[image: Text

Description automatically generated] ISO/IEC JTC 1/SC 29/WG 3 N00848N00934

ISO/IEC JTC 1/SC 29/WG 3
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document

Title:	Procedures for test scenarios and reference software development for MPEG-I Scene Description

Status:	Approved

Date of document:	2023-08-115-19

Source:	ISO/IEC JTC 1/SC 29/WG 3

[bookmark: _Toc99959950] Expected action:	 	 ACT
Action due date:	2023-085-169

No. of pages:	120 (with cover page)

Email of Convenor:	young.L@samsung.com

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 3
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 3 N 00 848934
AntalyaGeneva, TürkiyeCH – April July 2023

	Title
	Procedures for test scenarios and reference software development for MPEG-I Scene Description

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	2292822590

Contents
1	Scope	4
2	Test scenarios	4
2.1	Requirements	4
2.2	Scenarios	4
2.3	Template for test scenario	4
2.4	Call for test data	5
2.5	Timeline	5
2.6	Available test assets	5
2.7	Agreed test scenarios	6
2.8	Test assets for validation	6
3	Contributions for Extensions	6
3.1	General	6
3.2	Extension Principles	7
4	Software	8
4.1. Reference software	8
4.2. Conformance software	8
5	Gitlab Management	8
5.1	Git commit convention	8
5.2 Branch convention	8
5.2.1. Branch creation	8
5.2.2. Branch update	9
5.2.3. Tree model	9
5.4	Scenarios	11
5.5	Summary logistics	11
5.6	Coordinators	11
6	Promotion	12
6.1.	MPEG glTF-validator	12
6.1.1.	Requirements	12
6.1.2.	Procedure	12
1	Scope	3
2	Test scenarios	3
2.1	Requirements	3
2.2	Scenarios	4
2.3	Template for test scenario	4
2.4	Call for test data	4
2.5	Timeline	5
2.6	Available test assets	5
2.7	Agreed test scenarios	5
3	Contributions for Extensions	5
3.1	General	5
3.2	Extension Principles	7
4	Software	7
4.1. Reference software	7
4.2. Conformance software	7
5	Gitlab Management	7
5.1	Git commit convention	7
5.2. Branch convention	8
5.2.1. Branch creation	8
5.2.2. Branch update	8
5.2.3. Tree model	8
5.2	Scenarios	8
5.3	Summary logistics	9
5.4.Coordinators	9

1 [bookmark: _Toc143080031]Scope
This document provides information and agreed processes to support the development of ISO/IEC 23090-14, "Scene Description for MPEG Media" as well as ISO/IEC 23090-24, "Conformance and Reference Software for MPEG-I Scene Description".
2 [bookmark: _Toc143080032]Test scenarios
2.1 [bookmark: _Toc143080033]Requirements
The work of the MPEG-I scene description is based on the requirements defined in N18965, later revised to N19511. The coverage of the requirements and the progress is documented in WG3_N0294.
2.2 [bookmark: _Toc143080034]Scenarios
An extension to MPEG-I Scene Description should be supported with a well-defined and agreed scenario(s). WG3_N0294 also covers the mapping of requirements to scenarios.

The template for test scenarios can be found in Section 2.3.

The description of the agreed scenarios can be accessed at http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/test-assets#test-scenarios/. The corresponding test assets as well as additional test assets can be accessed at
http://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions.
Note: access and contribution to this requires an account. To request an account, please contact the test asset coordinators (see clause 5.4)

A new scenario must be proposed with an input contribution to an MPEG meeting with the following information as listed in clause 2.3.
2.3 [bookmark: _Toc77377248][bookmark: _Toc77377302][bookmark: _Toc77377249][bookmark: _Toc77377303][bookmark: _Toc77377250][bookmark: _Toc77377304][bookmark: _Toc77377251][bookmark: _Toc77377305][bookmark: _Toc77377252][bookmark: _Toc77377306][bookmark: _Toc77377253][bookmark: _Toc77377307][bookmark: _Toc77377254][bookmark: _Toc77377308][bookmark: _Ref53399275][bookmark: _Toc143080035]Template for test scenario
The following table should be used to propose test scenarios for scene description:
	Item
	Description

	Title
	<give it a catchy title, e.g., as those listed in clause 2>

	Description
	· What is the basic use case?
· How does it relate to MPEG-I Requirements and Use Cases?

