[bookmark: _Hlk21423976]ISO/IEC 23090-13:222x(E)
ISO TC 1 SC 29/WG 03
[bookmark: CVP_Secretariat_Loca]Secretariat: XXXX
Information technology — Coded representation of immersive media — Part 13: Video decoding interface for immersive media
FDIS stage

Warning for WDs and CDs
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.



© ISO 2021 – All rights reserved




© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
Contents
Foreword	v
Introduction	vi
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Abbreviations	2
5	Video decoding engine	2
5.1	General	2
5.2	Input video decoding interface	4
5.3	Output video decoding interface	4
5.4	Control interface to the video decoding interface	5
5.4.1	Functions	5
5.5	Examples of video decoding engine instantiations	10
5.5.1	Mapping on OpenMAX™ Integration Layer (OpenMAX IL)	10
5.5.2	Mapping on Vulkan® Video	10
5.5.3	Informative mapping	13
6	VDI systems decoder model	13
6.1	Introduction	13
6.2	Concepts of the VDI systems decoder model	14
6.2.1	General	14
6.2.2	Media stream	14
6.2.3	Media stream interface	14
6.2.4	Input formatter	14
6.2.5	Access Units (AU)	14
6.2.6	Decoding Buffer (DB)	14
6.2.7	Elementary Streams (ES)	15
6.2.8	Elementary Stream Interface (ESI)	15
6.2.9	Decoder	15
6.2.10	Composition Units (CU)	15
6.2.11	Composition Memory (CM)	15
6.2.12	Compositor	15
7	Video decoder interface	15
7.1	General	15
7.2	Operations on input media streams	15
7.2.1	General	15
7.2.2	Concepts	16
7.2.3	Filtering by video object identifier	16
7.2.4	Inserting video objects	17
7.2.5	Appending two video objects	18
7.2.6	Stacking two video objects	19
7.3	Slice-based instantiation for ISO/IEC 23008-2 High efficiency video coding (HEVC)	20
7.3.1	General	20
7.3.2	Media and elementary stream constraints	20
7.4	Layer-based instantiation for ISO/IEC 23090-3 Versatile video coding (VVC)	21
7.4.1	General	21
7.4.2	Media and elementary stream constraints	21
7.5	Slice-based instantiation for ISO/IEC 23094-1 Essential video coding (EVC)	23
7.5.1	General	23
7.5.2	Media and elementary streams constraints	24
Annex A (normative)  Control interface IDL definition	26
A.1	General	26
Annex B (informative)  OpenMAX IL VDI extension header	27
B.1	General	27
Annex C (normative)  Supplemental enhancement information (SEI) syntax and semantics	28
C.1	VDI SEI envelope	28
C.2	Independent layer info SEI message	28
C.3	Examples of video object positioning (informative)	31
C.3.1	Appending	31
C.3.2	Appending and stacking	32
Annex D (informative)  Example implementations of input formatting operations	35
D.1	General	35
D.2	Creating a 2-by-2 video mosaic via application control	35
D.3	Creating a 2-by-2 video mosaic via SEI control	37
Annex E (informative)  Brief description of OpenMAX IL functions	39
E.1	Decoder Engine Control Interface	39
E.1.1	OMX_Init() and OMX_Deinit()	39
E.1.2	OMX_GetHandle() and OMX_FreeHandle()	39
E.1.3	OMX_SetupTunnel() and OMX_TeardownTunnel()	39
E.2	Decoder Instance Interface	39
E.2.1	Methods	39
E.2.2	Media Input and Output Interface	40
E.2.3	Format of the OpenMAX IL buffer header	41
E.2.4	Buffer flags defined in OpenMAX IL	41
E.2.5	Input/Output from/into GPU	41
Annex F (informative)  Mapping on Media Source Extensions (MSE)	42
F.1	Overview	42
F.2	Mapping of VDI functions	43
Bibliography	44

