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[bookmark: _Toc116166444][bookmark: _Toc136247659]Abstract
This document is Neural Network-based Video Coding (NNVC 5) software algorithm description. It includes the coding features and encoding methods implemented in NNVC-4.0 software that are under coordinated exploration study by the Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG as potential neural network video coding technology beyond the capabilities of VVC. The groups are working together on this exploration activity in a joint collaboration effort known as the Joint Video Exploration Team (JVET) to evaluate compression technology designs proposed by their experts in this area. 
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1. [bookmark: _Toc116166445][bookmark: _Toc136247660]Introduction
This document provides algorithm description, encoding methods, and training methods of the neural network-based coding tools implemented in Neural Network-based Video Coding (NNVC 5) software. The neural network-based tools (NN-based tools) are to enhance or replace conventional modules in the existing VVC design Error! Reference source not found.[2]. The implementation of NN-based tools in NNVC are based on Small Ad-hoc Deep Learning (SADL) library [3]. It is recommended to refer to [4] for the detailed information of VTM-11.0, which is the base of NNVC and [3] for the detailed usage of SADL.
1. [bookmark: _Toc136247661]Scope
The NNVC reference software is provided to demonstrate a reference implementation of encoding techniques and the decoding process, as well as the training methods for neural network-based video coding explored in JVET. The reference software can be accessed via 
https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/VVCSoftware_VTM.
The branch of the software is VTM-11.0_nnvc (the master branch being the original VTM).
This document provides an algorithm description, an encoder-side description, and a training description of the NNVC, which serves as a tutorial for the algorithm and encoding model implemented in the NNVC  software, as well as the training method of the tools in NNVC software. The purpose of this document is to share a common understanding of the coding features and the reference encoding methods supported in the NNVC software, in order to facilitate the assessment of the technical impact of new technologies during the exploration work.
[bookmark: _Toc136247662]Algorithm description of Neural Network-based Video Coding Software
[bookmark: _Toc120011129][bookmark: _Toc136247663]Neural network-based loop filter set 0
[bookmark: _Toc136247664]Pre-processing and post-processing of chroma 
In filter set 0, the filter with a single model is designed to process three components. Since the resolutions of luma and chroma are different, pre-processing and post-processing steps are introduced to up-sample and down-sample chroma components respectively as shown in Figure. 1. In the resampling process, the nearest-neighbor interpolation method is used.
[image: ]
[bookmark: _Ref76024363]Figure. 1 the pre-processing and post-processing units
[bookmark: _Ref129164260][bookmark: _Toc136247665]Neural network 
The network structure of the CNN filter is shown in Figure. 2. Along with the reconstructed image (rec_yuv), additional side information is also fed into the network, such as the prediction image (pred_yuv), slice QP, base QP and slice type. In the ResBlock, the number of channels firstly goes up before the activation layer, and then goes down after the activation layer. Specifically, K and M are set to 64 and 160 respectively, and the number of Resblock is set to 32.

[image: 图示

描述已自动生成]
Figure. 2. Architecture of the CNN in filter set 0.
[bookmark: _Toc136247666]Combination with conventional filters
[image: ]
Figure. 3. Implementation of the CNN in filter set 0.
As shown in Figure.3, the reconstructed samples before DBK are fed into the CNN based filter (CNNLF), then final filtered samples are generated by blending the result of CNNLF and SAO. This blending process can be briefly formulated as:

There are four candidates, 1, 0.75, 0.5 and an adaptive weight, for the blending weight. With regard to the adaptive weight, its derivation is based on least square method. If the adaptive weight is selected, the blending weight is signaled for each color component in the slice header.
[bookmark: _Toc136247667]Mode selection
The CNN filter can be turned on/off at the CTU level and slice level. For each enabling type, there are four blending ways. Therefore, there are nine modes to be evaluated by RDO at encoder. The final selected mode would be signaled in the slice header.
Table 1. Parameter selection of filter set 0
	Mode
	On/off type
	Blending weight (w)

	0
	Disable at slice level
	None

	1
	Enable at slice level
	Adaptive weight

	2
	
	1

	3
	
	0.75

	4
	
	0.5

	5
	Enable at CTU level
	Adaptive weight

	6
	
	1

	7
	
	0.75

	8
	
	0.5


[bookmark: _Toc136247668]Base QP adjustment 
Base QP is fed into the CNN filter as shown in Figure. 2. To improve adaptation, an offset can be added to the base QP (the adjusted base QP is used as the input to the NN filter) at slice level. The offset candidates are {-5, 5}. For example given the offset -5, the actual input base QP to the filter becomes (BaseQP - 5) for the current slice. 
Encoder approach
The proposed encoder only filters one out of every four CTUs during the process of selecting the best base QP offset to save encoding time. As shown in Figure 4, only shaded CTUs are considered for calculating distortions of using different BaseQP candidates {BaseQP, BaseQP-5, BaseQP+5}. After the candidate with the smallest cost is selected, the encoder filters the rest of CTUs (non-shaded ones in Figure. 4) by appying the best offset to the base QP.
[image: 图片包含 背景图案

