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Abstract
A baseline performance evaluation of different AI-based point cloud compression solutions was initiated after the 4th WG7 (135th MPEG) meeting in July 2021. Three AI-based solutions were investigated: (a) pcc_geo_cnn_v2, (b) pcgcv2 and (c) adl-pcc. Since then, all results  regarding these and new proposals were continuously being integrated meeting after meeting in subsequent versions of the Perform Analysis of Currently AI-based Available Solutions for PCC output documents. The version released in the 9th WG7 (140th MPEG) contains the full progression of results (w22092). In the current version of the document, only the performances of the latest active proposals being discussed in the group are reported.

1 Introduction
After the 4th WG7 (135th MPEG), three AI-based solutions were initially evaluated as a baseline study, namely:
· pcc_geo_cnn_v2: presented in m57301, introduces the discussion about Point Cloud Geometry Compression using the “Improved Deep Point Cloud Geometry Compression” architecture. 
· adl-pcc: presented in m57556, aims at informing the MPEG community through SC29/WG7 on the public release of software for a Deep Learning (DL)-based Point Cloud (PC) geometry coding solution, as an effort to contribute to the MPEG Point Cloud Coding activity related to learning-based coding.
· pcgcv2: presented in m57453, proposes a geometry compression framework for AI-based PCC based on sparse convolution. In this method, the point cloud is represented by sparse tensor and processed by spatially sparse Convolution Neural Networks (CNN). More specifically, sparse CNNs are employed to exploit the spatial dependency between voxels and predict the occupancy probability, which will be used for entropy coding or binary classification of voxel occupancy symbols. 
The details of the baseline study can be accessed in the document  w22092 [1]. In the next section, performance results of active proposals being discussed in the group are presented.


2 Performance Analysis
2.1 EE 5.1 Deep Octree Coding
In this Exploration Experiment, the following techniques are being evaluated, m62102 [2]:
· G-PCC Octree
· SparseContextNet (SCN)
· VoxelContextNet (VCN)
· SparsePCGCv1
· SparsePCGCv2
Proposals target the automotive-frame use case. The training dataset includes Ford_01_q_1mm and KITTI from 00 to 10 datasets. The test set is composed of Ford_02_q_1mm, Ford_03_q_1mm and KITTI 11,12 and 13 sequences. Average PSNR plots comparing the proposed SCN against G-PCC, VCN, SparsePCGCv1 and SparsePCGCv2 for Ford sequences are shown in Figure 1. Figure 2 shows results for the KITTI dataset. 
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Figure 1. Average R-D performance on Ford_02 and Ford_03.
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Figure 2. Average R-D performance on KITTI 11, 12 and 13.

BD-rate gains over G-PCC octree with angular mode enabled for Ford and with GPCC octree with angular mode disabled for KITTI data are as follows:
D1,D2
gain over GPCC	SCN		VCN		SparsePCGCv1	 	SparsePCGCv2
Ford			-8.6, -8.74	-1.91, -2.06	-12.06,-12.12		-14.31, -14.62
KITTI			-14.12, -14.13	-8.69, -8.7	-19.37,-19.02		-17.89, -17.89
In m62101 (EE 5.1 summary report) [3], an additional test performed with SparsePCGCv1 identified as “new” is presented. The main difference between SparsePCGCv1 and SparsePCGCv1 “new” is in the convolution kernel size. Plots for Ford_02_q_1mm and Ford_03_q_1mm and are shown in Figure 3.
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Figure 3. Average R-D performance on Ford_02 and Ford_03.
BD-rate gains against G-PCC octree and number of model parameters is reported for SparsePCGCv1, VCN and SCN, as follows:
· SparsePCGCv1		-12.06%		5.6M parameters
· VCN 			-01.91%		0.9M parameters
· SCN 			-08.60%		9.2M parameters

In m62177 [4], a proposal for dynamic point cloud geometry compression for LiDAR point clouds with ego-motion compensation is presented. The training dataset is composed by sequences 00 to 05 of KITTI. KITTI 06 is used as the verification dataset, and KITTI 07 to 10 are used for testing. Gains against G-PCC Octree are reported in Table 1.

Table 1. Gains against G-PCC Octree.
	