[bookmark: _Toc353342667][bookmark: _Toc120279128]Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/IEC/JTC 1 Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This is the first edition published under ISO/IEC 23090-13:222x.
A list of all parts in the ISO 23090 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
[bookmark: _Toc353342668][bookmark: _Toc120279129]Introduction
ISO/IEC 23090-13:222x(E)
ISO/IEC 23090-13:222x(E)
The interfaces and operations specified in this document come as extensions of existing video decoding engine specifications exposing hardware video decoding capabilities.
iv	© ISO 2022 – All rights reserved
© ISO 2022 – All rights reserved	v
Information technology — Coded representation of immersive media — Part 13: Video decoding interface for immersive media
1 [bookmark: _Toc353342669][bookmark: _Toc120279130]Scope
This document specifies the interfaces of a video decoding engine as well as the operations related to elementary streams and metadata that can be performed by this video decoding engine . To support those operations, this document also specifies SEI messages when necessary for certain video codecs.
2 [bookmark: _Toc120278096][bookmark: _Toc120278198][bookmark: _Toc120279028][bookmark: _Toc120279131][bookmark: _Toc353342670][bookmark: _Toc120279132]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 23008-2, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 2: High efficiency video coding
ISO/IEC 23090-3, Information technology — Coded representation of immersive media — Part 3: Versatile video coding
ISO/IEC 23094-1, Information technology — General video coding — Part 1: Essential video coding
3 [bookmark: _Toc120278200][bookmark: _Toc120279030][bookmark: _Toc120279133][bookmark: _Toc30062011][bookmark: _Toc30062012][bookmark: _Toc30062013][bookmark: _Toc353342671][bookmark: _Toc120279134]Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
media stream
part of an elementary stream (3.2) or one or more aggregated elementary streams (3.2)

