Technology under Consideration for
ISO/IEC 23090-14

WG3 Scene Description BoG

MDS22283_WG03_N00759

Table of Contents

1. Extensions

1.1. MPEG_media
1.1.1. General
1.1.2. MPEG_media
1.1.3. MPEG_media.media
1.1.4. MPEG_media.media.controls
1.2. MPEG_audio_spatial
1.2.1. General
1.2.2. Semantics
1.3. MPEG_camera_control
1.3.1. General
1.3.2. Semantics
1.3.3. Processing Model
1.3.4. Example
1.4. MPEG_buffer_circular
1.4.1. General
1.4.2. MPEG_buffer_circular
1.5. MPEG_node_avatar
1.5.1. General
1.5.2. Semantics
1.5.3. Example
1.6. Shadow Scenes

2. ISOBMFF

2.1. Carriage Format for animation timing
2.1.1. Multiple animations
2.1.2. Interaction of animation and dynamic 3D object
2.2. Improvements for MPEG-I SD random access description
2.2.1. General
2.2.2. Characteristics of random access points of MPEG-I Scene Description
2.2.3. Description and processing of random access points
2.2.4. Proposed text improvements

3. Codec Support

3.1. Clarification of type of V-PCC track referenced from MPEG_media
3.1.1. Consideration
3.1.2. Proposal
3.2. Dynamic mesh support in scene description
3.2.1. Introduction
3.2.2. Design

DO D UIN R, R R R

W W W N DN DN DN DN DN DN DN DN DN DN DN DNDNDN R =B R R R R R ===
O O O ©W ©W ©W ©W 0 O O O O B W W W N PR 9 9 39 g a ga & b NN ==

3.2.3. Assets and Implementation

3.3. Support for multiple atlases for MIV applications

3.3.1. General

3.3.2. Additions to the MPEG_primitive_V3C extension

4. Data Formats

4.1. Support of gITF CBOR binary format
4.1.1. Problem Statement
4.1.2. Benefit of CBOR file/data format:
4.1.3. CBOR data size comparison example:
4.1.4. Use Cases
4.1.5. Potential Solutions
4.1.6. Open Issue Discussion

. Interfaces

5.1. On DASH Dynamic Bitrate Adaption with Viewpoint Update

5.1.1. Problem Statement
5.1.2. Use Cases

5.1.3. Current Scene Description Support and Gasps

5.2. Supporting Multiple Viewers in the Media Access Function

5.2.1. General
5.2.2. Proposed Updates to MAF API
5.3. CoAP API support in MAF
5.3.1. General
5.3.2. MAF as CoAP Client
5.3.3. MAF as HTTP-CoAP Proxy
. MPEG-I Audio in Scene Description
6.1. MPEG-I Audio in Scene Description
6.1.1. General
. Reference Software
7.1. Thoughts on trimesh playback of AR scenes
7.1.1. General
7.1.2. AR Sessions recording and format
7.1.3. AR Session playback in trimesh
. Interactivity framework
8.1. On event-based scene update
8.1.1. General
8.1.2. A use case for event based updates
8.1.3. JSON patch limitations
8.1.4. Semantics for event-based update
. Collected problem statements and industry needs
9.1. On the support of real environment data
9.1.1. General

30
31
31
31
47
47
47
47
47
47
48
49
50
50
50
50
51
52
52
53
54
54
54
54
35
35
35
57
57
57
57
61
62
62
62
63
64
65
67
67
67

9.1.2. Representation of the real environment 67

9.1.3. Storing a representation of the real environment 68
9.1.4. Examples of framework for real environment handling 69
Appendix A: JSON Schema for extensions 73
A.1.JSON Schema for MPEG_buffer_circular extension 73
A.2.JSON Schema for MPEG_media 73
A.3.JSON Schema for MPEG_media.media 75
A.4.JSON Schema for MPEG_media.media.controls 78
A.5.JSON Schema for MPEG_node_transformation_external 79
A.6.]JSON Schema for MPEG_buffer_circular 80
A.7.JSON Schema for MPEG_primitive_V3C 81
A.8.JSON Schema for MPEG_primitive_V3C._MPEG_V3C_CAD 83
A.9. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_CONFIG 84
A.10. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_GVD_MAPS 85
A.11. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_OVD_MAP 86
A.12. JSON Schema for MPEG_primitive_V3C.attribute 87
A.13. JSON Schema for MPEG_primitive_V3C_v1._ MPEG_V3C_AD 88
A.14. JSON Schema for MPEG_primitive_V3C 89
A.15. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_CAD 91
A.16. JSON Schema for MPEG_primitive_V3C.attribute 92
A.17.JSON Schema for MPEG_primitive_V3C_2 93
A.18. JSON Schema for MPEG_audio_spatial.source 94
A.19. JSON Schema for MPEG_audio_spatial.source.cluster 97
A.20. JSON Schema for MPEG_node_avatar.metadata object 98
A.21. JSON Schema for MPEG_node_avatar_representation extension 99

Appendix B: Disclaimer 102

Chapter 1. Extensions

1.1. MPEG media

Source: m56047

1.1.1. General

PIt is proposed to support signaling more detailed playback control information about the MPEG
media in MPEG_media extension.

Currently in MPEG_media extension a boolean “controls” is signalled which has the semantics that
it “specifies that media controls should be displayed (such as a play/pause button etc).”. It is
asserted that for MPEG-I scene description, a more detailed information should be allowed to be
signaled in the MPEG-media extension to specify the supported playback control for the MPEG
media.

For example, it is asserted that currently it is unspecified if the MPEG media referred by the
MPEG _media extension is allowed to be fast forwarded or fast backwarded. It is asserted that the
support for this should be allowed to be specified under content creator discretion (e.g. a game
show broadcast may not allow fast backward). Similarly, certain content may be allowed to be
paused, whereas other type of content may not be allowed to be paused.

1.1.2. MPEG_media
MPEG media used to create a texture, audio source or other objects in the scene.

Table 1. MPEG_media Properties
Type Description Required

media MPEG_media.media [1-*] An array of MPEG v Yes
media. A MPEG media
contains data referred
by other object in a
scene

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: MPEG_media.schema.json

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/90

1.1.2.1. MPEG_media.media
An array of MPEG media. A MPEG media contains data referred by other object in a scene
» Type: MPEG_media.media [1-*]

* Required: v Yes

1.1.2.2. MPEG_media.extensions

JSON object with extension-specific objects.

* Type: object
* Required: No

» Type of each property: Extension
1.1.2.3. MPEG _media.extras
Application-specific data.

e Type: any
* Required: No

1.1.3. MPEG_media.media
MPEG media used to create a texture, audio source, or any other media type defined by MPEG.

Table 2. MPEG_media.media Properties

Type Description Required
name any No
startTime number The startTime gives the No, default: 0

time at which the
rendering of the timed
texture will be in
seconds.

startTimeOffset number The startTimeOffset No, default: 0
indicates the time offset
into the source, starting
from which the timed
texture is generated.

Type Description Required

endTimeOffset number The endTimeOffset No
indicates the time offset
into the source, up to
which the timed
texture is generated.
The value is provided
in seconds, where 0
corresponds to the start
of the source.

autoplay boolean Specifies that the MPEG No
media start playing as
soon as it is ready.

autoplayGroup boolean Specifies that playback No
starts simultaneously
for all media sources
with the autoplay flag
set to true.

loop boolean Specifies that the MPEG No, default: false
media start over again,
every time it is

finished.
controls MPEG_media.media.contr Specifies that which No
ols MPEG media controls
should be exposed to
end user
alternatives array[1-*] An array of alternatives No

of the same media (e.g.
different video code
used)

Additional properties are allowed.

* JSON schema: MPEG_media.media.schema.json

1.1.3.1. MPEG_media.media.name

e Type: any
* Required: No

1.1.3.2. MPEG_media.media.startTime

The startTime gives the time at which the rendering of the timed texture will be in seconds.

» Type: number
* Required: No, default: 0

e Minimum: >= 0

1.1.3.3. MPEG _media.media.startTimeOffset

The startTimeOffset indicates the time offset into the source, starting from which the timed texture
is generated.

* Type: number
* Required: No, default: 0

e Minimum: >= 0

1.1.3.4. MPEG _media.media.endTimeOffset

The endTimeOffset indicates the time offset into the source, up to which the timed texture is
generated. The value is provided in seconds, where 0 corresponds to the start of the source.

* Type: number
* Required: No

* Minimum: >= 0
1.1.3.5. MPEG_media.media.autoplay
Specifies that the MPEG media start playing as soon as it is ready.
* Type: boolean
* Required: No
1.1.3.6. MPEG_media.media.autoplayGroup
Specifies that playback starts simultaneously for all media sources with the autoplay flag set to true.
» Type: boolean
* Required: No
1.1.3.7. MPEG_media.media.loop
Specifies that the MPEG media start over again, every time it is finished.

* Type: boolean
* Required: No, default: false

1.1.3.8. MPEG _media.media.controls

Specifies that which MPEG media controls should be exposed to end user

» Type: MPEG_media.media.controls
* Required: No

1.1.3.9. MPEG_media.media.alternatives

An array of alternatives of the same media (e.g. different video code used)

» Type: array[1-*]
* Required: No

1.1.4. MPEG_media.media.controls
Specifies that which MPEG media controls should be exposed to end user

Table 3. MPEG_media.media.controls Properties

Type Description Required

pauseSupported boolean Pause control displayed No, default: true

for the MPEG media.
fastForwardSupporte boolean Fast forward control No, default: true
d displayed for the MPEG

media.
fastBackwardSupport boolean Fast backward control No, default: true
ed displayed for the MPEG

media.

Additional properties are allowed.

* JSON schema: MPEG_media.media.controls.schema.json

1.1.4.1. MPEG_media.media.controls.pauseSupported

Pause control displayed for the MPEG media.
» Type: boolean
* Required: No, default: true
1.1.4.2. MPEG_media.media.controls.fastForwardSupported

Fast forward control displayed for the MPEG media.
* Type: boolean
* Required: No, default: true
1.1.4.3. MPEG_media.media.controls.fastBackwardSupported

Fast backward control displayed for the MPEG media.

* Type: boolean

* Required: No, default: true

1.2. MPEG_audio_spatial

Source: m61267

1.2.1. General

The MPEG audio extension adds support for spatial audio. This extension is identified by
MPEG_audio_spatial, which may be included at top level or attached to any node in the scene.
When present, the MPEG_audio_spatial extension shall be included as extension of a camera object
or a node object defined in ISO/IEC DIS 12113:2021.

The MPEG_audio_spatial extension supports three different node types:

* source: an audio source that provides input audio data into the scene. Mono objects and HOA
sources (as defined in Annex F.1 of ISO/IEC 23008-3:2020) are supported in this version of the
document.

» Type: 'Object’ or, ' HOA'
* HOA audio sources shall ignore the parent node’s position and be rendered only in 3DoF.
. Moreover, an audio source may be a cluster audio source, which denotes a pre-mixed

representation of a selection of audio sources. To indicate a cluster audio source, the
isCluster flag should be set equal to True.

* Reverb: A reverb effect can be attached to the output of an audio source. Several reverb units
can exist and sound sources can feed into one or more of these reverb units. An audio renderer
that does not support reverb shall ignore it if the bypass attribute is set to true. If the bypass
attribute is set to false, the audio renderer shall return an error message listener: An audio
listener represents the output of audio in the scene. A listener should be attached to a camera
node in the scene. By being a child node of the camera, additional transformations can be
applied to the audio listener relative to the transformation applied to the parent camera.

Figure 1 depicts the processing chain for audio in a scene.

source 0 source 1

(5] ’

= /

\\ reverb \
-

Ay
'kl!' €

listener

Figure 1. An example of the processing chain for audio in a scene

The specification of any audio effect processing is outside the scope of this document. The
characteristics of a listener depend on the actual output devices available to the audio renderer.

1.2.2. Semantics

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/413

1.2.2.1. MPEG_audio_spatial.source

Table 4. MPEG_audio_spatial.source Properties

id
type

pregain

playbackSpeed

attenuation

attenuationParameter

s
referenceDistance
accessors
reverbFeed
reverbFeedGain

isCluster

clusterProperties

extensions

extras

Type
integer
string
number

number

any

number [1-*]

number

integer [1-*]

integer []

number []

boolean

MPEG_audio_spatial.sou

rce.cluster

object

any

Additional properties are allowed.

Description
A unique identifier

A type of the audio
source

A level-adjustment of

the audio source

Playback speed of the

audio source

A function used to
calculate the
attenuation of the
audio source.

An array of attenuation

parameters

A distance in meters.

An array of accessors
that describe the audio

source

An array of pointers to

reverb units

An array of gain values

Indicates whether the

audio source is a
cluster.

JSON object with
extension-specific
objects.

Application-specific
data.

* JSON schema: MPEG_audio_spatial.source.schema.json

1.2.2.1.1. MPEG_audio_spatial.source.id

A unique identifier of the audio source in the scene.

* Type: integer

Required
v Yes
v Yes

No, default: 0

No, default: 1

No, default:
linearDistance

No

No, default: 1

v Yes

No

No

v Yes

No

No

No

* Required: v Yes

e Minimum: >= 0

1.2.2.1.2. MPEG_audio_spatial.source.type

Indicates the type of the audio source. type value equal to Object indicates mono object. type value
equal to HOA indicates HOA object

* Type: string
* Required: v Yes
* Allowed values:
o "Object"
o "HOA"

1.2.2.1.3. MPEG_audio_spatial.source.pregain

Provides a level-adjustment in dB for the signal associated with the source.

* Type: number
* Required: No, default: 0

e Minimum: >= 0

1.2.2.1.4. MPEG_audio_spatial.source.playbackSpeed

Playback speed of the audio signal. A value of 1.0 corresponds to playback at normal speed. The
value shall be between 0.5 and 2.0.

» Type: number
* Required: No, default: 1
e Minimum: >= 0.5

e Maximum: <= 2

1.2.2.1.5. MPEG_audio_spatial.source.attenuation

Indicates the function used to calculate the attenuation of the audio signal based on the distance to
the source. attenuation value equal to noAttenuation indicates no attenuation function should be
used. attenuation value equal to inverseDistance indicates inverse distance function should be used.
attenuation value equal to linearDistance indicates linear distance function should be used.
attenuation value equal to exponentialDistance indicates exponential distance function should be
used. attenuation value equal to custom indicates custom function should be used. The definition of
custom function is outside of the scope of ISO/IEC 23090-14. The attenuation functions and their
parameters are defined in ISO/IEC 23090-14:Annex D.

* Type: any
* Required: No, default: linearDistance

e Allowed values:

o noAttenuation

o inverseDistance

o linearDistance

o exponentialDistance

o custom

1.2.2.1.6. MPEG_audio_spatial.source.attenuationParameters

An array of parameters that are input to the attenuation function. The semantics of these
parameters depend on the attenuation function itself and are defined in ISO/IEC 23090-14

» Type: number [1-*]
* Required: No

1.2.2.1.7. MPEG_audio_spatial.source.referenceDistance

Provides the distance in meters for which the distance gain is implicitly included in the source
signal after application of pregain. When type equals ‘HOA’ the element shall not be present.

» Type: number
* Required: No, default: 1

e Minimum: >= 1

1.2.2.1.8. MPEG_audio_spatial.source.accessors

An array of accessor references, by specifying the accessors indices in accessors array, that describe
the buffers where the decoded audio will be made available.

» Type: integer [1-*]
o Each element in the array MUST be greater than or equal to 0.

* Required: v Yes

1.2.2.1.9. MPEG_audio_spatial.source.reverbFeed

Provides one or more pointers to reverb units, optionally extended by a floating point scaling
factor. A reverb unit represents a reverberation audio processor that is configured by the metadata
from a single reverb object. Typically, a reverb object represents reverberation properties of a
single room.

» Type: integer []
* Required: No

1.2.2.1.10. MPEG_audio_spatial.source.reverbFeedGain

Provides an array of gain [dB] values to be applied to the source’s signal(s) when feeding it to the
corresponding reverbFeed. The array shall have the same number of elements as the reverbFeed
array field.

» Type: number []
* Required: No
1.2.2.1.11. MPEG_audio_spatial.source.isCluster

Specifies if the audio source is a pre-mixed representation of a selection of audio sources.

