
[image: Text

Description automatically generated]ISO/IEC JTC 1/SC 29/WG 03 N0707

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Technologies under consideration for VDI
Status:	Approved
Date of document:	2022-10-28
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	15 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N0707
October 2022, Mainz, DE
	Title
	Technologies under consideration for VDI

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	21986

[bookmark: _Toc117858088]Introduction
This document collects technologies under consideration for the development of ISO/IEC 23090-13, a.k.a. MPEG-I part 13: Video Decoding Interfaces for Immersive Media.
Contents
1	Introduction	1
2	Relevant W3C Recommendation and their relationship with VDI (from m56783)	1
1	Introduction	1
2	Relevant W3C Recommendation and their relationship with VDI (from m56783)	1
5	Layer composite position info SEI message (from JVET-S0107)	6
6	Composite picture information SEI message (from JVET-T0049)	10
7	Background information on Vulkan (from m59524)	13

[bookmark: _Toc77350292][bookmark: _Toc117858089]Relevant W3C Recommendation and their relationship with VDI (from m56783)
Editor’s note: This section should be updated with newer information on the progress of the various activities in W3C.
[bookmark: _Toc77350293]Media Source Extensions [1]
This specification extends HTMLMediaElement [HTML51] to allow JavaScript to generate media streams for playback. Allowing JavaScript to generate streams facilitates a variety of use cases like adaptive streaming and time shifting live streams.
Relevance to VDI
MSE is relevant because it is meant to facilitate the manipulating the HTML media element in a buffer level - to facilitate advanced playback and buffering functionalities.
Most functionalities of MSE are around the MediaSource object that is acting as a source for the HTMLMediaElement. By itself it does not have any way to interpret the content, as such it requires a SourceBuffer object to be attached to it. Therefore, most of the methods and events of the MediaSource are designed with the purpose of “interfacing” the attached SourceBuffer objects with the HTML media element.
For the sake of completeness, the events defined for MediaSource are attached bellow:
	Event name
	Interface
	Dispatched when...

	sourceopen
	Event
	readyState transitions from "closed" to "open" or from "ended" to "open".

	sourceended
	Event
	readyState transitions from "open" to "ended".

	sourceclose
	Event
	readyState transitions from "open" to "closed" or "ended" to "closed".

Since the SourceBuffer object is the one handling the streams prior going to the MediaSource, it is more relevant to the scope of VDI. SourceBuffer takes as inputs media segments – which in the scope of this specification consist of a series of coded frames with a duration assigned. Most functionality of a Source Buffer is achieved by updating the objects with new media segments, and changing the way they are updated (if needed) to allow non-timestamp-based representations of frames. To provide a better overview of the SourceBuffer, following is the interface as defined in the specification:
interface SourceBuffer : EventTarget {
 attribute AppendMode mode;
 readonly attribute boolean updating;
 readonly attribute TimeRanges buffered;
 attribute double timestampOffset;
 readonly attribute AudioTrackList audioTracks;
 readonly attribute VideoTrackList videoTracks;
 readonly attribute TextTrackList textTracks;
 attribute double appendWindowStart;
 attribute unrestricted double appendWindowEnd;
 attribute EventHandler onupdatestart;
 attribute EventHandler onupdate;
 attribute EventHandler onupdateend;
 attribute EventHandler onerror;
 attribute EventHandler onabort;
 void appendBuffer(BufferSource data);
 void abort();
 void remove(double start, unrestricted double end);
};