	Required test assets
	· 3D scene, real-time assets for media (2D/3D)
· Anything else
· References to test assets

	Current Support
	· How can glTF Scene Description be used today
· What are gaps/inefficiencies of glTF2.0 to address this scenario?

	Criteria
	· What are relevant criteria for the user experience/QoE?
· What are relevant criteria for passing the test scenario?

2.4 [bookmark: _Toc143080036]Call for test data
Among others, we solicit the following material to be used as content for the creation and validation of MPEG-Scene Descriptions:
· 2D content that can server as overlays, video textures
· 2D and 3D content that is captured from a local camera, e.g., representing a conference room or flat surfaces for overlay
· 3D game content, e.g., provided in Unity, that can be used for the online gaming scenario
· 3D cinematographic content that includes complete scenes
· VR content and 3D mesh and point cloud content that can be used for VR scenes
· etc.
We welcome contributions of content that can be made available to the MPEG community for the development and progress of the MPEG-I Scene Description activity.
2.5 [bookmark: _Toc143080037]Timeline
The data sets should be submitted as input contributions to an MPEG meeting but early submission into AHG is welcome.
2.6 [bookmark: _Toc143080038]Available test assets	Comment by Gurdeep Bhullar: Possibly rename test asset/test content to conformant asset/reference asset?
The following table lists the available assets and provides a brief description:
	Asset
	Description

	conferenceroom.zip
	a glTF asset that represents a conference room.

	livingroom.zip
	a glTF asset that represents a living room.

	island.zip
	a glTF asset that represents an island.

	chair.zip
	a glTF asset that represents a chair.

	bbb.mp4
	Big Buck Bunny video file in mp4 format.

	longdress_frame.ply
	a binary PLY file from the longress point cloud sequence.

	Scenario 11
	Test Assets:

1. Pine Forest	
 "author": "fangzhangmnm (https://sketchfab.com/fangzhangmnm)",
 "license": "CC-BY-4.0 (http://creativecommons.org/licenses/by/4.0/)",
 "source": "https://sketchfab.com/3d-models/pine-forest-ece69535f7584e099488f65f2072264e",

2. woodland-5_trim_SN3D.wav
	Obtained and modified from EigenScape.
	EigenScape is a database of acoustic scenes recorded spatially using the mh Acoustics EigenMike. https://doi.org/10.5281/zenodo.1012809
	Marc Green <marc.c.green@york.ac.uk>

Note: that the first four assets are downloaded from sketchfab and are available for download and usage under the Creative Commons license as describe in CC Attribution License: https://creativecommons.org/licenses/by/4.0/.
2.7 [bookmark: _Ref53444287][bookmark: _Toc143080039]Agreed test scenarios
Agreed test scenarios are provided here:
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/test-assets#test-scenarios/
2.8 [bookmark: _Toc143080040]Test assets for validation

A test asset is an asset which is used to check the validity of the extension. The test assets are used to run simple unit test which could check for the common and edge cases of the extension. The test assets are glTF files which may not necessarily have an associated buffer. The test asset files are stored in the MPEG glTF-validator repository. For each extension, as shown in Figure 1, a test file is added and it contains the dart implementation to test the particular extension e.g., a dart file `mpeg_mpeg.dart`. Alongside, an asset.json file and data folder are created. The asset.json file is a JSON files which provides information on the property to be tested and the corresponding test file to be used. The test files are stored in the data folder. This workflow is inspired by the workflow used by Khronos for glTF-validaton. For more information, it is encouraged to check the implementation of the test asset.