NOTE 1 to entry: Every elementary stream is a media stream, but the inverse is not true.
NOTE 2 to entry: A media stream may contain metadata such as non-VCL NAL units.
3.2
subframe
[bookmark: _Hlk85720813]independently decodable unit smaller than a frame to which post-decoding processing by the decoder, if any, has been applied
3.3
video object
independently decodable substream of a video elementary stream (3.2)
3.4
video object identifier
an integer identifying a video object (3.4)
4 [bookmark: _Toc30062015][bookmark: _Toc78533114][bookmark: _Toc78533178][bookmark: _Toc78533712][bookmark: _Toc78533115][bookmark: _Toc78533179][bookmark: _Toc78533713][bookmark: _Toc78533116][bookmark: _Toc78533180][bookmark: _Toc78533714][bookmark: _Toc78533117][bookmark: _Toc78533181][bookmark: _Toc78533715][bookmark: _Toc77776320][bookmark: _Toc77776454][bookmark: _Toc77776586][bookmark: _Toc77782112][bookmark: _Toc77782717][bookmark: _Toc77785502][bookmark: _Toc77850499][bookmark: _Toc77850640][bookmark: _Toc77850781][bookmark: _Toc77776321][bookmark: _Toc77776455][bookmark: _Toc77776587][bookmark: _Toc77782113][bookmark: _Toc77782718][bookmark: _Toc77785503][bookmark: _Toc77850500][bookmark: _Toc77850641][bookmark: _Toc77850782][bookmark: _Toc77776322][bookmark: _Toc77776456][bookmark: _Toc77776588][bookmark: _Toc77782114][bookmark: _Toc77782719][bookmark: _Toc77785504][bookmark: _Toc77850501][bookmark: _Toc77850642][bookmark: _Toc77850783][bookmark: _Toc77776323][bookmark: _Toc77776457][bookmark: _Toc77776589][bookmark: _Toc77782115][bookmark: _Toc77782720][bookmark: _Toc77785505][bookmark: _Toc77850502][bookmark: _Toc77850643][bookmark: _Toc77850784][bookmark: _Toc77776324][bookmark: _Toc77776458][bookmark: _Toc77776590][bookmark: _Toc77782116][bookmark: _Toc77782721][bookmark: _Toc77785506][bookmark: _Toc77850503][bookmark: _Toc77850644][bookmark: _Toc77850785][bookmark: _Toc77776325][bookmark: _Toc77776459][bookmark: _Toc77776591][bookmark: _Toc77782117][bookmark: _Toc77782722][bookmark: _Toc77785507][bookmark: _Toc77850504][bookmark: _Toc77850645][bookmark: _Toc77850786][bookmark: _Toc77776326][bookmark: _Toc77776460][bookmark: _Toc77776592][bookmark: _Toc77782118][bookmark: _Toc77782723][bookmark: _Toc77785508][bookmark: _Toc77850505][bookmark: _Toc77850646][bookmark: _Toc77850787][bookmark: _Toc77776327][bookmark: _Toc77776461][bookmark: _Toc77776593][bookmark: _Toc77782119][bookmark: _Toc77782724][bookmark: _Toc77785509][bookmark: _Toc77850506][bookmark: _Toc77850647][bookmark: _Toc77850788][bookmark: _Toc77776328][bookmark: _Toc77776462][bookmark: _Toc77776594][bookmark: _Toc77782120][bookmark: _Toc77782725][bookmark: _Toc77785510][bookmark: _Toc77850507][bookmark: _Toc77850648][bookmark: _Toc77850789][bookmark: _Toc77776329][bookmark: _Toc77776463][bookmark: _Toc77776595][bookmark: _Toc77782121][bookmark: _Toc77782726][bookmark: _Toc77785511][bookmark: _Toc77850508][bookmark: _Toc77850649][bookmark: _Toc77850790][bookmark: _Toc77776330][bookmark: _Toc77776464][bookmark: _Toc77776596][bookmark: _Toc77782122][bookmark: _Toc77782727][bookmark: _Toc77785512][bookmark: _Toc77850509][bookmark: _Toc77850650][bookmark: _Toc77850791][bookmark: _Toc77776331][bookmark: _Toc77776465][bookmark: _Toc77776597][bookmark: _Toc77782123][bookmark: _Toc77782728][bookmark: _Toc77785513][bookmark: _Toc77850510][bookmark: _Toc77850651][bookmark: _Toc77850792][bookmark: _Toc77776332][bookmark: _Toc77776466][bookmark: _Toc77776598][bookmark: _Toc77782124][bookmark: _Toc77782729][bookmark: _Toc77785514][bookmark: _Toc77850511][bookmark: _Toc77850652][bookmark: _Toc77850793][bookmark: _Toc120279135][bookmark: _Toc353798249]Abbreviations
API		application programming interface
ES		elementary stream
I		video object identifier
IVDI	input video decoding interface
NAL	network abstraction layer
OLS		Output Layer Set
OVDI	output video decoding interface
PPS		picture parameter set
SEI		supplemental enhancement information
SPS		sequence parameter set
VCL		video coding layer
VDE	video decoding engine
MDS	media stream
5 [bookmark: _Toc120278100][bookmark: _Toc120278203][bookmark: _Toc120279033][bookmark: _Toc120279136][bookmark: _Toc120278101][bookmark: _Toc120278204][bookmark: _Toc120279034][bookmark: _Toc120279137][bookmark: _Toc120278102][bookmark: _Toc120278205][bookmark: _Toc120279035][bookmark: _Toc120279138][bookmark: _Toc120278103][bookmark: _Toc120278206][bookmark: _Toc120279036][bookmark: _Toc120279139][bookmark: _Toc120279140]Video decoding engine
[bookmark: _Toc120279141]General
The Video Decoding Engine (VDE) enables the decoding, the synchronization and the formatting of associated media streams into elementary streams which are one or more aggregated elementary streams a part of thereof. The media streams are fed through the Input Video Decoding Interface (IVDI) of the VDE and provided to the subsequent elements of the rendering pipeline via the Output Video Decoding Interface (OVDI) in their decoded form. Between the input and the output, the VDE may extracts and/ore merges independently decodable regions from a set of input media streams via the input formatting function and to generates a set of elementary streams that are fed into the video decoder instances, which run inside the engine. The VDE can execute a merging operation or an extraction operation on the input media streams such that the number of running video decoder instances is different from the number of input media streams that are required by the application. For example, a VDE might not be capable of decoding a single 4K input media stream with one decoder instance, but it might be able to decode some of the independently decodable regions, at a lower resolution, present in that input media stream. In this case, the VDE should verify the availability of sufficient resources to run those video decoder instances in parallel.
Figure 1 represents the architecture for the VDE and the associated IVDI and OVDI interfaces.


