[image: ]                                      ISO/IEC JTC 1/SC 29/WG 7 N00575


ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics and Haptics Coding 
Convenorship: AFNOR (France)



Document type:	Output Document

Title:	G-PCC 2nd Edition codec description

Status:	Approved

Date of document:	2023-06-16

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:		   None

Action due date:		   None

No. of pages:	107 (with cover page)

Email of Convenor:	marius.preda @ it-sudparis.eu

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7




INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS AND HAPTICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N00575
April 2023, Antalya


	Title
	G-PCC 2nd Edition codec description

	Source
	WG 7, MPEG 3D Graphics and Haptics Coding

	Status
	Approved

	Serial Number
	22735





[bookmark: _Toc140376103]Abstract
This codec description document summarizes technologies for the second edition of G-PCC. They advance G-PCC in the following areas: predictive and octree geometry coding, inter prediction for geometry coding, attribute coding, inter prediction for attribute coding, and TriSoup.

Contents
1	Abstract	1
2	Contents	1
3	Predictive Geometry Coding	5
3.1	Adaptive Azimuthal Angle Quantization [1][2]	5
3.2	Improved Coding of Azimuthal Angle Residual [3][7]	7
3.3	Improved Coding of Number of Azimuthal Angle Steps [4][7]	8
3.3.1	Method For Scaling Azimuthal Angle Step	9
3.3.2	Enabling Scaling of Azimuthal Angle Step	9
3.3.3	Computing Scaled Azimuthal Angle Step	10
3.4	Improved Radius Residual Sign Coding and Points Ordering [5][7]	10
3.4.1	Improved Radius Residual Sign Coding	13
3.4.2	Improved Points Ordering	14
3.5	Improved Predictor List [6][7]	14
3.5.1	List of Predictors	15
3.5.2	Derivation of the predictors	16
3.5.3	Management of the prediction buffer	16
3.6	Improved Coding of Magnitude of Radius Residual [8][9]	17
3.6.1	Radius Residual Coding in G-PCC Ed.1	17
3.6.2	Problem Description	18
3.6.3	Proposed Coding Method of the Magnitude of Radius Residual	18
3.6.4	Prior Information in Prediction Process	20
3.6.5	Context Determination Method	21
3.6.6	Complexity Reduction	22
3.7	Disabling of Cartesian Residual Coding [10][11]	22
3.8	Prediction List Index Coding [13][12]	23
3.9	Removing Parsing Dependency in Predictive Geometry Coding [14]	23
4	Octree Geometry Coding	25
4.1	Residual Coding of Angular Mode in IDCM [15][18]	25
3.1.1 Motivation	25
3.1.2 IDCM Angular Mode in G-PCC’s Ed.1	25
3.1.3 Improved Method	25
4.2	Improved Azimuthal Mode in IDCM [16][18]	27
4.2.1	Azimuthal Mode in G-PPC Ed.1 IDCM	27
4.2.2	Problem Description	29
4.2.3	Proposed Angle Interpolation	30
4.3	Context Enhancement of Azimuthal IDCM [17][18]	32
4.3.1	Context Selection in G-PCC’s Ed.1 Azimuthal Coding Mode	32
4.3.2	Problem Description	33
4.3.3	Improved Method	35
4.4	Planar Flag Signalling [19][20]	36
4.4.1	Description of the Method	36
4.4.2	Signalling One Flag Instead of Three	36
4.4.3	Signalling One Flag Instead of Two	37
4.5	Disabling Planar Mode for IDCM Nodes [21][22]	37
4.6	Neighbour-Based Octree Occupancy Coding with Dynamic OBUF [23][24][25][26]	38
4.7	Removal of Z-Coding Path in New Octree Coding [29]	40
4.8	Modified Neighbour-Based Octree Occupancy Coding with Dynamic OBUF [30][31]	41
4.9	Common Dynamic OBUF Class for Octree and TriSoup [32]	41
4.10	Eligibility of Planar Mode [27][28]	42
4.10.1	Planar Mode Eligibility in G-PCC Ed.1	42
4.10.2	Proposed Eligibility Based on Density	42
4.11	Low-Memory Footprint Dynamic OBUF [33]	43
4.12	Initialization of Dynamic OBUF [34]	43
4.13	Probability Bounds in Dynamic OBUF [35][36]	43
4.14	Improved Planar Mode [37][38]	45
4.15	Improvements of Octree-Coding for Spin-LIDAR Sequences [39][40]	48
4.15.1	Introduction	48
4.15.2	Z-Coordinates Compensation Process	48
5	Inter Prediction for Octree Geometry Coding	49
5.1	Inter Prediction for Octree Geometry Coding Based on Global Motion Using Two-Threshold Classification of Road/Object Points [41][42][48][50]	49
5.2	Inter Planar Mode Coding [49]	52
5.2.1	Modified Planar Mode Coding with Inter Prediction	53
5.2.2	Context Selection for Planar Flag and Plane Position Coding Using Inter Prediction	53
5.2.3	Planar Copy Mode	54
5.2.4	Use Inter Prediction in Occupancy When the Node Has a Planar Direction	55
5.3	IDCM Eligibility for Inter [58]	55
5.4	Inter Modification for Neighbour-Based Octree Occupancy Coding with Dynamic OBUF [58][59]	56
5.5	Unified Partitioning Method for Motion Compensation [60]	57
5.6	Bi-Directional Inter Prediction [62][63]	57
6	Inter Prediction for Predictive Geometry Coding	59
6.1	Inter Prediction for Predictive Geometry Coding [44][45][46]	59
6.2	Additional Predictor Candidate [53]	60
6.3	Improved Inter Prediction Flag Coding [54]	61
6.4	Integration with Improved Predictive Geometry Coding and Global Motion [57]	61
6.4.1	Integration with Improved Predictive Geometry Coding	61
6.4.2	Integration with Global Motion	62
6.5	Integer Implementation of Cartesian to Spherical Coordinate Conversion for Global Motion Compensation [61]	62
6.6	Zero Motion and Global Motion Inter Predictors [64][65][66]	63
6.7	Additional Inter Predictors [67]	64
6.7.1	Modified Estimation of qphi	64
6.7.2	Selection of Additional Inter Predictors from Either GMC Reference Frame or from a Second Non-MC Reference Frame	64
6.7.3	Geometry Data Unit Header Syntax Modifications	66
7	Inter Prediction for Attribute Coding	68
7.1	Unidirectional Inter Prediction for Attribute Coding [69][70][71][72]	68
7.2	Bidirectional Inter Prediction for Attribute Coding [62][63]	69
7.3	Inter Prediction for DC and AC RAHT Coefficients [73][74]	70
7.4	Improvements to Inter Prediction for RAHT Attribute Coding [78][79]	70
7.5	Improved Coefficient Inter Prediction for RAHT Attribute Coding [80][81]	70
7.6	Attribute Inter Prediction with Slice Partitioning [82]	73
7.7	Attribute Inter Prediction for predLifting Transform Coding Error! Reference source not found.	74
7.7.1	Introduction	74
7.7.2	Inter-Attribute Nearest Neighbor Search	75
8	Inter Prediction: Other Techniques	76
8.1	Dependent Entropy Frame Coding [51][52]	76
8.2	Signalling of Global Motion Data [56]	76
8.3	Inter Entropy Continuation HLS [68]	77
8.3.1	Background	77
8.3.2	Proposed Change	78
8.4	Dependent Entropy Frame Coding for Attribute [75][76][77]	79
9	Attribute Coding	80
9.1	Adaptive Quantization for LoD-Based Attribute Predicting Transform Coding [84][85]	80
9.2	Neighbor Search Method for Attribute LoD Prediction [86][87][94]	82
9.3	Low-Latency Attribute Coding Inside Slice [88][89]	84
9.4	Extended Prediction for RAHT [90][91]	85
9.5	Disabling Transform Domain Prediction of RAHT [92][93]	87
9.6	RAHT Reconstruction Buffer Rounding Operation Removal [95][96]	89
9.7	3D Quantization Matrix Signalling for RAHT Coefficient Coding [97][98]	90
10	TriSoup	92
10.1	Alternative Method for Determining Projection Plane [100][101]	92
10.2	Refinement of Trisoup Projection Plane Determination [102]	92
10.3	Improved TriSoup [103][104][105][106][107][108][109][110]	94
10.4	Adaptive Halo Improvement for Voxelization [111]	94
10.5	Non-Cubic TriSoup [114][115]	94
10.6	Voxelization of TriSoup Triangles [116]	95
10.7	Inter TriSoup Based on Motion Compensated Point Cloud [117]	96
10.8	On TriSoup Voxelization [118]	96
10.9	Centroid Vertex Positioning [119]	96
10.10	Raster Scan Order for Octree Coding (GeS-TM) [120][121]	96
11	Entropy Coding	98
11.1	Simplification of Bypass Mode [122]	98
12	References	100
12.1	Predictive Geometry Coding	100
12.2	Octree Geometry Coding	101
12.3	Inter Prediction for Geometry Coding	102
12.4	Inter Prediction for Attribute Coding	104
12.5	Attribute Coding	104
12.6	TriSoup Coding	105
12.7	Entropy Coding	106



[bookmark: _Ref106280185][bookmark: _Toc140376105]Predictive Geometry Coding
[bookmark: _Ref78982106][bookmark: _Toc140376106]Adaptive Azimuthal Angle Quantization [1][2] 
When using spherical coordinates in predictive geometry coding of LiDAR acquired point clouds in G-PCC Ed. 1, azimuthal angles are quantized regardless of the distance between the points and the LiDAR acquisition head. The sampling result of this quantization is roughly as illustrated in Figure 1. It shows that the sampling density is high close to the origin, where a spinning sensors head is located, and becomes low in regions far from the spinning sensors head. Depending on the value Δϕ, one gets either too much precision for points (r1, ϕ1) close to the spinning sensors head or not enough precision for points (r2, ϕ2) far away. In the first case, for close points there is too much coded information for the residual error of azimuthal angle prediction. On the other hand, in the second case, there is not enough information coded for the residual error of azimuthal angle prediction of faraway points to have accurate precision on inverse transformed (x, y) values, thus leading to higher magnitude residual error in cartesian coordinates (xres, yres) to be coded. In both cases, the compression of the azimuthal angle ϕ is not optimal. In summary, the uniform quantization of ϕ does not lead to optimal representation of the point positions when considering the overall compression scheme of points in cartesian space.
[image: ]
[bookmark: _Ref60135685]Figure 1: Sampling of azimuthal angles and radius using uniform quantization, as in G-PCC Ed. 1.

The proposed method [1][2] adaptively quantizes the azimuthal angle according to the radius, resulting in improved compression performance. To compress more efficiently, it is proposed to use an adaptive quantization step of the azimuthal angle ϕ. Using the value of the reconstructed radius r2D, the proposed non-uniform adaptive angular quantization step is changed to:
Δϕ(r2D) = Δϕarc / r2D.
By using this non-uniform quantization step, the length of the arc resulting of the Δϕ(.) quantization step is uniform for any radius r1, r2 as this length is equal to r1.Δϕ(r1) = Δϕarc = r2.Δϕ(r2).

This non-uniform quantization step in ϕ domain is thus providing a uniform quantization of circular arcs, with quantization step Δϕarc, for any radius as is illustrated in Figure 2 and Figure 3. Figure 3 also shows the more uniform angular sectors implied by uniform quantization of the circular arcs, leading to more uniform maximum error introduced by the quantization of ϕ.
[image: ]

[bookmark: _Ref60147044]Figure 2: Proposed non-uniform quantization of the azimuthal angles, leading to uniform quantization of arcs.
[image: ]
[bookmark: _Ref60147057]Figure 3: Uniform quantization of circular arcs using Δϕarc quantization step.
Implementation details are described in [1] with some additional modifications in [2]. The integer division in inverse quantization of the azimuthal residual is approximated by using the Newton-Raphson division approximation algorithm. In addition, the internal precision for representing azimuthal angles is increased (e.g., 24 bit for lossless), which necessitated a modification of the implementation of integer sine and cosine functions to keep 32 bit arithmetic [2], but the modification does not affect the normative definition of these functions. It was also necessary to adapt the scaling of spherical coordinates for attribute coding due to the increased precision.

The improved quantization of azimuthal angle has been made backward compatible with G-PCC Ed. 1 by adding a flag in the geometry parameter set extension to enable/disable the feature.


[bookmark: _Ref78986050][bookmark: _Toc140376107]Improved Coding of Azimuthal Angle Residual [3][7]
The following method to improve the coding of the azimuthal angle residual is implemented on top of the adaptive azimuthal angle quantization that is described in the previous section 3.1. When using spherical coordinates in predictive geometry coding of LiDAR acquired point clouds in G-PCC Ed.1, the prediction of the azimuthal angle of a point can be refined by adding a number ‘k’ (coded in bitstream) of azimuthal steps ‘φstep’ to the azimuthal angle prediction ‘φ-n’ provided by the ‘n’-th predictor:

φpred = k * φstep + φ-n.

The azimuthal step ‘φstep’ may basically correspond to the rotation performed by the LiDAR sensor head between two successive attempts for the acquisitions of points with a laser at a given elevation angle. It corresponds to the azimuthal angle provided by:

φstep = geom_angular_azimuth_speed_minus1 + 1,

where ‘geom_angular_azimuth_speed_minus1’ is obtained from the geometry parameter set (GPS).

In G-PCC Ed.1, there is no constraint on the value of ‘k’. Thus, the residual ‘φres’ of the prediction of the azimuthal angle ‘φ’ by predictor ‘φpred’:

φres = φ - φpred,

is unbounded.

The presented method imposes that the value of ‘k’ shall be set equal to:

k = round((φ - φ-n) / φstep),

(as it is already the case in G-PCC Test Model TMC13v12) in order to bound the residual ‘φres’ such that it fits in the interval [- φstep/2; + φstep/2].

More precisely, in the context of the adaptive quantization of azimuthal angle described in section 3.1, the quantized azimuthal angle residual ‘Qφres’ will satisfy:

-Qφ(φstep/2, r) = Qφ(-φstep/2, r) ≤ Qφres = Qφ(φres, r) ≤ Qφ(φstep/2, r),

where ‘Qφ(x, r)’ is the adaptive quantization of ‘x’ based on the coded radius ‘r’.

Then, by using the value of the bound ‘B = Qφ(φstep/2, r)’, the presented method improves the entropy coding of the quantized residual ‘Qφres’. 

First, bound ‘B = Qφ(φstep/2, r)’ is computed for each point as follows:
const int rec_radius_scaling = rPred + residual[0] << 3; // ~r*2*pi
auto speed_r = int64_t(_geomAngularAzimuthSpeed)*rec_radius_scaling;
int phiBound = divExp2RoundHalfInf(speed_r, _geom_angular_azimuth_scale_log2+1);

Then, coding is performed as illustrated in Figure 4. If bound ‘B’ equals zero, the quantized residual ‘Qφres’ is zero, hence, no coding is needed. Otherwise, a flag is coded to indicate if ‘Qφres’ is equal to zero. If it is nonzero, a sign bin is coded. Then if bound ‘B’ equals one, ‘Qφres’ is either minus one or one, hence, no more coding is needed. Otherwise, a flag is coded to indicate if the absolute value of ‘Qφres’ is equal to one. If it is not, but bound ‘B’ equals two, ‘Qφres’ is either minus two or two, and coding stops. Otherwise, the remainder (i.e., ‘|Qφres|-2’) is coded using an expGolomb code. The number of entropy coding contexts is equal to 24.

[image: A picture containing icon

Description automatically generated]

[bookmark: _Ref78985000]Figure 4: Entropy coding of quantized residual azimuthal angle using bound B.
[bookmark: _Toc140376108]Improved Coding of Number of Azimuthal Angle Steps [4][7]
As described in the previous section 3.2, when using spherical coordinates in predictive geometry coding of LiDAR acquired point clouds, in G-PCC Ed.1 the prediction of the azimuthal angle of a point can be refined by adding a number ‘k’ of azimuthal angle steps ‘φstep’ to the azimuthal angle prediction ‘φ-n’ provided by the ‘n’-th predictor. When a radius is sufficiently small (i.e., when a point is sufficiently close to the LiDAR sensor), it is possible that a rotation of one ‘φstep’ angle does not change cartesian coordinates of the output point.

As illustrated in Figure 5, it may occur when more than one azimuthal directions of a laser from the LiDAR head (i.e., the (x, y) origin) are crossing the square to which belongs the point (the black disc) with 2D (x, y) coordinates. The squares correspond to a regular sampling of x and y axis in the cartesian space. The size of the squares depends on the precision of the input point cloud in case of lossless compression, or it roughly depends on quantization step in case of lossy compression.

[image: A picture containing text, silhouette

Description automatically generated]
[bookmark: _Ref67583944]Figure 5: Example of a point for which azimuthal angle can be equivalently predicted by more than one number of azimuthal angle steps.
To improve LiDAR point cloud compression, the presented method dynamically scales the azimuthal angle step ‘φstep’ when coding points that are close to the sensor (regarding the “default” ‘φstep’ precision).

[bookmark: _Toc140376109]Method For Scaling Azimuthal Angle Step
In G-PCC Ed.1 a cartesian coordinates prediction (xpred, ypred) is obtained by:

(xpred, ypred) = (round(r2D-rec*cos(φrec)), round(r2D-rec*sin(φrec)),

where ‘φrec’ is the reconstructed azimuthal angle, and ‘r2D-rec’ is a reconstructed radius.
If implemented on top of the methods presented in the previous sections, ‘φrec= φpred + IQφ(Qφ(φres, r), r)’, with ‘Qφ’ the adaptive quantization of azimuthal angle described in section 3.1, ‘IQφ’ the inverse quantization, and ‘φres’ the azimuthal angle residual of the prediction.
In G-PCC Ed.1 and above methods, ‘r2D-rec = r << geom_angular_radius_inv_scale_log2’; in comparison to the coded point cloud cartesian precision, the radius ‘r’ which is internally used in, and coded by, the codec has a precision reduced by a number of bits equal to ‘geom_angular_radius_inv_scale_log2’ obtained from the geometry parameter set (this is equivalent to a quantization of the radius).

[bookmark: _Toc140376110]Enabling Scaling of Azimuthal Angle Step
If both the improved quantization of azimuthal angle as presented in section 3.1 and the improved azimuthal angle residual coding as presented in section 3.2 are implemented, the bound ‘B = Qφ(φstep/2, r)’ (see section 3.2), which is computed for each point for entropy (de)coding, is used to enable the scaling of the azimuthal angle step. If the integer bound ‘B’ is equal to 0 or equivalently ‘B < 1’, then:
φpred = k * S(φstep,r) + φ-n,
where ‘S(φstep,r)’ is a scaled azimuthal angle step.

[bookmark: _Toc140376111]Computing Scaled Azimuthal Angle Step
In order to code an optimal number ‘k’ of scaled azimuthal angle steps ‘S(φstep,r)’, an optimal ‘S(φstep,r)’ would become:

S(φstep,r) = 2geom_angular_azimuth_scale_log2/(r<<3).

One issue with this equation is that it requires an integer division in the decoder. Therefore, an approximation of the division in S(φstep,r) is implemented. To compute the approximation, the highest power is used of the ‘2n’ factor of ‘φstep’ such that ‘2n * φstep < 2geom_angular_azimuth_scale_log2/(r<<3)’.

The scaled azimuthal angle step ‘2n * φstep’ can simply be obtained by iteratively scaling ‘φstep’ and ‘φstep * (r<<3)’ by ‘2n’, starting from ‘n=0’, and using successive bitwise shift of 1 bit operations on both ‘2n * φstep * (r<<3)’ and ‘2n * φstep’ while ‘2n * φstep * (r<<3)’ is lower than 2π angle (i.e. ‘2geom_angular_azimuth_scale_log2’):
auto rec_radius_scaling = pred[0] + residual[0] << 3; // ~r*2*pi
auto azimuthSpeed = _geomAngularAzimuthSpeed;
if (rec_radius_scaling && rec_radius_scaling < Th0) {
  const int32_t pi = 1 << _geom_angular_azimuth_scale_log2 - 1;
  int32_t speed_r = azimuthSpeed*rec_radius_scaling;
  while (speed_r < pi) {
    speed_r <<= 1;
    azimuthSpeed <<= 1;
  }
}
Then, in encoder, the number of azimuthal steps ‘qphi’, and in both encoder and decoder, the azimuthal angle predictor updated by the number of azimuthal angle steps ‘pred[1]’, are computed using ‘azimuthSpeed’ instead of ‘_geomAngularAzimuthSpeed = gps.geom_angular_azimuth_speed_minus1 + 1’:
-qphi = residual[1] >= 0 ? (residual[1] + (_geomAngularAzimuthSpeed >> 1))
-    / _geomAngularAzimuthSpeed
-                    : -(-residual[1] + (_geomAngularAzimuthSpeed >> 1))
-    / _geomAngularAzimuthSpeed;
-pred[1] += qphi * _geomAngularAzimuthSpeed;
+qphi = residual[1] >= 0 ? (residual[1] + (azimuthSpeed >> 1))
+    / azimuthSpeed
+                    : -(-residual[1] + (azimuthSpeed >> 1))
+    / azimuthSpeed;
+pred[1] += qphi * azimuthSpeed;
 residual[1] = point[1] - pred[1];


[bookmark: _Toc140376112]Improved Radius Residual Sign Coding and Points Ordering [5][7]
Figure 6 illustrates the natural tendency of points that are acquired by a spinning sensor. The distance between the sensor and the acquired points on the objects is locally monotonous as a function of the sample indexed by the azimuthal angle ϕ.
[image: A picture containing text

Description automatically generated]
[bookmark: _Ref57383562]Figure 6: Natural monotonicity of the radius associated with points depending on the sample indexed by the azimuthal angle.
Therefore, if a current radius is predicted by the radius of the precedingly acquired point by the same sensor, the radius residual rres exhibits a locally constant sign, either a series of negative radius residuals or a series of positive radius residuals. Of course, this is not always true but statistically significant enough to use this property to improve the compression of the sign sres of rres. 
Furthermore, it was observed from QNX sequences that for a range of azimuthal angles of successive points encoded with predictive geometry, and for a same laser index (i.e., a same elevation angle), as is shown in Figure 7, it is possible to distinguish that a nearly piecewise constant curve is obtained. If we look closely it is not totally piecewise constant but we can attribute this to noise due to coordinate conversions coming from the conversion between raw acquisition data and final cartesian coordinates present in the input files and from the cartesian to spherical coordinate conversion in G-PCC. It shows that several points would have the same azimuthal angle, which is not coherent with the LiDAR acquisition mechanism where the head would be constantly turning, so the azimuthal angle may have been quantized (by the system?) to 360 angles steps while the sensor had made acquisitions with smaller than 1 degree angular steps.

[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref68178917]Figure 7: Azimuthal angle values locally constant for successive points encoded for one laser, from a qnx file.
Second, by looking at radius values of the same successive points, as is shown in Figure 8, it can be observed that natural monotonicity of the radius, that should be observed for successively acquired points, is not verified locally when radius tends to decrease on average (zoomed window on the left). Discontinuities like saw tooths are observed: the radius increases locally. But when radius tends to increase on average (zoomed window on the right), the monotonicity of the radius is well observed. This is because the predictive geometry encoder is re-ordering the points so that the radius is locally increasing for a similar azimuthal angle.
[image: Histogram

Description automatically generated]
[bookmark: _Ref68179016]Figure 8: Radius values for successive points encoded for one laser, from a qnx file.
This re-ordering in the encoder is not suited for correctly simulating a real ordering of the LiDAR acquired points, as monotonicity, rather than saw tooths, should be observed for both increasing and decreasing radiuses.
Therefore, the presented method encodes the sign of the radius by using entropy coding contexts which are chosen based on the monotonicity assumption. And second, the method re-orders points in the encoder when azimuthal angles are similar to better reflect the monotonicity that would normally be obtained.

[bookmark: _Toc140376113]Improved Radius Residual Sign Coding
In the predictive geometry encoder, the sign of a radius residual is encoded with a single entropy coding context. Since the radius residual sign should be more or less piecewise constant when the radius is predicted from the preceding point radius (i.e., parent node in the predictive tree), the sign probability would be highly correlated with the sign value of the radius of preceding encoded point, when the parent node is used as a predictor. Moreover, this probability should increase when the successively coded points have similar azimuthal angle (i.e., the number of azimuthal steps encoded in the bitstream and added to the predictor is zero).

