[bookmark: aliashDOCCompanyConfiden1HeaderFirstPage]

[bookmark: aliashDOCCompanyConfiden1HeaderEvenPages]

[bookmark: _Toc53753172][bookmark: _Toc148715895][image:] ISO/IEC JTC 1/SC 29/WG 03 N1014

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document

Title:	Technologies under Consideration for Dynamic Adaptive Streaming over HTTP 23009, Parts 1, 3, 4, 5, 6 and 8

Status:	Approved

Date of document:	2023-10-20

[bookmark: _Toc53752975]Source:	ISO/IEC JTC 1/SC 29/WG 03

No. of pages:	155 (with cover page)

Email of Convenor:	young.L@samsung.com

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS

ISO/IEC JTC 1/SC 29/WG 03 N1014
October 2023, Hannover, GE
	Source
	MPEG Systems WG

	Status
	Output

	Title
	Technologies under Consideration for Dynamic Adaptive Streaming over HTTP 23009, Parts 1, 3, 4, 5, 6 and 8

	Editor
	Iraj Sodagar

	Serial Number
	23167

	

This Technology under Consideration document collects candidate technologies for inclusion into new amendments of ISO/IEC 23009 Dynamic Adaptive Streaming over HTTP.
Note that any section that is not indicated otherwise relates to Part 1.
Contents
 ISO/IEC JTC 1/SC 29/WG 03 N1014	1
1	Ad insertion	8
1.1	Use-cases	8
1.2	The proposed solutions so far	8
1.3	Discussion at MPEG127th (m48861, m49263, m49607, m49374, m49608)	8
1.4	Discussion at MPEG128th (m50916, m51006, m51021)	8
1.5	Discussion at MPEG129th (based on m52438)	9
1.5.1	We need a processing model for resolution of a hyperlink	9
1.5.2	We will study how a new period is introduced to the client and the client/ad ins/live can consistently work with this new period	9
1.5.3	Not every period is a replacement opportunity. We study on how we need to carry splice point info to the client for client side ad insertion.	9
1.6	Proposal: Content and Ad Server Communication (updated with m47557 @MPEG 126)	10
1.6.1	Problem Statement	10
1.6.2	High-level Proposed Solution	13
1.6.3	Targeted Ads in Live Services	14
1.7	Proposal: Flexible Ad insertion with existing tools in TuC and minor additions (updated with m47195 @MPEG126 and m48861@MPEG127)	19
1.7.1	Introduction	19
1.7.2	Client side/Server guided ad insertion architecture	19
1.7.3	Use cases	20
1.7.4	DASH Principle	20
1.7.5	Early Termination of ads	21
1.7.6	New tools needed for standard implementation	22
1.8	Proposal: Content Replacement and Ad Insertion Event (m54500)	25
1.8.1	Introduction	25
1.8.2	Relevant Reference Architecture	25
1.8.3	Content Replacement Event	25
1.9	Proposal: Xlink caching processing model and signaling (m54502)	27
1.9.1	Introduction	27
1.9.2	The most common OnRequest xlink Usecase	27
1.9.3	Deficiency of DASH xlink processing model	28
1.9.4	Proposed solutions in MPEG#130	29
1.9.5	Is the resolution consistency challenge unique to xlink?	30
1.9.6	General local caching model for remote elements	31
1.9.7	HTTP Cache processing model	31
1.9.8	Cache processing model for DASH client	32
1.9.9	Media time vs Wall Clock time	33
1.9.10	Cache model for implicit signaling proposed by other proposals	34
1.9.11	Difficulties with implicit cache signaling	35
1.9.12	Why signaling in the MPD and not in HTTP headers?	35
1.9.13	Proposal	35
2	Haptic Support in DASH	37
2.1	Proposal 1: Adding haptics functionality (m54495- updated at MPEG#132)	37
2.1.1	Purpose	37
2.1.2	References	37
2.1.3	Haptics in MPEG-DASH	38
2.1.4	Informative Annex E: Live streaming of Games Use Case	44
2.1.5	Informative Annex F: Haptics from Different Perspectives Use Case	44
2.1.6	Informative Annex G: Haptics on Connected Devices Use Case	46
2.1.7	Informative Annex H: Haptics-Enabled Ads Use Case	47
2.1.8	Informative Annex I: Tactile Essence-Based Haptic Track Use Case	47
2.2	Proposal 2: MPD signaling of haptic representations for selection (m64299)	48
2.2.1	Introduction	48
2.2.2	Haptic data structure	48
2.2.3	DASH streaming selection process	49
2.2.4	Haptic segments	49
2.2.5	Required selection information for haptic streaming	49
2.2.6	Various approaches for signaling for the benefits of the selection process	49
2.2.7	Haptic-supported DASH client	54
2.3	Proposal 3: DASH Signalling for Haptics Experiences (m64337)	54
2.3.1	Introduction	55
2.3.2	Proposal	55
2.3.3	Recommendations	58
2.3.4	References	58
2.4	Notes from MPEG#143	59
3	Failover in multi-origin linear deployments (m54725)	60
3.1	Introduction	60
3.2	Proposal	60
3.2.1	Approach	60
3.2.2	Proposed syntax and semantics	61
4	Adaptation Parameters for Server-Side Dynamic Adaptation in DASH (m55222, m56824, m57449 and m58898)	62
4.1	Introduction	62
4.2	Adaptation Parameters	70
4.2.1	Track Selection and Switching	70
4.2.2	Viewport and Viewpoint Selection	72
4.2.3	Temporal Adaptations for Join Live and Tune-in Fast	74
4.3	Proposal	75
4.4	References	75
4.5	Discussion at MPEG#132 meeting	76
4.6	Discussion at MPEG#134 meeting	76
5	Extensions for Service Description (m56093)	77
1.1	Introduction	77
1.2	Background	77
1.3	Live services at different scale	82
1.4	Scalability	82
1.5	Consistent quality	82
1.6	Deployment Architectures	83
1.7	Operation Point – Establishment and Monitoring	84
1.8	Key Issues for DASH	84
1.9	Proposed Updates Service Description	84
K3.X	Operating Mode	84
6	MSE implementation of inband events (m56684)	86
A.1.1	Sample inband event processing using MSE data model	86
A.1.1.1	Process@append rule	86
A.1.1.2	Dispatch buffer timing model	86
A.1.1.3	Implementation	86
A.1.1.4	Algorithms	88
A.1.1.4.1	Initialization	88
7	Determination and Handling of Duplicate MPD Events(m56503)	90
7.1	Introduction	90
7.2	Use cases	90
7.2.1	Events with unknown duration	90
7.2.2	Joining just before or during an ad break	90
7.2.3	Cancelation and update	91
7.3	Notes from the MPEG#134	91
8	Fast Fine Tune in	92
8.1	Introduction	92
8.2	Minimizing initialization delay in live streaming (initially in m56673, refined in m57429, then further refined in m57982 and m58176)	92
8.2.1	m57982: Minimizing initialization delay	92
8.2.2	m58176: [30.3] Server-Side Dynamic Adaptation Approach to Fast Tune-in in Live Streaming	96
8.2.3	Agreed direction at the 136th MPEG meeting for m57982 and m58176 together	97
8.2.4	HTTP header extensions for minimizing initialization delay (m58909 and m58899)	97
8.3	Shortening tune-in time (m56798)	102
8.3.1	Introduction	102
8.3.2	Proposal	104
8.4	Potentially finer-grain random access in DASH by using streams with gradual refresh and recovery_point() SEIs (m56891)	105
8.4.1	Summary	105
8.4.2	Gradual refresh and Recovery Point SEIs in MPEG and ITU-T video standards	105
8.4.3	Potential application of this functionality in MPEG-DASH	108
8.4.4	References	111
8.5	Combining multiple simultaneous HTTP GET requests (m62627)	111
8.5.1	Introduction	111
8.5.2	Proposal	112
9	Clarifying pre-roll signaling for seamless content splicing across MPEG-DASH Periods (m56890)	116
9.1	Introduction	116
9.2	Related contributions	116
9.3	Discussion	116
9.3.1	Pre-roll context	116
9.4	Use-cases	117
9.4.1	Ad insertion using multiple Periods	117
9.4.2	Open-GOPs splicing	117
9.5	Discussions	117
9.6	Conclusion	119
10	Support of picture-in-picture services in DASH (m57431)	120
10.1	Abstract	120
10.2	Introduction	120
10.3	Proposal	121
10.4	Discussions at the 135th MPEG meeting	121
10.5	Discussions at the 136th MPEG meeting	122
10.6	ReThinking Picture in Picture (m58924)	122
10.7	The Requirements	123
10.7.1	DASH Enabling PIP requirements	123
10.7.2	DASH Prescribing PIP requirements	123
10.8	Potential solutions	123
10.9	Discussions at the 137th MPEG meeting	124
11	Addressable Resync Representations (m63273)	124
11.1	Introduction	124
11.2	Current Solutions	124
11.3	Short-comings and other Considerations	126
11.4	4Design Considerations and Considered Required Extensions	127
11.5	Addressable Resource Representations	128
11.6	HLS-compatible Low-Latency	129
11.7	Proposal	130
12	ARI Events (m60317)	131
12.1	ARI Event Scheme	131
12.2	Post-processing of the ARI events	132
A.15	ARI event post-processing model	132
13	ARI Events and tracks timing models (m60351)	134
13.1	General timing models	134
13.2	ARI Events and tracks packaging model	136
13.3	ARI events and tracks Client processing model	137
14	Callback event version 2 (m64319)	140
14.1	Introduction	140
14.2	Proposal	140
14.3	MPD event payload	140
14.4	Inband event	141
15	Improving timing precision in $Number$-based addressing in SegmentTemplate (m63925)	142
15.1	Introduction	142
15.2	Proposal	142
16	Content selection and adaptation logic based on device orientation (m64233)	143
16.1	Introduction	143
16.2	Discussion	143
16.3	Target screen orientation signalling in MPD	145
17	Enabling segment duration patterns in segment sequence representations (m65128)	148
17.1	Introduction	148
17.2	Proposal	148
17.2.1	Segment Sequence updates	148
17.2.2	Time-based addressing	151

[bookmark: _Toc511804955][bookmark: _Toc511804956][bookmark: _Toc511804957][bookmark: _Toc511804958][bookmark: _Toc511804959][bookmark: _Toc511804960][bookmark: _Toc511804961][bookmark: _Toc511804962][bookmark: _Toc511804963][bookmark: _Toc511804964][bookmark: _Toc511804965][bookmark: _Toc511804966][bookmark: _Toc511804967][bookmark: _Toc511804968][bookmark: _Toc511804969][bookmark: _Toc511804970][bookmark: _Toc511804971][bookmark: _Toc511804972][bookmark: _Toc511804973][bookmark: _Toc511804974][bookmark: _Toc511804975][bookmark: _Toc511804976][bookmark: _Toc511804977][bookmark: _Toc511804978][bookmark: _Toc511804979][bookmark: _Toc511804984][bookmark: _Toc511804991][bookmark: _Toc511804999][bookmark: _Toc511805007][bookmark: _Toc511805017][bookmark: _Toc511805025][bookmark: _Toc511805037][bookmark: _Toc511805046][bookmark: _Toc511805054][bookmark: _Toc511805068][bookmark: _Toc511805069][bookmark: _Toc511805070][bookmark: _Toc511805075][bookmark: _Toc511805080][bookmark: _Toc511805086][bookmark: _Toc511805092][bookmark: _Toc511805098][bookmark: _Toc511805104][bookmark: _Toc511805110][bookmark: _Toc511805117][bookmark: _Toc511805124][bookmark: _Toc511805130][bookmark: _Toc511805131][bookmark: _Toc511805132][bookmark: _Toc511805133][bookmark: _Toc511805134][bookmark: _Toc511805138][bookmark: _Toc511805139][bookmark: _Toc511805140][bookmark: _Toc511805141][bookmark: _Toc511805142][bookmark: _Toc511805143][bookmark: _Toc511805146][bookmark: _Toc511805147][bookmark: _Toc511805148][bookmark: _Toc511805151][bookmark: _Toc511805152][bookmark: _Toc511805153][bookmark: _Toc511805156][bookmark: _Toc511805157][bookmark: _Toc511805158][bookmark: _Toc511805159][bookmark: _Toc511805160][bookmark: _Toc511805161][bookmark: _Toc511805162][bookmark: _Toc511805163][bookmark: _Toc511805164][bookmark: _Toc511805165][bookmark: _Toc511805166][bookmark: _Toc511805167][bookmark: _Toc511805168][bookmark: _Toc511805169][bookmark: _Toc511805170][bookmark: _Toc511805171][bookmark: _Toc511805172][bookmark: _Toc511805173][bookmark: _Toc511805174][bookmark: _Toc511805175][bookmark: _Toc511805176][bookmark: _Toc511805177][bookmark: _Toc511805178][bookmark: _Toc511805179][bookmark: _Toc511805180][bookmark: _Toc511805181][bookmark: _Toc511805182][bookmark: _Toc511805183][bookmark: _Toc511805184][bookmark: _Toc511805185][bookmark: _Toc511805186][bookmark: _Toc511805187][bookmark: _Toc511805192][bookmark: _Toc511805197][bookmark: _Toc511805205][bookmark: _Toc511805211][bookmark: _Toc511805217][bookmark: _Toc511805223][bookmark: _Toc511805229][bookmark: _Toc511805238][bookmark: _Toc511805247][bookmark: _Toc511805256][bookmark: _Toc511805264][bookmark: _Toc511805272][bookmark: _Toc511805280][bookmark: _Toc511805292][bookmark: _Toc511805293][bookmark: _Toc511805294][bookmark: _Toc511805295][bookmark: _Toc511805296][bookmark: _Toc511805305][bookmark: _Toc511805310][bookmark: _Toc511805317][bookmark: _Toc511805323][bookmark: _Toc511805331][bookmark: _Toc511805337][bookmark: _Toc511805342][bookmark: _Toc511805347][bookmark: _Toc511805352][bookmark: _Toc511805363][bookmark: _Toc511805364][bookmark: _Toc511805373][bookmark: _Toc511805380][bookmark: _Toc511805390][bookmark: _Toc511805391][bookmark: _Toc511805392][bookmark: _Toc511805393][bookmark: _Toc511805394][bookmark: _Toc511805395][bookmark: _Toc511805396][bookmark: _Toc511805397][bookmark: _Toc511805398][bookmark: _Toc511805399][bookmark: _Toc511805400][bookmark: _Toc511805401][bookmark: _Toc511805402][bookmark: _Toc511805403][bookmark: _Toc511805404][bookmark: _Toc511805405][bookmark: _Toc511805406][bookmark: _Toc511805407][bookmark: _Toc511805408][bookmark: _Toc511805409][bookmark: _Toc511805410][bookmark: _Toc511805411][bookmark: _Toc511805412][bookmark: _Toc511805413][bookmark: _Toc511805414][bookmark: _Toc511805419][bookmark: _Toc511805424][bookmark: _Toc511805432][bookmark: _Toc511805438][bookmark: _Toc511805444][bookmark: _Toc511805450][bookmark: _Toc511805456][bookmark: _Toc511805465][bookmark: _Toc511805474][bookmark: _Toc511805483][bookmark: _Toc511805491][bookmark: _Toc511805499][bookmark: _Toc511805507][bookmark: _Toc511805515][bookmark: _Toc511805527][bookmark: _Toc511805528][bookmark: _Toc511805529][bookmark: _Toc511805530][bookmark: _Toc511805535][bookmark: _Toc511805540][bookmark: _Toc511805548][bookmark: _Toc511805554][bookmark: _Toc511805560][bookmark: _Toc511805566][bookmark: _Toc511805572][bookmark: _Toc511805581][bookmark: _Toc511805590][bookmark: _Toc511805599][bookmark: _Toc511805607][bookmark: _Toc511805615][bookmark: _Toc511805623][bookmark: _Toc511805630][bookmark: _Toc511805642][bookmark: _Toc511805643][bookmark: _Toc511805648][bookmark: _Toc511805653][bookmark: _Toc511805659][bookmark: _Toc511805665][bookmark: _Toc511805671][bookmark: _Toc511805677][bookmark: _Toc511805689][bookmark: _Toc511805690][bookmark: _Toc444276613][bookmark: _Toc444276614][bookmark: _Toc444276615][bookmark: _Toc444276616][bookmark: _Toc444276617][bookmark: _Toc444276618][bookmark: _Toc444276619][bookmark: _Toc444276620][bookmark: _Toc444276621][bookmark: _Toc444276622][bookmark: _Toc444276623][bookmark: _Toc444276624][bookmark: _Toc444276625][bookmark: _Toc444276626][bookmark: _Toc444276627][bookmark: _Toc444276628][bookmark: _Toc444276629][bookmark: _Toc444276631][bookmark: _Toc444276632][bookmark: _Toc444276633][bookmark: _Toc444276634][bookmark: _Toc444276635][bookmark: _Toc444276636][bookmark: _Toc444276637][bookmark: _Toc444276638][bookmark: _Toc444276639][bookmark: _Toc444276641][bookmark: _Toc444276642][bookmark: _Toc444276643][bookmark: _Toc444276644][bookmark: _Toc444276645][bookmark: _Toc444276646][bookmark: _Toc444276647][bookmark: _Toc444276649][bookmark: _Toc444276650][bookmark: _Toc444276651][bookmark: _Toc444276652][bookmark: _Toc444276653][bookmark: _Toc444276654][bookmark: _Toc444276655][bookmark: _Toc444276656][bookmark: _Toc444276657][bookmark: _Toc444276658][bookmark: _Toc444276659][bookmark: _Toc444276660][bookmark: _Toc444276661][bookmark: _Toc444276662][bookmark: _Toc444276663][bookmark: _Toc444276665][bookmark: _Toc444276666][bookmark: _Toc444276667][bookmark: _Toc444276668][bookmark: _Toc444276669][bookmark: _Toc444276670][bookmark: _Toc444276671][bookmark: _Toc444276672][bookmark: _Toc444276673][bookmark: _Toc444276674][bookmark: _Toc444276675][bookmark: _Toc444276676][bookmark: _Toc444276678][bookmark: _Toc444276679][bookmark: _Toc444276680][bookmark: _Toc444276681][bookmark: _Toc444276682][bookmark: _Toc444276683][bookmark: _Toc444276684][bookmark: _Toc444276685][bookmark: _Toc444276686][bookmark: _Toc444276687][bookmark: _Toc444276688][bookmark: _Toc444276689][bookmark: _Toc444276690][bookmark: _Toc444276691][bookmark: _Toc444276692][bookmark: _Toc444276693][bookmark: _Toc444276694][bookmark: _Toc444276696][bookmark: _Toc444276697][bookmark: _Toc444276698][bookmark: _Toc444276699][bookmark: _Toc444276700][bookmark: _Toc444276701][bookmark: _Toc444276702][bookmark: _Toc444276703][bookmark: _Toc444276704][bookmark: _Toc444276705][bookmark: _Toc444276707][bookmark: _Toc444276708][bookmark: _Toc444276709][bookmark: _Toc444276710][bookmark: _Toc444276711][bookmark: _Toc444276712][bookmark: _Toc444276713][bookmark: _Toc444276714][bookmark: _Toc444276715][bookmark: _Toc444276716][bookmark: _Toc444276717][bookmark: _Toc444276718][bookmark: _Toc444276719][bookmark: _Toc444276720][bookmark: _Toc444276721][bookmark: _Toc444276722][bookmark: _Toc444276723][bookmark: _Toc444276724][bookmark: _Toc444276725][bookmark: _Toc444276726][bookmark: _Toc444276727][bookmark: _Toc444276728][bookmark: _Toc444276729][bookmark: _Toc444276730][bookmark: _Toc444276731][bookmark: _Toc444276732][bookmark: _Toc444276733][bookmark: _Toc444276734][bookmark: _Toc444276735][bookmark: _Toc511805691][bookmark: _Toc511805692][bookmark: _Toc511805693][bookmark: _Toc511805694][bookmark: _Toc511805695][bookmark: _Toc511805696][bookmark: _Toc511805697][bookmark: _Toc511805698][bookmark: _Toc511805699][bookmark: _Toc511805700][bookmark: _Toc511805701][bookmark: _Toc511805702][bookmark: _Toc511805703][bookmark: _Toc511805704][bookmark: _Toc511805705][bookmark: _Toc511805706][bookmark: _Toc511805707][bookmark: _Toc511805708][bookmark: _Toc511805709][bookmark: _Toc511805710][bookmark: _Toc511805711][bookmark: _Toc511805712][bookmark: _Toc511805713][bookmark: _Toc511805714][bookmark: _Toc511805715][bookmark: _Toc511805716][bookmark: _Toc511805717][bookmark: _Toc511805718][bookmark: _Toc511805719][bookmark: _Toc511805720][bookmark: _Toc511805721][bookmark: _Toc511805722][bookmark: _Toc511805723][bookmark: _Toc511805724][bookmark: _Toc511805725][bookmark: _Toc511805726][bookmark: _Toc148715896]Ad insertion
This section consists of few use-cases and few proposals. The discussion has been going on for few meetings. The goal is to drive to a single set of tools for ad-insertion that satisfies the use-cases.
[bookmark: _Toc148715897]Use-cases

The following use-cases are considered by TuC:
1. Live content with early termination ads
2. Switching between different live feeds
[bookmark: _Toc148715898]The proposed solutions so far
1. Existing tools (Xlink + MPD update) with additional signaling (4.7)
2. Content replacement event (4.6)
[bookmark: _Toc148715899]Discussion at MPEG127th (m48861, m49263, m49607, m49374, m49608)
Several solutions has been proposed. To summarize, we have the following use-cases:
1. Live with early termination
a. Signaling of possible early termination
i. Period with early termination: no need to signal if a period may terminate early
ii. Termination at segment boundary: recommendation
iii. Acceptable transitions: -
iv. Others
v. Xlink
a. We need to develop a more detailed processing model for remote period resolution (currently identified as xlink).
b. Potentially the remote period resolution enables the client to play the content independently.
c. The content represented by this remote period may require conditioning.
b. MPD update mechanism:
i. How the client receive signal for updating the MPD while playing the ad, as it is not connected to the live server.
The DASH ad-hoc has the mandate to develop a single solution for above use-cases and address above questions for MPEG128th.
[bookmark: _Toc148715900]Discussion at MPEG128th (m50916, m51006, m51021)
We reached consensus on our approach to ad insertion:
1. We need a processing model for resolution of a hyperlink
2. The hyperlink should point to a valid playable MPD
3. We will study how a new period is introduced to the client and the client/ad ins/live can consistently work with this new period
4. Not every period is a replacement opportunity. We study on how we need to carry splice point info to the client for client side ad insertion.
[bookmark: _Toc148715901]Discussion at MPEG129th (based on m52438)
[bookmark: _Toc77697126][bookmark: _Toc148715902]We need a processing model for resolution of a hyperlink
In order to process a hyperlink consistently, we believe:
1. Any resolution of a hyperlink for ad-insertion use cases should result in the complete period.
1. The solution should support the resolution of hyperlink when the client gets close to the ad break. This may require additional signaling in the case of xlink. For instance, a range of time can be given to the client as the guidelines for xlink resolution.
1. The resolution should result in a valid timeline, the combined timeline after the resolution can be described by an MPD.
1. The client needs to resolve the hyperlink once or if it does multiple times, they all should result in one consistent resolution.
1. In the case of random access to the middle of the ad, the ad could be played depending on the use-case.
1. In the case of replay, the ad could be replaced with a new ad, or the same ad could be played depending on the use-case.
Requirements 4 and 6 suggest that the client when requesting a hyperlink may need to signal ad-insertion entity that which state it is at, prior to playing the ad for the first time or playback the ad again.
We believe xlink element as long as its resolution is constrained with the above requirement is adequate for hyperlinking.
[bookmark: _Toc77697127][bookmark: _Toc148715903]We will study how a new period is introduced to the client and the client/ad ins/live can consistently work with this new period
We observe:
1. The introduction of a period as long as it is consistent with the MPD update should not create any problem for the client.
1. Splice conditioning of the period transition is a property of the content. Signaling the properties of the content and required capabilities by the client informs the client whether it can work consistently cross period transitions.
1. Period insertion in the client is similar to period insertion in the MPD manipulator since there is no segment manipulation is possible in either case.
1. As long as the hyperlink rules are obeyed by the client, a hyperlink period is the same as an explicit period.
[bookmark: _Toc77697128][bookmark: _Toc148715904]Not every period is a replacement opportunity. We study on how we need to carry splice point info to the client for client side ad insertion.
There is no universal signaling for ad replacement opportunities. SCTE35 is just one of them. Ad replacement opportunity may include: 1) The timing of the ad replacement: in and out moments and 2) splice conditioning.
In the case of server-side ad-insertion, the MPD manipulator can drive the conditions from the ad-replacement opportunity signaling and from MPD itself (in case of splice conditioning.
For the server guided ad insertion, ad opportunity should be turned into ad-replacement instruction. In this case, the conditioning of the live content (specifically transition to) could be signaled to the client. This can be done in two levels:
1. What the client could expect (e.g. transitioning always at the boundary)
1. What the client is required to address (e.g. transition in the middle of segment)

[bookmark: _Toc148715905]Proposal: Content and Ad Server Communication (updated with m47557 @MPEG 126)
[bookmark: _Toc148715906]Problem Statement
The DASH spec deals with the case that the program author has full knowledge on the content authoring and controls both, the main content generation and the ad content generation and splicing. However, in many cases ad content is provided on a separate library and independent of the main content. While ads may be considered “annoying” in general, there is a significant improvement in the viewing experience if the quality of the ad matches to at least the following:
1. The quality of the ad, matched to the device capabilities.
1. The features of the ad, for example whether interactivity is supported or not.
1. The quality of the ad, matched to the currently playing content. E.g. avoiding any HDMI resets, source buffer reinitialization, unnecessary black frames due to content splicing, encryption and protected content mismatches, different audio codec configurations, etc. This can be further refined by taking a combination of the played content and the device capabilities, for example for certain capabilities the ad performance can be improved.
1. The encoding requirements (timing, splicing) of the ad at the ad splice point.
1. The personalization of the ad to the user, for example based on user ids, geolocation and so on.
1. The duration of the ad slot.
1. Other issues that permit targeting the ad.
Especially the third issue has been ignored largely because many workflows are quite vertical and content providers also condition their ads. However, with more and more content formats, device capabilities and different formats, there is a benefit in combining the above for a consistent way and providing the ad server as much information as possible in order to provide a “good” spliced ad.
The ad may also be providing instructions on what its conditions are in order for the application/player to optimize the user experience by using proper playback instructions.
Yet another aspect is the issue that the receiver may or may not be able to add a second SourceBuffer (media decoding elements), one for ad playback and one for the main content, depending upon the device capabilities.

A proposed call flow is shown in the below Figure:

[bookmark: _Ref965626]Figure 1: Call flow for ad insertion
1. The content server provides a content manifest and the manifest generator uses this information to generate a manifest for the player.
1. The player requests the manifest and,
1. based on the available content and its capabilities, the ABR player will select the proper content for playout. Examples of the choices include
0. The chosen codec,
0. Spatial and temporal resolution of the display, the HDR capabilities, etc.
0. Audio codec and rendering capabilities, etc.
1. At some point in time, the Content Server provides an ad insertion opportunity to the manifest generator and,
1. it also adds a signal into the content in order to expire the MPD in hand.
1. Subsequently, the ABR player requests a manifest update. This manifest update will now include a sub-manifest that points the player to the ad insertion server. The player request may include additional parameters such that the ad insertion server is aware of the currently playing content, personalization information etc, as well as the capabilities of the player.
A way to inform on the playing content is for example:
· The Movie Header/Initialization Segment/CMAF Header of each playing track. This provider a good overview on the codecs, formats and so on. Other means to provide such information may be provided, for example manifest parameters, mime types with codecs sub-parameters, etc.
· In addition, the presentation time of the last presented sample may be provided in order to provide a continuous presentation.

Another issue that is generally observed is the problem of splicing content for which two media types, typically audio and video, do have different “end times” before the splice point, or do have different starting times. In this case the transition for each media type needs to be done carefully and individually. This may include that for example one of the media types has a gap, or content may overlap. Overlap may be difficult in a single source buffer as the splice point is ambiguous. Gaps may cause issues because the playback gets stalled or interrupted.

While this is generally a bigger problem in an on-demand environment, it is still mostly a non-issue in the OTT environment. This is because the SCTE-35 signalling allows for explicit cut point creation in the raw stream in addition to periodic segment cuts. The only real time difference you observe then is a handful of milliseconds difference due to frame size but the gap is too small to be perceived in playout.

[bookmark: _Toc148715907]High-level Proposed Solution
In the solution to this problem, it is proposed that the client provides information to the ad server such that the ad server can provide content that enables the device the playout of the ad content in a suitable and adjusted manner.

This includes that the content may be provisioned (specifically encoded or at least selected) to the main content to be displayable within one source buffer.

The key issue is that the ad server receives sufficient knowledge on the capability of the device as well as on the currently playing content. Based on this knowledge the ad insertion server may properly prepare and provide the content such that playback is seamless.

As one example, the combination of the following information may be provided
1. Device capabilities, for example how to handle ad insertion. Some options are:
0. Single source buffer with static initialization.
0. HDMI properties
0. Multiple source buffers
0. Regular MSE operation
1. The ad insertion slot time. This provides the ad server the information to accurately select the ad and the ad boundaries.
1. The properties of the played content, for example CMAF Header of the played content of each media component. This allows the ad server to select proper content that matches the playback.
1. The last played timing of the main content for each media component. This allows the ad server to splice content properly, for example to avoid overlaps or to exactly splice
The signaling may for example be supported by
· Adding a query string to a sub-manifest request in step 6 of the call flow in Figure 1 with the properties of one or more of the content property, the device capabilities and the timing.
· Adding a dedicated HTTP extension header to the request of the manifest
· Adding a URL in the request where the ad server can obtain the information
An example is the construction of a URL using the Flexible URL Parameter algorithm in ISO/IEC 23009-1, Annex I.
Detailed signaling needs is tbd.
[bookmark: _Toc148715908]Targeted Ads in Live Services
Problem Statement
The insertion of ads into DASH or general ABR live service is a major opportunity, but also challenge. The ISO/IEC 23009-1 standard provides sufficient means to insert ads in On-demand content. It also permits to easily add targeted ads into live services.
A common approach is the use of Periods with xlink. The Period element will provide a URL to an ad server and the resolution of this request provides a fully compatible Period structure that is placed in the timeline of the main live service.
Live services are supported by extending the timeline with each segment. This is typically verified by information of the live service, i.e. by an updated manifest or by the absence of inband event message that terminates the event or triggers an MPD/manifest update.
For live services, if the ad slots are accurately timed and the ads exactly match the times of the provided time slot (both when leaving the main content and transition to the ad, as well as when exiting the ad and going back to the main content), this usage of regular DASH Periods, that are placed in the time line, create no problem. The DASH client plays the received Period content and plays this without even recognizing the playback is an Ad. At the end of the ad, the return to the live service is supported by providing a new Period that enables to return to the live service.
However, there are several cases for which exact timing and placement of the ad is not supported and the placement of Periods in the timeline is not following the DASH timing model. Some cases are listed below:

· An ad is offered during the live service, but the targeted ad is not exactly matching the time of the provided timeline. In this case, the Period of the ad does not create a proper continuous timeline for the client and the client needs to act to compensate this.
[image:]
· An ad opportunity is offered with a defined duration, and an ad Period is inserted matching this duration, but the live service that continues in the background wants the DASH client to terminate the ad playback early and return to the live service. This is typically done such that the MPD packager sends an MPD update that includes a period that terminates the ad. An example may be that the live event resumes earlier than expected.
[image:]
In all of these cases, the main issue is that the ad Period cannot be exactly placed and inserted in the live timeline.
This issue had been addressed to some extent by providing two media decoding pipelines that are both running in parallel, one for the live service and one for the ad decoding and processing. On presentation level, only the ad is presented and the live service is hidden during Ad presentation. In addition, there exist methods that this signaling needs a separated processor (such as SCTE-35 clients) on the playback device that interprets the logic and the ad placement.
However, all of this results in the problem, that two media pipelines need to be supported. This is either not possible at all for some devices, and even when it is, it places significant processing and resource burden on resource constrained platforms, especially for mobile devices. In addition, proper signaling to realize all the abovementioned cases is not supported currently in DASH.
Proposed Solution
Overview
Based on the discussion in clause 3.1, a proposal is sketched that addresses the issues. This includes proper signaling on DASH level, combines the signaling and processing with the conditioning in clause 2, as well as the ability to use a single media pipeline for playback of main content and the Ad.
On high-level the following is proposed:
· Periods are not added in the timeline of the MPD received by the client, but the DASH client places a properly constrained "Period" that contains the ad on the playback timeline.
· The URL to the remote server providing the Period, the start time, the considered duration as well as other information is provided in a timed DASH event, possibly being added in an MPD Event or in an inband event. The Event is parsed by the DASH client and the DASH client acts and downloads the Period and places the Ad Period timeline on top of the continuing live service.
· The requested Period may be properly conditioned, possibly taking into account dynamic information sent in the request as defined in clause 2.
· The DASH client continues to consume the live service in a sense that at least it updates the MPD and/or observes event streams for MPD updates. This allows that the packager can signal for example the early termination of the ad, or the extension of the ad, or other related information.
· As the Period is properly conditioned, the DASH client is able to splice the ad in the same media element/Source Buffers for playback.
The following aspects are defined:
· A DASH event that signals the placement of a remote Period on top of the live service. Some details are provided in clause 3.2.2.
· A signal that overlays the ad at the time when the service is joined for the preroll ad. This is be covered by the same DASH event with a specific time signal.
· The response format of the remote Period.
· The conditioning of the remote period as defined in clause 2.
· The client processing model for splicing the ad on the client.
DASH Event for Remote Period Overlay Playback
An Event which signals a remote period provides at least the following information
· The start time of the ad insertion opportunity.
· The planned duration of the ad insertion opportunity.
· The URL from where the client can retrieve the remote Period.
The above information is fully processed by the DASH client and is not needed to be passed to an application. This avoids any additional processing.

