[image: ]                                        ISO/IEC JTC 1/SC 29/WG 7 N00374


ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics and Haptics Coding 
Convenorship: AFNOR (France)



Document type:	Output Document

Title:	Perf. Analysis of Currently AI-based Available Solutions for PCC

Status:	Approved

Date of document:	2022-07-22

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:	None

Action due date:	None

No. of pages:	57 (with cover page)

Email of Convenor:	marius.preda @ imt . fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7




INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG CODING FOR 3D GRAPHICS AND HAPTICS

ISO/IEC JTC 1/SC 29/WG 7 N00374 
July 2022, Virtual


	Title
	Perform. Analysis of Currently AI-based Available Solutions for PCC

	Author
	Alexandre Zaghetto

	Source
	WG7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	21695



Abstract
A baseline performance evaluation of different AI-based point cloud compression solutions was initiated after the 4th WG7 (135th MPEG) meeting in July 2021. The rate-distortion performance of four proposals was evaluated, namely pcc_geo_cnn_v2, pcgcv2, adl-pcc and fractional super resolution. The first three proposals are AI-based, while fractional super-resolution is a non-AI-based post-processing technique applied to G-PCC reconstructed point clouds. After the 5th WG7 (136th MPEG) meeting in October 2021, inference runtime analyses was partially included. It is important to mention that the use of PyTorch as an open-source machine learning framework was recommended in the same meeting (5th WG7 meeting). Consequently, runtime evaluations were limited to pcgcv2, because of its use of the PyTorch framework. From the available solutions, pcc_geo_cnn_v2 and adl-pcc are implemented using TensorFlow, and fractional super-resolution, which is not an AI-based solution, is implemented in GNU octave. This last method was included only as an additional reference. A summary of Python and PyTorch performance evaluation tools was also introduced. To reflect the discussions conducted between the 6th WG7 (137th MPEG) meeting in January 2022 and the 8th WG7 (139th MPEG) meeting in July 2022, this document also compiles the performance of new and continued proposals presented in these meetings, as reported by the respective proponents.

1 Introduction
1.1 Baseline study
A summary of AI-based point cloud compression solutions, presented in the 4th WG7 (135th MPEG)  meeting, more specifically those discussed in the following documents, is presented:
· m57301 (Sony): Discussion on Point Cloud Geometry Compression Using Machine Learning [1];
· m57556 (IST): DL-based Point Cloud Geometry Coding Software Availability [2]; and 
· m57453 (Nanjing Univ/OPPO) [3]: A Geometry Compression Framework for AI-based PCC via Sparse Convolution. 
During this meeting, the possibility of applying super-resolution to G-PCC output point clouds as an alternative method was mentioned. Thus, an additional comparison with a fractional super-resolution tool [4] is also performed. 
This document also introduces runtime computation and profiling tools provided in Python and PyTorch packages. As a study case, runtimes for the pcgcv2 solution, reflecting part of the discussions conducted during the 5th WG7 (136th MPEG) meeting in October 2021, is also presented. 
The baseline study that evaluates the afore mentioned methods and includes the discussion about runtime computation and profiling tools is performed in Sections 2 to 6.

1.2 Updates
Sections 7 and 8 include updates from the 6th WG7 (137th MPEG) meeting onwards.
1.2.1 6th WG7 (137th MPEG)
Five contributions reflecting continued and new codec proposals were presented: 
· m59035: SparsePCGC: Point Cloud Geometry Compression using Sparse Tensor-based Multiscale Representation 
· m58965: Point cloud geometry compression using learned octree entropy coding 
· m58780: A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC 
· m59037: Point Cloud Attribute Compression using Sparse Tensor-Representation
· m58962: Geometric Residual Analysis and Synthesis for PCC
Details and specific conclusions are presented in Section 7.1 and Section 8.5.1, respectively.
1.2.2 7th WG7 (138th MPEG)
Six contributions reflecting continued and new codec proposals were presented: 
Deep Octree Coding
· m59528: Point cloud geometry compression using learned octree entropy coding
· m59529: Point cloud geometry compression using SparseVCN
End-to-end Coding
· m59552: SparsePCGCv2: Improved SparsePCGC with attention mechanism
· m59649: Geometric Residual Analysis and Synthesis for PCC
Dynamic Point Cloud Coding
· m59685: Modifications to M58780 D-DPCC
· m59617: Dynamic Point Cloud Geometry Compression using Sparse Convolutions
Details and specific conclusions are presented in Section 7.2 and Section 8.5.2, respectively.
1.2.3 8th WG7 (139th MPEG)
Eight contributions reflecting continue/new codec and technical proposals were presented: 
On AI Tools for Point Cloud Compression and Analysis (EE 5.0)
· m60346 On Reporting Template for AI-based PC
· m60331 On Density-to-density Distortion
Deep Octree Coding and End-to-end Coding (EE 5.1/ EE 5.2)
· m60352 SparsePCGCv1 Update: Improvements on Dense/Sparse/LiDAR Point Cloud 
· m60353SparsePCGCv2: Multihead Neighborhood Point Attention for Sparse Point Clouds
End-to-end Coding (EE 5.2)
· m60342 Improved Geometric Residual Analysis and Synthesis for PCC
· m60349 Deep Distribution Aware (DDA) Point Feature Extractor for AI-based PCC
Dynamic Point Cloud Coding (EE 5.3)
· m60267 D-DPCC Test Results on 10 bit Owlii
· m60354 SparsePCGCv3: Dynamic SparsePCGC with Inter Frame Prediction

More information and specific conclusions are presented in Section 8.3 and Section 8.5.3, respectively.




2 Baseline Solutions
Three ML-based solutions were presented, namely, pcc_geo_cnn_v2 [1], adl-pcc [2] and pcgcv2 [3]. An additional fractional super resolution tool, Fractional-SR [4], will also be briefly discussed. In the next subsections the general characteristics of each solution will be presented.
2.1 pcc_geo_cnn_v2
The pcc_geo_cnn_v2 solution was presented in m57301 [1], which introduces the discussion about Point Cloud Geometry Compression using the “Improved Deep Point Cloud Geometry Compression” architecture proposed by Maurice Quach, Giuseppe Valenzise and Frederic Dufaux (Université Paris-Saclay). 

2.1.1 Main Features and Architecture
In pcc_geo_cnn_v2 a set of contributions to improve deep point cloud compression is proposed:
· using a scale hyperprior model for entropy coding;
· employing deeper transforms; 
· a different balancing weight in the focal loss; 
· optimal thresholding for decoding; and 
· sequential model training. 
[image: ]
Figure 1. pcc_geo_cnn_v2 general architecture. See [1] for a detailed description.
2.1.2 References
· Paper: https://arxiv.org/abs/2006.09043
· Software: https://github.com/mauriceqch/pcc_geo_cnn_v2
· License: MIT License
2.1.3 Requirements
· python 3.6.9
· tensorflow 1.15.0 
· tensorflow-compression 1.3
· CUDA 10.0.130 
· cuDNN 7.4.2

2.1.4 Datasets
· Training: subset of the ModelNet40: https://modelnet.cs.princeton.edu/
· Models are trained on a subset of the ModelNet40 dataset. First, the dataset is sampled into voxelized point clouds with resolution 512. Then, the 200 largest point clouds are selected. Point clouds are divided into blocks with resolution 64. The 4000 largest blocks are selected.
· Test: 8iVFB dataset: http://plenodb.jpeg.org/pc/8ilabs
· longdress_vox10_1300
· loot_vox10_1200
· redandblack_vox10_1550
· soldier_vox10_0690

2.2 pcgcv2

The pcgcv2 proposal is presented in m57453 [3], which proposes a geometry compression framework for AI-based PCC based on sparse convolution. In the proposed method, the point cloud is represented by sparse tensor and processed by spatially sparse Convolution Neural Networks (CNN). More specifically, sparse CNNs are employed to exploit the spatial dependency between voxels and predict the occupancy probability, which will be used for entropy coding or binary classification of voxel occupancy symbols. 

2.2.1 Main Features and Architecture

The proposed framework includes both lossless and lossy geometry compression, and it also can provide scalable coding capability. In the present draft document, only the lossy aspect is evaluated. For its lossless compression capabilities, see document m57453 [3].

[image: ]

Figure 2. PCGCv2 general architecture for lossy compression. See [3] for a detailed description.

2.2.2 References
· Paper: https://arxiv.org/pdf/2011.03799.pdf
· Software: https://github.com/NJUVISION/PCGCv2
· License: MIT License
2.2.3 Requirements
· python >=3.7
· pytorch >=1.7
· torchac 0.9
· CUDA >=10.2
· MinkowskiEngine >=0.5

2.2.4 Datasets
· Training: ShapeNet: https://shapenet.org/
· Contains ≈51,300 CAD surface models. These models are first densely sampled to generate point clouds, and then randomly rotated and quantized to 7-bit precision for each dimension. The number of points in each point cloud is randomized without imposing any constraints.