Therefore, the presented method uses a table of 2x2x2x2 (i.e., 16) contexts as follows:

ctxsign = ctxTab[Iprevious][Ipenulm][Ilast][sres,prec],

where ‘ctxTab’ it the table of contexts, ‘Iprevious’ is a Boolean value indicating if the selected predictor is the parent node, ‘Ipenulm’ is a Boolean value indicating if the coded number of azimuthal steps for preceding point is equal to zero, ‘Ilast’ is a Boolean value indicating if the coded number of azimuthal steps for the current point is equal to zero, and ‘sres,prec’ is a Boolean value indicating the sign of the last coded radius residual.
[bookmark: _Toc140376114]Improved Points Ordering
To simulate LiDAR sensor points ordering, points are ordered first by increasing ϕc azimuthal angles, ϕc corresponding to azimuthal angle ϕ quantized according to azimuthal step ϕstep:

ϕc = ϕ / ϕstep,

with ϕstep = geom_angular_azimuth_speed_minus1 + 1, and secondly by increasing radius.
Then, for each ϕc, in increasing order, the minimum radius rmin-ϕc and the maximum radius rmax-ϕc are respectively the radiuses of the first and of the last ordered points having that ϕc value. The absolute difference to the radius of the last point with a lower ϕc value (e.g., rlast- ϕc-1) is computed for rmin-ϕc and rmax-ϕc. If the absolute difference is lower for rmax-ϕc, the order of the point with ϕc azimuthal angle is reversed, so that radiuses are ordered in decreasing order. This allows to increase the monotonicity of the radius, by minimizing the radius jumps between points with successive ϕc azimuthal angle values, as is illustrated in Figure 9. On the left the points are ordered with radius r in increasing order (as in TM) and on the right is the result of reversing the order of the points if it is better.

[image: A screenshot of a computer

Description automatically generated with low confidence]
[bookmark: _Ref68280424]Figure 9: Radius ordering based on jump (in red) minimization. 

[bookmark: _Ref97121205][bookmark: _Toc140376115]Improved Predictor List [6][7]
In G-PCC’s predictive tree, for each node in the prediction tree, one predictor index ‘n’ is encoded in the bitstream. This index points to a selected predictor PRn among a list of possible predictors. When angular mode is used (for LiDAR point cloud) the possible predictors may be one of:

1. “None”: PR0 = (rmin, φ0, θ0), where rmin is the minimum radius value (provided in the geometry parameter set), and φ0 and θ0 are equal to 0 if the node has no parent, or are equal to φ and θ values of the point coded in the parent node;
1. “Delta”: PR1 = p0 = (r0, φ0, θ0), where r0, φ0 and θ0 are respectively the radius r, the azimuthal angle φ and the laser index θ values of the parent point p0 coded in the parent node;
1. “Linear2”: PR2 = 2*p0-p1, where p0 and p1 are the parent and grandparent points/nodes;
1. “Linear3”: PR3 = p0+p1-p2, where p0, p1 and p2 are the parent, the grandparent and great grandparent points/nodes;

A prediction residual (rres, φres, θres) is obtained in the encoder by

(rres, φres, θres) = (r, φ, θ) – PRn – (0, k * φstep, 0),					(1)

where PRn is one of the predictors PR0, PR1, PR2 or PR3, and k is a number of azimuthal angle steps (φstep) to be added to the prediction. The prediction index ‘n’ and the number ‘k’ of azimuthal angle steps are encoded in the bitstream for each node, while the value of (φstep) is encoded in the geometry parameter set by geom_angular_azimuth_speed_minus1. The residual (rres, φres, θres) is also encoded in the bitstream.

With the improved quantization of azimuthal angle proposed in section 3.1, φres is additionally quantized according to the radius r before being encoded in the bitstream.

In both encoder and decoder side, the coordinates (rdec, φdec, θdec) of points are retrieved by doing the reverse process: a reconstructed point (rdec, φdec, θdec) is obtained by

(rdec, φdec, θdec) = PRn + (0, k * φstep, 0) + (rres, φres,rec, θres),

where φres,rec is obtained from the quantized φres after being inversely quantized.

PR2 and PR3 predictors (aka Linear2 and Linear3 predictors) may be efficient for non-angular coordinate prediction with quite regular sampling in space (for instance for 3D fused map contents). But, in the presence of noise, the candidate predictors PR2 and PR3 are generally not efficient. Therefore, for LiDAR point clouds, they are rarely selected because point cloud data captured by spinning sensor head are usually noisy due to the very nature of the acquisition process. PR1 (aka Delta predictor) is then very often selected as it is less sensitive to noise.

However, sensors generally capture objects at various distances from the sensor and huge jumps in radius between two successive points may be observed, leading to high-magnitude residual radial values to be encoded in the bitstream. Without reordering the input points or building more complex trees, which would introduce delays, neither candidate predictor PR1 nor PR2 or PR3 are suited for the prediction of these jumps. Candidate predictor PR0 may sometimes be useful if the object is close to the sensor (i.e., close to the minimum radius), but for objects far from the sensor, the candidate predictor PR0 is also inefficient. Moreover, a disadvantage of the candidate predictor PR0 is the introduction of a latency of one frame in the processing of the point cloud data in order to get the suited minimum radius. For real time processing, a suboptimal value, like 0 for instance, would be used.

Therefore, for LiDAR content, it seems interesting to use predictors that would be more suited to the nature of the data, without needing reordering points. The presented method dynamically builds and updates a list of predictors as described in more details in the next section.

[bookmark: _Toc140376116]List of Predictors
A dynamic list of predictors is derived to perform better prediction after a laser beam has moved from a first object, with a first distance, to another object, with a different distance, has passed over it and is passing back to the first object. It may occur, for instance, when one object is in front of another one (like a car in from of a wall, for instance), or when an object has holes (walls with open doors or windows, or entrance wall for instance) as could be illustrated by Figure 10.

[image: A picture containing text

Description automatically generated]
[bookmark: _Ref79423605]Figure 10: Example of a laser probing two different objects. 

Instead of using the list of G-PCC predictors, a list of N predictors is built from a prediction buffer of N pairs of one radius and one azimuthal angle (rn, φn). The predictors derivation is detailed in subsection 3.5.2 and the buffer management is explained in subsection 3.5.3.

The coding of the predictor index is simply performed using a unary coding with one context per predictor index.

[bookmark: _Ref69205181][bookmark: _Toc140376117]Derivation of the predictors
The derivation of a predictor is performed as follows:
· If the point being predicted is the first point of the tree (i.e., there is no parent node), the predictor PR0 is set equal to (rmin, 0, 0), the other predictors PRn>0 are set equal to (0, 0, 0).
· If the point has a parent point,
· the predictor PR0 is set equal to (r0, φ0, θ0), where θ0 is the laser index θ value of the parent point p0 coded in the parent node, and where (r0, φ0) is the first pair in the buffer (as will be understood from the buffer management, it is also equal to respectively the radius r, and the azimuthal angle φ of the parent point p0 coded in the parent node);
· the predictors PRn>0 are set equal to (rn, φn + k* φstep, θ0), where θ0 is the laser index θ value of the parent point p0 coded in the parent node, and where (rn, φn) is the n-th pair in the buffer, and k equals 0 if | φ0 - φn | < φstep, else k equals the integer division (φ0 - φn) / φstep.
Since it is better to avoid integer division in decoder, (φ0 - φn) / φstep is approximated using the divApprox function of G-PCC: k = divApprox(φ0 - φn, φstep, 0).

[bookmark: _Ref69205246][bookmark: _Toc140376118]Management of the prediction buffer
The buffer used for the predictors’ derivation is managed as follows. Each pair of the buffer is first initialized to (0, 0). After the (de)coding of a point, the buffer is updated as follows:
· If the absolute value of (de)coded radius residual rres is higher than a threshold Th, it is considered that the laser has probed a new object. Then a new element (r0, φ0) is inserted in front of the buffer, with r0 and φ0 the reconstructed radius and the reconstructed azimuthal angle of the (de)coded point. The last element of the buffer is discarded. This is performed by letting the buffer element (rn, φn) be equal to (rn-1, φn-1) for n=3 to 1. Then, setting the first buffer element values from the decoded point.
· If the absolute value of (de)coded rres is not higher than the threshold Th, it is considered that the laser has probed an object present in the buffer. Then, the element of the buffer with index predIdx, corresponding to the index of the predictor that has been used for the prediction, is moved to the front of the list and is updated with (r0, φ0) the reconstructed radius and the reconstructed azimuthal angle of the (de)coded point. This is performed by letting the buffer elements (rn, φn) be equal to (rn-1, φn-1) for n=predIdx to 1, then, setting the first buffer element values from the decoded point.
· Th is equal to ps.predgeom_radius_threshold_for_pred_list and has been fixed in the encoder to 2048 >> ps.geom_angular_radius_inv_scale_log2.

[bookmark: _Toc140376119]Improved Coding of Magnitude of Radius Residual [8][9]
This method improves the magnitude encoding of radius residual in G-PCC’s predictive tree geometry coding for LiDAR-acquired point cloud compression.

[bookmark: _Toc140376120]Radius Residual Coding in G-PCC Ed.1
In the framework of predictive tree-based point cloud coding in G-PCC Ed.1, to encode each point in a predictive tree coding, the point  is predicted by a predictor point , and a prediction residual (r2D_res, φres, θres) between the point  and the predictor point  is encoded into bitstream after prediction. The detailed encoding process of prediction residual in G-PCC follows the steps shown in Figure 11.

[image: Text

Description automatically generated]	 
[bookmark: _Ref97119861]Figure 11: Encoding process of prediction residual in G-PCC predictive tree geometry coding.

As shown in Figure 11, for each point, firstly the radius residual r2D_res is encoded into bitstream, then azimuthal angle residual φres, and finally elevation angle residual θres is encoded into bitstream. During the encoding of the radius residual r2D_res, the magnitude of the radius residual is firstly encoded and then the sign of the radius residual r2D_res is encoded into the bitstream.
	The encoding process of the magnitude of radius residual follows these steps:
1. encodes the flag f0 which indicates if the value of r2D_res is equal to 0. If the value of flag f0 is true, then the coding of r2D_res is finished as r2D_res =0 has been coded; otherwise, if the value of f0 is false, then continue to encode the absolute value |r2D_res| of radius residual.
2. computes the bit number Numbits needed to represent |r2D_res| by using the equation

	               Numbits=log2(|r2D_res|-1)                   (1)

3. encodes each bit bN representative of Numbits iteratively by an adaptive entropy encoder.   
4. bypass encodes the lowest (Numbits -1) bits bm of value |r2D_res| into bitstream from lowest bit to highest bit. The highest bit of value |r2D_res| is always 1, so it is not needed to be encoded into bitstream.
   
[bookmark: _Toc140376121]Problem Description
In current G-PCC framework, the compression of radius residual magnitude is not efficient due to the weakness of the entropy coding of it, because the entropy coding of radius residual magnitude does not make use of any prior information from prediction process, and it encodes the bits of absolute value |r2D_res| of radius residual by bypass coding, which causes not optimal compression efficiency.

[bookmark: _Toc140376122]Proposed Coding Method of the Magnitude of Radius Residual
The proposed method is shown in Figure 12, it uses context-adaptive entropy coder to encode bits of magnitude of radius residual, and the determination method of context will be described in Section 3.6.5. 

As shown in Figure 12, after obtaining the radius residual, firstly, it determines a value of a flag f0, signalling whether the radius residual r2D_res is equal to 0, and encodes it into the bitstream by a binary entropy encoder based on the context . If the radius residual r2D_res is equal to 0, the encoding of radius residual r2D_res is finished as r2D_res =0 is encoded; otherwise, the value of a flag f1, signalling whether the absolute value |r2D_res| is equal to 1, is determined and encoded into the bitstream by a binary entropy encoder based on the context .

Then, if the absolute value |r2D_res| is equal to 1, the encoding of the magnitude of radius residual r2D_res is finished; otherwise, the value of a flag f2, signalling whether the absolute value |r2D_res| is equal to 2 or not, is determined and encoded into the bitstream by a binary entropy encoder based on the context . If the absolute value |r2D_res| is equal to 2, the encoding of the magnitude of radius residual r2D_res is finished; otherwise, the absolute value (|r2D_res|-3) is encoded using exp-Golomb coding based on the selected context , and the determination method of context.

[image: Graphical user interface, text, application

Description automatically generated]
[bookmark: _Ref97120849]Figure 12: Overview of proposed encoding method of magnitude of radius residual.

[image: Graphical user interface, application

Description automatically generated with medium confidence]
[bookmark: _Ref97121076]Figure 13: Overview of proposed decoding method of magnitude of radius residual.
The overview of proposed decoding method of magnitude of radius residual is shown in Figure 13.

[bookmark: _Toc140376123]Prior Information in Prediction Process
In the prediction process proposed in Section 3.5, a dynamic predictor list  is used to obtain better prediction for cases when a laser beam has moved from a first object to another object, and then passes back to the first object, or cases when an object has holes (walls with open doors or windows for instance). A predictor point () is selected from the predictor list L to minimize the bit cost of the residual between the predictor point () and the current point , and the predictor point () is determined based on the element pointed by the predictor index () within the predictor list (L). 

Statistically, cases when the obtained radius residual r2D_res is greater than the residual threshold Th-r2D happen rarely in point cloud dataset, which means most points in point cloud are in the same object as previous coded point, and the best predictor for each of them is more probably to be the last already coded point in the same object, which is always put in the front of the dynamic predictor list to get the updated list used for predicting next point. Consequently, the index  of selected predictor for these points is more probably 0. Cases where the obtained radius residual r2D_res is greater than (or equal to) residual threshold Th-r2D only happen when points are at the edge of the objects of different depths, and the last already coded point is naturally not the closest point of current coded point since it is from an object of different distance, so the encoder may search from other elements (not the first element) in the list to get best predictor and then gets >0.

If the predictor index () is equal to 0, then it is more probable that the point  is in the same object as the predictor point (), which means the point  is not in a new object, so the magnitude of radius residual is more probably smaller; and if the predictor index () is not equal to 0, then it is more probable that the current point  is not in the same object as the predictor point (), which means it is in a new object, so the magnitude of the radius residual is more probable to be larger than when the index () is equal to 0. Thus, the statistics of the magnitude of the radius residual when the predictor index () is equal to 0 is different from when the predictor index () is not equal to 0.

Also, in the prediction process, the prediction of the φ coordinate can benefit from the regular distribution of points along the φ axis by coding an integer number  (illustrated in Figure 14), which represents the number of elementary azimuthal step ∆φ used to obtain the refined predictor point () from the predictor point (). The relationship between them can be described by
= +(0,*∆φ,0).

As shown in Figure 14 (a), if  is equal to 0, then the point  is acquired with the same or similar azimuthal angle as the predictor point , and the two points are spatially close, so the radius residual between them is naturally to be very small, and almost close to 0; If  is not equal to 0, as shown in Figure 14 (b), then there is a high probability that the predictor point  is not close to current point , so the radius residual magnitude is much larger. Thus, the statistics of radius residual magnitude when  is equal to 0 is different from that when  is not equal to 0.


[image: Diagram, schematic

Description automatically generated]  
0. Case when is equal to 0.
[image: Diagram, schematic

Description automatically generated]
0. Case when  is not equal to 0.
[bookmark: _Ref97121913]Figure 14: Relationship among integer number , the predictor point () and the refined predictor point ().
In the proposed method, in order to profit from the prior information described above in prediction process, the magnitude of the radius residual is entropy coded by using context-adaptive entropy coder. The context used to code the magnitude of radius residual is selected based on the predictive information comes from two aspects:
	1. predictor index i in the predictor list L, 
	2. integer number  of elementary azimuthal step between the predictor  and the refined predictor .

[bookmark: _Ref97120913][bookmark: _Toc140376124]Context Determination Method
To encode each bit of radius residual magnitude, the proposed method determines context index  by using predictor index i and the integer number qphi of elementary azimuthal step according to equation below,



and then select a context  in context table  to entropy encode the bits of magnitude of radius residual according to .



[bookmark: _Toc140376125]Complexity Reduction
To encode radius residual of each point, the function to estimate bits of exp-Golomb coding is called several times to select a predictor, this will cost a lot of running time. To reduce the complexity, a simpler coarse method is proposed for the function to estimate bits of exp-Golomb coding.

Since the radius residual is large, so the order k of exp_golomb coding used is set as 2, assume the suffix bits number as, and the encoded value radius  (is (|r2D_res|-3)) satisfies
 

then is equal to , prefix bits number is, and the total bits needed for exp-Golomb coding is*, so the function can be replaced by following implementation in code:

[image: ]

[bookmark: _Toc140376126]Disabling of Cartesian Residual Coding [10][11]
In the framework of predictive tree-based point cloud coding in G-PCC Ed.1, after prediction using predictive tree structure, two residuals are encoded into the bitstream, which are spherical residual1 () and cartesian residual2 (), respectively. As shown in Figure 15, the input data is represented in cartesian coordinates (x,y,z) and then converted into spherical domain. After generating the predicted points in spherical domain, residual1 () is obtained by calculating the difference between the spherical position of the original points and the predicted points. The residual1 () is coded into the bitstream by lossless coding. Subsequently, the predicted points with added residual1 are converted back into the cartesian domain, and the cartesian residual2 () is obtained by calculating the difference between the cartesian position of the original points and predicted points after converting. In lossy coding conditions, the residual2 () is quantized and the quantized residual2 Q() is encoded into the bitstream.

[image: Graphical user interface, application

Description automatically generated]

[bookmark: _Ref113540328]Figure 15: Encoding process in G-PCC Ed.1 predictive tree geometry coding.
It was observed that the values of the quantized residual2 Q() in cartesian domain are almost always 0 under lossy coding conditions, while residual2 is still coded in the bitstream. The proposed method uses a flag that indicates whether residual2 is coded or not. At encoder side, if this flag value is false then the encoding of quantized residual2 is disabled, otherwise, the coding is enabled, and lossless coding can be achieved as illustrated in Figure 16.

[image: A screenshot of a computer screen

Description automatically generated with medium confidence]
[bookmark: _Ref113541814]Figure 16: Framework of predictive geometry encoding with proposed method.
[bookmark: _Toc140376127]Prediction List Index Coding [13][12]
Firstly, it is proposed to use truncated unary coding instead of the unary coding for the encoding of the predIndex. Secondly, it is proposed to set the maximum number of intra predictors used by the encoder in the geometry parameter set. The latter modification enables the decoder to allocate the right memory size for the dynamic list of intra predictors and the truncated unary code can be applied to the last predictor index.

[bookmark: _Toc140376128]Removing Parsing Dependency in Predictive Geometry Coding [14]
It is proposed to remove the dependence of parsing on the decoding/reconstruction of points in predictive geometry coding. It is asserted that the parsing of syntax elements associated with the azimuth residual is dependent on the reconstructed value of radii of preceding points in the current frame. This dependence is reported to occur through the variable boundPhi. The presence of this dependence is asserted to be undesirable because it forces implementations to necessarily introduce decoding blocks within parsing modules, or tightly couple the parsing and decoding modules, thus resulting in implementation complexity. Predictive geometry coding in G-PCC Ed.1 maintained parsing independence and it is argued that this property should be maintained. It is suggested, therefore, to remove the elements in the parsing process that have dependence on reconstruction; particularly, the dependence of boundPhi on the parsing of azimuth residual syntax elements as highlighted below:

    int r = rPred + residual[0] << 3;
    auto speedTimesR = int64_t(_geomAngularAzimuthSpeed) * r;
    int phiBound = divExp2RoundHalfInf(speedTimesR, _azimuthTwoPiLog2 + 1);

int32_t
PredGeomDecoder::decodeResPhi(int predIdx, int boundPhi, const bool interFlag
  , int refNodeIdx
)
{
  if (boundPhi == 0)
    return 0;

  int interCtxIdx = interFlag ? 1 : 0;
  int ctxL = interFlag ? (refNodeIdx > 1 ? 1 : 0) : (predIdx ? 1 : 0);
  //int ctxL = predIdx ? 1 : 0;

  if (!_aed->decode(_ctxResPhiGTZero[interCtxIdx][ctxL]))
    return 0;

  int absVal = 1;
  if (boundPhi > 1)
    absVal += _aed->decode(_ctxResPhiGTOne[interCtxIdx][ctxL]);
  int interEGkCtxIdx = interFlag ? (refNodeIdx > 1 ? 2 : 1) : 0;
  if (absVal == 2 && boundPhi > 2)
    absVal += _aed->decodeExpGolomb(
      1, _ctxResPhiExpGolombPre[interEGkCtxIdx][boundPhi - 3 > 6],
      _ctxResPhiExpGolombSuf[interEGkCtxIdx][boundPhi - 3 > 6]);

  bool sign = _aed->decode(_ctxResPhiSign[ctxL][interCtxIdx ? 4 : _resPhiOldSign]);
  _resPhiOldSign = interFlag ? (refNodeIdx > 1 ? 3 : 2) : (sign ? 1 : 0);

  return sign ? -absVal : absVal;
}

The parsing of the azimuth residual depends on the variable boundPhi both for conditioning the signalling of syntax elements, but also selection of contexts. The following changes are proposed (red strikethrough to indicate removal):

[bookmark: _Hlk132777618]int32_t
PredGeomDecoder::decodeResPhi(int predIdx, int boundPhi, const bool interFlag
  , int refNodeIdx
)
{
  if (boundPhi == 0)
    return 0;

  int interCtxIdx = interFlag ? 1 : 0;
  int ctxL = interFlag ? (refNodeIdx > 1 ? 1 : 0) : (predIdx ? 1 : 0);
  //int ctxL = predIdx ? 1 : 0;

  if (!_aed->decode(_ctxResPhiGTZero[interCtxIdx][ctxL]))
    return 0;

  int absVal = 1;
  if (boundPhi > 1)
    absVal += _aed->decode(_ctxResPhiGTOne[interCtxIdx][ctxL]);
  int interEGkCtxIdx = interFlag ? (refNodeIdx > 1 ? 2 : 1) : 0;
  if (absVal == 2 && boundPhi > 2)
    absVal += _aed->decodeExpGolomb(
      1, _ctxResPhiExpGolombPre[interEGkCtxIdx][boundPhi - 3 > 6],
      _ctxResPhiExpGolombSuf[interEGkCtxIdx][boundPhi - 3 > 6]);

  bool sign = _aed->decode(_ctxResPhiSign[ctxL][interCtxIdx ? 4 : _resPhiOldSign]);
  _resPhiOldSign = interFlag ? (refNodeIdx > 1 ? 3 : 2) : (sign ? 1 : 0);

  return sign ? -absVal : absVal;
}

As an added benefit, this also simplifies the parsing of the azimuth residual and reduces a few contexts.

[bookmark: _Toc140376129]Octree Geometry Coding
[bookmark: _Toc140376130]Residual Coding of Angular Mode in IDCM [15][18]
[bookmark: _Toc140376131]3.1.1 Motivation
In G-PCC Ed.1, if angular mode coding is enabled for the Inferred Direct Coding Mode (IDCM) of the octree-based geometry coding, a recursive splitting of a vertical interval, and at each iteration, a bin signalling the split is coded based on contexts determined from the closest laser position. Conversely, in predictive tree geometry coding, the vertical residual is coded, and it doesn’t use a recursive splitting method for the vertical interval. The proposed method harmonizes the angular mode in IDCM.

[bookmark: _Toc140376132]3.1.2 IDCM Angular Mode in G-PCC’s Ed.1
After finding the closest laser index  for the current point and coding the laser index residual between laser index of current point and current node, the vertical interval is iteratively encoded by splitting. The iterative splitting method is shown in Figure 17.

[image: Text

Description automatically generated]
[bookmark: _Ref80019194]Figure 17: Iterative vertical interval splitting of angular mode in IDCM.
[bookmark: _Toc140376133]3.1.3 Improved Method
Three changes have been proposed:
· Better determination method of closest laser by using the vertical correction .
· Better compression method for closest laser residual.
· Vertical residual encoding: the proposed method encodes the vertical residual instead of the splitting of the interval; this method is similar to the one used in predictive tree geometry coding.

The detailed proposed coding process of angular mode in IDCM follows the following steps:
· Firstly, selecting the closest laser index of current point according to the  coordinate of current point. To better determine , the proposed method uses the vertical correction .
· Secondly, encoding the closest laser residual  between laser index of current point  and the laser index of current node  by entropy coding. To better encode , the proposed method introduces a context determined based on the sign of  of preceding encoded point to encode the sign of  of current point, which is shown in Figure 18. And it uses a buffer _ResLaserBuffer[] to store the  of a preceding point, and updates the buffer for each point. 

       [image: Text

Description automatically generated]
[bookmark: _Ref80019210]Figure 18: Entropy coding  by introducing the sign of  of preceding encoded point.
· Finally, encoding the vertical residual by using the known  coordinate of the current point ,  coordinate of current point , theta angle of laser index  and vertical laser offset  to get the vertical predictor of the current point, and it doesn’t depend on iteratively determining each bit of . So  (in x-y plane) can be got by using  and , 


and the vertical predictor  can be determined by: 

.

Then, the vertical prediction residual  is obtained by: 

,

where  is the  coordinate of the current point. The residual  is encoded by entropy coding. The detailed encoding process of the proposed vertical residual method is shown in Figure 19. In the decoding process, the predictor  and the vertical residual  are used to obtain the reconstructed . [image: Text

Description automatically generated]
[bookmark: _Ref80019227]Figure 19: Proposed vertical residual encoding of angular mode in IDCM [19].


[bookmark: _Toc140376134]Improved Azimuthal Mode in IDCM [16][18]
[bookmark: _Toc140376135]Azimuthal Mode in G-PPC Ed.1 IDCM 
In the framework of occupancy tree-based point cloud coding, the azimuthal coding mode has been introduced to improve both the planar mode and the Inferred Direct Coding Mode (IDCM). It uses azimuthal angles of already coded nodes to provide prediction information for coding current point in IDCM, and this very significantly improves the compression of binary occupancy coding through the prediction of x or y-coordinate bits in IDCM nodes.