Conclusion
It is relevant keep monitoring the MSE for future developments and when VDI matures to contact W3C proponents for possible technical alignment of features.
[bookmark: _Toc77350294]Metadata API for Media Resources [2]
Abstract
This specification defines an API to access metadata information related to media resources on the Web. The overall purpose is to provide developers with a convenient access to metadata information stored in different metadata formats. The API provides means to access the set of metadata properties defined in the Ontology for Media Resources 1.0 specification. These properties are used as a pivot vocabulary in this API. The core of this specification is the definition of API interfaces for retrieving metadata information in synchronous and asynchronous modes. It also defines interfaces for structured return types along with the specification of the behavior of an API implementation.
Relevance to VDI
Even though this specification precedes MSE in conception it was recently revived with promises for implementations and testing by browser vendors. The main goal of this API is to interface media metadata (mostly with semantical properties), however, there is consideration for technical properties, with current examples including values for FrameRate, AverageBitRate, NumTracks etc. As such it might be useful in the future to accommodate technical properties that would enable/optimize adoption of VDI (e.g. recommended number of decoders).
Conclusion
For now, Metadata API is not interesting for VDI, but in the (unlikely?) case that it gets traction in the future we might want to use it for VDI signaling.
[bookmark: _Toc77350295]Media Capabilities [3]
[bookmark: _Toc73118934][bookmark: _Toc73119176][bookmark: _Toc77350296][bookmark: _Toc93663865][bookmark: _Toc93663895][bookmark: _Toc73119177][bookmark: _Toc77350297][bookmark: _Toc93663866][bookmark: _Toc93663896]This specification intends to provide APIs to allow websites to make an optimal decision when picking media content for the user. The APIs will expose information about the decoding and encoding capabilities for a given format but also output capabilities to find the best match based on the device’s display.
Relevance to VDI
This is an active (and new) specification that is probably the most relevant to VDI – alongside MSE. It seems to be overlapping with the Metadata API in that it can signal supported/available bitrates, codecs etc. with a focus on decoder and encoder capabilities. The high level of the interface is defined as following:
Media Capabilities Interface
[Exposed=(Window, Worker)]
interface MediaCapabilities {
 [NewObject] Promise<MediaCapabilitiesDecodingInfo> decodingInfo(MediaDecodingConfiguration configuration);
 [NewObject] Promise<MediaCapabilitiesEncodingInfo> encodingInfo(MediaEncodingConfiguration configuration);
};
With the example MediaDecodingType having the following types:
enum MediaDecodingType {
 "file",
 "media-source",
 "webrtc"
};

And the video configuration currently holding the following properties:
dictionary VideoConfiguration {
 required DOMString contentType;
 required unsigned long width;
 required unsigned long height;
 required unsigned long long bitrate;
 required double framerate;
 boolean hasAlphaChannel;
 HdrMetadataType hdrMetadataType;
 ColorGamut colorGamut;
 TransferFunction transferFunction;
 DOMString scalabilityMode;
};

Conclusion
Media Capabilities in its present form is not useful for VDI, but since this is a new effort, driven by browser vendors (Google, Microsoft), it makes sense to monitor the developments.
[bookmark: _Toc77350298]HTMLVideoElement.requestVideoFrameCallback() [4]
[bookmark: _Toc73119179][bookmark: _Toc77350299][bookmark: _Toc93663871][bookmark: _Toc93663898]<video>.requestVideoFrameCallback() allows web authors to be notified when a frame has been presented for composition.
Relevance to VDI
This is a new feature which consists of a callback for the video element, that has been decided to be actually implemented (at least for testing) from at least two major browsers (Chrome and Firefox). It fires a callback as soon as a video frame has been decoded and it can be set for single or multiple frames. It is fired before the requestAnimationFrame callback, which is a window-level callback responsible for refresh the current browser display, as such it makes the decoded frame available prior to being render thus giving time and space for analysis/processing. Even though in the current version of the spec this is a best-effort feature, thus it might not always be the case. Alongside with the decoded frame (mentioned as “media pixels” in the spec) some metadata are provided as following:
VideoFrameMetadata
dictionary VideoFrameMetadata {
 required DOMHighResTimeStamp presentationTime;
 required DOMHighResTimeStamp expectedDisplayTime;

 required unsigned long width;
 required unsigned long height;
 required double mediaTime;

 required unsigned long presentedFrames;
 double processingDuration;

 DOMHighResTimeStamp captureTime;
 DOMHighResTimeStamp receiveTime;
 unsigned long rtpTimestamp;
};

