
[image: Text

Description automatically generated]ISO/IEC JTC 1/SC 29/WG 03 N00861

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Input Contribution
Title:	Potential improvements of ISO/IEC 23090-14 CDAM 2: Support for Haptics, Augmented Reality, Avatars, Interactivity, MPEG-I Audio, and Lighting
Date of document:	2023-06-27
Source:	WG03
No. of pages:	50 (with cover page)
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

In clause 2 on normative references, add the following references
Khronos, EXT_lights_image_based, https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Vendor/EXT_lights_image_based
Update Figure 3 with the attached figure.
Add clause 8 with the following content
8 [bookmark: _Toc450303222][bookmark: _Toc9996972][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Toc353342675]Advanced Features
8.1 	AR Anchoring
8.1.1	MPEG_scene_anchor and MPEG_node_anchor extensions
AR anchoring is supported at the scene level and at the root node level through the definition of two extensions MPEG_scene_anchor and MPEG_node_anchor.
When present, the MPEG_scene_anchor extension shall be included as extension to the scene object.
When present, the MPEG_node_anchor extension shall be included as extension to one or several root nodes. Multiple AR anchoring is then supported by adding the MPEG_node_anchor extension to several root nodes.
8.1.2	Semantics
The MPEG_scene_anchor and MPEG_node_anchor extensions require the Trackable and Anchor objects provided in Table 8.1-1. The definition of these objects shall be provided within an extension at the glTF file level.
Table 8.1-1 – Common objects of the MPEG_scene_anchor and MPEG_node_anchor extensions provided at the glTF file level
	Name
	Type
	Default
	Usage
	Description

	trackables
	array(Trackable)
	N/A
	M
	provides a list of trackables used by the anchor objects.

	anchors
	array(Anchor)
	N/A
	M
	Provides a list of anchors for a scene or for root nodes to enable AR anchoring

The syntax and semantics of the Anchor object is provided in Table 8.1-2.
[bookmark: _Ref86155530]Table 8.1-2 – Definition of the Anchor object
	Name
	Type
	Usage
	Default
	Description

	trackable
	integer
	M
	
	Index of the trackable in the trackables array that will be used for this anchor.

	requiresAnchoring
	boolean
	M
	
	If TRUE, the application shall skip the virtual assets attached to this anchor until the pose of this anchor in the real world is known.
if FALSE, the application shall process the virtual assets attached to this anchor

	minimumRequiredSpace (x, y, z)
	vec3
	O
	(0,0,0)
	Space required to anchor the AR asset (x, y, z in meters). This space corresponds to an axis-aligned bounding box expressed in the trackable local space. This value shall be compared to the bounding box of the real available space determined by the application.

	aligned
	enumeration
	O
	NOT_USED
	the aligned flag may take one of the following values: NOT_USED=0, ALIGNED_NOTSCALED=1, ALIGNED_SCALED=2.
If ALIGNED_SCALED is set, the bounding box of the virtual assets attached to that anchor is aligned and scaled to match the bounding box of the real available space determined by the application.

	actions
	array(Action)
	O
	
	Indices of the actions in the actions array of the interactivity extension to be executed once the pose of this anchor is determined. An example is a setTransform action to place the virtual assets attached to that anchor.

	light
	integer
	N/A
	O
	Reference to an item in the lights array of the MPEG_lights_texture_based extension.

The definition of the Trackable object is provided in the Table 8.1-3.
A trackable is a model of an element of the real world of which features are available and/or may be extracted. Each trackable provides a local reference space in which an anchor pose can be expressed.
A MPEG anchor corresponds to a real-world pose, identified using one trackable. Each MPEG anchor provides a local reference space in which a pose can be expressed. This local reference space is derived from the trackable local reference space using a pre-defined 3D transform.
The semantics of a trackable are provided in table 8.1-3.
Table 8.1-3 – Definition of the Trackable object
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	TRACKABLE_PLANE
	The type of the trackable as defined in table 8.1-4

	if (type == TRACKABLE_FLOOR) {
	
	
	
	This trackable corresponds to the OpenXR stage reference space. It is a runtime defined flat, rectangular space that is empty and can be walked around on.
Editor’s note: the definition of the TRACKABLE_FLOOR needs to be done in the standard text and will be using a reference to OpenXR. This does not require an OpenXR conforming runtime, but if another runtime is used, the implementation needs to map the signaling to the runtime application.

	}
	
	
	
	

	if (type == TRACKABLE_VIEWER) {
	
	
	
	 This trackable corresponds to the OpenXR View reference space. It tracks the view origin used to generate view transforms for the primary viewer.
Editor’s note: the definition of the TRACKABLE_VIEWER needs to be done in the standard text and will be using a reference to OpenXR. This does not require an OpenXR conforming runtime, but if another runtime is used, the implementation needs to map the signaling to the runtime application.

	}
	
	
	
	

	if (type == TRACKABLE_CONTROLLER) {
	
	
	
	Specifies a trackable that is mapped to a controller. This corresponds to one of the OpenXR action spaces.
Editor’s note: the definition of the TRACKABLE_CONTROLLER needs to be done in the standard text and will be using a reference to OpenXR. This does not require an OpenXR conforming runtime, but if another runtime is used, the implementation needs to map the signaling to the runtime application.

	 path
	string
	M
	
	a path that describes the action space as specified by OpenXR. An example is “/user/hand/left/input”

	}
	
	
	
	

	if (type== TRACKABLE_GEOMETRIC) {
	
	
	
	

	 geometricConstraint
	enumeration
	M
	HORIZONTAL_PLANE
	the geometricConstraint flag may take one of the following values:
HORIZONTAL_PLANE=0, VERTICAL_PLANE=1

	}
	
	
	
	

	if (type== TRACKABLE_MARKER_2D OR MARKER_3D) {
	
	
	
	

	 markerNode
	number
	M
	
	Index to the node in the nodes array in which the marker geometry and texture are described.

	}
	
	
	
	

	if (type== TRACKABLE_MARKER_GEO) {
	
	
	
	

	 geoCoordinate
	number
	M
	N/A
	index to geo coordinate item in array in MPEG_GEO_COORDINATES extension.
Editor’s note: to check the availability of the MPEG_GEO_COORDINATES extension

	}
	
	
	
	

	if (type== TRACKABLE_APPLICATION) {
	
	
	
	

	 trackable_id
	string
	M
	
	An application-defined trackable id, that is known to the application.

	}
	
	
	
	

Table 8.1-4 – Definition of the Trackable type
	Trackable type
	Description

	TRACKABLE_FLOOR = 0
	trackable mapped to the viewer’s floor

	TRACKABLE_VIEWER = 1
	trackable mapped to the viewer’s origin in the forward direction for the viewer

	TRACKABLE_CONTROLLER = 2
	trackable mapped to a controller

	TRACKABLE_PLANE = 3
	trackable mapped to a plane

	TRACKABLE_MARKER_2D = 4
	trackable mapped to a 2D marker

	TRACKABLE_MARKER_3D = 5
	trackable mapped to a 3D marker

	TRACKABLE_MARKER_GEO = 6
	trackable mapped to geospatial coordinates

	TRACKABLE_APPLICATION = 7
	Trackable managed by the application

Table 8.1-5– MPEG_anchor_ object instantiation at the scene level
	Name
	Type
	Default
	Usage
	Description

	anchor
	integer
	0
	M
	Reference to an item in the anchors array of the MPEG_anchor extension.

Table 8.1-6 – MPEG_anchor_based object instantiation at the node level
	Name
	Type
	Default
	Usage
	Description

	anchor
	integer
	0
	M
	Reference to an item in the anchors array of the MPEG_anchor extension.

8.1.3	Processing model
Each trackable provides a local reference space in which an anchor pose can be expressed. This local reference space is right-handed and depends on the type of trackable as follows:

· TRACKABLE_FLOOR
The width and length of a plane span the xz-plane of a floor anchor instance's local coordinate system. The origin of the local coordinate system is located at the center of the detected flat rectangular surface. The y-axis of the plane anchor is the plane’s normal vector and the X and Z axes are aligned with the rectangle edges.

[image: Chart

Description automatically generated with medium confidence]

· TRACKABLE_VIEWER
The VIEW space tracks the view origin used to generate view transforms for the primary viewer (or centroid of view origins if stereo), with +Y up, +X to the right, and -Z forward. This space points in the forward direction for the viewer without incorporating the user’s eye orientation, and is not gravity-aligned. It’s a head locked space.

· TRACKABLE_CONTROLLER
The grip, aim and palm controller types are defined.
A grip pose allows applications to reliably render a virtual object held in the user’s hand, whether it is tracked directly or by a motion controller. The grip pose is defined as follows:
· The grip position:
· For tracked hands: The user’s palm centroid when closing the fist, at the surface of the palm.
· For handheld motion controllers: A fixed position within the controller that generally lines up with the palm centroid when held by a hand in a neutral position. This position should be adjusted left or right to center the position within the controller’s grip.
· The grip orientation
· +X axis: When you completely open your hand to form a flat 5-finger pose, the ray that is normal to the user’s palm (away from the palm in the left hand, into the palm in the right hand).
· -Z axis: When you close your hand partially (as if holding the controller), the ray that goes through the center of the tube formed by your non-thumb fingers, in the direction of little finger to thumb.
· +Y axis: orthogonal to +Z and +X using the right-hand rule.
An aim pose allows applications to point in the world using the input source, according to the platform’s conventions for aiming with that kind of source. The aim pose is defined as follows:
· For tracked hands: The ray that follows platform conventions for how the user aims at objects in the world with their entire hand, with +Y up, +X to the right, and -Z forward. The ray chosen will be runtime-dependent, for example, a ray emerging from the palm parallel to the forearm.
· For handheld motion controllers: The ray that follows platform conventions for how the user targets objects in the world with the motion controller, with +Y up, +X to the right, and -Z forward. This is usually for applications that are rendering a model matching the physical controller, as an application rendering a virtual object in the user’s hand likely prefers to point based on the geometry of that virtual object. The ray chosen will be runtime-dependent, although this will often emerge from the frontmost tip of a motion controller.

A palm pose allows applications to reliably anchor visual content relative to the user’s physical hand, whether the user’s hand is tracked directly or its position and orientation is inferred by a physical controller. The palm pose is defined as follows:
· The palm position: The user’s physical palm centroid, at the surface of the palm.

· The palm orientation:
· +X axis: When a user is holding the controller and straightens their index finger, the ray that is normal to the user’s palm (away from the palm in the left hand, into the palm in the right hand)
· -Z axis: When a user is holding the controller and straightens their index finger, the ray that is parallel to their finger’s pointing direction.
· +Y axis: orthogonal to +Z and +X using the right-hand rule.

· TRACKABLE_PLANE
The width and length of a plane span the xz-plane of the anchor instance's local coordinate system. The origin of the local coordinate system is located at the center of the detected flat rectangular surface. The y-axis of the plane anchor is the plane’s normal vector, and the X and Z axes are aligned with the rectangle edges.

[image: Chart, box and whisker chart

Description automatically generated]

· TRACKABLE_MARKER_2D
The width and length of the marker 2D span the xz-plane of the anchor instance's local coordinate system. The origin of the local coordinate system is located at the center of the detected marker 2D surface. The y-axis of the anchor is the plane’s normal vector, and the X and Z axes are aligned with the rectangle edges.

[image: Chart

Description automatically generated with medium confidence]

· TRACKABLE_MARKER_3D
For 3D models, the origin is the center of the mesh. The X, Y, and Z axes correspond to the axes of the world space.

· TRACKABLE_MARKER_GEO
The y-axis matches the direction of gravity as detected by the device's motion sensing hardware, y points downward.
The x- and z-axes match the longitude and latitude directions. -Z points to true north -X points west.