» Type: boolean

* Required: v Yes
1.2.2.1.12. MPEG_audio_spatial.source.clusterProperties

» Type: MPEG_audio_spatial.source.cluster

* Required: No
1.2.2.1.13. MPEG_audio_spatial.source.extensions
JSON object with extension-specific objects.

* Type: object

* Required: No

* Type of each property: Extension
1.2.2.1.14. MPEG_audio_spatial.source.extras
Application-specific data.

» Type: any
* Required: No

1.2.2.2. MPEG_audio_spatial.source.cluster

Table 5. MPEG_audio_spatial.source.cluster Properties

Type Description Required
sourceld integer [1-*] An array of audio Vv Yes
source ids.
radius number A cluster radius. Vv Yes
extensions object JSON object with No
extension-specific
objects.
extras any Application-specific No
data.

Additional properties are allowed.

10

* JSON schema: MPEG_audio_spatial.source.cluster.schema.json

1.2.2.2.1. MPEG_audio_spatial.source.cluster.sourceld

An array of integers that contains the unique identifiers of the audio sources contained in this
cluster.

» Type: integer [1-*]
* Required: v Yes
1.2.2.2.2. MPEG_audio_spatial.source.cluster.radius

A distance in meters used to encompass the audio sources contained in this cluster.

* Type: number
* Required: v Yes

e Minimum: >= 0
1.2.2.2.3. MPEG_audio_spatial.source.cluster.extensions
JSON object with extension-specific objects.

» Type: object

* Required: No

* Type of each property: Extension
1.2.2.2.4. MPEG_audio_spatial.source.cluster.extras
Application-specific data.

e Type: any
* Required: No

1.3. MPEG camera_control

Source: m56337, m57409

1.3.1. General

The scene description may describe a set of paths through which the camera is allowed to move.
The paths may be described as a set of anchor points that are connected through path segments. For
enhanced expressiveness of the camera control, each path segment may be enhanced with a
bounding volume that allows some freedom in motion along the path. The Figure 2 depicts this
behavior.

11

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/12
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/147

Figure 2. Example of Camera Path Segment with Bounding Volume

Example of Camera Path Segment with Bounding Volume The scene camera, and by consequence
the viewer, will be able to move freely within the bounding volume along the path segment. The
path segment may be described using more complex geometric forms to allow for finer control of
the path.

Furthermore, the camera parameters may be constrained at each point along the path. The
parameters are provided for every anchor point and then used together with an interpolation
function to calculate the corresponding parameters for every point along the path segment.

In fact, the interpolation function applies to all parameters, including the bounding volume.

The camera control extension is a gITF 2.0 extension that defines camera control for a scene. The
camera control extension is identified by “MPEG_camera_control” tag, which shall be included in
the extensionsUsed and should be included in the extensionsRequired of the scene.

1.3.2. Semantics

The MPEG_camera_control extension shall be defined on camera elements. It contains the following
properties:

o TODO : auto generate the semantics
schema is needed
Type Description Required
anchors number Number of anchor No
points in the camera
paths.

12

segments

boundingVolume

Type

number

number

Description Required

The type of the No
bounding volume for

the path segments.

Possible types are:

* BV_NONE: no
bounding volume

* BV_CONE: capped
cone bounding volume,
defined by a circle at
each anchor point.

* BV_CUBOID: a cuboid
bounding volume,
defined by size_x,
size_y,size_z for each of
the 2 faces containing
the two anchor points.

* BV_SPHEROID: a
spherical bounding
volume around each
point along the path
segment. The bounding
volume is defined by
the radius of the sphere
in each dimension,
radius_x, radius_y,
radius_z.

default: BV_NONE

Quaternion describing No
the rotation of the

scene in the anchor

space. centerPosition

and orientation are

used as alternatives to
transformation.

default:false

13

Type Description Required

cameralntrinsics boolean When set to true, No
indicates that the
intrinsic camera
parameters are
modified at each
anchor point. The
parameters shall be
provided based on the
type of camera as
defined in [gITF 2.0] as
camera.perspective or
camera.orthographic.

accessor number The index of the No
accessor or timed
accessor that provides
the camera control
information.

The camera control information is structured as follows:

 For each anchor point, (x,y,z) coordinates of the anchor points as float numbers

* For each path segment, (i,j) indices of the first and second anchor point of the path segment as
an integer

 If boundingVolume is BV_CONE, (rl,r2) radiuses of circle of first anchor point and second
anchor point. If boundingVolume is BV_CUBOID, (anchor_idx,size_x,size_y,size_z) for each
anchor point of the path segment. If boundingVolume is BV_SPHEROID, (r_x,r_y,r_z) as radius of
the spheroid for each anchor point of the path segment.

* If cameralntrinsics is true, the intrinsic parameter object.
1.3.3. Processing Model

The Presentation Engine shall support the MPEG_camera_control extension. If the scene provides
camera control information, the Presentation Engine shall limit the camera movement to the
indicated paths, so that the (x,y,z) coordinates of the camera always lie on a path segment or within
the bounding volume of a path segment. The Presentation Engine may provide visual, acoustic,
and/or haptic feedback to the viewer when they approach the boundary of the bounding volume.

1.3.4. Example

o TODO : add example
Input needed

14

1.4. MPEG buffer circular

Source: m58186

1.4.1. General

The definition of the MPEG_buffer_circular extension includes properties such as source and tracks
to refer to an index in MPEG media entry and index to a track in the MPEG media entry
respectively. In the definition of the MPEG_media extension, the tracks array is contained in an
array of alternatives. The alternatives array is contained in media. Items in tracks[] may not
necessarily follow the same indexing across different items in alternatives[]. Therefore, it is unclear
from the MPEG_buffer_circular extension definition which item from the alternatives array is used.

1.4.2. MPEG buffer_circular
gITF extension to specify circular buffer

Table 6. MPEG_buffer_circular Properties

Type Description Required
count integer This provides the No, default: 2
number of frames that
are offered by this
buffer.
media integer The index of the MPEG + Yes

media entry that
provides the source.

tracks integer [1-*] The array of indices of No
tracks the MPEG media
entry that provides the
source.

alternative integer The index of the No
alternative entry in
MPEG media that
provides the source.

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: MPEG_buffer_circular.schema.json

15

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/199

1.4.2.1. MPEG buffer circular.count

This provides the number of frames that are offered by this buffer.
» Type: integer
* Required: No, default: 2
e Minimum: >= 2

1.4.2.2. MPEG buffer circular.media

The index of the MPEG media entry that provides the source.

» Type: integer
* Required: v Yes
* Minimum: >= 0
1.4.2.3. MPEG _buffer_circular.tracks
The array of indices of tracks the MPEG media entry that provides the source.
» Type: integer [1-*]
o Each element in the array MUST be greater than or equal to 0.
* Required: No
1.4.2.4. MPEG buffer circular.alternative
The index of the alternative entry in MPEG media that provides the source.
» Type: integer
* Required: No
* Minimum: >= 0
1.4.2.5. MPEG buffer circular.extensions
JSON object with extension-specific objects.
» Type: object
* Required: No
» Type of each property: Extension
1.4.2.6. MPEG buffer circular.extras
Application-specific data.

* Type: any
* Required: No

16

Note

o Items in alternatives[] should provide alternative to the equivalent content
offered in the parent MPEG_media.medial] item.

1.5. MPEG node_avatar

Source: m61818

1.5.1. General

The Figure 3 illustrates the additional proposed attributes.

Figure 3. Proposed extension of the avatar representation in the scene description

1.5.2. Semantics

1.5.2.1. MPEG_node_avatar.metadata object

MPEG node avatar is used to represent and support avatars.

Table 7. MPEG_node_avatar.metadata object Properties

Type Description Required
parameters object No
name string Name of the avatar. v Yes
extensions object JSON object with No
extension-specific
objects.
extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: MPEG_node_avatar.metadata.schema.json

1.5.2.1.1. MPEG_node_avatar.metadata.parameters
* Type: object
* Required: No

¢ Allowed values:

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/446

1.5.2.1.2. MPEG node_avatar.metadata.name
Name of the avatar.

» Type: string

* Required: v Yes
1.5.2.1.3. MPEG_node_avatar.metadata.extensions
JSON object with extension-specific objects.

* Type: object

* Required: No

» Type of each property: Extension
1.5.2.1.4. MPEG_node_avatar.metadata.extras
Application-specific data.

» Type: any
* Required: No

1.5.2.2. MPEG_node_avatar_representation extension

The MPEG_node_avatar_representation is used to generally support avatars in the scene
description. Providing additional information relative to level of appearance detail, vertex mapping
between anatomical body parts, and common general information about the user.

Table 8. MPEG_node_avatar_representation extension Properties

Type Description Required
metadata MPEG_node_avatar.metad An array of trackables. + Yes

ata [1-*]
lod object [] Reference to the chosen No

level of detail to be
used for the visual
appearance.

mapping object [] The mapping between No
child nodes and vertex
semantics.

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

18

Additional properties are allowed.

* JSON schema: MPEG_node_avatar.schema.json
1.5.2.2.1. MPEG_node_avatar_representation extension.metadata
An array of trackables.

» Type: MPEG_node_avatar.metadata [1-*]

* Required: v Yes

1.5.2.2.2. MPEG_node_avatar_representation extension.lod

Reference to the chosen level of detail to be used for the visual appearance.

» Type: object []
* Required: No
1.5.2.2.3. MPEG_node_avatar_representation extension.mapping

The mapping between child nodes and vertex semantics.

» Type: object []
* Required: No

1.5.2.2.4. MPEG_node_avatar_representation extension.extensions

JSON object with extension-specific objects.

* Type: object
* Required: No

» Type of each property: Extension
1.5.2.2.5. MPEG_node_avatar_representation extension.extras
Application-specific data.

* Type: any
* Required: No

1.5.2.3. Texture Info
Reference to a texture.

Table 9. Texture Info Properties

19

Type Description Required

index integer The index of the Vv Yes
texture.

texCoord integer The set index of No, default: 0
texture’s TEXCOORD

attribute used for
texture coordinate
mapping.

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: textureInfo.schema.json

1.5.2.3.1. textureInfo.index
The index of the texture.

» Type: integer

* Required: v Yes

e Minimum: >= 0
1.5.2.3.2. textureInfo.texCoord

This integer value is used to construct a string in the format TEXCOORD_<set index> which is a
reference to a key in mesh.primitives.attributes (e.g. a value of @ corresponds to TEXCOORD_0). A
mesh primitive MUST have the corresponding texture coordinate attributes for the material to be
applicable to it.

» Type: integer

* Required: No, default: 0

e Minimum: >= 0

1.5.2.3.3. textureInfo.extensions

JSON object with extension-specific objects.
» Type: object
* Required: No

» Type of each property: Extension

20

1.5.2.3.4. textureInfo.extras

Application-specific data.

* Type: any
* Required: No

1.5.3. Example

Example of the MPEG_node_avatar extension

"extensionsUsed": [
"MPEG_node_avatar"

1,
"scene": 0,
"scenes": [
{
"name": "Scene",
"nodes": [
1
]
}
.
"nodes": [
{

"extensions": {
"MPEG_node_avatar": {
"is avatar": true,
"extensions": {
"MPEG_node_avatar_representation": {
"metadata": [

{
"parameters": {
"age": 37,
"gender": "None"
+
"name": "MyAvatar",
}
1,
"10d": [
{
"textures": [
{
"index": 0,
"texCoord": 0
}

]

esolution": "High_Resolution"

]I

"mapping": [
{
"vertex_id": {
"p": 36583
I
"label": "head"
}
]
}
}
}
}
}
1
"meshes": [
{}
I
"materials": [
{}
1.
"textures": [
{}
]

1.6. Shadow Scenes
Source: m62227

A scene may oftentimes contain content that is not meant to be visible but provides valuable
information to the Presentation Engine for processing the scene. An example is given by the
simplified representation of the scene that is used for providing Acoustic properties of the scene. A
simplified geometry description of the scene or some nodes in the scene, to which additional
acoustic properties may be attached, would be needed. For example, a wall may visually have lots
of details on the surface but can simply be presented by a plane for the purpose of describing the
acoustic reflections on the wall.

MPEG-I SD needs to provide for means to describe these invisible simplified geometries in the
scene.

We propose to identify the need and if necessary, work on a solution for describing invisible
simplified geometries that can be used for defined additional properties, such as acoustic
properties.

22

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/459

Chapter 2. ISOBMFF

2.1. Carriage Format for animation timing

Source: m56039

2.1.1. Multiple animations

2.1.1.1. Problem description

The current syntax for glTFAnimationSample allows multiple animations to be triggered at a
certain point in time that applies to several objects. Also, while playing an animation, a further
animation could be triggered simultaneously affecting the same object that is started on top on the
already running one.

There are different examples for which multiple animations running in parallel might be useful.
One could be two sequential animation having a short overlapping interval so that the transition
phase from one animation to another does not look abrupt. For instance, if the first animation is
walking slowly and the second is running one could have a transition phase where the two
animations (walking and running) are actuating onto the 3D object and being each of it balanced
properly so that the overall timeline looks good and there is not an abrupt change.

Other might be simply a complete overlap of multiple animations that might actuate at the same
time. E.g., a person walking and at a certain point on top of walking a head turning animation is
triggered for a while. In such a case, the walking animation will also have an impact on joints
involving head movement, e.g., some tilting of the head. As for the current solution, there is no clue
on how such animations are to be played at the same time.

* Are both of the animations being applied simultaneously?

* In which order are the animations are applied if both applied at the same time? The result
might not be the same if they are applied in different order.

* Is there some kind of average contribution of each animation computed to the final render? For
a realistic combination of multiple animations, it is necessary to allow controlling how multiple
animations affect the target nodes and its property (i.e. animation.channel.target.path). For
instance, in case of multiple animation, if only one animation is allowed to affect a node. Then
any effect from any other animations on that particular node must be zeroed. Also, in the
example mentioned above, only the tilting of the head from the walking animation could be
kept and any other channel acting on a node affecting the head movement would be zeroed.
Therefore, weight for each channel of the animations is provided in the proposed solution.

In order to address the questions: * With simultaneous playback of multiple animations, a subset of
channels can be allowed to influence the node transformations partially or fully (depending on the
weights)

« With an explicit order index assigned to an animation, simultaneous animations can be applied
in an orderly manner

* The associated weight factor for an animation, influence its contribution to the final render

23

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/88

2.1.1.2. Syntax

aligned(8) class glTFAnimationSample

{
unsigned int(1) apply_to_all;
unsigned int(7) reserved;
unsigned int(16) num_events;
for(i=0; i < num_events; i++){
unsigned int(32) index;
int(32) speed;
unsigned int(8) state;
unsigned int (8) order_id;
unsigned int(32) num_channels;
for (int j = 0; j < num_channels; j++) {
int (8) weight[j];
unsigned int (32) channel_index[j];

2.1.1.3. Semantics

order_id - specifying a value to indicate the order in which animations are applied. Animations
with lower values are applied before animation with higher values.

num_channels - specifying the number of channels of an animation for which a weight is provided.
weight[j] - specifying the weight to be applied to the j-th channel of the animation in units of 1/255.

channel_index[j] — specifying the index of the j-th channel of the animation.

2.1.2. Interaction of animation and dynamic 3D object

2.1.2.1. Problem description

Similar to the discussion above, it is currently not clear on how an animation or multiple
animations and a dynamic 3D object can be combined together. The problem statement is:

* What is the result of a video of a dynamic 3D object when it is still being actively played (i.e., a
dynamic object that changes over time) and an animation is triggered on top of it?

The proposed solution is similar to what it is proposed for multiple animations above. In this
solution, the dynamic behavior of the 3D object can be expressed by channels specific to the objects.
Thereby each channel transformations can be controlled and merged with transformations
introduced by any externally triggered animations.

Taking the same example as above, a dynamic 3D object could be walking and a head turning
animation is trigger to be played on top.

