	INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 5
MPEG JOINT VIDEO CODING TEAM WITH ITU-T SG 16

	ISO/IEC JTC 1 / SC 29 / WG 5 N 126

	Online, 20–29 April 2022

		Title:
	Working draft of ISO/IEC 23002-7:202x (2nd Ed.) Amd.1 Additional SEI messages

	Source:
	Convenor (Jens-Rainer Ohm)

	Type:
	Project

	Subtype:
	Draft

	Status:
	Approved

	Date:
	2022-06-21

	Expected Action:
	Info

	Action due date:
	N/A

	No. of pages
	16 (without this cover page)

	Email of convenor:
	ohm @ ient . rwth-aachen . de

	Committee URL:
	[bookmark: _Hlk77393839]https://sd.iso.org/documents/ui/#!/browse/iso/iso-iec-jtc-1/iso-iec-jtc-1-sc-29/iso-iec-jtc-1-sc-29-wg-5

	Joint Video Experts Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29
26th Meeting, by teleconference, 20–29 April 2022
	Document: JVET-Z2006-v1

	Title:
	Additional SEI messages for VSEI (Draft 1)

	Status:
	Output document approved by JVET

	Purpose:
	Draft text

	Author(s) or
Contact(s):
	Sean McCarthy
Takeshi Chujoh
Miska Hannuksela
Gary Sullivan
Ye-Kui Wang
	Email:
	sean.mccarthy@dolby
chujoh.takeshi@sharp.co.jp
miska.hannuksela@nokia.com
garysull@microsoft.com
yekui.wang@bytedance.com

	Source:
	Editors

Abstract
This document contains the draft text for changes to the versatile supplemental enhancement information messages for coded video bitstreams (VSEI) standard (Rec. ITU-T H.274 | ISO/IEC 23002-7), to specify additional SEI messages, including the shutter interval information SEI message and SEI messages to facilitate neural-network-based post-processing filtering.
Changes to the specification text:
In clause 2.3, add the following references:
–	IEEE 754-2019, IEEE Standard for Floating-Point Arithmetic.
–	ISO/IEC 15938-17, Information technology – Multimedia content description interface – Part 17: Compression of neural networks for multimedia content description and analysis.
In clause 5.8, add the following function definition immediately before the definition of the function Round(x) and adjust equation indices accordingly:
Reflect(y, z) = 	(12)
In clauses 8.1, replace Table 4 with the following:

	SEI message
	Persistence scope

	Filler payload
	The PU containing the SEI message

	User data registered by Rec. ITU-T T.35
	Unspecified

	User data unregistered
	Unspecified

	Film grain characteristics
	Specified by the syntax of the SEI message

	Frame packing arrangement
	Specified by the syntax of the SEI message

	Display orientation
	Specified by the syntax of the SEI message

	Referenced parameter sets
	The CLVS containing the SEI message

	Decoded picture hash
	The PU containing the SEI message

	Mastering display colour volume
	The CLVS containing the SEI message

	Colour transform information
	Specified by the syntax of the SEI message

	Content light level information
	The CLVS containing the SEI message

	DRAP indication
	The picture associated with the SEI message

	Alternative transfer characteristics
	The CLVS containing the SEI message

	Ambient viewing environment
	The CLVS containing the SEI message

	Content colour volume
	Specified by the syntax of the SEI message

	Equirectangular projection
	Specified by the syntax of the SEI message

	Generalized cubemap projection
	Specified by the syntax of the SEI message

	Sphere rotation
	Specified by the syntax of the SEI message

	Region-wise packing
	Specified by the syntax of the SEI message

	Omnidirectional viewport
	Specified by the syntax of the SEI message

	Alpha channel information
	Specified by the syntax of the SEI message

	Frame-field information
	The PU containing the SEI message

	Depth representation information
	Specified by the semantics of the SEI message

	Multiview acquisition information
	The CVS containing the SEI message

	Multiview view position
	The CVS containing the SEI message

	Annotated regions
	Specified by the syntax of the SEI message

	Sample aspect ratio information
	Specified by the syntax of the SEI message

	Scalability dimension information
	The CVS containing the SEI message

	Extended DRAP indication
	The picture associated with the SEI message

	Shutter interval information
	The CVS containing the SEI message

	Neural-network post-filter characteristics
	The CVS containing the SEI message

	Neural-network post-filter activation
	The PU containing the SEI message

Add clauses 8.27 to 8.29 as follows:
8.27 Shutter interval information SEI message
[bookmark: _Toc80700827]8.27.1 Shutter interval information SEI message syntax

	shutter_interval_info(payloadSize) {
	Descriptor

		sii_time_scale
	u(32)

		fixed_shutter_interval_within_clvs_flag
	u(1)

		if(fixed_shutter_interval_within_clvs_flag)
	

			sii_num_units_in_shutter_interval
	u(32)

		else {
	

			sii_max_sub_layers_minus1
	u(3)

			for(i = 0; i <= sii_max_sub_layers_minus1; i++)
	

	[bookmark: _Hlk100152175]			sub_layer_num_units_in_shutter_interval[i]
	u(32)