描述已自动生成]
[bookmark: _Hlk136109468]Figure. 4. Encoder optimization 2.
[bookmark: _Toc136247669]Encoder-only Optimization
To more accurately estimate the rate-distortion (RD) cost with integrated NN-based in-loop filters, an encoder-only NN filter is involved in the partitioning decision process. In the partitioning mode decision, the distortion between NN filtered samples and original samples is calculated, and then the optimal partitioning mode is selected based on calculated distortion to make the partitioning decision more accurate. To reduce complexity, only few ResBlocks (see Section 3.1.2) are used in the network structure. The NN filter in the RDO process is implemented with SADL using int16 precision. This encoder-only NN tool is disabled by default.
[bookmark: _Toc136247670]Inference details 
SADL (see Section 3.5) is used for performing the inference of the CNN filters. Both floating point-based and fixed point-based implementations are supported. In the fixed-point implementation, both weights and feature maps are represented with int16 precision using a static quantization method. The network information in the inference stage is provided in Table 2. 
Table 2. Network Information of filter set 0 in Inference Stage
	Network Information in Inference Stage

	Mandatory
	HW environment:

	
	GPU Type
	N/A

	
	Framework:
	SADL

	
	Number of GPUs per Task
	0

	
	　
	　

	
	Number of Parameters (Each Model)
	1.9M

	
	Total Parameter Number
	1.9M, one model in total

	
	Parameter Precision (Bits)
	float: 32
int: 16

	
	Memory Parameter (MB)
	float: 7.6MB, one model in total 
int: 3.8MB, one model in total

	
	Multiply Accumulate (kMAC/pixel)
	485 (assuming frame-level input)
615 (assuming block-level input)

	Optional
	　
	　

	
	Total Conv. Layers
	101

	
	Total FC Layers
	0

	
	Total Memory (MB)
	　

	
	Batch size:
	1

	
	Patch size
	144144

	
	Changes to network configuration or weights required to generate rate points
	

	
	Peak Memory Usage
	　

	
	Other information: 
	　



[bookmark: _Toc136247671]Neural network-based loop filter set 1
[bookmark: _Toc136247672]Neural network for luma component
There are two regular networks in filter set 1, one for luma and one for chroma.
The inputs of the luma network comprise the reconstructed luma samples (rec), the prediction luma samples (pred), boundary strengths (bs), QP, and the block type (IPB). The numbers of feature maps and residual blocks are set as 96 and 8 respectively. The structure of the luma network is depicted in Figure 5 (a) – (c).
[image: ]
(a) Head of luma network. The inputs are combined to form the input y to the next part of the network. 
[image: ]
(b) The k-th residual block (k=0..7). The output y of the head is fed into a first residual block with input z0=y. The output z1 is then fed into another such residual block.
[image: ]
(c) The output of the last residual block is fed into this last part of the network.
[bookmark: _Ref52388567]Figure 5. Architecture of the CNN in filter set 1. 
[bookmark: _Toc136247673]Neural network for chroma component
Luma information is taken as additional input for the in-loop filtering of chroma. Considering the resolution of luma is higher than chroma in YUV 4:2:0 format, features are first extracted separately from luma and chroma. Then luma features are down-sampled and concatenated with chroma features. The inputs of the chroma network include reconstructed luma samples (recY), reconstructed chroma samples (recUV), predicted chroma samples (predUV), boundary strength (bsUV), and QP. Regarding network backbone, chroma components use the same one as luma.
[bookmark: _Toc136247674]Temporal filter
Filter set 1 contains an additional in-loop filter, namely temporal fitter, which takes collocated blocks from the first picture in both reference picture lists to improve performance. The two collocated blocks are directly concatenated and fed into the network as shown in Figure 6. When enabling temporal filtering feature, the temporal filter is applied to the luma component of pictures in three highest temporal layers, while the regular luma and chroma filters are used for other cases. By default, this temporal filtering feature is disabled.
[image: ]
Figure 6. Temporal in-loop filter. Only head part is illustrated, other parts remain the same as in Figure 5 (b)-(c). {Col 0, Col 1} refers to collocated samples from the first picture in both reference picture lists.
[bookmark: _Toc136247675]Adaptive inference granularity
The granularity of the filter determination and the parameter selection is dependent on resolution and QP. Given a higher resolution and a larger QP, the determination and selection will be performed in a larger region.
[bookmark: _Toc136247676]Parameter selection
Each slice or block could determine whether to apply the CNN-based filter or not. When the CNN-based filter is determined to be applied to a slice/block, which conditional parameter from a candidate list including two candidates derived from QP could be further decided. Denote the sequence/slice level QP as q (inter slice and intra slice use slice QP and sequence QP respectively), the candidate list includes conditional parameters {Param_1, Param_2}. For low temporal layers, Param_1 = q, Param_2 = q5. For high temporal layers, Param_1 = q, Param_2 = q5. In other words, the second candidate is different across different temporal layers. 
The selection process is based on the rate-distortion cost at the encoder side. Indication of on/off control as well as the conditional parameter index, if needed, are signalled in the bitstream. Figure. 6 shows the diagram of parameter selection at encoder and decoder sides. All blocks in the current frame need to be processed with all conditional parameters first. Then all costs, i.e. Cost_0, ..., Cost_N+1, are calculated and compared against each other to achieve optimum rate-distortion performance. In Cost_0, CNN-based filter is prohibited for all blocks. In Cost_i, {i = 1, 2, 3, ..., N}, the parameter Param_i is used for all blocks. In Cost_N+1, different blocks may prefer different parameters, and the information regarding whether to use CNN-based filter or which parameter to be used is signaled for each block. At decoder side, whether to use CNN-based filter or which parameter to be used for a block is based on the Param_Id parsed from the bit-stream as shown in Figure. 6 (b).
Note that for all-intra configuration, parameter selection is disabled while filter on/off control is still preserved. A shared conditional parameter is used for the two chroma components to ease the burden in worst case at decoder side. In addition, the max number of conditional parameter candidates, i.e. N, could be specified at encoder side (N = 2 by default).
[image: ]
Figure. 6. (a) Parameter selection at encoder side. (b) Parameter selection at decoder side.

