	 DRAFT INTERNATIONAL STANDARD
	ISO/IEC 23001-17:2022(E)

[bookmark: _Ref378933689][bookmark: _Ref379817224][bookmark: _Ref384389237]ISO/IEC JTC 1/SC 29 N 00381
Date: 2022-07-22
ISO/IEC 23001‑17:202X(E)
ISO/IEC JTC 1/SC 29/WG 3
Secretariat: JISC
Information technology — MPEG Systems technologies — Part17: Uncompressed video and images in ISO Base Media File Format
Document type: Draft International Standard
Document subtype:
Document language: E

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
© ISO 2022 – All rights reserved

Copyright notice
This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.
Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:
[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manager of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

Contents	Page
Foreword	6
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
3.1	block	1
3.2	component	2
3.3	frame	2
3.4	interleaving	2
3.5	pixel	2
3.6	row	2
3.7	sample data	2
3.8	tile	2
3.9	uncompressed frame	2
3.10	uncompressed image	2
3.11	uncompressed video	2
4	Uncompressed video and image formats	3
4.1	Overview	3
4.2	Storage in media tracks	3
4.3	Storage in image items	4
5	Uncompressed frame description	4
5.1	Component Definition	4
5.1.1	Definition	4
5.1.2	Syntax	6
5.1.3	Semantics	6
5.2	Uncompresed Frame Configuration	7
5.2.1	Definition	7
5.2.2	Syntax	21
5.2.3	Semantics	21
5.2.4	Examples (Informative)	22
5.3	Profiles for uncompressed frame configurations	29
5.3.1	Overview	29
5.3.2	Predefined configurations	29
5.4	MIME type sub-parameters	31
6	Component description extensions	31
6.1	Extensions for uncompressed video and uncompressed images	31
6.1.1	Overview	31
6.1.2	Component Palette configuration	32
6.1.3	Component Pattern Definition	33
6.1.4	Component Reference Level	34
6.1.5	Polarization Pattern Definition	36
6.1.6	Sensor Non-Uniformity Correction	38
6.1.7	Sensor Bad Pixels Map	39
6.1.8	Chroma Location	41
6.1.9	Frame Packing Information	42
6.1.10	Disparity Information	42
6.1.11	Depth Mapping Information	43
6.2	Sample group descriptions	44
6.2.1	Field Interlace Type	44
	Image Item properties	45
6.3	45
6.3.1	Field Interlace Property	45
7	Multiple track and items storage	45
7.1	Overview	45
7.2	Component video track group	46
7.3	Image tiling using ISOBMFF tracks and items	46

[bookmark: _Toc99988197][bookmark: _Toc120711437]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received (see http://patents.iec.ch).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.
This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC 29, Coding of audio, picture, multimedia, and hypermedia.
A list of all parts in the ISO/IEC 23001 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
ISO/IEC 23001-17
ISO/IEC 23001-17

	vi
	© ISO 2021 – All rights reserved

	© ISO 2022 – All rights reserved
	v

Information technology — MPEG Systems technologies — Part 17: Uncompressed video and images in ISO Base Media File Format
[bookmark: _Toc99988198][bookmark: _Toc120711438]Scope
This document defines how uncompressed 2D image and video data is carried in files in the family of standards based on the ISO base media file format. This includes but is not limited to monochromatic data, colour data, transparency (alpha) information, and depth information.
The primary goal of this specification is to allow exchange of uncompressed video and image data while relying on the information set provided by the ISO base media file format, such as timing, colour space, and sample aspect ratio to specify the interpretation and/or display of that video and image data.
[bookmark: _Toc99988199][bookmark: _Toc120711439]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 14496‑12, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format
ISO/IEC 23008-12, Information technology – High efficiency coding and media delivery in heterogeneous environments – Part 12: Image File Format (HEIF)
ISO/IEC 23091-2, Information technology —Coding-independent code points — Part 2: Video
ISO/IEC 23002-3, Information technology — MPEG video technologies — Part 3: Representation of auxiliary video and supplemental information
IEEE 754, IEEE Std 754™-2008, IEEE Standard for Floating-Point Arithmetic
[bookmark: _Toc105756116][bookmark: _Toc99988200]
[bookmark: _Toc120711441]Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 14496‑12 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
—	ISO Online browsing platform: available at https://www.iso.org/obp
—	IEC Electropedia: available at http://www.electropedia.org/
[bookmark: _Toc86924323][bookmark: _Toc118973991][bookmark: _Toc120696972][bookmark: _Toc120697503][bookmark: _Toc120697587][bookmark: _Toc120706788][bookmark: _Toc120711442]Sample
[bookmark: _Toc120711443]block
consecutive bytes within the sample data containing one or more component values for one or more pixels and possible padding

media sample when the uncompressed data is described by a media track, or the payload of an item when the uncompressed data is described by an image item
Note 1 to entry: Media sample as defined in 14496-12.
Note 2 to entry: Payload of an item as defined in 14496-12.
[bookmark: _Toc86924324][bookmark: _Toc120711447]component
part of the image data representing a single channel (or dimension) of the imagevisual or non-visual information

Note to entry: In this specification, a component may describe visible visual information such as luminance or chroma, or other information usually not intended for direct display such as depth or transparency.
[bookmark: _Toc86924325]uncompressed video
A sequence of one or more frames for which each value of each component is coded independently from any other component value in the same frame or any other frame
[bookmark: _Toc118973999][bookmark: _Toc120696980][bookmark: _Toc120697511][bookmark: _Toc120697595][bookmark: _Toc120706796][bookmark: _Toc120711450]
Note to entry: In this specification, the uncompressed term is used with some video formats applying sub-sampling of some components for the purpose of data reduction; however, data access to each individual component for such formats is still independent from other components or frames.
[bookmark: _Toc86924326][bookmark: _Toc120711452]frame
two-dimensional rectangular array of pixels contained within in a the sample data

[bookmark: _Toc120711453]interleaving
pixel or component order within the sample data of component values

[bookmark: _Toc86924327][bookmark: _Toc120711454]pixel
smallest element of an image, comprised of point associated with one or more components

interleaving
pixel and component order within the sample data of component values

tile
two-dimensional rectangular array of pixels within a frame
[bookmark: _Toc118974006][bookmark: _Toc120696987][bookmark: _Toc120697518][bookmark: _Toc120697602][bookmark: _Toc120706803][bookmark: _Toc120711457]
[bookmark: _Toc120711458]row
horizonal line of pixels within a frame or a tile

[bookmark: _Toc120711459]sample data
payload of the media sample when the uncompressed frame is described by a media track, or payload of the item when the uncompressed frame is described by an image item
Note 1 to entry: Media sample as defined in ISO/IEC 14496-12.
Note 2 to entry: Image item as defined in ISO/IEC 23008-12.
[bookmark: _Toc120711460]tile
two-dimensional rectangular array of pixels within a frame

block
consecutive bytes within the sample data containing one or more component values

[bookmark: _Toc120711461]uncompressed frame
frame for which each value of each component is coded independently from any other component value in the same frame or any other frame

Note to entry: In this specification, the uncompressed term is used with some video formats applying sub-sampling of some components for the purpose of data reduction; however, data access to each individual component for such formats is still independent from other components or frames.

[bookmark: _Toc120711462]uncompressed image
single uncompressed frame stored as an image item

[bookmark: _Toc120711463]uncompressed video
sequence of one or more uncompressed frames

[bookmark: _Toc300655294][bookmark: _Toc172177523][bookmark: _Toc274937539][bookmark: _Toc403825204][bookmark: _Toc430168920][bookmark: _Toc8120642][bookmark: _Toc105756118]

	
	

	
	

	
	

	
	

[bookmark: _Toc99988201]Technical overview
ISO/IEC 14496-12 shall be used as framework for the video extensions described in this document.
ISO/IEC 14496-12 or ISO/IEC 23008-12 shall be used as framework for the image extensions described in this document.
The extensions included in this document provide the necessary specifications to carry uncompressed video and images in these frameworks.	
Media tracks and media samples may be associated with meta-data information using the various tools defined in ISO/IEC 14496-12, such as sample group descriptions, MetaBox, metadata tracks and sample auxiliary information.
Media items may be associated with meta-data information using the various tools defined in ISO/IEC 14496-12 or ISO/IEC 23008-12, such as descriptive item properties.
[bookmark: _Ref86922065][bookmark: _Toc99988202][bookmark: _Toc120711466]Uncompressed video and image formats
[bookmark: _Toc86924328][bookmark: _Toc120711467]Overview
Uncompressed video formats may be stored in ISO base media files as media tracks or image items using a generic uncompressed video description defined hereafterin this specification.
For media tracks, uncompressed video formats shall be described by a sample entry extending the VisualSampleEntry. The handler type associated with the track is usually 'vide', 'auxv' or 'pict' but derived specifications may introduce new handler types. The width and height fields of the sample entry shall document the exact frame dimension, in pixels, of any sample of the video stream that is described by this sample entry. Consequently, if the frame dimension changes within a video track, multiple sample entries must be used.
Media tracks, media samples and image items may be associated with meta-data information using the various tools defined in ISO/IEC 14496-12, such as sample group descriptions, MetaBox, metadata tracks and sample auxiliary information. User-defined components may be used to carry per-pixel metadata, either in the same sample or item as the described pixels or in a separate track or item.

For image items, uncompressed images shall be associated with a ImageSpatialExtentsProperty whose image_width and image_height fields shall document the exact frame dimension, in pixels, of the reconstructed image, i.e. the size of the image before applying any associated transformative properties.
The tools defined in ISO/IEC 14496-12 and ISO/IEC 23008-12 should be used whenever applicable, namely to specify pixel aspect ratio, colour information, clean aperture, content light level, mirror and rotate properties or track header matrix, etc.
An uncompressed video media sample or item consists of one uncompressed frame. Each uncompressed frame is organized as a set of one or more rectangular, non-overlapping and contiguous (without holes) areas called tiles.
If blocks are used, as defined in subclause 5.2.1.7, the block containing the first component of the top-left pixel of the frame shall begin at the first byte of the sample data. Otherwise (blocks are not used), the most significant bits of the first component of the top-left pixel of the frame shall be located at the most significant bits of the first byte of the sample data.The first byte of the sample data shall be the first byte of the block containing the first component of the top-left pixel of the frame.
The size in bytes of the associated media sample or item shall be at least the size in bytes required to store all the components values documented by the uncompressed video configuration as defined in subclause 5.25.2.2.
NOTE	The sample data can be larger than the size in bytes required to store all the components values, typically to store information in the trailing data. How such additional bytes are handled by a file reader is out of scope of this specification.
For media tracks, each uncompressed video sample is a sync sample. Consequently, the SyncSampleBox (‘stss’) should be absent from the track.
Media tracks containing only non-visual components should be marked as not present in the presentation, i.e. track_in_movie and track_in_preview flags should not be present.
[bookmark: _Toc120711470]Image items containing only non-visual components should be marked them as hidden items, i.e. have (flags & 1) equal to 1 in their ItemInfoEntry.Storage in media tracks
Uncompressed video tracks compliant to this specification are video tracks compliant to ISO/IEC 14496-12 that use a video sample entry with codingname equal to 'uncv', hereafter called uncompressed video sample entry.
The uncompressed video sample entry shall contain one UncompressedFrameConfigBox and one ComponentDefinitionBox.
The compressorname field of an uncompressed video sample entry should be set to all 0 (empty string). The depth field of an uncompressed video sample entry shall be ignored and should be set to 0, the bit depth per component being indicated by the UncompressedFrameConfigBox .
The handler type associated with the track is usually 'vide', 'auxv' or 'pict' but derived specifications may introduce new handler types. The width and height fields of the sample entry shall document the exact frame dimension, in pixels, of any sample of the video stream that is described by this sample entry. Consequently, if the frame dimension changes within a video track, multiple sample entries shall be used.
The payload of an uncompressed video media sample consists of one uncompressed frame.
Each uncompressed video media sample is a sync sample. The SyncSampleBox, ShadowSyncSampleBox, CompositionOffsetBox and CompositionToDecodeBox shall not be present in the track.
Media tracks containing only non-visual components should be marked as not present in the presentation, i.e. track_in_movie flag should not be set.
Media tracks containing per-pixel meta-data components describing pixels in another track should use a track reference of type 'cdsc' to the track they describe.

[bookmark: _Toc120711471]Storage in image items
An uncompressed image compliant to this specification is an image item compliant to ISO/IEC 23008-12 with the item_type 'unci'.
An uncompressed image shall be associated with:
· an UncompressedFrameConfigBox essential item property, i.e., essential shall be equal to 1 for an UncompressedFrameConfigBox item property associated with an image item of type 'unci',
· a ComponentDefinitionBox essential item property,
· an ImageSpatialExtentsProperty whose image_width and image_height fields shall document the exact frame dimension, in pixels, of the reconstructed image, i.e. the size of the image before applying any associated transformative properties.
The payload of an uncompressed image consists of one uncompressed frame.
An uncompressed image may be associated with meta-data information using the various tools defined in ISO/IEC 14496-12 or ISO/IEC 23008-12, such as descriptive item properties.
Uncompressed images containing only non-visual components should be marked as hidden items, i.e. have (flags & 1) equal to 1 in their ItemInfoEntry.
Uncompressed images containing per-pixel meta-data components describing pixels in another item should use an item reference of type 'cdsc' to the item they describe.

[bookmark: _Ref86923815][bookmark: _Toc86924329][bookmark: _Toc120711472][bookmark: _Toc120697004][bookmark: _Toc120697534][bookmark: _Toc120697005][bookmark: _Toc120697535]Uncompressed frame description
[bookmark: _Ref120709237][bookmark: _Toc120711473]Component Definition
[bookmark: _Toc120711474][bookmark: _Ref120711514]Definition
Box Type:	'cmpd'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	Yes, if codingname of the sample entry is 'uncv' or if the item_type of the item is 'unci'
Quantity:	One per uncompressed video sample entry or one associated per uncompressed image item
The ComponentDefinitionBox is used to document the types of components present in samples or items associated with this box through the sample entry or through item property association:
· for an uncompressed video or uncompressed image, this box shall be present,
· for other coding formats, this box may be present to describe component characteristics of other coding formats.
Components defined in the ComponentDefinitionBox are referenced by indexes in various boxes in this specification. Care has to be taken while removing components from an uncompressed video or image to also remove in other boxes any reference to the removed components. There is no requirement that all components defined in the ComponentDefinitionBox are referenced by other boxes.
For all boxes referring to components defined in the ComponentDefinitionBox , the associated ComponentDefinitionBox is defined as:
· for an uncompressed video, the ComponentDefinitionBox present in the same sample entry as the referring box,
· for an uncompressed image, the ComponentDefinitionBox associated, through ItemPropertyAssociationBox, to the same image item as the referring box.
The component_index field value defined in boxes using an associated ComponentDefinitionBox indicates the index in the list of components, with value 0 indicating the first component listed in the associated ComponentDefinitionBox. The component_index field value shall be strictly less than the component_count field value of the associated ComponentDefinitionBox.
A ComponentDefinitionBox may describe two or more components with the same type (e.g., two monochrome components representing different portions of the electromagnetic spectrum), and file readers may require additional information to process the pixel data. How such information is provided to the file reader is out of scope of this specification.
[bookmark: _Hlk120697260]Table 1 – Component types
	Value
	Description

	0
	Monochrome component

	1
	Luma component (Y)

	2
	Chroma component (Cb / U)

	3
	Chroma component (Cr / V)

	4
	Red component (R)

	5
	Green component (G)

	6
	Blue component(B)

	7
	Alpha/transparency component (A)

	8
	Depth component (D)

	9
	Disparity component (Disp)

	10
	Palette component (P)
The component_format value for this component shall be 0.

	11
	Filter Array component such as Bayer, RGBW, etc. (FA)

	12
	Padded component (unused bits/bytes)

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	13-0x7FFF
	ISO/IEC reserved

	0x8000-0xFFFF
	User-defined component type(s)

Component types reflect only a nominal characterization of the pixel data and how that pixel data should be displayed; precise bandpass limits, for example, are not implied and may differ from image to image. For some component types, some other boxes can provide additional information, such as ColourInformationBox or MasteringDisplayColourVolumeBox. For other component types, the signalling of such information is out of scope of this specification.

