
[image:]ISO/IEC JTC 1/SC 29/WG 03 N0687

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Exploration Experiments for MPEG-I Scene Description
Status:	Approved
Date of document:	2022-10-28
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	61 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N0687
October 2022, Virtual
	Title
	Exploration Experiments for MPEG-I Scene Description

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	21966

1	EE1: Carriage of Random Access Support in Scene Description (closed)	1
2	EE2: Dynamic Scene Update (closed)	1
3	EE3: Codec Support in MPEG-I SD (ongoing)	1
4	EE4: Haptics Support (closed)	23
5	EE5: Generic Interactivity Framework (on-going)	23
6	EE6: User Representation and Avatars (on-going)	40
7	EE7: AR Anchoring (closed)	50
8	EE8: Lighting (ongoing)	50

1 [bookmark: _Toc85228315][bookmark: _Toc117859913]EE1: Carriage of Random Access Support in Scene Description (closed)
EE closed at MPEG #137. Please see WG03 N00383 for the latest description of this EE.
2 [bookmark: _Toc102163012][bookmark: _Toc102163675][bookmark: _Toc102170445][bookmark: _Toc85228321][bookmark: _Toc117859914]EE2: Dynamic Scene Update (closed)
EE closed at MPEG #137. Please see WG03 N00383 for the latest description of this EE.
3 [bookmark: _Toc117859915]EE3: Codec Support in MPEG-I SD (ongoingclosed)
EE closed at MPEG #140. Please see WG03 N00613 for the latest description of this EE.
Background
At the 136th MPEG meeting, WG7, WG4, and WG3 agreed jointly to establish a new EE as part of the MPEG-I Scene Description AHG to study and specify the necessary extensions to add support for the V3C codecs (V-PCC and MIV) in particular, and all immersive MPEG codecs in general.
The background of the discussion can be found in [1].
Current Understanding
It was established that when adding codec support, the following options are possible:
Codec independent: in this option, all the necessary decoding and post-processing is performed to produce a primitive format that is natively supported by the Presentation Engine.
Codec dependent: in this option, the Presentation Engine needs to have some level of support for the codec, in order to be able to render the object.
Variant a: in this variant, an intermediate uncompressed format is passed to the Presentation Engine for rendering. A Presentation Engine that supports this format may then load the appropriate shader programs to perform post-processing (e.g. 3D reconstruction) and rendering of the object. The Presentation Engine must support the intermediate format.
Variant b: in this variant, samples of the compressed stream are passed to the Presentation Engine for decompression, post-processing, and rendering. The Presentation Engine must support the compressed format.

These variants vary in the split of tasks between the media pipeline in the MAF and the Presentation Engine. The following diagram depicts example pipelines for these different options.
[image:]
Figure 1 Example Pipeline Options
The following example show how the different options could be described in the MPEG-I SD glTF document:
Table 1 Example glTF for Option 1
	.
.
.
{
 "name": ”vpcc_longdress",
 "primitives": [
 {
 "attributes": {
 "POSITION": 15,
 "COLOR_0": 16
 },
 "mode": 0
 }
]
}
.
.
.
"extensions": {
 "MPEG_media": {
 "media": [
 {
 "name": "longdress",
 "timeOffset": 0.0,
 "alternatives": [
 {
 "mimeType": "video/mp4;codec=v3e1.L2.0.0.1, avc1.4D401E",
 "uri": "https://example.com/vpcc_longdress.mp4"
 }
]
 }
]
 }
},

Table 2 Example glTF for Option 2a
	{
 "name": "vpcc_longdress",
 "primitives": [
 {
 "attributes": {
 "_MPEG_V3C_ATLAS_0": 1136,
 "_MPEG_V3C_GEOMETRY_0": 1134,
 "_MPEG_V3C_OCCUPANCY_0": 1135,
 "_MPEG_V3C_COLOR_0": 1137
 },
 "mode": 0
 }
]
}
.
.
.
"extensions": {
 "MPEG_media": {
 "media": [
 {
 "alternatives": [
 {
 "mimeType": "video/mp4;codec=v3e1.L2.0.0.1, avc1.4D401E",
 "tracks": [
 {
 "track": "#track_ID=1"
 }
],
 "uri": "https://example.com/vpcc_longdress.mp4"
 }
],
 "loop": true,
 "timeOffset": 0
 }
]
}
},

Table 3 Example glTF for Option 2b
	{
 "name": "vpcc_longdress",
 "primitives": [
 {
 "attributes": {
 "_MPEG_V3C_POINTCLOUD": 165,
 },
 "mode": 0
 }
]
}
.
.
.
"extensions": {
 "MPEG_media": {
 "media": [
 {
 "alternatives": [
 {
 "mimeType": "video/mp4;codec=v3e1.L2.0.0.1, avc1.4D401E ",
 "tracks": [
 {
 "track": "#track_ID=1"
 }
],
 "uri": " https://example.com/vpcc_longdress.mp4"
 }
],
 "loop": true,
 "timeOffset": 0
 }
]
}

Mandates
This EE will have the following mandates:
Identify the MPEG codecs to be supported in MPEG-I SD
Define the MIME type and any necessary signaling and extensions to enable options 1 and 2
For codec dependent support:
Evaluate the codec-dependent options and decide on which ones to enable
Define the exact buffer formats and any necessary restrictions on the formats
Define any necessary glTF extensions and register any new _MPEG attributes
Provide guidelines on how to implement the variant
Provide test scenarios, assets, and implementation in the reference software
Support for V-PCC

m59306 [SD][EE3] Supporting YUV textures
[bookmark: _Ref99636455]MPEG_YUV sampler
Modern graphics APIs provide a sampler structure that can be associated to a texture object such that sampling operations for the YCbCr color space can be natively supported on modern GPUs. A sampler-level extension is described to sample a video texture natively in parallel processing devices such as GPUs. The format of the video texture, such as “VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM” and other formats defined in Error! Reference source not found. may be provided in the MPEG_video_texture.format property.
A texture object in the textures array may use a sampler with the “MPEG_YUV” sampler extension to provide information to the Presentation Engine on how to sample the video texture when the texture format is a chroma format such as YCbCr.
"samplers": [
 {
"extensions" : {
 "MPEG_YUV": {
 "modelConvernsion": "#709",
 "range": "#ITU range",
 "chromaFilter": "#CHROMAFILTER",
 “xchromaOffset": "#CHROMAOFFSET",
 "yChromaOffset": "CHROMAOFFSET",
 }
 }
 }
],

[bookmark: _Ref99635642]Table 4 MPEG YUV sampler semantic
	Name
	Type
	Default
	Usage
	Description

	modelConversion
	String
	-
	O
	Describes the Color model component of a color space

	range
	String
	-
	O
	Describes whether color components are encoded using the full range of numerical values or whether values are reserved for headroom and foot room.

	chromaFilter
	String
	-
	O
	Describes filters used for texture lookups

	components
	String
	-
	O
	Describes the order of the components

	xChromaOffset
	String
	-
	O
	Describes the X location of downsampled chroma component samples relative to the luma samples. xChromaOffset has no effect for formats in which chroma components are not downsampled horizontally.

	yChromaOffset
	String
	-
	O
	Describes the Y location of downsampled chroma component samples relative to the luma samples. yChromaOffset has no effect for formats in which chroma components are not downsampled vertically.

The MPEG_YUV sampler extension provides relevant configuration information for the shader compiler to read and sample a YUV texture.

[bookmark: _Ref99636467]MPEG_texture_video
Table 5 MPEG Texture video semantic
	Name
	Type
	Default
	Usage
	Description

	accessors
	Integer
Array
	N/A
	M
	Provides a reference to the accessor(s), by specifying the accessor('s/s’) index in accessors array, that describes the buffer where the decoded timed texture will be made available.

In case of planar data alignment, there must be at most 4 accessors (e.g., RGBA) in the accessors property. Each accessor will refer to the data for a plane.

The accessor shall have the MPEG_accessor_timed extension.
The type, componentType, and count of the accessor depend on the width, height, and format.

	width
	integer
	N/A
	M
	Provides the maximum width of the texture.

	height
	integer
	N/A
	M
	Provides the maximum height of the texture.

	format
	string
	RGB
	O
	Indicates the format of the pixel data for this video texture. The allowed values are: RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, DEPTH_COMPONENT. The semantics of these values are defined in Table 8.3 of OpenGL specification [OpenGL 4.6].

Note that the number of components shall match the type indicated by the referenced accessor. Normalization of the pixel data shall be indicated by the normalized attribute of the accessor.

	subSampling
	string
	444
	O
	Describes the sub-sampling format of the source of the texture. The allowed values of the sub-sampling format are 444, 420, 422, 440 and 411.

	alignment
	string
	INTERLEAVED
	O
	Specifies the data alignment of the source. Three allowed values for the data alignment property are INTERLEAVED, PLANAR and SEMI-PLANAR.

In case the source of the video texture is a sub-sampling planar format, each accessor item in the MPEG_video_texture.accessors array property will refer to a plane. The size of each plane is determined by the sub-sampling format as well as the dimensions of the video texture. For instance, in case of 4:2:0 video texture, a video texture frame data will of bytes. The first accessor will point to data storing Y channel i.e., of bytes. The second and third accessor will refer to data storing U and V channel, each storing bytes. The default behavior for the MAF would be to provide interleaved 444 RGB textures.

m59656 [SD] V-PCC in Scene Description
A mesh primitive that references a V3C formatted representation of a 3D object should have the following attributes:
_MPEG_V3C_GEOMETRY: this attribute shall reference a timed accessor that provides the decoded geometry video data. Exactly one geometry buffer shall be associated with an atlas data buffer.
_MPEG_V3C_OCCUPANCY: this attribute shall reference a timed accessor that provides the decoded occupancy video data. Exactly one occupancy map buffer shall be associated with an atlas data buffer.
_MPEG_V3C_ATTRIBUTE_i: this attribute shall reference a timed accessor that provides the decoded attribute video data that corresponds to the ith attribute. The 0th attribute shall correspond to color data in YUV 4:2:0 format.
_MPEG_V3C_ATLAS_V1: this attribute shall reference a timed accessor that provides the V3C atlas data buffer. The atlas buffer format is defined in section 3. Future specifications of the atlas data buffer format shall use a different attribute name, e.g. by incrementing the version number in _MPEG_V3C_ATLAS_V1.

Each mesh primitive shall reference exactly one atlas data buffer.

The atlas data buffer is binary formatted data that shall comply to the following format:
	Field
	Type
	Description

	frame_width
	uint32
	indicates the frame width in luma samples of the atlas and all other associated V3C components.

	frame_height
	uint16
	indicates the frame height in luma samples of the atlas and all other associated V3C components.

	attribute_count
	uint8
	the number of attributes of the V3C object. This number shall match the number of MPEG_V3C_ATTRIBUTE_i elements in the mesh primitive.

	for(i=0;i<attribute_count;i++) {
	
	

	 attribute_type
	uint8
	the attribute type of the ith attribute. The types are defined in Table 3 of ISO/IEC 23090-5 [1].

	}
	
	

	scale
	float[3]
	indicates the global scale factor that shall be applied to the reconstructed V3C object.

	offset
	float[3]
	indicates the global translation vector that shall be applied to the reconstruction V3C object

	rotation
	float[4]
	indicates the global rotation that shall be applied to the reconstructed V3C object as a quaternion.

	patch_count
	uint16
	

	for(i=0;i<patch_count;i++) {
	
	

		2d_pos_x
	float
	specifies the x-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_pos_y
	float
	specifies the y-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_size_x
	float
	specifies the width of the current patch.

		2d_size_y
	float
	specifies the height of the current patch.

		3d_offset_u
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the tangent axis.

		3d_offset_v
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the bi-tangent axis.

		3d_offset_d
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the normal axis.

		patch_projection_id
	uint8
	specifies the identifier of the projection mode and the index of the normal to the projection plane of the current patch.

		patch_orientation
	uint8
	specifies the index of the patch orientation of the current patch.

	}
	
	

Support for V3C
m58918 - InterDigital Response to EE3
An option for media pipeline is envisioned where the MAF performs the decoding, and any necessary processing and the presentation engine performs the 3D reconstruction. The option is informally called as pipeline option #2A.
In the V3C specification, V3C profiles follow a structured and flexible definition to allow for clearly identifying two distinct conformance points namely conformance point A and conformance point B (see Annex A in ISO/IEC 23090-5 [2]). The first conformance point, point A, covers the decoded video sub-bitstreams and atlas sub-bitstream. It also covers the derived block to patch map information in atlas sub-bitstream. The second conformance point, point B, covers the reconstruction process.
Following the definition in V3C and the design goals for pipeline option #2A, the MAF can be assumed to perform operations associated with conformance point A in the V3C specification. On the other hand, the Presentation Engine is responsible for performing the operations associated with conformance point B, as shown in Error! Reference source not found..
It is necessary to express the intermediatory formats for the different V3C components such that the Presentation Engine can use the information in relevant buffer/texture formats for 3D reconstruction. The MAF performs decoding and processes the decoded V3C components. The result of MAF processing is a representation of the different decoded and processed V3C components in formats that are consumable by the Presentation Engine.
In response to EE3, this contribution proposes a new extension to support V3C content in ISO/IEC 23090-14.

[image: Diagram

Description automatically generated]
Figure 2 An overview of the glTF document structure with MPEG extensions and MPEG_V3C extensions
MPEG_V3C scene-level extension
	Name
	Type
	Default
	Usage
	Description

	objects
	Array
	[]
	-
	Array of V3C objects

MPEG_V3C node-level extension

	Name
	Type
	Default
	Usage
	Description

	object
	number
	-
	M
	An index of a V3C object in the objects array in the scene-level MPEG_V3C extension.

V3C_ATLAS
	Name
	Type
	Default
	Usage
	Description

	patchBlockSize
	Number
	16
	M
	Describes the patch block size of the atlas frame

	blockToPatchInformation
	Number
	-
	M
	Index in the accessor array which refers to the block to patch information data

	totalPatches
	Number
	-
	M
	Index in the accessor array which holds the information on number of patches

	commonPatchParameters
	Number
	-
	M
	Index in the accessor array which holds the information on common patch parameters

	patchInformation
	Array
	[]
	M
	Array of patch types and their respective information

V3C_ATLAS.patchInformation
	Name
	Type
	Default
	Usage
	Description

	type
	Number
	-
	M
	Describes the type of patch

	PLRDLevel
	Number
	-
	O
	Index in the accessors array which holds the information whether the PLR is at block level or patch level.
Only applicable if patch type is PROJECTED.

	PLRDPresentBlockFlag
	Number
	-
	O
	Index in the accessors array which holds the information on presence of block level PLR mode.
Only applicable if patch type is PROJECTED.

	PLRDBlockModeMinus1
	Number
	-
	O
	Index in the accessors array which holds the information on block level PLR mode.
Only applicable if patch type is PROJECTED.

	PLRDPresentFlag
	Number
	-
	O
	Index in the accessors array which holds the information on presence of patch level PLR Mode.
Only applicable if patch type is PROJECTED.

	PLRDModeMinus1
	Number
	-
	O
	Index in the accessors array which holds the information on patch level PLR mode.
Only applicable if patch type is PROJECTED.

	patchAssociatedPatchIndex
	Number
	-
	O
	Index in the accessors array which specifies the index of the patches associated EOM patches.
Only applicable if patch type is EOM.

	patchEOMPoints
	Number
	-
	O
	Index in the accessors array which holds the information on the number of EOM coded points.
Only applicable if patch type is EOM.

	numberRAWPoints
	Number
	-
	O
	Index in the accessors array which holds the information on the number of raw coded points.
Only applicable if patch type is RAW.

V3C_OCCUPANCY and V3C_GEOMETRY
	[bookmark: _Hlk92791786]Name
	Type
	Default
	Usage
	Description

	index
	Number
	-
	M
	The index of a texture object in the textures array that is associated with the V3C component

V3C_ATTRIBUTE
	Name
	Type
	Default
	Usage
	Description

	index
	Number
	-
	M
	The index of a texture object in the textures array that is associated with the V3C attribute component

	type
	Number
	-
	M
	Key identifier for the V3C attribute type, as defined in Table 3 of ISO/IEC 23090-5.

V3C_ATTRIBUTE.type
	Attribute values
	Attribute type

	0
	Texture

	1
	Material ID

	2
	Transparency

	3
	Reflectance

	4
	Normals

	5..14
	Reserved

	15
	Unspecified

m59287 [SD] InterDigital's EE3 response
The V3C atlas buffer format consists of two main structures:
Block-to-patch map: Maps each block in an atlas frame to a patch index. In case the block is not covered by any patch, the patch index value assigned to that block is -1.
Patch list: The data for each patch is contained in a patch list. A patch consists of two sets of information.
Common Patch Information data
Application-Specific Patch information data. There may be additional information depending on the type of patch e.g., Point Local Reconstruction, EOM points etc., which needs to be stored in the atlas buffer.

 Atlas frame format

An atlas frame is defined as arrays of V3C atlas syntax structure which form the complete atlas frame for a V3C content. The syntax elements in an V3C atlas frame are defined as references to accessors containing corresponding data. `BlockToPatchMap` property corresponds to patch index per-block. `CommonPatchParameters` property corresponds to common patch parameters (please see section 9.2.7.3.2 ISO/IEC 23090-5). These patch parameters are stored in the following order.

Table X. Ordering of common patch parameters
	Common patch parameters

	PatchInAuxVideo

	PatchType

	Patch2dSizeX

	Patch2dSizeY

	Patch2DPosX

	Patch2DPosY

	Patch3dOffsetU

	Patch3dOffsetV

	Patch3dOffsetD

	Patch3dRangeD

	PatchProjectionID

	PatchOrientationIndex

	PatchLODScaleX

	PatchLODScaleY

	PatchRAWPoints

	PatchEOMPatchCount

Depending on the type of patch i.e., PROJECTED, EOM or RAW, additional information may be provided. For instance, an atlas frame consists of PROJECTED patches, each projected patch may have point-local reconstruction (PLR) information. Whether the PLR information for a patch is available on a block-level or patch-level is provided through `PLRLevel` and corresponding PLR data is provided in `BlockPLRD` and/or `PatchPLRD`. `BlockSize` corresponds to a value of the patch packing blocking size.

The following example defines properties for the V3C atlas component of a V3C content containing PROJECTED patches as well as EOM patches.

Valid accessor type and component type for each property of a V3C atlas frame are defined in Table X.
Table X. V3C atlas properties
	Name
	Usage
	Accessor type(s)
	Component type(s)
	Description

	BlockToPatchMap
	M
	SCALAR
	Unsigned int
	Store stores patch index for every block in an atlas frame. In case, a block is not assigned with a patch index, the block is assigned with value 0.