[image: Diagram, radar chart

Description automatically generated]

· TRACKABLE_APPLICATIO
The application-defined trackable object must have a right-handed coordinate space.
Either scene_anchor extension or node_anchor extension(s) may exclusively be present in the MPEG-I Scene Description. Upon activation of the XR mode, the Presentation Engine identifies the anchor points associated with the scene or with the root nodes and the related trackables.
If the requiresAnchoring Boolean parameter of an anchor is set to TRUE, the application shall skip the virtual assets attached to this anchor until the pose of this anchor in the real world is known. Otherwise, the application shall process the virtual assets attached to this anchor.
Upon the detection of a trackable within the user’s real environment, the application creates an XR space and possibly determines the bounding box of the real available space.
If the optional minimumRequiredSpace parameter of the anchor referencing the trackable is present, the application shall skip the virtual assets attached to that anchor if the real available space is less than the minimumRequiredSpace.
Otherwise, the application shall start the tracking, shall launch the actions provided in the actions parameter of the anchor and shall apply the necessary spatial transformations to the virtual assets with respect to the local space of the anchor prior to rendering.
The application could update at runtime a tracking status of each trackable defined in the trackables array at the scene level, for instance as follows:
· A tracking status set to TRUE when the trackable is detected and when its pose is well identified.
· A tracking status set to FALSE when the trackable position is lost (e.g., no more detected).
To provide the flexibility to define an anchor space different than the trackable’s space,
· The TRS of the node having the MPEG_node_anchor extension defines the relative transformation between the trackable’s space and the anchor space in which the child nodes containing the virtual assets are placed.
· A setTransform action may be defined to affect the scene root nodes in the case of a MPEG_scene_anchor extension. This transformation defines the TRS between the trackable’s space and the anchor space in which all the scene root nodes are placed.
Actions are defined in MPEG_scene_interactivity extension.
If the array of action is not empty, the actions are executed once the pose of anchor is determined. If the tracking status is set to FALSE after being TRUE, actions are not canceled.8.2 	Interactivity
8.2.1	General
The proposed compromise approach supports XR interactivity at the scene level and at the node level through the definition of two extensions MPEG_scene_interactivity and MPEG_node_interactivity.
The MPEG_scene_interactivity extension shall be included as extension to the scene object.
The MPEG_node_interactivity extension shall be included as extension to node object.
This extension is used to complement the interactivity defined at the scene level.
8.2.2 Semantics
8.2.2.1	Semantics at scene level
The semantic of the MPEG_scene_interactivity glTF extension is based on the definition of trigger, action and behavior objects as shown in Table 8.2-1.

	Name
	Type
	Usage
	Default
	Description

	triggers
	array
	M
	[]
	Contains the definition of all the triggers used in that scene

	actions
	array
	M
	[]
	Contains the definition of all the actions used in that scene

	behaviors
	array
	M
	[]
	Contains the definition of all the behaviors used in that scene. A behavior is composed of a pair of (triggers, actions), control parameters of triggers and actions, a priority weight and an optional interrupt action

Table 8.2-1: Semantic of the MPEG_scene_interactivity extension
The semantic of a trigger is provided in Table 8.2-2.

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	"TRIGGER_COLLISION"
	One element of Table 8.2-3 that defines the type of the trigger.

	if (type == TRIGGER_COLLISION){
	
	
	
	

	Nodes
	array
	M
	
	Indices of the nodes in the nodes array to be considered for collision determination. Any detection of collision shall activate the trigger

	primitives
	array(Primitive)
	O
	[]
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in table 8.2-5.

	}
	
	
	
	

	if (type == TRIGGER_PROXIMITY){
	
	
	
	

	referenceNode
	number
	M
	Default Camera
	Index in the nodes array, of the node to consider for the proximity evaluation.

	distanceLowerLimit
	number
	M
	0
	Threshold min in meters for the node proximity calculation

	distanceUpperLimit
	number
	O
	
	Threshold max in meters for the node proximity calculation

	nodes
	array
	M
	[]
	Indices of the nodes in the nodes array to be considered. All the nodes shall have a distance from the user camera above the distanceLowerLimit and below the distanceUpperLimit to activate the trigger

	[bookmark: _Hlk138717622]primitives
	array(Primitive)
	O
	[]
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in table 8.2-5.

	}
	
	
	
	

	if (type== TRIGGER_USER_INPUT){
	
	
	
	

	userInputDescription
	string
	M
	
	Describe the user body part and gesture related to the input. E.g. “/user/hand/left/grip”

	Nodes
	array
	O
	
	Indices of the nodes in the nodes array to be considered for this user input

	}
	
	
	
	

	if (type== TRIGGER_VISIBILITY){
	
	
	
	

	cameraNode
	number
	M
	
	Index to the node containing a camera in the nodes array for which the visibilities are determined

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be considered. All the nodes shall be visible by the camera to activate the trigger

	}
	
	
	
	

Table 8.2-3: Semantic of a trigger
	Trigger type
	Description

	TRIGGER_COLLISION=0
	Collision Trigger

	TRIGGER_PROXIMITY
	Proximity Trigger

	TRIGGER_USER_INPUT
	User_Input Trigger

	TRIGGER_VISIBILITY
	Visibility Trigger

Table 8.2-4: type of trigger

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	O
	BV_SPHEROID
	Describes the type of primitive used to activate the proximity trigger. The available options are. BV_CUBOID, BV_PLANE_REGION, BV_CYLINDER_REGION, BV_CAPSULE_REGION, and the default BV_SPHEROID. Semantics are presented in table 8.2-.6

	boundary
	number
	O
	0.0
	Defines the region of intersection within the primitive. if zero then all area of the primitive activates the trigger.

[bookmark: _Ref131152580]Table 8.2-5: Semantic description of “MPEG_scene_interactive.trigger.primitive” properties.

	Name
	Type
	Usage
	Default
	Description

	if (type == BV_CUBOID) {
	
	
	
	

	width
	number
	M
	1.0
	Width of the box.

	height
	number
	M
	1.0
	Height of the box.

	depth
	number
	M
	1.0
	Depth of the box.

	centroid
	vec3
	M
	(0.0, 0.0, 0.0)
	Centroid 3D coordinate (x,y,z) of the cube

	}
	
	
	
	

	if (type == BV_PLANE_REGION) {
	
	
	
	

	width
	number
	M
	1.0
	Width of the plane.

	height
	number
	M
	1.0
	Height of the plane.

	centroid
	vec2
	M
	(0.0, 0.0)
	Centroid 2D coordinate (x,y) or (x,z) or (y,z) of the plane.

	}
	
	
	
	

	if (type == BV_CYLINDER_REGION) {
	
	
	
	

	radius
	number
	M
	1.0
	Radius of the cylinder.

	length
	number
	M
	1.0
	Length of the cylinder.

	centroid
	vec3
	M
	(0.0, 0.0, 0.0)
	Centroid 3D coordinate (x,y,z) of the cylinder

	}
	
	
	
	

	if (type == BV_CAPSULE_REGION) {
	
	
	
	

	radius
	number
	M
	1.0
	Radius of the capsule.

	base
	vec3
	M
	(0.0, 0.0, 0.0)
	Centroid 3D coordinate (x,y,z) of the base semi-sphere of the capsule.

	top
	vec3
	M
	(0.0, 0.0, 0.0)
	Centroid 3D coordinate (x,y,z) of the top semi-sphere of the capsule.

	 }
	
	
	
	

	if (type == BV_SPHEROID) {
	
	
	
	

	radius
	number
	M
	1.0
	Radius of the sphere.

	centroid
	vec3
	M
	(0.0, 0.0, 0.0)
	Centre 3D coordinate (x,y,z) of the sphere.

	}
	
	
	
	

[bookmark: _Ref131152588]Table 8.2-6: Semantical description of each primitive region.

The semantic of an action is provided in Table 8.2-7.
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	ACTION_ACTIVATE
	One element of Table 8.2-5 that defines the type of the action.

	delay
	number
	O
	
	Duration of delay in second before executing the action

	[bookmark: _Hlk91073429]if (type== ACTION_ACTIVATE){
	
	
	
	

	activationStatus
	enum
	M
	ENABLED
	ENABLED=0: the node shall be processed by the application
DISABLED =1: the node shall skipped by the application

	Nodes
	array
	M
	[]
	Indices of the nodes in the nodes array to set the activation status

	}
	
	
	
	

	if (type== ACTION_TRANSFORM){
	
	
	
	

	transform
	
	 M
	
	4x4 transformation matrix to apply to the nodes

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be transformed

	}
	
	
	
	

	if (type== ACTION_BLOCK){
	
	
	
	

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to lock their related transforms.

	}
	
	
	
	

	if (type == ACTION_ANIMATION){
	
	
	
	

	animation
	number
	M
	
	index of the animation in the animations array to be considered

	animationControl
	string
	M
	"ANIMATION_PLAY"
	One element of Table 8.2-6 that defines the control of the animation.

	}
	
	
	
	

	if (type == ACTION_MEDIA){
	
	
	
	

	media
	number
	M
	
	Index of the media in the MPEG media array to be considered

	mediaControl
	enumeration
	M
	MEDIA_PLAY
	 One element of Table 8.2-7 that defines the control of the media.

	}
	
	
	
	

	if (type == ACTION_MANIPULATE){
	
	
	
	

	manipulate_action_type
	string
	M
	ACTION_MANIPULATE_FREE
	One element of Table 8.2-8 that defines the action manipulate type.

	axis
	array
	O
	Up
	(x,y,z) coordinates of the axis used for rotation and sliding. These coordinates are relative to the local space created by the USER_INPUT trigger activation. E.g. a “/user/hand/left/pose” user input trigger creates a local space attached to the user left hand

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be manipulated.

	}
	
	
	
	

	if (type == ACTION_SET_MATERIAL){
	
	
	
	

	material
	number
	M
	
	Index of the material in the materials array to apply to the nodes

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to set their material

	}
	
	
	
	

	if (type == ACTION_SET_HAPTIC){
	
	
	
	

	hapticActionNodes
	array(HapticActionNode)
	M
	N/A
	List of haptic action nodes.

	}
	
	
	
	

	if (type == ACTION_SET_AVATAR) {
	
	
	
	

	avatarAction
	string
	M
	
	The avatarAction is provided by a URN that uniquely identifies the avatar actions list. For example, the URN of the reference MPEG avatar actions list is given in Annex H.

	nodes
	array
	
	
	Indices of the nodes in the nodes array to launch their avatar actions.

	}
	
	
	
	

[bookmark: _Ref91697516]Table 8.2-4: Semantic of action

	Action type
	Description

	ACTION_ACTIVATE=0
	Set activation status of a node

	ACTION_TRANSFORM
	Set transform to a node

	ACTION_BLOCK
	Block the transform of a node

	ACTION_ANIMATION
	Select and control an animation

	ACTION_MEDIA
	Select and control a media

	ACTION_MANIPULATE
	Select a manipulate action

	"ACTION_SET_MATERIAL
	Set new material to nodes

	ACTION_SET_HAPTIC
	Get haptic feedbacks on a set of nodes

	ACTION_SET_AVATAR
	Get avatar related actions

Table 8.2-5: Type of action

	Animation Control
	Description

	ANIMATION_PLAY=0
	Play the animation

	ANIMATION_PAUSE
	Pause the animation

	ANIMATION_RESUME
	Resume the animation

	ANIMATION_STOP
	Stop the animation

Table 8.2-6: Control of animation

	Media Control
	Description

	MEDIA_PLAY=0
	Play the media

	MEDIA_PAUSE
	Pause the media

	MEDIA_RESUME
	Resume the media

	MEDIA_STOP
	Stop the media

Table 8.2-7: control of media

	Action Manipulate Type
	description

	ACTION_MANIPULATE_FREE=0
	the nodes follow the user pointing device and its rotation

	ACTION_MANIPULATE_SLIDE
	the nodes move linearly along the provided axis by following the user pointing device

	ACTION_MANIPULATE_TRANSLATE
	the nodes translate by following the user pointing device

	ACTION_MANIPULATE_ROTATE
	the nodes rotate around the provided axis by following the user pointing device

	ACTION_MANIPULATE_SCALE
	performs a central scaling of the nodes by following the user pointing device

Table 8.2-8: Action Manipulate Type
The semantic of a behavior is provided in Table 8.2-9.
	Name
	Type
	Usage
	Default
	Description

	triggers
	array

	M
	
	Indices of the triggers in the triggers array considered for this behavior

	actions
	array
	M
	
	Indices of the actions in the actions array considered for this behavior

	triggersCombinationControl
	string
	M
	“”
	Set of logical operations to apply to the triggers
A ‘#’ indicates the trigger index, ‘&’ indicates a logical AND operation, ‘|’ a logical OR operation and ‘~’ a NOT operation. Parenthesis are used to group some operations. Such a syntax may give the following string: “#1&~#2|(#3)”.
The default empty string is understood as a logical OR between all the triggers.
A regex expression (https://json-schema.org/understanding-json-schema/reference/regular_expressions.html) is specified in the JSON schema to validate this string.

	triggersActivationControl
	string
	M
	"TRIGGER_ACTIVATE_FIRST_ENTER"
	Indicates when the combination of the triggers shall be activated for launching the actions. One element of that Table 8.2-10 defines the activation control of triggers.

	actionsControl
	enum
	M
	SEQUENTIAL
	Defines the way to execute the defined actions.
SEQUENTIAL=0: each defined action is executed sequentially in the order of the actions array,
PARALLEL=1: the defined actions are executed concurrently

	interruptAction
	number
	O
	
	Index of the action in the actions array to be executed if the behavior is still on-going and is no more defined in a newly received scene update

	priority
	number
	M
	0
	Weight associated to the behavior. Used to select a behavior when several behaviors are active at same time for one node