NOTE If the bands need to be identified beyond the component type, it is recommended to use URIs in place of the enumerated component_type value.
[bookmark: _Toc120711475][bookmark: _Hlk120799120]Syntax
aligned(8) class ComponentDefinitionBox extends Box('cmpd') {
	unsigned int(16) component_count;	
	{
		unsigned int(16) component_type;
		if (component_type>=0x8000) {
			utf8string component_type_uri;
		}
	} [component_count];
}

[bookmark: _Toc120711476][bookmark: _Ref120711515]Semantics
component_count indicates the number of components described in this box
component_type indicates the type of the component, as defined in
component_type_uri indicates a URI describing the user-defined component type
A generic uncompressed image item shall use the item_type 'uncv' and an associated UncompressedVideoConfigBox essential item property, i.e., essential shall be equal to 1 for an UncompressedVideoConfigBox item property associated with an image item of type 'uncv'.

[bookmark: _Ref103964938][bookmark: _Toc120711477][bookmark: _Hlk120799205]Uncompressed Frame Generic uncompressed video cConfiguration
[bookmark: _Toc120711478][bookmark: _Ref120711516]Definition
Overview
Box Type:	'uncC'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	Yes, if codingname of the sample entry is 'uncv' or if the item_type of the item is 'unciv'
Quantity:	One per uncompressed video sample entry or one associated per uncompressed image item
The UncompressedVideoConfigBox is used to document the format of the image data. This box appears in a video sample entry of type 'uncv', or is associated with an item of type 'uncv' in the ItemPropertyAssociationBox.
The UncompressedVideoConfigBox may indicate a profile for this description, allowing faster identification of the class of video data used. Profiles are defined in subclause 5.3.
The UncompressedFrameVideoConfigBox describes uncompressed video frames that are composed of one or more components. RGB or YUV formats are typical examples of such uncompressed video samplesframes for which each colour component is a component of the uncompressed video sampleframe. Other component types can also be described, such as non-visual information (e.g., disparity, transparency) or non-visible information (e.g., infra-red). The type of each component is specified by the component_type field in the associated ComponentDefinitionBox.
Component values may be absolute values or indexes into a colour palette, with adjustable black and white reference levels. Pattern-based sensor data, such as Bayer, can be described through user-defined patterns, together with various sensor information (polarisationpolarization, non-uniformity correction, broken pixels, etc.).
For each component, this box specifies the numerical format (e.g., unsigned integer, IEEE 754 binary32 floating point) and bit depth though the component_format and component_bit depth_minus_one fields.
Component valuesPixel data may be interleaved per component, per pixel, per row or per tile, as specified by the interleave_type field, with byte alignment for each row and tile specified by the fields row_align_size and tile_align_size. Pixel dataComponent values may also be grouped together in blocks, typically to respect endianness constraints, as specified by the block_size, block_pad_lsb and block_little_endian fields.
Some formats, such as YUV video, do not always use the same 2D resolution for each component of the frame. This is indicated by the sampling_type field..
The UncompressedFrameConfigBox may indicate a profile for this description, allowing faster identification of the class of video data used. Profiles are defined in subclause 5.3.

Component typeassignment
Each pixel in a frame is made of one or more components, where each component is assigned a type (e.g., ‘Y’, ‘U’, ‘V’), as detailed in 5.1 in Table 1..

NOTE1	In some cases, two or more components in a UncompressedVideoConfigBox may have the same type (e.g., two IR components representing different portions of the “mid-wave infrared” portion of the electromagnetic spectrum), and file readers may require additional information to process the pixel data. How such information is provided to the file reader is out of scope of this specification.
The order in which components are specified occur in the UncompressedFrameVideoConfigBox indicates the order in which components are placed intostored within the sample data or within blocks, prior to blocking and endian conversion.
Some formats, such as YUV video, do not always use the same 2D resolution for each component of the frame. This is indicated by the sampling_type field.
Some formats, such as Bayer image data, contain a 2D array of single-component values, with each individual component value assigned to a component types using a fixed pattern. Such formats are described as mono-component data with no subsampling, use a component type of 11 (‘FA’). There shall be at most one component with type 11 (‘FA’) present in the component list. There may be additional components of other types present, for example to associate an alpha component with a Bayer image. If a component with type 11 (‘FA’) is present, there shall be an UncompressedPatternDefinitionBox ComponentPatternDefinitionBox present in the video sample entry or associated to the item to indicate the pattern of component values.
Some formats code colours according to a set of predefined colours, or palette. Such formats are described as single-component with no subsampling, use a component type of 10 (‘P’). There shall be at most one component with type 10 (‘P’) present in the component list. There may be additional components of other types present, for example to associate per-pixel alpha component with a palette image. If a component with type 10 (‘P’) is present, there shall be an UncompressedPaletteBox ComponentPaletteBox present in the video sample entry or associated to the item to indicate the palette values.
[bookmark: _Ref86846974][bookmark: _Ref86846962]Table 1 – Component types
	Value
	Description

	0
	Visible monochrome component

	1
	Luma component (Y)

	2
	Chroma component (Cb / U)

	3
	Chroma component (Cr / V)

	4
	Red component (R)

	5
	Green component (G)

	6
	Blue component(B)

	7
	Alpha/transparency component (A)

	8
	Depth component (D)

	9
	Disparity component (Disp)

	10
	Palette component (P)
The component_format value for this component shall be 0.

	11
	Filter Array component such as Bayer, RGBW, etc. (FA)

	12
	Padded component (unused bits/bytes)

	13
	Gamma

	14
	X-ray

	15
	Vacuum Ultraviolet (VUV)

	16
	Ultraviolet C (UVC)

	17
	Ultraviolet B (UVB)

	18
	Ultraviolet A (UVA)

	19
	Near Infra-Red (NIR)

	20
	Short Wavelength Infra-Red (SWIR)

	21
	Middle Wavelength Infra-Red (MWIR)

	22
	Long Wavelength Infra-Red (LWIR)

	
	

	23
	Synthetic Aperture Radar (SAR) – Complex Data
The component_format value for this component shall be 2.

	24
	Synthetic Aperture Radar (SAR) – Magnitude

	25
	Synthetic Aperture Radar (SAR) – Phase

	26
	Inverse Synthetic Aperture Radar (ISAR) – Complex Data
The component_format value for this component shall be 2.

	27
	[bookmark: _Hlk102985263]Inverse Synthetic Aperture Radar (ISAR) – Magnitude

	28
	Inverse Synthetic Aperture Radar (ISAR) – Phase

	29-0xFFFE
	ISO/IEC reserved

	0xFFFF
	User-defined

NOTE 2	Component types reflect only a nominal characterization of the pixel data; precise bandpass limits, for example, are not implied and may differ from image to image. The signalling of such information is out of scope of this specification.
[bookmark: _Ref109210391]Component size and numerical format
The variable component_bit_depth for a component is defined as (component_bit_depth_minus_one + 1).
[bookmark: _Hlk102985370]For a given component, the binary representation of each value is given by component_bit_depth (the size in bits of each component value) and component_format.
 The possible values for component_format field is defined in Table 2Table 2.
[bookmark: _Ref86846990]Table 2 - Component formats
	Value
	Description

	0
	Component value is an unsigned integer coded on component_bit_depth bits.

	1
	Component value is shall be an IEEE 754 binary float number coded on component_bit_depth bits (e.g., if component_bit_depth is 16, then the component value is coded as IEEE 754 “binary16”). For this component format, component_bit_depth values shall be 16, 32, 64, 128 or 256; other values are forbidden.

	2
	Component value is a complex number coded on component_bit_depth bits, where the first component_bit_depth/2 bits shall represent the real part and the next component_bit_depth/2 bits shall represent the imaginary part. Each part shall be coded as an IEEE 754 binary float of the size component_bit_depth/2. For this component format, component_bit_depth values shall be 32, 64, 128 or 256; other values are forbidden.

	3 – 255
	ISO/IEC reserved for future definition

If component_align_size is 0, the component value shall be coded on component_bit_depth bits exactly.
Otherwise (component_align_size is not 0), the component value shall be coded as a word WC of component_align_size bytes, starting on a byte boundary. This implies that some padding bits may be present after the previous component value stored; if such padding bits are present, they shall be set to 0. The least significant bit of the component value shall be located at the least significant bit of WC. Padding bits, if present, shall be located at the most significant bits and shall be set to 0. If components_little_endian is 0, WC shall be stored as a big-endian word. Otherwise (components_little_endian is 1), WC shall be stored as a little-endian word.
NOTE	For example, a pixel with 10-bit unaligned (component_align_size=0) R, G and B components, followed by an 1-byte aligned 7-bit A component, stored using Pixel Interleaving, would exist in the sample data as 30 consecutive bits containing R, G and B, followed by 2 implied padding bits for byte alignment, followed by a padding bit then followed by the 7-bit A value (bringing the A value aligned on 1 byte), for a total of 5 bytes.
For each component, component_align_size shall be either 0 or such that greater than or equal to component_bit_depthcomponent_align_size/*88 is greater than component_bit_depth. If components_little_endian is 1, block_little_endian shall be 0 and component_align_size of each component shall be different from 0.
Storage of aligned component values is illustrated in Figure 27Figure 27.
[bookmark: _Ref103964469]Tiling
The Frame uncompressed frame data is structured in a 2D grid of tiles, where the number of tiles in the horizontal direction (resp. vertical direction) is specified by the variable num_tile_cols_minus_one+1 (resp. num_tile_rows_minus_one+1)in one or more tiles. Tiles allow grouping together the component values of pixels close to each-other (i.e., in the same spatial region of the frame).
All tiles have the same width and height. The frame width (resp. height) shall be a multiple of num_tile_cols_minus_one+1 (resp. num_tile_rows_minus_one+1). The tile width is w/(num_tile_cols_minus_one+1), with w the frame width, and the tile height is h/(num_tile_rows_minus_one+1), with h the frame height.
The frame width (resp. height) shall be a multiple of num_tile_cols_minus_one+1 (resp. num_tile_rows_minus_one+1).
If the frame width (resp. height) in a source image is not an integer multiple of num_tile_cols_minus_one+1, (resp. num_tile_rows_minus_one+1), an application creating the tiled image frame shall pad the source image with an appropriate number of columns to the right (resp. rows to the bottom), and the original frame image dimension shall be documented using a CleanApertureBox for media tracks or a clean aperture transformative item property for image items. The width and height fields of the sample entry or the image_width and image_height fields of the ImageSpatialExtentsProperty shall specify the padded width and height.
Tiles shall be stored in raster-scan order: the top-left tile is stored first, followed by the tile to its right, and the first tile of a tile row is stored after the last tile of the previous tile row.
Within a tile, component values shall be stored in raster-scan order, left-to-right and top to bottom: for a given component, the value for pixel {x+1,y} is stored after (but possibly not contiguous with) the value for pixel {x,y}, and the value for pixel {x,y+1} is stored after (but possibly not contiguous with) the value for pixel {x, y}.

Sampling type
All components in a frame either have the same dimensions or use pre-defined sampling modes, indicated by the sampling_type field. Possible values for this field are described in Table 3Table 3.
NOTE1 Sampling type values restrict the possible interleaving modes since the number of values is not the same for each component.
NOTE2 Derived specifications may further restrict the usage of sampling types with tiling.
[bookmark: _Ref86846999]Table 3 – Sampling type values
	Value
	Definition

	0
	No subsampling

All components have the same 2D sizewidth and height as the frame, given by the sample entry.

NOTE The tile width and height are not restricted. Derived specifications may further restrict this, for example to enforce width and height to be multiples of 2 in case Y, U and V components are present

	1
	YCbCr 4:2:2 subsampling

This value shall only be set if all three component_type values ‘Y’, ‘U’ and ‘V’ are present in the component list and if the tile width is a multiple of 2.
If this value is used, the interleave_type field shall be set to 0 (Component Interleaving), 2 (Mixed Interleaving) or 5 (Multi-Y Pixel Interleaving).
The 2D sizewidth and height of the ‘Y’ component is are the width and height of the framegiven by the sample entry. The height of the ‘U’ and ‘V’ component is the same as the height of the ‘Y’ component. The width of the ‘U’ and ‘V’ component is half the width of the ‘Y’ component. Components of other types may be present, and have the same dimension as the ‘Y’ component.
Pixels {x,y} and {x+1,y}, with x%2==0, share the same component values ‘U’ and ‘V’.

If row_align_size is not 0 and interleave_type is 0:
· row_align_size shall be a multiple of 2
· padding the row alignment for components of type ‘U’ and ‘V’, as defined in 5.2.1.7, shall be done using row_align_size/2bits shall be added at the end of previous rows such that the offset from sample data start of the first byte of rows shall be a multiple of:
·
row_align_size bytes for components other than ‘U’ and ‘V’

If tile_align_size is not 0:row_align_size/2 bytes for ‘U’ and ‘V’ components
· tile_align_size shall be a multiple of 2
· the tile alignment for components of type ‘U’ and ‘V’, as defined in 5.2.1.7, shall be done using tile_align_size/2

	2
	YCbCr 4:2:0 subsampling

This value shall only be set if all three component_type values ‘Y’, ‘U’ and ‘V’ are present in the component list and if both tile width and height are multiple of 2.
If this value is used, the interleave_type field shall be set to 0 (Component Interleaving) or 2 (Mixed Interleaving).
The 2D sizewidth and height of the ‘Y’ component is are the width and height of the framegiven by the sample entry. The width of the ‘U’ and ‘V’ component is half the width of the ‘Y’ component’. The height of the ‘U’ and ‘V’ component is half the height of the ‘Y’ component. Components of other types may be present, and have the same dimension as the ‘Y’ component.
Pixels {x,y}, {x+1,y}, {x,y+1} and {x+1,y+1} with x%2==0 and y%2==0, share the same component values ‘U’ and ‘V’.