		}
	

	}
	

8.27.2 Shutter interval information SEI message syntax
The shutter interval information SEI message indicates the shutter interval for the associated video source pictures prior to encoding, e.g., for camera-captured content, the shutter interval is amount of time that an image sensor is exposed to produce each source picture.
When a shutter interval information SEI message is present for any picture of a CLVS of a particular layer, a shutter interval information SEI message shall be present for the first picture of the CLVS. The shutter interval information SEI message persists for the current layer in decoding order from the current picture until the end of the CLVS. All shutter interval information SEI messages that apply to the same CLVS shall have the same content.
[bookmark: _Hlk25240989]sii_time_scale specifies the number of time units that pass in one second. The value of sii_time_scale shall be greater than 0. For example, a time coordinate system that measures time using a 27 MHz clock has an sii_time_scale of 27 000 000.
fixed_shutter_interval_within_clvs_flag equal to 1 specifies that the indicated shutter interval is the same for all temporal sublayers in the CLVS. fixed_shutter_interval_within_clvs_flag equal to 0 specifies that the indicated shutter interval may not be the same for all temporal sublayers in the CLVS.
sii_num_units_in_shutter_interval, when fixed_shutter_interval_within_clvs_flag is equal to 1, specifies the number of time units of a clock operating at the frequency sii_time_scale Hz that corresponds to the indicated shutter interval of each picture in the CLVS. The value 0 may be used to indicate that the associated video content contains screen capture content, computer generated content, or other non-camera-captured content.
The indicated shutter interval, denoted by the variable shutterInterval, in units of seconds, is equal to the quotient of sii_num_units_in_shutter_interval divided by sii_time_scale. For example, to represent a shutter interval equal to 0.04 seconds, sii_time_scale may be equal to 27 000 000 and sii_num_units_in_shutter_interval may be equal to 1 080 000.
sii_max_sub_layers_minus1 plus 1 specifies the maximum number of temporal sublayers that may be present in each CLVS referring to the SPS.
NOTE – For example, the information conveyed in this SEI message is intended to be adequate for purposes corresponding to the use of ATSC A/341:2022-03 Annex D when sii_max_sub_layers_minus1 is equal to 1 and fixed_shutter_interval_within_clvs_flag is equal to 0.
sub_layer_num_units_in_shutter_interval[i], when present, specifies the number of time units of a clock operating at the frequency sii_time_scale Hz that corresponds to the shutter interval of each picture with temporal sublayer identifier equal to i in the CLVS. The shutter interval for each picture with temporal sublayer identifier equal to i in the CLVS, denoted by the variable subLayerShutterInterval[i], in units of seconds, is equal to the quotient of sub_layer_num_units_in_shutter_interval[i] divided by sii_time_scale.
The variable subLayerShutterInterval[i], corresponding to the indicated shutter interval of each picture with temporal sublayer identifier equal to i in the CLVS, is thus derived as follows:
[bookmark: _Hlk100148559]if(fixed_shutter_interval_within_clvs_flag)
	subLayerShutterInterval[i] = sii_num_units_in_shutter_interval ÷ sii_time_scale	(72)
else
	subLayerShutterInterval[i] = sub_layer_num_units_in_shutter_interval[i] ÷ sii_time_scale
8.28 Neural-network post-filter characteristics SEI message
8.28.1 Neural-network post-filter characteristics SEI message syntax

	nn_post_filter_characteristics(payloadSize) {
	Descriptor

		nnpfc_id
	ue(v)

		nnpfc_mode_idc
	ue(v)

		if(nnpfc_mode_idc = = 1) {
	

			nnpfc_purpose
	ue(v)

			if(nnpfc_purpose = = 2 | | nnpfc_purpose = = 4) {
	

				nnpfc_out_sub_width_c_flag
	u(1)

				nnpfc_out_sub_height_c_flag
	u(1)

			}
	

			if(nnpfc_purpose = = 3 | | nnpfc_purpose = = 4) {
	

				nnpfc_pic_width_in_luma_samples
	ue(v)

				nnpfc_pic_height_in_luma_samples
	ue(v)

			}
	

		/* input and output formatting */
	

			nnpfc_component_last_flag
	u(1)

			nnpfc_inp_sample_idc
	ue(v)

			if(nnpfc_inp_sample_idc = = 4)
	

				nnpfc_inp_tensor_bitdepth_minus8
	ue(v)

			nnpfc_inp_order_idc
	ue(v)

			nnpfc_out_sample_idc
	ue(v)

			if(nnpfc_out_sample_idc = = 4)
	

				nnpfc_out_tensor_bitdepth_minus8
	ue(v)

	[bookmark: _Hlk96087661]		nnpfc_out_order_idc
	ue(v)

			nnpfc_constant_patch_size_flag
	u(1)

			nnpfc_patch_width_minus1
	ue(v)

			nnpfc_patch_height_minus1
	ue(v)

			nnpfc_overlap
	ue(v)

			nnpfc_padding_type
	ue(v)

			nnpfc_complexity_idc
	ue(v)

			if(nnpfc_complexity_idc > 0)
	

				nnpfc_complexity_element(nnpfc_complexity_idc)
	

		}
	

		/* filter specified or updated by ISO/IEC 15938-17 bitstream */
	

		if(nnpfc_mode_idc = = 1) {
	

			while(!byte_aligned())
	

				nnpfc_reserved_zero_bit
	u(1)

			for(i = 0; more_data_in_payload(); i++)
	

				nnpfc_payload_byte[i]
	b(8)

		}
	

	}
	

	nnpfc_complexity_element(nnpfc_complexity_idc) {
	Descriptor

		if(nnpfc_complexity_idc = = 1) {
	

			nnpfc_parameter_type_flag
	u(1)

			nnpfc_log2_parameter_bit_length_minus3
	u(2)

			nnpfc_num_parameters_idc
	u(8)

			nnpfc_num_kmac_operations_idc
	ue(v)

