ISO/IEC 14496-34:22##(X)
ISO TC 1/SC 29/WG 03
Date: 2022-11-22
Information technology — Coding of audio-visual objects — Part 34: Syntactic description language

CD stage

Warning for WDs and CDs
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

© ISO 2022
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
Contents
Foreword	v
Introduction	vi
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Syntax notes	1
4.1	Endianness	1
4.2	Comments	1
4.3	Binary values	1
4.4	Scoping rules	2
5	Elementary data types	2
5.1	Introduction	2
5.2	Constant-length direct representation bit fields	2
5.2.1	Type	2
5.2.2	Length	2
5.2.3	Value	3
5.2.4	Alignment	3
5.2.5	Constants	3
5.2.6	Look-ahead	3
5.3	Variable length direct representation bit fields	3
5.4	Constant-length indirect representation bit fields	4
5.5	Variable length indirect representation bit fields	5
5.6	Variable length strings	5
5.7	String literals	6
6	Composite data types	6
6.1	Classes	6
6.2	Derived classes	7
6.3	Abstract classes	8
6.4	Expandable classes	8
6.5	Parameter types	9
6.6	Arrays	9
6.7	Multi-dimensional arrays	10
6.8	Partial arrays	10
6.9	Implicit arrays	11
7	Arithmetic and logical expressions	11
8	Non-parsable variables	11
9	Syntactic flow control	12
9.1	Conditionals	12
9.2	Loops	13
10	Built-in operators	14
Annex A (normative) SDL grammar	15
A.1	General	15
A.2	Grammar file	15
Bibliography	18

[bookmark: _Toc353342667][bookmark: _Toc120120479]Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Joint Technical Committee ISO/IEC 1, information technology, Subcommittee SC 29, coding of audio, picture, multimedia and hypermedia information.
A list of all parts in the ISO 14496 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
[bookmark: _Toc353342668][bookmark: _Toc120120480]Introduction
This specification describes the mechanism with which bitstream syntax is documented in a number of standard parts such as in ISO/IEC 14496 or ISO/IEC 23010. This mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic description rules. It directly extends the C-like syntax used in ISO/IEC 11172-1:1993 and ISO/IEC 13818-1:2007 into a well-defined framework that lends itself to object-oriented data representations. In particular, SDL assumes an object-oriented underlying framework in which bitstream units consist of “classes.” This framework is based on the typing system of the C++ and Java programming languages. SDL extends the typing system by providing facilities for defining bitstream-level quantities, and how they should be parsed.
The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic and logical expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow control is needed to take into account context-sensitive data. Several examples are used to clarify the structure.
[Editor’s note] Since ISO/IEC 14496-1 (from which this new part is extracted) lists a number patents in Annex J, the text below is kept according to the ISO template.
The International Organization for Standardization (ISO) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent.
ISO takes no position concerning the evidence, validity and scope of this patent right.
The holder of this patent right has assured ISO that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with ISO. Information may be obtained from the patent database available at www.iso.org/patents.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those in the patent database. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14496-34:22##(X)
ISO/IEC 14496-34:22##(X)

iv	© ISO 2022 – All rights reserved
© ISO 2022 – All rights reserved	v
Information technology — Coding of audio-visual objects — Part 34: Syntactic description language
1 [bookmark: _Toc353342669][bookmark: _Toc120120481]Scope
Type text.
2 [bookmark: _Toc353342670][bookmark: _Toc120120482]Normative references
IETF RFC 4648, The Base16, Base32, and Base64 Data Encodings
3 [bookmark: _Toc120120080][bookmark: _Toc120120132][bookmark: _Toc353342671][bookmark: _Toc120120483]Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
· ISO Online browsing platform: available at https://www.iso.org/obp
· IEC Electropedia: available at https://www.electropedia.org/

