
[image:]ISO/IEC JTC 1/SC 29/WG 03 N0613

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Exploration Experiments for MPEG-I Scene Description
Status:	Approved
Date of document:	2022-08-12
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	62 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N0613
August 2022, Virtual
	Title
	Exploration Experiments for MPEG-I Scene Description

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	21742

1	EE1: Carriage of Random Access Support in Scene Description (closed)	1
2	EE2: Dynamic Scene Update (closed)	1
3	EE3: Codec Support in MPEG-I SD (ongoing)	1
4	EE4: Haptics Support (closed)	23
5	EE5: Generic Interactivity Framework (on-going)	23
6	EE6: User Representation and Avatars (on-going)	40
7	EE7: AR Anchoring (closed)	48
8	EE8: Lighting (ongoing)	49
1	EE1: Carriage of Random Access Support in Scene Description (closed)	2
2	EE2: Dynamic Scene Update (closed)	2
3	EE3: Codec Support in MPEG-I SD (ongoing)	2
4	EE4: Haptics Support (ongoing)	25
5	EE5: Generic Interactivity Framework (on-going)	34
6	EE6: User Representation and Avatars (on-going)	52
7	EE7: AR Anchoring (on-going)	60
8	EE8: Lighting (new)	72

1 [bookmark: _Toc85228315][bookmark: _Toc111215385]EE1: Carriage of Random Access Support in Scene Description (closed)
EE closed at MPEG #137. Please see WG03 N00383 for the latest description of this EE.
2 [bookmark: _Toc102163012][bookmark: _Toc102163675][bookmark: _Toc102170445][bookmark: _Toc85228321][bookmark: _Toc111215386]EE2: Dynamic Scene Update (closed)
EE closed at MPEG #137. Please see WG03 N00383 for the latest description of this EE.
3 [bookmark: _Toc111215387]EE3: Codec Support in MPEG-I SD (ongoing)
3.1 Background
At the 136th MPEG meeting, WG7, WG4, and WG3 agreed jointly to establish a new EE as part of the MPEG-I Scene Description AHG to study and specify the necessary extensions to add support for the V3C codecs (V-PCC and MIV) in particular, and all immersive MPEG codecs in general.
The background of the discussion can be found in [1].
3.2 Current Understanding
It was established that when adding codec support, the following options are possible:
· Codec independent: in this option, all the necessary decoding and post-processing is performed to produce a primitive format that is natively supported by the Presentation Engine.
· Codec dependent: in this option, the Presentation Engine needs to have some level of support for the codec, in order to be able to render the object.
· Variant a: in this variant, an intermediate uncompressed format is passed to the Presentation Engine for rendering. A Presentation Engine that supports this format may then load the appropriate shader programs to perform post-processing (e.g. 3D reconstruction) and rendering of the object. The Presentation Engine must support the intermediate format.
· Variant b: in this variant, samples of the compressed stream are passed to the Presentation Engine for decompression, post-processing, and rendering. The Presentation Engine must support the compressed format.

These variants vary in the split of tasks between the media pipeline in the MAF and the Presentation Engine. The following diagram depicts example pipelines for these different options.
[image:]
Figure 1 Example Pipeline Options
The following example show how the different options could be described in the MPEG-I SD glTF document:
Table 1 Example glTF for Option 1
	.
.
.
{
 "name": ”vpcc_longdress",
 "primitives": [
 {
 "attributes": {
 "POSITION": 15,
 "COLOR_0": 16
 },
 "mode": 0
 }
]
}
.
.
.
"extensions": {
 "MPEG_media": {
 "media": [
 {
 "name": "longdress",
 "timeOffset": 0.0,
 "alternatives": [
 {
 "mimeType": "video/mp4;codec=v3e1.L2.0.0.1, avc1.4D401E",
 "uri": "https://example.com/vpcc_longdress.mp4"
 }
]
 }
]
 }
},

Table 2 Example glTF for Option 2a
	{
 "name": "vpcc_longdress",
 "primitives": [
 {
 "attributes": {
 "_MPEG_V3C_ATLAS_0": 1136,
 "_MPEG_V3C_GEOMETRY_0": 1134,
 "_MPEG_V3C_OCCUPANCY_0": 1135,
 "_MPEG_V3C_COLOR_0": 1137
 },
 "mode": 0
 }
]
}
.
.
.
"extensions": {
 "MPEG_media": {
 "media": [
 {
 "alternatives": [
 {
 "mimeType": "video/mp4;codec=v3e1.L2.0.0.1, avc1.4D401E",
 "tracks": [
 {
 "track": "#track_ID=1"
 }
],
 "uri": "https://example.com/vpcc_longdress.mp4"
 }
],
 "loop": true,
 "timeOffset": 0
 }
]
}
},

Table 3 Example glTF for Option 2b
	{
 "name": "vpcc_longdress",
 "primitives": [
 {
 "attributes": {
 "_MPEG_V3C_POINTCLOUD": 165,
 },
 "mode": 0
 }
]
}
.
.
.
"extensions": {
 "MPEG_media": {
 "media": [
 {
 "alternatives": [
 {
 "mimeType": "video/mp4;codec=v3e1.L2.0.0.1, avc1.4D401E ",
 "tracks": [
 {
 "track": "#track_ID=1"
 }
],
 "uri": " https://example.com/vpcc_longdress.mp4"
 }
],
 "loop": true,
 "timeOffset": 0
 }
]
}

3.3 Mandates
This EE will have the following mandates:
· Identify the MPEG codecs to be supported in MPEG-I SD
· Define the MIME type and any necessary signaling and extensions to enable options 1 and 2
· For codec dependent support:
· Evaluate the codec-dependent options and decide on which ones to enable
· Define the exact buffer formats and any necessary restrictions on the formats
· Define any necessary glTF extensions and register any new _MPEG attributes
· Provide guidelines on how to implement the variant
· Provide test scenarios, assets, and implementation in the reference software
3.4 Support for V-PCC

3.4.1 m59306 [SD][EE3] Supporting YUV textures
[bookmark: _Ref99636455]MPEG_YUV sampler
Modern graphics APIs provide a sampler structure that can be associated to a texture object such that sampling operations for the YCbCr color space can be natively supported on modern GPUs. A sampler-level extension is described to sample a video texture natively in parallel processing devices such as GPUs. The format of the video texture, such as “VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM” and other formats defined in [11] may be provided in the MPEG_video_texture.format property.
A texture object in the textures array may use a sampler with the “MPEG_YUV” sampler extension to provide information to the Presentation Engine on how to sample the video texture when the texture format is a chroma format such as YCbCr.
"samplers": [
 {
"extensions" : {
 "MPEG_YUV": {
 "modelConvernsion": "#709",
 "range": "#ITU range",
 "chromaFilter": "#CHROMAFILTER",
 “xchromaOffset": "#CHROMAOFFSET",
 "yChromaOffset": "CHROMAOFFSET",
 }
 }
 }
],

[bookmark: _Ref99635642]Table MPEG YUV sampler semantic
	Name
	Type
	Default
	Usage
	Description

	modelConversion
	String
	-
	O
	Describes the Color model component of a color space

	range
	String
	-
	O
	Describes whether color components are encoded using the full range of numerical values or whether values are reserved for headroom and foot room.

	chromaFilter
	String
	-
	O
	Describes filters used for texture lookups

	components
	String
	-
	O
	Describes the order of the components

	xChromaOffset
	String
	-
	O
	Describes the X location of downsampled chroma component samples relative to the luma samples. xChromaOffset has no effect for formats in which chroma components are not downsampled horizontally.

	yChromaOffset
	String
	-
	O
	Describes the Y location of downsampled chroma component samples relative to the luma samples. yChromaOffset has no effect for formats in which chroma components are not downsampled vertically.

The MPEG_YUV sampler extension provides relevant configuration information for the shader compiler to read and sample a YUV texture.

[bookmark: _Ref99636467]MPEG_texture_video
Table MPEG Texture video semantic
	Name
	Type
	Default
	Usage
	Description

	accessors
	Integer
Array
	N/A
	M
	Provides a reference to the accessor(s), by specifying the accessor('s/s’) index in accessors array, that describes the buffer where the decoded timed texture will be made available.

In case of planar data alignment, there must be at most 4 accessors (e.g., RGBA) in the accessors property. Each accessor will refer to the data for a plane.

The accessor shall have the MPEG_accessor_timed extension.
The type, componentType, and count of the accessor depend on the width, height, and format.

	width
	integer
	N/A
	M
	Provides the maximum width of the texture.

	height
	integer
	N/A
	M
	Provides the maximum height of the texture.

	format
	string
	RGB
	O
	Indicates the format of the pixel data for this video texture. The allowed values are: RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, DEPTH_COMPONENT. The semantics of these values are defined in Table 8.3 of OpenGL specification [OpenGL 4.6].

Note that the number of components shall match the type indicated by the referenced accessor. Normalization of the pixel data shall be indicated by the normalized attribute of the accessor.

	subSampling
	string
	444
	O
	Describes the sub-sampling format of the source of the texture. The allowed values of the sub-sampling format are 444, 420, 422, 440 and 411.

	alignment
	string
	INTERLEAVED
	O
	Specifies the data alignment of the source. Three allowed values for the data alignment property are INTERLEAVED, PLANAR and SEMI-PLANAR.

In case the source of the video texture is a sub-sampling planar format, each accessor item in the MPEG_video_texture.accessors array property will refer to a plane. The size of each plane is determined by the sub-sampling format as well as the dimensions of the video texture. For instance, in case of 4:2:0 video texture, a video texture frame data will of bytes. The first accessor will point to data storing Y channel i.e., of bytes. The second and third accessor will refer to data storing U and V channel, each storing bytes. The default behavior for the MAF would be to provide interleaved 444 RGB textures.

3.4.2 m59656 [SD] V-PCC in Scene Description
A mesh primitive that references a V3C formatted representation of a 3D object should have the following attributes:
· _MPEG_V3C_GEOMETRY: this attribute shall reference a timed accessor that provides the decoded geometry video data. Exactly one geometry buffer shall be associated with an atlas data buffer.
· _MPEG_V3C_OCCUPANCY: this attribute shall reference a timed accessor that provides the decoded occupancy video data. Exactly one occupancy map buffer shall be associated with an atlas data buffer.
· _MPEG_V3C_ATTRIBUTE_i: this attribute shall reference a timed accessor that provides the decoded attribute video data that corresponds to the ith attribute. The 0th attribute shall correspond to color data in YUV 4:2:0 format.
· _MPEG_V3C_ATLAS_V1: this attribute shall reference a timed accessor that provides the V3C atlas data buffer. The atlas buffer format is defined in section 3. Future specifications of the atlas data buffer format shall use a different attribute name, e.g. by incrementing the version number in _MPEG_V3C_ATLAS_V1.

Each mesh primitive shall reference exactly one atlas data buffer.

The atlas data buffer is binary formatted data that shall comply to the following format:
	Field
	Type
	Description

	frame_width
	uint32
	indicates the frame width in luma samples of the atlas and all other associated V3C components.

	frame_height
	uint16
	indicates the frame height in luma samples of the atlas and all other associated V3C components.

	attribute_count
	uint8
	the number of attributes of the V3C object. This number shall match the number of MPEG_V3C_ATTRIBUTE_i elements in the mesh primitive.

	for(i=0;i<attribute_count;i++) {
	
	

	 attribute_type
	uint8
	the attribute type of the ith attribute. The types are defined in Table 3 of ISO/IEC 23090-5 [1].

	}
	
	

	scale
	float[3]
	indicates the global scale factor that shall be applied to the reconstructed V3C object.

	offset
	float[3]
	indicates the global translation vector that shall be applied to the reconstruction V3C object

	rotation
	float[4]
	indicates the global rotation that shall be applied to the reconstructed V3C object as a quaternion.

	patch_count
	uint16
	

	for(i=0;i<patch_count;i++) {
	
	

		2d_pos_x
	float
	specifies the x-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_pos_y
	float
	specifies the y-coordinate of the top-left corner of the patch bounding box for the current patch.

		2d_size_x
	float
	specifies the width of the current patch.

		2d_size_y
	float
	specifies the height of the current patch.

		3d_offset_u
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the tangent axis.

		3d_offset_v
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the bi-tangent axis.

		3d_offset_d
	float
	specifies the shift to be applied to the reconstructed patch points in the current patch along the normal axis.

		patch_projection_id
	uint8
	specifies the identifier of the projection mode and the index of the normal to the projection plane of the current patch.

		patch_orientation
	uint8
	specifies the index of the patch orientation of the current patch.

	}
	
	

3.5 Support for V3C
3.5.1 m58918 - InterDigital Response to EE3
An option for media pipeline is envisioned where the MAF performs the decoding, and any necessary processing and the presentation engine performs the 3D reconstruction. The option is informally called as pipeline option #2A.
In the V3C specification, V3C profiles follow a structured and flexible definition to allow for clearly identifying two distinct conformance points namely conformance point A and conformance point B (see Annex A in ISO/IEC 23090-5 [2]). The first conformance point, point A, covers the decoded video sub-bitstreams and atlas sub-bitstream. It also covers the derived block to patch map information in atlas sub-bitstream. The second conformance point, point B, covers the reconstruction process.
Following the definition in V3C and the design goals for pipeline option #2A, the MAF can be assumed to perform operations associated with conformance point A in the V3C specification. On the other hand, the Presentation Engine is responsible for performing the operations associated with conformance point B, as shown in Figure 1.
It is necessary to express the intermediatory formats for the different V3C components such that the Presentation Engine can use the information in relevant buffer/texture formats for 3D reconstruction. The MAF performs decoding and processes the decoded V3C components. The result of MAF processing is a representation of the different decoded and processed V3C components in formats that are consumable by the Presentation Engine.
In response to EE3, this contribution proposes a new extension to support V3C content in ISO/IEC 23090-14.

[image: Diagram

Description automatically generated]
Figure 2 An overview of the glTF document structure with MPEG extensions and MPEG_V3C extensions
MPEG_V3C scene-level extension
	Name
	Type
	Default
	Usage
	Description

	objects
	Array
	[]
	-
	Array of V3C objects

MPEG_V3C node-level extension

	Name
	Type
	Default
	Usage
	Description

	object
	number
	-
	M
	An index of a V3C object in the objects array in the scene-level MPEG_V3C extension.

V3C_ATLAS
	Name
	Type
	Default
	Usage
	Description

	patchBlockSize
	Number
	16
	M
	Describes the patch block size of the atlas frame

	blockToPatchInformation
	Number
	-
	M
	Index in the accessor array which refers to the block to patch information data

	totalPatches
	Number
	-
	M
	Index in the accessor array which holds the information on number of patches

	commonPatchParameters
	Number
	-
	M
	Index in the accessor array which holds the information on common patch parameters

	patchInformation
	Array
	[]
	M
	Array of patch types and their respective information

V3C_ATLAS.patchInformation
	Name
	Type
	Default
	Usage
	Description

	type
	Number
	-
	M
	Describes the type of patch

	PLRDLevel
	Number
	-
	O
	Index in the accessors array which holds the information whether the PLR is at block level or patch level.
Only applicable if patch type is PROJECTED.

	PLRDPresentBlockFlag
	Number
	-
	O
	Index in the accessors array which holds the information on presence of block level PLR mode.
Only applicable if patch type is PROJECTED.

	PLRDBlockModeMinus1
	Number
	-
	O
	Index in the accessors array which holds the information on block level PLR mode.
Only applicable if patch type is PROJECTED.

	PLRDPresentFlag
	Number
	-
	O
	Index in the accessors array which holds the information on presence of patch level PLR Mode.
Only applicable if patch type is PROJECTED.

	PLRDModeMinus1
	Number
	-
	O
	Index in the accessors array which holds the information on patch level PLR mode.
Only applicable if patch type is PROJECTED.

	patchAssociatedPatchIndex
	Number
	-
	O
	Index in the accessors array which specifies the index of the patches associated EOM patches.
Only applicable if patch type is EOM.

	patchEOMPoints
	Number
	-
	O
	Index in the accessors array which holds the information on the number of EOM coded points.
Only applicable if patch type is EOM.

	numberRAWPoints
	Number
	-
	O
	Index in the accessors array which holds the information on the number of raw coded points.
Only applicable if patch type is RAW.

V3C_OCCUPANCY and V3C_GEOMETRY
	[bookmark: _Hlk92791786]Name
	Type
	Default
	Usage
	Description

	index
	Number
	-
	M
	The index of a texture object in the textures array that is associated with the V3C component

V3C_ATTRIBUTE
	Name
	Type
	Default
	Usage
	Description

	index
	Number
	-
	M
	The index of a texture object in the textures array that is associated with the V3C attribute component

	type
	Number
	-
	M
	Key identifier for the V3C attribute type, as defined in Table 3 of ISO/IEC 23090-5.