· Test: 8iVFB dataset: http://plenodb.jpeg.org/pc/8ilabs
· longdress_vox10_1300
· loot_vox10_1200
· redandblack_vox10_1550
· soldier_vox10_0690

2.3 adl-pcc

The adl-pcc proposal is presented in m57556 [2], which aims at informing the MPEG community through SC29/WG7 on the public release of software for a Deep Learning (DL)-based Point Cloud (PC) geometry coding solution, as an effort to contribute to the MPEG Point Cloud Coding activity related to learning-based coding.

2.3.1 Main Features and Architecture
The proposed coding solution divides the point cloud into 3D blocks and selects the most suitable available deep learning coding model to code each block, thus maximizing the compression performance. 
[image: ]
Figure 3. ADL-PCC general architecture for lossy compression. See [2] for a detailed description.
2.3.2 References
· Paper: https://www.it.pt/Publications/PaperJournal/30381
· Software: https://github.com/aguarda/ADLPCC
· License: Apache-2.0 License: https://www.apache.org/licenses/LICENSE-2.0
2.3.3 Requirements
· python 3.6.9
· tensorflow 1.15
· tensorflow-compression 1.3
· CUDA Version 10.0.130
· cuDNN 7.6.5

2.3.4 Datasets
[image: ]

2.4 Fractional SR
This method is presented in [4] and proposes to super-resolve voxelized point clouds down-sampled by a fractional factor, using lookup-tables (LUT) constructed from self-similarities from its own down-sampled neighborhoods. 

2.4.1 [bookmark: _heading=h.yh6ljh31ze5v]Main Features and Architecture
Does not require training, thus presenting reduced complexity in comparison to ML-based approaches. Presents comparable results with pcc_geo_cnn_v2 and adl-pcc for solid 10 and 11-bit point clouds. Applied as a G-PCC post-processing step.


[image: ]
(a)

[image: ]
(b)
Figure 3. Fractional-SR general architecture. See [4] for a detailed description.

2.4.2 [bookmark: _heading=h.fz4ixhtve4p5]References
· Paper: https://doi.org/10.36227/techrxiv.15032052.v1
· Software: https://github.com/digitalivp/PCC_LUT_SR
· License: MIT Licence
2.4.3 [bookmark: _heading=h.6t0ykwd5y0hx]Requirements
· GNU Octave
2.4.4 [bookmark: _heading=h.qq5ovvg5qacr]Dataset
[image: ]



3 Test and Training Set Selection

To provide a preliminary comparison of the proposals presented in Section 2, the test set selection criteria presented in the next sections were applied.

3.1 Original Set

Point clouds presented in Table 1 are point clouds taken from the G-PCC CTC [5]. In m55485 [6], “G-PCC EE13.46 review of v11 attribute coding,” the classification of point clouds according to density/use case criteria is proposed. According to m55485, the classes are solid, dense, sparse, scant, for surface point clouds, and am-fused, am-frame, for LiDAR point clouds. LiDAR point clouds are not listed, since this use case was not addressed by the proposed ML-based PCC solutions. The same classification is used in the testing procedure proposed in the present document.

Table 1. Subset of G-PCC CTC point clouds. LiDAR is not represented.
[image: ]



3.2 Proposed Set
The G-PCC CTC test set was successively narrowed-down, following the following steps:

1. Scant surface point clouds were removed, since this class was not addressed by any of the studied ML-based PCC solutions.

Table 2. Subset of G-PCC CTC point clouds. Scant surface point clouds removed.
[image: ]
[image: ]
2. Columns and colors indicate which and how point clouds were used for training and testing by ML-based solutions (adl-pcc, pcc_geo_v2 and pcgcv2). Color codes are detailed in the legend. All point clouds used by any of the proposals during training were removed. Table 3 (a) shows the remaining point clouds.
3. Since different versions of loot, soldier, redandblack and unicorn were used by adl-pcc during training, the 12-bit versions of these point clouds were also removed. The result is shown in Table 3 (b).







Table 3. (a) point clouds used in training were removed; (b) including their higher bit-depth versions.
[image: ]
(a)                                                                         (b)
4. The 10-bit precision solid longdress was kept in the test set. The 10-bit solid queen was included because of its synthetic nature.
5. The 11-bit solid basketball and dancer are similar in terms of density (class), geometry precision and number of points. Thus, just one of them was included in the test set. Dancer was arbitrarily chosen.
6. From the 12-bit examples, the dense house and the sparse statue_klimt were included.
7. The 14-bit dense landscape and 16-bit sparse stanford point clouds were selected only for future tests. As will be shown, 12-bit precision point clouds already presented some challenges. Higher bit-depth will most probably require retraining, which was not carried out in the current tests, or some additional pre- and post-processing step.
Table 4. Selected test set.
[image: ]
In conclusion, the resulting test set is composed of 10, 11, 12, 14 and 16-bit point clouds, 3 solid, 2 dense, and 2 sparse, with the number of points ranging from 499,669 to 71,948,094.








4 Objective Performance Evaluation
Point clouds used in tests were distributed over three sets. Set 1, with 10-bit solid point clouds (longdress, loot, redandblack and soldier). This is the test set originally proposed by pcc_geo_cnn_v2 and pcgcv2 and can be considered a well-behaved test set. Set 1 will be considered of low-complexity. However, since loot, redandblack and soldier were used to train adl-pcc models, an expanded test set became necessary. As a result, Set 2, with 10, 11 and 12-bit dense and sparse point clouds (queen, dancer, staue_klimt and house_without_roof) is proposed. Queen and dancer can also be considered well-behaved cases, however, house_without_roof and statue_klimt start to pose some challenges due to their geometry precision and degree of sparseness. Consequently, Set 2 can be considered a medium-complexity set. Finally, Set 3, with 14 and 16-bit dense and sparse point clouds (landscape and stanford), which present the highest geometry precision among the selected point clouds in Section 3. Set 3 is a high-complexity test set. In our evaluations, only Set 1 and Set 2 were used. Set 3 can be included in further investigations.

4.1 MPEG Software

The following PCC-related MPEG softwares and respective releases were used in the tests.

4.1.1 G-PCC (TMC13v14.0)

G-PCC is used as anchor and part of pcgcv2. Fractional SR is applied to the point clouds compressed and reconstructed by G-PCC.

Software: http://mpegx.int-evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc13
Commit: c3c9798a0f63970bd17ce191900ded478a8aa0f6

4.1.2 D1 and D2 PSNR (pc_error Release 0.13.5)

· Software: http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric
· Commit: 3b79aaed84df988d72851010b5c8288728b04d14

4.2 Tests with Set 1
This is the test set originally proposed by pcc_geo_cnn_v2 and pcgcv2. However, in adl-pcc, the point clouds loot, redandblack and soldier are also part of the training set. Because of that, the results may be biased towards adl-pcc. This is one of the reasons why Set 2 is also evaluated in Section 4.3. In addition, for Set 1, pcc_geo_cnn_v2, adl-ppc and pcgcv2 do not perform any pre- or post-processing (e.g. down/up-scaling). For pcgcv2 there is one relevant extra parameter, rho, that controls the number of output points. For test Set 1, rho = 1, making the number of output points equal to the number of input points. The other techniques, pcc_cnn_geo_v2, adl-pcc and Fractional SR do not have a similar mechanism. The general characteristics of Set 1 are shown in Table 5. Regarding Fractional SR, point clouds are decimated by G-PCC according to the CTC during lossy geometry coding and super-resolution is applied to the reconstructed point cloud. G-PCC lossy and lossless geometry coding performance are included as references. Table 5 summarizes the general characteristics of Set 1. 




Table 5. General characteristics of test Set 1.
	ML-BASED POINT CLOUD COMPRESSION: SET 1

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	solid
	longdress_vox10_1300
	10
	857966

	
	loot_vox10_1200
	10
	805285

	
	redandblack_vox10_1550
	10
	757691

	
	soldier_vox10_0690
	10
	1089091



Figures 4 (a) and b (b) show D1 and D2 PSNR plots for pcc_geo_cnn_v2, adl-pcc and pcgc-v2, as well as for G-PCC (TMC3-lossy) and Fractional SR (TMC13-lossy + SR).