3.1
FLC
Fixed Length Code
language defined by this specification that allows the description of a bitstream’s syntax

3.2
SDL
Syntactic Description Language
language defined by this specification that allows the description of a bitstream’s syntax
4 [bookmark: _Toc120120484]Syntax notes
4.1 [bookmark: _Toc117687315][bookmark: _Toc117687451][bookmark: _Toc120120485][bookmark: _Toc117687177][bookmark: _Toc117687246]Endianness
By default all quantities shall be represented in the bitstream with the most significant byte first, and also with the most significant bit first.
4.2 [bookmark: _Toc117687316][bookmark: _Toc117687452][bookmark: _Toc120120486]Comments
Comments starts by // and ends at the end of the current line. A comment may be preceded by any text between the start of the line and the start of the comment.
Rule S.1: Comments
// This is a comment.

4.3 [bookmark: _Toc117687178][bookmark: _Toc117687247][bookmark: _Toc117687317][bookmark: _Toc117687453][bookmark: _Toc120120487]Binary values
To designate binary values, the 0b prefix shall be used, similar to the 0x prefix for hexadecimal numbers. A period (‘.’) may be optionally placed after every four digits for readability. Hence 0x0F is equivalent to 0b0000.1111.
4.4 [bookmark: _Toc117687179][bookmark: _Toc117687248][bookmark: _Toc117687318][bookmark: _Toc117687454][bookmark: _Toc120120488]Scoping rules
All parsable variables have class scope, i.e., they are available as class member variables.
For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by curly braces: ‘{‘ and ‘}’). In particular, only variables declared in class scope are considered class member variables, and are thus available in objects of that particular type.
5 [bookmark: _Toc120120489]Elementary data types
[bookmark: _Toc120120490]Introduction
The SDL uses the following elementary data types:
1. Constant-length direct representation bit fields or Fixed Length Codes (FLCs). These describe the encoded value exactly as it is to be used by the appropriate decoding process.
2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual length is determined by the context of the bitstream (e.g., the value of another parameter).
3. Constant-length indirect representation bit fields. These require an extra lookup using an encoded value FLC into an appropriate table or variable to obtain the desired value or set of values.
4. Variable-length indirect representation bit fields (e.g., Huffman codes). These require an extra lookup using an encoded value parametric FLC into an appropriate table or variable to obtain the desired value or set of values.
These elementary data types are described in more detail in the Clauses to follow immediately.
[bookmark: _Toc120119442][bookmark: _Toc120119496][bookmark: _Toc120120089][bookmark: _Toc120120141][bookmark: _Toc120120491]Constant-length direct representation bit fields
Constant-length direct representation bit fields, or FLCs, shall be represented as:
Rule E.1: Elementary data types
[aligned] type[(length)] element_name [= value];

[bookmark: _Toc120120492]Type
[bookmark: _Hlk108801371]The type may be any of the following: int for signed integer, unsigned int for unsigned integer, double for floating point, and bit for raw binary data.
[bookmark: _Toc120120493]Length
The length attribute indicates the length of the element in bits, as it is actually stored in the bitstream. Note that a data type equal to double shall only use 32 or 64 bit lengths.
The type and the optional length attributes are always present, except if the data is non-parsable, i.e., it is not included in the bitstream.
For example a 5-bit unsigned integer would be represented as:
EXAMPLE
unsigned int(5) temporal_reference;

where unsigned int(5) indicates that the element shall be interpreted as a 5-bit unsigned integer.
[bookmark: _Toc120120494]Value
The value attribute shall be present only when the value is fixed (e.g., start codes or object IDs), and it may also indicate a range of values (i.e., ‘0x01..0xAF’).
[bookmark: _Toc120120495]Alignment
The keyword aligned indicates that the data is aligned on a byte boundary.
EXAMPLE
aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), may be used to signify alignment on other than byte boundary. Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value ‘0’.
The value of parsable variables with declarations that fall outside the flow of declarations shall be set to 0.
[bookmark: _Toc120120496]Constants
Constants shall be defined using the keyword const.
EXAMPLE
const int SOME_VALUE=255;	// non-parsable constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

