[bookmark: _Toc55004414][image:] ISO/IEC JTC 1/SC 29/WG 7 N00451

ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics Coding
Convenorship: AFNOR (France)

Document type:	Output Document

Title:	IoMT simulation software and user manual

Status:	Approved

Date of document:	2022-10-31
Source:	ISO/IEC JTC 1/SC 29/WG 7

[bookmark: _Toc64328399]Expected action:	None

[bookmark: _Toc64328400]Action due date:	None

No. of pages:	18 (with the cover page)

Email of Convenor:	marius.preda@imt.fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N00451
Oct. 2022, Mainz

	Title
	IoMT simulation software and user manual

	Source
	WG 7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	22113

1. Introduction
This document is a user manual for a simulation program that exchanges actual data between two MThings using MPEG-IoMT Reference Software (data verification) and API standards.
This simulation program was developed to create and verify MPEG-IoMT standard data instances using MPEG-IoMT Reference Software and show examples of MPEG-IoMT API usage and development methods. Two virtual MThings communicate with TCP/IP server-client method, and the data (e.g., user input for testing) exchanged between real IoMT devices can be selected by choosing MThings and functions (i.e., API methods) of the GUI. It is a simulation program that exchanges and verifies through this document and requires basic background knowledge of Java and XML.
2. How to use the program
 1) Server–Client connection
Run the program interface window on the PC that will become the server and the PC that will become the client. Alternatively, the server and client program interface windows can be run simultaneously on one PC. If you run the program, the program window appears, as shown in Figure 1.
[image:]
Figure 1 Screen when the program is first to run
Enter the IP and port number in the program interface window responsible for the server side and click “Server Open”. Then, a message indicates that the server is running normally (Figure 2).
[image:]
Figure 2 Server execution message
Next, in the program interface window responsible for the client side, input the IP and port number used by the server and click the “Client Open” button to connect to the server. Suppose the client is connected to the server. In that case, a “Start Client” message is displayed on the client-side program interface window. The client UI is additionally displayed at the bottom of the program interface window (Figure 3).
[image:]
Figure 3 Client execution message and lower UI changes
2) IoMT data exchange simulation using API
If the server and client are connected normally, the method (i.e., MPEG-IoMT API) can be executed through the button on the client side. The method is divided mainly into getter and setter. The getter receives data from the server, and the setter inputs data from the client to the server. The getter method is primarily a function of receiving media data generated by a media sensor or a media analyser. The setter method is used when saving data in media storage or a command to drive a media actuator.
2-1) Example of using the getter method
This section shows an example of one MThing requesting data from another MThing using the getter API. Specifically, it is a case in which an MThing corresponding to a client requests data as a result of automatically analysing a user’s question through the getUserQuestion() method, which is a standard API, to a Question Analyser thing (i.e., server).
To execute the question analyser’s getUserQuestion() Method, it exists under the question analyser, so the method is accessed by selecting the button. The way to access the getUserQuestion() method is shown in Figure 4, Figure 5, and Figure 6 in order.
[image:]
Figure 4 Select "question analyser" among the displayed MThings
[image:]
Figure 5 Select “Analyser” among UIs added to the bottom of client
[image:]
Figure 6 UI screen of server after executing getter method in client
Since the getUserQuestion() method is a getter method, it is in the process of receiving data from the server. The client-side program interface window is converted to a standby state if the button is selected. The data input UI window is displayed in the server program interface window. The executed “getUserQuestion()” is shown in the log of the server window. The input UI for entering parameters is displayed on the window’s right side(Figure 7).
[image:]
Figure 7 After selecting the "question analyser", select "getUserQuestion()" method
among the displayed sub-items
According to the syntax rules of MPEG-IoMT MThing (e.g., MThingInfo and UserQuestionType), optional items do not need to be entered, but the required items must be entered (Figure 8). After inputting, click the OK button at the bottom.
[image:]
Figure 8 getUserQuestion() method with entering input parameters
Next, the input data is validated through the validator. If there is no problem in the verification, the data to be transmitted is shown in MPEG-IoMT standard XML format (i.e., XML instance) on the server-side (i.e., question analyser) program interface window (Figure 9). The client-side program interface window shows the data transmitted from the server. The data is shown in XML format (Figure 10).
[image:]
Figure 9 XML instance transmitted by “question analyser (server)”
[image:]
Figure 10 XML instance received by the MThing (client) requesting the question analyser
2-2) Example of using the setter method
This section shows an example where one MThing sends data to another MThing using the setter API. Specifically, it is a case of controlling the brightness of MLight by sending the brightness control data to the MLight MThing (i.e., server) through the setBrightnessLight() method, which is a standard API, by another MThing corresponding to the client.
The setBrightnessLight(ActuationDataBaseType) Method is a setter method, and the execution process is as follows. First, select the “light” thing in “Actuator” in the client program interface window (Figure 11). In the next window, select the setBrightnessLight(ActuationDataBaseType) method (Figure 12). The UI for entering parameters is then displayed in the client program interface window (Figure 13). According to the MPEG-IoMT Syntax rule, optional items do not need to be entered, but required items must be entered. After completing the input, the data is validated if the OK button is clicked. In the case of normal data input, the data entered in the program interface window on the client and server sides are displayed in MPEG-IoMT standard XML format (i.e., XML instance) (Fig. 14).
[image:]
Figure 11 Select “light” actuator
[image:]
Figure 12 setBrightnessLight(ActuationDataBaseType) method selection
[image:]
Figure 13 UI for entering parameters
[image:]
Figure 14 XML instance created by setter method
3) Clear log function
The clear log function clears the displayed log data and is used when it is difficult to check the data shown in the log window due to repeated method execution. To use the function, click the “Clear” button at the top of the program interface window (Figure 15).
[image:]
Figure 15 Screen initialization using the clear button
4) In case of abnormal data input
When data is transmitted by inputting abnormal data that does not match the data type in the getter and setter, the error message that occurred in the XML format verification part is displayed in the log window of the server and client, respectively (Figures 16, 17, and 18).
[image:]
Figure 16 A screen where a number is entered in the language input part (setLanguage) of the getUserQuestion() method
[image:]
Figure 17 Log screen (server) with an error message indicating that
the input value does not match the language type
[image:]
Figure 18 Log screen (client) with an error message indicating that
the input value does not match the language type