Table 8.2-9:semantic of behavior
	Trigger Activation Control
	Description

	TRIGGER_ACTIVATE_FIRST_ENTER=0
	activate when the conditions are first met

	TRIGGER_ACTIVATE_EACH_ENTER
	activate each time the conditions are first met

	TRIGGER_ACTIVATE_ON
	activate as long as the conditions are met

	TRIGGER_ACTIVATE_FIRST
	activate when the conditions are first no longer met

	TRIGGER_ACTIVATE_EACH_EXIT
	activate each time the conditions are no longer met

	TRIGGER_ACTIVATE_OFF
	activate as long as the conditions are not met

Table 8.2-10:Trigger Activation Control

	Property
	Type
	Required
	Default
	Description

	node
	integer

	M
	N/A
	Id of the node in the glTF nodes array

	actionLocation
	integer
	O
	0xFFFFFFFF
	Body part mask specifying where on the body the signal can be rendered.

	washout
	boolean
	O
	False
	Specifies whether the action should trigger a washout (reset to the origin) of the associated devices.

	useCollider
	boolean
	O
	False
	Used with a Collision trigger. If True, the rendering engine shall use collision information to estimate the desired location of the haptic feedback on the body. If false, the signal shall be rendered based on the information specified in the Haptic file.

	materialHapticModality
	array(enum)
	O
	N/A
	List of haptic material modalities that shall be rendered. Possible values are detailed in Table 8.2-11.

	hapticActionMedias
	array(HapticActionMedia)
	M
	N/A
	List of Haptic Action Media

[bookmark: _Ref130999759]Table 8.2-11: Semantic of HapticActionNode object

	Property
	Type
	Required
	Default
	Description

	mediaIndex
	integer

	M
	N/A
	Index in the Media_reference array of the MPEG_haptic extension.

	perceptionIndices
	array(integer)
	M
	N/A
	Indices of the perceptions of the media that shall be rendered. If the list if empty all perceptions shall be rendered

	hapticModality
	array(enum)
	O
	N/A
	List of haptic modalities that can be rendered. Possible values are described in Table 8.2-10.

	hapticControl
	string
	O
	“HAPTIC_PLAY”
	One element of Table 8.2-10 that defines the control of the haptic rendering.

	loop
	boolean
	O
	False
	Specifies if the haptic rendering of the data should be continuously looping

[bookmark: _Ref131000756]Table 8.2-12: Semantic of the HapticActionMedia object

	Pressure

	Acceleration

	Velocity

	Position

	Temperature

	Vibrotactile

	Water

	Wind

	Force

	Electrotactile

	Vibrotactile Texture

	Stiffness

	Friction

	Other

[bookmark: _Ref127171820]Table 8.2-13: List of haptic modalities

	Stiffness

	Friction

	Vibrotactile Texture

	Temperature

	Vibration

	Custom

[bookmark: _Ref127171917]Table 8.2-14: List of haptic Material Modalities

[bookmark: _heading=h.4i7ojhp]
	
	Name
	Body_part_mask (binary)
	Hexadecimal
	Decimal

	0
	Unspecified
	00000000000000000000000000000000
	0x00000000
	0

	1
	Head Face
	00000000000000000000000000000001
	0x00000001
	1

	2
	Head Back/Neck/Ears
	00000000000000000000000000000010
	0x00000002
	2

	3
	Mouth Bag
	00000000000000000000000000000100
	0x00000004
	4

	4
	Lower Jaw
	00000000000000000000000000001000
	0x00000008
	8

	5
	Upper Jaw
	00000000000000000000000000010000
	0x00000010
	16

	6
	Eye Left
	00000000000000000000000000100000
	0x00000020
	32

	7
	Eye Right
	00000000000000000000000001000000
	0x00000040
	64

	8
	Chest Front
	00000000000000000000000010000000
	0x00000080
	128

	9
	Chest Back
	00000000000000000000000100000000
	0x00000100
	256

	10
	Upper Arm Left
	00000000000000000000001000000000
	0x00000200
	512

	11
	Lower Arm Left
	00000000000000000000010000000000
	0x00000400
	1 024

	12
	Hand Left
	00000000000000000000100000000000
	0x00000800
	2 048

	13
	Upper Arm Right
	00000000000000000001000000000000
	0x00001000
	4 096

	14
	Lower Arm Right
	00000000000000000010000000000000
	0x00002000
	8 192

	15
	Hand Right
	00000000000000000100000000000000
	0x00004000
	16 384

	16
	Abdomen Front
	00000000000000001000000000000000
	0x00008000
	32 768

	17
	Abdomen Back
	00000000000000010000000000000000
	0x00010000
	65 536

	18
	Upper Leg Left
	00000000000000100000000000000000
	0x00020000
	131 072

	19
	Lower Leg Left
	00000000000001000000000000000000
	0x00040000
	262 144

	20
	Foot Left
	00000000000010000000000000000000
	0x00080000
	524 288

	21
	Upper Leg Right
	00000000000100000000000000000000
	0x00100000
	1 048 576

	22
	Lower Leg Right
	00000000001000000000000000000000
	0x00200000
	2 097 152

	23
	Foot Right
	00000000010000000000000000000000
	0x00400000
	4 194 304

	24-32
	Reserved
	00000000010000000000000000000000 - 10000000000000000000000000000000
	0x00800000 -0x80000000
	8 388 608 - 2 147 483 648

[bookmark: _Ref116566448][bookmark: _Ref116365499][bookmark: _Ref116365293]Table 8.2-15: Body part masks
[bookmark: _heading=h.2xcytpi]
	Name
	Body_part_mask (binary)
	Hexadecimal
	Decimal

	Right arm
	00000000000000000111000000000000
	0x00007000
	28 672

	Left arm
	00000000000000000000111000000000
	0x00000E00
	3 584

	Right leg
	00000000011100000000000000000000
	0x00700000
	7 340 032

	Left leg
	00000000000011100000000000000000
	0x000E0000
	917 504

	Upper body
	00000000000000011111111111111111
	0x0001FFFF
	131 071

	Lower body
	00000000011111100000000000000000
	0x007E0000
	8 257 536

	Full body
	11111111111111111111111111111111
	0xFFFFFFFF
	4 294 967 295

[bookmark: _Ref116566498]Table 8.2-16: Examples of body part combinations
	Haptic Control
	Description

	“HAPTIC_PLAY”
	Start the rendering of the haptic data

	“HAPTIC_PAUSE”
	Pause the rendering of the haptic data

	“HAPTIC_RESUME”
	Resume the rendering of the haptic data

	“HAPTIC_STOP”
	Stop the rendering of the haptic data

[bookmark: _Ref131000922]Table 8.2-17: List of Haptic controls

8.2.2.2	Semantics at node level
In complement to the interactivity objects defined in the glTF scene-level extension, some additional data could be provided at the level of the affected glTF nodes to specialize the trigger activation.
The semantic of the MPEG_node_interactivity glTF extension is shown in 8.2-11.
	Name
	Type
	Usage
	Default
	Description

	triggers
	array
	M
	[]
	Array of node triggers (as defined in Table 8.2-12). Only distinct types are allowed.
The minimum size of this array is 0, and the maximum size is size of trigger types as defined in this specification.

 Table 8.2-11: Semantic of the MPEG_node_interactivity extension

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	TRIGGER_COLLISION
	One element of Table 8.2-3 that defines the type of the trigger

	if (type == TRIGGER_COLLISION){
	
	
	
	

	Collider
	integer
	M
	N/A
	the index of the mesh element that provides the collider geometry for the current node.
The collider mesh may reference a material.

	static
	boolean
	M
	True
	If True, the collider is defined as a static collider.

	usePhysics
	boolean
	M
	false
	Indicates if the object shall be considered by the physics simulation.

	if (usePhysics)
{
	
	
	
	

		useGravity
	boolean
	M
	true
	Indicates if the gravity affects the object

		mass
	number
	M
	1
	Mass of the object in kilogram.

		bounciness
	number
	M
	0.0
	Provides the amount that an object bounces in response to a collision. The typical range is [0.0 1.0], where 0.0 represents completely not bouncy and 1.0 represents the maximum bounciest.

		roughness
	number
	M
	0.5
	Provides the roughness of an object which affects how much the object moves in response to a collision. The typical range is [0.0 1.0].

	}
	
	
	
	

	[bookmark: _Hlk138717683]primitives
	array(Primitive)
	O
	[]
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in table 8.2-5.

	}
	
	
	
	

	if (type == TRIGGER_PROXIMITY){
	
	
	
	

	allow_occlusion
	boolean
	M
	True
	Indicates if occlusion by other nodes should be considered

	upper_distance_weight
	number
	O
	1
	The weight applied
to the distanceUpperLimit parameter defined at scene level

	lower_distance_weight
	number
	O
	1
	The weight applied
to the distanceLowerLimit parameter defined at scene level

	primitives
	array(Primitive)
	O
	[]
	List of primitives used to activate the proximity or collision trigger. Semantics are presented in table 8.2-5.

	}
	
	
	
	

	if (type ==TRIGGER_USER_INPUT){
	
	
	
	

	userInputParameters
	array
	M
	[]
	Provides additional information related to the user inputs (eg “max speed = 0.5”)

	}
	
	
	
	

	if (type== TRIGGER_VISIBILITY){
	
	
	
	

	visibilityFull
	boolean
	M
	True
	Indicates if the visibility shall be full or partial to activate the trigger

	nodes
	array
	O
	[]
	Set of nodes that shall not be considered for the visibility computation

	mesh
	number
	O
	
	Index of the mesh in the scene meshes array that will be used to compute visibility

	}
	
	
	
	

[bookmark: _Ref117783763]Table 8.2-12: Semantic of the MPEG_node_interactivity.trigger extension
8.2.3	Processing model
When a scene description file becomes available, the Presentation Engine
· parses the related glTF file
· creates each behavior composed of triggers and actions described at the interactivity scene level extension
· specializes the trigger for each affected node with the additional data provided at the interactivity node level extension if present
At runtime, the presentation Engine iterates on each behavior and performs the following tasks:
· checks the activation status of each trigger of this behavior by following the procedure detailed in Figure 8.2-1,
· checks the logical combination of these trigger status,
· if this status satisfies the triggersActivationControl value, launches the corresponding actions.

[image: A picture containing graphical user interface

Description automatically generated]
[bookmark: _Ref113870174]Figure 8.2-1: processing model for the activation of a single trigger
When several behaviors are in concurrence to affect the same node(s) at the same time, the behavior having the highest priority is considered.
When a new scene description update is received, the application follows the procedure detailed in Figure 8.2-2. An on-going behavior corresponds to a behavior:
· having its triggers status verifying the triggersActivationControl value for that frame,
· or having previously launched a play action related to a media/animation,
· or having previously launched an action with a delay not yet expired.

[image:]
[bookmark: _Ref91852496]Figure 8.2-2: Processing model when a new scene description update is received.

8.3 Avatar
8.3.1	General
[bookmark: _Hlk125030471]Signalling an avatar at a node level is achieved by the definition of the MPEG_node_avatar extension.
Depending on the input components and the offline model, the proper Avatar reconstruction and animation needs to be instantiated to generate the final dynamic/animated 3D mesh of the Avatar.
When considering describing a user’s avatar in scene description, the following requirements are derived:
· The avatar may be reconstructed/animated from a wide range of Avatar representations,
· The reconstructed/animated avatar representation abides by the supported primitives in scene description,
· It is possible to associate interactivity triggers with different parts/segments of the user avatar (e.g. hand or finger) using the node interactivity triggers.

To address these requirements, the avatar reconstruction/animation is assumed to be independent of the avatar rendering. This design aligns with the principles and architecture of this specification. Irrespective of the chosen avatar representation format, the Presentation Engine is then only required to render the reconstructed avatar in one of the supported 3D formats, such as a dynamic mesh. The following figure depicts how this approach.

[image:]
Figure 8.3-1 Avatar media pipeline
The MPEG_node_avatar extension shall be included as extension to node object. All referenced mesh elements by this node will be reconstructed from an Avatar representation.
The mesh of humanoid avatars is assumed to be in a T-pose.