V3C_ATTRIBUTE.type
	Attribute values
	Attribute type

	0
	Texture

	1
	Material ID

	2
	Transparency

	3
	Reflectance

	4
	Normals

	5..14
	Reserved

	15
	Unspecified

3.5.2 m59287 [SD] InterDigital's EE3 response
The V3C atlas buffer format consists of two main structures:
1. Block-to-patch map: Maps each block in an atlas frame to a patch index. In case the block is not covered by any patch, the patch index value assigned to that block is -1.
2. Patch list: The data for each patch is contained in a patch list. A patch consists of two sets of information.
a. Common Patch Information data
b. Application-Specific Patch information data. There may be additional information depending on the type of patch e.g., Point Local Reconstruction, EOM points etc., which needs to be stored in the atlas buffer.

 Atlas frame format

An atlas frame is defined as arrays of V3C atlas syntax structure which form the complete atlas frame for a V3C content. The syntax elements in an V3C atlas frame are defined as references to accessors containing corresponding data. `BlockToPatchMap` property corresponds to patch index per-block. `CommonPatchParameters` property corresponds to common patch parameters (please see section 9.2.7.3.2 ISO/IEC 23090-5). These patch parameters are stored in the following order.

Table X. Ordering of common patch parameters
	Common patch parameters

	PatchInAuxVideo

	PatchType

	Patch2dSizeX

	Patch2dSizeY

	Patch2DPosX

	Patch2DPosY

	Patch3dOffsetU

	Patch3dOffsetV

	Patch3dOffsetD

	Patch3dRangeD

	PatchProjectionID

	PatchOrientationIndex

	PatchLODScaleX

	PatchLODScaleY

	PatchRAWPoints

	PatchEOMPatchCount

Depending on the type of patch i.e., PROJECTED, EOM or RAW, additional information may be provided. For instance, an atlas frame consists of PROJECTED patches, each projected patch may have point-local reconstruction (PLR) information. Whether the PLR information for a patch is available on a block-level or patch-level is provided through `PLRLevel` and corresponding PLR data is provided in `BlockPLRD` and/or `PatchPLRD`. `BlockSize` corresponds to a value of the patch packing blocking size.

The following example defines properties for the V3C atlas component of a V3C content containing PROJECTED patches as well as EOM patches.

Valid accessor type and component type for each property of a V3C atlas frame are defined in Table X.
Table X. V3C atlas properties
	Name
	Usage
	Accessor type(s)
	Component type(s)
	Description

	BlockToPatchMap
	M
	SCALAR
	Unsigned int
	Store stores patch index for every block in an atlas frame. In case, a block is not assigned with a patch index, the block is assigned with value 0.

	NumberOfPatches
	M
	SCALAR
	Unsigned int
	Stores the information on total of number of patches as well as total number of different patch types.

	CommonPatchParameters

	M
	VEC2
SCALAR
	Unsigned int
	Stores common patch parameters per patch in an atlas frame.

	PLRLevel
	O
	VEC2
	Unsigned int
	Stores the PLRD level information for each PROJECTED patch type. In case, the PLR level is 0, the PLR information is available on per block level. Else if PLR level is 1, the PLR information is available on the patch level.

	BlockPLRD
	O
	VEC3
	Unsigned int
	Stores block-level PLRD information for PROJECTED patch type.

	PatchPLRD
	O
	VEC3
	Unsigned int
	Stores patch-level PLRD information for PROJECTED patch type.

	EOMPatchInfo
	O
	VEC3
	Unsigned int
	Stores application-specific information related to EOM patches.

Atlas buffer reader
A set of accessors provide the means to access specific information for the patches in an atlas frame whilst referring to a single binary buffer element. A single buffer will be referenced by a set of bufferViews and each bufferView will have its own accessor element. The use of accessors provides the convenience to the presentation engine of referring to specific information for the patches contained in a decoded atlas frame.

[image: A picture containing timeline

Description automatically generated]
Figure 1. An example of reading from a decoded atlas frame

3.5.3 m59305 [SD][EE3] On V3C Support in MAF Pipeline Option 2a
It is proposed to introduce a new MPEG extension MPEG_objects that declares the media objects and associates them to nodes in the scene graph. Information pertaining to the specific codec used by a media object may be described by defining codec-specific extensions to this extension such as the MPEG_V3C extension described in our previous contribution.

Similar to meshes, the media objects listed by the MPEG_objects extension must be attached to nodes by defining a node.extensions.MPEG_objects property that provides an index into the objects array using an object property. A media object that is associated with a particular node will inherit the transform of that node.
In a glTF file, MPEG_objects extension shall be added to the extensionRequired and extensionUsed top-level glTF arrays when MPEG media objects are present in the scene.

[image:]
Figure 2 – An overview of the glTF document structure with the current MPEG extensions and the MPEG_objects and MPEG_V3C extensions
An example of how this association is signalled in the glTF file is given below, where the nodes array contains one node and the objects array of the MPEG_objects extension contains three media objects (two V3C objects and one G-PCC object). The sole node in the example is associated with the first media object in the objects array via the index assigned to the object property of node.extensions.MPEG_objects.
"extensionsRequired": [
 "MPEG_objects",
 "MPEG_V3C"
],
"extensionsUsed": [
 "MPEG_objects,
 "MPEG_V3C"
],
"nodes": [
 {
 "matrix": {},
 "extensions": {
 "MPEG_objects": {
 "object": 1
 }
 }
 }
],

"extensions":
{
 "MPEG_objects": {
 "objects": [
 {
 "extensions": {
 "MPEG_V3C": {
 // describes the V3C components
 }
 }
 },
 {
 "extensions": {
 "MPEG_V3C": {
 // describes the V3C components
 }
 }
 },
 {
 "extensions": {
 "MPEG_GPCC": {
 // describes the GPCC components
 }
 }
 }
]
 }
}
Semantics
The definition of all objects within the MPEG_objects extension is provided in Table 1.

[bookmark: _Ref99548418]Table 61 – Definition of the MPEG_objects extension
	Name
	Type
	Default
	Usage
	Description

	objects
	array
	[]
	-
	An array of media objects which are coded using MPEG codecs.

	object
	number
	
	-
	Index to an object in the objects array of the MPEG_objects extension.

Processing Model
A glTF file that includes at least one MPEG media object shall include the MPEG_objects property in the top-level extensionsRequired array. If the MPEG_objects property is present in the top-level extensionsUsed array, a Presentation Engine supporting the MPEG_objects extension reads the corresponding property in the top-level extensions array to identify the media objects that may be present in the scene. Processing of the MPEG_objects extension depends on the codec used for the media object. When rendering the scene, the Presentation Engine identifies the media object codec through the codec-specific extension associated with the object in the MPEG_objects extension and reads the MPEG object data using accessors and textures referenced by the codec-specific extension.
If MPEG_objects is in the extensionsRequired array and the Presentation Engine does not support the MPEG_objects extension, the Presentation Engine must fail loading the scene.
Relation to MPEG_media extension
Within the ISO/IEC 23090-14 architecture, the MPEG_objects extension would serve a different but complementary function to the MPEG_media extension. The MPEG_objects extension enables describing media objects within a scene that require further processing by the Presentation Engine after any initial decoding and processing done by the MAF pipeline. Similar to how meshes in glTF 2.0 point to accessors from which the mesh data can be read when rendering, the media objects listed by the MPEG_objects extension also point to accessors and textures that the Presentation Engine can read the resulting intermediate media data from. The MPEG_media extension is still needed for identifying the sources from which the MAF can fetch the input to the MAF processing pipeline.

3.5.4 m59596 About Pipeline #2a reflecting design principle of 23090-10
V3C content is composed of two types of components, V3C atlas and V3C components, where V3C atlas is the entry point of decoding. Therefore, scene description must list all the components while distinguishing V3C atlas from V3C component and indicate V3C components must not be processed unless a V3C atlas they belong to are not selected.

Current MPEG_media extension does not allow distinction of V3C component from V3C atlas item. If V3C components are listed in MPEG_media then it would be considered as media items individually referenceable. So, new extension specifically listing the components items which shall not be directly referenced and only be processed together with other media items separately from the media items independently referenceable, MPEG_media_compound is proposed in 4.1.

In addition, current MPEG_buffer_circular can only reference items in the media array of MPEG_media. So, it needs to be also extended to reference the items in the components array when MPEG_media_compound is used. So, modification in 4.2 is also proposed.

Definition of MPEG_media_compound extension

1 [bookmark: _Toc44650387][bookmark: _Toc53565399][bookmark: _Ref54781594][bookmark: _Ref71034916][bookmark: _Toc71215690][bookmark: _Ref86393564][bookmark: _Toc94527442]
2
3
4
5
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5 MPEG_media_compound extension
5.2.5.1 General
The compound MPEG media extension, identified by MPEG_media_compound provides two arrays of the media items. The media array provides the list of media which can be directly referenced. The components array provides the list of media to be used as a component of one of the items in the media array. Definition of media array is exactly same as MPEG_media extension.
The items in the components array shall have one reference to the item in the media array.
5.2.5.2 Semantics
The definition of all objects within MPEG_media_compound extension is provided in Table X and Table Y.
[bookmark: _Ref86155530]Table X – Definitions of top-level objects of MPEG_media extension
	Name
	Type
	Default
	Usage
	Description

	media
	array
	N/A
	M
	identical with media property of MPEG_media extension

	components
	array
	N/A
	M
	An array of items that describe the external media used as a component of an item in the media array.

Table Y – Definitions of item in the components array of MPEG_media_compound extension
	Name
	Type
	Default
	Usage
	Description

	reference_media
	integer
	N/A
	M
	Index of the media entry which the current item is used as a component of

	alternatives
	array
	N/A
	M
	identical with MPEG_media.media.alternatives

5.2.5.3 Processing Model
[bookmark: _Hlk101259771]Processing of the MPEG_media_compound extension is identical with MPEG_media extension except the processing of the items in components array. In general, items in the components array may be referenced by a circular buffer and processed synchronously with the items in the media array that is referenced by it.

Amending definition of MPEG_buffer_circular.media

	media
	integer
	N/A
	M
	Index of the media entry in the MPEG_media extension, which is used as the source for the input data to the buffer.
If the MPEG_media_compound extension is used, the items in the components array is indexed continuously after the items in the media array without any gap. For example, if there are 4 items in the media array then the index of the first item in the component array becomes 4.

Proposed text for Annex G
Annex G of ISO/IEC 23090-14 supposed to describe how MPEG-I media is supported. The draft text of that section does not clearly explain which type of Pipeline should be created. With the proposal in section 4, a way to select type of Pipeline can be clearly defined. Following is a paragraph proposed to be added to G.1.1

Various type of Pipelines for processing of V3C contents can be established depending on the location of decoding and 3D reconstruction. Selection of the type of Pipelines is indicated by how the external references for a V3C content are provided in scene description. When a scene description contains only one reference to a V3C atlas then decoding and 3D reconstruction of volumetric frames are done by MAF and volumetric frames are delivered to Presentation Engine through a single Buffer. When a scene description contains the references to all external media resources comprising a V3C content, both V3C atlas and all V3C components, then MAF instantiates the media decoders for each external media resource and the Buffers for each media decoders are also established. Each external media resource is individually decoded and decoded raw media data are individually delivered to Presentation Engine through the Buffers. Presentation Engine reconstruct volumetric frames by its own 3D reconstruction process.

3.5.5 m59597 About Pipeline #2b reflecting design principle of 23090-10
To show that V3C content stored in multiple tracks can also be processed with Pipeline #2b, following description and figure are proposed to be added.
When a V3C content is stored in multiple tracks and compressed bitstreams should be delivered to the Presentation Engine for decompression, 3D reconstruction, and rendering, the samples from all tracks with same CTS are multiplexed into a single unit and delivered to Presentation Engine through a single Buffer as shown in Figure 2.

[image: Shape

Description automatically generated with medium confidence]

[bookmark: _Ref101223254]Figure 2 — Pipeline #2b with multiple track case

Scene description extension for Pipeline #2b
As there will be only one Buffer delivering data from MAF to Presentation Engine, scene description must list only one external media resource. However, there should be an indication that whether decoding and reconstruction must be done by MAF or not. Therefore, it is proposed to add following property to MPEG_media extensions

	decoding
	boolean
	True
	O
	Specifies whether decoding is performed by MAF or not. If this property is set to False then compressed bitstream is delivered to Presentation Engine without decoding.

3.6 Support for MIV
3.6.1 MIV player from m58430
As part of the scene description EE on codec support[footnoteRef:1], Philips has provided a software example for a MIV renderer. [1: MPEG/Systems/SceneDescription/MPEG-Contributions#222]

The provided real-time renderer is a simple example to "get going" and does not have sufficient quality in general, but as this EE is more of an implementation effort, we believe that this example is suitable.
The OpenGL ES 3.2 shaders are included as raw string literals within vr.scene.zmin.cpp, and the C++ code is only provided to create a running example.
3.6.2 Build instructions
1. Unpack the archive at any location.
2. Add pre-built or self-built external libraries:
· GLEW 2.1 to C:\X\ext\glew
· GLFW 3.3 or newer to C:\X\ext\glfw
· OpenCV 3.4.13 to C:\X\ext\opencv-3.4.13_install
· In case of confusion, please study the file C:\X\files.txt. It has the output of Get-ChildItem -Recurse. We prefer not to provide binaries to avoid software licensing problems.
3. For the purpose of this description, this document is located at C:\X\README.md
4. Open the folder C:\X\ee_on_miv_support_in_sd in a terminal
5. mkdir build
6. cd build
7. cmake -DOpenCV_DIR=C:\X\ext\opencv-3.4.13_install ..
8. Open Visual Studio 2019 to build in Release mode with platform x64
9. Copy C:\X\ext\glew\bin\win64\glew32.dll to C:\X\ee_on_miv_support_in_sd\build\AppsGL\Release\
10. Copy "C:\X\ext\opencv-3.4.13_install\x64\vc16\bin\opencv_world3413.dll" to C:\X\ee_on_miv_support_in_sd\build\AppsGL\Release\
3.6.3 Run instructions
1. On a multi-GPU system, make sure that the right GPU is selected. For NVIDIA:
1. Control panel
2. 3D Settings
3. Manage 3D Settings
4. Preferred graphics processor
5. High-Performance NVIDIA processor
2. Start run.bat
3.6.4 Location
· Software: http://mpegx.int-evry.fr/software/MPEG/MIV/other/miv-player-example
· Documentation: http://mpegx.int-evry.fr/software/MPEG/MIV/other/miv-player-example/README.md
· Zip-file with software and example data on the MPEG content server:
/MPEG-I/Part12-ImmersiveVideo/test_material/m58999 SD-EE on Codec Support
3.6.5 Test data
The example data includes one frame of Museum (ERP, 3DoF+) and one of Kitchen (PSP, 6DoF window) each with three pose traces.
3.6.6 License
The software has the typical ISO/IEC modified BSD license.
External libraries are not included to avoid software license issues, but the documentation includes build instructions.
3.7 Support for G-PCC
3.8 Participants
The following EE participants are identified:
	Participant
	Affiliation
	NB

	Imed Bouazizi
	Qualcomm
	US

	Basel Salahieh
	Vimmerse
	US

	Lauri Illola
	Nokia
	DE

	Lukasz Kondrad
	Nokia
	DE

	Ahmed Hamza
	Interdigital
	CA

	Gurdeep Bhullar
	Interdigital
	CA

	Bart Kroon
	Philips
	NL

3.9 Timeline
· 2022-01-12: MPEG document upload deadline
· 2022-01-17: MPEG #137(online) meeting starts
· 2022-04-25: MPEG #138(online) meeting starts
· 2022-07-18: MPEG #139(online) meeting starts
3.10 References
[1]	m58329, Codec Support in SD	
[2]	MIV Test Model, https://dms.mpeg.expert/doc_end_user/documents/135_OnLine/wg11/MDS20596_WG04_N00112.zip
4 [bookmark: _Toc102163678][bookmark: _Toc102170448][bookmark: _Toc111215388][bookmark: _Toc85228316][bookmark: _Toc85228339][bookmark: _Toc85228362]EE4: Haptics Support (ongoingclosed)
4.1 Introduction
In order to incorporate haptics as part of the immersive media experience, it is necessary to enable the content creator to associate haptic media with objects in the scene. In m58487 [1], four extensions to glTF that enabled haptic interactions in immersive media scenarios were proposed. This EE focuses on the two extensions, MPEG_haptic, and MPEG_material_haptic that are specific to haptics support in MPEG-I SD. The other two extensions, MPEG_interaction, and MPEG_avatar, are the subjects of other EEs (see Section 5 below).
1. [bookmark: _Toc94258314][bookmark: _Toc94258378][bookmark: _Toc94258410][bookmark: _Toc94258494][bookmark: _Toc94258917][bookmark: _Toc94258961][bookmark: _Toc94258986][bookmark: _Toc94259697][bookmark: _Toc94260130][bookmark: _Toc94260215][bookmark: _Toc94260321][bookmark: _Toc94260348][bookmark: _Toc94260732][bookmark: _Toc94260856][bookmark: _Toc102161189][bookmark: _Toc102161253][bookmark: _Toc102161473][bookmark: _Toc102161516][bookmark: _Toc102161609][bookmark: _Toc102163016][bookmark: _Toc102163680][bookmark: _Toc102170450]
1.1. [bookmark: _Toc94258315][bookmark: _Toc94258379][bookmark: _Toc94258411][bookmark: _Toc94258495][bookmark: _Toc94258918][bookmark: _Toc94258962][bookmark: _Toc94258987][bookmark: _Toc94259698][bookmark: _Toc94260131][bookmark: _Toc94260216][bookmark: _Toc94260322][bookmark: _Toc94260349][bookmark: _Toc94260733][bookmark: _Toc94260857][bookmark: _Toc102161190][bookmark: _Toc102161254][bookmark: _Toc102161474][bookmark: _Toc102161517][bookmark: _Toc102161610][bookmark: _Toc102163017][bookmark: _Toc102163681][bookmark: _Toc102170451]
4.2 Problem statement
Visual properties of objects can be described in glTF. Some of those properties, such as geometry and size, can be used for haptic rendering. But more information is required to enable rich haptic feedback. Friction, roughness, stiffness, temperature are just a few examples of such properties. The exhaustive list of such haptics-related object properties and associated metrics should still be defined.
glTF needs to be extended with this haptic information. The proposed extension MPEG_mesh_collision [2] mentions a material property that could be dedicated to haptic data. This concept needs to be developed in a dedicated extension.
4.3 Use cases relevant for the EE
Both the Haptics Phase 2A and Phase 2B use cases, documented in detail in WG 02 N00139 [3] are relevant for this EE.
4.4 Related (WG2) and Extracted (new) Requirements
All the requirements in Section 4.8 of WG02 N00130 [4] that are tagged as Phase 2, Phase 2A, or Phase 2B are relevant to this EE.
4.5 Relation to other activities (EE, requirements, etc…)
· EE on User Representation and Avatars
· EE on Interactivity
4.6 Mandates
The mandates for this EE are as follows:
· [bookmark: _Toc85228318][bookmark: _Toc85228341][bookmark: _Toc85228364]Define an exhaustive list of haptics-related object properties and associated metrics.
· Flesh out the MPEG_haptic extension introduced in [1].
· Flesh out the MPEG_material_haptic introduced in [1].
· Evaluate the two extensions for completeness and functionality.
· Define test scenarios and collect test assets.
· Develop the reference software integration and validate against the test scenarios.
· Ensure compatibility with the other related EEs that involve haptics.