[image: ]
(a)
[image: ]
(b)
Figure 4. D1 and D2 PSNR plots for Set 1.
4.3 Tests with Set 2

In the following results, pcgcv2 applies down-scaling to the input statue_klimt and house_without_roof point clouds and up-scaling to the respective output reconstructed point clouds (scaling_factor = 0.375), as illustrated in Figure 5. In addition, the value of rho is 4.0 and 1.0, for statue_klimt and house_without_roof, respectively. No geometry transformation is applied to queen and dancer (scaling_factor = 1, rho = 1). In the first set of plots, shown in Figure 6, pcc_geo_cnn_v2 and adl-pcc are not using any equivalent down- and up-scaling strategy for statue_klimt and house_without_roof. Original version of theses point clouds are directly input to the codec. Table 6 summarizes the general characteristics of Set 2. 
Table 6. General characteristics of test Set 2.
	ML-based Point Cloud Compression: SET 2

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	solid
	queen_0200
	10
	1000993

	solid
	dancer_vox11_00000001*
	11
	2592758

	sparse
	staue_klimt_vox12
	12
	499660

	dense
	house_without_roof_00057_vox12
	12
	4848745


* The assistance provided by Maurice Quach was greatly appreciated. 

[image: ]
Figure 5. Down-scaling of the original point cloud and up-scaling of the reconstructed point cloud.

[image: ]
[image: ]
Figure 6. D1 and D2 PSNR plots for Set 2: pcgcv2 codec is using down- and up-scaling. In addition a pcgcv2 parameter rho; pcc_geo_cnn_v2 and adl-pcc are not using a similar strategy.

It is important to note that directly coding sparse point clouds with larger precision often leads to two main issues:

1) The number of 3D blocks that needs to be coded will be very large, leading to much larger bitrates;
2) The 3D blocks will also be sparser, which makes it more difficult to achieve a good reconstruction quality.

As such, applying down-scaling to these point clouds before coding can mitigate these issues, and result in a better RD performance. New experiments were performed where adl-pcc also applied down-scaling before coding, and after decoding the point clouds were up-scaled back to the original precision. This approach will be referred to as “adl-pcc, dus” The house_without_roof_00057_vox12 and staue_klimt_vox12 point clouds were down-scaled to 11 and 10-bit precisions, respectively. After decoding, the point clouds were up-scaled to 12 bits. As the plots in Figure 7 show, there is a significant RD performance improvement over coding the point clouds in their original precision, yielding similar results as pcgcv2, which also uses a similar  down- and up-sampling strategy.  The pcc_geo_cnn_v2 codec did not apply an equivalent down- and up-scaling strategy for statue_klimt and house_without_roof. In this case, original point clouds are directly used as inputs.

[image: ]
Figure 7. D1 and D2 PSNR plots for Set 2: adl-pcc and pcgcv2 are using down- and up-scaling; pcc_geo_cnn_v2 is not using down- and up-scaling.

Figure 8 shows a zoomed part of the same plots of Figure 7.

[image: ]
Figure 8. Zoomed part of plots shown in Figure 7.

In Figure 9, it is possible to observe in detail the effect of down- and up-scaling in adl-pcc in D1 and D2 PSNR performance (adl-pcc vs. adl-pcc, dus). TMC13-lossy is plotted for reference.
[image: ]
Figure 9. Effect of down- and up-scaling in adl-pcc.
The authors of pcc_geo_cnn_v2 did not suggest any down- and up-scaling procedure, thus this is a configuration that was not included in the experiments. However, it is likely that reducing the point cloud density/bit-depth before encoding and increasing it back after decoding would also benefit pcc_geo_cnn_v2. 
Due to the sparseness and higher bit-depth of house_without_roof_00057_vox12 and staue_klimt_vox12, Fractional SR was not able to produce results due to technical limitations. However, if the point clouds get down-scaled after being encoded with G-PCC the Fractional SR technique is able to deal with these point clouds. After being super-resolved, point clouds are up-scaled to their original resolution. This setup, illustrated in Figure 10, will be referred to as “TMC13-lossy+SR, dus”. Results are shown in Figure 11, where rescaling was applied to adl-pcc, pcgcv2 and Fractional SR. It is important to highlight that even though pcc_geo_cnn_v2 is also partially represented in the plots, it is not performing down- and up-scaling.
[image: ]
Figure 10. TMC13-lossy+SR, dus scheme.

[image: ]
Figure 11. D1 and D2 PSNR plots for Set 2: adl-pcc, pcgcv2 and Fractional SR  are using down- and up-scaling; pcc_geo_cnn_v2 is not using down- and up-scaling.

4.4 Tests with Set 3
Results obtained for Set 2 indicate that higher geometry precision associated with lower density represents a challenging scenario that probably requires a different coding strategy. Maybe simple down- and up-sampling steps are not sufficient. Training the models with different conditions may be required. The present document considers the evaluation of the codecs using test Set 3 as future investigation. Table 7 summarizes the general characteristics of Set 3.

Table 7. General characteristics of test Set 3.
	ML-based Point Cloud Compression: SET 2

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	dense
	landscape_00014_vox14
	14
	71948094

	sparse
	stanford_area_4_vox16
	16
	43399204



5 [bookmark: _heading=h.6h0fpvas92zq]Visual Inspection
5.1 Test Set 1

From this test set, longdress was selected as a representative example. All point clouds in Set 1 are solid, 10-bit vozelixed, full-body point clouds, captured using the same technology. In addition, D1 and D2 PSNR behavior for all four point clouds present the same trend. Table 8 shows the rate distortion points and Figures 12 and 13 views of the output of the codecs.


Table 8. RD points selected for visual inspection: longdress_vox10_1300.

[image: ]

The bold rows indicate which RD points were selected from each codec.
[image: ][image: ][image: ]
(a) Uncompressed            (b) tmc3                       (c) adl-pcc


[image: ][image: ][image: ]
(d) pcc_geo_cnn_v2          (e) pcgcv2                (f) Fractional SR
Figure 12. Visual inspection of codec output.
[image: ]
(a) Uncompressed
[image: ]
(b) tmc3
[image: ]
(c) adl-pcc
[image: ]
(d) pcc_geo_cnn_v2

[image: ]
(e) pcgcv2
[image: ]
(f) Fraction SR
[bookmark: _heading=h.sjvsecvnnv65]Figure 13. Zoomed part of point clouds shown in Figure 12.

One very pronounced effect that can be observed in adl-pcc and pcc_geo_cnn_v2 are holes in the region of the nose. The same artifacts are not present in pcgcv2 and Fractional SR.

5.2 Test Set 2
From Set 2, queen_0200 and staue_klimt_vox12 were chosen for visual inspection. The point cloud queen_0200 is a synthetic point cloud and staue_klimt_vox12 represent the most difficult case  (12-bit geometry precision and reduced number of point: ~500k). Because pcc_geo_cnn_v2 does not use down- and -up-scaling, the rate-distortion points are not comparable to those of the other codecs. There the output of pcc_geo_cnn_v2 for staue_klimt_vox12 is not presented. Table 9 and 10 show rate distortion points and Figures 14 and 15 views of the output of the codecs.

Table 9. RD points selected for visual inspection: queen_0200.
[image: ]

Figure 13 shows a zoomed part of queen_0200. Except for tmc3, differences are not easily identified.

[image: ]        [image: ]
(a) Uncompressed                                             (b) tmc3

[image: ]        [image: ]
(b) adl-pcc                                                    (c) pcc_geo_cnn_v2
[image: ]        [image: ]
(c) pcgcv2                                               (e) Fractional SR
Figure 14. Zoomed part of queen_0200.

Table 10. RD points selected for visual inspection: staue_klimt_vox12.
[image: ]









[image: ][image: ]
(a) Uncompressed                                                        (b) tmc3
[image: ][image: ]
(d) adl-pcc                                                    (c) pcgcv2

[image: ]
(e) Fractional SR
Figure 15. Zoomed part of statue_klimt_vox12.
One can notice that for adl-pcc and pcgcv2 (the AI-based approaches), there are multiple regions where holes a very visible. However, it seems that the original point cloud already presents such holes, but they can’t be noticed due to the sparsity of the point cloud. When reconstructed with the machine learning algorithms, regions with no holes become denser, contrasting with regions that originally were already empty. Figure 16 show an example.







[image: ]      [image: ]
(a) Uncompressed                                                         (b) adl-pcc 

[image: ] 
(c) pcgcv2
Figure 16. Zoomed part of statue_klimt_vox12. Presence of artifacts.



6 Complexity Evaluation
The use of PyTorch as an open-source machine learning framework was recommended at the 5th WG7 MPEG meeting [7], thus, only PyTorch will be taken into consideration in the current section. The synthesis here presented constitutes an initial discussion on potential complexity evaluation tools and must further discussed and enhanced.
6.1 Built-in Evaluation Tools
There are several core built-in functions that can be used for performance evaluation in terms of runtime. Some are detailed in the next sections.
6.1.1 Python Modules
6.1.1.1 time
Python time module [8], [9] provides four different clocks:
· 'time': time.time()
· 'monotonic': time.monotonic()
· 'perf_counter': time.perf_counter()
· 'process_time': time.process_time()

To get more information about a specific clock, one can use the time.get_clock_info() function, as exemplified in Table 11.

