scene description document. However, the
Presentation Engine already processed any samples before the current sync sample in decoding
order should process a sync sample as scene update even though document in the sample is not in
the form of JSON patch. Therefore, the description about such processing model should be defined.
Otherwise, there should be a restriction that only one sync sample is allowed in the track with
MPEG-I Scene Description data.

2.1.3.2. Random access points with redundant coding

The other type of random access point is redundant coding sample. Currently, the specification
mentions that the scene description data track can contain some non-sync samples which have
sample_has_redundancy flag set to '1'. As such samples will be parsed by a Presentation Engine
starting play from such sample and ignored by a Presentation Engine already in the processing of a
track, this sample will not break continuity of a Presentation Engine already in the processing of a
track. To use such samples as a random access point, such sample should carry a glTF JSON
document and the document should have the description of a scene same as the scene at the
composition time of that sample. In addition, it also needs to be mentioned that there should be no
update of scene between the sample preceding such samples and the sample succeeding such
samples.

Figure 3 shows an example with redundant samples for random access. In this example, a track
with scene description data has two redundant samples denoted as R. The redundant sample R8
whose composition time is between U7 and U9 contains a glTF JSON document contains description
of the scene at the time of the composition time of R8. The The Presentation Engine starting from
middle of the track starts play either R5 or R8, then play U6 or U9, respectively. The The
Presentation Engine starting from the begining of the track starts play D0 and ignore R5 and R8. As
the sample duration of U4 and U7 will be extended by sample duration of R5 and R8, respectively,
the scene description information in U4 and U7 must consider that the Presentation Engine will
play it longer than the duration of the sample containing it. For example, the animation of active
scene of the Presentation Engine according to the animation samplers provided by the sample U4
and the samples before that sample may continue until it receives any updated animation samplers
by the U6 sample or the samples after that sample.

Figure 3. An example structure of scene description data with shadow sync samples

Therefore some additional description about the scene description for such samples should be
provided.

2.1.4. Proposed text improvements

12

2.1.4.1. Sync Samples

It is proposed to add a section about processing of sync samples as follows.

Processing of sync sample

When no nodes in the currently active scene of the Presentation Engine matches a node in a glTF JSON
document from a sync sample, the Presentation Engine shall add such node and interact with the MAF
to fetch any new content associated with the scene update. When a node in the currently active scene
of the Presentation Engine dose not match to any nodes in a glTF JSON document from a sync sample,
such nodes shall be removed from the currently active scene of the Presentation Engine. When a node
in the currently active scene of the Presentation Engine matches a node in a glTF JSON document from
a sync sample, then the status of such node shall be updated to the status of the node described by the
sync sample.

2.1.4.2. Redundant coding

It is proposed to improve a section about sample redundancies in section 8.7 of ISO/IEC 23090-14 as
follows.

Sample redundancies

For all tracks defined in this document, if a sample has its sample_has_redundancy flag set to '1' and
sample_depends_on flag set to '2', then it is expected that that sample contains a glTF JSON document
describing the status of the scene at the compsotion time of that sample and would only be made
available by the ISOBMFF parser to the Presentation Engine if the processing of the file starts with
this sample. Otherwise, it is expected that the sample be ignored, and that processing of the current
sample is continued beyond the duration of current sample for a duration equal to the duration of the
ignored sample, as defined in ISO/IEC 14496-12.

If the scene description preceding the sample ignored, then the Presentation Engine should continue
play of the currently active scene until it receives any updates from the next samples after the sample
ignored. Therefore, the scene description in the sample immediately preceding the sample in decoding
order whose sample_has_redundancy set to '1' and sample_depends_on set to '2 should consider that
the Presentation Engine will play the scene beyond the duration of that sample by the amount of the
duration of the next sample. In addition, the glTF JSON document in the sample whose sample_has
sample_has_redundancy set to '1' and sample_depends_on set to '2' shall not introduce any scene
description which make the status of active scene of a Presentation Engine different from the stauts of
the active scene of a Presentation Engine played immediately preceding this sample during the time
between the composition time of this sample and the composition time of immediately succeding
sample.

2.2. On sample formats for lighting information
Source: m65312

2.2.1. Introduction

At MPEG #143, the SC29 WG03 Systems issued the Text of ISO/IEC 23090-14 DAM 2 Support for

13

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/618

haptics, augmented reality, avatars, interactivity and lighting (N00942).

Among other features, the amendment enables the signalling of lighting information in the scene
description document as follows:

1. Image-based lighting

2. Punctual light sources

Both types of lighting information can either be explicitly signalled in the scene description as static
information or be provided from accessors. For the image-based lighting, the extension
MPEG_lights_texture_based provides references to accessors for the rotation, intensity and
irradiances coefficients. For the punction light sources, the extension MPEG_light_punctual
provides references to accessor for the colour, intensity and range.

Since the specular images are suitable for storage in ISOBMFF files as static pictures or video
sequences (e.g. like in test files captured using ARCore), but the current specifications lacks of the
ability to store in such ISOBMFF the rest of the lighting information.

Therefore, this contribution proposes to define a sample format for all the lighting information
such that the scene creator can store all this information in a unified way.

In the v2 of the document, following discussion in session, this contribution also provides
alternative designs that were proposed. Those alternatives are:

• Defining the sample entry codes, e.g. ‘puli’, but not the sample format which is defined by the
time accessor

• Defining a single sample entry code, e.g. ‘sdmt’, with samples containing different parameters.

Those three alternatives needs to be studied for the next meeting.

2.2.2. Lighting information signalling

Lighting extension Attribute Accessor type

MPEG_lights_texture_based rotation componentType = 5126 (float),
type = VEC4,
count = 1

MPEG_lights_texture_based intensity componentType = 5126 (float),
type = SCALAR,
count = 1

MPEG_lights_texture_based irradiance componentType = 5126 (float),
type = SCALAR,
count = 27

MPEG_light_punctual color componentType = 5126 (float),
type = VEC3,
count = 1

14

Lighting extension Attribute Accessor type

MPEG_light_punctual Intensity componentType = 5126 (float),
type = SCALAR,
count = 1

MPEG_light_punctual range componentType = 5126 (float),
type = SCALAR,
count = 1

2.2.3. Proposals

2.2.3.1. Option #1: Per metadata tracks

2.2.3.1.1. Design principles for file encapsulation

Principle #1: A light source is contained into one track

For a punctual light, there are three attributes. One approach is to have one track per attribute,
another is to have one track providing the three attributes. We believe that parsing one track for all
three attributes is friendlier for the application rather than getting all the information from
multiple tracks.

Principle #2: Elements can be configured to be optional

In some cases, some attributes of a light source are varying over time and some are static for the
duration of the scene. For instance, the intensity attribute of a light may change during a scene
while the color attribute may remain the same. In this case, it would be inefficient to repeat the
color information for every sample whenever the intensity does change. Therefore, it is desirable
that the presence of the attribute in the sample is gated by a flag.

Principle #3: Light sources multiplexing in samples

Especially for punctual lights in virtual scenes, there can be several light sources to describe. To
make the parsing simpler for the application, it is desirable to allow storing multiple light sources
in the same tracks, although the content creator may still decide which light sources to group
together. Therefore, it is desirable that the sample format allows for describing several light
sources, i.e. enabling a “light source multiplexing”.

2.2.3.1.2. Illustration of proposed file structures

For punctual lights, the content creator can create one or more tracks (with sample entry code
‘puli’) for storing the related information.

Figure 4. Carriage of punctual light information in timed metadata track ('puli')

For texture-based lights, the content creator can create one or more tracks (with sample entry code
‘tbli’) for storing the related information. For the specular images since they are video sequences,
conventional 2D video tracks are used.

15

Figure 5. Carriage of texture-based light information in timed metadata track ('tbli')

2.2.3.1.3. Text proposal

2.2.3.1.3.1. Carriage format for lighting information

2.2.3.1.3.1.1. General

A timed metadata track can be used to provide the lighting information related to a given light
source. The light source can be of two types, punctual as defined in [MPEG_light_punctual] or
texture-based as defined in [MPEG_lights_texture_based]. The sample timing of the metadata track
defines the time instant of a lighting sample to which the lighting information in the sample
applies.

In the scene description document, the specified values are provided by referring to an accessor
with MPEG_accessor_timed extension.

2.2.3.1.3.2. Punctual lights sample entry*

Definition*

Sample Entry Type: 'puli'
Container: Sample Description Box ('stsd')
Mandatory: No
Quantity: 0 or 1

A punctual light sample entry identifies a track containing lighting information related to punctual
lights as defined in [MPEG_light_punctual].

2.2.3.1.3.2.1. Syntax

16

aligned(8) class PunctionalLLightSampleEntry()
extends MetadataSampleEntry('puli') {
 unsigned int(16) number_of_light_sources;
 unsigned int(1) color_is_static;
 unsigned int(1) intensity_is_static;
 unsigned int(1) range_is_static;
 bit(5) reserved;
 if(color_is_static == 1) {
 unsigned int(16) color[3];
 }
 if(intensity_is_static == 1) {
 unsigned int(16) intensity;
 }
 if(range_is_static == 1) {
 unsigned int(16) range;
 }
}

2.2.3.1.3.2.2. Semantics*

number_of_light_sources specifies the number of light sources described in the samples.

color_is_static indicates that the color attribute is present in the sample entry and not in samples.

intensity_is_static indicates that the intensity attribute is present in the sample entry and not in
samples.

range_is_static indicates that the range attribute is present in the sample entry and not in samples.

color is an array of three fixed-point 0.16 number that indicates the value of the color attribute of
the light as defined in the color attribute of the KHR_lights_punctual extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the KHR_lights_punctual extension.

range a fixed-point 8.8 number that indicates the value of the range attribute of the light as defined
in the range attribute of the KHR_lights_punctual extension.

2.2.3.1.3.3. Punctual lights sample format*

2.2.3.1.3.3.1. General*

The sample format includes the attributes of a punctual light for each light source described by the
track.

2.2.3.1.3.3.2. Syntax*

17

class PunctualLightsInfo(
 int color_is_static,
 int intensity_is_static,
 int range_is_static) {
 if(color_is_static == 0) {
 unsigned int(16) color[3];
 }
 if(intensity_is_static == 0) {
 unsigned int(16) intensity;
 }
 if(range_is_static == 0) {
 unsigned int(16) range;
 }
}

aligned(8) class PunctualLightsSample(
 int number_of_light_sources,
 int color_is_static,
 int intensity_is_static,
 int range_is_static) {
 PunctualLightsInfo light_info(
 color_is_static,
 intensity_is_static,
 range_is_static)[number_of_light_sources];
}

2.2.3.1.3.3.3. Semantics

color is an array of three fixed-point 0.16 number that indicates the value of the color attribute of
the light as defined in the color attribute of the KHR_lights_punctual extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the KHR_lights_punctual extension.

range a fixed-point 8.8 number that indicates the value of the range attribute of the light as defined
in the range attribute of the KHR_lights_punctual extension.

2.2.3.1.3.4. Texture-based lights sample entry*

2.2.3.1.3.4.1. Definition

Sample Entry Type: 'tbli'
Container: Sample Description Box ('stsd')
Mandatory: No
Quantity: 0 or 1

A texture-based light sample entry identifies a track containing lighting information related to
texture-based lights as defined in [MPEG_lights_texture_based].

18

2.2.3.1.3.4.2. Syntax

aligned(8) class TextureBasedLLightSampleEntry()
extends MetadataSampleEntry('tbli') {
 unsigned int(16) number_of_light_sources;
 unsigned int(1) rotation_is_static;
 unsigned int(1) intensity_is_static;
 unsigned int(1) irradiance_coefficients_are_static;
 bit(5) reserved;
 if(rotation_is_static == 1) {
 unsigned int(16) color[3];
 }
 if(intensity_is_static == 1) {
 unsigned int(16) intensity;
 }
 if(irradiance_coefficients_are_static == 1) {
 float(32) irradience_coefficients[27];
 }
}

2.2.3.1.3.4.3. Semantics

number_of_light_sources specifies the number of light sources described in the samples.

rotation_is_static indicates that the rotation attribute is present in the sample entry and not in
samples.

intensity_is_static indicates that the intensity attribute is present in the sample entry and not in
samples.

irradiance_coefficients_are_static indicates that the irradiance coefficients attribute are present in
the sample entry and not in samples.

rotation is an array of four fixed-point 0.32 signed integer that indicates the value of the quaternion
representing the rotation attribute of the light as defined in the rotation attribute of the
EXT_lights_image_based extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the EXT_lights_image_based extension.

irradience_coefficients is a sequence of 27 32-bit float numbers that indicates the value of the
irradiance coefficients of the light as defined in the irradiance attribute of the
EXT_lights_image_based extension.