4.7 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	Immersion Corporation
	Yeshwant Muthusamy
	ymuthusamy@immersion.com
	L

	InterDigital
	Fabien Danieau
	Fabien.danieau@interdigital.com
	P

	InterDigital
	Patrice Hirtzlin
	Patrice.hirtzlin@interdigital.com
	P

	Qualcomm, Inc.
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	P

	Immersion Corporation
	Chris Ullrich
	cullrich@immersion.com
	P

(P = proponent, L = leader)
4.8 [bookmark: _Toc85228319][bookmark: _Toc85228342][bookmark: _Toc85228365] Information about proposed technologies
List of already submitted contributions on this topic.
4.8.1 m58487 – MPEG-I SD Haptics Schema and Processing Model
In this contribution, we make the case for adding haptics to glTF objects in a scene, in order to complete the immersive media experience. Four new extensions, MPEG_haptic, MPEG_material_haptic, MPEG_avatar, and MPEG_interaction are introduced and briefly described. Initial versions of the associated semantics and JSON schemas for the first three extensions are also presented. Finally, initial version of the processing model, describing how these four extensions would interact with each other, is also described. The key diagram from this contribution is shown below:
[image: Diagram

Description automatically generated]
Figure 1: Proposed location of the extensions for haptics, interaction, and avatars, among all MPEG extensions to glTF.
EE participants are encouraged to review m58487 [1] for the semantics tables, JSON schemas, and the processing model.
4.8.2 m59268 [SD] Haptic Support extensions for MPEG-I SD

The two extensions described in this document will be implemented as follows:
· MPEG_haptic: This will be implemented as a Trimesh (python) wrapper around the MPEG Haptics Phase 1 codec. It will be able to ingest haptic media in AHAP, WAV, or IVS format and output .gmpg (human-readable interchange format) and .mpg (binary distribution format) data.
· MPEG_material_haptic: This will also be implemented in Trimesh. As per the semantics table in Section 3.3 and Figure 1, this extension will take as input a location on the mesh and return either a value or a reference to a Haptics Phase 1 media source (haptic data to be rendered).

[image: Diagram

Description automatically generated]

Semantics MPEG_haptic
The MPEG_haptic extension represents haptics data defined in Phase 1. It is an independent haptic media like an audio content or an image.

	Name
	Type
	Default
	Description

	Media Reference
	Array<Integer>
	N/A
	A reference to one or more media sources in MPEG_media.media array containing haptic media files.

The JSON schema associated with this medium is already defined in Phase 1 (http://mpegx.int-evry.fr/software/haptics/mpeg_haptics_json_specifications). They are not glTF compliant yet, but not much modification is needed for this purpose.

Semantics MPEG_material_haptic

The MPEG_material_haptic extension is a type of material defined to provide a way to enable the association of haptic media with a collision mesh. The collision geometry is assumed to be defined in the MPEG_mesh_collision extension. It also contains a ‘material’ property which is meant to be replaced by this extension. The list of haptic properties defined here below is based on the work [10]. The main concept is that the haptic texture associated with a 3D object does not contain RGB values but haptic values. These values are exploited directly by the haptic renderer. The proposed extension also uses the concept of taxels as introduced in [11]. Using this principle, each pixel of the texture can be mapped to a distinct spatial (or temporal) signal as illustrated in Figure 2.
[image: Diagram

Description automatically generated with medium confidence]
Figure 2: Grid of taxels, mapping pixels to different haptic textures
We here propose to combine these types of haptic texture representations by using an array of textures for each haptic property. With this method, a haptic texture can be provided both as a traditional 2D texture and as a taxel map in the same file, giving the possibility to the rendering engine to choose the most appropriate.

An additional information is added to each element of the haptic texture arrays for the rendering engine to adequately interpret a texture. Each array element then contains a haptic texture and a texture type expressed as an Enumeration. Possible values of the enumeration are:

· High_Resolution: The haptic texture is a high resolution 2D texture directly storing haptic values
· Low_Resolution: The haptic texture is a low resolution 2D texture directly storing haptic values
· Reference: The haptic texture is a 2D taxel map containing references to haptic signals. Each pixel of the texture corresponds to an index in the Media_reference array of the MPEG_Haptic extension.
· Other: Unknown proprietary texture format.

To interpret the data contained in 2D textures, the bit depth and range of these textures also need to be specified. The following table gives the bit depth and range values for each haptic property for low resolution haptic textures:

	Haptic map
	Format
	Range
	Resolution

	Stiffness
	8-bit
	
	

	Friction
	8-bit
	±5
	0.04

	Vibrotactile Texture
	8-bit
	±10
	0.08

	Temperature
	8-bit
	[-50:+75]°C
	0.5°C

	Vibration
	8-bit
	[0-1]
	0,004

	Custom
	8-bit
	0-255
	1

The following table gives the bit depth and range values for each haptic property for high resolution haptic textures:
	Haptic map
	Format
	Range
	Resolution

	Stiffness
	16-bit
	
	

	Friction
	16-bit
	±100
	0.003

	Vibrotactile Texture
	16-bit
	±100
	0.0015

	Temperature
	16-bit
	[-100:+150]°C
	0.004°C

	Vibration
	8-bit (amplitude)
8-bit (frequency)
	[0-1]
[0-300] Hz
	0.004
1.17Hz

	Custom
	16-bit
	0-65535
	1

For the high resolution vibration texture, values of each pixel are divided in two: the first byte contains the magnitude value and the second byte contains the frequency.

The following table describes the list of haptic properties of the extension:

	Name
	Type
	Default
	Description

	Stiffness
	array<Enum, textureInfo>
	NULL
	It determines the perceived stiffness of a surface. Which means the force perceived by the user opposed to the normal penetration of a material by a body part.
It is described with a texture storing the stiffness coefficients. The suggested rendering model is :
F = kx where k is the value of stiffness for the displacement x along the mpeg_haptic asset stiffness function. This model is valid for an isotropic material.

	Friction
	array<Enum, textureInfo>
	NULL
	It indicates the perceived friction, which is a force opposing the movement of a body part sliding on a surface.
It is described with a texture storing the coefficient of friction.
The suggested rendering model is:
F_f = mu * Fn where mu is the coefficient of friction, and Fn is the normal applied force by the body part on the surface.

	Vibrotactile Texture
	array<Enum, textureInfo>
	NULL
	It indicates the perceived texture by a body part while sliding on a surface.

	Temperature
	array<Enum, textureInfo>
	NULL
	It indicates the perceived temperature of an object.
It is described with a texture storing the temperature distribution.

	Vibration
	array<Enum, textureInfo>
	NULL
	It indicates a vibration signal.
It is described with a texture storing the amplitude and / or frequency of the signal.

	Custom
	array<Enum, textureInfo>
	NULL
	Texture containing custom haptic data.

4.8.3 m59374 [SD] Reference and Evaluation Platforms for Haptics
[bookmark: _Toc101187933]Reference platform
Needs
The point of the reference platform is to implement the encoder and decoder, and to validate the compressed bitstreams.

[bookmark: _heading=h.aacy4tp8fwqz][bookmark: _Toc101187934]Current Platforms
The scene description group relies on one conformance software and one reference software. The conformance software is glTF validator [3], based on the official glTF validator provided by Khronos. It opens and checks a glTF file with MPEG extensions and provides a report.
The reference software is based on Trimesh [4], a python-based library for processing meshes. The glTF loader has been extended to support MPEG extensions. Thanks to a 3D viewer, it is possible to visualize the glTF content. In order to enable AR/VR support, the integration of OpenXR is planned through the Monado platform [5].
The reference software for Haptics Phase 1 is under development [6,7]. It is a C++ based encoder and decoder of haptic data. Although it is JSON based, it is not compliant yet with glTF.

[bookmark: _heading=h.s5a11nyx8qka][bookmark: _Toc101187935]Reference Platform for Phase 2
For the future haptic reference platform, we obviously propose to build on the current haptic platform RM1 (see m59356 [7]). The encoding and decoding of potentially new haptic data have to be done in a standalone codec. The current Phase 1 codec (CRM1) is located here http://mpegx.int-evry.fr/software/haptics/rm0.
The haptic format is however planned to rely on the scene description technology (i.e., glTF) through dedicated extensions [8]. The glTF files should be validated. While the support within Trimesh could be done, Monado will not allow to perform any haptic rendering out of the box. Haptic data could not be checked then. But from a reference software perspective, validating a glTF file with the glTF validator will be enough. This would be done by contributing to
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/software/23090-24-gltf-validator

Evaluation platform
Needs
In order to build an immersive platform, the haptic group ideally needs the following features:
· AR/VR compatibility
· Haptic devices compatibility
· Physics engine
· 3D engine
· glTF support
· MUSHRA or user evaluation tools

 Current platforms

	
	Reference/Test Platforms

	
	Trimesh (MPEG)
	Unity
	Unreal [12]
	Godot [13]
	Panda3D [14]

	Language
	Python
	C#
	C++
	C# / C++
	Python (core in C++)

	Required Feature
	

	Support for glTF
	Yes
	Yes - Khronos Plugin
	Yes - Native
	Yes - Native
	Partial - unofficial plugin

	Legacy MPEG Extensions
	Yes
	No
	No
	No
	No

	3D Engine
	Yes
	Yes
	Yes
	Yes
	Yes

	Physics Engine
	No
	Yes
	Yes
	Yes
	Yes

	AR/VR Device Support
	Yes - OpenXR
	Yes
	Yes
	Yes
	No

	Haptic Device Support
	No
	Yes - 3D system plugin
	Yes - 3D system plugin
	No
	No

	Support for Animations
	No
	Yes
	Yes
	Yes
	Yes

	Bounding geometry collider
	No
	Yes
	Yes
	Yes
	Yes

	Surface collider
	No
	Yes (complexity?)
	Yes (complexity?)
	
	

	Support for high frequency threads (500Hz+, low jitter)
	
	Yes
	Yes
	
	

	Frame level audio/video/haptic synchronization
	MPEG MAF?
	Yes (frame level)
	Yes (frame level)
	Video Player to be extended?
	Video textures

	Qualitative Documentation
	No
	Yes
	Yes
	Yes
	Yes

	Haptic SW Platforms
	

	ReachIn
	no
	no
	no
	no
	no

	SOFA
	python API
	Yes
	C++ API
	C++ API
	python API

	CHAI3D
	no
	no
	C++ API
	C++ API
	C++ API

	H3D
	no
	no
	C++ API
	C++ API
	C++ API

	GiPSi
	no
	no
	no
	no
	no

	OpenHaptics
	no
	Yes
	C++ API
	C++ API
	C++ API

	Interhaptics
	no
	Yes
	Yes
	No
	No

Conclusion
In the interests of compatibility with the glTF extension work already done by MPEG-I SD, the two haptics-related glTF extensions, described in [2], will be implemented in Trimesh. Specifically:
· MPEG_haptic: This will be implemented as a Trimesh (python) wrapper around the MPEG Haptics Phase 1 codec. It will be able to ingest haptic media in AHAP, WAV, or IVS format and output .gmpg (human-readable interchange format) and .mpg (binary distribution format) data.
· MPEG_material_haptic: This will also be implemented in Trimesh. As per the semantics table in Section 3.3 and Figure 1 of [2], this extension will take as input a location on the mesh and return either a value or a reference to a Haptics Phase 1 media source (haptic data to be rendered).
This implementation mechanism decouples the implementation of these extensions (in Trimesh) from their evaluation (which require more advanced platforms such as Unity or Unreal, as described in this document. The MPEG_avatar and MPEG_interactivity extensions will need to adopt a similar approach since Trimesh does not provide the features required to evaluate them.
Rendering of haptic media cannot be done in Trimesh. Therefore, evaluation of these extensions will require a haptics platform such as that provided by InterHaptics and a game engine platform such as Unity. Real-time rendering of the haptic media will be done on the InterHaptics platform and Unity will provide support for haptic devices and interactivity.
This represents our current thinking on the way forward. We will continue to examine the capabilities of various reference and evaluation platforms as we refine our Haptics Phase 2 architecture, fine-tune the test scenarios, and collect relevant test assets.
4.9 [bookmark: _Toc85228320][bookmark: _Toc85228343][bookmark: _Toc85228366] Test cases
The EE may define test cases for which the evaluation criteria will be analyzed. For instance, a first test case can be with live content while another in the on-demand content.
4.10 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solution. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc.
	Criteria
	Description
	Evaluation

	Criteria #1
	Description
	The technical solution should minimize/optimise …

EE closed at MPEG #139. Please see WG03 N0540 for the latest description of this EE.
Timeline
2022-04-25: MPEG #138
Define an exhaustive list of haptics-related object properties
Flesh out the MPEG_haptic extension
Flesh out the MPEG_material_haptic extension.
Evaluate the two extensions for completeness and functionality.
Define test scenarios and collect test assets.
2022-07-18: MPEG #139
Develop the reference software integration and validate against the test scenarios.
Ensure compatibility with the other related EEs that involve haptics.
References
m58487, “MPEG-I SD Haptic Schema and Processing Model”, MPEG137, January 2022.
m56337. MPEG-I WG 03 MPEG Systems. Interactivity Support in Scene Description. April 2021.
WG 02 N00139, “Updated MPEG-I Phase 2 Haptics Use Cases”, MPEG136, October 2021.
WG 02 N00130, “MPEG-I Phase 2 Requirements”, MPEG136, October 2021.
5 [bookmark: _Toc111215389]EE5: Generic Interactivity Framework (on-going)	
5.1 Introduction
The MPEG Scene Description solution has added support for timed media to glTF 2.0. A Media Access Function (MAF) offers an API to the Presentation Engine, through which timed media can be requested. The current scene description solution allows the user to consume the scene in 6DoF, thus, moving freely in the 3D scene. To offer a realistic experience, the viewer should be able to interact with objects in the scene in different ways.
5.2 Problem statement
The following aspects of interactivity are identified:
· the user cannot walk through obstacles in the scene (such as walls, chairs, tables, …)
· the user is able to interact with objects in the scene in a way that results in changes to the scene (e.g. turn on a TV, open a door, push objects, …)
· the user will perceive the changes caused by the interaction (e.g. visual, audio, and haptics feedback)

This EE will focus on developing the necessary extensions to support basic interactivity in scene description.

The following simplified architecture is identified as the baseline for a generic interactivity framework.

[image: Shape

Description automatically generated with medium confidence]

Triggers are events that will trigger some form of interactivity. Actions are the interactivity feedback. The TuC [1] currently contains a collision model that defines one form of interactivity trigger. Objects provide a simplified mesh that will allow for detection of collision with the viewer. A detected collision will trigger some interactivity actions, such as starting an animation, haptics and/or audio feedback.