	Lossless (Bpp)
	Lossy (BD-Rate)

	point clouds
	Number of frames
	G-PCC
	SparsePCGCv1
	Ours
	CR Gain
	D1
	D2

	KITTI_07_vox1mm
	1100
	19.389
	18.203
	14.439
	-25.53%
	-51.94%
	-51.97%

	KITTI_08_vox1mm
	4070
	20.261
	19.654
	15.23
	-24.83%
	-49.49%
	-49.53%

	KITTI_09_vox1mm
	1590
	20.325
	19.158
	15.235
	-25.04%
	-50.39
	-50.41%

	KITTI_10_vox1mm
	1200
	19.669
	18.702
	14.797
	-24.77%
	-52.57%
	-52.62%



An illustrative rate-distortion plot for KITTI 10 sequence, that includes comparison against G-PCC octree and SparsePCGCv1, is show in Figure 2.
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Figure 4. Average R-D performance on KITTI 10.














2.2 EE 5.2 Deep feature-based PC Coding
In this Exploration Experiment, the following techniques are being evaluated:
· SparsePCGCv1; and 
· GRASP-Net
The EE 5.2 summary report [5] presented in the 10th WG7 (141th MPEG) meeting compares the performance of SparsePCGCv1 and GRASP-Net for automotive-frame (LiDAR) and surface (solid, dense and sparse) point clouds. Two training configurations were evaluated, as described in Table 2.

Table 2. Training dataset configurations of SparsePCGC and GRASP-Net.
	Category
	SparsePCGC (NJU/OPPO)
	GRASP-Net (InterDigital)

	Solid
	Modified ShapeNet
	ModelNet40

	Dense
	4 dense MPEG sequences
	Pretrain on ModelNet40 for 50 epochs, finetune on 4 dense MPEG sequences

	Sparse
	4 dense MPEG sequences
	ModelNet40

	LiDAR
	Ford_01
	Ford_01



Results for Ford sequences and corresponding BD-rate gains are shown in Figure 5 and Table 3, respectively.
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Figure 5. Average R-D performance on Ford_02 and Ford_03.


Table 3. Average BD-Rate gains (in %) with respect to G-PCC (octree).

	Category
	LiDAR

	Metric
	D1
	D2

	SparsePCGCv1
	-5.39
	-11.47

	GRASP-NetV2
	-11.82
	-17.20



For surface point clouds, BD-rate gains are shown in Tables 4 and 5 under the two configurations described in Table 2.




Table 4. Average BD-Rate gains (in %) with respect to G-PCC (octree) under the training configuration of NJU/OPPO
	Category
	Sparse
	Dense
	Solid

	Metric
	D1
	D2
	D1
	D2
	D1
	D2

	SparsePCGCv1
	+14.96
	+6.18
	-64.40
	-80.27
	-92.10
	-85.80

	GRASP-NetV2
	-9.36
	-13.78
	-60.54
	-71.55
	-92.39
	-84.90



Table 5. Average BD-Rate gains (in %) with respect to G-PCC (octree) under the training configuration of IDC
	Category
	Sparse
	Dense
	Solid

	Metric
	D1
	D2
	D1
	D2
	D1
	D2

	SparsePCGCv1
	+12.35
	-0.36
	Not available
	Not available
	-91.93
	-85.65

	GRASP-NetV2
	-15.29
	-21.83
	-61.54
	-72.78
	-92.51
	-85.27




The number of parameters of the neural network models used by SparsePCGCv1 and GRASP-Net are provided in Table 6. The model size of GRASP-NetV2 is much smaller than that of SparsePCGCv1. However, GRASP-NetV2 trains one model per rate-point, while SparsePCGCv1 trains one model and applies it for multiple (but not all) rate points

Table 6. Number of model parameters (in 103) when coding different types of PCs
	PC Category
	LiDAR
	Sparse
	Dense
	Solid

	SparsePCGCv1
	8279
	916 to 5713
	916 to 5713
	210 to 1499

	GRASP-NetV2
	290
	290 to 292
	211 to 290
	293 to 318



A more detailed analysis of GRASP-NETv2 trained under the configurations described in Table 2 is presented in contribution m62096 [6]. Tables 7 summarizes the results. 

