
Technology under Consideration for
ISO/IEC 23090-14

WG3 Scene Description BoG

MDS21423_WG03_N00530

Table of Contents
1. Interactivity . 1

1.1. General . 1

1.2. On camera constraint related to user and content aspects . 1

1.2.1. Concept classification. 1

1.2.2. Possible solutions for each concept . 2

1.2.3. Conclusion . 5

2. Extensions . 6

2.1. MPEG_media . 6

2.1.1. General . 6

2.1.2. MPEG_media . 6

2.1.3. MPEG_media.media . 7

2.1.4. MPEG_media.media.controls . 10

2.2. MPEG_audio_spatial. 11

2.2.1. General . 11

2.2.2. MPEG_audio_spatial.source . 11

2.2.3. MPEG_audio_spatial.source.cluster . 14

2.3. MPEG_camera_control . 15

2.3.1. General . 15

2.3.2. Semantics . 16

2.3.3. Processing Model . 18

2.3.4. Example. 18

2.4. MPEG_mesh_collision . 19

2.4.1. General . 19

2.4.2. Semantics . 19

2.4.3. Semantics . 19

2.4.4. Processing Model . 21

2.5. MPEG_node_transformation_external . 21

2.5.1. General . 21

2.5.2. MPEG_node_transformation_external. 21

2.5.3. Processing Model . 23

2.5.4. Example. 23

2.6. MPEG_buffer_circular . 24

2.6.1. General . 25

2.6.2. MPEG_buffer_circular . 25

3. ISOBMFF. 27

3.1. Carriage Format for animation timing . 27

3.1.1. Multiple animations . 27

3.1.2. Interaction of animation and dynamic 3D object . 28

3.2. Improvements for MPEG-I SD random access description. 30

3.2.1. General . 30

3.2.2. Characteristics of random access points of MPEG-I Scene Description 30

3.2.3. Description and processing of random access points . 30

3.2.4. Proposed text improvements . 32

4. Codec Support . 33

4.1. On V3C Support in Scene Description . 33

4.2. Clarification of type of V-PCC track referenced from MPEG_media. 34

4.2.1. Consideration. 34

4.2.2. Proposal. 34

4.3. Dynamic mesh support in scene description. 35

4.3.1. Introduction . 35

4.3.2. Design . 35

4.3.3. Assets and Implementation . 35

5. Data Formats . 37

5.1. Support of glTF CBOR binary format . 37

5.1.1. Problem Statement . 37

5.1.2. Benefit of CBOR file/data format: . 37

5.1.3. CBOR data size comparison example: . 37

5.1.4. Use Cases . 37

5.1.5. Potential Solutions . 38

5.1.6. Open Issue Discussion . 39

6. Interfaces . 40

6.1. On DASH Dynamic Bitrate Adaption with Viewpoint Update . 40

6.1.1. Problem Statement . 40

6.1.2. Use Cases . 40

6.1.3. Current Scene Description Support and Gasps . 41

6.2. Supporting Multiple Viewers in the Media Access Function . 42

6.2.1. General . 42

6.2.2. Proposed Updates to MAF API . 43

6.3. CoAP API support in MAF . 44

6.3.1. General . 44

6.3.2. MAF as CoAP Client . 44

6.3.3. MAF as HTTP-CoAP Proxy. 44

Appendix A: JSON Schema for extensions . 45

A.1. JSON Schema for MPEG_buffer_circular extension. 45

A.2. JSON Schema for MPEG_audio_spatial.source . 45

A.3. JSON Schema for MPEG_audio_spatial.source.cluster . 48

A.4. JSON Schema for MPEG_media. 49

A.5. JSON Schema for MPEG_media.media . 50

A.6. JSON Schema for MPEG_media.media.controls . 53

A.7. JSON Schema for MPEG_node_transformation_external . 54

A.8. JSON Schema for MPEG_buffer_circular . 55

Appendix B: Disclaimer . 56

Chapter 1. Interactivity

1.1. General
Source: m57409

The following basic interactivity features have been agreed:

• Camera restrictions: this feature allows the scene author to restrict the movement of the viewer
in the scene. Currently there are two alternative proposals to do that. In the first one, camera
paths are defined along which the camera can move. Each path segment has an associated
bounding volume and may also allow for changes to the camera intrinsic parameters. This
approach is defined in document m57409. In the second approach, a set of bounding volumes is
defined and the camera is only allowed to be contained with that bounding volume set at any
point in time. This approach is defined in clause F.2.1 of the MIV specification.
MDS20001_WG04_N00049

• Collision: this feature allows the scene author to define boundaries of rather simplified
geometry for the objects in the scene. This information is used by the renderer (e.g. by a physics
engine) to detect collision and emulate the impact of that collision. Document m57409 describes
an extension to support this interactivity feature. A collision can be associated with an
animation that is triggered when the collision is detected. The Boundaries of an object may be
associated with physical properties that can be used to emulate a realistic reaction to the
collision (e.g. bounciness and friction of the material, etc.)

In addition to these 2 basic features, interactivity through processing and handling of user actions,
such as pushing a button on a controller, will be studied. Interactivity through haptics and haptics
feedback are also relevant and will be studied as part of this EE. The MPEG-I haptics use case 2.4 is
of particular interest: W19513

1.2. On camera constraint related to user and content
aspects
Source: m58868

1.2.1. Concept classification

Based on the discussion and the already submitted contributions, we can classify the different
concept of interactivity of the user with the scene as follows:

Table 1. Concept classification

Event Domain What may happen What we need

The user hits a virtual
object in the scene

Scene * Camera is blocked

* Haptic feedback

Collision detection
between user avatar
and objects

1

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/147
https://dms.mpeg.expert/doc_end_user/documents/133_OnLine/wg11/MDS20001_WG04_N00049.zip
https://dms.mpeg.expert/doc_end_user/documents/131_OnLine/wg11/w19513.zip
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/247

Event Domain What may happen What we need

The user reaches the
boundaries of the scene

Scene * Camera is blocked

* Haptic feedback

* View fades out

1) Scene boundaries

2) Tracking of user
avatar position in the
scene

The user reaches the
end of the media
content timeline

Media * Audio/visual feedback

* Media presentation
stops

1) Application can
access media timelines

2) Timelines can be
related together and to
the scene

The user goes out of the
viewing space of a
visual content

Media * Audio/visual feedback

* Haptic feedback

* View fades out

1) Application can
access media viewing
spaces.

2) Viewing spaces can
be related together and
to the scene

The user walks out of
the tracking area in the
real world.

Application * Audio/visual feedback

* Haptic feedback

* View fades out

Nothing, handled at
application level

1.2.2. Possible solutions for each concept

Table 2. Possible solutions

2

Event Domain What we need Possible solution

The user hits a virtual
object in the scene

Scene Collision detection
between user avatar
and objects

Signaling
MPEG_mesh_collision
extension (m56337,
m57409)

(note: called hitbox in
video games which
easier that checking
each vertices, 3D
collision detection -
Game development
MDN (mozilla.org))

Usage

Objects and the user
avatar have a hitbox.

The application detects
collision between the
hit box of the user
avatar and the hit box
objects.

3

Event Domain What we need Possible solution

The user reaches the
boundaries of the scene

Scene 1) Scene boundaries

2) Tracking of user
avatar position in the
scene

Option 1

Nothing just put walls
in the scene and this
will trigger the case
above.

Option 2

Signaling

MPEG_camera_control
extension (m56337,
m57409)

Usage

The user camera has a
space boundary which
is not a hitbox.

The application detects
whether the user
camera reaches the
boundaries attached to
the camera. At the
beginning the user
camera may be
anywhere within the
boundary.