IDCM is used to code directly the position of points within a current node belonging to the occupancy tree. When the azimuthal angular coding mode is activated, azimuthal angles are obtained relative to a coordinate origin in the horizontal xy plane. Firstly, an IDCM node azimuthal coding direction (either along the x axis or the y axis), for which point coordinates will be encoded by azimuthal angle contexts, is selected based on the position of the current node relative to the x and y axes. The azimuthal coding direction is along the x axis if , otherwise, it is along the y axis. In case the selected azimuthal coding direction is along the x (respectively y) axis, the following coordinate coding are processed in order:
· the y (respectively x) coordinate bits are bypassed coded,
· the x (respectively y) coordinate bits are entropy coded by using azimuthal angle contexts,
· and z coordinate are entropy coded.

The detailed azimuthal IDCM coding process in case the azimuthal coding is along the x axis is depicted in Figure 20.

[image: Graphical user interface, application

Description automatically generated]

[bookmark: _Ref79573639]Figure 20: Azimuthal IDCM encoding process in G-PCC Ed.1. 
When encoding a point in IDCM node, firstly determine the azimuthal coding direction (here x), an azimuthal prediction angle  for current node, and an initial interval along azimuthal coding direction. The two angles  and  are associated with the left half interval and the right half interval, and they are determined from the position  and  representative of the leftmost bound of the interval and the middle of the interval, respectively. The positions of  and  are depicted below in Figure 21.

An azimuthal angular context is selected based on prediction angle  and the two angles  and  to encode bit . The encoded bit  at each depth  indicates that the coordinate of the point is located either in the left half interval (=0) or the right half interval (=1), and then entropy code bit  into bitstream by using the selected context. Next, update the interval as the half interval to which the points belong (as indicated by the coded bit ) and code the next bit () of the coordinate iteratively, until a minimum interval size (typically size is 1) is reached.

[image: Shape

Description automatically generated with medium confidence]
[bookmark: _Ref79573803]Figure 21: Implementation of specific  and  in current G-PCC Ed.1. 
[bookmark: _Ref60136093][bookmark: _Toc140376136]Problem Description
One problem in current Ed.1 is that the angles  and  used in azimuthal IDCM coding are slightly sub-optimal and this leads to non-optimal compression efficiency. Figure 22 shows an exemplary node of size 8 along the x axis, which is the selected direction for azimuthal coding; angles  and  are the leftmost bound of the interval and the middle of the interval, and a prediction angle  has been obtained from already coded points. The prediction angle  provides some predictive information on the point position, and if  points to the left half interval, it is statistically more probable that the coded point belongs to the left half interval (i.e., =0) than to the right half interval (i.e., =1). The angle difference  and  can be used to select a context. For example,
· if , =0 is more probable, select a first context,
· otherwise =1 is more probable, select a second context.

When using the selected context in a context adaptive binary entropy coder (for example CABAC) to code the bit , the coding probabilities p will evolve naturally such that p(=1) <0.5 for the first context and p(=1) >0.5 for the second context. In Figure 22, the prediction angle  is pointing to the left half interval, which indicates that =0 is more likely than =1. However, it will select the second context because  with the configuration of angles  and  in current Ed.1. This bad context selection impacts the cost of coding the bits , because it is likely that =0 is coded with the second context which has a probability p(=0)=1-p(=1)<0.5 and the coding cost 

is high. Therefore, the angles  and  used for context selection in current Ed.1 are slightly sub-optimal and lead to non-optimal compression efficiency.
[image: A picture containing shape

Description automatically generated]
[bookmark: _Ref79574107]Figure 22: Problem in current Azimuthal IDCM coding. 
If the angles  and  are changed to optimal angles, which are shown in Figure 23, the value of bit  can be well anticipated by context selection. In Figure 23, angle  is close to the middle of left half interval and  is close to the middle of right half interval. Then  and the first context is selected. The probability of =0 is more higher than =1, so it codes =0 with the second context which has a probability p(=0)>0.5, and the coding cost is low.
[image: Chart

Description automatically generated with medium confidence]
[bookmark: _Ref79574712]Figure 23: Illustration of somewhat optimal  and  for determining contexts. 
Another problem in G-PCC Ed.1 is that the implementation complexity is high, because angle  is calculated by calling  function at each depth .

[bookmark: _Toc140376137]Proposed Angle Interpolation
The problem to solve is to obtain optimal angles  and  to improve the compression efficiency while maintaining a reasonable complexity. Basically, maintaining a reasonable complexity mostly means minimizing the number of calls to the complex arctangent function.
It is proposed to use angle interpolation to obtain angles  and  by using offsets and known angles  and , and the proposed method can avoid the systematic call of  for  at each depth , and provide flexibility in the choice of  and .

The angle interpolation equation can be described as:



where  is half of the interval length  at depth , the relationship between these angles is shown in Figure 24. The angle  is associated with the middle of the interval, and it can be obtained by calling  function at each depth , and  is associated with the left boundary of the interval at depth . Angle  inherits from previous depth, and angles  and   are kept for angle  at next depth . Figure 24 also illustrates the interval updating process. The inheriting equation can be described as:

· If =0, the updated interval at depth  is the left half interval at depth , then

· If =1, the updated interval at depth  is the right half interval at depth , then


[image: A screenshot of a computer

Description automatically generated with low confidence]

[bookmark: _Ref79575125]Figure 24: The interpolation angles and detail interval updating illustration. 

Determining Offsets
The basic idea to obtain good context selection is to obtain angles  and  point close to the center of their respective half intervals, so it needs offsets   and  to interpolate angles  and , respectively. In our proposed method, offsets   and  are a compound of two elementary offsets  and , the corresponding equation can be described as 


.

The first offset  is used to determine angle  to be the middle of the left half interval and angle  to be the middle of the right half interval. The middle of the half interval is defined as the average positions of all potential points belonging to the half interval, as depicted in Figure 25. It is not the straightforward ( for the left interval, because of the discrete position of the points. Considering a half interval of length , potential points are located at position 0, 1, …,  from the lower bound of the half interval. The mean position is:
  = (0 + 1 + … +  + ) / .

[image: Shape

Description automatically generated with medium confidence]

[bookmark: _Ref79575525]Figure 25: Middle of discrete intervals. 
However, it has been observed that optimal compression performance is obtained when angles  and  do not point exactly to the centers of their half interval. To achieve better compression efficiency, it has been observed that introducing a second constant  as a refinement of leads to a more efficient selection of the contexts and small extra compression gains are obtained. The basic effect of the second offset is to push slightly the angle  toward the lower bound of the interval and the angle  toward the upper bound of the interval. The value for  has relationship with interval size, and the implementation of  is:
[image: ]

Adjusting Prediction Angle 
In current G-PCC Ed.1, after each division of interval,  is adjusted closest to . It is proposed to adjust it close to , which is more accurate prediction of angle , which indicates current point position. Prediction angle  can be calculated as:

Where n is a selected rounding value to minimize .

Reducing Complexity
In the presented method, the angle  used for interpolation can be obtained by calling  function at each depth . To reduce complexity, we propose to determine  by interpolation with angles and , the interpolation equation can be described as:


The interpolation method for  can only be used when  and  are not ‘too far apart’, so we introduce a threshold , and . If the interval length  at depth  is smaller than, then determine  by interpolation, otherwise, determine it by calling   function.

[bookmark: _Toc140376138]Context Enhancement of Azimuthal IDCM [17][18]
[bookmark: _Toc140376139]Context Selection in G-PCC’s Ed.1 Azimuthal Coding Mode
The azimuthal angle contexts have 8 values and depend on: 
· if () and () have the same sign or not (2 possible values)
· assume , if or not (2 possible values)
· if  or  (2 possible values)

The detailed context selection process in the G-PCC Ed.1 standard is graphically depicted in Figure 26. The blue horizontal line represents the x-interval at depth , and angles  and  are respectively associated with the middle of the left half x-interval and the right half x-interval. Since there are 8 contexts in total, the context value is represented by 3 bits b2b1b0, and each bit bi indicates if one of the three conditions described above is fulfilled or not. 
[image: A picture containing timeline

Description automatically generated]

[bookmark: _Ref79579550]Figure 26: Context selection in G-PCC Ed.1. 
As shown in Figure 26, each context value represents a possible position range that  belongs to in current interval. If  points to the 1st position range, then context = 010 and the current point has a higher possibility to be in left half x-interval at current depth . In other words, this means that  is very low. If  points to the rightmost 8th position range, then context =011 and the current point has a higher possibility to be in right half x-interval at current depth . This means that  is very high. A context adaptive binary entropy coder (for example CABAC) is used to code the bit bd.  The coding probabilities, associated with each of the 8 contexts, will evolve naturally such that  for ‘010’ context and  for the ‘011’ context. As a general rule, assuming  is the probability of the bit  to be 1, the cost for coding 1 is , the cost for coding 0 is . If  can provide a good prediction for which interval the current point belongs to ( or ), then the cost for entropy encoding the bit  will be lowered.

[bookmark: _Toc140376140]Problem Description
As described above, in the current G-PCC Ed.1 software, the prediction angle  is directly used to select azimuthal angle contexts for entropy encoding bit  together with angles  and . However, current method does not consider the “quality” of the predictor. Quality is understood as the capability of the angle  to anticipate correctly which half interval the current point belongs to.
        
The angle  is obtained from the azimuthal angle  of a (closest) already coded node and a multiple  of the elementary azimuthal shift . The integer  is chosen such as to obtain  as the closest possible angle (among all possible choices for ) from the azimuthal angle  associated with the center of the current node. The prediction quality of the predictor  can be influenced by several factors such as the interval length and the distance  between Lidar and the node. Some predictors  may be good or bad depending on the node location and the node size. 

[image: A picture containing text

Description automatically generated]
[bookmark: _Ref79582327]Figure 27: Bad prediction cases caused by too large/small distance r. 
Figure 27 depicts two bad prediction cases caused by either too large or too small distance, where the two nodes have the same node (interval) size, but they have different distance  from LiDAR. As for the closest node in blue in Figure 27, the distance  between LiDAR and left node is very small relative to the node size. As a consequence, the apparent angle  associated with the node is large and it gets . In this case, a point in the node may have been potentially probed by several (even many) sensor positions and the arbitrary choice of , such that  is the closest to , is unlikely to be accurate at representing which position of the sensor has actually probed the current point. Also, a small change in the x point position of the current point would induce a large change in the azimuthal angle associated with the point because of  with a small radius r. This means that the azimuthal angle  of the current point is very sensitive to noise. This causes an unstable prediction result of the predictor .  As for the furthest node in orange in Figure 27, the distance  between LiDAR and right node is so large that  where  is the apparent angle associated with the node. Consequently, the bits  provide a fine precision (smaller than ) that cannot be well anticipated by  that has been determined up to +/-  . 
[image: A picture containing text

Description automatically generated]
[bookmark: _Ref79582518]Figure 28: Bad prediction cases caused by too big/small node size. 
The good or bad prediction capability of the predictor  does not only depend on the distance of the node from the sensor. It also depends on the node size as exemplified on Figure 28. This figure depicts bad prediction cases caused by too big (blue node) or too small (orange node) apparent angle ( or ) of the interval relative to . The two nodes shown in Figure 28 have different node size. For the big node in blue, the node angle  is so large that , and it will cause the same problem as for small distance . For the small node in orange, the node angle  is so small that , and it will cause the same problem as for large distance .

[bookmark: _Toc140376141]Improved Method
The presented method determines contexts that exhibit more accurate statistics for the probability of bits bd to 0 or 1. In particular, proposed enhanced contexts will be indicative of the quality of the predictor . By doing so, context adaptive entropy coding is improved, and better compression efficiency is obtained.
Assess the prediction quality of predictor 
The proposed method is to use the relative values between  and apparent angle  of the (x- or y-) interval to determine better contexts. The apparent angle  is an estimation of the interval angle seen from the sensor at depth d, and the apparent angle  is defined to be: 

.

And the relative values between  and apparent angle  are assessed by ratio , which depends on the interval length and the distance of the node from the sensor and the value of .

The relationship between  and prediction accuracy can be described as below. If the current node is very far from LiDAR or the interval size is very small, then the apparent angle  is so small that the ratio  becomes much larger than 1 and the prediction of the current point has bad quality. On the other hand, if the current node is very near the LiDAR or the interval size is very large, then the apparent angle  is very large that the ratio  becomes much smaller than 1, and the prediction of the current point has bad quality. In between, when the ratio  is close to 1, the predictor  has maximum quality. 
Determine contexts depending on predictor quality
In the described method, the relative magnitudes between  and  is divided into three levels by using two thresholds, each level is indicated by a value  that is obtained by:

,

Figure 29 depicts three levels of the relative magnitudes between  and . In Figure 29, the blue line depicts the apparent angle , and the purple line depicts the elementary azimuthal shift . For case (a),  is much smaller relative to the apparent angle , the ratio , so , and that will limit the predictor  into a narrow range within current node. For case (b),  is a little smaller relative to apparent angle , the ratio , so , and the prediction accuracy is the best among the three cases. For case (c), the apparent angle  is so small that  is larger than it, the ratio , so , then the predictor obtained by  provides no information for the position of the current point in current node.

[image: A picture containing text, gauge, device

Description automatically generated]
[bookmark: _Ref79583012]Figure 29: Three levels of the relative magnitudes between and . 
After the subset index  is determined, angles ,  and  are used to determine a context , among a subset of contexts indicated by . The proposed method uses a context table  to obtain the context  , and the table can be described as 


[bookmark: _Toc140376142]Planar Flag Signalling [19][20]
[bookmark: _Toc140376143]Description of the Method
Planar coding mode was proposed to represent the occupancy information when occupied child nodes belong to the same plane. This coding mode is applied to all three directions when eligible. Specifically, three is_planar_flag[axisIdx] are introduced to indicate whether the occupied child nodes are located on the same plane perpendicular to the axisIdx-th axis. If it is equal to 1, an extra bit plane_position is then signalled to indicate the plane position. 
To efficiently signal the planar flags, following modifications are made.

[bookmark: _Hlk83720304][bookmark: _Toc140376144]Signalling One Flag Instead of Three
When current node is eligible for planar mode in all three directions, a flag xyz_planar_flag is signalled. When xyz_planar_flag = 1, it indicates that the positions of the current node's children form a single plane in all three directions. 

At the encoder side:
1. [bookmark: _Hlk68093567]If current node is eligible for planar mode in all three directions, xyz_planar_flag is arithmetically encoded. 
1. If xyz_planar_flag equals to 1, there is no need to code three is_planar_flag[axisIdx]. In this case, coding three bits is replaced by coding one bit.
1. If xyz_planar_flag equals to 0, is_planar_flag[0] and is_planar_flag[1] are coded as normal. If they are both equal to 1, there is no need to code is_planar_flag[2], since it must be equal to 0; If not, is_planar_flag[2] is coded as normal.

Correspondingly, at the decoder side:
1. If current node is eligible for planar mode in all three directions, xyz_planar_flag is arithmetically decoded. 
1. If xyz_planar_flag equals to 1, three is_planar_flag[axisIdx] are directly set to be 1.
1. If xyz_planar_flag equals to 0, is_planar_flag[0] and is_planar_flag[1] should be decoded from the bitstream as normal. If they are both equal to 1, is_planar_flag[2] is directly set to be 0; If not, is_planar_flag[2] should also be decoded from the bitstream as normal.

[bookmark: _Toc140376145]Signalling One Flag Instead of Two
Similarly, when current node is eligible for planar mode in two but not all three directions, three new flags, xy_planar_flag, xz_planar_flag and yz_planar_flag are introduced. 

For example, xy_planar_flag equals to 1 indicates that the positions of the current node's children form a single plane in x and y direction.
At the encoder side:
1. If current node is eligible for x and y but not z planar, xy_planar_flag is arithmetically encoded. 
1. If xy_planar_flag equals to 1, there is no need to code is_planar_flag[0] and is_planar_flag[1] . In this case, coding two bits is replaced by coding only one bit.
1. If xy_planar_flag equals to 0, is_planar_flag[0] are coded as normal. If it equal to 1, there is no need to code is_planar_flag[1] since it must be equal to 0; If not, is_planar_flag[1] is coded as normal.

Correspondingly, at the decoder side:
1. If current node is eligible for x and y but not z planar, xy_planar_flag is arithmetically decoded. 
1. If xy_planar_flag equals to 1, is_planar_flag[0] and is_planar_flag[1] are directly set to be 1.
If xy_planar_flag equals to 0, is_planar_flag[0] should be decoded from the bitstream as normal. If is_planar_flag[0] equal to 1, is_planar_flag[1] must be equal to 0, so it directly set to be 0; If not, is_planar_flag[1] also should be decoded from the bitstream as normal.

[bookmark: _Toc140376146]Disabling Planar Mode for IDCM Nodes [21][22]
In G-PCC Ed.1 the planar information is used to improve the signalling of the point positions in IDCM nodes and the occupancy of the non-IDCM nodes. The planar information is signalled first. Then, for an IDCM eligible node, the IDCM information is derived and signalled to the decoder. For an IDCM node, the position of the points in the node is encoded utilizing the planar information and the angular information. For a non-IDCM node, the occupancy of the node is encoded and the node is split into child nodes which are  added to the node buffer. The encoding process proceeds to the next node in the node buffer until the buffer is empty.

It is noted that when an IDCM node is coded as planar in an axis, one bit is saved in encoding the position of points in that direction. However, it will cost 2 bits to encode the planar mode and planar position in each direction. When the angular information is available, the signalling of a position bit is cheaper than the signalling cost of the planar information. Utilizing this observation, this method proposes to disable the planar mode for IDCM coded nodes when the angular mode is enabled. Doing so, the planar information is not signalled to the decoder for IDCM nodes and the planar information is not used in encoding the point positions when the angular mode is enabled.

	occupancy_tree_node( Lvl, NodeIdx ) {
	Descriptor

		if( occ_subtree_qp_offset_present ) {
	

			occ_subtree_qp_offset_abs[ Ns ][ Nt ][ Nv ]
	ae(v)

			if( occ_subtree_qp_offset_abs[ Ns ][ Nt ][ Nv ] )
	

				occ_subtree_qp_offset_sign[ Ns ][ Nt ][ Nv ]
	ae(v)

		}
	

		if( occtree_direct_coding_mode && DirectModePresent && geo_disable_planar_idcm_angular)
	

			occ_direct_node
	ae(v)

		if( occtree_planar_enabled )
	

			for( k = 0; k < 3; k++ )
	

				if( PlanarEligible[ k ] ) {
	

					occ_single_plane[ k ]
	ae(v)

					if( occ_single_plane[ k ] ) 
	

						occ_plane_pos[ k ]
	ae(v)

				}
	

		if( occtree_direct_coding_mode && DirectModePresent &&  !geo_disable_planar_idcm_angular)
	

			occ_direct_node
	ae(v)

		if( occ_direct_node )
	

			occupancy_tree_direct_node( )
	

		else {
	

			….
	

		}
	

	}
	




[bookmark: _Ref106265916][bookmark: _Toc140376147]Neighbour-Based Octree Occupancy Coding with Dynamic OBUF [23][24][25][26]
The improvement is based on a flexible way to use the neighbourhood at same depth and at child depth relative to a current node in order to code the occupancy word associated with the current node. Flexibility is provided by a reduction of the many possible neighbourhood configurations and by an OBUF-like entropy coding of the occupancy bits taking reduced neighbourhood configurations as input. An overview of the proposed method is provided in Figure 30 and Figure 31.

[image: ]
[bookmark: _Ref106275978]Figure 30: Overview of neighbour-based octree occupancy coding with dynamic OBUF (modifications in red).
The following are high-level steps for the new non-zero path:

· Obtain occupancy of neighbours 
·  26 adjacent parents 
·  child neighbours 
·  already coded child nodes of current node 
· Combine occupancy data into words as contextual information to code bj 
·  a primary word W1,j
·  a secondary word W2,j
· Code bj
· using words W1,j and W2,j as input to dynamic OBUF
· update tables of dynamic OBUF 

By construction, it has only an effect when the neighbourhood of the current node is not empty. This is most of the time the case for dense point clouds like AR/VR point clouds in cat1-A. Concerning less dense or even sparse point clouds (on the remaining of cat1-A, cat1-B and cat3), the proposed improvement is less effective as it applies only down to some depth of the octree from which most of node neighbourhoods become empty.

[image: ]
[bookmark: _Ref106276482]Figure 31: Overview of dynamic OBUF scheme.
Further description needed

[bookmark: _Toc140376148]Removal of Z-Coding Path in New Octree Coding [29]
It was observed that the Z-coding path is marginally used due to IDCM that generally prunes the octree beforehand before reaching a Z-coding path configuration. It is proposed to remove the Z-coding path and keep only the NZ-coding path, and to move the noSingleFlag information to the NZ-coding path as illustrated in Figure 32.

[image: ]

[bookmark: _Ref113546310]Figure 32: Z-coding path is removed in new octree coding scheme.
[bookmark: _Toc140376149]Modified Neighbour-Based Octree Occupancy Coding with Dynamic OBUF [30][31]
Neighbourhood analysis in octree NZ path is modified by determining the occupancy of twenty parent neighbouring nodes and using partial occupancy as illustrated in Figure 33 and Figure 34.
 
	[image: ]
(a)
	[image: ]
(b)



[bookmark: _Ref122534169]Figure 33: Modified NZ-coding path.

[image: ]
[bookmark: _Ref122534199]Figure 34: Parent occupancy bits.
Further description needed

[bookmark: _Toc140376150]Common Dynamic OBUF Class for Octree and TriSoup [32]
The two dynamic OBUFs, one for octree and one for TriSoup coding are unified in this proposal with common parameters and an auto adaptive threshold in replacement of manually tuned thresholds for the number of visits in the tree.

Further description needed

[bookmark: _Toc140376151]Eligibility of Planar Mode [27][28]
[bookmark: _Toc140376152]Planar Mode Eligibility in G-PCC Ed.1
Eligibility of planar mode for a current node in one direction is determined as in the following description. The eligibility criterion is based on tracking the probability of past coded nodes being planar:
· eligible if and only if
p = prob(planar) >= threshold and local node density > 3
· typical threshold value is 0.6.

Updating the probability prob(planar) as follows:
· using a channel model
[image: ]
· with length L=255
· where δ(coded node) is 1 if the coded node is planar and 0 otherwise.

Update is performed when
· a node occupancy is (de)coded
· or/and a node planar information is (de)coded.

Tracking the local node density
· rolling average of number of occupied siblings.

When the occupancy bits are available to be coded with three planar modes x, y, z, the process is as in following description. 

The simple juxtaposition of eligibility criteria does not work.
· Sub-optimal because a first activated planar mode masks 4 occupancy bits in the current node, but a second activated planar mode will then only mask 2 bits of the remaining 4, and a third one would mask only 1 bit of the remaining 2
[image: Shape

Description automatically generated with medium confidence]

A combined eligibility criterion that preserves symmetry:
· does not preclude that one direction is more important than the other two
· definition of “first”, “second” and “third” planar mode is based on the probabilities px, py and pz
· three thresholds th1 < th2 < th3 (typical values 0.6, 0.77, 0.88)
[image: A picture containing text, bottle

Description automatically generated]
Eligible if local node density >3.

[bookmark: _Toc140376153]Proposed Eligibility Based on Density
The method to determine a common eligibility of all the nodes in each octree layer is based on the real density. This density is calculated as follows:



where  indicates the number of points in a point cloud,  is the number of points that are coded using IDCM from root node layer to  octree layer,  is the number of occupied sub-nodes generated by the nodes in  octree layer, and  is the real density of points for  octree layer. 

Before the coding process of  octree layer, the eligibility of all the nodes to xyz-planar mode in  octree layer is determined as follows:



where  is a predefined threshold, whose typical value is set to . 

Especially, there is no more the process of determining the eligibility of planar mode when angular mode is enabled.

This method does not require the process of updating probabilities and calculating eligibility of each node to xyz-planar.

[bookmark: _Toc140376154]Low-Memory Footprint Dynamic OBUF [33]
The aim is to reduce the memory footprint of dynamic OBUF for both octree and TriSoup geometry coding.