[bookmark: _Ref116480534][bookmark: _Toc136247677]Residue scaling
When a NN filter is being applied to reconstructed pictures, a scaling factor is derived and signaled for each color component in the slice header. The derivation is based on least square method. The difference between the input samples and the NN filtered samples (residues) are scaled by the scaling factors before being added to input samples. 
[bookmark: _Toc136247678][bookmark: OLE_LINK6]Combination with deblocking filter
To enable a combination with deblocking, the input samples used in the residual scaling is the output of deblocking filtering. The residual scaling process is shown below, where  and  refer to the outputs of NN filtering and deblocking filtering respectively.
 = 
[bookmark: _Toc136247679]Encoder-only optimization
Different from NNVC-2.0, EncDbOpt is also enabled for AI configuration. 
[bookmark: _Hlk107998813]For a better estimation of rate-distortion (RD) cost in the case the NN filter is used, the proposed encoder introduces NN-based filtering into the rate-distortion optimization (RDO) process of partitioning mode selection. Specifically, a refined distortion is calculated by comparing the NN filtered samples and the original samples. The partitioning mode with the smallest rate-refined distortion cost is selecte as the optimal one. To reduce complexity, several fast algorithms are applied. First, NN model is simplified by using a less number of residual blocks. Second, parameter selection is not allowed for the NN filtering in the RDO process Third, the proposed technique is only applied to the coding units with height and width no larger than 64. The NN filter used in the RDO process is also implemented with SADL using fixed point-based calculation. This NN-based encoder-only method is disabled by default.
[bookmark: _Toc136247680]Inference details
SADL (see Section 3.5) is used for performing the inference of the CNN filters. Both floating point-based and fixed point-based implementations are supported. In the fixed-point implementation, both weights and feature maps are represented with int16 precision using a static quantization method. The network information in the inference stage is provided in Table 3.
Table 3. Network Information of filter set 1 in Inference Stage
	Network Information in Inference Stage

	Mandatory
	HW environment:

	
	GPU Type
	N/A

	
	Framework:
	SADL

	
	Number of GPUs per Task
	0

	
	　
	　

	
	Total Parameter Number
	1.55M/model, 2 models in total for all tests

	
	Parameter Precision (Bits)
	float: 32
int: 16

	
	Memory Parameter (MB)
	float: 6.2MB/model, 2 models 
int: 3.1MB/model, 2 models 

	
	Multiply Accumulate (kMAC/pixel)
	532 (assuming frame-level input)
673 (assuming block-level input)

	Optional
	　
	　

	
	Total Conv. Layers
	25

	
	Total FC Layers
	0

	
	Total Memory (MB)
	　

	
	Batch size:
	1

	
	Patch size
	144144, 272272

	
	Changes to network configuration or weights required to generate rate points
	

	
	Peak Memory Usage
	　

	
	Other information: 
	　


[bookmark: _Toc135919351][bookmark: _Toc136247681][bookmark: _Hlk135916786]Low complexity operation point neural network-based loop filter set
[bookmark: _Toc135919352][bookmark: _Toc136247682]Neural network
The network structure of the low complexity operation point CNN based loop filter is shown in Figure 7.. The inputs to the loop filter are reconstructed luma and chroma samples (rec_yuv), boundary strength information for luma and chroma (3 planes) and slice QP plane. Since the resolutions of luma and chroma for YUV420 format are different, the reconstructed luma samples are decomposed into four smaller planes to match the resolution of chroma plane before filtering.
The network consists of a 3x3 CNN input layer which takes in 10 input layers with M(72) output features. This is followed by n(11) hidden layers, each hidden layer consists of 1x1 pointwise convolution with wide activation (M=72), a second 1x1 pointwise convolution with reduced output feature map (K=24) and 3x3 convolution layers which are decomposed and fused into separable layers as follows.
The 3x3 convolutions of each hidden layer are decomposed into 4 layers with rank R followed by fusion of adjacent 1x1 convolution as shown in :
· 1st layer: 1x1xKxR pointwise convolution
· 2nd layer: 3x1xRxR separable convolution
· 3rd layer: 1x3xRxR separable convolution
· 4th layer: 1x1xRxK pointwise convolution 
[image: ]
[bookmark: _Ref135903710]Figure 7.Architecture of low complexity CNN filter set (CP Decomposition + fusion of 1x1 conv layers)


The final output layer consists of 3x3 convolution layers which outputs filtered samples for L=6 planes (4 luma and 2 chroma planes) used for final residual scaling.
[bookmark: _Toc136247683]Residue scaling
When a NN filter is being applied to reconstructed pictures, a scaling factor is derived and signaled for each color component in the slice header. The derivation is based on least square method. The difference between the input samples and the NN filtered samples (residues) are scaled by the scaling factors before being added to input samples.
[bookmark: _Toc135919353][bookmark: _Toc136247684]Combination with deblocking filters
As shown in Error! Reference source not found., the reconstructed samples before Deblocking Filter are fed into the low complexity NN filter (NNLF), then final filtered samples are generated by blending the result of NNLF and Deblocking Filter. 
 = 