2.2.3.1.3.5. Texture-based lights sample format

2.2.3.1.3.5.1. General

The sample format includes the attributes of a texture-based light for each light source described by
the track. ====== Syntax

19

class TextureBasedLightsInfo(
 int rotation_is_static,
 int intensity_is_static,
 int irradiance_coefficients_are_static) {
 if(rotation_is_static == 0) {
 signed int(32) rotation[4];
 }
 if(intensity_is_static == 0) {
 unsigned int(16) intensity;
 }
 if(irradiance_coefficients_are_static == 0) {
 float(32) irradience_coefficients[27];
 }
}

aligned(8) class TextureBasedLightsSample(
 int number_of_light_sources,
 int rotation_is_static,
 int intensity_is_static,
 int irradiance_coefficients_are_static) {
 TextureBasedLightsInfo light_info(
 rotation_is_static,
 intensity_is_static,
 irradiance_coefficients_are_static)[number_of_light_sources];
}

2.2.3.1.3.5.2. Semantics

rotation is an array of four fixed-point 0.32 signed integer that indicates the value of the quaternion
representing the rotation attribute of the light as defined in the rotation attribute of the
EXT_lights_image_based extension.

intensity a fixed-point 0.16 number that indicates the value of the intensity attribute of the light as
defined in the intensity attribute of the EXT_lights_image_based extension.

irradience_coefficients is a sequence of 27 32-bit float numbers that indicates the value of the
irradiance coefficients of the light as defined in the irradiance attribute of the
EXT_lights_image_based extension.

2.2.3.2. Option #2: Unspecified sample format

In this option, we would only define the sample entry (empty) and let the timed accessor in the glTF
to describe how the samples are formed.

aligned(8) class PunctionalLLightSampleEntry()
extends MetadataSampleEntry('puli') {
}

20

aligned(8) class TextureBasedLLightSampleEntry()
extends MetadataSampleEntry('tbli') {
}

2.2.3.3. Option #3: Generic sample definition for SD timed metadata

In this option, we would define a single sample entry code and sample format that accommodates
all the timed metadata defined in SD.

For instance, this is a possible sample entry definition when considering the punctual and texture-
based lighting extension. Note that this should be extended to the other timed metadata present in
SD v1 if we move forward with this approach.

class PunctionalLLightConfig()
 unsigned int(16) number_of_light_sources;
 unsigned int(1) color_is_static;
 unsigned int(1) intensity_is_static;
 unsigned int(1) range_is_static;
 bit(5) reserved;
 if(color_is_static == 1) {
 unsigned int(16) color[3];
 }
 if(intensity_is_static == 1) {
 unsigned int(16) intensity;
 }
 if(range_is_static == 1) {
 unsigned int(16) range;
 }
}

class TextureBasedLightingConfig() {
 unsigned int(16) number_of_light_sources;
 unsigned int(1) rotation_is_static;
 unsigned int(1) intensity_is_static;
 unsigned int(1) irradiance_coefficients_are_static;
 bit(5) reserved;
 if(rotation_is_static == 1) {
 unsigned int(16) color[3];
 }
 if(intensity_is_static == 1) {
 unsigned int(16) intensity;
 }
 if(irradiance_coefficients_are_static == 1) {
 float(32) irradience_coefficients[27];
 }
}

21

aligned(8) class SceneDescrptionMetadataSampleEntry()
extends MetadataSampleEntry('sdmt') {
 unsigned int(3) metadata_type;

 switch(metadata_type) {
 case 0:
 PunctionalLLightConfig config;
 return;
 case 1:
 TextureBasedLightingConfig config;
 return;
 }
}

Then the text would say that if metadata_type is equal to 0 then the sample is
PunctualLightsSample, if equal to 1 then the sample is TextureBasedLightsSample.

class PunctualLightsInfo(
 int color_is_static,
 int intensity_is_static,
 int range_is_static) {
 if(color_is_static == 0) {
 unsigned int(16) color[3];
 }
 if(intensity_is_static == 0) {
 unsigned int(16) intensity;
 }
 if(range_is_static == 0) {
 unsigned int(16) range;
 }
}

aligned(8) class PunctualLightsSample(
 int number_of_light_sources,
 int color_is_static,
 int intensity_is_static,
 int range_is_static) {
 PunctualLightsInfo light_info(
 color_is_static,
 intensity_is_static,
 range_is_static)[number_of_light_sources];
}

22

class TextureBasedLightsInfo(
 int rotation_is_static,
 int intensity_is_static,
 int irradiance_coefficients_are_static) {
 if(rotation_is_static == 0) {
 signed int(32) rotation[4];
 }
 if(intensity_is_static == 0) {
 unsigned int(16) intensity;
 }
 if(irradiance_coefficients_are_static == 0) {
 float(32) irradience_coefficients[27];
 }
}

aligned(8) class TextureBasedLightsSample(
 int number_of_light_sources,
 int rotation_is_static,
 int intensity_is_static,
 int irradiance_coefficients_are_static) {
 TextureBasedLightsInfo light_info(
 rotation_is_static,
 intensity_is_static,
 irradiance_coefficients_are_static)[number_of_light_sources];
}

23

Chapter 3. Codec Support

3.1. Dynamic mesh support in scene description
Source: m57410

3.1.1. Introduction

The support for dynamic meshes in scene description complements the support for dynamic point
clouds. A dynamic mesh is a timed sequence of a mesh representation. A mesh consists of a set of
attributes such as vertex positions, and normals. It also has connectivity information, usually in the
form of a description of faces that usually are in triangular shape. A face is typically identified by its
vertex indices. The faces are usually associated with a material, which is composed of a patch of
texture and its light characteristics.

In this contribution, we describe the support for dynamic meshes in scene description.

3.1.2. Design

The support for dynamic meshes in the MPEG-I scene description is limited to the following
features:

• Timed attributes such as vertex positions, normals, tangents, texture coordinates, …

• Timed indices for indicating dynamic connectivity information

• Video texture for the mesh material

All other components of the dynamic mesh are assumed to remain unchanged (e.g. the material,
the material properties, the mode, weights and morph targets, …)

The support for dynamic meshes doesn’t require the introduction of any new extensions. The timed
attributes and indices are supported through providing a reference to a timed accessor, i.e. an
accessor that provides the MPEG_accessor_timed extension.

The video texture is supported through referencing a texture that has the MPEG_texture_video
extension, which in turn references a timed accessor.

3.1.3. Assets and Implementation

Adding support for timed meshes coincides with the start of the activity by the 3DG group on mesh
coding. Similar to the point cloud support, the support for dynamic meshes can be done
irrespective of whether the mesh is compressed or in raw format. Different pipeline variants
maybe created to handle decompression and reconstruction.

Initially, a single media pipeline is provided that handles mesh input in raw format based on the
wavefront obj format. The assets provided by the mesh compression activity may be used for this
purpose. We propose to use the football sequence in a scene description test scenario.

The only deviation is the compression of the texture image sequence into an HEVC bitstream that

24

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/148

can be used with the already supported video texture extension.

The dynamic mesh pipeline implements a file sequence reader that reads the obj file sequence one
by one to generate the mesh frames.

Figure 6 depicts the setup:

Figure 6. n/a

The Presentation Engine will synchronize the buffer access for each of the components of the mesh
by synchronizing the buffer frame timestamps.

3.2. Support for multiple atlases for MIV applications
(MPEG142)
Source: m62515

3.2.1. Multiple atlases

3.2.1.1. Motivation

A V3C bitstream can be decomposed into one or more atlas sub-bitstreams and their associated
video sub-bitstreams. The video sub-bitstreams for each atlas may include video-coded occupancy,
geometry, and attribute components. In the V3C parameter set (sub-clause 8.4.4.1 in [3]),
vps_atlas_count_minus1 plus 1 indicates the total number of atlases in the current bitstream. The
value of vps_atlas_count_minus1 is in the range of 0 to 63, inclusive.

With the proposal in Section 2.2.1 to support multiple atlases in the MPEG_primitive_V3C extension,
MPEG-I SD remains future proof to any future derivation of V3C specification which may depend on
multiple atlases along with common atlas data. One derived V3C specification in ISO/IEC 23090-12,
specified the use of common atlas data which is common to atlases in the V3C bitstream.

3.2.1.2. Overview

The proposals take the following aspects into consideration:

• Logical grouping of the relevant syntax to describe an atlas in the MPEG_primitive_V3C
extension.

• Use of atlasID property to identify the atlas identifier which is equal to vps_atlas_id[k] specified
in 8.4.4.1 of ISO/IEC 23090-5[3]. In case there are multiple atlases in the V3C bitstream, atlasID
provides a unique identifier stored in the bitstream to uniquely identify an atlas in
_MPEG_primitive_v3c extension and establishes a corresponding relation with atlas definition
in the bitstream.

25

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/484

3.2.1.3. Array of atlases

A new property is defined under the _MPEG_primitive_V3C extension named atlases. The atlases
property is an array of components corresponding to an atlas. The length of the atlases array shall
be equal to the number of atlases for a V3C object. The properties for an object in the atlases array
describe the atlas data component and corresponding video-coded components such as attribute,
occupancy, and geometry for a V3C object.

The atlasID property is an integer values, where each integer value refers to the vps_atlas_id
specified in sub-clause 8.4.4 in [3] for each atlas in the V3C bitstream.

3.2.1.3.1. MPEG_primitive_V3C

glTF extension to specify support for V3C compressed primitives.

Table 2. MPEG_primitive_V3C Properties

Type Description Required

atlases MPEG_primitive_V3C.atl
as [1-*]

An array of atlases  Yes

_MPEG_V3C_CAD MPEG_primitive_V3C._MP
EG_V3C_CAD

This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.schema.json

3.2.1.3.1.1. MPEG_primitive_V3C.atlases

An array of atlases

• Type: MPEG_primitive_V3C.atlas [1-*]

• Required:  Yes

3.2.1.3.1.2. MPEG_primitive_V3C._MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

• Type: MPEG_primitive_V3C._MPEG_V3C_CAD

26

• Required: No

3.2.1.3.1.3. MPEG_primitive_V3C.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

3.2.1.3.1.4. MPEG_primitive_V3C.extras

Application-specific data.

• Type: any

• Required: No

3.2.1.3.2. MPEG_primitive_V3C._MPEG_V3C_CAD

defines the common atlas data for a v3c object

Table 3. MPEG_primitive_V3C._MPEG_V3C_CAD Properties

Type Description Required

MIV_view_parameters integer indicates the accessor
index which is used to
refer to the list of MIV
view parameters.

 Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json

3.2.1.3.2.1. MPEG_primitive_V3C._MPEG_V3C_CAD.MIV_view_parameters

indicates the accessor index which is used to refer to the list of MIV view parameters.

• Type: integer

• Required:  Yes

• Minimum: >= 1

27

3.2.1.3.2.2. MPEG_primitive_V3C._MPEG_V3C_CAD.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

3.2.1.3.2.3. MPEG_primitive_V3C._MPEG_V3C_CAD.extras

Application-specific data.

• Type: any

• Required: No

3.2.1.3.3. MPEG_primitive_V3C.atlas

glTF extension to specify support for V3C compressed primitives.

Table 4. MPEG_primitive_V3C.atlas Properties

Type Description Required

_MPEG_V3C_CONFIG integer  Yes

_MPEG_V3C_AD integer  Yes

_MPEG_V3C_GVD_MAP
S

integer [1-*] an array of references
to video texture maps.

 Yes

_MPEG_V3C_OVD_MAP integer [0-*] a reference to a video
texture that provides
the occupancy map

No

_MPEG_V3C_AVD MPEG_primitive_V3C.att
ribute [0-*]

No

_MPEG_V3C_CAD object This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.atlas.schema.json

28

3.2.1.3.3.1. MPEG_primitive_V3C.atlas._MPEG_V3C_CONFIG

• Type: integer

• Required:  Yes

• Minimum: >= 0

3.2.1.3.3.2. MPEG_primitive_V3C.atlas._MPEG_V3C_AD

a reference to the accessor that points to the atlas data.

• Type: integer

• Required:  Yes

• Minimum: >= 0

3.2.1.3.3.3. MPEG_primitive_V3C.atlas._MPEG_V3C_GVD_MAPS

an array of references to video textures that provide the geometry maps.

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required:  Yes

3.2.1.3.3.4. MPEG_primitive_V3C.atlas._MPEG_V3C_OVD_MAP

a reference to a video texture that provides the occupancy map

• Type: integer [0-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required: No

3.2.1.3.3.5. MPEG_primitive_V3C.atlas._MPEG_V3C_AVD

An array of references to the video textures that provide the attribute data

• Type: MPEG_primitive_V3C.attribute [0-*]

• Required: No

3.2.1.3.3.6. MPEG_primitive_V3C.atlas._MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

• Type: object

• Required: No

3.2.1.3.3.7. MPEG_primitive_V3C.atlas.extensions

JSON object with extension-specific objects.