If row_align_size is not 0 and interleave_type is 0:
· row_align_size shall be a multiple of 2
· padding the row alignment for components of type ‘U’ and ‘V’, as defined in 5.2.1.7, shall be done using row_align_size/2bits shall be added at the end of previous rows such that the offset from sample data start of the first byte of rows shall be a multiple of:
·
row_align_size bytes for components other than ‘U’ and ‘V’

If tile_align_size is not 0:
· tile_align_size shall be a multiple of 4
· the tile alignment for components of type ‘U’ and ‘V’, as defined in 5.2.1.7, shall be done using tile_align_size/4
row_align_size/2 bytes for ‘U’ and ‘V’ components

	3
	YCbCr 4:1:1 subsampling

This value shall only be set if all three component_type values ‘Y’, ‘U’ and ‘V’ are present in the component list and if tile width is a multiple of 4.
If this value is used, the interleave_type field shall be set to 0 (Component Interleaving), 2 (Mixed Interleaving) or 5 (Multi-Y Pixel Interleaving).
The 2D size width and height of the ‘Y’ component are the width and height of the frameis given by the sample entry. The height of the ‘U’ and ‘V’ component is the same as the height of the ‘Y’ component. The width of the ‘U’ and ‘V’ component is the width of the ‘Y’ component divided by 4. Components of other types may be present, and have the same dimension as the ‘Y’ component.
Pixels {x,y} , {x+1,y} , {x+2,y} , {x+3,y}, with x%4==0, share the same component values ‘U’ and ‘V’.

If row_align_size is not 0 and interleave_type is 0:
· row_align_size shall be a multiple of 4
· the row alignment for components of type ‘U’ and ‘V’, as defined in 5.2.1.7, shall be done using row_align_size/4padding bits shall be added at the end of previous rows such that the offset from sample data start of the first byte of rows shall be a multiple of:
·

If tile_align_size is not 0:
· tile_align_size shall be a multiple of 4
· the tile alignment for components of type ‘U’ and ‘V’, as defined in 5.2.1.7, shall be done using tile_align_size/4row_align_size bytes for components other than ‘U’ and ‘V’
·
row_align_size/4 bytes for ‘U’ and ‘V’ components

	4-0xFF
	reserved

Interleaving
The interleaving of pixels within a tile (or withing the frame if a single tile is used) is indicated by interleave_type, as defined in Table 4Table 4. The interleave_type shall apply to all listed components unless stated otherwise in Table 4Table 4.
NOTE The interleaving describes the layout of values within a the sample data. Positioning of sample data within the container file is done according to ISO/IEC 14496-12.
[bookmark: _Ref86847007]Table 4 -– Interleaving types
	Value
	Definition

	0
	Component Interleaving
[bookmark: _Hlk102570854]
For a given component, values for all pixels of a tile are shall be located sequentially in the sample data. Component values are shall be located in the order the components were declared.
This mode can be used with a single tile, as illustrated in Figure 1Figure 1, or with multiple tiles, as illustrated in Figure 2Figure 2. In both examples, R is the first component, G is the second and B is the third.
[image:]
[bookmark: _Ref102405598]Figure 1 – Single tile Component Interleaving example

[image:]
[bookmark: _Ref102405619]Figure 2 – Multiple tiles Component Interleaving example

	1
	Pixel Interleaving

For a given pixel, the component values are shall be located one after the other, in the order the components are declared, with the first component of a pixel following the last component of the previous pixel.
Pixel Interleaving is only permitted when all components are at the same resolution.
This mode can be used with a single tile, as illustrated in Figure 3Figure 3, or with multiple tiles, as illustrated in Figure 4Figure 4.
[image:]
[bookmark: _Ref102405656]Figure 3 – Single tile Pixel Interleaving example

[image:]
[bookmark: _Ref102405672]Figure 4 – Multiple tiles Pixel Interleaving example

	2
	Mixed Interleaving

This value shall only be used if sampling_type field value is not 0, if sampling_type value explicitly allows this interleaving mode and if the ‘U’ and ‘V’ components are consecutive in the component list, i.e. ‘V’ component immediately follows ‘U’ component or ‘U’ component immediately follows ‘V’ component,.
For all components other than ‘U’ and ‘V’, component values for all pixels are shall be located as specified for Component Interleaving in the order they are declared. The ‘U’ and ‘V’ component values are shall be located as specified by Pixel Interleaving;. the first value for component ‘U’, if declared first, or ‘V’ otherwise, shall be located after the last value of the component preceding ‘U’ or ‘V’ if any, or first in the tile otherwise.
NOTE This mode is typically used to store YUV 420 data with all Y components followed by interleaved U and V components.
Figure 5Figure 5 illustrates this mode for sampling_type=2 and Figure 6Figure 6 illustrates this mode for sampling_type=1.
[image:]
[bookmark: _Ref102409063]Figure 5 – Mixed Interleaving for YUV 420 example

[image:]
[bookmark: _Ref102409144]Figure 6 – Mixed Inter leaving for YUV422 example

	3
	Row Interleaving

For a given row, component values for each component are shall be located sequentially, in the order the components are declared. Each non-first row in the tile shall be continues located after the previous row. If multiple tiles are used, the first component of the first row of a tile shall beis located after the last component of the last row of the previous tile.
Row Interleaving is only permitted when all components are at the same resolution.
This mode can be used with a single tile, as illustrated in Figure 7Figure 7, or with multiple tiles, as illustrated in Figure 8Figure 8.
[image:]
[bookmark: _Ref102407932]Figure 7 – Single tile Row Interleaving example

[image:]
[bookmark: _Ref102407944]Figure 8 – Multiple tiles Row Interleaving example

	4
	Tile-Component Interleaving

For each component, in the order they are declared, the values for each component for all tiles are shall be located sequentially, with values within the tile located per each individual tile.
This mode shall not be used if only a single tile is defined.
This mode is illustrated in Figure 9Figure 9.
[image:]
[bookmark: _Ref102407789]Figure 9 – Tile-Component Interleaving example

	5
	Multi-Y Pixel Interleaving

Component values shall beare organized as with interleave_type=1 (Pixel Interleaved), but and the list of components shall contains multiple ‘Y’ components representing the multiple ‘Y’ component values associated with a single pair of ‘U’ and ’V’ component values.
The ‘U’ and ‘V’ components shall only be listed once in the list of components.

There are no restrictions on the order of declaration of the ‘Y’ components; derived specifications may further restrict this.

Regardless of how the multiple ‘Y’ components are interleaved with the ‘U’ and ‘V’ components, the ‘Y’ component values shall be stored in left-to-right, top-to-bottom order.

If the chrominance components are subsampled according to 4:2:2 subsampling (sampling_type=1), the component list describes two horizontally consecutive pixels, and thus shall include two ‘Y’ components, representing the two ‘Y’ values associated with a single pair of ‘U’ and ‘V’ component values. For example, {‘U’, ‘Y’, ‘V’, ‘Y’} for sampling_type=1 (YUV 4:2:2) indicates that the Y value of the second pixel is shall be located after the ‘V’ component value.
[image:]
Figure 1010 – ‘U’, ‘Y’, ‘V’, ‘Y’ 4:2:2 example
If the chrominance components are subsampled according to 4:1:1 subsampling, the component list describes four horizontally consecutive pixels, and thus shall include four Y components, representing the four Y values associated with a single pair of U and V component values. For example, {‘U’, ‘Y’, ‘Y’, ‘V’, ‘Y’, ‘Y’} for sampling_type=3 (YUV 4:1:1) indicates that the '‘Y’ value of the second pixel is shall be located after the ‘Y’ value of the first pixel, that the '‘Y’ value of the third pixel is shall be located after the ‘V’ component value and that the '‘Y’ value of the fourth pixel sis hall be located after the ‘Y’ value of the third pixel.
[image:]
Figure 1111 – ‘U’, ‘Y’, ‘Y’, ‘V’, ‘Y’, ‘Y’ 4:1:1 example
This interleave mode shall not be used for other forms of chrominance subsampling.

	6-0xFF
	Reserved

[bookmark: _Ref103948861]Alignment of values to byte boundaries
Padding bits can be included within the sample data to ensure that component values or pixels are aligned to specific byte boundaries. In addition, the end of rows and tiles can be aligned to specific byte boundaries. This may be to ensure individual component values or pixels are CPU addressable (e.g., not split across two 32-bit words), and rows and tiles of images are aligned to key boundaries (e.g., to memory pages or disk drive sectors).
Component values can be stored either directly in the sample data or inside fixed-size blocks. The block size in bytes is specified by the block_size field.
If the block size is 0 (blocking is not used within the sample data):,
· no padding is performed between values, except potentially:
· in-between component values if some components use a component_align_size different from 0
· after the last component value of a pixel if pixel_size is set
· after the last value in a row if row_align_size is set
· after the last value in a tile if tile_align_size is set
· block_pad_lastblock_pad_lsb, block_little_endian and block_reversed shall all be 0,
·
· values shall be stored most-significant byte bit first.

Storage of component values with block_size=0 is illustrated in Figure 25Figure 25.
If the block size is not 0, :
· each block shall consist in exactly block_size bytes and shall contain exactly one or more component values, i.e. the bits representing a component value are always contained within a single block. ,
· By by default, within a block, the first value of the first component of the top-left pixel of the frame shall be stored in the highest order bits of the first block (big-endian “left to right” format). The second value (for next component or next pixel of same component) shall be stored within the next set of bits in the block up until the last component value being stored in the least significant bits of the block. ,
· If if the block size in bits is greater than the size in bits of component values present in the block, padding bits are present. When present, these padding bits shall be located either in the most or in the least significant bits,, and shall be set to 0.
· the block size shall be greater than or equal to the maximum value of component_align_size for each component.
If pad_unknown value is 1, the padding bits values are not restricted, otherwise the padding bits shall all be set to 0.
NOTE1 Block alignment allows groups of consecutive component values, regardless of interleaving type, to be aligned within an easily addressable value; e.g., multiple components can be packed into 32-bit values but no component value spans two consecutive 32-bit values. For example, a 10-bit RGBA image using pixel interleaving with no component padding and 32-bit (4-byte) block padding on the right will produce a repeated pattern of four 32-bits blocks describing 3 pixels [{R,G,B}, {A, R, G}, {B, A, R}, {G, B, A}]. If tile padding (resp. row) padding is also specified to be 32-bit (4-byte) then the start the next tile (resp. row) will start at the next 4-byte boundary, regardless of whether space for the next component value was available in the previous block. For example, with 4-byte tile alignment, if the width of the tile is not a multiple of 3, the last block of the line will only contain 1 or 2 component values but all 4-bytes of the last block will be present in the sample data.
NOTE21 Padding bits may can be more than 8 (one byte). Unrestricted padding bit values is typically used for legacy content with no restrictions on padded values. Derived specification can further restrict usage of pad_unknown.
If not 0, the block size shall be greater than or equal to the maximum value of component_align_size for each component.
When block_pad_lsb is 0, the least significant bit of the last component value in the block shall be located at the least significant bit of the block and, consequently, any padding bits are located in the most significant bits of the block. Otherwise (block_pad_lsb is 1), the most significant bit of the first component value in the block shall be located at the most significant bit of the block and, consequently, any padding bits are located in the least significant bits of the block.
The order of storage, in the sample data, of the bytes within the block is determined by the endian storage type. Figure 12Figure 12 shows a 32-bit block with bits labelled from 0 (least significant bit) to 31 (most significant bit) with the following component assignments:, where padding bits are located at the least significant bits of the block:
Component 1: Type 4 (Red) – 8 bits
Component 2: Type 5 (Green) – 8 bits
Component 3: Type 6 (Blue) – 8 bits

Padding bits are located at the least significant bits of the block.
The least significant bit of each component is labelled ‘0’ and the most significant bit ‘7’.
[image:][image:]
[bookmark: _Ref109378940]Figure 12 – Assignment of 8-bit RGB components to a 32-bit block
When block_pad_last is 0, the least significant bit of the first component value in the block shall be located at the least significant bit of the block and, consequently, any padding bits are located in the most significant bits of the block. Otherwise (block_pad_last is 1), the most significant bit of the first component value in the block shall be located at the most significant bit of the block and, consequently, any padding bits are located in the least significant bits of the block.
[bookmark: _Hlk120801713]If block_little_endian is 0 (big endian storage), the most significant byte of the block (Component 1 in Figure 12Figure 12) shall be stored in the lowest storage byte location in the sample data. The remaining bytes shall be stored in increasing address spaces (Component 2 then 3 in Figure 12Figure 12) and the least significant byte of the block (Padding bits in Figure 12Figure 12) shall be stored in the highest address location of the block. The big-endian storage arrangement for the component assignments of Figure 12Figure 12 is shown in Figure 13Figure 13.
[image: A picture containing text, electronics, keyboard, calculator

Description automatically generated][image:]
[bookmark: _Ref109381237]Figure 13 – Big-endian storage of the block defined in Figure 12Figure 12
[bookmark: _Hlk120801819]If block_little_endian is 1 (little endian storage), the least significant byte of the block (Padding bits in Figure 12Figure 12) shall be stored in the lowest storage byte location. The remaining bytes shall be stored in increasing address space (Component 3 then 2 in Figure 12Figure 12) and the most significant byte of the block (Component 1 in Figure 12Figure 12) shall be stored in the highest address location of the block. The little-endian storage arrangement for the block in Figure 12Figure 12 is shown in Figure 14Figure 14.
[image:]
[bookmark: _Ref109381247]Figure 14 – Little-endian storage of the block defined in Figure 12Figure 12
If block_reversed is 0, the components order within the block shall be the component declaration order. Otherwise (block_reversed is 1), the partition of components into blocks shall remain unchanged, but the components order within each block shall be inverted, without changing the location of padding bits. Blockblock_reversed shall be 0 if block_little_endian is 0.
NOTE3 NOTE2 Reversing the order of components in a block is typically used with little-endian storage when multiple blocks are needed to store a single pixel value, to ensure that the low bits of a block are either a continuation of the previous pixel or a start of a new one.
An example usage of block_reversed=1 is shown in Figure 23Figure 23 and Figure 24 Figure 24. Figure 29 Figure 29 illustrates usage of block_reversed=1 with multi-Y interleave mode.
When values for all components for a single pixel are stored consecutively (e.g., Pixel Interleaving and Multi-Y Pixel Interleaving), additional padding can be inserted in the sample data to ensure that the start of every pixel falls on a significant architectural boundary (e.g., all pixels start on 8-byte boundaries).
[bookmark: _Hlk120802578]If pixel_size is 0, no additional padding is present after each pixel. Otherwise, let PixelBytes be the number of bytes required to contain all component values of a single pixel, including any padding resulting from block_size or component_align_size. Pixelpixel_size shall be greater than or equal to PixelBytes, and the number of padding bytes present after the last byte of each pixel shall be pixel_size - PixelBytesis the smallest positive integer N such that (PixelBytes+N) % pixel_size is 0. Usage of pixel_size different from 0 is illustrated in Figure 28Figure 28.
NOTE3	pixel_size is typically used to ensure the start of every pixel falls on a significant architectural boundary (e.g., all pixels start on 8-byte boundaries).
Pixelpixel_size shall be 0 if interleave_type is different from 1 or 5.
[bookmark: _Hlk120802762]If both block_size and pixel_size are non-zero, then the first component value of any pixel shall be the first value stored in the first block for this pixel.of the pixel shall be the first component in the first block of the pixel. This implies that the last block of the any pixel may contain additional padding bits. For example, for a 10-bit RGBA image stored using block_size=4 and pixel_size=10, the first block for each pixel will contain the R, G, and B components and 2 bits of padding while the second block for each pixel will only contain the A component value and 22 bits of padding, and two additional bytes of padding will be present after the second block.
NOTE4 NOTE4 Specifying pixel_size together with block_size ensures that no block contains values from different pixels.
In addition to dividing the sample data into blocks and pixels, additional padding can be found in the sample data at the end of each row and the end of each tile in order to ensure that the start of the next row or tile falls on an architecturally significant boundary (e.g., rows of packed 10-bit values all start on a full byte boundary, tiles are aligned to pages on a solid-state drive).
When block_size and pixel_size are both non-zero, the additional padding at the end of each pixel is not required to be a multiple of the block size.