Description needed

[bookmark: _Toc140376155] Initialization of Dynamic OBUF [34]
OBUF relies on a set of coders with pre-determined probabilities for each. Initialization should be done considering the desired probability range of each binary coder. However, in the current design, all the 32 adaptive arithmetic coders are initialized with the same probabilities of 0.5 for octree (and TriSoup) geometry coding, which may decelerate the probability update iteration. It is proposed to initialize the 32 arithmetic coders with initial probabilities:

static const int coder_ini_pro[32] = {
65461, 65160, 64551, 63637, 62426, 60929, 59163, 57141, 54884, 52413, 49753,
46929, 43969, 40899, 37750, 34553, 31338, 28135, 24977, 21893, 18914, 16067,
13382, 10883, 8596,  6542,  4740,  3210,  1967,  1023,  388,   75 };

[bookmark: _Toc140376156] Probability Bounds in Dynamic OBUF [35][36]
In G-PCC, the design of OBUF relies on mapping geometry coding context to binary coders by a LUT-based update process. The coder whose probability is closest to the context probability is selected. While the current OBUF design expects that the probability value of symbol “0” maintained by the coder decreases monotonically with the coder index, the actual probability of the binary coder, however, does not behave so. As such, the most suitable true coder may not be selected as expected.
[bookmark: _Hlk131585827][bookmark: OLE_LINK5]To solve this issue, it is proposed that the probability associated with each binary coder is limited to a specific range. The upper and lower bound of the probability range for each coder is able to be updated adaptively in OBUF. The initial boundaries for the 32 coders are set as below:



Table 1: Initial boundaries.
	obufBoundOrigin [33]

	65535, 65388, 64933, 64169, 63105, 61747, 60112, 58214, 56069, 53699, 51128, 48379, 45480, 42458, 39340, 36160, 32946, 29730, 26541,23413, 20374, 17454, 14681, 12083, 9684, 7509, 5575, 3905, 2515, 1419, 627,150, 0



The probability upper/lower bounds for coder i are calculated as below:

	Algorithm 1 Procedure of setting upper/lower bounds of coder i’s probability 

	1. procedure AdaptiveAdjust(, , )
1.     if  > :
1.         ←                 // Limit the probability
1.        +=                // Adaptive adjust the Upper bound
1.        if  i > 0 && > :     // Extreme case
1.           = 
1. [bookmark: OLE_LINK2]       ←                 // Ensure the continuity of boundaries
1.    else if  < :
1.         ←                 // Limit the probability
1.         -= ∆                // Adaptive adjust the Lower bound
1.        if  i < k-1 &&  < ：  // Extreme case
1.            = 
1.        ←                  // Ensure the continuity of boundaries
1.    return  , , 
1. end procedure


[image: A screenshot of a computer

Description automatically generated]
Figure 35: Probability bounds procedure.
[bookmark: _Toc140376157] Improved Planar Mode [37][38]
As shown in Figure 36, the planar information for seven coded neighbors (i.e., red co-planar nodes, blue co-edge nodes, and black co-vertex node) is available for the current green node. The proposed method first introduces a variable neighAvailable to represent whether these neighbors are available. If there is at least one available neighbor, neighAvailable is true, otherwise, it is false.

· [bookmark: _Hlk130575629]When neighAvailable is true:
The proposed method uses planar information of available coded neighbors to code the planePosition flag of the current node by designing new contexts.




[bookmark: _Ref139533438]Figure 36: Current node neighbors with available planar information.
First, three co-planar neighbors’ planar information, including isPlanar[N] and planePosition[N], is obtained during the encoding/decoding process, where N is an index (0,1, or 2) to represent the co-left planar neighbor, co-front planar neighbor, and co-below planar neighbor, respectively. The first variable coPlanarCtx is initialized as zero and updated by using the formula:

for(neighIdx=0;neighIdx<3;++neighIdx) {
         coPlanarCtx|=(planePosition[neighIdx]<<3)|isPlanar[neighIdx];
         coPlanarCtx<<=2;    			  
}

Similarly, three-co-edge neighbors’ planar information and the co-vertex neighbor’s planar information are used to calculate the second variable coEdgeVerCtx which is initialized as zero and updated by using the formula:

for(neighIdx=0;neighIdx<4;++neighIdx) {
coEdgeVerCtx |=(planePosition[neighIdx]<<4)|isPlanar[neighIdx];          
coEdgeVerCtx <<=2;    				
      }

The above contexts for coding the planePosition flag are categorized as primary and secondary information as follows.
1. Primary information
0. The distance from the closest coded node at the same coordinate and depth is discretized into two values: “near” or “far”.
0. The plane position (if any) of the closest coded node at the same coordinate and depth: low or high.
0. The coPlanarCtx of the current node predicted by the three co-planar neighbors’ planar information.
1. Secondary information
1. The planePosition of the current node is predicted by the occupancy information of its neighbors. (three values: predicted as low, high, or unknown)
1. The coEdgeVerCtx of the current node predicted by the three co-edge and co-vertex neighbors’ planar information.

· When neighAvailable is false:
This report uses the occupancy information of 12 neighbors as shown in Figure 37, to code the current node’s planePosition flag by designing new contexts.



[bookmark: _Ref139534021]Figure 37: Current node neighbors with occupancy information.
First, three co-planar neighbors’ occupancy information is used to derive the variable coPlanarOcc. Let the occupanied[N] represents whether the neighbor is occupied or not, where N is an index (0,1, or 2) to represent the co-right planar neighbor, co-below planar neighbor, and co-upper planar neighbor. The variable coPlanarOcc is initialized as zero and updated by using the formula:

for(neighIdx=0;neighIdx<3;++neighIdx) {
[bookmark: _Hlk130580497]coPlanarOcc |= occupanied [neighIdx];                              
coPlanarOcc<<=1;
}

Similarly, the nine-co-edge neighbor’s position relative to the current node is shown in Table 2.

[bookmark: _Ref139534076]Table 2: Adjacent co-edge neighbors relative to the current node.
	neighIdx
	x
	y
	z

	0
	1
	1
	0

	1
	1
	0
	1

	2
	1
	0
	-1

	3
	1
	-1
	0

	4
	0
	1
	1

	5
	0
	1
	-1

	6
	0
	-1
	1

	7
	-1
	1
	0

	8
	-1
	0
	1



The variable CoEdgeOcc is initialized as zero and updated by using the formula:

for(neighIdx=0;neighIdx<9;++neighIdx) {
CoEdgeOcc |= occupanied [neighIdx];                              
CoEdgeOcc <<=1;
}

The above contexts for coding the planePosition flag are categorized as primary information and secondary information as follows.
1. Primary information:
2. The distance from the closest coded node at the same coordinate and depth is discretized into two values: “near” or “far”.
2. The plane position (if any) of the closest coded node at the same coordinate and depth: low or high.
2. The planePosition of the current node is predicted by the occupancy information of its neighbors. (three values: predicted as low, high, or unknown).
2. The coPlanarOcc of the current node predicted by the three co-planar neighbors’ occupancy information.
1. Secondary information:
1. The CoEdgeOcc of the current node predicted by the nine co-edge neighbors’ occupancy information.

The Dynamic OBUF uses the above information to process and the final number of contexts for coding planePosition flag is 16 for each direction. As a result, there are a total of 48 contexts for coding planePosition while the number of original contexts is 117.
[bookmark: _Toc140376158] Improvements of Octree-Coding for Spin-LIDAR Sequences [39][40]
[bookmark: _Toc140376159]Introduction
For spinning-LIDAR content, the number of lasers is fixed, e.g., Ford and QNX sequences have 64 and 16 lasers, respectively. Each laser has a fixed elevation angle. Each point in spinning-LIDAR point cloud should be on the trajectory of its hitting laser. In other words, each point should have the same elevation angle as its hitting laser. However, the geometry quantization will change the point elevation angle when the lossy geometry compression is performed. At the same time, the elevation angle of each laser has been signalled in GPS. Hence, it is proposed to compensate z-coordinates using the elevation angles information to reduce the geometry distortion in the case of lossy geometry compression. The compensation is performed by aligning its elevation angle with the elevation angle of its hitting laser.

[bookmark: OLE_LINK9]The z-compensation is performed after attribute coding as shown in Figure 38.
Decoding geometry
Compensating z
Decoding attribute
Bitstream
Reconstructed point cloud
Encoding geometry
Input point cloud
Bitstream
Encoding attribute

[bookmark: _Ref139535549]Figure 38: Compensating z after attribute coding.
One flag named geom_z_compensation_enabled_flag is used to indicate whether z compensation is enabled.

[bookmark: _Toc140376160] Z-Coordinates Compensation Process
[bookmark: OLE_LINK8]Firstly, for each decoded point, its hitting laser is derived by finding the point’s nearest elevation angle from all lasers’ elevation angles. Secondly, as shown in Figure 39, a compensated z-coordinate  of this point  is computed according to the elevation angle of its hitting laser as follows:

where  is the tangent value of its hitting laser’s elevation angle,  is the geometry quantization step,  is the quantized laser position of its hitting laser, and  is the function that finds the nearest integral value. Finally, the compensated z-coordinate  will directly replace the decoded z.

laser 
Z
X



Y

[bookmark: _Ref139535654]Figure 39: Compensating z-coordinate according to the elevation angle of its hitting laser.
Not all decoded points will be compensated. Only the points which satisfy the following both conditions will be compensated:

[bookmark: _Hlk124328749]where  is the minimum difference between adjacent lasers’ elevation angles,  is absolute value function.
laser 

laser 
Found right hitting laser
point
Found wrong hitting laser

Figure 40: The first condition.
The z-compensation is implemented using a division-free fixed-point form.


[bookmark: _Toc140376161]Inter Prediction for Octree Geometry Coding
[bookmark: _Toc140376162]Inter Prediction for Octree Geometry Coding Based on Global Motion Using Two-Threshold Classification of Road/Object Points [41][42][48][50]
In point cloud data captured by LiDAR sensors attached to moving vehicles, the road and objects commonly have different motions. Since the distance between the road and LiDAR sensor is relatively constant and the road undergoes minor changes from one vehicle position to the next, the movement of the points representing the road with respect to the LiDAR sensor position is small. In contrast, objects like buildings, road signs, vegetation, or other vehicles have larger movements, which is different from the road movement as illustrated in Figure 41.

In the initial interEM-v1 software [43] that was studied in EE13.2, the points are selected for estimation of the global motion without a classification into road and objects. Since the road and object points have different motions, a division of a cloud into road and objects will improve the accuracy of the global motion estimation and compensation, resulting in improved compression efficiency [41][42].


[image: ]

[bookmark: _Ref73019371]Figure 41: Two consecutive frames of Ford_02_q_1mm (Frame 200 (green) and Frame 201 (red)) illustrating that road point movements are typically smaller than object point movements.
Objects are typically situated above the road. However, in some point clouds, e.g., the point clouds that are acquired when the vehicle is moving across a bridge or up a road ramp, the objects may also exist below the road. Based on this observation, the proposed method utilizes a classification of points into road and objects based on the height of the points (e.g., z-coordinate). The height of the points is compared with two thresholds, bottom_thr and top_thr, with bottom_thr smaller than top_thr. A point with height that is in between both thresholds is classified as a road point, otherwise, as a point belonging to objects.

One example of a method to estimate these thresholds, which is based on computing the standard deviation of the histogram of the height of the points, is described in [41][42]. It is a non-normative method that may be implemented in the encoder, or alternatively, the thresholds are obtained externally and provided as parameter inputs to the encoder. Figure 42 illustrates the estimation of the thresholds using the histogram method and Figure 43 illustrates the classification of a LiDAR point cloud into road and object points.

[image: ]
[bookmark: _Ref73020879]Figure 42: Example of the derivation of the thresholds based on the histogram, Ford_01_q1mm, frame 200.


 [image: ]

[bookmark: _Ref73020687]Figure 43: Result of classification, Ford_01_q1mm, frame 200.
After the points in the cloud are classified into road and object points, only the object points are considered in the global motion estimation process in the encoder. The global motion parameters consist of a translation vector and rotation matrix. In the TMC13 software, the non-normative LMS parameter estimator that was initially part of InterEM-v1 is integrated with speedups [48]. In addition, the non-normative internal ICP estimator is supported [50]. Alternatively, the global motion parameters can be externally estimated (e.g., ICP method, or based on Global Positioning System data) and provided as inputs to the encoder (TMC13).
Global motion is enabled with a flag in the geometry parameter set (GPS). If enabled, global motion parameters and the two thresholds are signalled.

In the inter prediction process, global motion compensation is applied to a previously reconstructed point cloud frame, for example, the previous frame. Similarly, as in the estimation process, the global motion compensation process classifies the points into road and object points based on the two thresholds that are signalled in the bitstream (GPS) together with the global motion parameters. Subsequently, the global motion is applied to the object points only, while the road points are predicted as static (zero motion). 

The reference frame is used in occupancy coding of the current frame’s nodes. The reference node is the collocated node in the reference frame, which is derived by compensating the prediction frame using global motion (if enabled). When the reference node is obtained, it is split into 8 child nodes of equal size. Points in each child node of the reference node are counted to form the inter prediction occupancy (preOcc) variable. If there is at least one point in a child node, the corresponding bit (out of 8 bits) in preOcc is set equal to 1, otherwise, it is set equal to 0.

The quality of the inter prediction is then evaluated by a parameter called ‘occupancyIsPredictable’. occupancyIsPredictable of a node is derived by the number of siblings missed predictions. The number of siblings missed predictions (numSiblingsMispredicted) is calculated by comparing the occupancy of the parent node with the occupancy of the parent’s reference node as illustrated in Figure 44. If the predOccupancy of the current node is 0 or the number of siblings missed predictions is larger than 5, occupancyIsPredictable is set equal to 0, otherwise, it is set equal to 1.

[image: Diagram

Description automatically generated]
[bookmark: _Ref90297885]Figure 44: The occupancies of parent node and reference node of parent node are compared to obtain numSiblingsMispredicted. If the occupancy bit of a child node in the parent node and the occupancy bit of the corresponding node in the reference node are different, this child is considered as missed prediction.
occupancyIsPredictable is then used to update preOcc, planar copy mode eligibility (see section 5.2) and IDCM eligibility. If occupancyIsPredictable is equal to 0, preOcc, and planar copy mode (see next section) eligibility are set equal to 0.

The section 5.4 provides further details about inter modifications to octree occupancy coding in inter slices.

[bookmark: _Ref106201607][bookmark: _Toc140376163]Inter Planar Mode Coding [49]
The following method includes several techniques to utilize inter prediction in the coding of planar mode, plane position, and occupancy when the planar mode is enabled. The method is integrated in TMC13 for inter slice.

[bookmark: _Toc140376164]Modified Planar Mode Coding with Inter Prediction
The planar information of the collocated reference node (named as reference node) in the motion compensated cloud is utilized. The occupancy of the reference node is derived first. Then this occupancy is used to generate the planar mode (planar_ref) and plane position (plane_ref) of the reference node. Finally, this planar information is updated using the planar eligibility of the current node. Specifically, if a direction in the current node is not eligible, the planar mode in the corresponding direction in the reference node is set equal to 0.

Let planarMode_ref[axisIdx] be the planar mode in axisIdx axis direction in the reference node.
Let plane_ref[axisIdx] be the plane position in axisIdx axis direction in the reference block. If planarMode_ref[axisIdx] is equal to 0, plane_ref[axisIdx] is set equal to -1.
Let planarEligible[axisIdx] be the planar eligibility in axisIdx axis direction in the current node.
Let planarMode[axisIdx] be the planar mode in axisIdx axis direction in the current node.
Let plane[axisIdx] be the plane position in axisIdx axis direction in the current node.

[bookmark: _Toc140376165]Context Selection for Planar Flag and Plane Position Coding Using Inter Prediction
Context selection for planar flag:
In the TMC13 version 12 and the G-PCC Ed.1 specification text, the index of the context for encoding the is_planar_flag is set equal to the axis index axisIdx. In the presented method, this index is extended using the plane position of the reference block and it is set equal to: (3*axisIdx + (plane_ref [ axisIdx ] + 1)).  

Context selection for plane position coding (angular mode disabled):
In G-PCC Ed.1 the context for coding the plane position of the axisIdx axis is given as:

if (!IsPlanarNode[axisIdx][axisPos]])
  ctxIdx = adjPlaneCtxInc
else {
  prevPlane = PlanarPlane[axisIdx][axisPos]
  distCtxInc = (dist > 1)
  ctxIdx = 12 × axisIdx + 4 × adjPlaneCtxInc + 2 × distCtxInc + prevPlane + 3
}.
Where adjPlaneCtxInc, distCtxInc, prevPlane are used in the context derivation based on neighbor information and the planar information in the buffer. In the presented method, the plane position in the inter reference block is utilized as follows:

 if (!IsPlanarNode[axisIdx][axisPos]])
  ctxIdx = adjPlaneCtxInc + 3 * (plane_ref [ axisIdx] + 1)
else {
  prevPlane = PlanarPlane[axisIdx][axisPos]
  distCtxInc = (dist > 1)
  ctxIdx = (12 × axisIdx + 4 × adjPlaneCtxInc + 2 × distCtxInc + prevPlane + 3) + 36*(plane_ref [ axisIdx] + 1)
}
Context selection for plane position coding (angular enabled):

For angular mode, the plane position in the inter reference block is utilized as follows to derive the context index:

contextAngular += 4 x (RefPlane[axisIdx] + 1)

And for azimuthal mode, the plane position in the inter reference block is utilized as follows to derive the context index:

if (Abs(sPos) <= Abs(tPos))
  contextAzimuthalS = contextAnglePhi + 8 x (RefPlane [axisIdx] + 1)
else
  contextAzimuthalT = contextAnglePhi + 8 x (RefPlane [axisIdx] + 1)

[bookmark: _Toc140376166]Planar Copy Mode
In inter slice, a node may be coded as a planar copy mode (PCM) node if the current node and the reference node have the same planar mode in all the axis directions that are planar eligible. A flag named pcm_flag is signalled in the bitstream to indicate whether it is PCM or not. If a node is PCM, the planar flag and plane position are not signalled in all axis directions, and they are copied from the reference node in the decoder.

The PCM mode decision of a node may be presented as follows:

The current node and the reference node are matching along the k-th axis if planarEligible[k] of the current node equals to false, or at this axis the current node and the reference node share the same planar mode and plane position:

match_dir[k] = !planarEligible[k] || (planarMode[k] == planar_ref[k] && plane[k] == plane_Ref[k])

pcm_flag =  match_dir[0] && match_dir[1] && match_dir[2]

PCM mode restriction:

PCM is restricted to nodes having at least one planar eligible direction.
PCM is restricted to the node when occupancyIsPredictable is equal to 1.

Signalling of the pcm_flag:

The PCM flag is context coded and signalled in the slice if planar mode is enabled. The context index is derived using the planar mode of the reference node, the planar information in the buffer and the planar eligibility of the current node as follows:

[bookmark: _Hlk76150964]ctxIdx_PCM = 8 * (3 * (planarEligible[0] + planarEligible[1] + planarEligible[2] - 1)    + ref2buff_match[0] + ref2buff_match[1] + ref2buff_match[2]) 
+ planar_ref[2] + 2 * planar_ref[1] + 4 * planar_ref[0].
 
ref2buff_match represents the planar comparison between the reference node and the planar information in the buffer. This value is derived for the k-th axis as follows:
· If all below conditions are satisfied, ref2buff_match[k] is set equal to true: 
· planarEligible[k] is true.
· The buffer is not empty.
· IsPlanarNode (planar node in the buffer) is equal to the planarMode_ref [k].
· PlanarPlane[k] (plane position in buffer) is equal to plane_Ref[k].
· Otherwise, ref2buff_match[k] is set equal to false.

Avoid redundancy in signalling of the planar position for non-PCM node:

For a non-PCM node, signalling of the plane position of the last eligible planar axis may be ignored. For example, if all the following conditions are satisfied, the signalling of the plane position plane[k] of the last eligible planar axis (let this direction be k-th direction) may be skipped:

· Current node and reference node are planar matching in all previous axis directions.
· The planar mode of the k-th axis in the reference node planar_Ref[k] is true.

When all above conditions are satisfied, the plane position is implicitly derived using the plane position in the reference frame in the corresponding last axis as follows:

plane[k] =  plane_Ref[k] == 1 ? 0 : 1

[bookmark: _Toc140376167]Use Inter Prediction in Occupancy When the Node Has a Planar Direction
Signalling of the single_occupancy_flag based on the inter prediction and planar masks:

In this technique, the single_occupancy_flag is signalled conditionally when the inter prediction is non-zero (inter_pred_occ is occupancy of collocated reference node) or the node has non-zero mask in at least one direction as follows:

	The variable OccupancyIdxMaybePresent specifies when single_occupancy_flag is present in the octree node syntax.

let numPlanarAxes = IsPlanar[0] + IsPlanar[1] + IsPlanar[2]
let numNonPlanarAxes = IsNotPlanar[0] + IsNotPlanar[1] + IsNotPlanar[2]
OccupancyIdxMaybePresent = numPlanarAxes < 3 || (!NeighbourPattern && (!inter_pred_Occ || (mask_planar[0] | mask_planar[1] | mask_planar[2]) ) && !numNonPlanarAxes)




[bookmark: _Toc140376168]IDCM Eligibility for Inter [58]
For an intra frame (angular mode enabled and disabled) or for an inter frame with angular mode enabled, the IDCM eligibility is not modified. For an inter frame and if angular mode is disabled, the IDCM eligibility is as follows:

  if (!IDCM_intensity)
    return false;

  if (occupancyIsPredictable)
    return false;

  return (nodeSizeLog2 >= 2) && (nodeNeighPattern == 0)
     && (child.numSiblingsPlus1 == 1) && (node.numSiblingsPlus1 <= 2);

Note: (child.numSiblingsPlus1 == 1) means child node has no sibling. (node.numSiblingsPlus1 <= 2) means the parent node has at most 2 siblings.


[bookmark: _Ref106201663][bookmark: _Toc140376169]Inter Modification for Neighbour-Based Octree Occupancy Coding with Dynamic OBUF [58][59]
The presented inter modification extends the neighbour-based octree occupancy coding with dynamic OBUF described in section 4.6.

The occupancy of the collocated node in the motion compensated frame is denoted as preOcc which includes 8 bits. The i-th bit in preOcc represents the occupancy bit of i-th child node in the reference node. Let pi be the collocated reference child node of i-th child node in the current node. In this method, the occupancy bit of the i-th child node in reference node is used to select the context to encode the occupancy bit of i-th child node in the current node.

As an example, the following code segment is modified (green highlights) when the neighbour configuration is nonzero (function decodeOccupancyFullNeihbourgsNZ()):

{
…
    // encode
    int bit = (occupancy >> i) & 1;  // i is the position index of the child node to be encoded  
    int interCtx = (predOcc >> i) & 1; // the inter context based using the occupancy of the ith child in the reference node.

    if (Sparse[i]) {
      ctx2 |= (Word7Adj[i] & 31) << 6;
      int ctx1 = ((Word7Adj[i] >> 5) << i) | partialOccupancy;
	  _arithmeticEncoder->encode(bit, _ctxMapOccupancy[_MapOccupancySparse[interCtx][i].getEvolve(bit, ctx2, ctx1)]);

     } else {
      ctx2 |= (Word7Adj[i] & 7) << 6;
      int ctx1 = ((Word7Adj[i] >> 3) << i) | partialOccupancy;
	  _arithmeticEncoder->encode(bit, _ctxMapOccupancy[_MapOccupancy[interCtx][i].getEvolve(bit, ctx2, ctx1)]);
     }
…
}

In another example, the following code segment is modified (green highlights) when the neighbour configuration is zero (function decodeOccupancyNeighZsimple()):

{
…
    int bit = 1;
    if (!(bitIsOneX || bitIsOneY || bitIsOneZ)) {
      int bitPred = (predOcc >> i) & 1;
      int interCtx = bitPred;
      bit = _arithmeticDecoder->decode(_ctxZ[i][numOccupiedAcc][interCtx]);

      coded0[mask0X] += !bit;
      coded0[mask0Y] += !bit;
      coded0[mask0Z] += !bit;
    }
…
}


The map occupancy is defined as follows:

  CtxMapOccupancy _MapOccupancy[2][8];// 2: reference child node is occupied or not, 8: bit position
  CtxMapOccupancy _MapOccupancySparse[2][8];


Further description needed

[bookmark: _Toc140376170]Unified Partitioning Method for Motion Compensation [60]
Three-dimensional cuboid partitioning is proposed and can be enabled with a flag that is signalled in the geometry data unit. The cuboid block size is signalled per dimension. As a special case, for horizontal partitioning {0, 0, block height} is used with 0 value indicating that the current slice bounding box in the corresponding dimension is used. Conversely, for cubic partitioning {octree node size=s, s, s} can be applied. Per block a flag is signalled to indicate whether global motion is applied to the block or not. If cuboid partitioning is disabled, then two-threshold road/object segmentation is enabled.

[bookmark: _Ref123038674][bookmark: _Toc140376171]Bi-Directional Inter Prediction [62][63]
In [63], it is proposed to use a hierarchical GOF structure to perform inter prediction for geometry coding and attribute coding. In the hierarchical GOF structure, the first frame in each GOF is an I-frame or a P-frame. The other frames in the GOF are B-frames, which use two reference frames from the forward and backward directions.

As shown in Figure 45, frame “0” ~ “7” are the frames in one hierarchical GOF and frame “8” is the first frame of the next GOF.

[image: 画里面的卡通人物

低可信度描述已自动生成]
[bookmark: _Ref123030206]Figure 45: Example of hierarchical reference frame relationships within one hierarchical GOF.
For frames “0” ~ “8” in hierarchical GOF structure, the reference frames are shown in Table 3.