		}
	

	}
	

8.28.2 Neural-network post-filter characteristics SEI message semantics
This SEI message specifies a neural network that may be used as a post-processing filter. The use of specified post-processing filters for specific pictures is indicated with neural-network post-filter activation SEI messages.
Use of this SEI message requires the definition of the following variables:
–	Cropped decoded output picture width and height in units of luma samples, denoted herein by InpPicWidthInLumaSamples and InpPicHeightInLumaSamples, respectively.
–	Luma sample array CroppedYPic[y][x] and chroma sample arrays CroppedCbPic[y][x] and CroppedCrPic[y][x], when present, of the cropped decoded output picture for vertical coordinates y and horizontal coordinates x, where the top-left corner of the sample array has coordinates y equal to 0 and x equal to 0.
–	Bit depth BitDepthY for the luma sample array of the cropped decoded output picture.
–	Bit depth BitDepthC for the chroma sample arrays, if any, of the cropped decoded output picture.
–	Chroma subsampling ratio relative to luma denoted as InpSubWidthC and InpSubHeightC.
–	When nnpfc_inp_order_idc is equal to 3, the initial luma quantization parameter value SliceQPY.
When this SEI message specifies a neural network that may be used as a post-processing filter, the semantics specify the derivation of the luma sample array FilteredYPic[y][x] and chroma sample arrays FilteredCbPic[y][x] and FilteredCrPic[y][x], as indicated by the value of nnpfc_out_order_idc, that contain the output of the post-processing filter.
nnpfc_id contains an identifying number that may be used to identify a post-processing filter. The value of nnpfc_id shall be in the range of 0 to 232 − 2, inclusive.
Values of nnpfc_id from 256 to 511, inclusive, and from 231 to 232 − 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of nnpfc_id in the range of 256 to 511, inclusive, or in the range of 231 to 232 − 2, inclusive, shall ignore it.
nnpfc_mode_idc equal to 0 specifies that the post-processing filter associated with the nnpfc_id value is determined by external means not specified in this Specification.
nnpfc_mode_idc equal to 1 specifies that the post-processing filter associated with the nnpfc_id value is a neural network represented by the ISO/IEC 15938-17 bitstream contained in this SEI message.
The value of nnpfc_mode_idc shall be in the range of 0 to 255, inclusive. Values of nnpfc_mode_idc greater than 1 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_mode_idc.
When the current CLVS contains a preceding neural-network post-filter characteristics SEI message, in decoding order, that has the same value of nnpfc_id equal to the value of nnpfc_id in this SEI message, at least one of the following conditions shall apply:
–	This SEI message has nnpfc_mode_idc equal to 1 and the same content as the preceding neural-network post-filter characteristics SEI message except that the values of nnpfc_mode_idc and nnpfc_payload_byte[i] may differ in order to provide a neural network update.
–	This SEI message has the same content as the preceding neural-network post-filter characteristics SEI message.
When this SEI message is the first neural-network post-filter characteristics SEI message, in decoding order, that has a particular nnpfc_id value within the current CLVS, it specifies a base post-processing filter that pertains to the current decoded picture and all subsequent decoded pictures of the current layer, in output order, until the end of the current CLVS. When this SEI message is not the first neural-network post-filter characteristics SEI message, in decoding order, that has a a particular nnpfc_id value within the current CLVS, this SEI message pertains to the current decoded picture and all subsequent decoded pictures of the current layer, in output order, until the end of the current CLVS or the next neural-network post-filter characteristics SEI message having that particular nnpfc_id value, in output order, within the current CLVS.
nnpfc_purpose indicates the purpose of post-processing filter as specified in Table 20. The value of nnpfc_purpose shall be in the range of 0 to 232 − 2, inclusive. Values of nnpfc_purpose that do not appear in Table 20 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_purpose.
Table 20 – Definition of nnpfc_purpose
	Value
	Interpretation

	0
	Unknown or unspecified

	1
	Visual quality improvement

	2
	Chroma upsampling from the 4:2:0 chroma format to the 4:2:2 or 4:4:4 chroma format, or from the 4:2:2 chroma format to the 4:4:4 chroma format

	3
	Increasing the width or height of the cropped decoded output picture without changing the chroma format

	4
	Increasing the width or height of the cropped decoded output picture and upsampling the chroma format

NOTE 1 – When a reserved value of nnpfc_purpose is taken into use in the future by ITU-T | ISO/IEC, the syntax of this SEI message could be extended with syntax elements whose presence is conditioned by nnpfc_purpose being equal to that value.
nnpfc_out_sub_width_c_flag and nnpfc_out_sub_height_c_flag are used to derive the variables outSubWidthC and outSubHeightC, respectively, which specify the chroma subsampling ratio relative to luma in the picture resulting from the post-processing filtering. When not present, nnpfc_out_sub_width_c_flag and nnpfc_out_sub_height_c_flag are both inferred to be equal to 0. When nnpfc_out_sub_width_c_flag and nnpfc_out_sub_height_c_flag are present, the sum of nnpfc_out_sub_width_c_flag and nnpfc_out_sub_height_c_flag shall be greater than 0.
outSubWidthC = InpSubWidthC − nnpfc_out_sub_width_c_flag	(73)
outSubHeightC = InpSubHeightC − nnpfc_out_sub_height_c_flag	(74)
It is a requirement of bitstream conformance that outSubWidthC and outSubHeightC are both greater than 0.
nnpfc_pic_width_in_luma_samples and nnpfc_pic_height_in_luma_samples specify the width and height, respectively, of the luma sample array of the picture resulting by applying the post-processing filter identified by nnpfc_id to a cropped decoded output picture. When nnpfc_pic_width_in_luma_samples and nnpfc_pic_height_in_luma_samples are not present, they are inferred to be equal to InpPicWidthInLumaSamples and InpPicHeightInLumaSamples, respectively.
nnpfc_component_last_flag equal to 0 specifies that the second dimension in the input tensor inputTensor to the post-processing filter and the output tensor outputTensor resulting from the post-processing filter is used for the channel. nnpfc_component_last_flag equal to 1 specifies that the last dimension in the input tensor inputTensor to the post-processing filter and the output tensor outputTensor resulting from the post-processing filter is used for the channel.
NOTE 2 – The specified values of nnpfc_inp_sample_idc and nnpfc_out_sample_idc specify that the first dimension in the input tensor and in the output tensor, respectively, is used for the batch index, which is a practice in some neural network frameworks. While the semantics of this SEI message use batch size equal to 1, it is up to the post-processing implementation to determine the batch size used as input to the neural network inference.
NOTE 3 – A colour component is an example of a channel.
nnpfc_inp_sample_idc indicates the method of converting a sample value of the cropped decoded output picture to an input value to the post-processing filter. When nnpfc_inp_sample_idc is equal to 0, 1, 2, or 3, the input values to the post-processing filter are binary16, binary32, binary64, or binary128 floating point values, respectively, as specified in IEEE 754-2019, and the functions InpY and InpC are specified as follows:
InpY(x) = x ÷ ((1 << BitDepthY) − 1)		(75)
InpC(x)= x ÷ ((1 << BitDepthC) − 1)		(76)
When nnpfc_inp_sample_idc is equal to 4, the input values to the post-processing filter are unsigned integer and the functions InpY and InpC are specified as follows:
shift = BitDepthY − inpTensorBitDepth
if(inpTensorBitDepth >= BitDepthY)
	InpY(x) = x << (inpTensorBitDepth − BitDepthY)
else
	InpY(x) = Clip3(0, (1 << inpTensorBitDepth) − 1, (x + (1 << (shift − 1))) >> shift)	(77)
shift = BitDepthC − inpTensorBitDepth
if(inpTensorBitDepth >= BitDepthC)
	InpC(x) = x << (inpTensorBitDepth − BitDepthC)
else
	InpC(x) = Clip3(0, (1 << inpTensorBitDepth) − 1, (x + (1 << (shift − 1))) >> shift)
The variable inpTensorBitDepth is derived from the syntax element nnpfc_inp_tensor_bitdepth_minus8 as specified below.
The value of nnpfc_inp_sample_idc shall be in the range of 0 to 255, inclusive. Values of nnpfc_inp_sample_idc greater than 4 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_inp_sample_idc.
nnpfc_inp_tensor_bitdepth_minus8 plus 8 specifies the bit depth of luma sample values in the input integer tensor. The value of inpTensorBitDepth is derived as follows:
inpTensorBitDepth = nnpfc_inp_tensor_bitdepth_minus8 + 8	(78)
It is a requirement of bitstream conformance that the value of nnpfc_inp_tensor_bitdepth_minus8 shall be in the range of 0 to 24, inclusive.
[bookmark: _Hlk99044824]nnpfc_inp_order_idc indicates the method of ordering the sample arrays of a cropped decoded output picture as the input to the post-processing filter. Table 21 contains an informative description of nnpfc_inp_order_idc values. The semantics of nnpfc_inp_order_idc in the range of 0 to 3, inclusive, are specified in Table 23, which specifies a process for deriving the input tensors inputTensor for different values of nnpfc_inp_order_idc and a given vertical sample coordinate cTop and a horizontal sample coordinate cLeft specifying the top-left sample location for the patch of samples included in the input tensors. When the chroma format of the cropped decoded output picture is not 4:2:0, nnpfc_inp_order_idc shall not be equal to 3. The value of nnpfc_inp_order_idc shall be in the range of 0 to 255, inclusive. Values of nnpfc_inp_order_idc greater than 3 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_inp_order_idc.
Table 21 – Informative description of nnpfc_inp_order_idc values
	nnpfc_inp_
order_idc
	Description