The user reaches the
end of the media
content timeline

Media 1) Application can
access media timelines

2) Timelines can be
related together and to
the scene

Signaling

Timeline in MPEG
media

Usage

The application
retrieves all the
timelines played back
and check the current
position with respect to
the end.

4

Event Domain What we need Possible solution

The user goes out of the
viewing space of a
visual content

Media 1) Application can
access media viewing
spaces.

2) Viewing spaces can
be related together and
to the scene

Signaling

ISO/IEC 23090-12 F.2.1
Viewing space SEI
payload syntax

ISO/IEC 23090-12 F.2.2
Viewing space handling
SEI payload syntax

Usage

The application
accesses the SEI
messages and relate
those spaces into the
scene. The application
tracks the user camera
with respect to those
spaces.

The user walks out of
the tracking area in the
real world.

Application Nothing, handled at
application level

Signaling

At the application level

Usage

The application tracks
when the user reaches
the limit of the tracked
are.

1.2.3. Conclusion

Based on this classification, it appears that different types of interactivity rely on metadata present
at different levels, Media, Scene and Application. Regarding user scene interaction, i.e. touching
objects, reaching the end of the scene, can be solved by metadata present at the scene level, e.g. as
extension of glTF.

For the concept of viewing spaces which are content properties, those do not need signaling at the
scene level but merely being access by the application and be transposed in the scene.

In summary, we believe that only those following extensions are needed: * Volume collision
“hitbox” for object nodes, camera nodes, etc… * Viewing volume for camera nodes

5

Chapter 2. Extensions

2.1. MPEG_media
Source: m56047

2.1.1. General

PIt is proposed to support signaling more detailed playback control information about the MPEG
media in MPEG_media extension.

Currently in MPEG_media extension a boolean “controls” is signalled which has the semantics that
it “specifies that media controls should be displayed (such as a play/pause button etc).”. It is
asserted that for MPEG-I scene description, a more detailed information should be allowed to be
signaled in the MPEG-media extension to specify the supported playback control for the MPEG
media.

For example, it is asserted that currently it is unspecified if the MPEG media referred by the
MPEG_media extension is allowed to be fast forwarded or fast backwarded. It is asserted that the
support for this should be allowed to be specified under content creator discretion (e.g. a game
show broadcast may not allow fast backward). Similarly, certain content may be allowed to be
paused, whereas other type of content may not be allowed to be paused.

2.1.2. MPEG_media

MPEG media used to create a texture, audio source or other objects in the scene.

Table 3. MPEG_media Properties

Type Description Required

media MPEG_media.media [1-*] An array of MPEG
media. A MPEG media
contains data referred
by other object in a
scene

 Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_media.schema.json

6

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/90

2.1.2.1. MPEG_media.media

An array of MPEG media. A MPEG media contains data referred by other object in a scene

• Type: MPEG_media.media [1-*]

• Required:  Yes

2.1.2.2. MPEG_media.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

2.1.2.3. MPEG_media.extras

Application-specific data.

• Type: any

• Required: No

2.1.3. MPEG_media.media

MPEG media used to create a texture, audio source, or any other media type defined by MPEG.

Table 4. MPEG_media.media Properties

Type Description Required

name any No

startTime number The startTime gives the
time at which the
rendering of the timed
texture will be in
seconds.

No, default: 0

startTimeOffset number The startTimeOffset
indicates the time offset
into the source, starting
from which the timed
texture is generated.

No, default: 0

7

Type Description Required

endTimeOffset number The endTimeOffset
indicates the time offset
into the source, up to
which the timed
texture is generated.
The value is provided
in seconds, where 0
corresponds to the start
of the source.

No

autoplay boolean Specifies that the MPEG
media start playing as
soon as it is ready.

No

autoplayGroup boolean Specifies that playback
starts simultaneously
for all media sources
with the autoplay flag
set to true.

No

loop boolean Specifies that the MPEG
media start over again,
every time it is
finished.