29

• Type: object

• Required: No

• Type of each property: Extension

3.2.1.3.3.8. MPEG_primitive_V3C.atlas.extras

Application-specific data.

• Type: any

• Required: No

3.2.1.3.4. MPEG_primitive_V3C.attribute

defines the attribute of a V3C object.

Table 5. MPEG_primitive_V3C.attribute Properties

Type Description Required

type integer provides the type of the
attribute.

No

maps integer [1-*]  Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.attribute.schema.json

3.2.1.3.4.1. MPEG_primitive_V3C.attribute.type

provides the type of the attribute.

• Type: integer

• Required: No

• Minimum: >= 0

• Maximum: <= 255

3.2.1.3.4.2. MPEG_primitive_V3C.attribute.maps

provides the references to the corresponding video texture maps.

• Type: integer [1-*]

30

◦ Each element in the array MUST be greater than or equal to 0.

• Required:  Yes

3.2.1.3.4.3. MPEG_primitive_V3C.attribute.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

3.2.1.3.4.4. MPEG_primitive_V3C.attribute.extras

Application-specific data.

• Type: any

• Required: No

Following is an example illustrating the use of the syntax described in Section 3.2.1.3.3

31

{
 "meshes": [{
 "name": "v3c_mesh",
 "primitives": [{
 "attributes": {
 "POSITION": 0,
 "COLOR_0": 1
 },
 "mode": 0,
 "extensions": {
 "MPEG_primitive_V3C": {
 "atlases": [{
 "atlasID": 1,
 "_MPEG_V3C_OVD_MAPS": [2],
 "_MPEG_V3C_GVD_MAPS": [3, 4],
 "_MPEG_V3C_AVD": [{
 "type": 0,
 "maps": [5, 6]
 },
 {
 "type": 4,
 "maps": [7, 8]
 }
],
 "_MPEG_V3C_CONFIG": 9,
 "_MPEG_V3C_AD": {
 "buffer_format": "baseline",
 "accessor": 10
 }
 }],
 "_MPEG_V3C_CAD": {
 "MIV_view_parameters": 114
 }
 }
 }
 }]
 }]
}

3.2.2. References

[1] m61138, "Support for multiple atlases for MIV application", MPEG 140, Mainz Meeting, October
2022.

[2] WG7N00553, "Technologies under Consideration on Scene description", MPEG 141, Online,
January 2023.

[3] ISO/IEC 23090-5:2021 Information technology — Coded representation of immersive media —
Part 5: Visual volumetric video-based coding (V3C) and video-based point cloud compression (V-

32

PCC), Online, https://www.iso.org/standard/73025.html

3.3. On G-PCC support
Source: m63070

3.3.1. Consideration on in-GPU processing

3.3.1.1. Geometry processing

The encoding process for geometry data of G-PCC bitstream is shown in Figure 7.

Figure 7. Encoding process for geometry data

Hence, the decoding process flow is as follows:

1. Entropy (CABAC) decode,

2. Octree restoration,

3. and finally, point cloud reconstruction

Here, entropy decoding is not so suitable for in-GPU processing, however, octree restoration can be
accelerated by in-GPU processing as restoration of each node of octree can be processed in parallel.

Note that octree restoration and entropy decoding are not independently processed as both are
processed in-loop manner when encoding and decoding. This means that both processes cannot be
separately distributed to MAF and PE.

Based on the above facts, if whole G-PCC bitstream decoding process (entropy decoding and octree
restoration) happens in PE, where basically assumed to equip CPU and GPU, then G-PCC decoding
and reconstruction process can be more effective.

3.3.1.2. Attribute processing

The encoding process for attribute data of G-PCC bitstream is shown in Figure 8.

33

https://www.iso.org/standard/73025.html
https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/510

Figure 8. Encoding process for attribute data

Hence, the decoding process flow is as follows:

1. Entropy (CABAC) decode,

2. LoD scheme/RAHT decode,

3. and finally, point cloud reconstruction

There are two types of compression modes which can be selectively utilized depending on the
characteristics of the attribute data. The LoD scheme at first re-organizes the points into a set of
refinement levels as according to position relationship among points and then encodes each
refinement level layer. The RHAT (Region Adaptive Hierarchical Transform) encodes by utilizing
frequency conversion based on the density of points. When decoding, both modes are accelerated
by parallel processing, and hence it would be more effective when in-GPU processing.

Note that whole attribute decoding process (entropy decoding and LoD scheme/RAHT decoding)
needs to be processed after geometry decoding completed.

3.3.1.3. Summary

In summary, by defining the pipeline which is capable of in-GPU processing in PE for decoding
geometry/attribute bitstream, it is expected that:

• for geometry, octree restoration process becomes more effective

• for attribute, LoD scheme and RHAT decoding process becomes more effective.

3.3.2. Proposal

Based on the consideration above, it is proposed the following pipeline, where coded geometry and
attribute data are transmitted from MAF to PE via buffers, and then PE decodes both and
reconstruct point cloud data by utilizing GPU.

34

Figure 9. The proposed pipeline

The detail on the proposed extension is described in the annex of this contribution. If the proposed
architecture is decided to be valuable, we will come up with the complete specification text.

3.3.3. Reference

1. “Potential improvements of ISO/IEC 23090-14 DAM 1 Support for immersive media codecs in
scene description, N00795, MPEG online meeting, January 2023

2. “[SD] G-PCC support in Scene Description”, m61856, MPEG online meeting, January 2023

3.3.4. Annex. Proposed MPEG extension

It is proposed new MPEG extension, MPEG_primitive_GPCC.

35

Figure 10. Overview of the MPEG_primitive_GPCC

Properties of MPEG_primitive_GPCC:

Name Type Default Usage Description

_MPEG_GPCC_GD Integer N/A O this component
shall provide the
index of the timed
accessor, which
corresponds to the
G-PCC compressed
geometry data
buffer.

_MPEG_GPCC_AD array(object) N/A O this component
shall provide an
array of objects,
each of which
describing an
attribute
component of the
G-PCC compressed
mesh primitive.

36

Name Type Default Usage Description

Legend:

For attributes:
M=mandatory,
O=optional,
OD=optional with
default value,
CM=conditionally
mandatory.

Properties of _MPEG_GPCC_AD object:

Name Type Default Usage Description

type uint8 0 O provides the type
of the attribute as
defined by the
“GPCC attribute
types” in ISO/IEC
23090-9.

accessor integer N/A M This provides the
index of the timed
accessor that
provides access to
the attribute data
buffer.

Legend:

For attributes:
M=mandatory,
O=optional,
OD=optional with
default value,
CM=conditionally
mandatory.

Encoded geometry data buffer format:

Field Type Description

tlv_count uint16 tlv encapsulation structure数

for(i=0; i<tlv_count; i++)

tlv_encapsulation() B.2.1 in ISO/IEC 23090-9

This buffer contains tlv_encapsulation sequence, which is defined in ISO/IEC 23090-9. For geometry

37

data buffer, only tlv_encapsulation data which tlv_type equals to 0, 1, 2, 5, 6 and 9 can be stored. For
attribute data buffer, only tlv_encapsulation data which tlv_type equals to 3, 4, 7 and 8 are stored.

"meshes": [
 {
 "name": “g-pcc",
 "primitives": [
 {
 "attributes": {
 "POSITION": 0,
 "COLOR_0": 1
 },
 "mode": 0,
 "extensions": {
 "MPEG_primitive_GPCC": {
 “_MPEG_GPCC_GD”: 3,
 "_MPEG_GPCC_AD": {
 “type": 0,
 “accessor": 2,
 },
 }
 }
 }
]
 }
]

38

Chapter 4. Data Formats

4.1. Support of glTF CBOR binary format
Source: m56102

4.1.1. Problem Statement

The Concise Binary Object Representation (CBOR), IETF RFC 8949, represents a concise data format
compared with the traditional JSON format. CBOR has similar data objects like JSON in a
name/value pair format but in a binary and compact way, also with much more support with key-
value types. The result file size is smaller than JSON, in some case, more than 50% of gain has been
observed. CBOR is registered in IANA as “application/cbor”.

CBOR is chosen as one of the glTF interchangeable compressed file formats which also has been
supported in KhronosGroup due to its compact data size and interchangeability with JSON.

4.1.2. Benefit of CBOR file/data format:

Since the support of CBOR by glTF is getting popular, it is reasonable to add such support into MPEG
scene description for:

• Increasing glTF file format interoperability.

• Reducing file size for local storage or cache.

• Increase data transfer speed

• Reducing glTF file transfer latency with minimum processing power at MAF.

4.1.3. CBOR data size comparison example:

When there there are lots of repeated data structure and types, CBOR shows a significant
compression rate:

Table 6. n/a

Test.json Test.cbor Compression Rate

13MB 258Bytes 1:1000000

4.1.4. Use Cases

4.1.4.1. CBOR binary data associated with “url”

glTF supports an external binary data expressed inline in a binary data blob. As mentioned above,
CBOR is registered in IANA as “application/cbor”. When CBOR is used, binary data may be
associated directly under the “url” parameter as follows:

39

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/95
https://datatracker.ietf.org/doc/html/rfc8949

{
 "url": "application/cbor:xxxxxxxx"
}

4.1.4.2. Using CBOR file instead of JSON

A compatible CBOR file (example.cbor) may be sent to MAF as an input instead of JSON
(example.gltf). In this case, MAF should have capability to identify, parse and verify the data
integrity of the input and parsed the glTF JSON format.

4.1.4.3. Using CBOR as local data storage

As shown in Section 1.1, CBOR may be used to compress glTF file size into local storage if file size is
a concern.

4.1.5. Potential Solutions

4.1.5.1. Proposed CBOR Parser API

The proposed CBOR parser API may be used by MAF to translate CBOR input into glTF native
supported JSON format. It may also be used as a file compressor to save the large glTF file into local
storage or cache.

The CBOR parser API offers the following methods:

Table 7. Description of CBOR Parser API

Method Brief Description

cbor2Json(FILE) Convert a CBOR format into a JSON format

json2Cbor(FILE) Convert a JSON format into a CBOR format

cbor2Json(Object) Convert a CBOR data blob into a JSON format

The IDL description of this interface is provided in the following table:

interface InputFileParser {
 readonly attribute FILE inputFileName;
 readonly attribute FILE outputFileName;
 readonly attribute CBOR cborDataBlob;
 FILE cbor2Json()(FILE cborInput);
 FILE json2Cbor(FILE jsonInput);
 FILE cbor2Json(CBOR cborDataBlob);
 bool save();
};

4.1.5.2. Proposed Test Cases

The testing of the proposed CBOR parser should be implemented under MAF. The use cases could

40

be the followings:

• If input glTF file is in CBOR format, the output shall be a glTF JSON by using cbor2Json(FILE) API

• If there is CBOR binary data specified in “url”, the output shall be a glTF JSON by applying
cbor2Json(Object) API.

• For local storage or cache purpose, a glTF file is desired to save as a CBOR by using json2Cbor()
and save() interface.

4.1.6. Open Issue Discussion

4.1.6.1. CBOR IPR

No IPR disclosures associated with IETF RFC 8949.

4.1.6.2. CBOR data security

Unlike JSON, CBOR is a binary data serialization, which is not human-readable. It is a safe data
format due to its binary nature.

4.1.6.3. Implementation

CBOR has been widely accepted and implemented. It has open-source implementations in most
popular languages. (Python, C++, Java and etc).

4.1.6.4. Potential Data format issue

Currently we did not see any incompatible data type has been used in JSON which can not be
converted to CBOR or vice versa. More testing may need to be done.

41

https://datatracker.ietf.org/doc/html/rfc8949

Chapter 5. Interfaces

5.1. On DASH Dynamic Bitrate Adaption with
Viewpoint Update
Source: m56094

5.1.1. Problem Statement

DASH as an adaptive HTTP-based media streaming method enables a client to automatically adjust
bitstream bitrate with predefined small bitstream segments based on network condition or buffer
status. The advantage of switching up/down the bitrate quality can reduce re-buffer frequency
resulting in a smooth playback experience.

The MPEG media extension, “MPEG_media”, enables scene description for playback DASH-based
timed media. While the current design of DASH adaptive streaming is implementation-specific, the
usage of DASH native switching does not provide optimal networking bandwidth usage in an
immersive or 360 scene environments. For example, a view of a media play may not be always in
the range of the current viewport, which may cause the unnecessary network resource waste. To
provide a smooth timed media playback experience, it is essential to manage how network
bandwidth is consumed.

In this contribution, we propose an extension to enable DASH-base timed media bitrate adaptation
along with viewport update. In the glTF concept, this enables DASH-based media playback to
automatically switch bitrate when the camera on and off focus on a timed media object. In turn, it
improves a user’s quality of experience, increase network bandwidth efficiency.

5.1.2. Use Cases

The following scene objects are used for explanation of potential use cases.

