[image:]ISO/IEC JTC 1/SC 29/WG 03 N00698

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	WD of ISO/IEC 23090-7 AMD 1 Common Metadata for Immersive Media
Status:	Approved
Date of document:	2022-10-28
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	11 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N00698
October 2022, Mainz DE
	Title
	WD of ISO/IEC 23090-7 AMD 1 Common Metadata for Immersive Media

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	21977

1	Introduction	4
2	Scope	4
3	Guiding principles	4
4	Usage of Metadata in ISOBMFF	4
5	Terms and Definitions	5
5.1	viewing orientation - spherical	5
5.2	viewing orientation – quaternionic	5
5.3	viewing position	5
5.4	viewport	5
6	Metadata of individual features	5
6.1	Basic	5
6.1.1	Coordinate Systems	5
6.1.2	Vector3	6
6.1.3	Scaling	6
6.1.4	Extrinsic Camera Information	7
6.1.5	Intrinsic Camera Information	9
6.2	Viewing Spaces	10
6.2.1	Cuboid Viewing Spaces	10
6.3	Regions	10
6.3.1	Cuboid Regions	10
6.4	Viewpoint	11
6.4.1	Syntax	11
6.4.2	Semantics	11
6.5	Viewport	12
6.5.1	Syntax	12
6.5.2	Semantics	12
6.6	3D Region Set	12
6.6.1	Definition	12
6.6.2	Syntax	13
6.6.3	Semantics	14
7	Metadata of spatially related features	15
7.1	Localized coordinate systems	15
7.2	Localized viewing spaces	15
7.3	Sub-regions	15
7.4	Objects in Regions	15
7.5	Overlay of Regions/Objects	15
8	Volumetric region item and region annotations	15
8.1	Volumetric region item	15
8.1.1	Definition	15
8.1.2	Syntax	16
8.1.3	Semantics	16
9	Dynamic metadata tracks	16
10	DASH descriptors	16
Annex A (normative) Annotation of non-timed visual volumetric data 	17
A.1	General	17
A.2	Region annotations of V3C data	17
Annex B (normative) Annotation of non-timed G-PCC data 	18
B.1	General	18
B.2	Region annotations of G-PCC data	18
Annex C (Informative) The Existing Definitions of Viewpoint and Viewport	19
C.1	OMAF [8]	19
C.1.1	Definitions	19
3.1.3	background visual media	19
3.1.29	omnidirectional media	19
3.1.31	overlay	19
3.1.44 	rendering	19
3.1.56	viewing orientation	19
3.1.57	viewing position	19
3.1.58	viewing space	19
3.1.59	viewpoint	19
3.1.61	viewport	19
3.1.62	visual media	19
C.1.2	Viewport	19
	Recommended viewport	19
C.1.3	Viewpoint	22
7.12.	Storage and signalling of viewpoints for omnidirectional video and images	22
7.12.1.	Viewpoint information structures	22
7.12.1.1.	Definition	22
7.12.1.2.	Viewpoint position structure	23
7.12.1.3.	Viewpoint GPS position structure	23
7.12.1.4.	Viewpoint geomagnetic information structure	24
7.12.1.5.	Viewpoint global coordinate system rotation structure	24
C.2	MPEG-I Part 10 (Carriage of V3CD) [5]	24
C.2.1	Definition	24
C.2.2	Viewpoint	24
C.2.3	Viewport	24
10	Viewport information	25
o	General	25
o	Structures	25
	Extrinsic camera information	25
	Intrinsic camera information	25
	Viewport information	26
C.3	MPEG-I Part 6 (Immersive Media Metrics) [2]	27
C.3.1	Definition	27
C.3.2	Viewpoint	27
C.3.3	Viewport	29
C.4	Scene Description [6]	30
C.4.1	Definitions	30
C.4.2	Viewpoint	30
C.4.3	Viewport	31
10.1.1	(5.5.1) MPEG_viewport_recommended extensions	31
C.5	NALUFF	32
Here are the definitions of ecam and icam in NALUFF:	32

[bookmark: _Toc109574454]Introduction
Many parts of ISO/IEC 23090 have developed metadata definitions. Some of them are very similar to each other. In order to harmonize between the parts and to reuse already defined metadata for future development, the purpose of this amendment is to collect the metadata defined by the parts of ISO/IEC 23090, e.g. 23090-10, 23090-18 etc., and to explore harmonization between them. The scope of the new amendment does not expand the scope of the original project.
[bookmark: _Toc109574455]Scope
· metadata collected from and applicable to all MPEG-I parts
· 23090: 5, 7, 9, 10, 12, 14, 18
· 23001: 10
Git comments from 140th MPEG meeting (mainly based on the input contribution m61229):
Based on the discussion in the 1st BoG, here are some issues we need to make decisions upon. Please provide your comments and suggestions.
· Issue 1. Vector3: the precision parameter is in the number of bytes (minus 1), not in the number bits, which is not consistent with the precision use in scale and others in Parts 10/18, though consistent with HEIF.
1.
· Option a. change it to the number of bits.
2.
· Option b. keep it to the number of bytes (minus 1), and change the precision parameters in other data structures also to the number of bytes (minus 1).
· Issue 2. Scale: should its precision parameter be defined as a number of bytes (minus 1)?
· Issue 3. Extrinsic camera information: are all the parameters needed?
1. unsigned char abs_flag
2. unsigned char mode
3. unsigned char pos_bytes_minus1
4. unsigned char pos_unit
5. unsigned char quat_bytes_minus1
6. unsigned char quat_den_bits_minus1
· Issue 4. Position in Extrinsic camera information: should it be defined using Vector3, not supporting 1-D and 2-D positions?
· Issue 5. Quaternion in Extrinsic camera information: should it be defined using Vector3?
· Issue 6. Intrinsic camera information: adding precision parameter to be consistent with Extrinsic?
· Issue 7. Viewing space: Should Cuboid shape be defined only in this version, not others?
· Issue 8. Vector3Float: Should a float point version of Vector3 be defined?
· It seems that a definition of QuaternionRotation is missing. This is used used in section 3.1.2 for syntax of a 3DRegionItem.

Notes from the 138th MPEG meeting:
· currently Part-7 is only targeting common metadata and their data structures (e.g., 3DRegionSet);
· new sections can be added to specify how the common metadata are contained in various containers such as ISOBMFF boxes/items/item properties/tracks with their respective 4CCs (e.g., an item of type 'pcra' for a Point Cloud Region annotation item), so these containers can be commonly referenced in different standard specifications using those containers; and
· similarly, new sections can be added to specify how the common metadata are communicated using various communication protocols (e.g., a 'pcra' set of HTTP header parameters), so these parameters can be commonly referenced in different standard specifications using those communication protocols.
[bookmark: _Toc109574456]Guiding principles
1. Common metadata and their data structures shall be defined for both 3DoF and 6DoF immersive content, separately as well as jointly, in order to be used for applications that are either specific to separate 3DoF and 6DoF immersive content or general to mixed 3DoF and 6DoF immersive content.
2. Basic and common data structures are defined for simple metadata, and extend and enhanced data structures are defined as extensions of basic and common metadata (e.g., viewport is an extension of viewpoint)
[bookmark: _Toc109574457]Usage of Metadata in ISOBMFF
Metadata structures shall be defined in a way to allow their encapsulation in ISOBMFF:
· Static: extension of containing boxes
· Dynamic: timed metadata tracks
[bookmark: _Toc109574458]Terms and Definitions
[bookmark: _Toc109574459]viewing orientation - spherical
triple of azimuth, elevation, and tilt angle characterizing the orientation that a user is consuming the audio-visual content; in case of image or video, characterizing the orientation of the viewport
[bookmark: _Toc109574460]viewing orientation – quaternionic
triple of quat_x, quat_y, quat_z characterizing the quaternion representation of the orientation that a user is consuming the audio-visual content; in case of image or video, characterizing the orientation of the viewport
[bookmark: _Toc109574461]viewing position
triple of x, y, z characterizing the position in the global reference coordinate system of a user who is consuming the audio-visual content; in case of image or video, characterizing the position of the viewport.
[bookmark: _Toc109574462]viewport
projection of texture onto a planar surface of a field of view of an omnidirectional or 3D image or video suitable for display and viewing by the user with a particular viewing orientation and viewing position.
Spatial region (3D)
(V3C spatial region)
Spatial region (spherical)
(OMAF spatial region)
Spatial region
a V3C or OMAF region.