From the aforementioned metadata it is worth noticing the processingDuration which is defined as following:
processingDuration, of type double
The elapsed duration in seconds from submission of the encoded packet with the same presentation timestamp (PTS) as this frame (e.g. same as the mediaTime) to the decoder until the decoded frame was ready for presentation.
In addition to decoding time, may include processing time. E.g., YUV conversion and/or staging into GPU backed memory.
SHOULD be present. In some cases, user-agents might not be able to surface this information since portions of the media pipeline might be owned by the OS.
Conclusion
Even if it is just for the processingDuration, this feature can be very useful for adopting VDI in a browser environment since it can give input for reconfiguring the decoders and fine-tuning the decoding process.
[bookmark: _Toc77350300]MediaStreamTrack Content Hits [5]
This specification extends MediaStreamTrack to provide a media-content hint attribute. This optional hint permits MediaStreamTrack consumers such as RTCPeerConnection (defined in [webrtc]) or MediaRecorder (defined in [mediastream-recording]) to encode or process track media with methods more appropriate to the type of content that is being consumed.
[bookmark: _Toc73119181][bookmark: _Toc77350301][bookmark: _Toc93663876][bookmark: _Toc93663900]Adding a media-content hint provides a way for a web application to help track consumers make more informed decision of what encoder parameters and processing algorithms to use on the consumed content.
Relevance to VDI and Conclusion
At its current form this feature is not essential for VDI since it is focusing on the actual content type of the media stream (e.g. for video it can signal “motion”, “detail”, “text”…). We mention it here purely for the sake of completeness because it will probably be adopted at least by Chrome and Firefox.
[bookmark: _Toc77350302]WebCodecs [6]
This specification defines interfaces to codecs for encoding and decoding of audio and video.
[bookmark: _Toc73119183][bookmark: _Toc77350303][bookmark: _Toc93663879][bookmark: _Toc93663902]This specification does not specify or require any particular codec or method of encoding or decoding. The purpose of this specification is to provide JavaScript interfaces to implementations of existing codec technology developed elsewhere. Implementers may support any combination of codecs or none at all.
Relevance to VDI
This is actually about control of the decoding process (note: in the specification codec is defined as follows: Refers generically to an instance of AudioDecoder, AudioEncoder, VideoDecoder, or VideoEncoder.). As such it mentions that:
Codec Processing Model
This section is non-normative.
The codec interfaces defined by the specification are designed such that new codec tasks may be scheduled while previous tasks are still pending. For example, web authors may call decode() without waiting for a previous decode() to complete. This is achieved by offloading underlying codec tasks to a separate thread for parallel execution.
This section describes threading behaviors as they are visible from the perspective of web authors. Implementers may choose to use more or less threads as long the externally visible behaviors of blocking and sequencing are maintained as follows.
Regarding the processing model the following are mentioned:
Control Thread and Codec Thread
All steps in this specification will run on either a control thread or a codec thread.
The control thread is the thread from which authors will construct a codec and invoke its methods. Invoking a codec’s methods will typically result in the creation of control messages which are later executed on the codec thread. Each global object has a separate control thread.
The codec thread is the thread from which a codec will dequeue control messages and execute their steps. Each codec instance has a separate codec thread. The lifetime of a codec thread matches that of its associated codec instance.
This will work with interfaces separately for audio and video, with the VideoDecoder Interface (https://www.w3.org/TR/webcodecs/#videodecoder-interface) being obviously the most relevant to this group. The VideoDecoder Interface can be set using VideoDecoderInit (setting output and error handling), parameterized with VideoDecoderConfig and having as input EncodedVideoChuck and as output a VideoFrameOutputCallback. The current configuration parameters are the following:
VideoDecoderConfig
dictionary VideoDecoderConfig {
 required DOMString codec;
 BufferSource description;
 required unsigned long codedWidth;
 required unsigned long codedHeight;
 unsigned long cropLeft;
 unsigned long cropTop;
 unsigned long cropWidth;
 unsigned long cropHeight;
 unsigned long displayWidth;
 unsigned long displayHeight;
 HardwareAcceleration hardwareAcceleration = "allow";
};
[bookmark: _Toc77350322]References
[1] [bookmark: _Ref73117509]Media Source Extensions, W3C Draft, https://www.w3.org/TR/media-source/
[2] [bookmark: _Ref73117527]Metadata API For Media Resources, W3C Draft, https://www.w3.org/TR/mediaont-api-1.0
[3] [bookmark: _Ref73117552]Media Capabilities, W3C Draft, https://www.w3.org/TR/media-capabilities/
[4] [bookmark: _Ref73117710][bookmark: _Hlk69893976]HTMLVideoElement.requestVideoFrameCallback(), W3C Draft, https://wicg.github.io/video-rvfc/
[5] [bookmark: _Ref73117770]MediaStreamTrack Content Hits, W3C Draft, https://w3c.github.io/mst-content-hint/
[6] [bookmark: _Ref73117837]WebCodecs, W3C Draft, https://www.w3.org/TR/webcodecs/
1. [bookmark: _Toc109368507][bookmark: _Toc109368508][bookmark: _Toc109368509][bookmark: _Toc109368510][bookmark: _Toc109368511][bookmark: _Toc109368512][bookmark: _Toc109368513][bookmark: _Toc109368514][bookmark: _Toc109368515][bookmark: _Toc109368516][bookmark: _Toc109368517][bookmark: _Toc109368518][bookmark: _Toc109368519][bookmark: _Toc109368520][bookmark: _Toc109368521][bookmark: _Toc109368522][bookmark: _Toc109368523][bookmark: _Toc109368524][bookmark: _Toc109368525][bookmark: _Toc109368526][bookmark: _Toc109368527][bookmark: _Toc109368528][bookmark: _Toc109368529][bookmark: _Toc109368530][bookmark: _Toc109368531][bookmark: _Toc109368532][bookmark: _Toc109368533][bookmark: _Toc109368534][bookmark: _Toc109368535][bookmark: _Toc109368536][bookmark: _Toc109368537][bookmark: _Toc109368538][bookmark: _Toc109368539][bookmark: _Toc109368540][bookmark: _Toc109368541][bookmark: _Toc109368542][bookmark: _Toc109368543][bookmark: _Toc109368544][bookmark: _Toc109368545][bookmark: _Toc109368546][bookmark: _Toc109368547][bookmark: _Toc109368548][bookmark: _Toc109368549][bookmark: _Toc109368550][bookmark: _Toc109368551][bookmark: _Toc109368552][bookmark: _Toc109368553][bookmark: _Toc109368554][bookmark: _Toc109368555][bookmark: _Toc109368556][bookmark: _Toc109368557][bookmark: _Toc109368558][bookmark: _Toc109368559][bookmark: _Toc109368560][bookmark: _Toc109368561][bookmark: _Toc109368562][bookmark: _Toc109368563][bookmark: _Toc109368564][bookmark: _Toc117858090]Layer composite position info SEI message (from JVET-S0107)
Layer composite position info SEI message