Table 8. n/a

Asset Description

A livingroom scene A glTF asset that represents a living room.

A Big Buck Bunny video DASH-based Big Buck Bunny video files

A Tears of Steal video DASH-based Tears of Steal video files

5.1.2.1. One timed media playback

A simple use case is there is only one DASH-based timed media is played in a scene as shown in
Figure 11. Currently, the media is rendered based on the MPEG_media extension with configurable
parameters such as autoplay, loop, etc. DASH adaptative streaming in this case is used within its
native mechanism by switching bitrate based on either network condition or buffer status. The key
observation in this case is that the video keeps playing even when the viewport is not in focus. In an
adequate network environment, DASH switches to the highest bitrate possible without considering

42

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/94

the overall bandwidth consumption for a scene as a whole. In a less desirable network condition,
with a camera’s focus is on a set of relatively large bandwidth consumption scene objects such as
PCC objects, the unnecessary bandwidth consumption from the ongoing timed media playback is
not an optimal solution for view quality of the current viewport.

Figure 11. One DASH-based Timed Media Playback

5.1.2.2. More than one timed media playback

When there is more than one timed media is played at the same time, as shown in Figure 12,
network bandwidth usage is similar to the use case in Section 5.1.2.1. However, the situation may
get worse when all of the timed media are in a high-resolution setup. The lack of balancing network
resources for each of the media play will worsen the view quality.

There are couple of scenarios in this use case:

• There is more than one DASH-based timed media in the current camera’s viewport

• There are other DASH-based timed medias outside of camera’s current viewport

Figure 12. Two DAH-based Timed Media Playback

Therefore, providing a means to MAF with configurable bandwidth usage for each of the DASH-
based timed media may become a critical feature for scene description.

5.1.3. Current Scene Description Support and Gasps

5.1.3.1. Support of viewpoint data fetching

At this moment, the media access API provided in the MAF supports fetching based on “viewinfo”
by using the following defined programming interface:

interface Pipeline {
 ..
 void startFetching(TimeInfo timeInfo, ViewInfo viewInfo);
};

The “ViewInfo” data structure is as follows:

43

interface ViewInfo {
 attribute Pose pose;
 attribute Transform objectPosition;
};

By definition, the MAF may use the “viewinfo” to optimize the streaming of the requested media
based on the camera’s view distance and orientation of the viewer. Currently, the following
parameters are defined in “viewinfo”:

• Pose

• Transform

5.1.3.2. Gaps Analysis

It is unclear how API and “viewinfo” data structure specified in Section 5.1.3.1 may be used to do
the following:

• How exactly the “viewinfo” is used to identify there are one or more DASH-based timed media
in the current viewport?

• How exactly the “viewinfo” is used to identify which media is current in focus of a viewpoint, in
the case when there is more than one DASH-based timed media in the same viewport?

• How does the current MAF deal with DASH-based timed media fetching including both inside
and outside of the current viewport? That is being said, from a system efficiency point of view,
the current solution in the CD of 23090-12 does not consider the optimization of data fetching
for DASH-based timed media.

5.2. Supporting Multiple Viewers in the Media Access
Function
Source: m58510

5.2.1. General

In the Presentation Engine of the MPEG-I Scene Description architecture, the viewer’s view of the
scene is determined by the camera used for rendering the scene from the viewer’s viewpoint. In
many use cases, the Presentation Engine runs on the end user’s device and therefore there is only
one viewer for the scene and one camera object is used at any given point in time for composition
and rendering. Using the camera information provided by the Presentation Engine, the MAF can
identify which objects in the scene are within the viewing frustum of the camera at a given time
instance.

However, in some scenarios multiple cameras are used for rendering the scene from a number of
viewpoints corresponding to different viewers of the same scene (e.g., in multi-viwer applications
such as online conferencing applications with multiple users). In such scenarios, information about
the cameras used to generate each viewer’s view of the scene, including both intrinsic and extrinsic
camera parameters, are required by the MAF to identify and request the appropriate media or

44

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/242

media parts for each viewer.

Since a media pipeline is tightly coupled with the type of the media, it may not be desirable to have
multiple media pipelines for the same content for different viewers. Rather, the MAF should allow a
single media pipeline for a media content to be used for composition and rendering for different
viewers.

5.2.2. Proposed Updates to MAF API

To support media fetching for multi-viewer applications, where each viewer may have their own
extrinsic and intrinsic camera parameters, relevant methods in the MAF API and their definition
should be updated as follows (updates are in bold).

5.2.2.1. Methods

Table 9. n/a

Methods State after success Description

startFetching() ACTIVE Once initialized and in READY
state, the Presentation Engine
may request the media pipeline
to start fetching the requested
data.

The initialization may be
performed using view
information for one or more
viewers.

updateView() ACTIVE Update the current view
information. This function is
called by the Presentation
Engine to update the current
view information, if the pose or
object position have changed
significantly enough to impact
media access. It is not expected
that every pose change will
result in a call to this function.

A call to this function shall
include the view information
for only those views whose
parameters have significantly
changed.

5.2.2.2. IDL for media pipeline

45

interface Pipeline {
 readonly attribute Buffer buffers[];
 readonly attribute PipelineState state;
 attribute EventHandler onstatechange;
 void initialize. (MediaInfo mediaInfo, BufferInfo bufferInfo[]);
 void startFetching (TimeInfo timeInfo, ViewInfo viewInfo[]);
 void updateView. (ViewInfo viewInfo[]);
 void stopFetching. ();
 void destroy. ();
};

5.3. CoAP API support in MAF
Source: m56739

5.3.1. General

The proposed APIs are assumed under a common CoAP implementation. Take video streaming
from CoAP supported devices as an example, those devices are deployed and implemented as a
CoAP server that captures, generates, and prepares video binary data (compressed or
uncompressed).

5.3.2. MAF as CoAP Client

In this clause, the proposed MAF API in Table 10 applies to the case where the MAF acts as a CoAP
client to fetch timed media from the CoAP media server. The CoAP API offers the following
methods:

Table 10. Description of CoAP Client API

Method Brief Description

fetch () The MAF sends media resource request to a
CoAP server

receive () The MAF receives the requested media resource
from a CoAP server

5.3.3. MAF as HTTP-CoAP Proxy

In this clause, the proposed MAF API in Table 11 applies to the case where the MAF acts as an HTTP-
CoAP proxy.

Table 11. Description of HTTP-CoAP proxy API

Method Brief Description

hc() The MAF maps the HTTP requests to CoAP and
forward them to CoAP Server

46

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/116

5.4. An Abstract API for Driving External Renderers
Source: m65395

5.4.1. Render Lock-in API

The Render Lock-in API is an abstract API that is offered by external renderers to align and
synchronize their rendering state with the Presentation Engine. This API is used by the
Presentation Engine to configure and update the status of the external renderer.

The following table describes the functionality provided by the Render Lock-in API:

Method Description

init() Initializes the external renderer by providing the related media source
information and their corresponding buffers. It also establishes a session
between the Presentation Engine and the external renderer.

configure() Configures the external renderer to establish an initial alignment and
synchronization between the Presentation Engine and the external
renderer.

The information may include:

• Sync up of the presentation timeline that is maintained by the
Presentation Engine

• Establishment of the node mapping between scene nodes and
referenced elements that are available to the external renderer as part
of the source bitstreams. By default, a mapping is assumed between the
main camera node that represents the user and the user representation
maintained by the external renderer.

• Spatial alignment between the scene coordinate system and the
coordinate system that is used by the external renderer. This may also
include the scaling to align the bounding boxes of the spaces established
by the scene description and the source bitstream.

• Definition of other elements such as the XR spaces and AR anchors that
are tracked by an XR runtime as part of an XR session that is owned by
the Presentation Engine.

start()

pause()

resume()

stop()

Allows the Presentation Engine to control the playback of selected media
sources associated with the external renderer for interactivity purposes.

47

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/620

Method Description

update() Used by the Presentation Engine to update node positions and orientations
for which there is a mapping with the external renderer. The transform TRS
matrix is relative to the initial pose at the configuration time and is not
incremental.

updateGraph() The Presentation Engine uses the updateGraph function to add, update, or
remove a set of nodes to the internal representation of the scene that is
maintained by the external renderer.

registerCallback() The Presentation Engine may provide a callback function to the external
renderer to allow it to query the status of certain parameters at any time.
This may for example include asking for the current user pose.

The following is a draft description for the API in IDL (ISO/IEC 19516):

interface RenderingLockin {
 void allocate(int count);
 void init();
 void configure();
 void start();
 void pause();
 void resume();
 void stop();
 update();
 void updateGraph();
 void registerCallback();
};

48

Chapter 6. MPEG-I Audio in Scene
Description

6.1. Immersive audio extension
Source: m63549

6.1.1. Introduction

A support of spatial audio is provided in ISO/IEC 23090-14 [1] through the MPEG_audio_spatial
extension based on the description of source, reverb and listener objects.

To allow a better audio immersion, MPEG-I WG6 immersive audio group has developed a dedicated
Encoded Input Format (EIF) [1] to provide acoustic/audio properties in a scene graph for the MPEG
immersive audio rendering.

Several WG3/WG6 joint meetings have been held since October to define how to manage in a
consistent way both the immersive audio and the MPEG-I Scene Description scene graphs. As
detailed in [2], two approaches have been identified for further investigations:

• A first approach based on a hybrid scene description has been selected to be the first target for
developing an integrated architecture. As this approach supports the 2 scene graphs, a
synchronization mechanism shall be defined through a dedicated API.

• A second approach based on a common scene description

Related to the second approach, a shadow scene concept [3] has been introduced at the MPEG#141
meeting in January 2023 to provide a way for describing invisible simplified geometries to be used
by audio renderer. The main benefit of this approach is to share a common glTF-based semantic,
but the addition of a new glTF “shadow” scene creates a second scene graph which requires spatial
and temporal synchronizations with the graph of the main scene.

This contribution provides an alternative approach to the “shadow” scene concept to support
immersive audio. As for the MPEG spatial audio support [1], it relies on a single shared scene graph
thus eliminating the need for additional synchronization. This proposed approach is direct and
consistent compared to the MPEG interactivity extension where invisible simplified geometries are
already defined for collision detection for example.

Note: Further studies are required to ensure that all the audio/acoustic functionalities/features are
supported.

6.1.2. Background

Virtual objects may have several representations, each of them targeting a dedicated renderer.

For a sake of illustration, a full VR experience is shown in Figure 13 where a virtual car is moving
inside a virtual environment which includes a wall. A user is equipped with a HMD to visualize the
3D virtual scene, an immersive audio headset to hear the motor and a pad controller to drive the

49

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/538

car.

The car and the wall have dedicated representations for audio and visual renderers:

• The car has a geometry for the audio source extent and another geometry for the visual
renderer

• The wall has a geometry associated with an acoustic material for the audio renderer and
another geometry for the visual renderer

Figure 13. Virtual objects having dedicated representations for audio and visual renderers

Each object representation is dedicated to either the audio or visual renderer. For example, the
geometry for the spatial extend of the audio source (motor of the car) shall not be considered by the
visual renderer.

When the car is moving, its audio and visual representations shall be spatially and timely
consistent.

6.1.3. MPEG-I immersive audio support

A preliminary approach to support MPEG-I immersive audio in a common scene graph is described
in this section. Further studies are required to ensure that all acoustic functionalities/features are
supported.

In Table 12, we describe and compare the different capabilities of MPEG_audio_spatial and the
MPEG-I Audio solution.

Table 12. Comparison between the different capabilities of MPEG_audio_spatial and the MPEG-I Audio
solution

50

MPEG_audio_spatial MPEG-I Audio New Extension

Audio Objects • Listener: A
representation of
the listener in the
scene, typically
associated with the
camera of the
scene.

• Source: An audio
source that emits
sounds in the scene.

• Reverb: describes a
reverb effect that
can be applied to an
audio source.

Scene Objects include a
Listener and Audio
elements.

Inherit.

Audio Source Type • Object: a mono-
channel audio
source

• HOA

Audio elements maybe:

• Object Source

• HOA Source

Inherit.

Object Properties Inherited from glTF.
Velocity can be realized
as a TRANSLATION
animation. Animations
can do more, e.g. scale
and rotation.

Position, velocity,
isStatic, parent.

Inherit.

Source properties Pregain, playback
speed, attenuation,
referenceDistance,
reverbFeed and
reverbFeedgain,
accessors.

Gain, directivity,
directiveness, extent,
refDistance,
audioStream. And for
HOA, additional info:
group, Is6DoF,
transitionDistance.

Inherit + guidelines for
extents + better support
for hidden geometries +
support for HOA
groups.

Effects Reverberation effect. Reverberation, early
reflection, diffraction,
portal, dispersion, fade-
in/out.

Extend effects.

Scene types Supports any type of
scene. AR through AR
anchoring extension.