Rows of tiles shall be byte-aligned at the end of the row:
· if the block size is 0, this means that padding bits until byte alignment may be present after the last component value of the last pixel of each row,
· Otherwise, this means that the last block of each row (containing the last component value of the last pixel of each row) may contain more padding bits than previous blocks.
If row_align_size is 0, no additional padding is present at the end of rows of tiles. Otherwise, let RowSize be the number of bytes required to contain, for a given row R:
· all values of all components for of row Rthe current row if interleave_type is 1 or 5 or if interleave_type is 2 and component type is ‘U’ or ‘V’ (including all component, block and pixel padding within and at the end of the sample data for the current row R),
· all values of the current component for the current row R (including all component and block padding within the sample data for the current row R) otherwise.
The number of padding bytes present after the last byte of the current row shall be the smallest integer N, with N>=0, is the smallest positive integer N such that (RowSize+N) % row_align_size is 0.
If tile_align_size is 0, no additional padding is present at the end of tiles. Otherwise, let TileSize be the number of bytes required to contain, for a given tile T:
· all values of the current component for all rows of the current tile T (including all component, block and row padding within and at the end the current tile T) if interleave_type is 4,
· all values of all components for all rows of the current tile T (including all component, block, pixel and row padding within and at the end of the sample data for the current tile T) otherwise.
The number of padding bytes present after the last byte of the last row of the tile shall be the smallest integer N, with N>=0,is the smallest positive integer N such that (TileSize+N) % tile_align_size is 0.
Tiletile_align_size shall be 0 if a single tile is used.
NOTE5 Block alignment allows groups of consecutive component values, regardless of interleaving type, to be aligned within an easily addressable value; e.g., multiple components can be packed into 32-bit values but no component value spans two consecutive 32-bit values. For example, a 10-bit RGBA image using pixel interleaving with no component padding and 32-bit (4-byte) block padding on the right will produce a repeated pattern of four 32-bit blocks describing 3 pixels [{R,G,B}, {A, R, G}, {B, A, R}, {G, B, A}]. If tile (resp. row) padding is also specified to be 32-bit (4-byte) then the start the next tile (resp. row) will start at the next 4-byte boundary, regardless of whether space for the next component value was available in the previous block. For example, with 4-byte tile alignment, if the width of the tile is not a multiple of 3, the last block of the line will only contain 1 or 2 component values but all 4-bytes of the last block will be present in the sample data.

The following figures illustrate the assignment of three components to 32-bit word blocks and associated storage configurations for endian and block padding options. The least significant bit of the block or of each component is labelled ‘0’. The three components for the examples are defined as follows:

Component 1: Type 4 (Red) – 9 bits
Component 2: Type 5 (Green) – 10 bits
Component 3: Type 6 (Blue) – 9 bits

Figure 15 shows the assignment of the components to a 32-bit block (block_size=4) with padding at the most significant bits (block_pad_last=0).

[image: A screenshot of a computer

Description automatically generated with low confidence]
[bookmark: _Ref109381490]Figure 15 – Example assignment of RGB to 32-bit block, padded at most significant bits

Figure 16 shows the assignment of the components to a 32-bit block (block_size=4) with padding at the least significant bits (block_pad_last=1).

[image: A screenshot of a computer

Description automatically generated with low confidence]
[bookmark: _Ref109381504]Figure 16 – Example assignment of RGB to 32-bit block, padded at least significant bits

The remaining figures in this section show various combinations of endian, block padding, block reverse, component alignment and pixel alignment options. “Byte 0” in the figures is the first byte stored in the sample data for the illustrated pixel or block.

· Figure 17 illustrates a block with block_little_endian=0 and block_pad_last=1.
· Figure 18 illustrates a block with block_little_endian=0 and block_pad_last=0.
· Figure 19 illustrates a block with block_little_endian=1 and block_pad_last=1.
· Figure 20 illustrates Figure 19 with the byte order reversed to better show component alignment.
· Figure 21 illustrates a block with block_little_endian=1 and block_pad_last=0.
· Figure 22 illustrates Figure 21 with the byte order reversed to better show component alignment.
· Figure 23 illustrates a block with block_little_endian=1, block_pad_last=0 and block_reversed=1.
· Figure 24 illustrates Figure 23 with the byte order reversed to better show component alignment.
· Figure 25 shows storage of component Red (9 bits), Green (10 bits) and Blue (9 bits) with no block and no pixel alignment.
· Figure 26 shows storage of components Red, Green, Blue, Alpha, each on 5 bits with no block and pixel_size=3.
· Figure 27 shows storage of components Red (10 bits), Green (12 bits), Blue (10 bits) with no block and component_align_size=2 for the Green component only.
· Figure 28 shows storage of components Red, Green, Blue, Alpha, each on 9 bits within 32-bit blocks.
· Figure 29 shows storage of multi-Y interleaved UYVY, each component coded on 10 bits, within 32-bit blocks with block_little_endian=1 and block_reversed=1, also known as ‘v210’ format.

[image: A picture containing text, electronics, keyboard

Description automatically generated]
[bookmark: _Ref109381626]Figure 17 – Big-endian block padded at least significant bits
[image:]
[bookmark: _Ref109381633]Figure 18 – Big-endian block padded at most significant bits

[image: A picture containing text, electronics, keyboard

Description automatically generated]
[bookmark: _Ref109381530]Figure 19 – Little-endian block padded at least significant bit

[image: A picture containing text, electronics, keyboard, calculator

Description automatically generated]
[bookmark: _Ref109381725]Figure 20 – Little-endian block padded at least significant bit with the storage byte order reversed

[image: A picture containing text, electronics, keyboard

Description automatically generated]
[bookmark: _Ref109381544]Figure 21 – Little-endian block padded at most significant bit

[image:]
[bookmark: _Ref109381737]Figure 22 – Little-endian block padded at most significant bit with the storage byte order reversed

[image:]
[bookmark: _Ref109381300]Figure 23 – Little-endian block padded at most significant bit with reversed component order

[image:]
[bookmark: _Ref109381304]Figure 24 – Little-endian block padded at most significant bit with reversed component order with the storage byte order reversed

Figure 25 – RGB – red (9 bits), green (10 bits), blue (9 bits), no block, no padding bits

[bookmark: _Ref109381773]Figure 26 – RGBA (each 5 bits), no block and 3 bytes pixel size

[bookmark: _Ref109381060]Figure 27 – Red (10-bit unaligned), Green (12-bit, 2-byte alignement), Blue (10-bit unaligned), no block
[image:]
[bookmark: _Ref109380684]Figure 28 – RGBA (each 9 bits), block size (4 bytes), pixel size (8 bytes)

[bookmark: _Ref109381330]Figure 29 – Multi-Y interleaved component 10-bit UYVY in 32 bit little endian reversed blocks

[bookmark: _Toc120711479][bookmark: _Hlk120799263]Syntax
[bookmark: _Hlk120803861][bookmark: _Hlk102735676][bookmark: _Hlk102996911][bookmark: _Hlk103090571][bookmark: _Hlk102997433][bookmark: _Hlk102997459]aligned(8) class UncompressedFrameVideoConfigBox extends FullBox(''uncC'', 0, 0) {
	unsigned int(32) profile;	
	unsigned int(16) component_count;	
	{
		unsigned int(16) component_indextype;
		if (component_type==0xFFFF) {
			utf8string component_type_uri;
		}
		unsigned int(8) component_bit_depth_minus_one;
		unsigned int(8) component_format;
		unsigned int(8) component_align_size;
	} [component_count];
	unsigned int(8) sampling_type;
	unsigned int(8) interleave_type;
	unsigned int(8) block_size;
	bit(1) components_little_endian;
	bit(1) block_pad_lastblock_pad_lsb;
	bit(1) block_little_endian;
	bit(1) block_reversed;
	bit(1) pad_unknown;
	bit(43) reserved = 0;
	unsigned int(8) pixel_size;
	unsigned int(32) row_align_size;
	unsigned int(32) tile_align_size;
	unsigned int(32) num_tile_cols_minus_one;
	unsigned int(32) num_tile_rows_minus_one;
}
[bookmark: _Toc120711480]Semantics
profile indicates the predefined configuration for this uncompressed sample entryframe configuration, as defined in Table 5Table 6. Value 0 indicates this uncompressed frame configurationsample entry may or may not be compliant to a profile. If not 0, all remaining fields in the box shall have the values indicated In in Table 5Table 6 for this profile. The four-character code ''gene'' is reserved and shall be interpreted as a value of 0.
Componentcomponent_count indicates the number of components present in the frames described bysamples referencing this uncompressed frame configurationsample entry
component_indextype indicates the index type of the component listed in the associated ComponentDefinitionBox, as defined in Table 1
component_type_uri indicates a URI describing the user-defined component type
component_bit_depth_minus_one indicates the size in bits minus one of the values for the component
component_format indicates the format of the component, as defined in Table 2Table 2
[bookmark: _Hlk103090556]component_align_size indicates the component byte-alignment size, as described in subclause 5.2.1.35.2.2.1.3
components_little_endian indicates that components are stored as little endian, as described in subclause 5.2.2.1.3
sampling_type indicates the sampling mode as defined in Table 3Table 3
interleave_type indicates the interleaving type of the components, as defined in Table 4Table 4
block_size indicates the size in bytes of blocks, as described in subclause 5.2.1.75.2.2.1.7
components_little_endian indicates that components are stored as little endian, as described in subclause 5.2.1.35.2.2.1.3
block_pad_lastblock_pad_lsb indicates padding bits location, as described in subclause 5.2.1.75.2.2.1.7
block_little_endian indicates block endianness, as described in subclause 5.2.1.75.2.2.1.7
[bookmark: _Hlk102998151]block_reversed indicates if component order is reversed within the block, as described in subclause 5.2.1.75.2.2.1.7
pad_unknown indicates that the value of padded bits in blocks or padded components is unknown
block_size indicates the size in bytes of blocks, as described in subclause 5.2.2.1.7
pixel_size indicates the total number of bytes (including component and block padding) used to store all components for a single pixel when component values for that pixel are interleaved, as described in subclause 5.2.1.75.2.2.1.7
row_align_size indicates the padding between rows, as described in subclause 5.2.1.75.2.2.1.7
tile_align_size indicates the padding between tiles, as described in subclause 5.2.1.75.2.2.1.7
num_tile_cols_minus_one plus one indicates the horizontal number of tiles in the frame
num_tile_rows_minus_one plus one indicates the vertical number of tiles in the frame

[bookmark: _Toc120711481]Examples (Informative)
The following figures illustrate the assignment of three components to 32-bit word blocks and associated storage configurations for endian and block padding options. The least significant bit of the block or of each component is labelled ‘0’, the most significant bit is labelled ‘31’. The three components for most of the examples are defined as follows:

Component 1: Type 4 (Red) – 9 bits
Component 2: Type 5 (Green) – 10 bits
Component 3: Type 6 (Blue) – 9 bits

Figure 15 shows the assignment of the components to a 32-bit block (block_size=4) with padding at the most significant bits (block_pad_lsb=0).

[image:]
[bookmark: _Ref120705027]Figure 15 – Example assignment of RGB to 32-bit block, padded at most significant bits

Figure 16 shows the assignment of the components to a 32-bit block (block_size=4) with padding at the least significant bits (block_pad_lsb=1).

[image:]
[bookmark: _Ref120705036]Figure 16 – Example assignment of RGB to 32-bit block, padded at least significant bits

The remaining figures in this section show various combinations of endian, block padding, block reverse, component alignment and pixel alignment options. “Storage Byte 0” (resp. “Storage Byte 3”) in the figures is the first (resp. last) byte stored in the sample data for the illustrated pixel or block.

Figure 17 illustrates a 32-bit block stored in big endian (with block_little_endian=0) and padding bits at least significant bits (block_pad_lsb=1).

[image: A picture containing text, electronics, keyboard

Description automatically generated]
[bookmark: _Ref120705058]Figure 17 – Big-endian block padded at least significant bits

Figure 18 illustrates a 32-bit block stored in big endian (with block_little_endian=0) and padding bits at most significant bits (block_pad_lsb=0).

[image:]
[bookmark: _Ref120705068]Figure 18 – Big-endian block padded at most significant bits

Figure 19 illustrates a 32-bit block stored in little endian (with block_little_endian=1) and padding bits at least significant bits (block_pad_lsb=1).

[image: A picture containing text, electronics, keyboard

Description automatically generated]
[bookmark: _Ref120705078]Figure 19 – Little-endian block padded at least significant bit

Figure 20 illustrates Figure 19 with the byte order in the sample data reversed to better show component alignment.

[image: A picture containing text, electronics, keyboard, calculator

Description automatically generated]
[bookmark: _Ref120705110]Figure 20 – Little-endian block padded at least significant bit with the storage byte order reversed

Figure 21 illustrates a 32-bit block stored in little endian (with block_little_endian=1) and padding bits at most significant bits (block_pad_lsb=0).

[image: A picture containing text, electronics, keyboard

Description automatically generated]
[bookmark: _Ref120705143]Figure 21 – Little-endian block padded at most significant bit

Figure 22 illustrates Figure 21 with the byte order in the sample data reversed to better show component alignment.

[image:]
[bookmark: _Ref120705157]Figure 22 – Little-endian block padded at most significant bit with the storage byte order reversed

Figure 23 illustrates a 32-bit block stored in little endian (with block_little_endian=1), padding bits at most significant bits (block_pad_lsb=0) and reversed order of component in block (block_reversed=1).

[image:]
[bookmark: _Ref120700805]Figure 23 – Little-endian block padded at most significant bit with reversed component order

Figure 24 illustrates Figure 23 with the byte order in the sample data reversed to better show component alignment.

[image:]
[bookmark: _Ref120700817]Figure 24 – Little-endian block padded at most significant bit with reversed component order with the storage byte order reversed

Figure 25 sFigure 25 hows storage of component Red (9 bits), Green (10 bits) and Blue (9 bits) with no block and no pixel alignment.