Key
	MDS
		media stream
	
	

	ES
		elementary stream
	
	

	MTS
		metadata stream
	
	

	DS
		decoded sequence
	
	

	m
		number of input metadata streams
	
	

	n
		number of media streams
	
	

	j
		number of video decoder instances
	
	

	p
		number of output metadata streams
	
	

	q
		number of decoded sequences


[bookmark: _Ref77859855]Figure 1 — Video decoding engine and interfaces
NOTE	Multiple elementary streams that are output of the input formatting function can be fed to a single video decoder instance.
NOTE	The concept of metadata stream does not yet possess a definition in this document and may be further refined in future editions of this document.
Figure 2 depicts an architecture for handling multiple video decoder instances on a single hardware platform. In this scenario, one or more video decoder instances running on the same video decoder hardware engine are exposed to the application layer as several decoder instances each with their own interface.


[bookmark: _Ref77779501]Figure 2 — Example relationship between video decoder instances and video decoder hardware engine
[bookmark: _Toc77782127][bookmark: _Toc77782732][bookmark: _Toc77785517][bookmark: _Toc77850514][bookmark: _Toc77850655][bookmark: _Toc77850796][bookmark: _Toc120279142]Input video decoding interface
The video decoding engine accepts media streams and metadata streams. There is at least one media stream as input but there is no constraint on the number of metadata streams with respect to the number of media streams being concurrently consumed by the VDE.
The input of the VDE comprises thus:
· n media streams
· m metadata streams
[bookmark: _Toc78533121][bookmark: _Toc78533185][bookmark: _Toc78533719][bookmark: _Toc78533122][bookmark: _Toc78533186][bookmark: _Toc78533720][bookmark: _Toc78533123][bookmark: _Toc78533187][bookmark: _Toc78533721][bookmark: _Toc78533124][bookmark: _Toc78533188][bookmark: _Toc78533722][bookmark: _Toc72926431][bookmark: _Toc72926520][bookmark: _Toc72927121][bookmark: _Toc72927211][bookmark: _Toc72926432][bookmark: _Toc72926521][bookmark: _Toc72927122][bookmark: _Toc72927212][bookmark: _Toc72926433][bookmark: _Toc72926522][bookmark: _Toc72927123][bookmark: _Toc72927213][bookmark: _Toc120279143]Output video decoding interface
The video decoding engine outputs decoded video sequences and metadata streams. There is at least one decoded video sequence as output but there is no constraint on the number of metadata streams with respect to the number of decoded video sequences being concurrently output by the VDE.
These two output stream types may be provided in a form of multiplexed output buffers, including both decoded media data and its associated metadata.
The output of the VDE comprises thus:
· q decoded sequences
· p metadata streams
[bookmark: _Toc78533126][bookmark: _Toc78533190][bookmark: _Toc78533724][bookmark: _Toc78533127][bookmark: _Toc78533191][bookmark: _Toc78533725][bookmark: _Toc78533128][bookmark: _Toc78533192][bookmark: _Toc78533726][bookmark: _Toc78533129][bookmark: _Toc78533193][bookmark: _Toc78533727][bookmark: _Toc72926437][bookmark: _Toc72926526][bookmark: _Toc72927127][bookmark: _Toc72927217][bookmark: _Toc72926438][bookmark: _Toc72926527][bookmark: _Toc72927128][bookmark: _Toc72927218][bookmark: _Toc72926439][bookmark: _Toc72926528][bookmark: _Toc72927129][bookmark: _Toc72927219][bookmark: _Toc72926440][bookmark: _Toc72926529][bookmark: _Toc72927130][bookmark: _Toc72927220][bookmark: _Ref72845791][bookmark: _Toc120279144]Control interface to the video decoding interface
[bookmark: _Toc120279145]Functions
In order to support immersive media applications, Clause 5.4 defines an abstract video decoding interface. A video decoding platform that complies with this document shall implement this video decoding interface whose IDL can be found in Annex A.
The video decoding interface consists of the abstract functions defined in the following subclause. These functions are defined using the IDL syntax specified in ISO/IEC 19516 Information technology — Object management group — Interface definition language (IDL) 4.2.
Figure 3 depicts an example instantiation of decoder instances using some of the functionalities of the video decoding interface.  The video decoder instances with identifiers 1 to 3 belong to the group with the identifier 4. By this grouping mechanism, the three instances are instructed to write the decoded sequences into a single aggregate buffer and the decoding operations across those instances are performed in a coordinated manner such that no instance runs ahead or behind the others.