The start time maps to the media timeline. The start time may be conditioned such that it coincides with the end of a segment or a Period to simplify insertion.

A specific value for the event time may defined that indicates that the Event is to be played is when the client joins. Alternatively, the Event time may be at the start of the first period and the duration of the event is infinite or long such that it ensures that the event still starts even after joining.

The Event may also contain additional information that supports the ad insertion process.
[image:]
Remote Period format
The remote period contains a regular remote period format as defined in ISO/IEC 23009-1.
In addition, it may contain information, e.g. if the playback of the Ad may be shortened without impacting the user experience, for example indication of a time during the ad when the audio is mute for a while and has black frames. This permits for easier conditioning.
Ad Playback Placement by the client
The client uses the remote period start time and adds this as a regular Period in its playback. It requests the ad following the URL, potentially with a condition. It plays the ad according to the nominal duration, but still continues to monitor the live service for potential new events or changes on the playback. At the end of the ad, the client transitions back to the live service by assuming that the live service creates a new Period after Period duration of the ad. The DASH client may adjust the duration of the ad if permitted to simplify the transitions.
Detailed Specification Text
Change 1: Add the following attribute on Period level
	
	
	@earlyTermination
	OD
Default: 0
	if present and the @duration attribute is present, this value specifies that the Period may be terminated earlier by at most the value of the attribute in the playback than signaled by the @duration.
Note that this may for example be the case when the content fades to black at the end and audio is muted. Content in such Periods may be used preferably when content of different length need to be spliced.

Change 2: Add the following

5.10.4.6	DASH Content Replacement Event
5.10.4.6.1		General
DASH Content Replacement events are instructions in the content that the DASH client replaces content from a specific media time onwards for some time by a Period that is provided from remote. These event schemes are identified by the URN "urn:mpeg:dash:event:replacement:2019".
A content author may use such an event for replacing certain part of the content.
A content author may also use such an event for terminating this event earlier. This is achieved by adding a URN into the event with the value "urn:mpeg:dash:event:replacement:main:2019"
A DASH client is expected to follow this event stream as well as regular MPD updates while playing back the replacement content.
[bookmark: _Ref401811061]5.10.4.6.2		Semantics
	Key
	Description

	schemeIdURI
	Set to urn:mpeg:dash:event:replacement:2019

	start_time
	Provides the nominal start time of the replacement content in the media timeline.

	value
	1: indicates that the remote Period is played from the time that matches since the start of the event has passed.
2: indicates that the remote Period is played from the start, regardless at what time you join the event and played until end.

	duration
	Provide the range for which the event may be started after the start time. If set to 0, then only when media time with value start_time is played the content replacement happens. If greater 0, the content replacement can also happen in a media time later start_time, maximally at start_time + duration.
For preroll content replacement start_time is set to the presentation time offset of the period and duration is set to a very large value, i.e. the expected duration of the period. The value is set to 2.

	message
	Provides a URL to a remote Period, possibly extended with query parameters to signal the duration of the content replacement slot as well as other parameters.
If this is set to "urn:mpeg:dash:event:replacement:main:2019" then the Period that includes the event stream is played. The return to the main content happens earliest at start_time, and latest at start_time + duration.

The above values are mapped to presentation time, duration and the message of the event and may be carried in the MPD or inband.
5.10.4.6.3		Requirements for Remote Period
A remote period referenced in a content replacement event shall follow the following format:
-	The Period@duration attribute is provided
-	The @availalilityTimeOffset is set to INF
-	All content in the Period is filled, i.e. no gaps at start or end
-	The @earlyTermination attribute may be present to indicate that the content can be terminated earlier than indicated by @duration.
<more to be added>
5.10.4.6.4		Remote Period Query Parameters
The following query parameters should be present in a remote Period
· Duration: provides the nominal duration of the content replacement slot.
· MaxDurationDelta: provides the maximum duration delta of the content replacement slot.
· MinDurationDelta: provides the minimum duration delta of the content replacement slot
The client may add the following query parameters
· Conditioning Parameters:
· The Initialization Sets for the content currently played back
· The desired value of the @start attribute of the Period in the MPD.
5.10.4.6.5		Client Processing Model
When subscribed to a content replacement event stream, the client is expected to act as follows:
· If an Event is received with a new ID, then the client acts as follows:
· The client uses the start time of the event to determine when the replacement content will happen.
· If the start time has passed, but the event duration indicates that it is still within the duration, then the replacement content is played, depending on the value being set.
· If the message is set to "urn:mpeg:dash:event:replacement:main:2019" and the DASH client is playing the main content, it continues to play the main content.
· If the message is set to "urn:mpeg:dash:event:replacement:main:2019" and the DASH client is playing the replacement content, the DASH client returns to the main content at start_time of the main content. If the start time has passed, but the media time is still within the duration of the event then the return to main content happens as soon as possible.
· If the message is set to a regular URL, then the DASH client issues a request for the content. The DASH client may add additional query parameters as defined in 5.10.4.6.4.
· Once received the remote Period the DASH client places this Period into its playback timeline as follows:
· The Period@start is set such that it matches the presentation time of the event in the main content.
· The remote period is played following the @duration attribute, possibly using the @earlyTermination, and after playing, it returns to the main content at the presentation time that matches the Period duration. This is equivalent and playing the main content with presentationTimeOffset set to start_time + the duration of the ad. The exact transition may be adjusted of earlyTermination is provided.
· Anytime a new Event is received, the replacement happens, i.e. even if replacement content is already played, a new event results in a new replacement.
· Else the event is ignored.
[bookmark: _Toc148715909]Proposal: Flexible Ad insertion with existing tools in TuC and minor additions (updated with m47195 @MPEG126 and m48861@MPEG127)
[bookmark: _Toc148715910]Introduction
This contribution proposes the additional signalling needed for the client-side ad-insertion in DASH standard.
[bookmark: _Toc148715911]Client side/Server guided ad insertion architecture
The following figures shows the interfaces between origin server, client and the ad server:

Figure 1: DASH-IF Ad Insertion Architecture
As shown in this figure, there is no direct interface between the origin server and ad server. Interfaces IF-5 and IF-7 indicates the interfaces between origin server, DASH client and the ad server.

[bookmark: _Toc148715912]Use cases
We cover the following use-case in this contribution:
1. Dynamic ad insertion with fixed duration
2. Dynamic ad insertion with possibility of early termination by content server

Case 1 is already supported by existing tools. Case 2 is the use-case that is difficult due to early termination of the ad by the origin server.
[bookmark: _Toc148715913]DASH Principle
MPD as the holder of truth
The current DASH design for live services is built on this concept that the MPD at origin server at any moment of time holds the latest update of the program, i.e. that version of MPD includes the presentation with correct period breakpoints and duration and reflect the best knowledge of the program.
We argue that since the MPD is published for possibly millions of clients and different clients may join the live program at any moment, the MPD request may happen at any time but the client or by the CDNs to maintain a copy of the latest MPD update in its cache, the MPD in the origin server must reflect the most accurate information known, i.e. if a ad-breaks is being planned or if an ad period will be shorten, the MPD must reflect this information, so that if any client access the MPD at the time, the client can play the content correctly.
Therefore, we argue that even if the ad-server shorten an ad period, the origin server must be informed and it may possibly reflect the new duration in its MPD update, if it decides that the shorten of duration is applied to all clients.

MPD as the entry point for media presentation
The current DASH client implementations rely on the MPD as the single point of entry for playing back the content, i.e. they build their timeline by parsing the MPD and building a corresponding timeline. Creating multiple timelines or switching between timelines while conceptually are possible, it requires multiple DASH client working in parallel.
Maintaining single timeline and not switching between timelines
The current DASH clients work on single timeline. The idea of switching between two timelines might conceptually be ok, but in reality two DASH player and an application is needed to manage these timelines. It is very much similar to playlist concept in which the playlist calls DASH client and passing the MPDs for playback of each and combine the output together.
Fallback methods
In DASH streaming, many clients with different features are deployed. An application should rely on the most common denominating features among DASH client, that is the application can use advanced features, but it is preferred that a client not supporting the advance feature still be able to operate using the basic features.
MPD acquisition
Since the MPD at origin server always carries the latest truth, the client needs to monitor if the MPD is updated when an MPD update is a possibility. In DASH, we have 3 techniques to inform the client about an MPD update:
1. MPD pulling
2. Inband MPD validity expiration event
3. MPD expiration SAND message
As long as the client uses one of the above methods to maintain the updates of the MPD with the frequency that is required, the client must be able to operate correctly
Communication through DASH client
In the above diagram, IF3 interface shows the communication between the origin server and ad server. While this is possible, the most trusted commination between origin and ad server is through the client, since the content might be cached in various CDNs.

[bookmark: _Toc148715914]Early Termination of ads

Figure 2 shows the sequence of actions for an ad that is early terminated:

Figure 2: sequence of actions in early termination of ad in live streaming

The key is that during the playback of the ad (Period P1 in MPD1), the origin servers decides to cut the duration of ad earlier than it was originally planned. It will update the MPD, from MPD1 to MPD2. The client needs to update the MPD by any of the means established for MPD update:
1. MPD pulling
2. Inband event to update the MPD
3. Out of channel signalling (such as SAND).

In order for the client to use one or more of the above tools to update the MPD, the client should be aware of the possibility of early termination for the ad period. Therefore, we introduce signalling of those possibilities in MPD in the next section.
[bookmark: _Toc148715915]New tools needed for standard implementation
Signaling a possible early termination
Either an explicit attribute or a supplementary descriptor should be defined to signal early termination for a given period.
As example of supplemental descriptor can be found in the MPD below:
	<Period xlink:href="remote.period" xlink:actuate="onLoad"> xmlns:xlink="http://www.w3.org/1999/xlink">
 <SupplamentalProperty schemeIdUri="urn:mpeg:dash:earlytermination" />
…
…
…
</Period>

Figure 2. Signaling the possibility of cutting ad durations using descirptor
Alternatively, an attribute can be defined for the Period element:
	Element or Attribute Name
	Use
	Description

	Period
	
	specifies the information of a Period.

	
	@earlyTermination
	O
Default = “False”
	A “True” value indicate this Period duration might be updated to a shorter value.
This value is only allowed If the MPD@type is "dynamic", MPD@MPDLocation exist, and the period is a Xlink period, with default period.
It is recommended that client updates the MPD during streaming of this period if this value is set to “true” either by frequent pulling of the MPD or by streaming any representation that carries inband MPD validity expiry event.

Figure 3. Signaling the possibility of cutting ad durations using explicit attribute
Possibility of early termination at Period level
This signalling informs the client that this period may end earlier than expected. We use supplemental Property descriptor to signal:
1. The period may be early terminated
2. The supported tools that provides the early termination information:
a. MPD pulling
b. Inband event in a given adaptation set or representation
c. Out of band signalling (e.g. SAND).

The event and values name for the above can be:
	· schemeIdUri: uri:mpeg:dash:earlyTerminating:2019
· value: sum of any combinations of the following values
· 1: MPD pulling
· 2: Inband event
· 4: SAND

Table 2: Descriptor at Period level

DASH client seeing this descriptor, knows how to obtain the information about MPD update, i.e. through MPD pulling, Inband events or SAND. Note that these tools are not exclusive, and the origin sever can signal it may provide the MPD update through any number of them.
[bookmark: _Hlk12979952]Additional improvement 1: Shortest eArly termination Duration (SAD)
There are benefits for the ad-server to know that there is a minimum duration for early termination notice. The benefits are:
· Ad server can provide content with short segment duration, at least with segment duration comparable with the Shortest eArly termination Duration (SAD)
· Ad server may provide content that is more appropriate if they cut short

The query parameter can be used to provide such parameter. This parameter is provided to ad-server as a query with xlink request.
Additional improvement 2: Guaranteed Ad Duration (GAD)
In order to guarantee a minimum duration of ad, for the sake of the ad-server, we introduce another optional parameter that signals the ad-server the minimum duration of ad promised to be play. In this case, an early termination signal may come after this minimum duration (GAD) only.

It would be beneficial to signal GAD to the ad server and DASH client using query parameters.
The value of GAD can be signaled in MPD using the query parameter insertion.

Allowing cutting the duration
The origin server ads a UrlQueryInfo element of DASH specification (ISO/IEC 23009-1) Annex I in the remote period, signaling the duration of this period can be shortened. A queryString such as cutDurationAllowed long with a periodId are used to signal such conditions. Additionally, an ExtUrlInfo element of Annex I is used to request the query info to be added to any xlink request. Figure 4 shows such example.
	<Period xlink:href="remote.period" xlink:actuate="onLoad"> xmlns:xlink="http://www.w3.org/1999/xlink">
 <SupplamentalProperty schemeIdUri="urn:mpeg:dash:urlparam:2016" xmlns:up="urn:mpeg:dash:schema:urlparam:2016">
 <up:UrlQueryInfo queryString="cutDurationAllowed&periodId=ABCXDN"/>
 <up:ExtUrlInfo includeInRequests="2"/>
 </SupplamentalProperty>
…
…
…
</Period>

Figure 4. Signaling the possibility of cutting ad durations
A client receiving such manifest adds the cutDurationAllowed string to the query along with the xlink request to the ad-server. The ad-server parsing this query knows it can shorten the ad-duration.
Manifest Update Event with new duration
The ad-server resolve the xlink with the ad period. The ad period consists of:
1. The new shortened duration
2. An optional MPD event, including an MPD update event.
3. A UrlQueryInfo element, signaling addition of the duration value as part of query for MPD update request.
An example of such period is shown in Figure 4.
	<Period id="1" duration="PT20S" xmlns="urn:mpeg:dash:schema:mpd:2011">
 <EventStream schemeIdUri="urn:mpeg:dash:mpdevent:2018" value="1">
 <Event presentationTime="0" duration="10000" id="0">
 </EventStream>
 <SupplamentalProperty schemeIdUri="urn:mpeg:dash:urlparam:2016" xmlns:up="urn:mpeg:dash:schema:urlparam:2016">
 <up:UrlQueryInfo queryString="newDuration=PT20S&periodId=ABCXDN"/>
 <up:ExtUrlInfo includeInRequests="3"/>
 </SupplamentalProperty>
…
…
…

</Period>

Figure 5. Signaling the new duration of the remote ad
Note that in this example, the duration is 20 seconds. Therefore, the query string attribute includes newDuration=PT20S&periodId=ABCXDN used to the URLQueryInfo provided in original MPD to identify the period. In each case, the exact duration is included in this value.
New Manifest event for MPD update
In order to support this solution, we propose a new DASH MPD event: MPD update. This event is similar to in-band MPD validity expiration event, with the difference that it is included in manifest and not in-band. It has a different URL of its scheme identification, but its values are same as the values of MPD validity expiration events.
In this case of signaling, the @presentationTime are set to zero (default), so that the client immediately to request the MPD update.

[bookmark: _Toc148715916]Proposal: Content Replacement and Ad Insertion Event (m54500)
[bookmark: _Toc148715917] Introduction
This section proposes a simple DASH logic that permits to do content replacement of main content based on an Event.
[bookmark: _Toc148715918]Relevant Reference Architecture
The following architecture is assumed.

[image:]
[bookmark: _Toc148715919]Content Replacement Event

5.10.4.7	DASH Content Replacement Event
5.10.4.7.1		General
DASH Content Replacement events are instructions in the content that the DASH client replaces content from a specific media time onwards for some time by a Period that is provided from remote. These event schemes are identified by the URN "urn:mpeg:dash:event:replacement:2020".
A content author may use such an event for replacing certain part of the content.
A content author may also use such an event for terminating this event earlier. This is achieved by adding a URN into the event with the value "urn:mpeg:dash:event:replacement:main:2020"
A DASH client is expected to follow this event stream as well as regular MPD updates while playing back the replacement content.
5.10.4.6.2		Semantics
	Key
	Description

	schemeIdURI
	Set to urn:mpeg:dash:event:replacement:2020

	start_time
	Provides the nominal start time of the replacement content in the media timeline.

	value
	1: indicates that the remote Period is played from the time that matches since the start of the event has passed.
2: indicates that the remote Period is played from the start, regardless at what time you join the event and played until end.

	duration
	Provide the range for which the event may be started after the start time. If set to 0, then only when media time with value start_time is played the content replacement happens. If greater 0, the content replacement can also happen in a media time later start_time, maximally at start_time + duration.

	message
	Provides a URL to a remote Period, possibly extended with query parameters to signal the duration of the content replacement slot as well as other parameters.
If this is set to "urn:mpeg:dash:event:replacement:main:2020" then the Period that includes the event stream is played. The return to the main content happens earliest at start_time, and latest at start_time + duration.

The above values are mapped to presentation time, duration and the message of the event and may be carried in the MPD or inband.
5.10.4.6.3		Requirements for Remote Period
A remote period referenced in a content replacement event shall follow the following format:
-	The Period@duration attribute is provided
-	The @availalilityTimeOffset is set to INF
-	All content in the Period is filled, i.e. no gaps at start or end
-	The content follows the DASH Ad Insertion Parameters
5.10.4.6.4		Remote Period Query Parameters
The following query parameters should be present in a remote Period
· Duration: provides the nominal duration of the content replacement slot.
· MaxDurationDelta: provides the maximum duration delta of the content replacement slot.
· MinDurationDelta: provides the minimum duration delta of the content replacement slot
The client may add the following query parameters
· Conditioning Parameters:
· The Initialization Sets for the content currently played back
· The desired value of the @start attribute of the Period in the MPD.
5.10.4.6.5		Client Processing Model
When subscribed to a content replacement event stream, the client is expected to act as follows:
· If an Event is received with a new ID, then the client acts as follows:
· The client uses the start time of the event to determine when the replacement content will happen.
· If the start time has passed, but the event duration indicates that it is still within the duration, then the replacement content is played, depending on the value being set.
· If the message is set to "urn:mpeg:dash:event:replacement:main:2019" and the DASH client is playing the main content, it continues to play the main content.
· If the message is set to "urn:mpeg:dash:event:replacement:main:2019" and the DASH client is playing the replacement content, the DASH client returns to the main content at start_time of the main content. If the start time has passed, but the media time is still within the duration of the event then the return to main content happens as soon as possible.
· If the message is set to a regular URL, then the DASH client issues a request for the content. The DASH client may add additional query parameters as defined in 5.10.4.6.4.
· Once received the remote Period the DASH client places this Period into its playback timeline as follows:
· The Period@start is set such that it matches the presentation time of the event in the main content.
· The remote period is played following the @duration attribute, possibly using the @earlyTermination, and after playing, it returns to the main content at the presentation time that matches the Period duration. This is equivalent and playing the main content with presentationTimeOffset set to start_time + the duration of the ad. The exact transition may be adjusted of earlyTermination is provided.
· Anytime a new Event is received, the replacement happens, i.e. even if replacement content is already played, a new event results in a new replacement.
· Else the event is ignored.
[bookmark: _Toc148715920]Proposal: Xlink caching processing model and signaling (m54502)
[bookmark: _Toc148715921]Introduction
This section argues that the xlink processing model defined in XML and DASH specification are not adequate to address the media playback, and a cache processing model is needed.
It further demonstrates that this problem is not limited to xlink and any hyperlink with possible re-resolution during the same session needs a caching model for consistent playback by a client.

Finally, it shows how the HTTP caching model can be used in DASH and proposed the same model and similar signaling to be used for any time-dependent hyperlink in MPD.
[bookmark: _Toc148715922]The most common OnRequest xlink Usecase
The most common usecase is target-based ads for live content with just in time resolution. The current solution in MPEG DASH is onRequest xlink.
In this usecase, various questions arise:
1. When is the best time for the client to resolve the remote link? (not answered in this contribution)
2. How long is a resolved xlink valid?
3. What if due to the MPD update process, the client attempts to resolve the remote link again during the playback of the remote period?
4. Is the client expected to resolve the xlink again when it is directed to random access the ad to the beginning, or just before the remote period or should it play the same resolved period?
5. Is the client expected to resolve the xlink again when the played ad is stopped and started again from the beginning of the period? Is there any notion of a session for the resolved period that should be maintained?
[bookmark: _Toc148715923]Deficiency of DASH xlink processing model
The W3C xlink recommendation defines “onRequest” as the following:
	An application should traverse from the starting resource to the ending resource only on a post loading event triggered for the purpose of traversal. An example of such an event might be when a user clicks on the presentation of the starting resource, or a software module finishes a countdown that precedes a redirect.

And according to ISO/IEC 23009-1:
	onRequest (default): according to W3C Xlink, an application should dereference the remote element entity only on a post-loading event triggered for the purpose of dereferencing. In the context of this document, the application dereferences the link only for those resources it needs (or anticipates it probably will need) and at the time when it needs the content of the remote element entity for playout. Examples include dereferencing a link in a Period element when the play-time is expected to enter that Period, dereferencing an Adaptation Set link when it appears to contain Representations that will be needed, and so on.

And for the processing, ISO/IEC 23009-1 states:
	The remote element entity referenced from within an MPD (referred to as appropriate targets) shall be embedded into the MPD by applying the following rules:
1)	If the remote element entity is empty, all @xlink attributes shall be removed from the element in the MPD and the remaining attributes and child elements shall not be changed.
2)	If the remote element entity is non-empty, the original element in the MPD that contains
@xlink:href shall be replaced with the content in the remote element entity. If multiple top-level elements are obtained from the remote element entity, the elements shall be in appropriate order and the first element shall replace the MPD element. All other top-level elements shall be inserted immediately after this element in the order in which they are declared.
3)	All XLINK attributes initially present in the MPD shall be removed after dereferencing is completed.
4)	All resources in the remote element entity referenced by @xlink:href shall have an availability end time as specified by MPD@availabilityEndTime.

Comments from Paul Higgs during ad-hoc discussion:
	XLINK is used to create well formed XML instances based on information that is currently known or will become known (or created) when needed. Once that information is known (i.e. in the XML instance) then 'job done'. You should not be looking at XLINK if you want something like an MPD version of a Dynamic HTML DOM

There is no cache in XLINK, when a local resource (with the xlink:actuate) needs to be dereferenced, the remote resource replaces the local resource entirely.

Considering all above the processing model for MPD with xlink with OnRequest mode is the following:
1. The client receives the MPD.
2. At the time of processing the xlink element, it requests the xlink and replaces the element in MPD with the resolution is received.
3. The client parses MPD and put it in DOM.
4. The client play the presentation using DOM
In the case of receiving an MPD update, it is not clear whether the MPD update rules applies to MPD before or after resolving the xlink:
1. If it is before, then requesting the xlink may result to a different resolution, and therefore an update MPD results in a different period in the middle of play of the previously resolved-currently played period.
2. If it is after xlink resolution, then once the xlink is resolved, the same resolution should be used in all MPD updates, i.e. the MPD packager should guarantee that the link always resolved to the same resolution.
XML xlink is designed for one-time resolution of the resource (traversal). XLink works in MPD if the resolution only occurs once. If the resolution needs to be updated, XML processing model neither addresses the use-case, nor is adequate for consistent playback by all clients.
[bookmark: _Toc148715924]Proposed solutions in MPEG#130
Because of the above problems, three proposals were submitted to MPEG#130.
From m52959: implicit caching policy
When a resolution event occurs, the internal cache is updated, and the appropriate replacement is executed. This cache captures resolution results until either the presentation ends or the element containing the resolution identifier falls completely out of the availability window.”
“each remote resolution entity would be assigned a unique identifier by the DASH client (resolution connected Period sets have a single identifier) and the client uses this identifier to internally cache the resolution results it has obtained.”
From m52955: implicit caching policy
"When de-referencing a period xlink with xlink:actuate value not equal to "onLoad" and the parent MPD @type attribute is set to dynamic, the de-referencing must be done when the period is about to become active and must not be re-evaluated during subsequent MPD updates happening while that period is active.
NOTE: this implies that a dynamic MPD processor has some internal caching mechanism of resolved XLink for past and current periods."
From m52954: explicit caching signaling
“For each remote element in the manifest, the following additional parameters are described for caching purposes:
1. Maximum age: the duration in seconds for the cached resolved resource is valid after resolution. The cached resolved resource will expire after this duration and must be purged.
1. Revalidate flag: the flag to purge the resolved resource in cache if exists, and resolve it again.
1. Extend flag: the flag to extend the lifetime of resolved resource in the cache if it is accessed again before its expiration”
[bookmark: _Toc148715925]Is the resolution consistency challenge unique to xlink?
One suggestion could be to use xlink for static content and use a different hyperlink for dynamic MPDs. Would this approach be free of the resolution consistency issues?
We argue that any hyperlink which may be resolved multiple times and the result of its resolution would be dependent to the history and timing of the request, must have a state that is preserved in either:
a) the server serving the resolution, or
b) the local cache in the client
The reason for this is simple. When a DASH client plays a live MPD, the MPD may get updated. The DASH client may use MPD pulling or MPD update events to get the MPD update. If the MPD includes of a just-in-time hyperlink, such a OnRequest xlink, then the hyperlink must be resolved at the time the DASH client wants to play the relevant element. That element may be a period for instance. Since the DASH client gets an update of MPD, it has to either have strict rules to not resolving the previously resolved hyperlink, or it has to have explicit signaling on re-resolving the link.
An example of this characteristic is to use the hyperlink provided by an event at the period for replacing the main content as shown in Figure 4:
time

timeShiftbuffer
Duration of event
Pr (Alternative period resolved by a hyperlink in an event)
Event1

Figure 2. hyperlink resolution of a link carried in an event
Let’s assume that the manifest includes an event with start time equal to Event1@start, which provides a link. When the client requests the link, an alternative Pr period is provided by the server. The client is expected to play Pr instead of the original content. If the client passes through Event1@start point more than once, such as during an MPD update, the client would request the link for Pr more than once. Such a situation can occur in the following cases:
1. The client received an MPD with Event1.
2. It parses the MPD. If an OnRequest behavior is desired, the client requests the hyperlink at Event1 start time.
3. If the client plays the period again due to random access, does it request the link again? If it doesn’t, then the client is holding a caching age for the resolved xlink. If the client resolves it again and the resolution is a new period, is it ok that the client plays a different content due to random access?
4. In the case of an MPD update in the middle of the Pr period, the client parses updated MPD in DOM. How does the client know not to request the hyperlink at this point? Does it have a caching model?
 Therefore, in general:
a. The responding server must maintain a state for the hyperlink, so it provides the same or a different Pr depending the case, or
b. The client must maintain a local cache and use the previously resolved Pr.
[bookmark: _Toc148715926]General local caching model for remote elements
Figure 1 describes the local cache processing model for remote elements. The interfaces between two content servers and a DASH client with a local cache are shown by IF1 and IF2, respectively. The DASH client has an internal cache for remote link resolutions.

DASH Client with cache
Content Server 1
Content Server 2
DASH Client
IF1
IF2
Remote link
local cache

Figure 1. Local cache model
The local cache of the DASH client operates similar to the HTTP caches. The internal cache purging process removes the items that are expired. The cache as an internal clock (which could be the same clock as DASH client) and manages the purging based on the clock.
[bookmark: _Toc148715927]HTTP Cache processing model
According to RFC2616:
“The basic cache mechanisms in HTTP/1.1 (server-specified expiration times and validators) are implicit directives to caches. In some cases, a server or client might need to provide explicit directives to the HTTP caches. We use the Cache-Control header for this purpose.”
The cache control of a local browser by the server is shown in the following figure:
[image: Cache-Control - How to Properly Configure It]
Standard Cache-Control directives that can be used by the server in an HTTP response.
· Cache-Control: must-revalidate
· Cache-Control: no-cache
· Cache-Control: no-store
· Cache-Control: no-transform
· Cache-Control: public
· Cache-Control: private
· Cache-Control: proxy-revalidate
· Cache-Control: max-age=<seconds>
· Cache-Control: s-maxage=<seconds>
Definition of a few directives are listed here:
no-store
The response may not be stored in any cache. Although other directives may be set, this alone is the only directive you need in preventing cached responses on modern browsers. max-age=0 is already implied. Setting must-revalidate does not make sense because in order to go through revalidation you need the response to be stored in a cache, which no-store prevent

must-revalidate
Indicates that once a resource becomes stale, caches must not use their stale copy without successful validation on the origin server.
max-age=<seconds>
The maximum amount of time a resource is considered fresh. Unlike Expires, this directive is relative to the time of the request.
s-maxage=<seconds>
Overrides max-age or the Expires header, but only for shared caches (e.g., proxies). Ignored by private caches.
[bookmark: _Toc148715928]Cache processing model for DASH client
In the HTTP cache model, when a client parses a remote element in the received manifest, the cache receives the following parameters from the client:
1. URL to access the remote element
1. Period@id
1. MaxAge: the maximum age of the resolved element
Receive xlink request:
1. URL
1. Period@id
1. Max-age

URl entry exists in cache?

Yes
No
Expired?
Cache entry:
· URL
· id
· Resource
· Expiration time
· Extend flag

No
Provide resource to DASH client
Request xlink
Create/update cache entry
Yes

Figure 3. Cache flowchart

The local cache operates in the following steps as shown in Figure 3:
1. Checks whether the URL exists in the cache. If the entry doesn’t exist, it goes to Step 3, otherwise continue.
2. Checks if the cache entry’s expiration time has passed. If the time is expired, go to Step 3, otherwise go to step 5.
3. It sends the URL request and receives the resolved resource.
4. It creates/update the entry in the cache with the following items:
a. URL
b. Id
c. Resolved resource
d. Expiration time
5. Provide the resolved resource to the DASH client.
This is identical to the HTTP cache control model.
[bookmark: _Toc148715929]Media time vs Wall Clock time
On-demand content (static MPD)
Let’s consider the case of static MPD. The timeline for a static MPD is shown in the following figure:
Media time
P0
P1 (remote element)
PeriodStart
Period@duration
Pn
MaxAge

Figure 4. The timeline for static MPD

In this case, the cache clock is on the media timeline. Therefore, the Maxage of an item in the cache is defined based on this timeline. As an example, if the maxAge of a resolved P1 element is set to that Period’s duration, the resolution would be expired after playing the entire P1 period. On the other hand, if the MaxAge is set to the program duration, the resolved P1 would new get expired.
Live content (dynamic MPD)
Let’s consider the case of dynamic MPD. The timeline for a dynamic MPD is shown in the following figure:
Media time
P0
P1 (remote element)
PeriodStart
Period@duration
Pn
MaxAge
Wall clock time
AST
PeriodStart

Figure 5. The timeline for dynamic MPD
In this case, the media time is anchored to the wall clock time using the AST and the P0 PeriodStart time. Therefore, any Period’s start time can be mapped to the wall clock time.
Similarly, the cache clock can work the wall clock time. As an example, if the maxAge of a resolved P1 element is set to that Period’s duration, the resolution would be expired at a certain moment in the wall clock time (P2 start time).
[bookmark: _Toc148715930]Cache model for implicit signaling proposed by other proposals
“When a resolution event occurs, the internal cache is updated, and the appropriate replacement is executed. This cache captures resolution results until either the presentation ends or the element containing the resolution identifier falls completely out of the availability window.”

The following figure demonstrates the cache model for the above implicit signaling:
time
P0
P1 (remote element)
PeriodStart
timeShiftbuffer
Period@duration
MaxAge

Figure 6. The cache model for implicit signaling

"When de-referencing a period xlink with xlink:actuate value not equal to "onLoad" and the parent MPD @type attribute is set to dynamic, the de-referencing must be done when the period is about to become active and must not be re-evaluated during subsequent MPD updates happening while that period is active.”
In this case, MaxAge = Period@duration.
[bookmark: _Toc148715931]Difficulties with implicit cache signaling
In the case of implicit cache signaling, the max-age of an item in the cache, or commands such as must-revalidate must be derived based on the state and timing of the client with the respect to an MPD. While it is possible to derive such rules for each specific case, developing it per case is difficult and not future proof. Explicit cache signaling is simple and clear for a client. It knows what exactly to do with each item in the cache and therefore its behavior can be assured to the service provider. Also, a service provider can use the cache-signaling to address its new use-cases, which might not be the same as the default one.
[bookmark: _Toc148715932]Why signaling in the MPD and not in HTTP headers?
It is much easier to add the cache-control rules to each remote element of MPD, rather than to keep the information outside of the MPD and then provide with the resolution of the link. Furthermore, the entity resolving the link resolution might be different than the one providing the MPD. Therefore, the two servers may not have the means of sharing these caching information.
[bookmark: _Toc148715933]Proposal
Any hyperlinked element in MPD that may get resolved multiple times needs a state. Therefore, we propose in any solution we adopt, we include a caching model that has clear signaling on the resolved item in the cache. We propose an explicit model so that all clients have the same behavior with any resolved hyperlink.
 The element may have a set of attribute similar to the HTTP cache:
<Element href=”http://example.com/blahblah” actuate= “onRequest” other(s) >
Therefore, a following semantics is proposed to be added to ISO/IEC 23009-1:
[bookmark: _Ref14697236]Table 1 — Additional attributes for MPD element with remote link capability
	Element or Attribute Name
	Use
	Description

	(Element name)
	
	

	@href
	O
	specifies a reference to a remote element entity that is either empty or contains one or multiple top-level elements of type (Element name)

	@actuate
	OD
default:
onRequest
	specifies the processing instructions, which can be either "onLoad" or "onRequest".
This attribute shall not be present if the @href attribute is not present.