	layer_composite_position_info() {
	Descriptor

		lcpi_param_num_bits_minus1
	u(12)

		lcpi_top_left_ pos_in_units_ver[nuh_layer_id]
	u(v)

		lcpi_top_left_pos_in_units_hor[nuh_layer_id]
	u(v)

		lcpi_height_in_units[nuh_layer_id]
	u(v)

		lcpi_width_in_units[nuh_layer_id]
	u(v)

	}
	

The layer composite position info SEI message describes the recommended position and size of the decoded picture of the current layer within a recommended composite picture comprised of decoded pictures from multiple layers.
lcpi_param_num_bits_minus1 + 1 specifies the number of bits used to represent the lcpi_top_left_pos_ver[nuh_layer_id], cpi_top_left_pos_ver[nuh_layer_id], lcpi_width[nuh_layer_id], and lcpi_height[nuh_layer_id] syntax elements.
lcpi_top_left_pos_ver[nuh_layer_id] and lcpi_top_left_pos_ver[nuh_layer_id] indicate the recommended composite display vertical and horizontal positions, respectively, for the decoded picture of the current layer. The number of bits to represent the syntax elements is lcpi_param_num_bits_minus1 + 1.
lcpi_width[nuh_layer_id] and lcpi_height[nuh_layer_id] indicate the recommended composite display width and height, respectively, for the decoded picture of the current layer. The number of bits to represent the syntax elements is lcpi_param_num_bits_minus1 + 1.
Recommended composite layers info SEI message

	recommended_composite_layers_info() {
	Descriptor

		rcli_cancel_flag
	u(1)

		if (!rcli_cancel_flag) {
	

			rcli_persistence_flag
	u(1)

			rcli_layer_scaling_enabled_flag
	u(1)

			rcli_layer_overlap_enabled_flag
	u(1)

			rcli_unit_size_present_flag
	u(1)

			rcli_composite_size_present_flag
	u(1)

			rcli_offset_present_flag
	u(1)

			num_olss_minus1
	u(8)

			for (i = 0; i <= num_olss_minus1; i++) {
	

				if (rcli_unit_size_present_flag) {
	

					rcli_unit_size_ver[i]
	u(16)

					rcli_unit_size_hor[i]
	u(16)

				}
	

				if (rcli_composite_size_present_flag) {
	

					rcli_composite_size_ver[i]
	u(16)

					rcli_composite_size_hor[i]
	u(16)

				}
	

				if (rcli_offset_present_flag) {
	

					rcli_offset_ver[i]
	s(16)

					rcli_offset_hor[i]
	s(16)