[bookmark: _Ref120705576]Figure 25 - RGB – red (9 bits), green (10 bits), blue (9 bits), no block, no padding bits

Figure 26 shows storage of components Red, Green, Blue, Alpha, each on 5 bits with no block and 3 bytes per pixels (pixel_size=3).

[bookmark: _Ref120705340]Figure 26 – RGBA (each 5 bits), no block and 3 bytes pixel size

Figure 27 shows storage of components Red (10 bits), Green (12 bits), Blue (10 bits) with no block and component_align_size=2 for the Green component only.

[bookmark: _Ref120705354]Figure 27 – Red (10-bit unaligned), Green (12-bit, 2-byte alignment), Blue (10-bit unaligned), no block

Figure 28 shows storage of components Red, Green, Blue, Alpha, each on 9 bits within a 32-bit blocks.

[image:]
[bookmark: _Ref120700902]Figure 28 – RGBA (each 9 bits), block size (4 bytes), pixel size (8 bytes)

Figure 29 shows storage of multi-Y interleaved UYVY, each component coded on 10 bits, within 32-bit blocks with block_little_endian=1 and block_reversed=1, also known as ‘v210’ format.

[bookmark: _Ref120700831]Figure 29 – Multi-Y interleaved component 10-bit UYVY in 32 bit little endian reversed blocks with bytes shown in reverse order per 32-bit word

[bookmark: _Toc86924330][bookmark: _Ref87430538][bookmark: _Ref103949446][bookmark: _Ref120698389][bookmark: _Toc120711482]Profiles for uncompressed video frame configurations
[bookmark: _Toc120711483]Overview
The four-character codes defined in this subclause identify common video formats for which a profile is defined. This profile may be indicated in the UncompressedFrameVideoConfigBox to simplify pixel format detection by file processors.
Profiles only provide identification of the pixel format used in uncompressed frames. Image reconstruction might need additional information, such as colour information or chroma location, present in child boxes of the sample entry of the track or associated with the image.
NOTE	These Some of these profiles are introduced to document existing practices in the industry prior to the definition of this specification.
[bookmark: _Toc87519733][bookmark: _Toc120711484]Predefined configurations
In Table 5Table 6 below, the values for from the ComponentDefinitionBox and the UncompressedVideoConfigBox UncompressedFrameConfigBox are listed as:
{profile, [{component_type, component_bit_depth_minus_1}], sampling_type, interleave_type}

The array of {component_type, component_bit_depth_minus_1} is given in component order as specified in the UncompressedFrameConfigBox, and the number of elements in the array gives the value for component_count.

Unless indicated otherwise, all other fields of UncompressedVideoConfigBox UncompressedFrameConfigBox shall have a value of 0.
[bookmark: _Ref94523278]Table 56 – Predefined uncompressed video frame formats
	Profile identifier
	Description
	Field values for UncompressedVideoConfigBoxUncompressedFrameConfigBox

	'‘2vuy'’
	8 bits YUV 422 packed Cb Y0 Cr Y1
	{'‘2vuy'’, 4, [{2,7},{1,7},{3,7},{1,7}], 1, 5}

	'yuv2'
	8 bits YUV 422 packed Y0 Cb Y1 Cr
	{'yuv2', 4, [{1,7},{2,7},{1,7},{3,7}], 1, 5}

	'yvyu'
	8 bits YUV 422 packed Y0 Cr Y1 Cb
	{'yvyu', 4, [{1,7},{3,7},{1,7},{2,7}], 1, 5}

	'vyuy'
	8 bits YUV 422 packed Cr Y0 Cb Y1
	{'vyuy', 4, [{3,7},{1,7},{2,7},{1,7}], 1, 5}

	'yuv1'
	8 bits YUV 411 packed Y0 Y1 Cb Y2 Y3 Cr
	{'yuv1', 6, [{1,7},{1,7},{2,7},{1,7},{1,7},{3,7}], 3, 5}

	'v308'
	8 bits YUV 444 packed Cr Y Cb
	{'v308', 3, [{3,7},{1,7},{2,7}], 0, 1}

	'v408'
	8 bits YUVA 444 packed Cb Y Cr A
	{'v408', 4, [{2,7},{1,7},{3,7},{7, 7}], 0, 1}

	'y210'
	10 bits YUV 422 packed LE
Y0 Cb Y1 Cr
	{'y210', 4, [{1,9},{2,9},{1,9},{3,9}], 1, 5, 2}
block_size shall be 2. block_little_endian shall be 1. block_pad_lastblock_pad_lsb shall be 1.

	'v410'
	10 bits YUV 444 packed CbYCr, 2 unused bits at LSB byte 0
	{'v410', 3, [{2,9},{1,9},{3,9}], 0, 1}
block_size shall be 4. block_little_endian shall be 1. block_pad_lastblock_pad_lsb shall be 1. block_reversed shall be 1.

	'v210'
	YUV 422 10 bits packed CbYCr
	{‘v210’, 4, [{2,9},{1,9},{3,9},{1,9}], 1, 5}
block_size shall be 4. block_little_endian shall be 1. block_pad_lastblock_pad_lsb shall be 0. block_reversed shall be 1.
Image frame width shall be a multiple of 48.
row_align_size shall be 0.

	'rgb3'
	RGB 24 bits packed
	{'rgb3', 3, [{4,7},{5,7},{6,7}], 0, 1}

	'i420'
	YUV 420 8 bits planar YCbCr
	{'i420', 3, [{1,7},{2,7},{3,7}], 2, 0}

	'nv12'
	YUV 420 8 bits semi-planar YCbCr
	{'nv12', 3, [{1,7},{2,7},{3,7}], 2, 2}

	'nv21'
	YUV 420 8 bits semi-planar YCrCb
	{'nv21', 3, [{1,7},{3,7},{2,7}], 2, 2}

	'rgba'
	RGBA 32bits packed
	{'rgba', 4, [{4,7},{5,7},{6,7},{7,7}], 0, 1}

	'abgr'
	RGBA 32bits packed
	{'abgr', 4, [{7,7}, {6,7},{5,7},{4,7}], 0, 1}

EDITOR’S NOTE: decide which one we keep, add other configurations, finalize profile names. NB comments on the topic are welcome.

[bookmark: _Toc120711485]MIME type sub-parameters
When the ‘codecs’ parameter of a MIME type is used, as defined in RFC 6381, its value shall be formatted, using field values of the ComponentDefinitionBox and the UncompressedVideoConfigBoxUncompressedFrameConfigBox, as follows (each element in the value is separated from the previous one using a dot ‘.’):
· The first element of the value shall be set to ‘uncv’ for video tracks and to ‘unci’ for image items,
· If the profile field is not 0, an element equal to the profile four-character code string (case sensitive) is appendedadded
· Otherwise (the profile field value is 0), the string ‘gene’ (case sensitive) is appendedadded
· Optionally if profile field is not 0, mandatory otherwise:
· an element equal to the sampling_type expressed in hexadecimal is appendedadded
· an element equal to the interleave_type expressed in hexadecimal is appendedadded
· an element equal to the block_size expressed in hexadecimal is appendedadded
· an element equal to ‘cTr’ is appendedadded, with c the number of tile columns in hexadecimal and r the number of tile rows in hexadecimal
· for each component, an element equal to ‘aLb’ is appendedadded, with a the hexadecimal value of component_type and b the hexadecimal value of component_bit_depth
Hexadecimal value shall not be prefixed with ‘0x’, and leading zeros should be omitted.

Examples:
· For an uncompressed video with profile yvyu: codecs=uncv.yvyu
· For an uncompressed video with monochrome and alpha, same sampling (sampling_type=0), component interleaving (interleave_type=0) with each value stored on 10 bits with 2 bytes blocks little-endian left-padded: codecs=uncv.gene.0.0.2.1T1.0LA.7LA
· For an uncompressed video with 2 bits alpha, 10 bits R, B, G, same sampling (sampling_type=0), pixel interleaving (interleave_type=1) with no specific block alignment (block_size=0) and a tiling of 4 horizontal for 3 vertical tiles: codecs=uncv.gene.0.1.0.4T3.7L2.4LA.5LA.6LA
[bookmark: _Toc99988203][bookmark: _Ref120695285][bookmark: _Toc120711486]Video sample entryComponent description extensions
[bookmark: _Toc120711487]Extensions for uncompressed video and uncompressed images
[bookmark: _Toc120711488]Overview
Overview
The boxes defined in this subclause can be used to provide further information on one or more components present in the video uncompressed frameformat. Presence of these boxes may be mandated by the presence of specific components in the uncompressed frame (e.g., presence of a palette component mandates the presence of a ComponentPaletteBox)video format used.
Each of the defined boxes can be:
· added to a video sample entry for media tracks
· added as properties or associated with an image item.
The syntaxes in this section are given for a video sample entry container and the defined boxes therefore extend Box (resp. FullBox). When used in an ItemPropertyContainerBox, the same syntax applies but the defined boxes extend ItemProperty (resp. ItemFullProperty).
NOTE Some Most of the boxes defined in this subclause 6 may apply to both uncompressed video formats and compressed video formats. Derived specifications may allow usage of these boxes in for compressed formats.
[bookmark: _Toc120711489]Component Palette configuration
Definition
Box Type:	'upal' 'cpal'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one
The UncompressedPaletteBox ComponentPaletteBox allows describing image data coded through a palette. .

This box shall be present if and only if there is an associated ComponentDefinitionBox present, in which , in the associated UncompressedVideoConfigBox, there is a component defined with a component_type value of 10 (‘P’).
The component value of each pixel gives the index in the palette, and shall be an integer between 0 and values_count-1, with value 0 indicating the first entry in the list of pixel values of the palette.
In one ComponentPaletteBox, there shall not be any listed component with:
· the same component_type as a component listed in the associated ComponentDefinitionBox,
· a component_type value of 11 (‘FA’).

Syntax
[bookmark: _Hlk103082319][bookmark: _Hlk103087877]aligned(8) class UncompressedPaletteBox ComponentPaletteBox extends FullBox('upal''cpal', 0, 0) {
	unsigned int(16) palette_components_count;	
	{
		unsigned int(16) component_indextype;
		if (component_type==0xFFFF) {
			utf8string component_type_uri;
		}
		unsigned int(8) component_bit_depth_minus_one;
		unsigned int(8) component_format;
	} [palette_components_count];

	unsigned int(32) values_count;
	for (i=0; i<values_count; i++) {
		for (j=0; j<palette_components_count; j++) {
			bit(X) component_value;
			aligned(8) bit(0) unused_bits_zero;
		}
	}
}

Semantics
palette_components_count indicates the number of components described by the palette
component_indextype indicates the index type of the Nth component listed in the associated ComponentDefinitionBox, as defined in Table 1. This value shall be different from 11 (‘FA’) and from any component type listed in the associated UncompressedVideoConfigBox.
component_type_uri indicates a URI describing the user-defined component type
component_bit_depth_minus_one indicates the size in bits minus one of values of the Nth component
component_format indicates the format of the Nth component, as defined in Table 2Table 2
values_count indicates the number of pixel values following
component_value indicates the value of the Nth component for the given entry. This field is coded on X bits with X = component_bit_depth_minus_one + 1 of the Nth component
unused_bits_zero represents the number of unused bits following the component value to achieve byte alignment. These unused bits shall be ignored by the file reader and should be set to 0.

[bookmark: _Toc120711490]Component Pattern Definition
Definition
Box Type:	'upat' 'cpat'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one

The UncompressedPatternDefinitionBox ComponentPatternDefinitionBox allows describing filter array patterns such as Bayer. .

This box shall be present if and only if there is, in the an associated ComponentDefinitionBoxUncompressedVideoConfigBox, present, in which there is a component defined with a component_type value of 11 (‘FA’).
The pattern is used to assign the final component type to each value. The pattern is defined at the top-left pixel of the image, and is repeated to cover the entire image. For a pixel position {x, y} in the image, with {0,0} being the top-left pixel, the coded value for that position represents the component type given by position {width%pattern_width, height%pattern_height} in the UncompressedPatternDefinitionBoxComponentPatternDefinitionBox, and other component values for that pixel, as defined in the UncompressedPatternDefinitionBoxComponentPatternDefinitionBox, are not present.
The tile width (resp. height) shall be a multiple of pattern_width (resp. pattern_height).
In one ComponentPatternDefinitionBox, there shall not be a listed component with:
· the same component_type as a component listed in the associated ComponentDefinitionBox,
· a component_type value of 10 (‘P’).

Examples:
· - a BGGR Bayer image will be represented by a single component 11 (‘FA’) and a pattern with 2 rows, 2 columns indicating components [6,5,5,4].],
· -
· A GRBG Bayer image will be represented by a single component 11 (‘FA’) and a pattern with 2 rows, 2 columns indicating components [5,4,6,5],.
· -
· a BGGR Bayer image with an alpha plane following the Bayer data will be represented by two components 11 (‘FA’) and 7 (‘A’), an interleave_type of 0 and a pattern with 2 rows, 2 columns indicating components [6,5,5,4].
· - ,
· a Red-White-Green-Blue sensor image will be represented by a single component 11 (“FA”) and a pattern with 4 rows, 4 columns indicating the R, G, B and monochrome components order.

Syntax
aligned(8) class UncompressedPatternDefinitionBox ComponentPatternDefinitionBox extends FullBox('upat''cpat', 0, 0) {
	unsigned int(16) pattern_width;
	unsigned int(16) pattern_height;
	for (i=0; i< pattern_height; i++) {
		for (j=0; j< pattern_width; j++) {
			unsigned int(16) component_typeindex;
			if (component_type==0xFFFF) {
				utf8string component_type_uri;
			}
			double(32) component_gain;
		}
	}
}
Semantics
pattern_width indicates the width in pixels of the pattern
pattern_height indicates the height in pixels of the pattern
component_index indicates the index of the Nth component listed in the associated ComponentDefinitionBox.
component_type indicates the type of the Nth component, as defined in Table 1. This value shall be different from 10 (‘P’) and from any component type listed in the associated UncompressedVideoConfigBox.
component_type_uri indicates a URI describing the user-defined component type
component_gain indicates a gain to be applied to the Nth specific component, such as for white balance correction with Bayer imagery, etc. The value shall be coded as an IEEE 754 “binary32”.