	@mustRevalidate
	O
	If ‘true’, any stored resolution is not valid and the link shall be resolved again.

	@nostore
	O
	If ‘true’, the resolution of the link is expected not to be stored in any cache for future use.

	@maxAge
	O
	duration for which the resolution stays valid:
If the value is a <number>, the resolved link expires after <number> seconds.
If the value is ‘forever’, the resolved link never expires.
If the value is ‘current’, the resolved link expires as soon as any content is accessed from any period but the current one that is being played.
If the value ‘Insidetimeshift’, the resolved link expires the current period is outside of the timeShiftBuffer.

For MPD@type=’static’, the reference clock for this value is the DASH player’s media timeline clock.
For MPD@type=’dynamic, the reference clock for this value is the DASH player’s wall clock.

	@expires
	O
	The time when the resolved link expires.

For MPD@type=’static’, the reference clock for this value is the DASH player’s media timeline clock.
For MPD@type=’dynamic, the reference clock for this value is the DASH player’s wall clock.

	@extend
	O
	duration for which the resolution validity is extended:
If the value is a <number>, the resolved link is extended by <number> seconds.
If the value is ‘forever’, the resolved link never expires.
If the value is ‘current’, the resolved link expires as soon as any content is accessed from any period other than the current one that is being played.
If string = ‘Insidetimeshift’, the resolved link expires the current period is outside of the timeshift buffer.

For MPD@type=’static’, the reference clock for this value is the DASH player’s media timeline clock.
For MPD@type=’dynamic, the reference clock for this value is the DASH player’s wall clock.

[bookmark: _Toc50562043][bookmark: _Toc50562057][bookmark: _Toc50562058][bookmark: _Toc50562059][bookmark: _Toc50562060][bookmark: _Toc50562061][bookmark: _Toc50562062][bookmark: _Toc50562063][bookmark: _Toc50562064][bookmark: _Toc50562065][bookmark: _Toc50562066][bookmark: _Toc50562067][bookmark: _Toc50562068][bookmark: _Toc50562069][bookmark: _Toc50562070][bookmark: _Toc50562071][bookmark: _Toc50562072][bookmark: _Toc50562073][bookmark: _Toc50562074][bookmark: _Toc50562075][bookmark: _Toc50562076][bookmark: _Toc50562077][bookmark: _Toc50562078][bookmark: _Toc50562079][bookmark: _Toc50562080][bookmark: _Toc50562081][bookmark: _Toc50562082][bookmark: _Toc50562083][bookmark: _Toc50562084][bookmark: _Toc50562085][bookmark: _Toc50562086][bookmark: _Toc50562087][bookmark: _Toc50562088][bookmark: _Toc50562089][bookmark: _Toc50562090][bookmark: _Toc50562091][bookmark: _Toc50562092][bookmark: _Toc50562093][bookmark: _Toc50562094][bookmark: _Toc50562095][bookmark: _Toc50562096][bookmark: _Toc50562097][bookmark: _Toc50562098][bookmark: _Toc50562109][bookmark: _Toc50562118][bookmark: _Toc50562132][bookmark: _Toc50562133][bookmark: _Toc50562136][bookmark: _Toc50562139][bookmark: _Toc50562140][bookmark: _Toc50562141][bookmark: _Toc50562142][bookmark: _Toc50562151][bookmark: _Toc50562152][bookmark: _Toc50562153][bookmark: _Toc50562154][bookmark: _Toc50562155][bookmark: _Toc50562156][bookmark: _Toc50562157][bookmark: _Toc50562158][bookmark: _Toc50562159][bookmark: _Toc50562160][bookmark: _Toc50562161][bookmark: _Toc50562162][bookmark: _Toc50562163][bookmark: _Toc50562164][bookmark: _Toc50562165][bookmark: _Toc50562166][bookmark: _Toc50562167][bookmark: _Toc50562168][bookmark: _Toc50562169][bookmark: _Toc50562170][bookmark: _Toc50562171][bookmark: _Toc50562172][bookmark: _Toc50562173][bookmark: _Toc50562174][bookmark: _Toc50562175][bookmark: _Toc50562176][bookmark: _Toc50562177][bookmark: _Toc50562178][bookmark: _Toc50562179][bookmark: _Toc50562180][bookmark: _Toc50562181][bookmark: _Toc50562182][bookmark: _Toc50562183][bookmark: _Toc50562184][bookmark: _Toc50562185][bookmark: _Toc50562186][bookmark: _Toc50562187][bookmark: _Toc50562188][bookmark: _Toc50562189][bookmark: _Toc50562190][bookmark: _Toc50562191][bookmark: _Toc50562192][bookmark: _Toc50562193][bookmark: _Toc50562194][bookmark: _Toc50562195][bookmark: _Toc44667732]
[bookmark: _Toc148715934]Haptic Support in DASH
[bookmark: _Toc148715935]Proposal 1: Adding haptics functionality (m54495- updated at MPEG#132)
[bookmark: _Toc148715936]Purpose
This section contains proposed changes to the ISO/IEC 23009-1 (MPEG-DASH Part 1) standard to enable playback of haptics in streaming media content. Haptics has been proposed as a new first-order media type in the ISOBMFF standard. That proposal has moved to DAM at MPEG132.
[bookmark: _Toc44667733][bookmark: _Toc148715937]References
· MPEG-DASH Part 1 Standard (ISO/IEC 23009-1: MPD and Segment Formats)
· https://www.iso.org/standard/79329.html
· Hereby referred to as MPEG-DASH
· MPEG4 Part-12 Standard (ISO/IEC 14496-12 ISO Base Media File Format)
· https://www.iso.org/standard/71851.html
· Hereby referred to as ISOBMFF
· IETF RFC 6838:2013, Media Type Specifications and Registration Procedures
· https://tools.ietf.org/html/rfc6838
· Hereby referred to as RFC6838
· IETF Haptics Standards Track RFC Internet Draft
· https://datatracker.ietf.org/doc/draft-muthusamy-dispatch-haptics/
· Hereby referred to as IETF Haptics ID
[bookmark: _Toc44667734][bookmark: _Toc148715938]Haptics in MPEG-DASH

Haptics provide an additional layer of entertainment and sensory immersion to the user. Therefore, the user experience and enjoyment of streaming media content such as ATSC 3.0 broadcasts, streaming games, and mobile advertisements can be significantly enhanced by the judicious addition of haptics to the audio/video streams. Since haptics will be part of the ISOBMFF standard, haptic tracks will be part of the .mp4 Segments that are included in the MPEG-DASH Representations. Therefore, we do not envision any changes to the three ISOBMFF profiles (Main, On-Demand, Live) that are currently included in MPEG-DASH.
However, we do propose the following necessary changes to MPEG-DASH to support haptics.
[bookmark: _Toc44667735]New Media Component Content Type - ‘haptics’
A mechanism to signal haptics as a new media component type (like audio, video, subtitle, etc.) is needed. Currently, text, image, audio, video, application, and font are the recognized content types in MPEG-DASH, as per RFC6838. We have proposed adding ‘haptics’ as a new media content component type to RFC6838. An IETF Haptics ID containing that proposal is currently under review by the IETF Dispatch WG.
[bookmark: _Toc44667736]Haptic Channel Configuration
Contribution m55200 (Haptics CICP) proposed a table that contains a reference set of haptic channel configuration schema similar to the audio channel configuration schema provided in Table 3 of ISO/IEC 23091-3. We envision this table to be included in (a new) Part 5 of the ISO/IEC 23091 (Haptics CICP) standard that defines various code points and fields that establish properties of a haptics stream that are independent of the compression and bit rate.

The @schemeIdUri attribute of an EssentialProperty descriptor can be used to identify the haptic channel configuration scheme employed. Multiple EssentialProperty elements may be present indicating that the DASH Representation supports multiple haptic channel configurations. For example, it may describe a Representation that includes supporting both single actuator vibration devices (like mobile phones) as well as three-actuator vibration devices (like a haptic seat).

NOTE: If the scheme or the value for this descriptor is not recognized, the DASH Client is expected to ignore the descriptor.
[bookmark: _Toc44667737]
Patent Rights Declaration
Immersion Corporation may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Informative Annex A: Mobile Phone to Home Use Case
	Mobile Phone to Home

	A user is watching a streaming video on their phone using phone speakers/headphones and feeling haptics using the phone’s actuator. The user gets home, and the phone automatically connects to the home devices via Bluetooth. As a result:
1. Audio is now routed to the in-home entertainment speakers
2. Haptics is transferred to the in-seat haptic display (if available)
3. Video becomes available on the home TV
In case of multiple entertainment setups in the home (family room system, bedroom system, media room system) the player provides the option to select the system of choice, or automatically detects it based on Bluetooth proximity sensing.

	Overlap with other use cases

	

	

	Required features

	An EssentialProperty descriptor in the DASH MPD provides the available channel configurations in the current AdaptationSet. This attribute shall enable the player engine to select an alternate Representation at the next segment boundary after the user has connected to his/her home entertainment system.

For example, while viewing the media on the mobile phone, the EssentialProperty descriptor will have a @value = 1 (notation: 1.0.0) or 2 (1.1.0), as per Table 1 in m55200. Once the user’s phone connects to their home theater system, the player will look for a Representation with a @value = 5 (x.x.0; actuator array) for the in-seat haptic display. If the AdaptationSet does not have a Representation with a @value = 5 choice, the player can transcode the single channel mobile haptic signal onto the actuator array in the haptic seat at home.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667739]
Informative Annex B: Mobile Phone to Car Use Case
	Mobile Phone to Car

	A user is watching a streaming video on their phone using phone speakers/headphones and feeling haptics using the phone’s actuator. The user gets into their car and connects to the car systems via Bluetooth. As a result:
1. Audio is routed to the vehicle speaker systems
2. Haptics is transferred to the in-seat haptic display
3. Video becomes available on the car’s video display (when available and subject to safety regulations, e.g., car must be fully autonomous)

	Overlap with other use cases

	

	

	Required features

	An EssentialProperty descriptor in the DASH MPD provides the available channel configurations in the current AdaptationSet. This descriptor shall enable the player engine to select an alternate Representation at the next period boundary after the user has connected to the vehicle. While viewing the media on the mobile phone, the EssentialProperty descriptor will have a @value = 1 (notation: 1.0.0) or 2 (1.1.0), as per Table 1 in m55200. Once the user’s phone connects to their vehicle, the player will look for a Representation with a @value = 5 (x.x.0; actuator array) for the vehicle in-seat display.

If the AdaptationSet has a Representation that includes an attribute for an actuator array, this may be selected to render on the user’s seat in the vehicle. If the AdaptationSet does not have this attribute choice, the player may choose to transcode the single channel mobile haptic signal onto the actuator array in the vehicle or to render nothing.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667740]
Informative Annex C: Haptics Headphones Use Case
	Haptic Headphones

	A user is watching a streaming video on their phone using phone speakers and feeling haptics using the phone’s actuator. They don a pair of Bluetooth connected headphones that include haptic feedback functionality for each ear. The two haptic actuators (left and right) become available to the DASH player during playback as independent haptic output devices.

	Overlap with other use cases

	

	

	Required features

	The basic media encoding can have alternate haptic tracks in the same stream as the audio/video and rely on the player to parse and allocate these alternate tracks depending on the type and number of available haptic devices.

While viewing the media on the mobile phone, the EssentialProperty descriptor will have a @value = 1 (notation: 1.0.0) or 2 (1.1.0), as per Table 1 in m55200. Once the user’s phone connects to their Bluetooth headphones, the player will look for a Representation with a @value = 4 (0.2.0; Dual HD vibration in left/right configuration) for the haptic headphones.

The DASH MPD may also describe these distinct choices of haptic tracks as different Representations for a particular media stream that a user can select or that the player can select at the next segment boundary given the change in endpoint device configuration.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667741]
Informative Annex D: Companion Device (ATSC 3.0) Use Case
	ATSC 3.0 “Companion Device” Viewing

	A user is watching ATSC 3.0 broadcast content on their home TV (“primary device” in ATSC 3.0 parlance). The user decides to watch the same content on his/her mobile phone or tablet (“companion device” in ATSC 3.0 parlance) as well, mainly because of the possibility of supplemental content on the companion device. As a result:
1. Audio is routed to the TV or home entertainment speakers (as before) as well as the companion device speakers
2. Video is on both the TV and the companion device
3. Haptics track is on the companion device and playing in sync with the media on the companion device. It could also be on the in-seat haptic display, if available.
4. The user is also able to configure the haptics experience based on the content type (e.g., live sports or action video content) as well as his/her personal preferences.

	Overlap with other use cases

	

	

	Required features

	An EssentialProperty descriptor in the DASH MPD provides the available channel configurations in the current AdaptationSet. This descriptor element will enable the player engine to select an alternate Representation at the next segment boundary after the user has connected to the companion device. For mobile companion devices, the EssentialProperty descriptor will have a @value = 1 (notation: 1.0.0) or 2 (1.1.0), as per Table 1 in m55200.

If the AdaptationSet has a Representation that includes an attribute for an actuator array (@value = 5), this may be selected to render on the user’s in-seat haptic display. If the AdaptationSet does not have this attribute choice, the player can transcode the single channel mobile haptic signal onto the actuator array in the user’s seat. If a haptic seat is not available, the single channel mobile haptic signal is rendered as-is to the user’s companion device.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667742][bookmark: _Toc148715939]Informative Annex E: Live streaming of Games Use Case
	Live Streaming of eSports and Interactive Cloud Gaming

	Streaming
A user is watching a live broadcast of an eSports event on their mobile device. The players are using single-channel haptic devices and this stream of 2-SD actuator haptic data is available. The player on the user’s mobile device transcodes the 2-channel haptic data into a single channel and renders it locally on the user’s mobile.
Interactive Cloud Gaming
A user is playing a cloud-based game using a local haptic controller. The downstream media stream is generated in real-time by the server and is bandwidth-optimized in real-time. The game tries to preserve haptics at a higher fidelity than video and audio streams. The user is using a DualShock style controller with two SD haptic actuators or a DualShock controller with two HD actuators and two kinesthetic triggers (e.g., Sony PS5).

	Overlap with other use cases

	

	

	Required features

	The DASH MPD may be dynamic in this case: @type="dynamic" to enable changes in controllers during the game.

The InitializationSet and subsequent AdaptationSet elements should specify either @value = 3 or 6 for the EssentialProperty descriptor (i.e., 2.2.0 or 2.2.2; dual vibration motors or dual vibration and trigger, respectively, using the proposed notation in Table 1 in m55200).

They player may additionally have algorithms to enable basic transcoding such as mixing of haptic Representation data from multi-channel to single-channel output devices if appropriate (e.g., watching dual vibration content on a single vibration endpoint such as a mobile phone).

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667743][bookmark: _Toc148715940]Informative Annex F: Haptics from Different Perspectives Use Case
	Haptics from Different Perspectives and Viewpoints

	A user is watching a video stream on their phone augmented with haptics felt through the mobile device, or on a screen at home with the haptics displayed through an array of actuators embedded in wearable devices and furniture. The user has the option to exclusively experience a specific haptic track related to a specific feature of the content. The features include: specific content events (e.g., bumps, gunshots, kicks received etc.), specific characters (e.g., the fighter in the red corner in a MMA stream), specific objects (e.g., a car’s exhaust rumbling in a NASCAR race) and specific locations in the scene (e.g., touchdown area on a football field). The DASH player would then route the chosen track to the haptic playback system.
The user can also choose to simultaneously experience multiple haptic tracks, each one related to a specific feature of the content, by selecting these features. The DASH player would then combine and mix the different tracks related to the different selected features, into a single track to be routed to the haptic playback system.
Moreover, the user can associate specific tracks/features with one or more specific actuators, in the case of an array of actuators. The DASH player would then combine and mix the tracks dedicated to each actuator separately and re-route the resulting tracks to the specific actuators separately.

	Overlap with other use cases

	

	

	Required features

	The basic media encoding can have multiple haptic tracks for the same audio/video stream, related each to a specific feature of the content (i.e. event, character, location). The user may select which features to feel and the player would then mix the selected features tracks and display the mixed track. The stream also contains a default pre-mixed haptic track encompassing all features.

The DASH MPD may contain distinct available choices of haptic Representations in the current AdaptationSet. The @schemeIdUri attribute of an EssentialProperty descriptor will specify the different haptic channel configurations available. This will enable the player engine to select an alternate Representation at the next period boundary after the user modifies his haptic features and playback devices scheme, forcing the player potentially to partially mix some haptic tracks (i.e., mix a subset of) and to re-route them to alternate playback actuators.

For example, while viewing the media on the mobile phone, the EssentialProperty descriptor will have a @value = 1 or 2 (mobile phone) in the case of content being played back similarly across all available actuators. Once the user decides to play different tracks on the two available actuators, the player will choose a Representation with a @value = 3 for the EssentialProperty descriptor. While viewing the media on a screen at home, a Representation with @value = 11 (denoting multiple vibration and kinesthetic playback devices) will be selected.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667744][bookmark: _Toc148715941]Informative Annex G: Haptics on Connected Devices Use Case
	Personal Haptic Device Connected to a Nearby AV(H) Device

	A user is carrying a personal haptic device (e.g., mobile phone, wearable watch or band, haptic glasses, haptic vest, etc.) then she walks into a space area (e.g. bar, restaurant, living room), where a multimedia device is displaying audio visual information, possible haptic information also, although the user might not be capable of knowing as she is not in contact with the device. When the user walks into the new space, the haptic personal device might connect to the local Wi-Fi of the space or Bluetooth corresponding to the AV(H) device. As a result:
1. The haptic track is transmitted to the personal haptic device, either directly from the broadcasting station or from the local AV(H) device.
2. The haptic track can contain information about the entire event (e.g., sports) or simple alerts to the user when important events happen.
The AV tracks could also be routed to the personal haptic device if the user requests that, and if the device can play back such tracks.
The different personal haptic devices can play a haptic track tailored to the features of each specific device. Alternatively, each device could play alerts or an entire track for the AV content depending on configuration of the device or the event, or user preferences.

	Overlap with other use cases

	

	

	Required features

	The basic media encoding may have multiple haptic tracks for the same audio/video stream, related each to a specific personal haptic device.

The user can select which features to feel in each specific device.

The DASH MPD may describe these distinct choices of haptic tracks as different Representations for a particular media stream that a user can select or that the player can select at the next segment boundary given the change in endpoint device configuration.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667745][bookmark: _Toc148715942]Informative Annex H: Haptics-Enabled Ads Use Case
	Haptic Ads

	A user is watching a live streaming broadcast on their phone and the broadcaster inserts a haptic ad mid-roll dynamically based on the broadcast content.

	Overlap with other use cases

	

	

	Required features

	The DASH MPD should be dynamic in this case: @type="dynamic" to enable mid-roll advertising.

The server pushes an update to the MPD sufficiently in advance of the end of the current period that contains a new collection of AdaptationSet elements for the static ad content. Within these AdaptationSet elements are one or more Representations that have EssentialProperty descriptors representing available haptic configurations (typically @value = 0 or 1 for generic ad content; see Table 1 in m55200). Since the user is watching the live broadcast on their mobile phone, the player may select the segment that contains a single SD or HD vibration track for the ad content and then render this along with the ad video/audio content.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc44667746][bookmark: _Toc148715943]Informative Annex I: Tactile Essence-Based Haptic Track Use Case
	Tactile Essence

	A live event is utilizing sensors that capture tactile related data consistent with SMPTE st2100-1-2017 (Coding of Tactile Essence). This sensor data is a set of 3-axis linear accelerometers for individual players in a football game. The broadcaster would like to make available user-selectable tactile experiences for each available player’s tactile essence.
The server transforms the tactile essence for each player in real-time to generate a set of 1-dimensional tactile signals (one signal per player). These signals are exposed to the client through dynamic updates to the MPD.

	Overlap with other use cases

	Informative Annex F: Haptics from Different Perspectives Use Case

	

	Required features

	The server shall be able to transform multi-axis tactile essence signals into 1-dimensional tactile tracks, encoded as ISOBMFF (Live profile) streams, in real-time and with appropriate synchronization to related audio and video streams.

	Identified Gaps and Optimization Potentials

	

	Potential Requirements and Specifications

	The MPD shall include one or more EssentialProperty descriptor elements whose @schemeIdUri attribute identifies the haptic channel configuration scheme employed . Table 1 in m55200 contains the labels and values for different haptic channel configurations.

[bookmark: _Toc43663666][bookmark: _Toc43663914][bookmark: _Toc148715944]Proposal 1: Haptics support in DASH requirements (m65131)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/404

Consideration
Haptics metadata

The haptic data hierarchical structure contains the following levels as described in m64299[4]
	Current data hierarchy
	Description

	1. MPEG_haptics
	1. Experience, profile, level

	1. Avatars
	1. List of avatars defining the body in the experience:
1. Id, lod, type

	1. Perceptions
	1. List of perceptions:
3. Id, modality, description

	1. Referenced devices
	1. List of devices:
5. Id, body part mask, technical parameters.

	1. Channels
	1. Typically for specific body location:
7. Id, reference device, body part mask, other parameters

	1. Bands
	1. Different bands

	9. effects
	9. effects

The above haptic meta data is contained in the sample entry as described in 2nd CD[1]
	stsd
	
	
	
	
	
	*
	ISOBMFF
	sample descriptions (codec types, initialization, etc.)

	
	-
	
	
	
	
	
	5.2.1
	haptic sample entry

	
	
	mh1C
	
	
	
	
	5.2.2
	MIHS configuration box

	
	
	hexd
	
	
	
	
	5.2.3
	haptic experience description box

	
	
	
	hexh
	
	
	
	5.2.3
	haptic experience header box

	
	
	
	havd
	
	
	
	5.2.4
	haptic avatar description box

	
	
	
	hprd
	
	
	
	5.2.5
	haptic perception description box

	
	
	
	
	hprh
	
	
	5.2.5
	haptic perception header box

	
	
	
	
	hrdd
	
	
	5.2.6
	Haptic reference device description box

	
	
	
	
	hchd
	
	
	5.2.7
	haptic channel description box

	
	
	
	
	
	hchh
	
	5.2.7
	haptic channel header box

	
	
	
	
	
	hbnd
	
	5.2.8
	haptic band description box

[bookmark: _Hlk147989361]Haptics stream selection use case
In the 2nd CD, there is useful informative annex on Player handling of MIHS tracks
 as follows.

Media players that support MIHS tracks should render as much of the haptic content in the tracks as possible. Depending on the capabilities of the available haptic devices, a player may map or transform haptic content, for example:
—	from one body part (specified in a channel) to another;
—	from one device type or set of device characteristics (specified in a track) to another;
—	from one haptic modality (specified in a perception) to another.
A player may be incapable of performing certain transformations, or may decide that certain mappings are inappropriate, and may render none or some of the MIHS tracks rather than all.

This describes the use case what is expected in the client and what the track selection is for.
At most, all information in sample entry might be required in the client for the above use case. This information is for haptics application layer and is not for DASH layer.
Requirements for adaptation/track selection signalling
Based on the Haptics stream selection use case, the following are the requirements for MPD signalling.
1. use sample entry.
2. minimum information for track selection in DASH MPD to reduce a duplicate copy of sample entry.
3. harmonize with multiple track definitions in carriage of haptics in the ISO base media file format.
4. single initialization segment to reduce HTTP transaction.
5. signal the entry point to this initialization segment
6. signal high level metadata in MPD for each haptics track e.g. only the type of metadata
Proposal 3: MPD signaling of haptic representations for selection (m64299, m64834)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/377
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/400

[bookmark: _Toc148715945]Introduction
This contribution proposes the signaling of the haptic information at MPD for the selection process.
[bookmark: _Toc148715946]Haptic data structure
The haptic data hierarchical structure contains the following levels:
	Current data hierarchy
	Description

	· MPEG_haptics
	· Experience, profile, level

	· Avatars
	· List of avatars defining the body in the experience:
· Id, lod, type

	· Perceptions
	· List of perceptions:
· Id, modality, description

	· Referenced devices
	· List of devices:
· Id, body part mask, technical parameters.

	· Channels
	· Typically for specific body location:
· Id, reference device, body part mask, other parameters

	· Bands
	· Different bands

	· effects
	· effects

Signaling at HJIF, MIHS, and ISOBMFF
The following table shows the comparison of the above methods.
Table 2: Comparison of metadata in HJIF, MIHS and ISOBMFF
	HJIF
	MIHS
	ISOBMFF Config
	ISOBMFF Box

	1) Experience
a) Header
b) Avatars []
c) Perceptions [
i) Header
ii) Avatar_id
iii) Effect_library[]
iv) Ref_devices[]
v) Channels [
(1) Headers
(2) Ref_device_id
(3) Bands[
]
]
]
]
d) Syncs[]
	1) Experience
a) Header
b) Avatar[]
c) Perception count
2) Perception
a) Header
b) Avatar_id
c) Ref_device[]
d) Channel count
3) Channel
a) Perception_id
b) Device_id
c) Band count
4) Band
a) Perception_id
b) Channel_id
c) Effect count
5) Data
a) Perception_id
b) Channel_id
c) Band_id
d) Effects[
i) …
]
6) Effect Library
a) Header
b) Keyframes[]

	· Experience -> MIHS
· Perception[] -> MIHS
· Channel[] ->MIHS
· Band []-> MIHS
· Effect Library []->MIHS

	1) Header box
2) Avatar box []
3) Perception box[
a) Header [
i) Avatar_id
ii) Library count
]
b) Ref_devices[]
c) Channel[
(1) Header[
(a) Device_id
]
(2) band[
]
]

Layering in transport
The following figure indicates the layering concept in transport.
HJIF file
MIHS Stream
ISOBMFF haptic track
ISOBMFF haptic track
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
MPD
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Init
Init
Init v
Init
Init
Init v

Figure 1: Layering of MIHS delivery
As shown in the figure, first the MIHS elementary stream is generated. From the stream, one or more ISOBMFF tracks are generated, and then from the ISOBMFF tracks, for each ISOBMFF, one or more DASH representation is generated and then the DASH manifest is generated.

As can be seen in the figure:
1. Each ISOBMFF track may have the entire experience, only one or more perceptions, only one or more channels, and only one or more bands. There are many ways to group the MIHS streams into one or more tracks.
2. Each ISOBMFF track can be mapped to one or more representations. Each representation shall have one initialization segment that is adequate for initializing the haptics decoder for that representation.

[bookmark: _Hlk147335385]The needed metadata
The MPD must have the following information:
a) The general high-level information of haptics, if it is common in a period or for the entire MPD.
b) Information on adaptation sets, to differentiate them for the haptics application.
c) Information to differentiate representations of an adaptation set for bandwidth adaptation.
d) Optionally, preselection information that combines multiple adaptation sets to create a preselection presentation.
Therefore, the haptic metadata information carried in MPD depends on the granularity of the adaptation sets:
Table 3: Possible haptic information at adaptation set level
	Adaptation set containing
	Information

	Entire experience
	Optionally experience and even more optionally additional perception info

	1 or more perceptions
	Perception info

	1 or more channels
	Perception and Channel info

	1 or more bands
	Perception and Channel and band info

Format to carry information in MPD
The metadata information is stored in the HJIF format and ISOBMFF Experience box in a hierarchical manner, while is stored in the MIHS and ISOBMFF configuration box in a flat manner with cross-references.

In the cases that the entire haptic information can be located in one MPD element, for instance, an adaptation set, it seems the hierarchical manner is more compact. But since there are various ways of grouping the haptic perceptions, channels, or bands in the adaptation sets, a flat manner with references seems more suitable.
So, we propose two solutions below.

Flat XML elements
In this solution, similar to MIHS and ISOBMFF Config, the information is stored in the flat elements, referencing each other for associations. Then the shared elements are maintain at a top level, MPD or Period, depending on the scope of metadata, and the adaptation set specific metadata is signalled at each adaptation set level. With a name extension, the haptic element can be present at MPD, Period, and adaptation set elements. The elements the haptic element may contain, in each level depends on the haptics tracks in the adaptation sets. Alternatively, a haptic descriptor (using scheme ID URI) can be defined to include the elements in MPD, Period, and adaptation set elements.

The general haptic element is shown in Table 4.
[bookmark: _Ref14699431]Table 4 — Haptics Semantics
	Element or Attribute Name
	Use
	Description

	
	
	Haptics
	
	Haptic description.

	
	
	
	@xlink:href
	O
	specifies a reference to a remote element entity that shall contain exactly one element of type Haptics.

	
	
	
	@xlink:actuate
	OD
default:
'onRequest'
	specifies the processing instructions, which can be either "onLoad" or "onRequest".

	
	
	
	@id
	O
	specifies a unique identifier for this Haptics in the scope of the Period. The attribute shall be a unique unsigned integer value in the scope of the containing Period.
The attribute shall not be present in a remote element entity.
If not present, no identifier for the Adaptation Set is specified.

	
	
	
	Experience
	0..1
	Specifies the haptic experience metadata.

	
	
	
	Perception
	0..N
	

	
	
	
	Channel
	0..N
	

	
	
	
	Band
	0..N
	

	
	
	
	EffectLibrary
	0..N
	

	Key
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory, F=fixed
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
The conditions only hold without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>.
Elements are bold; attributes are non-bold and preceded with an @; list of elements and attributes is in italics bold referring to those taken from the Base type that has been extended by this type.

The following table shows how this element is used in various delivery scenarios.

Table 5: Use of haptic element in various scenarios
	Adaptation set containing
	Haptic element at MPD/Period
	Haptic element at adaptation set

	Entire experience
	none
	Optionally experience element and more optionally others

	1 or more perceptions
	Experience
	Perception elements, and optionally channel and bands.

	1 or more channels
	Experience and perceptions
	Channels and optionally bands

	1 or more bands
	Experience, perceptions, channels
	Bands

The various haptic element semantics are documented in the annex.

Alternative HJIF based solution
As previously proposed, the alternative solution is to have an HJIF file containing all the metadata.

Signaling through external HJIF file
The HJIF file has the complete metadata in a nested format. We can create a subset of HJIF file that only includes the following properties:
:
	Partial HJIF configuration file

	· MPEG_haptics, which the description and versioning indicating this is a partial HJIF file for the purpose of configuration

	· Avatars

	· Perceptions

	· Effect library

	· Referenced devices

	· Channels

	· Bands

Since each property in the above file is identified with a unique id, each adaptation set only needs to refer to the id of the property that has info about the adaptation set. Therefore:
Table 6- Referencing an external HJIF file
	Adaptation set containing
	Referencing at MPD/Period
	Referencing the HJIF property

	Entire experience
	None
	@hjifUrl

	1 or more perceptions
	@hjifUrl
	@perceptionId

	1 or more channels
	@hjifUrl
	@perceptionId
@channelId

	1 or more bands
	@hjifUrl
	@perceptionId
@channelId
@bandId

Signaling through internal HJIF object
This approach is similar to the external HJIF file, but the HJIF object is embedded in the MPD:

Table 7- Referencing an embedded HJIF object
	Adaptation set containing
	Referencing at MPD/Period
	Referencing the HJIF property

	Entire experience
	None
	@hapticsConfig

	1 or more perceptions
	@hapticsConfig
	@perceptionId

	1 or more channels
	@hapticsConfig
	@perceptionId
@channelId

	1 or more bands
	@hapticsConfig
	@perceptionId
@channelId
@bandId

In this case, @hapticsConfig contains the base64-encoded of the HJIF object.

Partial HJIF file
The partial HJIF file used for the selection process is a HJIF file that has all hierarchical data structure except the effects:
	Partial HJIF configuration file

	· MPEG_haptics, which the description and versioning indicating this is a partial HJIF file for the purpose of configuration

	· Avatars

	· Perceptions

	· Referenced devices

	· Channels

	· Bands

Note that the content provider can decide what parameters to be included in the HJIF configuration file. It might have only avatar and perception data but not the rest for instance.
Haptics configuration attribute
We define a haptic configuration attribute that can be used at different levels in MPD. The @hapticConfig attribute is from type xs:string and it contains the base64 encoding of the HJIF configuration object.

Haptic-supported DASH client
For the DASH client to expose the haptic information to the Application, a descriptor scheme for MPEG haptics is defined that can be used with the essential property at the MPD level. The existence of such a descriptor means that if the DASH client recognizes the descriptor, it has adequate interfaces to expose the haptic selection information to the Application.
[bookmark: _Toc148715952]Proposal 4: DASH Signalling for Haptics Experiences (m64337)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/383
[bookmark: _Toc148715953]Introduction
The Haptics group in MPEG 3DG (WG07) has been working on a new specification for an MPEG codec for haptics (ISO/IEC 23090-31). The specification has reached DIS stage and the latest draft can be found in output document WG07N00624 [1] from the MPEG#142 meeting. To complement this work, MPEG has also been developing a new specification (ISO/IEC 23090-32) for carriage of haptics data, which has reached CD stage and the latest draft can be found in the output document WG03N00868 [2].
One of the established mandates of the Haptics Coding Ad-hoc group in WG07 for the MPEG#143 meeting is to identify potential needs for haptics support in DASH. During the ad-hoc calls, initial draft contributions in this direction were discussed by the group and a contribution [3] based on these discussions is submitted to this meeting. While the contribution is a good starting point to support the delivery of haptics media using MPEG-DASH. It still doesn't address an important use case for delivering media over the network, which is being able to selectively stream certain parts of the media based on user interaction and/or network conditions.
While the latest draft of ISO/IEC 23090-32 supports distributing parts of the haptics experience across multiple tracks in the file. There is only a single defined track type and these tracks are handled independently. Moreover, repeating the descriptive information pertaining to the haptics experience in each track results in significant redundancies. To this end, in m64338 [4] we have proposed the use a hierarchical structure in which two types of haptics tracks are defined with ways to associate those tracks together as a single experience. The proposed design not only eliminates a lot of redundancies in the tracks, but also enables flexible selection of parts of the haptics experience (e.g., certain channels or bands for some perceptions in the experience).
In this contribution, we describe how the different tracks belonging to a single haptics experience can be signalled in the DASH MPD file based on a hierarchical multi-track design [4] and define additional DASH descriptors for haptics media that enable a streaming client to identify and select the parts from the haptics experience that are needed based on user interaction or drop some parts of the haptics experience in response to an adaptation decision.