24

2.1.2.2. Syntax

aligned(8) class glTFAnimationSample
{
unsigned int(1) apply_to_all;
unsigned int(7) reserved;
unsigned int(16) num_events;
unsigned int(16) num_objects;
for(1=0; 1 < num_objects; i++){
unsigned (8) obj_order_id;
unsigned int(32) obj_num_channels;
unsigned int (32) object_index;
for (int j = 0; j < obj_num_channels; j++) {
unsigned (8) obj_weight[j];
unsigned int (32) obj_channel_index[j];
}
}
for(i=0; i < num_events; i++){
unsigned int(32) index;
int(32) speed;
unsigned int (8) order_id;
unsigned int(32) num_channels;
for (int j = 0; j< num_channels; j++) {
int (8) weight[j];
unsigned int (32) channel_index[j];

2.1.2.3. Semantics

num_objects — specifying the number of dynamic 3D objects
object_index - specifying the node index of a dynamic 3D object

obj_order_id — specifying a value to indicate the order in which transformations are applied.
Dynamic transformation of 3D objects with lower values are applied before the transformation
introduced with higher values.

obj_num_channels — specifying the number of channels which are dynamically changing the 3D
object

obj_weight[j] — specifying the influence for each channel which affects the dynamicity of the 3D
object

obj_channel_index[j] - specifying the index for the channel which affects the dynamicity of the 3D
object.

order_id - specifying a value to indicate the order in which transformations are applied.
Transformations with lower values are applied before transformations with higher values.

25

num_channels — specifying the number of channels of an animation for which a weight is provided.
weight[j] - specifying the weight to be applied to the j-th channel of the animation in units of 1/255.

channel_index[j] — specifying the index of the j-th channel of the animation.

2.2. Improvements for MPEG-I SD random access
description

Source: m58853

2.2.1. General

For random access of the MPEG-I Scene Description data in a ISOBMFF file tracks, play of the track
must start from either a sync sample or a redundant coding sample containing gITF JSON
document. Draft FDIS of ISO/IEC 23090-14 Scene Description for MPEG Media indicates that gITF
JSON documents shall be marked as sync samples and potential usage of redundant samples for
random access but it does not provide detailed descriptions on how to process such samples for
random access. This contribution proposes improvements on such description to avoid any
confusion by the readers.

2.2.2. Characteristics of random access points of MPEG-I Scene Description

For traditional audio-visual media data, sync samples are simply considered as random access
points as processing of a sync sample is same for a decoder playing a sync sample as the first
sample and a decoder already processed other sync samples and non-sync samples. When a sync
sample of traditional audio-visual media data is processed the result of previously processed
samples does not have to be preserved as they are not used for decoding of a sync sample and a
decoder is fully refreshed regardless of the status of the decoder before processing a sync sample.
This processing model cannot be simply applied to the processing of a sync sample of scene
description data as the status of Presentation Engine should not be fully refreshed and the status of
Presentation Engine before processing a sync sample needs to be preserved for efficient processing.
Therefore, appropriate processing model of sync sample of scene description needs to be described.

Table 1. Comparison of characteristics of sync samples characteristics of sync samples traditional
audio-visual media scene description data dependency to the previous samples No No continuity of
the decoder status No Yes

As shown in the Table 1, characteristics of sync sample of traditional audio-visual data and scene
description data are different. For traditional audio-visual media, sync samples are not dependent
to the previous samples and continuity of the data from the previous sample does not exist.
However, for scene description data, sync samples are not dependent to the previous samples but
continuity of the data from the previous sample may exist.

2.2.3. Description and processing of random access points

26

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/246

2.2.3.1. Random access points with sync samples

One type of random access point is sync sample. Currently, the specification is silent about the case
of having a sync sample in the middle of a track and how such samples should be process by a
Presentation Engine already in the processing of that track without breaking continuity of the
Presentation Engine. So, there must be description about how to process sync samples by a
Presentation Engine already in the processing of a track. In this case, an ISOBMFF file track
carrying scene description data can have more than one sync sample and all of each sync samples
will contain a gITF JSON document which defines the status of the nodes at the presentation time of
the sync sample. The Presentation Engine which has not processed any sample before the current
sync sample can process a sync sample as normal scene description document. However, the
Presentation Engine already processed any samples before the current sync sample in decoding
order should process a sync sample as scene update even though document in the sample is not in
the form of JSON patch. Therefore, the description about such processing model should be defined.
Otherwise, there should be a restriction that only one sync sample is allowed in the track with
MPEG-I Scene Description data.

2.2.3.2. Random access points with redundant coding

The other type of random access point is redundant coding sample. Currently, the specification
mentions that the scene description data track can contain some non-sync samples which have
sample_has_redundancy flag set to '1'. As such samples will be parsed by a Presentation Engine
starting play from such sample and ignored by a Presentation Engine already in the processing of a
track, this sample will not break continuity of a Presentation Engine already in the processing of a
track. To use such samples as a random access point, such sample should carry a gITF JSON
document and the document should have the description of a scene same as the scene at the
composition time of that sample. In addition, it also needs to be mentioned that there should be no
update of scene between the sample preceding such samples and the sample succeeding such
samples.

Figure 4 shows an example with redundant samples for random access. In this example, a track
with scene description data has two redundant samples denoted as R. The redundant sample R8
whose composition time is between U7 and U9 contains a gITF JSON document contains description
of the scene at the time of the composition time of R8. The The Presentation Engine starting from
middle of the track starts play either R5 or R8, then play U6 or U9, respectively. The The
Presentation Engine starting from the begining of the track starts play DO and ignore R5 and R8. As
the sample duration of U4 and U7 will be extended by sample duration of R5 and R8, respectively,
the scene description information in U4 and U7 must consider that the Presentation Engine will
play it longer than the duration of the sample containing it. For example, the animation of active
scene of the Presentation Engine according to the animation samplers provided by the sample U4
and the samples before that sample may continue until it receives any updated animation samplers
by the U6 sample or the samples after that sample.

:1]) IIIII

Figure 4. An example structure of scene description data with shadow sync samples

Therefore some additional description about the scene description for such samples should be
provided.

27

2.2.4. Proposed text improvements

2.2.4.1. Sync Samples

It is proposed to add a section about processing of sync samples as follows.
Processing of sync sample

When no nodes in the currently active scene of the Presentation Engine matches a node in a glTF J[SON
document from a sync sample, the Presentation Engine shall add such node and interact with the MAF
to fetch any new content associated with the scene update. When a node in the currently active scene
of the Presentation Engine dose not match to any nodes in a glTF J]SON document from a sync sample,
such nodes shall be removed from the currently active scene of the Presentation Engine. When a node
in the currently active scene of the Presentation Engine matches a node in a glTF JSON document from
a sync sample, then the status of such node shall be updated to the status of the node described by the
sync sample.

2.2.4.2. Redundant coding

It is proposed to improve a section about sample redundancies in section 8.7 of ISO/IEC 23090-14 as
follows.

Sample redundancies

For all tracks defined in this document, if a sample has its sample_has_redundancy flag set to '1' and
sample_depends_on flag set to 2, then it is expected that that sample contains a gITF J[SON document
describing the status of the scene at the compsotion time of that sample and would only be made
available by the ISOBMFF parser to the Presentation Engine if the processing of the file starts with
this sample. Otherwise, it is expected that the sample be ignored, and that processing of the current
sample is continued beyond the duration of current sample for a duration equal to the duration of the
ignored sample, as defined in ISO/IEC 14496-12.

If the scene description preceding the sample ignored, then the Presentation Engine should continue
play of the currently active scene until it receives any updates from the next samples after the sample
ignored. Therefore, the scene description in the sample immediately preceding the sample in decoding
order whose sample_has_redundancy set to '1' and sample_depends_on set to '2 should consider that
the Presentation Engine will play the scene beyond the duration of that sample by the amount of the
duration of the next sample. In addition, the gITF JSON document in the sample whose sample_has
sample_has_redundancy set to '1' and sample_depends_on set to '2' shall not introduce any scene
description which make the status of active scene of a Presentation Engine different from the stauts of
the active scene of a Presentation Engine played immediately preceding this sample during the time
between the composition time of this sample and the composition time of immediately succeding
sample.

28

Chapter 3. Codec Support

3.1. Clarification of type of V-PCC track referenced
from MPEG_media

Source: m57336

3.1.1. Consideration

Though it has been proposed and discussed how to indicate V-PCC-specific attributes and how to
associate those with accessors, it is still unclear how the referenced track is indicated in
MPEG_media.

There are two alternatives in how to encapsulate V-PCC data into ISOBMFF; single track
encapsulation and multi-track encapsulation.

Thus, the referenced track indication in MPEG media is considerd for all combinations of the
pipeline options and the V-PCC encapsulation options.

For pipeline option#1
A MPEG_media is associated with 1 buffer.
» If V-PCC data is encapsulated as single track, there is one V3C bitstream track in ISOBMFF.

Hence, it is obvious that the referenced track in MPEG _media is V3C bitstream track.

* Otherwise (V-PCC data is encapsulated as multi track), there are multiple tracks such as V3C
atlas track and V3C video component tracks. As V3C atlas track is the entry point and has track
references to the V3C video component tracks, it is straight forward to indicate V3C atlas track
as the referenced track in MPEG_media.

For pipeline option#2

There is one MPEG_media associated with individual buffer for position and V-PCC-specific
attributes.

» If V-PCC data is encapsulated as single track, there is one V3C bitstream track in ISOBMFF.
Hence, the referenced track of MPEG_media needs to be the identical V3C bitstream track.

* Otherwise (V-PCC data is encapsulated as multi track), there are multiple tracks such as V3C
atlas track and V3C video component tracks. As V3C atlas track is the entry point and has track
references to the V3C video component tracks, it is straight forward to indicate V3C atlas track
as the referenced track in MPEG_media.

3.1.2. Proposal

Based on the consideration above, it is proposed to add the following text in the MPEG-I Part 14
specification text.

For both cases that point cloud reconstruction is performed by the MAF and PE,

29

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/144

MPEG _buffer circular associated with each attribute shall refer the same MPEG media. The
referenced track in MPEG_media shall be specified as follows.

* For single-track encapsulated V3C data, the referenced track in MPEG_media shall be the V3C
bitstream track.

* For multi-track encapsulated V3C data, the referenced track in MPEG_media shall be the V3C
atlas track.

3.2. Dynamic mesh support in scene description

Source: m57410

3.2.1. Introduction

The support for dynamic meshes in scene description complements the support for dynamic point
clouds. A dynamic mesh is a timed sequence of a mesh representation. A mesh consists of a set of
attributes such as vertex positions, and normals. It also has connectivity information, usually in the
form of a description of faces that usually are in triangular shape. A face is typically identified by its
vertex indices. The faces are usually associated with a material, which is composed of a patch of
texture and its light characteristics.

In this contribution, we describe the support for dynamic meshes in scene description.

3.2.2. Design

The support for dynamic meshes in the MPEG-I scene description is limited to the following
features:

» Timed attributes such as vertex positions, normals, tangents, texture coordinates, ...

» Timed indices for indicating dynamic connectivity information

* Video texture for the mesh material

All other components of the dynamic mesh are assumed to remain unchanged (e.g. the material,
the material properties, the mode, weights and morph targets, ...)

The support for dynamic meshes doesn’t require the introduction of any new extensions. The timed
attributes and indices are supported through providing a reference to a timed accessor, i.e. an
accessor that provides the MPEG_accessor_timed extension.

The video texture is supported through referencing a texture that has the MPEG_texture_video
extension, which in turn references a timed accessor.

3.2.3. Assets and Implementation

Adding support for timed meshes coincides with the start of the activity by the 3DG group on mesh
coding. Similar to the point cloud support, the support for dynamic meshes can be done
irrespective of whether the mesh is compressed or in raw format. Different pipeline variants
maybe created to handle decompression and reconstruction.

30

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/148

Initially, a single media pipeline is provided that handles mesh input in raw format based on the
wavefront obj format. The assets provided by the mesh compression activity may be used for this
purpose. We propose to use the football sequence in a scene description test scenario.

The only deviation is the compression of the texture image sequence into an HEVC bitstream that
can be used with the already supported video texture extension.

The dynamic mesh pipeline implements a file sequence reader that reads the obj file sequence one
by one to generate the mesh frames.

Figure 5 depicts the setup:

Figure 5. n/a

The Presentation Engine will synchronize the buffer access for each of the components of the mesh
by synchronizing the buffer frame timestamps.

3.3. Support for multiple atlases for MIV applications

Source: m61138

3.3.1. General

A V3C bitstream is multiplexed into one or more atlas sub-bitstreams and their associated video
sub-bitstreams. The video sub-bitstreams for each atlas may include video-coded occupancy,
geometry, and attribute components. In the V3C parameter set (sub-clause 8.4.4.1 in ISO/IEC 23090-
5), vps_atlas_count_minus1 plus 1 indicates the total number of supported atlases in the current
bitstream. The value of vps_atlas_count_minus1is in the range of 0 to 63, inclusive.

3.3.2. Additions to the MPEG_primitive_V3C extension

To add support for multiple atlases in the MPEG_primitive_V3C extension, there are two
approaches that could be followed as described in the following sections.

3.3.2.1. Approach-1: Outer array for each V3C component

To describe the support for multiple atlases, each property in the MPEG_primitive_V3C extension
is defined as an array. The array length shall be equal to the number of atlases for a V3C media
object. The components with maps such as geometry, occupancy and attribute further refer to an
array, i.e., an inner array where each array item refers to a specific map. The properties in the
inner array correspond to component-specific data reference. For example, for video-coded data,
the index of the corresponding video texture is used. Similarly for atlas data in _MPEG_V3C_AD, the
accessor property refers to the buffer which stores the atlas data for an atlas item in the array. Each
item in the outer array with index i of a component will have the corresponding component for the
same atlas in other properties at index i. The index i can be the atlas ID. For example, an array item
at index i in the _"MPEG_V3C_AD array corresponds to the atlas data for one of the atlases. The
corresponding video-coded components for the same atlas, such as a V3C attribute, are referred by

31

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/402

the item at index i in the corresponding gITF property in the _"MPEG_primitive_V3C extension_(e.g.,
_MPEG_V3C_AVD in the case of V3C attributes). Additionally, to explicitly mention the atlas ID for
each atlas in the MPEG_primitive V3C extension, an additional property named atlasID is
introduced. The atlasID property is an array of integer values, where each integer value refers to
the vpc_atlas_id specified in sub-clause 8.4.4 in ISO/IEC 23090-5 for each atlas in the V3C bitstream.
Section 3.3.2.1.1 illustrates the semantics for outer-inner array approach and the required updates

to Table G.1 in ISO/IEC 23090-14 CDAM 1 to add the support for multiple atlases.

The Section 3.3.2.1.1 updates Table G.1 in ISO/IEC 23090-14 CDAM 1.

3.3.2.1.1. MPEG_primitive_V3C

gITF extension to specify support for V3C compressed primitives.

Table 10. MPEG_primitive_V3C Properties

Type Description Required
atlasID integer [1-*] an array of atlas ID for No
the V3C object
_MPEG_V3C_CONFIG integer [1-*] an array of Vv Yes
configuration data for
each atlas for the V3C
object
_MPEG_V3C_AD MPEG_primitive_V3C_v1. an array of binary atlas + Yes
_MPEG_V3C_AD [1-*] data for each atlas for
the V3C object
_MPEG_V3C_GVD_MAP array [1-*] an array of geometry v Yes
S maps for each atlas for
the V3C object
_MPEG_V3C_OVD_MAP integer [0-*] an array of occupancy No
map for each atlas for
the V3C object.
_MPEG _V3C_AVD MPEG_primitive_V3C_v1. an array of attribute No
_MPEG_V3C_AVD [0-*] textures for each atlas
for the V3C object.
_MPEG _V3C_CAD MPEG_primitive_V3C._MP defines the common No
EG_V3C_CAD atlas data for a v3c
object
extensions object JSON object with No
extension-specific
objects.
extras any Application-specific No

32

data.

Additional properties are allowed.

* JSON schema: MPEG_primitive_V3C_v1.schema.json
3.3.2.1.1.1. MPEG_primitive_V3C.atlasID
an array of atlas ID for the V3C object

* Type: integer [1-*]

o Each element in the array MUST be greater than or equal to 0.

* Required: No

3.3.2.1.1.2. MPEG_primitive_V3C._ MPEG_V3C_CONFIG

an array of configuration data for each atlas for the V3C object
» Type: integer [1-*]
* Required: v Yes
3.3.2.1.1.3. MPEG_primitive_V3C._ MPEG_V3C_AD
an array of binary atlas data for each atlas for the V3C object
» Type: MPEG_primitive_V3C_v1._MPEG_V3C_AD [1-*]
* Required: v Yes
3.3.2.1.1.4. MPEG_primitive_V3C._ MPEG_V3C_GVD_MAPS

an array of geometry maps for each atlas for the V3C object

» Type: array [1-*]
* Required: v Yes
3.3.2.1.1.5. MPEG_primitive_V3C._ MPEG_V3C_OVD_MAP

an array of occupancy map for each atlas for the V3C object.
* Type: integer [0-*]
* Required: No

3.3.2.1.1.6. MPEG_primitive_V3C._MPEG_V3C_AVD

an array of occupancy map for each atlas for the V3C object.