5.3 Use cases relevant for the EE
5.4 Related (WG2) and Extracted (new) Requirements
The following requirements are relevant and addressed by this EE:
· It shall be possible to discover user interactivity modules (requirement #85)
· It shall be possible to define custom interactivity procedures based on input from the user or from the user’s devices and sensors (requirement #86)
· Support of user interactivity with objects within a virtual environment (requirement #90)
· Support of interaction between multiple users within an immersive environment (requirement #95)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)
· The specification shall support coding and presentation of interactivity models related to avatar-scene or avatar-avatar interactions (requirement #130)
· The specification shall support different media types and various haptic feedback paradigms (requirement #131)

5.5 Relation to other activities (EE, requirements, etc…)
A relationship to the Haptics phase 2 activity has been identified.
5.6 Mandates
The mandates for this EE are as follows:
· refine the generic interactivity framework reference architecture
· define a basic set of interactivity triggers
· define a basic set of interactivity actions that covers different media types
· define test scenarios and collect test assets
· evaluate proposed solutions
· develop the reference software integration and validate against the test scenarios
5.7 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	L

	Immerse
	Yeshwant Muthusamy
	ymuthusamy@immersion.com
	P

	Interdigital
	Fabien Danieau
	fabien.danieau@interdigital.com
	P

	Interdigital
	Patrice Hirtzlin
	patrice.hirtzlin@interdigital.com
	P

	Interdigital
	Gurdeep Bhullar
	gurdeep.bhullar@interdigital.com
	P

	Xiaomi
	Emmanuel Thomas
	thomase@xiaomi.com
	P

(P = proponent, L = leader)
5.8 Information about proposed technologies
The following contributions on Interactivity have been submitted:

Meeting #134
m56337 [SD] Interactivity in Scene Description
Meeting #135
m57409 [SD] Interactivity support in scene description
Meeting #136
m58104 [SD] On scene interactivity
m58146 [SD] Describing camera paths for interactivity
Meeting #137
m58486 [SD] Collision model for Interactivity
m58794 [SD] On interactivity support
Meeting #138
m59773 [SD] EE Interactivity – framework reference architecture
m59774 [SD] EE Interactivity – Use case proposal
Meeting #139
m59898 [SD][EE5] On reference software implementation for interactivity support
m60569 [SD] Interactivity technologies for AMD2
m59961 [SD] EE8 – Interactive lighting use case
m59896 [SD] EE Interactivity – Assets for the Scene Description Test Scenarios

5.9 Extracted from TuC
5.9.1 [bookmark: _Toc85456730]General
In order to provide an immersive experience to the viewer, it is important that the viewer interacts properly with objects in the scene. The viewer should not be able to walk through solid objects in the scene, such as walls, chairs, and tables.
The following figure depicts a 3D mesh representation of a chair, together with its collision boundaries, defined as a set of cuboids.

[image: Graphical user interface

Description automatically generated]
5.9.2 [bookmark: _Toc85456731]Semantics
The “MPEG_mesh_collision” extension is defined to provide a description of the collision boundaries of a mesh. The extension shall be defined on mesh objects as a set of cuboids around the mesh geometry.
It contains the following properties.

	Name
	Type
	Default
	Description

	boundaries
	Array(object)
	N/A
	Array of boundary shapes that are used to define the collision boundaries of the mesh object. The boundaries may be spheroids or cuboids, as defined in the MPEG_camera_control extension.

	static
	boolean
	True
	Determines if the object is affected by collisions or not. An object that is static will not be affected by collisions, which means that when the viewer or another object collides with this object, its position will not be altered.

	material
	number
	N/A
	The index of a collision material that defines how colliding objects or viewers will interact with this object. This may include bounciness, friction, etc.

	animations
	Array(object)
	N/A
	Defines animations that are triggered by a collision or action on this object. The animation may be limited to a subset of other objects, e.g. only the viewer may trigger this animation. It also contains a pointer to the animation that is to be executed when triggered.

	
	
	
	

The mesh collision information consists of the cuboid vertex coordinates (x,y,z) for cuboid boundaries or the sphere center and radius for spherical boundaries. The values are provided as float numbers.

5.9.3 [bookmark: _Toc85456732]Processing Model
The Presentation Engine shall support the MPEG_mesh_collision extension. The camera position (x,y,z) shall not be contained within one of the defined mesh cuboids at any point of time. Collision may be signaled to the viewer through visual, acoustic, and/or haptic feedback.
This information on the boundaries for the nodes may be used to initialize and configure a 3D physics engine that will detect collisions.

5.10 Contribution m58794
5.10.1 MPEG scene interactivity glTF extension

A MPEG interactivity glTF extension, called MPEG_scene_interactivity, is introduced at the scene level as shown in Figure 5.

[image:]
[bookmark: _Ref92103687]Figure 5 : MPEG interactivity glTF extension at scene level

MPEG_scene_interactivity glTF scene-level extension adopts a semantic approach based on the definition of behaviors, triggers and actions.

5.10.2 MPEG_scene_interactivity definition

A behavior defines which kind of interactivity is allowed at runtime for dedicated virtual objects, corresponding to glTF nodes.

A behavior corresponds to a unique association of triggers and actions:
· the triggers define the runtime conditions to be met before executing the behavior actions
· the actions define how the behavior affects the scene

5.10.3 MPEG_scene_interactivity semantic
The semantic of the MPEG_scene_interactivity glTF extension is shown in Table 3.

	Name
	Type
	Usage
	Default
	Description

	triggers
	Array
	M
	[]
	Contains the definition of all the triggers used in that scene

	actions
	Array
	M
	[]
	Contains the definition of all the actions used in that scene

	behaviors
	Array
	M
	[]
	Contains the definition of all the behaviors used in that scene. A behavior is composed of a pair of (triggers, actions), control parameters of triggers and actions, a priority weight and an optional interrupt action as detailed in 3.3

[bookmark: _Ref90482592]Table 73 : Semantic of the MPEG_scene_interactivity extension

5.10.4 Trigger semantic

The semantic of a trigger is provided in Table 4.

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	VISIBILITY
	Defines the type of the trigger by taking one of the following values:
[bookmark: _Hlk91003149]VISIBILITY = 0,
PROXIMITY = 1,
USER_INPUT = 2,
TIMED = 3,
COLLIDER = 4

	activateOnce
	Boolean
	M
	FALSE
	If FALSE: the trigger is activated each time its conditions are met.
If TRUE: the trigger is activated once when its conditions are met.
Refer to Figure 6

	If(type== VISIBILITY){
	
	
	
	

	cameraNode
	Number
	M
	
	Index to the node containing a camera in the nodes array for which the visibilities are determined

	nodes
	Array
	M
	
	Indices of the nodes in the nodes array to be considered. All the nodes shall be visible by the camera to activate the trigger

	}
	
	
	
	

	If(type == PROXIMITY){
	
	
	
	

	distanceLowerLimit
	Number
	M
	0
	Threshold min in meters for the node proximity calculation

	distanceUpperLimit
	Number
	O
	
	Threshold max in meters for the node proximity calculation

	nodes
	Array
	M
	[]
	Indices of the nodes in the nodes array to be considered. All the nodes shall have a distance from the user camera above the distanceLowerLimit and below the distanceUpperLimit to activate the trigger

	}
	
	
	
	

	If(type == USER_INPUT){
	
	
	
	

	userInputDescription
	String
	M
	
	Describe the user body part and gesture related to the input. E.g. “/user/hand/left/grip”

	nodes
	Array
	O
	
	Indices of the nodes in the nodes array to be considered for this user input

	}
	
	
	
	

	If(type == TIMED){
	
	
	
	

	media
	Number
	M
	0
	Index of the media in the MPEG media array used to retrieve the media playback timeline

	timeLowerLimit
	Number
	M
	0
	Indicates the start time offset into the media playback timeline at which the trigger is activated, in second. The default value of 0 means the activation of the trigger at the start of the media playback.

	timeUpperLimit
	Number
	O
	
	Indicates the end time offset into the media playback timeline at which the trigger is deactivated, in second. If not present, the trigger is active until the end of the media timeline.

	}
	
	
	
	

	If(type == COLLIDER){
	
	
	
	

	nodes
	Array
	M
	
	Indices of the nodes in the nodes array to be considered for collision determination. Any detection of collision shall activate the trigger

	}
	
	
	
	

[bookmark: _Ref90484403]Table 84 : Semantic of a trigger

5.10.5 Action semantic

The semantic of an action is provided in Table 5.

	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	ACTIVATE
	Defines the type of the action by taking one of the following values:
ACTIVATE = 0,
TRANSFORM = 1,
ANIMATE = 2,
CONTROL_MEDIA = 3,
PLACE_AT = 4,
MANIPULATE = 5,
SET_MATERIAL = 6

	delay
	number
	O
	
	Duration of delay in second before executing the action

	[bookmark: _Hlk91073429]If(type == ACTIVATE){
	
	
	
	

	activationStatus
	enum
	M
	ENABLED
	ENABLED=0: the node shall be considered by the application
DISABLED =1: the node shall not be considered by the application

	nodes
	array
	M
	[]
	Indices of the nodes in the nodes array to set the activation status

	}
	
	
	
	

	If(type== TRANSFORM){
	
	
	
	

	transform
	
	 M
	
	4x4 transformation matrix to apply to the nodes

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be transformed

	}
	
	
	
	

	If(type == ANIMATE){
	
	
	
	

	animation
	number
	M
	
	index of the animation in the animations array to be considered

	animationControl
	enum
	M
	PLAY
	PLAY = 0,
PAUSE = 1,
RESUME = 2,
STOP = 3

	}
	
	
	
	

	If(type == CONTROL_MEDIA){
	
	
	
	

	media
	number
	M
	
	Index of the media in the MPEG media array to be considered

	mediaControl
	enum
	M
	PLAY
	PLAY = 0,
PAUSE = 1,
RESUME = 2,
STOP = 3

	}
	
	
	
	

	If(type == PLACE_AT){
	
	
	
	

	placeDescription
	string
	M
	
	Describe the place position. E.g. “/user/hand/left/pose”

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be placed.

	}
	
	
	
	

	If(type== MANIPULATE){
	
	
	
	

	action
	enum
	 M
	FREE
	FREE= 0: the nodes follow the user pointing device and its rotation,
FREE_FIXED_ROTATION=1: the nodes follow the user pointing device but without rotation,
SLIDE=2: the nodes move linearly along the provided axis by following the user pointing device
TRANSLATE=3: the nodes translate by following the user pointing device,
ROTATE=4: the nodes rotate around the provided axis by following the user pointing device,
SCALE=5: performs a central scaling of the nodes by following the user pointing device

	axis
	array
	O
	
	(x,y,z) coordinates of the axis used for rotation and sliding. These coordinates are relative to the local space created by the USER_INPUT trigger activation. E.g. a “/user/hand/left/pose” user input trigger creates a local space attached to the user left hand

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to be manipulated

	}
	
	
	
	

	If(type == SET_MATERIAL){
	
	
	
	

	material
	number
	M
	
	Index of the material in the materials array to apply to the nodes

	nodes
	array
	M
	
	Indices of the nodes in the nodes array to set their material

	}
	
	
	
	

[bookmark: _Ref91697516]Table 95 : Semantic of an action

5.10.6 [bookmark: _Ref91573011]Behavior semantic

The semantic of a behavior is provided in Table 6.

	Name
	Type
	Usage
	Default
	Description

	triggers
	array

	M
	
	Indices of the triggers in the triggers array considered for this behavior

	actions
	array
	M
	
	Indices of the actions in the actions array considered for this behavior

	triggersControl
	enum
	M
	LOGICAL_OR
	LOGICAL_OR = 0: an activation of any of the defined triggers shall execute the defined actions,
LOGICAL_AND=1: all the defined triggers shall be activated to execute the defined actions

	actionsControl
	enum
	M
	SEQUENTIAL
	Defines the way to execute the defined actions.
SEQUENTIAL=0: each defined action is executed sequentially in the order of the actions array,
PARALLEL=1: the defined actions are executed concurrently

	interruptAction
	number
	O
	
	Index of the action in the actions array to be executed if the behavior is still on-going and is no more defined in a newly received scene update

	priority
	number
	M
	
	Weight associated to the behavior. Used to select a behavior when several behaviors are active at same time for one node

[bookmark: _Ref91705728]Table 106 : Semantic of a behavior

5.10.7 Processing model
During runtime, the application iterates on each defined behavior and checks the realization of the related triggers following the procedure detailed in Figure 6.

[image:]
[bookmark: _Ref91852033]Figure 6 : Processing model to activate a trigger

When the defined triggers of a behavior are activated, then the corresponding actions are launched.
A behavior has an “on-going” status between the launch and the completion of its defined actions.

When several behaviors are in concurrence to affect the same node at the same time, the behavior having the highest priority is processed for this affected node. The other concurrent behaviors are then not processed.
Once achieved, the application iterates on each behavior as defined in Figure 6.

If a node is affected by concurrent behaviors with a same priority value, then the application shall manage the potential conflict.

When a new scene description update is received, the application shall follow the procedure detailed in Figure 7.

A behavior is considered on-going when the related action(s) is(are) currently being executed when the scene update is processed.
A behavior is considered “still defined” if its unique association of (triggers, actions) is still described in the scene update.

If a behavior is no more “still defined”, its interrupt action is executed.
When all the interrupt actions (if any) are achieved, then the application removes any obsolete scene data and considers any new data to match the updated scene description.

[image:]
[bookmark: _Ref91708556]Figure 7 : Processing model when a new scene description is received

5.11 m59773 [SD] EE Interactivity – framework reference architecture

Triggers and actions are the elementary elements that should be defined to build an interactivity framework

trigger
condition to be met at runtime, such as collision detection, visibility, proximity, timing or user input condition. A trigger is said activated when its defined condition is met.

action
action affecting the virtual scene, such as activating, transforming, animating a scene element, setting a material or controlling a media asset

behavior
unique mapping of triggers and actions

[image:]
5.12 Test cases
5.12.1 Collision
5.12.1.1 [bookmark: _Ref102033658]Description
In this use case, yellow, red and gray balls are rolling on a surface. Only when yellow and red balls collide, a trigger is fired for actions execution. When the yellow and the gray balls or the red and gray balls collide, nothing happens.

In a first variant, the resulting action corresponds to change the color of the gray ball to blue.

In a second variant, there are two resulting actions, the material of the gray ball changes to blue color and simultaneously a sound is played.

In a third variant, there are two resulting actions, the material of the gray ball changes to blue color and after 5 seconds a sound is played.

[image: A picture containing shape

Description automatically generated]

Figure 1: Use case1
5.12.1.2 Test Scenario

	Item
	Description

	Title
	Interactivity Use Case 1 (Collision)

	Description
	The use case is described in 2.1.1. It relates to the following requirements:
· It shall be possible to discover user interactivity modules (requirement #85)
· Support of user interactivity with objects within a virtual environment (requirement #90)

	Required test assets
	· Scene with the following 3D objects:
· Plane
· 3 balls
· Animation of balls (rolling on the plane)
· Audio track for the sound

	Current Support
	The following features are supported:
· Support for 3D scenes,
· Partial support for timed animations
· Support for audio

Support for interactivity is missing
Support for animation is missing

	Criteria
	The test scenario is validated if upon collision detection, the following actions defined in use case are executed:
· color changing
· or color changing and simultaneous sound playing
· or color changing and delayed sound playing
When the yellow and the gray balls collide, nothing happens.
When the red and gray balls collide, nothing happens.

5.12.2 [bookmark: _Ref102036217]Visibility
5.12.2.1 Description

In this use case, a user is moving inside a virtual scene. The camera is associated to the user.
When a set of objects (3 spheres, 3 cones, 1 cylinder) are in the camera viewing frustum, a trigger is fired for actions execution.

In a first variant, the resulting actions are the following: spheres bump and simultaneously cones produce a specific sound. Nothing happens on the cylinder.

In a second variant the resulting actions are the following: spheres bump and cones produce a specific sound in a sequential way. Nothing happens on the cylinder.

[image: Diagram

Description automatically generated]

Figure 2:Use Case 2
5.12.2.2 [bookmark: _Ref99377789]Test Scenario

	Item
	Description

	Title
	Interactivity Use Case 2 (Visibility)

	Description
	The use case is described in 2.2.1. It relates to the following requirements:
· It shall be possible to discover user interactivity modules (requirement #85)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)

	Required test assets
	Scene with the following 3D objects:
· Plane
· 3 Spheres
· 3 Cones
· 1 Cylinder
Animation of sphere (bump)
3 audio tracks for the sound

	Current Support
	The following features are supported:
· Support for 3D scenes,
· Partial support for timed animations
· Support for audio

Support for interactivity is missing
Support for animation is missing

	Criteria
	The test scenario is validated if upon visibility detection, the following actions defined in use case are executed:
· spheres bump and different sound are produced simultaneously by cones
· or spheres bump and different sound are produced in a sequential way by cones
Nothing changes for the cylinder.