[bookmark: _Ref123037751]Table 3: Reference frame for each frame in one hierarchical GOF.
	Frame time stamp
	0
	1
	2
	3
	4
	5
	6
	7
	8

	Reference frame time stamp
	None
	0, 2
	0, 4
	2, 4
	0, 8
	4, 6
	4, 8 
	6, 8
	0



In [62], it is proposed to use one IBBP GOF structure to perform inter prediction for geometry coding and attribute coding. In the IBBP GOF structure, the first frame in each GOF is an I-frame or a P-frame. The other frames in the GOF are B-frames, which use two reference frames from the forward and backward directions.

As shown in Figure 46, frame “0” ~ “7” are the frames in one IBBP GOF and frame “8” is the first frame of the next GOF.
[image: 图标

描述已自动生成]
[bookmark: _Ref140375799]Figure 46: Example of reference frame relationships within one IBBP GOF.
For frames “0” ~ “8” in IBBP GOF structure, the reference frames are shown in Table 4.

[bookmark: _Ref140375757]Table 4: Reference frame for each frame in one IBBP GOF.
	Frame time stamp
	0
	1
	2
	3
	4
	5
	6
	7
	8

	Reference frame time stamp
	None
	0, 8
	1, 8
	2, 8
	3, 8
	4, 8
	5, 8 
	6, 8
	0




For geometry coding, the prediction direction of the child nodes of the current node are derived based on the relationship between the occupancy codes of the current node and those of the reference nodes as illustrated in Figure 47.

[image: 图示

中度可信度描述已自动生成]
[bookmark: _Ref123037845]Figure 47: Example of deriving the prediction direction of child nodes.
Figure 47 shows an example of how to derive the prediction direction. For a child node of the current node with the occupancy flag equal to 1, the corresponding occupancy flags of the previous reference frame and the following reference frame are denoted as bit_pre and bit_follow, respectively. Subsequently, the prediction direction of the current node is derived following these rules:

· If bit_pre = 1 and bit_follow = 0, the prediction direction of the child node is set to using the previous reference (forward) node to perform inter prediction.
· If bit_pre = 0 and bit_follow = 1, the prediction direction of the child node is set to using the following reference (backward) node to perform inter prediction.
· If bit_pre = bit_follow = 1, the numbers of the mismatched bits between the occupancy code of current node and the occupancy codes of the reference nodes are calculated. If the numbers of the mismatched bits are different, the prediction direction of the child node is set to the prediction direction with less mismatched number. Otherwise, the prediction direction of the child node is set to the prediction direction of the parent node.

A FrameMerge mode is implemented where the two reference frames can be merged into one new reference frame to perform inter prediction for geometry coding. In the FrameMerge mode, the new reference frame contains all points of the two reference frames after the motion compensation. The new reference frame is used as the only one reference frame of the inter prediction for octree geometry coding. The derivation of prediction direction is disabled in FrameMerge mode as there is only one reference frame.

It is proposed to use global motion information to decide the GOF structure for each GOF. The global motion information between the first frame of the current GOF and the first frame of the next GOF is derived. The rotation degrees () and translation vector () are calculated based on the motion information. If the motion information meets two conditions, the Hierarchical GOF structure or IBBP GOF structure is applied to the current GOF:

(1) All of the rotation degrees are less than :


(2) The translation vector is less than :


Otherwise, the IPPP GOF structure is applied to the current GOF.


[bookmark: _Toc140376172]Inter Prediction for Predictive Geometry Coding
[bookmark: _Ref79668467][bookmark: _Toc140376173]Inter Prediction for Predictive Geometry Coding [44][45][46]
Predictive geometry coding uses a prediction tree structure to predict the positions of the points. When angular coding is enabled, the x, y, z coordinates are transformed to radius, azimuth and laserID and residuals are signalled in these three coordinates as well as in the x, y, z dimensions. The intra prediction used for radius, azimuth and laserID may be one of four modes and the predictors are the nodes that are classified as parent, grand-parent and great-grandparent in the prediction tree with respect to the current node. The predictive geometry coding, as currently designed in G-PCC Ed.1, is an intra coding tool as it only uses points in the same frame for prediction. Additionally, using points from previously decoded frames may provide a better prediction and thus better compression performance.

For inter prediction it was initially proposed in [44][45] to predict the radius of a point from a reference frame. For each point in the prediction tree, it is determined whether the point is inter predicted or intra predicted (indicated by a flag). When intra predicted, the intra prediction modes of predictive geometry coding are used. When inter-prediction is used, the azimuth and laserID are still predicted with intra prediction, while the radius is predicted from the point in the reference frame that has the same laserID as the current point and an azimuth that is closest to the current azimuth. A further improvement of this method in [46] also enables inter prediction of the azimuth and laserID in addition to radius prediction. When inter-coding is applied, the radius, azimuth and laserID of the current point are predicted based on a point that is near the azimuth position of a previously decoded point in the reference frame. In addition, separate sets of contexts are used for inter and intra prediction.

The method in [46] is illustrated in Figure 48. The extension of inter prediction to azimuth, radius, and laserID consists of the following steps:

· For a given point, choose the previous decoded point (prevDecP0).
· Choose position in reference frame (refFrameP0) that has same scaled azimuth and laserID as prevDecP0.
· In reference point cloud frame, find the first point (interPredPt) that has azimuth greater than that of refFrameP0.

Figure 49 illustrates the decoding flow associated with the “inter_flag” that is signalled for every point. The method is available in InterEM-v3.0.
[image: ]
[bookmark: _Ref73026880]Figure 48: Example of inter-prediction of current point (curPoint) from a point (interPredPt) in the reference frame.

[image: ]

[bookmark: _Ref73027241]Figure 49: Decoder flowchart.
[bookmark: _Toc140376174]Additional Predictor Candidate [53]
In the inter prediction method for predictive geometry described in section 6.1, the radius, azimuth and laserID of the current point are predicted based on a point that is near the collocated azimuth position in the reference frame when inter coding is applied using the following steps:
1. for a given point, choose the previous decode point,
1. choose a position in the reference frame that has the same scaled azimuth and laserID as a),
1. choose a position in the reference frame from the first point that has azimuth greater than the position in b), to be used as the inter predictor point.


[image: Graphical user interface

Description automatically generated with medium confidence]
[bookmark: _Ref79668573]Figure 50: Additional inter predictor point obtained from the first point that has azimuth greater than the inter predictor point.
The present method adds an additional inter predictor point that is obtained by finding the first point that has azimuth greater than the inter predictor point in c) as shown in Figure 50. Additional signalling is used to indicate which of the predictors is selected if inter coding has been applied.

[bookmark: _Toc140376175]Improved Inter Prediction Flag Coding [54]
An improved context selection algorithm is applied for coding the inter prediction flag. The inter prediction flag values of the five previously coded points are used to select the context of the inter prediction flag in predictive geometry coding.

[bookmark: _Toc140376176]Integration with Improved Predictive Geometry Coding and Global Motion [57]
[bookmark: _Toc140376177]Integration with Improved Predictive Geometry Coding
The following adaptations were implemented to integrate inter predictive geometry coding with the improved predictive geometry coding tools described in section 3.

· Context switching based on interFlag to integrate with improved radius and phi residual signalling.
· Context switching based on whether previous node is inter predicted to integrate with contexts switching based on qphi and predIdx of previous node.
· Use radius residual difference (“new object”) only for intra predictor, not for inter predictor.

[bookmark: _Toc140376178]Integration with Global Motion
When global motion compensation is applied, the azimuth position of the points are modified depending on the motion parameters. Therefore, resampling is needed to align the azimuth points before and after compensation as illustrated in Figure 51.

[image: Chart

Description automatically generated]

[bookmark: _Ref106282083]Figure 51: Azimuth resampling of motion compensated reference.
[bookmark: _Toc140376179]Integer Implementation of Cartesian to Spherical Coordinate Conversion for Global Motion Compensation [61]
The motion compensation module for inter prediction in predictive geometry coding includes a step to convert from the cartesian coordinates to the spherical coordinates that uses floating point operations. G-PCC Ed.1 uses a fixed-point/integer implementation convertXyzToRpl to convert from cartesian to spherical coordinates in the attribute coding process. However, the convertXyzToRpl method is not directly applicable for geometry as it uses a different scaling factor and offset. It is proposed to apply an alternative fixed-point implementation similar to convertXyzToRpl by adjusting the scaling factor and offset such that the derived azimuth is in the same scale factor as the coded azimuth.

Given a position  in cartesian coordinate system, the corresponding radius and azimuthal angle are calculated (floating point implementation) as follows: 

int64_t r0 = int64_t(std::round(hypot(xyz[0], xyz[1])));

auto phi0 = std::round((atan2(xyz[1], xyz[0]) / (2.0 * M_PI)) * scalePhi);

where, scalePhi is modified for different rate points in the lossy configuration; a maximum value of 24 bits is used for azimuth angle when coding the geometry losslessly. The fixed-point implementation of derivation of radius is the same as in convertXyzToRpl method, whereas fixed-point implementation of azimuth derivation was updated as follows:

Radius:

	Floating implementation
	int64_t r0 = int64_t(std::round(hypot(xyz[0], xyz[1])));

	Fixed point implementation
(same as in convertXyzToRpl)
	int64_t xLaser = xyz[0] << 8;
int64_t yLaser = xyz[1] << 8;
int64_t r0 = isqrt(xLaser * xLaser + yLaser * yLaser) >> 8;



Azimuth:

	Floating implementation
	auto phi0 = std::round((atan2(xyz[1], xyz[0]) / (2.0 * M_PI)) * scalePhi);

	Fixed point implementation
(in convertXyzToRpl)
	(*dst)[1] = (iatan2(yLaser, xLaser) + 3294199) >> 8;

	Fixed point implementation
(Proposed)
	int64_t tmp = iatan2(yLaser, xLaser);
int64_t invPi = std::round(((1 << 24) + 0.) / M_PI);
// in the final code, the value of invPi is hard-coded
int sh = 44 - (azimLog2 - 1);
int off = 1 << (sh - 1);
auto phi0 =
 (((tmp + 3294199) * invPi + off) >> sh) - (1 << (azimLog2 - 1));
// invPi = 5340354



The value of azimLog2 is the number of bits used to code the azimuth (in the CTC, it is 24 bits for the lossless case, and it varies for the lossy case).

[bookmark: _Toc140376180]Zero Motion and Global Motion Inter Predictors [64][65][66]
[bookmark: _Hlk122526401]It is proposed to have four candidate inter predictor points, two from a non-motion compensated reference frame (zero motion) and two from a global motion compensated (GMC) reference, as shown in Figure 52, as an extension of the inter prediction for predictive geometry angular coding method. It is asserted that this set of inter predictor points are better able to exploit the global motion information for prediction of points belonging to static objects of little local motion in a non-static scene. The radius of the inter predictor is obtained from the inter predictor points while the azimuth is obtained from the parent node of the current point to be predicted.

[image: ]
[bookmark: _Ref131066211]Figure 52: Additional inter predictors from global motion compensated reference frame.
The Reference Node Signalling Flag is replaced with Reference Node Index ‘refNodeIdx’ to cater to the signalling of the additional inter predictors. The value of ‘refNodeIdx’ is also used to influence context used for coding of Residual, ResPhi, ResR and Phi Multiplier.

In [66] a flag is proposed that specifies whether resampling/interpolation is applied to the global motion compensated reference. Secondly, when global motion is disabled, it is proposed to only allow two inter prediction candidates (excluding the global compensated reference frame candidates) and in this case only one bit predictor index is signalled.

[bookmark: _Toc140376181]Additional Inter Predictors [67]
[bookmark: _Hlk132405891][bookmark: _Hlk122525144][bookmark: _Toc140376182]Modified Estimation of qphi
Originally when inter predictors from GMC Reference Frame are used, their azimuth is obtained from the parent node of the current point to be predicted. It is proposed to first find the difference between the azimuth obtained from the inter predictor with that from the parent node of the current point to be predicted. Given the angular azimuth speed, qphi can be better estimated resulting in better azimuth prediction of GMC inter predictors. The changes made to the source code are as follows:

  if (
#if M61586_IMPROVE_B
    !movingState && 
#endif                  
    refNodeIdx > 1)
#if M61586_IMPROVE_A
    {
      auto deltaPhi = pred[1] - parentPos[1];
#endif
      pred[1] = parentPos[1];
#if M61586_IMPROVE_A
      if (
        deltaPhi >= (_geomAngularAzimuthSpeed >> 1)
        || deltaPhi <= -(_geomAngularAzimuthSpeed >> 1)) {
          int qphi0 = divApprox(
            int64_t(deltaPhi) + (_geomAngularAzimuthSpeed >> 1),
            _geomAngularAzimuthSpeed, 0);
          pred[1] += qphi0 * _geomAngularAzimuthSpeed;
      }
    }
#endif

[bookmark: _Hlk123048840][bookmark: _Toc140376183]Selection of Additional Inter Predictors from Either GMC Reference Frame or from a Second Non-MC Reference Frame
It is proposed to select additional inter predictors from either GMC reference frame or from a second non-MC reference frame depending on whether the scene is detected as in motion or static at the encoder.

[bookmark: _Hlk130849638]A moving state signalling mechanism is introduced to perform the selection. When the scene is detected as in motion, additional inter predictors generated from GMC reference frame are selected to compliment those from reference frame. Otherwise, when the scene is detected as static, additional inter predictors generated from a second non-MC reference frame (previous previous frame) are selected to compliment those from reference frame. This is illustrated in Figure 53.

The memory buffer for storing GMC reference frame buffer is also used to store the second non-MC reference frame in our implementation. The contents of the reference frame buffer are cleared at each Intra frame to support Random Access Frame functionality.

[image: Graphical user interface

Description automatically generated]

[bookmark: _Ref139542066]Figure 53: Inter predictors based on available Global Motion information.

[bookmark: _Toc528915258][bookmark: _Hlk130799402][bookmark: _Toc140376184]
Geometry Data Unit Header Syntax Modifications
The slice_inter_frame_ref_gmc specifies the inter prediction GMC reference frame to be applied to the geometry data unit associated with the Geometry Data Unit (GDU) header with behaviour illustrated in Table 5 below.

When GMC is enabled and slice_inter_frame_ref_gmc is true for a frame i, the most recently decoded reference frame i – 1, one non-motion compensated, and one GMC is used in the inter prediction process. When slice_inter_frame_ref_gmc is false, two of the most recently decoded non-motion compensated frames i – 1 and i – 2 are used instead.

With GMC disabled, slice_inter_frame_ref_gmc is inferred to be false. Only the most recently decoded non-motion compensated frame i – 1 is used.

[bookmark: _Ref139542275]Table 5: Types of Decoded Reference Frames used based on GMC availability and slice_inter_frame_ref_gmc.
[image: A white rectangular box with black text

Description automatically generated]


The following highlighted GDU Header syntax modifications are required.

[image: A screenshot of a computer program

Description automatically generated]



[bookmark: _Toc140376185]Inter Prediction for Attribute Coding
[bookmark: _Toc140376186]Unidirectional Inter Prediction for Attribute Coding [69][70][71][72] 
The initial InterEM-v1 (also v2) included a tool for attribute inter prediction. As shown in Figure 54, the encoder and decoder perform nearest neighbor search in the current frame and the reference frame. The search center point has the same index in Morton code order as the current point. As a search result, at most three reference points, {point0, point1, point2}, are selected from the reference frame. The predicted attribute value will be calculated based on the attribute values of the reference points.

[image: 日程表

描述已自动生成]
[bookmark: _Ref96963180]Figure 54: Nearest neighbor search in attribute inter prediction.

The attribute inter prediction tool is adopted into InterEM-v5.0 including improvements:

1. The point with the largest Morton code is used that is less than the Morton code of current point as the search center:

[bookmark: _Ref92373290][image: 表格

描述已自动生成]
Figure 55 Improved nearest neighbor search in attribute inter prediction.
2. A two-thresholds method is used to constrain the attribute inter prediction if there is significant rotation or translation. If the maximum rotation angle in three directions is less than Th1 and the maximum translation amplitude in three directions is less than Th2, the attribute inter prediction will be performed.

[bookmark: _heading=h.2et92p0]As an encoder option in InterEM-v5, a hierarchical QP structure to perform inter prediction for attribute coding can be enabled. There is a QPshift value for each frame. The QPshift value for the reference frame should be lower than that of the current frame. For each frame, the real attribute QP value is set to:


For a IPPP GOF structure, the QPshift value for P-frame is equal to QPshift_step.

Proposals [69][70] enable attribute inter predicting for octree geometry, and proposals [71][72] for predictive geometry coding.

[bookmark: _Toc140376187]Bidirectional Inter Prediction for Attribute Coding [62][63]
See also section 5.6 on bidirectional inter prediction for geometry coding.

For attribute coding, three reference points, {point0, point1, point2}, are selected from the two reference frames. The predicted attribute value will be calculated based on the attribute values of the reference points. The selection of reference points and calculation of predicted attribute values is the same as for the unidirectional inter prediction. In more details, the two reference frames are merged into one new reference frame to perform inter prediction for attribute coding. The new reference frame contains all points in the two reference frames which are reconstructed from the geometry coding. Then unidirectional inter prediction for attribute coding is applied based on the new reference frame. The inter search range to find reference points is half of the original inter prediction search range assigned for unidirectional inter prediction.  

As for the unidirectional case, a hierarchical QP structure is proposed. There is a QPshift value for each frame. The QPshift value for reference frame should be lower than that of the current frame. For each frame, the real attribute QP value is set to:


The QPshift value is controlled by one parameter QPshift_step value and the reference relationship. For a hierarchical GOF structure, the QPshift values for frames in a GOF are shown in Table 6.

[bookmark: _Ref123040289]Table 6: QPshift value for each frame in one hierarchical GOF.
	Frame time stamp
	QPshift

	0
	0

	1
	QPshift_step *4

	2
	QPshift_step *3

	3
	QPshift_step *4

	4
	QPshift_step*2

	5
	QPshift_step *4

	6
	QPshift_step *3

	7
	QPshift_step *4

	8
	QPshift_step



For one IBBP GOF structure, the QPshift values for frames in a GOF are shown in Table 7.

[bookmark: _Ref140375874]Table 7: QPshift value for each frame in one IBBP GOF.
	Frame time stamp
	QPshift

	0
	0

	1
	QPshift_step *2

	2
	QPshift_step *2

	3
	QPshift_step *2

	4
	QPshift_step *2

	5
	QPshift_step *2

	6
	QPshift_step *2

	7
	QPshift_step *2

	8
	QPshift_step



[bookmark: _Toc140376188]Inter Prediction for DC and AC RAHT Coefficients [73][74]
It is proposed to apply inter prediction to DC and AC coefficients in RAHT. For DC coefficients coding, the residual between the DC coefficient for the root node of the current frame and the DC coefficient for the root node of the reference frame is calculated as:



The  is signalled to the decoder in place of .

For AC coefficients coding, the same bottom to up scan is performed on the reference frame and the current frame to generate the current octree and the reference octree. Then the same up to bottom scan is performed on the first 5 layers of the current octree and the reference octree to generate the average attribute of each node and corresponding reference node 

The prediction residual is calculated and signalled as:





 = 

If the  is equal to zero, the  is applied as the original prediction.

[bookmark: _Toc140376059][bookmark: _Toc140376189]Improvements to Inter Prediction for RAHT Attribute Coding [78][79]
For RAHT inter prediction, it is proposed to signal the number of layers where the attribute inter prediction is enabled for the inter prediction of AC coefficients. The number of layers is indicated by one parameter “attrInterEnabledLayersForRAHT” in APS.  For different point cloud sequences, different numbers may be applied based on the characters of the sequence. In addition, it is proposed to disable the global motion constraint method for inter prediction for RAHT attribute coding. Whether the inter prediction for RAHT attribute coding is enabled is only determined by whether the current frame is an I-frame.

[bookmark: _Toc140376190]Improved Coefficient Inter Prediction for RAHT Attribute Coding [80][81]
Figure 56 shows the block diagram of RAHT inter prediction (Note: Conventional Intra prediction is omitted from this figure), and Figure 57 shows the concept of the inter prediction. After RAHT transform, transformed coefficient for each node are memorized for the inter prediction of the next frame. In the encoding of the target node, residual value of the coefficient is calculated by using the coefficient of the reference frame and current frame, and residual value is coded. Decoder has the same process.

[image: A black background with white text

Description automatically generated]

[bookmark: _Ref139550044]Figure 56: Block diagram of the RAHT inter prediction (encoder).


[image: A black background with a black square

Description automatically generated]
[bookmark: _Ref139550084]Figure 57: Overview of the RAHT inter prediction.
Inter prediction is applied only if the current point cloud and reference point cloud has the same position node. If predictive coefficient value does not exist in the reference buffer, inter prediction is not applied. If the corresponding AC coefficient does not exist in the reference buffer, inter prediction is not applied. Because proposal method was implemented on top of TMC13v21 in this EE, process has changed to ‘If the corresponding AC coefficient is not exit in the reference buffer, inter-prediction is applied.’ To be checked 

Whether to use intra or inter is decided by the octree depth. If the depth of the node is less than the MAXdepth that is set in the encoder, then apply inter, otherwise, apply intra. The size of the buffer is determined by the value of MAXdepth. MAXdepth is signalled in the APS.

[image: A screenshot of a computer program

Description automatically generated]
Figure 58: Condition to apply Inter-RAHT.


Table 8 shows the proposed syntax. attr_inter_prediction_enabled intend to use the inter prediction is used or not. If the inter prediction is used, the number of the depth that apply the inter prediction is signalled.

[bookmark: _Ref139551509]Table 8: Proposed syntax (APS).
	attribute_parameter_set( ) {
	Descriptor

	   aps_attr_parameter_set_id
	u(4)

	   aps_seq_parameter_set_id
	u(4)

	   attr_coding_type
	ue(v)

	   attr_primary_qp_minus4
	ue(v)

	・・・・
	

	   aps_extension_present
	u(1)

	   if( aps_extension_present ){
	

	      attr_inter_prediction_enabled
	u(1)

	      if( attr_inter_prediction_enabled ) {
	

	         if( attr_coding_type == 0 ) {    //RAHT
	

	            raht_inter_prediction_depth_minus1
	ue(v)

	         }
	

	      }
	

	   } 
	

	
	

	
	

	
	



[image: グラフ が含まれている画像

自動的に生成された説明]

Additional description needed.

[bookmark: _Toc140376191]Attribute Inter Prediction with Slice Partitioning [82]
Improvements are proposed to enable attribute inter prediction when there are multiple slices. In G-PCC if there is more than one slice for each frame, the reference point cloud would not be correct. It is proposed to use the previous reconstructed frame as the reference point cloud of the attribute inter prediction for the current slice.

The reference point cloud is refined before attribute inter prediction as follows. Firstly, the geometry bounding box of the current slice, B, is calculated. B can be represented by (xmin, xmax, ymin, ymax, zmin, zmax) when the geometry information of the reference point cloud is in Euclidean coordinate system. Secondly, the points outside B are removed from the reference point cloud to generate the refined reference point cloud. The refined reference point cloud is used in attribute inter prediction. When attribute coding is finished, the reconstructed slice is merged with other coded slices in the same frame to get the whole reconstructed frame. The flow chart of the slice level inter prediction is shown in Figure 59.

[image: 图形用户界面, 图示, 应用程序, Teams

描述已自动生成]

[bookmark: _Ref139552434]Figure 59: Flow chart of slice level inter prediction.
In addition, it is proposed to use the geometry information and attribute information of the refined reference point cloud to derive the reference AC and DC coefficients. The derived reference AC and DC coefficients are used to predict the current AC and DC coefficients in the similar way as the current AC inter prediction method.

[bookmark: _Toc140376192]Attribute Inter Prediction for predLifting Transform Coding Error! Reference source not found.
[bookmark: _Toc140376193]Introduction
In the current G-PCC predlift inter-attribute framework, an inter prediction is used to find the nearest neighbor in the reference frame.

1. Firstly, as shown in Figure 60, the Morton code of the current point is obtained in the current frame. A reference point in the reference frame is identified whose Morton code is the first point greater than the Morton code of the current point. The reference point serves as the search center in the reference frame.
1. Secondly, get the nearest neighbors in the neighbor search range [j-searchRange, j+searchRange] of the reference frame, where j is the Morton code in the reference frame and searchRange is the predetermined search range.
1. Finally, at most N (N=3) reference points are selected from the reference frame, and the predicted attribute value will be calculated by averaging the N attribute values of the reference points.

[image: A screenshot of a computer game

Description automatically generated]
[bookmark: _Ref139553681]Figure 60: Overview nearest neighbor search in attribute inter prediction.

[bookmark: _Toc140376194]Inter-Attribute Nearest Neighbor Search
An inter-neighbor search method is proposed based on the geometric structure and spatial distribution of the reference frame point cloud. As shown in Figure 61, the proposed method tries to find the predictors of the current point P which shares a face, an edge, or a vertex with block B.



[bookmark: _Ref139553840]Figure 61: Overview of the proposed method.
For the current point P, the proposed inter-nearest neighbors search consists of the following steps.

1. Firstly, use the existing method to find the search center in the reference frame.
1. Secondly, a block B is obtained based on the geometry position of the determined search center in the reference frame.
1. Finally, the co-planar, co-edge, and co-vertex neighbors of Block B are determined based on the atlas in the reference frame, and these neighbors are then considered candidates.