[image: A white circle with black text

Description automatically generated with low confidence]
Figure 8 Parallel fusion of the NNLF and Deblocking Filter’s outputs
[bookmark: _Toc135919354][bookmark: _Toc136247685]Inference details
SADL (see Section 3.5) is used for performing the inference of the CNN filters. Both floating point-based and fixed point-based implementations are supported. In the fixed-point implementation, both weights and feature maps are represented with int16 precision using a dynamic quantization method. The network information in the inference stage is provided in Table 1.
[bookmark: _Ref135908461]Table 1 Network Information of low complexity filter set in Inference Stage
	Network Information in Inference Stage

	Mandatory
	HW environment:

	
	GPU Type
	N/A

	
	Framework:
	SADL

	
	Number of GPUs per Task
	0

	
	　
	　

	
	Total Parameter Number
	105132

	
	Parameter Precision (Bits)
	float: 32
int: 16

	
	Memory Parameter (MB)
	float: 0.401 MB 
int: 0.201 MB 

	
	Multiply Accumulate (kMAC/pixel)
	16.2

	Optional
	　
	　

	
	Total Conv. Layers
	46

	
	Total FC Layers
	0

	
	Total Memory (MB)
	　

	
	Batch size:
	1

	
	Patch size
	72x72 (4 luma and 2 chroma planes)

	
	Changes to network configuration or weights required to generate rate points
	

	
	Peak Memory Usage
	　

	
	Other information: 
	　




[bookmark: _Toc136247686]Neural network-based intra prediction
[bookmark: _Toc136247687]Neural network inference
The neural network-based intra prediction mode contains  neural networks, each predicting blocks of a different size in . The neural network predicting blocks of size  is denoted  where  gathers its parameters. For a given  block ,  takes a preprocessed version  of the context  made of  rows of  reference samples located above this block and  columns of  reference samples on its left side to provide . The application of a postprocessing to  yields a prediction of , see Figure 3. Besides,  returns two indices  and .  denotes the index characterizing the LFNST kernel index and whether the primary transform coefficients resulting from the application of the DCT-2 horizontally and the DCT-2 vertically to the residue of the neural network prediction are transposed when , , see Figure 3. Furthermore,  gives the index  of the VVC intra prediction mode (PLANAR or DC or directional intra prediction mode) whose prediction of  from the reference samples surrounding  best represents , see Figure 3.
[image: Diagram

Description automatically generated]
[bookmark: _Ref127192749]Figure 3: prediction of the current  block  from the context  of reference samples around  via the neural network-based intra prediction mode. Here,  and 
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[bookmark: _Toc136247688]Preprocessing and postprocessing
Preprocessing of the context of the current block
The “preprocessing” shown in Figure 3 consists in the four following steps.
· The mean  of the available reference samples  in , see Figure 4, is subtracted from .
· If the neural network predicting the current block is in floats, the reference samples in the context  are multiplied by ,  being the internal bitdepth, i.e.  in VVC. Otherwise, the reference samples in the context  are multiplied by ,  denoting the input quantizer.
· All the unavailable reference samples  in , see Figure 4, are set to .
· The context resulting from the previous step is flattened, yielding , a vector of size .
[image: Chart, diagram, box and whisker chart

Description automatically generated]
[bookmark: _Ref127200339]Figure 4: decomposition of the context  of reference samples surrounding the current  block  into the available reference samples and the unavailable reference samples . Here,  and . In the illustrated case, the number of unavailable reference samples reaches its maximum value.

Postprocessing of the neural network prediction
The “postprocessing” depicted in Figure 3 consists in reshaping the vector  of size  into a rectangle of height  and width , dividing the result of the reshape by , adding the mean  of the available reference samples in the context of the current block, and clipping to  Therefore, the postprocessing can be summarized as


[bookmark: _Toc136247689]Adaptation of the derivation of the list of MPMs
When creating the MPM list of a given luma CB, if the “left” luma CB is predicted via the neural network-based intra prediction mode, the neural network-based mode index can be replaced by the  returned during the prediction of the “left” luma CB and become a candidate index to be put into the MPM list. Similarly, if “above” luma CB is predicted via the neural network-based intra prediction mode, the neural network-based mode index can be replaced by the  returned during the prediction of the “above” luma CB and become a candidate index to be inserted into the MPM list.

[bookmark: _Toc136247690]Signaling of the neural network-based intra prediction mode
Signaling of the neural network-based intra prediction mode in luma
For the current  luma CB whose top-left pixel is at position  in the current luma channel, the intra prediction mode signaling in luma is split into two cases.
· If , nnFlag appears in the intra prediction mode signaling in luma. nnFlag  means that the neural network-based intra prediction mode is selected to predict the current luma CB and END. nnFlag  means that the neural network-based intra prediction mode is not selected to predict the current luma CB, then the regular intra prediction mode signaling in luma, denoted , applies, see Figure 5.
· Otherwise, the regular intra prediction mode signaling in luma  applies.
Note that, in the case “ if the context of the current luma CB goes out of the bounds of the current luma channel, i.e. , the neural network-based intra prediction is replaced by PLANAR.

.
[image: Diagram

Description automatically generated]
[bookmark: _Ref127198497]Figure 5: intra prediction mode signaling for the current  luma CB framed in orange in dashed line. The coordinates of the pixel at the top-left of this CB are  The bin value of a nnFlag value appears in bold gray. Here, , , , and .