» Type: MPEG_primitive_V3C_v1._MPEG_V3C_AVD [0-*]

* Required: No

33

3.3.2.1.1.7. MPEG_primitive_V3C._ MPEG_V3C_CAD

defines the common atlas data for a v3c object
» Type: MPEG_primitive_V3C._MPEG_V3C_CAD
* Required: No

3.3.2.1.1.8. MPEG_primitive_V3C.extensions

JSON object with extension-specific objects.

* Type: object

* Required: No

» Type of each property: Extension
3.3.2.1.1.9. MPEG_primitive_V3C.extras
Application-specific data.

e Type: any
* Required: No

3.3.2.1.2. MPEG_primitive_V3C. MPEG_V3C_CAD

defines the common atlas data for a v3c object

Table 11. MPEG_primitive_V3C._MPEG_V3C_CAD Properties

Type

MIV_view_parameters integer

extensions object

extras any

Additional properties are allowed.

Description

indicates the accessor
index which is used to
refer to the list of MIV
view parameters.

JSON object with
extension-specific
objects.

Application-specific
data.

* JSON schema: MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json

Required
No

No

No

3.3.2.1.2.1. MPEG_primitive_V3C._MPEG_V3C_CAD.MIV_view_parameters

indicates the accessor index which is used to refer to the list of MIV view parameters.

34

* Type: integer

* Required: No

* Minimum: >= 1
3.3.2.1.2.2. MPEG_primitive_V3C._MPEG_V3C_CAD.extensions
JSON object with extension-specific objects.

» Type: object

* Required: No

* Type of each property: Extension
3.3.2.1.2.3. MPEG_primitive_V3C._ MPEG_V3C_CAD.extras
Application-specific data.

» Type: any
* Required: No

3.3.2.1.3. MPEG_primitive_V3C._MPEG_V3C_CONFIG

references an accessor index which stores the configuration data buffer which provides static
configuration data that is applicable for the V3C compressed primitive

3.3.2.1.4. MPEG_primitive_V3C._ MPEG_V3C_GVD_MAPS

provides an array of references to glTF.texture storing geometry maps information of an atlas for
the V3C object

3.3.2.1.5. MPEG_primitive_V3C._MPEG_V3C_OVD_MAP

provides a reference to the video texture storing occupancy information of an atlas for the V3C
object

3.3.2.1.6. MPEG_primitive_V3C.attribute

defines the attribute of a V3C object.

Table 12. MPEG_primitive_V3C.attribute Properties

Type Description Required
type integer provides the type of the No
attribute.

35

Type Description
maps integer [1-*]
extensions object JSON object with
extension-specific
objects.
extras any Application-specific
data.

Additional properties are allowed.

* JSON schema: MPEG_primitive_V3C_v1._MPEG_V3C_AVD.schema.json

3.3.2.1.6.1. MPEG_primitive_V3C_vl. MPEG_V3C_AVD.type

provides the type of the attribute.

* Type: integer

* Required: No

* Minimum: >= 0

* Maximum: <= 255
3.3.2.1.6.2. MPEG_primitive_V3C_v1l. MPEG_V3C_AVD.maps
provides the references to the corresponding video texture maps.

» Type: integer [1-*]

o Each element in the array MUST be greater than or equal to 0.

* Required: v Yes
3.3.2.1.6.3. MPEG_primitive_V3C_vl. MPEG_V3C_AVD.extensions
JSON object with extension-specific objects.

» Type: object

* Required: No

» Type of each property: Extension
3.3.2.1.6.4. MPEG_primitive_V3C_vl._ MPEG_V3C_AVD.extras
Application-specific data.

* Type: any
* Required: No

36

Required
Vv Yes
No

No

3.3.2.1.7. MPEG_primitive_V3C_vl. MPEG_V3C_AD

object that specifies the format of the atlas object

Table 13. MPEG_primitive_V3C_v1._MPEG_V3C_AD Properties
Type Description Required

buffer format string string identifier of the No
atlas data buffer format

accessor integer index of the accessor to + Yes
the atlas data.

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: MPEG_primitive_V3C_v1._MPEG_V3C_AD.schema.json

3.3.2.1.7.1. MPEG_primitive_V3C_v1l._ MPEG_V3C_AD.buffer_format

identifier of the atlas data buffer format

» Type: string
* Required: No
* Allowed values:
o "baseline" Atlas data with common atlas parameters.

o "extended" Atlas data with common atlas parameters and and PROJECTED patch type
application-specific data with PLR information, EOM patch type application-specific data,
and RAW patch type application-specific data

o "miv" Atlas data with common atlas parameters and PROJECTED patch type application-
specific parameters for MIV.

3.3.2.1.7.2. MPEG_primitive_V3C_v1l._ MPEG_V3C_AD.accessor
index of the accessor to the atlas data

* Type: integer
* Required: v Yes

e Minimum: >= 0

3.3.2.1.7.3. MPEG_primitive_V3C_vl. MPEG_V3C_AD.extensions

JSON object with extension-specific objects.

37

* Type: object
* Required: No

» Type of each property: Extension

3.3.2.1.7.4. MPEG_primitive_V3C_vl. MPEG_V3C_AD.extras

Application-specific data.

e Type: any
* Required: No

3.3.2.1.8. Example

Following is an example illustrating the use of the semantics described in Section 3.3.2.1.1.

38

"meshes": [

{
"name": "v3c_mesh",
"primitives": [
{
"attributes": {
"POSITION": 0,
"COLOR_Q": 1
Iy
"mode" : 0,
"extensions": {
"MPEG_primitive_V3C": {
"atlasID": [1],
" _MPEG_V3C_OVD_MAPS": [[21],
" MPEG_V3C_GVD_MAPS": [[3, 411,
" MPEG_V3C_AVD":[[
{
"type": 0,
"maps": [5, 6]
I¥
{
"type": 4,
"maps": [7, 8]
}
]
15
" MPEG_V3C_CONFIG": [9],
" MPEG_V3C_AD":[
{
"version": 1,
"accessor": 10
}
]
}
}
}
]
Iy

3.3.2.2. Approach-2: Array of atlases

A new property is defined under the MPEG_primitive_V3C extension named atlases as described
in [reference-mpeg_primitive_v3c-atlas_v2]. The atlases property is an array of components
corresponding to an atlas. The length of the atlases array shall be equal to the number of atlases for
a V3C object. The properties for an object in the atlases array describe the atlas data component
and corresponding video-coded components such as attribute, occupancy, and geometry for a V3C
object. [reference-mpeg_primitive_v3c-atlases] illustrates the usage of atlases semantics in the
MPEG_primitive_V3C extension. [reference-mpeg_primitive_v3c-atlas_v2] defines the properties for

39

an atlas. [reference-mpeg_primitive_v3c-atlas_v2] adds the atlasID property to Table G.1 in ISO/IEC
23090-14 CDAM 1.

3.3.2.2.1. MPEG_primitive_V3C

gITF extension to specify support for V3C compressed primitives.

Table 14. MPEG_primitive_V3C Properties

Type Description Required
_MPEG_V3C_CONFIG integer v Yes
_MPEG _V3C_AD integer v Yes
_MPEG_V3C_GVD_MAP integer [1-*] an array of references + Yes
S to video texture maps.
_MPEG_V3C_OVD_MAP integer [0-*] areference toavideo No

texture that provides
the occupancy map

_MPEG_V3C_AVD MPEG_primitive_V3C.att No
ribute [0-*]
_MPEG_V3C_CAD object This object lists No
different properties
described for the

Common Atlas Data in
ISO/IEC 23090-5.

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: MPEG_primitive_V3(C_v2.atlas.schema.json

3.3.2.2.1.1. MPEG_primitive_V3C_v2.atlas. MPEG_V3C_CONFIG

* Type: integer
* Required: v Yes

e Minimum: >= 0

3.3.2.2.1.2. MPEG_primitive_V3C_v2.atlas. MPEG_V3C_AD

a reference to the accessor that points to the atlas data.

» Type: integer

40

* Required: v Yes
* Minimum: >= 0
3.3.2.2.1.3. MPEG_primitive_V3C_v2.atlas. MPEG_V3C_GVD_MAPS
an array of references to video textures that provide the geometry maps.
» Type: integer [1-*]
o Each element in the array MUST be greater than or equal to 0.
* Required: v Yes
3.3.2.2.1.4. MPEG_primitive_V3C_v2.atlas. MPEG_V3C_OVD_MAP
a reference to a video texture that provides the occupancy map
» Type: integer [0-*]
o Each element in the array MUST be greater than or equal to 0.
* Required: No
3.3.2.2.1.5. MPEG_primitive_V3C_v2.atlas. MPEG_V3C_AVD

An array of references to the video textures that provide the attribute data

» Type: MPEG_primitive_V3C.attribute [0-*]
* Required: No

3.3.2.2.1.6. MPEG_primitive_V3C_v2.atlas. MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

» Type: object
* Required: No
3.3.2.2.1.7. MPEG_primitive_V3C_v2.atlas.extensions

JSON object with extension-specific objects.

» Type: object
* Required: No
» Type of each property: Extension

3.3.2.2.1.8. MPEG_primitive_V3C_v2.atlas.extras

Application-specific data.

* Type: any
* Required: No

41

3.3.2.2.2. MPEG_primitive_V3C._ MPEG_V3C_CAD
defines the common atlas data for a v3c object

Table 15. MPEG_primitive_V3C._MPEG_V3C_CAD Properties

Type Description Required

MIV_view_parameters integer indicates the accessor No
index which is used to
refer to the list of MIV
view parameters.

extensions object JSON object with No
extension-specific
objects.

extras any Application-specific No
data.

Additional properties are allowed.

* JSON schema: MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json

3.3.2.2.2.1. MPEG_primitive_V3C._MPEG_V3C_CAD.MIV_view_parameters

indicates the accessor index which is used to refer to the list of MIV view parameters.

* Type: integer
* Required: No
* Minimum: >= 1
3.3.2.2.2.2. MPEG_primitive_V3C. MPEG_V3C_CAD.extensions

JSON object with extension-specific objects.

» Type: object
* Required: No

» Type of each property: Extension

3.3.2.2.2.3. MPEG_primitive_V3C._MPEG_V3C_CAD.extras

Application-specific data.

* Type: any
* Required: No

3.3.2.2.3. MPEG_primitive_V3C.attribute

defines the attribute of a V3C object.

42

Table 16. MPEG_primitive_V3C.attribute Properties

Type Description

type integer provides the type of the No
attribute.

maps integer [1-*]

extensions object JSON object with
extension-specific
objects.

extras any Application-specific
data.

Additional properties are allowed.

* JSON schema: MPEG_primitive_V3C.attribute.schema.json

3.3.2.2.3.1. MPEG_primitive_V3C.attribute.type

provides the type of the attribute.

» Type: integer
* Required: No
e Minimum: >= 0
 Maximum: <= 255
3.3.2.2.3.2. MPEG_primitive_V3C.attribute.maps

provides the references to the corresponding video texture maps.

» Type: integer [1-*]

o Each element in the array MUST be greater than or equal to 0.

* Required: v Yes

3.3.2.2.3.3. MPEG_primitive_V3C.attribute.extensions

JSON object with extension-specific objects.

» Type: object
* Required: No

» Type of each property: Extension

3.3.2.2.3.4. MPEG_primitive_V3C.attribute.extras

Application-specific data.

* Type: any

Required

43

* Required: No

3.3.2.2.4. MPEG_primitive_V3C_2

gITF extension to specify support for V3C compressed primitives.

Table 17. MPEG_primitive_V3C_2 Properties

atlases

_MPEG_V3C_CAD

extensions

extras

Type

MPEG_primitive_V3C_v2.
atlas

MPEG_primitive_V3C._MP
EG_V3C_CAD

object

any

Additional properties are allowed.

Description

This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

JSON object with
extension-specific
objects.

Application-specific
data.

* JSON schema: MPEG_primitive_V3C_v2.schema.json

3.3.2.2.4.1. MPEG_primitive_V3C_2.atlases

» Type: MPEG_primitive_V3C_v2.atlas

* Required: No

3.3.2.2.4.2. MPEG_primitive_V3C_2. MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

» Type: MPEG_primitive_V3C._MPEG_V3C_CAD

* Required: No

3.3.2.2.4.3. MPEG_primitive_V3C_2.extensions

JSON object with extension-specific objects.

» Type: object
* Required: No

» Type of each property: Extension

44

Required
No

No

No

No

3.3.2.2.4.4. MPEG_primitive_V3C_2.extras

Application-specific data.

* Type: any
* Required: No

3.3.2.2.5. Example

Following is an example illustrating the use of semantics described in [reference-
mpeg_primitive_v3c-atlases].

45

46

"meshes": [

{
"name": "v3c_mesh",
"primitives": [
{
"attributes": {
"POSITION": 0,
"COLOR_0": 1
Iy,
"mode" : 0,
"extensions": {
"MPEG_primitive_V3C": {
"atlases" : [
{
"atlasID": 1,
" MPEG_V3C_OVD_MAPS": [2],
" MPEG_V3C_GVD_MAPS": [3, 4],
" MPEG_V3C_AVD": [
{
“type": 0,
"maps": [5, 6]
+
{
"type": 4,
"maps": [7, 8]
}
1,
" MPEG_V3C_CONFIG": 9,
" MPEG_V3C_AD":
{
"version": 1,
"accessor": 10
}
}
]
}
}
}
]
}

Chapter 4. Data Formats

4.1. Support of gITF CBOR binary format

Source: m56102

4.1.1. Problem Statement

The Concise Binary Object Representation (CBOR), IETF RFC 8949, represents a concise data format
compared with the traditional JSON format. CBOR has similar data objects like JSON in a
name/value pair format but in a binary and compact way, also with much more support with key-
value types. The result file size is smaller than JSON, in some case, more than 50% of gain has been
observed. CBOR is registered in IANA as “application/cbor”.

CBOR is chosen as one of the gITF interchangeable compressed file formats which also has been
supported in KhronosGroup due to its compact data size and interchangeability with JSON.

4.1.2. Benefit of CBOR file/data format:

Since the support of CBOR by gITF is getting popular, it is reasonable to add such support into MPEG
scene description for:

* Increasing gITF file format interoperability.

» Reducing file size for local storage or cache.

* Increase data transfer speed

* Reducing gITF file transfer latency with minimum processing power at MAF.

4.1.3. CBOR data size comparison example:

When there there are lots of repeated data structure and types, CBOR shows a significant
compression rate:

Table 18. n/a

Test.json Test.chor Compression Rate
13MB 258Bytes 1:1000000

4.1.4. Use Cases

4.1.4.1. CBOR binary data associated with “url”

gITF supports an external binary data expressed inline in a binary data blob. As mentioned above,
CBOR is registered in IANA as “application/cbor”. When CBOR is used, binary data may be
associated directly under the “url” parameter as follows:

47

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/95
https://datatracker.ietf.org/doc/html/rfc8949

"url": "application/cbor :xxxxxxxx"

4.1.4.2. Using CBOR file instead of JSON

A compatible CBOR file (example.chor) may be sent to MAF as an input instead of JSON
(example.gltf). In this case, MAF should have capability to identify, parse and verify the data
integrity of the input and parsed the gITF JSON format.

4.1.4.3. Using CBOR as local data storage

As shown in Section 1.1, CBOR may be used to compress glITF file size into local storage if file size is
a concern.

4.1.5. Potential Solutions

4.1.5.1. Proposed CBOR Parser API

The proposed CBOR parser API may be used by MAF to translate CBOR input into gITF native
supported JSON format. It may also be used as a file compressor to save the large gITF file into local
storage or cache.

The CBOR parser API offers the following methods:

Table 19. Description of CBOR Parser API

Method Brief Description

cbor2Json(FILE) Convert a CBOR format into a JSON format
json2Cbor(FILE) Convert a JSON format into a CBOR format
cbor2Json(Object) Convert a CBOR data blob into a JSON format

The IDL description of this interface is provided in the following table:

interface InputFileParser {
readonly attribute FILE inputFileName;
readonly attribute FILE outputFileName;
readonly attribute CBOR cborDataBlob;
FILE cbor2Json()(FILE cborInput);
FILE json2Cbor(FILE jsonInput);
FILE cbor2Json(CBOR cborDataBlob);
bool save();

+

4.1.5.2. Proposed Test Cases

The testing of the proposed CBOR parser should be implemented under MAF. The use cases could

48

be the followings:

 Ifinput gITF file is in CBOR format, the output shall be a gITF JSON by using cbor2]Json(FILE) API

o If there is CBOR binary data specified in “url”, the output shall be a gITF JSON by applying
chor2]son(Object) APIL.