8.3.2	Semantics
The application identifies the avatar format and reconstruction method based on the type of the MPEG_node_avatar extension. The default type is defined in Annex H of this specification.
[bookmark: _Ref131770445]Table 1: Description of `MPEG_node_avatar` extension
	Name
	Type
	Usage
	Default
	Description

	type
	string
	M
	N/A
	The type of the Avatar representation is provided as a URN that uniquely identified the Avatar representation scheme. The Avatar representation scheme defines the format of all components that are used to reconstruct and animate the Avatar. The reference MPEG avatar URN is defined in section 8.3.3.

	mappings
	array(Mapping)
	M
	N/A
	The mapping between child nodes and semantics.

The Mapping object is defined as follows:

	Name
	Type
	Usage
	Default
	Description

	 path
	AvatarPath
	M
	N/A
	Provides the Avatar path for this node as described in clause 8.3.4.

	 node
	integer
	M
	N/A
	The index of the child node of the mesh part that corresponds to the label in the path.

8.3.3	MPEG Reference Avatar
The MPEG reference Avatar shall be identified by “urn:mpeg:sd:2023:avatar” as the Avatar type. The reference Avatar framework builds on the reference Avatar as defined in Annex H.
8.3.4	Avatar Path Definition
The Avatar path allows the addressing of every segment in an Avatar, which allows for associating them with interactivity triggers and skeleton animations.
Table 8.3.4-1 Avatar Paths
	"full_body": {
	"upper_body":{
		"head":{
			"face":{
				"mouth",
				"lower_jaw",
				"upper_jaw",
				"eye_right",
				"eye_left"
			},
			"neck",
			"ear_right",
			"ear_left",
			"back"
		},
		"thorax":{
			"chest_front",
			"chest_back",
			"shoulder_front_right",
			"shoulder_front_left",
			"shoulder_back_right",
			"shoulder_back_left"
		},
		"arm_right":{
			"upper_arm_right",
			"lower_arm_right",
			"hand_right":{
				"thumb_proximal_right":{
					"thumb_intermediate_right":{
						"thumb_distal_right"
						}
				},
				"index_proximal_right":{
					"index_intermediate_right":{
						"index_distal_right":{
							"index_top_right"
						}
					}
				},
				"middle_proximal_right":{
					"middle_intermediate_right":{
						"middle_distal_right":{
							"middle_top_right"
						}
					}
				},
				"ring_proximal_right":{
					"ring_intermediate_right":{
						"ring_distal_right":{
							"ring_top_right"
						}
					}
				},
				"litttle_proximal_right":{
					"litttle_intermediate_right":{
						"litttle_distal_right":{
							"litttle_top_right"
						}
					}
				}
			}
		},
		"arm_left":{
			"upper_arm_left",
			"lower_arm_left",
			"hand_left":{
				"thumb_proximal_left":{
					"thumb_intermediate_left":{
						"thumb_distal_left"
						}
				},
				"index_proximal_left":{
					"index_intermediate_left":{
						"index_distal_left":{
							"index_top_left"
						}
					}
				},
				"middle_proximal_left":{
					"middle_intermediate_left":{
						"middle_distal_left":{
							"middle_top_left"
						}
					}
				},
				"ring_proximal_left":{
					"ring_intermediate_left":{
						"ring_distal_left":{
							"ring_top_left"
						}
					}
				},
				"litttle_proximal_left":{
					"litttle_intermediate_left":{
						"litttle_distal_left":{
							"litttle_top_left"
						}
					}
				}
			}
		}
	}
	"lower_body":{
		"pelvis":{
			"pelvis_front":{
				"pelvis_front_right",
				"pelvis_front_left"
			},
			"pelvis_back":{
				"pelvis_back_right",
				"pelvis_back_left"
			}
		},
		"leg_right":{
			"upper_leg_right",
			"lower_leg_right",
			"foot_right":{
				"toes_right"
			}
		},
		"leg_left":{
			"upper_leg_left",
			"lower_leg_left",
			"foot_left":{
				"toes_left"
			}
		}
	}
}

8.3.5	Processing Model
Each avatar in a scene is a node using the MPEG_node_avatar extension. When present in a node, it means that all referenced mesh elements by this node will be reconstructed from an Avatar representation.
8.4 	Lighting
8.4.1	General
The MPEG_lights_texture_based extension provides the ability to define image-based lights in a glTF scene. This extension expands the functionalities of the EXT_lights_image_based extension by enabling the lighting information to vary over time. The lighting information in the MPEG_lights_texture_based extension comprises two timed-dependent sequences that are:
· a video sequence wherein each frame represents the specular radiance information
· a timed metadata sequence where each sample of the sequence represents irradiance information
At each time instance of the rendering of the glTF scene, the corresponding specular radiance decoded frame and the irradiance sample provide the necessary information to apply image-based lighting rendering techniques.
When present, the MPEG_lights_texture_based extension shall be included as a top-level extension.
8.4.2	Semantics
The definition of all objects within MPEG_lights_texture_based extension is provided in Table 1.
Table 3 – Definitions of top-level objects of MPEG_lights_texture_based extension
	Name
	Type
	Default
	Usage
	Description

	lights
	array
	N/A
	M
	An array of items that describe the texture-based light sources, referenced in this scene description document.

Table 4 – Definitions of item in the lights array of MPEG_lights_texture_based extension
	Name
	Type
	Default
	Usage
	Description

	name
	string
	N/A
	O
	Name of the light

	nature
	string
	physical
	O
	Indicates whether the lighting information corresponds to a physical light, a virtual light, both or unknown.
Editor’s note: To be re-evaluated in light of the possible work on real environment integration in SD whether this attribute remains here or goes to a new node to be defined.

	position
	array
	(0,0,0)
	O
	Position of both light and reflection probes associated with the lighting information
In the absence of this position, the lighting information is assumed to be global (i.e. for the entire scene) for which the center is the scene origin.
When an anchor refers to a light source, the position of the anchor takes precedence over this position attribute.
Editor’s note: The case of one or more light sources being at the same position needs to be clarified whether it is allowed or not and possibly with new scene validation rules.

	 projection
	string
	equirectangular
	O
	Provides the projection type (which may be equirectangular or cubemap) of the specular images. In the latter case, the 6 faces of the radiance map should be packed according to the order described by the OMAF specification in section 5.2.3.
Editor’s note: To be studied if the projection could reference a general specification and not an application standard that has no relation with ISO/IEC 23090-14.

	rotation_accessor
	integer
	N/A
	O
	Provides a reference to the accessor giving a sequence of quaternions as described in rotation of in EXT_lights_image_based.
When an anchor refers to a light source, the rotation of the anchor takes precedence over this rotation attribute.
Editor’s note: Study if position and rotation attribute should be consistent, i.e. either both static or both dynamic.
Editor’s note: Study if improvements can be done in case the information is static, i.e. not using an accessor just for one value.

	intensity_accessor
	integer
	N/A
	O
	Provides a reference to the accessor giving a sequence of intensity values as described in intensity of in EXT_lights_image_based.
Editor’s note: The absence of the parameter needs to be specified.
Editor’s note: Study if possible improvement can be done in case the information is static, i.e. not using an accessor just for one value.

	irradiance_accessor
	integer
	N/A
	M
	Provides a reference to the accessor giving a sequence of irradiance coefficient samples. Irradiance coefficients are defined as in irradianceCoefficients of EXT_lights_image_based.
See Khronos EXT_lights_image_based for the definition of the irradiance coefficient sample.
Editor’s note: study if sample format needs to be specified and provide it if desired.
Editor’s note: she absence of the parameter needs to be specified.
Editor’s note: study if improvements can be done in case the information is static, i.e. not using an accessor just for one value.

	specular_images
	array
	N/A
	M
	Provides a list of references to textures providing specular images (environment map).
The length of the array shall be equal to “1” or “6”.
When the length of the array is equal to “1”, the specular images are provided in a packed format as defined by the projection attribute.
When the length of the array is equal to “6”, the projection attribute shall be of type cubemap and the order of faces are TBD.
Editor’s note: Study if Khronos definition could be used, i.e. cube faces are defined in the following order and adhere to the standard orientations as shown in the Khronos EXT_lights_image_based extension.
Editor’s note: The absence of the parameter needs to be specified.

Table 5 – Definitions of object at the scene level of MPEG_lights_texture_based
	Name
	Type
	Default
	Usage
	Description

	light
	array(integer)
	N/A
	M
	Reference to an item in the lights array of the MPEG_lights_texture_based extension.

The JSON schema for the MPEG_lights_texture_based extension is provided in A.1.
8.4.3	Processing model

Add the following to Annex A
A.10 JSON schema for MPEG_scene_anchor and MPEG_node_anchor
MPEG_scene_anchor schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_scene_anchor.schema.json.
MPEG_node_anchor schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_node_anchor.schema.json.
A.11 JSON schema for MPEG_haptics
MPEG_haptics.schema.json schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_haptics.schema.json.
A.12 JSON schema for MPEG_scene_interactivity and MPEG_node_interactivity
MPEG_scene_interactivity schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_scene_interactivity.schema.json
MPEG_node_interactivity schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_node_interactivity.schema.json
A.13 	JSON schema for MPEG_avatar
MPEG_avatar schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_avatar.schema.json
A.14		JSON schema for MPEG_lights_texture_based
MPEG_lights_texture_based schema is downloadable from https://standards.iso.org/iso-iec/23090/-14/amd2/MPEG_lights_texture_based.schema.json

Add the following to Annex G

G.3 	Support for MPEG-I Haptics
G.3.1	General
We propose to implement the concepts of haptics in SD through two glTF extensions, MPEG_haptic and MPEG_material_haptic. The proposed extensions are detailed in the following sections.

Figure G.3-1: Proposed location of the extensions for haptics among all MPEG extensions to glTF
The following examples detail several use cases of the Phase 1 haptic signals:
	Use Case
	Phase 1 material definition
	Rendering behavior

	Touch the surface of a wall and feel a texture
	A Texture perception is defined describing a surface friction pattern.
	Upon collision between a body part and the textured wall, the Texture track of the media is read based on the displacement of the body part on the surface.

	Press a button to get stiffness feedback
	A Stiffness/force feedback perception is defined describing a force curve profile.
	When the button is pressed, the force profile curve is read based on the pressure depth of the button.

	Opening a door and feeling friction of the door with the floor
	A Texture perception is defined describing a surface friction pattern.
	When the door is moving, the Texture track of the media is read based on the displacement of the door (rotation angle converted to distance traveled).

	Walking in a street and at some time rain is falling on the user body
	Localized vibrations are defined to simulate raindrop
	Upon time event “rain starts” vibrations patterns are synthesized and rendered on the appropriate device.

[bookmark: _heading=h.jmlgjamuphiv]G.3.2	 Semantics for MPEG_haptic
The MPEG_haptic extension represents haptics data defined in Phase 1. It is an independent haptic media like an audio content or an image. This extension is attached at the node level to indicate that the node refers to haptic media. There are a number of reasons to have a dedicated extension for haptics instead of using MPEG_media.media directly:
· It encapsulates all references to haptic media in one location
· It explicitly identifies haptic enabled nodes without having to go through other extensions (e.g. MPEG_interactivity)
· It provides room for future extensions (typically for Haptic Phase 2A and Phase 2B)
· Using MPEG_media.media directly with the interactivity extension would be problematic for the support of spatial haptics since that extension is associated with timed media.

	Name
	Type
	Default
	Description

	Media_reference
	Array<Integer>
	N/A
	A reference to one or more media sources in MPEG_media.media array containing haptic media files.

The JSON schema associated with this medium is already defined in Phase 1 (http://mpegx.int-evry.fr/software/haptics/mpeg_haptics_json_specifications).

[bookmark: _heading=h.xq80h18jsurw]G.3.3	Semantics MPEG_material_haptic
The MPEG_material_haptic extension is a type of material defined to provide a way to enable the association of haptic media with the interactivity extension. The list of haptic properties defined here is based on the work from [10]. The main concept is that the haptic texture associated with a 3D object does not contain RGB values but haptic values. These values are exploited directly by the haptic renderer. The proposed extension also uses the concept of taxels as introduced in [11]. Using this principle, each pixel of the texture can be mapped to a distinct spatial (or temporal) signal as illustrated in Figure 2.
[image: Diagram

Description automatically generated with medium confidence]
Figure G.3-2: Grid of taxels, mapping pixels to different haptic textures
We here propose to combine these types of haptic texture representations by using an array of textures for each haptic property. With this method, a haptic texture can be provided both as a traditional 2D texture and as a taxel map in the same file, giving the possibility to the rendering engine to choose the most appropriate.