[bookmark: _Toc120120497]Look-ahead
In several instances, it may be desirable to examine the immediately following bits in the bitstream, without actually consuming these bits. To support this behavior, a ‘*’ character shall be placed after the parse size parentheses to modify the parse size semantics.
Rule E.2: Look-ahead parsing
[aligned] type (length)* element_name;

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without advancing the current position in the bitstream using the following representation:
EXAMPLE
aligned unsigned int (32)* next_code;

[bookmark: _Toc120120498]Variable length direct representation bit fields
The case of variable length direct representation bit fields, or parametric FLCs is covered by Rule E.1, by allowing the length attribute to be a variable included in the bitstream, a non-parsable variable, or an expression involving such variables.
EXAMPLE
unsigned int(3) precision;
int(precision) DC;

[bookmark: _Toc120120499]Constant-length indirect representation bit fields
Indirect representation indicates that the actual value of the element at hand is indirectly specified by the bitstream through the use of a table or map. In other words, the value extracted from the bitstream, which is an FLC, is an index to a table from which the final desired value is extracted. This indirection may be expressed by defining the map itself:
Rule E.3: Maps
map MapName (output_type) {
index, {value_1, … value_M},
 …
}

The contents of the map is defined as a set of pairs of input index values and output values.
The input type of a map (the index specified in the first column) shall always be bit and therefore index values always expressed as Binary Values. For the case of constant-length indirect representation bit fields these Binary Values shall all be the same length.
The output_type of a map shall be either a predefined type or a defined class (classes are defined in 6.1).
Output values used to populate the output_type shall be specified as aggregates surrounded by curly braces, similar to C or C++ structures.
EXAMPLE
class YUVblocks {// classes are defined later on
	int Yblocks;
	int Ublocks;
	int Vblocks;
}

// a table that relates the chroma format with the number of blocks
// per signal component
map blocks_per_component (YUVblocks) {
	0b00,	{4, 1, 1},
	0b01,	{4, 2, 2},
	0b10,	{4, 4, 4}
}

The next rule describes the use of such a map.
Rule E.4: Mapped data types
type (MapName) name;

The type of the variable shall be identical to the type returned from the map.
EXAMPLE
YUVblocks(blocks_per_component) chroma_format;

Using the above declaration, a particular value of the map may be accessed using the construct:
EXAMPLE
chroma_format.Ublocks.
[bookmark: _Toc120120500]Variable length indirect representation bit fields
For a variable length element utilizing a Huffman or variable length code table, an identical specification to the fixed length case shall be used.
The only difference is that the indices of the map are now of variable length.
EXAMPLE
class val {
	unsigned int foo;
	int bar;
}

map sample_vlc_map (val) {
	0b0000.001,	{0, 5},
	0b0000.0001,	{1, -14}
}

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it may be inefficient to keep using variable length codewords for all possible values. This necessitates the use of escape codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such exceptions, parsable type declarations are allowed for map output values.
In this case, the type of the output value within the map declaration shall match the type associated with the map’s output_type.
For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without advancing the current position in the bitstream using the following representation:
EXAMPLE
class val {
	unsigned int foo;
	int bar;
}

map sample_map_with_esc (val) {
	0b0000.001,		{0, 5},
	0b0000.0001,		{1, -14},
	0b0000.0000.1,	{5, int(32)},
	0b0000.0000.0,	{0, -20}
}

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first element (val.foo). The following 32 bits are parsed and assigned as the value of the second element (val.bar).
NOTE	In case more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements are parsed. In addition, the type within the map declaration shall match the type used in the class declaration associated with the map’s return type.
[bookmark: _Toc120120501]Variable length strings
A variable length string shall be represented as:
Rule E.5: String data types
string_type string_name [= string value];