				}
	

			}
	

		}
	

	}
	

The recommended composite layers info SEI message, with the layer composite position information SEI message, describes a layout of decoded pictures from the layers of an OLS within a recommended composite picture, according to the composition process of sub-clause X.
rcli_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous recommended composite layers info SEI message in output order.
rcli_persistence_flag specifies the persistence of recommended composite layers info SEI message.
rcli_persistence_flag equal to 0 specifies that the recommended composite layers info SEI message applies to the current AU only.
rcli_persistence_flag equal to 1 specifies that the recommended composite layers info SEI message applies to the current access unit and persists all subsequent access units in output order until one or more of the following conditions are true:
· A new CVS begins.
· The bitstream ends.
· A picture in an AU associated with a recommended composite layers info SEI message is output that follows the current picture in output order
rcli_layer_scaling_enabled_flag equal to 0 indicates that layerPicSizeInCompositeHeight[i] and layerPicSizeInCompositeWidth[i] derived in subclause X are equal to the width and height, respectively, of the coded picture with nuh_layer_id equal to i. rcli_layer_scaling_enabled_flag equal to 1 indicates that layerPicSizeInCompositeHeight[i] and layerPicSizeInCompositeWidth[i] may differ from the width and height, respectively, of the coded picture with nuh_layer_id equal to i.
rcli_layer_overlap_enabled_flag equal to 0 indicates that all values of Count[y][x] shall be les than or equal to 1, as derived in subclause X . rcli_layer_overlap_enabled_flag equal to 1 does not impose a restriction.
rcli_unit_size_present_flag equal to 1 specifies that the rcli_unit_size_ver[i] and rcli_ unit_size_hor[i] syntax elements are present. rcli_unit_size_present_flag equal to 0 specifies that the rcli_ unit_size_ver[i] and rcli_ unit_size_hor[i] syntax elements are not present.
rcli_composite_size_present_flag equal to 1 specifies that the rcli_composite_size_ver[i] and rcli_composite_size_hor[i] syntax elements are present. rcli_composite_size_present_flag equal to 0 specifies that the rcli_composite_size_ver[i] and rcli_composite_size_hor[i] syntax elements are not present.
rcli_offset_present_flag equal to 1 specifies that the rcli_offset_ver[i] and rcli_offset_hor[i] syntax elements are present. rcli_offset_present_flag equal to 0 specifies that the rcli_offset_ver[i] and rcli_offset_hor[i] syntax elements are not present.
num_olss_minus1 indicates the number of OLSs for which syntax elements are present in the SEI message.
rcli_unit_size_ver[i] and rcli_unit_size_hor[i] indicate vertical and horizontal unit size parameters respectively, used in the composition process in subclause X for the i-th OLS. When not present, the values of rcli_offest_ver[i] and rcli_offset_hor[i] may be determined by external means.
rcli_composite_size_ver[i] and rcli_composite_size_hor[i] indicate the vertical and horizontal size, respectively, of the recommended composite picture in luma samples used in the composition process in subclause X for the i-th OLS. When not present, the values of rcli_offest_ver[i] and rcli_offset_hor[i] may be determined by external means.
rcli_offest_ver[i] and rcli_offset_hor[i] indicate vertical and horizontal offsets, respectively, of the positions of the decoded layer pictures used in the composition process in subclause X for the i-th OLS. When not present, the values of rcli_offest_ver[i] and rcli_offset_hor[i] are inferred to be equal to 0.
Recommended composition process
This subclause describes a composition process to derive sample values for a recommended composite picture, CompositePicture, for the i-th OLS.
CompositePicture[0] is a 2-D sample array of size rcli_composite_size_hor x rcli_composite_size_ver, of the luma samples of CompositePicture. CompositePicture[cIdx] for cIdx in 1 .. 2 are 2-D sample arrays of size rcli_composite_size_hor/ SubWidthC x rcli_composite_size_ver/ SubHeightC.
For each layer j included in the i-th OLS, if a picture is present in the AU with nuh_layer_id equal to j, the recommended size of the representation of the decoded picture in the composite picture, scaledLayerPic[j], is layerPicSizeInCompositeWidth[j] x layerPicSizeInCompositeHeight[j], in luma samples, as derived below.
	layerPicSizeInCompositeHeight[j] = lcpi_height_in_units[j] * rcli_unit_size_ver[i]
	layerPicSizeInCompositeWidth[j] = lcpi_width_in_units[j] * rcli_unit_size_hor[i]
When rcli_layer_scaling_enabled_flag equal to 0, scaledLayerPic[j] is set to the decoded picture.
Otherwise, scaledLayerPic[j] is derived by scaling the decoded picture.
scaledLayerPic[j] is a picture of size layerPicSizeInCompositeWidth[j] x layerPicSizeInCompositeHeight[j], in the luma samples .
The sample values of CompositePicture are derived as follows:
for (y = 0; y < rcli_composite_size_ver[i]; y++)
 for (x = 0; x < rcli_composite_size_hor[i]; x++)
 Count[y][x] = 0