[bookmark: _Ref77779638]Figure 3 — Example instantiation using VDI
queryCurrentAggregateCapabilities()
Declaration
The IDL declarations of the queryCurrentAggregateCapabilities() function along with the AggregateCapabilities and PerformancePoint structures and the capabilities flags are defined as follows:
    const unsigned long CAP_INSTANCES_FLAG = 0x1;
    const unsigned long CAP_BUFFER_MEMORY_FLAG = 0x2;
    const unsigned long CAP_BITRATE_FLAG = 0x4;
    const unsigned long CAP_MAX_SAMPLES_SECOND_FLAG = 0x8;
    const unsigned long CAP_MAX_PERFORMANCE_POINT_FLAG = 0xA;

    enum ChromaFormat {monochrome=1, YCbCr_420, YCbCr_422, YCbCr_444};

    struct PerformancePoint {
        float picture_rate;
        unsigned long width;
        unsigned long height;
        unsigned long bit_depth;
        ChromaFormat chroma_format;
    };

    struct AggregateCapabilities {
        unsigned long flags;
        unsigned long max_instances;
        unsigned long buffer_memory;
        unsigned long bitrate;
        unsigned long max_samples_second;
        PerformancePoint max_performance_point;
    };

    AggregateCapabilities queryCurrentAggregateCapabilities (
        in string component_name,
        in unsigned long flags
);

[bookmark: _Ref102148796]Definition
General
The queryCurrentAggregateCapabilities() function can be used by the application to query the instantaneous aggregate capabilities of a decoder platform for a specific codec component.
The capability flags can be set separately or in a single function call to query one or more parameters.
component_name
The component_name provides the name of the component of the decoding platform for which the query applies. The name “All” may be used to indicate that the query is not for a particular component but is rather for all the components of the decoding platform. Components are hardware or software functionalities exposed by the Video Decoding Engine such as decoders.
[bookmark: _Ref108012585]CAP_INSTANCES_FLAG and max_instances
CAP_INSTANCES_FLAG queries the max_instances parameter which indicates the maximum number of decoder instances that can be instantiated at this moment for the provided decoder component.
[bookmark: _Ref108012727]CAP_BUFFER_MEMORY_FLAG and buffer_memory
CAP_BUFFER_MEMORY_FLAG queries the buffer_memory parameter which indicates the instantaneous global maximum available buffer size in bytes that can be allocated independently of any components at this moment on the decoder platform for buffer exchange. The allocation of the memory can be done by the application or the VDE itself depending on the VDE instantiation. 
[bookmark: _Ref108012738]CAP_BITRATE_FLAG and bitrate
CAP_BITRATE_FLAG queries the bitrate parameter which indicates the instantaneous maximum coded bitrate in bits per second that the queried component is able to process.
[bookmark: _Ref108012750]CAP_MAX_SAMPLES_SECOND_FLAG and max_samples_second
CAP_MAX_SAMPLES_SECOND_FLAG queries the max_samples_second parameter which indicates the instantaneous maximum number of luma and chroma samples combined per second that the queried component is able to process.
CAP_MAX_PERFORMANCE_POINT_FLAG and max_performance_point
CAP_MAX_PERFORMANCE_POINT_FLAG queries the max_performance_point parameter which indicates the maximum performance point of a bitstream that can be decoded by the indicated component in a new instance of that decoder component.
[bookmark: _Ref108012773]PerformancePoint
A performance point contains the following parameters:

· picture_rate indicating the instantaneous picture rate of the maximum performance point in pictures per second.
· height indicating the height in luma samples of the maximum performance point.
· width indicating the width in luma samples of the maximum performance point.
· bit_depth indicating the bit depth of the luma samples of the maximum performance point.
· chroma_format indicating the assumed chroma format for this performance point.
[bookmark: _Hlk30062794]
NOTE	Each parameter of the max performance point does not necessarily represent the maximum in that dimension. It is the combination of all dimensions that constitutes the maximum performance point. 
[bookmark: _Ref102149574]getInstance()
Declaration
The IDL declarations of the getInstance() function and the associated ErrorAllocation exception are defined as follows:
    exception ErrorAllocation {
        string reason;
    };

    unsigned long getInstance(
        in string component_name,
        inout unsigned long group_id // optional, default value = -1
    ) raises(ErrorAllocation);