The string_type may be any of the following: utf8string, utfstring, utf8list, base64string. The format of those string types is define in Table 1. In these definitions, null-terminated means that the last character of a string is Unicode NUL, and hence an empty string is represented by a single Unicode NUL. Some fields using these types may restrict the characters permitted. In addition, space-separated means that a SPACE character whose Unicode is U+0020 is used as string separator. In a utf8list string, there shall not be any leading or trailing space character nor two consecutive space characters.
[bookmark: _Ref120117542]String data type definitions
	Name
	Format

	utf8string
	UTF-8 string as defined in IETF RFC 3629, null-terminated.

	utfstring
	null-terminated string encoded using either UTF-8 or UTF-16.
If UTF-16 is used, the sequence of bytes shall start with a byte order mark (BOM) and the null termination shall be 2 bytes set to 0.

	[bookmark: _Hlk108805483]utf8list
	null-terminated list of space-separated UTF-8 strings

	base64string
	null-terminated compliant base64 encoded data as defined in clause 4 of RFC 4648

String data types can only be parsable data.
EXAMPLE
utf8string message;

base64string encoded_data;

[bookmark: _Toc120120502]String literals
The string_value attribute shall represent a string literal as a sequence of characters enclosed in double quotation marks (“ “) with an allowed encoding prefix. The encoding_prefix is one of the following: u8 for UTF-8 string literal or u for UTF-16 string literal. When a string literal is present, the encoding format of the string literal needs to be allowed by the string_type of the variable.

EXAMPLE
utfstring code = u8"this is a code";

utfstring label = u"this is a UTF-16 label";

utf8list interesting_list = u8"apple orange cherry";

[bookmark: _Toc120119455][bookmark: _Toc120119509][bookmark: _Toc120120102][bookmark: _Toc120120154][bookmark: _Toc253585291][bookmark: _Toc120120503]Composite data types
[bookmark: _Ref77978430][bookmark: _Toc120120504]Classes
Classes are the mechanism with which definitions of composite types or objects is performed. Their definition is as follows.
Rule C.1: Classes
[aligned] [abstract] [expandable[(maxClassSize)]] class object_name [extends parent_class] [: bit(length) [id_name=] object_id | id_range | extended_id_range] {
[element; …] // zero or more elements
}

The different element declarations within the curly braces (“{“ and “}”) are the definitions of the contained Elementary Types, Composite Data Types or Control Flow elements that will be discussed in a subsequent Subclause.
NOTE	Objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is a class itself.
The order of declaration of the elements is important: it is the same order in which the elements appear in the bitstream.
[bookmark: _Toc120120505]Derived classes
The optional keyword extends specifies that the class is “derived” from another class. Derivation implies that all information present in the base class is also present in the derived class, and that, in the bitstream, all such information precedes any additional bitstream syntax declarations specified in the new class.
The optional attribute id_name allows to assign an object_id, and, if present, is the key demultiplexing entity which allows differentiation between base and derived objects. It is also possible to have a range of possible values: the id_range is specified as start_id .. end_id, inclusive of both bounds. It is also possible to have a combination of id_range and object_id: the extended_id_range is specified as a comma-separated list of object_id and range_id; for example, id_name=object_id1, object_id2, start_id .. end_id.
If the attribute id_name is used, a derived class may appear at any point in the bitstream where its base class is specified in the syntax. This allows to express polymorphism in the SDL syntax description. The actual class to be parsed is determined as follows:
· The base class declaration shall assign a constant value or range of values to object_id.
· Each derived class declaration shall assign a constant value or ranges of values to object_id. This value or set of values shall correspond to legal object_id value(s) for the base class.
NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes may not replace their base class in the bitstream.
NOTE 2 — Derived classes may use the same object_id value as the base class. In that case classes can only be discriminated through context information.
EXAMPLE
class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {
	// here we get vertical_size_extension, if present
	if (scalable_mode==DATA_PARTITIONING) {
		unsigned int(7) priority_breakpoint;
	}
	…
}

class foo {
	int(3) a;
	...
}

class bar extends foo {
 int(5) b;	// this b is preceded by the 3 bits of a
 int(10) c;
 ...
}