Note: considering the constraints on the atlas memory size, the proposed method sets the size of the atlas to {3×3×3}.

Additional description requested.

[bookmark: _Toc140376066][bookmark: _Toc140376195]Inter Prediction: Other Techniques
[bookmark: _Toc140376196]Dependent Entropy Frame Coding [51][52]
The entropy continuing slice method is used in low-latency scenarios in intra frame coding of G-PCC Ed.1. In inter frame coding, each frame is linked to global/local motion and inter occupancy prediction. This method introduces the dependent P frame by continuing entropy as illustrated in Figure 62.

[image: A black rectangle with a black background

Description automatically generated with low confidence]

[bookmark: _Ref79671478]Figure 62: Flowchart of using dependent entropy frames.

[bookmark: _Toc140376197]Signalling of Global Motion Data [56]
The two segment thresholds and global motion matrix, denoted by global motion parameters, are coded in the slice header. To align with the statistics of the global motion parameters, global motion parameters are coded by using the signed 0-th order Exp-Golomb coding method. At the encoder side, a signed motion parameter is first converted to an unsigned integer, then coded using an unsigned 0-th order Exp-Golomb code. At the decoder side, the decoded unsigned integer value will be converted back. The conversion between a signed value  and an unsigned value  is done as follows:



[bookmark: _Toc140376198]Inter Entropy Continuation HLS [68]
[bookmark: _Toc140376199]Background
Slice Entropy Continuation and Constraint of Slice Reordering
The entropy continuing slice method is used in low-latency scenarios in intra frame coding of G-PCC Ed.1 and current G-PCC. Slice entropy continuation corresponding syntax “entropy_continuation_enabled” is used to control whether to restore the entropy state saved in the previous slice. For each slice, “gbh.entropy_continuation_flag” indicates the current slice reuses contexts from the previous slice. The “entropy_continuation_enabled” flag is closely related with “slice_reordering_constraint”, which specifies the bitstream whether sensitive to the reordering or removal of slices.

· For encoder, the value of sps.profile.slice_reordering_constraint_flag is determined by sps.entropy_continuation_enabled_flag:

[image: ]
· For decoder, it is a requirement of bitstream conformance that “entropy_continuation_enabled” shall be equal to 0 when “slice_reordering_constraint” is equal to 0:

[image: A screen shot of a computer

Description automatically generated]

This mechanism makes sure slice entropy continue function can be used only when reorder of the slice is restricted.

Inter Entropy Continuation
In current G-PCC, dependent entropy frame coding is included. The corresponding flag “gps.gof_geom_entropy_continuation_enabled_flag” exists in geometry parameter set. In decoder, current frame/slice shall use geometry entropy context state dependent on reference frame/slice when gps.gof_geom_entropy_continuation_enabled_flag is 1 and gbh.interPredictionEnabledFlag is 1 no matter the value of gbh.entropy_continuation_flag. 

[image: A computer screen shot of a program

Description automatically generated]

Obviously, the constraint of slice reordering should also be considered when inter entropy continuation is performed.

[bookmark: _Toc140376200]Proposed Change  
1. The flag of inter entropy continuation “gof_geom_entropy_continuation_enabled_flag” in GPS should be placed in SPS called “inter_entropy_continuation_enabled_flag”.
	[bookmark: _Hlk133222580]encoder

	if (!gbh.entropy_continuation_flag) {
    if (
      !_gps->gof_geom_entropy_continuation_enabled_flag
      || !gbh.interPredictionEnabledFlag) {
      _ctxtMemOctreeGeom->reset();
      _ctxtMemPredGeom->reset();
    }
    for (auto& ctxtMem : _ctxtMemAttrs)
      ctxtMem.reset();
  }
	if (!gbh.entropy_continuation_flag) {
    if (
[bookmark: _Hlk133229175]      !_sps->inter_entropy_continuation_enabled_flag
      || !gbh.interPredictionEnabledFlag) {
      _ctxtMemOctreeGeom->reset();
      _ctxtMemPredGeom->reset();
    }
    for (auto& ctxtMem : _ctxtMemAttrs)
      ctxtMem.reset();
  }

	decoder

	  if (_gbh.entropy_continuation_flag) {
    assert(!_firstSliceInFrame);
    assert(_gbh.prev_slice_id == _prevSliceId);
  } else {
    // forget (reset) all saved context state at boundary
    if (
      !_gps->gof_geom_entropy_continuation_enabled_flag
      || !_gbh.interPredictionEnabledFlag) {
      _ctxtMemOctreeGeom->reset();
      _ctxtMemPredGeom->reset();
    }
    for (auto& ctxtMem : _ctxtMemAttrs)
      ctxtMem.reset();
  }
	  if (_gbh.entropy_continuation_flag) {
    assert(!_firstSliceInFrame);
    assert(_gbh.prev_slice_id == _prevSliceId);
  } else {
    // forget (reset) all saved context state at boundary
    if (
        !_sps->inter_entropy_continuation_enabled_flag
      || !_gbh.interPredictionEnabledFlag) {
      _ctxtMemOctreeGeom->reset();
      _ctxtMemPredGeom->reset();
    }
    for (auto& ctxtMem : _ctxtMemAttrs)
      ctxtMem.reset();
  }



1. The slice reordering constraint should be considered in inter entropy continuation.
1. In encoder, the “sps.profile.slice_reordering_constraint_flag” should be determined by both slice and inter entropy continuation enable flags “sps.entropy_continuation_enabled_flag” and “sps->inter_entropy_continuation_enabled_flag”

1. In decoder, it is an additional requirement of the bitstream conformance that both inter prediction and inter entropy continuation enable flags should be 0 when “sps.profile.slice_reordering_constraint_flag” is 0. 

	encoder

	params->sps.profile.slice_reordering_constraint_flag =
    params->sps.entropy_continuation_enabled_flag;
 
	params->sps.profile.slice_reordering_constraint_flag =
    (params->sps.entropy_continuation_enabled_flag
     || (params->sps.inter_frame_prediction_enabled_flag && params->sps.inter_entropy_continuation_enabled_flag));
 

	decoder

	if (sps.entropy_continuation_enabled_flag)
    assert(sps.profile.slice_reordering_constraint_flag);
 
	if (
    sps.entropy_continuation_enabled_flag
    || (sps.inter_frame_prediction_enabled_flag && sps.inter_entropy_continuation_enabled_flag))
    assert(sps.profile.slice_reordering_constraint_flag);
 



[bookmark: _Toc140376201]Dependent Entropy Frame Coding for Attribute [75][76][77]
Dependent P frame coding by continuing entropy for attribute coding is proposed. Continuing entropy context for attribute will be determined according to random access period, gps.gof_geom_entropy_continuation, and inter prediction flag for attribute as illustrated in Figure 63. 
 
[image: A diagram of a flowchart

Description automatically generated]
[bookmark: _Ref139547384]Figure 63: Flowchart of using proposed dependent entropy frames 
(proposed change is highlighted with blue box).
Additional fixes:
1) Dependent frame entropy coding is controlled for attributes separately based on attribute inter prediction flag. It is an unlikely case that geometry uses inter prediction and attribute does not. It is proposed that when dependent frame entropy coding is applied, both geometry and attribute entropy states are copied from previous frame.
2) Entropy continuation signals prev_slice_id but dependent frame entropy coding does not signal. This ID is signalled in order to detect whether a dependent slice can be decoded when a loss occurs. It is proposed to signal a prev_slice_id and prev_frame_id when entropy coding states are copied from a previous frame (i.e., under dependent frame entropy coding).
3) When entropy continuation is disabled, dependent frame entropy coding takes over and does the job of entropy continuation. It is proposed to signal a slice_dependent_frame_entropy_coding flag; set to 1 only for the first slice of a frame.


[bookmark: _Toc140376202]Attribute Coding
[bookmark: _Toc140376203]Adaptive Quantization for LoD-Based Attribute Predicting Transform Coding [84][85]
In the Predicting Transform that is part of attribute coding in G-PCC Ed.1, the quantization step value obtained from the Attribute Parameter Set will be directly used to quantize the residual values. This quantization step value remains the same for all points. 

In the LoD-based prediction strategy, points in lower LoDs are more influential since they are used more often for prediction. Therefore, in [84] it was proposed to introduce an adaptive quantization method in the Predicting Transform. Specifically, the points are traversed in reverse LoD-based order to update the quantization weights for the nearest neighbors of the current point, then multiply the prediction residuals by the quantization weight of each point and then perform quantization. The decoder can be implemented inversely.

The level of detail (LoD) generation process (see Figure 64) from G-PCC Ed.1 re-organizes the points into a set of refinement levels according to a set of L1 (Manhattan) distances. In addition, this re-ordering process is deterministic and operated based on reconstructed geometry. It is applied at both the encoder and the decoder side.

[image: ]

[bookmark: _Ref73030621]Figure 64: Level of detail generation process.

The LoD-based prediction strategy makes points in lower LoDs more influential since they are used more frequently for prediction. Therefore, the proposed method is an adaptive quantization method, which assigns different quantization steps to points according to their importance as described in the following.

Let  be the quantization weight associated with a point P. Then  is computed by applying the following traversal procedure:

· Set the initial  of all points to 256.
· Traverse the points according to the inverse of the LoD-based order.
· For a point , update the quantization weights for its 3-nearest neighbors as follows:
[bookmark: _Hlk58851320]

where  means the set of 3-nearest neighbors of point , and the value of  is given as follows:
[bookmark: _Hlk58850325]

[bookmark: _Hlk58851497]After getting the quantization weights of all points, compare the value of  and quantization step , then let . Note that the value of  can be stored in the Attribute Parameter Set (APS). The proposed syntax is shown in Table 9.
[bookmark: _Ref73031042]Table 9: Proposed New Attribute Parameter Set Syntax.
	attribute_parameter_set( ) {
	Descriptor

	……
	

	     if( attr_coding_type  = =  1 ) {
	

		max_num_direct_predictors
	ue(v)

	         if( max_num_direct_predictors) {
	

	adaptive_prediction_threshold
	u(8)

	direct_avg_predictor_disabled_flag
	u(1)

	}
	

	        for( idx = 0; idx < max_num_direct_predictors; idx++){
	

	               impactFactorOfNearestNeighborsInAdaptiveQuant[idx]
	ue(v)

	}
	

		intra_lod_prediction_skip_layers
	ue(v)

	……
	

	}
	

	……
	

	}
	



impactFactorOfNearestNeighborsInAdaptiveQuant[idx] specifies the impact factor of nearest neighbor points at different distance level (i.e., 1st nearest, 2nd nearest and etc).

[bookmark: _Hlk58851989]On the encoder side, the prediction residuals associated with a point P are multiplied by the factor . An inverse scaling process by the same factor is applied after inverse quantization on the decoder side. Note that the quantization weights  are completely determined by the reconstructed geometry and they do not need to be encoded in the bitstream.

[bookmark: _Toc140376204]Neighbor Search Method for Attribute LoD Prediction [86][87][94]
In G-PCC Ed.1 design, the attribute prediction is performed between the point to be coded and its N nearest neighbors. Considering the complex distribution of 3D points, choosing the nearest points as predictors (i.e., using distance as the only criterion) may not always be optimal.


[bookmark: _Ref89251468]Figure 65: Neighboring points distribution.
The proposed method considers the point distribution when selecting potential predictors. More specifically, the relative location of potential predictors of current point P are considered together with their distance to P. An example is given in Figure 65. In this case, although P2 is nearer to current point P than P3, P3 may be a better predictor of P.
The following steps detail the method:

Step 1: build two neighbor lists.
List1: the nearest 3 neighbors obtained using existing method in G-PCC.
List2: a list with N (e.g., 3) points that are dropped out when updating List1.
The final predictor list is generated by updating list1 using points in list2, as the eligibility check described in Step 2 and Step 3. Figure 66 shows the generation of list1 and list2.

[image: Diagram

Description automatically generated]

[bookmark: _Ref89251731]Figure 66: The generation of List1 and List2.
[image: Diagram

Description automatically generated]
[bookmark: _Ref89255593]Figure 67: Definition of opposite direction. The eight octants around P are indexed from 0-7.
Step 2: check of the point distribution (strict opposite check)
Check the distribution of points in list1. If P1 or P2 are already at the strict opposite direction (Definition of opposite is illustrated in Figure 67) to P0, it is believed that the distribution of neighbors is already well spread, and thus there is no need to check points in list2 anymore. Otherwise, check points Pn in list2, if dist(Pn, P) <= T1 and Pn is at the strict opposite direction to P0, use Pn to replace P2; if not, then, if dist(Pn, P)<= T2 and Pn is at the strict opposite direction to P1, use Pn to replace P2. In the current implementation, T1 = w*dist(P2, P), T2 = w*dist(P1, P), and w <<5 = 54.

Step 3: Perform check of the point distribution (loose opposite check)
If P2 has not been replaced after step 2, and P2 or P1 is at the same direction (P0, P1 and P2 are in the same region) to P0, the distribution check is softened to some extent. Specifically, the distribution check is based on the pre-defined loose opposite directions as shown in Figure 67. Similar to Step 2, points Pn in list1 are checked. If dist(Pn, P) <= T1 and Pn is at the loose opposite direction to P0, use Pn to replace P2; if not, then, if dist(Pn, P) <= T2 and Pn is at the loose opposite direction to P1, use Pn to replace P2.


In [94] it was observed that the following checks are missing in the implementation of the algorithm:
1. Missing strict opposite check of P1 and P2 – the implementation checks whether P0 and P2 are strictly opposite, or whether P0 and P1 are strictly opposite. If either of this is true, then no replacement occurs. However, if P1 and P2 are strictly opposite, there are cases where P2 will be replaced by another node that is farther than P2.
1. Missing loose opposite check of P1 and P2 – similar to the strict check, the loosely opposite direction check also does not always consider the case where P1 and P2 are loosely opposite to each other. This also results in sub-optimal swapping.
1. Missing checks of equality for P1 and P2 – during loosely opposite direction check, when P0 and P1 are equal or when P0 and P2 are equal, steps are taken to replace P2. However, no steps seem to be taken when P1 and P2 are equal. This also may lead to sub-optimal distribution of points.

An implementation with the proposed solutions is provided below:
1. Add a strict opposite check for P1 and P2 (yellow highlight).
1. Use single threshold to check whether directions of P3..Pn are strictly opposite to direction of P0 or P1 (green highlight).
1. When strict opposite directions are not present, do not replace if P1 and P2 are loosely opposite to each other. (implicitly achieved)
1. When P1 and P2 are equal, replace P2 (if not already so) with a loosely opposite direction to P0/P1 (cyan highlight).

        int replaceIdx = -1;
        if (
          dir[1] == 7 - dir[0] || dir[2] == 7 - dir[0] || dir[2] == 7 - dir[1])
          replaceFlag = false;
        for (int h = 3; replaceFlag && h < numend1; ++h) {
          if ((dir[h] == 7 - dir[0]) || (dir[h] == 7 - dir[1])) {
            replaceFlag = false;
            replaceIdx = h;
          }
        }
        bool equal01 = dir[0] == dir[1];
        bool equal02 = dir[0] == dir[2];
        bool equal12 = dir[1] == dir[2];
        const auto& looseDirs0 = looseDirTable[dir[0]];
        if (replaceFlag) {
          if ((equal02 || equal12) && equal01) {
            for (int h = 3; replaceFlag && h < numend1; h++) {
              if (
                dir[h] == looseDirs0[0] || dir[h] == looseDirs0[1]
                || dir[h] == looseDirs0[2]) {
                replaceFlag = false;
                replaceIdx = h;
              }
            }
          } else if ((equal02 || equal12) && !equal01) {
            if (!(dir[1] == looseDirs0[0] || dir[1] == looseDirs0[1]
                  || dir[1] == looseDirs0[2]))
              for (int h = 3; replaceFlag && h < numend1; h++)
                if (dir[h] != dir[0] && dir[h] != dir[1]) {
                  replaceFlag = false;
                  replaceIdx = h;
                }
          } else if (equal01) {
            if (!(dir[2] == looseDirs0[0] || dir[2] == looseDirs0[1]
                  || dir[2] == looseDirs0[2]))
              for (int h = 3; replaceFlag && h < numend1; h++) {
                if (
                  dir[h] == looseDirs0[0] || dir[h] == looseDirs0[1]
                  || dir[h] == looseDirs0[2]) {
                  replaceFlag = false;
                  replaceIdx = h;
                }
              }
          }
        }
        if (replaceIdx >= 0) {
          localIndexes[2] = localIndexes[replaceIdx];
          localRef[2] = localRef[replaceIdx];
        }


[bookmark: _Toc140376205]Low-Latency Attribute Coding Inside Slice [88][89]
[bookmark: _Hlk101187833]In G-PCC Ed.1, low-latency applications can be supported by slicing according to the input point order. For example, given a list of input points, the encoder could generate a new slice every n points. Here, it is proposed to support low-latency applications inside a slice for geometry coding and attribute coding. For geometry coding, the tree structure of predictive tree geometry coding can be generated every n points (maxPtsPerTree). For attribute coding, the number of levels of detail (LOD) is set to 1 and the sorting process based on Morton code is skipped before LOD generation process. For low-latency attribute coding inside a slice, this is not flexible enough. Points are either sorted entirely or not sorted at all. There is no flexible trade-off between coding efficiency and latency, and the geometry latency cannot be matched.

To enhance the flexibility of low-latency attribute coding, it is proposed to control the sorting process based on Morton code by a syntax element named “max_points_per_sort_log2_plus1” in APS in case the number of LOD is equal to 1.  Specifically, if max_points_per_sort_log2_plus1 is equal to 0, the sorting process will be performed. If max_points_per_sort_log2_plus1 is greater than 0, a segmented sorting process will be performed. The point number of every sorted segment is equal to maxPtsPerSort, where maxPtsPerSort = 1 << (max_points_per_sort_log2_plus1 - 1). As shown in Figure 68, compared with the low-latency solution by slicing, the attributes can be predicted crossing boundary using the proposed method.
Slice A         
Slice B         
Can’t be predicted crossing boundary         
Segment B         
Can be predicted crossing boundary         
SearchRange         
Segment A         
Slice         

[bookmark: _Ref113549158]Figure 68: Predicting crossing boundary.
[bookmark: _Toc140376206]Extended Prediction for RAHT [90][91]
[bookmark: _Hlk108284629]In G-PCC Ed.1, upsampled transform domain prediction is used to improve the efficiency of RAHT coding. In upsampled transform domain prediction, the RAHT transform is performed from top to bottom. In each depth, RAHT is applied to each unit node containing 2×2×2 sub-nodes in Morton order. When performing transform on a unit node that contains 2×2×2 sub-nodes at depth , 3 coplane parent neighbour nodes and 3 coline parent neighbour nodes and a parent node at depth  are used to predict the attribute in each sub-node. Prediction weights are assigned to these parent-level nodes, where . And the prediction is performed in the mean attribute space, i.e., .


sub-node
parent-level neighbour node
parent node

Figure 69: Parent-level nodes for each sub-node of transform unit node.
[bookmark: OLE_LINK1]However, some neighbour nodes are transformed before the current transformation unit node, so attributes of the sub-node of these already-coded neighbour nodes are available, which has not been utilized in the current design.
z
x
y


Figure 70: Neighbour nodes that may be transformed earlier than current transformation unit node: earlier node (green), possibly earlier node depending on Morton code (purple).
Here, a method is proposed of sub-node-based prediction in transform domain for RAHT, which uses the attributes of a sub-node of already-coded neighbour nodes to improve transform domain prediction for RAHT. For a coplane parent neighbour node, if it has a coplane sub-node that shares a face with the predicted sub-node, attributes of the coplane sub-node will be used as the prediction instead of attributes of its corresponding coplane parent neighbour node.

coplane parent neighbour node
coplane sub-node
predicted sub-node

Figure 71: Coplane parent neighbour node with coplane sub-node with predicted sub-node.
Similarly, for a coline parent neighbour node, if it has a coline sub-node that shares an edge with the predicted sub-node, attributes of the coline sub-node will be used as the prediction instead of attributes of its corresponding coline parent neighbour node.
coline parent neighbour node
 coline sub-node
predicted sub-node

Figure 72: Coline parent neighbour node with coline sub-node with predicted sub-node.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]The prediction weights will be signalled in APS and will be coded by unsigned Exp-Golomb. The default prediction weights are assigned as follows:
2


[bookmark: _Toc140376207]Disabling Transform Domain Prediction of RAHT [92][93]
In G-PCC Ed.1, transform domain prediction was introduced to improve the coding efficiency of RAHT. To reduce the runtime of predictions, an early termination decision flow of the transform domain prediction was introduced, as illustrated in Figure 73. Specifically, for the attribute prediction of the 8 sub-nodes in the current node, the prediction termination is controlled by examining following two parameters:
•	NumValidP: total number of valid parent neighbour nodes of the 8 sub-nodes
•	NumValidGP: total number of valid grandparent neighbour nodes of the 8 sub-nodes
At first, NumValidGP is checked to see whether it is larger than a threshold TH1 (= 2). If it is true, then the parent neighbor nodes are searched and the value of NumValidP is further obtained. In this flow, if either NumValidGP or NumValidP is less than TH1 or TH2, respectively, the prediction is disabled and the 8 sub-nodes are encoded without prediction.



[bookmark: _Ref123115866]Figure 73: G-PCC Ed.1 decision flow to disable the transform domain prediction.
It is observed that if there is only one occupied child in the current node, the transform of the original and the predicted attribute value only results in one DC coefficient, no AC coefficient, and thus no AC coefficient residuals are coded, as shown in Figure 74. In that case, the transform and attribute prediction are actually redundant since the DC coefficient of the current node used in the inverse transform is directly inherited from its parent. To avoid the time-consuming neighbour search and attribute prediction in this case, following modifications are proposed. 
[image: Diagram

Description automatically generated]

[bookmark: _Ref123116105]Figure 74: Upsampled RAHT for one occupied sub-node case.
To reduce the unnecessary complexity caused by the above issue, an additional parameter:
•	NumValidC: total number of occupied child nodes in the current node
is specified. A modified termination decision flow is shown in Figure 75.



[bookmark: _Ref123116320]Figure 75: Proposed decision flow to disable transform domain prediction.
In the proposed decision flow, if NumValidC is equal to 1, the attribute prediction is disabled without the examination of other modules. Note that in this case, the value of NumValidP is default as zero in the specification since the parent neighbour search is skipped. This will cause that the predictions for its child level are forced to be terminated. To avoid the situation, NumValidP should be set to a value larger than TH1 (e.g., Val=19) in the proposed method when NumValidC =1.

[bookmark: _Toc140376208]RAHT Reconstruction Buffer Rounding Operation Removal [95][96]
RAHT coefficients are computed using a FixedPoint object that stores data using int64_t values, with 15 bits for the fractional part. However, the reconstruction buffers store data as an integer (see code 3a). The reconstructed coefficients undergo a rounding operation prior to storage in this buffer, as shown in source code below, removing the fractional part and resulting in some loss of information.

[image: ]
Code 1: rounding operation for the reconstruction buffer

However, as both encoder and decoder have access to this same data, it is proposed to store this data in full precision. The buffer stores either int64_t or FixedPoint values, eliminating the need for rounding. It is proposed to use int64_t values, because there is no difference of using FixedPoint values as the latter also stores data as int64_t. In this fashion, the value of the reconstructed coefficient is copied after weight normalization:

[image: ]
Code 2: no rounding operation for the reconstruction buffer

Without the loss of information from the rounding, a better inter layer prediction is achieved. Memory usage for the reconstruction buffer is doubled from  bytes to  bytes, where  is the number of points for a given slice.