[bookmark: _Toc109574463]Metadata of individual features
[bookmark: _Toc109574464]Basic
[bookmark: _Toc109574465]Coordinate Systems
The following MPEG-I reference coordinate system is a right-handed 3D Cartesian coordinate system with 6 degrees of freedoms (DoFs): 3 translations along the 3 x-y-z dimensions, and 3 rotations about the 3 x-y-z dimensions with the right-hand:

With this coordinate system, the following variations can be derived:
· Coordinate system – Cartesian coordinate system: the reference coordinate system with the 3 translations but without the 3 rotations.
· Unit sphere coordinate system (OMAF specific): the reference coordinate system on the unite sphere with only the 3 rotations.
· Object coordinate space – referring to object space, where manipulation is done relative to object origin: the reference coordinate system with the origin at the object origin and with the 3 translations and 3 rotations limited to the object space (or object viewing space).
· World coordinate space – referring to scene space, where manipulation is done relative to scene origin: the reference coordinate system with the origin at the scene origin and with the 3 translations and 3 rotations limited to the scene space (or scene viewing space).
· Provide example of how to move between different spaces; (TBD)
[bookmark: _Toc109574466]Vector3
[bookmark: _Toc80301694]Dimensions, positions, sizes can be defined using the following 3D vector data structure.
Syntax
aligned(8) class Vector3(unsigned int precision_bytes_minus1) {
	signed int((precision_bytes_minus1+1)*8) x;
	signed int((precision_bytes_minus1+1)*8) y;
	signed int((precision_bytes_minus1+1)*8) z;
}
Semantics
precision_bytes_minus1: Plus 1, specifies the precision of Vector3 components in bytes.
x, y and z: specify the x, y, and z coordinate values, respectively, of a 3D point in the Cartesian coordinate system
Note.
· Define syntax structures Vector3Uint, Vector3Int, Vector3Float	Comment by XinWang MediaTek: Should we define these structures, especially Vector3Int and Vector3Float?
· Define translation processes whenever required
· Use them consistently when 3d positions, offsets, dimensions, translations or scaling is handled
[bookmark: _Toc109574467]Scaling
[bookmark: _Toc94083885]Scaling in 3-dimension is defined using the following data structure:
Syntax
aligned(8) class 3DScaling (unsigned int(8) scale_precision) {
 Vector3 scale(scale_precision);
}	Comment by XinWang MediaTek: Should this be Vector3 scale(scale_precision/8 – 1)? Or should we change the definition in # of bits to # of bytes -1?
Semantics
scale_precision indicates the precision of scale in number of bits.
scale.x, scale.y, and scale.z indicate the scaling extension in the Cartesian coordinates along the x, y, and z axes, respectively, relative to the origin (0,0,0).
· TBD: How does differ from scaling defined in 4.1.2

[bookmark: _Toc57208311][bookmark: _Toc80301776][bookmark: _Toc109574468]Extrinsic Camera Information
Syntax
class CameraExtrinsics(unsigned char abs_flag, unsigned char mode, unsigned char pos_bytes_minus1, unsigned char pos_unit, unsigned char quat_bytes_minus1, unsigned char quat_den_bits_minus1) {
	if(mode & 0x1) {
		signed int((pos_bytes_minus1+1)*8) pos_x;
	}
	if(mode & 0x2) {
		signed int((pos_bytes_minus1+1)*8) pos_y;
	}
	if(mode & 0x4) {
		signed int((pos_bytes_minus1+1)*8) pos_z;
	}
	if(mode & 0x8) {
		signed int((quat_bytes_minus1+1)*8) quat_x;
		signed int((quat_bytes_minus1+1)*8) quat_y;
		signed int((quat_bytes_minus1+1)*8) quat_z;
		Vector3 quat(quat_bytes_minus1);
	}
}	Comment by XinWang MediaTek: This is from m58522v2. Shall we use "Vector3" for both cam_pos and cam_quat?	Comment by XinWang MediaTek: How do we replace this with Vector3?
Semantics
abs_flag: If 1, absolute position and orientation is specified. If 0, the specified values are added relative to the previously coded position and orientation.
mode: Signalling mode; Valid values are:
[1, 7]:		Only the position is signalled.
8:			Only the orientation is signalled.
[9, 15]:	Both, orientation and position are signalled.
pos_bytes_minus1: Plus 1 indicates the number of bytes to be read for pos_x, pos_y and pos_z. Valid values are in the range from [0, 3].
pos_unit: Unit of pos_x, pos_y and pos_z. Valid values are in the range from [0, 2], where
	0: µm
	1: mm
	2: m
quat_bytes_minus1: Plus 1 indicates the number of bytes to be read for quat_x, quat_y, quat_z. Valid values are in the range from [0, 1].
quat_den_bits_minus1: Specifies the denominator of quat_x, quat_y and quat_z. Valid values for quat_den_bits_minus1 are in the range from [0, 13]. The denominator is computed as follows:
denominator = 2quat_den_bits_minus1 + 1
pos_x: Specifies the x-coordinate of the location of the camera in units specified by pos_unit. When not present, its value shall be inferred to be 0 if abs_flag is 1.
pos_y: Specifies the y-coordinate of the location of the camera in units specified by pos_unit. When not present, its value shall be inferred to be 0 if abs_flag is 1.
pos_z: Specifies the z-coordinate of the location of the camera in units specified by pos_unit. When not present, its value shall be inferred to be 0 if abs_flag is 1.
quat._x: Specifies the x component, qX, for the rotation of the camera using the quaternion representation. The range of quat_x shall be in the range of -2quat_den_bits_minus1+1 to 2quat_den_bits_minus1+1, inclusive. When not present, its value shall be inferred to be 0 if abs_flag is set to 1.
quat._y: Specifies the y component, qY, for the rotation of the camera using the quaternion representation. The range of quat_y shall be in the range of -2quat_den_bits_minus1+1 to 2quat_den_bits_minus1+1, inclusive. When not present, its value shall be inferred to be 0 if abs_flag is set to 1.
quat._z: Specifies the z component, qZ, for the rotation of the camera using the quaternion representation. The range of quat_z shall be in the range of -2quat_den_bits_minus1+1 to 2quat_den_bits_minus1+1, inclusive. When not present, its value shall be inferred to be 0 if abs_flag is set to 1.
The values of the quaternion representation are computed as follows:
qX = quat._x / denominator
qY = quat._y / denominator
qZ = quat._z / denominator
It is a requirement of bitstream conformance that:
qX2 + qY2 +qZ2 <= 1
The fourth component of the quaternion representation, qW, is computed as follows:
qW = Sqrt(1 – (qX2 + qY2 + qZ2))
The point (w, x, y, z) represents a rotation around the axis directed by the vector (x, y, z) by an angle 2*cos ^{-1}(w)=2*sin ^{-1}(sqrt(x^{2}+y^{2}+z^{2})).

NOTE – As aligned ISO/IEC FDIS 23090-5, qW is always positive. If a negative qW is desired, one can signal all three syntax elements, cam_quat_x, cam_quat_y, and cam_quat_z with an opposite sign, which is equivalent.
[bookmark: _Toc66367998][bookmark: _Toc67308036][bookmark: _Toc79755750][bookmark: _Toc80301777][bookmark: _Toc66367999][bookmark: _Toc67308037][bookmark: _Toc79755751][bookmark: _Toc80301778][bookmark: _Toc57208314][bookmark: _Toc80301779][bookmark: _Toc109574469]Intrinsic Camera Information
[bookmark: _Toc57208315]Syntax
aligned(8) class IntCameraInfo () {
	unsigned int(10) camera_id;
	bit(3) reserved = 0;
	unsigned int(3) camera_type;
	if (camera_type == 0) {
		signed int(32) erp_horizontal_fov;
		signed int(32) erp_vertical_fov;
	}
	if (camera_type == 1) {
		signed int(32) perspective_horizontal_fov;
		unsigned int(8)[4] perspective_aspect_ratio;
	}
	if (camera_type == 2) {
		unsigned int(8)[4] ortho_aspect_ratio;
		unsigned int(8)[4] ortho_horizontal_size;
	}
	unsigned int(8)[4] clipping_near_plane;
	unsigned int(8)[4] clipping_far_plane;
}	Comment by XinWang MediaTek: This is from Part 10. Shall we use "precision" as a parameter to make the definition more flexible?
[bookmark: _Toc57208316]Semantics
camera_id is an identifier number that is used to identify a given viewport camera parameters.
camera_type indicates the projection method of the viewport camera. The value 0 specifies ERP projection. The value 1 specifies a perspective projection. The value 2 specifies an orthographic projection. Values in the range 3 to 255 are reserved for future use by ISO/IEC.
erp_horizontal_fov specifies the longitude range for an ERP projection corresponding to the horizontal size of the viewport region, in units of radians. The value shall be in the range 0 to 2π.
erp_vertical_fov specifies the latitude range for an ERP projection corresponding to the vertical size of the viewport region, in units of radians. The value shall be in the range 0 to π.
perspective_horizontal_fov specifies the horizontal field of view for perspective projection in radians. The value of shall be in the range of 0 and π.
perspective_aspect_ratio specifies the relative aspect ratio of viewport for perspective projection (horizontal/vertical). The value shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
ortho_aspect_ratio specifies the relative aspect ratio of viewport for orthogonal projection (horizontal/vertical). The value shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
ortho_horizontal_size specifies the horizontal size of the orthogonal in metres. The value shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
clipping_near_plane and clipping_far_plane indicate the near and far depths (or distances) based on the near and far clipping planes of the viewport in metres. The values shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.