	NumberOfPatches
	M
	SCALAR
	Unsigned int
	Stores the information on total of number of patches as well as total number of different patch types.

	CommonPatchParameters

	M
	VEC2
SCALAR
	Unsigned int
	Stores common patch parameters per patch in an atlas frame.

	PLRLevel
	O
	VEC2
	Unsigned int
	Stores the PLRD level information for each PROJECTED patch type. In case, the PLR level is 0, the PLR information is available on per block level. Else if PLR level is 1, the PLR information is available on the patch level.

	BlockPLRD
	O
	VEC3
	Unsigned int
	Stores block-level PLRD information for PROJECTED patch type.

	PatchPLRD
	O
	VEC3
	Unsigned int
	Stores patch-level PLRD information for PROJECTED patch type.

	EOMPatchInfo
	O
	VEC3
	Unsigned int
	Stores application-specific information related to EOM patches.

Atlas buffer reader
A set of accessors provide the means to access specific information for the patches in an atlas frame whilst referring to a single binary buffer element. A single buffer will be referenced by a set of bufferViews and each bufferView will have its own accessor element. The use of accessors provides the convenience to the presentation engine of referring to specific information for the patches contained in a decoded atlas frame.

[image: A picture containing timeline

Description automatically generated]
Figure 3. An example of reading from a decoded atlas frame

m59305 [SD][EE3] On V3C Support in MAF Pipeline Option 2a
It is proposed to introduce a new MPEG extension MPEG_objects that declares the media objects and associates them to nodes in the scene graph. Information pertaining to the specific codec used by a media object may be described by defining codec-specific extensions to this extension such as the MPEG_V3C extension described in our previous contribution.

Similar to meshes, the media objects listed by the MPEG_objects extension must be attached to nodes by defining a node.extensions.MPEG_objects property that provides an index into the objects array using an object property. A media object that is associated with a particular node will inherit the transform of that node.
In a glTF file, MPEG_objects extension shall be added to the extensionRequired and extensionUsed top-level glTF arrays when MPEG media objects are present in the scene.

[image:]
Figure 4 – An overview of the glTF document structure with the current MPEG extensions and the MPEG_objects and MPEG_V3C extensions
An example of how this association is signalled in the glTF file is given below, where the nodes array contains one node and the objects array of the MPEG_objects extension contains three media objects (two V3C objects and one G-PCC object). The sole node in the example is associated with the first media object in the objects array via the index assigned to the object property of node.extensions.MPEG_objects.
"extensionsRequired": [
 "MPEG_objects",
 "MPEG_V3C"
],
"extensionsUsed": [
 "MPEG_objects,
 "MPEG_V3C"
],
"nodes": [
 {
 "matrix": {},
 "extensions": {
 "MPEG_objects": {
 "object": 1
 }
 }
 }
],

"extensions":
{
 "MPEG_objects": {
 "objects": [
 {
 "extensions": {
 "MPEG_V3C": {
 // describes the V3C components
 }
 }
 },
 {
 "extensions": {
 "MPEG_V3C": {
 // describes the V3C components
 }
 }
 },
 {
 "extensions": {
 "MPEG_GPCC": {
 // describes the GPCC components
 }
 }
 }
]
 }
}
Semantics
The definition of all objects within the MPEG_objects extension is provided in Table 6.

[bookmark: _Ref99548418]Table 6 – Definition of the MPEG_objects extension
	Name
	Type
	Default
	Usage
	Description

	objects
	array
	[]
	-
	An array of media objects which are coded using MPEG codecs.

	object
	number
	
	-
	Index to an object in the objects array of the MPEG_objects extension.

Processing Model
A glTF file that includes at least one MPEG media object shall include the MPEG_objects property in the top-level extensionsRequired array. If the MPEG_objects property is present in the top-level extensionsUsed array, a Presentation Engine supporting the MPEG_objects extension reads the corresponding property in the top-level extensions array to identify the media objects that may be present in the scene. Processing of the MPEG_objects extension depends on the codec used for the media object. When rendering the scene, the Presentation Engine identifies the media object codec through the codec-specific extension associated with the object in the MPEG_objects extension and reads the MPEG object data using accessors and textures referenced by the codec-specific extension.
If MPEG_objects is in the extensionsRequired array and the Presentation Engine does not support the MPEG_objects extension, the Presentation Engine must fail loading the scene.
Relation to MPEG_media extension
Within the ISO/IEC 23090-14 architecture, the MPEG_objects extension would serve a different but complementary function to the MPEG_media extension. The MPEG_objects extension enables describing media objects within a scene that require further processing by the Presentation Engine after any initial decoding and processing done by the MAF pipeline. Similar to how meshes in glTF 2.0 point to accessors from which the mesh data can be read when rendering, the media objects listed by the MPEG_objects extension also point to accessors and textures that the Presentation Engine can read the resulting intermediate media data from. The MPEG_media extension is still needed for identifying the sources from which the MAF can fetch the input to the MAF processing pipeline.

m59596 About Pipeline #2a reflecting design principle of 23090-10
V3C content is composed of two types of components, V3C atlas and V3C components, where V3C atlas is the entry point of decoding. Therefore, scene description must list all the components while distinguishing V3C atlas from V3C component and indicate V3C components must not be processed unless a V3C atlas they belong to are not selected.

Current MPEG_media extension does not allow distinction of V3C component from V3C atlas item. If V3C components are listed in MPEG_media then it would be considered as media items individually referenceable. So, new extension specifically listing the components items which shall not be directly referenced and only be processed together with other media items separately from the media items independently referenceable, MPEG_media_compound is proposed in 4.1.

In addition, current MPEG_buffer_circular can only reference items in the media array of MPEG_media. So, it needs to be also extended to reference the items in the components array when MPEG_media_compound is used. So, modification in 4.2 is also proposed.

Definition of MPEG_media_compound extension

[bookmark: _Toc44650387][bookmark: _Toc53565399][bookmark: _Ref54781594][bookmark: _Ref71034916][bookmark: _Toc71215690][bookmark: _Ref86393564][bookmark: _Toc94527442]

MPEG_media_compound extension
General
The compound MPEG media extension, identified by MPEG_media_compound provides two arrays of the media items. The media array provides the list of media which can be directly referenced. The components array provides the list of media to be used as a component of one of the items in the media array. Definition of media array is exactly same as MPEG_media extension.
The items in the components array shall have one reference to the item in the media array.
Semantics
The definition of all objects within MPEG_media_compound extension is provided in Table X and Table Y.
[bookmark: _Ref86155530]Table X – Definitions of top-level objects of MPEG_media extension
	Name
	Type
	Default
	Usage
	Description

	media
	array
	N/A
	M
	identical with media property of MPEG_media extension

	components
	array
	N/A
	M
	An array of items that describe the external media used as a component of an item in the media array.

Table Y – Definitions of item in the components array of MPEG_media_compound extension
	Name
	Type
	Default
	Usage
	Description

	reference_media
	integer
	N/A
	M
	Index of the media entry which the current item is used as a component of

	alternatives
	array
	N/A
	M
	identical with MPEG_media.media.alternatives

Processing Model
[bookmark: _Hlk101259771]Processing of the MPEG_media_compound extension is identical with MPEG_media extension except the processing of the items in components array. In general, items in the components array may be referenced by a circular buffer and processed synchronously with the items in the media array that is referenced by it.

Amending definition of MPEG_buffer_circular.media

	media
	integer
	N/A
	M
	Index of the media entry in the MPEG_media extension, which is used as the source for the input data to the buffer.
If the MPEG_media_compound extension is used, the items in the components array is indexed continuously after the items in the media array without any gap. For example, if there are 4 items in the media array then the index of the first item in the component array becomes 4.

Proposed text for Annex G
Annex G of ISO/IEC 23090-14 supposed to describe how MPEG-I media is supported. The draft text of that section does not clearly explain which type of Pipeline should be created. With the proposal in section 4, a way to select type of Pipeline can be clearly defined. Following is a paragraph proposed to be added to G.1.1

Various type of Pipelines for processing of V3C contents can be established depending on the location of decoding and 3D reconstruction. Selection of the type of Pipelines is indicated by how the external references for a V3C content are provided in scene description. When a scene description contains only one reference to a V3C atlas then decoding and 3D reconstruction of volumetric frames are done by MAF and volumetric frames are delivered to Presentation Engine through a single Buffer. When a scene description contains the references to all external media resources comprising a V3C content, both V3C atlas and all V3C components, then MAF instantiates the media decoders for each external media resource and the Buffers for each media decoders are also established. Each external media resource is individually decoded and decoded raw media data are individually delivered to Presentation Engine through the Buffers. Presentation Engine reconstruct volumetric frames by its own 3D reconstruction process.

m59597 About Pipeline #2b reflecting design principle of 23090-10
To show that V3C content stored in multiple tracks can also be processed with Pipeline #2b, following description and figure are proposed to be added.
When a V3C content is stored in multiple tracks and compressed bitstreams should be delivered to the Presentation Engine for decompression, 3D reconstruction, and rendering, the samples from all tracks with same CTS are multiplexed into a single unit and delivered to Presentation Engine through a single Buffer as shown in Figure 5.

[image: Shape

Description automatically generated with medium confidence]

[bookmark: _Ref101223254]Figure 5 — Pipeline #2b with multiple track case

Scene description extension for Pipeline #2b
As there will be only one Buffer delivering data from MAF to Presentation Engine, scene description must list only one external media resource. However, there should be an indication that whether decoding and reconstruction must be done by MAF or not. Therefore, it is proposed to add following property to MPEG_media extensions

	decoding
	boolean
	True
	O
	Specifies whether decoding is performed by MAF or not. If this property is set to False then compressed bitstream is delivered to Presentation Engine without decoding.

Support for MIV
MIV player from m58430
As part of the scene description EE on codec support[footnoteRef:2], Philips has provided a software example for a MIV renderer. [2:]

The provided real-time renderer is a simple example to "get going" and does not have sufficient quality in general, but as this EE is more of an implementation effort, we believe that this example is suitable.
The OpenGL ES 3.2 shaders are included as raw string literals within vr.scene.zmin.cpp, and the C++ code is only provided to create a running example.
Build instructions
Unpack the archive at any location.
Add pre-built or self-built external libraries:
GLEW 2.1 to C:\X\ext\glew
GLFW 3.3 or newer to C:\X\ext\glfw
OpenCV 3.4.13 to C:\X\ext\opencv-3.4.13_install
In case of confusion, please study the file C:\X\files.txt. It has the output of Get-ChildItem -Recurse. We prefer not to provide binaries to avoid software licensing problems.
For the purpose of this description, this document is located at C:\X\README.md
Open the folder C:\X\ee_on_miv_support_in_sd in a terminal
mkdir build
cd build
cmake -DOpenCV_DIR=C:\X\ext\opencv-3.4.13_install ..
Open Visual Studio 2019 to build in Release mode with platform x64
Copy C:\X\ext\glew\bin\win64\glew32.dll to C:\X\ee_on_miv_support_in_sd\build\AppsGL\Release\
Copy "C:\X\ext\opencv-3.4.13_install\x64\vc16\bin\opencv_world3413.dll" to C:\X\ee_on_miv_support_in_sd\build\AppsGL\Release\
Run instructions
On a multi-GPU system, make sure that the right GPU is selected. For NVIDIA:
Control panel
3D Settings
Manage 3D Settings
Preferred graphics processor
High-Performance NVIDIA processor
Start run.bat
Location
Software: http://mpegx.int-evry.fr/software/MPEG/MIV/other/miv-player-example
Documentation: http://mpegx.int-evry.fr/software/MPEG/MIV/other/miv-player-example/README.md
Zip-file with software and example data on the MPEG content server:
/MPEG-I/Part12-ImmersiveVideo/test_material/m58999 SD-EE on Codec Support
Test data
The example data includes one frame of Museum (ERP, 3DoF+) and one of Kitchen (PSP, 6DoF window) each with three pose traces.
License
The software has the typical ISO/IEC modified BSD license.
External libraries are not included to avoid software license issues, but the documentation includes build instructions.
Support for G-PCC
Participants
The following EE participants are identified:
	Participant
	Affiliation
	NB

	Imed Bouazizi
	Qualcomm
	US

	Basel Salahieh
	Vimmerse
	US

	Lauri Illola
	Nokia
	DE

	Lukasz Kondrad
	Nokia
	DE

	Ahmed Hamza
	Interdigital
	CA

	Gurdeep Bhullar
	Interdigital
	CA

	Bart Kroon
	Philips
	NL

4 Timeline
5 2022-01-12: MPEG document upload deadline
6 2022-01-17: MPEG #137(online) meeting starts
7 2022-04-25: MPEG #138(online) meeting starts
8 2022-07-18: MPEG #139(online) meeting starts
9 References
10 [1]	m58329, Codec Support in SD	
11 [2]	MIV Test Model, https://dms.mpeg.expert/doc_end_user/documents/135_OnLine/wg11/MDS20596_WG04_N00112.zip
12 [bookmark: _Toc102163678][bookmark: _Toc102170448][bookmark: _Toc117859916][bookmark: _Toc85228316][bookmark: _Toc85228339][bookmark: _Toc85228362]EE4: Haptics Support (closed)
[bookmark: _Toc94258314][bookmark: _Toc94258378][bookmark: _Toc94258410][bookmark: _Toc94258494][bookmark: _Toc94258917][bookmark: _Toc94258961][bookmark: _Toc94258986][bookmark: _Toc94259697][bookmark: _Toc94260130][bookmark: _Toc94260215][bookmark: _Toc94260321][bookmark: _Toc94260348][bookmark: _Toc94260732][bookmark: _Toc94260856][bookmark: _Toc102161189][bookmark: _Toc102161253][bookmark: _Toc102161473][bookmark: _Toc102161516][bookmark: _Toc102161609][bookmark: _Toc102163016][bookmark: _Toc102163680][bookmark: _Toc102170450][bookmark: _Toc94258315][bookmark: _Toc94258379][bookmark: _Toc94258411][bookmark: _Toc94258495][bookmark: _Toc94258918][bookmark: _Toc94258962][bookmark: _Toc94258987][bookmark: _Toc94259698][bookmark: _Toc94260131][bookmark: _Toc94260216][bookmark: _Toc94260322][bookmark: _Toc94260349][bookmark: _Toc94260733][bookmark: _Toc94260857][bookmark: _Toc102161190][bookmark: _Toc102161254][bookmark: _Toc102161474][bookmark: _Toc102161517][bookmark: _Toc102161610][bookmark: _Toc102163017][bookmark: _Toc102163681][bookmark: _Toc102170451][bookmark: _heading=h.aacy4tp8fwqz][bookmark: _heading=h.s5a11nyx8qka]EE closed at MPEG #139. Please see WG03 N0540 for the latest description of this EE.
13 [bookmark: _Toc117859917]EE5: Generic Interactivity Framework (on-goingclosed)	
EE closed at MPEG #139. Please see WG03 N0540 for the latest description of this EE.

13.1 Introduction
The MPEG Scene Description solution has added support for timed media to glTF 2.0. A Media Access Function (MAF) offers an API to the Presentation Engine, through which timed media can be requested. The current scene description solution allows the user to consume the scene in 6DoF, thus, moving freely in the 3D scene. To offer a realistic experience, the viewer should be able to interact with objects in the scene in different ways.
13.2 Problem statement
The following aspects of interactivity are identified:
· the user cannot walk through obstacles in the scene (such as walls, chairs, tables, …)
· the user is able to interact with objects in the scene in a way that results in changes to the scene (e.g. turn on a TV, open a door, push objects, …)
· the user will perceive the changes caused by the interaction (e.g. visual, audio, and haptics feedback)

This EE will focus on developing the necessary extensions to support basic interactivity in scene description.

The following simplified architecture is identified as the baseline for a generic interactivity framework.

[image: Shape

Description automatically generated with medium confidence]

Triggers are events that will trigger some form of interactivity. Actions are the interactivity feedback. The TuC [1] currently contains a collision model that defines one form of interactivity trigger. Objects provide a simplified mesh that will allow for detection of collision with the viewer. A detected collision will trigger some interactivity actions, such as starting an animation, haptics and/or audio feedback.

13.3 Use cases relevant for the EE
13.4 Related (WG2) and Extracted (new) Requirements
The following requirements are relevant and addressed by this EE:
· It shall be possible to discover user interactivity modules (requirement #85)
· It shall be possible to define custom interactivity procedures based on input from the user or from the user’s devices and sensors (requirement #86)
· Support of user interactivity with objects within a virtual environment (requirement #90)
· Support of interaction between multiple users within an immersive environment (requirement #95)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)
· The specification shall support coding and presentation of interactivity models related to avatar-scene or avatar-avatar interactions (requirement #130)
· The specification shall support different media types and various haptic feedback paradigms (requirement #131)

13.5 Relation to other activities (EE, requirements, etc…)
A relationship to the Haptics phase 2 activity has been identified.
13.6 Mandates
The mandates for this EE are as follows:
· refine the generic interactivity framework reference architecture
· define a basic set of interactivity triggers
· define a basic set of interactivity actions that covers different media types
· define test scenarios and collect test assets
· evaluate proposed solutions
· develop the reference software integration and validate against the test scenarios
13.7 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	L

	Immerse
	Yeshwant Muthusamy
	ymuthusamy@immersion.com
	P

	Interdigital
	Fabien Danieau
	fabien.danieau@interdigital.com
	P

	Interdigital
	Patrice Hirtzlin
	patrice.hirtzlin@interdigital.com
	P

	Interdigital
	Gurdeep Bhullar
	gurdeep.bhullar@interdigital.com
	P

	Xiaomi
	Emmanuel Thomas
	thomase@xiaomi.com
	P

(P = proponent, L = leader)
13.8 Information about proposed technologies
The following contributions on Interactivity have been submitted:

Meeting #134
m56337 [SD] Interactivity in Scene Description
Meeting #135
m57409 [SD] Interactivity support in scene description
Meeting #136
m58104 [SD] On scene interactivity
m58146 [SD] Describing camera paths for interactivity
Meeting #137
m58486 [SD] Collision model for Interactivity
m58794 [SD] On interactivity support
Meeting #138
m59773 [SD] EE Interactivity – framework reference architecture
m59774 [SD] EE Interactivity – Use case proposal
Meeting #139
m59898 [SD][EE5] On reference software implementation for interactivity support
m60569 [SD] Interactivity technologies for AMD2
m59961 [SD] EE8 – Interactive lighting use case
m59896 [SD] EE Interactivity – Assets for the Scene Description Test Scenarios

13.9 Extracted from TuC
13.9.1 [bookmark: _Toc85456730]General
In order to provide an immersive experience to the viewer, it is important that the viewer interacts properly with objects in the scene. The viewer should not be able to walk through solid objects in the scene, such as walls, chairs, and tables.
The following figure depicts a 3D mesh representation of a chair, together with its collision boundaries, defined as a set of cuboids.