	0
	Only the luma matrix is present in the input tensor, thus the number of channels is 1.

	1
	Only the chroma matrices are present in the input tensor, thus the number of channels is 2.

	2
	The luma and chroma matrices are present in the input tensor, thus the number of channels is 3.

	3
	Four luma matrices, two chroma matrices, and a quantization parameter matrix are present in the input tensor, thus the number of channels is 7. The luma channels are derived in an interleaved manner as illustrated in Figure 12. This nnpfc_inp_order_idc can only be used when the chroma format is 4:2:0.

	4..255
	reserved

[image:]
[bookmark: _Ref278067287][bookmark: _Toc55408388]Figure 12 – Illustration of luma data channels of nnpfc_inp_order_idc equal to 3 (informative)
A patch is a rectangular array of samples from a component (e.g., a luma or chroma component) of a picture.
nnpfc_constant_patch_size_flag equal to 0 specifies that the post-processing filter accepts any patch size that is a positive integer multiple of the patch size indicated by nnpfc_patch_width_minus1 and nnpfc_patch_height_minus1 as input. nnpfc_constant_patch_size_flag equal to 1 specifies that the post-processing filter accepts exactly the patch size indicated by nnpfc_patch_width_minus1 and nnpfc_patch_height_minus1 as input.
nnpfc_patch_width_minus1 + 1, when nnpfc_constant_patch_size_flag equal to 1, specifies the horizontal sample counts of the patch size required for the input to the post-processing filter. When nnpfc_constant_patch_size_flag is equal to 0, any positive integer multiple of (nnpfc_patch_width_minus1 + 1) may be used as the horizontal sample counts of the patch size used for the input to the post-processing filter. The value of nnpfc_patch_width_minus1 shall be in the range of 0 to 32766, inclusive.
nnpfc_patch_height_minus1 + 1, when nnpfc_constant_patch_size_flag equal to 1, specifies the vertical sample counts of the patch size required for the input to the post-processing filter. When nnpfc_constant_patch_size_flag is equal to 0, any positive integer multiple of (nnpfc_patch_height_minus1 + 1) may be used as the vertical sample counts of the patch size used for the input to the post-processing filter. The value of nnpfc_patch_height_minus1 shall be in the range of 0 to 32766, inclusive.
nnpfc_overlap specifies the overlapping horizontal and vertical sample counts of adjacent input tensors of the post-processing filter. The value of nnpfc_overlap shall be in the range of 0 to 16383, inclusive.
The variables inpPatchWidth, inpPatchHeight, outPatchWidth, outPatchHeight, horCScaling, verCScaling, outPatchCWidth, outPatchCHeight, and overlapSize are derived as follows:
inpPatchWidth = nnpfc_patch_width_minus1 + 1
inpPatchHeight = nnpfc_patch_height_minus1 + 1
outPatchWidth = (nnpfc_pic_width_in_luma_samples * inpPatchWidth) / InpPicWidthInLumaSamples
outPatchHeight = (nnpfc_pic_height_in_luma_samples * inpPatchHeight) / InpPicHeightInLumaSamples
horCScaling = InpSubWidthC / outSubWidthC
verCScaling = InpSubHeightC / outSubHeightC						(79)
outPatchCWidth = outPatchWidth * horCScaling
outPatchCHeight = outPatchHeight * verCScaling
overlapSize = nnpfc_overlap
It is a requirement of bitstream conformance that outPatchWidth * InpPicWidthInLumaSamples shall be equal to nnpfc_pic_width_in_luma_samples * inpPatchWidth and outPatchHeight * InpPicHeightInLumaSamples shall be equal to nnpfc_pic_height_in_luma_samples * inpPatchHeight.
nnpfc_padding_type specifies the process of padding when referencing sample locations outside the boundaries of the cropped decoded output picture as described in Table 22. The value of nnpfc_padding_type shall be in the range of 0 to 15, inclusive.
Table 22 – Informative description of nnpfc_padding_type values
	nnpfc_padding_type
	Description