[bookmark: _Toc109574470]Viewing Spaces
[bookmark: _Toc109574471]Cuboid Viewing Spaces
[bookmark: _Toc94083889][bookmark: _Toc94083891]A cuboid viewing space is defined as follows:
Syntax
[bookmark: _Hlk92917845][bookmark: _Hlk92917979]aligned(8) class ViewingSpace(unsigned int(8) precision) {
	Vector3 anchor(precision);
	Vector3 dimensions(precision);
}
Semantics
anchor.x, anchor.y, and anchor.z indicate the x, y, z position values of the anchor point of the viewing space, respectively, relative to the origin (0,0,0).
dimensions.x, dimensions.y, and dimensions.z indicate the dimensions (or ranges) in the Cartesian coordinates along the x, y, and z axes, respectively, from to the anchor (anchor.x, anchor.y, anchor.z).
Note.
· Dimensions: 3D and 2D
· TBD: What is a 2D viewing space?	Comment by XinWang MediaTek: Should we define the 2D case?
· Shapes: Cuboid (Bounding Box), Sphere, Cylinder, Ellipsoid, etc. 	Comment by XinWang MediaTek: Do we still need to define them?
[bookmark: _Toc109574472]Regions
[bookmark: _Toc109574473][bookmark: _Hlk92919039]Cuboid Regions
Syntax
aligned(8) class CubiodRegion (
		unsigned int(1) anchor_included,
		unsigned int(1) scale_included,
		unsigned int(8) precision)
{
	unsigned int(16) id;
	unsigned int(32) size;
	if (anchor_included) { // anchor is not 0,0,0
		Vector3 anchor(precision);
	}
	if (scale_included) { // scale is not (1,1,1)
		Vector3 scale(precision);
	}
	Vector3 dimension(precision);
	}
Semantics
· Dimensions: 2D and 3D
· Shapes
· Sizes
· TBD: Depending on the definition isn’t the size of the region or shape included in the definition itself?
· IDs
· TBD: Not sure if ID can be considered generic enough. People can create other standard specific structures that use the common metadata here.
[bookmark: _Toc109574474]Viewpoint	Comment by Dimitri Podborski: Note that Viewpoint is defined simply as 360 camera in Part7. I think we should remove this completely as it is covered by the exrinsics class already.	Comment by XinWang MediaTek: See the contribution m59259. [36.2] On Definitions and Data Structures of Viewpoint and Viewport for MPEG-I Part 7 AMD1
[bookmark: _Toc94083896][bookmark: _Toc94083898]A viewpoint (an anchor and a rotation) is defined as follows:
[bookmark: _Toc109574475]Syntax

aligned(8) class OmnidirectionalViwepointStruct (unsigned int anchor_included, unsigned int precision)
{
	if (anchor_included) { // anchor is not 0,0,0
		Vector3 anchor(precision);
	}
	Vector3 srotation(precision);
}

aligned(8) class V3CcdViewpointStruct (unsigned int anchor_included, unsigned int precision)
{
 unsigned char abs_flag; 	Comment by XinWang MediaTek: This is from Part 10’s extCamInfo. Shall we pass the parameters to the extCamInfo(), to be consistent with the OMAF version?
	 unsigned char mode;
 unsigned char pos_bytes_minus1;
 unsigned char pos_unit;
 unsigned char quat_bytes_minus1;
 unsigned char quat_den_bits_minus1;
		ExtCameraInfo extCamInfo(abs_flag, mode, pos_bytes_minus1, pos_unit, quat_bytes_minus1, quat_den_bits_minus1);
}

aligned(8) class ViwepointStruct (unsigned int media_type, unsigned int anchor_included, unsigned int precision)
{
	if (media_type == 0) { // omnidireactional media
		OmnidirectionalViwepointStruct viewpoint(anchor_included, precision);
	}
	if (media_type == 1) { // V3CD media
		V3cdViwepointStruct viewpoint(anchor_included, precision);
	}
}	Comment by XinWang MediaTek: Need to update the parameters.

[bookmark: _Toc109574476]Semantics
TBD

[bookmark: _Toc94032974][bookmark: _Toc94033034][bookmark: _Toc94036135][bookmark: _Toc94032975][bookmark: _Toc94033035][bookmark: _Toc94036136][bookmark: _Toc94032976][bookmark: _Toc94033036][bookmark: _Toc94036137][bookmark: _Toc94032977][bookmark: _Toc94033037][bookmark: _Toc94036138][bookmark: _Toc94032978][bookmark: _Toc94033038][bookmark: _Toc94036139][bookmark: _Toc94083902][bookmark: _Toc109574477]Viewport
[bookmark: _Toc109574478]Syntax

aligned(8) class OmnidirectionalViweportStruct (unsigned int anchor_included, unsigned int precision)
{
	OmnidirectionalViwepointStruct viewpoint (anchor_included, precision);	unsigned int(32) azimuth_range;
	unsigned int(32) elevation_range;
}

aligned(8) class V3cdViewportStruct (ext_camera_flag, int_camera_flag) {
	if (ext_camera_flag == 1) {
		unsigned int(1) center_view_flag;
		bit(6) reserved = 0;
		if (center_view_flag == 0) {
			unsigned int(1) left_view_flag;
		} else {
			bit(1) reserved = 0;
		}
		ExtCameraInfo extCamInfo();
	}
	if (int_camera_flag == 1) {
		IntCameraInfo intCamInfo();
	}
}	Comment by XinWang MediaTek: This is from Part 10.

Need to update the parameters.

aligned(8) class ViweportStruct (unsigned int media_type, unsigned int anchor_included, unsigned int precision, ext_camera_flag, int_camera_flag)
{
	if (media_type == 0) { // omnidireactional media
		OmnidirectionalViweportStruct viewpoint(anchor_included, precision);
	}
	if (media_type == 1) { // V3CD media
		V3cdViwepointStruct viewport(ext_camera_flag, int_camera_flag);
	}
}	Comment by XinWang MediaTek: The parameter list needs to be consolided.

[bookmark: _Toc109574479]Semantics
TBD

[bookmark: _Toc109574480]3D Region Set	Comment by XinWang MediaTek: This clause 6.6 is from m59688 v2.
[bookmark: _Toc109574481]Definition
A 3D region set is a structure that defines a part of a volumetric media as a set of one or more regions. Each region of the set is specified as a geometry that defines the shape, position and size of this region inside a reference space that is mapped to the volumetric media with which the 3D region set is associated.

The geometry of a region described by the 3D region set can be represented either by:
· A point
· A polyline
· A plane
· A rectangular cuboid
· A value for an attribute of the volumetric media.
The part of the volumetric media that is contained in a region depends on the geometry of the region as follows:
· When the geometry of a region is represented by a point, the region contains the location of this point.
· When the geometry of a region is represented by a polyline, the region contains the lines that are part of the polyline.
· When the geometry of a region is represented by a plane, the region contains the surface of the plane included in the bounding box of the volumetric media.
· When the geometry of a region is represented by a rectangular cuboid, the region contains the volume inside this rectangular cuboid, including its faces.
· When the geometry of a region is represented by a value for an attribute of the volumetric media, the region contains all the points from the volumetric media whose attribute’s value is the same as the value specified for the region.

A region may be empty if it falls entirely outside the bounding box of the volumetric media with which it is associated. An empty region should be ignored.
[bookmark: _Toc109574482]Syntax
aligned (8) class 3DRegionSet(version, flags) {
 unsigned int precision = flags & 3;
 unsigned int(8) region_count;
 for (r=0; r < region_count; r++) {
 unsigned int(8) geometry_type;
 if (geometry_type == 0) {
 // Use a 3D Point from Part-7.
 Vector3 anchor(precision);
 }
 if (geometry_type == 1) {
 // polyline
 unsigned int(field_size) point_count;
 for (i=0; i < point_count; i++) {
 // Use a 3D Point from Part-7.
 Vector3 point(precision);
 }
 }
 if (geometry_type == 2) {
 // plane: to be defined in Part-7.
 Vector3 anchor(precision);
 Vector3 normal(precision);
 }
 if (geometry_type == 3) {
 // rectangular cuboid
 // Defined in Part-7.
 CuboidRegion cuboid(1, 0, precision);
 QuaternionRotation rotation();
 }
 // … possibly other 3D shapes
 if (geometry_type == 5) {
 // region defined by an attribute
 // Bounding box of the region. Could be optional.
 CuboidRegion cuboid(1, 0, precision)
 unsigned int(8) region_identifier_value;
 }
 }
}
[bookmark: _Toc109574483]Semantics
version shall be equal to 0.
flags: the 2 least-significant bits define the precision used by the different geometry attributes of the 3D region set. The values of flags greater than 3 are reserved.
region_count is the number of regions contained in this 3D region set.
geometry_type specifies the type of the geometry of a region. The following values for geometry_type are defined:
· 0: the region is described as a point
· 1: the region is described as a polyline
· 2: the region is described as a plane
· 3: the region is described as a rectangular cuboid
· 5: the region is described using an attribute of the volumetric media.
· Other values are reserved.
anchor specifies the position of the point composing a region when its geometry is a point. It specifies the position of a point contained in the plane composing a region when its geometry is a plane.
point specifies the position of a point belonging to the polyline composing a region when its geometry is a polyline.
normal specifies the normal vector of the plane composing a region when its geometry is a plane.
cuboid specifies the rectangular cuboid composing a region when its geometry is a rectangular cuboid. It specifies a bounding box for a region when its geometry is described using an attribute of the volumetric media.
rotation specifies the rotation applied to the cuboid composing a region when its geometry is a rectangular cuboid.
region_identifier_value specifies the value of the attribute defining a region when its geometry is described using an attribute of the volumetric media.