[image: Graphical user interface

Description automatically generated]
13.9.2 [bookmark: _Toc85456731]Semantics
The “MPEG_mesh_collision” extension is defined to provide a description of the collision boundaries of a mesh. The extension shall be defined on mesh objects as a set of cuboids around the mesh geometry.
It contains the following properties.

	Name
	Type
	Default
	Description

	boundaries
	Array(object)
	N/A
	Array of boundary shapes that are used to define the collision boundaries of the mesh object. The boundaries may be spheroids or cuboids, as defined in the MPEG_camera_control extension.

	static
	boolean
	True
	Determines if the object is affected by collisions or not. An object that is static will not be affected by collisions, which means that when the viewer or another object collides with this object, its position will not be altered.

	material
	number
	N/A
	The index of a collision material that defines how colliding objects or viewers will interact with this object. This may include bounciness, friction, etc.

	animations
	Array(object)
	N/A
	Defines animations that are triggered by a collision or action on this object. The animation may be limited to a subset of other objects, e.g. only the viewer may trigger this animation. It also contains a pointer to the animation that is to be executed when triggered.

	
	
	
	

The mesh collision information consists of the cuboid vertex coordinates (x,y,z) for cuboid boundaries or the sphere center and radius for spherical boundaries. The values are provided as float numbers.

13.9.3 [bookmark: _Toc85456732]Processing Model
The Presentation Engine shall support the MPEG_mesh_collision extension. The camera position (x,y,z) shall not be contained within one of the defined mesh cuboids at any point of time. Collision may be signaled to the viewer through visual, acoustic, and/or haptic feedback.
This information on the boundaries for the nodes may be used to initialize and configure a 3D physics engine that will detect collisions.

13.10 Contribution m58794
13.10.1 MPEG scene interactivity glTF extension

A MPEG interactivity glTF extension, called MPEG_scene_interactivity, is introduced at the scene level as shown in Figure 6.

[image:]
[bookmark: _Ref92103687]Figure 6 : MPEG interactivity glTF extension at scene level

MPEG_scene_interactivity glTF scene-level extension adopts a semantic approach based on the definition of behaviors, triggers and actions.

13.10.2 MPEG_scene_interactivity definition

A behavior defines which kind of interactivity is allowed at runtime for dedicated virtual objects, corresponding to glTF nodes.

A behavior corresponds to a unique association of triggers and actions:
· the triggers define the runtime conditions to be met before executing the behavior actions
· the actions define how the behavior affects the scene

13.10.3 MPEG_scene_interactivity semantic
The semantic of the MPEG_scene_interactivity glTF extension is shown in Table 7.

	Name
	Type
	Usage
	Default
	Description

	triggers
	Array
	M
	[]
	Contains the definition of all the triggers used in that scene

	actions
	Array
	M
	[]
	Contains the definition of all the actions used in that scene

	behaviors
	Array
	M
	[]
	Contains the definition of all the behaviors used in that scene. A behavior is composed of a pair of (triggers, actions), control parameters of triggers and actions, a priority weight and an optional interrupt action as detailed in 5.10.6

[bookmark: _Ref90482592]Table 7 : Semantic of the MPEG_scene_interactivity extension

13.10.4 Trigger semantic

The semantic of a trigger is provided in Table 8.

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	VISIBILITY
	Defines the type of the trigger by taking one of the following values:
[bookmark: _Hlk91003149]VISIBILITY = 0,
PROXIMITY = 1,
USER_INPUT = 2,
TIMED = 3,
COLLIDER = 4

	activateOnce
	Boolean
	M
	FALSE
	If FALSE: the trigger is activated each time its conditions are met.
If TRUE: the trigger is activated once when its conditions are met.
Refer to Figure 7

	If(type== VISIBILITY){
	
	
	
	

	cameraNode
	Number
	M
	
	Index to the node containing a camera in the nodes array for which the visibilities are determined

	nodes
	Array
	M
	
	Indices of the nodes in the nodes array to be considered. All the nodes shall be visible by the camera to activate the trigger

	}
	
	
	
	

	If(type == PROXIMITY){
	
	
	
	

	distanceLowerLimit
	Number
	M
	0
	Threshold min in meters for the node proximity calculation

	distanceUpperLimit
	Number
	O
	
	Threshold max in meters for the node proximity calculation

	nodes
	Array
	M
	[]
	Indices of the nodes in the nodes array to be considered. All the nodes shall have a distance from the user camera above the distanceLowerLimit and below the distanceUpperLimit to activate the trigger

	}
	
	
	
	

	If(type == USER_INPUT){
	
	
	
	

	userInputDescription
	String
	M
	
	Describe the user body part and gesture related to the input. E.g. “/user/hand/left/grip”

	nodes
	Array
	O
	
	Indices of the nodes in the nodes array to be considered for this user input

	}
	
	
	
	

	If(type == TIMED){
	
	
	
	

	media
	Number
	M
	0
	Index of the media in the MPEG media array used to retrieve the media playback timeline

	timeLowerLimit
	Number
	M
	0
	Indicates the start time offset into the media playback timeline at which the trigger is activated, in second. The default value of 0 means the activation of the trigger at the start of the media playback.

	timeUpperLimit
	Number
	O
	
	Indicates the end time offset into the media playback timeline at which the trigger is deactivated, in second. If not present, the trigger is active until the end of the media timeline.

	}
	
	
	
	

	If(type == COLLIDER){
	
	
	
	

	nodes
	Array
	M
	
	Indices of the nodes in the nodes array to be considered for collision determination. Any detection of collision shall activate the trigger

	}
	
	
	
	

[bookmark: _Ref90484403]Table 8 : Semantic of a trigger

13.10.5 Action semantic

The semantic of an action is provided in Table 9.

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	ACTIVATE
	Defines the type of the action by taking one of the following values:
ACTIVATE = 0,
TRANSFORM = 1,
ANIMATE = 2,
CONTROL_MEDIA = 3,
PLACE_AT = 4,
MANIPULATE = 5,
SET_MATERIAL = 6

	delay
	number
	O
	
	Duration of delay in second before executing the action

	[bookmark: _Hlk91073429]If(type == ACTIVATE){
	
	
	
	

	activationStatus
	enum
	M
	ENABLED
	ENABLED=0: the node shall be considered by the application
DISABLED =1: the node shall not be considered by the application

	nodes
	array
	M
	[]
	Indices of the nodes in the nodes array to set the activation status

	}
	
	
	
	

	If(type== TRANSFORM){
	
	
	
	

	transform
	
	 M
	
	4x4 transformation matrix to apply to the nodes

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be transformed

	}
	
	
	
	

	If(type == ANIMATE){
	
	
	
	

	animation
	number
	M
	
	index of the animation in the animations array to be considered

	animationControl
	enum
	M
	PLAY
	PLAY = 0,
PAUSE = 1,
RESUME = 2,
STOP = 3

	}
	
	
	
	

	If(type == CONTROL_MEDIA){
	
	
	
	

	media
	number
	M
	
	Index of the media in the MPEG media array to be considered

	mediaControl
	enum
	M
	PLAY
	PLAY = 0,
PAUSE = 1,
RESUME = 2,
STOP = 3

	}
	
	
	
	

	If(type == PLACE_AT){
	
	
	
	

	placeDescription
	string
	M
	
	Describe the place position. E.g. “/user/hand/left/pose”

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be placed.

	}
	
	
	
	

	If(type== MANIPULATE){
	
	
	
	

	action
	enum
	 M
	FREE
	FREE= 0: the nodes follow the user pointing device and its rotation,
FREE_FIXED_ROTATION=1: the nodes follow the user pointing device but without rotation,
SLIDE=2: the nodes move linearly along the provided axis by following the user pointing device
TRANSLATE=3: the nodes translate by following the user pointing device,
ROTATE=4: the nodes rotate around the provided axis by following the user pointing device,
SCALE=5: performs a central scaling of the nodes by following the user pointing device

	axis
	array
	O
	
	(x,y,z) coordinates of the axis used for rotation and sliding. These coordinates are relative to the local space created by the USER_INPUT trigger activation. E.g. a “/user/hand/left/pose” user input trigger creates a local space attached to the user left hand

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be manipulated

	}
	
	
	
	

	If(type == SET_MATERIAL){
	
	
	
	

	material
	number
	M
	
	Index of the material in the materials array to apply to the nodes

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to set their material

	}
	
	
	
	

[bookmark: _Ref91697516]Table 9 : Semantic of an action

13.10.6 [bookmark: _Ref91573011]Behavior semantic

The semantic of a behavior is provided in Table 10.

	Name
	Type
	Usage
	Default
	Description

	triggers
	array

	M
	
	Indices of the triggers in the triggers array considered for this behavior

	actions
	array
	M
	
	Indices of the actions in the actions array considered for this behavior

	triggersControl
	enum
	M
	LOGICAL_OR
	LOGICAL_OR = 0: an activation of any of the defined triggers shall execute the defined actions,
LOGICAL_AND=1: all the defined triggers shall be activated to execute the defined actions

	actionsControl
	enum
	M
	SEQUENTIAL
	Defines the way to execute the defined actions.
SEQUENTIAL=0: each defined action is executed sequentially in the order of the actions array,
PARALLEL=1: the defined actions are executed concurrently

	interruptAction
	number
	O
	
	Index of the action in the actions array to be executed if the behavior is still on-going and is no more defined in a newly received scene update

	priority
	number
	M
	
	Weight associated to the behavior. Used to select a behavior when several behaviors are active at same time for one node

[bookmark: _Ref91705728]Table 10 : Semantic of a behavior

13.10.7 Processing model
During runtime, the application iterates on each defined behavior and checks the realization of the related triggers following the procedure detailed in Figure 7.

[image:]
[bookmark: _Ref91852033]Figure 7 : Processing model to activate a trigger

When the defined triggers of a behavior are activated, then the corresponding actions are launched.
A behavior has an “on-going” status between the launch and the completion of its defined actions.

When several behaviors are in concurrence to affect the same node at the same time, the behavior having the highest priority is processed for this affected node. The other concurrent behaviors are then not processed.
Once achieved, the application iterates on each behavior as defined in Figure 7.

If a node is affected by concurrent behaviors with a same priority value, then the application shall manage the potential conflict.

When a new scene description update is received, the application shall follow the procedure detailed in Figure 8.

A behavior is considered on-going when the related action(s) is(are) currently being executed when the scene update is processed.
A behavior is considered “still defined” if its unique association of (triggers, actions) is still described in the scene update.

If a behavior is no more “still defined”, its interrupt action is executed.
When all the interrupt actions (if any) are achieved, then the application removes any obsolete scene data and considers any new data to match the updated scene description.

[image:]
[bookmark: _Ref91708556]Figure 8 : Processing model when a new scene description is received

13.11 m59773 [SD] EE Interactivity – framework reference architecture

Triggers and actions are the elementary elements that should be defined to build an interactivity framework

trigger
condition to be met at runtime, such as collision detection, visibility, proximity, timing or user input condition. A trigger is said activated when its defined condition is met.

action
action affecting the virtual scene, such as activating, transforming, animating a scene element, setting a material or controlling a media asset

behavior
unique mapping of triggers and actions

[image:]
13.12 Test cases
13.12.1 Collision
13.12.1.1 [bookmark: _Ref102033658]Description
In this use case, yellow, red and gray balls are rolling on a surface. Only when yellow and red balls collide, a trigger is fired for actions execution. When the yellow and the gray balls or the red and gray balls collide, nothing happens.

In a first variant, the resulting action corresponds to change the color of the gray ball to blue.

In a second variant, there are two resulting actions, the material of the gray ball changes to blue color and simultaneously a sound is played.

In a third variant, there are two resulting actions, the material of the gray ball changes to blue color and after 5 seconds a sound is played.

[image: A picture containing shape

Description automatically generated]

Figure 9: Use case1
13.12.1.2 Test Scenario

	Item
	Description

	Title
	Interactivity Use Case 1 (Collision)

	Description
	The use case is described in Error! Reference source not found.5.12.1.1. It relates to the following requirements:
· It shall be possible to discover user interactivity modules (requirement #85)
· Support of user interactivity with objects within a virtual environment (requirement #90)

	Required test assets
	· Scene with the following 3D objects:
· Plane
· 3 balls
· Animation of balls (rolling on the plane)
· Audio track for the sound

	Current Support
	The following features are supported:
· Support for 3D scenes,
· Partial support for timed animations
· Support for audio

Support for interactivity is missing
Support for animation is missing

	Criteria
	The test scenario is validated if upon collision detection, the following actions defined in use case are executed:
· color changing
· or color changing and simultaneous sound playing
· or color changing and delayed sound playing
When the yellow and the gray balls collide, nothing happens.
When the red and gray balls collide, nothing happens.

13.12.2 Visibility
13.12.2.1 Description

In this use case, a user is moving inside a virtual scene. The camera is associated to the user.
When a set of objects (3 spheres, 3 cones, 1 cylinder) are in the camera viewing frustum, a trigger is fired for actions execution.

In a first variant, the resulting actions are the following: spheres bump and simultaneously cones produce a specific sound. Nothing happens on the cylinder.

In a second variant the resulting actions are the following: spheres bump and cones produce a specific sound in a sequential way. Nothing happens on the cylinder.

[image: Diagram

Description automatically generated]

Figure 10:Use Case 2
13.12.2.2 [bookmark: _Ref99377789]Test Scenario

	Item
	Description

	Title
	Interactivity Use Case 2 (Visibility)

	Description
	The use case is described in 5.12.2. It relates to the following requirements:
· It shall be possible to discover user interactivity modules (requirement #85)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)

	Required test assets
	Scene with the following 3D objects:
· Plane
· 3 Spheres
· 3 Cones
· 1 Cylinder
Animation of sphere (bump)
3 audio tracks for the sound

	Current Support
	The following features are supported:
· Support for 3D scenes,
· Partial support for timed animations
· Support for audio

Support for interactivity is missing
Support for animation is missing

	Criteria
	The test scenario is validated if upon visibility detection, the following actions defined in use case are executed:
· spheres bump and different sound are produced simultaneously by cones
· or spheres bump and different sound are produced in a sequential way by cones
Nothing changes for the cylinder.

13.12.3 Proximity
13.12.3.1 [bookmark: _Ref102038383]Description
An avatar moves closer to objects, then back away. When the distance of the avatar from the object group is under a certain distance (threshold), a trigger is fired for actions execution. When the avatar is closer than 5m to the group of objects, some actions are executed. Once the avatar goes back away and is further than 5m, actions are stopped.

In a first variant, the resulting actions are the following: spheres bump and simultaneously cones produce a specific sound. Nothing happens on the cylinder.

In a second variant a second trigger related to the visibility of the group of objects is added. An avatar moves closer to objects. When the distance of the avatar from the object group is under a certain distance (threshold) and the group of objects are in the camera frustum the actions describe in the first variant are executed. There is a logical combination of two triggers (AND combination).

[image: A picture containing text, businesscard, vector graphics

Description automatically generated]
Figure 11: Use Case 3 variant 1
13.12.3.2 Test Scenario
	Item
	Description

	Title
	Interactivity Use Case 3

	Description
	The use case is described inError! Reference source not found.5.12.3.1. It relates to the following requirements:
· It shall be possible to discover user interactivity modules (requirement #85)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)

	Required test assets
	Scene with the following 3D objects:
· Table
· 3 Spheres
· 3 Cones
· 1 Cylinder
· Avatar (camera)
Animation of sphere (bump)
3 audio tracks for the sound

	Current Support
	The following features are supported:
· Support for 3D scenes,
· Partial support for timed animations
· Support for audio

Support for interactivity is missing
Support for animation is missing

	Criteria
	The test scenario is validated by successful trigger activation either proximity detection (variant 1) or proximity AND visibility detection (variant 2). The following actions defined in Use case are executed:
· spheres bump and different sound are produced simultaneously by cones
Nothing changes for the cylinder.