NOTE The gain for each component is determined by a user defined method for balancing the levels of all components. The application of the gain terms is also a user defined implementation. This is commonly achieved by setting the gain value to one for the component with the highest signal level and to a value greater than one for the remaining components, thereby balancing all the components. Values saturate at the maximum value of a component.
[bookmark: _Toc120711491]Component Reference Level
Definition
Box Type:	'ulev' 'clev'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one
The UncompressedReferenceLevelBox ComponentReferenceLevelBox allows describing the minimum and maximum values for components present in the image data. .
When this box is present, there shall be an associated ComponentDefinitionBox present.
When this box is absent or a component type is not listed in this box, reference white and black values for this component type are derived from the ColourInformationBox of present in the sample entry of the track or associated with the image item. If the ColourInformationBox is absent, the levels for the desired component type are derived as follows:
· For components of type Y, U or V with 8 bits depth, reference black is 16 and reference white is 235
· For components of type Y, U or V with 10 bits depth, reference black is 64 and reference white is for 940
· Otherwise, reference black is 0 and reference white is maximum value for component bit depth.
When UncompressedReferenceLevelBox ComponentReferenceLevelBox and ColourInformationBox are both present and document reference levels for the same component types, information from the ColourInformationBox shall be used.
NOTE If the ColourInformationBox is present with unspecified matrix_coefficients and has full_range_flag set to 1, full range is assumed.
Reference levels shall be ignored for non-integer component types.
There shall be at least as many components of a given type A in the associated UncompressedVideoConfigBox as there are entries for that type A in the UncompressedReferenceLevelBox; the first reference level for component type A corresponds to the first component with type A in the associated UncompressedReferenceLevelBox., the second reference level for component type A corresponds to the second component with type A and so on.
If clip_range is set to 1, black_level (resp. white_level) indicates the minimum (resp. maximum value) for the component; readers shall clip, and any value less than black_level (resp. greater than white_level) shall be set to black_level (resp. white_level).
If clip_range is set to 0, readers shall transform the value N coded on k bits (as read from the sample data) results in to the valuea component value of black_level+N*(white_level-black_level)/(2k-1) before display or interpretation..
Syntax
aligned(8) class UncompressedReferenceLevelBox ComponentReferenceLevelBox extends FullBox('ulev''clev', 0, 0) {
	unsigned int(16) level_count;
	{
		unsigned int(16) component_typeindex;
		if (component_type==0xFFFF) {
			utf8string component_type_uri;
		}
		unsigned int(1) clip_range;
		bits(7) reserved = 0;
		signed int(32) black_level;	
		signed int(32) white_level;	
	} [level_count];
}
Semantics
level_count indicates the number of components for which levels are described
component_index indicates the index of the Nth component listed in the associated ComponentDefinitionBox.
component_type indicates the type of the Nth component, as defined in Table 1
component_type_uri indicates a URI describing the user-defined component type
clip_range indicates if the levels indicate a clip range or an affine transformation of the Nth component value final ranges
black_level indicates the black level for the Nth component
white_level indicates the white level for the Nth component; this value shall be greater than the black_level value.

[bookmark: _Toc120711492]Polarization Pattern Definition
Definition
Box Type:	'splzp'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or onemore
The PolarizationPatternDefinitionBox allows describing a filter array pattern for sensors that have polarization patterns implemented on the image sensor. If the sensor also includes a colour or spectral filter, theThe pattern dimension is not required to match the pattern dimension given in the UncompressedPatternDefinitionBoxComponentPatternDefinitionBox.
When this box is present, there shall be an associated ComponentDefinitionBox present.
The pattern is used to assign polarization values at the pixel level. The pattern is defined at the top-left pixel of the image, and is repeated to cover the entire image. For a pixel position {x, y} in the image, with {0,0} being the top-left pixel, the polarization value for each pixel is given by position {width%pattern_width, height%pattern_height} in the PolarizationPatternDefinitionBox.
Polarization angles are specified counter-clockwise, with value 0 indicating an orientation to the right, as illustrated in Figure 30Figure 30.
The tile width (resp. height) shall be a multiple of pattern_width (resp. pattern_height).
NOTE	If both pattern_width and pattern_height are 1, this implies that a single polarization angle is given for all pixels in the image.
Multiple PolarizationPatternDefinitionBox can be specified if components of the image have different polarization filters. In this case, there shall be at most one PolarizationPatternDefinitionBox describing one given component of the image.

Figure 30Figure 30 illustrates an RGGB Bayer filter array pattern superimposed on a 4x4 pixel grid (filter array pattern with values of ‘FA1’ through ‘FA16’) with a 2x2 polarization pattern with angles of 90, 45, 135, and 0 degrees.

 [image:]
[bookmark: _Ref102410129]Figure 30 – Polarization example with a filter array pattern component

Syntax
aligned(8) class PolarizationPatternDefinitionBox extends FullBox('splzp', 0, 0) {
	unsigned int(16) component_count;
	{
		unsigned int(16) component_index;
	} [component_count]
	unsigned int(16) pattern_width;
	unsigned int(16) pattern_height;
	for (i=0; i< pattern_height; i++) {
		for (j=0; j< pattern_width; j++) {
			double(32) polarization_angle;
		}
	}
}
Semantics
component_count indicates the number of components to which the polarization pattern applies. If this value is 0, the polarization pattern applies to all components of the image.
component_index indicates the index of the component listed in the associated ComponentDefinitionBox.
pattern_width indicates the width in pixels of the pattern
pattern_height indicates the height in pixels of the pattern
polarization_angle indicates the polarization angle of the pixel at the defined pattern location. Value shall either be 0xFFFFFFFF, is coded as an IEEE 754 “binary32” number, and shall be either ‘NaN’, indicating that no polarization filter is present, or shall be an IEEE 754 “binary32” number, indicating the polarization angle in degrees, with a value greater than or equal to 0.0 and strictly less than 360.0.

[bookmark: _Toc120711493]Sensor Non-Uniformity Correction
Definition
Box Type:	'snuc'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one more
The SensorNonUniformityCorrectionBox allows describing pixel specific gain and offset corrections, as well as a global gain term.
When this box is present, there shall be an associated ComponentDefinitionBox present.
Whether the correction has applied or not to the values stored in the sample data is indicated by the nuc_is_applied field.
The Non-Uniform Correction (NUC) nuc_gain and nuc_offset attributes provide non-uniformity corrections for a sensor. This is commonly used with radiometric imagery. The correction equation is linear: 𝑦 = nuc_gain *𝑥+ nuc_offset, where x is an input component value as stored in the file. The minimum value of y saturates at a value of 0. In situations where the same component value range is to be maintained after application of the NUCs, the maximum value of y saturates at a level defined by the number of bits in the component value, for instance, 65535 for a 16-bit component.
The NUC coefficients are assigned per pixel through the full image. The NUC gain and offset tables are aligned with the entire image, resulting in a table width equal to image_width and table height equal to image_height. For a pixel position {x, y} in the image, with {0,0} being the top-left pixel, the NUC coefficients for each pixel are given by position {x,y} in the SensorNonUniformityCorrectionBox.

Multiple SensorNonUniformityCorrectionBox can be specified if components of the image have different gains and offsets. In this case, there shall be at most one SensorNonUniformityCorrectionBox describing one given component of the image.

Syntax
aligned(8) class SensorNonUniformityCorrectionBox extends FullBox('snuc', 0, 0) {
	unsigned int(16) component_count;
	{
		unsigned int(16) component_index;
	} [component_count]
	unsigned int(1) nuc_is_applied;
	unsigned int(7) reserved=0;
	unsigned int(32) image_width;
	unsigned int(32) image_height;
	for (i=0; i< image_height; i++) {
		for (j=0; j< image_width; j++) {
			double(32) nuc_gain;
		}
	}
 for (i=0; i< image_height; i++) {
		for (j=0; j< image_width; j++) {
			double(32) nuc_offset;
			}
		}
	}
}
Semantics
component_count indicates the number of components to which the non uniformity correction pattern applies. If this value is 0, the non uniformity correction applies to all components of the image.
component_index indicates the index of the component listed in the associated ComponentDefinitionBox.
nuc_is_applied if 1, indicates that the corrections have been applied to the component values in the sample data. If value is 0, the component values are still raw, without NUC corrections applied.
image_width indicates the width in pixels of the NUC tables, shall be equal to image width
image_height indicates the height in pixels of the NUC tables, shall be equal to image height
nuc_gain specifies the Non-Uniform Correction (NUC) gain. The value shall be coded as an IEEE 754 “binary32”
nuc_offset specifies the Non-Uniform Correction (NUC) offset. The value shall be coded as an IEEE 754 “binary32”

[bookmark: _Toc120711494]Sensor Bad Pixels Map
Definition
Box Type:	'sbpm'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one more
The SensorBadPixelsMapBox allows identifying bad pixels on a sensor, i.e. pixels for which at least one component value is corrupted.
When this box is present, there shall be an associated ComponentDefinitionBox present.
The box allows entire sensor rows, entire sensor columns, and individual bad pixels to be marked as bad. Pixels that are part of bad rows or bad columns may be listed as part of the list of individually bad pixels, but those pixels are not required to be listed twice.
NOTE1 For example, a sensor system might detect a small region of pixels that show a spurious response where that region intersects with a bad row. The system may report all of the pixels in that region as part of the list of independently bad pixels; it is not required to omit the pixels in the bad row from that list.
NOTE2 If the source image has been padded with rows and/or columns for tile storage, these padded row or columns do not need to be present in the bad pixel map.
Multiple SensorBadPixelsMapBox can be specified if components of the image have different sensor defects. In this case, there shall be at most one SensorBadPixelsMapBox describing one given component of the image.

Syntax
aligned(8) class SensorBadPixelsMapBox extends FullBox('sbpm', 0, 0) {
	unsigned int(16) component_count;
	{
		unsigned int(16) component_index;
	} [component_count]
	unsigned int(1) correction_applied;
	unsigned int(7) reserved=0;
	unsigned int(32) num_bad_rows;
	unsigned int(32) num_bad_cols;
	unsigned int(32) num_bad_pixels;
	for (i=0; i< num_bad_rows; i++) {
		unsigned int(32) bad_row;
	}
	for (i=0; i< num_bad_cols; i++) {
		unsigned int(32) bad_column;
	}
	for (i=0; i< num_bad_pixels; i++) {
		unsigned int(32) bad_pixel_row;
		unsigned int(32) bad_pixel_column;
	}
}

Semantics
component_count indicates the number of components to which the bad pixel map applies. If this value is 0, the bad pixels described apply to all components of the image.
component_index indicates the 0-based index of the component listed in the associated ComponentDefinitionBox.
correction_applied if 1, indicates that component values for bad pixels in the sample data have been corrected; if 0, indicates that no correction has been applied. The method used to apply correction is out of scope of this specification.
num_bad_rows indicates the number of full rows in the image that are bad.
num_bad_columns indicates the number of full columns in the image that are bad.
num_bad_pixels indicates the number of individual bad pixels. This does not include bad pixels that are identified as being part of an entire bad row or bad column.
bad_row a row number for which all pixels are bad. Value 0 corresponds to the top row. The value shall be strictly less than image height minus 1.
bad_column a column number for which all pixels are bad. Value 0 corresponds to the left column. The value shall be strictly less than image width minus 1.
row the row index of the coordinate pair identifying the location of a bad pixel. Value 0 corresponds to the top row. The value shall be strictly less than image height minus 1.
column the column index of a coordinate pair identifying the location of a bad pixel. Value 0 corresponds to the left column. The value shall be strictly less than image width minus 1.

[bookmark: _Toc120711495]Chroma Location
Definition
Box Type:	'cloc'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one per video sample entry or associated per item
The ChromaLocationBox may be used to describe the chroma subsampling location method used for uncompressed videoframes using a YUV subsampling other than YUV444 sampling_type other than 0 and ‘Y’, ‘U’, and ‘V’ components. It shall not be present in the sample entry or associated with the image item for other subsampling types or component formatsuncompressed video configurations.
For an uncompressed video using YUV 4:2:2 or YUV 4:1:1 subsampling, the indicated Chroma420SampleLocType as defined in ISO/IEC 23091-2 shall have VerticalOffsetC equal to 0.
If ChromaLocationBox is not present for frames using a YUV subsampling other than YUV444an uncompressed video using a sampling_type other than 0 and ‘Y’, ‘U’, and ‘V’ components, the associated Chroma420SampleLocType is 0.
If ChromaLocationBox is used as an item property, it shall be marked as essential.
Syntax
aligned(8) class ChromaLocationBox extends FullBox('cloc', 0, 0) {
	unsigned int(8) chroma_location;
}
Semantics
chroma_location indicates a Chroma420SampleLocType value as defined in ISO/IEC 23091-2, or the value 6. Value 6 is defined, following Chroma420SampleLocType semantics as defined in ISO/IEC 23091-2, with: VerticalOffsetC=0, HorizontalOffsetC=0 for Cr and HorizontalOffsetC=1 for Cb (ex: DV PAL).

[bookmark: _Toc102414894][bookmark: _Toc102414895][bookmark: _Toc102414896][bookmark: _Toc102414897][bookmark: _Toc102414898][bookmark: _Toc102414899][bookmark: _Toc102414900][bookmark: _Toc102414901][bookmark: _Toc102414902][bookmark: _Toc102414903][bookmark: _Toc102414904][bookmark: _Toc102414905][bookmark: _Toc102414906][bookmark: _Toc102414907][bookmark: _Toc102414908][bookmark: _Toc102414909][bookmark: _Toc102414910][bookmark: _Toc87519740][bookmark: _Toc120711496]Frame Packing Information
Definition
Box Type:	'fpack'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one per video sample entry or associated per item
The FramePackingInformationBox can be used to describe how two pictures are packed into an uncompressed video frame for stereoscopic imagery.
If not present, each uncompressed video frame consists in a single picture.
If FramePackingInformationBox is used as an item property, it shall be marked as essential.

Syntax
class FramePackingInfoBox extends FullBox('fpack', 0, 0) {
	unsigned int(4) video_frame_packing;
	unsigned int(4) PackedContentInterpretationType
	unsigned int(1) QuincunxSamplingFlag;
	unsigned int(7) reserved = 0;
}
Semantics
video_frame_packing, QuincunxSamplingFlag, PackedContentInterpretationType have the same semantics as defined in ISO/IEC 23091-2.

[bookmark: _Toc87519742][bookmark: _Toc120711497]Disparity Information
Definition
Box Type:	'disi'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one per video sample entry or associated per item
The DisparityInformationBox can be used to describe how values of a disparity map should be interpreted. If not present, the mapping from disparity value to distance in meters uses the default values (parallax_zero=2N-1, parallax_scale=256, dref=300, wref=100) as defined in ISO/IEC 23002-3.
If this box is used as an item property, it shall be marked as essential.
Syntax
class DisparityInformationBox extends FullBox('disi', 0, 0) {
	unsigned int(16) component_count;
	{
		unsigned int(16) component_index;
	} [component_count]
	unsigned int(16) parallax_zero;
	unsigned int(16) parallax_scale;
	unsigned int(16) dref;
	unsigned int(16) wref;
}
Semantics
component_count indicates the number of components to which the disparity information applies. If this value is 0, the disparity information applies to all disparity components of the image.
component_index indicates the 0-based index of the component listed in the associated ComponentDefinitionBox.
parallax_zero, parallax_zero, parallax_zero, parallax_zero: have the same semantics as defined in ISO/IEC 23002-3.

[bookmark: _Toc120711498]Depth Mapping Information
Definition
Box Type:	'depi'
Container:	Video sample entry, ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one per video sample entry or associated per item
The DepthMappingInformationBox may be used to describe how values in a depth map are transformed into distance values. If not present, the mapping from depth value to distance values follow the default values (nknear=128, nkfar=128) as defined in ISO/IEC 23002-3.
If this box is used as an item property, it shall be marked as essential.
Syntax
class DepthInfoBox extends FullBox('depi', 0, 0) {
	unsigned int(16) component_count;
	{
		unsigned int(16) component_index;
	} [component_count]
	unsigned int(8) nknear;
	unsigned int(8) nkfar;
}
Semantics
component_count indicates the number of components to which the depth mapping information. If this value is 0, the depth mapping information applies to all disparity components of the image.
component_index indicates the 0-based index of the component listed in the associated ComponentDefinitionBox.
nknear, nkfar near and far distances have the same semantics as defined in ISO/IEC 23002-3.