AR or VR. Inherit.

Geometry Inherited from glTF2.0. Built-in geometry
definitions.

Inherit + better support
for hidden
meshes/primitives.

51

MPEG_audio_spatial MPEG-I Audio New Extension

Materials No support for acoustic
materials

Support for materials
with specular
reflection, diffused
scattering,
transmission, and
coupling.

Define acoustic
materials.

Voxel Representation Not supported Voxel-based geometry
and compression.

Add to the new
extension.

Mesh compression None. Built-in Add support for
external mesh codecs
such as V-DMC and
Draco (Khronos
extension).

As detailed in the MPEG-I Immersive Audio Encoder Input Format (EIF) document [1],
audio/acoustic data may be provided at several parts of a scene graph:

• At global/scene level

• At object/node level

• At avatar/user representation

• At mesh primitive level

The following sections identifies new potential MPEG extensions at several levels of a glTF scene
graph to support MPEG-I immersive audio as shown in Figure 14 . Note that alternatively, a single
extension, as is the case with MPEG_audio_spatial, might be defined instead.

Figure 14. Proposed new MPEG glTF extensions to support MPEG-I immersive audio

6.1.3.1. Audio/acoustic data at global/scene level

The acoustic data relevant for the whole scene or for a specific spatial zone delimited by a static

52

geometry are defined as acoustic environment data in section 3.9 of EIF document [1]. An
environment is characterized by acoustic parameters at defined positions such as:

• The 60 dB reverberation time (RT60)

• The pre-delay time

• The Diffuse-to-Direct-Ratio (DDR)

These acoustic environment data may be provided through a new “MPEG_acoustic_environment”
glTF extension at scene level.

6.1.3.2. Audio/acoustic data at node level

A dedicated acoustic extension shall be defined at the node level to support the representation of
the related 3D object for the audio renderer.

This new “MPEG_node_immersive_audio” extension typically provides a reference to a mesh
geometry having an acoustic material. Thanks to referencing the mesh inside an audio-specific
extension, we ensure that this mesh and the related material are only used by the audio renderer
and are “invisible” for the visual renderer.

The audio data related to the source which emits sound into the virtual scene may also typically be
provided at the node level (in line with the already-existing source object of the MPEG audio spatial
extension [1]). The audio source takes benefit from the node position/orientation to define its pose.

The audio source parameters are defined in section 3.2 of EIF document [1] such as:

• The unique ID

• The signal which defines the corresponding audio stream

• The extent which defines a geometry for the spatial extent of the source perceived by the
listener in an elevation/azimuth sector

◦ As this extent geometry is referenced inside an audio-specific extension, we ensure that this
mesh is only used by the audio renderer and is “invisible” for the visual renderer

These audio source data may be provided through a new “MPEG_audio_source” glTF extension at
node level.

6.1.3.3. Audio/acoustic data at avatar/user representation level

Basically, an audio listener is implicitly attached to the user experiencing the XR application.

A dedicated MPEG avatar extension is currently being defined to describe the user representation
for that XR experience. This extension is attached to a node having a camera component.

Therefore, we may also provide dedicated data related to the audio listener at the avatar node level
through a new “MPEG_audio_listener” glTF extension. One potential parameter would be a unique
identifier ID, in line with the already-existing listener object of the MPEG audio spatial extension
[1])

53

6.1.3.4. Audio/acoustic material data at mesh primitive level

An acoustic material characterizes the acoustic behavior of surfaces of 3D object. This acoustic
material is typically referenced by the mesh geometry provided within the
MPEG_node_immersive_audio” extension.

The parameters are frequency-dependent and are defined in section 3.8 of EIF document [1] such
as:

• The specular reflection coefficient (r)

• The diffuse scattering coefficient (s)

• The transmission coefficient (t)

• The coupling coefficient (c)

These acoustic material data may be provided through a new “MPEG_audio_material” glTF
extension at mesh primitive level.

6.1.4. References

[1] ISO/IEC 23090-14

[2] MPEG-I Immersive Audio Encoder Input Format v3, N0169, October 2022

[3] Considerations on MPEG-I audio and MPEG-I scene description architectures, N0186, February
2023

[4] Definition of Shadow Scenes, m62227, January 2023

6.2. MPEG-I Audio in Scene Description
Source: m61180

6.2.1. General

MPEG-I Immersive Audio has been specified in ISO/IEC 23090-4. The specification assumes the
presence of an MPEG-I immersive audio renderer that will receive the MPEG-I audio bitstream, a
set of MPEG-H audio streams, as well as information about some scene metadata, such as listener’s
pose. It will then use the audio scene metadata in the MPEG-I audio bitstream, the decoded MPEG-H
bitstreams, and the pose information to render the spatial audio.

Figure 15 depicts the MPEG-I audio architecture:

Figure 15. N/A

54

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/411

The MPEG-I render pipeline is depicted by Figure 16:

Figure 16. N/A

MPEG-I immersive audio relies on a new scene description format for the audio scene to establish
the spatial relationships between the different audio sources.

Ideally, the audio scene metadata should be described as part of a common scene description that
includes all media types: visual, audio, haptics, etc. The MPEG-I audio renderer would then be
driven by scene metadata extracted from the common scene description.

However, if this is not possible, alternative options may be available. In the first option, the MPEG-I
Presentation Engine will be provided with callbacks to allow it to update the audio scene based on
information coming from the common scene description. This option is described by Figure 17:

Figure 17. N/A

This option requires that the Presentation Engine gets all the extracted audio scene metadata, so
that it can align it with the common scene description.

Another option would be to pre-process the MPEG-I immersive audio bitstream to align it with the
common scene description. This option is depicted by Figure 18:

Figure 18. N/A

The pre-processing block may insert scene update MHAS packets to achieve the alignment of the
audio scene with the common scene.

Yet another option could be that the common scene description completely overwerites the MPEG-I
immersive audio scene with the spatial audio description in the scene description. In essence, it
would just use the decoded MPEG-H streams as audio sources.

55

6.3. Establishing a Mapping between Audio and MPEG-I
Scenes
Source: m65378

6.3.1. General

Systems and Audio groups are discussing the support of MPEG-I Audio in Scene Description. The
groups have discussed several ways of achieving this goal, with the most agreed on option being the
support of a separate MPEG-I audio stream that is referenced by the scene description document.

This approach is depicted by the following figure:

Figure 19. n/a

The MPEG-I Audio bitstream contains a description of the audio scene that is independent of the
main scene description consumed by the Presentation Engine. In fact, this approach permits that
these two scenes are created completely separately and independently. Proper rendering of both
scenes to provide a consistent experience to the user becomes then extremely challenging.

To enable this approach, an alignment between the Presentation Engine and the Audio Renderer is
essential. This alignment goes beyond the traditional time alignment but includes also spatial
alignment.

6.3.2. Extension for Audio Node Mapping

6.3.2.1. General

The MPEG node mapping extension, identified by MPEG_node_mapping, establishes a mapping
between the node in the scene description document and an external entity. An example is the
mapping between a node that contains a car and an external audio node in an MPEG-I Audio
bitstream, with a simplified geometry of that car and the attached audio sources. The following
figure depicts that example:

Figure 20. n/a

When present, the MPEG_node_mapping extension shall be included in a node object.

6.3.2.2. Semantics

The definition of all objects with the MPEG_node_mapping extension is provided in the following

56

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/619

table:

Name Type Default Usage Description

role string “urn:mp
eg:sd:rol
e:default
”

O An identifier of the role associated with
this mapping. The role may for instance
be “urn:mpeg:sd:role:audio-renderer” to
indicate that the component is an audio
renderer.

source number N/A M The index in the MPEG_media that
provides the media resource that
contains the mapped element.

referenceId number N/A M An identifier of the element in the
referenced resource.

transform array(numb
er)

Identity O A 4x4 matrix that supplies the transform
used to align the referenced element to
the current node.

supportsInteractivity boolean false O Indicates if interactivity actions applied
to the node should be exposed if an API
is made available to the Presentation
Engine by the renderer of the resource.

6.3.2.3. Processing Model

When processing the MPEG_node_mapping extension, the Presentation Engine shall identify nodes
in the scene description that have a node mapping. The Presentation Engine shall determine if the
component identified by the indicated role supports the Rendering Alignment API as defined in
contribution m65395. If it does, the Presentation Engine shall pass the mapping information to the
identified component.

The Presentation Engine shall then use the API to align the rendering with the component as
configured over the API.

57

Chapter 7. Reference Software

7.1. Thoughts on trimesh playback of AR scenes
Source: m60282

7.1.1. General

The MPEG-I Scene Description standard relies and extends on the Khronos glTF format. While the
primary goal of glTF is to represent 3D objects in virtual scenes, the MPEG-I SD work also aims at
addressing AR applications wherein 3D objects are integrated into real-world scenes.

Given the requirement for test assets and reference software to guide the standardisation work of
MPEG-I SD, this brings challenges to also include test assets for AR applications as well as their
integration into the reference software, currently based on trimesh, while both glTF and trimesh
are not originally developed for these AR applications.

Therefore, here we aim at starting the discussion on the feasibility of meeting this requirement and
presents a possible approach. This approach comprises two main steps:

• Recording a real-world scene as an AR test asset using the AR Session recorder of Google ARCore

• Playing back the recorded an AR test asset inside trimesh (or other renderer)

7.1.2. AR Sessions recording and format

7.1.2.1. AR Session in Google ARCore

The Google ARCore framework provides an API to record an AR Session such that it can be played
back at later time. By recording, the function effectively captures and stores the sensors
information that are fed as input of the AR algorithms which power the AR application. This way,
the playback function can later read those AR session files and recreate the device movement and
sensing based on this file and no longer using direct sensor measurements.

This is depicted in Figure 21 available in the ARCore documentation.

Figure 21. AR Session playback in ARCore

According to the documentation, the recorded AR Session will contain:

• Primary video track (CPU image track, i.e. not the video rendered on the screen)

• Camera depth map from hardware depth sensors, when available

• Gyrometer data

• Accelerometer data

58

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/358
https://developers.google.com/ar/develop/recording-and-playback

• Custom/user event

7.1.2.2. AR Session file format

In order to test this capability, several recording where made with ARCore compatible
smartphones. The DepthLab Android application developped by Google [Ruofei et. al.][DepthLab]
was used to perform those quick tests. This application demonstrates the capabilities of the ARCore
framework to application developers as well as provides a function to record the AR Session via the
corresponding ARCore API.

Here are some dump information from the recorded files.

59

Track # 1 Info - TrackID 1 - TimeScale 90000 - Media Duration 00:00:29.107
Track has 2 edit lists: track duration is 00:00:29.134
Media Info: Language "und (und)" - Type "vide:avc1" - 869 samples
Visual Track layout: x=0 y=0 width=640 height=480
MPEG-4 Config: Visual Stream - ObjectTypeIndication 0x21
AVC/H264 Video - Visual Size 640 x 480
 AVC Info: 1 SPS - 1 PPS - Profile High @ Level 3
 NAL Unit length bits: 32
 SPS#1 hash: 03802E3BC1A1E33FE5B23E626E9E4D37369B6548
 PPS#1 hash: 85644534159E9C005D09E9AC5EACE302A792A46E
Self-synchronized
 RFC6381 Codec Parameters: avc1.64001e
 Average GOP length: 32 samples

Track # 2 Info - TrackID 2 - TimeScale 90000 - Media Duration 00:00:29.107
Track has 2 edit lists: track duration is 00:00:29.134
Media Info: Language "und (und)" - Type "meta:mett" - 869 samples
Textual Metadata Stream - mime application/arcore-video-0
 RFC6381 Codec Parameters: mett
 All samples are sync

Track # 3 Info - TrackID 3 - TimeScale 90000 - Media Duration 00:00:29.109
Media Info: Language "und (und)" - Type "meta:mett" - 5875 samples
Textual Metadata Stream - mime application/arcore-gyro
 RFC6381 Codec Parameters: mett
 All samples are sync

Track # 4 Info - TrackID 4 - TimeScale 90000 - Media Duration 00:00:29.109
Track has 2 edit lists: track duration is 00:00:29.109
Media Info: Language "und (und)" - Type "meta:mett" - 5875 samples
Textual Metadata Stream - mime application/arcore-accel
 RFC6381 Codec Parameters: mett
 All samples are sync

Track # 5 Info - TrackID 5 - TimeScale 90000 - Media Duration 00:00:27.575
Track has 2 edit lists: track duration is 00:00:28.327
Media Info: Language "und (und)" - Type "meta:mett" - 41 samples
Textual Metadata Stream - mime application/arcore-custom-event
 RFC6381 Codec Parameters: mett
 All samples are sync