 For local storage or cache purpose, a gITF file is desired to save as a CBOR by using json2Cbor()
and save() interface.

4.1.6. Open Issue Discussion

4.1.6.1. CBORIPR

No IPR disclosures associated with IETF RFC 8949.

4.1.6.2. CBOR data security

Unlike JSON, CBOR is a binary data serialization, which is not human-readable. It is a safe data
format due to its binary nature.

4.1.6.3. Implementation

CBOR has been widely accepted and implemented. It has open-source implementations in most
popular languages. (Python, C++, Java and etc).

4.1.6.4. Potential Data format issue

Currently we did not see any incompatible data type has been used in JSON which can not be
converted to CBOR or vice versa. More testing may need to be done.

49

https://datatracker.ietf.org/doc/html/rfc8949

Chapter 5. Interfaces

5.1. On DASH Dynamic Bitrate Adaption with
Viewpoint Update

Source: m56094

5.1.1. Problem Statement

DASH as an adaptive HTTP-based media streaming method enables a client to automatically adjust
bitstream bitrate with predefined small bitstream segments based on network condition or buffer
status. The advantage of switching up/down the bitrate quality can reduce re-buffer frequency
resulting in a smooth playback experience.

The MPEG media extension, “MPEG_media”, enables scene description for playback DASH-based
timed media. While the current design of DASH adaptive streaming is implementation-specific, the
usage of DASH native switching does not provide optimal networking bandwidth usage in an
immersive or 360 scene environments. For example, a view of a media play may not be always in
the range of the current viewport, which may cause the unnecessary network resource waste. To
provide a smooth timed media playback experience, it is essential to manage how network
bandwidth is consumed.

In this contribution, we propose an extension to enable DASH-base timed media bitrate adaptation
along with viewport update. In the gITF concept, this enables DASH-based media playback to
automatically switch bitrate when the camera on and off focus on a timed media object. In turn, it
improves a user’s quality of experience, increase network bandwidth efficiency.

5.1.2. Use Cases

The following scene objects are used for explanation of potential use cases.

Table 20. n/a

Asset Description

A livingroom scene A gITF asset that represents a living room.
A Big Buck Bunny video DASH-based Big Buck Bunny video files

A Tears of Steal video DASH-based Tears of Steal video files

5.1.2.1. One timed media playback

A simple use case is there is only one DASH-based timed media is played in a scene as shown in
Figure 6. Currently, the media is rendered based on the MPEG_media extension with configurable
parameters such as autoplay, loop, etc. DASH adaptative streaming in this case is used within its
native mechanism by switching bitrate based on either network condition or buffer status. The key
observation in this case is that the video keeps playing even when the viewport is not in focus. In an
adequate network environment, DASH switches to the highest bitrate possible without considering

50

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/94

the overall bandwidth consumption for a scene as a whole. In a less desirable network condition,
with a camera’s focus is on a set of relatively large bandwidth consumption scene objects such as
PCC objects, the unnecessary bandwidth consumption from the ongoing timed media playback is
not an optimal solution for view quality of the current viewport.

Figure 6. One DASH-based Timed Media Playback

5.1.2.2. More than one timed media playback

When there is more than one timed media is played at the same time, as shown in Figure 7,
network bandwidth usage is similar to the use case in Section 5.1.2.1. However, the situation may
get worse when all of the timed media are in a high-resolution setup. The lack of balancing network
resources for each of the media play will worsen the view quality.

There are couple of scenarios in this use case:

* There is more than one DASH-based timed media in the current camera’s viewport

» There are other DASH-based timed medias outside of camera’s current viewport

Figure 7. Two DAH-based Timed Media Playback

Therefore, providing a means to MAF with configurable bandwidth usage for each of the DASH-
based timed media may become a critical feature for scene description.

5.1.3. Current Scene Description Support and Gasps

5.1.3.1. Support of viewpoint data fetching

At this moment, the media access API provided in the MAF supports fetching based on “viewinfo”
by using the following defined programming interface:

interface Pipeline {

void startFetching(TimeInfo timeInfo, ViewInfo viewInfo);

+

The “ViewInfo” data structure is as follows:

31

interface ViewInfo {
attribute Pose pose;
attribute Transform objectPosition;

+

By definition, the MAF may use the “viewinfo” to optimize the streaming of the requested media
based on the camera’s view distance and orientation of the viewer. Currently, the following
parameters are defined in “viewinfo”:

e Pose

e Transform

5.1.3.2. Gaps Analysis

It is unclear how API and “viewinfo” data structure specified in Section 5.1.3.1 may be used to do
the following:

* How exactly the “viewinfo” is used to identify there are one or more DASH-based timed media
in the current viewport?

* How exactly the “viewinfo” is used to identify which media is current in focus of a viewpoint, in
the case when there is more than one DASH-based timed media in the same viewport?

* How does the current MAF deal with DASH-based timed media fetching including both inside
and outside of the current viewport? That is being said, from a system efficiency point of view,
the current solution in the CD of 23090-12 does not consider the optimization of data fetching
for DASH-based timed media.

5.2. Supporting Multiple Viewers in the Media Access
Function

Source: m58510

5.2.1. General

In the Presentation Engine of the MPEG-I Scene Description architecture, the viewer’s view of the
scene is determined by the camera used for rendering the scene from the viewer’s viewpoint. In
many use cases, the Presentation Engine runs on the end user’s device and therefore there is only
one viewer for the scene and one camera object is used at any given point in time for composition
and rendering. Using the camera information provided by the Presentation Engine, the MAF can
identify which objects in the scene are within the viewing frustum of the camera at a given time
instance.

However, in some scenarios multiple cameras are used for rendering the scene from a number of
viewpoints corresponding to different viewers of the same scene (e.g., in multi-viwer applications
such as online conferencing applications with multiple users). In such scenarios, information about
the cameras used to generate each viewer’s view of the scene, including both intrinsic and extrinsic
camera parameters, are required by the MAF to identify and request the appropriate media or

32

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/242

media parts for each viewer.

Since a media pipeline is tightly coupled with the type of the media, it may not be desirable to have
multiple media pipelines for the same content for different viewers. Rather, the MAF should allow a
single media pipeline for a media content to be used for composition and rendering for different

viewers.

5.2.2. Proposed Updates to MAF API

To support media fetching for multi-viewer applications, where each viewer may have their own
extrinsic and intrinsic camera parameters, relevant methods in the MAF API and their definition

should be updated as follows (updates are in bold).

5.2.2.1. Methods

Table 21. n/a
Methods

startFetching()

updateView()

5.2.2.2. IDL for media pipeline

State after success

ACTIVE

ACTIVE

Description

Once initialized and in READY
state, the Presentation Engine
may request the media pipeline
to start fetching the requested
data.

The initialization may be
performed using view
information for one or more
viewers.

Update the current view
information. This function is
called by the Presentation
Engine to update the current
view information, if the pose or
object position have changed
significantly enough to impact
media access. It is not expected
that every pose change will
result in a call to this function.

A call to this function shall
include the view information
for only those views whose
parameters have significantly
changed.

33

interface Pipeline {

readonly attribute Buffer buffers[];
readonly attribute PipelineState state;
attribute EventHandler onstatechange;

void initialize. (Medialnfo medialnfo, BufferInfo bufferInfo[]);
void startFetching (TimeInfo timeInfo, ViewInfo viewInfo[]);

void updateView. (ViewInfo viewInfo[]);

void stopFetching. ();

void destroy. OF

5.3. COAP API support in MAF

Source: m56739

5.3.1. General

The proposed APIs are assumed under a common CoAP implementation. Take video streaming
from CoAP supported devices as an example, those devices are deployed and implemented as a
CoAP server that captures, generates, and prepares video binary data (compressed or
uncompressed).

5.3.2. MAF as CoAP Client

In this clause, the proposed MAF API in Table 22 applies to the case where the MAF acts as a CoAP
client to fetch timed media from the CoAP media server. The CoAP API offers the following
methods:

Table 22. Description of COAP Client API

Method Brief Description

fetch () The MAF sends media resource request to a
CoAP server

receive () The MAF receives the requested media resource
from a CoAP server

5.3.3. MAF as HTTP-CoAP Proxy

In this clause, the proposed MAF API in Table 23 applies to the case where the MAF acts as an HTTP-
CoAP proxy.

Table 23. Description of HTTP-CoAP proxy API
Method Brief Description

he() The MAF maps the HTTP requests to CoAP and
forward them to CoAP Server

54

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/116

Chapter 6. MPEG-I Audio in Scene
Description

6.1. MPEG-I Audio in Scene Description

Source: m61180

6.1.1. General

MPEG-I Immersive Audio has been specified in ISO/IEC 23090-4. The specification assumes the
presence of an MPEG-I immersive audio renderer that will receive the MPEG-I audio bitstream, a
set of MPEG-H audio streams, as well as information about some scene metadata, such as listener’s
pose. It will then use the audio scene metadata in the MPEG-I audio bitstream, the decoded MPEG-H
bitstreams, and the pose information to render the spatial audio.

Figure 8 depicts the MPEG-I audio architecture:

MPEG-H 3DA Audio. MPEG-H 3DA
Bitstream Decoder

mPEGH | "
Bitstream Headphones

Figure 8. N/A

The MPEG-I render pipeline is depicted by [m61180_fig2]:

Room > » Eaty
Assignment R (R Reflections

MP -

Figure 9. N/A

MPEG-I immersive audio relies on a new scene description format for the audio scene to establish
the spatial relationships between the different audio sources.

Ideally, the audio scene metadata should be described as part of a common scene description that
includes all media types: visual, audio, haptics, etc. The MPEG-I audio renderer would then be
driven by scene metadata extracted from the common scene description.

However, if this is not possible, alternative options may be available. In the first option, the MPEG-I
Presentation Engine will be provided with callbacks to allow it to update the audio scene based on
information coming from the common scene description. This option is described by Figure 10:

55

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/411

XR

Runtime [l Presentation Engine [+«

MAF

Callback

MPEG-| Audio
Renderer

Figure 10. N/A

This option requires that the Presentation Engine gets all the extracted audio scene metadata, so
that it can align it with the common scene description.

Another option would be to pre-process the MPEG-I immersive audio bitstream to align it with the
common scene description. This option is depicted by Figure 11:

XR

Runtime [Presentation Engine [+—

MAF

MPEG-l Immersive Audio
Audio Renderer \ Preprocessing
— |

Modified 6DoF
audio bitstream

Figure 11. N/A

The pre-processing block may insert scene update MHAS packets to achieve the alignment of the
audio scene with the common scene.

Yet another option could be that the common scene description completely overwerites the MPEG-I
immersive audio scene with the spatial audio description in the scene description. In essence, it
would just use the decoded MPEG-H streams as audio sources.

36

Chapter 7. Reference Software

7.1. Thoughts on trimesh playback of AR scenes

Source: m60282

7.1.1. General

The MPEG-I Scene Description standard relies and extends on the Khronos gITF format. While the
primary goal of gITF is to represent 3D objects in virtual scenes, the MPEG-I SD work also aims at
addressing AR applications wherein 3D objects are integrated into real-world scenes.

Given the requirement for test assets and reference software to guide the standardisation work of
MPEG-I SD, this brings challenges to also include test assets for AR applications as well as their
integration into the reference software, currently based on trimesh, while both gITF and trimesh
are not originally developed for these AR applications.

Therefore, here we aim at starting the discussion on the feasibility of meeting this requirement and
presents a possible approach. This approach comprises two main steps:

* Recording a real-world scene as an AR test asset using the AR Session recorder of Google ARCore

* Playing back the recorded an AR test asset inside trimesh (or other renderer)

7.1.2. AR Sessions recording and format

7.1.2.1. AR Session in Google ARCore

The Google ARCore framework provides an API to record an AR Session such that it can be played
back at later time. By recording, the function effectively captures and stores the sensors
information that are fed as input of the AR algorithms which power the AR application. This way,
the playback function can later read those AR session files and recreate the device movement and
sensing based on this file and no longer using direct sensor measurements.

This is depicted in Figure 12 available in the ARCore documentation.

Figure 12. AR Session playback in ARCore
According to the documentation, the recorded AR Session will contain:

* Primary video track (CPU image track, i.e. not the video rendered on the screen)
* Camera depth map from hardware depth sensors, when available
* Gyrometer data

e Accelerometer data

57

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/358
https://developers.google.com/ar/develop/recording-and-playback

¢ Custom/user event

7.1.2.2. AR Session file format

In order to test this capability, several recording where made with ARCore compatible
smartphones. The DepthLab Android application developped by Google [Ruofei et. al.][DepthLab]
was used to perform those quick tests. This application demonstrates the capabilities of the ARCore
framework to application developers as well as provides a function to record the AR Session via the
corresponding ARCore APIL

Here are some dump information from the recorded files.

38

Track # 1 Info - TrackID 1 - TimeScale 90000 - Media Duration 00:00:29.107
Track has 2 edit lists: track duration is 00:00:29.134
Media Info: Language "und (und)" - Type "vide:avc1" - 869 samples
Visual Track layout: x=0 y=0 width=640 height=480
MPEG-4 Config: Visual Stream - ObjectTypelIndication @0x21
AVC/H264 Video - Visual Size 640 x 480
AVC Info: 1 SPS - 1 PPS - Profile High @ Level 3
NAL Unit length bits: 32
SPS#1 hash: ©03802E3BCTATE33FE5B23E626E9E4D37369B6548
PPS#1 hash: 85644534159E9C005D09E9ACSEACE302A792A46E
Self-synchronized
RFC6381 Codec Parameters: avc1.64007e
Average GOP length: 32 samples

Track # 2 Info - TrackID 2 - TimeScale 90000 - Media Duration 00:00:29.107
Track has 2 edit lists: track duration is 00:00:29.134
Media Info: Language "und (und)" - Type "meta:mett" - 869 samples
Textual Metadata Stream - mime application/arcore-video-0
RFC6381 Codec Parameters: mett
A1l samples are sync

Track # 3 Info - TrackID 3 - TimeScale 90000 - Media Duration 00:00:29.109
Media Info: Language "und (und)" - Type "meta:mett" - 5875 samples
Textual Metadata Stream - mime application/arcore-gyro

RFC6381 Codec Parameters: mett

A1l samples are sync

Track # 4 Info - TrackID 4 - TimeScale 90000 - Media Duration 00:00:29.109
Track has 2 edit lists: track duration is 00:00:29.109
Media Info: Language "und (und)" - Type "meta:mett" - 5875 samples
Textual Metadata Stream - mime application/arcore-accel
RFC6381 Codec Parameters: mett
A1l samples are sync

Track # 5 Info - TrackID 5 - TimeScale 90000 - Media Duration 00:00:27.575
Track has 2 edit lists: track duration is 00:00:28.327
Media Info: Language "und (und)" - Type "meta:mett" - 41 samples
Textual Metadata Stream - mime application/arcore-custom-event
RFC6381 Codec Parameters: mett
A1l samples are sync

39

Track # 1 Info - TrackID 1 - TimeScale 90000 - Media Duration 00:00:21.579
Track has 2 edit lists: track duration is 00:00:21.784
Media Info: Language "und (und)" - Type "vide:avc1" - 643 samples
Visual Track layout: x=0 y=0 width=640 height=480
MPEG-4 Config: Visual Stream - ObjectTypelIndication @0x21
AVC/H264 Video - Visual Size 640 x 480
AVC Info: 1 SPS - 1 PPS - Profile High @ Level 3.1
NAL Unit length bits: 32
SPS#1 hash: 217A055E6A89F18FEDACDE98F4039A7B505ACCOB
PPS#1 hash: 85644534159E9C005D09E9ACSEACE302A792A46E
Self-synchronized
RFC6381 Codec Parameters: avc1.64001f
Average GOP length: 32 samples

Track # 2 Info - TrackID 2 - TimeScale 90000 - Media Duration 00:00:21.579
Track has 2 edit lists: track duration is 00:00:21.784
Media Info: Language "und (und)" - Type "meta:mett" - 643 samples
Textual Metadata Stream - mime application/arcore-video-0
RFC6381 Codec Parameters: mett
A1l samples are sync

Track # 3 Info - TrackID 3 - TimeScale 90000 - Media Duration 00:00:21.581
Track has 2 edit lists: track duration is 00:00:21.585
Media Info: Language "und (und)" - Type "meta:mett" - 4444 samples
Textual Metadata Stream - mime application/arcore-gyro

RFC6381 Codec Parameters: mett

A1l samples are sync

Track # 4 Info - TrackID 4 - TimeScale 90000 - Media Duration 00:00:21.581
Media Info: Language "und (und)" - Type "meta:mett" - 4445 samples
Textual Metadata Stream - mime application/arcore-accel

RFC6381 Codec Parameters: mett

A1l samples are sync

Track # 5 Info - TrackID 5 - TimeScale 90000 - Media Duration 00:00:20.312
Track has 2 edit lists: track duration is 00:00:00.753
Media Info: Language "und (und)" - Type "meta:mett" - 28 samples
Textual Metadata Stream - mime application/arcore-custom-event
RFC6381 Codec Parameters: mett
A1l samples are sync

As can be seen from those dumps, the generated mp4 files contain: * The main video used for video
processing * Gyroscopic data * Acceleration data * User actions (probably the custom-event track) *
A mysterious track that has the same number of samples as the video track but only between 84
and 86 bytes per sample depending on the recording

Note that the smartphones used for the test recording were not equipped with depth sensors, e.g.
ToF sensor, this should be the reason why there is no depth map video track as stated in the
documentation “video file representing the camera’s depth map, recorded from the device’s

60

hardware depth sensor”.