5.12.3 Proximity
5.12.3.1 [bookmark: _Ref102038383]Description
An avatar moves closer to objects, then back away. When the distance of the avatar from the object group is under a certain distance (threshold), a trigger is fired for actions execution. When the avatar is closer than 5m to the group of objects, some actions are executed. Once the avatar goes back away and is further than 5m, actions are stopped.

In a first variant, the resulting actions are the following: spheres bump and simultaneously cones produce a specific sound. Nothing happens on the cylinder.

In a second variant a second trigger related to the visibility of the group of objects is added. An avatar moves closer to objects. When the distance of the avatar from the object group is under a certain distance (threshold) and the group of objects are in the camera frustum the actions describe in the first variant are executed. There is a logical combination of two triggers (AND combination).

[image: A picture containing text, businesscard, vector graphics

Description automatically generated]
Figure 3: Use Case 3 variant 1
5.12.3.2 Test Scenario
	Item
	Description

	Title
	Interactivity Use Case 3

	Description
	The use case is described in.2.3.1. It relates to the following requirements:
· It shall be possible to discover user interactivity modules (requirement #85)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)

	Required test assets
	Scene with the following 3D objects:
· Table
· 3 Spheres
· 3 Cones
· 1 Cylinder
· Avatar (camera)
Animation of sphere (bump)
3 audio tracks for the sound

	Current Support
	The following features are supported:
· Support for 3D scenes,
· Partial support for timed animations
· Support for audio

Support for interactivity is missing
Support for animation is missing

	Criteria
	The test scenario is validated by successful trigger activation either proximity detection (variant 1) or proximity AND visibility detection (variant 2). The following actions defined in Use case are executed:
· spheres bump and different sound are produced simultaneously by cones
Nothing changes for the cylinder.

5.13 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solutions. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc..
	Criteria
	Description
	Evaluation

	Criteria #1
	Description
	The technical solution should minimize/optimise …

5.14 Timeline
· 2022-01-17: MPEG #138: Refine architecture and define basic triggers and actions
5.15 [bookmark: _Ref91178323]References
[1]	“Technologies under Consideration on Scene Description for MPEG Media”, N00367, MPEG2021, Online, October 2021
6 [bookmark: _Toc111215390]EE6: User Representation and Avatars (on-going)
6.1 Introduction
The MPEG Scene Description group relies on the glTF2.0 technology to enable the support of 3D scene in MPEG media. Using the extension mechanism, the solution allows synchronization between traditional MPEG media within 3D content.
As defined in the requirements, one goal is to permit a user to navigate the content and interact with the surrounding objects and characters [1].
6.2 Problem statement
In order to interact within the 3D scene, the user must be represented in the scene. This representation is called an avatar and reinforces the user’s feeling of presence in the virtual world. An avatar is not mandatory if the user is simply walking through and watching some content, but as soon as there is interactivity and collision, the user must be able to visualize or detect the boundaries of the avatar. As of today, the representation of the user within the scene is not formally defined. Requirements for MPEG-I Phase 2 only mention the user as “the listener whose position and orientation are used for rendering” [2].
This EE will focus on developing the necessary glTF extensions to support user representations in scene description.
6.3 Use cases relevant for the EE
Basically, all use cases listed by the haptic group require an avatar so the user can touch virtual objects [3]. The audio use cases do not explicitly mention the user appearance although the objects in the scene impact the sound rendering (#4) [5]. Besides the social VR scenario implicitly means that users can see each other's.
6.4 Related (WG2) and Extracted (new) Requirements
The following requirements are thus relevant and addressed by this EE:
· Support of user interactivity with objects within a virtual environment (requirement #90)
· Support of interaction between multiple users within an immersive environment (requirement #95)
· The specification shall support interactivity models related to avatar position and orientation (requirement #129)
· The specification shall support coding and presentation of interactivity models related to avatar-scene or avatar-avatar interactions (requirement #130)
· The specification shall support different media types and various haptic feedback paradigms (requirement #131)
6.5 Relation to other activities (EE, requirements, etc…)
A relationship to the Haptics phase 2 activity has been identified. The user could touch virtual objects, hence a visual representation is mandatory.
This EE relates with the MPEG Systems EE on Interactivity [4] and Haptics [6].
6.6 Mandates
The mandates for this EE are as follows:
· Define the term avatar in the MPEG-I Phase 2 requirements
· Identify the existing glTF-based solutions to describe avatars
· Define the scope of the glTF extension for avatars within the scene description architecture
· Define test scenarios and collect test assets
· Define the evaluation criteria
· Evaluate proposed solutions
· Develop the reference software integration and validate against the test scenarios
6.7 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	InterDigital
	Fabien Danieau
	fabien.danieau@interdigital.com
	L

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	P

	Immersion

	Yeshwant Muthusamy
	ymuthusamy@immersion.com
	P

(P = proponent, L = leader)
6.8 Information about proposed technologies
List of already submitted contributions on this topic.
6.8.1 m56337 [SD] Interactivity in Scene Description
This contribution introduced the user as the camera controller which is his/her only representation in the scene.
6.8.2 m58104 [SD] On scene interactivity
This contribution presented the camera as the user avatar. It also presents a need for a collider so the user cannot walk beyond the limited space of the experience.
6.8.3 m58146 [SD] Describing camera paths for interactivity
This contribution also considers the user as the camera and limits his/her movement to a camera path.
6.8.4 [bookmark: _Hlk102164621] m58487 [SD] MPEG-I SD Revised Haptic Schema and Processing Model
This contribution discusses the problem of the user representation and mentions a potential solution VRM to be evaluated. it is also indicated that the haptic needs are more focused on the collision (i.e. bounding box) than the visual appearance.
6.8.5 m59269 [SD] EE on User Representation and Avatars
Two separate extensions are proposed MPEG_avatar and MPEG_collider. Indeed, colliders can be used for other purposes than for the avatar only. It is meant to replace the extension MPEG_mesh_collision [7] with additional features.
[image: Diagram

Description automatically generated]
a. [bookmark: _heading=h.xsp0s4gs51cw]MPEG_avatar
Since glTF allows to define mesh, joints and skinning there is not much to extend to enable avatars. This extension will simply indicate what node is used to describe this mesh .
	Name
	Type
	Default
	Description

	is_avatar
	boolean
	True
	indicates that the nodes contains an avatar

glTF does not provide any kind of specification regarding a humanoid body rig, so we propose the following conventions so the presentation engine will know how to interpret the mesh as an avatar:
Initial pose
Humanoid avatars (the mesh) are assumed to have a T-pose.
Skeleton
Joints in the glTF format can be identified by names and their hierarchy. We propose the following structure and name convention to enable an easy identification of the avatar skeleton. It is based on the Unity recommendation and Mixamo skeleton that should make it compatible with most game engines.
	· Hips
· Spine
· Chest
· UpperChest
· Shoulder_Left
· UpperArm_Left
· LowerArm_Left
· Hand_Left
· See below
· Shoulder_Right		
· UpperArm_Right
· LowerArm_Right
· Hand_Right
· See below
· Neck
· Head
· Eye_Left
· Eye_Right
· Jaw
· UpperLeg_Left
· LowerLeg_Left
· Foot_Left
· Toes_Left
· UpperLeg_Right
· LowerLeg_Right
· Foot_Right
· Toes_Right

	· Hand_Left

· ProximalThumb_Left
· IntermediateThumb_Left
· DistalThumb_Left
· ProximalIndex_Left
· IntermediateIndex_Left
· DistalIndex_Left
· ProximalMiddle_Left
· IntermediateMiddle_Left
· DistalMiddle_Left
· ProximalRing_Left
· IntermediateRing_Left
· DistalRing_Left
· ProximalLittle_Left
· IntermediateLittle_Left
· DistalLittle_Left
· Hand_Right
· ProximalThumb_Right
· IntermediateThumb_Right
· DistalThumb_Right
· ProximalIndex_Right
· IntermediateIndex_Right
· DistalIndex_Right
· ProximalMiddle_Right
· IntermediateMiddle_Right
· DistalMiddle_Right
· ProximalRing_Right
· IntermediateRing_Right
· DistalRing_Right
· ProximalLittle_Right
· IntermediateLittle_Right
· DistalLittle_Right

A visual mesh is not mandatory. The avatar could be the camera only and a collider for instance. So, the user cannot go through walls or beyond a specified space although it is not visually represented.
Partial avatars
Avatar may partially represent the user (only the hands or the upper body). In this case a sub part of the skeleton is used to describe the joints.
	{
	"$schema": "http://json-schema.org/draft-04/schema",
	"title": "MPEG_avatar",
	"type": "object",
	"description": "An avatar.",
	"allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
	"properties": {
 	 "is_avatar": {
 	 "type": "boolean",
 	 "description": "List of haptic avatars",
 “default” : True,
 "gltf_detailedDescription": "Indicates that the sub mesh should be considered as an avatar." 	
	}
}

b. [bookmark: _heading=h.a1n3m1rslzjo]Colliders
In order to detect collision between the avatar and 3D objects, colliders are necessary (i.e. rough shape surrounding the object that decreases the computing cost of the collision detection). This question has been partially answered in m58486 [7]. The extension MPEG_mesh_collision allows defining a mesh (boundaries) as a collider to be linked to another mesh. We propose to improve this extension with the following features.
	Name
	Type
	Default
	Description

	shape
	Integer
	0
	Shape of the collider: 0 – sphere, 1 – box, 2 – cylinder, 3 – capsule, 4 – mesh (defined below)

	custom_shape
	Integer
	-1
	Index of the mesh that will be used to describe the collision boundaries for this node. The collision mesh shall not be referenced by any other node in the scene description.

	static
	boolean
	True
	Determines if the object is affected by collisions or not. An object that is static will not be affected by collisions, which means that when the viewer or another object collides with this object, its position will not be altered.

Shapes
Game engines usually rely on primitive shapes to define colliders (spheres, cubes, etc). Collision computing is much simpler with these shapes than with complex ones. For instance, Unity supports boxes, spheres, capsules [8]; godot supports boxes, spheres, capsules and cylinders [9]. Of course, mesh colliders are also supported (colliders that follow the exact shape of the displayed mesh).
We propose to support these primitive shapes in addition to the custom one (a.k.a. boundaries in the previous extension).
Also, we propose to define the extension at the node level since a collider may be used by multiple meshes.
Material and animations
These properties of MPEG_mesh_collision are not kept since they will be discussed in the EE on haptics and interactivity. They may have their own extension.

	{
	"$schema": "http://json-schema.org/draft-04/schema",
	"title": "MPEG_collider",
	"type": "object",
	"description": "A 3D collider.",
	"allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
	"properties": {
 	"shape": {
 	"type": "integer",
 	"description": "Specifies the shape of the collider.",
 	"gltf_detailedDescription": "Bounding box surrounding a node. Shape is defined by the transform properties of the node."
 	"anyOf": [
 	{
 	"enum": [0],
 	"Sphere": "Sphere-like volume. Diameter of the sphere is given by the scale of the parent node."
 	},
 	{
 	"enum": [1],
 	"Cube": "Cube-like volume. Shape of the cube is given by the scale of the parent node."
 	},
 	{
 	"enum": [2],
 	"Capsule": "Capsule-like volume. Diameter of the capsule is given by the x-scale of the parent node, and height by the y-scale."
 	},
 	{
 	"enum": [2],
 	"Custom": "Custom mesh volume. The mesh ID is provided in the next field."
 	},
 	{
 	"type": "integer"
 	}
],
 	default : "0";
 	},
 	"custom_shape": {
 	"allOf": [{ "$ref": " mesh.schema.json" }],
 	"description": "Mesh used to defined the bounding box.",
 	"gltf_detailedDescription": "Index of the mesh that will be used to describe the collision boundaries for this node. The collision mesh shall not be referenced by any other node in the scene description."
 	},
 	"static": {
 	"type": "boolean",
 	"description": "Static object.",
 	"gltf_detailedDescription": "Determines if the object is affected by collisions or not. An object that is static will not be affected by collisions, which means that when the viewer or another object collides with this object, its position will not be altered.",
 	"default" : "False",
 	},
 	"name": { },
 	"extensions": { },
 	"extras": { }
	}
}

6.8.6 m60296 [SD] EE6 - User Representation and Avatars for ISO/IEC 23090-14:2021
A reference glTF content file has been created for the full body and for the partial avatars (upper body and hand).
For the full body content (Figure 1), two different bodies are defined (a male and a female one). In both cases, the skeleton hierarchy is exactly following the one described in chapter 2.1. These two models have been designed in the DCC software Autodesk Maya © and asset files were exported using a glTF export plugin.
[image:]
[bookmark: _Ref107415044]Figure 2 - Male and Female body models
A reference glTF content file has been created for the upper body representation. The skeleton used starts from the “Hips' ' node and only goes through the “Spine” sub-node.
[bookmark: _heading=h.h7k4il1mie][image:]
Figure 2 - Male upper body model
A reference glTF content file has been created for the hand representation. The skeleton used starts from the “Hips' ' node and only goes through the “Spine” sub-node.
[image:]
Figure 3 - hand model

6.9 Test cases
The EE may define test cases for which the evaluation criteria will be analyzed. For instance, a first test case can be with live content while another in the on-demand content.
6.9.1 Camera representation
This test case corresponds to the use case proposed by m56337 and m58104. It has no visual appearance but only controls the camera viewport. A collider is associated to this “body representation” so the user cannot go beyond a limited area. This collider will also be used to detect was body part collides with an object and thus trigger a haptic effect.
6.9.2 Limited representation
Same as above, with the display of the user’s head and hands (most current VR avatars). Tracking is performed by a VR headset and associated controllers. User can interact with objects in the scene.
6.9.3 Full body avatar
Same as above, with the display of the full body avatar. Full body tracking is required or simulated. Multiple users can see each other.
6.10 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solutions. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc..
	Criteria
	Description
	Evaluation

	#1 mesh
	A mesh represents the avatar
	The mesh is compliant with glTF format

	#2 collider
	A collider surrounds the avatar
	The collider allows to detect precise collision on the user’s body

	#3 bones
	The mesh is rigged
	The set of bones is formally defined and allows motion tracking

	#4 overhead
	Size of the metadata / glTF extension
	the smaller overhead to glTF the better (Size)

6.11 Timeline
· 2022-01-17: MPEG #138
· Define the term avatar
· Define the scope of the avatar extension
· Analyze existing solutions
· Propose test cases and criteria
· 2022-07-18: MPEG #139
· completion of EE
6.12 References
[1] “Requirements Coverage of MPEG-I Scene Description”, N00369, MPEG2021, Online, October 2021
[2] “Requirements for MPEG-I Phase 2 WG 2, MPEG Technical requirements”, m57684, MPEG2021, Online, July 2021
[3] “[Haptics] Updated MPEG-I Phase 2 Haptics Use Cases”, m57952, MPEG2021, Online, October 2021
[4] “[SD] Description of EE on Generic Interactivity Framework”, m59166, MPEG2021, Online, January 2022
[5] “Thoughts on MPEG-I Audio requirements”, m46062, MPEG2019,Marrakesh, MA, January 2019
“[SD] Description of EE on Haptics Support in SD”, m59210, MPEG2021, Online, January 202

7 [bookmark: _Toc111215391]EE7: AR Anchoring (on-goingclosed)
EE closed at MPEG #139. Please see WG03 N0540 for the latest description of this EE.
7.1 Introduction
AR is a technology that offers immersive experiences that cover a wide range of applications such as gaming and conferencing. The user fuses virtual reality with their own reality to build the immersive experience. Scene description is a tool that can be used to describe the virtual 3D scene that will be used to augment the user’s reality.
This EE will evaluate different solutions	to anchor a scene into the user’s environment to produce the augmented reality experience.
7.2 Problem statement
The following aspects of AR anchoring will be studied:
· means to spatially anchor a scene to a user’s environment
· adjustment of the scene scale to match the user’s environment
· identification of anchor points and planes for the scene
7.3 Use cases relevant for the EE
In this simple use case, the user sits in her living room and uses their tablet to watch a football game. The user clicks on a button to activate the AR mode on the tablet or transfer the game to their AR glasses, so that they can now watch the game on top of their living room table. They can move around the table to see the game from different angles as shown in the following picture.
[image: A person playing a game