	0
	zero padding

	1
	replication padding

	2
	reflection padding

	3..15
	reserved

The function InpSampleVal(y, x, picHeight, picWidth, croppedPic) with inputs being a vertical sample location y, a horizontal sample location x, a picture height picHeight, a picture width picWidth, and sample array croppedPic returns the value of sampleVal derived as follows:
if(nnpfc_padding_type = = 0)
	if(y < 0 | | x < 0 | | y >= picHeight | | x >= picWidth)
		sampleVal = 0
	else
		sampleVal = croppedPic[y][x]		(80)
else if(nnpfc_padding_type = = 1)
	sampleVal = croppedPic[Clip3(0, picHeight − 1, y)][Clip3(0, picWidth − 1, x)]
else /* nnpfc_padding_type = = 2 */
	sampleVal = croppedPic[Reflect(picHeight − 1, y)][Reflect(picWidth − 1, x)]
Table 23 – Process for deriving the input tensors inputTensor for a given vertical sample coordinate cTop and a horizontal sample coordinate cLeft specifying the top-left sample location for the patch of samples included in the input tensors
	nnpfc_inp_
order_idc
	Process DeriveInputTensors() for deriving input tensors

	0
	for(yP = −overlapSize; yP < inpPatchHeight + overlapSize; yP++)
	for(xP = −overlapSize; xP < inpPatchWidth + overlapSize; xP++) {
		inpVal = InpY(InpSampleVal(cTop + yP, cLeft + xP, InpPicHeightInLumaSamples,
				InpPicWidthtInLumaSamples, CroppedYPic))
		if(nnpfc_component_last_flag = = 0)
			inputTensor[0][0][yP + overlapSize][xP + overlapSize] = inpVal
		else
			inputTensor[0][yP + overlapSize][xP + overlapSize][0] = inpVal
	}

	1
	for(yP = −overlapSize; yP < inpPatchHeight + overlapSize; yP++)
	for(xP = −overlapSize; xP < inpPatchWidth + overlapSize; xP++) {
		inpCbVal = InpC(InpSampleVal(cTop + yP, cLeft + xP, InpPicHeightInLumaSamples / InpSubHeightC,
				InpPicWidthtInLumaSamples / InpSubWidthC, CroppedCbPic))
		inpCrVal = InpC(InpSampleVal(cTop + yP, cLeft + xP, InpPicHeightInLumaSamples / InpSubHeightC,
				InpPicWidthtInLumaSamples / InpSubWidthC, CroppedCrPic))
		if(nnpfc_component_last_flag = = 0) {
			inputTensor[0][0][yP + overlapSize][xP + overlapSize] = inpCbVal
			inputTensor[0][1][yP + overlapSize][xP + overlapSize] = inpCrVal
		} else {
			inputTensor[0][yP + overlapSize][xP + overlapSize][0] = inpCbVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][1] = inpCrVal
		}
	}

	2
	for(yP = −overlapSize; yP < inpPatchHeight + overlapSize; yP++)
	for(xP = −overlapSize; xP < inpPatchWidth + overlapSize; xP++) {
		yY = cTop + yP
		xY = cLeft + xP
		yC = yY / InpSubHeightC
		xC = xY / InpSubWidthC	
		inpYVal = InpY(InpSampleVal(yY, xY, InpPicHeightInLumaSamples,
				InpPicWidthtInLumaSamples, CroppedYPic))
		inpCbVal = InpC(InpSampleVal(yC, xC, InpPicHeightInLumaSamples / InpSubHeightC,
				InpPicWidthtInLumaSamples / InpSubWidthC, CroppedCbPic))
		inpCrVal = InpC(InpSampleVal(yC, xC, InpPicHeightInLumaSamples / InpSubHeightC,
				InpPicWidthtInLumaSamples / InpSubWidthC, CroppedCrPic))
		if(nnpfc_component_last_flag = = 0) {
			inputTensor[0][0][yP + overlapSize][xP + overlapSize] = inpYVal
			inputTensor[0][1][yP + overlapSize][xP + overlapSize] = inpCbVal
			inputTensor[0][2][yP + overlapSize][xP + overlapSize] = inpCrVal
		} else {
			inputTensor[0][yP + overlapSize][xP + overlapSize][0] = inpYVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][1] = inpCbVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][2] = inpCrVal
		}
	}

	3
	for(yP = −overlapSize; yP < inpPatchHeight + overlapSize; yP++)
	for(xP = −overlapSize; xP < inpPatchWidth + overlapSize; xP++) {
		yTL = cTop + yP * 2
		xTL = cLeft + xP * 2
		yBR = yTL + 1
		xBR = xTL + 1
		yC = cTop / 2 + yP
		xC = cLeft / 2 + xP
		inpTLVal = InpY(InpSampleVal(yTL, xTL, InpPicHeightInLumaSamples,
				InpPicWidthtInLumaSamples, CroppedYPic))
		inpTRVal = InpY(InpSampleVal(yTL, xBR, InpPicHeightInLumaSamples,
				InpPicWidthtInLumaSamples, CroppedYPic))
		inpBLVal = InpY(InpSampleVal(yBR, xTL, InpPicHeightInLumaSamples,
				InpPicWidthtInLumaSamples, CroppedYPic))
		inpBRVal = InpY(InpSampleVal(yBR, xBR, InpPicHeightInLumaSamples,
				InpPicWidthtInLumaSamples, CroppedYPic))
		inpCbVal = InpC(InpSampleVal(yC, xC, InpPicHeightInLumaSamples / 2,
				InpPicWidthtInLumaSamples / 2, CroppedCbPic))
		inpCrVal = InpC(InpSampleVal(yC, xC, InpPicHeightInLumaSamples / 2,
				InpPicWidthtInLumaSamples / 2, CroppedCrPic))
		if(nnpfc_component_last_flag = = 0) {
			inputTensor[0][0][yP + overlapSize][xP + overlapSize] = inpTLVal
			inputTensor[0][1][yP + overlapSize][xP + overlapSize] = inpTRVal
			inputTensor[0][2][yP + overlapSize][xP + overlapSize] = inpBLVal
			inputTensor[0][3][yP + overlapSize][xP + overlapSize] = inpBRVal
			inputTensor[0][4][yP + overlapSize][xP + overlapSize] = inpCbVal
			inputTensor[0][5][yP + overlapSize][xP + overlapSize] = inpCrVal
			inputTensor[0][6][yP + overlapSize][xP + overlapSize] = 2(SliceQPY – 42)/6
		} else {
			inputTensor[0][yP + overlapSize][xP + overlapSize][0] = inpTLVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][1] = inpTRVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][2] = inpBLVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][3] = inpBRVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][4] = inpCbVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][5] = inpCrVal
			inputTensor[0][yP + overlapSize][xP + overlapSize][6] = 2(SliceQPY – 42)/6
		}
	}