Signaling of the neural network-based intra prediction mode in chroma
For the current  chroma CB whose top-left pixel is at position  in the current chroma channel, the intra prediction mode signaling in chroma is split into two cases.
· If the luma CB collocated with this chroma CB is predicted by the neural network-based intra prediction mode:
· If the DM becomes the neural network-based intra prediction mode
· Otherwise, the DM is set to PLANAR.
· Otherwise:
· If , nnFlagChroma appears in the intra prediction mode signaling in chroma. nnFlagChroma is placed before the DM flag in the decision tree of the intra prediction mode signaling in chroma. nnFlagChroma  means that the neural network-based intra prediction mode is selected to predict the current pair of chroma CBs and END. nnFlagChroma  means that the neural network-based intra prediction mode is not selected to predict the current pair of chroma CBs, then the regular intra prediction mode signaling in chroma resumes from the DM flag.
· Otherwise, the regular intra prediction mode signaling in chroma applies.
Note that, in the case where “and the case where “”, if the context of the current chroma CB goes out of the bounds of the current chroma channel, i.e. , the neural network-based intra prediction is replaced by PLANAR.

[bookmark: _Toc136247691]Transformation of the context and the neural network prediction
For a given  block, if , it is possible that the neural network-based intra prediction mode must predict this block but the neural network-based intra prediction mode does not contain . In this case, the context of the current block can be down-sampled vertically by a factor  and/or down-sampled horizontally by a factor  and/or transposed before the step called “preprocessing” in Figure 3. Then, the prediction of the current block can be transposed and/or up-sampled vertically by the factor  and/or up-sampled horizontally by the factor  after the step called “postprocessing” in Figure 3. The transposition of the context of the current block and the prediction, , and  are chosen so that a neural network belonging to the neural network-based intra prediction mode is used for prediction, see Table 2.

	height and width of the block to be predicted 
	
	
	transposition
	neural network used for prediction

	
	
	
	no
	

	
	
	
	no
	

	
	
	
	yes
	

	
	
	
	no
	

	
	
	
	yes
	

	
	
	
	no
	

	
	
	
	yes
	

	
	
	
	no
	

	
	
	
	no
	

	
	
	
	yes
	

	
	
	
	no
	

	
	
	
	yes
	

	
	
	
	no
	

	
	
	
	no
	

	
	
	
	no
	

	
	
	
	no
	

	
	
	
	no
	


[bookmark: _Ref127204189]Table 2: decision of transposing the context of the current block to be predicted and the prediction of this block, the value of , and the value of , and the neural network belonging to the neural network-based intra prediction mode used for prediction for each .

[bookmark: _Ref116481840][bookmark: _Toc136247692]Small ad-hoc deep learning (SADL) library
SADL (Small Ad-hoc Deep-Learning Library) is a header only small library for inference of neural networks. SADL provides both floating-point-based and integer-based inference capabilities. The inference of neural networks in NNVC is based on the SADL.
The table below summarizes the framework characteristics.
Table 4. Characteristics of SADL
	Language
	Pure C++, header only.

	Footprint
	~6000 LOC, library ~300kB, no dependency

	Optimization
	Some SIMD at hot spots, e.g. convolution (conv2D) and automatic sparse matrix-vector multiplication

	Compatibility
	Onnx to SADL converter

	Layer Supports
	constants, add, maxPool, matMul (dense and sparse), reshape, ReLU, conv2D (strided, grouped, separated), mul, concat, max, leakyReLU, shape, expand, PReLU, flatten, transpose, Cond2DTranspose, Slicing 

	Type support
	float, int32, int16, int8

	Quantization 
	Support adaptive quantizer per layer

	License
	BSD 3-Clause



NNVC repository uses SADL as a submodule, pointing to the repository here: https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/sadl.
Documentation is available in the doc directory of the repository.
[bookmark: _Toc136247693]Content-adaptive neural network post-filter
[bookmark: _Toc136247694]Neural network
Error! Reference source not found. shows the architecture of the NN. The input consists of the reconstructed luma and chroma samples, as well as the strength control value SliceQPY.
The architecture also includes multiplier parameters, which are applied after the bias is added to the convolution result:
where  is the kernel,  is the convolution operator,  is the input,  is the bias,  is the multiplier and  is the activation function.
[image: ]
[bookmark: _Hlk129097774]Figure 6. Architecture of the content-adaptive post-filter
Since the luma and chroma components have different resolutions, the input luma component is split into 4 channels following the pixel unshuffled operation. Similarly, the final output luma component is brought back to the real resolution by applying the pixel shuffle operation. 
[bookmark: _Toc136247695]Content adaptation
The content-adaptive post-filter includes four base filters trained offline. The content adaptation is achieved by over-fitting one of them on the test content. The over-fitting is done at the encoder side and only for the multiplier parameters. To recreate the over-fitted model at the decoder end, the resulting weight-update (difference between base multipliers and over-fitted multipliers) is coded with Neural Network compression and Representation (NNR) standard and sent within a Neural Network Post Filter Characteristics (NNPFC) SEI message.
[bookmark: _Toc136247696]Inference details
Table III shows the network information in inference stage when using SADL int16 fixed-precision.
The content-adaptive post-filter includes the signalling of two NNPFC SEI messages (one with the characteristics of the base model and one with the NNR weight-update) and one Neural Network Post Filter Activation (NNPFA) SEI message. The latter activates/enables an NN post-filter for the whole video encoded video sequence.