[bookmark: _Toc120711499][bookmark: _Toc99988204]Sample group descriptions
[bookmark: _Toc120711500]Field Interlace Type	
Definition
The FieldInterlaceType sample group description allows describing the field layout inof a sample data in case of interlaced video content. This sample group description is identified by the 'ilce' grouping_type.
If no FieldInterlaceType sample group description is associated to a sample, whether because the sample group description is not present or because the sample is not mapped to any sample group description of this type, the sample data is assumed to be a progressive frame.
Syntax
aligned(8) class FieldInterlaceDescription {
	unsigned int(2) interlace_type;
	unsigned int(1) interleaved;
	unsigned int(1) first_field_type;
	unsigned int(1) bottom_first;
	bits(3) reserved=0;
}
class FieldInterlaceType extends VisualSampleGroupEntry ('ilce') {
	FieldInterlaceDescription interlace_description;
}
Semantics
interlace_type indicates the interlacing type. The following values are defined:
· 0: progressive frame
· 1: the sample data contains both top and bottom fields. The duration of each field is half the duration of the associated sample.
· 2: the sample data contains a single field. The video sample entry height shall be twice the number of lines in the field. The duration of the field is the duration of the associated sample.
· 3: the sample data contains both top and bottom fields, but the fields are co-incident in time (sample data is a progressive segmented frame).
interleaved if set to 1, indicates that lines of each field are interleaved in the sample data, i.e. first line of first field followed by first line of second field followed by second line of first field etc.). Otherwise (interleaved set to 0), the first line of the second field follows the last line of the first field in the sample data. This value shall be 0 for interlace_type values other than 1 and 3.
first_field_type if set to 1, indicates that the first field appearing in the sample data is the bottom field. If a single field is present in the sample data, then this field is the bottom field. This value shall be 0 if interlace_type value is 0.
bottom_first if set to 1, indicates that the first field to present is the bottom field. This value shall be 0 if interlace_type value is not 1.
EDITOR’s NOTE: We could also use the reserved bits to indicate source origin/copy types for content resulting from telecine (2:2, 3:2 pulldown) if needed. NB Comments and contributions on the topic are welcome.
[bookmark: _Toc120711501]Image Item properties
[bookmark: _Toc120697036][bookmark: _Toc120697566][bookmark: _Toc120697647][bookmark: _Toc120706848][bookmark: _Toc120711502]

[bookmark: _Toc120697038][bookmark: _Toc120697568][bookmark: _Toc120697649][bookmark: _Toc120706850][bookmark: _Toc120711504]

[bookmark: _Toc120711507]
[bookmark: _Toc120711508]Field Interlace Property	
Definition	
Box Type:	'ilcp'
Container:	ItemPropertyContainerBox
Mandatory:	No
Quantity:	Zero or one per item
The FieldInterlaceProperty allows describing the field layout of an image item in case of interlaced video content. In not present, the image item is assumed to be a progressive frame. If present, the property shall be marked as essential.

NOTE Rendering of images consisting in two non time-coincident fields or in a single field is implementation specific. Derived specification may further constraint usage or rendering of interleaved image items.

Syntax
class FieldInterlaceProperty extends ItemProperty ('ilcpe') {
	FieldInterlaceDescription interlace_description;
}
Semantics
The semantics are identical to the FieldInterlaceType sample group description semantics, using the image item width (resp. height) instead of the video sample entry width (resp. height).
[bookmark: _Toc120711509]Multiple track and items storage
[bookmark: _Toc86924331][bookmark: _Toc120711510]Overview	
Multiple track (resp items) storage allows describing uncompressed video (resp. image) streams whose components are in multiple tracks (resp. items). This process may be used in various cases:
· simplify editing, by modifying only one component (e.g. alpha or depth) without modifying the other components (colour)
· provide players a way to play a subpart of the components (e.g. colour) instead of failing playback due to unsupported configuration
· enable efficient disk and network usage for partial access (spatial, temporal) of a subset of the components. A typical use case is to store all or a subset of samples for the first component followed by samples of the second component etc. by using ISOBMFF sample and item data layout tools.
· use components with different spatial resolutions
[bookmark: _Toc86924332][bookmark: _Toc120711511][bookmark: _Hlk120821074]Component video track group	
Video tracks containing components related to the of the same media source may be grouped using a TrackGroupBox with the track_group_type value of 'scvg'. The pair of track_group_id and track_group_type identifies a track group within the file. The tracks that contain a particular TrackGroupTypeBox having the same value of track_group_id and track_group_type belong to the same track group.
Tracks belonging to such a group may have different resolutions and different sample entry types, but shall have:
· The same aspect ratio,
· The same temporal layout, i.e. there shall not be any presentation time for which no sample is defined for one or more tracks of the group while a sample is defined for other tracks of the group.
NOTE The component video track group is mainly intended for storage of uncompressed video with components in different tracks, but can be used for a mix of compressed and uncompressed video (e.g. colour compressed, alpha / depth uncompressed). Derived specification may further restrict the kind of components allowed in 'scvg' track groups, the timescale used, the sample entry format, the visual dimension of the tracks, etc. The display or processing of (part of) a track group with track_group_type value of 'scvg' is application specific.
EDITOR’S NOTE: we don’t have any proposal for multiple item storage, maybe Entity Groups could be used if feature is needed. Contributions on the topic are welcome.
[bookmark: _Toc120711513][bookmark: _Hlk120821657]Image tiling using ISOBMFF tracks and items
Source image data may be spatially split in different rectangular images, or tiles, each resulting tile being stored in its own track or image item rather than storing the entire image data as a single track or item.
A typical use case is to allow a temporal interleaving of tiles different from what can be achieved with tiling as defined in 5.2.1.45.2.2.1.4, for which each sample data shall contain all tiles of the associated framea frame have to be in the same sample.
Video tracks containing tiles of the same media source may be grouped using a TrackGroupBox with the track_group_type value of 'stvtg'.
The pair of track_group_id and track_group_type identifies a track group within the file. The tracks that contain a particular TrackGroupTypeBox having the same value of track_group_id and track_group_type belong to the same track group, i.e. they contain different tiles of the same source image. Tile layouts must shall be indicated using the width, height and matrix of the track header. Tracks belonging to the same track group with type 'stvtg' shall not spatially overlap each other. There may be uncovered area(s) in the reconstructed frame, for example when a tile track is removed from the file. Tracks belonging to the same track group with type 'stvg' are not required to use the same sample entry type.
For image items, tile layouts can be indicated using the grid derived image item.
NOTE Derived specification may further restrict the combination of tiles within the uncompressed video tracks and multi-track tiling or the presence of holes in the reconstructed frame.
	© ISO/IEC 2022 – All rights reserved
	1

	6
	© ISO/IEC 2022 – All rights reserved

	© ISO/IEC 2022 – All rights reserved
	7

image1.png
Increasing Memory Addresses

meeTecaccemany
@

G10 | G11 | G12 | G13 | G14 | G15

B10 | B11 | B12 | B13 | B14 | B15

image2.svg
 B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3 B8 B0 G8 G0 R8 R0 B9 B1 G9 G1 R9 R1 B10 B2 G10 G2 R10 R2 B11 B3 G11 G3 R11 R3 B12 B4 G12 G4 R12 R4 B13 B5 G13 G5 R13 R5 B14 B6 G14 G6 R14 R6 B15 B7 G15 G7 R15 R7 Frame Increasing Memory Addresses

image3.png
Increasing Memory Addresses

rrlle RN | R1 I n7 | RrR3 Sl
e |
3 0 o me s fne |
\
I @ oo | o [oa fun e
G2 G7 B7
& o oo
s 30 i v v

® e

l

G10 | G11 | G14 | G15 | B10 | B11 | B14 | B15

image4.svg
 B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G10 B8 R8 G2 B0 R0 G11 B9 R9 G3 B1 R1 G14 B12 R12 G6 B4 R4 G15 B13 R13 G7 B5 R5 B10 R10 G8 B2 R2 G0 B11 R11 G9 B3 R3 G1 B14 R14 G12 B6 R6 G4 B15 R15 G13 B7 R7 G5 Tile Increasing Memory Addresses G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3

image5.png
Increasing Memory Addresses

image6.svg
 B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3 G13 B10 R8 G5 B2 R0 B13 R11 G8 B5 R3 G0 R14 G11 B8 R6 G3 B0 G14 B11 R9 G6 B3 R1 B14 R12 G9 B6 R4 G1 R15 G12 B9 R7 G4 B1 G15 B12 R10 G7 B4 R2 B15 R13 G10 B7 R5 G2 Pixel Increasing Memory Addresses

image7.png
Pixel Increasing Memory Addresses

BEREE

image8.svg
 B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3 G11 B12 R8 G3 B4 R0 B11 R13 G8 B3 R5 G0 R14 G13 B8 R6 G5 B0 G14 B13 R9 G6 B5 R1 B14 R10 G9 B6 R2 G1 R15 G10 B9 R7 G2 B1 G15 B10 R12 G7 B2 R4 B15 R11 G12 B7 R3 G4 Increasing Memory Addresses Tile Pixel

image9.png
Increasing Memory Addressg

image10.svg
 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3 U2 U0 V2 V0 U3 U1 V3 V1 Increasing Memory Addresses V2 V0 V3 V1 U2 U0 U3 U1 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3

image11.png
Increasing Memory Addressg

VO A4 §

image12.svg
 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3 Increasing Memory Addresses U2 U0 V2 V0 U3 U1 V3 V1 U6 U4 V6 V4 U7 U5 V7 V5 V2 V0 V3 V1 V6 V4 V7 V5 U2 U0 U3 U1 U6 U4 U7 U5 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3

image13.png
Row

4

® o

nn

Dn|D1|D')

1 | M
® o

=18 s |

@

= 7/
‘ o ﬂﬂﬂﬂﬂ 57

Increasing Memory Addresses

>

| | GO‘ Gl‘ GZ‘ G3
g E-\Iﬂl -

SEACAC) CEEIE

G12 | G13 | G14 | G15 | B12 | B13 | B14 | B15

image14.svg
 G12 B8 R8 G4 B0 R0 G13 B9 R9 G5 B1 R1 G14 B10 R10 G6 G2 R2 G15 B11 R11 G7 G3 R3 B12 R12 G8 B4 R4 G0 B13 R13 G9 B5 R5 G1 B14 R14 G10 B6 R6 G2 B15 R15 G11 B7 R7 G3 Row Increasing Memory Addresses B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3

image15.png
Tile

Increasing Memory Addresses
60

> o [so Bty we | = B

G4 | G5 | B4 | BS Ju 63
e e v w
e e e
SICIEE e

B10 | B11 G14 | G15 | B14 | B15

image16.svg
 B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 B10 G12 R8 B2 G4 R0 B11 G13 R9 B3 G5 R1 R14 B12 G8 R6 B4 G0 R15 B13 G9 R7 B5 G1 G14 R10 B8 G6 R2 B0 G15 R11 B9 G7 R3 B1 B14 G10 R12 B6 G2 R4 B15 G11 R13 B7 G3 R5 Tile Increasing Memory Addresses R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3 Row

image17.png
Increasing Memory Addresses

-
O’ ..g
RN | R4 I R? | P e®

| na I ~n I n3 ——— W
L)
7
[7 ==
G1 G7
) -L1
T “o [= | e e fao o o

Tile

B12 | B13 | B10 | B11 | B14 | B15

image18.svg
 B12 B8 B4 B0 B13 B9 B5 B1 B14 B10 B6 B2 B15 B11 B7 B3 G12 G8 G4 G0 G13 G9 G5 G1 G14 G10 G6 G2 G15 G11 G7 G3 R12 R8 R4 R0 R13 R9 R5 R1 R14 R10 R6 R2 R15 R11 R7 R3 Tile B8 B0 G8 G0 R8 R0 B9 B1 G9 G1 R9 R1 B12 B4 G12 G4 R12 R4 B13 B5 G13 G5 R13 R5 B10 B2 G10 G2 R10 R2 B11 B3 G11 G3 R11 R5 B14 B6 G14 G6 R14 R6 B15 B7 G15 G7 R15 R7 Increasing Memory Addresses

image19.png
VO

Vi

Increasing Memory Addresses

VO Vi
V2 V3
V4 V5
Vé6 V7

image20.svg
 V2 V0 V3 V1 V6 V4 V7 V5 U2 U0 U3 U1 U6 U4 U7 U5 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3 U6 U4 U2 U0 Y12 Y8 Y4 Y0 V6 V4 V2 V0 Y13 Y9 Y5 Y1 U7 U5 U3 U1 Y14 Y10 Y6 Y2 V7 V5 V3 V1 Y15 Y11 Y7 Y3 Increasing Memory Addresses

image21.png
Increasing Memory Addresses

Vo -)

Vi

image22.svg
 V1 V0 V3 V2 U1 U0 U3 U2 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3 U3 U2 U1 U0 Y12 Y8 Y4 Y0 Y13 Y9 Y5 Y1 V3 V2 V1 V0 Y14 Y10 Y6 Y2 Y15 Y11 Y7 Y3 Increasing Memory Addresses

image23.png
MSB 32-bit Block LSB
0 0 0
313 (221222222221 |1|1f1f1|1|1f1)1(1
1(o|9|8|7|6|5(4|3|2|1|0(9|8(7|6|5|4|3]|2(1|0 ol8|7(6]5[4|3]2|]0
Component 1 Component 2 Component 3 Padding Bits

image24.png
Component 1 Componentz Component3 Component 4

image25.png
Storage Storage Storage Storage
Byte 0 Byte 1 Byte2 Byte3

RRRRERR

image26.png
P W

o w

Storage
Byte 0

o N
0o N
NN
NN

N

N

w N

NN

Storage
Byte 1

RN
onN
o R
®

N -

()]