	4..255
	reserved

[bookmark: _Hlk104544193]nnpfc_complexity_idc greater than 0 specifies that one or more syntax elements that indicate the complexity of the post-processing filter associated with the nnpfc_id may be present. nnpfc_complexity_idc equal to 0 specifies that no syntax element that indicates the complexity of the post-processing filter associated with the nnpfc_id is present. The value nnpfc_complexity_idc shall be in the range of 0 to 255, inclusive. Values of nnpfc_complexity_idc greater than 1 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_complexity_idc.
nnpfc_out_sample_idc equal to 0, 1, 2, or 3 indicates that the sample values output by the post-processing filter are binary16, binary32, binary64, or binary128 floating point values, respectively, as specified in IEEE 754-2019. Functions OutY and OutC for converting luma sample values and chroma sample values, respectively, output by the post-processing, to integer values at bit depths BitDepthY and BitDepthC, respectively, are specified as follows:
OutY(x) = Clip3(0, (1 << BitDepthY) − 1, Round(x * ((1 << BitDepthY) − 1)))	(81)
OutC(x)= Clip3(0, (1 << BitDepthC) − 1, Round(x * ((1 << BitDepthC) − 1)))	(82)
[bookmark: _Hlk101599236]nnpfc_out_sample_idc equal to 4 indicates that the sample values output by the post-processing filter are unsigned integer. Functions OutY and OutC are specified as follows:
shift = outTensorBitDepth − BitDepthY
if(outTensorBitDepth >= BitDepthY)
	OutY(x) = Clip3(0, (1 << BitDepthY) − 1, (x + (1 << (shift − 1))) >> shift)
else
	OutY(x) = x << (BitDepthY − outTensorBitDepth)	(83)
shift = outTensorBitDepth − BitDepthC
if(outTensorBitDepth >= BitDepthC)
	OutC(x)= Clip3(0, (1 << BitDepthC) − 1, (x + (1 << (shift − 1))) >> shift)
else
	OutC(x) = x << (BitDepthC − outTensorBitDepth)
The variable outTensorBitDepth is derived from the syntax element nnpfc_out_tensor_bitdepth_minus8 as described below.
The value of nnpfc_out_sample_idc shall be in the range of 0 to 255, inclusive. Values of nnpfc_out_sample_idc greater than 4 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_out_sample_idc.
[bookmark: _Hlk101599286]nnpfc_out_tensor_bitdepth_minus8 plus 8 specifies the bit depth of sample values in the output integer tensor. The value of outTensorBitDepth is derived as follows:
outTensorBitDepth = nnpfc_out_tensor_bitdepth_minus8 + 8	(84)
It is a requirement of bitstream conformance that the value of nnpfc_out_tensor_bitdepth_minus8 shall be in the range of 0 to 24, inclusive.
nnpfc_out_order_idc indicates the output order of samples resulting from the post-processing filter. Table 24 contains an informative description of nnpfc_out_order_idc values. The semantics of nnpfc_out_order_idc in the range of 0 to 3, inclusive, are specified in Table 25, which specifies a process for deriving sample values in the filtered output sample arrays FilteredYPic, FilteredCbPic, and FilteredCrPic from the output tensors outputTensor for different values of nnpfc_out_order_idc and a given vertical sample coordinate cTop and a horizontal sample coordinate cLeft specifying the top-left sample location for the patch of samples included in the input tensors. When nnpfc_purpose is equal to 2 or 4, nnpfc_out_order_idc shall not be equal to 3. The value of nnpfc_out_order_idc shall be in the range of 0 to 255, inclusive. Values of nnpfc_out_order_idc greater than 3 are reserved for future specification by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall ignore SEI messages that contain reserved values of nnpfc_out_order_idc.
Table 24 – Informative description of nnpfc_out_order_idc values
	nnpfc_out_
order_idc
	Description

	0
	Only the luma matrix is present in the output tensor, thus the number of channels is 1.

	1
	Only the chroma matrices are present in the output tensor, thus the number of channels is 2.

	2
	The luma and chroma matrices are present in the output tensor, thus the number of channels is 3.

	3
	Four luma matrices and two chroma matrices are present in the output tensor, thus the number of channels is 6. This nnpfc_out_order_idc can only be used when the chroma format is 4:2:0.

	4..255
	reserved

Table 25 – Process for deriving sample values in the filtered output sample arrays FilteredYPic, FilteredCbPic, and FilteredCrPic from the output tensors outputTensor for a given vertical sample coordinate cTop and a horizontal sample coordinate cLeft specifying the top-left sample location for the patch of samples included in the input tensors
	nnpfc_out_
order_idc
	Process StoreOutputTensors() for deriving sample values in the filtered picture from the output tensors

	0
	for(yP = 0; yP < outPatchHeight; yP++)
	for(xP = 0; xP < outPatchWidth; xP++) {
		yY = cTop * outPatchHeight / inpPatchHeight + yP
		xY = cLeft * outPatchWidth / inpPatchWidth + xP
		if (yY < nnpfc_pic_height_in_luma_samples && xY < nnpfc_pic_width_in_luma_samples)
			if(nnpfc_component_last_flag = = 0)
				FilteredYPic[yY][xY] = OutY(outputTensor[0][0][yP][xP])
			else
				FilteredYPic[yY][xY] = OutY(outputTensor[0][yP][xP][0])
	}

	1
	for(yP = 0; yP < outPatchCHeight; yP++)
	for(xP = 0; xP < outPatchCWidth; xP++) {
		xSrc = cLeft * horCScaling + xP
		ySrc = cTop * verCScaling + yP
		if (ySrc < nnpfc_pic_height_in_luma_samples / outSubHeightC &&
				xSrc < nnpfc_pic_width_in_luma_samples / outSubWidthC)
			if(nnpfc_component_last_flag = = 0) {
				FilteredCbPic[ySrc][xSrc] = OutC(outputTensor[0][0][yP][xP])
				FilteredCrPic[ySrc][xSrc] = OutC(outputTensor[0][1][yP][xP])
			} else {
				FilteredCbPic[ySrc][xSrc] = OutC(outputTensor[0][yP][xP][0])
				FilteredCrPic[ySrc][xSrc] = OutC(outputTensor[0][yP][xP][1])
			}
	}