60

Track # 1 Info - TrackID 1 - TimeScale 90000 - Media Duration 00:00:21.579
Track has 2 edit lists: track duration is 00:00:21.784
Media Info: Language "und (und)" - Type "vide:avc1" - 643 samples
Visual Track layout: x=0 y=0 width=640 height=480
MPEG-4 Config: Visual Stream - ObjectTypeIndication 0x21
AVC/H264 Video - Visual Size 640 x 480
 AVC Info: 1 SPS - 1 PPS - Profile High @ Level 3.1
 NAL Unit length bits: 32
 SPS#1 hash: 217A055E6A89F18FED4CDE98F4039A7B505ACC0B
 PPS#1 hash: 85644534159E9C005D09E9AC5EACE302A792A46E
Self-synchronized
 RFC6381 Codec Parameters: avc1.64001f
 Average GOP length: 32 samples

Track # 2 Info - TrackID 2 - TimeScale 90000 - Media Duration 00:00:21.579
Track has 2 edit lists: track duration is 00:00:21.784
Media Info: Language "und (und)" - Type "meta:mett" - 643 samples
Textual Metadata Stream - mime application/arcore-video-0
 RFC6381 Codec Parameters: mett
 All samples are sync

Track # 3 Info - TrackID 3 - TimeScale 90000 - Media Duration 00:00:21.581
Track has 2 edit lists: track duration is 00:00:21.585
Media Info: Language "und (und)" - Type "meta:mett" - 4444 samples
Textual Metadata Stream - mime application/arcore-gyro
 RFC6381 Codec Parameters: mett
 All samples are sync

Track # 4 Info - TrackID 4 - TimeScale 90000 - Media Duration 00:00:21.581
Media Info: Language "und (und)" - Type "meta:mett" - 4445 samples
Textual Metadata Stream - mime application/arcore-accel
 RFC6381 Codec Parameters: mett
 All samples are sync

Track # 5 Info - TrackID 5 - TimeScale 90000 - Media Duration 00:00:20.312
Track has 2 edit lists: track duration is 00:00:00.753
Media Info: Language "und (und)" - Type "meta:mett" - 28 samples
Textual Metadata Stream - mime application/arcore-custom-event
 RFC6381 Codec Parameters: mett
 All samples are sync

As can be seen from those dumps, the generated mp4 files contain: * The main video used for video
processing * Gyroscopic data * Acceleration data * User actions (probably the custom-event track) *
A mysterious track that has the same number of samples as the video track but only between 84
and 86 bytes per sample depending on the recording

Note that the smartphones used for the test recording were not equipped with depth sensors, e.g.
ToF sensor, this should be the reason why there is no depth map video track as stated in the
documentation “video file representing the camera’s depth map, recorded from the device’s

61

hardware depth sensor”.

[Ruofei et. al.] Du, Ruofei, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian,
Joao Afonso et al. "DepthLab: Real-time 3D interaction with depth maps for mobile augmented
reality." In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology, pp. 829-843. 2020.

[DepthLab] DepthLab: Real-Time 3D Interaction With Depth Maps for Mobile Augmented Reality
(augmentedperception.github.io), https://augmentedperception.github.io/depthlab/

7.1.3. AR Session playback in trimesh

As presented in clause Section 7.1.2, the ARCore API provides the ability to record all the
information pertaining to an AR session in terms of sensor data and user events.

From such a file, it should then be possible to:

• Determine the position of the smartphone camera over time (even absolute if GPS activated)
using the rotation and displacement data.

• Create a point cloud frame/mesh frame from each recorded video frame based on the associated
depth map. NOTE If no depth sensor is used for the recording, the depth map should be either
generated via an algorithm or retrieved from the ARCore API and stored in the mp4 file using a
custom made application.

• Position this point cloud frame/mesh frame in the scene over time.

Once this volumetric data corresponding to the AR Session is generated, this could constitute an AR
test asset for MPEG-I Scene Description work which could be then played back in trimesh

62

https://augmentedperception.github.io/depthlab/

Chapter 8. Interactivity framework

8.1. On event-based scene update
Source: m61812

8.1.1. General

In the 23090-14 DIS document, a scene update mechanism is proposed, with predefined timed
updates: A special track in a media content (for instance an ISOBMFF file), provides timed samples
that contain patch (i.e., JSON patch) to be apply to the original scene description file.

Figure 22. n/a

This mechanism handles pre-defined scene evolution but does not allow describing event-based
update, following for instance a user action or any event that may occurred amongst the scene
objects at any time. In the MPEG-I Scene Description output document on scene update [ISO/IEC JTC
1/SC 29/WG 3 N0315], a potential solution is presented for event-based scene updates : while a
predefined timed scene update is in progress, an event may occur that updates the scene
description. Several scenarios are then proposed: apply a patch and switch to a new timed samples
track or apply a patch and skip one or more versions in the same track.

Figure 23. n/a

This mechanism is still strongly related to pre-defined scene evolutions and does not specify how
the event that triggers the update is described in the scene description document.

Furthermore, it does not handle the case where the same event that creates a new node may be
fired multiple times, like illustrated in the following diagram: A glTF scene contains a description of
an event-based update mechanism with the same patch applied each time an event is fired. Some
elements of the glTF scene are modified (adding, changing or removing nodes, meshes parameters)
but not the event-based update description.

63

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/445
https://datatracker.ietf.org/doc/html/rfc6902/

Figure 24. Event-based update diagram

8.1.2. A use case for event based updates

This update diagram is illustrated in the IDCC demo, presented during the last MPEG meeting in
Mainz:

Figure 25. n/a

Figure 26. n/a

The demo presents a game application. An initial scene is first displayed, containing a plane
surface, a TV screen displaying a video content and a vertical surface displaying a pattern. The user
can add a new cube in the scene by touching the screen, in order to build a cubes stack that
matches the displayed pattern. Each time a match occurs, a new scene is loaded with a new pattern
and a new video. The game may be multiplayer with the same scene shared between all the
connected clients. The scene is synchronized each time an update is performed in one client. A

64

game server handles the scene synchronization each time an update is performed by a client.

The creation of the cube and the loading of a new scene is currently implemented using proprietary
solution, but it could be possible to build a mechanism in line with the MPEG-SD dynamic scene
framework.

Two kinds of updates are triggered during the game:

1. During a game phase, each time the user touches the screen to create a cube in front of the
pattern, a same scene update/patch is applied. The difference is the position of the user’s finger
that gives the position where the cube is created and from which it falls. Using the current scene
update mechanism, with JSON patch, the creation of a new cube would be performed with 2
patch operations:

◦ An “add” operation, that adds a new node in the glTF node array, for instance with a path
equal to “/nodes/-“, i.e. a new node created at the end of the array. A new node created in the
middle of the nodes array (i.e., with a path equal to “/nodes/2”) would leave the scene in an
erroneous status and would need extra patch operations to fix it. We would face other issues
if the new “cube” nodes must be created as children of another “cubesStack” node: We
would not know in advance the index of the new node since it depends on the number of
updates that have already been triggered.

◦ A “place” operation that does not exist in the JSON patch specifications. We could use a
“replace” operation to set the “translation” or/and “rotation” elements of the new node but:

▪ Same as above, we do not know in advance the index of the new node!

▪ The value to be applied must be retrieved from user’s finger position on the screen! And
there is no way to pass this value as an input to the “replace” operation.

2. When the cubes stack matches the pattern, a new scene is loaded with a new pattern:

◦ It could be a JSON patch, removing the cube nodes and replacing the pattern with a new
one. As above, we do not know the indexes of all the cube nodes and these indexes are
needed to remove the nodes. If the nodes have been created as children of a unique parent
node, we could just empty the children array of this node. The cube nodes description would
remain in the description file.

◦ It could be a complete update and a new glTF file is used.

8.1.3. JSON patch limitations

A JSON patch is not a “glTF patch” and does not consider all the characteristics of the JSON tree in a
glTF scene description file and particularly the interdependence between elements of different
branches of the glTF tree (a node referencing a mesh that references a material, or a node
referencing one or more child nodes). It is fine if you know in advance the scene description you
want to update and the resulting scene description: The JSON patch can be generated by comparing
the 2 JSON description files.

For repetitive event-based updates as described in Section 8.1.2, we don’t know the resulting scene
and care should be taken when writing the JSON patch. Furthermore, the application, that applies
the patch, may need to perform extra operations to complete the update:

65

• check the consistency of the resulting glTF scene,

• get the index of an array item created with the “-“ JSON patch alias,

• perform extra glTF modifications not handled by JSON patches (set newly created nodes as child
of another node, set JSON element to a value only determined at run-time…).

8.1.4. Semantics for event-based update

A new semantic is needed to describe event-based scene update: A semantic that would address the
use case (related to pre-defined timed scene updates) as well as the new one introduced in Section
8.1.2.

An approach would be to keep using the JSON patch mechanism, which is already used for the pre-
defined timed scene updates. As explained above, the definition of extra parameters would then be
required.

Furthermore, the description of the event and its relationship with the scene update could be
described with the interactivity framework specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]. It defines
a set of action types that can be executed following a trigger activation. As a reminder, the table
above gives the action types that are already specified:

Table 13. Type of action

Action type Description

“ACTION_ACTIVATE” Set activation status of a node

“ACTION_TRANSFORM” Set transform to a node

“ACTION_BLOCK” Block the transform of a node

“ACTION_ANIMATION” Select and control an animation

“ACTION_MEDIA” Select and control a media

“ACTION_MANIPULATE” Select a manipulate action

“ACTION_SET_MATERIAL” Set new material to nodes

“ACTION_SET_HAPTIC” Get haptic feedbacks on a set of nodes

An event-based scene update may be described in a glTF scene description file, using the
interactivity extensions specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]: A trigger element may
described the event (for instance, a “TRIGGER_USER_INPUT” trigger, as defined in [ISO/IEC JTC 1/SC
29/WG 3 N0725]), and an action element (of a new type, to be defined) may described the update
information (a patch to be applied (an array of JSON patch operations) and other parameters used
by the application to complete this update). Here is a list of such parameters that may be defined:

• Parameters to place one or more nodes in a position not known in advance. For instance, it may
include a position information and a list of nodes. The position parameter may be related to a
user input, or a user pose and may use the OpenXR interaction profile path semantic. Each node
to position may be identified by one of the patch operations that created or modified it.

• Parameters identifying one or more nodes to be used as parent of one or more newly created
nodes. For instance, a list of parent nodes and a list of child nodes. Same as above, each child

66

https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

node may be identified by one of the patch operations that created or modified it.

• Any other parameters that may be needed for other use cases: flag to share or not a local update
with other connected users sharing the same scene, strategy in case the patch fails or gives an
inconsistent glTF tree (rollback, fix…), …

8.2. Physic Support
Source: m65177

8.2.1. Introduction

This contribution intends to confirm whether the physics support as defined in MPEG-I SD Amd2
(ISO/IEC 23090-14 DAM2: Support for Haptics, Augmented Reality, Avatars, Interactivity, MPEG-I
Audio and Lighting) is sufficient or would benefit from some improvements.

Section 8.2.2 of this contribution analyses the consistency of the physic simulations, between two
game engines (Unity and Unreal), based on the parameters currently defined in Table 8.2-11. We
illustrate the mapping of the MPEG-SD parameters to the game engines (Unity and Unreal) and to
USD.

In Section 8.2.3, based on the addition of new parameters, at node and/or scene level, we analyse
whether a closer physic simulation between the game engines is obtained.

In Section 8.2.4, proposed changes are provided to MPEG-I SD based on the results of section Section
8.2.2 and Section 8.2.3.

For reference, in the section 8.2.2.2 – Table 8.2-11 (Semantic of the MPEG_node_interactivity), the
following physic parameters have been defined to support basic physic simulation from the scene
creator (Table-1).

if (type ==
TRIGGER_COLLISION) {

Collider integer M the index of the mesh element that
provides the collider geometry for the
current node.

The collider mesh may reference a
material.

static boolean M If True, the collider is defined as a static
collider.

usePhysics boolean M Indicates if the object shall be considered
by the physics simulation.

if (usePhysics){

useGravity boolean M Indicates if the gravity affects the object

67

https://mpeg.expert/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/612

if (type ==
TRIGGER_COLLISION) {

mass number M Mass of the object in kilogram.

restitution number M Provides the ratio of the final to initial
relative velocity between two objects
after they collide

staticFriction number M Unitless static friction coefficient as
defined in the Coulomb friction model.
Friction is the quantity which prevents
surfaces from sliding off each other.
Static friction is used when the object is
lying still. It will prevent the object from
starting to move.

dynamicFriction number M Unitless static friction coefficient as
defined in the Coulomb friction model.
When a large enough force is applied to
the object, a dynamic friction is used, and
will attempt to slow down the object
while in contact with another.