[bookmark: _Toc148715954]Proposal
Adaptation Sets for Haptics Media
To signal the presence of a multi-track haptics media in the DASH media presentation descriptor (MPD), each track of the media, including the main track, may be represented by an AdaptationSet element in the MPD. The main (haptics experience) track's adaptation set is referred to as the Haptics Experience Adaptation Set and the adaptation sets for the associated haptics tracks are referred to as a Haptics Adaptation Sets.
The Haptics Experience Adaptation Set has the @codecs attribute set to 'mih1', while the @codecs attribute is set to 'mihb' for each of the Haptics Adaptation Sets (or the Representations of these Adaptation Sets if the @codecs attribute is not present in the AdaptationSet element. The @mimeType for all Adaptation Sets of a haptics experience is set to "haptic/mp4", which is the registered MIME type for haptics media.
The Haptics Experience Adaptation Set contains a single Initialization Segment at the adaptation set level. The Initialization Segment shall contain all MIHS units (packets) needed to initialize the haptics decoder. Media Segments for the Representations of a Haptics Adaptation Set shall contain one or more track fragments of the corresponding haptic track at the file format level. By concatenating the Initialization Segment with Media Segments from one or more Haptics Adaptation Sets, the resulting file contains a bitstream that is decodable by the haptics decoder.
Representations of the Haptics Adaptation Sets of a Haptics Experience Preselection shall have a @dependencyId attribute set to the id of a Representation in the corresponding Haptics Experience Adaptation Set.
When a Haptics Adaptation Set contains more than one Representation, the @bitstreamSwitching attribute shall be present in the AdaptationSet element of the Haptics Adaptation Set and set to 'true' to indicate to the player that seamless switching between the Representations in the Adaptation Set is supported. Moreover, the duration of the Media Segments in each Representation must be identical.
Haptics Experience Preselection
A Haptics Experience Preselection may either be signalled in MPD using a PreSelection element within the Period element or a Preselection descriptor at the Adaptation Set level. A Haptics Experience PreSelection element is signalled , as defined in ISO/IEC 23009-1, with @preselectionComponents attribute whose assigned value is an id list including the id of the Haptics Experience Adaptation Set followed by the ids of the associated Haptics Adaptation Sets. The @codecs attribute for the Preselection is set to 'mih1', indicating that the media represented by the Preselection is coded haptics media.
Figure 1 illustrates an example of a DASH configuration for grouping Adaptation Sets belonging to the same haptics experience within an MPEG-DASH MPD file.
[image:]
[bookmark: _Ref140008584]Figure 1 – Grouping haptics Adaptation Sets in an MPD using a Haptics Experience Preselection

Haptics experience descriptor
To signal the different perceptions in a haptics experience, a HapticsExperience descriptor is defined for the Haptics Experience Adaptation Set. This descriptor is an EssentialProperty descriptor with the @schemeIdUri set to a unique URI (e.g., "urn:mpeg:mpegI:haptics:2023:perception").
The @value of the HapticsExperience descriptor shall not be present. The HapticsExperience descriptor includes elements and attributes that describe the haptics experience and its perceptions. This includes at least one or more hapticsPerception elements, each including an @id attribute set to the unique identifier of the perception in the haptics bitstream and a @type attribute to signal its modality.

Table 1 – Elements and attributes of the HapticsExperience descriptor
	Elements and attributes
	Use
	Data type
	Description

	hapticsPerception
	0..N
	haptics:HapticsPerceptionType
	An element whose attributes specify information for one of the haptics perceptions present in the haptics experience.

	hapticsPerception@id
	M
	xs:string
	Indicates the identifier for the perception. The value shall match the perception_id field signalled for the perception in the ISOBMFF container.

	hapticsPerception@type
	O
	xs:string
	Indicates the identifier for the perception to which the channel belongs.

	Key:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

The data types for various elements and attributes are defined in an XML schema as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
	targetNamespace="urn:mpeg:mpegI:haptics:2023"
	xmlns:haptics="urn:mpeg:mpegI:haptics:2023"
	elementFormDefault="qualified">
	<xs:element name="hapticsPerception" type="haptics:HapticsPerceptionType"/>

	<xs:complexType name="HapticsPerceptionType">
		<xs:attribute name="id" type="xs:string" use="required" />
		<xs:attribute name="type" type="xs:string" use="optional" />
	</xs:complexType>
</xs:schema>

[bookmark: _Ref79970721][bookmark: _Toc80301795]Haptics channel descriptor
To identify the haptics channels present in a Haptics Adaptation Set, a Haptics descriptor is used. A Haptics descriptor is an EssentialProperty descriptor with the @schemeIdUri set to a unique URI (e.g., "urn:mpeg:mpegI:haptics:2023:channel").
At the Adaptation Set level, one Haptics descriptor is signalled for each haptics channel that is present in the Representations of the Haptics Adaptation Set.
The @value of the Haptics descriptor shall not be present. The Haptics descriptor includes elements and attributes as specified in Table 2.

[bookmark: _Ref140002911]Table 2 - Elements and attributes of the Haptics descriptor
	Elements and attributes
	Use
	Data type
	Description

	hapticsChannel
	0..N
	haptics:HapticsChannelType
	An element whose attributes specify information for one of the haptics channels present in the Representation(s) of the Adaptation Set.

	hapticsChannel@id
	M
	xs:string
	Indicates the identifier for the channel. The value shall match the channel_id field signalled for the channel in the ISOBMFF container.

	hapticsChannel@perceptionId
	M
	xs:string
	Indicates the identifier for the perception to which the channel belongs.

	hapticsChannel@band_ids
	O
	xs:UIntVectorType
	Specifies bands related to the haptics data contained in the Adaptation Set for the haptics channel with an identifier equal to the value of the @id attribute by providing a white-space separated list of the band ID values.
If not present, this indicates that the Adaptation Set contains all the bands associated with the channel with an identifier equal to the value of @id.

	Key:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

The data types for various elements and attributes are defined in an XML schema as shown below.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
	targetNamespace="urn:mpeg:mpegI:haptics:2023"
	xmlns:haptics="urn:mpeg:mpegI:haptics:2023"
	elementFormDefault="qualified">
	<xs:element name="hapticsChannel" type="haptics:HapticsChannelType"/>

	<xs:complexType name="HapticsChannelType">
		<xs:attribute name="id" type="xs:string" use="required" />
		<xs:attribute name="perceptionId" type="xs:string" use="required" />

		<xs:attribute name="band_ids" type="UIntVectorType" use="optional" />
	</xs:complexType>
[bookmark: _Toc48131643]</xs:schema>

[bookmark: _Toc148715955]Recommendations
We recommend adopting the proposed DASH signalling presented in section 3 of this contribution and update the CD of ISO/IEC 23090-32 based on this proposal.

[bookmark: _Toc32500828][bookmark: _Toc32932434][bookmark: _Toc32964105][bookmark: _Toc148715956]References
1. [bookmark: _Ref117119650][bookmark: _Ref1580453][bookmark: _Ref2196341][bookmark: _Ref43380510][bookmark: _Ref99753097]WG07N00624, "Text of ISO/IEC DIS 23090-31 MPEG Haptics Coding Phase 1", MPEG#142, April 2023.
1. [bookmark: _Ref140179192]WG03N00868, "Text of ISO/IEC CD 23090-32 Carriage of Haptics Data", MPEG#142, April 2023.
1. [bookmark: _Ref140361088]m64176, "Haptics Support in DASH", MPEG#143, Geneva, Switzerland, July 2023.
1. [bookmark: _Ref140360681][bookmark: _Ref140179613]m64338, "Improvements to Carriage of Haptics in ISOBMFF", MPEG#143, Geneva, Switzerland, July 2023.

[bookmark: _Toc148715957]Notes from MPEG#143
We need to study the following:
1. What information to expose for different scenarios of haptic perception/channels/bands in representations?
2. How to expose (1) in MPD.
Notes from MPEG#144
1. We agree that we need to convey enough data at MPD to be passed to the application for the selection process.
2. The format and structure of data need to be flexible to convey different haptics metadata.
3. The DASH client doesn't need to know the semantics of that metadata.
4. The exact format and structure of that metadata need to be developed. The two candidate formats are JSON or XML.
5. The element carrying the above structure is a DASH descriptor with a specific schemeIdUri.

[bookmark: _Toc148715958]Failover in multi-origin linear deployments (m54725)
[bookmark: _Toc148715959]Introduction
In many cases multiple origins are used to serve the same content. In particular, in a geo-redundancy case same channel is transcoded by different transcoders and published to different origins. In case one origin fails, the player can seamlessly or near-seamlessly switch to a different origin.
In the naïve implementation, the client will quit on an origin failure and start with a new URL pointing to a different origin. This solution is unacceptable, as it incurs a significant delay due to buffering, tearing down the current DRM session, getting a new URL from the back-end, downloading the MPD and initialization segments, reinitializing the decoder, requesting new DRM license, setting up the new DRM context, etc. The overall effect can be very noticeable, as the player will be down for e.g. 30 seconds. Moreover, an origin failure affecting hundreds of thousands or millions of concurrent sessions will create a “thundering herd” effect on the licensing servers as hundreds of thousands or millions of license requests will come at the same time, taxing the license server infrastructure.
DASH provides two mechanisms to reduce the downtime: Fallback MPD chaining and MPD reset.
Fallback MPD chaining provides the client with an alternative MPD it can use in case of a catastrophic failure such as failure to do normal MPD update. MPD reset tells the client that it has to switch to playback of a new MPD at a given time. In both cases, the player can finish playing its current buffer and switch to the new MPD. While this is an improvement over the naïve implementation, the DRM issue remains.
In case we continue viewing the same channel, there typically is no need to request a new license – if the viewer was authorized to view a channel from one origin, then he/she will be authorized to view it from a different origin. As long as the origins have matching encryption keys (even if `pssh` is different), there is no need to re-request them or do anything to the secure rendering pipeline.
A different issue is preserving user experience. For example, if the MPD offers multiple views of the same content, we want to continue watching the same view we were watching prior to the failover. In case two MPDs have same adaptation set IDs, we can switch to precisely the same view.
These types of continuity need to be somehow signaled to the player which currently cannot tell whether it is switching to a slate with an error message or to a very similar MPD with different segment URLs and difference in segment timing. This type of signaling is proposed below.
[bookmark: _Toc148715960]Proposal
[bookmark: _Toc148715961]Approach
We define several types of continuity:
1. Asset continuity: both MPDs show the same visual content and have approximately the same live point. It is hard to get to precisely same live point when the encoders are at significantly different geographic locations and same frame enters different transcoders at a different time due to speed of light.
1. Service continuity: the adaptation set and representation IDs are identical, so it is possible to simplify the switch logic to follow the currently playing IDs as opposed to starting from a “clean slate”. Additionally, the same events are synchronized (i.e., the events are the same in their semantics), which is important in terms of advertising logic and SCTE 35.
1. Content protection continuity: as long as same key IDs are used, there is no need to re-request the DRM license

Note that the structure here is not a perfect “onion structure” – content protection continuity requires asset continuity, but not service continuity.
We propose a new element to explicitly provide such signaling and explicitly call out different types of continuity.
[bookmark: _Toc148715962]Proposed syntax and semantics
The Continuity element describes various aspects which are maintained across representations described by successive MPDs. This element is embedded inside a SupplementalProperty or EssentialProperty element with @schemeIdUri attribute values of urn:mpeg:dash:fallback:2016 or urn:mpeg:dash:reset:2016.
[bookmark: _Ref14699204]Table 25 — Semantics of Continuity element
	Element or Attribute Name
	Use
	Description

	
	
	Continuity
	
	

	
	
	
	@asset
	OD
default=false
	If true, content of the new presentation is perceptually identical to the content of the current presentation, i.e. the “live point” of one presentation is within 250ms from the other

	
	
	
	@service
	OD default=false
	If true, adaptation set, representation, and sub-representation IDs are identical across the new and old representation

	
	
	
	@contentProtection
	OD default=false
	If true, the DRM license delivered for segments in the old presentation, is still true for segments in the new presentation with same key IDs

	Key
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory
For elements: <minOccurs>..<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold and preceded with an @.

[bookmark: _Toc77697179][bookmark: _Toc148715963]Track Derivation based Adaptation Parameters for Server-Side Dynamic Adaptation in DASH (m55222, m56824, and m57449 and m58898)
[bookmark: _Toc100832099]
[bookmark: _Toc77697180][bookmark: _Toc148715964]Introduction
This section lists adaptation parameters for supporting server-side dynamic adaptation submitted in the input contributions, listed in the section heading.
[bookmark: _Toc133552614][bookmark: _Toc140846352][bookmark: _Toc148715965]The revised CD text REF _Ref49612336 \r \h [1] of MPEG-B part 16, “Derived Visual Tracks in ISOBMFF”, contains a preliminary set of derivation transformations: Identity, Dissolve, Crop, Rotate, Mirror, Scaling, Region-of-interest, and Track Grid. More derivation transformation candidates are documented in the TuC REF _Ref49613021 \r \h [2], including more composition and immersive media processing related ones.
[bookmark: _Toc100832102][bookmark: _Toc133552615][bookmark: _Toc140846353][bookmark: _Toc148715966]
[bookmark: _Toc133552616][bookmark: _Toc140846354][bookmark: _Toc148715967]To this 132nd MPEG meeting, contribution REF _Ref52915561 \r \h [9] proposes derivation transformations for track derivations resulting from track selection and switching, with applications targeting at selective playback and adaptive streaming, where tracks are typically grouped into alternate and switch groups, respectively.
[bookmark: _Toc100832104][bookmark: _Toc133552617][bookmark: _Toc140846355][bookmark: _Toc148715968]
[bookmark: _Toc133552618][bookmark: _Toc140846356][bookmark: _Toc148715969]This contribution proposes server-side dynamic adaptation (SSDA) in DASH using a single representation in an AdaptationSet corresponding to a derived visual track for switching among a set of switchable visual tracks as proposed in contribution REF _Ref52915561 \r \h [9].
[bookmark: _Toc100832106][bookmark: _Toc133552619][bookmark: _Toc140846357][bookmark: _Toc148715970]
[bookmark: _Toc77697181][bookmark: _Toc133552620][bookmark: _Toc140846358][bookmark: _Toc148715971]Derived Visual Tracks and Those for Track Selection and Switching
[bookmark: _Toc133552621][bookmark: _Toc140846359][bookmark: _Toc148715972]Derived visual tracks are designed to enable defining a timed sequence of visual transformation operations to be applied to input still images and/or samples of timed sequence of images. It is built using tools defined in the ISO base media file format (ISO/IEC 14496-12). The latest CD REF _Ref52741664 \r \h [3] specifies the core design and a set of transformation operations (e.g., identity, rotation, scaling and grid composition), and the latest TuC REF _Ref52741669 \r \h [4] includes some generic transformation operations such as static and dynamic overlays as well as some immersive media processing related transformations such as stitching, projection, packing and viewport.
[bookmark: _Toc100832109][bookmark: _Toc133552622][bookmark: _Toc140846360][bookmark: _Toc148715973]
[bookmark: _Toc133552623][bookmark: _Toc140846361][bookmark: _Toc148715974]In essence, derived visual tracks whose samples are derivation transformations can be used to generate, from input tracks or images, an output visual track with visual samples, as follows:
[bookmark: _Toc100832111][bookmark: _Toc133552624][bookmark: _Toc140846362][bookmark: _Toc148715975]
[bookmark: _Toc133552625][bookmark: _Toc140846363][bookmark: _Toc148715976][image:]
[bookmark: _Toc100832113][bookmark: _Toc133552626][bookmark: _Toc140846364][bookmark: _Toc148715977]
[bookmark: _Toc133552627][bookmark: _Toc140846365][bookmark: _Toc148715978]Thus, if a derived visual track is of a track selection transformation, its track derivation is to select a desired visual track (e.g., according to a list of parameters) from its input visual tracks, and if a derived visual track is of track switching transformation, it track derivation is to switch among input visual tracks to a desired visual track. This kind of capability leads to its applications to implementations of dynamic adaptation in adaptive streaming systems, especially those server-based using DASH.
[bookmark: _Toc100832115][bookmark: _Toc133552628][bookmark: _Toc140846366][bookmark: _Toc148715979]
[bookmark: _Toc133552629][bookmark: _Toc140846367][bookmark: _Toc148715980]A selection-based track derivation as proposed in contribution REF _Ref52915561 \r \h [9] allows selection of samples of a track from an alternate or switch group at the time of derivation, and it has the following advantages:
[bookmark: _Toc133552630][bookmark: _Toc140846368][bookmark: _Toc148715981]It provides a track encapsulation for track samples selected or switched from an alternate or switch group, which is what the existing track selection mechanism using alternate and switch groups does not provide.
[bookmark: _Toc133552631][bookmark: _Toc140846369][bookmark: _Toc148715982]This track encapsulation allows straightforward association of metadata about a selected or switched track with its track encapsulation itself, rather than with a track group from which the track is selected or switched. For instance, in order to say a track selected from a track group at run time has a region of interest (ROI), it becomes very easy and nature to signal the ROI in the metadata box ('meta') of the derived track when the ROI is static, and use a timed metadata track to reference the derived track, using reference type'cdsc', when the ROI is dynamic. In contrast, there is no direct way to signal the ROI metadata without a derived track: signaling a static ROI in the metadata box of every track in an alternate or switch group does not convey the same meaning as it means that every track has the static ROI, and having a timed metadata track representing a dynamic ROI to reference an alternate or switch group needs to define a new track reference type, as the existing track reference in the track reference box (sub-clause 8.3.3 in REF _Ref49593551 \r \h [3]) states, when it applies to referencing a track group, “the track reference applies to each track of the referenced track group individually”, which is also not the desired meaning.
[bookmark: _Toc133552632][bookmark: _Toc140846370][bookmark: _Toc148715983]The derived track encapsulation enables definitions and executions of track-based media processing workflows, such as in network based media processing REF _Ref49635215 \r \h [5], to use derived tracks not just as outputs but also intermediate inputs in the workflows.
[bookmark: _Toc133552633][bookmark: _Toc140846371][bookmark: _Toc148715984]The derived track encapsulation allows it possible for track selection or switching to be transparent to clients of dynamic adaptive streaming, such as DASH REF _Ref51608799 \r \h * MERGEFORMAT [6], and carried out at corresponding servers or within distribution networks, for instance, implemented in conjunction SAND REF _Ref51608873 \r \h * MERGEFORMAT [7]. This can help simplifying client logics and implementations with respective to shifting dynamic content adaptation from the streaming manifest level to the file format derived track level, for instance, based on the descriptive and differentiating attributes defined in sub-clause 8.3.3 in REF _Ref49593551 \r \h [3]. With selection-based derived tracks, DASH clients REF _Ref51608799 \r \h [6] and DASH aware network elements (DANE) REF _Ref51608873 \r \h [7] can just provide values of attributes (e.g., codec 'cdec', screen size 'scsz', bitrate 'bitr') required in the derived tracks (according to their definitions), and let media origin servers and CND’s provide content selection and switching from a group of available media tracks. This may then result in eliminating use of AdaptationSet or restricting its use to just containing a single Representation in DASH.
[bookmark: _Toc100832121][bookmark: _Toc133552634][bookmark: _Toc140846372][bookmark: _Toc148715985]
[bookmark: _Toc77697182][bookmark: _Toc133552635][bookmark: _Toc140846373][bookmark: _Toc148715986]Track Derivation based Server-Side Dynamic Adaptation in DASH
[bookmark: _Toc133552636][bookmark: _Toc140846374][bookmark: _Toc148715987]This section provides more details on how derived selection and switch tracks can be used to implement server-side streaming adaptation (SSSA), as opposed to client-side streaming adaptation (CSSA), in adaptive streaming systems.
[bookmark: _Toc100832124][bookmark: _Toc133552637][bookmark: _Toc140846375][bookmark: _Toc148715988]
[bookmark: _Toc133552638][bookmark: _Toc140846376][bookmark: _Toc148715989]In a generic architecture of an adaptive streaming system as shown in the diagram below REF _Ref51608799 \r \h [6],
[bookmark: _Toc133552639][bookmark: _Toc140846377][bookmark: _Toc148715990][image:]

[bookmark: _Toc133552641][bookmark: _Toc140846379][bookmark: _Toc148715992]it has been the Streaming Client that implements some Adaptation Logic for streaming adaptation, including static as well as dynamic adaptation, in selecting segments from different media streams according to some Adaptation Parameters (i.e., “MPD Selection Metadata” in REF _Ref51608799 \r \h [6] such as bitrate), depicted as follows:
[bookmark: _Toc100832129][bookmark: _Toc133552642][bookmark: _Toc140846380][bookmark: _Toc148715993]

[bookmark: _Toc100832131][bookmark: _Toc133552644][bookmark: _Toc140846382][bookmark: _Toc148715995]
[bookmark: _Toc133552645][bookmark: _Toc140846383][bookmark: _Toc148715996]More intuitively in an end-to-end streaming media processing diagram, it is the Client that performs streaming adaptation in terms of selecting (encrypted) segments from a set of available streams.
[bookmark: _Toc100832133][bookmark: _Toc133552646][bookmark: _Toc140846384][bookmark: _Toc148715997]
[bookmark: _Toc133552647][bookmark: _Toc140846385][bookmark: _Toc148715998][image:]
[bookmark: _Toc100832135][bookmark: _Toc133552648][bookmark: _Toc140846386][bookmark: _Toc148715999]
[bookmark: _Toc133552649][bookmark: _Toc140846387][bookmark: _Toc148716000]At a high level, this kind of CSDA workflow consists of the following steps between the Client and Server (or CDN):

[bookmark: _Toc100832138][bookmark: _Toc133552651][bookmark: _Toc140846389][bookmark: _Toc148716002]
[bookmark: _Toc133552652][bookmark: _Toc140846390][bookmark: _Toc148716003]Now thanks to derived selection and switch tracks proposed in REF _Ref51789306 \r \h [9] that enable track selection and switching, at run time, from an alternate track group and a switch track group, respectively, streaming adaptation can be performed at the server side, instead of the client side, to simplify Streaming Client implementation, as follows:
[bookmark: _Toc100832140][bookmark: _Toc133552653][bookmark: _Toc140846391][bookmark: _Toc148716004]

[bookmark: _Toc100832142][bookmark: _Toc133552655][bookmark: _Toc140846393][bookmark: _Toc148716006]
[bookmark: _Toc133552656][bookmark: _Toc140846394][bookmark: _Toc148716007]It should be noted that it is feasible to use derived selection and switch tracks to implement CSSD, but may not be efficient in term of distributing tracks (or segments), as all but one will end up with not being used.
[bookmark: _Toc100832144][bookmark: _Toc133552657][bookmark: _Toc140846395][bookmark: _Toc148716008]
[bookmark: _Toc133552658][bookmark: _Toc140846396][bookmark: _Toc148716009]Thus, in an end-to-end streaming media processing diagram, it is now the Server that performs streaming adaptation in terms of selecting (encrypted) segments from a set of available streams.
[bookmark: _Toc100832146][bookmark: _Toc133552659][bookmark: _Toc140846397][bookmark: _Toc148716010]
[bookmark: _Toc133552660][bookmark: _Toc140846398][bookmark: _Toc148716011][image:]
[bookmark: _Toc100832148][bookmark: _Toc133552661][bookmark: _Toc140846399][bookmark: _Toc148716012]
[bookmark: _Toc133552662][bookmark: _Toc140846400][bookmark: _Toc148716013]At a high level, this kind of (SSSA) workflow consists of the following steps between the Client and Server (or CDN):
[bookmark: _Toc100832150][bookmark: _Toc133552663][bookmark: _Toc140846401][bookmark: _Toc148716014]
[bookmark: _Toc133552664][bookmark: _Toc140846402][bookmark: _Toc148716015][image:]
[bookmark: _Toc133552665][bookmark: _Toc140846403][bookmark: _Toc148716016]When derived switch tracks are used to implement SSSA, the workflow above can be modified as follows; namely the segment request can be made from a derived switch track:
[bookmark: _Toc100832153][bookmark: _Toc133552666][bookmark: _Toc140846404][bookmark: _Toc148716017]
[bookmark: _Toc133552667][bookmark: _Toc140846405][bookmark: _Toc148716018][image:]
[bookmark: _Toc100832155][bookmark: _Toc133552668][bookmark: _Toc140846406][bookmark: _Toc148716019]
[bookmark: _Toc133552669][bookmark: _Toc140846407][bookmark: _Toc148716020]It should be noted that in the SSSA scheme, the client can still make some static selection (such as those related to video codec profile, screen size and encryption algorithm), and only leave dynamic adaptation (such as those related to video bitrate, network bandwidth) to the server, by collecting and passing dynamic adaptation parameters needed for Adaptation Logic to the server as part of (http) segment requests. The communication of these adaptation parameters can be implemented in anyone of the following mechanisms:
[bookmark: _Toc133552670][bookmark: _Toc140846408][bookmark: _Toc148716021]URL query parameters
[bookmark: _Toc133552671][bookmark: _Toc140846409][bookmark: _Toc148716022]HTTP header parameters
[bookmark: _Toc133552672][bookmark: _Toc140846410][bookmark: _Toc148716023]SAND messages (carrying adaptation parameters collected by the client and other DANE’s) REF _Ref51608873 \r \h * MERGEFORMAT [7].
[bookmark: _Toc100832160][bookmark: _Toc133552673][bookmark: _Toc140846411][bookmark: _Toc148716024]
[bookmark: _Toc148716025][bookmark: _Toc77697183]Adaptation Parameters
[bookmark: _Toc148716026]Track Selection and Switching
The list of parameters is the list of differentiating attributes specified in clause 8.10.3, “track selection box”, in the latest ISOBMFF specification [2] for the purpose of track selection or switching:
	Description
	Key Name
	Header Name
	Type & Unit
	Value Definition

	Codec
	cdec
	SSDA-Object
	String, 4CC
	Sample Entry (in SampleDescriptionBox of media track)

	Screen width
	scsw
	SSDA-Request
	Unsigned Integer, pixels
	Width field of VisualSampleEntry.

	Screen height
	scsh
	SSDA-Request
	Unsigned Integer, pixels
	Height field of VisualSampleEntry.

	Max packet size
	mpsz
	SSDA-Request
	Unsigned Integer, bits
	Maxpacketsize field in RtpHintSampleEntry

	Media type
	mtyp
	SSDA-Object
	Unsigned Integer, 4CC
	Handler_type in HandlerBox (of media track)

	Media language
	mela
	SSDA-Object
	String, 3-character code
	Language field in MediaHeaderBox

	Bitrate
	bitr
	SSDA-Request
	Integer, kbps
	Total size of the samples in the track divided by the duration in the TrackHeaderBox

	Frame rate
	frar
	SSDA-Request
	Integer, fps
	Number of samples in the track divided by duration in the TrackHeaderBox

	Number of views
	nvws
	SSDA-Object
	Integer
	Number of views in the track

It is agreed that most of these parameters are used in DASH, possibly with different names. Nevertheless, they are in the DASH namespace.

It is true that a DASH device selects “selects the tracks based on its screen size”, but that is the client-side dynamic adaptation. For server-side dynamic adaptation, the server would need to know client’s screen size.
[bookmark: _Toc77697184][bookmark: _Toc148716027]Viewport and Viewpoint Selection
[bookmark: _Toc77697185]The list below is a collection of viewport/viewpoint/spatial-object related data structure attributes from OMAF [3] (spherical region), V3CD [4] (cuboid region) and DASH [5] (planar region).

	Description
	Key Name
	Header Name
	Type & Unit
	Value Definition

	Azimuth
	'azim'
	SSDA-Request
	Integer, degrees
	Azimuth component of a spherical viewport [OMAF]

	Elevation
	'elev'
	SSDA-Request
	Integer, degrees
	Elevation component of a spherical viewport [OMAF]

	Azimuth range
	'azim'
	SSDA-Request
	Integer, degrees
	Azimuth range of a spherical viewport [OMAF]

	Elevation range
	'elev'
	SSDA-Request
	Integer, degrees
	Elevation range of a spherical viewport [OMAF]

	Position x
	'posx'
	SSDA-Request
	Unsigned Integer, metres
	x coordinate of a position in meters in a reference coordinate system, for a viewpoint, viewport or camera [V3CD]
The values shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754

	Position y
	'posy'
	SSDA-Request
	Unsigned Integer, metres
	y coordinate of a position in a reference coordinate system, for a viewpoint, viewport or camera [V3CD]

	Position z
	'posz'
	SSDA-Request
	Unsigned Integer, metres
	z coordinate of a position in a reference coordinate system, for a viewpoint, viewport or camera [V3CD]

	Quaternion x
	'qutx'
	SSDA-Request
	Integer
	x component of the rotation of a viewport or camera using the quaternion representation [V3CD]
The value shall be in the range of – 230 to 230, inclusive.

	Quaternion y
	'quty'
	SSDA-Request
	Integer
	y component of the rotation of a viewport or camera using the quaternion representation [V3CD]
The value shall be in the range of – 230 to 230, inclusive.

	Quaternion z
	'qutz'
	SSDA-Request
	Integer
	z component of the rotation of a viewport or camera using the quaternion representation [V3CD]
The value shall be in the range of – 230 to 230, inclusive.

	Object x
	‘objx’
	SSDA-Request
	non-negative integer
	the horizontal position of the top-left corner of the Spatial Object in arbitrary units [DASH]

	Object y
	‘objy’
	SSDA-Request
	non-negative integer
	the vertical position of the top-left corner of the Spatial Object in arbitrary units [DASH]

	Object width
	‘objw’
	SSDA-Request
	non-negative integer
	the width of the Spatial Object in arbitrary units [DASH]

	Object height
	‘objh’
	SSDA-Request
	non-negative integer
	the height of the Spatial Object in arbitrary units [DASH]

	Total width
	‘totw’
	SSDA-Request
	non-negative integer
	the width of the reference space in arbitrary units [DASH]

	Total height
	‘toth’
	SSDA-Request
	non-negative integer
	the height of the reference space in arbitrary units [DASH]

[bookmark: _Toc148716028]Temporal Adaptations for Join Live and Tune-in Fast
The list below is a collection of temporal adaptation related attributes for use cases where the client needs to indicate to the server if a media request is for tuning into a live event (or channel) [7] or joining fast into a stream [8]. They allow the server to respond accordingly for the purposes:
· low latency: e.g., by adaptively returning a sub-segment or a CMAF chunk on a live edge [9];
· on-demand: e.g., by adaptively returning a regular segment for on-demand content, when the attribute “Join Live” is either omitted or set to be FALSE;
· fast start-up: e.g., by adaptively returning one or more low-quality initial segments, possibly in conjunction with an initialization segment; and
· good-experience start-up: e.g., by adaptively returning one or more high-quality initial segments to ensure a good viewing experience from the very beginning, when the attribute “Join Fast” is either omitted or set to be FALSE.

	Description
	Key Name
	Header Name
	Type & Unit
	Value Definition

	Join Live
	'jilv'
	SSDA-Request
	Boolean
	Indication of the media request for joining into a live event, due to initial join and seeking to the live edge of the event.

	Tune-in Fast
	'tift'
	SSDA-Request
	Boolean
	Indication of the media request for tuning into a stream as fast as possible.

[bookmark: _Toc100832165]
[bookmark: _Toc77697186][bookmark: _Toc148716029]Proposal
A few issues to be considered and worked on:
1. Namespace for these adaptation parameters, as a whole set or in the following categories:
0. Bitrate adaptation
0. Temporal adaptation
0. Spatial adaptation and
0. Content adaptation
1. Additional adaptation parameters for
1. Bitrate adaptation (such as dynamic transcoding),
1. Temporal adaptation (such as trick plays),
1. Spatial adaptation (such as user-selected viewport/viewpoint dependent media processing), and
1. Content adaptation (such as pre-rendering and storyline selection in NBMP).
1. Mechanisms for communication of these adaptation parameters:
2. URL query parameters
2. HTTP header parameters
2. SAND messages (carrying adaptation parameters collected by the client and other DANE’s).
2. Json objects (e.g., CTA CMCD [7])
[bookmark: _Toc77697187][bookmark: _Toc148716030]References
[1] [bookmark: _Ref60824421][bookmark: _Ref49612336][bookmark: _Ref390269836][bookmark: _Ref471395332][bookmark: _Ref471482420][bookmark: _Ref471846742][bookmark: _Ref69900641][bookmark: _Ref69904963]WG03_N0189_20251. “DASH TuC”. ISO/IEC JTC 1/SC 29/WG 3. April 2021.	
[2] [bookmark: _Ref60825135]W18855. “Text of ISO/IEC 14496-12 6th edition”. October 2019. Geneva, CH.
[3] [bookmark: _Ref76066415]MDS19786_WG03_N00072. “Information technology — Coded representation of immersive media — Part 2: Omnidirectional MediA Format (OMAF) 2nd Edition”.
[4] [bookmark: _Ref69900652]WG03N0163. “Draft text of ISOIEC FDIS 23090-10 Carriage of Visual Volumetric Video-based Coding Data”. ISO/IEC JTC 1/SC 29/WG 3. January 2021.
[5] [bookmark: _Ref76066453]MDS19973_WG03_N00140. “Draft text of ISO/IEC 23009-1 5th edition”. January 2021.
[6] [bookmark: _Ref76066480]CTA Specification. “Web Application Video Ecosystem -Common Media Client Data”. CTA-5004.
[7] [bookmark: _Ref76070102]m56798. “Shortening tune-in time”. April 2021.
[8] [bookmark: _Ref76070279]m56673. “Minimizing initialization delay in live streaming”. April 2021.
[9] [bookmark: _Ref76071681]AWS Media Blog. “Lower latency with AWS Elemental MediaStore chunked object transfer”. https://aws.amazon.com/blogs/media/lower-latency-with-aws-elemental-mediastore-chunked-object-transfer/
[bookmark: _Toc77697188][bookmark: _Toc148716031]Discussion at MPEG#132 meeting
Note that the DASH client may not need any special signaling, and therefore there may no need for any standardization in DASH for this use-case.
[bookmark: _Toc77697189][bookmark: _Toc148716032]Discussion at MPEG#134 meeting
· CTA WAVE has started Common Server Metadata. We propose to work on these topics there and not duplicate the efforts in MPEG.
· We believe CMCD does not restrict its usage and you can use CMCD for server-side dynamic adaptation.
· These parameters seems to be extensions (new keys) to the CMCD spec.