[bookmark: _Ref127784750]Table III. Network Information of the content-adaptive post-filter in inference stage
	Network Information in Inference Stage

	Mandatory
	HW environment:

	
	GPU Type
	CPU only

	
	Framework:
	SADL

	
	Number of GPUs per Task
	0

	
	 
	 

	
	Number of Parameters (Each Model)
	[bookmark: OLE_LINK1]109068

	
	Total Number of Parameters (All Models)
	436272 (x4)

	
	Parameter Precision (Bits)
	16


	
	Memory Parameter (MB)
	0,832122803

	
	Multiply Accumulate (kMAC/pixel)
	34 (block)

	Optional
	 
	 

	
	Total Conv. Layers
	35

	
	Total FC Layers
	0

	
	Total Memory (MB)
	 

	
	Batch size:
	1 

	
	Patch size
	144x144

	
	Changes to network configuration or weights required to generate rate points
	 

	
	Peak Memory Usage (Total)
	

	
	Peak Memory Usage (per Model)
	



[bookmark: _Toc136247697]Neural network-based super resolution
[bookmark: _Toc136247698]Neural network for luma component 
There are two networks for NN-based super resolution, one for luma component and one for chroma component. 
The designed network structure for luma is shown in Figure 1. Along with the low-resolution reconstruction , the low-resolution prediction , slice QP and base QP are also fed into the proposed network. The RPR reconstruction  upsampled by conventional RPR mechanism is adopted to generate the high-resolution reconstruction . The number of resblocks is set to 24, and the channels K and M in the resblock are set to 64 and 192 respectively. Two models are traind for I slices and B slices, and the base QP huatuis removed for the I slices.
[image: ]
Figure 1. Architecture of the super-resolution filter
[bookmark: _Toc136247699]Neural network for chroma component 
The designed network structure for chroma is similar to the network structure for luma. Since the cross-component correlation is beneficial to the super resolution of chroma components, the luma reconstruction is fed into the network. Besides, the slice type is also taken as one input for better generalization.
[bookmark: _Toc136247700]GOP level encoding resolution decision
One of resampling scale factors {×1.0 (original size) and ×2.0 (half size)} is selected at GOP level and the same scale factor is applied on all frames in a common one GOP. To determine the resampling factor, the PSNR value and initial QP for the first frame of GOP are exploited. Specifically, the first frame of GOP is downscaled to quarter resolution and then resampled to the original resolution by using the existing RPR technology. The PSNR is calculated between the original frame and the down-up scaled frame. Considering the different characteristics between luma and chroma components, PSNRs from different components are calculated in the scale factor decision. The scale factor decision process is shown in Figure 2.
[image: ]
Figure 2. (a) Scale factor decision for RA. (b) Scale factor decision for AI.
Specifically, the calculation formulas used in Figure 1 are shown as follows.



where  and  represent down-up scaled luma and chroma PSNR for the first frame of GOP, respectively.  and  represent predefined threshold for luma and chroma PSNR, respectively.  represents another predefined criteria for luma PSNR and  represents predefined criteria for QP.  is the initial QP for the first frame of GOP and  in Figure 1 is the determined resampling scale factor.
[bookmark: _Toc136247701]Inference details
SADL (see Section 1.3) is used for performing the inference of the CNN filters. Both floating point-based and fixed point-based implementations are supported. In the fixed-point implementation, both weights and feature maps are represented with int16 precision using a static quantization method. The network information in the inference stage is provided in Table 1.
Table 1. Network Information of super resolution in Inference Stage
	Network Information in Inference Stage

	Mandatory
	HW environment:

	
	GPU Type
	N/A

	
	Framework:
	SADL

	
	Number of GPUs per Task
	0

	
	　
	　

	
	Number of Parameters (Each Model)
	luma model for I slice: 1.49 M
luma model for B slice: 1.49M
chroma model: 1.50M

	
	Total Number of Parameters (All Models)
	4.48M

	
	Parameter Precision (Bits)
	float: 32, int: 16

	
	Memory Parameter (MB)
	float: 17.14MB, 3 models in total
int: 8.60MB, 3 models in total

	
	Multiplay Accumulate (MAC)/pixel
	469 (assuming frame-level input)
593 (assuming block-level input)

	Optional
	　
	　

	[bookmark: _Hlk93002566]
	Total Conv. Layers
	76

	
	Total FC Layers
	0

	
	Total Memory (MB)
	　

	
	Batch size:
	1

	
	Patch size
	144x144

	
	Changes to network configuration or weights required to generate rate points
	

	
	Peak Memory Usage (Total)
	　

	
	Peak Memory Usage (per Model)
	　



[bookmark: _Toc136247702]High Operating Point model
[bookmark: _Toc136247703]Architecture
High Operating Point model structure is given by the figure below. 
[image: ]
The Table 4 gives the characteristics of the model.
[bookmark: _Ref133149454]Table 4 NN Filter network structure aspects
	
	Unified
high tier filter

	Joint YUV
	√

	Intra = Inter model
	√

	Prediction 
	√

	BS
	√

	QP base 
	√

	QP slice 
	√

	IPB 
	√

	CONV for side Info
	√

	Variable number Channels
	√

	Long Skip connection
	√

	Long/wide Activation
	√

	Number ResBlocks
	N(*)

	Conv Decomposed
	√(**)

	multi-scale feature extraction
	√

	Number of channels
	16

	Training Environment
	pytorch 1.9



(*) N to be defined later targeting kMAC/pxl (typically ~500kMAC/pixel).
(**) Decomposition same as in EE1-1.3
(***) 2 Luma models (Intra and Inter) +  2 Chroma models (Intra and Inter)
(****) 2 Intra models (low and high rates)  + 2 Inter models (low and high rates)