[image: Text

Description automatically generated with medium confidence]
a: Original

[image: Text

Description automatically generated]
b: Modified
Code 3: reconstruction buffers

[bookmark: _Toc140376209]3D Quantization Matrix Signalling for RAHT Coefficient Coding [97][98]
In G-PCC Ed.1 layer-based QP offsets are signalled for RAHT coefficient coding. Here, signalling of 3D quantization matrices is proposed so that a QP offset can be applied to each AC coefficient of the transformed 2×2×2 residual. Note that the DC coefficient is inherited and thus there is no residual DC component that is signalled to the decoder. The following syntax and semantics are proposed:
	attribute_slice_header( ) {
	Descriptor

		ash_attr_parameter_set_id
	ue(v)

		ash_attr_sps_attr_idx
	ue(v)

		ash_attr_geom_slice_id
	ue(v)

		ash_attr_layer_QP_present_flag
	ue(v)

		If( ash_attr_layer_QP_present_flag ) {
	

	        num_layer = ( attribute_coding_type  = =  1 ) ? raht_depth : num_detail_levels_minus1 + 1
	

			for( idx = 0; idx  < num_layer; idx++ ) {
	

				ash_attr_delta layer_QP_luma[idx]
	se(v)

	             ash_attr_delta_layer_QP_chroma[idx]
	se(v)

		}
	

	}
	

	If(attribute_coding_type==1){
	

	ash_attr_ACcomp_QP_luma_present_flag
	u(1)

	ash_attr_ACcomp_QP_chroma_present_flag
	u(1)

		If( ash_attr_ACcomp_QP_luma_present_flag ){
	

	         num_layer =  raht_depth
	

			for( idx = 0; idx  < num_layer; idx++ ) {
	

	             ash_attr_ACcomp_ layer_QP_luma_present_flag[idx]
	u(1)

	             if(ash_attr_ACcomp_layer_QP_luma_present_flag[idx]){
	

	              for (compidx=0; compidx<7;compidx++){
	

	             ash_attr_delta_ACcomp _layer_QP_luma[idx][compidx]
	se(v)

		 }
	

	  }
	

		If( ash_attr_ACcomp_QP_chroma_present_flag ){
	

	        num_layer =  raht_depth 
	

			for( idx = 0; idx  < num_layer; idx++ ) {
	

	             ash_attr_ACcomp_ layer_QP_chroma_present_flag[idx]
	u(1)

	             if(ash_attr_ACcomp_layer_QP_chroma_present_flag[idx]){
	

	              for (compidx=0; compidx<7;compidx++){
	

	             ash_attr_delta_ACcomp _layer_QP_chroma[idx][compidx]
	se(v)

		 }
	

	  }
	

	}
	

	
	




ash_attr_ACcomp_QP_luma_present_flag: Indicates whether the delta QP for AC components are present for the luma channel

ash_attr_ACcomp_QP_chroma_present_flag: Indicates whether the delta QP for AC components are present for the chroma channel

ash_attr_ACcomp_layer_QP_luma_present_flag[idx]: Indicates whether the delta QP for AC components are present for the luma channel for a particular layer indexed by idx in octree 

ash_attr_ACcomp_layer_QP_chroma_present_flag[idx]: Indicates whether the delta QP for AC components are present for the chroma channel for a particular layer indexed by idx in octree

ash_attr_delta_ACcomp_layer_QP_luma[idx][compidx]: Indicates the delta QP for AC component indexed by compidx for the luma channel for a particular layer indexed by idx in octree

ash_attr_delta_ACcomp_layer_QP_chroma[idx][compidx]: Indicates the delta QP for AC component indexed by compidx for the chroma channel for a particular layer indexed by idx in octree

The QP for each layer is first derived as per the current specification and is shown in Figure 76.



[image: Diagram

Description automatically generated with low confidence]
[bookmark: _Ref131062787]Figure 76: Operation of Delta Layer QP for RAHT.

Upon deriving QP for a layer ‘l’, the QP for each AC coefficient indexed by ‘i’, is derived as

;  i=0,1..6

where,  is the final QP used for a layer l and an AC component index i.  is the delta value that is obtained from the syntax elements presented before. 



[bookmark: _Toc140376210]TriSoup
[bookmark: _Toc140376211]Alternative Method for Determining Projection Plane [100][101]
[bookmark: _Hlk527015368]In Trisoup, the projection plane is determined by computing the variance of vertices positions for each axis. The proposed method uses maximum value and minimum value of vertices positions for each axis instead of the variance.

The proposed method is illustrated in the following code:

    // Alternative method to determin dominant axis.
    Vec3<int32_t> min_pos = leafVertices[0].pos;
    Vec3<int32_t> max_pos = leafVertices[0].pos;

    for (int j = 1; j < leafVertices.size(); j++) {
        for (int axis_id = 0; axis_id < 3; axis_id++) {
            if (leafVertices[j].pos[axis_id] > max_pos[axis_id]){
                max_pos[axis_id] = leafVertices[j].pos[axis_id];
            } else if (leafVertices[j].pos[axis_id] < min_pos[axis_id]){
                min_pos[axis_id] = leafVertices[j].pos[axis_id];
            } 
        }
    }

    Vec3<int32_t> diff_max_min = max_pos - min_pos;
    int32_t min_diff = diff_max_min[0];
    int32_t dominantAxis = 0;
    for (int axis_id = 1; axis_id < 3; axis_id++) {
        if (diff_max_min[axis_id] < min_diff){
            min_diff = diff_max_min[axis_id];
            dominantAxis = axis_id;
        }
    }



[bookmark: _Toc140376212]Refinement of Trisoup Projection Plane Determination [102]
Visual “holes“ on reconstructed point cloud were observed. The cause of the problem is the projection plane determination, which is a part of Trsoup decoding process. Therefore, the following method proposes a refined projection plane determination process.

Figure 77 shows the current projection plane determination process in G-PCC Ed.1. The current implementation calculates the difference between max coordinate value and min coordinate value accroding to each axis, and then the projection plane is determined by ignoring an axis which has the smallest difference. In other words, the projection plane is defined by axes which have larger difference. In the example, two or more axes have the minimum difference value, projection plane is determined by ignoring an axis according to predefined priority as x  -> y -> z. The current implementation does not work well in the case that two or more axes have the minimum difference.

Figure 78 shows an example case that the current implementation does not work. In this case, differences between the max coordinate value and the min coordinate value for x, y, and z axis are identical (=N). In this case, projection plane is determined by ignoring x axis (i.e., y-z plane). However, the x-y plane or x-z plane is better than y-z plane as projection plane. As written in above, the current implementation sometimes chooses unsuitable projection plane and it is the cause of malformed node and holes.

The problem of the current implementation is that it evaluates only 1-dimentional spread of the vertices. However, desirable behavior of the process is that the process evaluates 2-dimensional spread of the vertices.

[image: A picture containing graphical user interface

Description automatically generated]
[bookmark: _Ref97113275]Figure 77: The current projection plane determination process.


[image: A picture containing graphical user interface

Description automatically generated]
[bookmark: _Ref92722533]Figure 78: An example case that the current projection plane determination does not work well.
The proposed method chooses a projection plane which has the largest area of polygon defined by projected vertices. The area can be calculated as the sum of small triangles as shown in Figure 79.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
[bookmark: _Ref97114231]Figure 79: Proposed method.
[bookmark: _Toc140376213]Improved TriSoup [103][104][105][106][107][108][109][110]
Many changes are proposed to the so-called TriSoup technology. These changes are not independent from each other and are presented in seven input contributions:

· m59288 Part 1 - Improving TriSoup:  summary, results and perspective 
· m59289 Part 2 - Fixes and simplifications 
· m59290 Part 3 - Adding a centroid vertex 
· m59291 Part 4 - Vertex Quantization
· m59292 Part 5 - Improved rendering from triangles 
· m59293 Part 6 - Compression of vertex presence flag and vertex position
· m59294 Part 7 - Latest improvements

Description needed

[bookmark: _Toc140376214]Adaptive Halo Improvement for Voxelization [111]
It is proposed to create an adaptive halo around the TriSoup triangles by making the halo parameter ε depend on the sampling distance of point cloud data. By doing so, the sizes of the triangles are adjusted with point sampling distance of different point cloud data such that ray tracing will intersect the adjusted triangles and miss less points.

The proposed adaptive halo parameter >0 can be obtained byε*d, where the sampling distance can be estimated according to the total number of input points, the number of leaf nodes and the size N of leaf node before the voxelization process, and it can also be obtained by looping method to select a best sampling distance during the voxelization process.

After getting the triangles by the determined vertices for each leaf node, the proposed method also uses the Möller-Trumbore algorithm to get decoded points from the obtained triangles. In the Möller-Trumbore algorithm to determine each intersection point, the proposed adaptive halo parameter  is used in the relaxing condition. The calculated values of u,v,w must satisfy the conditions u,v,w. Other methods are the same as those in latest Trisoup coding method.

The halo tool can be enabled on a per sequence basis and in addition, the trisoup_adaptive_halo_flag is introduced in gps. At the encoder, if the flag is true, it uses adaptive halo method to extend triangles; otherwise, it uses fixed halo method in current Trisoup coding to extend triangles, and the flag is coded into bitstream at encoder. At decoder, it decodes the flag from the bitstream, and if the flag is true, it uses the adaptive halo method to extend triangles; otherwise, it uses fixed halo method in current trisoup coding to extend triangles, and then to reconstruct point cloud by ray tracing method.

[bookmark: _Toc140376215]Non-Cubic TriSoup [114][115]
In point clouds processed by TriSoup on TMC13v19, there may be visual gaps on the slice boundaries. This is because while the leaf node of TriSoup is limited to a cube, there is no restriction on the origin and width of the slice bounding box, so it was impossible to match the slice boundary with the leaf node boundary. This caused a visual gap because vertices could not be created on the slice boundary.

[image: ]
[bookmark: figure01]Figure 80: Visual gaps of reconstructed point clouds.
This method resolves visual gaps between slices by making the leaf nodes at the end of a slice non-cubic, thereby creating vertices at the boundary of the slice. This eliminates the need to consider slice partitioning.

[image: 時計, 記号 が含まれている画像

自動的に生成された説明]

[bookmark: figure03]Figure 81: Non-cubic node.

[bookmark: _Toc140376216]Voxelization of TriSoup Triangles [116]
The current overall process of the voxelization of triangles follows these steps for each TriSoup node:
  
· voxelization of TriSoup vertices 
· voxelization of the unique TriSoup centroid 
· voxelization of each TriSoup triangle belonging to the TriSoup node   
· by ray launch along two axes the most perpendicular to the triangle  
· using halo 	
· using fine ray launch  
· eliminating duplicated voxels
The current voxelization process is known to have several drawbacks. Firstly, each TriSoup vertex is voxelized up to 4 times. This increases the number of rendered points and consequently it increases the attribute bitrate. It also leads to visual problems when TriSoup vertices are quantized at lower bit rates. Secondly, voxelization parameters are fuzzy. They have been set around an overall sweet spot but have led to big gains on some sequences, loss on others. It is still an open question what the optimal halo parameter is. It seems to be largely content and rate point dependent. Also, the optimal distance of fine ray launch seems to be 1/8. It is not understood why. Thirdly, fine ray launch has heavily increased the complexity of the voxelization process. It is thus proposed to modify to voxelization process to tackle the problems above.

Further description needed

[bookmark: _Toc140376217]Inter TriSoup Based on Motion Compensated Point Cloud [117]
The inter codec of EE13.60 is based on the merge of the historical inter ETM and the current GPCC TMv20. A 3D motion field is obtained from the octree coding method, and the reference point cloud is compensated to obtain inter contextual information for coding the octree. However, no usage of the reference and/or the compensated point cloud has been attempted yet to improve the coding of TriSoup information. It is thus proposed to use the compensated point cloud to build contextual information that drives the entropy coding of presence and position of TriSoup vertices as well as the value the centroid residuals.

Further description needed

[bookmark: _Toc140376218]On TriSoup Voxelization [118]
Description requested

[bookmark: _Toc140376219]Centroid Vertex Positioning [119]
Modified method is proposed to improve the determination of the centroid vertex in the TriSoup process.

Description requested

[bookmark: _Toc140376220]Raster Scan Order for Octree Coding (GeS-TM) [120][121]
The current design of G-PCC uses Morton code ordering of the node positions for coding the occupancy of every node at a given depth in octree geometry coding, which is a different ordering than the ordering used for the edges of the octree leaf nodes within TriSoup. It requires some reordering between the octree layer and the TriSoup layer. The ordering used in TriSoup is lexicographic order of coordinates (a.k.a “raster scan” order). Therefore, it is proposed to replace the Morton coding order of nodes occupancy by a lexicographic order to unify octree and TriSoup processing order.

The proposed lexicographic order is not a fully lexicographic order in terms of the order of the coded occupancy bits. It is a lexicographic order in terms of coding order of the parents’ nodes. The child occupancy of each node is coded in Morton order, but the corresponding child nodes are processed in lexicographic order at next depth. Thus, most of the existing code/spec for coding the occupancy bits of a given node can be kept. This process is illustrated in Figure 82. For simplicity the illustration is made on a dense point cloud that would be made of fully occupied nodes and is described below.

Without considering QTBT for the sake of simplicity, at depth d, each node with coordinates (x, y, z) may have up to 8 child nodes with 1/8th of the volume their parent node, and with coordinates:
· (x, y, z) for child 0,
· (x, y, z+2d-1) for child 1,
· (x, y+2d-1, z) for child 2,
· (x, y+2d-1, z+2d-1) for child 3,
· (x+2d-1, y, z) for child 4,
· (x+2d-1, y, z+2d-1) for child 5,
· (x+2d-1, y+2d-1, z) for child 6, and
· (x+2d-1, y+2d-1, z+2d-1) for child 7.

In the following, we consider:
· a tube of nodes as being made of the nodes with same x and y, and
· a slice of nodes as being made of the nodes with same x.

[image: A black and white grid cubes

Description automatically generated]
[bookmark: _Ref139620505]Figure 82: Raster scan ordered parents nodes with 8 child occupancy bits coding and raster scan ordering of the child nodes.
In current implementation, the 8 children occupancy is coded for every parent node (Figure 82-(a)) in a same tube of parent nodes (Figure 82-(b)). These nodes are successive nodes in a lexicographic ordered buffer of nodes for the current depth of the tree. For each one of these nodes, the occupied children belonging to tube 0 (Figure 82-(d)) of children nodes are appended at the end of a lexicographic ordered buffer of nodes for the next depth of the tree, to obtain the tube 0 of child nodes in Figure 82-(e). Then, all the same nodes belonging to the same tube of parent nodes are processed a second time to append the children belonging to tube 1 (Figure 82-(d)) to the buffer for the next depth, and to obtain the tube 1 of child nodes in Figure 82-(e). This process is repeated for every tube of parent nodes belonging to a same slice of parent nodes (Figure 82-(c)) to code their occupancy and obtain the slice 0 child nodes in the buffer of nodes for next depth. Then, all the same nodes belonging to the same slice of parent nodes are processed a third and a fourth time to append the child nodes belonging to each one of tube 2 and then tube 3 (in same order as for tube 0 and 1). The buffer of child nodes then becomes the buffer of parent nodes for the next depth, and it is ordered in lexicographic order by construction.

One advantage of using lexicographic order is shown in Figure 83 illustrating an example of the occupancy map (or causal neighborhood) of child occupancy in lexicographic order. For every parent node, the same causal neighborhood will be available.

[image: A white cube with blue squares

Description automatically generated]

[bookmark: _Ref139621085]Figure 83: Occupancy map (white cubes) known from previously encoded or decoded occupancy bits when encoding or decoding occupancy bit of a child node (striped cube) using proposed lexicographic order.

Also, to access occupancy of neighboring nodes, the atlas is not needed anymore. It is possible to simply maintain a table of pointers in the buffer of child and/or parent nodes to access the neighboring node’s information directly. This table can simply be maintained by incrementing pointers in the buffer, and the overall complexity for maintaining these pointers is O(N) for the N nodes of a given depth (average complexity for maintaining a pointers to get neighbor occupancy of one node is Θ(1)).


[bookmark: _Toc140376221]Entropy Coding
[bookmark: _Toc140376222]Simplification of Bypass Mode [122]
It is proposed to use different functions for encoding/decoding of bypass and context bins in TMC13. These minor changes allow for avoiding probability update, interval (range) division and renormalization, and memory storage for probability in the bypass coding mode. The goal of this proposal is to simplify the encoding and decoding of bypass bins in TMC13. 

In the current TMC13, the encoding of bypass bins is implemented using the same function that is used for context bins with probability p=½. Current s/w uses two bytes for the integer representation of probability P; the relation between P and p is given by . It means that for probability p=½ it is necessary to set . Thus, for encoding/decoding of bypass and context bins the same functions are used. In this case for bypass mode following actions are performed:

· Storage and up-date of probability
· Division and renormalization of interval (range)

Note that for interval subdivision first division by two is performed and if Range becomes less than the legal diapason, then the renormalization operation is required (multiplication by two). However, if the range is odd then (range>>1)<<1) is not the same as the old value of the Range that was before division and renormalization. That is the main reason why the proposed solution has a tiny difference from the current. To avoid unnecessary storage and update of probability, and to skip subdivision and renormalization we propose to use in TMC13 s/w following coding scheme for bypass bin. Besides this coding scheme allows the encoding/decoding of several bypass bins simultaneously. Note that a similar implementation of bypass mode is already used in many reference s/w such as VTM, HM, etc.

Encoder:
The encoder operates with three variables: Low is the left boundary of the interval, Range is the current length of the interval and Counter is a value that increases after each renormalization. In the current version of s/w renormalization is performed by consequent multiplication by two and every time counter increases by 1. When the counter reaches 8 we can write a byte and set the counter as zero. It is also necessary to control carry propagation. Thus, when the bypass bin is encoded Low should be doubled, the Range should stay as it is and the counter should be increased by 1. If the encoded bin is “one” Low should be increased by Range. Control of carry propagation and writing byte to bitstream are unchanged. This division and renormalization of Range are omitted and storage and update of probability are not needed.
 

[image: Drawing1.jpg]
Figure 84: Flowchart of bypass bin encoding.

Decoder:
The decoder operates with three variables: Code_minus_Low  is the current code minus the left boundary of the interval, Range is the current length of the interval and Counter is a value that decreases after each renormalization. In the current version of s/w, renormalization is performed by consequent multiplication by two and every time counter decreases by 1. When the counter reaches 0 we can read the byte and set the counter as 8. Thus when the bypass bin is decoded Code_minus_Low  should be doubled,  Range should stay as it is and the counter should be decreased by 1. If  Code_minus_Low >= Range the value “1” should be decoded and Code_minus_Low should be decreased by Range, otherwise, the value “0” should be decoded.


[image: Drawing2.jpg]
Figure 85: Flowchart of bypass bin decoding.


[bookmark: _Toc140376223]References
[bookmark: _Toc140376224]Predictive Geometry Coding
[1] [bookmark: _Ref73005204][bookmark: _Ref73004332]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][New] Improved Quantization of Azimuthal Angle in Predictive Geometry Coding, ISO/IEC JTC1/SC29/WG7 m55979, January 2021.
[2] [bookmark: _Ref73008354]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][EE13.51] Report on Predictive Geometry Improvement, ISO/IEC JTC1/SC29/WG7 m56482, April 2021.
[3] [bookmark: _Ref78981789]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][New]EE13.51 related - Improved Coding of Azimuthal Angle Residual, ISO/IEC JTC1/SC29/WG7 m56741, April 2021.
[4] [bookmark: _Ref78985755]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][New]EE13.51 related - Improved Coding of The Number of Azimuthal Angle Steps, ISO/IEC JTC1/SC29/WG7 m56742, April 2021.
[5] [bookmark: _Ref79420575]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][New]EE13.51 related - Improved Radius Residual Sign Coding and Improved Points Ordering, ISO/IEC JTC1/SC29/WG7 m56743, April 2021.
[6] [bookmark: _Ref79509639]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][New]EE13.51 related - Improved List of Predictors, ISO/IEC JTC1/SC29/WG7 m56744, April 2021.
[7] [bookmark: _Ref78981794]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][EE13.51] Report on Predictive Geometry improvement, ISO/IEC JTC1/SC29/WG7 m57092, July 2021.
[8] [bookmark: _Ref106117902]S. Gao, S. Lasserre, J. Taquet, M.-L. Champel, [GPCC][EE13.51 related] Improved Coding of the Magnitude of Radius Residual, ISO/IEC JTC1/SC29/WG7 m58719, Jan. 2022.
[9] [bookmark: _Ref106269604]S. Gao, J. Taquet, S. Lasserre, [GPCC][EE13.51] Report on predictive geometry improvement, ISO/IEC JTC1/SC29/WG7 m59297, Apr. 2022.
[10] [bookmark: _Ref113539608]S. Gao, J. Taquet, S. Lasserre, M.-L. Champel, [G-PCC][EE13.51] Test 1 Report on improving lossy predictive tree by disabling cartesian residual coding, ISO/IEC JTC1/SC29/WG7 m59989, July 2022.
[11] [bookmark: _Ref113539611]S. Gao, J. Taquet, S. Lasserre, M.-L. Champel, [G-PCC][EE13.51 related] Improving lossy predictive tree by disabling cartesian residual coding, ISO/IEC JTC1/SC29 WG7 m59483, April 2022.
[12] [bookmark: _Ref113542929]J. Taquet, S. Lasserre, S. Gao, M.-L. Champel, [G-PCC][EE13.51 related] Alignment of previous adoptions with specification conventions and minor corrections, ISO/IEC JTC1/SC29 WG7 m60150, July 2022.
[13] [bookmark: _Ref113542923]H. Le Floch, N. Ouedraogo, F. Tannhauser, P. Onno, [GPCC] Truncated Unary for predIdx, ISO/IEC JTC1/SC29 WG7 m60236, July 2022.
[14] [bookmark: _Ref139531315]A. K. Ramasubramonian, G. Van der Auwera, M. Karczewicz, [G-PCC][New] Removing parsing dependence in predictive geometry coding, ISO/IEC JTC1/SC29 WG7 m63252, Apr. 2023.


[bookmark: _Toc140376225]Octree Geometry Coding
[15] [bookmark: _Ref79509891]S. Lasserre, S. Gao, [G-PCC][new] Improvement of the angular mode in IDCM, ISO/IEC JTC1/SC29/WG7 m56471, April 2021.
[16] [bookmark: _Ref79510788]S. Gao, S. Lasserre, J. Taquet, [G-PCC][New] Improvement of the azimuthal IDCM coding in TMC3, ISO/IEC JTC1/SC29/WG7 m56472, April 2021.
[17] [bookmark: _Ref79578711]S. Gao, S. Lasserre, J. Taquet, [G-PCC][New] Context enhancement of the azimuthal IDCM coding in TMC3, ISO/IEC JTC1/SC29/WG7 m56473, April 2021.
[18] [bookmark: _Ref79509895]S. Gao, S. Lasserre, J. Taquet, M.-L. Champel, [G-PCC][EE13.51] Report on Octree Geometry improvement, ISO/IEC JTC1/SC29/WG7 m57093, July 2021.
[19] [bookmark: _Ref97046795]W. Zhang, T. Tian, F. Yang, M.-L. Champel, S. Gao, [G-PCC] [New] On planar flag signalling, ISO/IEC JTC1/SC29/WG7 m58237, Online, Oct. 2021.
[20] [bookmark: _Ref97046797]W. Zhang, T. Tian, F. Yang, M.-L. Champel, S. Gao, [G-PCC] EE13.57 Test 1 Report on planar flag signalling, ISO/IEC JTC1/SC29/WG07 m58808, Jan. 2022.
[21] [bookmark: _Ref97109092]L. Pham Van, G. Van der Auwera, A. K. Ramasubramonian, M. Karczewicz, [G-PCC][New proposal] Disabling planar mode for IDCM nodes, ISO/IEC JTC1/SC29/WG7 m58129, Oct. 2021.
[22] [bookmark: _Ref97109093]L. Pham Van, G. Van der Auwera, A. K. Ramasubramonian, M. Karczewicz, [G-PCC] EE13.57 Test 2: Disable planar mode for IDCM coded nodes when the angular information is available, ISO/IEC JTC1/SC29/WG7 m58964, Jan. 2022.
[23] [bookmark: _Ref106265665]S. Lasserre, J. Taquet, [GPCC] Report of EE 13.58 on neighbour-based occupancy of octree, ISO/IEC JTC1/SC29/WG7 m59264, Apr. 2022.
[24] [bookmark: _Ref106265668]S. Lasserre, J. Taquet, [GPCC][EE 13.58] Code and documentation for new octree based on dynamic OBUF, ISO/IEC JTC1/SC29/WG7 m59263, Apr. 2022.
[25] [bookmark: _Ref106265677]S. Lasserre, [GPCC][new] On further improving the coding of neighbour-based occupancy of octree, ISO/IEC JTC1/SC29/WG7 m58558, Jan. 2022.
[26] [bookmark: _Ref106265682]S. Lasserre, [GPCC][new] On improving the OBUF scheme: dynamic OBUF, ISO/IEC JTC1/SC29/WG7 m58559, Jan. 2022.
[27] [bookmark: _Ref106277336]Z. Wang, S. Wan, [G-PCC][EE 13.57] Test 1 Report on planar mode, ISO/IEC JTC1/SC29/WG7 m59533, Apr. 2022.
[28] [bookmark: _Ref106277346]Z. Wang, S. Wan, [G-PCC] [New Proposal] On improving the eligibility of planar mode, ISO/IEC JTC1/SC29/WG7 m59001, Jan. 2022.
[29] [bookmark: _Ref113545847]S. Lasserre, [GPCC][EE13.58 related] On removing the Z coding path in the new octree framework, ISO/IEC JTC1/SC29/WG7 m59975, July 2022.
[30] [bookmark: _Ref122532061]S. Lasserre, J. Taquet, [GPCC] Report for EE 13.58 on neighbor-based occupancy of octree, ISO/IEC JTC1/SC29/WG7 m60655, Oct. 2022.
[31] [bookmark: _Ref122532062]S. Lasserre, [GPCC][EE13.58 related] On improving and reorganizing the contextual neighbour-based information in new octree, ISO/IEC JTC1/SC29/WG7 m59976, July 2022.
[32] [bookmark: _Ref122535997]S. Lasserre, [GPCC] A common dynamic OBUF class for octree and TriSoup, ISO/IEC JTC1/SC29/WG7 m60697, Oct. 2022.
[33] [bookmark: _Ref131001511]S. Lasserre, [GPCC][new] On low memory footprint dynamic OBUF, ISO/IEC JTC1/SC29/WG7 m61583, Jan. 2023.
[34] [bookmark: _Ref131083093]T. Tian, S. Hao, Z. Wang, S. Wan, W. Zhang, F. Yang, [G-PCC][EE13.50] Test 2: initialization of dynamic OBUF, ISO/IEC JTC1/SC29/WG7 m61584, Jan. 2023.
[35] [bookmark: _Ref139532332]S. Hao, S. Wan, T. Tian, W. Zhang, F. Yang, [G-PCC] [EE13.67] Report on setting probability bounds of true coders in Dynamic OBUF, ISO/IEC JTC1/SC29/WG7 m62547, Apr. 2023.
[36] [bookmark: _Ref139532334]S. Hao, S. Wan, T. Tian, W. Zhang, F. Yang, [G-PCC] [New Proposal] On setting adaptive boundaries for probability updating of binary coders in OBUF, ISO/IEC JTC1/SC29/WG7 m61593, Jan. 2023.
[37] [bookmark: _Ref139533119]Z. Sun, Y. Yu, V. Zakharchenko, H. Yu, C. Ma, H. Wei, D. Wang, [G-PCC][EE 13.57 Test3] Report on improved planar mode for octree-based G-PCC, ISO/IEC JTC1/SC29/WG7 m62669, Apr. 2023.
[38] [bookmark: _Ref139533121]Z. Sun, Y. Yu, V. Zakharchenko, H. Yu, C. Ma, H. Wei, D. Wang, [G-PCC][EE 13.57 related] Improved planar mode for octree-based GPCC, ISO/IEC JTC1/SC29/WG7 m61899, Jan. 2023.
[39] [bookmark: _Ref139534549]W. Wang, Y. Xu, B. Vishwanath, K. Zhang, L. Zhang, [G-PCC][EE13.65] Report on Potential Improvements of Octree-coding for Spin-LIDAR Sequences, ISO/IEC JTC1/SC29/WG7 m62761, Apr. 2023.
[40] [bookmark: _Ref139534551]W. Wang, Y. Xu, B. Vishwanath, K. Zhang, L. Zhang, [G-PCC][New proposal] Z coordinates Improvement for spin-LIDAR sequences, ISO/IEC JTC1/SC29/WG7 m61917, Jan. 2023.