No, default: false

controls MPEG_media.media.contr
ols

Specifies that which
MPEG media controls
should be exposed to
end user

No

alternatives array[1-*] An array of alternatives
of the same media (e.g.
different video code
used)

No

Additional properties are allowed.

• JSON schema: MPEG_media.media.schema.json

2.1.3.1. MPEG_media.media.name

• Type: any

• Required: No

2.1.3.2. MPEG_media.media.startTime

The startTime gives the time at which the rendering of the timed texture will be in seconds.

• Type: number

• Required: No, default: 0

8

• Minimum: >= 0

2.1.3.3. MPEG_media.media.startTimeOffset

The startTimeOffset indicates the time offset into the source, starting from which the timed texture
is generated.

• Type: number

• Required: No, default: 0

• Minimum: >= 0

2.1.3.4. MPEG_media.media.endTimeOffset

The endTimeOffset indicates the time offset into the source, up to which the timed texture is
generated. The value is provided in seconds, where 0 corresponds to the start of the source.

• Type: number

• Required: No

• Minimum: >= 0

2.1.3.5. MPEG_media.media.autoplay

Specifies that the MPEG media start playing as soon as it is ready.

• Type: boolean

• Required: No

2.1.3.6. MPEG_media.media.autoplayGroup

Specifies that playback starts simultaneously for all media sources with the autoplay flag set to true.

• Type: boolean

• Required: No

2.1.3.7. MPEG_media.media.loop

Specifies that the MPEG media start over again, every time it is finished.

• Type: boolean

• Required: No, default: false

2.1.3.8. MPEG_media.media.controls

Specifies that which MPEG media controls should be exposed to end user

• Type: MPEG_media.media.controls

• Required: No

9

2.1.3.9. MPEG_media.media.alternatives

An array of alternatives of the same media (e.g. different video code used)

• Type: array[1-*]

• Required: No

2.1.4. MPEG_media.media.controls

Specifies that which MPEG media controls should be exposed to end user

Table 5. MPEG_media.media.controls Properties

Type Description Required

pauseSupported boolean Pause control displayed
for the MPEG media.

No, default: true

fastForwardSupporte
d

boolean Fast forward control
displayed for the MPEG
media.

No, default: true

fastBackwardSupport
ed

boolean Fast backward control
displayed for the MPEG
media.

No, default: true

Additional properties are allowed.

• JSON schema: MPEG_media.media.controls.schema.json

2.1.4.1. MPEG_media.media.controls.pauseSupported

Pause control displayed for the MPEG media.

• Type: boolean

• Required: No, default: true

2.1.4.2. MPEG_media.media.controls.fastForwardSupported

Fast forward control displayed for the MPEG media.

• Type: boolean

• Required: No, default: true

2.1.4.3. MPEG_media.media.controls.fastBackwardSupported

Fast backward control displayed for the MPEG media.

• Type: boolean

• Required: No, default: true

10

2.2. MPEG_audio_spatial
Source: m55132

2.2.1. General

The MPEG audio extension adds support for spatial audio. This extension is identified by
MPEG_audio_spatial, which may be included at top level or attached to any node in the scene.
When present, the MPEG_audio_spatial extension shall be included as extension of a camera object
or a node object defined in ISO/IEC DIS 12113:2021.

The MPEG_audio_spatial extension supports three different node types:

• source: an audio source that provides input audio data into the scene. Mono objects and HOA
sources (as defined in Annex F.1 of ISO/IEC 23008-3:2020) are supported in this version of the
document.

• Type: 'Object' or, 'HOA' or 'Cluster'

• HOA audio sources shall ignore the parent node’s position and be rendered only in 3DoF.

• Cluster audio source is a pre-mixed representation of a selection of audio sources as a
single source.