13.13 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solutions. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc..
	Criteria
	Description
	Evaluation

	Criteria #1
	Description
	The technical solution should minimize/optimise …

13.14 Timeline
· 2022-01-17: MPEG #138: Refine architecture and define basic triggers and actions
13.15 References
[1]	“Technologies under Consideration on Scene Description for MPEG Media”, N00367, MPEG2021, Online, October 2021
14 [bookmark: _Toc117859918]EE6: User Representation and Avatars (on-going)
14.1 Introduction
The MPEG Scene Description group relies on the glTF2.0 technology to enable the support of 3D scene in MPEG media. Using the extension mechanism, the solution allows synchronization between traditional MPEG media within 3D content.
As defined in the requirements, one goal is to permit a user to navigate the content and interact with the surrounding objects and characters [1].
14.2 Problem statement
In order to interact within the 3D scene, the user must be represented in the scene. This representation is called an avatar and reinforces the user’s feeling of presence in the virtual world. An avatar is not mandatory if the user is simply walking through and watching some content, but as soon as there is interactivity and collision, the user must be able to visualize or detect the boundaries of the avatar. As of today, the representation of the user within the scene is not formally defined. Requirements for MPEG-I Phase 2 only mention the user as “the listener whose position and orientation are used for rendering” [2].
This EE will focus on developing the necessary glTF extensions to support user representations in scene description.
14.3 Use cases relevant for the EE
Basically, all use cases listed by the haptic group require an avatar so the user can touch virtual objects [3]. The audio use cases do not explicitly mention the user appearance although the objects in the scene impact the sound rendering (#4) [5]. Besides the social VR scenario implicitly means that users can see each other's.
14.4 Related (WG2) and Extracted (new) Requirements
The following requirements are thus relevant and addressed by this EE:
· Support of user interactivity with objects within a virtual environment (requirement #90)
· Support of interaction between multiple users within an immersive environment (requirement #95)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)
· The specification shall support coding and presentation of interactivity models related to avatar-scene or avatar-avatar interactions (requirement #130)
· The specification shall support different media types and various haptic feedback paradigms (requirement #131)
14.5 Relation to other activities (EE, requirements, etc…)
A relationship to the Haptics phase 2 activity has been identified. The user could touch virtual objects, hence a visual representation is mandatory.
This EE relates with the MPEG Systems EE on Interactivity [4] and Haptics [6].
14.6 Mandates
The mandates for this EE are as follows:
· Define the term avatar in the MPEG-I Phase 2 requirements
· Identify the existing glTF-based solutions to describe avatars
· Define the scope of the glTF extension for avatars within the scene description architecture
· Define test scenarios and collect test assets
· Define the evaluation criteria
· Evaluate proposed solutions
· Develop the reference software integration and validate against the test scenarios
· Study more details on "functional equivalent" of the human avatar model (#412)

14.7 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	InterDigital
	Fabien Danieau
	fabien.danieau@interdigital.com
	L

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	P

	Immersion

	Yeshwant Muthusamy
	ymuthusamy@immersion.com
	P

(P = proponent, L = leader)
14.8 Information about proposed technologies
List of already submitted contributions on this topic.
14.8.1 m56337 [SD] Interactivity in Scene Description
This contribution introduced the user as the camera controller which is his/her only representation in the scene.
14.8.2 m58104 [SD] On scene interactivity
This contribution presented the camera as the user avatar. It also presents a need for a collider so the user cannot walk beyond the limited space of the experience.
14.8.3 [bookmark: _Hlk117864360] m58146 [SD] Describing camera paths for interactivity
This contribution also considers the user as the camera and limits his/her movement to a camera path.
14.8.4 [bookmark: _Hlk102164621] m58487 [SD] MPEG-I SD Revised Haptic Schema and Processing Model
This contribution discusses the problem of the user representation and mentions a potential solution VRM to be evaluated. it is also indicated that the haptic needs are more focused on the collision (i.e. bounding box) than the visual appearance.
14.8.5 m59269 [SD] EE on User Representation and Avatars
Two separate extensions are proposed MPEG_avatar and MPEG_collider. Indeed, colliders can be used for other purposes than for the avatar only. It is meant to replace the extension MPEG_mesh_collision [7] with additional features.
[image: Diagram

Description automatically generated]
a. [bookmark: _heading=h.xsp0s4gs51cw]MPEG_avatar
Since glTF allows to define mesh, joints and skinning there is not much to extend to enable avatars. This extension will simply indicate what node is used to describe this mesh .
	Name
	Type
	Default
	Description

	is_avatar
	boolean
	True
	indicates that the nodes contains an avatar

glTF does not provide any kind of specification regarding a humanoid body rig, so we propose the following conventions so the presentation engine will know how to interpret the mesh as an avatar:
Initial pose
Humanoid avatars (the mesh) are assumed to have a T-pose.
Skeleton
Joints in the glTF format can be identified by names and their hierarchy. We propose the following structure and name convention to enable an easy identification of the avatar skeleton. It is based on the Unity recommendation and Mixamo skeleton that should make it compatible with most game engines.
	· Hips
· Spine
· Chest
· UpperChest
· Shoulder_Left
· UpperArm_Left
· LowerArm_Left
· Hand_Left
· See below
· Shoulder_Right		
· UpperArm_Right
· LowerArm_Right
· Hand_Right
· See below
· Neck
· Head
· Eye_Left
· Eye_Right
· Jaw
· UpperLeg_Left
· LowerLeg_Left
· Foot_Left
· Toes_Left
· UpperLeg_Right
· LowerLeg_Right
· Foot_Right
· Toes_Right

	· Hand_Left

· ProximalThumb_Left
· IntermediateThumb_Left
· DistalThumb_Left
· ProximalIndex_Left
· IntermediateIndex_Left
· DistalIndex_Left
· ProximalMiddle_Left
· IntermediateMiddle_Left
· DistalMiddle_Left
· ProximalRing_Left
· IntermediateRing_Left
· DistalRing_Left
· ProximalLittle_Left
· IntermediateLittle_Left
· DistalLittle_Left
· Hand_Right
· ProximalThumb_Right
· IntermediateThumb_Right
· DistalThumb_Right
· ProximalIndex_Right
· IntermediateIndex_Right
· DistalIndex_Right
· ProximalMiddle_Right
· IntermediateMiddle_Right
· DistalMiddle_Right
· ProximalRing_Right
· IntermediateRing_Right
· DistalRing_Right
· ProximalLittle_Right
· IntermediateLittle_Right
· DistalLittle_Right

A visual mesh is not mandatory. The avatar could be the camera only and a collider for instance. So, the user cannot go through walls or beyond a specified space although it is not visually represented.
Partial avatars
Avatar may partially represent the user (only the hands or the upper body). In this case a sub part of the skeleton is used to describe the joints.
	{
	"$schema": "http://json-schema.org/draft-04/schema",
	"title": "MPEG_avatar",
	"type": "object",
	"description": "An avatar.",
	"allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
	"properties": {
 	 "is_avatar": {
 	 "type": "boolean",
 	 "description": "List of haptic avatars",
 “default” : True,
 "gltf_detailedDescription": "Indicates that the sub mesh should be considered as an avatar." 	
	}
}

b. [bookmark: _heading=h.a1n3m1rslzjo]Colliders
In order to detect collision between the avatar and 3D objects, colliders are necessary (i.e. rough shape surrounding the object that decreases the computing cost of the collision detection). This question has been partially answered in m58486 [7]. The extension MPEG_mesh_collision allows defining a mesh (boundaries) as a collider to be linked to another mesh. We propose to improve this extension with the following features.
	Name
	Type
	Default
	Description

	shape
	Integer
	0
	Shape of the collider: 0 – sphere, 1 – box, 2 – cylinder, 3 – capsule, 4 – mesh (defined below)

	custom_shape
	Integer
	-1
	Index of the mesh that will be used to describe the collision boundaries for this node. The collision mesh shall not be referenced by any other node in the scene description.

	static
	boolean
	True
	Determines if the object is affected by collisions or not. An object that is static will not be affected by collisions, which means that when the viewer or another object collides with this object, its position will not be altered.

Shapes
Game engines usually rely on primitive shapes to define colliders (spheres, cubes, etc). Collision computing is much simpler with these shapes than with complex ones. For instance, Unity supports boxes, spheres, capsules [8]; godot supports boxes, spheres, capsules and cylinders [9]. Of course, mesh colliders are also supported (colliders that follow the exact shape of the displayed mesh).
We propose to support these primitive shapes in addition to the custom one (a.k.a. boundaries in the previous extension).
Also, we propose to define the extension at the node level since a collider may be used by multiple meshes.
Material and animations
These properties of MPEG_mesh_collision are not kept since they will be discussed in the EE on haptics and interactivity. They may have their own extension.

	{
	"$schema": "http://json-schema.org/draft-04/schema",
	"title": "MPEG_collider",
	"type": "object",
	"description": "A 3D collider.",
	"allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
	"properties": {
 	"shape": {
 	"type": "integer",
 	"description": "Specifies the shape of the collider.",
 	"gltf_detailedDescription": "Bounding box surrounding a node. Shape is defined by the transform properties of the node."
 	"anyOf": [
 	{
 	"enum": [0],
 	"Sphere": "Sphere-like volume. Diameter of the sphere is given by the scale of the parent node."
 	},
 	{
 	"enum": [1],
 	"Cube": "Cube-like volume. Shape of the cube is given by the scale of the parent node."
 	},
 	{
 	"enum": [2],
 	"Capsule": "Capsule-like volume. Diameter of the capsule is given by the x-scale of the parent node, and height by the y-scale."
 	},
 	{
 	"enum": [2],
 	"Custom": "Custom mesh volume. The mesh ID is provided in the next field."
 	},
 	{
 	"type": "integer"
 	}
],
 	default : "0";
 	},
 	"custom_shape": {
 	"allOf": [{ "$ref": " mesh.schema.json" }],
 	"description": "Mesh used to defined the bounding box.",
 	"gltf_detailedDescription": "Index of the mesh that will be used to describe the collision boundaries for this node. The collision mesh shall not be referenced by any other node in the scene description."
 	},
 	"static": {
 	"type": "boolean",
 	"description": "Static object.",
 	"gltf_detailedDescription": "Determines if the object is affected by collisions or not. An object that is static will not be affected by collisions, which means that when the viewer or another object collides with this object, its position will not be altered.",
 	"default" : "False",
 	},
 	"name": { },
 	"extensions": { },
 	"extras": { }
	}
}

14.8.6 m60296 [SD] EE6 - User Representation and Avatars for ISO/IEC 23090-14:2021
A reference glTF content file has been created for the full body and for the partial avatars (upper body and hand).
For the full body content (Figure 12), two different bodies are defined (a male and a female one). In both cases, the skeleton hierarchy is exactly following the one described in chapter Error! Reference source not found.. These two models have been designed in the DCC software Autodesk Maya © and asset files were exported using a glTF export plugin.
[image:]
[bookmark: _Ref107415044]Figure 12 - Male and Female body models
A reference glTF content file has been created for the upper body representation. The skeleton used starts from the “Hips' ' node and only goes through the “Spine” sub-node.

[bookmark: _heading=h.h7k4il1mie][image:]
Figure 13 - Male upper body model
A reference glTF content file has been created for the hand representation. The skeleton used starts from the “Hips' ' node and only goes through the “Spine” sub-node.
[image:]
Figure 14 - hand model
14.8.7 m61232 [SD] Draft Annex to ISO/IEC 23090-14:2021 - MPEG Reference Humanoid Avatar

1. [bookmark: _Toc116678820]Introduction

This document describes one topology for the representation of humanoids. The number of vertices and triangles is defined, with the associated semantic. Different level of details from the same topology are also proposed. The associated glTF file is available to provide a reference implementation.

This topology can be used to transfer any topology to this one and thus share the same vertices, triangles and semantic. It does not imply that any humanoid avatar should be exactly the same as Morgan, but that the same topology can be shared with different shapes and textures, allowing a large variety of characters, while simplifying processing and data interchange.

	
2. [bookmark: _Toc116678821]Body Model

The MPEG-SD reference body avatar (Figure 2) comes with its own mesh topology modeled as a female (right side) or as a male body (left side). The body base mesh is composed of three levels of details (detailed in Section 3.1). As described in Figure 2, the density of vertex is not the same for the body and the face, because the later requires more accuracy for realism.

The different parts are described into more details in the following sections.
[image:][image:] [image:]Female
Male

[bookmark: _Ref116654430]Figure 2: Full body mesh topology (Right side: female version, Left side: male version). The neutral genre face is zoomed for better visualization (right picture).
2.1. [bookmark: _Ref114126863][bookmark: _Toc116678822]Level of Details

The MPEG-SD reference body avatar is proposed in three levels of details (mesh resolution): Low, Medium and High (see Figure 3). The goal of these different resolutions is to ensure that the mesh topology is supported on the runtime platform (mobile, PC, HMD etc.).
Each level is described and referenced as:
· High Resolution (referenced as Morgan_HD)
· 53,695 vertices and 56,496 quad faces (106,952 triangular faces).
· Medium Resolution (referenced as Morgan_MD)
· 13,225 vertices and 13,196 quad faces (26,356 triangular faces)
· Corresponds to 25% of the HD mesh
· Low Resolution (referenced as Morgan_SD)
· 5,366 vertices and 5,300 quad faces (10,571 triangular faces).
· Corresponds to 90% of the HD mesh
The mesh decimation ensures that vertices positions are the same between from a lower level to a higher level. Meaning that all vertices of the SD mesh are all on the MD mesh and all vertices of the MD mesh are on the HD mesh. So original vertices are kept.
[image:]
[bookmark: _Ref116654837]Figure 3: Levels of details of Morgan - From left to right: High (50k), Medium (12k) and Small (5k).
The associated files are named morgan_SD.gltf, morgan_MD.gltf and morgan_HD.gltf.
2.2. [bookmark: _Toc116678823]Body Semantics

The body is divided into 18 semantic areas allowing to directly refer to them for specific use cases and applications.
Figure 4, Figure 5 and Figure 6 describes those 18 areas for respectively the front body, the back of the body and the head. The corresponding semantics and vertex coordinates are given by Table 1. The numbering and order are the same as in the reference glTF file provided. It allows easy access to parts of the body by any applications, even without knowing the model.
The provided semantic list relates to the High Resolution level, aka Morgan_HD.
[image:] [image:]
[bookmark: _Ref116654968]Figure 4: front view of body semantic areas (left: areas, right: wireframe areas).
[image:] [image:]
[bookmark: _Ref116654969]Figure 5: back view of body semantic areas (left: areas, right: wireframe areas).

[image:] [image:] [image:]

[image:] [image:] [image:]
[bookmark: _Ref116654971]Figure 6: front view of the head. Top line: segmentation areas, bottom line: wireframe areas. (Left) complete head view with the face (white), left eye (red) and right eye (olive green) - (Middle) internal view without the face with the mouth bag (blue) - (Right) view without the face and the mouth bag - upper jaw (light green) and lower jaw (purple).

	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	Full
	None
	
	53695
	[0:53694]
	53496
	106952
	[0:53495]

	Upper Body
	None
	
	45518
	[0:45517]
	45290
	90540
	[0:45289]

	- Head
	None
	
	36584
	[0:36583]
	36362
	72684
	[0:36361]

	n Face
	
	(1, 1, 1)
	6873
	[0:6872]
	6785
	13570
	[0:6784]

	n Back/Neck/Ears
	
	(0,0,0)
	4535
	[6873:11407]
	4566
	9132
	[6785:11350]

	n Mouth Bag
	
	(0,0.5,0.5)
	791
	[11408:12198]
	823
	1646
	[11351:12173]

	n Lower Jaw
	
	(0.5, 0, 0.5)
	10440
	[12199:22638]
	10380
	20760
	[12174:22553]

	n Upper Jaw
	
	(0.5, 1, 0.5)
	11107
	[22639:33745]
	11040
	22080
	[22554:33593]

	n Eye Left
	
	(0.5,0,0)
	1419
	[33746:35164]
	1384
	2748
	[33594:34977]

	n Eye Right
	
	(0.5,0.5,0)
	1419
	[35165:36583]
	1384
	2748
	[34978:36361]

	- Chest
	None
	
	1828
	[36584:38411]
	1792
	3584
	[36362:38153]

	n Chest Front
	
	(0.5, 1, 0)
	1140
	[36584:37723]
	1108
	2216
	[36362:37469]

	n Chest Back
	
	(0.5, 0, 1)
	688
	[37724:38411]
	684
	1368
	[37470:38153]

	- Arm Left
	None
	
	3553
	[38412:41964]
	3568
	7136
	[38154:41721]

	n Upper Arm Left
	
	(1, 0.5, 1)
	320
	[38412:38731]
	320
	640
	[38154:38473]

	n Lower Arm Left
	
	(1, 0, 0)
	512
	[38732:39243]
	512
	1024
	[38474:38985]

	n Hand Left
	
	(0,1,0)
	2721
	[39244:41964]
	2736
	5472
	[38986:41721]

	- Arm Right
	None
	
	3553
	[41965:45517]
	3568
	7136
	[41722:45289]

	n Upper Arm Right
	
	(0, 1, 1)
	320
	[41965:42284]
	320
	640
	[41722:42041]

	n Lower Arm Right
	
	(1, 0, 1)
	512
	[42285:42796]
	512
	1024
	[42042:42553]

	n Hand Right
	
	(0,1,0.5)
	2721
	[42797:45517]
	2736
	5472
	[42554:45289]

	Lower Body
	None
	
	8177
	[45518:53694]
	8206
	16412
	[45290:53495]

	- Abdomen
	None
	
	1855
	[45518:47372]
	1856
	3712
	[45290:47145]

	n Abdomen Front
	
	(0, 0, 1)
	929
	[45518:46446]
	896
	1792
	[45290:46185]

	n Abdomen Back
	
	(0.5, 0.5, 0.5)
	926
	[46447:47372]
	960
	1920
	[46186:47145]

	- Leg Left
	None
	
	3161
	[47373:50533]
	3175
	6350
	[47146:50320]

	n Upper Leg Left
	
	(0.5, 0.5, 1)
	681
	[47373:48053]
	680
	1360
	[47146:47825]

	n Lower Leg Left
	
	(1, 0.5, 0)
	815
	[48054:48868]
	814
	1628
	[47826:48639]

	n Foot Left
	
	(1, 1, 0)
	1665
	[48869:50533]
	1681
	3362
	[48640:50320]

	- Leg Right
	None
	
	3161
	[50534:53694]
	3175
	6350
	[50321:53495]

	n Upper Leg Right
	
	(1, 0.5, 0.5)
	681
	[50534:51214]
	680
	1360
	[50321:51000]

	n Lower Leg Right
	
	(0, 0.5, 0)
	815
	[51215:52029]
	814
	1628
	[51001:51814]

	n Foot Right
	
	(1, 1, 0.5)
	1665
	[52030:53694]
	1681
	3362
	[51815:53495]

[bookmark: _Ref116655272][bookmark: _Ref116896698]Table 1: Semantics table – The visual and geometric details of each semantic area are provided. For each of them, the number of vertices, quad and triangular faces are provided with the ID ranges covered by the areas.

2.3. [bookmark: _Toc116678824]Base UV

The reference avatar comes with its own UV coordinates. It is based on UDIM (U-Dimension, an enhancement to the UV mapping and texturing workflow that makes UV map generation easier and assigning textures simpler) which consists of a tile system where each tile is a different texture with its own UV space.
The following look-up table provides the link between the tile on the bottom UDIM map and the corresponding body parts:
	Upper Jaw
	Lower Jaw
	Right Eyeball
	
	Left Iris

	Face
	Body
	Left Eyeball
	· Right Lens
· Left Lens
	Right Iris

The UDIM map for the full morgan’s body is illustrated in Figure 7, and provided with the associated file morgan_HD.gltf. The medium resolution morgan_MD.gltf and low resolution morgan_SD.gltf of the mesh also comes with their similar but decimated UDIM map.
[image:]
[bookmark: _Ref116674876]Figure 7: UDIM map of the full body - It goes from UV space (0-1/0-1) on the bottom left corner to UV space (4-5/1-2) to the upper right corner.

2.4. [bookmark: _Toc116678825]Base Skeleton

Skeleton’s joints are identified by names and hierarchy with the following structure and naming convention to enable an easy identification of the avatar skeleton (see complete nomenclature in Table 2).
Morgan’s skeleton is composed of 63 joints, and Figure 8 precisely depicts the place of the skeleton’s joints in the hierarchy.