[bookmark: _Toc140376226]Inter Prediction for Geometry Coding
[41] [bookmark: _Ref73017867][bookmark: _Ref62447120]L. Pham Van, K. Cao, A. K. Ramasubramonian, B. Ray, G. Van der Auwera, M. Karczewicz, [G-PCC][EE13.2-related] Improved Global Motion Estimation for G-PCC, ISO/IEC JTC1/SC29/WG7 m56113, January 2021.
[42] [bookmark: _Ref72134418]L. Pham Van, A. K. Ramasubramonian, B. Ray, G. Van der Auwera, M. Karczewicz, [G-PCC] EE13.2 Test 1.1: Global motion using two-threshold classification, ISO/IEC JTC1/SC29/WG7 m56818, April 2021.
[43] [bookmark: _Ref73025043]Exploratory model for inter-prediction in G-PCC, ISO/IEC JTC1/SC29 WG11 N18096, Macau, CN, October 2018.
[44] [bookmark: _Ref73026343][bookmark: _Ref62447121]A. K. Ramasubramonian, B. Ray, L. Pham Van, G. Van der Auwera, M. Karczewicz, [G-PCC][New] Inter prediction with predictive geometry coding, ISO/IEC JTC1/SC29/WG7 m56117, January 2021.
[45] [bookmark: _Ref73026594]A. K. Ramasubramonian, L. Pham Van, G. Van der Auwera, M. Karczewicz, 	[G-PCC] EE13.2 report on inter prediction, Test 2, ISO/IEC JTC1/SC29/WG7 m56839, April 2021. 
[46] [bookmark: _Ref72134422][bookmark: _Ref63331990]A. K. Ramasubramonian, G. Van der Auwera, L. Pham Van, M. Karczewicz, [G-PCC][EE13.2-related] Additional results for inter prediction for predictive geometry, ISO/IEC JTC1/SC29/WG7 m56841, April 2021.
[47] [bookmark: _Ref72134999]WG 07 MPEG 3D Graphics coding, EE4FE 13.2 on inter prediction, ISO/IEC JTC1/SC29/WG7 MDS20356_WG07_N00104, April 2021.
[48] [bookmark: _Ref79657779]Y.-Z. Xu, L. Zhang, K. Zhang, [G-PCC][EE13.2 related][New Proposal] Encoding complexity reduction for inter-EM, ISO/IEC JTC1/SC29/WG7 m57320, July 2021.
[49] [bookmark: _Ref79658081]L. Pham Van, G. Van der Auwera, A. K. Ramasubramonian, M. Karczewicz, [G-PCC][EE13.2 Test 1] InterEM with planar mode enabled, ISO/IEC JTC1/SC29/WG7 m57286, July 2021.
[50] [bookmark: _Ref79657275]J. Kim, K. Kim, J. Y. Lee, H. Kwon, J. Seo, [G-PCC][EM related] Report of EE13.2 on inter prediction test 2, ISO/IEC JTC1/SC29/WG7 m57485, July 2021.
[51] [bookmark: _Ref79669786]Y. Park, H. Oh, S. Lee, H. Hur, [G-PCC][New] Dependent entropy frame coding in InterEM, ISO/IEC JTC1/SC29/WG7 m56590, April 2021.
[52] [bookmark: _Ref79669556]Y. Park, H. Hur, [G-PCC][EE13.2 Test 3] Report on dependent entropy frame coding, ISO/IEC JTC1/SC29/WG7 m57116, July 2021.
[53] [bookmark: _Ref79667980]K. L. Loi, T. Nishi, T. Sugio, [G-PCC][New]Inter Prediction for Improved Quantization of Azimuthal Angle in Predictive Geometry Coding, ISO/IEC JTC1/SC29/WG7 m57351, July 2021.
[54] [bookmark: _Ref79668767]A. K. Ramasubramonian, L. Pham Van, G. Van der Auwera, M. Karczewicz, [G-PCC][New proposal] Improvements to inter prediction using predictive geometry coding, ISO/IEC JTC1/SC29/WG7 m57299, July 2021.
[55] [bookmark: _Ref89163352]EE13.2 Test 1: InterEM version 3 with angular mode enabled, ISO/IEC JTC1/SC29/WG7 m58126, Oct. 2021.
[56] [bookmark: _Ref89259124]W. Wang, Y.-Z. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New Proposal] Suggested fix for global motion matrix and segment thresholds coding, ISO/IEC JTC1/SC29/WG7 m58019, Oct. 2021.
[57] [bookmark: _Ref106279896]A. K. Ramasubramonian, G. Van der Auwera, L. Pham Van, M. Karczewicz, [G-PCC][New proposal] Results on inter prediction for predictive geometry coding, ISO/IEC JTC1/SC29/WG7 m59650, Apr. 2022.
[58] [bookmark: _Ref106206574]L. Pham Van, G. Van der Auwera, A. K. Ramasubramonian, M. Karczewicz, [G-PCC][Inter-EM] Inter prediction for octree geometry coding: evaluation and refinements, ISO/IEC JTC1/SC29/WG7 m59619, Apr. 2022.
[59] [bookmark: _Ref113552207]A. K. Ramasubramonian, G. Van der Auwera, M. Karczewicz, [G-PCC] EE13.2 Test 6 Report on inter prediction with dynamic OBUF scheme, ISO/IEC JTC1/SC29/WG7 m60357, July 2022.
[60] [bookmark: _Ref113552320]H. Hur, [G-PCC][EE13.2] Report on Unified Partition Method for Motion Compensation (Test7), ISO/IEC JTC1/SC29/WG7 m60189, July 2022.
[61] [bookmark: _Ref113617362]R. Hooda, A. K. Ramasubramonian, G. Van der Auwera, M. Karczewicz, [G-PCC][New proposal] On conversion of cartesian to spherical coordinates in inter prediction, ISO/IEC JTC1/SC29/WG7 m60358, July 2022.
[62] [bookmark: _Ref123029820]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE 13.2 Test2] Report on Bi-direction Inter Prediction, ISO/IEC JTC1/SC29/WG7 m61084, Oct. 2022.
[63] [bookmark: _Ref123029822]Y.-Z. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New Proposal] Bi-direction Inter Prediction for G-PCC, ISO/IEC JTC1/SC29/WG7 m58013, Oct. 2021.
[64] [bookmark: _Ref131065842]K. L. Loi, T. Nishi, T. Sugio, [G-PCC][EE13.2] Report on Inter Prediction Test 8 for Predictive Geometry, ISO/IEC JTC1/SC29/WG7 m61586, Jan. 2023.
[65] [bookmark: _Ref131065843]K. L. Loi, T. Nishi, T. Sugio, [G-PCC][New] Inter Prediction for Predictive Geometry used in conjunction with Additional Global Motion Compensated Reference Frame, ISO/IEC JTC1/SC29/WG7 m61019, Oct. 2022.
[66] [bookmark: _Ref131065845]A. K. Ramasubramonian, G. Van der Auwera, M. Karczewicz, [G-PCC] Thoughts on EE13.2 Test 8 - inter prediction in predictive geometry coding, ISO/IEC JTC1/SC29/WG7 m62218, Jan. 2023.
[67] [bookmark: _Ref139538891]K. L. Loi, T. Nishi, T. Sugio, [G-PCC][EE13.2] Report on Inter Prediction Test 6 for Predictive Geometry, ISO/IEC JTC1/SC29/WG7 m62512, Apr. 2023.
[68] [bookmark: _Ref139542609]S. Hao, S. Wan, T. Tian, W. Zhang, F. Yang, [G-PCC][New proposal] Modification on inter entropy continuation, ISO/IEC JTC1/SC29/WG7 m63162, Apr. 2023.

[bookmark: _Toc140376227]Inter Prediction for Attribute Coding
[69] [bookmark: _Ref92307604][bookmark: _Ref106032336]Y.-Z. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New Proposal] Bi-direction Inter Prediction for G-PCC, ISO/IEC JTC1/SC29/WG7 m58013, Oct. 2021. (attribute coding part)
[70] [bookmark: _Ref96960579][bookmark: _Ref106032337]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE 13.2 Test 6] Report on Bi-direction Inter Prediction, ISO/IEC JTC1/SC29/WG7 m58889, Jan. 2022. (attribute coding part)
[71] [bookmark: _Ref131064180]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE 13.2 Test 3] Report on Attribute Inter Prediction for Predictive Geometry Coding, ISO/IEC JTC1/SC29/WG7 m60202, July 2022.
[72] [bookmark: _Ref131064183]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New proposal] Attribute Inter Prediction for Predictive Geometry Coding Mode in Inter-EM, ISO/IEC JTC1/SC29/WG7 m59612, Apr. 2022.
[73] [bookmark: _Ref131080807]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE13.2 Test 6] Report on Inter Prediction for RAHT Attribute Coding, ISO/IEC JTC1/SC29/WG7 m61886, Jan. 2023.
[74] [bookmark: _Ref131080811]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New proposal] Inter-Prediction for RAHT Attribute Coding, ISO/IEC JTC1/SC29/WG7 m61083, Oct. 2022.
[75] [bookmark: _Ref139547083]H. Hur, Y. Park, [G-PCC][EE13.2] Report on inter prediction (Test7), ISO/IEC JTC1/SC29/WG7 m62704, Apr. 2023.
[76] [bookmark: _Ref139547084]H. Hur, Y. Park, [G-PCC][EE13.2-related] on dependent entropy frame coding for attribute, ISO/IEC JTC1/SC29/WG7 m61916, Jan. 2023.
[77] [bookmark: _Ref139547087]A. K. Ramasubramonian, [G-PCC] Cross-check of EE13.2 Test 7 on dependent frame entropy coding for attributes, ISO/IEC JTC1/SC29/WG7 m63493, Apr. 2023 (fixes).
[78] [bookmark: _Ref139549030]Y. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.2] Report on RAHT Inter Prediction (Test5.1), ISO/IEC JTC1/SC29/WG7 m62706, Apr. 2023.
[79] [bookmark: _Ref139549032]Y.-Z. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New proposal] Improvements to Inter-Prediction for RAHT Attribute Coding, ISO/IEC JTC1/SC29/WG7 m61888, January 2023.
[80] [bookmark: _Ref139549928]N. Iguchi, T. Sugio, [G-PCC][EE13.2] Report on Inter prediction for RAHT attribute coding (Test5.2), ISO/IEC JTC1/SC29/WG7 m62760, Apr. 2023.
[81] [bookmark: _Ref139549929]N. Iguchi, T. Sugio, [G-PCC][EE13.2Test6 related][New] Coefficient Inter Prediction for RAHT Attribute Coding, ISO/IEC JTC1/SC29/WG7 m61945, Jan. 2023.
[82] [bookmark: _Ref139552066]Y. Xu, W. Wang, B. Vishwanath, K. Zhang, L. Zhang, [G-PCC][EE13.2 related][New proposal] Improvements to Attribute Inter-Prediction With Slices Partition, ISO/IEC JTC1/SC29/WG7 m62710, Apr. 2023.
[83] Z. Sun, Y. Yu, V. Zakharchenko, H. Yu, D. Wang, [G-PCC][EE13.2 related][New proposal] Attribute Inter Prediction for predLifting transform coding, ISO/IEC JTC1/SC29/WG7 m63014, Apr. 2023.

[bookmark: _Toc140376228]Attribute Coding
[84] [bookmark: _Ref73029305]H. Yuan, X. Wang, G. Sun, L. Wang, M. Li, [G-PCC][New] Adaptive Quantization for LoD-based Attribute Predicting Transform Coding, ISO/IEC JTC1/SC29/WG7 m55860, January 2021.
[85] [bookmark: _Ref73029308]H. Yuan, X. Wang, G. Sun, L. Wang, M. Li, [G-PCC][EE13.49] Report on Adaptive Quantization for LoD Attributes, ISO/IEC JTC1/SC29/WG7 m56650, April 2021.
[86] [bookmark: _Ref89249650]W. Zhang, T. Tian, L. Yang, F. Yang, M.-L. Champel, S. Gao, [G-PCC][EE13.49] Report on Attribute LoD Prediction, ISO/IEC JTC1/SC29/WG7 m58236, Oct. 2021.
[87] [bookmark: _Ref89249652]W. Zhang, L. Yang, F. Yang, T. Tian, M-L. Champel, S. Gao, [G-PCC][New]Neighbor Search Improvements for Attribute LoD Prediction, ISO/IEC JTC1/SC29/WG07 m57324, July 2021.
[88] [bookmark: _Ref113546665]W. Wang, Y. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.59] Report on Low Latency Attribute Coding and Slicing, ISO/IEC JTC1/SC29/WG07 m60205, July 2021.
[89] [bookmark: _Ref100938942]W. Wang, Y. Xu, K. Zhang, L. Zhang, “[G-PCC][New Proposal] Flexibility Enhancement of Low Latency Attribute Coding inside Slice”, ISO/IEC JTC1/SC29/WG7 m59615, April 2022.
[90] [bookmark: _Ref123057591]W. Wang, Y. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.61] Report on Extended Transform Domain, ISO/IEC JTC1/SC29/WG7 m61090, Oct. 2022.
[91] [bookmark: _Ref123057602]W. Wang, Y. Xu, K. Zhang, L. Zhang, [G-PCC][New Proposal] Sub-Node-based Prediction in Transform Domain for RAHT, ISO/IEC JTC1/SC29/WG7 m60203, July 2022.
[92] [bookmark: _Ref123115570]W. Wang, Y. Xu, K. Zhang, L. Zhang, [G-PCC][EE13.61 related][New Proposal] Complexity Reduction for RAHT, ISO/IEC JTC1/SC29/WG7 m61089, Oct. 2022.
[93] [bookmark: _Ref123115573]W. Zhang, Z. Liu, J. Lu, F. Yang, M.-L. Champel, S. Gao, [G-PCC][New] On disabling Transform Domain Prediction of RAHT, ISO/IEC JTC1/SC29/WG7 m61015, Oct. 2022. (see common solution with m61089)
[94] [bookmark: _Ref123120398]A. K. Ramasubramonian, G. Van der Auwera, M. Karczewicz, [G-PCC][New proposal] Fixes and improvements of G-PCC, ISO/IEC JTC1/SC29/WG7 m61223, Oct. 2022.
[95] [bookmark: _Ref131003291]G. Sandri, F. Thudor, B. Chupeau, [G-PCC][EE 13.61] On RAHT reconstruction buffer, ISO/IEC JTC1/SC29/WG7 m61569, Jan. 2023.
[96] [bookmark: _Ref131003292]G. Sandri, F. Thudor, B. Chupeau, On RAHT reconstruction buffer, ISO/IEC JTC1/SC29/WG7 m61151, Oct. 2022.
[97] [bookmark: _Ref131061655]B. Vishwanath, Y. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC][EE 13.63] Report: On RAHT Coefficient Quantization, ISO/IEC JTC1/SC29/WG7 m61829, Jan. 2023.
[98] [bookmark: _Ref131061657]B. Vishwanath, Y. Xu, W. Wang, K. Zhang, L. Zhang, [G-PCC] [New Proposal] On RAHT Coefficient Quantization, ISO/IEC JTC1/SC29/WG7 m61159, Oct. 2022.
[99] B. Vishwanath, Y. Xu, K. Zhang, L. Zhang, [G-PCC][New] A simplification and a fix for RAHT coding, ISO/IEC JTC1/SC29/WG7 m63002, Apr. 2023 (fix).


[bookmark: _Toc140376229]TriSoup Coding
[100] [bookmark: _Ref73031643]K. Unno, K. Kawamura, [G-PCC][New], Simplification of determining process of projection plane in Trisoup, ISO/IEC JTC1/SC29/WG7 m55952, January 2021.
[101] [bookmark: _Ref73031646]K. Unno, K. Kawamura, [G-PCC][EE13.50] Report on Trisoup, ISO/IEC JTC1/SC29/WG7 m56549, April 2021.
[102] [bookmark: _Ref97112071]K. Unno, K. Kawamura, [G-PCC][EE13.50 related][New Proposal] Refinement of Trisoup projection plane determination for improving subjective quality, ISO/IEC JTC1/SC29/WG7 m58775, Jan. 2022.
[103] [bookmark: _Ref106283313]S. Lasserre, [GPCC][TriSoup] Part 1 Improving TriSoup summary, results and perspective, ISO/IEC JTC1/SC29/WG7 m59288, Apr. 2022.
[104] [bookmark: _Ref106283316]S. Lasserre, [GPCC][TriSoup] Part 2 Fixes and simplifications, ISO/IEC JTC1/SC29/WG7 m59289, Apr. 2022.
[105] [bookmark: _Ref106283318]S. Lasserre, [GPCC][TriSoup] Part 3 Adding a residual for the centroid vertex, ISO/IEC JTC1/SC29/WG7 m59290, Apr. 2022.
[106] [bookmark: _Ref106283320]S. Lasserre, [GPCC][TriSoup] Part 4 Vertex Quantization, ISO/IEC JTC1/SC29/WG7 m59291, Apr. 2022.
[107] [bookmark: _Ref106283321]S. Lasserre, [GPCC][TriSoup] Part 5 Improved rendering from triangles, ISO/IEC JTC1/SC29/WG7 m59292, Apr. 2022.
[108] [bookmark: _Ref106283323]S. Lasserre, [GPCC][TriSoup] Part 6 Compression of vertex presence flag and vertex position, ISO/IEC JTC1/SC29/WG7 m59293, Apr. 2022.
[109] [bookmark: _Ref106283324]S. Lasserre, [GPCC][TriSoup] Part 7 Latest improvements, ISO/IEC JTC1/SC29/WG7 m59294, Apr. 2022.
[110] [bookmark: _Ref113618519]S. Lasserre, [GPCC][EE 13.50 Test 1] Report on improved TriSoup, ISO/IEC JTC1/SC29/WG7 m59973, July 2022.
[111] [bookmark: _Ref123126680]S. Gao, J. Taquet, M.-L. Champel, [G-PCC][EE13.50] Test 1 Improvement of voxelization of trisoup model, ISO/IEC JTC1/SC29/WG7 m60797, Oct. 2022.
[112] J. Taquet, S. Gao, [G-PCC][EE13.50 related] Fixup for trisoup vertices quantization, ISO/IEC JTC1/SC29/WG7 m61436, Oct. 2022.
[113] S. Lasserre, [GPCC][EE13.50] Report on enhanced edge neighborhood for vertex prediction in TriSoup, ISO/IEC JTC1/SC29/WG7 m61565, Jan. 2023.
[114] [bookmark: _Ref131085532]A. Ito, N. Iguchi, T. Sugio, [G-PCC][EE13.50] Test 4: Non-cubic method on Trisoup, ISO/IEC JTC1/SC29/WG7 m61577, Jan. 2023.
[115] [bookmark: _Ref131085535]A. Ito, N. Iguchi, T. Sugio, [G-PCC][New] Proposal on Non-Cubic node method for Trisoup, ISO/IEC JTC1/SC29/WG7 m61116, Oct. 2022.
[116] [bookmark: _Ref131086864]S. Lasserre, [GPCC][new] On the voxelization of TriSoup triangles, ISO/IEC JTC1/SC29/WG7 m61982, Jan. 2023.
[117] [bookmark: _Ref131087415]S. Lasserre, [GPCC][EE13.60] An inter TriSoup scheme based on motion compensated point clouds, ISO/IEC JTC1/SC29/WG7 m61582, Jan. 2023.
[118] [bookmark: _Ref139617054]S. Lasserre, [GPCC][EE13.50] Report on the voxelization of TriSoup, ISO/IEC JTC1/SC29/WG7 m62521, Apr. 2023.
[119] [bookmark: _Ref139618019]S. Lasserre, [GPCC][EE13.60][EE13.50 related] On optimal centroid vertex positioning in TriSoup, ISO/IEC JTC1/SC29/WG7 m62526, Apr. 2023.
[120] [bookmark: _Ref139618212]J. Taquet, S. Gao, [G-PCC][EE13.66] Report on raster scan order for Octree coding, ISO/IEC JTC1/SC29/WG7 m62531, Apr. 2023. (GeS-TM)
[121] [bookmark: _Ref139618213]J. Taquet, S. Gao, [G-PCC][New] On raster scan order for Octree coding, ISO/IEC JTC1/SC29/WG7 m62004, Jan. 2023. (GeS-TM)

[bookmark: _Toc140376230]Entropy Coding
[122] [bookmark: _Ref131087883]A. Alshin, H. Hur, V. Shepelev, [G-PCC][New] Simplification of Bypass Mode in TMC13, ISO/IEC JTC1/SC29/WG7 m62220, Jan. 2023.

2


image84.emf
NumValidGP>=TH1NumValidP>=TH2findNeighboursAttribute predictionDisable predictionYesYesNONO8 sub-nodes


Microsoft_Visio_Drawing14.vsdx




NumValidGP
>=TH1
NumValidP
>=TH2
findNeighbours
Attribute prediction

Disable prediction
Yes
Yes
NO
NO
8 sub-nodes



image85.png

image86.emf
NumValidC==1NumValidGP>=TH1NumValidP>=TH2findNeighboursAttribute predictionNumValidP=ValDisable predictionNOYesYesYesNONO8 sub-nodes


Microsoft_Visio_Drawing12.vsdx






NumValidC==1
NumValidGP
>=TH1
NumValidP
>=TH2
findNeighbours
Attribute prediction

NumValidP=Val
Disable prediction
NO
Yes
Yes
Yes
NO
NO
8 sub-nodes






NumValidNode
==1
NumValidGP
>=TH1
NumValidP
>=TH2
findNeighbours
Attribute prediction

NumpValid=Val
Disable prediction
NO
Yes
Yes
Yes
NO
NO
8 sub-nodes



image87.png

image88.png

image89.png

image90.png

image91.png

image1.jpeg

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.jpeg

image100.jpeg

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.svg
       obtain  6 parent  neighbours   compute N 64 three planar ?  compute advanced  child neighbours   compute pred intra    N64==0?      single child?  two planar?      geometry  invariance  N64==0?    obtain full  neighbourhood   simplified Z  occupancy coding yes no yes yes yes  no no no yes     compute contextual  information  NZ occupancy coding  using  dynamic  OBUF  


image36.png

image37.png

image38.png

image39.png

image40.png

image41.emf
𝑝

𝑛𝑒𝑤

=(𝐿𝑝 +𝛿(coded node)  )/(𝐿+1) 


image42.png

image43.png

image44.wmf
[]032

[1]133

i

i

UobufBoundOriginii

LobufBoundOriginii

=£<

ì

í

=-£<

î


oleObject1.bin

image45.png

image46.emf

Microsoft_Visio_Drawing.vsdx

image47.emf
Block A


Microsoft_Visio_Drawing1.vsdx
Block A



image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.emf
XYZOPBlock B


Microsoft_Visio_Drawing2.vsdx
X
Y
Z
O
P
Block B



image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.emf
PP1P0P2P3


Microsoft_Visio_Drawing3.vsdx
P
P1
P0
P2
P3



image79.png

image80.png

image81.gif

image82.gif

image83.gif