(S0

QN

Storage
Byte 2

w R
N R
[
oK

Storage
Byte 3

image27.svg
 Storage Byte 0 Storage Byte 2 Storage Byte 3 Storage Byte 1 B 2 B 1 B 0 G 7 G 6 G 5 G 4 G 3 G 2 G 1 G 0 R 7 R 6 R 5 R 4 R 3 R 2 R 1 R 0 B 7 B 6 B 5 B 4 B 3 2 8 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 3 1 3 0 2 9

image28.png

image29.png
LB

32-bit Block

M5B

1)ofs]e
Pad Component

Component 2

image30.png
LSB|

32-bit Block

Pad

Component 2 Component 3

Component 1

image31.png
Storage Storage Storage

Storage

Byte 1 Byte 2 Byte 3

Byte 0

R

R

R

R

R

R

R

R

image32.png

image33.png
Storage

Storage
Byte2

Storage

Byte 3

Byte 1

Storage

Byte 0

image34.png
Storage
Byte3

Storage
Byte2

Storage
Byte 1

Storage
Byte 0

s|a|7|s|s|e]3]2

image35.png
Storage Storage
Byte 1 Byte2 Byte3

Storage

Storage
Byte 0

image36.png
Storage
Byte 3

o~
NS

XY

N

N

w N

Y

Storage Storage

Byte 2 Byte 1
0

2(2|1|1|1]1 1111

1(o|9|8|7]|6 3|2(1)0

image37.png
~ =
o
e
g B
mw. ~
& ~e
oo
o
o
o1
=
] -
WMJ ~ o
3 e
o
o
=
=
-
g9
g &
1%}
zo
o
. - -
23
WMJ @<
& 2 I
zo
e~

image38.png
Storage
Byte 0

Storage
Byte 1

Storage
Byte 2

Storage
Byte 3

©
U]
©
©
©
©
©
©
©
©
o
@
@
@
o
@
@
@
@

8 76 5432 1009876543210

9(8|7([e6|5[4|3|2|1]0

image39.emf

Component	1 Component	2 Component	3

Storage	
Byte	0

Storage	
Byte	2

Storage	
Byte	3

Storage	
Byte	1

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

G
9

G
8

G
7

G
6

G
5

G
4

G
3

G
2

G
1

G
0

R
8

R
7

R
6

R
5

R
4

R
3

R
2

R
1

R
0

2
8

2
7

2
6

2
5

2
4

3
1

3
0

2
9

Component	1 Component	2 Component	3

Storage	
Byte	4

Storage	
Byte	6

Storage	
Byte	5

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

G
9

G
8

G
7

G
6

G
5

G
4

G
3

G
2

G
1

G
0

R
8

R
7

R
6

R
5

R
4

R
3

R
2

R
1

R
0

81
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 42

3
2
2

2
1

2
0

1
9 3 2 1 0 2

8
1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 92

7
2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

3
1

3
0

2
9

Component	1 Component	2 Component	3

Storage	

Byte	0

Storage	

Byte	2

Storage	

Byte	3

Storage	

Byte	1

B

8

B

7

B

6

B

5

B

4

B

3

B

2

B

1

B

0

G

9

G

8

G

7

G

6

G

5

G

4

G

3

G

2

G

1

G

0

R

8

R

7

R

6

R

5

R

4

R

3

R

2

R

1

R

0

2

8

2

7

2

6

2

5

2

4

3

1

3

0

2

9

Component	1 Component	2 Component	3

Storage	

Byte	4

Storage	

Byte	6

Storage	

Byte	5

B

8

B

7

B

6

B

5

B

4

B

3

B

2

B

1

B

0

G

9

G

8

G

7

G

6

G

5

G

4

G

3

G

2

G

1

G

0

R

8

R

7

R

6

R

5

R

4

R

3

R

2

R

1

R

0

8

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

987654

2

3

2

2

2

1

2

0

1

9

3210

2

8

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

3

1

3

0

2

9

Microsoft_Visio_Drawing.vsdx
Component 1
Component 2
Component 3
Storage Byte 0
Storage Byte 2
Storage Byte 3
Storage Byte 1
B8
B7
B6
B5
B4
B3
B2
B1
B0
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
R8
R7
R6
R5
R4
R3
R2
R1
R0
28
27
26
25
24
31
30
29
Component 1
Component 2
Component 3
Storage Byte 4
Storage Byte 6
Storage Byte 5
B8
B7
B6
B5
B4
B3
B2
B1
B0
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
R8
R7
R6
R5
R4
R3
R2
R1
R0
8
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
23
22
21
20
19
3
2
1
0
28
18
17
16
15
14
13
12
11
10
9
27
26
25
24
23
22
21
20
19
31
30
29

image40.png
Storage Storage Storage Storage
Byte 0 Byte 1 Byte 2 Byte 3
PlP[P|P
3(3(2]1212)|2]|2(2]2 2(2(1]1f1(1 111]1)1(1
110|19]18|7|6|5]|4]3 1110|9876 413(2]1]0 61>14(3(2]1]|0
Component 1 Component 2 Component 3 Pad Bits
Storage Storage Storage Storage
Byte 4 Byte 5 Byte 6 Byte 7
‘ A P(P|P|P|P|P PlP[P|P]|P P(P|P|P|P|P|P
3(3(2]1212)|2]|2(2]2 2(2(1]1f1(1 111]1)1(1
110|191 8|7|6|5]|4]3 1(0|19|8|7]|6 413(2(|1]0 61>14(3(2|1]|0
Component 4 Pad Bits

image41.svg
 Component 1 Component 2 Storage Byte 0 Storage Byte 2 Storage Byte 3 Storage Byte 1 Component 4 Storage Byte 4 Storage Byte 6 Storage Byte 7 Storage Byte 5 Pad Bits Pad Bits R 8 R 7 R 6 R 5 R 4 R 3 R 2 R 1 R 0 G 8 G 7 G 6 G 5 G 4 G 3 G 2 G 1 G 0 B 8 B 7 B 6 B 5 B 4 B 3 B 2 B 1 B 0 P P P P P 2 8 2 7 2 6 2 5 2 4 3 1 3 0 2 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 2 3 2 2 2 1 2 0 1 9 3 2 1 0 Component 3 A 8 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 P P P P P P P P P P P P P P P P P P P P P P P 2 8 2 7 2 6 2 5 2 4 3 1 3 0 2 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 2 3 2 2 2 1 2 0 1 9 3 2 1 0

image42.png
31ngu171515111312211:)15unlslsuﬁ‘unlns s)7[e]s]a]s]2]s

Pad Component 1 Component 2 Component 3

image43.png
31{30 2928|2726 25 28 23| 22|21 20| 1 1817 16 15 14 1312|1110 3 | 8 | 7 [6 | 5| & | 3

Component 1 Component 2 Component 3

Microsoft_Visio_Drawing1.vsdx
Component 1
Component 2
Component 3
Storage Byte 0
Storage Byte 2
Storage Byte 3
Storage Byte 1
B8
B7
B6
B5
B4
B3
B2
B1
B0
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
R8
R7
R6
R5
R4
R3
R2
R1
R0
28
27
26
25
24
31
30
29
Component 1
Component 2
Component 3
Storage Byte 4
Storage Byte 6
Storage Byte 5
B8
B7
B6
B5
B4
B3
B2
B1
B0
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
R8
R7
R6
R5
R4
R3
R2
R1
R0
8
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
23
22
21
20
19
3
2
1
0
28
18
17
16
15
14
13
12
11
10
9
27
26
25
24
23
22
21
20
19
31
30
29

image44.emf
Component 1 Component 2 Component 3

Storage

Byte 0

Storage

Byte 2

Storage

Byte 3

Storage

Byte 1

Component 4

Storage

Byte 4

Storage

Byte 5

2

8

2

7

2

6

2

5

2

4

3

1

3

0

2

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4

2

3

2

2

2

1

2

0

1

9

3 2 1 0

2

8

1

8

1

7

1

6

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

3

1

3

0

2

9

R

4

R

3

R

2

R

1

R

0

G

4

G

3

G

2

G

1

G

0

B

4

B

3

B

2

B

1

B

0

P P P P

A

4

A

3

A

2

A

1

A

0

R

4

R

3

R

2

R

1

R

0

G

4

G

3

G

2

G

1

G

0

B

4

B

3

B

2

B

1

B

0

P P P P

A

4

A

3

A

2

A

1

A

0

Component 1 Component 2 Component 3 Component 4

Microsoft_Visio_Drawing2.vsdx
Component 1
Component 2
Component 3
Storage Byte 0
Storage Byte 2
Storage Byte 3
Storage Byte 1
Component 4
Storage Byte 4
Storage Byte 5

28
27
26
25
24
31
30
29
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
23
22
21
20
19
3
2
1
0
28
18
17
16
27
26
25
24
23
22
21
20
19
31
30
29
R4
R3
R2
R1
R0
G4
G3
G2
G1
G0
B4
B3
B2
B1
B0
P
P
P
P
A4
A3
A2
A1
A0
R4
R3
R2
R1
R0
G4
G3
G2
G1
G0
B4
B3
B2
B1
B0
P
P
P
P
A4
A3
A2
A1
A0
Component 1
Component 2
Component 3
Component 4

image45.emf
R

8

R

7

R

6

R

5

R

4

R

3

R

2

R

1

R

0

R

9

B

8

B

7

B

6

B

5

B

4

B

3

B

2

B

1

B

0

B

9

G

9

G

8

G

7

G

6

G

5

G

4

G

3

G

2

G

1

G

0

G

1

1

G

1

0

P P P P

Implied

Padding

Component 1 Component 2 Component 3

Storage

Byte 0

Storage

Byte 2

Storage

Byte 3

Storage

Byte 1

Component 1

Component 2 Component 3

Storage

Byte 4

Storage

Byte 6

Storage

Byte 5

R

8

R

7

R

6

R

5

R

4

R

3

R

2

R

1

R

0

R

9

2

8

2

7

2

6

2

5

2

4

3

1

3

0

2

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4

2

3

2

2

2

1

2

0

1

9

3 2 1 0

2

8

1

8

1

7

1

6

1

5

1

4

1

3

1

2

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

3

1

3

0

2

9

B

8

B

7

B

6

B

5

B

4

B

3

B

2

B

1

B

0

B

9

G

9

G

8

G

7

G

6

G

5

G

4

G

3

G

2

G

1

G

0

G

1

1

G

1

0

P P P P

Storage

Byte 7

Storage

Byte 9

Storage

Byte 10

Storage

Byte 8

Storage

Byte 11

Storage

Byte 13

Storage

Byte 12

G

9

G

8

G

7

G

6

G

5

G

4

G

3

G

2

G

1

G

0

G

1

1

G

1

0

P P P P

Implied

Padding

R

8

R

7

R

6

R

5

R

4

R

3

R

2

R

1

R

0

R

9

Component 1 Component 2 Pad Bits

Pad Bits

Pad Bits

Implied

Padding

8

1

1

1

0

9

7 6 5 4 3 2 1 0

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4

2

3

2

2

2

1

2

0

1

9

3 2 1 0

2

8

1

8

1

7

1

6

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

3

1

3

0

2

9

Microsoft_Visio_Drawing3.vsdx
R8
R7
R6
R5
R4
R3
R2
R1
R0
R9
B8
B7
B6
B5
B4
B3
B2
B1
B0
B9
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
G11
G10
P
P
P
P
Implied Padding
Component 1
Component 2
Component 3
Storage Byte 0
Storage Byte 2
Storage Byte 3
Storage Byte 1
Component 1
Component 2
Component 3
Storage Byte 4
Storage Byte 6
Storage Byte 5
R8
R7
R6
R5
R4
R3
R2
R1
R0
R9
28
27
26
25
24
31
30
29
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
23
22
21
20
19
3
2
1
0
28
18
17
16
15
14
13
12
27
26
25
24
23
22
21
20
19
31
30
29
B8
B7
B6
B5
B4
B3
B2
B1
B0
B9
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
G11
G10
P
P
P
P

Storage Byte 7
Storage Byte 9
Storage Byte 10
Storage Byte 8
Storage Byte 11
Storage Byte 13
Storage Byte 12
G9
G8
G7
G6
G5
G4
G3
G2
G1
G0
G11
G10
P
P
P
P
Implied Padding
R8
R7
R6
R5
R4
R3
R2
R1
R0
R9
Component 1
Component 2
Pad Bits
Pad Bits
Pad Bits
Implied Padding
8
11
10
9
7
6
5
4
3
2
1
0
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
23
22
21
20
19
3
2
1
0
28
18
17
16
27
26
25
24
23
22
21
20
19
31
30
29
28
27
26
25
24
31
30
29

image46.emf
V 0

Storage

Byte 3

Storage

Byte 1

Storage

Byte 0

Storage

Byte 2

Y 0 U 0 Pad

P P

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

2

8

2

7

3

1

3

0

2

9

Word 0

Storage

Byte 7

Storage

Byte 5

Storage

Byte 4

Storage

Byte 6

Y 2 U 1 Pad

P P

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

2

8

2

7

3

1

3

0

2

9

Word 1

V 1

Storage

Byte 11

Storage

Byte 9

Storage

Byte 8

Storage

Byte 10

Y 3

U 2

Pad

P P

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

2

8

2

7

3

1

3

0

2

9

Word 2

V 2

Storage

Byte 15

Storage

Byte 13

Storage

Byte 12

Storage

Byte 14

Y 5

Pad

P P

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

2

8

2

7

3

1

3

0

2

9

Word 3

Y 1

Y 4

U

8

U

7

U

6

U

5

U

4

U

3

U

2

U

1

U

0

U

9

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

V

9

V

8

V

7

V

6

V

5

V

4

V

3

V

2

V

1

V

0

U

8

U

7

U

6

U

5

U

4

U

3

U

2

U

1

U

0

U

9

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

V

9

V

8

V

7

V

6

V

5

V

4

V

3

V

2

V

1

V

0

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

U

8

U

7

U

6

U

5

U

4

U

3

U

2

U

1

U

0

U

9

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

Y

9

Y

8

Y

7

Y

6

Y

5

Y

4

Y

3

Y

2

Y

1

Y

0

V

9

V

8

V

7

V

6

V

5

V

4

V

3

V

2

V

1

V

0

Microsoft_Visio_Drawing4.vsdx
V 0
Storage Byte 3
Storage Byte 1
Storage Byte 0
Storage Byte 2
Y 0
U 0
Pad
P
P
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
26
25
24
23
22
21
20
19
28
27
31
30
29
Word 0
Storage Byte 7
Storage Byte 5
Storage Byte 4
Storage Byte 6
Y 2
U 1
Pad
P
P
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
26
25
24
23
22
21
20
19
28
27
31
30
29
Word 1
V 1
Storage Byte 11
Storage Byte 9
Storage Byte 8
Storage Byte 10
Y 3
U 2
Pad
P
P
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
26
25
24
23
22
21
20
19
28
27
31
30
29
Word 2
V 2
Storage Byte 15
Storage Byte 13
Storage Byte 12
Storage Byte 14
Y 5
Pad
P
P
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
26
25
24
23
22
21
20
19
28
27
31
30
29
Word 3
Y 1
Y 4
U8
U7
U6
U5
U4
U3
U2
U1
U0
U9
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
V9
V8
V7
V6
V5
V4
V3
V2
V1
V0
U8
U7
U6
U5
U4
U3
U2
U1
U0
U9
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
V9
V8
V7
V6
V5
V4
V3
V2
V1
V0
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
U8
U7
U6
U5
U4
U3
U2
U1
U0
U9
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
V9
V8
V7
V6
V5
V4
V3
V2
V1
V0

image47.png
7

N\

FAS5

NN

Green Pixel AQ /
with 90 degree i] / FA10
Polarization | /// /

image48.svg
 FA12 (135 o) FA4 FA0 FA13 (0 o) FA9 (45 o) FA5 FA1 FA14 FA10 FA6 FA2 FA15 FA11 FA7 FA3 Green Pixel with 90 degree Polarization FA8 (90 o)