Table 7. B-D rate savings (%) of GRASP-NetV2 on the original training settings (Config IDC) and on the training settings of SparsePCGC (Config NJU).
	Training Config
	Solid
	Dense
	Sparse

	
	D1
	D2
	D1
	D2
	D1
	D2

	Config IDC
	-92.51
	-85.27
	-61.54
	-72.78
	-15.29
	-21.83

	Config NJU
	-92.39
	-84.90
	-60.54
	-71.55
	-9.36
	-13.78





EE 5.3 AI-based Dynamic PC Coding.
The EE 5.3 summary report [7] presented in the 10th WG7 (141th MPEG), four main technologies are listed:
· “DPCC-SC: Dynamic Point Cloud Geometry Compression using Sparse Convolutions”
· “SparsePCGCv3: Dynamic SparsePCGC with Inter Frame Prediction”
· “S-DPCC: Unified Intra/Inter Deep Dynamic Point Cloud Compression with Multiple Reference Frames and Rate Adaptation”
· “A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC”.

In m62076 [8] (and supporting m59617/m60307/m61201 document), a “Dynamic Point Cloud Geometry Compression using Sparse Convolutions” is discussed. Results against PCGCv2 and V-PCC (hm_ld, hm_ra and vvenc_slow_ra) are summarized  in the Tables 8 and 9.

Table 8. Dynamic Point Cloud Geometry Compression using Sparse Convolutions:                            96 Frames – 10bit.
	
	hm_ld (%)
	hm-ra (%)
	vvenc_slow_ra (%)
	Intra (PCGCv2) (%)

	basketball_player
	-57.28
	-52.98
	-40.06
	-29.62

	dancer
	-57.5
	-54.72
	-43.25
	-17.42

	exercise
	-56.06
	-51.5
	-37.88
	-32.71

	model
	-54.6
	-50.36
	-37.76
	-22.66

	Average
	-56.52
	-52.61
	-40.09
	-25.67




Table 9. Dynamic Point Cloud Geometry Compression using Sparse Convolutions:                            96 Frames – 11bit.
	
	hm_ld (%)
	hm-ra (%)
	vvenc_slow_ra (%)
	Intra (PCGCv2) (%)

	basketball_player
	-54.11
	-50.44
	-35.35
	-38.49

	dancer
	-56.78
	-54.02
	-40.46
	-34.7

	exercise
	-52.89
	-48.39
	-33.08
	-39.35

	model
	-55.99
	-52.86
	-38.88
	-36.45

	Average
	-55.09
	-51.62
	-37.23
	-37.24




In m62181 [9] (and supporting documents m60354/m61006), the “Dynamic SparsePCGC” is discussed. Results are shown in Table 10.

Table 10. Dynamic SparsePCGC:
96 Frames – 10bit.
	
	hm_ld (%)
	hm-ra (%)
	vvenc_slow_ra (%)
	Intra (%)

	basketball_player
	-67.65
	-64.64
	-54.36
	-14.06

	dancer
	-70.01
	-68.15
	-59.85
	-7.49

	exercise
	-65.14
	-61.7
	-50.45
	-14.04

	model
	-69.03
	-66.2
	-57.38
	-15.16

	Average
	-68.19
	-65.46
	-55.97
	-12.75








In m62066 [10],  a “Unified Intra/Inter Deep Dynamic Point Cloud Compression with Multiple Reference Frames and Rate Adaptation”, is discussed. In addition to BD-rate gains observed against “Dynamic Point Cloud Geometry Compression using Sparse Convolutions” [7], shown in Table 11, architectural improvements on top of the reference technique are proposed, namely: 
a) a new multi-scale spatio-temporal predictor network; 
b) a unified I- and P-frame compression network 
c) the use of a modulation network (gain and inverse gain units) that allows for a single trained model to operate over a discrete set of rate points; and
d) an interpolation strategy that uses the discrete gain and inverse gain units to achieve a continuous rate adaptation. 

Table 11. Unified Intra/Inter Deep Dynamic Point Cloud Compression with Multiple Reference Frames and Rate Adaptation: 96 Frames – 10bit.