	Body Hierarchy (25 joints)
	Left hand hierarchy (19 joints)
	Right hand hierarchy (19 joints)

	Hips
--- Spine
--- --- Chest
--- --- --- UpperChest
--- --- --- --- Shoulder_Left
--- --- --- --- --- UpperArm_Left
--- --- --- --- --- --- LowerArm_Left
--- --- --- --- --- --- --- Hand_Left
--- --- --- --- --- --- --- --- See below
--- --- --- --- Shoulder_Right
--- --- --- --- --- UpperArm_Right
--- --- --- --- --- --- LowerArm_Right
--- --- --- --- --- --- --- Hand_Right
--- --- --- --- --- --- --- --- See below
--- --- --- --- Neck
--- --- --- --- --- Head
--- --- --- --- --- --- Eye_Left
--- --- --- --- --- --- Eye_Right
--- --- --- --- --- --- Jaw
--- UpperLeg_Left
--- --- LowerLeg_Left
--- --- --- Foot_Left
--- --- --- --- Toes_Left
--- UpperLeg_Right
--- --- LowerLeg_Right
--- --- --- Foot_Right
--- --- --- --- Toes_Right
	

(Hand_Left)
--- ProximalThumb_Left
--- --- IntermediateThumb_Left
--- --- --- DistalThumb_Left
--- ProximalIndex_Left
--- --- IntermediateIndex_Left
--- --- --- DistalIndex_Left
--- --- --- --- TopIndex_Left
--- ProximalMiddle_Left
--- --- IntermediateMiddle_Left
--- --- --- DistalMiddle_Left
--- --- --- --- TopMiddle_Left
--- ProximalRing_Left
--- --- IntermediateRing_Left
--- --- --- DistalRing_Left
--- --- --- --- TopRing_Left
--- ProximalLittle_Left
--- --- IntermediateLittle_Left
--- --- --- DistalLittle_Left
--- --- --- --- TopLittle_Left
	

(Hand_Right)
--- ProximalThumb_Right
--- --- IntermediateThumb_Right
--- --- --- DistalThumb_Right
--- ProximalIndex_Right
--- --- IntermediateIndex_Right
--- --- --- DistalIndex_Right
--- --- --- --- TopIndex_Right
--- ProximalMiddle_Right
--- --- IntermediateMiddle_Right
--- --- --- DistalMiddle_Right
--- --- --- --- TopMiddle_Right
--- ProximalRing_Right
--- --- IntermediateRing_Right
--- --- --- DistalRing_Right
--- --- --- --- TopRing_Right
--- ProximalLittle_Right
--- --- IntermediateLittle_Right
--- --- --- DistalLittle_Right
--- --- --- --- TopLittle_Right

[bookmark: _Ref116675207]
Table 2: Skeleton joints nomenclature,

[image:]
[bookmark: _Ref116675397]Figure 8: Position of the joints for the MPEG reference geometrical model.

3. [bookmark: _Toc116678826]Face Model

The MPEG-I SD reference facial avatar consists of a base topology and a gender-neutral morphology. It corresponds to the “head area” in the semantics Table 1 and its geometry is displayed in Figure 9. The facial morphology comes from a combined dataset of high-resolution face scans (males and females) mapped to the same base topology using 3D reconstruction facial technique [Danieau et al. 2019]	, and thus does not correspond to an existing person nor cannot allow the reconstruction of one person's image.
[image: Diagram

Description automatically generated with low confidence][image:][image:]
[bookmark: _Ref116676112]Figure 9: MPEG Morgan faces (right to left: front, back and right profile).

3.1. [bookmark: _Toc116678827]Base Mesh

The corresponding topology is depicted in Figure 9. The base face mesh is composed of 36,584 vertices / 36,362 quad faces (and 72,784 triangular faces). As illustrated on Figure 10, four internal parts are added:
· a mouth bag (Figure 10 (a))
· an upper (Figure 10 (b)) and lower jaw (Figure 10 (c))
· two eyeballs (Figure 10 (d))
Topological details of these specific parts can be found in the table Table 1

[image: A close-up of a dress

Description automatically generated with low confidence]

[bookmark: _Ref116676421]Figure 10: MPEG Morgan’s face details ((a) mouth bag,
(b) upper jaw, (c) lower jaw, (d) eyeballs).

3.2. [bookmark: _Toc116678828]Facial Blend Shapes

The facial expression shapes naming is close but not equal to the FACS naming convention defined and used in anatomy to classify human facial motions (See in Paul Ekman’s book [Ekman et al. 1978]).
Shapes are separated into Left (“_L”) and Right (“_R”) components. And sometimes these last components have been splitted into (“_1”) and (“_2”) sub---components to increase the precision.
The shapes of Morgan are the given in Table 3.
	AU
	FACS Name
	Morgan shape

	1
	Inner Brow Raiser
	AU1_Inner_Brow_Raiser_L1 + L2 + R1 + R2

	2
	Outer Brow Raiser
	AU2_Outer_Brow_Raiser_L1 + L2 + R1 + R2	

	4
	Brow Lowerer
	AU4_Brow_Lowerer_L + R

	5
	Upper Lid Raiser
	AU5_Upper_Lid_Raiser_L + R

	6
	Cheek Raiser
	AU6_Cheek_Raiser_L + R

	7
	Lig Tightener
	AU7_Lid_Tightener_L + R

	9
	Nose Wrinkler
	AU9_Nose_Wrinkler_L + R

	10
	Upper Lip Raiser
	AU10_Upper_Lip_Raiser_L + R

	11
	Nasolabial Deepener
	AU11_Nasolabial_Deepener_L + R

	12
	Lip Corner Puller
	AU12_Lip_Corner_Puller_L + R

	14
	Dimpler
	AU14_Dimpler_L + R

	15
	Lip Corner Depressor
	AU15_Lip_Corner_Depressor_L + R

	16
	Lower Lip Depressor
	AU16_Lower_Lip_Depressor_L

	18
	Lip Pucker
	AU18_Lip_Pucker

	20
	Lip Stretcher
	AU20_Lip_Stretcher_L + R

	22
	Lip Funneler
	AU22_Funneler

	23
	Lip Tightener
	AU23_Lip_Tightener

	24
	Lip Pressor
	AU24_Lip_Pressor

	26
	Jaw Drop
	AU26_Jaw_Drop

	27
	Mouth Stretch
	AU27_Mouth_Stretcher

	28
	Lip Suck
	AU28_Lip_Suck_Low + Up

	29
	Jaw Thrust
	AU29_Jaw_Thrust

	30
	Jaw Sideways
	AU30_Jaw_Sideways_L + R

	31
	Jaw Clencher
	AU31_Jaw_Clencher

	34
	Cheek Puff
	AU34_Cheek_Puff_L + R

	38
	Nostril Dilator
	AU38_Nstril_Dilator

	43
	Eyes Closed
	AU43_Eyes_Closed_L

	61
	Eyes Turn Left
	AU61_Eyes_Turn_Left

	62
	Eyes Turn Right
	AU62_Eyes_Turn_Right

	63
	Eyes Up
	AU63_Eyes_Up

	64
	Eyes Down
	AU64_Eyes_Down

[bookmark: _Ref116677100]Table 3: MPEG Morgan’s facial blend shapes,
All blendshapes are accessible as individual glTF files names with the corresponding AU name and also in a more complete glTF file name morgan_rigged.gltf

3.3. [bookmark: _Toc116678829]Facial Landmarks

To help processing and animation, a set of 68 semantic facial landmarks is also provided (see Figure 11). It can be useful to drive mesh retargeting algorithm (retopoligization) or to link facial performance tracking solution to Morgan’s face. The number 68 was picked up based on a recent literature overview where most of the approaches use the same number of landmarks ([Kowalski et al. 2017], [Li et al. 2020]).
The landmarks are accessible in the file morgan_landmarks.txt.
[image:]

[image: Chart

Description automatically generated] [image: Chart

Description automatically generated]
Right Jaw Line				Left Jaw Line
[image: Chart, scatter chart

Description automatically generated] [image: Chart, scatter chart

Description automatically generated]
Mouth					Nose
[image: Chart, radar chart

Description automatically generated] [image: Chart

Description automatically generated]
Left Eye 				Right Eye
[bookmark: _Ref116677601]Figure 11: MPEG Morgan’s landmarks (global face and close views).

3.4. [bookmark: _Toc116678830]Teeth Model

The facial rig also includes an upper and a lower jaw as illustrated in Figure 12. The lower jaw (right) is composed of 10, 440 vertices and 10, 380 quad faces (20, 760 triangular faces). The upper jaw (left) is composed of 11, 107 vertices and 11, 040 quad faces (22, 080 triangular faces). They both come with their own UV coordinates and associated textures.
Here are the corresponding lines of the semantic Table 1 to access the upper and lower jaws from the original glTF file.
	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	n Lower Jaw
	
	(0.5, 0, 0.5)
	10440
	[12199:22638]
	10380
	20760
	[12174:22553]

	n Upper Jaw
	
	(0.5, 1, 0.5)
	11107
	[22639:33745]
	11040
	22080
	[22554:33593]

[bookmark: _Toc110343500][bookmark: _Toc110611488][image:][image:]
Upper Jaw			Lower Jaw
[image:] [image:] [image:] [image:]
Upper UV Map		 Upper Albedo Map 	 Lower UV 		Lower Albedo Map
[bookmark: _Ref116678433]Figure 12: MPEG Morgan’s teeth model.
[bookmark: _Toc116678831]

3.5. Eye Model

The MPEG reference avatar comes with a complete eye model depicted in Figure 13. The eye model follows an anatomical eye model and is composed of three elements: the sclera, the iris, and the lens.
The polygon count is the following:
· lens (201 vertices and 200 quad face (380 triangular faces)
· iris (928 vertices and 896 quad face (1792 triangular faces)
· sclera (290 vertices and 288 quad face (576 triangular faces)
Here are the corresponding lines of the semantic Table 1 to access the left and right eye from the original glTF file. All ranges of ID (vertex or face) are ordered in that following order: lens iris sclera.
	Semantic Name
	Color
	Color
(r,g,b)
	# of
vertices
	Vertex ID
	# of
quad faces
	# of
tri faces
	Face ID
(quad)

	n Eye Left
	
	(0.5,0,0)
	1419
	[33746:35164]
	1384
	2748
	[33594:34977]

	n Eye Right
	
	(0.5,0.5,0)
	1419
	[35165:36583]
	1384
	2748
	[34978:36361]

[image:][image:][image:]
Sclera				Iris			 	Lens
[image: Circle

Description automatically generated with medium confidence][image: A picture containing web, outdoor object, device, fan

Description automatically generated]
[bookmark: _Ref116678633]Figure 13: MPEG Morgan’s eyes model.

The sclera corresponds to the eye globe and is displayed as the white area (with blood veins) of the eye. The iris is located inside the sclera and corresponds to the eye diaphragm and is displayed as the unique eye colored pattern of the eye. The lens is located inside the sclera and behind the iris. It corresponds to the lens that projects the light on the cornea (internal back border of the eye globe where the image is created). Here is how these three elements are organized.
The eye model comes with two blend shapes for each eye:
· Pupil_Dilatation – it controls the aperture of the pupil of the eye
· Sclera_Flatness – it controls the degree of flatness of the cornea

[image:] [image:] 		 [image:] [image:]
[bookmark: _Ref109915038]Figure 14: Pupil Dilation from low (left) to high (right) and Cornea Flatness from low (left) to high (right).

4. [bookmark: _Toc116678832]References
[bookmark: Kowalski][Kowalski et al. 2017]	Kowalski, M., Naruniec, J., & Trzcinski, T. (2017). Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2017---July, 2034–2043.
[bookmark: Li][Li et al. 2020]	Li, R., Bladin, K., Zhao, Y., Chinara, C., Ingraham, O., Xiang, P., Ren, X., Prasad, P., Kishore, B., Xing, J., & Li, H. (2020). Learning formation of physically based face attributes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3407–3416. https://doi.org/10.1109/CVPR42600.2020.00347
[bookmark: Danieau][Danieau et al. 2019]	Danieau, F., Gubins, I., Olivier, N., Dumas, O., Denis, B., Lopez, T., Mollet, N., Frager, B., & Avril, Q. (2019). Automatic generation and stylization of 3d facial rigs. 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 --- Proceedings, 784–792.
[bookmark: Ekman][Ekman et al. 1978]	Ekman, P., Friesen, W. V. (1978). The Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press.
14.8.8 m61178 [SD] Universal Avatar Representation
1 Avatar Representations
Avatars are 3D representations of the user that allow them to be represented and interact with the objects in a 3D shared space. There maybe different ways of representing avatars. Avatars may be synthetic, or they may be an accurate representation of the user, having the same look and following the user’s movements.

A typical approach for avatar representation is to capture and extract user face expressions and body pose and use that information to animate a pre-built 3D model of the user. The following figure depicts such an approach:

[image: Text

Description automatically generated]

In the previous example, the user creates a 3D model representation of themselves using 3D avatar capture software or through the help of professional 3D capture setups/studios. When joining a shared space, the user leverages some sensor data (such as captured images/videos, depth maps, tracking data, etc.) to animate the pre-stored 3D model so that it mimics the user’s body pose and facial expressions.

The Avatar reconstruction and animation step creates a dynamic mesh or drives a mesh animation, which is then fed into the shared space to be viewed by all other participants.
2 Integration in Scene Description
Based on the discussion in section 2, we have to assume that there will be a wide range of representations of user avatars. Depending on the input components and the offline model, the proper Avatar reconstruction and animation needs to be instantiated to generate the final dynamic/animated 3D mesh of the Avatar.

When considering describing a user’s avatar in scene description, we can then derive the following requirements:
· The avatar may be reconstructed/animated from a wide range of Avatar representations
· The reconstructed/animated avatar representation abides by the supported primitives in scene description
· It is possible to associate interactivity triggers with different parts/segments of the user avatar (e.g. hand or finger)

To address these requirements, we propose to abstract the avatar reconstruction/animation from the avatar rendering. This would comply with the cemented design principles of MPEG-I scene description. Irrespective of the chose avatar representation format, the Presentation Engine will only deal with supported 3D formats, such as a dynamic mesh.

The following figure depicts how this approach would work:

[image: Graphical user interface

Description automatically generated]

The avatar reconstruction is performed as part of a tailored MAF pipeline. The pipeline needs to be constructed from a description of the media source.

To enable this flexibility with a wide range of avatar representations in the scene description, we propose a new extension to the Node element. The extensions may be identified by the name “MPEG_node_avatar”. When present in a node, it means that all referenced mesh elements by this node will be reconstructed from an Avatar representation. The extension will also provide a mapping between a component mesh and a segment of the humanoid avatar, which is identified through a hierarchy path. This notation may be defined according to existing Avatar standards such as W3D [1].

A possible structure for the extension may be as follows:
[image: Text

Description automatically generated with medium confidence]

14.8.9 m61178 [SD] Universal Avatar Representation
In this work, we are using as a basis two existing glTF extensions [4][5] to accommodate avatar functionalities. To the best of our knowledge, these two extensions are the only ones that serve avatar functionalities, with some community recognition (150 GitHub stars for the VRM[4] and 186 for the “gltf-avatar”[5], at the time of writing). Note, that both approaches have multiple extensions that we do not take in account since they are considered in other parts of Scene Description (e.g. extensions for handling meshes, animations etc.) and instead we focus on extensions that align with the EE goals. Finally, we take the humanoid avatars as described by Unity[7] as an example to test our assumptions.

Thus, we recommend to the group to adopt the solution proposed for “MPEG_avatar”, described in 6.8.5 of the Exploration Experiment Document [1], which is based on m59269 [9] and proposes introducing the following flag.

	Name
	Type
	Default
	Description

	is_avatar
	boolean
	True
	indicates that the nodes contains an avatar

Additionally, we also believe that this flag should belong in an “avatar” node, which shall be a child node of a camera object (as suggested by m56657[10]).

14.9 Test cases
The EE may define test cases for which the evaluation criteria will be analyzed. For instance, a first test case can be with live content while another in the on-demand content.
14.9.1 Camera representation
This test case corresponds to the use case proposed by m56337 and m58104. It has no visual appearance but only controls the camera viewport. A collider is associated to this “body representation” so the user cannot go beyond a limited area. This collider will also be used to detect was body part collides with an object and thus trigger a haptic effect.
14.9.2 Limited representation
Same as above, with the display of the user’s head and hands (most current VR avatars). Tracking is performed by a VR headset and associated controllers. User can interact with objects in the scene.
14.9.3 Full body avatar
Same as above, with the display of the full body avatar. Full body tracking is required or simulated. Multiple users can see each other.
14.10 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solutions. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc..
	Criteria
	Description
	Evaluation

	#1 mesh
	A mesh represents the avatar
	The mesh is compliant with glTF format

	#2 collider
	A collider surrounds the avatar
	The collider allows to detect precise collision on the user’s body

	#3 bones
	The mesh is rigged
	The set of bones is formally defined and allows motion tracking

	#4 overhead
	Size of the metadata / glTF extension
	the smaller overhead to glTF the better (Size)

14.11 Timeline
· 2022-01-17: MPEG #138
· Define the term avatar
· Define the scope of the avatar extension
· Analyze existing solutions
· Propose test cases and criteria
· 2022-07-18: MPEG #139
· completion of EEAnalyze existing solutions
· 2022-10-24: MPEG #140
· Analyze existing solutions
· 2023-01-16: MPEG #141
· Completion of the solution

14.12 References
[1] “Requirements Coverage of MPEG-I Scene Description”, N00369, MPEG2021, Online, October 2021
[2] “Requirements for MPEG-I Phase 2 WG 2, MPEG Technical requirements”, m57684, MPEG2021, Online, July 2021
[3] “[Haptics] Updated MPEG-I Phase 2 Haptics Use Cases”, m57952, MPEG2021, Online, October 2021
[4] “[SD] Description of EE on Generic Interactivity Framework”, m59166, MPEG2021, Online, January 2022
[5] “Thoughts on MPEG-I Audio requirements”, m46062, MPEG2019,Marrakesh, MA, January 2019
“[SD] Description of EE on Haptics Support in SD”, m59210, MPEG2021, Online, January 202