[bookmark: _Ref108012925]Definition
The result of a successful call to the getInstance()function call shall provide the identifier of the instance and the group_id that is assigned or created for this new instance, if one was requested. The default behavior is that the decoder instance does not belong to any already established group but is assigned to a newly created group.
Several decoder instances belonging to thea same group means that the VDE treats those instances collectively such that the decoding statuses of those instances progress in synchrony and not in competition against each other. As a consequence, the VDE will also ensure synchronized output writing operations, possibly into an aggregate buffer. There are no conditions for two video decoder instances to be in the same group. In other words, decoder instances may belong to the same group even if their respective components are different.
setConfig()
Declaration
[bookmark: _Hlk29898939]The IDL declarations of the setConfig() function, the associated ErrorConfig exception, the ConfigDataParameters structure and the ConfigParameters enumeration are defined as follows:
    enum ConfigParameters {
        CONFIG_OUTPUT_BUFFER
    };

    enum OutputFormat {
    	OUTPUT_R;
		OUTPUT_G;
		OUTPUT_B;
		OUTPUT_RGB;      
       OUTPUT_RGBA;
       OUTPUT_DEPTH;
       OUTPUT_ALPHA;
       OUTPUT_AUDIO;
    };

    enum SampleFormat {
  	SCALAR = 1,
	VEC2,
	VEC3,
  	VEC4
    };

    enum SampleType {
  	BYTE = 5120,
  	UNSIGNED_BYTE,
  	SHORT,
  	UNSIGNED_SHORT,
  	UNSIGNED_INT = 5125,
  	FLOAT
    };

    struct ConfigDataParameters {
        OutputFormat   output_format;
        SampleFormat sample_format;
        SampleType sample_type;
        unsigned long sample_stride;
        unsigned long line_stride;
        unsigned long buffer_offset;
        unsigned long output_buffer_handle;
    };

    exception ErrorConfig {
        string reason;
    };

    boolean setConfig (
        in unsigned long instance_id,
        in ConfigParameters config_parameters,
        in ConfigDataParameters  config_data_parameters
    ) raises(ErrorConfig); 
Definition
The setConfig() function may be called with the parameter CONFIG_OUTPUT_BUFFER, in which case it provides a handle to the output buffer and a description of the write operation into that the format of the output buffer. 
The parameters that are passed to this function when setting the configuration for CONFIG_OUTPUT_BUFFER are as followsformat of the buffer shall contain the following parameters:
· sample_format indicating the format of each sample, which can be a scalar, a 2D vector, a 3D vector, or a 4D vector.
· sample_type indicating the type of each component of the sample. 
· sample_stride indicating the number of bytes between 2 consecutive samples of this output.
· line_stride indicating the number of bytes between the first byte of one line and the first byte of the following line of this output.
· buffer_offset indicating the offset into the output buffer, starting from which the output frame should be written.
· output_buffer_handle provides the handle of the output buffer, to which the output of the decoder instance is to be written. The VDE is responsible for the allocation and management of the memory for the output buffer.

[bookmark: _Ref102150050]getParemeter() and setParameter()
Declaration
The IDL declarations of the getParameter() and setParemeter() functions as well as the associated ErrorParameter exception and the ExtParameters enumeration are defined as follows:
    enum ExtParameters {
        PARAM_PARTIAL_OUTPUT,
        PARAM_SUBFRAME_OUTPUT,
        PARAM_METADATA_CALLBACK,
        PARAM_OUTPUT_CROP,
        PARAM_OUTPUT_CROP_WINDOW,
        PARAM_MAX_OFFTIME_JITTER
	};

    enum PartialOutput {
        PARTIAL_OUTPUT_NOT_ALLOWED = 0;
        PARTIAL_OUTPUT_ALLOWED; 
        PARTIAL_OUTPUT_DESIRED;
    };

    struct SubframeOutput {
        unsinged int subframe_id;
    };

    struct MetadataCallback {
        unsigned int metadata_ids[];
        unsigned long metadata_callback;
    };

    struct MaxOfftimeJitter {
        unsinged int jitter_millis;
    };
    

    struct CropWindow {
        unsigned long x;
        unsigned long y;
        unsigned long width;
        unsigned long height;
	};

    exception ErrorParameter {
        string reason;
    };

    any getParameter (
        in unsigned long instance_id,
        in ExtParameters ext_parameters,
        out any parameter
    );

    boolean setParameter (
        in unsigned long instance_id,
        in ExtParameters ext_parameters,
        in any parameter
    ) raises(ErrorParameter);