for (j = 0 ; j< 64; j++)
 if (j is in the i-th OLS && a picture is present in the AU with nuh_layer_id = j)
 comp_y = rcli_offset_ver[i] + lcpi_top_left_pos_in_units_ver[j] * rcli_unit_size_ver
 comp_x = rcli_offset_hor[i] + lcpi_top_left_pos_in_units_hor[j] * rcli_unit_size_hor
 for (y = 0; y < layerPicSizeInCompositeHeight[j] * ; y++)
 for (x = 0; x < layerPicSizeInCompositeWidth[j]; x++)
 CompositePicture[0] [comp_y + y][comp_x + x] = scaledLayerPic[0][j][y][x]
 Count[[comp_y + y][comp_x + x]]++
 for (y = 0; y < layerPicSizeInCompositeHeight[j]/SubWidth * ; y++)
 for (x = 0; x < layerPicSizeInCompositeWidth[j]/SubHeight; x++)
 CompositePicture[1][comp_y/SubHeight + y][comp_x/SubWidth + x] =
 scaledLayerPic[1][j][y][x]
 CompositePicture[2][comp_y/SubHeight + y][comp_x/SubWidth + x] =
 scaledLayerPic[2][j][y][x]
	
The value of samples of CompositePicture[cIdx] not assigned above are undefined.
[bookmark: _Toc117858091]Composite picture information SEI message (from JVET-T0049)
Syntax of CPI SEI message
	composite_picture_info() {
	Descriptor

		cpi_position_and_size_bit_len
	ue(v)

		cpi_num_patches_minus1
	ue(v)

		cpi_cropped_source_area_allowed_flag
	u(1)

		cpi_scaling_allowed_flag
	u(1)

		cpi_gap_allowed_flag
	u(1)

		for (i = 0; i <= cpi_num_patches_minus1; i++) {
	

			cpi_patch_layer_id[i]
	u(6)

			if(cpi_cropped_source_area_allowed_flag) {
	

				cpi_patch_source_top_left_x[i]
	u(v)

				cpi_patch_source_top_left_y[i]
	u(v)

			}
	

			cpi_patch_source_luma_width_minus1[i]
	u(v)

			cpi_patch_source_luma_height_minus1[i]
	u(v)

			cpi_patch_dest_top_left_x[i]
	u(v)

			cpi_patch_dest_top_left_y[i]
	u(v)

			if(cpi_scaling_flag) {
	

				cpi_patch_dest_luma_width_minus1[i]
	u(v)

				cpi_patch_dest_luma_height_minus1[i]
	u(v)