Table 11. Characteristics of each clock on 64-bit Windows 10. Adjustable: the clock can be changed; implementation: the underlying C function used to get the clock value; monotonic: clock goes only forward; resolution: time resolution of the clock in fractional seconds.
	
	implementation
	monotonic
	adjustable
	resolution

	'time':
	GetSystemTimeAsFileTime()
	False
	True
	0.015625

	'monotonic'
	GetTickCount64()
	True
	False
	0.015625

	'perf_counter'
	QueryPerformanceCounter()
	True
	False
	1e-07

	'process_time'
	GetProcessTimes()
	True
	False
	1e-07



Absolute time
Time elapsed since a defined origin of times.
· time.time()
Return the time in seconds since the “epoch”, which is the point where the time starts. On Windows and most Unix systems, the epoch is January 1, 1970, 00:00:00 (UTC). It can result in unexpected behavior due to its adjustable characteristic. The function time.gmtime(0) returns the epoch on a specific platform.
Relative time
Only the difference between the results of consecutive calls is valid. The reference time is undefined.
· time.monotonic()
Return an always increasing time (monotonic clock) in fractional seconds. Represents a safer alternative to time.time(). 
· time.perf_counter()
Return the time in fractional seconds of a performance counter, a clock with the highest available resolution. Includes time elapsed during sleep.
· time.process_time()
Return the sum of the system and user CPU time of the current process. It does not include time elapsed during sleep.

Example (time.time()):

import time

def testFunc(x):
	return 2*x

start = time.time ()
y = testFunc(x)
end = time. time ()
elapsed_time = end – start

The same example can be rewritten substituting time.time() for time.monotonic(), time.perf_counter() or time.process_time().

6.1.1.2 timeit 
Provides a simple way to evaluate the performance of small parts of code [10]. 
· timeit.Timer()
Run the code multiples times and return the total runtime in fractions of seconds. Uses time.perf_counter() as the default timer.

Example: 
	import timeit

def testFunc(x):
	return 2*x

number_of_runs = 100
x = 10
t = timeit.Timer(
        stmt='testFunc(x)',
        setup='from __main__ import 'testFunc,
        globals={'x': x})
print(t.timeit(number_of_runs))


6.1.2 PyTorch Module
6.1.2.1 torch.utils.benchmark
This benchmark module is similar to the timeit module [11]. 
torch.utils.benchmark.Timer()
Uses timeit.Timer() with some key differences: it returns the time per run instead of the total runtime for all runs; it is processed in a single thread. To make the results comparable to timeit.Timer(), one can run torch.utils.benchmark.Timer() with all available threads; when bechmarking on the GPU, timeit.Timer() may need to do a warmup while torch.utils.benchmark.Timer() already takes care of this [12]. Benchmarking on CPU and CUDA are available.

Example:
	import torch.utils.benchmark as benchmark

def testFunc(x):
	return 2*x

number_of_runs = 100
x = 10
num_threads = torch.get_num_threads()
t = benchmark.Timer(
        stmt='testFunc(x)',
        setup='from __main__ import 'testFunc,
        num_threads=num_threads,
        globals={'x': x})
print(t.timeit(number_of_runs))


6.1.2.2 torch.profiler
The Torch Profiler Is a tool that provides metrics that helps to evaluate training and inference performance [13]. To exemplify one of its possible usages, a version of the inception-residual network (IRN) used by pcgcv2 was re-implemented using torch.nn.Conv3d() instead of the correspondent MinkowskiEngine’s MinkowskiConvolution(), as listed in Table 12. Profiling is performed using the profile modules of torch.profiler, listed in Table 13. Results are shown in Figure 17.











Table 12. Reimplementation of Inception-residual Network using torch.nn.Conv3d().
	Inception-residual Network

	import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import profile, record_function, ProfilerActivity

class InceptionResNet(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.conv0_0 = nn.Conv3d(
            in_channels=channels,
            out_channels=channels // 4,
            kernel_size=3,
            stride=1,
            padding='same',
            padding_mode='zeros',
            bias=True)
        self.conv0_1 = nn.Conv3d(
            in_channels=channels // 4,
            out_channels=channels // 2,
            kernel_size=3,
            stride=1,
            padding='same',
            padding_mode='zeros',
            bias=True)
        self.conv1_0 = nn.Conv3d(
            in_channels=channels,
            out_channels=channels // 4,
            kernel_size=1,
            stride=1,
            padding='same',
            padding_mode='zeros',
            bias=True)
        self.conv1_1 = nn.Conv3d(
            in_channels=channels // 4,
            out_channels=channels // 4,
            kernel_size=3,
            stride=1,
            padding='same',
            padding_mode='zeros',
            bias=True)
        self.conv1_2 = nn.Conv3d(
            in_channels=channels // 4,
            out_channels=channels // 2,
            kernel_size=1,
            stride=1,
            padding='same',
            padding_mode='zeros',
            bias=True)

    def forward(self, x):
        out0 = self.conv0_1(F.relu(self.conv0_0(x)))
        out1 = self.conv1_2(F.relu(self.conv1_1(F.relu(self.conv1_0(x)))))
        out = torch.cat((out0, out1), 1) + x

        return out










Table 13. Profiling the model listed in Table 12.
	Profiling

	if __name__ == '__main__':

    model = InceptionResNet(32)
    input = torch.randn(1, 32, 64, 64, 64)

    with profile(activities=[ProfilerActivity.CPU],
                 record_shapes=True,
                 profile_memory=True) as prof:
        with record_function("model_inference"):
            model(input)

    prof.export_chrome_trace("trace.json")
    print(prof.key_averages().table(sort_by="cpu_memory_usage"))



[image: ]
Figure 17. Output of PyTorch  profile tool.

Results can also be outputted as a .json trace file and opened in Chrome trace viewer (chrome://tracing).

6.2 Complexity Evaluation of pcgcv2
To answer the question about how machine-learning approaches compare with G-PCC in terms of runtime, a preliminary runtime complexity of pcgcv2 is presented. Since the use of PyTorch, was recommended at the 5th WG7 MPEG meeting, pcgcv2 is used here as a study case because of its use of the PyrTorch framework. The pcc_geo_cnn_v2 and adl-pcc solutions are implemented using the TensorFlow 1.X framework. Fractional super-resolution is implemented in Octave and is not an AI-based method. Only inference time.time() runtimes for CPU and GPU are here reported and the test set used in the experiments is a union of Sets 1 and 2 described in Section 4, except for house_without_roof, which could not be encoded in the GPU due to memory restrictions. Table 14 shows the test set. 







Table 14. General characteristics of test set (Sets 1 and 2 of Section 4).
	ML-BASED POINT CLOUD COMPRESSION: SET 1 AND SET2

	Class
	Sequence
	Geometry precision [bits]
	№ input points

	solid
	longdress_vox10_1300
	10
	857966

	
	loot_vox10_1200
	10
	805285

	
	redandblack_vox10_1550
	10
	757691

	
	soldier_vox10_0690
	10
	1089091

	
	queen_0200
	10
	1000993

	
	dancer_vox11_00000001
	11
	2592758

	dense
	house_without_roof_00057_vox12
	12
	4848745

	sparse
	staue_klimt_vox12
	12
	499660



The trained models provided by the pcgcv2 proponents were used, and detailed network information for the proposed models in inference stage presented in in m57453 [3] are reproduced in Table 15.

Table 15. Network information for the proposed model in inference stage
	Network Information in Inference Stage

	Framework:
	PyTorch v1.8; MinkowskiEngine v0.5; torchac v0.9.3; tmc13 v14.0

	Total Parameter Number
	2.81M 

	Parameter Precision (Bits)
	32 (F)

	Memory Parameter (MB)
	10.89MB

	Total Conv. Layers
	207






6.2.1 Inference Complexity
6.2.1.1 Inference Time (CPU and GPU)
Only inference runtimes for CPU (Intel Core i9-9900KF CPU @ 3.60GHz, 8 Cores) and GPU (GeForce RTX 2080 Ti, 11GB) are reported using time.time(). Table 16 shows the results. The reported runtimes represent average values for the whole test set shown in Table 14. CTC rate points from r01 to r06 were used for G-PCC. Models trained with target bitrates of 0.025, 0.05, 0.1, 0.15. 0.2, 0.25 and 0.3 were used for pcgcv2. One can notice that the pcgcv2 decoder is slower than its encoder in terms of CPU (around 3.7 times) and GPU runtimes (around root 2.3 times). G-PCC is much faster than pcgcv2 in terms of CPU encoding and decoding runtimes (around 3.7 and 37 times faster, respectively). pcgcv2 encoder is much faster than G-PCC in terms of GPU runtime (around 10 times faster). However, one can notice that G-PCC is still very efficient in terms of decoding runtime. The performance is lower than pcgcv2 running in the GPU, but the difference is not as big as in the other cases (only around 1.35 times).
Table 16. CPU and GPU runtimes in inference stage.
[image: ]

To further investigate inference times of pcgcv2, CPU runtimes of each module was calculated for longdress at the lowest target bitrate (0.025 bbp). The results are shown in Figure 18. For different bitrates, runtimes are approximately the same, thus only this illustrative example is here reported.