[Ruofei et. al.] Du, Ruofei, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian,
Joao Afonso et al. "DepthLab: Real-time 3D interaction with depth maps for mobile augmented
reality." In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology, pp. 829-843. 2020.

[DepthLab] DepthLab: Real-Time 3D Interaction With Depth Maps for Mobile Augmented Reality
(augmentedperception.github.io), https://augmentedperception.github.io/depthlab/

7.1.3. AR Session playback in trimesh

As presented in clause Section 7.1.2, the ARCore API provides the ability to record all the
information pertaining to an AR session in terms of sensor data and user events.

From such a file, it should then be possible to:
* Determine the position of the smartphone camera over time (even absolute if GPS activated)

using the rotation and displacement data.

* Create a point cloud frame/mesh frame from each recorded video frame based on the associated
depth map. NOTE If no depth sensor is used for the recording, the depth map should be either
generated via an algorithm or retrieved from the ARCore API and stored in the mp4 file using a
custom made application.

* Position this point cloud frame/mesh frame in the scene over time.

Once this volumetric data corresponding to the AR Session is generated, this could constitute an AR
test asset for MPEG-I Scene Description work which could be then played back in trimesh

61

https://augmentedperception.github.io/depthlab/

Chapter 8. Interactivity framework

8.1. On event-based scene update

Source: m61812

8.1.1. General

In the 23090-14 DIS document, a scene update mechanism is proposed, with predefined timed
updates: A special track in a media content (for instance an ISOBMFF file), provides timed samples
that contain patch (i.e., JSON patch) to be apply to the original scene description file.

Figure 13. n/a

This mechanism handles pre-defined scene evolution but does not allow describing event-based
update, following for instance a user action or any event that may occurred amongst the scene
objects at any time. In the MPEG-I Scene Description output document on scene update [ISO/IEC JTC
1/SC 29/WG 3 N0315], a potential solution is presented for event-based scene updates : while a
predefined timed scene update is in progress, an event may occur that updates the scene
description. Several scenarios are then proposed: apply a patch and switch to a new timed samples
track or apply a patch and skip one or more versions in the same track.

i

oo . -
B ~a— <3
B

Figure 14. n/a

This mechanism is still strongly related to pre-defined scene evolutions and does not specify how
the event that triggers the update is described in the scene description document.

Furthermore, it does not handle the case where the same event that creates a new node may be
fired multiple times, like illustrated in the following diagram: A gITF scene contains a description of
an event-based update mechanism with the same patch applied each time an event is fired. Some
elements of the gITF scene are modified (adding, changing or removing nodes, meshes parameters)
but not the event-based update description.

62

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/445
https://datatracker.ietf.org/doc/html/rfc6902/

gITF VX0
i

.

First Event
JSON patch
i=1

-.'-——_—”

i++
ith Event
JSON patch

Figure 15. Event-based update diagram

8.1.2. A use case for event based updates

This update diagram is illustrated in the IDCC demo, presented during the last MPEG meeting in
Mainz:

Figure 16. n/a

Figure 17. n/a

The demo presents a game application. An initial scene is first displayed, containing a plane
surface, a TV screen displaying a video content and a vertical surface displaying a pattern. The user
can add a new cube in the scene by touching the screen, in order to build a cubes stack that
matches the displayed pattern. Each time a match occurs, a new scene is loaded with a new pattern
and a new video. The game may be multiplayer with the same scene shared between all the
connected clients. The scene is synchronized each time an update is performed in one client. A

63

game server handles the scene synchronization each time an update is performed by a client.

The creation of the cube and the loading of a new scene is currently implemented using proprietary
solution, but it could be possible to build a mechanism in line with the MPEG-SD dynamic scene
framework.

Two kinds of updates are triggered during the game:

1. During a game phase, each time the user touches the screen to create a cube in front of the
pattern, a same scene update/patch is applied. The difference is the position of the user’s finger
that gives the position where the cube is created and from which it falls. Using the current scene
update mechanism, with JSON patch, the creation of a new cube would be performed with 2
patch operations:

o An “add” operation, that adds a new node in the gITF node array, for instance with a path
equal to “/nodes/-“ i.e. a new node created at the end of the array. A new node created in the
middle of the nodes array (i.e., with a path equal to “/nodes/2”) would leave the scene in an
erroneous status and would need extra patch operations to fix it. We would face other issues
if the new “cube” nodes must be created as children of another “cubesStack” node: We
would not know in advance the index of the new node since it depends on the number of
updates that have already been triggered.

o A “place” operation that does not exist in the JSON patch specifications. We could use a
“replace” operation to set the “translation” or/and “rotation” elements of the new node but:

= Same as above, we do not know in advance the index of the new node!

= The value to be applied must be retrieved from user’s finger position on the screen! And
there is no way to pass this value as an input to the “replace” operation.

2. When the cubes stack matches the pattern, a new scene is loaded with a new pattern:

o It could be a JSON patch, removing the cube nodes and replacing the pattern with a new
one. As above, we do not know the indexes of all the cube nodes and these indexes are
needed to remove the nodes. If the nodes have been created as children of a unique parent
node, we could just empty the children array of this node. The cube nodes description would
remain in the description file.

o It could be a complete update and a new gITF file is used.

8.1.3. JSON patch limitations

A JSON patch is not a “glTF patch” and does not consider all the characteristics of the JSON tree in a
gITF scene description file and particularly the interdependence between elements of different
branches of the gITF tree (a node referencing a mesh that references a material, or a node
referencing one or more child nodes). It is fine if you know in advance the scene description you
want to update and the resulting scene description: The JSON patch can be generated by comparing
the 2 JSON description files.

For repetitive event-based updates as described in Section 8.1.2, we don’t know the resulting scene
and care should be taken when writing the JSON patch. Furthermore, the application, that applies
the patch, may need to perform extra operations to complete the update:

64

* check the consistency of the resulting gITF scene,
» get the index of an array item created with the “-“ JSON patch alias,

» perform extra glTF modifications not handled by JSON patches (set newly created nodes as child
of another node, set JSON element to a value only determined at run-time...).

8.1.4. Semantics for event-based update

A new semantic is needed to describe event-based scene update: A semantic that would address the
use case (related to pre-defined timed scene updates) as well as the new one introduced in Section
8.1.2.

An approach would be to keep using the JSON patch mechanism, which is already used for the pre-
defined timed scene updates. As explained above, the definition of extra parameters would then be
required.

Furthermore, the description of the event and its relationship with the scene update could be
described with the interactivity framework specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]. It defines
a set of action types that can be executed following a trigger activation. As a reminder, the table
above gives the action types that are already specified:

Table 24. Type of action

Action type Description

“ACTION_ACTIVATE” Set activation status of a node
“ACTION_TRANSFORM” Set transform to a node
“ACTION_BLOCK” Block the transform of a node
“ACTION_ANIMATION” Select and control an animation
“ACTION_MEDIA” Select and control a media
“ACTION_MANIPULATE” Select a manipulate action
“ACTION_SET MATERIAL” Set new material to nodes
“ACTION_SET HAPTIC” Get haptic feedbacks on a set of nodes

An event-based scene update may be described in a gITF scene description file, using the
interactivity extensions specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]: A trigger element may
described the event (for instance, a “TRIGGER_USER_INPUT” trigger, as defined in [ISO/IEC JTC 1/SC
29/WG 3 N0725]), and an action element (of a new type, to be defined) may described the update
information (a patch to be applied (an array of JSON patch operations) and other parameters used
by the application to complete this update). Here is a list of such parameters that may be defined:

* Parameters to place one or more nodes in a position not known in advance. For instance, it may
include a position information and a list of nodes. The position parameter may be related to a
user input, or a user pose and may use the OpenXR interaction profile path semantic. Each node
to position may be identified by one of the patch operations that created or modified it.

* Parameters identifying one or more nodes to be used as parent of one or more newly created
nodes. For instance, a list of parent nodes and a list of child nodes. Same as above, each child

65

https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

node may be identified by one of the patch operations that created or modified it.

* Any other parameters that may be needed for other use cases: flag to share or not a local update
with other connected users sharing the same scene, strategy in case the patch fails or gives an
inconsistent gITF tree (rollback, fix...), ...

66

Chapter 9. Collected problem statements
and industry needs

9.1. On the support of real environment data

Source: m61811

9.1.1. General

In Augmented Reality (AR) experiences, virtual content is seamless inserted into the user real
environment using optical or video-see through devices. The knowledge of the user real
environment is then required for: * The positioning of the virtual objects based on AR anchors *
Consistent handling of collisions between virtual and real objects * Consistent rendering of virtual
and real objects including occlusion and lighting/shadowing aspects

This contribution provides an overview of how real environment data are handled (captured,
computed, stored and loaded) in some AR frameworks and proposes to investigate the support of
real environment data in MPEG-I Scene Description for transmission purpose.

9.1.2. Representation of the real environment

As shown in Figure 18, the real environment data are computed from embedded-sensor raw data.
An AR device may have several embedded sensors to scan the user environment, such as color
camera(s) and Light Detection and Ranging (LiDAR). The generated raw data are typically point
clouds, depth maps, pictures. An Inertial Measurement Unit (IMU) is also required to estimate the
current pose of the AR device when acquiring these data. Based on these sensor raw data, a
representation of the real environment is computed and the resulting real environment data may
have various formats:

* A single mesh, optionally textured, issued from a spatial mapping computation

* A semantic representation, optionally associated with a mesh segmentation, issued from a scene
understanding computation

» Areal light mapping
Depending on the AR experiences, the most appropriate representation of the real environment is
computed:

* A single mesh representation may be sufficient for coherent collision handling and lighting

* A semantic representation (e.g. “desk”, “laptop”, “screen”, “floor”, “ceiling”, “wall”) may be
required for the definition of advanced anchoring and/or interaction

* A mesh segmentation is required for individual real object handling, such as object removal in a
diminished reality application

67

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/444

Figure 18. Computation of real environment data

The computation of the real environment data may either be done locally in the AR device or
remotely in a Spatial Computing Server. In the case of remote computation, the transmission of
such kind of data is in line with the Spatial Computing Server (SCS) requirements for eXtended
reality (XR) of the MPEG-I Phase 2 requirement document especially the requirement #134:

“The SCS shall provide XR Spatial Description in a standard representation format (e.g. scene
description) upon request of XR devices (UEs) on different platforms (desktop and mobile).”

9.1.3. Storing a representation of the real environment

The process of scanning the real environment and generating the corresponding representation
may be done prior to runtime. This approach is often related to quasi-static environment and has
the following main advantages:

Availability of the real environment data at the beginning of the AR session

* Resource optimization of the AR devices resulting to power savings as no or limited scans are
required at runtime

» Support of low-end AR devices having no efficient sensors

» Consistency of the representation of a shared real environment between several heterogenous
AR devices

« Ability to build a scalable library of real environments (rooms, buildings, cities...)

Note: Having an initial scan may also be relevant for time-evolving real environments. Updating
some parts of the initial scan could be less time-consuming than performing a complete scan.

Generating real environment data before runtime requires efficient storage. Storing real
environment data in the Cloud has been investigated by ETSI Augmented Reality Framework (ARF).
As shown in Figure 19, a World Knowledge server is located in the Cloud and stores the real
environment data to be used by

 a Vision Engine for AR anchoring positioning/localization aspects

* a 3D Rendering Engine for consistent collision handling and rendering between virtual and real
objects

Figure 19. Global overview of the architecture of an AR system (from ETSI ARF)

68

Note: there is a need for a format to transmit real environment data between the World Knowledge
storage server and the 3D Rendering Engine in complement to the transmission of virtual contents,
which is already the scope of MPEG-I SD.

9.1.4. Examples of framework for real environment handling

Several frameworks are available to scan, compute, store and load real environment data for AR
experiences. An overview of the following frameworks is provided in this section:

» Microsoft’s Mixed Reality framework
» Apple’s ARKit framework

e Meta/Oculus framework

9.1.4.1. Microsoft’s Mixed Reality framework

The Microsoft Mixed Reality framework has been developed for the HoloLens 2 device. It is
composed of

* a spatial computing module, generating a mesh representation of the real environment as
shown in Figure 20

* a scene understanding module from Mixed Reality Toolkit (MRTK) version 2.7 based on OpenXR,
detecting and labeling planar surfaces for the placement of virtual content as shown in Figure
21

Figure 20. Mesh representation of the real environment after a spatial mapping computation

v
/"- et

Figure 21. Semantic representation of the real environment after a scene understanding computation

A complete Microsoft’s Scene Understanding SDK for Unity is available. An example of a C# code to
scan, load and store real environment data based on the Scene Observer object is shown below

69

if (!SceneObserver.IsSupported())
{

// Handle the error
}

// This call should grant the access we need.
await SceneObserver.RequestAccessAsync();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

querySettings.EnableSceneObjectQuads = true;

// Requests that the scene updates quads.

querySettings.EnableSceneObjectMeshes = true;

// Requests that the scene updates watertight mesh data.
querySettings.EnableOnlyObservedSceneObjects = false;

// Do not explicitly turn off quad inference.

querySettings.EnableWorldMesh = true;

// Requests a static version of the spatial mapping mesh.
querySettings.RequestedMeshLevelOfDetail = SceneMeshLevelOfDetail.Fine; // Requests
the finest LOD of the static spatial mapping mesh

// Initialize a new Scene
Scene myScene = SceneObserver.ComputeAsync(querySettings, 10.0f).GetAwaiter()
.GetResult();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

// Compute a scene but serialized as a byte array
SceneBuffer newSceneBuffer = SceneObserver.ComputeSerializedAsync(querySettings, 10
.0f).GetAwaiter().GetResult();

// If we want to use it immediately we can de-serialize the scene ourselves
byte[] newSceneData = new byte[newSceneBuffer.Size];
newSceneBuffer.GetData(newSceneData);

Scene mySceneDeSerialized = Scene.Deserialize(newSceneData);

// Save newSceneData for later

9.1.4.2. Apple’s ARKit framework

On a fourth-generation iPad Pro running iPad OS 13.4 or later, Apple’s ARKit uses the LiDAR
Scanner to create a mesh representation of the user real environment. Then this mesh is further
segmented and multiple anchors, called ARMeshAnchor, are assigned to the resulting set of
segmented meshes. As shown in Figure 22, a semantic labeling is performed for the real objects that
ARKit can identify such as ceiling, door, floor, seat, table, wall and window labels.

70

Figure 22. Semantic labeling of Apple’s ARKit

These real environment data attached to the ARMeshAnchors can be saved and loaded by
serializing/deserializing an ARWorldMap as shown in Figure 23.