			}
	

		}
	

	}
	

Semantics of CPI SEI message
A composite picture info (CPI) SEI message provides information for constructing composite picture from one or more patches originated from pictures of an access unit.
When one or more CPI SEI message is present in a bitstream, the first CPI SEI message shall be present in a CVSS AU. When two or more CPI SEI message are present in an AU, the content of the CPI SEI messages shall be the same.
When a scalable nesting SEI message contains a CPI SEI message, the value of sn_ols_flag shall be equal to 1.
A CPI SEI message applies to the AU A that contains the SEI message and all AUs that follow the AU A in output order until one of the following applies:
· The end of the bitstream.
· The next AU contains a new CPI SEI message that applies to the target OLS.
When present, CPI SEI message or scalable nesting SEI message that contains CPI SEI message, shall be contained in an access unit with temporal Id equal to 0. The temporal Id of the CPI SEI message or the scalable nesting SEI message that contains the CPI SEI message shall be equal to 0.
cpi_position_and_size_bit_len_minus1 plus 1 specifies the number of bits for signalling of syntax elements cpi_width_in_luma_samples, cpi_height_in_luma_samples, cpi_patch_source_top_left_x[i], cpi_patch_source_top_left_y[i], cpi_patch_source_width_minus1[i] , cpi_patch_source_height_minus1[i], cpi_patch_dest_top_left_x[i], cpi_patch_dest_top_left_y[i], cpi_patch_source_dest_minus1[i], and cpi_patch_source_dest_minus1[i].
cpi_num_patches_minus1 specifies the number of patches of each composite picture created from AUs in which the SEI applies.
cpi_cropped_source_area_allowed_flag equal to 1 specifies that cpi_patch_source_top_left_x[i] and cpi_patch_source_top_left_y[i] are present. cpi_cropped_source_area_allowed_flag equal to 0 specifies that cpi_patch_source_top_left_x[i] and cpi_patch_source_top_left_y[i] are present are not present.
cpi_scaling_allowed_flag equal to 1 specifies that cpi_patch_dest_luma_width[i] and cpi_patch_dest_luma_width[i] are present. cpi_scaling_allowed_flag equal to 0 specifies that cpi_patch_dest_luma_width[i] and cpi_patch_dest_luma_width[i] are not present.
cpi_gap_allowed_flag equal to 1 specifies that the union of all patches does not cover all area in the composite picture. cpi_gap_allowed_flag equal to 0 specifies that the union of all patches covers all area in the composite picture.
NOTE: When cpi_gap_allowed_flag is equal to 1, pels in the area that is not covered by any patch need to be initialized with a valid pel value.
cpi_patch_layer_id[i] specifies the layer Id of the source picture for the i-th patch.
It is constrained that when CPI SEI message is contained in a scalable nesting SEI message, the value of cpi_patch_layer_id[i] for i in the ranges from 0 to cpi_num_patches_minus1, inclusive, shall be equal to one of layer included in the OLS associated with the SEI message.
It is constrained that when CPI SEI message is not contained in a scalable nesting SEI message, the value of cpi_patch_layer_id[i] for i in the ranges from 0 to cpi_num_patches_minus1, inclusive, shall be equal to one of layer that is present in the bitstream.
It is constrained that the layer with layer Id equal to cpi_patch_layer_id[i] for i in the ranges from 0 to cpi_num_patches_minus1, inclusive, shall be an output layer in the output layer set associated with the SEI message.
Picture with layer Id equal to cpi_patch_layer_id[i] for i in the ranges from 0 to cpi_num_patches_minus1, inclusive, may not be present in the AU in which the SEI applies. When The AU has no picture in cpi_patch_layer_id[i], application that generate the composite picture based on the SEI may assign any valid pel value for the i-th patch in the composite picture. Furthermore, in such situation, application may further assign the same pel values for the entire area covered the i-th patch.
cpi_patch_source_top_left_x[i] specifies horizontal position of top left pel in the source picture for the i-th patch. The value of cpi_patch_source_top_left_x[i] shall be less than the width of the source picture minus 1 (or alternatively, minus 2). The length of the cpi_patch_source_top_left_x[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits. When not present, the value of cpi_patch_source_top_left_x[i] is inferred to be equal to 0.
cpi_patch_source_top_left_y[i] specifies vertical position of top left pel in the source picture for the i-th patch. The value of cpi_patch_source_top_left_y[i] shall be less than the height of the source picture minus 1 (or alternatively, minus 2). The length of the cpi_patch_source_top_left_y[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits. When not present, the value of cpi_patch_source_top_left_y[i] is inferred to be equal to 0.
cpi_patch_source_width_minus1[i] plus 1 specifies width of the area in the source picture for the i-th patch. The sum of cpi_patch_source_top_left_x[i] and cpi_patch_source_width_minus1[i] shall be less than the width, in the unit of luma sample, of the source picture. The length of the cpi_patch_source_width_minus1[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits.
When the value of cpi_cropped_source_area_allowed_flag equal to 0, it is constrained that the value of cpi_patch_source_width_minus1[i] shall be equal to the pps_pic_width_in_luma_samples − 1 of the associated picture.