• Reverb: A reverb effect can be attached to the output of an audio source. Several reverb units
can exist and sound sources can feed into one or more of these reverb units. An audio renderer
that does not support reverb shall ignore it if the bypass attribute is set to true. If the bypass
attribute is set to false, the audio renderer shall return an error message listener: An audio
listener represents the output of audio in the scene. A listener should be attached to a camera
node in the scene. By being a child node of the camera, additional transformations can be
applied to the audio listener relative to the transformation applied to the parent camera.

Figure 1 depicts the processing chain for audio in a scene.

Figure 1. An example of the processing chain for audio in a scene

The specification of any audio effect processing is outside the scope of this document. The
characteristics of a listener depend on the actual output devices available to the audio renderer.

2.2.2. MPEG_audio_spatial.source

Table 6. MPEG_audio_spatial.source Properties

11

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/63

Type Description Required

id integer  Yes

type string  Yes

pregain number No, default: 0

playbackSpeed number No, default: 1

attenuation any No, default:
linearDistance

attenuationParameter
s

number [1-*] No

referenceDistance number No, default: 1

accessors integer [1-*] No

reverbFeed integer [] No

reverbFeedGain number [] No

clusters MPEG_audio_spatial.sou
rce.cluster []

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_audio_spatial.source.schema.json

2.2.2.1. MPEG_audio_spatial.source.id

• Type: integer

• Required:  Yes

2.2.2.2. MPEG_audio_spatial.source.type

• Type: string

• Required:  Yes

• Allowed values:

◦ "Object"

◦ "HOA"

◦ "Cluster"

2.2.2.3. MPEG_audio_spatial.source.pregain

• Type: number

12

• Required: No, default: 0

• Minimum: >= 0

2.2.2.4. MPEG_audio_spatial.source.playbackSpeed

• Type: number

• Required: No, default: 1

• Minimum: >= 0.5

• Maximum: <= 2

2.2.2.5. MPEG_audio_spatial.source.attenuation

• Type: any

• Required: No, default: linearDistance

• Allowed values:

◦ noAttenuation

◦ inverseDistance

◦ linearDistance

◦ exponentialDistance

◦ custom

2.2.2.6. MPEG_audio_spatial.source.attenuationParameters

• Type: number [1-*]

• Required: No

2.2.2.7. MPEG_audio_spatial.source.referenceDistance

• Type: number

• Required: No, default: 1

• Minimum: >= 1

2.2.2.8. MPEG_audio_spatial.source.accessors

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required: No

2.2.2.9. MPEG_audio_spatial.source.reverbFeed

• Type: integer []

• Required: No

13

2.2.2.10. MPEG_audio_spatial.source.reverbFeedGain

• Type: number []

• Required: No

2.2.2.11. MPEG_audio_spatial.source.clusters

• Type: MPEG_audio_spatial.source.cluster []

• Required: No

2.2.2.12. MPEG_audio_spatial.source.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

2.2.2.13. MPEG_audio_spatial.source.extras

Application-specific data.

• Type: any

• Required: No

2.2.3. MPEG_audio_spatial.source.cluster

Provides a list of cluster elements that are attached to this node.

Table 7. MPEG_audio_spatial.source.cluster Properties

Type Description Required

id number unique identifier of the
audio cluster in the
scene.

No

sourceId number indicates the audio
source id that
represents the
aggregated sources
comprising this Cluster.

No

audioSources number [] array of audio sources
that are aggregated and
represented by this
cluster.

No

14

Type Description Required

radius number indicates the distance
in meters of the
encompassed
aggregated audio
sources.

No

Additional properties are allowed.

• JSON schema: MPEG_audio_spatial.source.cluster.schema.json

2.2.3.1. MPEG_audio_spatial.source.cluster.id

unique identifier of the audio cluster in the scene.

• Type: number

• Required: No

2.2.3.2. MPEG_audio_spatial.source.cluster.sourceId

indicates the audio source id that represents the aggregated sources comprising this Cluster.

• Type: number

• Required: No

2.2.3.3. MPEG_audio_spatial.source.cluster.audioSources

array of audio sources that are aggregated and represented by this cluster.