[bookmark: _Toc136247704]Model usage aspects
The Table 5 gives the model application characteristics.
[bookmark: _Ref133150614]Table 5 NN Filter interface aspects
	
	Unified
Filter

	Pre-processing and post-processing of chroma
	√

	Enable DBF/SAO
	Both

	Blending with the DBF/SAO
	DBF(*)

	Slice-level/Block-level blending with adaptive scale factor
	√

	Slice-level/Block-level blending with fixed scale factor
	√

	Separate adaptive scale factor for U and V
	√

	Base QP adjustment
	(-5, +5)

	Encoder-only Optimization
	×

	Temporal filter
	×

	Adaptive inference granularity (128 or 256 block implicit)
	√

	Configurable inference size (64 or 128 block explicit)
	√

	configurable block extension size 
	√

	configuration QP params number
	√

	block-level QP adaptation

	√


(*) NNLF comes after De-block but before SAO

[bookmark: _Toc136247705]Training description of Neural Network-based Video Coding Software
The training of NN-based tool typical involve three steps: compressing a dataset and dumping necessary training data, loading training data, training using the loaded training data. The first two steps are usually based on the data dumper and data loader in NNVC, while the third step relies on the training method designed for each specific tool.
A high-level description of training methods for NN-based tools is provided below. To reproduce the training of a specific tool, it is recommended to refer to the training scripts in the NNVC software. 
[bookmark: _Toc136247706]Neural network-based loop filter set 0
In order to effectively enhance the NN model generalization, an iterative training method is designed to better maintain consistency between the training process and the inference process. As shown in Figure 7, the proposed iterative training method contains the initial training stage and the iterative training stage. In the initial training stage, the training data is generated by the anchor configured with the common test conditions. In the iterative training stage, the NN model obtained from the previous training process is integrated into anchor and the training data is generated by the NN-filter based codec.
[image: ]
Figure. 7. The Iterative training method
In the initial training stage, NNVC (--NnlfOption=0) is used to compress all training images under all-intra and random-access configuration, respectively. The reconstructed images together with additional side information are generated and utilized to train the NN filter.
In the iterative training stage, NNVC (--NnlfOption=1) with the integrated NN model from previous training stage is used to compress all training images under random-access configuration and the training data for I slices is still used from initial training stage. Theoretically, the more times of the iterative training stages, the better performance. However, only up to two times of training stages including the initial training stage are used. 
In addition to the above real-iterative training method, pseudo-iterative method training can also be used. That’s to say, the training data used for each training stage can be generated by the codec whose performance is comparable with the codec enhanced by the latest training model, then the initial training stage can be skipped.
[bookmark: _Toc136247707]Neural network-based loop filter set 1
[bookmark: _Toc136247708]Regular filters
To effectively train the luma and chroma NN models, an iteratively conducted two-stage training is adopted to better align the settings during training and testing as shown in Figure 8. In the first stage, the training data is generated by VTM under AI and RA configurations and separate intra and inter models are trained. In the second stage, the models are integrated into VTM to generate the training data under random access configuration. To train the combined intra and inter models, the training data uses stage I AI data and stage II RA data.
[image: ]
Figure 8. Iterative training with two stages.
In training stage I, NNVC (--NnlfOption=0) is used to compress training images under all-intra and random access configurations. The reconstructed images together with other auxiliary information are collected and utilized for training intra frame filters and inter frame filters.
In training stage II, NNVC (--NnlfOption=2) equipped with the models from the previous training stage is used to compress training videos under random-access setting. That is to say, the intra frames and the inter frames will be processed by the intra filters and inter filters obtained in training stage I, respectively. Then, the AI data from stage I and RA data from stage II are used as training data to train the combined intra and inter models.
[bookmark: _Toc136247709]Temporal filter
Training of temporal filter involves one step. NNVC (--NnlfOption=2) is used to compress training videos under random access configuration. The reconstructed images together with other auxiliary information are collected and utilized for training the temporal filter.
[bookmark: _Toc135919379][bookmark: _Toc136247710]Low operating point neural network-based loop filter set
The models are trained iteratively for better performance. Joint models are used for luma and chroma. 2 models are used for Intra(AI) and 2 models are used for Inter(RA). Two models for each configuration is trained by splitting the training data based on the configured QP. Hence out of two models, one is trained for lower QP points and the other for higher QP points. The intra models are trained with DIV2K dataset and inter models are trained with BVI-DVC dataset.
The overview of intra models training is shown in Figure 7. The raw DIV2K image data was compressed using AI configurations with NNVC(--NnlfOption=0) to create the training examples for AI. The baseline model with 3x3 convolution layers before decomposition is trained initially. The 3x3 convolutions of each hidden layer are decomposed into 4 layers(CP decomposition) using PARAFAC followed by fusion of adjacent 1x1 convolution followed by training to obtain intra models. 
The overview of inter models training is shown in Figure 8. The raw BVIDVC video data was compressed using RA configurations with NNVC(--NnlfOption=3) to create the training examples for RA. 1st stage RA training dataset is generated with trained intra models. 2nd stage RA training dataset is generated using trained intra models and inter models from 1st stage RA training. The initial weights for the 1st stage RA is got from trained intra models. The initial weights for the 2nd stage RA is got from the 1st stage trained RA models. 
[image: A screenshot of a computer screen
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[bookmark: _Ref135918792][bookmark: _Ref135918788]Figure 7 Overview of training Intra(AI) models