Description automatically generated with medium confidence]
[bookmark: _Toc111214832][bookmark: _Toc111215403]
Different variants of this use case are possible.
[bookmark: _Toc111214834][bookmark: _Toc111215405]
7.4 Related (WG2) and Extracted (new) Requirements
The following requirements are relevant for this EE:
· The spatial description shall contain XR features for indoor and/or outdoor localization/tracking purpose (requirement #139)
· The spatial description should have a data structure to represent XR space with appropriate pixel-to-meter scaling factor to the physical world (requirement #140)
· The spatial description shall allow the definition of the XR space from small scale space like indoor environment to large scale outdoor space (requirement #141)
· The spatial description shall support visual and/or non-visual features (including audible and mechanical features) of the XR space for real-time localization and tracking (requirement #142)
· The spatial description shall allow navigation of the XR client from one space to another when multiple indoor XR spaces are used (requirement #143)
· The XR spatial description shall include XR anchor objects with presentation properties as the placement of XR media object (requirement #144)
· The XR spatial description should support stationary and moving (mobile) XR anchors (requirement #145)
· The spatial description should keep a mapping between virtual coordinate system to one or multiple physical coordinate systems for different space (requirement #146)
· The position for media object in the XR space shall be defined by an XR anchor (requirement #147)
· There shall be an association defined logic links between XR anchors and live streaming media object (requirement #148)
· There shall be an association defined for logic links between XR anchors and on demand media object (requirement #149)
[bookmark: _Toc111214848][bookmark: _Toc111215419]
New requirements introduced at MPEG #138:
1. The technical solution shall support attaching one or more object to the same anchor.
2. The technical solution shall support attaching an anchor with an object at different positions.
[bookmark: _Toc111214852][bookmark: _Toc111215423]
7.5 Relation to other activities (EE, requirements, etc…)
This EE is related to the EE on the generic interactivity framework.
7.6 Mandates
The mandates for this EE are as follows:
· evaluate the solutions for scene anchoring and scene scaling
· document the relevant use cases and specify the validation scenarios
· develop the reference software integration for the selected scene anchoring solution
· validate the solution against the identified validation scenarios
· study the problem of defining and signalling anchor points/planes and determine what needs to be signalled as part of the scene description
7.7 Participants
	Participant
	Contact
	Email
	Type

	[bookmark: _Toc111214868][bookmark: _Toc111215439]
	[bookmark: _Toc111214869][bookmark: _Toc111215440]
	[bookmark: _Toc111214870][bookmark: _Toc111215441]
	[bookmark: _Toc111214871][bookmark: _Toc111215442]

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	L

	Interdigital
	Patrice Hirtzlin
	patrice.hirtzlin@interdigital.com
	L

	Interdigital
	Gurdeep Bhullar
	gurdeep.bhullar@interdigital.com
	P

	Xiaomi
	Emmanuel Thomas
	thomase@xiaomi.com
	P

(P = proponent, L = leader)
7.8 Information about proposed technologies
The following contributions on AR anchoring have been identified:
MPEG Meeting #134
m56781	[SD] Support for AR in Scene Description
[bookmark: _Toc111214898][bookmark: _Toc111215469]
MPEG meeting #135
m57408	[SD] AR support in scene description
[bookmark: _Toc111214901][bookmark: _Toc111215472]
MPEG meeting #136
m58122	[SD] AR anchors in MPEG-I Scene Description
m58489	[SD] OpenXR backend in SD reference software
[bookmark: _Toc111214905][bookmark: _Toc111215476]
MPEG meeting #137
m58505	[SD] On alternative anchoring scheme
m58869	[SD] On anchors integration in SD
m58922	[SD] Updates on AR scene anchoring
[bookmark: _Toc111214910][bookmark: _Toc111215481]
MPEG meeting #138
m59328 	[SD]Anchoring, use case and test scenario
m59521 	[SD][EE7] On anchors integration in SD
m59658 	[SD] XR Support
[bookmark: _Toc111214915][bookmark: _Toc111215486]
7.9 Test cases
[bookmark: _Toc111214917][bookmark: _Toc111215488]
From MPEG #138, we focus on use case 1 initially, in particular in the evaluation.
Use Case 1
A football match is broadcasted on a TV. Following a goal, the goal scorer’s avatar appears on a table and the user sees through glasses the action replayed by the avatar. The scene is anchored to the table
The space allocated (green rectangle) on the horizontal plane is computed according to available space. The presence of the box reduces the allocated space.
[bookmark: _Toc111214922][bookmark: _Toc111215493]
[image: Graphical user interface, diagram

Description automatically generated]
Figure 1: Use Case1
TRS: Translation rotation Scaling
TRS1: TRS from trackable to Anchor
TRS2: TRS from Anchor to node
[bookmark: _Toc111214928][bookmark: _Toc111215499]
Test Scenario 1
The test scenario is defined based on the template in WG3N0368.
[bookmark: _Toc111214931][bookmark: _Toc111215502]
	Item
	Description

	Title
	Anchoring Use Case 1

	Description
	The use case is described in 2.1. It relates to the following requirements:
· The spatial description shall contain XR features for indoor and/or outdoor localization/tracking purpose (requirement #139) (only indoor)
· The spatial description should have a data structure to represent XR space with appropriate pixel-to-meter scaling factor to the physical world (requirement #140)
· The spatial description shall allow the definition of the XR space from small scale space like indoor environment to large scale outdoor space (requirement #141) (outdoor anchoring is not addressed).
· The spatial description shall support visual and/or non-visual features (including audible and mechanical features) of the XR space for real-time localization and tracking (requirement #142)
· The spatial description shall allow navigation of the XR client from one space to another when multiple indoor XR spaces are used (requirement #143)
· The XR spatial description shall include XR anchor objects with presentation properties as the placement of XR media object (requirement #144)
· The XR spatial description should support stationary and moving (mobile) XR anchors (requirement #145)
· The spatial description should keep a mapping between virtual coordinate system to one or multiple physical coordinate systems for different space (requirement #146)
· The position for media object in the XR space shall be defined by an XR anchor (requirement #147)
· There shall be an association defined logic links between XR anchors and live streaming media object (requirement #148)
· There shall be an association defined for logic links between XR anchors and on demand media object (requirement #149)
[bookmark: _Toc111214951][bookmark: _Toc111215522]

	Required test assets
	· Scene with the following 3D objects:
· 3D Soccer Player model
· 2D video to be rendered on the TV

	Current Support
	The following features are supported:
· Support for 3D scenes, spatial audio, and 2D video textures is already available
· Support for animations
· Support for anchoring required

	Criteria
	The test scenario is validated if the anchoring action is made

[bookmark: _Toc111214967][bookmark: _Toc111215538]
[bookmark: _Toc111214968][bookmark: _Toc111215539]
[bookmark: _Toc111214969][bookmark: _Toc111215540]
[bookmark: _Ref101875349]Use Case 2
[bookmark: _Toc111214971][bookmark: _Toc111215542]
From MPEG #138, use case 2 is considered an application and the relevancy for the work needs to be checked.
[bookmark: _Toc111214973][bookmark: _Toc111215544]
Close to the television, the user hung a virtual mosaic in which several live sports streams events take place at the same time. The mosaic is anchored to an image.
[bookmark: _Toc111214975][bookmark: _Toc111215546]
[image: Graphical user interface, website

Description automatically generated]
Figure 2: Use Case2
TRS: Translation rotation Scaling
TRS1: TRS from trackable to Anchor
TRS2: TRS from Anchor to node
[bookmark: _Toc111214981][bookmark: _Toc111215552]
Test Scenario 2
The test scenario is defined based on the template in WG3N0368.
[bookmark: _Toc111214984][bookmark: _Toc111215555]
	Item
	Description

	Title
	Anchoring Use Case 2

	Description
	The use case is described in 2.3. It relates to the following requirements:
· The spatial description shall contain XR features for indoor and/or outdoor localization/tracking purpose (requirement #139) (only indoor)
· The spatial description should have a data structure to represent XR space with appropriate pixel-to-meter scaling factor to the physical world (requirement #140)
· The spatial description shall allow the definition of the XR space from small scale space like indoor environment to large scale outdoor space (requirement #141) (outdoor anchoring is not addressed).
· The spatial description shall support visual and/or non-visual features (including audible and mechanical features) of the XR space for real-time localization and tracking (requirement #142)
· The spatial description shall allow navigation of the XR client from one space to another when multiple indoor XR spaces are used (requirement #143)
· The XR spatial description shall include XR anchor objects with presentation properties as the placement of XR media object (requirement #144)
· The XR spatial description should support stationary and moving (mobile) XR anchors (requirement #145)
· The spatial description should keep a mapping between virtual coordinate system to one or multiple physical coordinate systems for different space (requirement #146)
· The position for media object in the XR space shall be defined by an XR anchor (requirement #147)
· There shall be an association defined logic links between XR anchors and live streaming media object (requirement #148)
· There shall be an association defined for logic links between XR anchors and on demand media object (requirement #149)
[bookmark: _Toc111215004][bookmark: _Toc111215575]

	Required test assets
	· Scene with the following 3D objects:
· Virtual TV (Mosaic)
· 2D video to be rendered on the TV

	Current Support
	The following features are supported:
· Support for 3D scenes, spatial audio, and 2D video textures is already available
· Support for MPEG Video
· Support for anchoring required

	Criteria
	The test scenario is validated if the anchoring action is made

[bookmark: _Toc111215020][bookmark: _Toc111215591]
7.10 Evaluation criteria
The evaluation criteria are to be defined.
	Criteria
	Description
	Evaluation

	Criteria #1
	Tracking complexity
	The technical solution should minimize CPU load for tracking an anchor.

	Criteria #2
	Tracking complexity
	The technical solution should minimize the need of tracked anchors for a given scene.

[bookmark: _Toc111215035][bookmark: _Toc111215606]
7.11 Proposed technologies
7.11.1 m59658 [SD] XR Support
[bookmark: _Toc111215038][bookmark: _Toc111215609]
Split between Application and Scene Description
The scene description solution serves the purpose of defining the 3D scene and its rendering. It is important to keep this scope and to avoid stepping into the application space.
The following table decomposes the AR anchoring into different steps and discusses whether it should be in the application space or in the scene description.
[bookmark: _Toc111215042][bookmark: _Toc111215613]
	Step
	Discussion

	Describe 3D scene
	this is the task of the scene description

	Describe anchoring point/plane
	the anchoring point is usually an object in the user’s environment. The object may be static or moving. In both cases, the application needs to track that object to be able to anchor the scene to it. The anchor points are then typically trackables. Applications may use specific tags or characteristics as the trackables. The definition and tracking of the trackables may involve tasks such as SLAM, scanning of QR codes, object recognition, etc…, depending on the application’s needs. Thus, this task should be defined by the application logic.

	Describe relationship between scene and anchor point/plane
	Once the application has identified a set of trackable that may serve as anchor points, it needs information on how to anchor the scene to that anchor point. This information should include the transformation to the scene to determine translation, rotation, and scale. It should also contain a reference to the anchor point.
This information belongs in the scene description.

	Detect anchoring point in user’s environment
	This step is performed by the application using the available XR runtime with the goal to detect and track the anchor point.

	Render 3D scene potentially as overlay over camera view of user’s environment
	This step is done by the rendering engine and the XR runtime. The rendering engine will apply the additionally describe transformation to render the scene with respect to the anchor point pose.

As such, we propose to limit the information in the scene description to referencing the anchor point and providing the transformation of the scene.
[bookmark: _Toc111215063][bookmark: _Toc111215634]
The syntax and semantics of the proposed MPEG_scene_anchor extension are modified as follows:
	Name
	Type
	Default
	Description

	referenceSpaceType
	enumeration
	STAGE
	the reference type may be one of VIEW=1, LOCAL=2, STAGE=3, or APPLICATION=4.
VIEW: references the user’s current pose to be used as anchor point. Thus resulting in a viewport locked scene.
LOCAL: references a locked space that provides a 3DoF or a windowed 6DoF experience.
STAGE: references a stage that typically corresponds to a plane such as the floor or the top of a table.
APPLICATION: references a trackable that is defined by the application.

	aligned
	enumeration
	NOT_ALIGNED
	the aligned flag may take one of the following values: NOT_ALIGNED=0, ALIGNED_NOTSCALED=1, ALIGNED_SCALED=2.
If ALIGNED_SCALED is set, the scene bounding box is aligned and scaled to match the bounding box of the reference space.

	if (aligned==NOT_ALIGNED) {
	[bookmark: _Toc111215086][bookmark: _Toc111215657]
	[bookmark: _Toc111215087][bookmark: _Toc111215658]
	[bookmark: _Toc111215088][bookmark: _Toc111215659]

	 transformation
	matrix4x4
	N/A
	a transformation of the scene space to anchor it to the reference space.

	 position
	array(number)
	[bookmark: _Toc111215097][bookmark: _Toc111215668]
	position of the origin of the scene coordinate system in the reference space.

	 orientation
	array(number)
	[bookmark: _Toc111215102][bookmark: _Toc111215673]
	Quaternion describing the rotation of the scene in the anchor space.
centerPosition and orientation are used as alternatives to transformation.

	}
	[bookmark: _Toc111215107][bookmark: _Toc111215678]
	[bookmark: _Toc111215108][bookmark: _Toc111215679]
	[bookmark: _Toc111215109][bookmark: _Toc111215680]

	if (referenceSpaceType==APPLICATION) {
	[bookmark: _Toc111215112][bookmark: _Toc111215683]
	[bookmark: _Toc111215113][bookmark: _Toc111215684]
	[bookmark: _Toc111215114][bookmark: _Toc111215685]

	 trackable_id
	string
	[bookmark: _Toc111215118][bookmark: _Toc111215689]
	[bookmark: _Toc111215119][bookmark: _Toc111215690]
Identifier of the trackable that is to be used as an anchor point. This id is an application-specific identifier that is known to the application through external means.

	}
	[bookmark: _Toc111215123][bookmark: _Toc111215694]
	[bookmark: _Toc111215124][bookmark: _Toc111215695]
	[bookmark: _Toc111215125][bookmark: _Toc111215696]

[bookmark: _Toc111215127][bookmark: _Toc111215698]
7.11.2 m58505 [SD] On alternative anchoring scheme
[bookmark: _Toc111215129][bookmark: _Toc111215700]
Trackable
The semantic of a trackable is provided in Table 1 .
[bookmark: _Toc111215132][bookmark: _Toc111215703]
[bookmark: _Ref90022148]Table 1 : Semantic of a trackable
	Name
	Type
	Usage
	Default
	Description

	type
	enumeration
	M
	GEOMETRIC
	the type flag may take one of the following values:
GEOMETRIC=0,
MARKER_2D=1,
MARKER_3D=2,
MARKER_GEO=3,
MARKER_SEMANTIC=4

	activationRangeLowerLimit
	number
	O
	0
	distance in meters between the user position and the location of the trackable, above which this trackable can be considered valid

	activationRangeUpperLimit
	number
	O
	[bookmark: _Toc111215158][bookmark: _Toc111215729]
	distance in meters between the user position and the location of the trackable, below which this trackable can be considered valid

	minimumRequiredSpace (x, y, z)
	array
	O
	(0 , 0 , 0)
	Space required to anchor the asset (x, y, z in meters). This space corresponds to an axis-aligned bounding box expressed in the trackable reference space. Its (left, bottom, back) vertex is located at the trackable world position, i.e. has the (0,0,0) coordinates

	if (type==GEOMETRIC) {
	[bookmark: _Toc111215168][bookmark: _Toc111215739]
	[bookmark: _Toc111215169][bookmark: _Toc111215740]
	[bookmark: _Toc111215170][bookmark: _Toc111215741]
	[bookmark: _Toc111215171][bookmark: _Toc111215742]

	 geometricConstraint
	enumeration
	M
	HORIZONTAL_PLANE
	the geometricConstraint flag may take one of the following values:
HORIZONTAL_PLANE=0, VERTICAL_PLANE=1

	}
	[bookmark: _Toc111215181][bookmark: _Toc111215752]
	[bookmark: _Toc111215182][bookmark: _Toc111215753]
	[bookmark: _Toc111215183][bookmark: _Toc111215754]
	[bookmark: _Toc111215184][bookmark: _Toc111215755]

	elseif (type==MARKER_2D OR MARKER_3D) {
	[bookmark: _Toc111215187][bookmark: _Toc111215758]
	[bookmark: _Toc111215188][bookmark: _Toc111215759]
	[bookmark: _Toc111215189][bookmark: _Toc111215760]
	[bookmark: _Toc111215190][bookmark: _Toc111215761]

	 markerNode
	number
	M
	[bookmark: _Toc111215195][bookmark: _Toc111215766]
	Index to the node in the nodes array in which the marker geometry and texture are described

	}
	[bookmark: _Toc111215199][bookmark: _Toc111215770]
	[bookmark: _Toc111215200][bookmark: _Toc111215771]
	[bookmark: _Toc111215201][bookmark: _Toc111215772]
	[bookmark: _Toc111215202][bookmark: _Toc111215773]

	elseif (type==MARKER_GEO) {
	[bookmark: _Toc111215205][bookmark: _Toc111215776]
	[bookmark: _Toc111215206][bookmark: _Toc111215777]
	[bookmark: _Toc111215207][bookmark: _Toc111215778]
	[bookmark: _Toc111215208][bookmark: _Toc111215779]

	 geoCoordinate
	number
	M
	N/A
	index to geo coordinate item in array in MPEG_GEO_COORDINATES extension