}

}

Table 1 Collision trigger

8.2.2. Analysis of the physic simulation consistency between game engines
with the current parameters

8.2.2.1. Parameter mapping

Parameters are mapped as shown in the following Table-2:

MPEG-I SD Unity Unreal

useGravity useGravity Enable Gravity

Mass Mass Mass

Restitution Physic material > Bounciness Physic material > Restitution

Static friction Physic material > Static friction Physic material > Static friction

Dynamic friction Physic material > Dynamic
friction

Physic material > Friction

Table 2: Physic parameters mapping with game engines

The mapping to USD, is provided in Table-3:

68

MPEG-I SD USD

useGravity UsdPhysicScene::GetGravityDirectionAttr()

Mass UsdPhysicsMassAPI::GetMassAttr()

Restitution UsdPhysicsMaterialAPI::GetRestitutionAttr()

Static friction UsdPhysicsMaterialAPI::GetStaticFrictionAttr()

Dynamic friction UsdPhysicsMaterialAPI::GetDynamicFrictionAttr()

Table 3: Physic parameters mapping with USD

In each of the following analysis, the other physic parameters of each game engine are kept
unchanged from their initial values.

8.2.2.2. Consistency analysis

The two videos “Unity_scene_00-a” and “Unreal_scene_00-a” illustrate the effect of restitution (Table
4). They demonstrate that from the current parameters, the results of the simulation are similar,
but there is room for improvement to have more closely resembling simulation on both engines.

Video Parameters

Unity_scene_00-a
Unreal_scene_00-a

useGravity = true
mass = 1.0
restitution = 0.5
static friction = 0.6
dynamic friction = 0.6

Table 4: Test video 1

As expected, the friction parameters weren’t critical in this simulation since the ball has a very
small amount of contact points with the floor.

8.2.3. Analysis with new physics parameters

8.2.3.1. Addition of new physic parameters at node level

To improves the correlation of the simulation between both engines, 3 new parameters are
introduced:

• Linear damping: Defines the linear drag coefficient (rate of decrease of the linear velocity over
time)

• Angular damping: Defines the angular drag coefficient (rate of decrease of the angular velocity
over time)

• Collision detection mode: Defines the collision detection calculation mode. It can be discrete
(calculated once a frame) or dynamic (more sub-iteration per frame)

It results in the following mapping (Table-5):

69

MPEG-I SD Unity Unreal

linearDamping Drag Linear damping

angularDamping Angular drag Angular damping

collisionDetectionMode Collision detection mode Use CCD (Continuous collision
detection)

Table 5: Physic parameters mapping with game engines

The mapping to USD is provided in the following table:

MPEG-I SD USD

linearDamping UsdPhysicsDriveAPI::GetDampingAttr()

angularDamping UsdPhysicsDriveAPI::GetDampingAttr()

collisionDetectionMode N/A

Table 6: Physic parameters mapping with USD

The following videos illustrate the use of these 3 new parameters, with the same scene as in the
previous section.

Video Parameters

Unity_scene_01-a
Unreal_scene_01-a

useGravity = true
mass = 1.0
restitution = 0.5
static friction = 0.6
dynamic friction = 0.6
linear damping = 0.2
angular damping = 0.05
collisionDetectionMode = Continuous dynamic

Table 7: Test video 2

They demonstrate that the simulation is very close from an engine to another.

Same test with the restitution set to 0.8 instead of 0.5:

Video Parameters

Unity_scene_01-b
Unreal_scene_01-b

useGravity = true
mass = 1.0
restitution = 0.8
static friction = 0.6
dynamic friction = 0.6
linear damping = 0.2
angular damping = 0.05
collisionDetectionMode = Continuous dynamic

70

Table 8: Test videos

The update of the restitution parameter value is understood by both game engines, and a very close
simulation is obtained with both values.

The goal of the following test (with a new scene) is to check that the friction parameter also leads to
the same simulation on both engines. In the first simulation (Unity_scene_03-a and
Unreal_scene_03-a) there is no friction, and on the second simulation (Unity_scene_03-b and
Unreal_scene_03-b), the dynamic friction is set to 1.0 (Table 9).

Video Parameters

Unity_scene_03-a
Unreal_scene_03-a

useGravity = true
mass = 1.0
restitution = 0.3
static friction = 0.0
dynamic friction = 0.0
linear damping = 0.2
angular damping = 0.05
collisionDetectionMode = Continuous dynamic

Unity_scene_03-b
Unreal_scene_03-b

useGravity = true
mass = 1.0
restitution = 0.4
static friction = 0.0
dynamic friction = 1.0
linear damping = 0.2
angular damping = 0.05
collisionDetectionMode = Continuous dynamic

Table 9: Test videos

Those two simulations (03-a, and 03-b) are very close to each other.

8.2.3.2. Addition of new physic parameters at scene level

In addition to the parameters of section 2, we have experimented with further parameters, added
at the scene level. The results provide a near identical simulation between the two engines.

The previous test with Unity_scene_03-a video, is used with two extra parameters defined as follow:

• Physic max frame time: Determine the interval on which the physic engine should run (in
second)

• Bounce threshold: A contact with a relative velocity below this threshold will not bounce.

The mapping is the following:

MPEG-I SD Unity Unreal

physicMaxFrameTime Fixed timestep Max Physics Delta Time

71

MPEG-I SD Unity Unreal

bounceThreshold Bounce Threshold Bounce Threshold Velocity

Table 10: Physic parameters mapping with game engines

MPEG-I SD USD

physicMaxFrameTime timeCodesPerSecond

bounceThreshold N/A

Table 11: Physic parameter mapping with USD

Firstly, a simulation is launched with physicMaxFrameTime set to 0.1 (i.e., 10 physic frame
calculations per seconds) instead of 0.02 (Unity default) and the bounce threshold set to 2.0 (Unity
default)

Video Parameters

physic_tick_rate useGravity = true
mass = 1.0
restitution = 0.3
static friction = 0.0
dynamic friction = 0.0
linear damping = 0.2
angular damping = 0.05
collisionDetectionMode = Continuous dynamic
physicMaxFrameTime = 0.1
bounceThreshold = 2.0

Table 12: Test video for physic tick rate

Secondly, a simulation is launched with a bounce threshold set to 15.0 (instead of 2.0) and reset the
physicMaxFrameTime set to 0.02 (50 calculations per second).

bounce_threshold useGravity = true
mass = 1.0
restitution = 0.3
static friction = 0.0
dynamic friction = 0.0
linear damping = 0.2
angular damping = 0.05
collisionDetectionMode = Continuous dynamic
physicMaxFrameTime = 0.02
bounceThreshold = 15.0

Table 13: Test video for bounce threshold.

As the videos show, there is a great impact on game engine when changing these parameters, which
can lead to finer control of the targeted simulation and parameters adjustments if needed.

72

In addition to the physic_tick_rate and bounce_threshold, to check the gravity on each game engine,
a physic simulation using the same gravity value (i.e: moon gravity simulation) is launched:

• gravity: determine the gravity for the whole scene

It results in the following mapping:

MPEG-I SD Unity Unreal

gravity Gravity Gravity

MPEG-I SD USD

gravity UsdPhysicScene::GetGravityDirectionAttr()

8.2.4. Proposed changes to SD physic support

8.2.4.1. Update of the General section of Interactivity (section 8.2.1 of the DAM)

Interactivity is supported at the scene level and at the node level through the definition of two
extensions MPEG_scene_interactivity and MPEG_node_interactivity.

When present, the MPEG_scene_interactivity extension shall be included as extension to the scene
object.

When present, the MPEG_node_interactivity extension shall be included as extension to node
object.

The MPEG_node_interactivity extension is used to complement the interactivity defined at the scene
level. One particular case is the definition of the parameters for the physics engine. That is, when
an MPEG_node_interactivity extension contains a trigger of type TRIGGER_COLLISION without
being referenced by a trigger of type TRIGGER_COLLISION at the MPEG_scene_interactivity
extension, this node shall not be considered for collision detection and instead only be used by the
physics engine.

Note: when a full physics engine will be defined, the physics parameters provided in the
MPEG_interactivity node extension will be skipped.

8.2.4.2. Semantic update at node level

To have a closely related simulation between game engines, the following optional parameters are
added at the MPEG_node_interactivity extension (node level):

• collisionDetectionMode

• linearDamping

• angularDamping

73

if (type ==
TRIGGER_COLLISION) {

Collider integer M the index of the mesh
element that provides
the collider geometry
for the current node.

.

static boolean M If True, the collider is
defined as a static
collider.

usePhysics boolean M Indicates if the object
shall be considered by
the physics simulation.

if (usePhysics) {

collisionDetectionMode Enum O N/A Define the collision
detection calculation
mode, can be DISCRETE
(0) or CONTINUOUS
DYNAMIC (1)

needPreciseCollisionDetectio
n

Boolean O false If true, the physics
engine should handle
the collision detection
more accurately by
increasing the detection
rate for this node.

linearDamping Number O 0 Define the linear drag
coefficient which
corresponds to the rate
of decrease of the linear
velocity over time. The
value shall be in the
range [0,1], where 0
indicates no damping
and 1 would result in
linear motion ceasing
immediately upon
collision.

74

if (type ==
TRIGGER_COLLISION) {

angularDamping number O 0 Defines the angular drag
coefficient which
corresponds to the rate
of decrease of the
angular velocity over
time. The value shall be
in the range [0,1], where
0 indicates no damping
and 1 would result in
angular motion ceasing
immediately upon
collision.

useGravity boolean M Indicates if the gravity
affects the object

mass number M Mass of the object in
kilogram.

restitution number M Provides the ratio of the
final to initial relative
velocity between two
objects after they collide

staticFriction number M Unitless static friction
coefficient as defined in
the Coulomb friction
model. Friction is the
quantity which prevents
surfaces from sliding off
each other. Static
friction is used when the
object is lying still. It will
prevent the object from
starting to move.

dynamicFriction Number M Unitless static friction
coefficient as defined in
the Coulomb friction
model. When a large
enough force is applied
to the object, a dynamic
friction is used, and will
attempt to slow down
the object while in
contact with another.

}

75

Table 14: New semantic proposal at MPEG_node_interactivity level

8.2.4.3. Semantic update at scene level

To provide a near identical simulation between game engines, the following optional parameters
are added at the MPEG_scene_interactivity extension level (scene level):

• enablePhysicHighPrecision

• gravity

•

• physicMaxFrameTime

• bounceThreshold

Name  Type  Usage  Default  Description 

enablePhysicHighPrecision

recommendedPhysicsHighPrecision

Boolean O false Determines whether the
application should enable a
more deterministic and
precise physic simulation

gravity Number O -9.81 Determine the gravity for
the whole scene

recommendedPhysicsFrameRate Number O 50 Provides the recommended
frame rate at which the
Physics Engine should
operate.

bounceThreshold number O 1 A contact with a relative
velocity below this threshold
will not result in a bounce.

triggers array  M  []  Contains the definition of all
the triggers used in that
scene

actions array  M  [] Contains the definition of all
the actions used in that
scene

behaviors array  M  [] Contains the definition of all
the behaviors used in that
scene. A behavior is
composed of a pair of
(triggers, actions), control
parameters of triggers and
actions, a priority weight
and an optional interrupt
action

76

Table 15: New semantic proposal at MPEG_scene_interactivity level

8.2.4.4. Update of the Processing model section of interactivity (section 8.2.3 of the DAM)

If the scene description document contains a description of physics properties based on another
physics model, then that physics model shall take precedence in the processing of the scene.

Otherwise, the application shall handle a physics simulation if the usePhysics Boolean is TRUE on
any of the collision trigger extensions defined at the node level. When a collision occurs between
two nodes, the application should calculate the combination of the restitution, static friction and
dynamic friction values based on the values provided by the collision trigger extension of the two
nodes.

77

Chapter 9. Collected problem statements
and industry needs

9.1. On the support of real environment data
Source: m61811

9.1.1. General

In Augmented Reality (AR) experiences, virtual content is seamless inserted into the user real
environment using optical or video-see through devices. The knowledge of the user real
environment is then required for: * The positioning of the virtual objects based on AR anchors *
Consistent handling of collisions between virtual and real objects * Consistent rendering of virtual
and real objects including occlusion and lighting/shadowing aspects

This contribution provides an overview of how real environment data are handled (captured,
computed, stored and loaded) in some AR frameworks and proposes to investigate the support of
real environment data in MPEG-I Scene Description for transmission purpose.