15 [bookmark: _Toc117859919]EE7: AR Anchoring (closed)
EE closed at MPEG #139. Please see WG03 N0540 for the latest description of this EE.
16 [bookmark: _Toc111214821][bookmark: _Toc111215392][bookmark: _Toc111214822][bookmark: _Toc111215393][bookmark: _Toc111214823][bookmark: _Toc111215394][bookmark: _Toc111214824][bookmark: _Toc111215395][bookmark: _Toc111214825][bookmark: _Toc111215396][bookmark: _Toc111214826][bookmark: _Toc111215397][bookmark: _Toc111214827][bookmark: _Toc111215398][bookmark: _Toc111214828][bookmark: _Toc111215399][bookmark: _Toc111214829][bookmark: _Toc111215400][bookmark: _Toc111214830][bookmark: _Toc111215401][bookmark: _Toc111214831][bookmark: _Toc111215402][bookmark: _Toc111214832][bookmark: _Toc111215403][bookmark: _Toc111214833][bookmark: _Toc111215404][bookmark: _Toc111214834][bookmark: _Toc111215405][bookmark: _Toc111214835][bookmark: _Toc111215406][bookmark: _Toc111214836][bookmark: _Toc111215407][bookmark: _Toc111214837][bookmark: _Toc111215408][bookmark: _Toc111214838][bookmark: _Toc111215409][bookmark: _Toc111214839][bookmark: _Toc111215410][bookmark: _Toc111214840][bookmark: _Toc111215411][bookmark: _Toc111214841][bookmark: _Toc111215412][bookmark: _Toc111214842][bookmark: _Toc111215413][bookmark: _Toc111214843][bookmark: _Toc111215414][bookmark: _Toc111214844][bookmark: _Toc111215415][bookmark: _Toc111214845][bookmark: _Toc111215416][bookmark: _Toc111214846][bookmark: _Toc111215417][bookmark: _Toc111214847][bookmark: _Toc111215418][bookmark: _Toc111214848][bookmark: _Toc111215419][bookmark: _Toc111214849][bookmark: _Toc111215420][bookmark: _Toc111214850][bookmark: _Toc111215421][bookmark: _Toc111214851][bookmark: _Toc111215422][bookmark: _Toc111214852][bookmark: _Toc111215423][bookmark: _Toc111214853][bookmark: _Toc111215424][bookmark: _Toc111214854][bookmark: _Toc111215425][bookmark: _Toc111214855][bookmark: _Toc111215426][bookmark: _Toc111214856][bookmark: _Toc111215427][bookmark: _Toc111214857][bookmark: _Toc111215428][bookmark: _Toc111214858][bookmark: _Toc111215429][bookmark: _Toc111214859][bookmark: _Toc111215430][bookmark: _Toc111214860][bookmark: _Toc111215431][bookmark: _Toc111214861][bookmark: _Toc111215432][bookmark: _Toc111214862][bookmark: _Toc111215433][bookmark: _Toc111214868][bookmark: _Toc111215439][bookmark: _Toc111214893][bookmark: _Toc111215464][bookmark: _Toc111214894][bookmark: _Toc111215465][bookmark: _Toc111214895][bookmark: _Toc111215466][bookmark: _Toc111214896][bookmark: _Toc111215467][bookmark: _Toc111214897][bookmark: _Toc111215468][bookmark: _Toc111214898][bookmark: _Toc111215469][bookmark: _Toc111214899][bookmark: _Toc111215470][bookmark: _Toc111214900][bookmark: _Toc111215471][bookmark: _Toc111214901][bookmark: _Toc111215472][bookmark: _Toc111214902][bookmark: _Toc111215473][bookmark: _Toc111214903][bookmark: _Toc111215474][bookmark: _Toc111214904][bookmark: _Toc111215475][bookmark: _Toc111214905][bookmark: _Toc111215476][bookmark: _Toc111214906][bookmark: _Toc111215477][bookmark: _Toc111214907][bookmark: _Toc111215478][bookmark: _Toc111214908][bookmark: _Toc111215479][bookmark: _Toc111214909][bookmark: _Toc111215480][bookmark: _Toc111214910][bookmark: _Toc111215481][bookmark: _Toc111214911][bookmark: _Toc111215482][bookmark: _Toc111214912][bookmark: _Toc111215483][bookmark: _Toc111214913][bookmark: _Toc111215484][bookmark: _Toc111214914][bookmark: _Toc111215485][bookmark: _Toc111214915][bookmark: _Toc111215486][bookmark: _Toc111214916][bookmark: _Toc111215487][bookmark: _Toc111214917][bookmark: _Toc111215488][bookmark: _Toc111214918][bookmark: _Toc111215489][bookmark: _Toc111214919][bookmark: _Toc111215490][bookmark: _Toc111214920][bookmark: _Toc111215491][bookmark: _Toc111214921][bookmark: _Toc111215492][bookmark: _Toc111214922][bookmark: _Toc111215493][bookmark: _Toc111214923][bookmark: _Toc111215494][bookmark: _Toc111214924][bookmark: _Toc111215495][bookmark: _Toc111214925][bookmark: _Toc111215496][bookmark: _Toc111214926][bookmark: _Toc111215497][bookmark: _Toc111214927][bookmark: _Toc111215498][bookmark: _Toc111214928][bookmark: _Toc111215499][bookmark: _Toc111214929][bookmark: _Toc111215500][bookmark: _Toc111214930][bookmark: _Toc111215501][bookmark: _Toc111214931][bookmark: _Toc111215502][bookmark: _Toc111214967][bookmark: _Toc111215538][bookmark: _Toc111214968][bookmark: _Toc111215539][bookmark: _Toc111214969][bookmark: _Toc111215540][bookmark: _Toc111214970][bookmark: _Toc111215541][bookmark: _Toc111214971][bookmark: _Toc111215542][bookmark: _Toc111214972][bookmark: _Toc111215543][bookmark: _Toc111214973][bookmark: _Toc111215544][bookmark: _Toc111214974][bookmark: _Toc111215545][bookmark: _Toc111214975][bookmark: _Toc111215546][bookmark: _Toc111214976][bookmark: _Toc111215547][bookmark: _Toc111214977][bookmark: _Toc111215548][bookmark: _Toc111214978][bookmark: _Toc111215549][bookmark: _Toc111214979][bookmark: _Toc111215550][bookmark: _Toc111214980][bookmark: _Toc111215551][bookmark: _Toc111214981][bookmark: _Toc111215552][bookmark: _Toc111214982][bookmark: _Toc111215553][bookmark: _Toc111214983][bookmark: _Toc111215554][bookmark: _Toc111214984][bookmark: _Toc111215555][bookmark: _Toc111215020][bookmark: _Toc111215591][bookmark: _Toc111215021][bookmark: _Toc111215592][bookmark: _Toc111215022][bookmark: _Toc111215593][bookmark: _Toc111215035][bookmark: _Toc111215606][bookmark: _Toc111215036][bookmark: _Toc111215607][bookmark: _Toc111215037][bookmark: _Toc111215608][bookmark: _Toc111215038][bookmark: _Toc111215609][bookmark: _Toc111215039][bookmark: _Toc111215610][bookmark: _Toc111215040][bookmark: _Toc111215611][bookmark: _Toc111215041][bookmark: _Toc111215612][bookmark: _Toc111215042][bookmark: _Toc111215613][bookmark: _Toc111215062][bookmark: _Toc111215633][bookmark: _Toc111215063][bookmark: _Toc111215634][bookmark: _Toc111215064][bookmark: _Toc111215635][bookmark: _Toc111215127][bookmark: _Toc111215698][bookmark: _Toc111215128][bookmark: _Toc111215699][bookmark: _Toc111215129][bookmark: _Toc111215700][bookmark: _Toc111215130][bookmark: _Toc111215701][bookmark: _Toc111215131][bookmark: _Toc111215702][bookmark: _Toc111215132][bookmark: _Toc111215703][bookmark: _Toc111215133][bookmark: _Toc111215704][bookmark: _Toc111215267][bookmark: _Toc111215838][bookmark: _Toc111215268][bookmark: _Toc111215839][bookmark: _Toc111215269][bookmark: _Toc111215840][bookmark: _Toc111215270][bookmark: _Toc111215841][bookmark: _Toc111215271][bookmark: _Toc111215842][bookmark: _Toc111215272][bookmark: _Toc111215843][bookmark: _Toc111215273][bookmark: _Toc111215844][bookmark: _Toc111215274][bookmark: _Toc111215845][bookmark: _Toc111215275][bookmark: _Toc111215846][bookmark: _Toc111215276][bookmark: _Toc111215847][bookmark: _Toc111215290][bookmark: _Toc111215861][bookmark: _Toc111215291][bookmark: _Toc111215862][bookmark: _Toc111215292][bookmark: _Toc111215863][bookmark: _Toc111215293][bookmark: _Toc111215864][bookmark: _Toc111215378][bookmark: _Toc111215949][bookmark: _Toc111215379][bookmark: _Toc111215950][bookmark: _Toc111215380][bookmark: _Toc111215951][bookmark: _Toc111215381][bookmark: _Toc111215952][bookmark: _Toc111215382][bookmark: _Toc111215953][bookmark: _Toc102161478][bookmark: _Toc102161521][bookmark: _Toc102161614][bookmark: _Toc102163021][bookmark: _Toc102163685][bookmark: _Toc102170455][bookmark: _Toc117859920]EE8: Lighting (ongoing)
16.1 Introduction
When it comes to inserting visual information in a captured real-world environment, lighting is a fundamental cue to take into account to provide a realistic experience to the user. Indeed, a virtual object overlaid on an real-world environment with inappropriate lighting and shadows can break the immersive illusion. In a VR context, accurate lighting models allow to achieve a high-level of realism which is also key for many VR applications that offer the illusion of “being there” for the user.
The goal of the EE is thus to specify the integration of lighting information existing in the glTF specification into the MPEG-I Scene Description standard. In particular, the EE will study the integration of lighting estimation operation with the MPEG-I SD architecture and the representation of light sources in scene description documents. Based on this integration and the possible identified technical gaps, the EE aims at defining the necessary extensions to glTF specification and to MPEG-I SD specification, as well as possible implementation guidelines.
16.2 Problem statement
A presentation engine is responsible for rendering a view of a scene to the user based on the scene description document. Among other things (physics engine, object drawing, etc..), the presentation engine renders the effect of light propagation in the scene, reflections, shadows, object illumination etc… In order to render those effects, the presentation engine needs a model of the lighting conditions at the time of the rendered frame. The light sources can be of two natures: real or virtual. In the AR context, there exists by definition a set of real light sources (sun, lamps, etc.). In addition, the scene may also contain virtual light sources. In the VR context, there are by definition only virtual light sources. In both cases, real and virtual, the light sources may be represented by the same model (punctual light, ambient light, etc.) and sometimes based on textures for the so-called environment cubemap. Those texture stored in buffer will impact the overall buffer management of the application and cannot ne omitted by MPEG-I SD architecture. One additional challenge in the AR context is to estimate the representation of the current lighting condition in which the AR application runs. This is called lighting estimation function and is provided by existing AR framework via API calls.
All those light-related operations are thus part of the presentation engine and requires:
· Representation model of light sources
· Spatialization of light sources representation (user can move in the scene)
· Time-dependent light source representation (the light sources can change over time)
· Integration with lighting estimation APIs (only for AR)
16.3 Use cases relevant for the EE
16.4 Relation to other activities (EE, requirements, etc…)
From WG 02 N00130, “MPEG-I Phase 2 Requirements”, MPEG136, October 2021.

4.3.1 Reference Scene Description Selection

77. The scene description should support nodes and attributes in order to implement natural laws of light, energy propagation and physical kinematic operations.

4.4 Descriptions for Content Interactivity

89. The specification shall enable realistic composition of a 6DoF scene depending on the user-selected location and orientation.

Note: Such composition may, e.g., include delivering proper lighting information and some form of geometry information of the scene so the view is rendered with realistic lighting and shadows.

16.5 Mandates
The mandates for this EE are as follows:
· To study the integration of AR lighting estimation API call with the MPEG-I SD reference architecture
· To specify the light source representation model for both real and virtual light sources, possibly based on commonly used models
· To specify the signaling of spatialized and time-dependent light sources in the scene description document based on existing glTF light-related extension
· To study the compatibility of the existing scene updates mechanism and the use of the KHR_animation_pointer for updating properties of the lighting information in the scene

16.6 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	Xiaomi
	Emmanuel Thomas
	thomase@xiaomi.com
	L

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	P

	InterDigital
	Patrice Hirtzlin
	Patrice.hirtzlin@interdigital.com
	P

(P = proponent, L = leader)
16.7 Information about proposed technologies
List of already submitted contributions on this topic.
16.7.1 m59520 – Scene description and lighting information
This contribution describes the background on light theory and its representation in AR frameworks.
16.7.1.1 Light source inventory
As explained in [1], there exist several types of light whether it is emitted or reflected light and different types of light sources which are primarily determined by the physical properties of the light such as the distance of the source, the direction of the ray of lights, etc..

The different types of light can be categorized as listed in Table 11.

[bookmark: _Ref101266859]Table 11 - Categorization of light types
	Type
	Description
	Example

	Ambient light

	Ambient light is light that doesn't come from a defined source, but is just present throughout the scene. This light reaches every surface in the scene at the same intensity from every direction, and is then reflected equally in every direction. As a result, the effect applied by ambient light is universally equal all through the scene.
	[image: A sphere which only has ambient lighting. Note the total lack of any shading to indicate the depth of the sphere.]

	Diffuse light
	Diffuse light is light which is evenly and directionally emitted from or reflected off a surface. This is the majority of the light we usually see. Diffuse light comes from a particular position or direction and casts shadows. Due to its directionality, the faces of an object facing a diffuse light source will be brighter than the other faces.
	[image: Saturn's fifth-largest moon, Tethys, is lit primarily by the sun, with some light reflected from Saturn. This is diffuse lighting.]

	Specular light
	Specular light is the light that makes up the highlights on reflective objects, such as gems, eyes, shiny cups and plates, and the like. Specular lights tend to appear as bright spots or squares on a surface at the point where a light source strikes the surface most directly.
	[image: A photo taken by NASA's Cassini spacecraft showing specular reflection of light from a lake of liquid methane on the surface of Saturn's moon Titan.]

Another categorization pertains to the light sources as described in Table 12.

[bookmark: _Ref101266803][bookmark: _Ref101266800]Table 12 - Categorization of light source types
	Type
	Description
	Example

	Ambient light sources
	An ambient light source is a light source describing the level and color of ambient light in a scene. While there may be more than one of these in a scene, you can probably slightly improve performance by combining them into one on your own, since each one will always affect every pixel evenly anyway.
	

	Directional light sources
	A directional light source is a light source that comes from a specific direction, but not from a specific source, so its emitted light rays are parallel to one another. In addition, the intensity of the light doesn't change over distance. This means that shadows cast by directional lights are very sharp, with an essentially instant transition between lighted and shadowed.
	[image: A photo taken by the Galileo spacecraft from about 6.3 million kilometers away, with Earth and moon both half-lit by the sun.]

	Point light sources
	A point light source is a light source located at a specific location, radiating outward equally in every direction. Light bulbs, candles, and the like are examples of point light sources. The closer an object is to a point light source, the brighter the light it casts onto that object. The rate at which the brightness of a point light falls off is called attenuation, and is a configurable feature of the light source in WebGL and other lighting systems.
	

	Spot light sources
	A spot light source (or spotlight) is a light source which is located at a specific position, emitting a cone of light in the direction of its orientation vector. A tapering rate parameter defines how quickly the brightness of the light falls off at the edges of the cone of light, and, as with point lights, an attenuation parameter controls how the light fades over distance.
	[image: Photo of a spotlight shining upon a stucco wall at night.]

16.7.1.2 Lighting model
As explained by the documentation of Google ARCore [2], the common model to reconstruct realistic lighting is composed of three elements:

1. Main directional light. Represents the main light source. Can be used to cast shadows.
2. Ambient spherical harmonics. Represents the remaining ambient light energy in the scene.
3. An HDR cubemap. Can be used to render reflections in shiny metallic objects.

The effect of each component and the final combined result are illustrated below:
[image: Rockets showing lighting changes: Main directional light plus ambient spherical harmonics plus HTF cubemap equals environmental HDR]
Figure 15 - Environmental lighting commonly used for AR Error! Reference source not found.

[image: Chart, treemap chart

Description automatically generated]
Figure 16 - Specular Radiance Cubemaps in EXT_lights_image_based

For an optimal rendering quality, these three elements need to be refreshed every time a new frame is rendered by the AR engine. As a result, the light direction information and the ambient spherical harmonics become a timed sequences of metadata and the HDR cubemap becomes a timed sequence of textures, i.e. a video sequence.

16.7.1.3 AR Lighting estimation
In the context AR, the sources of light in the scene are dynamically estimated by the application. The existing AR frameworks provide such API functions:

	Framework
	Function
	Reference

	ARcore
	class LightEstimate returned Frame.getLightEstimate()
	LightEstimate | ARCore | Google Developers

	ARKit
	class ARLightEstimate : NSObject
	ARLightEstimate | Apple Developer Documentation

	WEbXR
	interface XRLightEstimate
	WebXR Lighting Estimation API Level 1 (w3.org)

16.7.2 m60868 [SD] [EE 8] – Timed lighting extensions

1 Introduction

A lighting EE (EE8) has been created in the MPEG#138 of April 2022.
The goal of the EE, as mentioned in the document [1], is thus to specify the integration of lighting information existing in the glTF specification into the MPEG-I Scene Description standard. It addresses, amongst other light-related activities, the representation of time-dependent light sources.

MPEG-I SD framework already addresses time-evolving scenes (timed accessor, animation timing, scene update). It is thus important to do the same for lighting and address pre-defined time-evolving light properties (intensity, color, position, size…). For instance, a lighting animation for a set of spots in a virtual scene that change the colors and the intensity of the lights.

In the contributions [1] and [2], use cases and test scenarios have been agreed for timed lighting support in scene description.

The study of these test scenarios revealed some missing features in the glTF format to describe time evolving lighting conditions:
· Lack of semantics to describe all the different types of light we may encounter in XR scene, except 2 extensions that describe statically punctual and image-based lights.
· No way to specify how light properties may vary over time.

Concerning the description of light sources, extensions are already available or in development:
· KHR_lights_punctual (Khronos ratified extension [3]): this extension is used at the root of the glTF file, and at the node level to describe properties of punctual lights (spotlight, point light or directional light). These lights are referenced by nodes and inherit the transform of that node.
· EXT_lights_image_based (vendor extension [4]): this extension is used at the root of the glTF file, and at the scene level to describe properties of image-based lights. Each scene can reference only one. This extension specifies a cubemap and images from the gltf images array are referenced for the faces og the cube.
· Other extensions at the root level are in progress and may become available (KHR_lights_ies, KHR_ligths_environment, KHR_lights_area ([5])…). The KHR_lights_area extension is used at the root of the glTF file, and at the node level to describe properties of an area light (uniform surface). This light is referenced by a node and inherit the transform of that node.

A common characteristic of those extensions is that they define light properties at the glTF root level with an array of light elements for each extension. An example is given in Table 1.