[bookmark: _Toc109574484]Metadata of spatially related features
[bookmark: _Toc109574485]Localized coordinate systems
E.g., one is in another “global” coordinate system:
· References to global coordinate systems
· Positions
· Rotations
· Scaling
[bookmark: _Toc109574486]Localized viewing spaces
E.g., one is in another “larger” viewing space:
· References to global viewing spaces
· Positions
· Rotations
· Scaling
[bookmark: _Toc109574487]Sub-regions
E.g., one or more are parts of another “source” region:
· Positions
· Rotations
· Scaling
[bookmark: _Toc109574488]Objects in Regions
E.g., one or more objects are in a “containing” region:
· Positions
· Rotations
· Scaling
[bookmark: _Toc109574489]Overlay of Regions/Objects
E.g., one is in front a “background” region:
· Positions
· Rotations
· Scaling
· Alpha blending

[bookmark: _Toc109574490]Volumetric region item and region annotations	Comment by XinWang MediaTek: This clause 8 is from m59688 v2.
[bookmark: _Toc109574491]Volumetric region item
[bookmark: _Toc109574492]Definition
An item with an item_type value of 'vran' is a volumetric region item that defines one or more regions of an item containing volumetric media.
A volumetric region item allows associating a same set of item properties or other items or both with each individual region it defines inside a volumetric media stored inside an item. Item properties should only be associated with a volumetric region item when the property value for the region differs from the matching (explicit or implied) property value for the whole volumetric media.
The volumetric region item is associated with the item inside which the regions are defined using an item reference of type 'cdsc' from the volumetric region item to the item containing the volumetric media.
The regions described by the volumetric region item defined in VolumetricRegionItem are specified in the data of the volumetric region item.

[bookmark: _Toc109574493]Syntax
aligned (8) class VolumetricRegionItem {
 unsigned int(8) version = 0;
 unsigned int(8) flags;
 3DRegionSet regions(version, flags);
}
[bookmark: _Toc109574494]Semantics
version shall be equal to 0. Readers shall not process an VolumetricRegionItem with an unrecognized version number.
flags is used to control the contents of the 3DRegionSet structure used for defining the content of the volumetric region item.
regions is the structure defining the regions contained in the volumetric region item using the 3DRegionSet defined in ISO/IEC 23090-7.

[bookmark: _Toc109574495]Dynamic metadata tracks
· TBD: needs to discuss, if we need to define sample and track design for some common dynamic metadata scenarios like viewport tracks. One possibility is to define them in MPEG-B part 10 (Carriage of Timed Metadata in ISOBMFF)
[bookmark: _Toc109574496]DASH descriptors
· TBD

Annex A [bookmark: _Hlk97651084][bookmark: _Toc80301845][bookmark: _Toc109574497]
(normative)

Annotation of non-timed visual volumetric data 	Comment by XinWang MediaTek: This Annex is from m59688v2.
A.1 [bookmark: _Toc80301846][bookmark: _Toc109574498]General
This annex describes how a content creator shall associate annotations with spatial areas of non-timed visual volumetric data encoded and stored in a V3C item using a volumetric region item with item_type value of 'vran' specified in ISO/IEC 23090-7.
A.2 [bookmark: _Toc109574499]Region annotations of V3C data
A region annotation, i.e., the annotation of a spatial area, of non-timed visual volumetric data stored in a V3C item may consist in:
· an item carrying metadata describing the region ;
· an item property describing properties of the region ; or,
· an item carrying an image associated with the region.
NOTE	For example, the image can be a 2D image carried in an image item compliant with ISO/IEC 23008-12, or a non-timed volumetric media carried in an item complying with this document.
Region annotations are associated with one or more spatial areas (or regions) of non-timed visual volumetric data by:
· defining and describing the geometry of these one of more regions in a volumetric region item as specified in ISO/IEC 23090-7;
· associating the volumetric region item with the V3C item it describes using a 'csdc' (content describes) item reference from the volumetric region item to the V3C item; and,
· associating any or all of the following with the volumetric region item:
· one or more descriptive item properties, using the ItemPropertyAssociationBox;
NOTE	For instance, a region annotation can use a UserDescriptionProperty as specified in ISO/IEC 23008-12 to associate a description/tags with a region of the non-timed visual volumetric data.
· one or more metadata items, using an item reference of type 'cdsc' from the metadata item to the volumetric region item.
· one or more items carrying a two-dimensional image or non-timed volumetric media, using an item reference of type 'eroi' from the volumetric region item to the item.
The region annotation applies to each region described in the volumetric region item individually.
The same region annotations may be associated with several V3C items by associating the same volumetric region item with multiple V3C items.

Annex B [bookmark: _Toc109574500]
(normative)

Annotation of non-timed G-PCC data 	Comment by XinWang MediaTek: This Annex is from m59688v2.
B.1 [bookmark: _Toc109574501]General
This annex describes how a content creator shall associate annotations with spatial areas of non-timed G-PCC data encoded and stored in a G-PCC item using a volumetric region item with item_type value of 'vran' specified in ISO/IEC 23090-7.
B.2 [bookmark: _Toc109574502]Region annotations of G-PCC data
A region annotation, i.e., the annotation of a spatial area, of non-timed G-PCC data stored in a G-PCC item may consist in:
· an item carrying metadata describing the region ;
· an item property describing properties of the region ; or,
· an item carrying an image associated with the region.
NOTE	For example, the image can be a 2D image carried in an image item compliant with ISO/IEC 23008-12, or a non-timed volumetric media carried in an item complying with this document.
Region annotations are associated with one or more spatial areas (or regions) of non-timed G-PCC data by:
· defining and describing the geometry of these one of more regions in a volumetric region item as specified in ISO/IEC 23090-7;
· associating the volumetric region item with the G-PCC item it describes using a 'csdc' (content describes) item reference from the volumetric region item to the G-PCC item; and,
· associating any or all of the following with the volumetric region item:
· one or more descriptive item properties, using the ItemPropertyAssociationBox;
NOTE	For instance, a region annotation can use a UserDescriptionProperty as specified in ISO/IEC 23008-12 to associate a description/tags with a region of the non-timed visual volumetric data.
· one or more metadata items, using an item reference of type 'cdsc' from the metadata item to the volumetric region item.
· one or more items carrying a two-dimensional image or non-timed volumetric media, using an item reference of type 'eroi' from the volumetric region item to the item.
The region annotation applies to each region described in the volumetric region item individually.
The same region annotations may be associated with several G-PCC items by associating the same volumetric region item with multiple G-PCC items.