	}
	[bookmark: _Toc111215217][bookmark: _Toc111215788]
	[bookmark: _Toc111215218][bookmark: _Toc111215789]
	[bookmark: _Toc111215219][bookmark: _Toc111215790]
	[bookmark: _Toc111215220][bookmark: _Toc111215791]

	elseif (type==MARKER_SEMANTIC) {
	[bookmark: _Toc111215223][bookmark: _Toc111215794]
	[bookmark: _Toc111215224][bookmark: _Toc111215795]
	[bookmark: _Toc111215225][bookmark: _Toc111215796]
	[bookmark: _Toc111215226][bookmark: _Toc111215797]

	 semanticDescription
	string
	M
	[bookmark: _Toc111215231][bookmark: _Toc111215802]
	Description of the semantic marker (e.g., a “window”)

	}
	[bookmark: _Toc111215235][bookmark: _Toc111215806]
	[bookmark: _Toc111215236][bookmark: _Toc111215807]
	[bookmark: _Toc111215237][bookmark: _Toc111215808]
	[bookmark: _Toc111215238][bookmark: _Toc111215809]

	If (type == GEOMETRIC OR MARKER_SEMANTIC)
	[bookmark: _Toc111215241][bookmark: _Toc111215812]
	[bookmark: _Toc111215242][bookmark: _Toc111215813]
	[bookmark: _Toc111215243][bookmark: _Toc111215814]
	[bookmark: _Toc111215244][bookmark: _Toc111215815]

	{
	[bookmark: _Toc111215247][bookmark: _Toc111215818]
	[bookmark: _Toc111215248][bookmark: _Toc111215819]
	[bookmark: _Toc111215249][bookmark: _Toc111215820]
	[bookmark: _Toc111215250][bookmark: _Toc111215821]

	 multipleDetectionHandlingCriteria
	enumeration
	M
	USE_FIRST_ DETECTED
	How is managed multiple detection matching the specified criteria:
USE_FIRST_DETECTED = 0,
USE_FIRST_MEETING_REQUIRED_SPACE = 1,
IGNORE_MULTIPLE_DETECTION = 2,
USE_CLOSEST_TO_USER = 3

	}
	[bookmark: _Toc111215262][bookmark: _Toc111215833]
	[bookmark: _Toc111215263][bookmark: _Toc111215834]
	[bookmark: _Toc111215264][bookmark: _Toc111215835]
	[bookmark: _Toc111215265][bookmark: _Toc111215836]

[bookmark: _Toc111215267][bookmark: _Toc111215838]
Each trackable provides a local reference space in which an anchor pose can be expressed. This local reference space depends on the type of trackable as follows:
· If “type” is set to GEOMETRIC, then the origin is the center of the runtime-detected flat rectangular surface. The +Y is the normal vector of that surface, and the X and Z axes are aligned with the rectangle edges
· If “type” is set to MARKER_2D or MARKER_3D, then the origin is the center of the mesh related to the “markerNode”. The X, Y, and Z axes correspond to the axes of the mesh
· If “type” is set to MARKER_GEO, then the origin is the geospatial position. The +X points toward the East, -Z toward the North and +Y corresponds to the up vector of the local area.
· If “type” is set to MARKER_SEMANTIC, then the origin is the center of the runtime-detected mesh related to the “semanticDescription”. The X, Y, and Z axes correspond to the axes of the mesh
[bookmark: _Toc111215273][bookmark: _Toc111215844]
[bookmark: _Toc111215274][bookmark: _Toc111215845]
Scene level
The MPEG_anchors extension at the scene level contains an array of trackables.
	Name
	Type
	Usage
	Default
	Description

	trackables
	Array
	M
	[]
	Contains a list of trackable
used in the scene

[bookmark: _Toc111215290][bookmark: _Toc111215861]
Node level
The semantic of the MPEG_anchors extension at node level is provided in Table 2
[bookmark: _Toc111215293][bookmark: _Toc111215864]
	Name
	Type
	Usage
	Default
	Description

	requiresAnchoring
	Boolean
	M
	TRUE
	If TRUE, the application shall skip this node and its child nodes until the pose of this node in the real world is known.
if FALSE, the application shall process this node and its child nodes using the node TRS

	source
	enumeration
	M
	SCENE_DESCRIPTION_BASED
	Source of trackables:
SCENE_DESCRIPTION_BASED=0,
APPLICATION_BASED=1

	if (source==SCENE_DESCRIPTION_BASED) {
	[bookmark: _Toc111215316][bookmark: _Toc111215887]
	[bookmark: _Toc111215317][bookmark: _Toc111215888]
	[bookmark: _Toc111215318][bookmark: _Toc111215889]
	[bookmark: _Toc111215319][bookmark: _Toc111215890]

	 trackables
	array
	M
	[]
	Indices of the trackables items in the trackables scene array used by this node to be anchored

	 trackableHandling
	enumeration
	M
	ANY_OF
	the trackableHandling flag may take one of the following values:
ANY_OF=0: the application shall use any of the provided trackables. The trackables could be listed in a preferred order, otherwise the first detected trackable is selected.
ALL_OF=1: the application shall use all the trackables to provide for instance a more accurate positioning.

	 if (trackableHandling ==ALL_OF) {
	[bookmark: _Toc111215336][bookmark: _Toc111215907]
	[bookmark: _Toc111215337][bookmark: _Toc111215908]
	[bookmark: _Toc111215338][bookmark: _Toc111215909]
	[bookmark: _Toc111215339][bookmark: _Toc111215910]

	 trackablesRelativeTransforms
	array
	M
	[bookmark: _Toc111215344][bookmark: _Toc111215915]
	Array of relative system coordinates transforms of the provided trackables, one being the reference for the others (i.e., its relative transform to itself is the identity).
The format of the transforms could be a 4x4 matrix or a pair of vec3 (position) and a quaternion (pose)

	 }
	[bookmark: _Toc111215349][bookmark: _Toc111215920]
	[bookmark: _Toc111215350][bookmark: _Toc111215921]
	[bookmark: _Toc111215351][bookmark: _Toc111215922]
	[bookmark: _Toc111215352][bookmark: _Toc111215923]

	}
	[bookmark: _Toc111215355][bookmark: _Toc111215926]
	[bookmark: _Toc111215356][bookmark: _Toc111215927]
	[bookmark: _Toc111215357][bookmark: _Toc111215928]
	[bookmark: _Toc111215358][bookmark: _Toc111215929]

	elseif (source ==APPLICATION_BASED) {
	[bookmark: _Toc111215361][bookmark: _Toc111215932]
	[bookmark: _Toc111215362][bookmark: _Toc111215933]
	[bookmark: _Toc111215363][bookmark: _Toc111215934]
	[bookmark: _Toc111215364][bookmark: _Toc111215935]

	 referenceObjectId
	number
	[bookmark: _Toc111215368][bookmark: _Toc111215939]
	[bookmark: _Toc111215369][bookmark: _Toc111215940]
	Unique identifier of a model of a real-world reference object used as trackable for this anchor. The model of the real-world object is stored in a world content server.

	}
	[bookmark: _Toc111215373][bookmark: _Toc111215944]
	[bookmark: _Toc111215374][bookmark: _Toc111215945]
	[bookmark: _Toc111215375][bookmark: _Toc111215946]
	[bookmark: _Toc111215376][bookmark: _Toc111215947]

[bookmark: _Ref88829129]Table 2 : Semantic of the MPEG_anchors extension at node level
7.12 Timeline
· 2022-01-17: MPEG #138: Refine architecture and define basic triggers and actions
7.13 References
[1]	“Technologies under Consideration on Scene Description for MPEG Media”, N00367, MPEG2021, Online, October 2021
8 [bookmark: _Toc102161478][bookmark: _Toc102161521][bookmark: _Toc102161614][bookmark: _Toc102163021][bookmark: _Toc102163685][bookmark: _Toc102170455][bookmark: _Toc111215954]EE8: Lighting (newongoing)
8.1 Introduction
When it comes to inserting visual information in a captured real-world environment, lighting is a fundamental cue to take into account to provide a realistic experience to the user. Indeed, a virtual object overlaid on an real-world environment with inappropriate lighting and shadows can break the immersive illusion. In a VR context, accurate lighting models allow to achieve a high-level of realism which is also key for many VR applications that offer the illusion of “being there” for the user.
The goal of the EE is thus to specify the integration of lighting information existing in the glTF specification into the MPEG-I Scene Description standard. In particular, the EE will study the integration of lighting estimation operation with the MPEG-I SD architecture and the representation of light sources in scene description documents. Based on this integration and the possible identified technical gaps, the EE aims at defining the necessary extensions to glTF specification and to MPEG-I SD specification, as well as possible implementation guidelines.
8.2 Problem statement
A presentation engine is responsible for rendering a view of a scene to the user based on the scene description document. Among other things (physics engine, object drawing, etc..), the presentation engine renders the effect of light propagation in the scene, reflections, shadows, object illumination etc… In order to render those effects, the presentation engine needs a model of the lighting conditions at the time of the rendered frame. The light sources can be of two natures: real or virtual. In the AR context, there exists by definition a set of real light sources (sun, lamps, etc.). In addition, the scene may also contain virtual light sources. In the VR context, there are by definition only virtual light sources. In both cases, real and virtual, the light sources may be represented by the same model (punctual light, ambient light, etc.) and sometimes based on textures for the so-called environment cubemap. Those texture stored in buffer will impact the overall buffer management of the application and cannot ne omitted by MPEG-I SD architecture. One additional challenge in the AR context is to estimate the representation of the current lighting condition in which the AR application runs. This is called lighting estimation function and is provided by existing AR framework via API calls.
All those light-related operations are thus part of the presentation engine and requires:
· Representation model of light sources
· Spatialization of light sources representation (user can move in the scene)
· Time-dependent light source representation (the light sources can change over time)
· Integration with lighting estimation APIs (only for AR)
8.3 Use cases relevant for the EE
8.4 Relation to other activities (EE, requirements, etc…)
From WG 02 N00130, “MPEG-I Phase 2 Requirements”, MPEG136, October 2021.

4.3.1 Reference Scene Description Selection

77. The scene description should support nodes and attributes in order to implement natural laws of light, energy propagation and physical kinematic operations.

4.4 Descriptions for Content Interactivity

89. The specification shall enable realistic composition of a 6DoF scene depending on the user-selected location and orientation.

Note: Such composition may, e.g., include delivering proper lighting information and some form of geometry information of the scene so the view is rendered with realistic lighting and shadows.

8.5 Mandates
The mandates for this EE are as follows:
· To study the integration of AR lighting estimation API call with the MPEG-I SD reference architecture
· To specify the light source representation model for both real and virtual light sources, possibly based on commonly used models
· To specify the signaling of spatialized and time-dependent light sources in the scene description document based on existing glTF light-related extension

8.6 Participants
	Participant
	Contact
	Email
	Type

	
	
	
	

	Xiaomi
	Emmanuel Thomas
	thomase@xiaomi.com
	L

	Qualcomm
	Imed Bouazizi
	bouazizi@qti.qualcomm.com
	P

	InterDigital
	Patrice Hirtzlin
	Patrice.hirtzlin@interdigital.com
	P

(P = proponent, L = leader)
8.7 Information about proposed technologies
List of already submitted contributions on this topic.
8.7.1 m59520 – Scene description and lighting information
This contribution describes the background on light theory and its representation in AR frameworks.
8.7.1.1 Light source inventory
As explained in [1], there exist several types of light whether it is emitted or reflected light and different types of light sources which are primarily determined by the physical properties of the light such as the distance of the source, the direction of the ray of lights, etc..

The different types of light can be categorized as listed in Table 1.

[bookmark: _Ref101266859]Table 131 - Categorization of light types
	Type
	Description
	Example

	Ambient light

	Ambient light is light that doesn't come from a defined source, but is just present throughout the scene. This light reaches every surface in the scene at the same intensity from every direction, and is then reflected equally in every direction. As a result, the effect applied by ambient light is universally equal all through the scene.
	[image: A sphere which only has ambient lighting. Note the total lack of any shading to indicate the depth of the sphere.]

	Diffuse light
	Diffuse light is light which is evenly and directionally emitted from or reflected off a surface. This is the majority of the light we usually see. Diffuse light comes from a particular position or direction and casts shadows. Due to its directionality, the faces of an object facing a diffuse light source will be brighter than the other faces.
	[image: Saturn's fifth-largest moon, Tethys, is lit primarily by the sun, with some light reflected from Saturn. This is diffuse lighting.]

	Specular light
	Specular light is the light that makes up the highlights on reflective objects, such as gems, eyes, shiny cups and plates, and the like. Specular lights tend to appear as bright spots or squares on a surface at the point where a light source strikes the surface most directly.
	[image: A photo taken by NASA's Cassini spacecraft showing specular reflection of light from a lake of liquid methane on the surface of Saturn's moon Titan.]

Another categorization pertains to the light sources as described in Table 2.

[bookmark: _Ref101266803][bookmark: _Ref101266800]Table 142 - Categorization of light source types
	Type
	Description
	Example

	Ambient light sources
	An ambient light source is a light source describing the level and color of ambient light in a scene. While there may be more than one of these in a scene, you can probably slightly improve performance by combining them into one on your own, since each one will always affect every pixel evenly anyway.
	

	Directional light sources
	A directional light source is a light source that comes from a specific direction, but not from a specific source, so its emitted light rays are parallel to one another. In addition, the intensity of the light doesn't change over distance. This means that shadows cast by directional lights are very sharp, with an essentially instant transition between lighted and shadowed.
	[image: A photo taken by the Galileo spacecraft from about 6.3 million kilometers away, with Earth and moon both half-lit by the sun.]

	Point light sources
	A point light source is a light source located at a specific location, radiating outward equally in every direction. Light bulbs, candles, and the like are examples of point light sources. The closer an object is to a point light source, the brighter the light it casts onto that object. The rate at which the brightness of a point light falls off is called attenuation, and is a configurable feature of the light source in WebGL and other lighting systems.
	

	Spot light sources
	A spot light source (or spotlight) is a light source which is located at a specific position, emitting a cone of light in the direction of its orientation vector. A tapering rate parameter defines how quickly the brightness of the light falls off at the edges of the cone of light, and, as with point lights, an attenuation parameter controls how the light fades over distance.
	[image: Photo of a spotlight shining upon a stucco wall at night.]

8.7.1.2 Lighting model
As explained by the documentation of Google ARCore [2], the common model to reconstruct realistic lighting is composed of three elements:

1. Main directional light. Represents the main light source. Can be used to cast shadows.
2. Ambient spherical harmonics. Represents the remaining ambient light energy in the scene.
3. An HDR cubemap. Can be used to render reflections in shiny metallic objects.

The effect of each component and the final combined result are illustrated below:
[image: Rockets showing lighting changes: Main directional light plus ambient spherical harmonics plus HTF cubemap equals environmental HDR]
Figure 1 - Environmental lighting commonly used for AR [4]

[image: Chart, treemap chart

Description automatically generated]
Figure 2 - Specular Radiance Cubemaps in EXT_lights_image_based

For an optimal rendering quality, these three elements need to be refreshed every time a new frame is rendered by the AR engine. As a result, the light direction information and the ambient spherical harmonics become a timed sequences of metadata and the HDR cubemap becomes a timed sequence of textures, i.e. a video sequence.

8.7.1.3 AR Lighting estimation
In the context AR, the sources of light in the scene are dynamically estimated by the application. The existing AR frameworks provide such API functions:

	Framework
	Function
	Reference

	ARcore
	class LightEstimate returned Frame.getLightEstimate()
	LightEstimate | ARCore | Google Developers

	ARKit
	class ARLightEstimate : NSObject
	ARLightEstimate | Apple Developer Documentation

	WEbXR
	interface XRLightEstimate
	WebXR Lighting Estimation API Level 1 (w3.org)

8.8 Test cases	
8.8.1 Test case virtual-1: virtual spots in virtual scene
	Test case identifier
	virtual-1

	Description
	A set of two spotlights or point lights with white color illuminates a surface with 2 objects (2 spheres). A light animation changes the color of the two spotlights on a time bases: after 5 s, the spot one change to green and the second change to yellow. After another 5s, the spot one change to blue and the second change to red.

	Test assets
	Scene with the following 3D objects:
· Plane + 2 spheres
· 2 spotlights

	Current support
	The following features are supported:
· Punctual light (spotlight)

	Criteria
	A renderer needs to be able to render the spotlights with the starting color and then change the color at the predefined times.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-1

8.8.2 Test case virtual-2: various virtual lights in virtual scene
	Test case identifier
	[bookmark: _Hlk109331354]virtual-2

	Description
	In this test case, the scene is virtual and the lighting are also virtual. To generate this test case, it is possible to create a glTF scene using the KH_punctual_light extension.

It contains three punctual lights of type spot above the living room. Those ceiling spots have respectively a red, blue and green colour. The red spot has a larger light cone than the two others. In addition, four punctual lights of type “point” are on the wall in the back. Their colour is white.

	Test assets
	The scene contains:
· A carpet
· A coffee table
· A sofa
· A shelve
· Planes making an indoor room

	Current support
	Light source extension:
· KH_punctual_light

	Criteria
	A renderer needs to be able to render the virtual lights according to their description in terms of size, intensity, direction and color.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-2

8.8.3 Test case virtual-3: picture-based illuminating surface in virtual scene
	Test case identifier
	virtual-3

	Description
	A TV screen displays an image and illuminates a surface with 2 spheres (for instance with an area light).
An audio source is played by the TV and at some predefined times, a new image is displayed on the TV screen.