Overview

Figure 23. Saving and loading an Apple’s ARKit ARWorldMap

9.1.4.3. Meta/Oculus framework

The Meta/Oculus framework has ben developed for Meta Quest 2 and Meta Quest Pro devices. The
scene understanding computation provides a scene model, which is a representation of the user
real environment. The scene model contains Scene Anchors, with each anchor being attached to
geometric components and semantic labels. The floor, ceiling, wall_face, desk, couch, door_frame
and window_frame labels are currently supported as shown in Figure 24.

Figure 24. Semantic labeling of the Meta/Oculus Scene Understanding

The scene understanding computation is based on the Khronos OpenXR standard and relies on the
Meta OpenXR XR_FB_scene extension. By using Unity as Presentation Engine, an OVRSceneManager
allows access to the scene model. An OVRSceneAnchor component corresponds to a scene anchor.
The semantic classification of a scene anchor is managed by the OVRSemanticClassification.

A Scene Model is generated by the Scene Capture system flow that lets users walk around and
capture their scene. Users have complete control over the manual capture experience and decide

71

what they want to share about their environment.
As shown below, the OVRSceneManager provides functions

* tolaunch a scene capture to generate a Scene Model

* toload an existing Scene Model

OVRSceneManager.RequestSceneCapture()
OVRSceneManager.LoadSceneModel()

72

Appendix A: JSON Schema for extensions

A.1. JSON Schema for MPEG_buffer_circular extension

"$§schema" : "http://json-schema.org/draft-07/schema"”,
"title" : "MPEG_buffer _circular",

"type" : "object",

"description": "glTF extension to specify circular buffer",
"all0f": [{ "$ref": "glTFProperty.schema.json" } 1,
"properties" : {

"count": {
"type": "integer",
"default": 2,

"minimum": 2,
"description”: "This provides the number of frames that are offered by
this buffer."

I
"media": {
"al10f": [{ "$ref": "glTFid.schema.json" } 1,
"description”: "The index of the MPEG media entry that provides the
source."
H
"tracks": {
"type": "array",
"items": {

"al10f": [{ "$ref": "gl1TFid.schema.json" }]
+

"minItems": 1,

"description": "The array of indices of tracks the MPEG media entry that

provides the source."
},
"alternative": {
"type" :"integer",
"all0f": [{ "$ref":"qlTFid.schema.json"}],
"description": "The index of the alternative entry in MPEG media that
provides the source."

I
"extensions": {},
"extras": {}

}I

"required": ["media"]

A.2. JSON Schema for MPEG_media

73

74

"$schema": "http://json-schema.org/draft-04/schema",
"title": "MPEG_media",
"type": "object",
"description”: "MPEG media used to create a texture, audio source or other objects
in the scene.",
"all0f": [{ "$ref": "glTFProperty.schema.json" } 1,
“properties": {
"media": {
"type": "array",
"description": "An array of MPEG media. A MPEG media contains data
referred by other object in a scene",
"items": {
"$ref": "MPEG_media.media.schema.json"
}
"minItems": 1

+
"extensions": {},
"extras": {}

b

"required": ["media"]

A.3.JSON Schema for MPEG_media.media

"$§schema": "http://json-schema.org/draft-04/schema",
"title": "MPEG_media.media",
"type": "object",
"description”: "MPEG media used to create a texture, audio source, or any other
media type defined by MPEG.",
"properties": {
"name": { },
"startTime": {
"type": "number",
"minimum": 0.0,
"default": 0.0,
"exclusiveMinimum": false,
"description": "The startTime gives the time at which the rendering of the
timed texture will be in seconds. "
¥
"startTimeOffset": {
"type": "number",
"minimum": 0.0,
"default": 0.0,
"exclusiveMinimum": false,
"description": "The startTimeOffset indicates the time offset into the
source, starting from which the timed texture is generated."
¥
"endTimeOffset": {
"type": "number",
"minimum": 0.0,
"description”: "The endTimeOffset indicates the time offset into the
source, up to which the timed texture is generated. The value is provided in seconds,
where @ corresponds to the start of the source."

¥
"autoplay": {
"type": "boolean",
"description": "Specifies that the MPEG media start playing as soon as it
is ready."
¥

"autoplayGroup": {
"type": "boolean",
"description": "Specifies that playback starts simultaneously for all
media sources with the autoplay flag set to true."
i
"loop": {
"type": "boolean",
"default": false,
"description”: "Specifies that the MPEG media start over again, every time
it is finished."
¥

"controls": {

75

76

"type": "object",
"$ref": "MPEG_media.media.controls.schema.json"
1
"alternatives": {
"type": "array",
"description”: "An array of alternatives of the same media (e.g. different
video code used)",
"items": {
"uri"s {
"type": "string",
"description": "The uri of the media.",
"format": "uriref",
"gltf_detailedDescription”: "The uri of the media. Relative paths
are relative to the .gltf file.",
"gltf_uriType": "media"

Iy
"mimeType": {
"any0f": [
{
"type": "string",
"enum": ["video/mp4", "application/dash+xml"]
s
{
“type": "string"
}
1,
"description": "The MPEG media's MIME type."
Iy
"tracks": {

"type": "array",
"description": "List of all tracks in MPEG media container (e.g.
mp4 file or DASH manifest",
"items": {
"track": {
"type": "string",
"description”: "URL fragments e.g, DASH : Using MPD
Anchors (URL fragments) as defined in Annex C of ISO/IEC 23009-1 (Table C.1). ISOBMFF:
URL fragments as specified in Annex L of ISO/IEC 14496."
}
"codec": {
"type": "string",
"description": "The codecs parameter, as defined in IETF
RFC 6381, of the media included in the track."
}
¥
¥
"extraparams": {
"type": "object",
"additionalProperties": true
e

"required": ["uri", "mimeType"]

77

A.4.JSON Schema for MPEG_media.media.controls

"$§schema": "http://json-schema.org/draft-04/schema",
"title": "MPEG_media.media.controls",
"type": "object",
"description": "Specifies that which MPEG media controls should be exposed to end
user",
"properties": {
"pauseSupported":{
"type":"boolean",
"description": "Pause control displayed for the MPEG media.",
"default": true
b
"fastForwardSupported": {
"type": "boolean",
"description": "Fast forward control displayed for the MPEG media.",
"default": true
e
"fastBackwardSupported": {
"type": "boolean",
"description": "Fast backward control displayed for the MPEG media.",
"default": true

78

A.5.JSON Schema for
MPEG node_transformation_external

{
"$schema" : "http://json-schema.org/draft-04/schema",
"title" : "MPEG_node transformation_external",

"type" : "object",
"description”: "glTF extension to specify pose in scene is dependent on external

information",
"all0f": [{ "$ref": "g1TFChildOfRootProperty.schema.json" } 1,
"properties" : {
"matrix": {
"uri": {

"type": "string",
"description”: "The uri provides node's source of the transformation

matrix",
"gltf_detailedDescription": "A floating-point 4x4 transformation

matrix stored in column-major order.",
"gltf_webgl": "‘uniformMatrix4fv()" with the transpose parameter equal

to false"

}
}

"rotation": {
"uri": {

"type": "string",
"description": "The uri provides node's source of unit quaternion

rotation in the order (x, y, z, w), where w is the scalar."
+
"description”: "The node's unit quaternion rotation in the order (x, y, z,

w), where w is the scalar."
+
"scale": {
"uri": {

"type": “Str‘ing",
"description”: "The uri provides node's source of non-uniform scale,

given as the scaling factors along the x, y, and z axes."

}
}I

"translation": {

"uri": {

"type": "string",
"description”: "The uri provides node's source of translation along

the x, y, and z axes."

}
}

79

A.6. JSON Schema for MPEG_buffer_circular

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG _buffer circular",

"type" : "object",

"description”: "glTF extension to specify circular buffer",
"all0f": [{ "$ref": "glTFProperty.schema.json" } 1,
"properties" : {

"count": {
"type": "integer",
"default": 2,

"minimum": 2,
"description": "This provides the number of frames that are offered by
this buffer."

¥
"media": {
"allof": [{ "$ref": "glTFid.schema.json" } 1,
"description": "The index of the MPEG media entry that provides the
source."
¥
"tracks": {
"type": "array",
"items": {

"all0f": [{ "$ref": "glTFid.schema.json" }]
}

inItems": 1,
"description": "The array of indices of tracks the MPEG media entry that
provides the source."
1
"alternative": {
"type" :"integer",
"all0f": [{ "$ref":"g1TFid.schema.json"}],
"description": "The index of the alternative entry in MPEG media that
provides the source."

+
"extensions": {},
"extras": {}

}I

"required": ["media"]

80

A.7.JSON Schema for MPEG_primitive_V3C

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C",
"type" : "object",
"description”: "glTF extension to specify support for V3C compressed primitives.",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"atlasID": {
"type": "array",
"description": "an array of atlas ID for the V3C object",
"gltf_detailedDescription":"an array of atlas ID for the V3C object",
"items" : {
"all0f": [{ "$ref" : "gl1TFid.schema.json"}]
}

inItems" : 1
1
"_MPEG_V3C_CONFIG": {
"type": "array",
"minItems": 1,
"items" : {
"allof": [{ "$ref":
"MPEG_primitive_V3C_v1._MPEG_V3C_CONFIG.schema.json" }]
T,
"description": "an array of configuration data for each atlas for the V3C
object",
"gltf_detailedDescription": "an array of configuration data for each atlas
for the V3C object"
1
"_MPEG_V3C_AD": {
"type" : "array",
"items": {
"all0f": [{ "$ref": "MPEG_primitive_V3C_v1._MPEG_V3C_AD.schema.json"
F]
b
"description": "an array of binary atlas data for each atlas for the V3C
object",
"gltf_detailedDescription”: "an array of binary atlas data for each atlas
for the V3C object",
"minItems" : 1
1
" _MPEG_V3C_GVD_MAPS": {
"type": "array",
"description”: "an array of geometry maps for each atlas for the V3C
object",
"gltf_detailedDescription": "an array of geometry maps for each atlas for
the V3C object",
"items": {
"all0f": [{ "$ref":

81

"MPEG_primitive_V3C_v1._MPEG_V3C_GVD_MAPS.schema.json" }]
s
"minltems": 1
¥
" _MPEG_V3C_QVD_MAP": {
"type": "array",
"description": "an array of occupancy map for each atlas for the V3C
object.",
"gltf_detailedDescription": "an array of occupancy map for each atlas for
the V3C object.",
"items": {
"all0f": [{ "$ref":
"MPEG_primitive_V3C_v1._MPEG_V3C_OVD_MAP.schema.json" }]
s
"minltems": 0
¥
"_MPEG_V3C_AVD": {
"type": "array",
"description": "an array of attribute textures for each atlas for the V3C
object.",
"gltf_detailedDescription": "an array of occupancy map for each atlas for
the V3C object.",
"items": {
"$ref": "MPEG_primitive_V3C_v1._MPEG_V3C_AVD.schema.json"
3

"minItems": 0
1
"_MPEG_V3C_CAD": {
"type" : "object",
"description": "This object lists different properties described for the
Common Atlas Data in ISO/IEC 23090-5." ,
"gltf_detailedDescription” : "This object lists different properties
described for the Common Atlas Data in ISO/IEC 23090-5.",
"$ref" : "MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json",

"minItems":0
+
"extensions": {},
"extras": {}

b
"required": ["_MPEG_V3C_CONFIG", "_MPEG_V3C_AD", "_MPEG_V3C_GVD_MAPS"]

82

A.8.JSON Schema for
MPEG_primitive_V3C._ MPEG_V3C_CAD

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C._MPEG_V3C_CAD",
"type" : "object",
"description”: "defines the common atlas data for a v3c object",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"MIV_view_parameters": {
"type": "integer",
"description": "indicates the accessor index which is used to refer to the
list of MIV view parameters.",
"gltf_detailedDescription": "indicates the accessor index which is used to
refer to the list of MIV view parameters.",
"minimum": 1

}

83

A.9.JSON Schema for
MPEG_primitive_V3C._ MPEG_V3C_CONFIG

"$schema" : "http://json-schema.org/draft-07/schema",

"title" : "MPEG_primitive_V3C._MPEG_V3C_CONFIG",

"type" : "integer",

"description”: "references an accessor index which stores the configuration data
buffer which provides static configuration data that is applicable for the V3C
compressed primitive",

"gltf_description": "references an accessor index which stores the configuration
data buffer which provides static configuration data that is applicable for the V3C
compressed primitive"

}

84

A.10. JSON Schema for
MPEG_primitive_V3C._ MPEG_V3C_GVD_MAPS

"$§schema" : "http://json-schema.org/draft-07/schema"”,

"title" : "MPEG_primitive_V3C._MPEG_V3C_GVD_MAPS",

"type" : "array",

"description": "provides an array of references to glTF.texture storing geometry
maps information of an atlas for the V3C object"

}

85

A.11. JSON Schema for
MPEG_primitive_V3C._MPEG_V3C_OVD_MAP

"$§schema" : "http://json-schema.org/draft-07/schema"”,

"title" : "MPEG_primitive_V3C._MPEG_V3C_OVD_MAP",

"type" : "integer",

"description": "provides a reference to the video texture storing occupancy
information of an atlas for the V3C object"

}

86

A.12. JSON Schema for MPEG_primitive_V3C.attribute

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C.attribute",
"type" : "object",
"description”: "defines the attribute of a V3C object.",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"type": {
"type": "integer",
"description": "provides the type of the attribute.",
"gltf_detailedDescription": "provides the type of the attribute.",
"minimum": 0,
"maximum": 255

}I

"maps": {
"type": "array",
"description": "",

"gltf_detailedDescription": "provides the references to the corresponding
video texture maps.",
"items": {
"al10f": [{ "$ref": "g1TFid.schema.json" }]
s
"minItems": 1
}
I

"required": ["maps"]

87

A.13. JSON Schema for
MPEG_primitive_V3C_v1l. MPEG_V3C_AD

88

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C_v1._MPEG_V3C_AD",
"type" : "object",
"description”: "object that specifies the format of the atlas object",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"buffer_format": {
"anyOf": [
{
"type": "string",
"const": "baseline",
"description": "Atlas data with common atlas parameters."