[bookmark: _Toc148716033]Extensions for Service Description (m56093)
1.1 [bookmark: _Toc148716034]Introduction
This document provides proposed updates to Service Description. The background for this is the usage of Service Description as part of 5G Media Streaming.
1.2 [bookmark: _Toc148716035]Background
3GPP has specified a system for 5G Media Streaming that enables a mobile network operator to offer a level of service that goes beyond "best effort" over-the-top IP-based media streaming. 5G Media Streaming services offered by a 5GMS System are provisioned by a third-party actor referred to as the 5GMS Application Provider for use by an application running on the User Equipment (UE) referred to as a 5GMS-Aware Application. The reference architecture and basic functional procedures are defined in TS 26.501 [X] and the detailed protocols are specified in TS 26.512 [Y]. The baseline video codecs and packaging standards that compliant UEs must support as a minimum are specified is TS 26.511 [Z].
In 3GPP Release 16, the scope of these specifications is restricted to unicast media streaming only. A Content Hosting capability is defined that resembles a Content Delivery Network (CDN). Later releases may add support for more complex media hosting and manipulation features. Ongoing Release 17 studies and normative work seek to add multicast/broadcast distribution mechanisms to the 5G System as well as edge computing capabilities.
The following high-level features are specified for 5G Media Streaming in Release 16. Each feature is optional and only available to a 5GMS-Aware Application if explicitly provisioned by a 5GMS Application Provider:
1. Content Hosting. This may be deployed inside the 5G Core network in the form of an Operator CDN. Alternatively, an external third-party CDN may be integrated into the 5G Media Streaming system.
2. Media Consumption Reporting. A random subset of 5GMS Clients can be configured to periodically report media session usage information to the 5GMS System.
3. QoE Metrics Reporting. A random subset of 5GMS Clients can be configured to periodically report Quality of Experience metrics to the 5GMS System. These may be relayed to the 5GMS Application Provider.
4. Dynamic Network QoS Policies. Specific network QoS policies are provisioned in advance, expressed as Policy Templates. During streaming sessions these Policy Templates can then be instantiated on demand by individual 5GMS Clients. The 5GMS Application Function negotiates with the Policy and Charging Function (PCF) in the 5G Core to apply the requested QoS policy to the relevant 5GMS packet flow.
5. Network Assistance. Two forms of assistance are currently defined. Neither requires any special configuration at the provisioning stage.
o The 5GMS Client can interrogate the network to find out what downlink network capacity is currently available to it. This can be used to influence the Media Player's choice of media representations to best ensure an uninterrupted streaming experience.
o The 5GMS Client can request a temporary "boost" to its network Quality of Service, for example to speed up a background download (network resources permitting).
[image:]
Figure X Reference architecture for 5G Media Downlink Streaming (see TS 26.501 [X])
The reference architecture for 5G Media Streaming as shown in Figure X defines the following functions to support the abovementioned features:
· A 5GMS Application Function deployed in the 5G Core or in an External Data Network that manages a 5GMS System. This logical function embodies the control plane aspects of the system, such as provisioning, configuration and reporting:
· A 5GMS Application Provider provisions 5GMS functions using a RESTful HTTP-based provisioning interface at reference point M1.
· Another RESTful HTTP-based configuration and reporting interface is exposed to 5GMS Clients at reference point M5.
· A 5GMS Application Server deployed in the 5G Core or in an External Data Network that provides 5G Media Streaming services to 5GMS Clients. This logical function embodies the data plane aspects of the system that deal with media content:
· Content is ingested from 5GMS Application Providers at reference point M2. Both push- and pull-based ingest methods are supported, based on HTTP.
· Content is distributed to 5GMS Clients at reference point M4 (after possible manipulation by the 5GMS Application Server function). Standard pull-based content retrieval protocols (e.g. DASH) are supported at this reference point.
· A 5GMS Client deployed in the UE that consumes 5G Media Streaming services. The 3GPP specifications are silent on whether this logical function is realised as shared UE middleware components or provided piecemeal by individual applications.
· A Media Session Handler subcomponent first retrieves its configuration ("Service Access Information") from the 5GMS Application Function at reference point M5 and then uses this configuration information to activate and exploit the currently provisioned 5GMS features. The 5GMS-Aware Application controls the Media Session Handler via a UE-internal API defined at reference point M6. This reference point could, for example, be realised as a Javascript API in a web browser.
· A Media Player subcomponent consumes media from the 5GMS Application Server at reference point M4. The 5GMS-Aware Application controls the Media Player via a UE-internal API defined at reference point M7. This reference point could also be realised as a Javascript API in a web browser, for example.
The basic procedures for 5G Media Streaming are shown in Figure Y.
[image:]
Figure Y Basic procedures for 5G Media Downlink Streaming
According to TS 26.501 [X], Downlink Media Streaming provides the ability for content to be distributed using procedures and protocols defined by 5G Media Streaming as shown in Figure Z. The detailed procedures for the interfaces and APIs for 5G Media Streaming are defined in TS 26.512 [Y].

Figure Z <caption>
[bookmark: _Hlk48745440]5G Media Streaming segment formats are defined based on the Common Media Application Format (CMAF) in ISO/IEC 23000-19 [A]. By using this format, 5G Media Streaming is compatible with a broad set of segment-based streaming protocols including Dynamic Streaming over HTTP (DASH) and HTTP Live Streaming (HLS). For example, ISO/IEC 23009-1 [B] defines a detailed DASH profile for delivering CMAF content within a DASH Media Presentation using a converged format for segmented media content.
5GMS media profiles for video, audio and subtitles based on the general constraints of ISO/IEC 23000-19 [A] are defined in TS 26.511 [Y]. However, 5G Downlink Media Streaming is not restricted to the media profiles defined in [Y]. Any CMAF media profile, for example for codecs defined in DVB specifications, may be used and distributed within 5G Downlink Media Streaming.
A more detailed client-centric approach is shown in Figure 1.
[image:]
[bookmark: _Ref61274029]Figure 1 Client centric architecture
An important concept in 5G Media Streaming are Service Operation points and policy templates. The details are shown in Figure 2. An overview is provided in the following.
· Service Operation Points
· Service Operation points define long lived profiles that will be used by streaming sessions as references.
· Policy templates represent long term agreements made between the AP and the MNO.
· Filtering: AP can limit what traffic and which users are allowed to use a specific policy template (FQDN-based)
· Streaming session uses at most one of the allowed policy templates at any point in time
· MSH may pre-cache or retrieve periodically or on request the list of allowed operation points for a specific AP
· Option 1: Define each Service Operation Point as a Slice
· concept of Network Slice as a Service (NSaaS) is defined in TS 28.530 [10].
· NSaaS can be offered by an MNO to third-party providers in the form of a service.
· UE establishes or modifies the PDU session that will be used for the traffic based on URSP rules
· Alternatively, network may also trigger the establishment or modification of the PDU session
· Option 2: Define each Service Operation Point as a QoS Flow
· Flow description(s) of the transport session established in the step (see TS 23.502 [3]), e.g. the 5-tuple

[image:]
[bookmark: _Ref61274184]Figure 2 Operation Points in 5G Media Streaming
In particular, clause 12 of TS 26.512 defines details on how to obtain status information. Table 13.2.6-1 provides a list of dynamically changing status information that can be obtained from the client.
Table 13.2.6-1: Dynamic Status information
	Status
	Type
	Parameter
	Definition

	AverageThroughput
	float
	none
	Current average throughput computed in the ABR logic in bit/s.

	BufferLength
	float
	MediaType
"video", "audio" and "subtitle"
	Current length of the buffer for a given media type, in seconds. If no type is passed in, then the minimum of video, audio and subtitle buffer length is returned. NaN is returned if an invalid type is requested, the presentation does not contain that type, or if no arguments are passed and the presentation does not include any adaption sets of valid media type.

	liveLatency
	float
	none
	Current live stream latency in seconds based on the latency measurement.

	MediaSetting[]
	MPDAdaptationSet
	MediaType
"video", "audio" and "subtitle"
	Current media settings for each media type based on the CMAF Header and the MPD information based on the selected Adaptation Set for this media type.

	MediaTime
	float
	None
	Current media playback time from media playback platform. The media time is in seconds and is relative to the start of the playback and provides the media that is actually rendered.

	PlaybackRate
	float
	None
	The current rate of playback. For a video that is playing twice as fast as the default playback, the playbackRate value should be 2.00.

	availableServiceDescriptions[]
	Provides the available service descriptions
	
	Provides the list of available selectable service descriptions with an id to select from. Those are either configured ones or the ones in the MPD.

	availableMediaOptions[]
	List of Adaptation Set or Preselection ids
	MediaType
"video", "audio" "subtitle"
"all"
	Provides the list of available media options that can be selected by the application based on the capability discovery and the subset information.

	Metrics[][]
	Metrics
	
	A data blob of metrics for each defined metrics collecting scheme.

1.3 [bookmark: _Toc148716036]Live services at different scale
Live TV services of different scale (professional, user-generated, session-based, etc.) are increasingly distributed over broadband and mobile networks. Live TV services are characterized by:
-	scalability (in terms of concurrent users),
- 	consistent quality,
-	high bandwidth requirements, and
-	target latency constraints.
1.4 [bookmark: _Toc88198207][bookmark: _Toc148716037]Scalability
Consistent support of the distribution of such services to a different scale of users and in a concurrent fashion is a prime concern. 5G Media Streaming is expected to support such service distribution and end-to-end optimizations. Improvements and optimizations on the architectural level and stage 3 are expected to be studied.
1.5 [bookmark: _Toc88198208][bookmark: _Toc148716038]Consistent quality
TV Services are expected to provide a consistent quality over time. TS 26.512 [X] defines Operation Point parameters in Table 13.2.6-2, repeated below, to which the client is configured. This configuration setting may be included in the manifest or may be provided through application means. Consistent quality can be defined that the service stays within the operation point boundaries to the largest extent. Specific aspects are:
· Meeting the latency requirements, namely staying at the target, not exceeding the maximum, and not falling below the minimum. Measuring deviation from the target, as well creating events when exceeding the boundaries, is relevant. For more details see clause 5.11.15.
· Meeting the playback rate, i.e. how often the playback rate is changed from 1.0, and if there are cases when the playback rate is outside of the range. For more details see clause 5.11.15.
· Staying within the boundaries of the bitrates and meeting the target is relevant as well. This measurement includes those cases for which the Bandwidth would have fallen to 0, i.e. the service is stalled. All of this can be measured by the client.
Generally, consistent quality refers to meet the below operation point parameters as shown in Table 5.11.1.3-1 (see also TS 26.512, Table 13.2.6-2). The Media Player and the network are expected to collaborate to meet the quality requirements.
Table 5.11.1.3-1: Operation Point Information (see TS 26.512, Table 13.2.6-2)
	OperationPoint
	Operation Point Parameters
	The currently configured operation point parameters according to which the DASH client is operating.

	
	mode
	Enum
	The following operation modes are defined:
live: The DASH client operates to maintain configured target latencies using playback rate adjustments and possibly resync.
vod: The DASH client operates without latency requirements and rebuffering may result in additional latencies

	
	maxBufferTime
	Integer
	maximum buffer time in milliseconds for the service.

	
	switchBufferTime
	Integer
	buffer time threshold below which the DASH clients attempts to switch Representations.

	
	Latency
	
	Defines the latency parameters used by the DASH client when operating in live mode.

	
	
	target
	Integer
	The target latency for the service in milliseconds.

	
	
	max
	Integer
	The maximum latency for the service in milliseconds.

	
	
	min
	Integer
	The maximum latency for the service in milliseconds.

	
	PlaybackRate
	MediaType
audio, video, all
	Defines the playback rate parameters used by the DASH client for catchup mode and deceleration to avoid buffer underruns and maintaining target latencies.

	
	
	max
	Real
	The maximum playback rate for the purposes of automatically adjusting playback latency and buffer occupancy during normal playback, where 1.0 is normal playback speed.

	
	
	min
	Real
	The minimum playback rate for the purposes of automatically adjusting playback latency and buffer occupancy during normal playback, where 1.0 is normal playback speed.

	
	Bandwidth
	
	Defines the operating bandwidth parameters used by the DASH client used for a specific media type or aggregated. The values are on IP level.

	
	
	target
	Integer
	The target bandwidth for the service in bit/s that the client is configured to consume.

	
	
	max
	Integer
	The maximum bandwidth for the service in bit/s that the client is configured to consume.

	
	
	min
	Integer
	The minimum bandwidth for the service in bit/s that the client is configured to consume.

	
	PlayerSpecificParameters
	
	Player specific parameters may be provided, for example about the used algorithm, etc.

1.6 [bookmark: _Toc148716039]Deployment Architectures
A deployment architecture suitable for low-latency CMAF streaming is shown in Figure 5.11.2.1-1.
[image: Timeline

Description automatically generated]
Figure 5.11.2.1-1 Deployment architecture for low-latency CMAF streaming
In this case:
1.	A live stream is ingested into a live encoder.
2.	The encoded stream is packaged into CMAF chunks.
3.	The packaged CMAF chunks are uploaded to an origin server using chunked transfer encoding input.
4.	Segments are then available for retrieval by a CDN on demand and moved through the CDN all the way to the client.
1.7 [bookmark: _Toc148716040]Operation Point – Establishment and Monitoring
This clause deals with providing consistent quality as part of an operation point. Figure 5.11.2.2-1 provides a basic setup on how operation points and policies can be matched. The content defined Operation points as shown in the user plane setup in Figure 5.11.2.2-1. Service Operation points define long lived profiles that will be used by streaming sessions as references. Based on communication with the application, the device characteristics, and so on, the media player selects an operation point that is determined by parameters as defined in Table 5.11.1.3-1. Based on these parameters, the policies in the 5G network are established, based on well defined policy templates. Policy templates represent long term agreements made between the AP and the MNO. The streaming session uses at most one of the allowed policy templates at any point in time.
[image: Diagram

Description automatically generated]
Figure 5.11.2.2-1 Operation Point work flow

1.8 [bookmark: _Toc148716041]Key Issues for DASH
In order to make full use of the above functionality, the details on operation points can be carried in the application space. However, for better interoperability, a significant benefit is the addition on Operation Points associated to content in the MPD. The Service Description in DASH is exactly built for this.
We believe we should solicit input from Service Providers on static and dynamic service parameters that can be mapped to delivery optimizations.
We also believe that different operation points need to be mapped to content options, for example
· HD content (define the associated media and the required operation points)
· FullHD content (define the associated media and the required operation points)

1.9 [bookmark: _Toc148716042]Proposed Updates Service Description
[bookmark: _Toc75429504][bookmark: _Toc148716043]K3.X	Operating Mode
Table K.X defines the service description parameters for operation. The keys in Table K.X shall be used to refer to the operating bandwidth as defined in Table K.X.
Table K.X — Operating Mode
	Key
	Type
	Description

	Id
	Integer
	An identifier for the operation mode

	mode
	Enum
	The following operation modes are defined:
· live: The DASH client operates to maintain configured target latencies using playback rate adjustments and possibly resync.
· vod: The DASH client operates without latency requirements and rebuffering may result in additional latencies

	maxBufferTime
	Integer
	maximum buffer time in milliseconds for the service.

	switchBufferTime
	Integer
	buffer time threshold below which the DASH client is recommended to switch Representations.

	Subset
	Integer List
	Provides the list of subsets in the MPD to which this Operating mode applies.

[bookmark: _Toc148716044]MSE implementation of inband events (m56684)
Note: This section is included in TuC for study and is not intended for any publication by MPEG.

0. [bookmark: _Toc148716045]Sample inband event processing using MSE data model
This clause demonstrates an extended W3C Media Source Extension (MSE) model for inband event processing.
Note: The current MSE specification does not support the processing of inband events and this clause is an illustrative design on how MSE can be extended to support such functionality.
0. [bookmark: _Toc148716046]Process@append rule
The process@append rule means that the inband events of a segment are processed, i.e. parsed, and dispatched or scheduled to dispatch at the time of appending the segment to the Media Source buffer.
In the case of an inband event with the on_receive dispatch mode:
1. If the event end time is not smaller than the current playback position, and
1. If this event or an equivalent has not been dispatched before,
Then the dispatcher dispatches the event immediately.
In the case of an inband event with the on_start dispatch mode:
1. If the current playback position is not smaller than the event start time, and
1. If the current playback position is not equal or larger than the event end time, and
1. If this event or an equivalent has not been dispatched before,
Then the event is stored in a dispatch buffer for dispatching at the event start time.
0. [bookmark: _Toc148716047]Dispatch buffer timing model
Figure A.13-7 demonstrates an inband event with the on_start dispatch mode relative to the MSE timing model.
[image:]
Figure A.13-7- media source and inband event dispatch buffers

0. [bookmark: _Toc148716048]Implementation
Figure A.13.8 demonstrates an example of the overlapping events with on-start dispatch mode.
S0
Event dispatch buffer

Wall clock

Media buffer

 S1
S2
S3
E0
E1
E2
S0
 S1
E0
E2
E1
Event
Media Segment
E1
E2
Event dispatch buffer

E0
E1
S0
 S1
S2
Media buffer

Figure A.13.8—event buffer model example for on_start events
As is shown above, emsgs E0, E1, and E2 are mapped to the dispatch buffer. With the initial appending of the S1 media segment to the media buffer, the ranges between the event’s start and the event’s end are marked in the dispatch buffer for E0 and E1.
When S2 is appended to the media buffer, in this case since E2 overlaps with E1 in the dispatch buffer, the corresponding range in the dispatched first is divided into 3 subranges, as shown in the figure.
Figure A.13.9 demonstrates an example of an overwrite, in which the segment S2 is overwritten by a new segment S2’ (that does not contain any emsgs) and has a duration that only covers a portion of S2 in the media buffer.

S0
Event dispatch buffer

Wall clock

Media buffer

 S1
S2
S3
E0
E1
E2
S0
 S1
S2
Event
Media Segment
S2’
E0
E2
E1
E1
E2

Figure 13. 9—Overwrite of a part of a segment with events having on_start dispatch mode
As shown, since the event E2 has the on_start dispatch mode, its range in the dispatch buffer is unchanged.
0. [bookmark: _Toc148716049]Algorithms
3. [bookmark: _Toc148716050]Initialization
1. Applications inputs to DASH client
0. Subscribe SchemeIdURI/value
0. Provide dispatch mode
1. Event buffer initialization:
1. Event dispatch (range of event purge may go beyond media buffer)
1. Set Presentation Time Offset (PTO)
A.1.13.2.2	Append
1. Parse media samples
1. Append media samples to media buffer, calculate its start in media source buffer (segment_start)
1. For each emsg
2. Parse emsg
2. Calculate event start and end times, and compare it to the current playback position.
2. If
2. event’s end time < current playback position or
2. its emsg.id exists in the “already-dispatched” table
 then stop processing this emsg and go to Step 3 to start processing the next emsg.
2. If dispatch_mode = on_receive
3. Dispatch the event
3. Add its emsg.id to the “already-dispatched” table
3. Go to Step 3 to start processing the next emsg.
2. Otherwise (dispatch_mode = on_start):
4. Calculate the event dispatch range:
0. For emsg v0 (esmg.version =0): dispatch_range_start = segment_start+ emsg.presentation_time_delta/emsg.time_scale
0. For emsg v1 (emsg.version =1): dispatch_range_start = emsg.presentation_time/emsg.timescale
0. dispatch_range_end = dispatch_range_start + emsg.duration/emsg.timescale
4. If there is already existing event in the dispatch range:
1. Divide the range to subranges, such that each subrange is either
0. empty (no event), or
0. is occupied with one or more events
1. For each subrange:
1. Add a new event constaining:
1. Emsg.scheme_id_uri
1. emsg.value
1. emsg.id
1. dispatch_range_start
1. dispatch_duration = emsg.duration/emsg.timescale
1. emsg.message_data()

A.1.13.2.4	Dispatch
1. Find the events occurring in the dispatch buffer at the playback position.
1. For each event
1. If its emsg.id is not in the “already-dispatched” table,
0. Dispatch the event
0. Remove the event from the dispatch buffer
0. Add its emsg.id to the “already-dispatched” table
1. Otherwise, remove the event from the dispatch buffer

A.1.13.2.5 Purge
In a purge operation, either a range from the start or a range from the end of the media buffer is purged. This range is referred to as the “purged-range” in this subclause.

1. If any event in the dispatch buffer overlaps with the purged-range
0. Split the event into two events around the purge-range boundary.
1. Remove the purged-range from the dispatch buffer
[bookmark: _Toc148716051]Determination and Handling of Duplicate MPD Events(m56503)
[bookmark: _Toc148716052]Introduction

In case of SCTE 35 events the expected event handling sometimes differs from what was envisioned in case of DASH events. This contribution goes over some cases where the same event needs to appear multiple times and its subsequent appearances may be essential for correct functioning of the application.

The key difference is that an SCTE 35 event may describe some time period, and this description can sometimes be modified (e.g. terminated or extended). This contribution revisits two use cases where it is unclear how to handle SCTE 35 messages or where the typical implementations are inefficient.

[bookmark: _Toc148716053]Use cases
[bookmark: _Toc148716054]Events with unknown duration

An SCTE 35 message can signal a start of a time interval and keep it “open” until a different SCTE 35 message closes it. There is a need for an application to be aware that it is within this interval, as this lets the programmer / distributor use at last a part of an ad break if the viewer tunes into the channel during a break.

Current implementations using an MPD event keep the Period element containing the first SCTE 35 message even if the period has no segments left, and remove empty periods after the time interval closes. The result is much larger MPDs than needed.

The 5th edition event model lets us handle the use case, albeit in a somewhat awkward way: we need to use random id values and on-receive method. The application will have a special SCTE 35 processing mechanism which will parse the SCTE 35 message and maintain state given the id specified in the message itself (which is identical for the first and the second message).

The above implementation is workable, but it is very specific to SCTE 35. It is possible to have other events (e.g. events intended for UI for a football game), moreover the HLS EXT-X-DATERANGE tag allows such functionality for any event.

Secondly, the timing information in this case may sometimes be lost. If we are repeating an event (e.g. copying an event to the current Period element in order to remove empty periods), the presentation time of a copy event can not be earlier than the EPT of the segment carrying it (i.e., LAT ≤ ST, in the 5th ed. terminology). The timing information in the SCTE 35 message itself is expressed as a PTS offset, and the PTSs of the media representations are not necessarily preserved when ISO-BMFF segments are generated. This way we cannot let the application know when did the event start.
[bookmark: _Toc148716055]Joining just before or during an ad break

For the duration of the ad break the linear channel has some “default” content. This way, in case the client starts playback too late and inband events are used, it will miss the original event and show default content. The desirable functionality is to always attempt using an ad break or at least a part of it.

This way, a periodic (e.g. each segment boundary) repetition of the event is needed. With that said, the start time of the event is in the past, which cannot be accommodated by either the current event syntax or the model in Annex A.

[bookmark: _Toc148716056]Cancelation and update
In some cases, a follow-up SCTE 35 message is sent to update a previous opportunity or to cancel it altogether. This again can only be implemented at the application level and done specifically for SCTE 35 – a second event with identical id will be ignored by the system

[bookmark: _Toc148716057]Notes from the MPEG#134
· Why do we need to signal it in the event envelope and not address it in the messageData?
· Do these parameters create states for events?
· Definition of cancelation, updating, ..?
· Clear processing model?
· Backward compatibility?
Events are getting overloaded with features. There might be a different solution. We should investigate the use-case.
One usecase is that for MPD event instance that started prior to the period containing it. One solution is the presentationtimeoffset.
[bookmark: _Toc148716058]Fast Fine Tune in
[bookmark: _Toc148716059]Introduction
At MPEG#134, 3 different proposal was submitted on fast tuning. At MPEG#135, one of the contributions was followed up with an update. At MPEG#136 and MPEG#137, follow-up one of the contributions were submitted and discussedwas further followed up by two contributions. This section of TuC summarizes these contributions as well as suggestions from the MPEG meetings for some of these contributions. The goal is to compare these solutions with each other using a set of common metrics that need to be developed first, and eventually develop a fast tune in feature for DASH.

[bookmark: _Toc148716060]Minimizing initialization delay in live streaming (initially in m56673, refined in m57429, then further refined in m57982 and m58176)
[bookmark: _Toc148716061]m57982: Minimizing initialization delay
Abstract
This contribution is a follow-up of m57429 (of the 135th MPEG meeting in July 2021), which was a follow-up of m56673 (of the 134th MPEG meeting in April 2021).
The following aspects are proposed for minimizing initialization delay in live streaming scenarios wherein the Segment duration is not constant:
1) Use a constant URL for obtaining the "now" MS.
2) Either combine the IS with the "now" MS or use an MIME multipart message for the two together.
3) The indication of the Segment number of the "now" MS.
The proposed specification text changes are included in the attachment to the contribution m57982.
Introduction
In live streaming services, the initialization delay refers to the delay between the time the user clicks a button to join the live session and the time when the first picture is displayed to the user. This delay is one of the most important factors that affect the live streaming use experience. There for continuously improving live streaming services deployed worldwide, live streaming service provides, including Bytedance, have spent quite some efforts trying to optimize the initialization delay.
For a user to tune into a live session, the client needs to obtain 1) the MPD, 2) the Initialization Segment (IS), and 3) the "now" Media Segment (MS), and then continues from there.
Ideally, the simplest way, which is also optimal for initialization delay, is 1) to have constant Segment durations, 2) use the Segment-number-based URL template, and 3) have the MPD (possibly together with the IS) pre-fetched before tunning. This way, if the IS is pre-fetched together with the MPD, only one HTTP request for the "now" MS is needed for tuning into the live session; and if the IS is not pre-fetched together with the MPD, two HTTP requests, one for the IS and one for the "now" MS are needed.
However, in live streaming, particularly when the live "broadcasters" are users using all kinds of mobile devices (e.g., in TikTok and Douyin), it is often difficult to ensure constant Segment durations. The video camera of the device may capture video at different varying frame rates. The video encoder may skip a frame from time to time due to computing resource issues. The video encoder may also apply encoding optimizations based on scene cuts, which results in different RAP periods. As a result, it is not always possible to use the simple and nice approach based on the @duration attribute that specifies the constant approximate Segment duration. Consequently, many live streaming services are forced to use the SegmentTimeline element. BTW, if constant Segment duration can always be ensured, we would not have needed the SegmentTimeline element at the first place.
However, using SegmentTimeline often requires a client to request the latest MPD to figure out the URL of the "now" MS for tuning into a live streaming session. Basically, the client firstly requests the latest MPD to obtain the URL information of the "now" MS, then, if the IS is not embedded in the MPD, it requests the IS, and then requests the "now" MS, and continues from there.
This need of multiple roundtrips and multiple requests causes additional initialization delay.
In this contribution, we propose a set of changes, as summarized in the abstract, to minimize the initialization delay in live streaming scenarios with non-constant Segment durations.
The proposed changes enable, for live streaming scenarios with non-constant Segment durations, to have the MPD prefetched and to use only one HTTP request to tune into a live streaming session. Simulations have been performed to compare to the existing capability of embedding the IS with the MPD. For cold streams, the average reductions of the initialization delay are 38.4% and 17.9%, respectively, for the cases without and with keep-alive, and for hot streams, the numbers are 44.0% and 12.2%, respectively.
In this contribution, in considering comments and suggestions received from the previous MPEG meeting, we updated the design by adding an option of using an MIME multipart message to send the IS and the "now" MS to the client, from either an edge server or the origin server.
Proposal
The proposed specification text changes are included in the attachment to the contribution m57982.
There are mainly three parts in the proposal that can be separately considered:
1) Part 1: Using a constant URL for obtaining the "now" MS.
2) Part 2: Combining the IS with the "now" MS or use an MIME multipart message for the two together.
3) Part 3: The indication of the Segment number of the "now" MS.
Noe that the target application scenario is wherein Segment durations in a Representation cannot be kept constant enough to ensure correct derivation of the Segment URLs based on the Segment@duration attribute and thus the SegmentTimeline element is in use.
The key point of Part 1 is that it enables live streaming tuning in with pre-fetched MPD for the target application scenario. To our knowledge, this capability not possible with any existing DASH design, including the existing capability of embedding the IS with the MPD.
For Part 2, in this contribution we not only made the combination of the IS with the "now" MS optional (as in m57429, such that if the IS is embedded in the MPD then it is not combined with the "now" MS), but also added an option of using an MIME multipart message to send the IS and the "now" MS to the client, from either an edge server or the origin server.
[bookmark: _Hlk84089342]An origin server or an edge server may respond to a request of the Tuning-In Media Segment containing both the Initialization Segment and a Media Segment using an MIME multipart message containing two parts, the first part containing the Initialization Segment and the second part containing the Media Segment. Figure 1 shows an example of TIMS in an MIME multipart message. When using a CDN, the MIME multipart message may be used by the CDN’s edge server. The CDN should first load the Initialization Segment from its cache, put it into the TIMS message, then load the Media Segment form its cache and also put it into the TIMS message. If either or both of the Initialization Segment and the Media Segment are not in the CDN’s cache, the CDN should ask the origin server for them using normal HTTP requests.
[bookmark: _Hlk84089440][image: 文本

描述已自动生成]
Figure 1. An example of TIMS in an MIME multipart message

Figure 2 shows how the CDN gets the IS and the "now" MS separately from the origin server when not cashed, and then sends the two together using an MIME multipart message. When the CDN has the IS and/or the "now" MS cached, it does not need to request from the origin server. The origin server may also be upgraded to be able to recognize the special TIMS request, and in that case, it can response by sending back the IS and the "now" MS together using an MIME multipart message.
[image: 图形用户界面, Teams

描述已自动生成]
Figure 2. Process of the TIMS request by the client, the CDN's actions when the IS and the "now" MS are not cached, including the use of an MIME multipart message
[bookmark: _Hlk84090013]
Part 3 is a further step on top of Part 1, to enable figuring out the URLs of the subsequent MSs after tunning for continuing the live streaming session, assuming that the use of the Segment-number-based URL template.
Simulations
To address a comment received from the discussion of the previous proposal in m56673, on whether the proposal improves on the existing capability of embedding the IS with the MPD, we performed a set of simulations with 100 runs for each simulation, for both some cold streams and some hot streams. The average initialization delay values are listed below:
	Cold streams
	Hot streams

	Anchor w/o keep-alive
	Anchor with keep-alive
	Proposal
	Anchor w/o keep-alive
	Anchor with keep-alive
	Proposal

	868 ms
	652 ms
	535 ms
	630 ms
	402 ms
	353 ms

As can be seen, for cold streams, the average reductions of the initialization delay are 38.4% and 17.9%, respectively, for the cases without and with keep-alive, and for hot streams, the numbers are 44.0% and 12.2%, respectively.
The reduction mainly comes from the saving of the request for the MPD, as in the proposal approach the MPD can be pre-fetched, while in the anchor approaches the MPD has to be fetched immediately before requesting the "now" MS to figure out the URL of the "now" MS. Note again that the target application scenario is wherein the Segment durations in a Representation cannot be kept constant enough to ensure correct derivation of the Segment URLs based on the Segment@duration attribute and thus the SegmentTimeline element is in use.
Questions and answers
Some discussions of m56673 can be found herein: http://mpegx.int-evry.fr/software/MPEG/Systems/DASH/spec/-/issues/155. Below are our answers/responses to the questions/comments in addition to those included in the above link and expressed orally at the 134th MPEG meeting.
1) Q: There is already a possibility of inlining the initialization Segment into the MPD using data URIs. This saves 2-3 extra HTTP GET requests (audio, video, possibly subtitles). Does the proposal improve on this result?
A: See Section 3.
2) Q: If I understand correctly your proposal, you need to have a concatenated IS+seg for you tune-in Segment, which will either require:
· duplication of all "tune-in" Segments at the origin server, (potentially all of them)
· logic at the edge server to convert the request for such Segments into the concatenated version.
Is this correct?
A: It works as follows, described separately for the origin server and edge servers.
At the original server, each time when a new MS is generated for the live streaming service, the new MS is duplicated, one as the URL using the Segment-number-based URL template, the other as the constant URL. When the next MS is generated, the constant URL now represents this MS. Therefore, for one particular Representation, at any moment there is only one duplication of the latest available MS.
The expiration time for the Tuning-In MS is set to be very short, e.g., less than or equal to it duration, avoiding clients fetching and using of a cached staled version from an edge server. Although it is possible for an implementation of an edge server to generate the Tuning-In MS, in our implementations we did not do that, i.e., if the edge server does not have a un-expired version of a Tuning-In MS available, it just lets the request go to the next upper-level server.
Suggestions from the 135th MPEG meeting
Discussions of m57429 at the 135th MPEG meeting can be found herein: http://mpegx.int-evry.fr/software/MPEG/Systems/DASH/spec/-/issues/189.
Key suggestions/issues pointed out:
1) The shorter the time a TIMS is cached, the higher the chance of cache miss. If the edge doesn't do the generation but let the request flow upward in the CDN, request overloading up to the origin might be a potential problem, particularly at the beginning for big live streaming events.
2) CDNs might not follow the TTL (i.e., the expiration time) set for the Tuning-In MS.
3) Consider using a) multipart MIME messages, b) in deployments only use tune in for one Representation, and c) no emsg as either an alternative approach or to be used in combination with (some of) the proposed pieces for optimization of the initialization delay.
[bookmark: _Toc148716062]	m58176: [30.3] Server-Side Dynamic Adaptation Approach to Fast Tune-in in Live Streaming
Abstract
This contribution proposes a server-side dynamic adaptation (SSDA) approach to fast tune-in in live streaming, using the proposed attributes in Section 6.6. This is consistent with the CTA WAVE’s CMCD (Common Media Client Data) effort to communicate CMCD attributes to a streaming server or CDN as part of a HTTP request. While the SSDA approach archives the same objectives and maintains the same amount of server-side processing effort as the approach in the TuC, it has advantages including: minimizing changes to the DASH spec, backward compatibility for DASH clients and servers, and applicability to DASH as well as HLS.
Usage of Tune-in Fast attribute
There are a few scenarios where the Tune-in Fast attribute (see Section 6.6) can be used as part of an HTTP request (e.g., in the form of a URL query parameter or an HTTP header parameter), and a compliant server/CDN (that understands the attribute) can respond accordingly:
· MPD (first tune-in): response of MIME type, including
· the requested MPD,
· an IS, and
· one or more MS’s;
· IS (initializing tune-in): response of MIME type, including
· the requested IS, and
· one or more MS’s;
· MS (buffering tune-in): response of MIME type, including
· one or more MS’s of segment durations less than or equal to the one of the requested MS, and
· optional “URLs of the subsequent MSs after tuning-in”.