In the above examples, bar.b immediately precedes bar.c in the bitstream.
[bookmark: _Toc120119459][bookmark: _Toc120119513][bookmark: _Toc120120106][bookmark: _Toc120120158][bookmark: _Toc120120506]Abstract classes
When the abstract keyword is used in the class declaration, it indicates that only derived classes of this class shall be present in the bitstream. This implies that the derived classes may use the entire range of IDs available. The declaration of the abstract class requires a declaration of an ID, with the value 0.
Note that this means objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is a class itself.
The order of declaration of the elements is important: it is the same order in which the elements appear in the bitstream.
abstract class Foo : bit(1) id=0 { // the value 0 is not really used
	...
}

// derived classes are free to use the entire range of IDs
class Foo0 extends Foo : bit(1) id=0 {
	...
}

class Foo1 extends Foo : bit(1) id=1 {
	...
}

class Example {
	Foo f;	// can only be Foo0 or Foo1, not Foo
}

[bookmark: _Ref77770596][bookmark: _Toc120120507]Expandable classes
When the expandable keyword is used in the class declaration, it indicates that the class may contain implicit arrays or undefined trailing data, called the "expansion". In this case the class encodes its own size in bytes explicitly. This may be used for classes that are required to support future compatible extensions or that may include private data. A legacy device is able to decode an expandable class up to the last parsable variable that has been defined for a given revision of this class. Using the size information, the parser shall skip the class data following the last known syntax element. Anywhere in the syntax where a set of expandable classes with object_id is expected it is permissible to intersperse expandable classes with unknown object_id values. These classes shall be skipped, using the size information.
[bookmark: _Toc120120508]The size encoding precedes any parsable variables of the class. If the class has an object_id, the encoding of the object_id precedes the size encoding. The size information shall not include the number of bytes needed for the size encoding and the object_id encoding. Instances of expandable classes shall always have a size corresponding to an integer number of bytes. The size information is accessible within the class as class instance variable sizeOfInstance.
If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size of this class in bytes, including any expansion.
The length encoding is itself defined in SDL as follows:
EXAMPLE
int sizeOfInstance = 0;
bit(1) nextByte;
bit(7) sizeOfInstance;
while(nextByte) {
	bit(1) nextByte;
	bit(7) sizeByte;
	sizeOfInstance = sizeOfInstance<<7 | sizeByte;
}

[bookmark: _Toc120120509]Parameter types
A parameter type defines a class with parameters. This addresses cases where the data structure of the class depends on variables of one or more other objects. As SDL follows a declarative approach, in such cases, references to other objects cannot be performed directly (because objects are not instantiated). Parameter types provide placeholders for such references, in the same way as the arguments in a C function declaration. The syntax of a class definition with parameters is as follows.
Rule C.2: Class parameter types
[aligned] [abstract] class object_name [(parameter list)] [extends parent_class]
[: bit(length) [id_name=] object_id | id_range] {
[element; …] // zero or more elements
}

The parameter list is a list of type names and variable name pairs separated by commas. Any element of the bitstream, or value derived from the bitstream with a variable-length codeword, or a constant, can be passed as a parameter.
A class that uses parameter types is dependent on the objects in its parameter list. When instantiating such a class into an object, the parameters have to be instantiated objects of their corresponding classes or types.
EXAMPLE
class A {
	// class body
	...
	unsigned int(4) format;
}

class B (A a, int i) {		// B uses parameter types
	unsigned int(i) bar;
	...
	if(a.format == SOME_FORMAT) {
		...
	}
	...
}

class C {
	int(2) i;
	A a;
	B foo(a, I); // instantiated parameters are required
}