• Type: number []

• Required: No

2.2.3.4. MPEG_audio_spatial.source.cluster.radius

indicates the distance in meters of the encompassed aggregated audio sources.

• Type: number

• Required: No

2.3. MPEG_camera_control
Source: m56337, m57409

2.3.1. General

The scene description may describe a set of paths through which the camera is allowed to move.
The paths may be described as a set of anchor points that are connected through path segments. For
enhanced expressiveness of the camera control, each path segment may be enhanced with a

15

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/12
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/147

bounding volume that allows some freedom in motion along the path. The Figure 2 depicts this
behavior.

Figure 2. Example of Camera Path Segment with Bounding Volume

Example of Camera Path Segment with Bounding Volume The scene camera, and by consequence
the viewer, will be able to move freely within the bounding volume along the path segment. The
path segment may be described using more complex geometric forms to allow for finer control of
the path.

Furthermore, the camera parameters may be constrained at each point along the path. The
parameters are provided for every anchor point and then used together with an interpolation
function to calculate the corresponding parameters for every point along the path segment.

In fact, the interpolation function applies to all parameters, including the bounding volume.

The camera control extension is a glTF 2.0 extension that defines camera control for a scene. The
camera control extension is identified by “MPEG_camera_control” tag, which shall be included in
the extensionsUsed and should be included in the extensionsRequired of the scene.

2.3.2. Semantics

The MPEG_camera_control extension shall be defined on camera elements. It contains the following
properties:


TODO : auto generate the semantics

schema is needed

Type Description Required

anchors number Number of anchor
points in the camera
paths.

No

16

Type Description Required

segments number The type of the
bounding volume for
the path segments.
Possible types are:

* BV_NONE: no
bounding volume

* BV_CONE: capped
cone bounding volume,
defined by a circle at
each anchor point.

* BV_CUBOID: a cuboid
bounding volume,
defined by size_x,
size_y,size_z for each of
the 2 faces containing
the two anchor points.

* BV_SPHEROID: a
spherical bounding
volume around each
point along the path
segment. The bounding
volume is defined by
the radius of the sphere
in each dimension,
radius_x, radius_y,
radius_z.

default: BV_NONE

No

boundingVolume number Quaternion describing
the rotation of the
scene in the anchor
space. centerPosition
and orientation are
used as alternatives to
transformation.

default:false

No

17

Type Description Required

cameraIntrinsics boolean When set to true,
indicates that the
intrinsic camera
parameters are
modified at each
anchor point. The
parameters shall be
provided based on the
type of camera as
defined in [glTF 2.0] as
camera.perspective or
camera.orthographic.

No

accessor number The index of the
accessor or timed
accessor that provides
the camera control
information.

No

The camera control information is structured as follows:

• For each anchor point, (x,y,z) coordinates of the anchor points as float numbers

• For each path segment, (i,j) indices of the first and second anchor point of the path segment as
an integer

• If boundingVolume is BV_CONE, (r1,r2) radiuses of circle of first anchor point and second
anchor point. If boundingVolume is BV_CUBOID, (anchor_idx,size_x,size_y,size_z) for each
anchor point of the path segment. If boundingVolume is BV_SPHEROID, (r_x,r_y,r_z) as radius of
the spheroid for each anchor point of the path segment.

• If cameraIntrinsics is true, the intrinsic parameter object.

2.3.3. Processing Model

The Presentation Engine shall support the MPEG_camera_control extension. If the scene provides
camera control information, the Presentation Engine shall limit the camera movement to the
indicated paths, so that the (x,y,z) coordinates of the camera always lie on a path segment or within
the bounding volume of a path segment. The Presentation Engine may provide visual, acoustic,
and/or haptic feedback to the viewer when they approach the boundary of the bounding volume.