[image: A screen shot of a computer

Description automatically generated]
[bookmark: _Ref140570838]Figure 1 File structuring

3 [bookmark: _Toc53758888][bookmark: _Toc53759159][bookmark: _Toc53759210][bookmark: _Toc143080041]Contributions for Extensions
3.1 [bookmark: _Toc143080042]General
For every extension documented in ISO/IEC 23090-14 under the framework in clause 3 the following information is expected to be provided:
· The schema for the extension as part of the standard as well as a JSON document
· The semantics for the extension
· The processing model on the "Presentation Engine"
· The conformance description, i.e. conformance requirements for the Presentation Engine that supports the extension
· A promise for example content that uses the extension that is finally available within one meeting after the technology was added. If not fulfilled, the feature is expected to be removed and this will be documented as a note in the draft standard.
· A promise of a reference implementation to the reference software as well as the conformance software as documented in clause 4, that is finally available within two meetings after the technology was added. If not fulfilled, the feature is expected to be removed and this will be documented as a note in the draft standard.
· The reference software implementation should implement the functionality to use the properties defined in the carriage format. Implementations in the reference software should support the mechanism and deliver an expected behaviour.

Note: In an agile manner, this may be achieved using a JSON file which provides all the necessary data which would be included in a sample in ISOBMFF container. The reference software takes the JSON files as input and apply the properties accordingly as per the processing model. Later, the reference software implementation may incorporate and integrate a proper demuxer for the carriage formats.
· To progress and integrate the support for carriage formats with the reference software, it is expected to bring supporting implementation in the carriage library.
· Upon any new merge request, a description of the merge request should be provided. A template description for merge request is opened whenever a new merge request is created to the `develop` branch.
· The information contained in the merge request will be provided as an input to the MPEG-I Scene Description AhG at the latest MPEG meeting.

Hence, contributions addressing extensions to glTF under the framework in clause 3 should include the following:
· The scenarios that the extension is addressing. The scenarios are documented in clause 2.7.

In case, all the above-mentioned information is not available, a documented extension is not moved into the WD/CD but is maintained in the Technology under Consideration (TuC) document. The status of the completed information and the missing one is documented in the TUC.

The following text processes is recommended, but needs final verification:

To fulfill the requirement on the reference software, it is sufficient to demonstrate that the reference software is able to properly process the test scenario. The test scenario content shall at least have a scene description file in glTF textual format that makes use of the proposed extension. The test scene description glTF document should use one of the available assets. The proposal must indicate any dependencies on other extensions.

The following is an example of this procedure:

· A test scenario is defined around support for video textures

· The proposal is to make use of the MPEG_video_texture extension

· A sample content is proposed based on the "conferenceroom" glTF file, which is part of the assets. The glTF file is extended to include the MPEG_video_texture extension. The bbb.mp4 asset is used to describe the video texture, which is attached to a rectangular mesh in the "conferenceroom" scene.

· The reference software is run with the modified scene description document and the expected behavior is demonstrated, showing the video texture.
3.2 [bookmark: _Toc143080043]Extension Principles
The following extension principles apply
· If the extension adds a new top-level array (by extending the root glTF object), its elements should inherit all properties of glTFChildOfRootProperty.schema.json.
· Other objects introduced by the extension should inherit all properties of glTFProperty.schema.json.
· By glTF 2.0 conventions, schemas should allow additional properties.
· Names MUST begin with an MPEG prefix, followed by an underscore.
· Names MUST use lowercase snake-case following the prefix, e.g., MPEG_materials_sand.
· Names SHOULD be structured as MPEG_<scope>_<feature>, where scope is an existing glTF concept (e.g. mesh, texture, image) and feature describes the functionality being added within that scope. This structure is recommended, but not required.
· Scope SHOULD be singular (e.g. mesh, texture), except where this would be inconsistent with an existing Khronos extension (e.g. materials, lights).
4 [bookmark: _Ref30092610][bookmark: _Toc143080044]Software
[bookmark: _Toc143080045]4.1. Reference software
The reference software for MPEG-I scene description is documented in WD of ISO/IEC 23090-24