An additional information is added to each element of the haptic texture arrays for the rendering engine to adequately interpret a texture. Each array element then contains a haptic texture and a texture type expressed as an Enumeration. Possible values of the enumeration are:
· High_Resolution: The haptic texture is a high resolution 2D texture directly storing haptic values
· Low_Resolution: The haptic texture is a low resolution 2D texture directly storing haptic values
· Reference: The haptic texture is a 2D taxel map containing references to haptic signals. Each pixel of the texture corresponds to an index in the Media_reference array of the MPEG_haptic extension.
· Other: Unknown proprietary texture format.
To interpret the data contained in 2D textures, the bit depth and range of these textures are specified according to the following tables.
The following table gives the bit depth and range values for each haptic property for low resolution haptic textures:

	Haptic map
	Format
	Range
	Resolution

	Stiffness
	8-bit
	0-10000 N.s −1 /m.s −1
	40 N.s −1 /m.s −1

	Friction
	8-bit
	±5
	0.04

	Vibrotactile Texture
	8-bit
	±10
	0.08

	Temperature
	8-bit
	[-50:+75]°C
	0.5°C

	Vibration
	8-bit
	[0-1]
	0,004

	Custom
	8-bit
	0-255
	1

The following table gives the bit depth and range values for each haptic property for high resolution haptic textures:
	Haptic map
	Format
	Range
	Resolution

	Stiffness
	16-bit
	0-10000 N.s −1 /m.s −1
	0.15 N.s −1 /m.s −1

	Friction
	16-bit
	±100
	0.003

	Vibrotactile Texture
	16-bit
	±100
	0.0015

	Temperature
	16-bit
	[-100:+150]°C
	0.004°C

	Vibration
	8-bit (amplitude)
8-bit (frequency)
	[0-1]
[0-300] Hz
	0.004
1.17Hz

	Custom
	16-bit
	0-65535
	1

For the high resolution texture, values of each texture map pixel are divided in two: the first byte contains the magnitude value and the second byte contains the frequency.
The following table describes the list of haptic properties of the extension:

	Name
	Type
	Default
	Description

	Stiffness
	array<Enum, textureInfo>
	NULL
	It determines the perceived stiffness of a surface. Which means the force perceived by the user opposed to the normal penetration of a material by a body part.
It is described with a texture storing the stiffness coefficients. The suggested rendering model is :
F = kx where k is the value of stiffness for the displacement x along the asset stiffness function. This model is valid for an isotropic material.

	Friction
	array<Enum, textureInfo>
	NULL
	It indicates the perceived friction, which is a force opposing the movement of a body part sliding on a surface.
It is described with a texture storing the coefficient of friction.
The suggested rendering model is:
F_f = mu * Fn where mu is the coefficient of friction, and Fn is the normal applied force by the body part on the surface.

	Vibrotactile Texture
	array<Enum, textureInfo>
	NULL
	It indicates the perceived texture by a body part while sliding on a surface.

	Temperature
	array<Enum, textureInfo>
	NULL
	It indicates the perceived temperature of an object.
It is described with a texture storing the temperature distribution.

	Vibration
	array<Enum, textureInfo>
	NULL
	It indicates a vibration signal.
It is described with a texture storing the amplitude and / or frequency of the signal.

	Custom
	array<Enum, textureInfo>
	NULL
	Texture containing custom haptic data.

[bookmark: _heading=h.bxxwcaz6ouk6]G.3.4	Processing Model
The Presentation Engine shall support the MPEG_haptic and MPEG_material_haptic extensions.
In Haptics Phase 2A, the user avatar representation consists only of the camera, a collider (i.e., invisible user representation) and associated view frustum (see Figure 3). In this model, the collisions that occur during interaction are between the view frustum geometry and the objects in the scene (see Figure 3 object #1). During interaction, the presentation engine will generate a list of collided objects at each rendering frame. The collided objects that also have an associated MPEG_material_haptic will then be inspected to determine their associated interaction model and this information, along with the haptic media, will drive the creation of a haptic effect to be rendered by available haptic peripherals.
Another type of collision may happen when an animated object moves toward the user and touches the collider (potentially outside of the user’s field of view, see Figure 3 object #2). This would trigger haptic feedback on the touched body part.
Of course, any haptic content defined in Phase 1 could be triggered like any media (see Figure 3 object #3 with a potential defined body part)
Note that mixing, transcoding and other haptic media manipulation is non-normative to the interactivity model. If a reference to one or multiple MPEG_haptic is made within an interaction, the definition of the action allows to link a haptic behavior to this model and to drive the haptic rendering from the action itself.
Examples of how haptics would be driven by spatial displacement actions and additional parameters to tune the rendering are provided bellow

	Action
	Default haptic behavior
	Override haptic parameters

	None
	N/A
	N/A

	Free movement
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Free position, fix rotation
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Free position, pivot rotation
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Sliding
	Read Texture based on slider displacement distance as input.
	Rescale the haptics rendering independent variable by an arbitrary length.

	Rotation around pivot
	Read Texture based on distance traveled during the rotation.
	Rescale the haptics rendering independent variable by an arbitrary length.

	Button
	Read force feedback curve based on the current depth of the button.
	Rescale the haptics rendering independent variable by an arbitrary length.

Spatial displacement does not need to drive time-based haptic feedback (such as vibrations).

Add the following clause to Annex G.

G.4 	Support for MPEG-I Haptics
G.4.1	General
We propose to implement the concepts of haptics in SD through two glTF extensions, MPEG_haptic and MPEG_material_haptic. The proposed extensions are detailed in the following sections.

Figure G.4-1: Proposed location of the extensions for haptics among all MPEG extensions to glTF
The following examples detail several use cases of the Phase 1 haptic signals:
	Use Case
	Phase 1 material definition
	Rendering behavior

	Touch the surface of a wall and feel a texture
	A Texture perception is defined describing a surface friction pattern.
	Upon collision between a body part and the textured wall, the Texture track of the media is read based on the displacement of the body part on the surface.

	Press a button to get stiffness feedback
	A Stiffness/force feedback perception is defined describing a force curve profile.
	When the button is pressed, the force profile curve is read based on the pressure depth of the button.

	Opening a door and feeling friction of the door with the floor
	A Texture perception is defined describing a surface friction pattern.
	When the door is moving, the Texture track of the media is read based on the displacement of the door (rotation angle converted to distance traveled).

	Walking in a street and at some time rain is falling on the user body
	Localized vibrations are defined to simulate raindrop
	Upon time event “rain starts” vibrations patterns are synthesized and rendered on the appropriate device.

G.4.2	 Semantics for MPEG_haptic
The MPEG_haptic extension represents haptics data defined in Phase 1. It is an independent haptic media like an audio content or an image. This extension is attached at the node level to indicate that the node refers to haptic media. There are a number of reasons to have a dedicated extension for haptics instead of using MPEG_media.media directly:
· It encapsulates all references to haptic media in one location
· It explicitly identifies haptic enabled nodes without having to go through other extensions (e.g. MPEG_interactivity)
· It provides room for future extensions (typically for Haptic Phase 2A and Phase 2B)
· Using MPEG_media.media directly with the interactivity extension would be problematic for the support of spatial haptics since that extension is associated with timed media.

	Name
	Type
	Default
	Description

	Media_reference
	Array<Integer>
	N/A
	A reference to one or more media sources in MPEG_media.media array containing haptic media files.

The JSON schema associated with this medium is already defined in Phase 1 (http://mpegx.int-evry.fr/software/haptics/mpeg_haptics_json_specifications).

G.4.3	Semantics MPEG_material_haptic
The MPEG_material_haptic extension is a type of material defined to provide a way to enable the association of haptic media with the interactivity extension. The list of haptic properties defined here is based on the work from [10]. The main concept is that the haptic texture associated with a 3D object does not contain RGB values but haptic values. These values are exploited directly by the haptic renderer. The proposed extension also uses the concept of taxels as introduced in [11]. Using this principle, each pixel of the texture can be mapped to a distinct spatial (or temporal) signal as illustrated in Figure 2.
[image: Diagram

Description automatically generated with medium confidence]
Figure G.3-2: Grid of taxels, mapping pixels to different haptic textures
We here propose to combine these types of haptic texture representations by using an array of textures for each haptic property. With this method, a haptic texture can be provided both as a traditional 2D texture and as a taxel map in the same file, giving the possibility to the rendering engine to choose the most appropriate.

An additional information is added to each element of the haptic texture arrays for the rendering engine to adequately interpret a texture. Each array element then contains a haptic texture and a texture type expressed as an Enumeration. Possible values of the enumeration are:
· High_Resolution: The haptic texture is a high resolution 2D texture directly storing haptic values
· Low_Resolution: The haptic texture is a low resolution 2D texture directly storing haptic values
· Reference: The haptic texture is a 2D taxel map containing references to haptic signals. Each pixel of the texture corresponds to an index in the Media_reference array of the MPEG_haptic extension.
· Other: Unknown proprietary texture format.
To interpret the data contained in 2D textures, the bit depth and range of these textures are specified according to the following tables.
The following table gives the bit depth and range values for each haptic property for low resolution haptic textures:

	Haptic map
	Format
	Range
	Resolution

	Stiffness
	8-bit
	0-10000 N.s −1 /m.s −1
	40 N.s −1 /m.s −1

	Friction
	8-bit
	±5
	0.04

	Vibrotactile Texture
	8-bit
	±10
	0.08

	Temperature
	8-bit
	[-50:+75]°C
	0.5°C

	Vibration
	8-bit
	[0-1]
	0,004

	Custom
	8-bit
	0-255
	1

The following table gives the bit depth and range values for each haptic property for high resolution haptic textures:
	Haptic map
	Format
	Range
	Resolution

	Stiffness
	16-bit
	0-10000 N.s −1 /m.s −1
	0.15 N.s −1 /m.s −1

	Friction
	16-bit
	±100
	0.003

	Vibrotactile Texture
	16-bit
	±100
	0.0015

	Temperature
	16-bit
	[-100:+150]°C
	0.004°C

	Vibration
	8-bit (amplitude)
8-bit (frequency)
	[0-1]
[0-300] Hz
	0.004
1.17Hz

	Custom
	16-bit
	0-65535
	1

For the high resolution texture, values of each texture map pixel are divided in two: the first byte contains the magnitude value and the second byte contains the frequency.
The following table describes the list of haptic properties of the extension:

	Name
	Type
	Default
	Description

	Stiffness
	array<Enum, textureInfo>
	NULL
	It determines the perceived stiffness of a surface. Which means the force perceived by the user opposed to the normal penetration of a material by a body part.
It is described with a texture storing the stiffness coefficients. The suggested rendering model is :
F = kx where k is the value of stiffness for the displacement x along the asset stiffness function. This model is valid for an isotropic material.

	Friction
	array<Enum, textureInfo>
	NULL
	It indicates the perceived friction, which is a force opposing the movement of a body part sliding on a surface.
It is described with a texture storing the coefficient of friction.
The suggested rendering model is:
F_f = mu * Fn where mu is the coefficient of friction, and Fn is the normal applied force by the body part on the surface.

	Vibrotactile Texture
	array<Enum, textureInfo>
	NULL
	It indicates the perceived texture by a body part while sliding on a surface.

	Temperature
	array<Enum, textureInfo>
	NULL
	It indicates the perceived temperature of an object.
It is described with a texture storing the temperature distribution.

	Vibration
	array<Enum, textureInfo>
	NULL
	It indicates a vibration signal.
It is described with a texture storing the amplitude and / or frequency of the signal.

	Custom
	array<Enum, textureInfo>
	NULL
	Texture containing custom haptic data.

G.4.4	Processing Model
The Presentation Engine shall support the MPEG_haptic and MPEG_material_haptic extensions.
In Haptics Phase 2A, the user avatar representation consists only of the camera, a collider (i.e., invisible user representation) and associated view frustum (see Figure 3). In this model, the collisions that occur during interaction are between the view frustum geometry and the objects in the scene (see Figure 3 object #1). During interaction, the presentation engine will generate a list of collided objects at each rendering frame. The collided objects that also have an associated MPEG_material_haptic will then be inspected to determine their associated interaction model and this information, along with the haptic media, will drive the creation of a haptic effect to be rendered by available haptic peripherals.
Another type of collision may happen when an animated object moves toward the user and touches the collider (potentially outside of the user’s field of view, see Figure 3 object #2). This would trigger haptic feedback on the touched body part.
Of course, any haptic content defined in Phase 1 could be triggered like any media (see Figure G.4-1 object #3 with a potential defined body part)
Note that mixing, transcoding and other haptic media manipulation is non-normative to the interactivity model. If a reference to one or multiple MPEG_haptic is made within an interaction, the definition of the action allows to link a haptic behavior to this model and to drive the haptic rendering from the action itself.
Examples of how haptics would be driven by spatial displacement actions and additional parameters to tune the rendering are provided bellow.