	2
	for(yP = 0; yP < outPatchHeight; yP++)
	for(xP = 0; xP < outPatchWidth; xP++) {
		yY = cTop * outPatchHeight / inpPatchHeight + yP
		xY = cLeft * outPatchWidth / inpPatchWidth + xP
		yC = yY / outSubHeightC
		xC = xY / outSubWidthC
		yPc = (yP / outSubHeightC) * outSubHeightC
		xPc = (xP / outSubWidthC) * outSubWidthC
		if (yY < nnpfc_pic_height_in_luma_samples && xY < nnpfc_pic_width_in_luma_samples)
			if(nnpfc_component_last_flag = = 0) {
				FilteredYPic[yY][xY] = OutY(outputTensor[0][0][yP][xP])
				FilteredCbPic[yC][xC] = OutC(outputTensor[0][1][yPc][xPc])
				FilteredCrPic[yC][xC] = OutC(outputTensor[0][2][yPc][xPc])
			} else {
				FilteredYPic[yY][xY] = OutY(outputTensor[0][yP][xP][0])
				FilteredCbPic[yC][xC] = OutC(outputTensor[0][yPc][xPc][1])
				FilteredCrPic[yC][xC] = OutC(outputTensor[0][yPc][xPc][2])
			}
	}

	3
	for(yP = 0; yP < outPatchHeight; yP++)
	for(xP = 0; xP < outPatchWidth; xP++) {
		ySrc = cTop / 2 * outPatchHeight / inpPatchHeight + yP
		xSrc = cLeft / 2 * outPatchWidth / inpPatchWidth + xP
		if (ySrc < nnpfc_pic_height_in_luma_samples / 2 &&
				xSrc < nnpfc_pic_width_in_luma_samples / 2)
			if(nnpfc_component_last_flag = = 0) {
				FilteredYPic[ySrc * 2][xSrc * 2] = OutY(outputTensor[0][0][yP][xP])
				FilteredYPic[ySrc * 2][xSrc * 2 + 1] = OutY(outputTensor[0][1][yP][xP])
				FilteredYPic[ySrc * 2 + 1][xSrc * 2] = OutY(outputTensor[0][2][yP][xP])
				FilteredYPic[ySrc * 2 + 1][xSrc * 2 + 1] = OutY(outputTensor[0][3][yP][xP])
				FilteredCbPic[ySrc][xSrc] = OutC(outputTensor[0][4][yP][xP])
				FilteredCrPic[ySrc][xSrc] = OutC(outputTensor[0][5][yP][xP])
			} else {
				FilteredYPic[ySrc * 2][xSrc * 2] = OutY(outputTensor[0][yP][xP][0])
				FilteredYPic[ySrc * 2][xSrc * 2 + 1] = OutY(outputTensor[0][yP][xP][1])
				FilteredYPic[ySrc * 2 + 1][xSrc * 2] = OutY(outputTensor[0][yP][xP][2])
				FilteredYPic[ySrc * 2 + 1][xSrc * 2 + 1] = OutY(outputTensor[0][yP][xP][3])
				FilteredCbPic[ySrc][xSrc] = OutC(outputTensor[0][yP][xP][4])
				FilteredCrPic[ySrc][xSrc] = OutC(outputTensor[0][yP][xP][5])
			}
	}

	4..255
	reserved

A base post-processing filter for a cropped decoded output picture picA is the filter that is identified by the first neural-network post-filter characteristics SEI message, in decoding order, that has a particular nnpfc_id value within a CLVS.
If there is another neural-network post-filter characteristics SEI message that has the same nnpfc_id value, has nnpfc_mode_idc equal to 1, has different content than the neural-network post-filter characteristics SEI message that defines the base post-processing filter, and pertains to the picture picA, the base post-processing filter is updated by decoding the ISO/IEC 15938-17 bitstream in that neural-network post-filter characteristics SEI message to obtain a post-processing filter PostProcessingFilter(). Otherwise, the post-processing processing filter PostProcessingFilter() is assigned to be the same as the base post-processing filter.
The following process is used to filter the cropped decoded output picture with the post-processing filter PostProcessingFilter() to generate the filtered picture, which contains Y, Cb, and Cr sample arrays FilteredYPic, FilteredCbPic, and FilteredCrPic, respectively, as indicated by nnpfc_out_order_idc.
if(nnpfc_inp_order_idc = = 0)
	for(cTop = 0; cTop < InpPicHeightInLumaSamples; cTop += inpPatchHeight)
		for(cLeft = 0; cLeft < InpPicWidthInLumaSamples; cLeft += inpPatchWidth) {
			DeriveInputTensors()
			outputTensor = PostProcessingFilter(inputTensor)
			StoreOutputTensors()
		}
else if(nnpfc_inp_order_idc = = 1)
	for(cTop = 0; cTop < InpPicHeightInLumaSamples / InpSubHeightC; cTop += inpPatchHeight)
		for(cLeft = 0; cLeft < InpPicWidthInLumaSamples / InpSubWidthC; cLeft += inpPatchWidth) {
			DeriveInputTensors()
			outputTensor = PostProcessingFilter(inputTensor)
			StoreOutputTensors()
		}
else if(nnpfc_inp_order_idc = = 2)
	for(cTop = 0; cTop < InpPicHeightInLumaSamples; cTop += inpPatchHeight)	(85)
		for(cLeft = 0; cLeft < InpPicWidthInLumaSamples; cLeft += inpPatchWidth) {
			DeriveInputTensors()
			outputTensor = PostProcessingFilter(inputTensor)
			StoreOutputTensors()
		}
else if(nnpfc_inp_order_idc = = 3)
	for(cTop = 0; cTop < InpPicHeightInLumaSamples; cTop += inpPatchHeight * 2)
		for(cLeft = 0; cLeft < InpPicWidthInLumaSamples; cLeft += inpPatchWidth * 2) {
			DeriveInputTensors()
			outputTensor = PostProcessingFilter(inputTensor)
			StoreOutputTensors()
		}
nnpfc_reserved_zero_bit shall be equal to 0.
nnpfc_payload_byte[i] contains the i-th byte of a bitstream conforming to ISO/IEC 15938-17. The byte sequence nnpfc_payload_byte[i] for all present values of i shall be a complete bitstream that conforms to ISO/IEC 15938-17.
[bookmark: _Hlk102086328]nnpfc_parameter_type_flag equal to 0 indicates that the neural network uses only integer parameters. nnpfc_parameter_type_flag equal to 1 indicates that the neural network may use floating point or integer parameters.
[bookmark: _Hlk102086340]nnpfc_log2_parameter_bit_length_minus3 equal to 0, 1, 2, and 3 indicates that the neural network does not use parameters of bit length greater than 8, 16, 32, and 64, respectively.
nnpfc_num_parameters_idc indicates the maximum number of neural network parameters for the post processing filter in units of a power of 2048. nnpfc_num_parameters_idc equal to 0 indicates that the maximum number of neural network parameters is not specified.
If the value of nnpfc_num_parameters_idc is greater than zero, the variable maxNumParameters is derived as follows:
	maxNumParameters = (2048 << nnpfc_num_parameters_idc) − 1	(86)
It is a requirement of bitstream conformance that the number of neural network parameters of the post-processing filter shall be less than or equal to maxNumParameters.
nnpfc_num_kmac_operations_idc greater than 0 specifies that the maximum number of multiply-accumulate operations per sample of the post-processing filter is less than or equal to nnpfc_num_kmac_operations_idc * 1000. nnpfc_num_kmac_operations_idc equal to 0 specifies that the maximum number of multiply-accumulate operations of the network is not specified.
8.29 Neural-network post-filter activation SEI message
8.29.1 Neural-network post-filter activation SEI message syntax