[bookmark: _Toc143080046]4.2. Conformance software
The conformance software for MPEG-I scene description is documented in the WD of ISO/IEC 23090-24 as available in WG3 N0691.
5 [bookmark: _Toc77377264][bookmark: _Toc77377318][bookmark: _Toc77377265][bookmark: _Toc77377319][bookmark: _Toc77377266][bookmark: _Toc77377320][bookmark: _Toc77377267][bookmark: _Toc77377321][bookmark: _Toc77377268][bookmark: _Toc77377322][bookmark: _Toc143080047]Gitlab Management
5.1 [bookmark: _Toc143080048]Git commit convention

git commit -m "<optional WIP> <type>(#<issue id> <optional scope>): <description>"
The optional WIP information is to indicate your commit is in the “Work In Progress” state. Issue id is given in the Issue panel.
Type possible:
· feat: The new feature you’re adding to a particular application
· fix: A bug fix
· hotfix: A bug fix to correct a major issue
· style: Feature and updates related to styling
· refacto: Refactoring a specific section of the codebase
· test: Everything related to testing
· doc: Everything related to documentation
· chore: Regular code maintenance [something which not fit with other previous types]
[bookmark: _Toc143080049]5.2. Branch convention
[bookmark: _Toc143080050]5.2.1. Branch creation
git branch <type>/<initials>_<why>
· type: Everything which can work for a commit message
· initials: Initials of the owner
· why: The purpose of this branch written in PascalCase
[bookmark: _Toc143080051]5.2.2. Branch update
When two developers are working on the same project, they will have their own working branch. If one merge his/her work to the develop branch, the second person should update his/her work to fit with the latest state of the develop branch. There are two possible ways to resolve such a situation:
· Rebasing develop branch to the working branch (recommended solution)
· git checkout <my_branch_name>
git rebase develop
· Merging develop branch to the working branch (recommended solution)
· git checkout <my_branch_name>
git merge develop
On the other hand, when a working branch is finished and needs to move into develop branch. A pull request needs to be generated directly on GitLab. Once completed in the platform, the working branch will be merged with the develop branch.
[bookmark: _Toc143080052]5.2.3. Tree model

Figure 1 illustrates an example of tree model for development.
[image:]
[bookmark: _Ref120799769]Figure 21. Tree model for branch
5.3 Merge request template

A merge request template is provided as shown in Figure 3. The merge request template is incorporated for the reference software and MPEG glTF-validator software.

[bookmark: _Ref140571715]Figure 3 Merge request template

5.4 [bookmark: _Toc143080053]Scenarios
To provide use cases that are to be supported by the standard, test scenarios are collected. Scenarios are described on what the basic setup an experience is expected to be and provides along with this test assets and test vectors (may be compressed or uncompressed) that may be used in the scenario. These test scenarios are collected at http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/test-assets#test-scenarios/.
5.5 [bookmark: _Toc143080054]Summary logistics
	Asset
	Hosting
	Location name

	Repository
	MPEG Gitlab
	http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription

	Reference software
	MPEG Gitlab
	http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/software/reference

	Conformance software
	MPEG Gitlab
	http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/software/23090-24-gltf-validator

	Conformance software
	MPEG Gitlab
	https://gitlab.com/mpeg-i/scene-description/conformance

	Scenarios
	MPEG Gitlab
	http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/test-assets

	Test vectors
	Gitlab.com with LFS for binary files
	https://gitlab.com/mpeg-i/scene-description/test-vectors

	Test assets
	MPEG content
	https://mpeg.expert/software/MPEG/Systems/SceneDescription/software/assets
[The group is transitioning to host the test asset on MPEG Gitlab. This is currently work in progress.]

	Unit tests for validation software
	MPEG GitLab
	https://mpeg.expert/software/MPEG/Systems/SceneDescription/software/23090-24-gltf-validator
Any test content which is used to test and validate the implementation of the MPEG extension in the glTF-validator must be provided with the a corresponding unit test implementation in glTF-validator. The test content must be hosted along with.

For uploading content to the Test Assets, the preferred option is to create a new branch at https://mpeg.expert/software/MPEG/Systems/SceneDescription/software/assets with README.md file describing the test asset and extensions in use. The content will be pushed to the newly created branch with LFS enabled for large binary files. Proponents can also bring a supporting input contribution describing the test asset to the MPEG meeting; however, it is not advised.

[bookmark: _Toc53758903][bookmark: _Toc53759174][bookmark: _Toc53759225]
5.6 [bookmark: _Ref120797685][bookmark: _Toc143080055]5.4.Coordinators

If you have created MPEG Git account but you cannot access the site, then please share the following information.

•	Your name
•	Your MPEG Git username

Please then send an email containing this information to the GitLab managers as listed in Table 1.