[bookmark: _Toc120120510]Arrays
Arrays are defined in a similar way as in C/C++, i.e., using square brackets. The array declaration is applicable to both elementary as well as composite objects.
Rule A.1: Arrays
typespec name [length];

typespec is a type specification (e.g., an elementary type including bitstream representation information, e.g. ‘int(2)’) or a class. The attribute name is the name of the array, and length is its length. Their length value can depend on run-time parameters such as other bitstream values or expressions that involve such values.
In the following example ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned integer:
EXAMPLE
unsigned int(4) a[5];

In the following example the length of ‘c’ depends on the actual value of ‘b’:
EXAMPLE
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as well. The parsing order from the bitstream corresponds to scanning the array by incrementing first the right-most index of the array, then the second, and so on .
[bookmark: _Toc120120511]Multi-dimensional arrays
Multi-dimensional arrays are supported as well. The parsing order from the bitstream corresponds to scanning the array by incrementing first the right-most index of the array, then the second, and so on .
EXAMPLE
unsigned int(4) a[5][4];

Editor’s note: This is not defined in rule A1.
[bookmark: _Toc120120512]Partial arrays
In several situations, it is desirable to load the values of an array one by one, in order to check for a terminating or other condition. For this purpose, an extended array declaration is allowed in which individual elements of the array may be accessed.
Rule A.2: Partial arrays
typespec name[[index]];

Here index is the element of the array that is defined. Several such partial definitions may be given, but they shall all agree on the typespec specification. This notation is also valid for multidimensional arrays.
The following example indicates the element a(5, 3) of the array (the element in the 6th row and the 4th column):
EXAMPLE
int(4) a[[3]][[5]];

The following example indicates the entire sixth column of the array:
EXAMPLE
int(4) a[3][[5]];

The following example indicates the entire fourth row of the array, with a length of 5 elements:
EXAMPLE
int(4) a[[3]][5];

NOTE a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.
[bookmark: _Toc120120513]Implicit arrays
When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the same type as that of the base class. Let us assume that a set of polymorphic classes is defined, derived from the base class Foo (which may or may not be abstract):
EXAMPLE
class Foo : int(16) id = 0 {
	...
}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the class ID. Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs defined in the base (if not abstract) or its derived classes. This behavior is indicated by an array declaration without a length specification.
Editor’s note: The optional length attribute is not captured in rule A1
EXAMPLE
class Example {
	Foo f[];	// length implicitly obtained via ID resolution
}

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the length.
Editor’s note: The range support for length attribute is not captured in rule A1
In the following example, ‘f’ may have at least 1 and at most 255 elements:
EXAMPLE
class Example {
	Foo f[1 .. 255];	// at least 1, at most 255 elements
}
[bookmark: _Toc120119468][bookmark: _Toc120119522][bookmark: _Toc120120114][bookmark: _Toc120120166][bookmark: _Toc253585292][bookmark: _Toc120120514]Arithmetic and logical expressions
All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.
[bookmark: _Toc253585293][bookmark: _Toc120120515]Non-parsable variables
In order to accommodate complex syntactic constructs, in which context information cannot be directly obtained from the bitstream but only as a result of a non-trivial computation, non-parsable variables are allowed. These are strictly of local scope to the class they are defined in. They may be used in expressions and conditions in the same way as bitstream-level variables. In the following example, the number of non-zero elements of an array is computed.
EXAMPLE
unsigned int(6) size;
int(4) array[size];
…
int i; // this is a temporary, non-parsable variable
for (i=0, n=0; i<size; i++) {
	if (array[[i]]!=0)
		n++;
}

int(3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

[bookmark: _Toc253585294][bookmark: _Toc120120516]Syntactic flow control
The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as repetitive parsing.
[bookmark: _Toc120120517]Conditionals
The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++, zero corresponds to false, and non-zero corresponds to true.
Rule FC.1: Flow control using if-then-else
if (condition) {
…
} [else if (condition) {
…
}] [else {
…
}]