[bookmark: _Ref96070329][bookmark: _Toc148716063]Agreed direction at the 136th MPEG meeting for m57982 and m58176 together
During the discussion of m57982 and m58176, the direction summarized below was agreed:
1) Operations:
· When you request the MPD, you add an HTTP header that tells the server
· that you accept a multi-part MIME along with MPD and
· that you want to join at the live edge
· Then the server can decide to push an MPD alone or a multipart MIME.
· Smart servers will respond positively
· Smart clients can make use
· If something goes wrong, you always have a fallback
2) What we can define in MPEG-DASH:
· HTTP request header that carries information that enables the above operations
· A possible restriction on what can be added to the response: MPD, Video IS, Audio IS, Video MS, Audio MS
· HTTP response header that carries the necessary information for derivation of the URL of the next MS
Details of a solution should be worked out during the AHG period after the 136th MPEG meeting, for review either at an AHG meeting before the 137th MPEG meeting or at the 137th MPEG meeting.
[bookmark: _Toc148716064]HTTP header extensions for minimizing initialization delay (m58909 and m58899)
A method based on HTTP header extensions from m58909
This section describes a design for initialization delay optimization based on HTTP header extensions. The design involves the use of a MIME multipart message for enabling a client to tune in to a live streaming session with only one round-trip of request/response, based on three proposed HTTP headers. The design was based on the direction agreed at the 136th MPEG meeting as described in Section 11.2.3.
The design consists of the following parts:
1) Firstly, a DASH Tuning-In Method is defined, with the following client and server operations:
a. As a client, when the DASH Tuning-In Method is enabled, it notifies the server that it enables this method when requesting the MPD file, by including a Dash-Tuning-In-Enabled HTTP header equal to 1 within the request. If the client gets a confirmation that the server also enables the DASH Tuning-In Method, the client parses a MIME multipart message sent by the server, reads files within the different parts of the MIME multipart message, and uses those files to initialize the player and start playing.
b. As a server, when the DASH Tuning-In Method is enabled, it sends a response with a Dash-Tuning-In-Enabled HTTP header equal to 1, and the response also includes the requested MPD file and all other files (e.g., an MPD, one or more ISs, and one or more MSs) a client needs to tune into the live streaming session, by using a MIME multipart message.
2) Secondly, the following three HTTP headers are defined:
a. Dash-Tuning-In-Enabled: Used to tell the receiver of this header whether the sender of this header enables the DASH Tuning-In Method. The DASH Tuning-In Method is enabled for a streaming session only when both the client and the server enable the method. The DASH Tuning-In Method is considered enabled for the sender of this header if and only if the value of this header is set to 1, and any other value or the absence of this header indicates that the DASH Tuning-In Method is disabled for the sender of this header.
b. Origin-Dash-Tuning-In-Segment: Used to notify which segments should be included in a MIME multipart message when the DASH Tuning-In Method is in use.
c. Dash-Tuning-In-File-Type: Used to tell the file types of the files in a MIME multipart message. The valid values are MPD (Media Presentation Description), IS (Initialization Segment) and MS (Media Segment).
The following figure shows an example response that includes 5 files in one MIME multipart message: the MPD, two ISs (audio and video), and two MSs (audio and video).
[image: Text

Description automatically generated]
Figure: Example of a DASH Tuning-In Method response
The design also supports CDN based streaming operations, as described below.
When the client starts to tune in to a live streaming session, it requests the MPD file with the HTTP header Dash-Tuning-In-Enabled and value is set to 1. If the CDN’s edge server accepts to use the DASH Tuning-In Method, it includes the HTTP header Dash-Tuning-In-Enabled in the response and sets the value to 1 and includes the requested MPD file and all other files needed for tuning in, using a MIME multipart message. For each file within the MIME multipart message, the server should indicate the file type using the Dash-Tuning-In-File-Type header.
The CDN may not be able to decide what files should be included in the MIME multipart message. In this case, the origin server needs to notify the CDN what files should be included, by carrying the URLs of those files with the Origin-Dash-Tuning-In-Segment headers when the origin server sends a MPD file to the CDN. Then the CDN’s edge server includes the files into the MIME multipart message in the order as they are listed in the Origin-Dash-Tuning-In-Segment headers. If any needed file is absent in the cache of the CDN’s edge server, the edge server requests for that from the origin server.
The CDN may not be able to know the types for those files. In this case, the origin server needs to send these to the CDN by using the Dash-Tuning-In-File-Type header when sending each file to the CDN. Then the CDN’s edge server should include the Dash-Tuning-In-File-Type header in the multipart message headers, e.g., as shown in the example in the following figure, which shows the process of the DASH Tuning-In Method using a CDN when the needed files are not cached.
[image: A picture containing shape

Description automatically generated]
Figure: Process of the DASH Tuning-In Method using a CDN when the needed files are not cached
The client operation when receiving a response is the same as the case when the response comes directly from the origin server.
The "join live" message from m58899
The contribution, m58176 [2], proposed the following two parameters (with some reforming):

	Description
	Parameter Name
	Header Name
	Type & Unit
	Value Definition

	Join Live
	'jilv'
	Request
	Boolean
	Indication of the media request for joining into a live event, due to initial join and seeking to the live edge of the event.

	Tune-in Fast
	'tift'
	Request
	Boolean
	Indication of the media request for tuning into a stream as fast as possible.

The contribution also showed the following three usage scenarios (reformulated in the table format) of the Tune-in Fast parameter as part of an HTTP request (e.g., in the form of a URL query parameter or an HTTP header parameter), together with response from a compliant server/CDN (that understands the parameter):

	HTTP Request
	HTTP Response (multi-part MIME)
	Purpose

	MPD (Media Presentation Description)
	· the requested MPD
· an IS
· one or more MS’s
	First tune-in

	IS (Initialization Segment)
	· the requested IS
· one or more MS’s
	Initializing tune-in

	MS (Media Segment)
	· one or more MS’s of segment durations less than or equal to the one of the requested MS
· optional “URLs of the subsequent MSs after tuning-in”
	Buffering tune-in

Disposition at 137th Meeting: “One of the messages, "Tune-in fast" is similar to #239. Partially accepted to TuC: we add the "join live" as a candidate message”.
Note. Thus, the “Tune-in Fast” parameter needs to be merged, in terms of its type and semantics, with the parameters proposed in m58909 for the same purpose of tune-in fast, and “Join Live” one shall be considered for the purpose of join live.

[bookmark: _Toc148716065]Shortening tune-in time (m56798)
[bookmark: _Toc148716066]Introduction

Any encoding scheme using inter-frame prediction introduces a tune-in delay. In particular, when GOP coding structure is used, joining a live session is only possible at a GOP boundary. This creates a trade-off: shorter GOPs result in loss of compression efficiency; longer GOPs result in longer tune-in delays. Moreover, these delays become hard to predict if variable GOP durations are used – typically GOP boundaries aligning with scene cuts produce better results than fixed-duration GOP structures.

One approach to get faster tune-in and hence finer grain random access is the Resync element. Resync will let the player estimate locations of switch points inside a segment, i.e. subsegments (CMAF chunks) which start with a key frame. In the best case the player is able to guess the location well and issue a byte-range request to get close to the switch point's previous key frame and start decoding from there.

The limitations of the Resync approach are (a) expectation of a regular cadence of key frames (while variable segment duration is known to be beneficial), (b) lack of byte range support, and (c) reliance on relatively frequent key frames which negatively impacts compression efficiency, especially when sub-500ms frequency is needed.

Fast join and frame-accurate transitions can be achieved by using different adaptation sets for joining or transitioning and for normal playback. This has been discussed as a part of the DASH-IF low latency work. The “join” adaptation set(s) will have shorter segments than the “main” adaptation sets and will be arranged such that each “main” adaptation set boundary corresponds to “join” adaptation set boundary. The client starts from downloading segments from the “join” adaptation set until it reaches the boundary of the “main” adaptation set. This can be formalized as a “ladder” of special-purpose join adaptation sets, as shown in Figure 1 below.

[image:]
Figure 1: Ladder-based fast join
In the example below there are two “join” adaptation sets, J0 and J1 aligned such that for any segment in J1 with EPT=X, there will be a segment with the same value of EPT in J0. The segment duration in J0 is very short (e.g. a single I frame, or a 4-frame IBBB structure), and J1 has longer segments (e.g. 8 or 16 frames). Lastly, there is the “main” adaptation set M, which is aligned with the “join” adaptation sets such that for every segment in M with EPT=Y, there will be segments with EPT=Y in both J0 and J1

At the start of playback, the client will start with a number of segments from J0 and switch to J1 whenever the boundary of a J1 segment in is encountered. Similarly, the client will switch to a segment from adaptation set M whenever the segment start is encountered.

“Dirty switches” (described in contribution m56085 sec 3.6) may be beneficial from the bandwidth perspective, as J representations will inevitably be less efficient from the standpoint of compression efficiency.

[bookmark: _Toc148716067]Proposal

All the necessary tools already exist in DASH. The only missing part is signalling the ladder-style segment alignment across adaptation sets.

This can be signalled as an EssentialProperty with a @schemeIdUri of urn:mpeg:dash:adaptation-set-ladder:2021 and a @value specifying the list of adaptation sets with a ladder time alignment. E.g., the @value for adaptation set M will list J0 and J1. The value for J1 will only list J0.

Additionally, the ladder switching requires either presence of SegmentTimeline or precise SegmentTemplate@duration (i.e. each segment except for the last contains fixed number of frames). This is needed for “climbing up the ladder” since there are multiple segments in the “join” representation for the timespan of a single “main” segment, and the number of “join” segments per each “main” segment is not constant.

The above doesn’t work well in conjunction with low latency, as it relies on MPD signalling. In order to accommodate the use case we propose introducing inband event with schemeIdUri of urn:mpeg:dash:adaptation-set-ladder:2021
The event payload will consist of an adaptation set switch table listing one or more switching point for a given presentation time. In some cases (such as chunked CMAF), a CMAF fragment may comprise multiple subsegments, hence in addition to switch time we may need byte offset to address the particular subsegment.

The adaptation set switch table would be structured as follows:

aligned(8) struct AdaptationSetSwitchingTable {
 unsigned int(8) num_adaptation_sets
 struct {
 string adaptation_set_id;
 int(3) SAP_type;
 int(1) subsegment_flag
 int(4) reserved = 0
 if (subsegment_flag) {
 int(64) subsegment_offset;
 }
 } [num_adaptation_sets];
}

Semantics:

adaptation_set_id: AdaptationSet@id of an adaptation set which has a SAP of a given type at presentation time of the event.
SAP_type: SAP type, per ISO/IEC 14496-12. For any SAP type other than 1 or 2, the switch is a “dirty switch” (as defined in contribution m56085 sec 3.6). Error propagation and artefacts may occur after such a switch, Encoder-level measures such as periodic intra refresh, joins at mini-GOP boundaries, and reducing age of references may be used to reduce error propagation.
subsegment_offset: offset from the start of the segment containing the presentation time to the first byte following the last byte of the `mdat` box of the previous segment (i.e., combined size of all preceding subsegments)

In order to accommodate “dirty” switches, we may need additional signaling to indicate maximum reference age (similar to the definition of SRAP in SCTE 128) in order for the client to make sure that correct pictures will be in the decoded picture buffer by the time the switch is made. This can be signalled as an EssentialProperty with a @schemeIdUri of urn:mpeg:dash:max-reference-age:2021 and a @value specifying the minimum amount of samples (in unit of timescale) needed to guarantee that the decoded picture buffer contains all reference frames needed for decoding any sample within any segment will already be in the decoded picture buffer.
[bookmark: _Toc148716068]Potentially finer-grain random access in DASH by using streams with gradual refresh and recovery_point() SEIs (m56891)

[bookmark: _Toc148716069]Summary
This contribution brings information about a somewhat less known feature of MPEG video standards, known as recovery_point SEIs, and explains how they can be potentially used in MPEG-DASH for the purpose of providing random access capability without inserting additional IDR frames.

[bookmark: _Toc148716070]Gradual refresh and Recovery Point SEIs in MPEG and ITU-T video standards
It is well known that gradual intra-refresh was a feature of pretty much all video codecs since ITU-T H.263 and MPEG-1 standards. For example, most remember the requirement to refresh each macroblock as intra coded one once in at most 256 frames in those early standards. In practice, such refresh was often enforced to occur even more often.

The initial need in gradual refresh functionality was driven by lossy media or networks used for video storage and transmission, and where by introducing more intra-coded macroblocks the streams were made more “resilient” to such errors. Additional reasoning for intra refresh was coming from non-exact definition of IDCT and desire to minimize potential drift that may be caused by different decoder implementations.

But moving forward to video standards today (MPEG-4 AVC and HEVC standard), we discover that gradual refresh is still supported, and in fact, often used in practice. New common applications of this functionality are streams coded for satellite TV transmission, low-latency contribution feeds, sports events production workflows, etc.

Furthermore, we find that modern standards offer specific SEIs, so-called Recovery Point SEIs, that allow decoders to join streams at certain points where there is no IDR frame inserted, but where is known that the following sequence of frames (P- or B-coded) has a sufficient density and placement of gradually updated picture elements (macroblocks or CUs) that would enable successful decoding and joining the stream. Furthermore, the semantics of recovery point SEIs provides exact instructions for decoder implementations on how to treat missing references and other stream elements such that decoding will be successful. In other words, the behavior of decoders in joining streams at Recovery Point SEIs becomes fully defined by standards. Additional details about syntax and semantics of recovery point SEIs in modern standards is provided in Appendix A at the end of this contribution.

As mentioned earlier, we have observed that there are many existing deployments of video systems using this functionality, and that most commercial video equipment nowadays is supporting it. This includes modular receiver-decoders, contribution encoders, distribution encoders/transcoders, etc.

An example of a production stream using this functionality and the resulting decoder behavior is illustrated in a sequence of figures below. All figures have been produced as screenshots of elementary stream analyzer (Elecard StreamEye) used to decode and visualize the sequence:

[image:]

Fig 1. First frame after Recovery Point SEI. It is seen that only a vertical bar of about 5 macroblocks in width are Intra-coded, while rest of picture represents coded residual.

[image:]

Fig 2. Second frame after Recovery Point SEI. It is seen that now about 10 macroblocks at the left are cleanly decoded.

[image:]
Fig 3. Frame 14 after Recovery Point SEI. It is seen that now about half of frame is cleanly decoded.

[image:]

Fig 4. Frame 28 after Recovery Point SEI. It is seen that now the entire frame is fully reconstructed and clean decoding follows from this moment on.

As can be easily grasped from the above example, the Recovery Point SEIs do provide an alternative random-access functionality in video streams. This method is well supported by existing commercial encoders and decoders in broadcast industry.

[bookmark: _Toc148716071]Potential application of this functionality in MPEG-DASH

We believe that streams with gradual refresh and Recovery Point SEIs could potentially be used in MPEG DASH. The random-access points corresponding to Recovery Point SEIs can possibly be defined as SAP type 4 random access points.

But of course, a mixed use of IDR-frame based (SAP type 1) and gradual refresh (SAP type 4) can also be envisioned and discussed.

Appendix A. Syntax and Semantics of the recovery point SEI

Below is the definition of syntax and semantic of recovery_point() SEI in MPEG-4 AVC/ITU-T Rec. H.264 standard [2]. The MPEG-H HEVC / ITU-T Rec. H.265 standard [3] provides essentially the same definitions.

[image:]

D.2.8 Recovery point SEI message semantics
The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the coded video sequence. When the decoding process is started with the access unit in decoding order associated with the recovery point SEI message, all decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are indicated to be correct or approximately correct in content. Decoded pictures produced by random access at or before the picture associated with the recovery point SEI message need not be correct in content until the indicated recovery point, and the operation of the decoding process starting at the picture associated with the recovery point SEI message may contain references to pictures not available in the decoded picture buffer.
In addition, by use of the broken_link_flag, the recovery point SEI message can indicate to the decoder the location of some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process was begun at the location of a previous IDR access unit in decoding order.
NOTE 1 – The broken_link_flag can be used by encoders to indicate the location of a point after which the decoding process for the decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the pictures that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed during the generation of the bitstream).
The recovery point is specified as a count in units of frame_num increments subsequent to the frame_num of the current access unit at the position of the SEI message.
NOTE 2 – When HRD information is present in the bitstream, a buffering period SEI message should be associated with the access unit associated with the recovery point SEI message in order to establish initialization of the HRD buffer model after a random access.
Any picture parameter set RBSP that is referred to by a picture associated with a recovery point SEI message or by any picture following such a picture in decoding order shall be available to the decoding process prior to its activation, regardless of whether or not the decoding process is started at the beginning of the bitstream or with the access unit, in decoding order, that is associated with the recovery point SEI message.
Any sequence parameter set RBSP that is referred to by a picture associated with a recovery point SEI message or by any picture following such a picture in decoding order shall be available to the decoding process prior to its activation, regardless of whether or not the decoding process is started at the beginning of the bitstream or with the access unit, in decoding order, that is associated with the recovery point SEI message.
recovery_frame_cnt specifies the recovery point of output pictures in output order. All decoded pictures in output order are indicated to be correct or approximately correct in content starting at the output order position of the reference picture having the frame_num equal to the frame_num of the VCL NAL units for the current access unit incremented by recovery_frame_cnt in modulo MaxFrameNum arithmetic. recovery_frame_cnt shall be in the range of 0 to MaxFrameNum − 1, inclusive.
exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order derived by starting the decoding process at the access unit associated with the recovery point SEI message shall be an exact match to the pictures that would be produced by starting the decoding process at the location of a previous IDR access unit in the NAL unit stream. The value 0 indicates that the match need not be exact and the value 1 indicates that the match shall be exact.
When decoding starts from the location of the recovery point SEI message, all references to not available reference pictures shall be inferred as references to pictures containing only macroblocks coded using Intra macroblock prediction modes and having sample values given by Y samples equal to (1 << (BitDepthY − 1)), Cb samples equal to (1 << (BitDepthC − 1)), and Cr samples equal to (1 << (BitDepthC − 1)) (mid-level grey) for purposes of determining the conformance of the value of exact_match_flag.
NOTE 3 – When performing random access, decoders should infer all references to not available reference pictures as references to pictures containing only intra macroblocks and having sample values given by Y equal to (1 << (BitDepthY − 1)), Cb equal to (1 << (BitDepthC − 1)), and Cr equal to (1 << (BitDepthC − 1)) (mid-level grey), regardless of the value of exact_match_flag.
When exact_match_flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding process and is not specified by this Recommendation | International Standard.
NOTE 4 – Under some circumstances, the decoding process of pictures depends on the difference DiffPicOrderCnt(picA, picB) between the PicOrderCnt() values for two pictures picA and picB. However, no particular values of TopFieldOrderCnt and BottomFieldOrderCnt (as applicable) are specified to be assigned to the reference pictures that are not available due to the initiation of random access at the location of a picture associated with a recovery point SEI message. Also, no particular value has been specified for initialization (for random access purposes) of the related variables prevPicOrderCntMsb, prevPicOrderCntLsb, prevFraneNumOffset, and prevFrameNum. Thus, any values for these variables may be assigned that could hypothetically have resulted from operation of the decoding process starting with a hypothetical preceding IDR picture in decoding order, although such values may not be the same as the values that would have been obtained if the decoding process had started with the actual preceding IDR picture in the bitstream. When performing random access at a picture associated with a recovery point SEI message, it is suggested that decoders should derive the picture order count variables TopFieldOrderCnt and BottomFieldOrderCnt according to the following method:
– A bit range greater than 32 bits should be allocated for the variables TopFieldOrderCnt and BottomFieldOrderCnt for each current picture to be decoded, as well as for the intermediate variables used for deriving these variables as specified in clause 8.2.1. (Due to the lack of assurance of correspondence of the values used for initialization of the related variables when random access is performed to the values that would be obtained if the decoding process had begun with the preceding IDR picture in decoding order, the calculations involving these variables in the decoding process of subsequent pictures may result in violation of the 32 bit range.)
– Any value within in the range of −231 to 231 − 1, inclusive, may be assigned to the values of the variables TopFieldOrderCnt and BottomFieldOrderCnt of the reference pictures that are not available due to the random access operation. For example, the value 0 may be assigned to these variables.
– For the derivation of the picture order count variables for the picture at which random access is performed, prevPicOrderCntMsb may be set equal to any integer multiple of MaxPicOrderCntLsb in the range of −231 to 231 − 1, inclusive, prevPicOrderCntLsb may be set equal to any value in the range of 0 to MaxPicOrderCntLsb − 1, inclusive, prevFrameNumOffset may be set equal to any integer multiple of MaxFrameNum in the range of 0 to 231 − 1, inclusive, and prevFrameNum may be set equal to any value in the range of 0 to MaxFrameNum − 1, inclusive. For example, the value 0 may be assigned to all of the variables prevPicOrderCntMsb, prevPicOrderCntLsb, prevFrameNumOffset, and prevFrameNum.
When exact_match_flag is equal to 1, it is a requirement of bitstream conformance that the values of the samples in the decoded pictures at or subsequent to the recovery point in output order shall be independent of the values that a decoder assigns to the variables prevPicOrderCntMsb, prevPicOrderCntLsb, prevFrameNumOffset, and prevFrameNum used in clause 8.2.1 for deriving the picture order count variables for the initialization of the decoding process at the picture associated with the recovery point SEI message, and of the values that are assigned to the TopFieldOrderCnt and BottomFieldOrderCnt variables of the reference pictures that are not available due to the random access operation.
broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the recovery point SEI message and is assigned further semantics as follows:
– If broken_link_flag is equal to 1, pictures produced by starting the decoding process at the location of a previous IDR access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to the access unit associated with the recovery point SEI message in decoding order should not be displayed until the specified recovery point in output order.
– Otherwise (broken_link_flag is equal to 0), no indication is given regarding any potential presence of visual artefacts.
Regardless of the value of the broken_link_flag, pictures subsequent to the specified recovery point in output order are specified to be correct or approximately correct in content.
NOTE 5 – When a sub-sequence information SEI message is present in conjunction with a recovery point SEI message in which broken_link_flag is equal to 1 and when sub_seq_layer_num is equal to 0, sub_seq_id should be different from the latest sub_seq_id for sub_seq_layer_num equal to 0 that was decoded prior to the location of the recovery point SEI message. When broken_link_flag is equal to 0, the sub_seq_id in sub-sequence layer 0 should remain unchanged.
changing_slice_group_idc equal to 0 indicates that decoded pictures are correct or approximately correct in content at and subsequent to the recovery point in output order when all macroblocks of the primary coded pictures are decoded within the changing slice group period, i.e., the period between the access unit associated with the recovery point SEI message (inclusive) and the specified recovery point (inclusive) in decoding order. changing_slice_group_idc shall be equal to 0 when num_slice_groups_minus1 is equal to 0 in any primary coded picture within the changing slice group period.
When changing_slice_group_idc is equal to 1 or 2, num_slice_groups_minus1 shall be equal to 1 and the macroblock-to-slice-group map type 3, 4, or 5 shall be applied in each primary coded picture in the changing slice group period.
changing_slice_group_idc equal to 1 indicates that within the changing slice group period no sample values outside the decoded macroblocks covered by slice group 0 are used for inter prediction of any macroblock within slice group 0. In addition, changing_slice_group_idc equal to 1 indicates that when all macroblocks in slice group 0 within the changing slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to the specified recovery point in output order regardless of whether any macroblock in slice group 1 within the changing slice group period is decoded.
changing_slice_group_idc equal to 2 indicates that within the changing slice group period no sample values outside the decoded macroblocks covered by slice group 1 are used for inter prediction of any macroblock within slice group 1. In addition, changing_slice_group_idc equal to 2 indicates that when all macroblocks in slice group 1 within the changing slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent to the specified recovery point in output order regardless of whether any macroblock in slice group 0 within the changing slice group period is decoded.
changing_slice_group_idc shall be in the range of 0 to 2, inclusive.
[bookmark: _Toc148716072]References
1. ITU-T Rec. H.263, Feb 1998.
1. ISO/IEC 13818-2 | ITU-T Rec. H.262, MPEG-2 Video, Jul. 1995.
1. ISO/IEC 14496-10 | ITU-T Rec. H.264, Advanced Video Coding, Dec. 2003.
1. ISO/IEC 23090-3 | ITU-T Rec. H.266, Versatile Video Coding, DIS, Jul 2020.

[bookmark: _Toc148716073]Combining multiple simultaneous HTTP GET requests (m62627)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/347
NOTE: A generic solution for combining HTTP requests to a CDN must be provided (independent to DASH) and that is outside of the DASH scope.
[bookmark: _Toc148716074]Introduction

A typical DASH streaming session involving video, audio and subtitles generates at least 2-3 HTTP GET requests (video, audio, possibly subtitles) for each segment duration. Typical real-life live implementations also request an MPD per each segment duration to accommodate dynamic ad insertion, although per-session (uniquitously used for VOD) and asynchronous (live, very rarely found in the wild) modes of operation. Additional GET requests are issued for initialization segments at least at the beginning of the session, period playback start or (frequently) at representation switch. All of these are typically made concurrently and often end up at the same CDN node. Combining these requests to a single one reduces the number of simultaneous GET requests by order of magnitude. This becomes significant when a popular linear stream results in tens of thousands of near-simultaneous GET requests which results in increased load on a CDN edge node being accessed.

Section 8 of the DASH TuC describes a potential implementation of fast tune-in and proposes coalescing multiple requests in a TIMS (latest segment + initialization segment), which achieves the above for a narrower use case of starting the presentation. An additional issue with that technology is that the CDN is expected to know what the current segment is, which requires increased compute on the CDN edge.

[bookmark: _Toc148716075]Proposal
Introduction
We propose a generalized model which combines more requests and shifts the DASH-specific computational burden to the client.

This is achieved by including multiple segment URLs as query parameters to a single “combined” URL. The CDN can then construct a combined response and send it as a multipart MIME response, with arbitrary ordering of requested resources. The computational load on the CDN edge is far smaller – it needs to parse the query parameters, translate them into proper URLs, and request them. The combined request construction (including the determination of “now” segments) is done by the client. Comcast practice shows that in most cases players use the highest quality video, and there is typically only one main audio. As a result, a combination of a primary audio, MPD, and highest rate video has very high chances of being requested and is thus cacheable for a short period of time when it is being requested. As a result, per-request computation is no longer needed except for the initialization segment case. Even there the logic is minimal – at a cache miss the request will be broken into discrete URLs which are highly likely to be cached.

An additional benefit is more efficient use of network bandwidth. For example, an MPD patch (~300 bytes when compressed) and initialization segments (<400 bytes compressed w/o pssh) themselves are typically smaller than an Ethernet frame. Beyond that, a large portion of HTTP headers would be the same across multiple requests and are thus redundant. While these savings are relatively modest, they still matter as in our experience the number of Ethernet frames per second is the bottleneck for the CDN (rather than storage which is relatively modest for linear streams).

There are several precautions needed to be taken for such an approach to work:
· There needs to be a per-CDN (i.e., per service location) indication of expected support for the feature.
· There may be a desire to cache these combined requests, and keeping all combinations of segments may b combinatorily prohibitive.
· Segments and MPDs can be served from different CDNs.
Syntax
Query parameter syntax

The combined GET request syntax would be “?DASH_CR=<comma-separated list of relative URLs for segments/mpds>”. The relative URLs are relative to the URL in CombinedRequest@combinedRequestUri.
Response syntax

The response will have MIME type of multipart/related.

Each part of the response will be a full response body for each of the relative URLs listed in the DASH_CR parameter. The Content-ID header for each of these parts shall contain the corresponding relative URL.

In case one or more (but not all) parts of the response are not available, the corresponding part will not be included at all.
CombinedRequest

The CombinedRequest element describes options for combining multiple requests. The purpose of the element is to indicate that a given CDN or set of CDNs supports combined requests.

	Element or Attribute Name
	Use
	Description

	
	
	CombinedRequest
	
	specifies limitations on combine segment request

	
	
	
	@serviceLocations
	CM
	specifies a space-delimited list of service locations to which this element applies. Possible values are values of @serviceLocation attribute in BaseURL, Location, or PatchLocation elements, or “*”. The latter value indicates that CMSD can be expected from BaseURL, Location, or PatchLocation.
Default: “*”

	
	
	
	@combinedRequestUri
	M
	URL for combined request endpoint.

	
	
	
	@ttl
	O
	specifies how long would the combined request be available relative to the segment availability time. This TTL shall not exceed the timeshift buffer. If the attribute is absent, the combined request can be requested any time.

	
	
	
	@requests
	CM
	specifies which combinations of init segments, segments, MPDs, and MPD patches can be requested in the combined request.
Possible values:
 0: segments only
 1: segments and MPDs
 2: segments and MPD patches
 3: segments, MPDs, and MPD patches
 4: init segments and segments
 5: init segments, segments and MPDs
 6: init segments, segments and MPD patches
 7: init segments, segments, MPDs, and MPD patches
Default: 0

	
	
	
	Set
	0 or 2..N
	specifies set of representations of the same type which can be used with combined requests.
If not present, any combination of representations of different types is allowed.

	Key
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold preceded with an @, List of elements and attributes is in italics bold referring to those taken from the Base type that has been extended by this type.

	

Set
The Set element expresses a restricted set of representations of the same type usable for combined requests. If there are no restrictions (i.e., any two representations of different content types can be requested jointly), the element shall not be present. Otherwise, at least two Set elements shall be present, and the possible combinations are a Carthesian product of the representations expressed in each Set element.

Examples:
· Allow combined requests only for the highest resolution video and the primary multi-channel audio (as these are the highest probability requests).
· Allow all combinations, but without using accessibility (hearing or visual impaired) audio tracks and trick mode video representations which both have a very low probability of being used and hence can be fetched individually.

	Set
	
	specifies representations included or excluded from combined requests

	
	@includeAdaptationSets
	CM
	specifies a space-delimited list of adaptation sets for which any representation can be used in a combined request. The adaptation sets shall be listed as AdaptationSet.id attribute values.
Included adaptation sets shall not be listed in any sibling Set element.
Mandatory if the @includeRepresentations or @excludeRepresentations attribute is not present.

	
	@excludeAdaptationSets
	CM
	specifies which adaptation sets shall be explicitly excluded from combined requests. Shall not be present if the @includeAdaptationSets attribute is present.

	
	@excludeRepresentations
	CM
	Specifies which representations shall be explicitly excluded from combined requests.
Shall not be used if the @includeRepresentations attribute is present

	
	@includeRepresentations
	CM
	specifies a space-delimited list of representations which can be used in combined requests. Representations are specified as values of Representation.id.
Mandatory if the @adaptationSets attribute is not present.
In case the @adaptationSets attribute is present, the representations listed in this attribute shall not belong to any of the listed adaptation sets.

	Key
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold preceded with an @, List of elements and attributes is in italics bold referring to those taken from the Base type that has been extended by this type.

[bookmark: _Toc148716076]Clarifying pre-roll signaling for seamless content splicing across MPEG-DASH Periods (m56890)
Note: the issue of audio prerolling during period transitioning is being discussed in ISOBMFF as well as CMAF. We will investigate how it should be the best to address.
[bookmark: _Toc148716077]Introduction

In our experiments on splicing, DASH-ing, and playing content back we have encountered issues to provide the required information to the playback device to provide a perfect experience (from a Systems perspective). These issues may happen with audio, video, and other media as well.