[image: ]

[image: ] [image: ]
Figure 18. Detailed runtimes of pcgcv2.

One can notice that at the encoder runtimes decrease at each layer from the input in the direction of the entropy model. At the decoder, the inverse is observed. GPU runtimes can also be computed, but in this case, since expected runtimes are much smaller, the use of time.perf_counter() would be more appropriate because of its increased precision. In addition, training complexity can be included.



7 Updates
In this section, performance evaluations discussed during MPEG meetings are presented.
7.1 6th WG7 (137th MPEG) 
Results related to new and continued proposals discussed during the 137th MPEG meeting are here reproduced exactly as reported in their respective input documents.
7.1.1 Continued Proposals
· SparsePCGC: Point Cloud Geometry Compression using Sparse Tensor-based Multiscale Representation [m59035] [14]

Summary

This work is an improvement of a previous method, “A Geometry Compression Framework for AI-based PCC via Sparse Convolution,” proposed in the 135th meeting (m57453). The method provides better performance in both lossless and lossy compression across a variety of datasets including the dense surface point clouds and the sparse LiDAR point clouds.

Performance

Lossless Mode: For surface point clouds, SparsePCGC outperforms G-PCC by an average of 33%. For LiDAR point clouds, the gains are around 3% for Ford_vox2cm and 0.5% for Ford_vox1mm.

Lossy Mode: On average, SparsePCGC shows 94% and 89% D1 and D2 BD-rate gains for surface point clouds; 22% and 31% D1 and D2 BD-rate gains for LiDAR Ford_vox2cm point cloud; 12% and 16% D1 and D2 BD-rate gains for LiDAR Ford_vox1mm.

Table 17. Gains over G-PCC. 
	Point Clouds
	Lossless
	Lossy

	
	G-PCC (bpp)
	Ours (bpp)
	Gain (bpp)
	D1-BDBR
	D2-BDBR

	solid
	longdress
	1.02
	0.67
	-34.1%
	-93.6%
	-87.3%

	
	Red&black
	1.10
	0.74
	-32.4%
	-93.5%
	-87.2%

	
	Soldier
	1.03
	0.69
	-33.0%
	-93.6%
	-87.4%

	
	Loot
	0.97
	0.64
	-33.7%
	-94.5%
	-88.8%

	
	Queen
	0.77
	0.60
	-22.1%
	-94.2%
	-88.8%

	
	Player
	0.90
	0.54
	-39.4%
	-96.7%
	-93.5%

	
	dancer
	0.88
	0.54
	-38.5%
	-96.1%
	-91.9%

	
	Average
	0.95
	0.63
	-33.5%
	-94.6%
	-89.3%

	Am-frame
	Ford_vox2cm
	9.95
	9.67
	-2.8%
	-22.4%
	-31.2%

	
	Ford_vox1mm
	22.31
	22.19
	-0.5%
	-12.3%
	-15.9%



· Point cloud geometry compression using learned octree entropy coding [m58965] [15]

Summary

This work is related to the OctSqueeze (OS), VoxelContextNet (VCN). Proposed PointContextNet (PCN) is presented, which is a continuation of the thread established via MPEG contribution m58167. The Coordinate Refinement Module (CRM), UPsampling-CRM (UPCRM) and Prediction-CRM (PredCRM) techniques are also introduced.

Performance

BD-rate gains over G-PCC for Ford and Kitti datasets are shown in Table 18.

Table 18. BD-rate gains over G-PCC.
	
	Ford
	Kitti

	
	VCN
	PCN
	VCN
	PCN

	No CRM
	0.15
	-5.45
	-0.16
	-4.87

	CRM
	-12.00
	-16.93
	-13.75
	-18.16

	UP3CRM
	-22.81
	-27.11
	-26.83
	-30.59

	PRED_CRM
	-22.48
	-26.82
	-35.00
	-38.33





7.1.2 New Proposals
· A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC [m58780] [16]

Summary

This work focuses on dynamic dense (surface) point cloud geometry compression and follows the end-to-end auto-encoder structure. This is the first proposal on AI-based dynamic point cloud geometry coding.

Performance

The proposed D-DPCC can achieve significant average D1 and D2 BD-Rate gains (76% and 74%, respectively), against state-of-the-art video-based Point Cloud Compression (V-PCC) v13 in inter mode, as show in Table 19. Encoding and decoding times are also reported in Table 20.

Table 19. Average gains over V-PCC.
[image: ]

Table 20. Encoding and decoding times.
	
	Encoding
	Decoding
	Overall

	V-PCC (5 thread)
	48.81s
	6.14s
	54.95s

	D-DPCC
	0.79s
	0.50s
	1.29s





· Point Cloud Attribute Compression using Sparse Tensor-Representation [m59037] [17]

Summary
This work presents a point cloud attribute compression (PCAC) method based on sparse tensor representation and corresponding sparse tensor network, similar to the geometry compression method in m57453. This is the first proposal on AI-based attribute coding.
Performance
The observed BD-Rate and BD-PSNR gains over TMC13v6 on the Y channel are 24.8% and 0.98dB, respectively. For YUV channels, the gains are 15.2% and 0.57dB in terms of BD-Rate and BD-PSNR, respectively. However, TMC13v14 outperforms the proposed method. Full results are shown in Table 21.
Table 21. Gains over TMC13v6 and TMC13v14.
	
Point Cloud
	TMC13v14 (RAHT)
	TMC13v6 (RAHT)

	
	BD-Rate (%)
	BD-PSNR (dB)
	BD-Rate (%)
	BD-PSNR (dB)

	
	Y
	YUV
	Y
	YUV
	Y
	YUV
	Y
	YUV

	longdress
	+27.3
	+26.9
	-0.84
	-0.79
	-31.3%
	-32.2
	+1.24 
	+1.23

	loot
	+115.5
	+139.1
	-2.18 
	-2.49
	1.3%
	+15.5
	+0.03 
	-0.37

	red&black
	+34.8
	+54.8
	-0.88 
	-1.27
	-36.1%
	-26.5
	+1.36
	+0.91

	soldier
	+37.2
	+64.6
	-1.03 
	-1.58
	-33.3%
	-17.7
	+1.29
	+0.52

	average
	+53.7%
	+71.4%
	-1.23dB
	-1.53dB
	-24.8%
	-15.2%
	+0.98dB
	+0.57dB





· Geometric Residual Analysis and Synthesis for PCC [m58962] [18]

Summary

This work proposes GRASP, a geometric residual analysis and synthesis method for PCC. It adopts a base layer and an enhancement layer. The base layer is to encode/decode a coarse version of the input point cloud. Then based on the coarse point cloud, the enhancement layer encodes/decodes the geometric residuals with deep neural networks. Superior compression performance is achieved for dense point clouds.

Performance

In this preliminary study, 8 dense point clouds with 12 bits were adopted for testing. They are: 
· boxer_viewdep_vox12
· longdress_viewdep_vox12
· loot_viewdep_vox12
· redandblack_viewdep_vox12
· soldier_viewdep_vox12
· house_without_roof_00057_vox12
· frog_00067_vox12
· facade_00009_vox12

GRASP and GRASP_skip are tested. Average results are shown in Table 22.

Table 22: Average BD-Rate gains against TMC13-lossy.
	Method
	BD-Rate Saving based on D1
	BD-Rate Saving based on D2

	GRASP_skip
	-62.83
	-57.12

	GRASP
	-71.68
	-65.68





7.2 7th WG7 (138th MPEG) 
Results related to new and continued proposals discussed during the 138th MPEG meeting are here reproduced exactly as reported in their respective input documents.
7.2.1 Continued Proposals
· Point cloud geometry compression using learned octree entropy coding [m59528] [19]

Summary

The work being focused on this document is a continuation of the thread established via contribution m58167. 

Performance

Up to D1 38.33 BD-rate improvements against G-PCC are reported. A comparison between PCN and VCN in terms of number of parameters and compression performance is also presented. It is argued that the better performance of PCN is owed not just due to the increased number of parameters in PCN. 