 "extensions": {
 "EXT_lights_image_based": {
 "lights": [
 {
 "intensity": 1,
 "irradianceCoefficients": [
 …
],
 "name": "imageBasedLight",
 "rotation": [
 0,
 0.7071067094802856,
 0,
 0.7071068286895752
],
 "specularImageSize": 256,
 "specularImages": [
 [
 0,
 1,
 2,
 3,
 4,
 5
]
]
 }
]
 },
 "KHR_lights_punctual": {
 "lights": [
 {
 "color": [
 1,
 1,
 1
],
 "intensity": 0.5,
 "type": "directional",
 "name": "Sun"
 },
 {
 "color": [
 1,
 0,
 0
],
 "intensity": 1000,
 "spot": {
 "innerConeAngle": 0.3337942263919169,
 "outerConeAngle": 0.39269909262657166
 },
 "type": "spot",
 "name": "Spot"
 },
 {
 "color": [
 0,
 0,
 1
],
 "intensity": 1000,
 "spot": {
 "innerConeAngle": 0.3337942263919169,
 "outerConeAngle": 0.39269909262657166
 },
 "type": "spot",
 "name": "Spot.001"
 }
]
 },
 "KHR_lights_area": {
 "lights": [
 {
 "intensity": 1.0,
 "color": [
 1.0,
 1.0,
 1.0
],
 "shape": "rect",
 "width": 1.0,
 "height": 1.0,
 },
]
 }
 }
[bookmark: _Ref115940282]Table 1: light sources definition in a glTF file

Concerning the time evolving light properties, a new Khronos extension is in discussion that may fill the gap. The KHR_animation_pointer [6] is used at the “animations/channel” level to specify a JSON pointer that indicates a glTF element to animate. Any element in the glTF file (including elements from an extension) may be specified, provided that this element is “Animatable”. The keyframes data and their timing are provided in a separate binary file or in the gltf file as a base64 coded buffer. They are accessed via accessors, bufferview and buffer as for any other glTF animations ([7]). The input value of the animation sampler points to the list of times and the output value points to a list of values for each keyframe.

"animations": [
 {
 "channels": [
 {
 "sampler": 0,
 "target": {
 "path": "pointer",
 "extensions": {
 "KHR_animation_pointer": {
 "pointer": "/materials/3/pbrMetallicRoughness/baseColorFactor"
 }
 }
 }
 }
],
 "samplers": [
 {
 "input": 24,
 "interpolation": "STEP",
 "output": 25
 }
]
 }
]
Table 2: KHR_animation_pointer example (glTF file extract)

The current document reviews use cases from [1][2] and focuses on the spotlights and image-based lights scenarios. It proposes an implementation using the above available or in progress extensions, when applicable. Otherwise, new solutions/extensions are introduced.

2 Test case virtual-1: virtual spots in virtual scene

This use case may be implemented by the KHR_animation_pointer extension.
The times of each color change and the new color values for each spot are set in a binary animation file. The color property of each spot is animated thanks to this extension:

"animations": [
 {
 "channels": [
 {
 "sampler": 0,
 "target": {
 "path": "pointer",
 "extensions": {
 "KHR_animation_pointer": {
 "pointer": "/extensions/KHR_lights_punctual/lights/0/color"
 }
 }
 }
 },
 {
 "sampler": 1,
 "target": {
 "path": "pointer",
 "extensions": {
 "KHR_animation_pointer": {
 "pointer": "/extensions/KHR_lights_punctual/lights/1/color"
 }
 }
 }
 }
],
 "samplers": [
 {
 "input": 24,
 "interpolation": "STEP",
 "output": 25
 },
 {
 "input": 24,
 "interpolation": "STEP",
 "output": 27
 }
]
 }
]
Table 3: lights color animation with KHR_animation_pointer (glTF file extract)

No interpolation is performed between two keyframes.
The BabylonJS and ThreeJS engine implement the KHR_animation_pointer and can play this test case. The glTF file and the bin file are delivered with this contribution.

[image: Graphical user interface

Description automatically generated][image: Graphical user interface

Description automatically generated][image: Graphical user interface, application

Description automatically generated]
Figure 1: lights color animation in BabylonJS

The following table shows the times and the keyframes values of the animated colors, stored in the bin file:

	Time
	Spot1 color
	Spot2 color

	0.0
	[1.0, 1.0, 1.0]
	[1.0, 1.0, 1.0]

	5.0
	[1.0, 1.0, 0.0]
	[0.0, 1.0, 0.0]

	10.0
	[1.0, 0.0, 0.0]
	[0.0, 0.0, 1.0]

	15.0
	[1.0, 1.0, 1.0]
	[1.0, 1.0, 1.0]

3 Test case env-1: static picture-based environment cubemap

This test case may be implemented with the EXT_lights_image_based extension and can be played by BabylonJS and ThreeJS engine.

 …
 "extensionsUsed" : [
 "KHR_lights_punctual",
 "EXT_lights_image_based",
 "KHR_animation_pointer"
],
 "extensionsRequired" : [
 "KHR_lights_punctual"
],
 "extensions" : {
 "EXT_lights_image_based": {
 "lights": [
 {
 "intensity": 1,
 "irradianceCoefficients": [
 [1.8839140747279469,1.2336689528140037,1.6815759445875259],
 [1.0005113784288705,0.8691400255493019,1.4887876533795357],
 [0.5603794677467341,0.2578132145126057,0.19374826573501498],
 [1.3072342827477733,0.6636485650699964,0.6695344061570127],
 [0.5640030294080713,0.37938937249123669,0.49194331732327276],
 [0.27256774141207748,0.143343904079048,0.1155890697070088],
 [-0.1381991414602802,-0.057096853570897488,-0.04879314267934546],
 [0.5350810043540868,0.263230477756704,0.24531039907656564],
 [0.43283339060831907,0.12637845128810608,-0.0041528480118368589]
],
 "name": "imageBasedLight",
 "rotation": [0,0.7071067094802856,0,0.7071068286895752],
 "specularImageSize": 256,
 "specularImages": [
 [0,1,2,3,4,5]
]
 }
]
 }
 },
 "scene" : 0,
 "scenes" : [
 {
 "name" : "Scene",
 "nodes" : [0,2,3,5],
 "extensions": {
 "EXT_lights_image_based": {
 "light": 0
 }
 }
 }
],
 "images": [
 {
 "uri": "IBL/grey_sky/+X.png",
 "mimeType" : "image/png",
 "name" : "pz"
 },
 {
 "uri": "IBL/grey_sky/-X.png",
 "mimeType" : "image/png",
 "name" : "nz"
 },
 {
 "uri": "IBL/grey_sky/-Z.png",
 "mimeType" : "image/png",
 "name" : "py"
 },
 {
 "uri": "IBL/grey_sky/+Z.png",
 "mimeType" : "image/png",
 "name" : "ny"
 },
 {
 "uri": "IBL/grey_sky/+Y.png",
 "mimeType" : "image/png",
 "name" : "nx"
 },
 {
 "uri": "IBL/grey_sky/-Y.png",
 "mimeType" : "image/png",
 "name" : "px"
 }
]
 …
Table 4: ambient light with EXT_lights_image_based (glTF file extract)

The glTF asset for this scenario has already been provided in the contribution m60669 [8].

[image: Graphical user interface, chat or text message

Description automatically generated]
Figure 2: Ambient light with EXT_lights_image_based in BabylonJS

4 Test case env-2: dynamic picture-based environment cubemap

Although no implementation is available yet to animate this kind of element, it would be possible to address this scenario with the KHR_animation_pointer, by animating the glTF array element “/extensions/EXT_lights_image_based/lights/0/specularImages/0”: It would be similar to the way an animation is described for the “weights” parameter of a node or a mesh element ([6]).

For this test case, the scene description document specifies an array of 12 images. The indexes array of the extension is [0,1,2,3,4,5] at time 0s and [6,7,8,9,10,11] at time 5s. No interpolation is performed between the two keyframes.
The following table shows how it could be implemented in a scene description document.

 …
 "animations": [
 {
 "channels": [
 {
 "sampler": 0,
 "target": {
 "path": "pointer",
 "extensions": {
 "KHR_animation_pointer": {
 "pointer":/extensions/EXT_lights_image_based/lights/0/specularImages/0"
 }
 }
 }
 }
],
 "samplers": [
 {
 "input": 8,
 "interpolation": "STEP",
 "output": 9
 }
]
 }
],
 "extensions": {
 "EXT_lights_image_based": {
 "lights": [
 {
 "intensity": 1,
 "irradianceCoefficients": [
 [1.8839140747279469,1.2336689528140037,1.6815759445875259],
 [1.0005113784288705,0.8691400255493019,1.4887876533795357],
 [0.5603794677467341,0.2578132145126057,0.19374826573501498],
 [1.3072342827477733,0.6636485650699964,0.6695344061570127],
 [0.5640030294080713,0.37938937249123669,0.49194331732327276],
 [0.27256774141207748,0.143343904079048,0.1155890697070088],
 [-0.1381991414602802,-0.057096853570897488,-0.04879314267934546],
 [0.5350810043540868,0.263230477756704,0.24531039907656564],
 [0.43283339060831907,0.12637845128810608,-0.0041528480118368589]
],
 "name": "imageBasedLight",
 "rotation": [0,0.7071067094802856,0,0.7071068286895752],
 "specularImageSize": 256,
 "specularImages": [
 [0,1,2,3,4,5]
]
 }
]
 }
 },
 "images": [
 {
 "uri": "IBL/grey_sky/+X.png",
 "mimeType" : "image/png",
 "name" : "pz"
 },
 {
 "uri": "IBL/grey_sky/-X.png",
 "mimeType" : "image/png",
 "name" : "nz"
 },
 {
 "uri": "IBL/grey_sky/-Z.png",
 "mimeType" : "image/png",
 "name" : "py"
 },
 {
 "uri": "IBL/grey_sky/+Z.png",
 "mimeType" : "image/png",
 "name" : "ny"
 },
 {
 "uri": "IBL/grey_sky/+Y.png",
 "mimeType" : "image/png",
 "name" : "nx"
 },
 {
 "uri": "IBL/grey_sky/-Y.png",
 "mimeType" : "image/png",
 "name" : "px"
 },

 {
 "uri": "IBL/blue_sky/+X.png",
 "mimeType" : "image/png",
 "name" : "pz"
 },
 {
 "uri": "IBL/blue_sky/-X.png",
 "mimeType" : "image/png",
 "name" : "nz"
 },
 {
 "uri": "IBL/blue_sky/-Z.png",
 "mimeType" : "image/png",
 "name" : "py"
 },
 {
 "uri": "IBL/blue_sky/+Z.png",
 "mimeType" : "image/png",
 "name" : "ny"
 },
 {
 "uri": "IBL/blue_sky/+Y.png",
 "mimeType" : "image/png",
 "name" : "nx"
 },
 {
 "uri": "IBL/blue_sky/-Y.png",
 "mimeType" : "image/png",
 "name" : "px"
 }
]
 …
Table 5:image based light animation with KHR_animation_pointer

The glTF file and the bin file for this test case are delivered with this contribution.The following table shows the times and the keyframes values of the animated images array, stored in the bin file:

	Time
	Indexes array

	0.0
	[0, 1, 2, 3, 4, 5]

	5.0
	[6, 7, 8, 9, 10, 11]

5 Test case env-3: video-based picture-based environment cubemap

This test case is not addressed by an existing extension. The EXT_lights_image_based extensions would be a solution if we could reference video content instead of images in the specularImages array.

We propose to introduce a new extension MPEG_lights_texture_based where the specularImages array references texture instead of images.
This new extension is based on the EXT_lights_image_based extension. It is used at the root of the glTF file, and at the scene level to describe properties of image-based lights.

Since we are referencing a texture, this new extension could address image-based lights as well as video-based lights when associated with the MPEG_texture_video extension.

The following table gives the semantics of this new extension. The properties that are highlighted are the ones that are changed compared to the EXT_lights_image_based extension. This extension declares only one level of texture. The renderer will generate other levels if needed.

	Name 
	Type 
	Usage 
	Default 
	Description 

	name
	string
	O
	
	Name of the light

	rotation
	Array
	O
	[0.0,0.0,0.0]
	Quaternion that represents the rotation of the IBL environment.

	intensity
	Number
	O
	1.0
	Brightness multiplier for environment.

	irradianceCoefficients
	Array
	M
	
	Declares spherical harmonic coefficients for irradiance up to l=2. This is a 9x3 array.

	specularImages
	Array
	M
	
	Declares an array of textures for the cubemap, i.e. an array of 6 texture indexes, one for each cube face.

	specularImageSize
	Number
	M
	
	The dimension (in pixels) of the textures referenced in the specularImages array.

Table 6: MPEG_lights_texture_based properties

Note: another Khronos extension (KHR_lights_environment [9]) is proposed that also addresses image-based lights. It is based on the EXT_lights_image_based extension. The major difference is that KTX2 is used as a container format for cubemap textures and that the cubemaps does not contain prefiltered mip-levels, this shall be done by implementations. Since the KTX2 format only addresses static images, it would be difficult to base our new extension on this one.

6 Processing Model

The use cases described above require lights extension to describe light sources parameters (KHR_lights_punctual and EXT_lights_image_based). KHR_animation_pointer extension and our new MPEG_lights_texture_based extension are used to implement time evolving lights properties.

When the KHR_animation_pointer extension is present in the scene description document and is associated to a light element, the Presentation Engine should adjust the glTF light parameters based on the data provided by the animation data.
As noted in the glTF 2.0 specifications, only the storage of animation keyframe is defined and no other runtime behaviors are defined (such as play/stop/loop…). The MPEG_animation_timing may be used to address these behaviors.

When the MPEG_lights_texture_based extension is present in the scene description document, the presentation engine uses the referenced textures for the faces of the cubemap light.

16.7.3 m60868 [SD] [EE 8] – Timed lighting extensions
1
2
3
4
5
5.1
5.2
5.3
5.3.1
5.3.2
5.3.3 MPEG_light_nature extension
5.3.3.1 General
MPEG light nature extension, identified by MPEG_light_nature, provides the ability to differentiate between real and virtual light sources present as glTF elements. Any light source information externally defined for glTF can be extended with this extension.
5.3.3.2 Semantics
The definition of all objects within MPEG_light_nature extension is provided in Table XXX.

Table XXX – Definition of top-level objects of MPEG_light_nature extension
	Name
	Type
	Default
	Usage
	Description

	nature
	string
	
	M
	Indicates whether the lighting information corresponds to a physical light, a virtual light or unknown.

The allowed values are: “physical”, “virtual” or “unknown”.

5.3.3.3 Processing model
When, in a scene description document, the scene references light elements, the renderer should determine whether the lighting information is a virtual or a physical lighting information based on the value of the “nature” field. If the scene contains both physical and virtual lighting information, then the renderer should relight the virtual elements of the scene (e.g. virtual objects) present in the scene with both lighting information. Regarding real elements of the scene, the renderer should only relight those with the virtual lighting information since by definition the real elements of the scene are already illuminated by the physical light sources in the scene.
16.7.4 m61176 [SD] On Lighting
Image-Based Lighting
 Image-based lighting (IBL) is the process of illuminating a scene using light images that are captured from the real-world environment. When performed accurately, IBL is able to produce realistic rendering of an augmented reality (AR) scene.
IBL consists of a set of basic steps:
· Capturing an HDR image of the real-world environment. This image is usually an omnidirectional or cube map image.
· Mapping the illumination, extracted from image, onto a representation of the environment.
· Shading the scene based on the mapped illumination and the scene objects.

The following image (found on the web) depicts an example of this process. The ball is a synthetic object, where as the rest is a real-world environment.
[image: A picture containing tree, ground, outdoor, projectile

Description automatically generated]

The first step is performed by obtaining a light probe image, which is an HDR omnidirectional image that reflects linearly the light intensity in every direction. When rendering the scene, the shader will do ray tracing to determine the incident illumination on the surface of the scene objects from the IBL environment image. The following figure depicts the shading procedure:
[image: A picture containing text, watch

Description automatically generated]
Where rv is the reflected view vector and n is the surface normal.

glTF 2.0 has an extension EXT_lights_environment, which provides the ability to define image-based lights in a glTF scene. It supports providing specular radiance and irradiance information in an environment map.
The following is an example of the extension:
	"extensions": {
 "EXT_lights_image_based" : {
 "lights": [
 {
 "intensity": 1.0,
 "rotation": [0, 0, 0, 1],
 "irradianceCoefficients": [...3 x 9 array of floats...],
 "specularImageSize": 256,
 "specularImages": [
 [... 6 cube faces for mip 0 ...],
 [... 6 cube faces for mip 1 ...],
 ...
 [... 6 cube faces for mip n ...]
],
 }
]
 }
}

The HDR cubemap images can be provided in different mipmap levels.

IBL lighting and the EXT_lights_image_based extension seem to be the right approach to address the needs and requirements of the EE on lighting. We suggest that based on this, support for the EXT_lights_image_based extension should be recommended for AR scenarios that require PBR.

1.1 Test cases
1.1.1 Test case virtual-1: virtual spots in virtual scene
	Test case identifier
	virtual-1

	Description
	A set of two spotlights or point lights with white color illuminates a surface with 2 objects (2 spheres). A light animation changes the color of the two spotlights on a time bases: after 5 s, the spot one change to green and the second change to yellow. After another 5s, the spot one change to blue and the second change to red.

	Test assets
	Scene with the following 3D objects:
· Plane + 2 spheres
· 2 spotlights

	Current support
	The following features are supported:
· Punctual light (spotlight)

	Criteria
	A renderer needs to be able to render the spotlights with the starting color and then change the color at the predefined times.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-1

1.1.2 Test case virtual-2: various virtual lights in virtual scene
	Test case identifier
	[bookmark: _Hlk109331354]virtual-2

	Description
	In this test case, the scene is virtual and the lighting are also virtual. To generate this test case, it is possible to create a glTF scene using the KH_punctual_light extension.

It contains three punctual lights of type spot above the living room. Those ceiling spots have respectively a red, blue and green colour. The red spot has a larger light cone than the two others. In addition, four punctual lights of type “point” are on the wall in the back. Their colour is white.

	Test assets
	The scene contains:
· A carpet
· A coffee table
· A sofa
· A shelve
· Planes making an indoor room

	Current support
	Light source extension:
· KH_punctual_light

	Criteria
	A renderer needs to be able to render the virtual lights according to their description in terms of size, intensity, direction and color.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-2

1.1.3 Test case virtual-3: picture-based illuminating surface in virtual scene
	Test case identifier
	virtual-3

	Description
	A TV screen displays an image and illuminates a surface with 2 spheres (for instance with an area light).
An audio source is played by the TV and at some predefined times, a new image is displayed on the TV screen.

The lighting on the objects changes over time as the surface light intensity changes.

	Test assets
	Scene with the following 3D objects:
· For the TV, a vertical plane with an image texture
· Plane + 2 spheres

	Current support
	The following features are supported:
· Image texture
· The support for area light is missing and may be difficult to implement in mpegtrimesh.

	Criteria
	A renderer needs to be able to render the TV screen with the displayed images and render the correct appearances of object accordingly.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-3

1.1.4 Test case virtual-4: video-based illuminating surface in virtual scene
	Test case identifier
	virtual-4

	Description
	A TV screen displays an image and illuminates a surface with 2 spheres (for instance with an area light).
An audio source is played by the TV and at some predefined times, a new image is displayed on the TV screen.

The lighting on the objects changes over time as the surface light intensity changes.