[image: A screenshot of a computer screen
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[bookmark: _Ref135918831]Figure 8 Overwiew of training Inter(RA) models


[bookmark: _Toc136247711]Neural network-based intra prediction
The workflow of the iterative training of the neural networks belonging to the neural network-based intra prediction mode is displayed in Figure 9.
· At cycle 0, VTM-11-NNVC without the neural network-based intra prediction mode and without any Filter-Set extracts the data for training the neural networks. Then, the 7 neural networks are trained, initializing their parameters randomly.
· At cycle 1, VTM-11-NNVC with the neural network-based intra prediction mode using the parameters trained at cycle 0 and without any Filter-Set extracts the data for training the neural networks. Then, the 7 neural networks are trained, initializing their parameters from their state at the end of cycle 0.
· At cycle 2, VTM-11-NNVC with the neural network-based intra prediction mode using the parameters trained at cycle 1 and without any Filter-Set extracts the data for training the neural networks. Then, the 7 neural networks are trained, initializing their parameters from their state at the end of cycle 1. Then, using the same training data, the trainings of these 7 neural networks are resumed, introducing this time a sparsity constraint on their weights.
· At cycle 3, VTM-11-NNVC with the neural network-based intra prediction mode using the parameters trained at cycle 2 and without any Filter-Set extracts the data for training the neural networks. Then, the transform prediction part of each of the 7 neural networks is trained, initializing their parameters from their state at the end of cycle 2.

[image: Diagram

Description automatically generated]
[bookmark: _Ref127204749]Figure 9: workflow of the iterative of the neural networks belonging to the neural network-based intra prediction mode.
[bookmark: _Toc136247712]Content-adaptive neural network post-filter
The training of the content-adaptive neural network post-filter consists of two stages as follows,
Stage 1: generation of four base models.
Stage 2: over-fitting of one base model for each test sequence and QP point, followed by weight-update coding with NNC.
[bookmark: _Toc136247713]Neural network-based super resolution 
The training of neural network-based super resolution is straightforward. The NNVC software with RPR enabled is used to generate training datasets. Two luma models are trained for I slices and B slices respectively and only one model is trained for chroma component.
[bookmark: _Toc136247714]HOP model
The detailed training description is available in the readme file of the HOP training directory.
Training description
1. Training Model stage I
0. Data extraction for intra from vanilla VTM
0. encoder turns on md5sum, just NNVC-4.0 all NNVC tools disabled, encoder_intra_vtm.cfg, just first frame
0. QPs = 22,27,32,37,42 + 19,24,29,34,39
0. DIV2K (4:4:4 RGB  YUV420 10 bits, version ffmpeg to be specified, script is part of NNVC SW)
0. Rotation, flipping, down-sampling(list of output + md5sum) 
0. Reconstruction is extracted before de-block 
0. All CTUs are extracted (except those on the border)  list of md5sums (NNVC SW coordinators to provide)

0. Model stage I training from scratch for Intra data: 
1. Random initialization (NNVC SW decide)
1. Use all CTUs
1. Learning Rate scheduler to be provided by Qualcomm 
1. Resume of training (track of learning rate, store check-points…, must be added to the training scripts) functionality is in training scripts to be adjusted for unified model
1. Training Model stage II
1. Data extraction with model#1: 
0. encoder turns on md5sum, NNVC-4.0 + Model stage I for I-frames only, encoder_ra_model1.cfg, 65 frames (last is duplicated), Intra Period 64, GOP=32.
0. QPs = 22,27,32,37,42 
0. List of sequences
2. TVD: 65 frames, 20 sequences (Tencent provides list of sequences with md5sum)
2.  BVI (YUV420), 620 sequences (Bytedance provides list of sequences with md5sum + script for duplication last frame duplicated)
2. All reconstructed CTU are extracted before de-block , list of frames to be provided by Tencent and Bytedance (after check) + DVI2K training data as in training stage I
1. Model stage II training with extracted data:
1. Random initialization (NNVC SW decide)
1. Use all CTUs
1. Rotation and flipping is part of training already
1. Learning Rate scheduler to be provided by Qualcomm 
1. Resume of training (track of learning rate, store check-points…, must be added to the training scripts) functionality is in training scripts to be adjusted for unified model
1. Training stage III
2. Data extraction with Model stage II: 
0. encoder turns on md5sum, NNVC-4.0 + Model stage II (both Intra and Inter frames), encoder_ra_model1.cfg, 65 frames (last is duplicated), Intra Period 64, GOP=32.
0. QPs = 22,27,32,37,42 
0. List of sequences
2. TVD: 65 frames, 20 sequences (Tencent provides list of sequences with md5sum)
2.  BVI (YUV420), 620 sequences (Bytedance provides list of sequences with md5sum +  script for duplication last frame duplicated)
2. ALL reconstructed CTU are extracted before de-block , list of frames to be provided by Tencent and Bytedance (after check) + DVI2K training data as in training stage I 
2. Model Stage III training with extracted data:
1. Random initialization (NNVC SW decide)
1. Use all CTUs
1. Rotation and flipping is part of training already (on the fly augmentation)
1. Learning Rate scheduler to be provided by Qualcomm 
1. Resume of training (track of learning rate, store check-points…, must be added to the training scripts) functionality is in training scripts to be adjusted for unified model
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