	Action
	Default haptic behavior
	Override haptic parameters

	None
	N/A
	N/A

	Free movement
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Free position, fix rotation
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Free position, pivot rotation
	Read Texture based on distance traveled in space
	Rescale the haptics rendering independent variable by an arbitrary length.

	Sliding
	Read Texture based on slider displacement distance as input.
	Rescale the haptics rendering independent variable by an arbitrary length.

	Rotation around pivot
	Read Texture based on distance traveled during the rotation.
	Rescale the haptics rendering independent variable by an arbitrary length.

	Button
	Read force feedback curve based on the current depth of the button.
	Rescale the haptics rendering independent variable by an arbitrary length.

Spatial displacement does not need to drive time-based haptic feedback (such as vibrations).

Add the following Annex H
[bookmark: _Toc71216160][bookmark: _Toc92097342][bookmark: _Toc116678820]Annex H
Reference Avatar

H.1	Introduction
This Annex provides a description of a reference topology for the representation of humanoid avatars. The number of vertices and triangles is defined, with the associated semantic. Different levels of detail (LoD) from the same topology are also defined. The associated glTF files are downloadable from X.
The MPEG reference Avatar shall be identified by “urn:mpeg:sd:2023:avatar” as the Avatar type.
[bookmark: _Toc116678821]H.2	Body Model
H.2.1	 General
The reference body avatar (Figure H.1) comes with its own mesh topology modeled as a female (right side) or as a male body (left side). The body base mesh is composed of three levels of details. As described in Figure H.1, the density of vertex is not the same for the body and the face, because the later requires more accuracy for realism.
The different parts are described into more details in the following sections.
[image:][image:] [image:]Female
Male

[bookmark: _Ref116654430]Figure H.1: Full body mesh topology (Right side: female version, Left side: male version). The neutral genre face is zoomed for better visualization (right picture).
[bookmark: _Ref114126863][bookmark: _Toc116678822]H.2.1	Level of Details
The reference body avatar is proposed in three levels of details (mesh resolution): Low, Medium and High (see Figure H.2). The goal of these different resolutions is to ensure that the mesh topology is supported on the runtime platform (mobile, PC, HMD etc.).
Each level is described and referenced as:
· High Resolution (referenced as Morgan_HD)
· 53,695 vertices and 56,496 quad faces (106,952 triangular faces).
· Medium Resolution (referenced as Morgan_MD)
· 13,225 vertices and 13,196 quad faces (26,356 triangular faces)
· Corresponds to 25% of the HD mesh
· Low Resolution (referenced as Morgan_SD)
· 5,366 vertices and 5,300 quad faces (10,571 triangular faces).
· Corresponds to 90% of the HD mesh
The mesh decimation ensures that vertices positions are the same between from a lower level to a higher level. Meaning that all vertices of the SD mesh are all on the MD mesh and all vertices of the MD mesh are on the HD mesh. So original vertices are kept.
[image:]
[bookmark: _Ref116654837]Figure H.2: Levels of details of Morgan - From left to right: High (50k), Medium (12k) and Small (5k).
The associated files are named morgan_SD.gltf, morgan_MD.gltf and morgan_HD.gltf.
[bookmark: _Toc116678823]H.2.3	Body Semantics
The body is divided into 18 semantic areas allowing to directly refer to them for specific use cases and applications.
Figure H.3, Figure H.4, and Figure H.5 describes those 18 areas for respectively the front body, the back of the body and the head. The corresponding semantics and vertex coordinates are given by Table H.1. The numbering and order are the same as in the reference glTF file provided. It allows easy access to parts of the body by any applications, even without knowing the model.
The provided semantic list relates to the High Resolution level, aka Morgan_HD.
[image: A person in a garment

Description automatically generated with medium confidence] [image: A person wearing a garment

Description automatically generated with medium confidence]

[bookmark: _Ref116654968]Figure H.3: front view of body semantic areas (left: areas, right: wireframe areas).
[image: A person wearing a garment

Description automatically generated with medium confidence] [image: A person wearing a garment

Description automatically generated with medium confidence]

[bookmark: _Ref116654969]Figure H.4: back view of body semantic areas (left: areas, right: wireframe areas).

[image:] [image: Icon

Description automatically generated] [image:]

[image: A picture containing mask

Description automatically generated] [image:] [image:]
[bookmark: _Ref116654971]Figure H.5: front view of the head. Top line: segmentation areas, bottom line: wireframe areas. (Left) complete head view with the face (white), left eye (red) and right eye (olive green) - (Middle) internal view without the face with the mouth bag (blue) - (Right) view without the face and the mouth bag - upper jaw (light green) and lower jaw (purple).

	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	Full
	None
	
	53695
	[0:53694]
	53496
	106952
	[0:53495]

	Upper Body
	None
	
	45518
	[0:45517]
	45290
	90540
	[0:45289]

	- Head
	None
	
	36584
	[0:36583]
	36362
	72684
	[0:36361]

	n Face
	
	(1, 1, 1)
	6873
	[0:6872]
	6785
	13570
	[0:6784]

	n Back/Neck/Ears
	
	(0,0,0)
	4535
	[6873:11407]
	4566
	9132
	[6785:11350]

	n Mouth Bag
	
	(0,0.5,0.5)
	791
	[11408:12198]
	823
	1646
	[11351:12173]

	n Lower Jaw
	
	(0.5, 0, 0.5)
	10440
	[12199:22638]
	10380
	20760
	[12174:22553]

	n Upper Jaw
	
	(0.5, 1, 0.5)
	11107
	[22639:33745]
	11040
	22080
	[22554:33593]

	n Eye Left
	
	(0.5,0,0)
	1419
	[33746:35164]
	1384
	2748
	[33594:34977]

	n Eye Right
	
	(0.5,0.5,0)
	1419
	[35165:36583]
	1384
	2748
	[34978:36361]

	- Chest
	None
	
	1828
	[36584:38411]
	1792
	3584
	[36362:38153]

	n Chest Front
	
	(0.5, 1, 0)
	1140
	[36584:37723]
	1108
	2216
	[36362:37469]

	n Chest Back
	
	(0.5, 0, 1)
	688
	[37724:38411]
	684
	1368
	[37470:38153]

	- Arm Left
	None
	
	3553
	[38412:41964]
	3568
	7136
	[38154:41721]

	n Upper Arm Left
	
	(1, 0.5, 1)
	320
	[38412:38731]
	320
	640
	[38154:38473]

	n Lower Arm Left
	
	(1, 0, 0)
	512
	[38732:39243]
	512
	1024
	[38474:38985]

	n Hand Left
	
	(0,1,0)
	2721
	[39244:41964]
	2736
	5472
	[38986:41721]

	- Arm Right
	None
	
	3553
	[41965:45517]
	3568
	7136
	[41722:45289]

	n Upper Arm Right
	
	(0, 1, 1)
	320
	[41965:42284]
	320
	640
	[41722:42041]

	n Lower Arm Right
	
	(1, 0, 1)
	512
	[42285:42796]
	512
	1024
	[42042:42553]

	n Hand Right
	
	(0,1,0.5)
	2721
	[42797:45517]
	2736
	5472
	[42554:45289]

	Lower Body
	None
	
	8177
	[45518:53694]
	8206
	16412
	[45290:53495]

	- Abdomen
	None
	
	1855
	[45518:47372]
	1856
	3712
	[45290:47145]

	n Abdomen Front
	
	(0, 0, 1)
	929
	[45518:46446]
	896
	1792
	[45290:46185]

	n Abdomen Back
	
	(0.5, 0.5, 0.5)
	926
	[46447:47372]
	960
	1920
	[46186:47145]

	- Leg Left
	None
	
	3161
	[47373:50533]
	3175
	6350
	[47146:50320]

	n Upper Leg Left
	
	(0.5, 0.5, 1)
	681
	[47373:48053]
	680
	1360
	[47146:47825]

	n Lower Leg Left
	
	(1, 0.5, 0)
	815
	[48054:48868]
	814
	1628
	[47826:48639]

	n Foot Left
	
	(1, 1, 0)
	1665
	[48869:50533]
	1681
	3362
	[48640:50320]

	- Leg Right
	None
	
	3161
	[50534:53694]
	3175
	6350
	[50321:53495]

	n Upper Leg Right
	
	(1, 0.5, 0.5)
	681
	[50534:51214]
	680
	1360
	[50321:51000]

	n Lower Leg Right
	
	(0, 0.5, 0)
	815
	[51215:52029]
	814
	1628
	[51001:51814]

	n Foot Right
	
	(1, 1, 0.5)
	1665
	[52030:53694]
	1681
	3362
	[51815:53495]

[bookmark: _Ref116655272][bookmark: _Ref116896698]Table H.1: Semantics table – The visual and geometric details of each semantic area are provided. For each of them, the number of vertices, quad and triangular faces are provided with the ID ranges covered by the areas.
[bookmark: _Toc116678824]H.2.4	Base UV
The reference avatar comes with its own UV coordinates. It is based on UDIM (U-Dimension, an enhancement to the UV mapping and texturing workflow that makes UV map generation easier and assigning textures simpler) which consists of a tile system where each tile is a different texture with its own UV space.
The following look-up table provides the link between the tile on the bottom UDIM map and the corresponding body parts:
	Upper Jaw
	Lower Jaw
	Right Eyeball
	
	Left Iris

	Face
	Body
	Left Eyeball
	· Right Lens
· Left Lens
	Right Iris

The UDIM map for the full morgan’s body is illustrated in Figure H.6, and provided with the associated file morgan_HD.gltf. The medium resolution morgan_MD.gltf and low resolution morgan_SD.gltf of the mesh also comes with their similar but decimated UDIM map.
[image: A picture containing background pattern

Description automatically generated]
[bookmark: _Ref116674876]Figure H.6: UDIM map of the full body - It goes from UV space (0-1/0-1) on the bottom left corner to UV space (4-5/1-2) to the upper right corner.

[bookmark: _Toc116678825]H.2.5	Base Skeleton
Skeleton’s joints are identified by names and hierarchy with the following structure and naming convention to enable an easy identification of the avatar skeleton (see complete nomenclature in Table H.2).
H.2.5.1 Complete Skeleton
Morgan’s skeleton is composed of 63 joints, and Figure H.7 precisely depicts the place of the skeleton’s joints in the hierarchy.

	Body Hierarchy (25 joints)
	Left hand hierarchy (19 joints)
	Right hand hierarchy (19 joints)

	Hips
--- Spine
--- --- Chest
--- --- --- UpperChest
--- --- --- --- Shoulder_Left
--- --- --- --- --- UpperArm_Left
--- --- --- --- --- --- LowerArm_Left
--- --- --- --- --- --- --- Hand_Left
--- --- --- --- --- --- --- --- See below
--- --- --- --- Shoulder_Right
--- --- --- --- --- UpperArm_Right
--- --- --- --- --- --- LowerArm_Right
--- --- --- --- --- --- --- Hand_Right
--- --- --- --- --- --- --- --- See below
--- --- --- --- Neck
--- --- --- --- --- Head
--- --- --- --- --- --- Eye_Left
--- --- --- --- --- --- Eye_Right
--- --- --- --- --- --- Jaw
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- --- --- --- Toes_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right
--- --- --- --- Toes_Right
	

(Hand_Left)
--- ProximalThumb_Left
--- --- IntermediateThumb_Left
--- --- --- DistalThumb_Left
--- ProximalIndex_Left
--- --- IntermediateIndex_Left
--- --- --- DistalIndex_Left
--- --- --- --- TopIndex_Left
--- ProximalMiddle_Left
--- --- IntermediateMiddle_Left
--- --- --- DistalMiddle_Left
--- --- --- --- TopMiddle_Left
--- ProximalRing_Left
--- --- IntermediateRing_Left
--- --- --- DistalRing_Left
--- --- --- --- TopRing_Left
--- ProximalLittle_Left
--- --- IntermediateLittle_Left
--- --- --- DistalLittle_Left
--- --- --- --- TopLittle_Left
	

(Hand_Right)
--- ProximalThumb_Right
--- --- IntermediateThumb_Right
--- --- --- DistalThumb_Right
--- ProximalIndex_Right
--- --- IntermediateIndex_Right
--- --- --- DistalIndex_Right
--- --- --- --- TopIndex_Right
--- ProximalMiddle_Right
--- --- IntermediateMiddle_Right
--- --- --- DistalMiddle_Right
--- --- --- --- TopMiddle_Right
--- ProximalRing_Right
--- --- IntermediateRing_Right
--- --- --- DistalRing_Right
--- --- --- --- TopRing_Right
--- ProximalLittle_Right
--- --- IntermediateLittle_Right
--- --- --- DistalLittle_Right
--- --- --- --- TopLittle_Right

[bookmark: _Toc125723043][bookmark: _Ref116675207]H.2.5.2 	Example of Skeletal Hierarchies
.
	Simplified
	
	Simplistic

	Body Hierarchy (24 joints)
	
	Body Hierarchy (15 joints)

	Hips
--- Spine
--- --- UpperChest	
--- --- --- Shoulder_Left
--- --- --- --- LowerArm_Left
--- --- --- --- --- Hand_Left
--- --- --- --- --- --- ProximalThumb_Left
--- --- --- Shoulder_Right
--- --- --- --- LowerArm_Right
--- --- --- --- --- Hand_Right
--- --- --- --- --- --- ProximalThumb_Right
--- --- --- --- Neck
--- --- --- --- --- Head
--- --- --- --- --- --- Eye_Left
--- --- --- --- --- --- Eye_Right
--- --- --- --- --- --- Jaw
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- --- --- --- Toes_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right
--- --- --- --- Toes_Right
	
	Hips
--- UpperChest
--- --- Shoulder_Left
--- --- --- LowerArm_Left
--- --- --- --- Hand_Left
--- --- Shoulder_Right
--- --- --- LowerArm_Right
--- --- --- --- Hand_Right
--- --- --- Head
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right

Table H.6: Skeleton joints nomenclature,

[image:]
[bookmark: _Ref116675397]Figure H.7: Position of the joints for the MPEG reference geometrical model.