[bookmark: _Ref120800194]Table 1 Gitlab managers
	Name
	Email address

	Emmanuel Thomas
	thomase@xiaomi.com

	Imed Bouazizi
	bouazizi@qti.qualcomm.com

6 [bookmark: _Toc143080056]Promotion

6.1. [bookmark: _Toc143080057]MPEG glTF-validator

A list of the MPEG-I Scene description extensions is implemented as detailed in the README.md file on the git repository. It is therefore foreseen that the glTF-validator with MPEG extensions will serve as a helpful tool for implementors to validate a glTF asset with MPEG extensions and generate validation reports.
6.1.1. [bookmark: _Ref143079635][bookmark: _Toc143080058]Requirements
The group is currently investigating and study to promote the tool with Khronos glTF group for adoption. To submit the source code to Khronos glTF-validator repository, a pull request must be created. A Khronos Open-Source Contributor License Agreement (CLA) should be signed upon opening the pull request by the committers. The information about the Open Source CLA can found under the following link: https://cla-assistant.io/KhronosGroup/glTF-Validator. The maintainers of the Khronos glTF-validator will review the source code and may provide comments, if any. After the review process, the maintainers will merge the pull request to the official Khronos glTF-validator repository.
6.1.2. [bookmark: _Toc143080059]Procedure

One possible procedure is to fork the Khronos glTF-validator repository to MPEGGroup public github organization (https://github.com/MPEGGroup) as a separate repository. The source code for MPEG extensions with test assets can be push to the newly forked repository. A pull request from the MPEGGroup/glTF-validatior can be made to Khronos/glTF-validator. The pull request must fulfill the requirements as described in Section 6.1.1.

2

image1.jpeg

image2.png

image3.png

image4.emf
Description

Please include a summary of the changes and the related issue. Please also include relevant motivation and context. List

any dependencies that are required for this change.

Fixes # (issue)

Type of change

Please delete options that are not relevant.

 Bug fix (non-breaking change which fixes an issue)

 New feature (non-breaking change which adds functionality)

 Breaking change (fix or feature that would cause existing functionality to not work as expected)

 This change requires a documentation update

How Has This Been Tested?

Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any

relevant details for your test configuration

 Unit test

 Test content

Checklist:

ISO/IEC 23090-14

 The change relates to the specification in the first edition of ISO/IEC 23090-14

 The change relates to the specification in the first amendment of ISO/IEC 23090-14

 The change relates to the specification in the second amendment of ISO/IEC 23090-14

ISO/IEC 23090-24

 The changes are aimed to be part of the first edition of ISO/IEC 23090-24

 The changes are aimed to be part of the first amendment of ISO/IEC 23090-24

Others

 My changes generate no new warnings

 I have added tests that prove my fix is effective or that my feature works

 New and existing unit tests pass locally with my changes

 Any dependent changes have been merged and published in downstream modules

Microsoft_Word_Document.docx
Description

Please include a summary of the changes and the related issue. Please also include relevant motivation and context. List any dependencies that are required for this change.

Fixes # (issue)

Type of change

Please delete options that are not relevant.

· [image:]Bug fix (non-breaking change which fixes an issue)

· [image:]New feature (non-breaking change which adds functionality)

· [image:]Breaking change (fix or feature that would cause existing functionality to not work as expected)

· [image:]This change requires a documentation update

How Has This Been Tested?

Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration

· [image:]Unit test

· [image:]Test content

Checklist:

ISO/IEC 23090-14

· [image:]The change relates to the specification in the first edition of ISO/IEC 23090-14

· [image:]The change relates to the specification in the first amendment of ISO/IEC 23090-14

· [image:]The change relates to the specification in the second amendment of ISO/IEC 23090-14

ISO/IEC 23090-24

· [image:]The changes are aimed to be part of the first edition of ISO/IEC 23090-24

· [image:]The changes are aimed to be part of the first amendment of ISO/IEC 23090-24

Others

· [image:]My changes generate no new warnings

· [image:]I have added tests that prove my fix is effective or that my feature works

· [image:]New and existing unit tests pass locally with my changes

· [image:]Any dependent changes have been merged and published in downstream modules

image1.wmf