9.1.2. Representation of the real environment

As shown in Figure 27, the real environment data are computed from embedded-sensor raw data.
An AR device may have several embedded sensors to scan the user environment, such as color
camera(s) and Light Detection and Ranging (LiDAR). The generated raw data are typically point
clouds, depth maps, pictures. An Inertial Measurement Unit (IMU) is also required to estimate the
current pose of the AR device when acquiring these data. Based on these sensor raw data, a
representation of the real environment is computed and the resulting real environment data may
have various formats:

• A single mesh, optionally textured, issued from a spatial mapping computation

• A semantic representation, optionally associated with a mesh segmentation, issued from a scene
understanding computation

• A real light mapping

Depending on the AR experiences, the most appropriate representation of the real environment is
computed:

• A single mesh representation may be sufficient for coherent collision handling and lighting

• A semantic representation (e.g. “desk”, “laptop”, “screen”, “floor”, “ceiling”, “wall”) may be
required for the definition of advanced anchoring and/or interaction

• A mesh segmentation is required for individual real object handling, such as object removal in a
diminished reality application

78

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/444

Figure 27. Computation of real environment data

The computation of the real environment data may either be done locally in the AR device or
remotely in a Spatial Computing Server. In the case of remote computation, the transmission of
such kind of data is in line with the Spatial Computing Server (SCS) requirements for eXtended
reality (XR) of the MPEG-I Phase 2 requirement document especially the requirement #134:

“The SCS shall provide XR Spatial Description in a standard representation format (e.g. scene
description) upon request of XR devices (UEs) on different platforms (desktop and mobile).”

9.1.3. Storing a representation of the real environment

The process of scanning the real environment and generating the corresponding representation
may be done prior to runtime. This approach is often related to quasi-static environment and has
the following main advantages:

• Availability of the real environment data at the beginning of the AR session

• Resource optimization of the AR devices resulting to power savings as no or limited scans are
required at runtime

• Support of low-end AR devices having no efficient sensors

• Consistency of the representation of a shared real environment between several heterogenous
AR devices

• Ability to build a scalable library of real environments (rooms, buildings, cities…)

Note: Having an initial scan may also be relevant for time-evolving real environments. Updating
some parts of the initial scan could be less time-consuming than performing a complete scan.

Generating real environment data before runtime requires efficient storage. Storing real
environment data in the Cloud has been investigated by ETSI Augmented Reality Framework (ARF).
As shown in Figure 28, a World Knowledge server is located in the Cloud and stores the real
environment data to be used by

• a Vision Engine for AR anchoring positioning/localization aspects

• a 3D Rendering Engine for consistent collision handling and rendering between virtual and real
objects

Figure 28. Global overview of the architecture of an AR system (from ETSI ARF)

79

Note: there is a need for a format to transmit real environment data between the World Knowledge
storage server and the 3D Rendering Engine in complement to the transmission of virtual contents,
which is already the scope of MPEG-I SD.

9.1.4. Examples of framework for real environment handling

Several frameworks are available to scan, compute, store and load real environment data for AR
experiences. An overview of the following frameworks is provided in this section:

• Microsoft’s Mixed Reality framework

• Apple’s ARKit framework

• Meta/Oculus framework

9.1.4.1. Microsoft’s Mixed Reality framework

The Microsoft Mixed Reality framework has been developed for the HoloLens 2 device. It is
composed of

• a spatial computing module, generating a mesh representation of the real environment as
shown in Figure 29

• a scene understanding module from Mixed Reality Toolkit (MRTK) version 2.7 based on OpenXR,
detecting and labeling planar surfaces for the placement of virtual content as shown in Figure
30

Figure 29. Mesh representation of the real environment after a spatial mapping computation

Figure 30. Semantic representation of the real environment after a scene understanding computation

A complete Microsoft’s Scene Understanding SDK for Unity is available. An example of a C# code to
scan, load and store real environment data based on the Scene Observer object is shown below

80

if (!SceneObserver.IsSupported())
{
 // Handle the error
}

// This call should grant the access we need.
await SceneObserver.RequestAccessAsync();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

querySettings.EnableSceneObjectQuads = true;
// Requests that the scene updates quads.
querySettings.EnableSceneObjectMeshes = true;
// Requests that the scene updates watertight mesh data.
querySettings.EnableOnlyObservedSceneObjects = false;
// Do not explicitly turn off quad inference.
querySettings.EnableWorldMesh = true;
// Requests a static version of the spatial mapping mesh.
querySettings.RequestedMeshLevelOfDetail = SceneMeshLevelOfDetail.Fine; // Requests
the finest LOD of the static spatial mapping mesh

// Initialize a new Scene
Scene myScene = SceneObserver.ComputeAsync(querySettings, 10.0f).GetAwaiter()
.GetResult();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

// Compute a scene but serialized as a byte array
SceneBuffer newSceneBuffer = SceneObserver.ComputeSerializedAsync(querySettings, 10
.0f).GetAwaiter().GetResult();

// If we want to use it immediately we can de-serialize the scene ourselves
byte[] newSceneData = new byte[newSceneBuffer.Size];
newSceneBuffer.GetData(newSceneData);
Scene mySceneDeSerialized = Scene.Deserialize(newSceneData);

// Save newSceneData for later

9.1.4.2. Apple’s ARKit framework

On a fourth-generation iPad Pro running iPad OS 13.4 or later, Apple’s ARKit uses the LiDAR
Scanner to create a mesh representation of the user real environment. Then this mesh is further
segmented and multiple anchors, called ARMeshAnchor, are assigned to the resulting set of
segmented meshes. As shown in Figure 31, a semantic labeling is performed for the real objects that
ARKit can identify such as ceiling, door, floor, seat, table, wall and window labels.

81

Figure 31. Semantic labeling of Apple’s ARKit

These real environment data attached to the ARMeshAnchors can be saved and loaded by
serializing/deserializing an ARWorldMap as shown in Figure 32.

Figure 32. Saving and loading an Apple’s ARKit ARWorldMap

9.1.4.3. Meta/Oculus framework

The Meta/Oculus framework has ben developed for Meta Quest 2 and Meta Quest Pro devices. The
scene understanding computation provides a scene model, which is a representation of the user
real environment. The scene model contains Scene Anchors, with each anchor being attached to
geometric components and semantic labels. The floor, ceiling, wall_face, desk, couch, door_frame
and window_frame labels are currently supported as shown in Figure 33.

Figure 33. Semantic labeling of the Meta/Oculus Scene Understanding

The scene understanding computation is based on the Khronos OpenXR standard and relies on the
Meta OpenXR XR_FB_scene extension. By using Unity as Presentation Engine, an OVRSceneManager
allows access to the scene model. An OVRSceneAnchor component corresponds to a scene anchor.
The semantic classification of a scene anchor is managed by the OVRSemanticClassification.

A Scene Model is generated by the Scene Capture system flow that lets users walk around and
capture their scene. Users have complete control over the manual capture experience and decide

82

what they want to share about their environment.

As shown below, the OVRSceneManager provides functions

• to launch a scene capture to generate a Scene Model

• to load an existing Scene Model

OVRSceneManager.RequestSceneCapture()
OVRSceneManager.LoadSceneModel()

9.2. Semantic representation
Source: m64402

9.2.1. Semantic Expression for 3D contents

We will divide the semantic expression for 3D contents into four criteria: the detailed attributes of
objects, object (or scene)-level rendering priorities, semantic relationships between object by scene
graph, and scene-level descriptions.

9.2.1.1. Detailed attributes of objects

The current glTF or other 3D format can include the color information (RGB values) or object name
as attributes about objects. However, from the user’s perspective, it needs to describe more detailed
attributes for better understanding and interaction with a particular object (or mesh). For instance,
a person object might need the emotion or situation currently experiencing, or an object like a
product (e.g. wallet, chair) might need a color name, or a brand (include price).

9.2.1.2. Priority information according to object (definition of rendering order)

The current MPEG-I Scene Description (SD) does not take sufficient account of object priority within
its information. Consequently, this can result in increased rendering complexity for individual
objects. By incorporating rendering priority of objects into the SD object information, it would
facilitate rendering based on the creator’s intent. This means that even objects positioned at a
greater distance within a 3D scene could be rendered first based on their importance. Furthermore,
it would enable the application of rendering techniques such as super resolution and denoising to
enhance the quality specifically for certain objects.

Additionally, it would provide the flexibility to selectively specify the rendering order for object
classes.

Figure 34. Example of rendering when distant objects have high priority

83

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/576

9.2.1.3. Semantic relationships between objects

An object is included as a lower node in MPEG-I Scene Description (SD), but there are cases where a
semantic relationship is required.

For example, if there is a wallet on a desk, sub nodes of the desk might have a desk, desk legs, and a
wallet. At this time, if there is no semantic relationship, the desk, desk legs, and wallet can all be
separated when recreating or editing scenes. If the desk legs are separated, the meaning of the desk
class becomes meaningless, so to prevent this phenomenon, the desk and the desk legs store
semantic relationship information that is not separated, and the wallet has separate semantic
relationship information for clear and efficient reproduction. Creation and scene editing are
possible.

9.2.1.4. Scene-level descriptions

Scene-level descriptors are useful information for users who want to interact(user-experience) or
edit contents. These scene-level descriptors can be defined through a descriptor neural network
model. At this point, the scene graph described above may optionally be input to increase the
performance of the neural network model.

Figure 35. Example of scene-level description generation

84

Appendix A: Disclaimer


The formatting of the document is based on the Khronos glTF specification
formatting under CC-BY 4.0.


The extensions information are automaticaly generated using wetzel tool under
Apache License 2.0.

85

https://github.com/CesiumGS/wetzel/

	Technology under Consideration for ISO/IEC 23090-14
	Table of Contents
	Chapter 1. Extensions
	1.1. MPEG_camera_control
	1.1.1. General
	1.1.2. Semantics
	1.1.3. Processing Model
	1.1.4. Example

	1.2. Multi-user interactivity
	1.2.1. Introduction
	1.2.2. References

	1.3. MPEG_material_acoustic
	1.3.1. General
	1.3.2. Semantics
	1.3.3. Processing Model

	Chapter 2. ISOBMFF
	2.1. Improvements for MPEG-I SD random access description
	2.1.1. General
	2.1.2. Characteristics of random access points of MPEG-I Scene Description
	2.1.3. Description and processing of random access points
	2.1.4. Proposed text improvements

	2.2. On sample formats for lighting information
	2.2.1. Introduction
	2.2.2. Lighting information signalling
	2.2.3. Proposals

	Chapter 3. Codec Support
	3.1. Dynamic mesh support in scene description
	3.1.1. Introduction
	3.1.2. Design
	3.1.3. Assets and Implementation

	3.2. Support for multiple atlases for MIV applications (MPEG142)
	3.2.1. Multiple atlases
	3.2.2. References

	3.3. On G-PCC support
	3.3.1. Consideration on in-GPU processing
	3.3.2. Proposal
	3.3.3. Reference
	3.3.4. Annex. Proposed MPEG extension

	Chapter 4. Data Formats
	4.1. Support of glTF CBOR binary format
	4.1.1. Problem Statement
	4.1.2. Benefit of CBOR file/data format:
	4.1.3. CBOR data size comparison example:
	4.1.4. Use Cases
	4.1.5. Potential Solutions
	4.1.6. Open Issue Discussion

	Chapter 5. Interfaces
	5.1. On DASH Dynamic Bitrate Adaption with Viewpoint Update
	5.1.1. Problem Statement
	5.1.2. Use Cases
	5.1.3. Current Scene Description Support and Gasps

	5.2. Supporting Multiple Viewers in the Media Access Function
	5.2.1. General
	5.2.2. Proposed Updates to MAF API

	5.3. CoAP API support in MAF
	5.3.1. General
	5.3.2. MAF as CoAP Client
	5.3.3. MAF as HTTP-CoAP Proxy

	5.4. An Abstract API for Driving External Renderers
	5.4.1. Render Lock-in API

	Chapter 6. MPEG-I Audio in Scene Description
	6.1. Immersive audio extension
	6.1.1. Introduction
	6.1.2. Background
	6.1.3. MPEG-I immersive audio support
	6.1.4. References

	6.2. MPEG-I Audio in Scene Description
	6.2.1. General

	6.3. Establishing a Mapping between Audio and MPEG-I Scenes
	6.3.1. General
	6.3.2. Extension for Audio Node Mapping

	Chapter 7. Reference Software
	7.1. Thoughts on trimesh playback of AR scenes
	7.1.1. General
	7.1.2. AR Sessions recording and format
	7.1.3. AR Session playback in trimesh

	Chapter 8. Interactivity framework
	8.1. On event-based scene update
	8.1.1. General
	8.1.2. A use case for event based updates
	8.1.3. JSON patch limitations
	8.1.4. Semantics for event-based update

	8.2. Physic Support
	8.2.1. Introduction
	8.2.2. Analysis of the physic simulation consistency between game engines with the current parameters
	8.2.3. Analysis with new physics parameters
	8.2.4. Proposed changes to SD physic support

	Chapter 9. Collected problem statements and industry needs
	9.1. On the support of real environment data
	9.1.1. General
	9.1.2. Representation of the real environment
	9.1.3. Storing a representation of the real environment
	9.1.4. Examples of framework for real environment handling

	9.2. Semantic representation
	9.2.1. Semantic Expression for 3D contents

	Appendix A: Disclaimer