[image: ][image: ]

[image: ]

· Point cloud geometry compression using SparseVCN [m59529] [20]

Summary

Like m59528, the proposal is a continuation of the thread established via MPEG contribution m58167. It is proposed a new sparsity aware voxel based deep entropy model called SparseVCN which employs sparse convolutions to process voxelized local neighborhoods. 

Performance

Comparison against G-PCC is provided. VCN (+0.16, +0.21, D1 and D2 BD-rate) and SparseVCN (-2.48, -2.43, D1 and D2 BD-rate).

[image: ]


· SparsePCGCv2: Improved SparsePCGC with attention mechanism [m59552] [21]

Summary

In this document, we further optimize the implementation of the original version of SparsePCGCv2 and introduce the neighborhood attention mechanism based on K Nearest Neighbors (KNN) to aggregate neighboring points, which is more efficient than the pure convolutional network in sparse LiDAR data compression.  The designed attention layer can be easily embedded in the multi-scale and multistage structure of SparsePCGC.  

Performance

Compared to the original solution, the improved version provides more than 10% BD-Rate gains on the LiDAR point clouds (KITTI, Ford) in various test modes.  At the same time, the proposed method requires less encoding and decoding runtime compared to the original SparsePCGC version due to the optimized implementation.

[image: ]
[image: ]



· Geometric Residual Analysis and Synthesis for PCC [m59649] [22]

Summary

In this document,  continuing efforts to improve the GRASP-Net is presented, including 1) A deeper architecture is adopted to compress the local details for better performance; 2) The GRASP-Net is extended to the use case of sparse LiDAR point clouds.  Surface Point Clouds: 12-bit  heterogeneous and homogeneous were used for testing. Three GRASP setups are tested. 

Performance

The best GRASP setup outperforms PCGCv2 in terms of D1 and D2 BD-rate (G-PCC is anchor): 48% and 69% (GRASP-Net-2) against 47% and 54% (PCGCv2), respectively. 

[image: ]
For automotive LiDAR point clouds, the setup GRASP-Net outperforms VoxelContext-Net (10% and 19%) and G-PCC octree (27% and 35%) in terms of D1 and D2 BD-rate gains.

[image: ]

· Modifications to M58780 D-DPCC [m59685] [23]

Summary

This contribution proposed an end-to-end autoencoder-based deep dynamic point cloud geometry compression framework. It is an update of m58780, with detailed training/inferencing information, according to w21257, “Guidelines for conducting AI exploration experiments for PCC.” 

Performance

No new compression performance results are presented.  Reported average D1 and D2 BD-rate gains against V-PCC for Loot, Red and black, Soldier and Long dress are around 77% and 74%.



7.2.2 New Proposal
· Dynamic Point Cloud Geometry Compression using Sparse Convolutions [m59617] [24]

Summary

This contribution proposes a lossy geometry compression scheme that predicts the latent representation of the current frame using the previous frame by employing a prediction network. The architecture is implemented using sparse convolution neural network (CNN) with sparse tensors. 

Performance

Average reported D1 BD-rate gains against G-PCC octree, G-PCC trisoup, PCGCv2, V-PCC intra and V-PCC inter for basketball, exercise, model, redanblack and soldier are around 92% , 84%, 34%, 63% and 52%, respectively. Detailed training/inferencing information was provided according to  w21257, “Guidelines for conducting AI exploration experiments for PCC.”

[image: ]
[image: ]
[image: ]

7.3 8th WG7 (139th MPEG)
Results related to new and continued proposals discussed during the 139th MPEG meeting are here reproduced exactly as reported in their respective input documents.

7.3.1 On AI Tools for Point Cloud Compression and Analysis (EE 5.0)
· On Reporting Template for AI-based PC [m60346] [25]

Summary

The need of a unified performance evaluation template was identified in the 138th MPEG meeting.  Based on the discussions during and after the meeting, an initial version of the Python template named “mpeg-pcc-ai-report” was developed. Proponents are encouraged to use the proposed template.

· On Density-to-density Distortion [m60331] [26]
Summary

In some coding paradigms, like those based on machine-learning techniques, density distribution distortions may be present due to wrong occupancy estimation. The already known point-to-point (d1-PSNR) and point-to-plane (d2-PSNR) metrics may not reveal such artifacts. In this contribution, a density-to-density metric (d3-PSNR), built to explicitly take these kinds of irregularities into account, is presented. Further study of d3-PSNR applicability and utility is recommended.

7.3.2 Deep Octree Coding and End-to-end Coding (EE5.1/EE 5.2)
· SparsePCGCv1 Update: Improvements on Dense/Sparse/LiDAR Point Cloud [m60352] [27]

Summary

This work is an updated version of our previous method SparsePCGC ("Point Cloud Geometry Compression using Sparse Tensor-based Multi-scale Representation" [14]. In this proposal, we have made some improvements on dense, sparse surface point clouds, and LiDAR point clouds.

Performance

Results are reported in multiple plots which will not be reproduced in the present document. Gains against SparsePCGCv1 for two 12-bit point clouds (boxer_viewdep_vox12 and statue_klimt_vox12) are shown. The proposal also consistently outperforms G-PCC octree and GRASP-Net [22] for 10- and 11-bit point clouds. It also presents better performance for most of 12-bit surface point clouds, as well as for am-frame point clouds. For 13-bit surface point clouds the method is outperformed by G-PCC octree and GRASP-Net.

· SparsePCGCv2: Multihead Neighborhood Point Attention for Sparse Point Clouds [m60353] [28]

Summary

In "SparsePCGCv2: Improved SparsePCGC with attention mechanism" [21], a structure called neighborhood point attention (NPA) to characterize extremely and unevenly distributed sparse LiDAR points and dynamically aggregate information within this neighborhood was presented. In the present proposal, SparsePCGCv2 is further.

Performance

[image: ]
[image: ]

7.3.3 End-to-end Coding (EE 5.2)
· Improved Geometric Residual Analysis and Synthesis for PCC [m60342] [29]

Summary

In the 137th and 138th meeting, a learning-based algorithm for lossy point cloud geometry compression which we call Geometric Residual Analysis and Synthesis for PCC (or GRASP-Net) was presented. In this contribution, improvements of the GRASP-Net are presented.

Performance
[image: ]

· Deep Distribution Aware (DDA) Point Feature Extractor for AI-based PCC [m60349] [30]

Summary

In this document  other designing possibilities of point analysis and synthesis phases that exploits a deeper residual network and distribution aware feature processing is in GRASP-Net [22] is presented.

Performance

[image: ][image: ]
[image: ]

7.3.4 Dynamic Point Cloud Coding (EE 5.3)
· D-DPCC Test Results on 10 bit Owlii [m60267] [31]

Summary

This contribution updates the results of  m59685, 138th: [AI-3DGC] [EE13.54-related] Modifications to M58780 D-DPCC (“A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC”, 137th).

Performance

Experimental results show around -80% average BD-Rate gains against V-PCC v12 for geometry compression under specific test.

· SparsePCGCv3: Dynamic SparsePCGC with Inter Frame Prediction [m60354] [32]

Summary

The compression of dynamic point cloud based on the SparsePCGC [14] is studied. To reduce the temporal redundancy of dynamic sequences, an inter frame prediction module based on neural networks is introduced.




Performance
[image: ]



8 Conclusions
8.1 Baseline Study
The initial investigation performed during the elaboration of the baseline study permitted the identification of relevant classes of solutions, point clouds and spasticity levels, according to the description below. Some are already well-known, but here their importance is being highlighted.
A. Classes of Solutions:
· ML-PCC + G-PCC Octree Coding
· pcgcv2
· End-to-end ML-PCC
· adl-pcc
· pcc_geo_cnn_v2
· G-PCC + post-processing 
· Fractional SR
B. Classes of input signals
· Geometry
· Attribute
C. Classes of dynamicity
· Static
· Dynamic
D. Classes of point clouds:
· Surface points clouds
· LiDAR point clouds 
E. Classes of Sparsity
· Surface point clouds
· Solid
· Dense
· Sparse
· Scant
· LiDAR point clouds
· Automotive-frame
· Automotive-fused
F. Geometry bit-depths
· 10, 11, 12, 13, 14, 15, 16 and 20-bit geometry precision.
G. Pre- and post-processing
· Down- and up-sampling applied to 12-bit point clouds (adl-pcc and pcgcv2, and Fractional SR).
In the evaluations reported in the baseline study the following classes were not addressed and may constitute investigations for future work:
· Classes of point clouds/sparsity:
· Surface point clouds
· Scant
· LiDAR point clouds 
· Automotive-fused
· Geometry bit-depths
· 13, 14, 15, 16 and 20-bit precision
· Pre- and post-processing
· No down- and up-sampling applied
· pcc_geo_cnn_v2 