	nn_post_filter_activation(payloadSize) {
	Descriptor

		nnpfa_id
	ue(v)

	}
	

8.29.2 Neural-network post-filter activation SEI message syntax
This SEI message specifies the neural-network post-processing filter that may be used for post-processing filtering for the current picture.
The neural-network post-processing filter activation SEI message persists only for the current picture.
NOTE – There may be several neural-network post-processing filter activation SEI messages present for the same picture, for example, when the post-processing filters are meant for different purposes or filter different colour components.
nnpfa_id specifies that the neural-network post-processing filter specified by one or more neural-network post-processing filter characteristics SEI messages that pertain to the current picture and have nnpfc_id equal to nnfpa_id may be used for post-processing filtering for the current picture.

Add the following to the Bibliography and renumber the bibliographic references as needed:
ATSC A/341:2022-03, ATSC Standard: Video – HEVC.

Changes to the VVC specification text:
[Ed. (MH): Move the text below to a VVC amendment later. For now, the VVC text related to the SEI messages specified in this document is maintained below in order to avoid losing it completely.]
In clause D.2.1 of VVC, add the following, highlighted table rows:

	sei_payload(payloadType, payloadSize) {
	Descriptor

		if(nal_unit_type = = PREFIX_SEI_NUT)
	

			...
	

			else if(payloadType = = 209) /* Specified in Rec. ITU-T H.274 | ISO/IEC 23002-7 */
	

				shutter_interval_info(payloadSize)
	

			else if(payloadType = = 210) /* Specified in Rec. ITU-T H.274 | ISO/IEC 23002-7 */
	

				nn_post_filter_characteristics(payloadSize)
	

			else if(payloadType = = 211) /* Specified in Rec. ITU-T H.274 | ISO/IEC 23002-7 */
	

				nn_post_filter_activation(payloadSize)
	

			else /* Specified in Rec. ITU-T H.274 | ISO/IEC 23002-7 */
	

				reserved_message(payloadSize)
	

			...
	

In clause D.2.2 of VVC, replace the following:
The list VclAssociatedSeiList is set to consist of the payloadType values 3, 19, 45, 47, 129, 132, 137, 142, 144, 145, 147 to 150, inclusive, 153 to 156, inclusive, 165, 168, 177, 179, 180, 200 to 202, inclusive, and 204 to 207, inclusive.
with:
The list VclAssociatedSeiList is set to consist of the payloadType values 3, 19, 45, 47, 129, 132, 137, 142, 144, 145, 147 to 150, inclusive, 153 to 156, inclusive, 165, 168, 177, 179, 180, 200 to 202, inclusive, 204 to 207, inclusive, and 209 to 211, inclusive.

Add clause D.14.10 and D.14.11 of VVC as follows:
D.14.10	Use of the shutter interval information information SEI message
The following constraints apply to the shutter interval information SEI message:
–	When the value of SpsMaxSubLayersMinus1 is equal to 0, the value of fixed_shutter_interval_within_clvs_flag shall be equal to 1.
–	The value of sii_max_sub_layers_minus1 shall be equal to the value of SpsMaxSubLayersMinus1.
D.14.11	Use of the neural network post-filter characteristics SEI message
For purposes of interpretation of the neural-network post-filter characteristics SEI message, the following variables are specified:
–	InpPicWidthInLumaSamples is set equal to pps_pic_width_in_luma_samples − ‌SubWidthC * (pps_conf_win_left_offset + pps_conf_win_right_offset).
–	InpPicHeightInLumaSamples is set equal to pps_pic_height_in_luma_samples − ‌SubHeightC * (pps_conf_win_top_offset + pps_conf_win_bottom_offset).
–	The variables CroppedYPic[y][x] and chroma sample arrays CroppedCbPic[y][x] and CroppedCrPic[y][x], when present, are set to be the 2-dimensional arrays of decoded sample values of the 0th, 1st, and 2nd component, respectively, of the cropped decoded output picture to which the neural-network post-filter characteristics SEI message applies.
–	BitDepthY and BitDepthC are both set equal to BitDepth.
–	InpSubWidthC is set equal to SubWidthC.
–	InpSubHeightC is set equal to SubHeightC.
–	SliceQPY is set equal to SliceQpY.
When a neural-network post-filter characteristics SEI message with the same nnpfc_id and different content are present in the same picture unit, both neural-network post-filter characteristics SEI messages shall be present in the same SEI NAL unit.

	Page: 2	Date Saved: 2022-06-212022-05-31
image1.png
Packed data channels

Luma component

!
'
'
'
!
H) ©o
v |~ ~ |-
|
| —
[B N)] oM |
'
'
'
'
'
'
|
H ~ <
R o | -
|
1 o
1O | © N
'
'
m | wn
(Vo T I N B B A
NS
<t |0 | [
—
- | | O | -
o
O | N |0 [