"type": "string",
"const": "extended",
"description": "Atlas data with common atlas parameters and and
PROJECTED patch type application-specific data with PLR information, EOM patch type
application-specific data, and RAW patch type application-specific data"
1
{
"type": "string",
"const": "miv",
"description": "Atlas data with common atlas parameters and
PROJECTED patch type application-specific parameters for MIV. "
I
{

"type":"string"
}

I,

"description”: "string identifier of the atlas data buffer format",

"gltf_detailedDescription": "identifier of the atlas data buffer format"
Ifs
"accessor": {

"al10f": [{ "$ref": "g1TFid.schema.json" } 1,

"description": "index of the accessor to the atlas data.",

"gltf_detailedDescription": "index of the accessor to the atlas data",

"minimum": 0
}
+

"required": ["accessor"]

A.14. JSON Schema for MPEG_primitive_V3C

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C",
"type" : "object",
"description”: "glTF extension to specify support for V3C compressed primitives.",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
" _MPEG_V3C_CONFIG": {
"al10f": [{ "$ref": "g1TFid.schema.json" } 1,
"description": "",
"gltf_detailedDescription": ""
¥
" _MPEG_V3C_AD": {
"al10f": [{ "$ref": "gl1TFid.schema.json" } 1,
"description": "",
"gltf_detailedDescription”: "a reference to the accessor that points to
the atlas data."
}
" _MPEG_V3C_GVD_MAPS": {
"type": "array",
"description”: "an array of references to video texture maps.",
"gltf_detailedDescription": "an array of references to video textures that
provide the geometry maps.",
"items": {
"all0f": [{ "$ref": "g1TFid.schema.json" }]
¥

inItems": 1
¥
"_MPEG_V3C_OVD_MAP": {
"type": "array",
"description": "a reference to a video texture that provides the occupancy
map",
"gltf_detailedDescription": "a reference to a video texture that provides
the occupancy map",
"items": {
"all0f": [{ "$ref": "g1TFid.schema.json" }]
}
"minltems": 0
F
"_MPEG_V3C_AVD": {
"type": "array",
"description": "",
"gltf_detailedDescription": "An array of references to the video textures
that provide the attribute data",
"items": {
"$ref": "MPEG_primitive_V3C.attribute.schema.json"
}

inItems": 0

89

90

I¥
"_MPEG_V3C_CAD": {
“type" : "object",
"description": "This object lists different properties described for the
Common Atlas Data in ISO/IEC 23090-5." ,
"gltf_detailedDescription” : "This object lists different properties
described for the Common Atlas Data in ISO/IEC 23090-5.",

"minItems":0
iy
"extensions": {},
"extras": {}

b
"required": ["_MPEG_V3C_CONFIG", "_MPEG_V3C_AD", "_MPEG_V3C_GVD_MAPS"]

A.15. JSON Schema for
MPEG_primitive_V3C._ MPEG_V3C_CAD

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C._MPEG_V3C_CAD",
"type" : "object",
"description”: "defines the common atlas data for a v3c object",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"MIV_view_parameters": {
"type": "integer",
"description": "indicates the accessor index which is used to refer to the
list of MIV view parameters.",
"gltf_detailedDescription": "indicates the accessor index which is used to
refer to the list of MIV view parameters.",
"minimum": 1

}

91

A.16. JSON Schema for MPEG_primitive_V3C.attribute

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C.attribute",
"type" : "object",
"description”: "defines the attribute of a V3C object.",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"type": {
"type": "integer",
"description": "provides the type of the attribute.",
"gltf_detailedDescription": "provides the type of the attribute.",
"minimum": 0,
"maximum": 255

}I

"maps": {
"type": "array",
"description": "",

"gltf_detailedDescription": "provides the references to the corresponding
video texture maps.",
"items": {
"al10f": [{ "$ref": "g1TFid.schema.json" }]
s
"minItems": 1
}
I

"required": ["maps"]

92

A.17.JSON Schema for MPEG_primitive_V3C_2

"$schema" : "http://json-schema.org/draft-07/schema",
"title" : "MPEG_primitive_V3C_2",
"type" : "object",
"description”: "glTF extension to specify support for V3C compressed primitives.",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties" : {
"atlases": {
"type": "array",
"all0f": [{ "$ref": "MPEG_primitive_V3C_v2.atlas.schema.json" } 1,
"description": "",
"gltf_detailedDescription": "",
"minItems" : 1
iy
"_MPEG_V3C_CAD": {
"type" : "object",
"all0f": [{ "$ref": "MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json"}],
"description”: "This object lists different properties described for the
Common Atlas Data in ISO/IEC 23090-5." ,
"gltf_detailedDescription" : "This object lists different properties
described for the Common Atlas Data in ISO/IEC 23090-5.",

"minItems":0
+
"extensions": {},
"extras": {}

}I

"required": ["altases"]

93

A.18. JSON Schema for MPEG_audio_spatial.source

"$§schema": "http://json-schema.org/draft-07/schema",
"title" : "MPEG_audio_spatial.source",
"type" : "object",
"description": "",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties": {

"id": {

"description”: "A unique identifier",

"gltf_detailedDescription”: "A unique identifier of the audio source in
the scene.",

"type": "integer",

"minimum": 0

¥
"type": {

"description”: "A type of the audio source",

"gltf_detailedDescription": "Indicates the type of the audio source.
“type' value equal to ‘Object' indicates mono object. ‘type' value equal to ‘HOA®
indicates HOA object",

“type": "string",

"enum": ["Object", "HOA"]

¥
"pregain": {

"description": "A level-adjustment of the audio source",

"gltf_detailedDescription": "Provides a level-adjustment in dB for the
signal associated with the source.",

"type": "number",

"default": 0.0,

"minimum": 0.0

3
"playbackSpeed": {

"description": "Playback speed of the audio source",

"gltf_detailedDescription": "Playback speed of the audio signal. A value
of 1.0 corresponds to playback at normal speed. The value shall be between 0.5 and
2.0.",

"type": "number",

"minimum": 0.5,

"maximum": 2.0,

"default": 1.0

}
"attenuation": {

"description": "A function used to calculate the attenuation of the audio
source.",

"gltf_detailedDescription”: "Indicates the function used to calculate the
attenuation of the audio signal based on the distance to the source. attenuation value
equal to ‘noAttenuation' indicates no attenuation function should be used. attenuation
value equal to ‘inverseDistance' indicates inverse distance function should be used.
attenuation value equal to ‘linearDistance' indicates linear distance function should

94

be used. attenuation value equal to ‘exponentialDistance' indicates exponential
distance function should be used. attenuation value equal to ‘custom' indicates custom
function should be used. The definition of ‘custom® function is outside of the scope
of ISO/IEC 23090-14. The attenuation functions and their parameters are defined in
ISO/IEC 23090-14:Annex D.",
"enum": ["noAttenuation", "inverseDistance", "linearDistance",
"exponentialDistance", "custom"],
"default": "linearDistance"
i
"attenuationParameters": {
"description": "An array of attenuation parameters",
"gltf_detailedDescription”: "An array of parameters that are input to the
attenuation function. The semantics of these parameters depend on the attenuation
function itself and are defined in ISO/IEC 23090-14",
"type": "array",
"items": {
“type": "number"
3

"minItems": 1

}

eferenceDistance": {

"description": "A distance in meters.",

"gltf_detailedDescription": "Provides the distance in meters for which the
distance gain is implicitly included in the source signal after application of
pregain. When type equals OHOAD the element shall not be present.”,

"type": "number",
"default": 1.0,
"minimum": 1.0

}

ccessors": {

"description": "An array of accessors that describe the audio source",

"gltf_detailedDescription”: "An array of accessor references, by
specifying the accessors indices in accessors array, that describe the buffers where
the decoded audio will be made available.",
"type": "array",
"items": {

"allof": [{ "$ref": "g1TFid.schema.json" }]

by

inItems": 1

}

everbFeed": {

"description": "An array of pointers to reverb units",

"gltf_detailedDescription": "Provides one or more pointers to reverb
units, optionally extended by a floating point scaling factor. A reverb unit
represents a reverberation audio processor that is configured by the metadata from a
single reverb object. Typically, a reverb object represents reverberation properties
of a single room.",
"type": "array",
"items": {

"type": "integer"

}

95

96

I¥
"reverbFeedGain": {

"description”: "An array of gain values",

"gltf_detailedDescription": "Provides an array of gain [dB] values to be
applied to the sourcells signal(s) when feeding it to the corresponding reverbFeed. The
array shall have the same number of elements as the reverbFeed array field.",

"type": "array",

"items": {

"type": "number"
}
¥
"isCluster": {
"description”: "Indicates whether the audio source is a cluster.",
"gltf_detailedDescription": "Specifies if the audio source is a pre-mixed
representation of a selection of audio sources.",
"type": "boolean",
"default": false
¥
"clusterProperties": {

"description”: "An object describing cluster properties.”,

"gltf_detailedDescription": "A sourceClusterProperties object describing
cluster properties. This field must be defined, when the isCluster is set to True.",

"$ref": "MPEG_audio_spatial.source.cluster.schema.json"

+
"extensions": {},
"extras": {}

lis
"required": [
"id", "type", "accessors", "isCluster"

]

A.19. JSON Schema for
MPEG_audio_spatial.source.cluster

"$schema": "http://json-schema.org/draft-07/schema"”,
"title" : "MPEG_audio_spatial.source.cluster",
"type" : "object",
"description": "",
"al10f": [{ "$ref": "glTFProperty.schema.json"}],
"properties": {
"sourceld": {
"description": "An array of audio source ids.",
"gltf_detailedDescription”: "An array of integers that contains the unique
identifiers of the audio sources contained in this cluster.",
"type": "array",
"items": {
"type": "integer"

+
"minItems": 1
+
"radius": {

"description": "A cluster radius.",

"gltf_detailedDescription”: "A distance in meters used to encompass the
audio sources contained in this cluster.",

"type": "number",

"default": 0.0,

"minimum": 0.0

I¥
"extensions": {},
"extras": {}

+
"required": [
"sourceId", "radius"

]

97

A.20. JSON Schema for MPEG_node_avatar.metadata
object

"$schema": "http://json-schema.org/draft-07/schema"”,
"title": "MPEG_node_avatar.metadata object",
"type": "object",
"description”: "MPEG node avatar is used to represent and support avatars.",
"all0f": [{ "$ref": "glTFProperty.schema.json" } 1,
"properties": {
"parameters": {
"anyOf": [
{"type": "object", "properties": {"age": {"type": "number",
"description": "Age of the avatar."}}},
{"type": "object", "properties": {"gender": {"type": "string",
"description": "Gender of the avatar."}}}

]
I
"name": {

"type": "string",

"description": "Name of the avatar."
}

xtensions": {},
"extras": {}

}I

"required": ["name"]

98

A.21. JSON Schema for
MPEG_node_avatar_representation extension

"$§schema": "http://json-schema.org/draft-04/schema",

"title": "MPEG_node_avatar_representation extension",

"type": "object",

"description”: "The MPEG_node_avatar_representation is used to generally support
avatars in the scene description. Providing additional information relative to level
of appearance detail, vertex mapping between anatomical body parts, and common general
information about the user.",

"all0f": [{ "$ref": "g1TFProperty.schema.json" } 1,

"properties": {

"metadata": {
"type": "array",
"description": "An array of trackables.",
"items": {
"$ref": "MPEG_node_avatar.metadata.schema.json"
3
"minltems": 1
e
"lod": {
"type": "array",
"description”: "Reference to the chosen level of detail to be used for the
visual appearance.",
"items": {
"type":"object",
"properties":{
"texture": {
"al10f": [{ "$ref": "textureInfo.schema.json" } 1,
"description”: "LOD of the appearance.",
"gltf_detailedDescription": "The level of details of the
appearance of the avatar."

I
"type": {
"type": "string",
"enum": ["High_Resolution", "Low_Resolution", "Reference",
"Other"],
"description": "Indicates the resolution of the texture.",
"default": "Reference"
}
}
}
iy
"mapping”: {

lltypell: "array"’
"description”: "The mapping between child nodes and vertex semantics.",
"items": {

"type":"object",

"properties":{
"vertex_id": {
"allof": [{ "$ref": "gl1TFid.schema.json" } 1,
"description": "The index of a semantical vertex.",
"gltf_detailedDescription": "Indicates the index to the
mesh of which semantically corresponds to this node_avatar."
Vs
"label": {
"type": "string",
"enum": ["Full",
"Upper_Body",
"Head",
"Face",
"Back/Neck/Ears",
"Mouth_Bag",
"Lower Jaw",
"Upper_Jaw",
"Eye_Left",
"Eye_Right",
"Chest",
"Chest _Front",
"Shoulder_Front_Left",
"Shoulder_Front_Right",
"Chest_Back",
"Shoulder_Back Left",
"Shoulder_Back_Right",
"Arm_Left",
"Upper_Arm_Left",
"Lower _Arm_Left",
"Hand_Left",
"Hand _Left Palm",
"Hand_Left_Thumb",
"Hand_Left Index",
"Hand_Left_Middle",
"Hand_Left_Ring",
"Hand_Left_Little",
"Arm_Right",
"Upper_Arm_Right",
"Lower _Arm_Right",
"Hand_Right",
"Hand_Right_Palm",
"Hand_Right_Thumb",
"Hand_Right_Index",
"Hand_Right_Middle",
"Hand_Right_Ring",
"Hand_Right_Little",
"Lower_Body",
"Abdomen",
"Abdomen_Front",
"Pelvis_Front",
"Abdomen_Back",

100

3D

"Pelvis_Back",
"Leg_Left",
"Upper_Leg_Left",
"Lower_Leg_Left",
"Foot_Left",
"Leg_Right",
"Upper_Leg_Right",
"Lower_Leg_Right",
"Foot_Right"
1
"description": "Indicates the semantical body region."
¥
b
“required": ["properties", "type"]
}
¥

xtensions": {},
"extras": {}

}

"required": ["metadata"]

101

Appendix B: Disclaimer

o The formatting of the document is based on the Khronos gITF specification
formatting under CC-BY 4.0.

o The extensions information are automaticaly generated using wetzel tool under
Apache License 2.0.

102

https://github.com/CesiumGS/wetzel/

	Technology under Consideration for ISO/IEC 23090-14
	Table of Contents
	Chapter 1. Extensions
	1.1. MPEG_media
	1.1.1. General
	1.1.2. MPEG_media
	1.1.3. MPEG_media.media
	1.1.4. MPEG_media.media.controls

	1.2. MPEG_audio_spatial
	1.2.1. General
	1.2.2. Semantics

	1.3. MPEG_camera_control
	1.3.1. General
	1.3.2. Semantics
	1.3.3. Processing Model
	1.3.4. Example

	1.4. MPEG_buffer_circular
	1.4.1. General
	1.4.2. MPEG_buffer_circular

	1.5. MPEG_node_avatar
	1.5.1. General
	1.5.2. Semantics
	1.5.3. Example

	1.6. Shadow Scenes

	Chapter 2. ISOBMFF
	2.1. Carriage Format for animation timing
	2.1.1. Multiple animations
	2.1.2. Interaction of animation and dynamic 3D object

	2.2. Improvements for MPEG-I SD random access description
	2.2.1. General
	2.2.2. Characteristics of random access points of MPEG-I Scene Description
	2.2.3. Description and processing of random access points
	2.2.4. Proposed text improvements

	Chapter 3. Codec Support
	3.1. Clarification of type of V-PCC track referenced from MPEG_media
	3.1.1. Consideration
	3.1.2. Proposal

	3.2. Dynamic mesh support in scene description
	3.2.1. Introduction
	3.2.2. Design
	3.2.3. Assets and Implementation

	3.3. Support for multiple atlases for MIV applications
	3.3.1. General
	3.3.2. Additions to the MPEG_primitive_V3C extension

	Chapter 4. Data Formats
	4.1. Support of glTF CBOR binary format
	4.1.1. Problem Statement
	4.1.2. Benefit of CBOR file/data format:
	4.1.3. CBOR data size comparison example:
	4.1.4. Use Cases
	4.1.5. Potential Solutions
	4.1.6. Open Issue Discussion

	Chapter 5. Interfaces
	5.1. On DASH Dynamic Bitrate Adaption with Viewpoint Update
	5.1.1. Problem Statement
	5.1.2. Use Cases
	5.1.3. Current Scene Description Support and Gasps

	5.2. Supporting Multiple Viewers in the Media Access Function
	5.2.1. General
	5.2.2. Proposed Updates to MAF API

	5.3. CoAP API support in MAF
	5.3.1. General
	5.3.2. MAF as CoAP Client
	5.3.3. MAF as HTTP-CoAP Proxy

	Chapter 6. MPEG-I Audio in Scene Description
	6.1. MPEG-I Audio in Scene Description
	6.1.1. General

	Chapter 7. Reference Software
	7.1. Thoughts on trimesh playback of AR scenes
	7.1.1. General
	7.1.2. AR Sessions recording and format
	7.1.3. AR Session playback in trimesh

	Chapter 8. Interactivity framework
	8.1. On event-based scene update
	8.1.1. General
	8.1.2. A use case for event based updates
	8.1.3. JSON patch limitations
	8.1.4. Semantics for event-based update

	Chapter 9. Collected problem statements and industry needs
	9.1. On the support of real environment data
	9.1.1. General
	9.1.2. Representation of the real environment
	9.1.3. Storing a representation of the real environment
	9.1.4. Examples of framework for real environment handling

	Appendix A: JSON Schema for extensions
	A.1. JSON Schema for MPEG_buffer_circular extension
	A.2. JSON Schema for MPEG_media
	A.3. JSON Schema for MPEG_media.media
	A.4. JSON Schema for MPEG_media.media.controls
	A.5. JSON Schema for MPEG_node_transformation_external
	A.6. JSON Schema for MPEG_buffer_circular
	A.7. JSON Schema for MPEG_primitive_V3C
	A.8. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_CAD
	A.9. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_CONFIG
	A.10. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_GVD_MAPS
	A.11. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_OVD_MAP
	A.12. JSON Schema for MPEG_primitive_V3C.attribute
	A.13. JSON Schema for MPEG_primitive_V3C_v1._MPEG_V3C_AD
	A.14. JSON Schema for MPEG_primitive_V3C
	A.15. JSON Schema for MPEG_primitive_V3C._MPEG_V3C_CAD
	A.16. JSON Schema for MPEG_primitive_V3C.attribute
	A.17. JSON Schema for MPEG_primitive_V3C_2
	A.18. JSON Schema for MPEG_audio_spatial.source
	A.19. JSON Schema for MPEG_audio_spatial.source.cluster
	A.20. JSON Schema for MPEG_node_avatar.metadata object
	A.21. JSON Schema for MPEG_node_avatar_representation extension

	Appendix B: Disclaimer