8.1.1 Rate-distortion Performance
Besides that, some relevant observations are:
· For 10 and 11-bit solid point clouds, Fractional SR seems to represent a simpler solution.
· For 10 and 11-bit solid point clouds, pcgcv2 seems to offer advantages over the other techniques in terms of D1 and D2 PSNR metrics.
· Fractional SR implementation could not directly process 12-bit dense and sparse point clouds. Down-scaling was necessary.
· pcgcv2 presents a parameter, rho, that allows for adjusting the number of output points and a scaling factor that allows for down- and up-scaling of the point clouds.
· adl-pcc performs down- and up-scaling through the specification of a target geometry precision.
· For 12-bit point clouds, down- and -up scaling improved the performance of adl-pcc and pcgcv2.
· In general, the increased number or output points provided by AI-based PCC, or SR methods tends to provide better D1 and D2 PSNR.
8.1.2 Visual inspection
For the imposed test conditions:
· In the “lossy” condition, G-PCC reconstructed point clouds are sparser.
· In adl-pcc and pcc_geo_cnn_v2 (which are block-based approaches) the presence of holes was observed. The same effect was not initially noticed in pcgcv2 and Fractional SR, but further investigation was performed in the 139th MPEG meeting as will be mentioned later.
· Results indicate that for sparse point clouds with non-uniform densities and higher bit-depth, adl-pcc and pcgcv2 tend to highlight the density differences introducing/highlighting previously masked holes, as shown in Figure 15 for statue_klimt.
8.1.3 Complexity
Different performance evaluation tools were presented:
· time, timeit, torch.utils.benchmark and torch.profiler.
The codec pcgcv2 was evaluated and compared with G-PCC:
· G-PCC is much faster than pcgcv2 in terms of CPU encoding and decoding runtimes.
· pcgcv2 encoder is much faster than G-PCC in terms of GPU. However, G-PCC is still very efficient in terms of decoding runtime. The performance is lower than pcgcv2 running in the GPU, but the difference is not as big as in the other.
· [bookmark: _Hlk88041922]pcgcv2 decoder is much slower than pcgcv2 encoder in terms of CPU.

8.2 Updates
8.2.1 6th WG7 (137th MPEG)
· SparsePCGC: Point Cloud Geometry Compression using Sparse Tensor-based Multiscale Representation [m59035]
In this proposal, a unified point cloud geometry compression approach is developed, showing good performance in both lossless and lossy compression applications across a variety of datasets, including dense (surface) point clouds and the sparse LiDAR point clouds (Ford) when compared with the MPEG G-PCC and other learning-based approaches. The advantages of the proposed method come from the sparse tensor-based multiscale representation strategy, where we use sparse convolutions to deal with the unstructured points directly and efficiently aggregate the local neighborhood information
· Point cloud geometry compression using learned octree entropy coding [m58965]
Significant gains against G-PCC for Kitti and Ford sequences are reported.
· A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC [m58780]
First contribution on dynamic point cloud geometry compression using AI. The proposed framework shows significant improvements against V-PCC on dense (surface) point clouds in both compression performance and encoding/decoding runtime.
· Point Cloud Attribute Compression using Sparse Tensor-Representation [m59037]
First contribution on attribute coding using AI. This work shows the potential of sparse tensor representation for point cloud attribute compression. The proposed method shows significant gains against TMC13v6.
· Geometric Residual Analysis and Synthesis for PCC [m58962]
A learning-based PCC method is proposed — known as geometric residual analysis and synthesis for PCC or GRASP. It achieves a significant gain over TMC13-lossy on 12-bit point clouds.



8.2.2 7th WG7 (138th MPEG)
· Point cloud geometry compression using learned octree entropy coding [m59528]
Improvements against G-PCC are reported. Complexity evaluation was added.

· Point cloud geometry compression using SparseVCN [m59529]
New sparsity aware voxel based deep entropy model, which employs sparse convolutions to process voxelized local neighborhoods. Gains against G-PCC are reported.

· SparsePCGCv2: Improved SparsePCGC with attention mechanism [m59552]
Neighborhood attention mechanism is introduced. Gains on LiDAR point clouds against G-PCC are reported.

· Geometric Residual Analysis and Synthesis for PCC [m59649]
Gains against G-PCC and PCGCv2 in terms of D1 and D2 BD-rate are reported.

· Modifications to M58780 D-DPCC [m59685]
No new results are provided, only conformance with the reporting parameters listed in the “Guidelines” document.

· Dynamic Point Cloud Geometry Compression using Sparse Convolutions [m59617]
New contribution on dynamic point cloud geometry compression. Gains against V-PCC are reported.

Given the number of submitted proposals and the usage of different test conditions, the need to improve the common test conditions was identified. Activities were initiated to provide tools to facilitate comparison between proposals and crosschecks.

8.2.3 8th WG7 (139th MPEG)
· SparsePCGCv1 Update: Improvements on Dense/Sparse/LiDAR Point Cloud [m60352]
Performance improvements for dense, sparse and am-frame point clouds are presented.

· SparsePCGCv2: Multihead Neighborhood Point Attention for Sparse Point Clouds [m60353]
The method achieves promising gains against G-PCC on both 12-bit sparse point clouds and LiDAR point clouds.

· Improved Geometric Residual Analysis and Synthesis for PCC [m60342]
Achieves promising gains over TMC13-lossy on both solid surface point clouds and 18-bit LiDAR point clouds.

· Deep Distribution Aware (DDA) Point Feature Extractor for AI-based PCC [m60349]
Modifications were proposed to boost the performance of GRASP-Net [22]. Different gains on each variant are achieved.

· D-DPCC Test Results on 10 bit Owlii [m60267]
Experimental results of D-DPCC considering the new test conditions are presented.

· SparsePCGCv3: Dynamic SparsePCGC with Inter Frame Prediction [m60354]
Gains against G-PCC and SparsePCGCv1 for lossy and lossless compression are reported.

In adl-pcc and pcc_geo_cnn_v2 baseline study, the presence of holes was observed. The same effect was not initially noticed in pcgcv2 and Fractional SR, however studies presented in “On Density-to-density Distortion” showed that these types of artifacts may potentially be found in other AI-based point cloud compression schemes [26]. Further investigation is suggested.




9 Participants
	Contact
	Affiliation
	Email
	Role

	Alexandre Zaghetto
	Sony
	alexandre.zaghetto@sony.com
	Coordinator

	Andre Guarda
	IST
	andre.guarda@lx.it.pt
	Collaborator

	Jianqiang Wang
	Nanjing University
	wangjq@smail.nju.edu.cn
	Collaborator

	Jiahao Pang 
	IDC
	jiahao.pang@interdigital.com
	Collaborator

	Vladyslav Zakharchenko 
	OPPO
	vladyslav.zakharchenko@oppo.com
	collaborator






References

[1] 	“Discussion on Point Cloud Geometry Compression Using Machine Learning”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m57301, Online, July 2021. 
[2] 	"DL-based Point Cloud Geometry Coding Software Availability", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m57556, Online, July 2021. 
[3] 	“A Geometry Compression Framework for AI-based PCC via Sparse Convolution”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m57453, Online, July 2021. 
[4] 	T. Borges, D. Garcia and R. de Queiroz, Fractional Super-Resolution of Voxelized Point Clouds, TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.15032052.v1, 2021. 
[5] 	“Common Test Conditions for G-PCC”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document w20358, Online, May 2020. 
[6] 	"G-PCC EE13.46 review of v11 attribute coding", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m55485, Online, October 2020. 
[7] 	"Guidelines for Conducting AI Exploration Experiments for PCC", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document w21005, Online, Oct 2021. 
[8] 	The Python Standard Library, time — Time access and conversions, accessed 16 November 2021, https://docs.python.org/3/library/time.html#time.time. 
[9] 	PEP 418 — Add monotonic time, performance counter, and process time functions, accessed 11/22/2021, https://www.python.org/dev/peps/pep-0418/. 
[10] 	timeit - Measure execution time of small code snippets, accessed 11/22/2021, https://docs.python.org/3/library/timeit.html. 
[11] 	Pytorch Benchmark Utils, accessed 11/22/2021, https://pytorch.org/docs/stable/benchmark_utils.html. 
[12] 	PyTorch Benchmark, accessed 11/22/2021 https://pytorch.org/tutorials/recipes/recipes/benchmark.html. 
[13] 	PyTorch Profiler, accessed 17 November 2021, https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html. 
[14] 	“SparsePCGC: Point Cloud Geometry Compression using Sparse Tensor-based Multiscale Representation”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59035, Online, Jan 2022. 
[15] 	“Point cloud geometry compression using learned octree entropy coding”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m58965, Online, Jan 2022. 
[16] 	“A Deep Dynamic Point Cloud Geometry Compression Framework for AI-based PCC”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m58780, Online, Jan 2022. 
[17] 	“Point Cloud Attribute Compression using Sparse Tensor-Representation”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59037, Online, Jan 2022. 
[18] 	“Geometric Residual Analysis and Synthesis for PCC”, ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m58962, Online, Jan 2022. 
[19] 	"Point cloud geometry compression using learned octree entropy coding", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59528, Online, April 2022. 
[20] 	"Point cloud geometry compression using SparseVCN", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59529, Online, April 2022. 
[21] 	"SparsePCGCv2: Improved SparsePCGC with attention mechanism", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59552, Online, April 2022. 
[22] 	"Geometric Residual Analysis and Synthesis for PCC", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59649, Online, April 2022. 
[23] 	"Modifications to M58780 D-DPCC", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59685, Online, April 2022. 
[24] 	"Dynamic Point Cloud Geometry Compression using Sparse Convolutions", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m59617, Online, April 2022. 
[25] 	"On Reporting Template for AI-based PCC", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60346, Online, July 2022. 
[26] 	"On Density-to-density Distortion", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60331, Online, July 2022. 
[27] 	"SparsePCGCv1 Update: Improvements on Dense/Sparse/LiDAR Point Cloud", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60352, Online, July 2022. 
[28] 	"SparsePCGCv2: Multihead Neighborhood Point Attention for Sparse Point Clouds", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60353, Online, July 2022. 
[29] 	"Improved Geometric Residual Analysis and Synthesis for PCC", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60342, Online, July 2022. 
[30] 	"Deep Distribution Aware (DDA) Point Feature Extractor for AI-based PCC", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60349, Online, July 2022. 
[31] 	"D-DPCC Test Results on 10 bit Owlii", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60267, Online, July 2022. 
[32] 	"SparsePCGCv3: Dynamic SparsePCGC with Inter Frame Prediction", ISO/IEC JTC1/SC29 WG7 (MPEG 3D Graphics Coding) Document m60354, Online, July 2022. 
	