3. How to develop an API
This section explains how to develop the getter and setter methods described above using the program as an example.
1) How to develop a getter method
Getter works by sending data corresponding to the method requested by the server to the client when requested from the client-side program interface window.
For example, if you call the getUserQuestion() method of the analyser, create a model class called MethodData with the method name and information about the analyser type from the client to the server, store it in the variables called “name” and “typeIoMT”, and deliver it to the server in JSON format (Figure 19).
[image:]
Figure 19 Variable part of MethodData class
When the client calls the analyser’s getUserQuestion(), the server needs QuestionAnalysisType data to return the corresponding method, and the corresponding type class needs language data and UserQuestionType data (Figure 20).
[image:]
Figure 20 Example of using the QuestionAnalysisType model class
The schematic diagram of the getter function process used in the example program interface window is as follows (Figure 21). If the client selects a getter method (Figure 21-1), the information of the method is transmitted to the server (Figure 21-2), and a UI is created on the server program interface window according to the shared information (Figure 21-3). In the example program interface window, since the data directly input by the user is the data delivered by the server, the server creates XML data using the data input from the input window of the server according to the type of method (Fig. 21-3). It uses the validator to generate XML data. Verify that it is correct (Figure 21-4). If the verification is completed, the data converted into XML is sent back to the client (Figure 21-5), and the client checks once again whether the received XML data is valid or not (Figure 21-6).
[image:]
Figure 21 Getter process
2) How to develop a setter method
In the case of the setter, since it is a function that sends data from the client to the server, input data must be transmitted from the program interface window on the client side to the server.
For example, in the case of the setBrightness() method, which is a subordinate of the MLight, because it receives ActuationDataBaseType parameters, among the child classes of the ActuationDataBaseType class, data is input into the SetBrightnessType class, which is a brightness-related type, and delivered to the server (Figure 22). It is assumed that the data entered by the setter is the data entered by the user. The data about the method input from the client is created and saved as a model class called MethodData and delivered to the server in JSON format.
[image:]
Figure 22 ActuationDataBaseType inherits SetBrightnessType class
[bookmark: _Hlk106686233]The schematic diagram of the setter process used in the example program is as follows (Figure 23). When the client selects the setter method (Figure 23-1), the client receives the data corresponding to the method through the selector, generates XML data (Figure 23-2), and verifies whether it conforms to the XML format using the validator (Fig. 23-3). If verification is completed, the client sends an XML instance to the server (Figure 23-4), and the server also checks if the received XML data is valid again (Figure 23-5). The server (e.g., light) can drive the device according to the contents of the verified XML instance.
[image:]
Figure 23 Setter process
4. Using a finite-state machine
[image:]
Figure 24 Sequence diagram for video time synchronisation
[image:]
Figure 25 State diagram
[bookmark: _Hlk115152580]The simulation program can be used with a finite state machine to execute setter or getter functions sequentially. The IoMT system can operate without function and data collision. Figure 24 shows the mission sequence of video time synchronisation, including two cameras, a time synchroniser, and storage. Figure 25 shows how the getter functions (e.g., getVideoURL()) and a setter function (e.g., saveAnalysedData()) sequentially using a state machine.