Annex C [bookmark: _Toc109574503]
(Informative)

The Existing Definitions of Viewpoint and Viewport	Comment by XinWang MediaTek: This Annex is from m59259.
Annex A [bookmark: _Toc105688916][bookmark: _Toc105689134][bookmark: _Toc105689301][bookmark: _Toc105689429][bookmark: _Toc109574504]
Annex B [bookmark: _Toc105688917][bookmark: _Toc105689135][bookmark: _Toc105689302][bookmark: _Toc105689430][bookmark: _Toc109574505]
Annex C [bookmark: _Toc105688918][bookmark: _Toc105689136][bookmark: _Toc105689303][bookmark: _Toc105689431][bookmark: _Toc109574506]
C.1 [bookmark: _Toc109574507]OMAF [8]
C.1.1 [bookmark: _Toc109574508]Definitions
[bookmark: _Ref57986477][bookmark: _Toc109574509][bookmark: _Ref57985443][bookmark: _Ref57985016]3.1.3	background visual media
piece of visual media (3.1.62) on which an overlay (3.1.31) is superimposed
[bookmark: _Toc109574510]3.1.29	omnidirectional media
media such as image or video and its associated audio that enable rendering according to the user's viewing orientation (3.1.56), if consumed with a head-mounted device, or according to user's desired viewport (3.1.61), otherwise, as if the user was in the spot where and when the media was captured
[bookmark: _Ref57984873][bookmark: _Toc109574511][bookmark: _Ref57985717]3.1.31	overlay
piece of visual media (3.1.62) rendered over omnidirectional video or image item or over a viewport (3.1.61)
[bookmark: _Ref57986957][bookmark: _Toc109574512]3.1.44 	rendering
process of generating audio-visual content for playback from the decoded audio-visual data according to the user's viewing orientation (3.1.56), if consumed with a head-mounted device, or according to user's desired viewport (3.1.61), otherwise, as well as optionally the user's viewing position (3.1.57) when sphere-relative overlays (3.1.31) are displayed with background visual media (3.1.3)
[bookmark: _Toc109574513]3.1.56	viewing orientation
triplet of azimuth (3.1.1), elevation (3.1.11), and tilt angle (3.1.53) characterizing the orientation that a user is consuming the audio-visual content; in case of image or video, characterizing the orientation of the viewport (3.1.61)
[bookmark: _Ref57986446][bookmark: _Toc109574514]3.1.57	viewing position
position from which video and image content is viewed
[bookmark: _Ref57986893][bookmark: _Toc109574515]3.1.58	viewing space
[bookmark: _Hlk25226174]three-dimensional space of viewing positions (3.1.57) within which rendering (3.1.44) of image and video is enabled and VR experience is valid
[bookmark: _Toc109574516]3.1.59	viewpoint
omnidirectional media (3.1.29) corresponding to one omnidirectional camera
[bookmark: _Ref57985687][bookmark: _Toc109574517]3.1.61	viewport
region of omnidirectional image or video (3.1.29) suitable for display and viewing by the user
[bookmark: _Ref57984853][bookmark: _Toc109574518]3.1.62	visual media
video, image item, or timed text
C.1.2 [bookmark: _Toc109574519]Viewport
1 [bookmark: _Toc103703914][bookmark: _Toc105688932][bookmark: _Toc105689150][bookmark: _Toc105689317][bookmark: _Toc105689445][bookmark: _Toc109574520][bookmark: _Ref500232861]
2 [bookmark: _Toc103703915][bookmark: _Toc105688933][bookmark: _Toc105689151][bookmark: _Toc105689318][bookmark: _Toc105689446][bookmark: _Toc109574521]
3 [bookmark: _Toc103703916][bookmark: _Toc105688934][bookmark: _Toc105689152][bookmark: _Toc105689319][bookmark: _Toc105689447][bookmark: _Toc109574522]
4 [bookmark: _Toc103703917][bookmark: _Toc105688935][bookmark: _Toc105689153][bookmark: _Toc105689320][bookmark: _Toc105689448][bookmark: _Toc109574523]
5 [bookmark: _Toc103703918][bookmark: _Toc105688936][bookmark: _Toc105689154][bookmark: _Toc105689321][bookmark: _Toc105689449][bookmark: _Toc109574524]
6 [bookmark: _Toc103703919][bookmark: _Toc105688937][bookmark: _Toc105689155][bookmark: _Toc105689322][bookmark: _Toc105689450][bookmark: _Toc109574525]
7 [bookmark: _Toc103703920][bookmark: _Toc105688938][bookmark: _Toc105689156][bookmark: _Toc105689323][bookmark: _Toc105689451][bookmark: _Toc109574526]
7.1 [bookmark: _Toc103703921][bookmark: _Toc105688939][bookmark: _Toc105689157][bookmark: _Toc105689324][bookmark: _Toc105689452][bookmark: _Toc109574527]
7.2 [bookmark: _Toc103703922][bookmark: _Toc105688940][bookmark: _Toc105689158][bookmark: _Toc105689325][bookmark: _Toc105689453][bookmark: _Toc109574528]
7.3 [bookmark: _Toc103703923][bookmark: _Toc105688941][bookmark: _Toc105689159][bookmark: _Toc105689326][bookmark: _Toc105689454][bookmark: _Toc109574529]
7.4 [bookmark: _Toc103703924][bookmark: _Toc105688942][bookmark: _Toc105689160][bookmark: _Toc105689327][bookmark: _Toc105689455][bookmark: _Toc109574530]
7.5 [bookmark: _Toc103703925][bookmark: _Toc105688943][bookmark: _Toc105689161][bookmark: _Toc105689328][bookmark: _Toc105689456][bookmark: _Toc109574531]
7.6 [bookmark: _Toc103703926][bookmark: _Toc105688944][bookmark: _Toc105689162][bookmark: _Toc105689329][bookmark: _Toc105689457][bookmark: _Toc109574532]
7.7 [bookmark: _Toc103703927][bookmark: _Toc105688945][bookmark: _Toc105689163][bookmark: _Toc105689330][bookmark: _Toc105689458][bookmark: _Toc109574533]
7.7.1 [bookmark: _Toc103703928][bookmark: _Toc105688946][bookmark: _Toc105689164][bookmark: _Toc105689331][bookmark: _Toc105689459][bookmark: _Toc109574534]
7.7.2 [bookmark: _Toc103703929][bookmark: _Toc105688947][bookmark: _Toc105689165][bookmark: _Toc105689332][bookmark: _Toc105689460][bookmark: _Toc109574535]
7.7.3 [bookmark: _Toc103703930][bookmark: _Toc105688948][bookmark: _Toc105689166][bookmark: _Toc105689333][bookmark: _Toc105689461][bookmark: _Toc109574536]
7.7.4 [bookmark: _Toc103703931][bookmark: _Toc105688949][bookmark: _Toc105689167][bookmark: _Toc105689334][bookmark: _Toc105689462][bookmark: _Toc109574537]
· [bookmark: _Toc109574538]Recommended viewport
7.7.4.1 Definition
The recommended viewport timed metadata track indicates the viewport that should be displayed when the user does not have control of the viewing orientation or has released control of the viewing orientation.
[bookmark: _Hlk32389113]NOTE 1: 	The recommended viewport timed metadata track could be used for indicating a recommended viewport based on a director's cut or based on measurements of viewing statistics.
If the timed metadata track concerns more than one viewpoint or the referenced media tracks contain media data for more than one viewpoint, the track sample entry type 'rvp2' shall be used. Otherwise, the track sample entry type 'rcvp' or 'rvp2' shall be used.
Each video track referenced by a 'cdsc' track reference from a recommended viewport timed metadata track shall cover the indicated recommended viewports completely for the entire duration of the timed metadata track. The group of video tracks that are referenced by a 'cdtg' track reference from a recommended viewport timed metadata track shall collectively cover the indicated recommended viewports completely for the entire duration of the timed metadata track.
NOTE 2: 	When a recommended viewport timed metadata track is used to derive the viewport and the video track(s) referenced by the recommended viewport timed metadata track have associated overlays, an OMAF player is expected to render the overlays like in rendering with user-controlled viewing orientation.
[bookmark: _Hlk33022809][bookmark: OLE_LINK34][bookmark: OLE_LINK35]When playing the content by following a recommended viewport timed metadata track indicating a viewpoint switch, if the current viewpoint’s ViewpointInformationStruct() contains ViewpointSwitchingListStruct(), an OMAF player should obey the timeline switching offsets and transition effects as specified in the current viewpoint’s ViewpointSwitchingListStruct(). When there is more than one entry corresponding to the same destination_viewpoint_id in ViewpointSwitchingListStruct(), the first entry should be used.
The recommended viewport metadata track ('rcvp' or 'rvp2') may be linked to one or more tracks carrying the recommended-viewport rectangular 2D media content that it defines by means of an 'esri' (encoded spherical region-of-interest) track reference from the recommended viewport metadata track to the rectangular 2D video track. Figure 23 illustrates the relationship between the recommended viewport and the rectangular 2D video, linked via the 'esri' track reference.
[image:]
[bookmark: _Ref59040406][bookmark: OLE_LINK323][bookmark: OLE_LINK324]Figure 23– Illustration of 'esri' track reference
7.7.4.2 Sample entry syntax
[bookmark: _Hlk101303742]class RcvpSampleEntry() extends SphereRegionSampleEntry('rcvp') {
	RcvpInfoBox(); // mandatory
}
class Rvp2SampleEntry() extends SphereRegionSampleEntry('rvp2') {
	RcvpInfoBox(); // mandatory
}
class RcvpInfoBox extends FullBox('rvif', version, 0) {
	unsigned int(8) viewport_type;
	string viewport_description;
	if (version > 0) {
		unsigned int(2) viewpoint_idc;
		bit(6) reserved = 0;
		if(viewpoint_idc == 1)
			unsigned int(32) rvif_viewpoint_id;
	}
}

class SphereRegionSampleEntry(type) extends MetaDataSampleEntry(type) {
	SphereRegionConfigBox(); // mandatory
	Box[] other_boxes; // optional
}
class SphereRegionConfigBox extends FullBox('rosc', 0, 0) {
	unsigned int(8) shape_type;
	bit(7) reserved = 0;
	unsigned int(1) dynamic_range_flag;
	if (dynamic_range_flag == 0) {
		unsigned int(32) static_azimuth_range;
		unsigned int(32) static_elevation_range;
	}
	unsigned int(8) num_regions;
}