cpi_patch_source_height_minus1[i] plus 1 specifies height of the area in the source picture for the i-th patch. The sum of cpi_patch_source_top_left_y[i] and cpi_patch_source_height_minus1[i] shall be less than the height, in the unit of luma sample, of the source picture. The length of the cpi_patch_source_height_minus1[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits.
When the value of cpi_cropped_source_area_allowed_flag equal to 0, it is constrained that the value of cpi_patch_source_height_minus1[i] shall be equal to the pps_pic_height_in_luma_samples − 1 of the associated picture.
The value of cpi_patch_source_top_left_x[i] + cpi_patch_source_width_minus1[i] shall be less than the picture width in luma samples minus 1 of any picture in the layer with layer id equal to cpi_patch_layer_id[i] which the SEI message applies.
The value of cpi_patch_source_top_left_y[i] + cpi_patch_source_height_minus1[i] shall be less than the picture height in luma samples minus 1 of any picture in the layer with layer id equal to cpi_patch_layer_id[i] which the SEI message applies.
cpi_patch_dest_top_left_x[i] specifies horizontal position of top left pel in the composite picture for the i-th patch. The value of cpi_patch_dest_top_left_x[i] shall be less than the value of cpi_width_in_luma_samples – 1 (or alternatively, minus 2). The length of the cpi_patch_dest_top_left_x[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits.
cpi_patch_dest_top_left_y[i] specifies vertical position of top left pel in the composite picture for the i-th patch. The value of cpi_patch_dest_top_left_y[i] shall be less than the value of cpi_height_in_luma_samples – 1 (or alternatively, minus 2). The length of the cpi_patch_dest_top_left_y[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits.
cpi_patch_dest_width_minus1[i] plus 1 specifies width of the area in the composite picture for the i-th patch. The sum of cpi_patch_dest_top_left_x[i] and cpi_patch_dest_width_minus1[i] shall be less than the value of cpi_width_in_luma_samples – 1. When not present, the value of cpi_patch_dest_width_minus1[i] is inferred to be equal to cpi_source_width_minus1[i]. The length of the cpi_patch_dest_width_minus1[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits.
cpi_patch_dest_height_minus1[i] plus 1 specifies height of the area in the composite picture for the i-th patch. The sum of cpi_patch_dest_top_left_y[i] and cpi_patch_dest_height_minus1[i] shall be less than the value of cpi_height_in_luma_samples – 1. When not present, the value of cpi_patch_dest_height_minus1[i] is inferred to be equal to cpi_source_height_minus1[i]. The length of the cpi_patch_dest_height_minus1[i] syntax element is cpi_position_and_size_bit_len_minus1 + 1 bits.
The variables CompositePictureWidth and CompositePictureHeight, specifying the width and height, respectively, of the composite picture are derived as follows:
CompositePictureWidth = cpi_patch_dest_top_left_x[0] + cpi_patch_dest_width_minus1[0] + 1
CompositePictureHeight = cpi_patch_dest_top_left_y[0] + cpi_patch_dest_height_minus1[0] + 1
for(i = 0; i <= cpi_num_patches_minus1; i++) {
	if((cpi_patch_dest_top_left_x[i] + cpi_patch_dest_width_minus1[i] + 1) > CompositePictureWidth)
		CompositePictureWidth = cpi_patch_dest_top_left_x[i] + cpi_patch_dest_width_minus1[i] + 1
	if((cpi_patch_dest_top_left_y[i] + cpi_patch_dest_height_minus1[i] + 1) > CompositePictureHeight)
		CompositePictureHeight = cpi_patch_dest_top_left_y[i] + cpi_patch_dest_height_minus1[i] + 1
}
For area that is covered by two or more patches, the value of each pel in such area shall be from the patch with the highest i-th index among those patches.
It is constrained that there shall be no two patches in the composite picture, i-th patch and j-th patch, such that the values of cpi_patch_dest_top_left_x[i], cpi_patch_dest_top_left_y[i], cpi_patch_dest_width_minus1[i], and cpi_patch_dest_height_minus1[i] are equal to cpi_patch_dest_top_left_x[j], cpi_patch_dest_top_left_y[j], cpi_patch_dest_width_minus1[j], and cpi_patch_dest_height_minus1[j], respectively.
It is constrained that when two patches in the composite picture, i-th patch and the j-th patch, have the values of cpi_patch_dest_top_left_x[i] and cpi_patch_dest_top_left_y[i] equal to cpi_patch_dest_top_left_x[j] and cpi_patch_dest_top_left_y[j], respectively, and the values of cpi_patch_dest_width[i] and cpi_patch_dest_height[i] are greater than cpi_patch_dest_width[j] and cpi_patch_dest_height[j], respectively, then j shall be greater than i.
[bookmark: _Toc117858092]Background information on Vulkan (from m59524)
MPEG-I VDI targets both OpenMAX IL and Vulkan for the VDI extensions. However, it is useful to notice that OpenMAX IL and Vulkan will cover different level of an application stack on mobile devices.
Below is the representation of media interface stack that can be observed from industry practice and available documentation:
· Vulkan graphics API | Android NDK | Android Developers, https://developer.android.com/ndk/guides/graphics
· MediaCodec | Android Developers, https://developer.android.com/reference/android/media/MediaCodec
· AVFoundation | Apple Developer Documentation, https://developer.apple.com/documentation/avfoundation
· Video Toolbox | Apple Developer Documentation, https://developer.apple.com/documentation/videotoolbox/

[image: Diagram

Description automatically generated]

image1.jpeg

image2.png
Application
AP
Middleware

Vendor