	6
	

	
	7

image2.emf

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image14.png

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.png
public class MethodData {
private String name;
private String typeloMT;

image21.png
UserQuestionType uq = new UserQuestionType();
type. setLanguage(fields[@].getText());

uq.setQCsemantic(fields[1].getText());
uq.setQdomain(fields[2].getText());
uq. setQfocus(fields[3].getText());
uq.setQtopic(fields[4].getText());
type. setAnalysedQuestion(uq);

image22.png
1. Select a method 2. Transfer method 3. Create an input Ul through
information
the selector of the method

6. Verify the XML rver 4. Generate an XML instance
Instance :
and verify

5. Pass the XML instance

image23.svg
 Server Client 2. Transfer method information 3. Create an input UI through the selector of the method 4. Generate an XML instance and verify 5. Pass the XML instance 6. Verify the XML instance 1. Select a method

image24.png
{

public class SetBrightnessType

extends ActuationDataBaseType

protected int prightnesd;

Iee
* Gets the value of the property.
.

*
public int getBrightness() {
return brightness;

}

e

* Sets the value of the property.

.
*
public void setBrightness(int value) {

this.prightnesd = value;
}

image25.png
1. Select a setter method

2. Create an input Ul through
the selector of the method

Client

3. Generate an XML instance
through input data and verify

4., Pass the XML
instance

Server

5. Verify the XML instance

image26.svg
 Server Client 3. Generate an XML instance through input data and verify 4. Pass the XML instance 5. Verify the XML instance 1. Select a setter method 2. Create an input UI through the selector of the method

image27.png
Camera1 Time synchroniser

Camera1.getVideoURL

Storage.saveAnalysedData

File ID

Camera2

image28.emf
S

0

S

1

getVideoURL()

saveAnalysedData()

S0

-

MCamera1: initial

-

MCamera2: initial

-

MTimeSynchroniser: initial

-

MStorage: initial

S4

-

MCamera1: done

-

MCamera2: done

-

MTimeSynchroniser:

call

saveAnalysedData()

-

MStorage: initial

S2

-

MCamera1: confirm the caller(i.e.,

MTimeSynchroniser) and send a

URL

-

MCamera2: confirm the caller(i.e.,

MTimeSynchroniser) and send a

URL

-

MTimeSynchroniser: waiting

-

MStorage: initial

Reset

S1

-

MCamera1: initial

-

MCamera2: initial

-

MTimeSynchroniser: call

getVideoURL()

to

MCamera1 and

MCamera2

-

MStorage: initial

S

7

S

2

URL

S

4

S3

-

MCamera1: done

-

MCamera2: done

-

MTimeSynchroniser:

receive URLs and

analise videos

-

MStorage: initial

S

3

S

5

S5

-

MCamera1: done

-

MCamera2: done

-

MTimeSynchroniser: waiting

-

MStorage: confirm the caller

(i.e., MTimeSynchroniser),

save the analysed data, and

send

a unique file ID

S

6

A unique file ID

S6

-

MCamera1: done

-

MCamera2: done

-

MTimeSynchroniser: receive

the unique file ID

-

MStorage: done

S7

-

MCamera1: done

-

MCamera2: done

-

MTimeSynchroniser: done

-

MStorage: done

image1.jpeg