	Test assets
	Scene with the following 3D objects:
· For the TV, a vertical plane with an video texture
· Plane + 2 spheres

	Current support
	The following features are supported:
· MPEG video texture for the variant
· The support for area light is missing and may be difficult to implement in mpegtrimesh.

	Criteria
	A renderer needs to be able to render the TV screen with the displayed video and render the correct appearances of objects accordingly.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-4

1.1.5 Test case env-1: static picture-based environment cubemap
	Test case identifier
	env-1

	Description
	A sphere on a surface is inside an environment that illuminates the 2 objects (for instance with a lighting cubemap).

	Test assets
	Scene with the following 3D objects:
· Plane + 1 sphere
· One 2D images as environment cubemap texture

	Current support
	The following features are supported:
· The support for lighting cube map (for instance Khronos EXT_lights_image_based extension) is missing.

	Criteria
	A renderer needs to be able to render the objects appearances based on the environment texture.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/env-1

1.1.6 Test case env-2: dynamic picture-based environment cubemap
	Test case identifier
	env-2

	Description
	A sphere on a surface is inside an environment that illuminates the 2 objects (for instance with a lighting cubemap).

At some predefined times, the environment changes and the lighting on the objects changes accordingly.

	Test assets
	Scene with the following 3D objects:
· Plane + 1 sphere
· Two 2D images as environment cubemap texture

	Current support
	The following features are supported:
· The support for lighting cube map (for instance Khronos EXT_lights_image_based extension) is missing.

	Criteria
	A renderer needs to be able to render the objects appearances based on the environment texture as the map changes, the rendering of the objects has to change.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/env-2

1.1.7 Test case env-3: video-based environment cubemap
	Test case identifier
	env-3

	Description
	A sphere on a surface is inside an environment that illuminates the 2 objects (for instance with a lighting cubemap).

The environment texture is based on a coded video.

	Test assets
	Scene with the following 3D objects:
· Plane + 1 sphere
· A 2D video as environment cubemap texture

	Current support
	The following features are supported:
· The support for lighting cube map (for instance Khronos EXT_lights_image_based extension) is missing.

	Criteria
	A renderer needs to be able to render the objects appearances based on the environment texture as the map changes over time, possibly at every frame of the video.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/env-3

1.1.8 Test case real-1: Virtual objects with shadows from real light
	Test case identifier
	real-1

	Description
	A real light illuminates a real table on which are placed a real object (for example, a speaker) and a virtual object (for example a teddy bear).
The real light is simulated by a virtual light (spotlight).

	Test assets
	Scene with the following 3D objects:
· Plane + Speaker (real scan: obj format for example)
· 1 Teddy Bear (virtual object)

	Current support
	The following features are supported:
· Support for shadows
· Support for spot light

	Criteria
	A renderer needs to be able to:
· Render the shadow associated to the virtual object
· Render the direction of shadow associated to the virtual object
· Render the contour of shadow associated to the virtual object

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/real-1

1.1.9 Test case mix-1: Mix of virtual and real light sources
	Test case identifier
	mix-1

	Description
	A real scene containing an object on a table is illuminated by an ambient light as well as a main directional light from the top. Next to the real object, a virtual object is located on the table. In addition, a virtual spot illuminates the objects and the surroundings of the objects with a red colour.

	Test assets
	Scene with the following 3D objects:
· Virtual spot light of red colour
· Virtual object

AR Scene recorded with ARCore containing:
· Ambient lighting information
· Main directional light and intensity
· Video of the scene with the table and the object

	Current support
	The following features are supported:
· Support for shadows
· Support for virtual spot light
·

	Criteria
	A renderer needs to be able to:
· Render the shadow associated from both the real and virtual lights of the virtual objects
· Render the red colour of the virtual light onto the real scene (object and surrounding)

	Location
	To be added if accepted, test asset to be provided.

1.2 AR scene recording format
In order to record AR scene in the context of this EE, the EE defines mp4 formats to be observed by the submitted mp4 files containing the assets. This way, they can be unambiguously consumed by participants and reference software such as mpegtrimesh.

Note that currently ony an ARcore-based recoding format is defined but there may be more in the future.
1.2.1 ARCore-based recording format
For recording made using AR Android device, the format defined in Table 13 is expected.

[bookmark: _Ref111196640]Table 13 - ARCore-based recording format
	Track #
	Codec type
	Track type
	Sample format

	1
	avc1
	Visual track
	AVC NAL format

	2
	mett
(application/arcore-video-0)
	Metadata track
	Mysterious

	3
	mett
(application/ arcore-gyro)
	Metadata track
	Need to check

	4
	mett
(application/ arcore-accel)
	Metadata track
	Need to check

	5
	mett
(application/ arcore-custom-event)
	Metadata track
	Need to check

	6
	mett
(application/ hello-recording-playback-anchor)
	Metadata track
	Need to check

	7
	mett
(application/ mpeg-sd-spherical-harmonics)
	Metadata track
	Vector of 27 floats coded on 32 bits.

ARCore API:
getEnvironmentalHdr-AmbientSphericalHarmonics()

	8
	mett
(application/ mpeg-sd-main-light)
	Metadata track
	Vector of 3 floats coded on 32 bits (direction), vector of 3 floats coded on 32 bits (intensity)

ARCore API: getEnvironmentalHdr-MainLightDirection() and getEnvironmentalHdr-MainLightIntensity()

	9
	mett
(application/ mpeg-sd-environment-cubemap)
	Metadata track
	PNG-compressed cubemap in 3x2 layout

Width : 48 pixels
Height : 32 pixels
Color space: RGBA
Bit depth : 16 bits
Compression mode: Lossless

Projection:
[image:]

See 5.2.3 Cubemap projection for one sample location in MPEG-I OMAF

ARCore API: acquireEnvironmentalHdrCubeMap()

Tracks from 1 to 6 are provided as is by the mp4 recording API of ARCore. The tracks from 7 to 9 are defined for the specific purpose of the EE8.

1.3 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solutions. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc..
	Criteria
	Description
	Evaluation

	Crieria #1
	Description
	The technical solution should minimize/optimise …

1.4 Technical solution development
1.4.1 Design principles

Principle #1
Reuse light source descriptions defined in Khronos and common to AR frameworks.

Principle #2
Signalling agnostic to virtual or real scenes (addressing both VR and AR applications).

Principle #3
Signalling common to virtual and real sources of light.

Principle #4
Signalling the nature of the source of light for appropriate rendering.

Principle #5
Signalling the nature of the source of light for appropriate rendering.

Principle #6
Reusing as much as possible glTF extensions related to the lighting topics.

1.4.2 On existing glTF lighting extensions
The EXT_lights_image_based extension should be recommended for AR scenarios that require PBR.
1.4.3 On dynamicity of the lighting information
For changing properties of the lighting information on the presentation time basis, The KHR_animation_pointer is used.

The KHR_animation_pointer is used at the “animations/channel” level to specify a JSON pointer that indicates a glTF element to animate. Any element in the glTF file (including elements from an extension) may be specified, provided that this element is “Animatable”. The keyframes data and their timing are provided in a separate binary file or in the gltf file as a base64 coded buffer. They are accessed via accessors, bufferview and buffer as for any other glTF animations. The input value of the animation sampler points to the list of times and the output value points to a list of values for each keyframe.

[Editor’s note: As documented in the related GitLab issue, the use of the KHR_animation_pointer extension is conditioned to the feedback from Khronos.]

1.5 Timeline
· 2022-04-30: post MPEG#138 AHG
· Collection of use test cases
· Collection of evaluation criteria
· Initial thoughts on reference software implication (e.g. light rendering in trimesh)
· 2022-07-18: MPEG #139(online) meeting starts
· Agree on test cases and their possible prioritisation
· Agree on evaluation criteria
· 2022-07-22: post MPEG#139 AHG
· Provide and collect all test assets for the agreed test cases
· Collect possible additional test cases
· Collect input on initial technical solutions for light source representation and signalling (preferably with assets and implementations)
· Collect input on MPEG-I SD architecture lighting rendering integration
· 2022-10-24: MPEG #140(online) meeting starts
· Progress work
· 2023-01-16: MPEG #141(online) meeting starts
· Agree on final technical solution (assets and implementations needed for agreement)
· Agree on modified MPEG-I SD reference architecture (if modifications needed)
1.6 References
[1] [bookmark: _Ref102040357]Lighting a WebXR setting - Web APIs | MDN (mozilla.org), https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API/Lighting
[2] [bookmark: _Ref102040430]Introduction to Lighting Estimation | ARCore | Google Developers, https://developers.google.com/ar/develop/java/lighting-estimation/introduction?hl=en

image1.jpeg

image80.png
) © | NY Right
Y Lel PX front | @
° L]

image2.emf

Texture	Track

Occupancy	Track

Si
ng
le
	T
ra
ck

HEVC	Decoder

HEVC	Decoder

Processing

Processing

Buffer

Presentation	
Engine

Pi
pe
lin
e	
#1

Pi
pe
lin
e	
#2
a

Atlas	Track Metadata

Static	Metadata

Geometry	Track	 HEVC	Decoder Processing

HEVC	Decoder

HEVC	Decoder

Metadata

HEVC	Decoder

Processing

Processing

Processing

3D
	R
ec
on
st
ru
ct
io
n

Buffer

Buffer

Buffer

Buffer

De
m
ux
er

Si
ng
le
	T
ra
ck

Buffer

Pi
pe
lin
e	
#2
b

Texture	Track

Occupancy	Track

S

i

n

g

l

e

	

T

r

a

c

k

HEVC	Decoder

HEVC	Decoder

Processing

Processing

Buffer

Presentation	

Engine

P

i

p

e

l

i

n

e

	

#

1

P

i

p

e

l

i

n

e

	

#

2

a

Atlas	Track Metadata

Static	Metadata

Geometry	Track	 HEVC	Decoder Processing

HEVC	Decoder

HEVC	Decoder

Metadata

HEVC	Decoder

Processing

Processing

Processing

3

D

	

R

e

c

o

n

s

t

r

u

c

t

i

o

n

Buffer

Buffer

Buffer

Buffer

D

e

m

u

x

e

r

S

i

n

g

l

e

	

T

r

a

c

k

Buffer

P

i

p

e

l

i

n

e

	

#

2

b

image3.png
texture

rial

matel

node

mesh

accessor

}H

camera

[_enimaton)

bufferView

image4.emf
{ "extensions" : { "MPEG_V3C" : { "objects" : [{ // ... add V3C video - coded components "V3C_ATLAS" : [{ "blockSize" : 16 , // < - patch packing block size "BlockToPatchMap" : 111 , // < - accessor "NumberOfPatches" : 112 , // < - accessor "CommomPatchParameters" : 113 , // < - accessor "PLRLevel" : 114 , // < - accessor "BlockPLRD" : 115 , // < - accessor "PatchPLRD" : 116 , // < - accessor "EOMPatchInfo" : 117 // < - accessor }] }] } } }

oleObject1.bin

image5.png
e

14
{ accessor: 1
. .

| accessor: 3 \w accessor: 4 D
g r:
AN / \

N

cxtensions cxtensions

N

~
‘ MPEG _accessor_timed ‘ ‘ MPEG_accessor_timed ‘ ‘ MPEG_accessor_timed ‘

—

bufferView bufferView ufferview bufferView

i)
- ™ B ~ ow:a)
{ bufferview:1 (“outterview:2) { bufterview:3) bufferView: 4
. J N J J S—

buffer : 0
\extens\on MPEG_buffer. clrcularj

bufferView

butterView-._
—bufferView_

Atlas frame data

r
‘Timed Accessor ‘Timed Accessor ‘Timed Accessor ‘Timed Accessor block to common patch |, Jieation-specific patch parameters
N N N N patchmap NOP parameters J-I‘—l‘—l—l‘_‘
Ileader Information | lleader Information | lleader Information | Ileader Information information for all (patch : NOTP) EOM patch information
C s . o s
timedAccessorHeaderinfo({ timedAccessorHeaderTnfo(){
timestampDella:30, tirnestampDella 50,
componentType: 5125,
type: "SCALAR",
mnormalised: LSE
bufferOffset: o
count: #total number of blocks
min: o
bufferViewByteOffset:
bufferViewByteLength: hulTeerenBvle]_engu-n 3
bufferViewByteStrid DbufferViewByteStrids
H }
timedAccessorHeaderInfo(){ timedAccessorHeaderInfo(){
timestampDelta:30, timestampDelta:30,
componentType: 5125, componentType: 5125,
type: "Sealar” type: VEC3,
normalised: FALSE normalised: FALSE
bufferOffsct: o
count: 4
min: o min: {0, 0, 0}
bufferViewByteOffset: bufferViewByteOffset: |
bufferViewByteLengt bufferViewByteLengt
bufferViewByteStrid bufferViewByteStride:
H H

image6.emf

MPEG_scene_dynamic

MPEG_viewport_recommended

MPEG_animation_timing

scene

node
MPEG_audio_spatial

mesh

MPEG_mesh_linking

accessor

MPEG_accessor_timed

bufferView

camera
MPEG_audio_spatial

MPEG_objects

MPEG_media

MPEG_objects

MPEG_V3C

buffer

MPEG_buffer_circular

material

technique

program

shader

texture

MPEG_mesh_linking

source image

object

animation

skin

light

MPEG_scene_dynamic

MPEG_viewport_recommended

MPEG_animation_timing

scene

node

MPEG_audio_spatial

mesh

MPEG_mesh_linking

accessor

MPEG_accessor_timed

bufferView

camera

MPEG_audio_spatial

MPEG_objects

MPEG_media

MPEG_objects

MPEG_V3C

buffer

MPEG_buffer_circular

material

technique

program

shader

texture

MPEG_mesh_linking

source

image

object

animation

skin

light

image7.png
o
N
*
L
£
o]
=
)

Geometry Track

Texture Track

Occupancy Track

Atlas Track

Static Metadata

Multiplexer

Presentation Engine

-/

image8.png
Trigger

S

Node

Action

.

image9.png
2y 0

|' chairglb - paint 30

Triangles: 740 < Vertices: 372

e Painter practice piece

Dining table chai

ense: CC Attribution-NonCommercial

ih € AU

R Type here to search

3D library.

o

100%

9

Undo

History

wale Jus pusl
g pilal
EgyBest 2
EgyBest app
o2l gégo

daall ey sl

gils palél
dudilig pAlal
EgyBest
EgyBest vip
gyl
Suxall cuay ol

apk cuy ol

EgyBest

1. AaB 1.1. Aal 1.1.1. A AaBbCcD AaBbCc AaBbCCD

feading 1 T Heading 2 Headings 3

EAP-Radius - stron.

@ Flybox

@ How to Setup IKEV2.

A

or

Replace.

D Selectv

engne

- Cesium Filament Threejs

Show Background

kitten/docker-stron...

@ Manage

A~ &

=

ENG

838 PM

1/6/2021

B

image10.emf
scene

node

mesh

accessor

bufferView

buffer

MPEG_buffer_circular

MPEG_mesh_linking

MPEG_accessor_timed

MPEG_media

MPEG_audio_spatial

MPEG_scene_dynamic

light

camera

material

technique

program

shader

texture

MPEG_texture_video

animation

skin

source

image

MPEG_recommended_viewport

MPEG_audio_spatial

MPEG_animation_timing

MPEG_scene_interactivity

image11.emf
set activation status = TRUE

are

conditions

met

?

yes

no

activation

status ==

TRUE

?

activate

once ==

TRUE

?

set activation status = FALSE

yes

no

yes

no

activate the trigger

image12.emf
process the interrupt action

is

on-going

behavior

?

yes

no

new scene description

is

behavior

still defined

?

yes

no

continue the on-going behavior stop the on-going behavior

apply the new scene description

image13.png
~ MPEG_media

MPEG_scene_dynamic } —_—— MPEG_scene_interaction

4 N
[
|

| behaviors I p
P

_ j‘ MPEG_haptic

MPEG_recommended_viewport

k 314 / .

f ld \ User Inputs
node

<—

[MPEG_avatar]
trigger —»

[MPEG_audio_spatial]
\ J action ——p

int t
v l interrup >
material mesh
MPEG_material_haptic J [MPEG_mesh_collision

l v

accessor animation

image14.svg
 scene node MPEG_media MPEG_scene_dynamic MPEG_recommended_viewport animation mesh material MPEG_ haptic MPEG_material_haptic MPEG_scene_ interaction MPEG_ avatar MPEG_ audio_spatial MPEG_ mesh_collision behaviors accessor trigger action interrupt User Inputs

image15.png
44 4

image16.png

image17.png
i

image18.png
scene

MPEG scene_dynamic

MPEG_recommended viewport

MPEG_animation_timing

'

camera

node

MPEG audio_spatial |

MPEG_audio_spatial

mesh
MPEG_mesh linking

2

animation —

skin

accessor

MPEG_accessor_timed
bufferView
S
buffer

MPEG _buffer_circular

MPEG_media

material

program

shader

texture

MPEG_texture_video

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png
H

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.svg
 Hips Spine Chest UpperChest UpperLeg_Left LowerLeg_Left Foot_Left Toes_Left Shoulder_Left UpperArm_Left LowerArm_Left Hand_Left Hand_Right ProximalThumb_Right IntermediateThumb_Right DistalThumb_Right TopIndex_Right Index Middle Ring Little Thumb

image38.png

image39.png

image40.png

image41.png

image42.emf

The 1 st landmark

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.png

image52.jpeg
2 -

image53.png

image54.jpeg
s .u?{

eoutd

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png
Sensor
Data

Face
3DMMHead | _ ___ ?l_erld_s_hfp_ef _____________
Encoder
Body
[BodvEncoder }-- - - g5 abmas — -~~~ -~ ------
Body Encoder Blend Shapes
Hands
Handlincode | _ o __Joints ________________
Inverse Kinematics
Head Pose

6 DOF

Offline3D
Model

Avatar Reconstruction
and_Animation

Shared Space

image65.png
Avatar Reconstruction

Video Decoder

Video Decoder

Parametrization Data

Static Metadata

P T —

Avatar
Reconstruction

—F—>1 Vertex Buffer
—'—>1 Texture Buffer

i Skinning/Joint
! data Buffer

Interactivity
Metadata
Buffer

Presentation Engine

image66.png
Mesh

Mesh

Mesh

Mesh

Node

Children

Extension

MPEG node_avatar

[)

[

noid/body

type

mappings

sources

/huprfanoid/arms/left/hand

image67.jpeg

image68.jpeg

image69.jpeg

image70.jpeg

image71.jpeg

image72.png
+
Il

Main Ambient HDR Environmental
Directional Light Spherical Harmonics Cubemap HDR

image73.png

image74.png

image75.png

image76.png

image77.png
T ‘Open Controls

image78.png

image79.png