Splicing points may be mandated whenever the most suitable from a system-level perspective i.e. at segment boundaries or when SAP types 1 or 2 occur. However, this is not always possible or desirable (e.g. because it would require to re-process the content or e.g. because for historical reasons SAP Types are not well signaled).

For these use-cases we realized that MPEG-DASH (and other HTTP Adaptive Streaming (HAS) technologies) is missing signaling to allow a player to get some context information that is needed to reconstruct the container-advertised content.

[bookmark: _Toc148716078] Related contributions

Contributions m55420 (October 2020) and m55478 (liaison letter from DVB) raise questions around the correct usage of DASH multi-period with regards with content continuity. Both contributions raise pragmatic questions. The present contribution aims at apprehending the same category of issues from a more generic perspective.

[bookmark: _Toc148716079]Discussion
[bookmark: _Toc148716080]Pre-roll context

Issues when splicing occur when the splice point doesn’t respect the SAP Type 1 or 2 constraints. Then the effective presentation duration may differ from the presentation duration advertised at the container and MPD levels because the player (in particular an elementary stream decoder) doesn’t have the decoding context which would allow to fully decode the segment, ensuring a perfect playback experience.

The difference between the decoded data duration and the presentation duration is usually handled using edit lists. In this case the edit list entries serve both to compensate some introduced delays as well as adjusting the duration (hence discarding data that is not intended to be presented).

Usually, a single decoder is used to decode a single content. Hence a single initialization segment can contain some general information about the processing of this non-presented data.

As SAP Types postdates the introduction of encoding technologies using pre-roll some streams (typically audio ones) are still commonly signaled as SAP Type 1 while this is not correct.

The pre-roll information should be present inside the container in conformance to the applicable standards.

[bookmark: _Toc148716081]Use-cases
[bookmark: _Toc148716082]Ad insertion using multiple Periods

In this use case, advertisement content (Period #2) is inserted in the middle of a main content (Periods #1 and #3). When switching back from the ad to the main content some players may need to reinitialize themselves. In this case the pre-roll information and associated data shall be present to ensure a perfect playback experience.

In current HAS deployments, this pre-roll data is located in a previous segment whose URL is unknown at the HAS layer, as it requires identifying the pre-roll count of the first sample of the new segment to play.

[bookmark: _Toc148716083]Open-GOPs splicing

Open-GOPs have been largely avoided by the industry due to the lack of proper description of how to handle them. As codecs using similar mechanisms become more widespread, the information about how to reconstruct a full signal over the advertised period is more necessary.
[bookmark: _Toc148716084]Discussions

There are two possible approaches to solve this issue:
· Identify pre-roll data as part of the HAS manifest.
· Embed pre-roll data in media segments.

Working at the manifest level has the following benefits:
· No changes required to media segments.

Working at the manifest level has the following drawbacks:
· Pre-roll URL needs to be indicated for each switching point, i.e. potentially for each segment.
· The system is dependent of the length of the time-shift buffer and requires the past segment containing the pre-roll content to be available; this is usually not the case in broadcast environments such as ROUTE.
· The solution will have to be declined for each possible manifest formats.
· The URL might not be fine-grained enough, resulting in fetching more data than needed (potentially a full segment or subsegment), i.e. the moof+mdat identified is much larger than the pre-roll data. Reducing the duration of subsegments to match the pre-roll duration is possible but will increase the overhead (for AAC, this could mean one moof+mdat per AAC frame).
· It requires the initialization segment (in the case of ISOBMFF) to be the same between the pre-roll segment and the actual segment, or a fetch of the previous init segment to parse the pre-roll data.

Working at the segment level has the following benefits:
· Independent from the HAS solution (DASH, HLS, pure CMAF).
· Only the required pre-roll data is copied in the media segment, lowering overhead when switching.

Working at the segment level has the following drawbacks:
· It requires update to the media segment parsing.
· It may require updates of the media pipeline, or an adaptation layer reformatting the segment at switch point.
· The solution will have to be declined for each possible segment formats
· Duplication of media data.

A third approach, specific to MPEG-DASH, could be to use the BitstreamSwitching segment, currently not defined for ISOBMFF. Such a bitstream switching segment would only contain the pre-roll AUs, formatted according to the current init segment. It will still result in media duplication, but does not require any modification to the media segment.

A fourth approach, only valid for splice-out case (main content resume), would be to not use period continuity signaling and copy over the pre-roll data in the first segment of the new period.

[bookmark: _Toc148716085]Conclusion

We believe it is MPEG responsibility to address these issues urgently, and kindly request WG3 to investigate possible actions to define guidelines or technical proposals towards a unified, decoding-exact handling of splicing and non-SAP1 switching.

[bookmark: _Toc148716086]Support of picture-in-picture services in DASH (m57431)
[bookmark: _Toc148716087]Abstract
This contribution proposes an extension to the Preselection design for support of the picture-in-picture experience.
[bookmark: _Toc148716088]Introduction
Picture-in-picture services offer the ability to include a picture with a small resolution within a picture with a bigger resolution. Such a service may be beneficial to show two videos to a user at the same time, whereby the video with bigger resolution is considered as the main video and the video with a smaller resolution is considered as the supplementary video. Such a picture-in-picture service can be used to offer accessibility services where the main video is supplemented by another video, e.g., a signage video.
VVC subpictures can be used for picture-in-picture services by using both the extraction and merging properties of VVC subpictures. For such a service, the main video is encoded using a number of subpictures, one of them of the same size as a supplementary video, located at the exact location where the supplementary video is intended to be composited into the main video and coded independently to enable extraction. If a user chooses to view the version of the service that includes the supplementary video, the subpicture that corresponds to the picture-in-picture area of the main video is extracted from the main video bitstream, and the supplementary video bitstream is merged with the main video bitstream in its place, as illustrated in the following figure:
[image:]
Fig. 1: An example of picture-in-picture support based on VVC subpictures
When both main and supplementary bitstreams are available via a DASH-based delivery system, the Preselection may be used to signal main and supplementary bitstreams that are intended to be merged and rendered together.
However, when it comes to use of Preselection for support of the picture-in-picture experience, the following issues have been observed:
1) While it is possible to use a Preselection for the picture-in-picture experience, there lacks an indication of such a purpose.
2) While it is possible to use VVC subpictures for the picture-in-picture experience e.g., as discussed above, it is also possible to use other codecs and methods without being able to replace the coded video data units representing the target picture-in-picture region in the main video with the corresponding video data units of the supplementary video. Therefore, it should be able to indicate whether such replacement is possible.
3) When the above replacement is possible, the client needs to know which coded video data units in each picture of the main video represent the target picture-in-picture region, to be able to perform the replacement. Therefore, this information needs to be signalled.
4) For content selection purpose and possibly other purposes as well, it would be useful to signal the position and size of the target picture-in-picture region in the main video.
This contribution proposes some extensions to the Preselection design for support of the picture-in-picture experience.
[bookmark: _Toc148716089]Proposal
The proposal is summarized as follows:
1) [bookmark: _Hlk75892402]Specify the value "PicInPic" for the @tag attribute of the Preselection element (through the CommonAttributesElements) for indicating the purpose of the Preselection being for providing the picture-in-picture experience.
2) Add an optional element Preselection.Picnpic that contains the following attributes:
a. [bookmark: _Hlk75892701]An optional attribute @dataUnitsReplacable for indicating whether the coded video data units representing the target picture-in-picture region in the main video can be replaced by the corresponding video data units of the supplementary video.
b. [bookmark: _Hlk75885812]An optional attribute @regionIds for indicating which coded video data units in each picture of the main video represent the target picture-in-picture region.
i. In the case of VVC, the region IDs are subpicture IDs and coded video data units are VCL NAL units.
c. [bookmark: _Hlk6566647][bookmark: _Ref14712199]Four optional attributes @x, @y, @width, and @height for signalling the position and size in the main video for embedding/overlaying the supplementary video.
3) Add a subclause as part of the Preselection subclause for introduction of picture-in-picture services and the use of the above information for support of the picture-in-picture experience.
The exact specification text changes are provided in an attachment in the contribution m57431.
[bookmark: _Toc148716090]Discussions at the 135th MPEG meeting
Details of the discussions can be found herein: http://mpegx.int-evry.fr/software/MPEG/Systems/DASH/spec/-/issues/191.

Key points:
1) Currently in the DASH spec there is a Role value "sign" defined for accessibility. The closed signing (see ATSC A/300 clause 5.3.5) as a Role value seemed relevant.
2) For simple cases, e.g., when there is only one "main" video Adaptation Set and only one "sign" video Adaptation Set, implicit association of the two video Adaptation Sets using the Role values "main" and "sign" can be sufficient for associating the two video Adaptation Sets.
3) Regarding the indication of the purpose of a Preselection being for "picture-in-picture", it was commented that tags are application-specific and are not defined in DASH. Thus defining a specific Role value would be better for this.
4) Regarding the attribute @dataUnitsReplacable, it was suggested to define different Role schemes for this or a descriptor instead of using an attribute as this is application logic. Similarly, for the attributes @regionIds, @x, @y, @width, and @height, defining descriptor scheme(s) was also suggested for a similar reason.
a. It was suggested that if such design principles/guidelines are not yet clearly documented in the spec, it would probably be good to document them somewhere in the DASH spec.
5) If possible, consider finding a better term than "picture-in-picture".
[bookmark: _Toc148716091]Discussions at the 136th MPEG meeting
Based on the received contributions (m57983, m58144, and m58177) and discussion during the meeting, we agreed on the following:
1. Preselection element can be used for describing two or more adaptation sets being used for main and pip videos.
2. For explicitly defining this Preselection for "picture in picture", a value "pip" for Role descriptor can be used. If additional information is needed, and if a descriptor is used for signaling that info, then value "pip" is not needed.
3. In the case of the single VVC decoder, no additional information such as x, y, width, .. is needed, because it relies on the VVC subpicture configuration. We need to work on the examples. The subpicture IDs must be signaled in DASH. This method should be applicable to future codecs that support the single decoder case.
4. In the case of multiple decoders, explicit rendering signaling (such as x, y, width, height, and possibly z-order) may not be needed, but might be desirable. This does not need to be part of the core DASH specification and different solutions may be used such as SRD, scene description, file format, application.
1, 2, and 3 are agreed to be provided as part of the DASH standard. 4 is still open for discussion.
[bookmark: _Toc148716092]ReThinking Picture in Picture (m58924)

The extend of the PIP use cases can be wide. For instance:
1. Accessibility: the signed language video overlay on the main video
1. Monitoring one or more channels for the desired program while watching the current channel
1. Grid of PIP videos over the main video

One important question is to ask is whether PIP experience is a client created experience or a server created experience:
1. In a client-created experience, the server only provides the components and the client application creates the experience for the user.
1. In a server-created experience, the experience is completely prescribed by the application server to the client and the client renders that experience accordingly.

The translation of the above in DASH would be whether the MPD should only provide the media components of the experience, or it should prescribe how the components are rendered together.

The following table compares these two approaches in the context of DASH.

	
	DASH-enabling-PIP
	DASH-Prescribing-PIP

	High-level description
	The media components described in the MPD are annotated and their properties are described so that the experience can be built by the Application in the client.
	The MPD prescribes the composition of the media components, and the client renders the scene based on this prescription.

	Benefits
	· Flexibility
· Extendibility
· Simplicity
	Conforming experience in all clients

	Drawbacks
	· Lack of interoperability at the experience
	For each new use case, new extensions may be needed.

	Application suitability
	· Dynamic positioning of PIP
· More than one PIP

	Signed language PIP

Since DASH is a delivery standard, arguably the MPD providing the components and relying on the application to build the PIP experience seems more suitable. The only exception is the signed language PIP, which is useful for accessibility and should/could be prescribed in MPD.

[bookmark: _Toc148716093]The Requirements
[bookmark: _Toc148716094]DASH Enabling PIP requirements
The following requirements are suitable for this approach:
1. Signaling the regular channel video adaptation set: Signaling which adaptation sets are regular channels.
1. Signaling if an adaptation set is intended for PIP: while the resolutions can indicate that, explicit signaling of this property may be useful for the client-side applications.
1. Signaling if an adaptation set has multiple subpicture components, i.e. one or more substreams that can be replaced by another substream for creating PIP in a single decode.
[bookmark: _Toc148716095]DASH Prescribing PIP requirements
The following requirements seem suitable for this approach:
1. Describing which adaptation sets are used as main and PIP.
1. Describing if any bitstream manipulation is needed for feeding the streams to a single decoder
1. Potentially describing the scene, i.e. the locations and sizes of the PIP components on the main video.
[bookmark: _Toc148716096]Potential solutions
We suggest the following approach:
1. Address the DASH-Enabling-PIP since it enables more than one specific experience.
1. Potentially address the signed language use case using the DASH-Prescribed-PIP but keep the solution very focused.

The following table summarizes the possible solution for the above approach.
	Approach
	Requirement
	Proposed solution

	DASH-enabling-PIP
	1. Signaling the regular channel video adaptation set: Signaling which adaptation sets are regular channels.

	1. No solution is needed. If An adaptation set is not annotated, it is considered as a “regular” channel.

	
	1. Signaling if an adaptation set is intended for PIP: while the resolutions can indicate that, explicit signaling of this property may be useful for the client-side applications.
	1. Use ‘pip’ value for Role.

	
	1. Signaling if an adaptation set has multiple subpicture components, i.e. one or more substreams that can be replaced by another substream.
	1. Use ContentComponent along with Role and @tag to signal the subpicture ID or any other ID needed for the single decoder.

	DASH-Prescribing-PIP
	1. Describing which adaptation sets are used as main and PIP.
	1. “sign” value for Role and @associatedId.

	
	1. Describing if any bitstream manipulation is needed for feeding the streams to a single decoder
	1. See 3.

	
	1. Potentially describing the scene, i.e. the locations and sizes of the PIP components on the main video.
	1. Do not address.

[bookmark: _Toc148716097]Discussions at the 137th MPEG meeting

We keep the decisions on the following agreed items:
1. Preselection element can be used for describing two or more adaptation sets being used for main and pip videos.
2. For explicitly defining this Preselection for "picture in picture", a value "pip" for Role descriptor can be used. If additional information is needed, and if a descriptor is used for signaling that info, then value "pip" is not needed.
3. In the case of the single VVC decoder, no additional information such as x, y, width, .. is needed, because it relies on the VVC subpicture configuration. We need to work on the examples. The subpicture IDs must be signaled in DASH. This method should be applicable to future codecs that support the single decoder case.
And we add this contribution to TuC for possible addressing of the above (m58924).
[bookmark: _Toc148716098]Addressable Resync Representations (m63273)
[bookmark: _Toc148716099]Introduction

Attached some proposed updates to Amd.2 for Content Steering.

[bookmark: _Toc148716100]	Current Solutions

MPEG-DASH was extended in the 5th edition to support Low-latency operation for DASH. This was also ported into DVB-DASH.

The basic principle is shown in Figure 1. Chunks are produced and the DASH packager provides these chunks as regular DASH Segments. However, the MPD adds information that includes information that
1) The service can be run as low latency, i.e. you can access the segments before they are fully available
2) The latency target is specified
3) The chunk structure may be provided by a Resync element

[image: A picture containing graphical user interface

Description automatically generated]
Figure 1 Low-latency operation with Chunks

The basics principle is shown in Figure 2.

Resync can be added according to Figure 3 to indicate the presence of Chunks.

[image:]
Resync may be used to by the client for several purposes:
1) Understanding that chunking is applied and sizes of the chunk
2) Getting indication that the segments may include points that allow you to randomly access the segment in the middle

Details of the operation and offering is provided in DASH-IF Low-Latency guidelines.

[bookmark: _Toc148716101]Short-comings and other Considerations
Several issues had been discussed to address additional aspects of lower latency
1) Addressing fast joining
a. This can be addressed by providing Representations with in Segment RAPs
i. Finding the resync points in segments is not trivial and may need to either use the ARI Track as defined in Amd.1 or the client needs to guess the range from resync information implement a search for markers.
b. Another approach that is considered are additional Representations with shorter segments that provide random access. One may consider to use these representations for joining and switch to a longer Segment Representation at the next opportunity. Signaling of this is missing in MPEG DASH
2) Granularity of switching: As typically longer Segments are provided to address efficiency, the switching granularity is reduced, but efficiency is high. It would be preferably to provide and option in order to decouple the switching opportunity from the segment and RAP duration of regular representations
a. Both of the above approaches may support fast switching as well
3) Compatibility with HLS: HLS does not support chunking but offers shorter non-IDR segments that are requested in regular operation. This may be an interesting option for some deployments, but has my not be fully supported in MPEG-DASH today. Secondly, it should always be noted that such an approach is considered significantly less efficient as the segment request frequency and the number of segments per representation is inversely proportional to the latency requirements. Lower latency will increase the number of segments

A summary of 1b) is provided below addressing 1 and 2 and have been introduced as Addressable resync representations, i.e. representations that can be addressed directly with a URL from the MPD.

The flags are considered as coding constraints indicating the following:
· Flag 1: You can switch at certain ARR segments to regular Segments seamlessly
· Flag 2: You can switch in the middle of regular Segments to ARR Representations seamlessly
· Flag 3/4: There is permission to support an unclean switches, i.e. switches at SAP types different than 1 or 2.

There are secondary considerations such as
· Where to carry events and address event frequency
· What about other features such as seeking, fast forward, etc.
[bookmark: _Toc148716102]4Design Considerations and Considered Required Extensions

Based on the above discussions, there are lots of possible aspects that could be implemented or addressed. But let’s consider a few design aspects for a regular DASH operation:

1) Switching and Random Access typically does not happen very frequently. Efficiency and quality of the stable operation should be a key design criteria. This includes:
a. Random Access Points should be not unnecessarily frequent and possibly also not be constrained by the DASH application
b. DASH Segments should not be unnecessarily short to avoid handling too many data requests and too many small files
2) Providing additional representations for special functionalities should be possible.
a. Compromising the main Representations for functionalities should be possible, but should not be a need.
3) Overall, we can create several options, but we should minimize the options that are created and promote existing functionalities.
4) Compatibility with CMAF is essential. Compatibility with HLS should be possible.
5) MPD Updates should continue to be independent of the Segment requests to avoid any race or unnecessary requests.
6) Segment parsing by the DASH client should be an optimization opportunity for the client, but not be necessitated.
7) Clean switching needs to be possible for the client and content author. However, do we forbid unclean switching entirely if the content author permits, seems to be not necessary.

Based on this discussion, the following should be considered
1) Provide the ability to run the main operation for low-latency and regular DASH with long Segments and Random Access Points
2) Provide the ability to add additional Representations that can be used for functionalities including:
a. Faster switching
b. Faster random access
c. Carriage of events
d. Seeking
e. Etc.
3) Provide the ability to operate in an HLS compatible manner, but make this not the only option in particular if it is no addressing other design constraints
4) Make the functionalities work with different addressing modes

[bookmark: _Toc148716103]Addressable Resource Representations

2 from above may be addressed as said earlier by two means.
· Providing the information within the segments and providing an ARI Track that can be used be the client to get access to Representations carry the functionality. In this case all information is carried in a binary track that is requested,
· Create addressable resource representations. In this case the relevant functionalities are primarily carried in the MPD.

While we believe that the first option may be most elegant to solve many different cases, including the ability that the ARI Track carries events and so on, it seems that is not considered sufficient.

Hence, addressable resource Representations may be defined. For this to work, the following is needed
· Decision whether to add Representations to the main Adaptation Set and signaling that they are special and not to be used in Regular operation adding all of the features, or adding them in a new Adaptation Set or allow both.
· Proposal: do only adding to Main Adaptation Set
· Decision on the functionalities that are supported:
· Random Access and Switching to Main Adaptation Set at Segment Boundary of Main Adaptation (flag 1)
· Switching from Main Adaptation Set to Addressable Resync Representation in the middle of a Segment of the Main Adaptation Set (flag 2)
· Switching from ARR to main Adaptation Set at Segment Boundary of the ARR (flag 3), typically resulting in an unclean Switch
· Proposal: support all three
· Decision on supported addressing modes
· Main Representation:
· Number + @duration,
· Number + SegmentTimeline,
· Time + SegmentTimeline
· ARR:
· Drifting Number
· SegmentTimeline
· Segment Sequence
· Number + SubNumber
· Time + SubNumber
· Proposal: do not know what to exclude
· ARR Representations
· Alignment with chunks and segments
· Using segmentAlignment
· As part of the above flags
· Random Access Points
· As part of flags
· startWithSAP
· RandomAccess element
· Switching Opportunities
· Switching
· As part of flags
· Proposal: As this is new anyways, make it simple together with the flags

[bookmark: _Toc148716104]HLS-compatible Low-Latency
Taking away all of the downsides, it seems that an operation mode for low-latency compatible with HLS is needed, i.e. allow signalling of chunks explicitly.

The following decisions need to be taken:
· Addressing of main representation
· Number
· Time
· Segment Sequence
· Number + SubNumber
· Time + SubNumber
· Proposal: only use Segment Sequence as in Broadcast TV Profiles
· Alignment with chunks and segments
· Using segmentAlignment
· As part of the above flags
· Random Access Points
· As part of flags
· startWithSAP
· RandomAccess element
· Switching Opportunities
· Switching
· As part of flags

On the Random Access element, it allows to basically signal with @interval set to the @d value of the SegmentTimeline, that each start of a segment sequence is a Random Access point. The same applies for Switching. Extensions to this signaling may be needed if the functionality is not sufficient.
[bookmark: _Toc148716105]	Proposal
It is proposed to
1) Promote the DASH Low-Latency mode with ARI Tracks to address a low-latency mode with additional functionalities.
2) Define ARRs according to the considerations in clause 5
3) Add an HLS compatible mode according to the considerations in clause 6
[bookmark: _Toc148716106]ARI Events (m60317)
[bookmark: _Toc148716107]ARI Event Scheme
This event scheme is identified by the URN "urn:mpeg:dash:event:ari:2022" when the current chunk ARI information is included in the current chunk event, or "urn:mpeg:dash:event:ari-next:2022" when the next chunk ARI information is included in the current chunk. The event scheme has the dispatch mode of on-receive.

Table XYXY1 defines the relevant MPD parameters for the ARI MPD event.
[bookmark: _Ref14699573]Table XYXY1 — Relevant parameters for ARI Event in MPD
	Attribute
	Value

	EventStream@schemeIdUri/
InbandEventStream@schemeIdUri
	"urn:mpeg:dash:event:ari:2022" or
"urn:mpeg:dash:event:ari-next:2022"

	EventStream@value/
InbandEventStream@value
	Carries following CmafAriMetaDataSampleEntry fields:
· switching_set_identifier
· num_tracks
· num_quality_indicators
· ordered list of track_ids
· list of quality_identifier

	Event@presentationTime
	The chunk offset from the start of Period in which the ARI information in the event is applied.

	Event@duration
	The duration for which the ARI information should be used (usually the duration of chunk, or duration of segment).

	Event body
	The CmafAriFormatStuck fields with the same construct, base-64 encoded:
for(i=1; i <= num_tracks; i++) 	{
 unsigned int(1) 		segment_start _flag;
 unsigned int(1) marker;
 unsigned int(3) 	SAP_type;
 unsigned int(1)		emsg_flag;
 unsigned int(1)		prft_flag;
 bit(25) 	reserved;
 unsigned int(32) offset
 unsigned int(32) size;
 for(i=1; i <= num_quality_indicators; i++) {
 unsigned int(32) quality;
 }
 unsigned int(1) loss;
 bit(15) reserved;
 unsigned int(8) num_prediction_pairs;
 for(i=1; i <= num_prediction_pairs; i++) 	{
	unsigned int(32) 	prediction_min_window;
	unsigned int(32) 	predicted_max_bitrate;
 }
 }

Table XYXY3 shows the relevant emsg parameters for alternative MPD events.
Table XYXY3— Relevant emsg parameters for ARI event
	Attribute
	Value

	scheme_id_uri
	"urn:mpeg:dash:event:ari:2022" or
"urn:mpeg:dash:event:ari-next:2022"

	value
	Carries following CmafAriMetaDataSampleEntry fields:
· switching_set_identifier
· num_tracks
· num_quality_indicators
· ordered list of track_ids
· list of quality_identifier

	presentation_time_delta/
prsentation_time
	The offset of the chunk in which the ARI event is applicable.
If the information is applied to the current chunk (most common use case), presentation_time_delta =0.
If the information is applied to the previous chunk, the offset shall be signaled using prsentation_time.

	event_duration
	The duration of the event in which the ARI information should be used.
This value is usually set to the chunk or segment duration.

	message_data
	The CmafAriFormatStuck fields with the same construct, base64 encoded:
for(i=1; i <= num_tracks; i++) 	{
 unsigned int(1) 		segment_start _flag;
 unsigned int(1) marker;
 unsigned int(3) 	SAP_type;
 unsigned int(1)		emsg_flag;
 unsigned int(1)		prft_flag;
 bit(25) 	reserved;
 unsigned int(32) offset
 unsigned int(32) size;
 for(i=1; i <= num_quality_indicators; i++) {
 unsigned int(32) quality;
 }
 unsigned int(1) loss;
 bit(15) reserved;
 unsigned int(8) num_prediction_pairs;
 for(i=1; i <= num_prediction_pairs; i++) 	{
	unsigned int(32) 	prediction_min_window;
	unsigned int(32) 	predicted_max_bitrate;
 }
 }

Note that the CMAF Addressable Resource Index sample structure, CmafAriFormatStruct, is exactly used in Event_body or message_data, so that the parsing and processing of the sample after receiving the event from the event dispatcher would be the same.

[bookmark: _Toc148716108]Post-processing of the ARI events
The ARI events use the same event and metadata processing model of A.13. Below, we define the post-processing model of such events by the DASH Client.

[bookmark: _Toc148716109]A.15	ARI event post-processing model
The ARI event is processed and dispatched according to clause A.13. This clause defines the post-processing of this event after being dispatched. This clause is informative and is intended to show the expected behavior from the DASH client.
The post-processing procedure of the event relies on the parameters shown in Table A.XYXY2.

[bookmark: _Ref71518729]Table A. XYXY2 Event/timed metadata ARI parameters and datatypes
	API Parameter
	MPD event
	Inband event
	values

	scheme_id
	EventStream@schemeIdUri
	scheme_id_uri
	"urn:mpeg:dash:event:ari:2022"

	value
	EventStream@value
	value
	Carries following CmafAriMetaDataSampleEntry fields:
1. switching_set_identifier
2. num_tracks
3. num_quality_indicators
4. ordered list of track_ids
5. list of quality_identifier

	presentation_time
	Event@presentationTime
	presentation_time
	The chunk offset from the start of Period in which the ARI information in the event is applied.

	duration
	Event@duration
	duration
	The duration for which the ARI information should be used.

	message
	Event body
	message_data
	The CmafAriFormatStuck fields with the same construct, base-64 encoded.
for(i=1; i <= num_tracks; i++) 	{
 unsigned int(1) 		segment_start _flag;
 unsigned int(1) marker;
 unsigned int(3) 	SAP_type;
 unsigned int(1)		emsg_flag;
 unsigned int(1)		prft_flag;
 bit(25) 	reserved;
 unsigned int(32) offset
 unsigned int(32) size;
 for(i=1; i <= num_quality_indicators; i++) {
 unsigned int(32) quality;
 }
 unsigned int(1) loss;
 bit(15) reserved;
 unsigned int(8) num_prediction_pairs;
 for(i=1; i <= num_prediction_pairs; i++) 	{
	unsigned int(32) 	prediction_min_window;
	unsigned int(32) 	predicted_max_bitrate;
 }
 }

The client uses the following process to construct information identical to the ARI track:
1. Parses value to extract information and put them in CmafAriMetaDataSampleEntry.
1. Uses presentation_time to identify which chunk the information applies to.
1. Parse message to construct CmafAriFormatStruct
1. Process the CmafAriFormatStruct in its heuristics.

[bookmark: _Toc148716110]ARI Events and tracks timing models (m60351)
[bookmark: _Toc148716111]General timing models
Figure 1 shows the ARI tracks and ARI events general timing models.

Figure 1 — General timing of ARI track and ARI events

In the example in the figure, two representations are shown. Each ARI track has one sample per media representation chunk(s), which includes the information about the aligned chunks cross representations. As shown in this figure, alternatively, the representations’ chunks may include ARI events, each of which includes the same information as in one ARI track sample.

One variation of the ARI events is to include the next chunk information in the current chunk information. Figure 2 shows that variation that causes a delay of one chunk to include the next chunk info in the current chunk.

Figure 2 —Timing of ARI track and ARI events when ARI events include the next chunk information

On the consumption side, if the client is using the current chunk information, both in the case of ARI track and ARI event, downloading the corresponding samples provides information on offsets of the next chunk. However, only the current chunk quality is obtained and the possible switching must be decided based on those values.

In the case of ARI track, delaying one media chunk download compared to the ARI track sample, allows the client to have quality information about the next chunk. So delaying one chunk delay is needed to use the exact quality information.

In the case of chunks with ATI events, if the next chunk ARI info is included in the current chunk, the chunks are produced by one chunk duration delay. However, the client accessing the current chunk has quality information for the next chunks, so the delay, in this case, is similar to the ARI track.
[bookmark: _Toc148716112]ARI Events and tracks packaging model
The generation of the ARI track is shown in Figure 3.zDASH Packager

C
CC
CC
C
CC
C
C
C
C
C
C
C
C
CNC
C
C
CNC
C
Store ARI Samples
Real-time Delivery
ARI
Samples
C
CNC
C
C
C
C
C
CNC
C
S
S
S
S
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
S

Figure 3 — Generation of ARI track by the packager
In this case, the packager received the metadata for each chunk from the encoders. The packager repackages the data into an ARI sample and provides it as a stream and/or stores it in the storage. If the metadata information is not provided, then the packager must read each chunk and extract/calculate the information before generating the ARI sample.

Figure 4 shows the generation of representations with ARI events.

DASH Packager

C
CC
CC
C
CC
C
C
C
C
C
C
C
C
CNC
C
C
CNC
C
Store ARI Samples
Real-time Delivery
Chunks with ARI events
C
CNC
C
C
C
C
C
CNC
C
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
event
CC
CC
C
e
e
e
CC
CC
C
e
e
e
CC
CC
C
e
e
e

Figure 4 — Generation of representations with ARI events by the packager
As shown in Figure 4, the packager parses each chunk at a high level and adds an event box to it. Since the boxes are identical cross representations, the event box generation is identical to the ARI sample generation.
In this case, each encoder includes a “pre-ARI” event in each chunk, then the packager parses each chunk at a high-level, modifies its event box by adding other information, and generates the output chunk.
[bookmark: _Toc148716113]ARI events and tracks Client processing model
In ARI events, the client needs to get the latest available ARI information to make a decision to switch to a different representation.
Two types of information are provided in an ARI sample/event:
1. The offset and size of the current (or next) chunk
2. Optionally, the quality of the current (or next) chunk
If the client is streaming a representation, assuming chunk transfer, it is getting the segments in streaming as well as the ARI track. Figure 2 shows the timing of the client receiving the ARI information, assuming zero transfer delay between encoder and client.

C1
C2

C3

C4

time
Encoder’s output chunks
1
2
3
4
Packager’s ARI Samples
Availability times
T0
T1
T2
T3
T4
Client’s available data
C1
C2
C3
C4
Client’s switch information
1
2
3
C1
C2

C3

C4

1
2
3
4
4
C1
C2

C3

C4

2
3
4
5
Packager’s Chunks with ARI events
Client’s available data
C1
C2
C3
C4
Client’s switch information
1
2
3
4
Packager’s with ARI events with one chunk delay
2
3
4
C2
C3
C4
C2
C3
C4
Extrapolate switching
C2
C3
C4
interpolate switching
C2
C3
C4
Extrapolate switching
C2
C3
C4
interpolate switching
ARI Track
ARI Events
ARI Events with a lag
Client’s available data
Client’s switch information
Extrapolate switching
interpolate switching
C2
C3
C4
C2
C3
C4
C1

Figure 5— Availability of media and ARI information at the client for ARI track, ARI events, and ARI events with one chunk delay.

In the above figure, the dotted vertical line shows T1, T2, and … shows the availability of information. As shown in the above figure, for a chunk, the corresponding ARI sample, as well as the ARI event, is available when the entire chunk is available.
Assuming zero delay delivery to the client (for simplicity of the illustration), the output of the packager, i.e the chunk, the ARI sample for that chunk, or the chunk with the event are available at the same time to the client.
In the 3rd row of the above figure, the switching information at each availability time T, T2, … is shown:
1. In the case of the ARI track:
0. The location, size, and quality of the C1 chunk are available at T1. Then the client can use the ARI information of C1 and make a decision to switch at C2, i.e based on the C1 ARI information, decide to switch before receiving C2. Since the ARI information is about the received chunk, we call this method, extrapolate switching, i.e. making a decision based on the past chunk for the next chunk switching.
0. The location, size, and quality of the C2 chunk will become available at T2. Then the client has to wait till T2 to get ARI information of C2 and make a decision to switch on C2, i.e based on the C2 ARI information. This information is accurate but then the client needs to delay the switching by one chunk, i.e. first receive the ARI sample and then with one chunk delay, receive the corresponding chunk. We call this method “interpolate switching”.
1. In the case of ARI event:
1. Identical to the ARI track, the client needs to either extrapolate the chunk ARI event information for the next chunk switching, or
1. Interpolate the current chunk ARI event to switch the current chunk, but since the chunk is already received, it is too late to do so and such a method should not be used.
1. In the case of the ARI event with one chunk lag: In this case, chunk i has an ARI event about chunk i+1. Therefore in the delivery, chunks are delivered with one chunk delay.
2. The location, size, and quality of the C2 chunk are available at T2 along with the C1 chunk. Then the client can use the ARI information of C2 and make a decision to switch at T3/for C3, i.e based on the C2 ARI information, decide to switch before receiving C3. Since the ARI information is about the received chunk, we call this method, extrapolate switching, i.e. making a decision based on the past chunk for the next chunk switching.
2. The location, size, and quality of the C2 chunk are available at T2 along with the C1 chunk. Then the client uses C2 ARI information and makes a decision to switch at T2/for C2. This information is accurate for the C2 chunk that has not been fetched yet. We call this method “interpolate switching”.