7.7.4.3 Sample entry semantics
version shall be equal to 0 when RcvpInfoBox is contained in a 'rcvp' sample entry. version shall be equal to 1 when RcvpInfoBox is contained in 'rvp2' sample entry.
viewport_type specifies the type of the recommended viewport as listed in Table 13.
[bookmark: _Ref58262427]Table 13. Recommended viewport type
	Value
	Description

	0
	A recommended viewport per the director's cut, i.e., a viewport suggested according to the creative intent of the content author or content provider

	1
	A recommended viewport selected based on measurements of viewing statistics

	2..239
	Reserved (for use by future extensions of ISO/IEC 23090-2)

	240..255
	Unspecified (for use by applications or external specifications)

viewport_description is null-terminated UTF-8 string that provides a textual description of the recommended viewport.
viewpoint_idc equal to 0 specifies that all the media tracks referenced by this timed metadata track represent the same viewpoint. viewpoint_idc equal to 1 specifies that the viewpoint identifiers referenced by the sample entry containing this RcvpInfoBox represent the viewpoint with viewpoint identifier equal to rvif_viewpoint_id. viewpoint_idc equal to 2 specifies that the samples contain viewpoint_id. viewpoint_idc equal to 3 is reserved. When not present, viewpoint_idc is inferred to be equal to 0.
rvif_viewpoint_id specifies the viewpoint identifier that identifies the viewpoint containing the recommended viewport for the samples referencing the sample entry containing this RcvpInfoBox.
7.7.4.4 Sample syntax
[bookmark: _Hlk101303306]class RecommendedViewportSample() extends SphereRegionSample() {
	if (viewpoint_idc == 2)
		unsigned int(32) viewpoint_id;
}

aligned(8) SphereRegionSample() {
	for (i = 0; i < num_regions; i++)
		SphereRegionStruct(dynamic_range_flag, 1);
}

aligned(8) SphereRegionStruct(range_included_flag, interpolate_included_flag) {
	signed int(32) centre_azimuth;
	signed int(32) centre_elevation;
	signed int(32) centre_tilt;
	if (range_included_flag) {
		unsigned int(32) azimuth_range;
		unsigned int(32) elevation_range;
	}
	if (interpolate_included_flag) {
		unsigned int(1) interpolate;
		bit(7) reserved = 0;
	}
}

7.7.4.5 Sample semantics
shape_type shall be equal to 0 in the SphereRegionConfigBox of the sample entry.
static_azimuth_range and static_elevation_range, when present, or azimuth_range and elevation_range, when present, indicate the azimuth and elevation ranges, respectively, of the recommended viewport.
[bookmark: _Hlk490733007][bookmark: _Toc472672515][bookmark: _Toc472672516][bookmark: _Toc472672517][bookmark: _Toc472672518][bookmark: _Toc472672519][bookmark: _Toc472672520][bookmark: _Toc472672521][bookmark: _Toc472672522][bookmark: _Toc472672523][bookmark: _Toc472672524][bookmark: _Toc472672525][bookmark: _Toc472672526][bookmark: _Toc455482116][bookmark: _Toc455482117][bookmark: _Toc454997851][bookmark: _Toc455152374][bookmark: _Toc454997852][bookmark: _Toc455152375][bookmark: _Toc454997853][bookmark: _Toc455152376][bookmark: _Toc454997854][bookmark: _Toc455152377][bookmark: _Toc454997855][bookmark: _Toc455152378][bookmark: _Toc454997856][bookmark: _Toc455152379][bookmark: _Toc454997857][bookmark: _Toc455152380][bookmark: _Toc480808728][bookmark: _Toc481048557][bookmark: _Toc481048857][bookmark: _Toc481049157][bookmark: _Toc481049457][bookmark: _Toc481049926][bookmark: _Toc481050765][bookmark: _Toc480808729][bookmark: _Toc481048558][bookmark: _Toc481048858][bookmark: _Toc481049158][bookmark: _Toc481049458][bookmark: _Toc481049927][bookmark: _Toc481050766]centre_azimuth and centre_elevation indicate the centre point of the recommended viewport relative to the global coordinate axes. centre_tilt indicates the tilt angle of the recommended viewport.
viewpoint_id specifies the viewpoint identifier of the viewpoint that contains the recommended viewport.

8 [bookmark: _Toc103703933][bookmark: _Toc105688951][bookmark: _Toc105689169][bookmark: _Toc105689336][bookmark: _Toc105689464][bookmark: _Toc109574539][bookmark: _Toc59439782]
9 [bookmark: _Toc103703934][bookmark: _Toc105688952][bookmark: _Toc105689170][bookmark: _Toc105689337][bookmark: _Toc105689465][bookmark: _Toc109574540]
10 [bookmark: _Toc103703935][bookmark: _Toc105688953][bookmark: _Toc105689171][bookmark: _Toc105689338][bookmark: _Toc105689466][bookmark: _Toc109574541]
10.1 [bookmark: _Toc103703936][bookmark: _Toc105688954][bookmark: _Toc105689172][bookmark: _Toc105689339][bookmark: _Toc105689467][bookmark: _Toc109574542]
10.2 [bookmark: _Toc103703937][bookmark: _Toc105688955][bookmark: _Toc105689173][bookmark: _Toc105689340][bookmark: _Toc105689468][bookmark: _Toc109574543]
10.3 [bookmark: _Toc103703938][bookmark: _Toc105688956][bookmark: _Toc105689174][bookmark: _Toc105689341][bookmark: _Toc105689469][bookmark: _Toc109574544]
10.4 [bookmark: _Toc103703939][bookmark: _Toc105688957][bookmark: _Toc105689175][bookmark: _Toc105689342][bookmark: _Toc105689470][bookmark: _Toc109574545]
10.5 [bookmark: _Toc103703940][bookmark: _Toc105688958][bookmark: _Toc105689176][bookmark: _Toc105689343][bookmark: _Toc105689471][bookmark: _Toc109574546]
10.6 [bookmark: _Toc103703941][bookmark: _Toc105688959][bookmark: _Toc105689177][bookmark: _Toc105689344][bookmark: _Toc105689472][bookmark: _Toc109574547]
C.1.3 [bookmark: _Toc109574548]Viewpoint