[bookmark: _Toc116678826]H.3	Face Model
H.3.1	 General
The reference facial avatar consists of a base topology and a gender-neutral morphology. It corresponds to the “head area” in the semantics Table H.1 and its geometry is displayed in Figure H.8. The facial morphology comes from a combined dataset of high-resolution face scans (males and females) mapped to the same base topology using 3D reconstruction facial technique [Danieau et al. 2019], and thus does not correspond to an existing person nor cannot allow the reconstruction of one person's image.
[image: Diagram

Description automatically generated with low confidence][image:][image:]
[bookmark: _Ref116676112]Figure H.8: MPEG Morgan faces (right to left: front, back and right profile).

[bookmark: _Toc116678827]H.3.2	Base Mesh
The corresponding topology is depicted in Figure H.8. The base face mesh is composed of 36,584 vertices / 36,362 quad faces (and 72,784 triangular faces). As illustrated on Figure H.9, four internal parts are added:
· a mouth bag (Figure H.9a)
· an upper (Figure H.9b) and lower jaw (H.9c)
· two eyeballs (Figure H.HH.9d)
Topological details of these specific parts can be found in the table H.1.

[image: A close-up of a dress

Description automatically generated with low confidence]

[bookmark: _Ref116676421]Figure H.9: MPEG Morgan’s face details
((a) mouth bag,
(b) upper jaw,
(c) lower jaw,
(d) eyeballs).

[bookmark: _Toc116678828]H.3.3	Facial Blend Shapes
The facial expression shapes naming is close but not equal to the FACS naming convention defined and used in anatomy to classify human facial motions (See in Paul Ekman’s book [Ekman et al. 1978]).
Shapes are separated into Left (“_L”) and Right (“_R”) components. And sometimes these last components have been split into (“_1”) and (“_2”) sub---components to increase the precision.
The shapes of Morgan are the given in table H.3.
	AU
	FACS Name
	Morgan shape

	1
	Inner Brow Raiser
	AU1_Inner_Brow_Raiser

	2
	Outer Brow Raiser
	AU2_Outer_Brow_Raiser_L1 + L2 + R1 + R2	

	4
	Brow Lowerer
	AU4_Brow_Lowerer_L + R

	5
	Upper Lid Raiser
	AU5_Upper_Lid_Raiser_L + R

	6
	Cheek Raiser
	AU6_Cheek_Raiser_L + R

	7
	Lig Tightener
	AU7_Lid_Tightener_L + R

	9
	Nose Wrinkler
	AU9_Nose_Wrinkler_L + R

	10
	Upper Lip Raiser
	AU10_Upper_Lip_Raiser_L + R

	11
	Nasolabial Deepener
	AU11_Nasolabial_Deepener_L + R

	12
	Lip Corner Puller
	AU12_Lip_Corner_Puller_L + R

	14
	Dimpler
	AU14_Dimpler_L + R

	15
	Lip Corner Depressor
	AU15_Lip_Corner_Depressor_L + R

	16
	Lower Lip Depressor
	AU16_Lower_Lip_Depressor_L

	17
	Chin Raiser
	AU17_Chin_Raiser

	18
	Lip Pucker
	AU18_Lip_Pucker

	20
	Lip Stretcher
	AU20_Lip_Stretcher_L + R

	22
	Lip Funneler
	AU22_Funneler

	23
	Lip Tightener
	AU23_Lip_Tightener

	24
	Lip Pressor
	AU24_Lip_Pressor

	26
	Jaw Drop
	AU26_Jaw_Drop

	27
	Mouth Stretch
	AU27_Mouth_Stretcher

	28
	Lip Suck
	AU28_Lip_Suck_Low + Up

	29
	Jaw Thrust
	AU29_Jaw_Thrust

	30
	Jaw Sideways
	AU30_Jaw_Sideways_L + R

	31
	Jaw Clencher
	AU31_Jaw_Clencher

	34
	Cheek Puff
	AU34_Cheek_Puff_L + R

	38
	Nostril Dilator
	AU38_Nostril_Dilator

	43
	Eyes Closed
	AU43_Eyes_Closed_L + R

	61
	Eyes Turn Left
	AU61_Eyes_Turn_Left

	62
	Eyes Turn Right
	AU62_Eyes_Turn_Right

	63
	Eyes Up
	AU63_Eyes_Up

	64
	Eyes Down
	AU64_Eyes_Down

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

[bookmark: _Ref116677100]Table H.3: MPEG Morgan’s facial blend shapes,
All blendshapes are accessible as individual glTF files names with the corresponding AU name and also in a more complete glTF file name morgan_rigged.gltf

[bookmark: _Toc116678829]H.3.4	Facial Landmarks
To help processing and animation, a set of 68 semantic facial landmarks is also provided (see Figure H.10). It can be useful to drive mesh retargeting algorithm (retopoligization) or to link facial performance tracking solution to Morgan’s face. The number 68 was picked up based on a recent literature overview where most of the approaches use the same number of landmarks ([Kowalski et al. 2017], [Li et al. 2020]).
The landmarks are accessible in the file morgan_landmarks.txt.
[image:]

[image: Chart

Description automatically generated] [image: Chart

Description automatically generated]
Right Jaw Line				Left Jaw Line
[image: Chart, scatter chart

Description automatically generated] [image: Chart, scatter chart

Description automatically generated]
Mouth					Nose
[image: Chart, radar chart

Description automatically generated] [image: Chart

Description automatically generated]
Left Eye 				Right Eye
[bookmark: _Ref116677601]Figure H.10: MPEG Morgan’s landmarks (global face and close views).

[bookmark: _Toc116678830]H.3.5	Teeth Model
The facial rig also includes an upper and a lower jaw as illustrated in Figure H.11. The lower jaw (right) is composed of 10, 440 vertices and 10, 380 quad faces (20, 760 triangular faces). The upper jaw (left) is composed of 11, 107 vertices and 11, 040 quad faces (22, 080 triangular faces). They both come with their own UV coordinates and associated textures.
Here are the corresponding lines of the semantic Table H.1 to access the upper and lower jaws from the original glTF file.
	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	Lower Jaw
	
	(0.5, 0, 0.5)
	10440
	[12199:22638]
	10380
	20760
	[12174:22553]

	Upper Jaw
	
	(0.5, 1, 0.5)
	11107
	[22639:33745]
	11040
	22080
	[22554:33593]

[bookmark: _Toc110343500][bookmark: _Toc110611488][image:][image:]
Upper Jaw			Lower Jaw
[image: Map

Description automatically generated with medium confidence] [image: A picture containing mollusk, silhouette

Description automatically generated] [image: Text

Description automatically generated with medium confidence] [image: A picture containing text

Description automatically generated]
Upper UV Map		 Upper Albedo Map 	 Lower UV 		Lower Albedo Map
[bookmark: _Ref116678433]Figure H.11: MPEG Morgan’s teeth model.
[bookmark: _Toc116678831]

H.3.6	Eye Model
The reference avatar comes with a complete eye model depicted in Figure H.12. The eye model follows an anatomical eye model and is composed of three elements: the sclera, the iris, and the lens.
The polygon count is the following:
· lens (201 vertices and 200 quad face (380 triangular faces)
· iris (928 vertices and 896 quad face (1792 triangular faces)
· sclera (290 vertices and 288 quad face (576 triangular faces)
Here are the corresponding lines of the semantic Table H.1 to access the left and right eye from the original glTF file. All ranges of ID (vertex or face) are ordered in that following order: lens iris sclera.
	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	Eye Left
	
	(0.5,0,0)
	1419
	[33746:35164]
	1384
	2748
	[33594:34977]

	Eye Right
	
	(0.5,0.5,0)
	1419
	[35165:36583]
	1384
	2748
	[34978:36361]

[image: A picture containing antenna

Description automatically generated][image:][image: A picture containing device, fan

Description automatically generated]
Sclera				Iris			 	Lens
[image: Circle

Description automatically generated with medium confidence][image: A picture containing web, outdoor object, device, fan

Description automatically generated]
[bookmark: _Ref116678633]Figure H.12: MPEG Morgan’s eyes model.
The sclera corresponds to the eye globe and is displayed as the white area (with blood veins) of the eye. The iris is located inside the sclera and corresponds to the eye diaphragm and is displayed as the unique eye colored pattern of the eye. The lens is located inside the sclera and behind the iris. It corresponds to the lens that projects the light on the cornea (internal back border of the eye globe where the image is created). Here is how these three elements are organized.
The eye model comes with two blend shapes for each eye:
· Pupil_Dilatation – it controls the aperture of the pupil of the eye
· Sclera_Flatness – it controls the degree of flatness of the cornea

[image:] [image: A close up of a person's eye

Description automatically generated with low confidence] 		 [image: Shape

Description automatically generated] [image: Shape

Description automatically generated]
Figure H.13: Pupil Dilation from low (left) to high (right) and Cornea Flatness from low (left) to high (right).
H.4	Interactive Format Description for Interactive Scenes
H.4.1	Model Format
This section illustrates how to signal the type of avatar being used under the node extension “MPEG_node_avatar” in glTF.

H.4.1.1	Processing Model and Semantics
The application will have the knowledge of what avatar to reconstruct or render given the “model” extension to the properties of “MPEG_node_avatar”. The default representation is the “MPEG_avatar_reference”, and this shall be fully supported under this extension.
Table H.4.1.1: Description of the proposed extension to signal the type of avatar in “MPEG_node_avatar”.
	Name
	Type
	Usage
	Default
	Description

	model
	array
	O
	N/A
	Avatar model (see Table H.4.1.2). If present refers to the avatar format semantics.

[bookmark: _Ref131770448][bookmark: _Ref126772961][bookmark: _Ref131770420]Table H.4.1-2 – Avatar model description.
	Name
	Type
	Usage
	Default
	Description

	name
	string
	M
	“”
	User-defined name of the 3D object format.

	semantical_type
	string
	M
	“”
	A string to indicate which type of avatar the format refers to, an example of different semantical types is defined in Table H.4.1.3. A combination of several types is possible e.g., “Humanoid/Aquatic” refers to a human-like avatar with swimming proprieties.

	resolution
	array
	M
	[“”]
	An array of strings that semantically describes each alternative in the “MPEG_media.media” extension reference by the source element in terms of format resolution e.g., low-resolution, medium-resolution, or high-resolution.

	source
	integer
	M
	N/A
	Index to a “MPEG_media.media” extension that defines external media. The “alternative” propriety will be index aligned with the resolution propriety to facilitate the application choice in terms of capability.