In the following example, the presence of the entity ‘bar’ is determined by the ‘bar_flag’:
EXAMPLE
class conditional_object {
	unsigned int(3) foo;
	bit(1) bar_flag;
	if (bar_flag) {
		unsigned int(8) bar;
	}
	unsigned int(32) more_foo;
}
NOTE	The use of a flag necessitates its declaration before the conditional is encountered.
In the following example, two different representations for ‘bar’ are allowed, depending on the value of ‘bar_flag’. We could equally well have another entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note that the use of a flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice (as in the example below), the types shall be identical.
EXAMPLE
class conditional_object {
	unsigned int(3) foo;
	bit(1) bar_flag;
	if (bar_flag) {
		unsigned int(8) bar;
	} else {
		unsigned int(some_vlc_table) bar;
	}
	unsigned int(32) more_foo;
}

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.
Rule FC.2: Flow control using switch
switch (condition) {
	[case label1: …]
	[default:]
}

[bookmark: _Toc120120518]Loops
The same category of context-sensitive objects also includes iterative definitions of objects. These simply imply the repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the conditional repetition that implies context, but fixed repetitions are obviously treated the same way). The familiar structures of ‘for’, ‘while’, and ‘do’ loops can be used for this purpose.
Rule FC.3: Flow control using for
for (expression1; expression2; expression3) {
	…
}

The expression1, expression2 and expression3 constitute each a single statement.
expression1 can be either a variable declaration with an assigned value or a value assignment and is executed prior to starting the repetitions. Then expression2 is evaluated, and if it is non-zero (true) the declarations within the braces are executed, followed by the execution of expression3. The process repeats until expression2 evaluates to zero (false).
Rule FC.4: Flow control using do
do {
	 …
} while (condition);

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at least once.
Rule FC.5: Flow control using while
while (condition) {
	 …
}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).
[bookmark: _Toc253585295][bookmark: _Toc120120519]Built-in operators
The following built-in operators are defined.
Rule O.1: lengthof() Operator
lengthof(variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of bits that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were parsed for this variable.
Annex A [bookmark: _Toc120119475][bookmark: _Toc120119529][bookmark: _Toc120120121][bookmark: _Toc120120173][bookmark: _Toc120119476][bookmark: _Toc120119530][bookmark: _Toc120120122][bookmark: _Toc120120174][bookmark: _Toc120119477][bookmark: _Toc120119531][bookmark: _Toc120120123][bookmark: _Toc120120175][bookmark: _Toc450303222][bookmark: _Toc9996972][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Toc353342675][bookmark: _Toc78205620][bookmark: _Toc120120521]
(normative)

SDL grammar
A.1 [bookmark: _Toc78205621][bookmark: _Toc120120522]General
This clause provides the SDL grammar implementing the rules of the present specification. The grammar is based on the parsing expression grammar (PEG) concept and following the syntax and set of rules defined by the Pegen software project [1].
[Editor’s note] The following is in work-in-progress and may not reflect yet all the rules described in this specification.
A.2 [bookmark: _Toc120120523]Grammar file
SDL grammar file
	start: file_input

file_input: (NEWLINE+ | line)* ENDMARKER

line: class_def | comment_cpp

#NOTE: 14496-1 forbids going back to a new line berfore {
Rule C.1 and C.2
class_def: aligned? abstract? 'class' NAME+ parameter_list? parent_class? NEWLINE? '{' body? '}'

aligned: 'aligned' '(' NUMBER+ ')'

abstract: 'abstract'

parameter_list: '(' ','.parameter+ ')'

NOTE: we allow arrays to be passed as parameter class, however 14496-1 is not clear on this
parameter: optional? type NAME array_length?