10.7 [bookmark: _Toc103703943][bookmark: _Toc105688961][bookmark: _Toc105689179][bookmark: _Toc105689346][bookmark: _Toc105689474][bookmark: _Toc109574549][bookmark: _Ref44676346][bookmark: _Toc59439805]
10.8 [bookmark: _Toc103703944][bookmark: _Toc105688962][bookmark: _Toc105689180][bookmark: _Toc105689347][bookmark: _Toc105689475][bookmark: _Toc109574550]
10.9 [bookmark: _Toc103703945][bookmark: _Toc105688963][bookmark: _Toc105689181][bookmark: _Toc105689348][bookmark: _Toc105689476][bookmark: _Toc109574551]
10.10 [bookmark: _Toc103703946][bookmark: _Toc105688964][bookmark: _Toc105689182][bookmark: _Toc105689349][bookmark: _Toc105689477][bookmark: _Toc109574552]
7.12. [bookmark: _Toc109574553]Storage and signalling of viewpoints for omnidirectional video and images
7.12.1. [bookmark: _Ref34934293][bookmark: _Toc109574554]Viewpoint information structures
7.12.1.1. [bookmark: _Toc109574555]Definition
The viewpoint information structures provide information of a viewpoint, viewpoint groups, viewpoint switching, and viewpoint looping.
When an edit list is present, it is resolved to prior to considering viewpoint information structures related to timelines.
NOTE:	The "repeat flag" (flags & 1) of the EditListBox equal to 1 enables repeating a video track in its entirety. The ViewpointLoopingStruct() includes controlling the looping, e.g. with the maximum number of loops and the time period that is looped.
In order to successfully locate the viewpoints, an OMAF player is expected to have access to geolocation tracking and magnetometer. This enables the player to align the common reference coordinate system with the geolocation coordinates and find the player device position with respect to the geolocation coordinates.
7.12.1.2. [bookmark: _Ref34932950][bookmark: _Toc109574556]Viewpoint position structure
The ViewpointPosStruct()provides the (X, Y, Z) position of the viewpoint.
aligned(8) ViewpointPosStruct() {
	signed int(32) viewpoint_pos_x;
	signed int(32) viewpoint_pos_y;
	signed int(32) viewpoint_pos_z;
}
viewpoint_pos_x, viewpoint_pos_y, and viewpoint_pos_z specify the position of the viewpoint in units of 10−1 millimetres, in 3D space, relative to the common reference coordinate system. The semantics of this syntax structure depend on the containing syntax structure as follows:
· If ViewpointPosStruct() is contained in ViewpointEntityGroupBox, the viewpoint is static and its position is specified by this ViewpointPosStruct().
· Otherwise, if ViewpointPosStruct() is contained in DynamicViewpointSampleEntry, the viewpoint position may be time-varying and this ViewpointPosStruct() specifies the initial position of the viewpoint.
· Otherwise (when ViewpointPosStruct() is contained in DynamicViewpointSample), this ViewpointPosStruct() specifies the position of the viewpoint for the duration of the sample.
7.12.1.3. [bookmark: _Ref34934229][bookmark: _Toc109574557]Viewpoint GPS position structure
The ViewpointGpsPositionStruct() provides the GPS position of the viewpoint.
aligned(8) class ViewpointGpsPositionStruct() {
	signed int(32) viewpoint_gpspos_longitude;
	signed int(32) viewpoint_gpspos_latitude;
	signed int(32) viewpoint_gpspos_altitude;
}
viewpoint_gpspos_longitude indicates the longitude of the geolocation of the viewpoint in units of 2−23 degrees. viewpoint_gpspos_longitude shall be in range of −180 * 223 to 180 * 223 − 1, inclusive. Positive values represent eastern longitude and negative values represent western longitude.
viewpoint_gpspos_latitude indicates the latitude of the geolocation of the viewpoint in units of 2−23 degrees. viewpoint_gpspos_latitude shall be in range of −90 * 223 to 90 * 223 − 1, inclusive. Positive value represents northern latitude and negative value represents southern latitude.
viewpoint_gpspos_altitude indicates the altitude of the geolocation of the viewpoint in units of millimetres above the WGS 84 reference ellipsoid.
NOTE: The WGS 84 reference ellipsoid is specified in the EPSG:4326 database available at http://www.epsg.org/.
7.12.1.4. [bookmark: _Ref34934241][bookmark: _Toc109574558]Viewpoint geomagnetic information structure
The ViewpointGeomagneticInfoStruct() indicates the orientation of the common reference coordinate system relative to the geomagnetic North direction.
aligned(8) class ViewpointGeomagneticInfoStruct() {
	signed int(32) viewpoint_geomagnetic_yaw;
	signed int(32) viewpoint_geomagnetic_pitch;
	signed int(32) viewpoint_geomagnetic_roll;
}
viewpoint_geomagnetic_yaw, viewpoint_geomagnetic_pitch, and viewpoint_geomagnetic_roll specify the yaw, pitch, and roll angles, respectively, of the rotation angles of X, Y, Z axes of the common reference coordinate system relative to the geomagnetic North direction, in units of 2−16 degrees. viewpoint_geomagnetic_yaw shall be in the range of −180 * 216 to 180 *216 − 1, inclusive. viewpoint_geomagnetic_pitch shall be in the range of −90 * 216 to 90 * 216, inclusive. viewpoint_geomagnetic_roll shall be in the range of −180 * 216 to 180 * 216 − 1, inclusive.
7.12.1.5. [bookmark: _Ref34934210][bookmark: _Toc109574559]Viewpoint global coordinate system rotation structure
The ViewpointGlobalCoordinateSysRotationStruct() provides the yaw, pitch, and roll rotation angles of X, Y, and Z axes, respectively, of the global coordinate system of the viewpoint relative to the common reference coordinate system.
aligned(8) class ViewpointGlobalCoordinateSysRotationStruct() {
	signed int(32) viewpoint_gcs_yaw;
	signed int(32) viewpoint_gcs_pitch;
	signed int(32) viewpoint_gcs_roll;
}
viewpoint_gcs_yaw, viewpoint_gcs_pitch, and viewpoint_gcs_roll specify the yaw, pitch, and roll angles, respectively, of the rotation angles of X, Y, Z axes of the global coordinate system of the viewpoint relative to the common reference coordinate system, in units of 2−16 degrees. viewpoint_gcs_yaw shall be in the range of −180 * 216 to 180 *216 − 1, inclusive. viewpoint_gcs_pitch shall be in the range of −90 * 216 to 90 * 216, inclusive. viewpoint_gcs_roll shall be in the range of −180 * 216 to 180 * 216 − 1, inclusive.

C.2 [bookmark: _Toc109574560]MPEG-I Part 10 (Carriage of V3CD) [5]
C.2.1 [bookmark: _Toc109574561][bookmark: _Hlk101298220]Definition

There are no definitions provided for both viewpoint and viewport.
C.2.2 [bookmark: _Toc109574562]Viewpoint

There is no data structure provided for viewpoint.
C.2.3 [bookmark: _Toc109574563]Viewport

1. [bookmark: _Ref74914735][bookmark: _Ref75347393][bookmark: _Toc80301768][bookmark: _Toc109574564]Viewport information
· [bookmark: _Toc66367990][bookmark: _Toc67308028][bookmark: _Toc79755742][bookmark: _Toc80301769][bookmark: _Toc66367991][bookmark: _Toc67308029][bookmark: _Toc79755743][bookmark: _Toc80301770][bookmark: _Toc66367992][bookmark: _Toc67308030][bookmark: _Toc79755744][bookmark: _Toc80301771][bookmark: _Toc41623404][bookmark: _Toc41883578][bookmark: _Toc41904788][bookmark: _Toc33113298][bookmark: _Toc32500842][bookmark: _Toc32932449][bookmark: _Toc32964120][bookmark: _Toc66367993][bookmark: _Toc67308031][bookmark: _Toc79755745][bookmark: _Toc80301772][bookmark: _Toc66367994][bookmark: _Toc67308032][bookmark: _Toc79755746][bookmark: _Toc80301773][bookmark: _Toc57208309][bookmark: _Toc80301774][bookmark: _Toc109574565]General
This clause specifies signalling of viewport information and associated intrinsic and extrinsic camera information for V3C content in container files. Viewport information may be conveyed through the defined viewport information structure that includes an extrinsic camera information structure that specifies the viewport’s position and the rotation. In addition, the viewport information structure includes an intrinsic camera information structure. The receiver may render the V3C content based on the signalled viewport information at any point in time.