The lighting on the objects changes over time as the surface light intensity changes.

	Test assets
	Scene with the following 3D objects:
· For the TV, a vertical plane with an image texture
· Plane + 2 spheres

	Current support
	The following features are supported:
· Image texture
· The support for area light is missing and may be difficult to implement in mpegtrimesh.

	Criteria
	A renderer needs to be able to render the TV screen with the displayed images and render the correct appearances of object accordingly.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-3

8.8.4 Test case virtual-4: video-based illuminating surface in virtual scene
	Test case identifier
	virtual-4

	Description
	A TV screen displays an image and illuminates a surface with 2 spheres (for instance with an area light).
An audio source is played by the TV and at some predefined times, a new image is displayed on the TV screen.

The lighting on the objects changes over time as the surface light intensity changes.

	Test assets
	Scene with the following 3D objects:
· For the TV, a vertical plane with an video texture
· Plane + 2 spheres

	Current support
	The following features are supported:
· MPEG video texture for the variant
· The support for area light is missing and may be difficult to implement in mpegtrimesh.

	Criteria
	A renderer needs to be able to render the TV screen with the displayed video and render the correct appearances of objects accordingly.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/virtual-4

8.8.5 Test case env-1: static picture-based environment cubemap
	Test case identifier
	env-1

	Description
	A sphere on a surface is inside an environment that illuminates the 2 objects (for instance with a lighting cubemap).

	Test assets
	Scene with the following 3D objects:
· Plane + 1 sphere
· One 2D images as environment cubemap texture

	Current support
	The following features are supported:
· The support for lighting cube map (for instance Khronos EXT_lights_image_based extension) is missing.

	Criteria
	A renderer needs to be able to render the objects appearances based on the environment texture.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/env-1

8.8.6 Test case env-2: dynamic picture-based environment cubemap
	Test case identifier
	env-2

	Description
	A sphere on a surface is inside an environment that illuminates the 2 objects (for instance with a lighting cubemap).

At some predefined times, the environment changes and the lighting on the objects changes accordingly.

	Test assets
	Scene with the following 3D objects:
· Plane + 1 sphere
· Two 2D images as environment cubemap texture

	Current support
	The following features are supported:
· The support for lighting cube map (for instance Khronos EXT_lights_image_based extension) is missing.

	Criteria
	A renderer needs to be able to render the objects appearances based on the environment texture as the map changes, the rendering of the objects has to change.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/env-2

8.8.7 Test case env-3: video-based environment cubemap
	Test case identifier
	env-3

	Description
	A sphere on a surface is inside an environment that illuminates the 2 objects (for instance with a lighting cubemap).

The environment texture is based on a coded video.

	Test assets
	Scene with the following 3D objects:
· Plane + 1 sphere
· A 2D video as environment cubemap texture

	Current support
	The following features are supported:
· The support for lighting cube map (for instance Khronos EXT_lights_image_based extension) is missing.

	Criteria
	A renderer needs to be able to render the objects appearances based on the environment texture as the map changes over time, possibly at every frame of the video.

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/env-3

8.8.8 Test case real-1: Virtual objects with shadows from real light
	Test case identifier
	real-1

	Description
	A real light illuminates a real table on which are placed a real object (for example, a speaker) and a virtual object (for example a teddy bear).
The real light is simulated by a virtual light (spotlight).

	Test assets
	Scene with the following 3D objects:
· Plane + Speaker (real scan: obj format for example)
· 1 Teddy Bear (virtual object)

	Current support
	The following features are supported:
· Support for shadows
· Support for spot light

	Criteria
	A renderer needs to be able to:
· Render the shadow associated to the virtual object
· Render the direction of shadow associated to the virtual object
· Render the contour of shadow associated to the virtual object

	Location
	https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/MPEG-I/Part14-SceneDescriptions/content/EE8-Lighting/real-1

8.9 AR scene recording format
In order to record AR scene in the context of this EE, the EE defines mp4 formats to be observed by the submitted mp4 files containing the assets. This way, they can be unambiguously consumed by participants and reference software such as mpegtrimesh.

Note that currently ony an ARcore-based recoding format is defined but there may be more in the future.
8.9.1 ARCore-based recording format
For recording made using AR Android device, the format defined in Table 15 is expected.

[bookmark: _Ref111196640]Table 15 - ARCore-based recording format
	Track #
	Codec type
	Track type
	Sample format

	1
	avc1
	Visual track
	AVC NAL format

	2
	mett
(application/arcore-video-0)
	Metadata track
	Mysterious

	3
	mett
(application/ arcore-gyro)
	Metadata track
	Need to check

	4
	mett
(application/ arcore-accel)
	Metadata track
	Need to check

	5
	mett
(application/ arcore-custom-event)
	Metadata track
	Need to check

	6
	mett
(application/ hello-recording-playback-anchor)
	Metadata track
	Need to check

	7
	mett
(application/ mpeg-sd-spherical-harmonics)
	Metadata track
	Vector of 27 floats coded on 32 bits.

ARCore API:
getEnvironmentalHdr-AmbientSphericalHarmonics()

	8
	mett
(application/ mpeg-sd-main-light)
	Metadata track
	Vector of 3 floats coded on 32 bits (direction), vector of 3 floats coded on 32 bits (intensity)

ARCore API: getEnvironmentalHdr-MainLightDirection() and getEnvironmentalHdr-MainLightIntensity()

	9
	mett
(application/ mpeg-sd-environment-cubemap)
	Metadata track
	PNG-compressed cubemap in 3x2 layout

Width : 48 pixels
Height : 32 pixels
Color space: RGBA
Bit depth : 16 bits
Compression mode: Lossless

Projection:
[image:]

See 5.2.3 Cubemap projection for one sample location in MPEG-I OMAF

ARCore API: acquireEnvironmentalHdrCubeMap()

Tracks from 1 to 6 are provided as is by the mp4 recording API of ARCore. The tracks from 7 to 9 are defined for the specific purpose of the EE8.

9 The EE may define test cases for which the evaluation criteria will be analyzed. For instance, a first test case can be with live content while another in the on-demand content.
9.1 Evaluation criteria
List of criteria that will allow to compare the different technical solutions and converge to a unique solutions. Criteria can be objective like memory efficiency, bitrate or subjective flexibility, compatibility with legacy solution, etc..
	Criteria
	Description
	Evaluation

	Crieria #1
	Description
	The technical solution should minimize/optimise …

9.2 Timeline
· 2022-04-30: post MPEG#138 AHG
· Collection of use test cases
· Collection of evaluation criteria
· Initial thoughts on reference software implication (e.g. light rendering in trimesh)
· 2022-07-18: MPEG #139(online) meeting starts
· Agree on test cases and their possible prioritisation
· Agree on evaluation criteria
· 2022-07-22: post MPEG#139 AHG
· Provide and collect all test assets for the agreed test cases
· Collect possible additional test cases
· Collect input on initial technical solutions for light source representation and signalling (preferably with assets and implementations)
· Collect input on MPEG-I SD architecture lighting rendering integration
· 2022-10-24: MPEG #140(online) meeting starts
· Progress work
· 2023-01-16: MPEG #141(online) meeting starts
· Agree on final technical solution (assets and implementations needed for agreement)
· Agree on modified MPEG-I SD reference architecture (if modifications needed)
9.3 References
[1] [bookmark: _Ref102040357]Lighting a WebXR setting - Web APIs | MDN (mozilla.org), https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API/Lighting
[2] [bookmark: _Ref102040430]Introduction to Lighting Estimation | ARCore | Google Developers, https://developers.google.com/ar/develop/java/lighting-estimation/introduction?hl=en

image1.jpeg

image2.emf

Texture	Track

Occupancy	Track

Si
ng
le
	T
ra
ck

HEVC	Decoder

HEVC	Decoder

Processing

Processing

Buffer

Presentation	
Engine

Pi
pe
lin
e	
#1

Pi
pe
lin
e	
#2
a

Atlas	Track Metadata

Static	Metadata

Geometry	Track	 HEVC	Decoder Processing

HEVC	Decoder

HEVC	Decoder

Metadata

HEVC	Decoder

Processing

Processing

Processing

3D
	R
ec
on
st
ru
ct
io
n

Buffer

Buffer

Buffer

Buffer

De
m
ux
er

Si
ng
le
	T
ra
ck

Buffer

Pi
pe
lin
e	
#2
b

Texture	Track

Occupancy	Track

S

i

n

g

l

e

	

T

r

a

c

k

HEVC	Decoder

HEVC	Decoder

Processing

Processing

Buffer

Presentation	

Engine

P

i

p

e

l

i

n

e

	

#

1

P

i

p

e

l

i

n

e

	

#

2

a

Atlas	Track Metadata

Static	Metadata

Geometry	Track	 HEVC	Decoder Processing

HEVC	Decoder

HEVC	Decoder

Metadata

HEVC	Decoder

Processing

Processing

Processing

3

D

	

R

e

c

o

n

s

t

r

u

c

t

i

o

n

Buffer

Buffer

Buffer

Buffer

D

e

m

u

x

e

r

S

i

n

g

l

e

	

T

r

a

c

k

Buffer

P

i

p

e

l

i

n

e

	

#

2

b

image3.png
texture

rial

matel

node

mesh

accessor

}H

camera

[_enimaton)

bufferView

image4.emf
{ "extensions" : { "MPEG_V3C" : { "objects" : [{ // ... add V3C video - coded components "V3C_ATLAS" : [{ "blockSize" : 16 , // < - patch packing block size "BlockToPatchMap" : 111 , // < - accessor "NumberOfPatches" : 112 , // < - accessor "CommomPatchParameters" : 113 , // < - accessor "PLRLevel" : 114 , // < - accessor "BlockPLRD" : 115 , // < - accessor "PatchPLRD" : 116 , // < - accessor "EOMPatchInfo" : 117 // < - accessor }] }] } } }

oleObject1.bin

image5.png
e

14
{ accessor: 1
. .

| accessor: 3 \w accessor: 4 D
g r:
AN / \

N

cxtensions cxtensions

N

~
‘ MPEG _accessor_timed ‘ ‘ MPEG_accessor_timed ‘ ‘ MPEG_accessor_timed ‘

—

bufferView bufferView ufferview bufferView

i)
- ™ B ~ ow:a)
{ bufferview:1 (“outterview:2) { bufterview:3) bufferView: 4
. J N J J S—

buffer : 0
\extens\on MPEG_buffer. clrcularj

bufferView

butterView-._
—bufferView_

Atlas frame data

r
‘Timed Accessor ‘Timed Accessor ‘Timed Accessor ‘Timed Accessor block to common patch |, Jieation-specific patch parameters
N N N N patchmap NOP parameters J-I‘—l‘—l—l‘_‘
Ileader Information | lleader Information | lleader Information | Ileader Information information for all (patch : NOTP) EOM patch information
C s . o s
timedAccessorHeaderinfo({ timedAccessorHeaderTnfo(){
timestampDella:30, tirnestampDella 50,
componentType: 5125,
type: "SCALAR",
mnormalised: LSE
bufferOffset: o
count: #total number of blocks
min: o
bufferViewByteOffset:
bufferViewByteLength: hulTeerenBvle]_engu-n 3
bufferViewByteStrid DbufferViewByteStrids
H }
timedAccessorHeaderInfo(){ timedAccessorHeaderInfo(){
timestampDelta:30, timestampDelta:30,
componentType: 5125, componentType: 5125,
type: "Sealar” type: VEC3,
normalised: FALSE normalised: FALSE
bufferOffsct: o
count: 4
min: o min: {0, 0, 0}
bufferViewByteOffset: bufferViewByteOffset: |
bufferViewByteLengt bufferViewByteLengt
bufferViewByteStrid bufferViewByteStride:
H H

image6.emf

MPEG_scene_dynamic

MPEG_viewport_recommended

MPEG_animation_timing

scene

node
MPEG_audio_spatial

mesh

MPEG_mesh_linking

accessor

MPEG_accessor_timed

bufferView

camera
MPEG_audio_spatial

MPEG_objects

MPEG_media

MPEG_objects

MPEG_V3C

buffer

MPEG_buffer_circular

material

technique

program

shader

texture

MPEG_mesh_linking

source image

object

animation

skin

light

MPEG_scene_dynamic

MPEG_viewport_recommended

MPEG_animation_timing

scene

node

MPEG_audio_spatial

mesh

MPEG_mesh_linking

accessor

MPEG_accessor_timed

bufferView

camera

MPEG_audio_spatial

MPEG_objects

MPEG_media

MPEG_objects

MPEG_V3C

buffer

MPEG_buffer_circular

material

technique

program

shader

texture

MPEG_mesh_linking

source

image

object

animation

skin

light

image7.png
o
N
*
L
£
o]
=
)

Geometry Track

Texture Track

Occupancy Track

Atlas Track

Static Metadata

Multiplexer

Presentation Engine

-/

image8.png
scene
MPEG scene_dynamic
MPEG recommended viewport

MPEG animation_timing

MPEG_media
)

camera node
) —>| light
MPEG_audio_spatial ‘ MPEG_audio_spatial
~[Crme T

_—
__ mesh material texture
MPEG_mesh _linking |—>
'MPEG_mesh_collision
— |

animation —| accessor

MPEG_accessor_timed

i
bufferView
I S
buffer

MPEG_buffer_circular

skin —

image9.png

image10.png
Trigger

S

Node

Action

.

image11.png
2y 0

|' chairglb - paint 30

Triangles: 740 < Vertices: 372

e Painter practice piece

Dining table chai

ense: CC Attribution-NonCommercial

ih € AU

R Type here to search

3D library.

o

100%

9

Undo

History

wale Jus pusl
g pilal
EgyBest 2
EgyBest app
o2l gégo

daall ey sl

gils palél
dudilig pAlal
EgyBest
EgyBest vip
gyl
Suxall cuay ol

apk cuy ol

EgyBest

1. AaB 1.1. Aal 1.1.1. A AaBbCcD AaBbCc AaBbCCD

feading 1 T Heading 2 Headings 3

EAP-Radius - stron.

@ Flybox

@ How to Setup IKEV2.

A

or

Replace.

D Selectv

engne

- Cesium Filament Threejs

Show Background

kitten/docker-stron...

@ Manage

A~ &

=

ENG

838 PM

1/6/2021

B

image12.emf
scene

node

mesh

accessor

bufferView

buffer

MPEG_buffer_circular

MPEG_mesh_linking

MPEG_accessor_timed

MPEG_media

MPEG_audio_spatial

MPEG_scene_dynamic

light

camera

material

technique

program

shader

texture

MPEG_texture_video

animation

skin

source

image

MPEG_recommended_viewport

MPEG_audio_spatial

MPEG_animation_timing

MPEG_scene_interactivity

image13.emf
set activation status = TRUE

are

conditions

met

?

yes

no

activation

status ==

TRUE

?

activate

once ==

TRUE

?

set activation status = FALSE

yes

no

yes

no

activate the trigger

image14.emf
process the interrupt action

is

on-going

behavior

?

yes

no

new scene description

is

behavior

still defined

?

yes

no

continue the on-going behavior stop the on-going behavior

apply the new scene description

image15.png
~ MPEG_media

MPEG_scene_dynamic } —_—— MPEG_scene_interaction

4 N
[
|

| behaviors I p
P

_ j‘ MPEG_haptic

MPEG_recommended_viewport

k 314 / .

f ld \ User Inputs
node

<—

[MPEG_avatar]
trigger —»

[MPEG_audio_spatial]
\ J action ——p

int t
v l interrup >
material mesh
MPEG_material_haptic J [MPEG_mesh_collision

l v

accessor animation

image16.svg
 scene node MPEG_media MPEG_scene_dynamic MPEG_recommended_viewport animation mesh material MPEG_ haptic MPEG_material_haptic MPEG_scene_ interaction MPEG_ avatar MPEG_ audio_spatial MPEG_ mesh_collision behaviors accessor trigger action interrupt User Inputs

image17.png
44 4

image18.png

image19.png
i

image20.png
scene

MPEG scene_dynamic

MPEG_recommended viewport

MPEG_animation_timing

'

camera

node

MPEG audio_spatial |

MPEG_audio_spatial

mesh
MPEG_mesh linking

2

animation —

skin

accessor

MPEG_accessor_timed
bufferView
S
buffer

MPEG _buffer_circular

MPEG_media

material

program

shader

texture

MPEG_texture_video

image21.png

image22.png

image23.png

image24.png
C1: Center of
detected plane
C2: virtual scene
reference

1

Trackable

image25.png
An::hljr_l_RSl

Trackable|

TRS2

Virtual

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.png
+
Il

Main Ambient HDR Environmental
Directional Light Spherical Harmonics Cubemap HDR

image32.png

image33.png
) © | NY Right
Y Lel PX front | @
° L]