[bookmark: _Toc148716114][bookmark: OLE_LINK5]Enabling CMCD beaconing (m65127)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/402
Note: This text replaces Callback event version 2 (m64319) https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/379.
[bookmark: _Toc148716115]Introduction
Observability is important for video streaming systems because it allows service providers to monitor the health of the streaming platform, identify and diagnose issues that impact user experience, and optimize the performance of the system to ensure a high-quality streaming experience. The streaming player behavior is what ultimately determines the viewers’ QoE, hence observing the player at very low level in real time can provide extremely valuable data that can be further used for data-driven QoE improvement.

Video streaming is a complex and dynamic system that involves multiple components, including the client device, the network infrastructure, the content delivery network (CDN), and the video player. Letting the streaming player have insights on the state of the whole system may let it make data-driven decisions such as estimating the optimal bitrates, optimal CDNs, and HTTP GET request times.

CTA CMCD (CTA-5004) implementations use URL query parameters and headers of HTTP GET requests for segments and MPDs to communicate information regarding streaming sessions being played out. While this works remarkably well, the mode of operation where a periodic HTTP POST to a provider endpoint as opposed to “piggybacking” on other requests is missing.

The contribution accepted at the Geneva meeting into AMD2 contained an option of JSON output (defined by CTA for the purpose), however there was no way of defininig the URL to which this JSON would be posted. Two options for achieving the above were previously suggested: (a) introducing a new event type with recurrence expressed in the event body, and (b) using a URL specified directly in the CMCD descriptor.

This contribution proposes to restore the JSON option of CMCD using the approach specified in (a), for simplicity purposes. The proposal modifies the ClientDataReporting element, in order to generalize beaconing for reporting purposes:

	Element or Attribute Name
	Use
	Description

	ClientDataReporting
	
	An element that provides information about client data reporting as defined in subclause K.3.7.

	
	@serviceLocations
	O
	See serviceLocations in Table K.3.7-1.

	
	@adaptationSets
	O
	See adaptationSets in Table K.3.7-1.

	
	@beaconingURL
	CM
	URL to which reporting should be done. If absent, reporting is performed using other request types (e.g. segments or MPD)
If the CMCDParameters element is present, reporting shall be done using an HTTP POST method with body of the request being JSON-formatted CMCD, per CTA 5004.
This attribute shall be present if and only if the CMCDParameters@mode is set to “json”

	
	@frequency
	CM
	Frequency (in seconds, possibly fractional) at which beconing requests shall be issued. Present if and only if the @beaconingURL is present.

	
	CMCDParameters
	0 … 1
	Defines reporting system parameters to send back client data for the above Service Locations and and Adaptation Sets for CMCD. For details refer to clause K.4.2.7.2.

	Legend:
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory, F=fixed.
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
The conditions only hold without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>
Elements are bold; attributes are non-bold and preceded with an @, List of elements and attributes is in italics bold referring to those taken from the Base type that has been extended by this type.

We further remove the prohibition on the json format.

Table K.3.7-2 — CMCD specific parameters
	Key
	Type
	Description

	Version
	unsigned int
	specifies the highest CMCD version as defined in CTA-5004 that is accepted by the reporting server.
If absent, the version is assumed to be version 1 as defined in CTA-5004.

	mode
	string
	specifies the data transition mode how the media client shall send the media client data as defined in clause 2 of CTA-5004.
The permitted options are "query", "header", and “json”. "header" refers to the mode defined in clause 2.1 of CTA-5004. "query" refers to the mode defined in clause 2.2 of CTA-5004.
If the “json” method is used, @beconingURL and @frequency attributes shall be set.
If the value is absent, the "query" method shall be used.
Note: the third method, including the data in a JSON object, is not defined in this standard as CTA-5004 does not define a detailed protocol.

Notes from MPEG#144
1) CMCD currently does not include any reporting protocol
2) In past, we didn't define any reporting mechanism for the DASH metric
3) This should be provided as part of API
4) Recommendation:
a) Update the contribution to address the API (not implemented in above yet)
b) Work with CTA WAVE on the scope of work in CMCD V2 and whether it will cover any protocol aspect.

[bookmark: _Toc148716119]Improving timing precision in $Number$-based addressing in SegmentTemplate (m63925)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/368
[bookmark: _Toc148716120]Introduction
The DASH Representation@bandwidth model is defined as a rate sufficient to transmit MPD@minBufferTime. Unfortunately, it does not explicitly specify either units or mode of operation, similarly to what has been done by the MPEG video standards for VBV and HRD. As a result, in many cases the MPD contains a bitrate equivalent to the maximum bitrate as stated in the HRD. The problem with the approach is that for shorter segments (e.g. 2s) and longer CPBs (e.g. 2s) the segment size often exceeds the expected maximum size of a segment as calculated given the value of the @bandwidth attribute. This is problematic, especially for low-latency applications, as the client cannot always correctly predict the worst case time it will take it to download a segment.

Apple HLS definition is entirely different and operates in units of segments. The bandwidth signaled is defined as the maximum bitrate for a sequence of segments between 0.5x and 1.5x of a target segment duration. They further recommend not to exceed the stated rate by more than 10%. This definition is not as elegant but provides the player with hard guarantees regarding the size of the segment. Having an HLS-compatible definition will make the HLS-to-DASH and DASH-to-HLS translation simpler.
[bookmark: _Toc148716121]Proposal
We propose to define a concept of segment bandwidth, conceptually defined as an average bitrate of @minBufferTime worth of consecutive media segments.

Let segment buffer SBi be comprised of the shortest sequence of consecutive segments S(i)..S(i+k) with combined duration between 0.5 MPD@maximumSegmentDuration and 1.5 MPD@maximumSegmentDuration. Instantaneous segment bandwidth is defined as the sum of the sizes of the above segments in bytes divided by their combined durations.

NOTE: the above variation is needed for avoiding very small segments which inherently have higher rate and skew the rate calculation.

We further define a Representation@segmentBandwidth as the maximum instantaneous bitrate of available segments. When the bandwidth is imprecise (e.g., in case of a live program), we cap the allowable deviation from the value by Representation@segmentBandwidthTolerance
which is defined as a constant C such that instantaneous segment bandwidth shall never exceed (1+C) Representation@segmentBandwidthTolerance

Editor’s Notes:
 operation issues need to be defined.
 How does this work with segmenttimeline when there is no nominal duration?

[bookmark: _Toc148716122]Content selection and adaptation logic based on device orientation (m64233)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/376
[bookmark: _Toc148716123]Introduction
Contribution m64232 demonstrates the need to have considerations for device orientation during playback, especially in streaming scenarios. Here, we study possible solutions and indicate a way forward.
[bookmark: _Toc148716124]Discussion
Addressing orientation changes involves at three entities during a playback session.

The device: When a device detects an orientation change the rendering and/or selection of the content can be adjusted accordingly. This is achieved by using an API, like those offered by Android (for mobile phones / tablets) or W3C (for browsers).

The DASH client: The DASH client can detect an orientation change (e.g. using one of the APIs) and select a more appropriate content for the new orientation.

The server: The server hosts content that is suitable for multiple orientations, this would be advantageous to have those versions in the same MPD. This is the point where DASH is relevant and currently there is no support for a recommend viewing orientation signalling in the MPD.

An obvious solution that would come to mind is to reuse the current signalling of aspect ratio or resolution to achieve the content selection and the dynamic switching by the DASH client.

However, such approach would require to standardize the selection logic from the client which is not in scope of MPEG-DASH. In addition, if not specified, it is very unlikely that every DASH client vendor will implement the logic in the same way, which would create inconsistent Quality of Experience.

Initially, we also envision using aspect ratio as possible solution but ended with the conclusion that is not possible to define what is the most suited video aspect ratio for a given display orientation.

For example, assuming that two versions of the same content are produced: one version in 16:9 (common format for HD content) and one in 1:1 (made for vertical viewing on phone)– blue boxes in the figure below, while the user has a 4:3 device (foldable phone) – orange box in the figure below. Let’s assume we use the “closest aspect ratio” algorithm, then the client running on each device will choose as shown below.

This contradicts the content creator’s intent which is that the 1:1 video is only for vertical video viewing.

One may come up with another algorithm for achieving the content creator’s intent, represented in the figure above, but in this case, this would mean that there exist several algorithms for content selection based on aspect ratio and therefore there cannot be interoperability by a simple deduction of content selection based on aspect ratio,

As a result, the signalled video aspect ratio in the MPD cannot achieve the intended goal because of the following main shortcomings:

· Such solution depends on the implemented client logic and not the MPD author recommendations, which could cause inconsistent user experiences
· Some video aspect ratio (e.g. square 1:1) is ambiguous for which viewing orientation they are recommended for since commercial services are restricting them for vertical viewing, they should not be selected by client in horizontal viewing.

To alleviation those shortcoming, we propose the appropriate signalling in the section below. Note, that the orientation signalling is complementary to the aspect ratio, since it can be used as a first step to identify the adaptation sets that are suitable for the rendering area orientation, and from those, make the final selection based on aspect ratio.
[bookmark: _Toc148716125]Target screen orientation signalling in MPD
Signalling the target screen orientation in the MPD can assist the client to select the appropriate content based on the MPD author’s recommendation. Since it is the same content produced in different versions, one may say they should be Representations. However, those version are not meant to be used for bandwidth adaptation, therefore this signalling should be introduced to Adaptation Set level.

We believe that this information is useful in isolation of the existence of multiuple versions of the same content. Therefore, we believe that there is no need for the concept of grouping those adaptation Set together. Instead, any current techniques for grouping Adaptation Set can be used orthogonally.

We propose adding a new optional attribute targetScreenOrientation with values portrait, landscape, square and any as shown below.

	Element or Attribute Name
	Use

	Description

	AdaptationSet

	
	Adaptation Set description.

	…
	
	

	@targetScreenOrientation
	O
	specifies a comma-separated list of targeted screen orientations for displaying the video component of this Adaptation Set.

The values are:
· any
· landscape
· portrait
· square

Where “any” means that the video component is adapted to any screen orientation, “landscape”, “portrait” means that the video component is adapted to, respectively, portrait and landscape screen orientations as defined in 2.1 Screen orientation types in W3C Screen Orientation, and “square” means when the screen aspect ratio is equal to 1.0.

If not present, the value is “any”.

Following is an example on how to use this attribute, in that example there is content prepared for landscape orientation and content suitable for portrait or square.

	<?xml version="1.0"?>
<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.500S" type="static" mediaPresentationDuration="PT0H1M0.000S" maxSegmentDuration="PT0H0M5.000S" profiles="urn:mpeg:dash:profile:isoff-main:2011">
 <Period duration="PT0H1M0.000S">
 <AdaptationSet id="1" segmentAlignment="true" targetScreenOrientation="landscape" maxWidth="1920" maxHeight="1080" maxFrameRate="60" par="16:9" lang="und" startWithSAP="1">
 <Representation id="1" mimeType="video/mp4" codecs="avc1.64002A" width="1920" height="1080" frameRate="60" sar="1:1" bandwidth="345788">
 <SegmentList timescale="15360" duration="76800">
 <Initialization sourceURL="testsrc_1080p_dashinit.mp4"/>
 <SegmentURL media="testsrc_1080p_dash1.m4s" indexRange="24-67"/>
... other segments
 </SegmentList>
 </Representation>
... other representations
 </AdaptationSet>
 <AdaptationSet id="2" segmentAlignment="true" targetScreenOrientation="portrait,square" maxWidth="1080" maxHeight="1920" maxFrameRate="60" par="135:240" lang="und" startWithSAP="1">
 <Representation id="1" mimeType="video/mp4" codecs="avc1.64002A" width="1080" height="1080" frameRate="60" sar="1:1" bandwidth="262749">
 <SegmentList timescale="15360" duration="76800">
 <Initialization sourceURL="testsrc_1920p_dashinit.mp4"/>
 <SegmentURL media="testsrc_1920p_dash1.m4s" indexRange="24-67"/>
... other segments
 </SegmentList>
 </Representation>
... other representations
 </AdaptationSet>
 </Period>
</MPD>

Editor’s note: Recommend a solution to be considered for ISOBMFF before we do anything in DASH.

[bookmark: _Toc148716126]Enabling segment duration patterns in segment sequence representations (m65128)
https://mpeg.expert/software/MPEG/Systems/DASH/spec/-/issues/403
[bookmark: _Toc148716127][bookmark: OLE_LINK6]Introduction

Fractional frame rates used in N. America make it impossible to achieve identical segment durations for video and audio (using AAC and E-AC-3 standards). As a result, using patterns is a common induatry solution. It is achieved using N audio segment each carrying S samples (slightly shorter in duration than video), followed by M segments carrying S+1 samples (slightly longer than video). This keeps the EPT of each audio segment within a certain bounded time distance from the EPT of a video segment with the same segment number.

The problem with the above is that in order to know the precise EPT of each segment, we need two SegmentTimeline.S elements, one with @r=N-1 and the other with @r=M-1. With long enough sequence we end up with a large number of S elements, which increases the parsing and memory requirements and increases the MPD size for no good reason.

An additional use case is a case of segment sequence representations with extremely short partial segments. It may make sense to send an IDR frame first, and then send partial segments containing PBbb min-GOPs as a single IDR frame may be larger (in bytes) than the whole following mini-GOP and it can be sent sooner. This cannot be correctly and precisely expressed in the current S element.

What is being proposed is to (a) introduce a Pattern element (within the newly introduced SegmentSequence element) with a unique patternID and a number of elements specifying a pattern, and (b) introduce an S@p element. If present, the S@p attribute will specify which pattern is followed and will be mutually exclusive with the S@k attribute.

Same problem has been considered by DASH-IF in June 2023, sec 2 of this proposal contains the text. That proposal introduces an entirely different element (a variant of SegmentTimeline) and allows for a single pattern. The problems with the proposal are:
· You cannot combine a pattern with regular S elements. This is a problem for example when you can start the period from the middle of a pattern (as the pattern is dictated by video and audio encoding, Period insertion can happen for unrelated reasons like new PSSH.
· No solution is provided for segment sequences, where a pattern for ultra low latency is expected to be something on the lines of I, PBbb, PBbb, … In this case w/o pattern we need to say that the time precision of the pattern ±3 sample durations. This translates to e.g. ± 125ms for 24 fps and 100 ms for 29.97fps, while the ATSC a/v sync requirement is -45ms..+15ms and film is expected to be at ± 22ms.
· Semantically, a pattern is a segment sequence with precise durations. There is no significant benefit in duplicating the same concept and creating extra syntax to implement it.
[bookmark: _Toc148716128]Proposal
[bookmark: _Toc148716129]Segment Sequence updates

We propose to update the definition of the SegmentSequenceProperties element adding the following optional element to it

Table 23 — Semantics of Pattern element
	Element or Attribute Name
	Use
	Description

	
	
	
	Pattern
	
	

	
	
	
	@patternId
	M
	specififies a unique identifier of the pattern described. This identifier shall be unique within the scope of its ancestor Period element.

	
	
	
	
	P
	0 .. N
	specifies a constant duration part of a patetrn.

	
	
	
	
	
	@d
	M
	specifies the Segment duration or the duration of a Segment sequence, in units of the value of the
@timescale.

	
	
	
	
	
	@r
	OD
default: 0
	specifies the repeat count of the number of following contiguous Partial Segments with the same duration expressed by the value of @d.
This value is zero-based (e.g. a value of three means four Segments or Segment Sequences in the contiguous series) and shall always be non-negative.

	Key
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold and preceded with an @.

We propose to update the definition of the S element to the following.

[bookmark: _Ref14698970]Table 23 — Semantics of SegmentTimeline element
	Element or Attribute Name
	Use
	Description

	
	
	
	SegmentTimeline
	
	specifies the Segment timeline information

	
	
	
	
	S
	0 .. N
	specifies Segment start time and duration for a contiguous sequence of segments of identical durations, referred to as series in the following.
NOTE The S elements are ordered in sequence of increasing values of the attribute @t.

	
	
	
	
	
	@t
	O
	this value of this attribute minus the value of the
@presentationTimeOffset specifies the MPD start time, in @timescale units, of the first Segment in the series. The MPD start time is relative to the beginning of the Period.
The value of this attribute shall be equal to or greater than the sum of the previous S element earliest presentation time and the sum of the contiguous Segment durations.
If the value of the attribute is greater than what is expressed by the previous S element, it expresses discontinuities in the timeline.
If not present, then the value shall be assumed to be zero for the first S element and for the subsequent S elements, the value shall be assumed to be the sum of the previous S element's earliest presentation time and contiguous duration [i.e. previous S@t + @d * (@r + 1)].

	
	
	
	
	
	@n
	O
	specifies the Segment number of the first Segment in the series.
The value of this attribute shall be at least one greater than the number of previous S elements plus the
@startNumber attribute value, if present. If the value of @n is greater than one plus the previously calculated Segment number, it expresses that one or more prior Segments in the timeline are unavailable.

	
	
	
	
	
	@d
	M
	specifies the Segment duration or the duration of a Segment sequence, in units of the value of the
@timescale.

	
	
	
	
	
	@k
	OD
default: 1
	specifies the number of Segments that are included in a Segment Sequence. The attribute shall not be present unless explicitly permitted by the profile and the @p attribute is absent.
For more details, refer to subclause 5.3.9.6.3.

	
	
	
	
	
	@p
	O
	Specifies the duration pattern of segment sequence described in this element. This attribute shall not appear when the @k attribute is present, and the total pattern duration shall equal the @d attribute if present. The attribute shall not be present unless explicitly permitted by the profile.

	
	
	
	
	
	@r
	OD
default: 0
	specifies the repeat count of the number of following contiguous Segments or Segment Sequences with the same duration expressed by the value of @d. This value is zero-based (e.g. a value of three means four Segments or Segment Sequences in the contiguous series). A negative value of the @r attribute of the S element indicates that the duration indicated in @d attribute repeats until the start of the next S element, the end of the Period or until the next MPD update.

	Key
For attributes: M=mandatory, O=optional, OD=optional with default value, CM=conditionally mandatory
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold and preceded with an @.

[bookmark: _Toc148716130]Time-based addressing
The above allow patterns when either $Number$ or $Number$ and $SubNumber$ addressing is used. With that said, it should be possible to allow use of $Time$ addressing in case patterns are used, as for each nth partial segment the $Time$ can be correctly derived from S@t and the sum of (n-1) first partial subsegment durations as appears in the Pattern element.

[bookmark: aliashDOCCompanyConfiden1FooterFirstPage]

68

image2.emf
Main Content ServerAd ServerConstrained DeviceSegments Main ContentManifest Generator

Microsoft_Visio_Drawing.vsdx
Main Content Server
Ad Server
Constrained Device
Segments Main Content
Ad Insertion Segments
Manifest Generator
Manifest

image3.wmf
C

o

n

t

e

n

t

S

e

r

v

e

r

A

d

S

e

r

v

e

r

M

a

n

i

f

e

s

t

G

e

n

e

r

a

t

o

r

A

B

R

P

l

a

y

e

r

C

o

n

t

e

n

t

M

a

n

i

f

e

s

t

P

r

o

v

i

d

e

P

l

a

y

e

r

M

a

n

i

f

e

s

t

S

e

l

e

c

t

C

o

n

t

e

n

t

a

n

d

R

e

q

u

e

s

t

M

a

i

n

C

o

n

t

e

n

t

S

e

g

m

e

n

t

s

P

r

o

v

i

d

e

A

d

I

n

s

e

r

t

i

o

n

O

p

p

o

r

t

u

n

i

t

y

P

r

o

v

i

d

e

L

i

n

k

t

o

A

d

I

n

s

e

r

t

i

o

n

S

e

r

v

e

r

A

d

d

m

a

n

i

f

e

s

t

e

x

p

i

r

a

t

i

o

n

R

e

q

u

e

s

t

u

p

d

a

t

e

d

M

a

n

i

f

e

s

t

w

i

t

h

A

d

O

p

p

o

r

t

u

n

i

t

y

R

e

q

u

e

s

t

a

d

f

r

o

m

a

d

i

n

s

e

r

t

i

o

n

s

e

r

v

e

r

w

i

t

h

s

o

m

e

p

a

r

a

m

e

t

e

r

s

o

f

p

l

a

y

i

n

g

m

a

i

n

c

o

n

t

e

n

t

P

r

o

v

i

d

e

t

a

r

g

e

t

e

d

A

d

M

a

n

i

f

e

s

t

/

C

o

n

t

e

n

t

R

e

q

u

e

s

t

M

a

n

i

f

e

s

t

U

p

d

a

t

e

w

i

t

h

s

o

m

e

p

a

r

a

m

e

t

e

r

s

o

f

p

l

a

y

i

n

g

a

d

c

o

n

t

e

n

t

P

r

o

v

i

d

e

M

a

n

i

f

e

s

t

t

h

a

t

l

e

a

d

s

b

a

c

k

t

o

M

a

i

n

C

o

n

t

e

n

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

5

oleObject1.bin

image4.emf
Main Content ServerAd ServerConstrained DeviceSegments Main ContentManifest Generator

Microsoft_Visio_Drawing1.vsdx
Main Content Server
Ad Server
Constrained Device
Segments Main Content
Ad Insertion Segments
Manifest Generator
Manifest
Conditioned Request
Targeted Sub-Manifest

image5.png

image6.png

image7.png

image8.wmf
ABR encoder

Encryption

ISO BMFF/CMAF

Packager

MPD Generator

and DASH

Packager

Metadata

Ad Prepared

Media

I

F

-

1

Ad Insertion

MPD Manipulator

(Proxy)

Ad prepared MPD

Ad Prepared Segments

I

F

-

2

Ad avails (SCTE

-

35)

I

F

-

3

Ad Decision and

Ad Content Server

DASH

Access Client

Ad avail

processor

MPD with ad avails

Segments

I

F

-

5

Reference

Playback

Platform

M

e

d

i

a

P

i

p

e

l

i

n

e

A

u

d

i

o

M

e

d

i

a

P

i

p

e

l

i

n

e

V

i

d

e

o

Ad

Reporting

Server

A

d

T

r

a

c

k

i

n

g

IF

-

6

Ad Decision Parameters

DASH Ad Content

Config

DASH Ad

Resolver

I

F

-

7

IF

-

4

Microsoft_Visio_Drawing2.vsdx
ABR encoder
Encryption
ISO BMFF/CMAF Packager
MPD Generator and DASH Packager
Metadata
Ad Prepared Media
IF-1
Ad Insertion
MPD Manipulator (Proxy)
Ad prepared MPD
Ad Prepared Segments
IF-2
Ad avails (SCTE-35)
IF-3
Ad Decision and  Ad Content Server
DASH  Access Client
Ad avail processor
MPD with ad avails
Segments
IF-5
Reference Playback Platform
Media  Pipeline Audio
Media  Pipeline Video
Ad Reporting
Server
Ad Tracking
IF-6
Ad Decision Parameters DASH Ad Content
Config
DASH Ad Resolver
IF-7
IF-4

image9.png

image10.png

image11.png

image12.png

image13.emf

Representation 1

AdaptationSet 1

Representation 1

AdaptationSet 2

Representation 1

AdaptationSet 4
Haptics

Descriptor
Haptics

Descriptor

Preselection 1

Haptics
Experience
Descriptor

Main
(Haptics Experience)

Haptics
(Perception 1, Channel 1)

Haptics
(Perception 2, Channel 1)

Representation 1

AdaptationSet 3

Haptics
Descriptor

Haptics
(Perception 1, Channel 2)

Representation 2 Representation 2Representation 2

Representation 1

AdaptationSet 1

Representation 1

AdaptationSet 2

Representation 1

AdaptationSet 4

Haptics

Descriptor

Haptics

Descriptor

Preselection 1

Haptics

Experience

Descriptor

Main

(Haptics Experience)

Haptics

(Perception 1, Channel 1)

Haptics

(Perception 2, Channel 1)

Representation 1

AdaptationSet 3

Haptics

Descriptor

Haptics

(Perception 1, Channel 2)

Representation 2

Representation 2

Representation 2

image14.jpeg

image15.png

image16.emf
HTTP CacheSegmentsManifestStreaming ClientHTTP Access ClientStreaming Access EngineMedia EngineAdaptation LogicSelected SegmentsAdaptationParametersHTTP ServerSegment Delivery SeverMedia Segment Delivery Function Manifest Delivery Function

Microsoft_Visio_Drawing3.vsdx
HTTP Cache
Segments
Manifest
Streaming Client
HTTP Access Client
Streaming Access Engine
Media Engine
Adaptation Logic
Selected
Segments
Adaptation
Parameters
HTTP Server
Segment Delivery Sever
Media Segment Delivery Function
Manifest
 Delivery Function

image17.png

image18.emf
ClientServer/CDNDownload ManifestRequest for Segments in R Download Requested SegmentsPlayback ContentCollect Adaptation Parameters P Select Representation R w.r.t P Request for ManifestRepeat Representation Selection and Segment Download

Microsoft_Visio_Drawing4.vsdx
Client
Server/CDN
Download Manifest
Request for Segments in R
Download Requested Segments
Playback Content
Collect Adaptation Parameters P
Select Representation R w.r.t P
Request for Manifest
Repeat Representation Selection and Segment Download

image19.emf
HTTP CacheSegmentsManifestStreaming ClientHTTP Access ClientStreaming Access EngineMedia EngineHTTP ServerSegment Delivery SeverAdaptation LogicSelected SegmentsAdaptationParametersMedia Segment Delivery Function Manifest Delivery Function

Microsoft_Visio_Drawing5.vsdx
HTTP Cache
Segments
Manifest
Streaming Client
HTTP Access Client
Streaming Access Engine
Media Engine
HTTP Server
Segment Delivery Sever
Adaptation Logic
Selected
Segments
Adaptation
Parameters
Media Segment Delivery Function
Manifest
 Delivery Function

image20.emf
TranscodeSegmentPackageEncryption.........Source ContentAdaptation (SSSA)CTCDNClient Side Dynamic Adaptation (CSSA)Segment URL

image21.emf
ClientServer/CDNDownload ManifestRequest with P for Segments Download Selected SegmentsPlayback ContentCollect Adaptation Parameters P Select Segments from Switchable Tracks w.r.t P Request for ManifestRepeat Segment Download

image22.emf
ClientServer/CDNDownload ManifestRequest with P for Segments of a Derived Switch Track Download Selected SegmentsPlayback ContentCollect Adaptation Parameters P Derive Segments of the Derived Switch Track w.r.t P, from its switchable input tracks Request for ManifestRepeat Segment Download

image23.emf
DN5GMSdAS5GMSd Application ProviderPCFNEF5GMSdAFN33N5UE5GMSd Aware Application5GMSd Client5GMSd5GSExternalM8dMedia PlayerMedia Session HandlerM1dM2dM3dM4dM5dM6dM7dM7dExposed API5GMSd Scope5GS ScopeOut of scopeM6d

image24.wmf
5

G

M

S

a

w

a

r

e

A

p

p

l

i

c

a

t

i

o

n

5

G

M

S

C

l

i

e

n

t

M

e

d

i

a

A

F

M

e

d

i

a

A

S

5

G

M

S

A

p

p

l

i

c

a

t

i

o

n

P

r

o

v

i

d

e

r

1

:

M

1

d

:

5

G

M

S

P

r

o

v

i

s

i

o

n

i

n

g

2

:

M

3

d

I

n

t

e

r

n

a

l

I

n

t

e

r

a

c

t

i

o

n

s

A

l

t

3

:

M

2

d

:

5

G

M

S

I

n

g

e

s

t

4

:

S

e

r

v

i

c

e

A

n

n

o

u

n

c

e

m

e

n

t

(

n

o

t

i

n

s

c

o

p

e

)

5

:

M

6

/

7

d

:

U

E

A

P

I

s

6

:

S

e

r

v

i

c

e

A

c

c

e

s

s

I

n

f

o

r

m

a

t

i

o

n

a

c

q

u

i

s

i

t

i

o

n

A

l

t

7

:

M

5

d

:

M

e

d

i

a

S

e

s

s

i

o

n

H

a

n

d

l

i

n

g

8

:

M

4

d

:

M

e

d

i

a

S

t

r

e

a

m

i

n

g

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

7

image25.emf
UE5GMSd Client5GMSd ASMedia PlayerAccess Client5GMSd-Aware ApplicationMedia Playback Platform and Content DecryptionTS 26.511CMAF-basedCMAF Segment ServerManifest ServerM4d - ManifestStatusCapabilitiesPlaybackSubscriptions and NotificationsTS 26.511M7dMedia Session HandlerM6d5GMSd AFM5dM8d5G Media Streaming Aware Application ProviderM2dM1d

Microsoft_Visio_Drawing6.vsdx
UE
5GMSd Client
5GMSd AS
Media Player
Access Client
5GMSd-Aware Application
Media Playback Platform and Content Decryption
TS 26.511
CMAF-based
CMAF Segment Server
Manifest Server
M4d - Manifest
Status
Capabilities
Playback
Subscriptions and Notifications
TS 26.511
M7d

Media Session Handler
M6d

5GMSd AF
M5d
M8d
5G Media Streaming Aware Application Provider
M2d
M4d - Segment
M1d

image26.png

image27.png

image28.png

image29.png

image30.gif

image31.tiff

image32.tiff

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.emf
Main video with subpicturesSubpic ID 1Subpic ID 0ID3Subpic ID 2Subpic ID 4VVC encoding using 5 subpicturesOne VVC bitstream containing 5 subpicture sub-bitstreamsSubpic ID 1Subpic ID 2Subpic ID 0Subpic ID 3Subpic ID 4Supplementary videoSubpic ID 0VVC encoding using 1 subpictureSubpic ID 0TransmissionReceiver using the picture-in-picture feature modifies the main VVC bitstream by merging it with the supplementary bitstreamSubpic ID 1Subpic ID 2Subpic ID 0Subpic ID 3Subpic ID 4Subpic ID 0replaced withVVC DecoderSubpic ID 0ID3Subpic ID 1Subpic ID 4Subpic ID 5

image42.png

image43.emf
Presentation1.mp4

Presentation1.mp4

image44.png

image45.emf
1IDRIDRTimeCHCHCHCHCHCH2IDRIDRCHCHCHCHCHCH1IDR2IDR3IDR4IDR5IDR6IDR7IDR8IDR1_1IDR1_2IDR1_3IDR1_4IDR2_1IDR2_2IDR2_3IDR2_4IDRFlag 2Flag 1Flag 2Flag 2Low-Latency Chunked Adaptation SetAddressable Resync RepresentationsFlag 3Option 1Option 2SegmentBoundaryFlag 4

Microsoft_Visio_Drawing7.vsdx
1
IDR
IDR
Time
CH
CH
CH
CH
CH
CH
2
IDR
IDR
CH
CH
CH
CH
CH
CH
1
IDR
2
IDR
3
IDR
4
IDR
5
IDR
6
IDR
7
IDR
8
IDR
1_1
IDR
1_2
IDR
1_3
IDR
1_4
IDR
2_1
IDR
2_2
IDR
2_3
IDR
2_4
IDR
Flag 2
Flag 1
Flag 2
Flag 2
Low-Latency Chunked Adaptation Set
Addressable Resync Representations
Flag 3
Option 1
Option 2
Segment Boundary
Flag 4

image1.jpeg

image46.emf
1IDRIDRTimeCHCHCHCHCHCH2IDRIDRCHCHCHCHCHCH12345678Low-Latency Chunked Adaptation SetARI Track (single samples per chunk)Tracks with ARI EventsSegmentBoundary1EventIDRCHCHCHCHCHCH2IDRIDRCHCHCHCHCHCHIDREventEventEventEventEventEventEventEventEventEventEventEventEventEventEvent

Microsoft_Visio_Drawing8.vsdx
1
IDR
IDR
Time
CH
CH
CH
CH
CH
CH
2
IDR
IDR
CH
CH
CH
CH
CH
CH
1
2
3
4
5
6
7
8
Low-Latency Chunked Adaptation Set
ARI Track (single samples per chunk)
Tracks with ARI Events
Segment Boundary
1
Event
IDR
CH
CH
CH
CH
CH
CH
2
IDR
IDR
CH
CH
CH
CH
CH
CH
IDR
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event

image47.emf
1IDRIDRTimeCHCHCHCHCHCH2IDRIDRCHCHCHCHCHCH12345678Low-Latency Chunked Adaptation SetARI Track (single samples per chunk)Tracks with ARI EventsSegmentBoundary1EventIDRCHCHCHCHCHCH2IDRIDRCHCHCHCHCHCHIDREventEventEventEventEventEventEventEventEventEventEventEventEventEventEvent

Microsoft_Visio_Drawing9.vsdx
1
IDR
IDR
Time
CH
CH
CH
CH
CH
CH
2
IDR
IDR
CH
CH
CH
CH
CH
CH
1
2
3
4
5
6
7
8
Low-Latency Chunked Adaptation Set
ARI Track (single samples per chunk)
Tracks with ARI Events
Segment Boundary
1
Event
IDR
CH
CH
CH
CH
CH
CH
2
IDR
IDR
CH
CH
CH
CH
CH
CH
IDR
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event