	BD-Rate

	Basketball player
	Dancer
	Exercise
	Model
	Average

	-11.25
	-18.04
	-11.96
	-14.19
	-13.86



In m58780 [11] (and supporting documents m59685/m60267),  “A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC” is proposed. No recent activity (two last meeting cycles) was identified for this proposal.

2.3 EE 5.4 AI-based Attribute Coding
In m59037 [12], a point cloud attribute compression (PCAC) method based on sparse tensor representation and corresponding sparse tensor network, like the geometry compression method in m57453 [13], is presented. Results are summarized in Table 12.

Table 12. BD-BR (%) and BD-PSNR (dB) comparisons of the proposed method with TMC13 on Y channel and YUV channels.
	
Point Cloud
	TMC13v14 (RAHT)
	TMC13v6 (RAHT)

	
	BD-BR (%)
	BD-PSNR (dB)
	BD-BR (%)
	BD-PSNR (dB)

	
	Y
	YUV
	Y
	YUV
	Y
	YUV
	Y
	YUV

	longdress
	+27.3
	+26.9
	-0.84
	-0.79
	-31.3%
	-32.2
	+1.24 
	+1.23

	loot
	+115.5
	+139.1
	-2.18 
	-2.49
	1.3%
	+15.5
	+0.03 
	-0.37

	red&black
	+34.8
	+54.8
	-0.88 
	-1.27
	-36.1%
	-26.5
	+1.36
	+0.91

	soldier
	+37.2
	+64.6
	-1.03 
	-1.58
	-33.3%
	-17.7
	+1.29
	+0.52

	average
	+53.7%
	+71.4%
	-1.23dB
	-1.53dB
	-24.8%
	-15.2%
	+0.98dB
	+0.57dB



In m61007 [14], a lossless Point Cloud Attribute Compression (PCAC) method based on Multiscale Sparse Tensor (MST) representation is proposed. Results are shown in Tables 13 to 15.

Table 13. Gains over G-PCC on color attribute compression.
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Table 14. Comparison using different training dataset.
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In m62176 [15], a study about the impact of training strategies on techniques described in m59037 [12] and m61007 [14] is presented. Datasets are described in Table 16,  and results are summarized in Figure 6 and Table 17. 

Table 16. Dataset Details.
	
	Training Datasets
	Test Datasets

	Colorized ShapeNet
	6000 frames
	32 frames

	8iVFB & Owlii
	longdress_vox10, loot_vox10, red&black_vox10 (3*300 frames)
dancer_vox11, model_vox11, exercise_vox11 (3*64 frames)
	soldier_vox10_0690
basketball_player_vox11_0200





[image: ]  
Figure 6. Lossy PCAC m59037 [10] performance comparison using rate-distortion curves.

Table 17. Lossless PCAC m61007 [12] performance comparison using bpp & gains over G-PCC.
	Test data
	G-PCC
	Train on Colorized ShapeNet
	Train on 8iVFB & Owlii

	soldier_vox10
	7.080
	6.665 (-5.9%)
	5.621 (-20.6%)

	basketball_player_vox11
	7.720
	7.762 (0.5%)
	7.036 (-8.9%)

	Colorized ShapeNet
	11.000
	8.966 (-18.5%)
	10.096 (-8.2%)





In m61142 [16], a deep point cloud attribute compression scheme with normalizing flow is proposed. Results are shown in Figure 7. 

[image: ]

Figure 7. Y-PSNR plots against TMC13v14.












2.4 General Explorations
In m61313 [17] and m62180 [18], authors propose a flexible configuration of the deep learning-based framework where rather than having a joint geometry and attribute compression scheme, we proposed to use a deep learning-based geometry compression along with G-PCC’s attribute compression. Results are show in Figure 8.

[image: ]
Figure 8. Geometry and attribute PSNR plots.




















3 Conclusion
In this document, the performances of active proposals discussed in the group were presented. Main use cases addressed are automotive (LiDAR frame) and surface (solid, dense and sparse, up to 13 bits geometry) static and dynamic point clouds. Full alignment with the “Guidelines for conducting AI exploration experiments for PCC” [19] and the “Preliminary data set collection for AI experiments” [20] is strongly recommended. Common training and test conditions for AI-based Attribute Coding needs to be defined.
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