Table H.4.1-3: The table presents the higher-level semantical representation depending on styles of avatars and format representation. We can combine several items from this list or from other more detailed representations to facilitate the client application to parse the format of an avatar.
Table H.4.1-3 Avatar Styles
	Semantical type

	Humanoid

	Non-Humanoid

	Aquatic

	Aerial

	Terrestrial

	Subterranean

	Arboreal

	Other

The source attribute references a “MPEG_media.media” extension in ISO/IEC 23090-14 Scene description specification, with the intent to have the object “MPEG_media.media.alternative” defined to match the resolution. The “alternative” propriety contains the “uri” and “mimeType” that are used to reference any media input format.
H.4.1.2	glTF Schema Examples
The following glTF example will instantiate a “MPEG_node_avatar” in clients that support this extension, and otherwise, fall back to a standard “MPEG_node” without the semantical avatar node extension.
	"MPEG_media":[
 {
 "alternatives":[
 {
 "uri": "MPEG_avatar_reference_low.gltf"
 "mimeType": "mesh/gltf"
 },
 {
 "uri": "MPEG_avatar_reference_medium.gltf"
 "mimeType": "mesh/gltf"
 },
 {
 "uri": "MPEG_avatar_reference_high.gltf"
 "mimeType": "mesh/gltf"
 }
]
 }
]
"nodes": [
 {
 "extensions": {
 "MPEG_node_avatar": {
 "isAvatar": True,
 "model" : [{
 "name": "MORGAN",
 "semantical_type": ["humanoid","terrestrial"],
 "resolution": ["low-resolution","medium-resolution","high-resolution"]
 "source": 0
 }]
 }
 }
 }
]

H.4.2	Metadata Format
This section presents an attribute to identify an avatar socially to facilitate interactions with other avatars or objects in the scene. This attribute contains the identity information of an avatar, such as name, gender, and age. The identity information is not necessarily the accurate information of a real user, but instead an identity attributed to the user’s avatar. The age attribute has additional significance in this proposal because it can be linked with parental permission and content access depending on the application side.
This attribute enables the creation of several avatar representations, which facilitates the description of an avatar in the scene and identifies the type of interactivity with the scene such an avatar should have.
In the scenario of sensibility to the metadata information, such as identity, mechanisms for data protection shall be considered in the future, and in the current description, we assume pseudo and non-real values not to infringe on user personal data protection systems.
Table H.4.2-1: The “metadata” propriety to the “MPEG_node_avatar”.
	Name
	Type
	Usage
	Default
	Description

	metadata
	object
	O
	“”
	Information about the avatar allows social identification in virtual environments. Table H.4.2-2 provides the semantics of this object.

[bookmark: _Ref131579590]Table H.4.2-2: Semantics of the proposed object extension "metadata".
	Name
	Type
	Usage
	Default
	Description

	name
	string
	M
	“”
	Name of the avatar

	age
	integer
	M
	
	Age of the avatar

	gender
	string
	O
	“”
	Gender of the avatar

	disability
	array
	O
	[“”]
	Avatar’s physical disability, to indicate any physical impairment, for example, brain injury, spinal cord injuries, amputations, musculoskeletal, hearing loss or visual impairment.

	capability
	array
	O
	[“”]
	A list of avatar abilities, such as the possibility to fly, walk, grasp, jump, and others.

	personality
	array
	O
	[“”]
	A list of characteristics or qualities for an avatar individual character, for example, shy, courageous.
As another example, the Myers-Briggs type can also be used.

	emotion
	array
	O
	[“neutral”]
	An emotional state that reflects an avatar state, for example, admiration, anger, fear, sadness, joy, and others.
Different lists of emotions categories are possible, such as Robert Plutchik’s categories.

	social
	array
	O
	[“”]
	A type of social behavior that the avatar is able to perform, such as conversation or interaction with other 3D environment elements and avatars.

	parental
	array
	O
	[“”]
	Permission content to be accessed by the avatar. This can be any standard method to infer parental permissions such as the ones used in video games and the streaming industry.

H.4.2.1	glTF Schema Examples
The extension “MPEG_node_avatar.metadata” specifies by default the avatar attributes that define a base representation of a user avatar preference. This extension to the proprieties of “MPEG_node_avatar” allow the possibility to identify and generate user-specific avatars.
The following glTF will instantiate a “MPEG_node_avatar” in clients that support this extension, and otherwise, fall back to a standard “MPEG_node_avatar” without the metadata semantical extension.

	"nodes": [
 {
 "extensions": {
 "MPEG_node_avatar": {
 "isAvatar": True,
 "metadata" : [{
 "name": "Red",
 "aga": 18,
 "gender": "N/A",
 "disability": ["colorblind", "hearing_loss"],
 "capability": ["walk", "run", "grasp"],
 "personality": ["happy"],
 "emotion": ["admiration", "joy"],
 "social": ["interaction", "conversation"],
 "parental": ["18", "bad_language", "violence", "fear"],
 }]
 }
 }
 }
]

H.4.3	Interactive Actions Format
We present an extension that allows glTF models to use and interact with the reference avatar and any other object. We extend the glTF scene element “MPEG_scene_interactivity” action properties to define “ACTION_SET_AVATAR” which contains more avatar-related actions.
The semantics of the new proposed actions are provided below and the MPEG reference Avatar actions list is identified by “urn:mpeg:sd:2023:avatar:actionslist”.

	Name
	Type
	Usage
	Default
	Description

	type
	string
	M
	“”
	One element of Table H.4.3-1 defines the extended type of social action.

	if (type == “Action_ AVATAR_Social”){
	
	
	
	

	authorised
	array
	M
	
	One or more elements of Table H.4.3-2 define the type of social actions.

	nodes
	array
	M
	
	Indices of the nodes in the array to apply “Social parameters” (Table H.4.3-3) listed on the “authorized” field.

	}
	
	
	
	

	if (type == “Action_ AVATAR_Restricted”){
	
	
	
	

	permission_id
	string
	M
	
	Unique string identifier that restricts interaction between nodes without an equal permission_id.

	nodes
	array
	M
	
	Indices of the nodes in the array to apply “Restricted parameters”, i.e., the nodes whose permission IDs are to be checked/applied.

	}
	
	
	
	

	if (type == “Action_ AVATAR_Parental”){
	
	
	
	

	age
	number
	M
	
	One element of Table H.4.3-4 that define the minimum age recommendation for users given the content of the list of nodes.

	descriptors
	Array
	M
	
	One or more elements of Table H.4.3-5 that add additional explicit semantics of the content present in the list of nodes.

	nodes
	array
	M
	
	Indices of the nodes to apply “Parental parameters”.

	}
	
	
	
	

	If(type == “Action_ AVATAR_Speech”){
	
	
	
	

	microphone
	Boolean
	O
	0
	Indicates if the user uses a microphone type of input device for audio. “0” is False and “1” is True. The default value is 0.

	media
	String
	O
	“”
	URI (Uniform Resource Identifier) to media track to play a pre-recorder audio file.

	nodes
	array
	M
	
	Indices of the nodes in the array to allow “Speech” media.

	}
	
	
	
	

	If(type == “Action_ AVATAR_Capabilities”){
	
	
	
	

	capabilities
	array
	M
	[]
	One or more elements of Table H.4.3-6 that define the capabilities of an avatar/object.

	nodes
	array
	M
	[]
	Indices of the nodes in the array to apply “capabilities parameters”.

	}
	
	
	
	

	If(type == “Action_ AVATAR_Disabilities”){
	
	
	
	

	disabilities
	array
	M
	[]
	One or more elements of Table H.4.3-7 that define the disabilities of an avatar/object.

	nodes
	array
	M
	
	Indices of the nodes to apply “Disability parameters”.

	}
	
	
	
	

[bookmark: _Ref132181301]Table H.4.3.1: Semantical description of new action properties.

	Action type
	Description

	“Action_ AVATARSocial”
	Set action of a node.

	“Action_ AVATAR_Restricted”
	Set permissions of a node.

	“Action_ AVATAR_Parental”
	Set parental and content usage permissions of a node.

	“Action_ AVATAR_Speech”
	Set speech active of a node.

	“Action_ AVATAR_Capabilities”
	Set capabilities of a node.

	“Action_ AVATAR_Disabilities”
	Set disabilities of a node.

[bookmark: _Ref131599231]Table H.4.3.2: Type of avatar action.

	Social action list
	Description

	“avatar_social_conversation”
	Allow social speaking with users and enable the ability for “Action_AVATAR _Speech” if not already enabled.

	“avatar_social_interaction”
	Allow interaction between users.

	“avatar_social_other”
	Any other type of social interaction.

[bookmark: _Ref131599247]Table H.4.3-3: Type of avatar social actions.

	“age” list
	Description

	3
	Content suitable for all ages.

	7
	Content with scenes or sounds possibly frightening to younger children.

	12
	Content with violence of graphic non-realistic characters.

	16
	Content with violence that mimics the reality.

	18
	Content design for adults only.

[bookmark: _Ref131599262]Table H.4.3-4: Type of avatar age levels.

	parental descriptors list
	Description

	“violence”
	Contains depiction of violence.

	“bad_language”
	Contains bad language.

	“fear”
	Contains pictures or sounds that may be frightening or scary.

	“gambling”
	Contains elements that encourage or teach gambling.

	“sex”
	Contains sexual posturing.

	“drugs”
	Contains the illustration of the use of illegal drugs, alcohol or tobacco.

	“discrimination”
	The game contains depictions of ethnic, religious, nationalistic or other stereotypes likely to encourage hatred

	“in-game_purchases”
	Offers the option of purchase digital services.

[bookmark: _Ref131599272]Table H.4.3-5: Type of avatar parental descriptors.

	Capabilities list
	Description

	“walk”
	The ability to walk.

	“run”
	The ability to run.

	“jump”
	The ability to jump.

	“fly”
	The ability to fly.

	“swim”
	The ability to swim.

	“climb”
	The ability to go over, get on, climb to, to descend objects, such as climb to a chair, climb up the stairs, climb down the stairs, climb the wall etc.

	“grasp”
	The ability to hold objects with hands’ like representations.

	“manipulate”
	The ability to interact and change spatial position of 3D objects by using collision or proximity type of detectors.

	“ride”
	The ability to ride a vehicle or animal, such as motorcycles or horses etc.

	“drive”
	The ability to use a vehicle, such as cars or trucks etc.

	“pilot”
	The ability of piloting a vehicle, such as ships or airplanes.

[bookmark: _Ref131599286]Table H.4.3.6: Capabilities semantics.

	Disabilities list
	Description

	“Cerebral palsy”
	A group of disorders that impact a person's ability to move and maintain balance

	“Spinal cord injuries”
	Spina cord injury indicates the damages to any part of the spinal cord or nerves at the end of the spinal canal. Result in permanent loss of strength, sensation, and function (mobility and feeling)

	“Amputation”
	Indicates removal of part of all of a body part that is enclosed by skin

	“Musculoskeletal injuries”
	Refer to the damage of muscular or skeletal systems, which is usually due to strenuous activities.

[bookmark: _Ref131599303]Table H.4.3.7: Disabilities semantics.

2

image2.png

image3.png
height

image4.png
+Z
(South)

=Y
¥ (Gravity)

image5.png
for each node
affected

by the trigger

extension no
at node
?
level? Check conditions
with scene
yes
Check conditions parameters

with scene and node <———
parameters

Are
conditions
mets?

no

yes

Activate
the
trigger

image6.emf
process the interrupt action

is

on-going

behavior

?

yes

no

new scene description

is

behavior

still defined

?

yes

no

continue the on-going behavior stop the on-going behavior

apply the new scene description

image7.emf

Presentation Engine

Avatar
(Sub-)Node

Vertex Buffer

Texture Buffer

Attribute Buffer

Avatar
(Sub-)Node

Vertex Buffer

Texture Buffer

Attribute Buffer

Avatar
(Sub-)Node

Vertex Buffer

Texture Buffer

Attribute Buffer

Avatar Media Pipeline

Avatar Component
Decoder

Avatar
Reconstruction

Presentation Engine

Avatar

(Sub-)Node

Vertex Buffer

TextureBuffer

Attribute Buffer

Avatar

(Sub-)Node

Vertex Buffer

TextureBuffer

Attribute Buffer

Avatar

(Sub-)Node

Vertex Buffer

TextureBuffer

Attribute Buffer

AvatarMediaPipeline

Avatar Component

Decoder

Avatar

Reconstruction

image8.png
scene
MPEG scene_dynamic

MPEG_recommended_viewport

MPEG animation_timing

+

camera

node

MPEG_audio_spatial

|

MPEG_audio_spatial

mesh

MPEG_mesh linking

'MPEG_mesh_collision

animation

skin

e
B

accessor

MPEG _accessor_timed

[

i

bufferView
S
buffer
MPEG_buffer_circular

i

i material |—v

technique
program

shader

:

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.svg
 Hips Spine Chest UpperChest UpperLeg_Left LowerLeg_Left Foot_Left Toes_Left Shoulder_Left UpperArm_Left LowerArm_Left Hand_Left Hand_Right ProximalThumb_Right IntermediateThumb_Right DistalThumb_Right TopIndex_Right Index Middle Ring Little Thumb

image27.png

image28.png

image29.png

image30.png

image31.emf

The 1 st landmark

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.png

image41.jpeg
2 -

image42.png

image43.jpeg
s .u?{

eoutd

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image1.jpeg