NOTE: Not in 14496-1, not sure where this come from
optional: 'optional'

NOTE: would allow "unsigned bit", to be improved
type: signed? data_type

signed: 'unsigned'

data_type:
 | 'bit'
 | 'int'
 | 'double'

array_length: '[' NUMBER* ']'

#NOTE: 14496-1 does not allow paramters after parent class name
parent_class: 'extends' NAME '(' ','.value+ ')'

body: stmt*

stmt:
 | elementary_data_type
 | non_parsable_variable
 | assignment_stmt
 | object_instantiation
 | increment_stmt
 | if_stmt
 | switch_stmt
 | for_stmt
 | do_stmt
 | while_stmt
 | comment_cpp

#TODO: See how to do any character up to newline
comment_cpp: '//' (NAME | 'floor' | 'class' | 'if' | 'else' | 'for' | 'extends' | NUMBER | '==' | '=' | '{' | ';' | ',' | '-' | '/' | ':' | '?')*

Rule E.1 and A.1
elementary_data_type: template? aligned? const? type length NAME array_length? assigned_value? ';'

non_parsable_variable: template? const? type NAME array_length? assigned_value? ';'

#NOTE: Not in 14496-1 but used in 14496-12
template: 'template'

const: 'const'

length: '(' (NUMBER | NAME) ')'

#NOTE: array initialisation with {val1, val2, ...} not in 14496-1
assigned_value: '=' (value | array_initialisation)

object_instantiation: NAME NAME ('(' ','.value+ ')')* array_length? ';'

variable_assignment: NAME assigned_value
assignment_stmt: variable_assignment ';'

#TODO: This rule should not allow whitepaces between name and '+'s
variable_incr: NAME '+' '+'

increment_stmt: variable_incr ';'

#NOTE: STRING literal e.g. 'uuid' is not allowed in 14496-1
#NOTE: NUMBER catches decimal, octal, hexadecimal, binary, foating point (scientific noation) and even imaginary number. Too broad for SDL.
value: function | expr | '-'? NUMBER | NAME | STRING

expr: (value operator value) | ('(' value operator value ')')

#NOTE: & and && not in 14496-1 but used in 14496-12
operator: operator_test | operator_logical | operator_bin | operator_math

operator_math: '+' | '-' | '/' | '*'

operator_test: '==' | '<=' | '<' | '>=' | '>' | '!='

operator_bin: '&' | '|'

operator_logical: '&' '&' | '|' '|'

function: function_name '(' value ')'

#NOTE: Only lengthof in 14496-1, floor is used in 14496-12 without definition
function_name: 'floor' | 'lengthof'

array_initialisation: '{' ','.value+ '}'

Rule FC.1
if_stmt: 'if' '(' condition ')' '{' body '}' else_if_stmt? else_stmt?

else_if_stmt: 'else' 'if' '(' condition ')' '{' body '}'

else_stmt: 'else' '{' body '}'

condition: value

Rule FC.2
switch_stmt: 'switch' '(' condition ')' '{' (switch_case switch_break?)* switch_default? switch_break?'}'

switch_break: 'break' ';'
switch_case: 'case' (NUMBER | NAME | STRING) ':' body?
switch_default: 'default' ':' body?

Rule FC.3
for_stmt: 'for' '(' expression1 ';' expression2 ';' expression3 ')' '{' body '}'

for_variable_declaration_assignment: type NAME array_length? assigned_value

expression1:
 | variable_assignment
 | for_variable_declaration_assignment

expression2: value

expression3: variable_incr

Rule FC.4
do_stmt: 'do' '{' body '}' 'while' '(' condition ')' ';'

Rule FC.5
while_stmt: 'while' '(' condition ')' '{' body '}'

[bookmark: _Toc443470372][bookmark: _Toc450303224][bookmark: _Toc9996979][bookmark: _Toc353342679][bookmark: _Toc78205627][bookmark: _Toc120120524]Bibliography
[1] [bookmark: _Ref109402352]Pegen documentation, https://we-like-parsers.github.io/pegen/

6	© ISO 2022 – All rights reserved
© ISO 2022 – All rights reserved	5