Definition
General
The getParameter() and setParameter() functions can receive the extended parameters in the clauses below.
[bookmark: _Ref108013219]PARAM_PARTIAL_OUTPUT
PARAM_PARTIAL_OUTPUT indicates whether the output of subframes corrupted/incomplete frames is required, desired, or not allowed. This may be useful to instruct the decoder on how to handle the output of corrupted or incompletely decoded frames as a result of missing or malformed data in the input.

[bookmark: _Ref108013228]PARAM_SUBFRAME_OUTPUT
PARAM_SUBFRAME_OUTPUT indicates the one or more subframes to be output by the decoder. Subframes may e.g. be auxiliary pictures in a video stream. The identifier of the subframe substream is provided as part of the SubframeOutput structure.

[bookmark: _Ref108013359]PARAM_METADATA_CALLBACK
PARAM_METADATA_CALLBACK sets a callback function for a specific metadata type. The list of supported metadata types is codec-dependent and shall be defined for each codec independently. The set of metadata types for which the callback is to be invoked by the VDE as well as the callback function handler are provided in the MetadataCallback structure.

[bookmark: _Ref108013335]PARAM_OUTPUT_CROP
PARAM_OUTPUT_CROP indicates that only part of the decoded frame is desired at the output. The decoder instance may use this information to reduce intelligently its decoding processing by discarding units that do not fall in the cropped output region whenever possible. The information about the area of the video to be output is provided by the CropWindow structure.

[bookmark: _Ref108013343]PARAM_OUTPUT_CROP_WINDOW
PARAM_OUTPUT_CROP_WINDOW indicates the part of the decoded frame to be cropped and output.

[bookmark: _Ref108013351]PARAM_MAX_OFFTIME_JITTER
PARAM_MAX_OFFTIME_JITTER indicates the maximum amount of time in microseconds between consecutive executions of the decoder instance. This parameter is relevant whenever the underlying hardware component is shared among multiple decoder instances, which requires context switching between the different decoder instances. The information about the allowed jitter is provided in the MaxOfftimeJitter structure.
6	© ISO 2022 – All rights reserved
© ISO 2022 – All rights reserved	5
image1.emf
Video Decoding Engine

Video 

decoder 

instance #1

Video 

decoder 

instance #j

…

MDS #n

MDS #1

MTS #1

Application configuration and capability 

query

MTS #m

…

DS #1

Time locking

Output formatting

MTS #1

MTS #p

…

Output Video Decoding Interface

Input formatting

DS #q

… …

ES #1

Input Video Decoding Interface

ES #i


Microsoft_PowerPoint_Slide.sldx
Video Decoding Engine

Video decoder instance #1

Video decoder instance #j

…

MDS #n

MDS #1

MTS #1

Application configuration and capability query

MTS #m

…

DS #1

Time locking

Output formatting

MTS #1

MTS #p

…

Output Video Decoding Interface

Input formatting

DS #q

…

…

ES #1

Input Video Decoding Interface

ES #i












image2.emf
Hardware 

Video Decoder Engine

Engine Control Interface

Video decoder 

instance #1

Video decoder 

instance #j

…

Output Video 

Interface

Output Video 

Interface

Input Video 

Interface


Microsoft_PowerPoint_Slide1.sldx
Hardware 
Video Decoder Engine



Engine Control Interface

Video decoder instance #1

Video decoder instance #j





…





Output Video 
Interface

Output Video 
Interface

Input Video 
Interface












image3.emf
Video decoder instance #1

Group #4

Video decoder instance #2

Group #4

Video decoder instance #3

Group #4

Application configuration

Clock 

component

Aggregate

buffer


Microsoft_PowerPoint_Slide2.sldx


Video decoder instance #1

Group #4

Video decoder instance #2

Group #4

Video decoder instance #3

Group #4

Application configuration

Clock component



































Aggregate

buffer
