	
	





10 [bookmark: _heading=h.494yju79l4pa]ANNEX
10.1 Further Reading
Nguyen, D., Quach, M., Valenzise, G., & Duhamel, P. (2021). Multiscale deep context modeling for lossless point cloud geometry compression. ArXiv.

Yan, W., Shao, Y., Liu, S., Li, T.H., Li, Z., & Li, G. (2019). Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds. ArXiv.

Huang, T., & Liu, Y. (2019). 3D Point Cloud Geometry Compression on Deep Learning. ACM MM.

Wen, X., Wang, X., Hou, J., et.al. (2020). Lossy Geometry Compression Of 3d Point Cloud Data Via An Adaptive Octree-Guided Network. 2020 IEEE IICME.

Wiesmann, L., Milioto, A., Chen, X., Stachniss, C., & Behley, J. (2021). Deep Compression for Dense Point Cloud Maps. IEEE RA-L.

Gao, L., Fan, T., Wang, J., Xu, Y., Sun, J., Ma,. Z. (2021) Point Cloud Geometry Compression via Neural Graph Sampling. IEEE ICIP.

Qi, C., Yi, L., Su, H., & Guibas, L. (2017). PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. NIPS.

Huang, L., Wang, S., Wong, K., Liu, J., & Urtasun, R. (2020). OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression. IEEE/CVF CVPR.

Biswas, S., Liu, J., Wong, K., Wang, S., & Urtasun, R. (2020). MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models. NIPS.

Que, Z., Lu, G., & Xu, D. (2021). VoxelContext-Net: An Octree based Framework for Point Cloud Compression. CVPR.

MPEG, TMC13 [Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc13
A. X. Chang, T. Funkhouse, et.al., "ShapeNet: An Information-Rich 3D Model Repository," in ICCV, 2017.

Eugene,E, Bob, H., Taos, M.,et.al.,  8i Voxelized Full Bodies - A Voxelized Point Cloud Dataset. MPEG m38673/M72012.

A. F. R. Guarda, N. M. M. Rodrigues and F. Pereira, “Adaptive Deep Learning-based Point Cloud Geometry Coding,” in IEEE Journal on Selected Topics in Signal Processing (J-STSP), vol. 15, no. 2, pp. 415–430, Italy, Feb. 2021. doi: 10.1109/JSTSP.2020.3047520.

A. F. R. Guarda, N. M. M. Rodrigues and F. Pereira, “Deep Learning-Based Point Cloud Geometry Coding: RD Control Through Implicit and Explicit Quantization,” in IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, Jul. 2020. doi: 10.1109/ICMEW46912.2020.9106022.

L. Cui, R. Mekuria, M. Preda and E. S. Jang, “Point-Cloud Compression: Moving Picture Experts Group's New Standard in 2020,” in IEEE Consumer Electronics Magazine, vol. 8, no. 4, pp. 17-21, Jul. 2019.

J. Ballé, D. Minnen, S. Singh, S. J. Hwang and N. Johnston, “Variational Image Compression with a Scale Hyperprior,” in International Conference on Learning Representations (ICLR’2018), Vancouver, Canada, Apr. 2018.

T. Lin, P. Goyal, R. Girshick, K. He and Piotr Dollár, “Focal Loss for Dense Object Detection,” in IEEE International Conference on Computer Vision (ICCV’2017), Venice, Italy, Oct. 2017.

“JPEG Pleno Point Cloud Coding Common Test Conditions v3.3,” in ISO/IEC JTC1/SC29/WG1 Document N88044, Online, Jul. 2020.
“Final Call for Evidence on JPEG Pleno Point Cloud Coding,” in ISO/IEC JTC1/SC29/WG1 Document N88014, Online, Jul. 2020.
1
image73.png

image74.png

image75.png

image76.png

image1.jpeg

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.emf
Kitti Dataset VCN  PCN 

No CRM +0.16, +0.21 -4.87, -4.83 

CRM -13.75, -24.19 -18.16, -28.10 

UP3CRM -26.83, -25.37 -30.59, -29.20 

PRED_CRM -35.00, -33.02 -38.33, -36.47 

 


image60.emf
Ford Dataset VCN  PCN 

No CRM -00.13, -0.76 -04.48, -5.18 

CRM -10.32, -16.35 -14.31, -20.07 

UP3CRM -19.89, -15.79 -23.43, -19.52 

PRED_CRM -15.78, -19.03 -19.51, -22.62 

 


image61.emf
Model D1 improvement D2 improvement Parameters 

PCN -4.87 -4.83 2M 

VCN +0.16 +0.21 0.92M 

BigVCN -0.41 -0.37 2.1M 

BigVCN2 -1.35 -1.30 4.15M 

ModVCN +1.88 +1.92 2.33M 

 


image62.emf
 D1,D2 gain on GPCC 

VCN +0.16, +0.21 

SparseVCN -2.48, -2.43 

 


image63.emf
Gains over G-

PCC 

Lossless (bpp)  Lossy (BD-Rate) 

G-PCC SparsePCGC SparsePCGCv2 SparsePCGC SparsePCGCv2 

KITTI_q1mm 20.17 19.73 (-2.2%) 17.57 (-12.9%) -6.8% -17.9% 

KITTI_q2cm 7.62 7.06 (-7.3%) 5.73 (-24.8%) -10.2% -19.2% 

Ford_q1mm 22.31 22.27 (-0.2%) 20.49 (-8.15%) -6.1% -16.4% 

Ford_q2cm 9.95 9.69 (-2.6%) 8.52 (-14.4%) -11.0% -19.8% 

 


image64.emf
Runtime (s) G-PCC SparsePCGC  SparsePCGCv2 

(w/o transformer) 

SparsePCGCv2 

KITTI/Ford_q1mm 2.2/1.0 21.5 6.0 13.5 

KITTI/ Ford_q2cm 1.0/0.4 10.0 2.8 5.7 

 


image65.emf
Method PCGCv2 G-PCC+DUS GRASP-Net-1 GRASP-Net-2-Skip GRASP-Net-2 

Metric D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 

Homo. -58.76 -62.03 6.61 8.18 -52.08 -82.44 -42.64 -62.96 -56.42 -85.48 

Hetero. -27.81 -39.55 -3.88 -8.06 -34.17 -41.04 -19.64 -23.13 -34.60 -40.26 

Avg. 

-47.15 -53.60 2.68 2.09 -45.36 -66.91 -34.01 -48.02 -48.24 -68.52 

 


image66.emf
Metric VoxelContext-Net G-PCC+DUS GRASP-Net-Skip GRASP-Net 

BD-Rate 

D1 -10.32 -2.08 -19.53 -26.96 

D2 -19.44 -2.12 -18.78 -34.87 

 


image67.png

image68.png

image69.emf
Number of parameters 

PCGC  778,000 

The proposed method 2,033,000 

 


image70.jpg

image71.png

image72.png