· [bookmark: _Toc57208310][bookmark: _Toc80301775][bookmark: _Toc109574566]Structures
· [bookmark: _Toc109574567]Extrinsic camera information
· Syntax
aligned(8) class ExtCameraInfo () {
	unsigned int(8)[4] cam_pos_x;
	unsigned int(8)[4] cam_pos_y;
	unsigned int(8)[4] cam_pos_z;
	signed int(32) cam_quat_x;
	signed int(32) cam_quat_y;
	signed int(32) cam_quat_z;
}
· Semantics
cam_pos_x, cam_pos_y, and cam_pos_z, respectively, indicate the x, y, and z coordinates of the position of the camera in metres in the global reference coordinate system. The values shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
cam_quat_x, cam_quat_y, and cam_quat_z, indicate the x, y, and z components, respectively, of the rotation of the camera using the quaternion representation. The values shall be in the range of – 230 to 230, inclusive. When the component of rotation is not present, its value shall be inferred to be equal to 0. The value of rotation components may be calculated as follows:
qX = cam_quat_x 230, qY = cam_quat_y 230, qZ = cam_quat_z 230
The fourth component, qW, for the rotation of the current camera model using the quaternion representation is calculated as follows:
qW = Sqrt(1 – (qX2 + qY2 + qZ2))
The point (w, x, y, z) represents a rotation around the axis directed by the vector (x, y, z) by an angle 2*cos ^{-1}(w)=2*sin ^{-1}(sqrt(x^{2}+y^{2}+z^{2})).
NOTE – As aligned ISO/IEC FDIS 23090-5, qW is always positive. If a negative qW is desired, one can signal all three syntax elements, cam_quat_x, cam_quat_y, and cam_quat_z with an opposite sign, which is equivalent.
· [bookmark: _Toc109574568]Intrinsic camera information
· Syntax
aligned(8) class IntCameraInfo () {
	unsigned int(10) camera_id;
	bit(3) reserved = 0;
	unsigned int(3) camera_type;
	if (camera_type == 0) {
		signed int(32) erp_horizontal_fov;
		signed int(32) erp_vertical_fov;
	}
	if (camera_type == 1) {
		signed int(32) perspective_horizontal_fov;
		unsigned int(8)[4] perspective_aspect_ratio;
	}
	if (camera_type == 2) {
		unsigned int(8)[4] ortho_aspect_ratio;
		unsigned int(8)[4] ortho_horizontal_size;
	}
	unsigned int(8)[4] clipping_near_plane;
	unsigned int(8)[4] clipping_far_plane;
}
· Semantics
camera_id is an identifier number that is used to identify a given viewport camera parameters.
camera_type indicates the projection method of the viewport camera. The value 0 specifies ERP projection. The value 1 specifies a perspective projection. The value 2 specifies an orthographic projection. Values in the range 3 to 255 are reserved for future use by ISO/IEC.
erp_horizontal_fov specifies the longitude range for an ERP projection corresponding to the horizontal size of the viewport region, in units of radians. The value shall be in the range 0 to 2π.
erp_vertical_fov specifies the latitude range for an ERP projection corresponding to the vertical size of the viewport region, in units of radians. The value shall be in the range 0 to π.
perspective_horizontal_fov specifies the horizontal field of view for perspective projection in radians. The value of shall be in the range of 0 and π.
perspective_aspect_ratio specifies the relative aspect ratio of viewport for perspective projection (horizontal/vertical). The value shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
ortho_aspect_ratio specifies the relative aspect ratio of viewport for orthogonal projection (horizontal/vertical). The value shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
ortho_horizontal_size specifies the horizontal size of the orthogonal in metres. The value shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
clipping_near_plane and clipping_far_plane indicate the near and far depths (or distances) based on the near and far clipping planes of the viewport in metres. The values shall be expressed in 32-bit binary floating-point format with the 4 bytes in big-endian order and with the parsing process as specified in IEEE 754.
· [bookmark: _Toc80301780][bookmark: _Toc109574569]Viewport information
· Syntax
aligned(8) class ViewportInfo (ext_camera_flag, int_camera_flag) {
	if (ext_camera_flag == 1) {
		unsigned int(1) center_view_flag;
		bit(6) reserved = 0;
		if (center_view_flag == 0) {
			unsigned int(1) left_view_flag;
		} else {
			bit(1) reserved = 0;
		}
		ExtCameraInfo extCamInfo();
	}
	if (int_camera_flag == 1) {
		IntCameraInfo intCamInfo();
	}
}
· Semantics
center_view_flag is a flag indicating whether the signalled viewport position corresponds to the centre of the viewport or to one of two stereo positions of the viewport. Value 1 indicates that the signalled viewport position corresponds to the centre of the viewport. Value 0 indicates that the signalled viewport position corresponds to one of two stereo positions of the viewport.
left_view_flag is a flag indicating whether the signalled viewport information correspond to the left stereo position of the right stereo position of the viewport. Value 1 indicates that the signalled viewport information corresponds to the left stereo position of the viewport. Value 0 indicates that the viewport information signalled correspond to the right stereo positions of the viewport.
extCamInfo is an instance of ExtCameraInfo defining the extrinsic camera parameters for the viewport.
intCamInfo is an instance of IntCameraInfo defining the intrinsic camera parameters for the viewport.

C.3 [bookmark: _Toc109574570]MPEG-I Part 6 (Immersive Media Metrics) [2]

[bookmark: _Hlk101280155]MPEG-I part 6 DIS introduces ViewportDataType (only for OMAF content) and ViewpointDataType (only for V3C content). It uses ViewportDataType to define OMAF viewpoint switching latency, which is inadequate. 	Comment by XinWang MediaTek: Should be viewport, here. Typo in the DIS spec.

C.3.1 [bookmark: _Toc109574571]Definition

“All terms and definitions in clause 3.1 (and its subclauses) of ISO/IEC 23090-2 and ISO/IEC 23090-10 apply.”

Since Part 10 does not provide definitions of Viewpoint and Viewport, only the omnidirectional definitions from Part 2 apply.
C.3.2 [bookmark: _Toc109574572]Viewpoint

A 6DoF viewpoint data type is defined for V3C content, as follows:

[image:]
[image:]
[image:]
C.3.3 [bookmark: _Toc109574573]Viewport

A 3DoF viewport data type is defined for OMAF content, as follows.

[image:]
[image:]

[image:]
[image:]

C.4 [bookmark: _Toc109574574]Scene Description [6]
C.4.1 [bookmark: _Toc109574575]Definitions
There are no definitions for Viewpoint and Viewport; it references to ISO/IEC DIS 12113:2021 [9] for additional definitions and terms.
C.4.2 [bookmark: _Toc109574576]Viewpoint
There is no specification for Viewpoint.
C.4.3 [bookmark: _Toc109574577]Viewport
There is a specification for MPEG recommended Viewport, as follows:

0. [bookmark: _Ref57886002][bookmark: _Toc71215999][bookmark: _Toc94527452][bookmark: _Toc109574578](5.5.1) MPEG_viewport_recommended extensions
· General
Recommended viewport extension, identified by MPEG_viewport_recommended, provides dynamically changing recommended viewport information which includes translation and rotation as well as the intrinsic camera parameter of the camera object. The client may render the viewport according to the dynamically changing information.
When present, the MPEG_viewport_recommended extension shall be included as extension of a scene object defined in ISO/IEC DIS 12113:2021.
NOTE – Another approach to achieve recommended viewport is to define an animation for a node with attached camera. The approach, however, does not support dynamically changing intrinsic camera and may only be defined during the creation of glTF object.
· Semantics
The definition of all objects within MPEG_viewport_recommended extension is provided in Table 18.
[bookmark: _Ref86156784]
Table 18 – Definition of MPEG_viewport_recommended extension
	Name
	Type
	Default
	Usage
	Description

	name
	string
	N/A
	O
	Label of the recommended viewport

	translation
	integer
	N/A
	O
	Provides a reference to accessor where the timed data for the translation of camera object will be made available. The componentType of the referenced accessor shall be FLOAT and the type shall be VEC3, (x, y, z).

	rotation
	integer
	N/A
	O
	Provides a reference to accessor where the timed data for the rotation of camera object will be made available. The componentType of the referenced accessor shall be FLOAT and the type shall be VEC4, as a unit quaternion, (x, y, z, w).

	type
	string
	“perspective”
	O
	provides the type of camera.

	parameters
	integer
	N/A
	O
	Provides a reference to a timed accessor where the timed data for the perspective or orthographic camera parameters will be made available. The componentType of the referenced accessor shall be FLOAT and the type shall be VEC4.
When the type of the camera object which includes this extension is perspective, FLOAT_VEC4 means (aspectRatio, yfov, zfar, znear).
When orthographic type, FLOAT_VEC4 means (xmag, ymag, zfar, znear).
The requirements on the camera parameters from ISO/IEC DIS 12113:2021 shall apply.

The JSON schema for the MPEG_viewport_recommended extension is provided in A.8.
· Processing Model
When a scene contains MPEG_viewport_recommended extension, renderer should manipulate camera object parameters and position based on data provided in the buffers described by the accessors indicated in the MPEG_viewport_recommended extension.
NOTE – This document does not specify how the data is transmitted or made available at the respective circular buffers. A possible approach is that the MPEG_media extension includes a media corresponding to a metadata track carrying the necessary information, which would be made available at the right format in the referenced timed accessors.

C.5 [bookmark: _Toc109574579]NALUFF 	Comment by XinWang MediaTek: This is from NALUFF (WG03N0234_20296_14496-15_FDIS). Added in the 139th MPEG meeting to this document.
[bookmark: _Toc109574580]Here are the definitions of ecam and icam in NALUFF:

class ExtrinsicCameraParametersBox extends FullBox ('ecam', version=0, flags) {
	unsigned int(6) 	reserved=0;
	unsigned int(10) 	ref_view_id;
	unsigned int(8)	prec_rotation_param;
	unsigned int(8)	prec_translation_param;
	for (j=1; j<=3; j++) { /* row */		
		for (k=1; k<=3; k++) { /* column */
			unsigned int(8)	exponent_r[j][k];
			signed int(64)	mantissa_r [j][k];
		}
		unsigned int(8)	exponent_t[j];
		signed int(64)	mantissa_t[j];
	}
}

class IntrinsicCameraParametersBox extends FullBox ('icam', version=0, flags) {
	unsigned int(6) 	reserved=0;
	unsigned int(10) 	ref_view_id;
	unsigned int(32)	prec_focal_length;
	unsigned int(32)	prec_principal_point;
	unsigned int(32)	prec_skew_factor;
	unsigned int(8)	exponent_focal_length_x;
	signed int(64)	mantissa_focal_length_x;
	unsigned int(8)	exponent_focal_length_y;
	signed int(64)	mantissa_focal_length_y;
	unsigned int(8)	exponent_principal_point_x;
	signed int(64)	mantissa_principal_point_x;
	unsigned int(8)	exponent_principal_point_y;
	signed int(64)	mantissa_principal_point_y;
	unsigned int(8)	exponent_skew_factor;
	signed int(64)	mantissa_skew_factor;
}

image2.emf
YXZѲd(ɸd,Ѳd) ɸdYawPitchRoll

Microsoft_Visio_Drawing.vsdx
Y
X
Z
Ѳd
(ɸd,Ѳd)
ɸd
Yaw
Pitch
Roll

image3.jpeg

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image1.jpeg