2.3.4. Example


TODO : add example

Input needed

18

2.4. MPEG_mesh_collision
Source: m56337, m57409, m58486

2.4.1. General

In order to provide an immersive experience to the viewer, it is important that the viewer interacts
properly with objects in the scene. The viewer should not be able to walk through solid objects in
the scene, such as walls, chairs, and tables. The following figure depicts a 3D mesh representation
of a chair, together with its collision boundaries, defined as a set of cuboids.



Editors Note : alternative text from m58486

A mesh in the scene description may be associated with another simplified mesh
that describes the collision boundaries for the first mesh. The figure below shows
an example of such an association, where the mesh for the chair is associated with
a set of primitives that engulf that mesh and are not visible to the viewer.

Figure 3. n/a

2.4.2. Semantics

The “MPEG_mesh_collision” extension is defined to provide a description of the collision
boundaries of a mesh. The extension shall be defined on mesh objects as a set of cuboids around
the mesh geometry.



Editors Note : alternative text from m58486

The “MPEG_mesh_collision” extension is defined to provide a description of the
collision boundaries of a mesh. The extension shall be defined on mesh objects. It
references another mesh that is invisible to the viewer and also provides
additional information about the expected behavior upon detection of a collision.

2.4.3. Semantics

The mesh collision information consists of the cuboid vertex coordinates (x,y,z) for cuboid
boundaries or the sphere center and radius for spherical boundaries. The values are provided as

19

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/106
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/147
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/234

float numbers.


TODO : auto generate the semantics

schema is needed

Type Description Required

boundaries number Array of boundary
shapes that are used to
define the collision
boundaries of the mesh
object. The boundaries
may be spheroids or
cuboids, as defined in
the MPEG_camera_control
extension.

No

static number Determines if the object
is affected by collisions
or not. An object that is
static will not be
affected by collisions,
which means that
when the viewer or
another object

No

material number The index of a collision
material that defines
how colliding objects or
viewers will interact
with this object. This
may include
bounciness, friction,
etc.

No

animations array(object) Defines animations that
are triggered by a
collision or action on
this object. The
animation may be
limited to a subset of
other objects, e.g. only
the viewer may trigger
this animation. It also
contains a pointer to
the animation that is to
be executed when
triggered.

No

20

2.4.4. Processing Model

The Presentation Engine shall support the MPEG_mesh_collision extension. The camera position
(x,y,z) shall not be contained within one of the defined mesh cuboids at any point of time. Collision
may be signaled to the viewer through visual, acoustic, and/or haptic feedback. This information on
the boundaries for the nodes may be used to initialize and configure a 3D physics engine that will
detect collisions.



Editors Note : alternative text from m58486

A collision detection model may be applied to detect collisions, e.g. by checking if
the position of the scene camera is within the boundaries of the collision mesh.
Once detected, a collision may be signaled to the viewer through visual, acoustic,
and/or haptic feedback. For example, a set of animations may be triggered.

2.5. MPEG_node_transformation_external
Source: m56440

2.5.1. General

In order to enable node transformations based on external information sources, MPEG node
transformation external is defined. The MPEG node transformation external extension is identified
by MPEG_node_transformation_external, which shall be included in the extensionsUsed and
extensionsRequired of the scene description document, whenever external node transformation is
used in a scene. The MPEG node transformation external extension acts as a glue for linking nodes
and node transformations with information sources that originate outside of the scene description
document. For example, the extension enables adding a virtual object, which is positioned and
oriented, based on viewer position and orientation. The transformation properties (matrix,
rotation, translation, and scale) provided by the external entity are applied on top of the default
properties defined by the concerned node.

2.5.2. MPEG_node_transformation_external

glTF extension to specify pose in scene is dependent on external information

Table 8. MPEG_node_transformation_external Properties

Type Description Required

matrix any No

rotation any The node’s unit
quaternion rotation in
the order (x, y, z, w),
where w is the scalar.

No

scale any No

translation any No

21

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/109

Type Description Required

name string The user-defined name
of this object.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_node_transformation_external.schema.json

2.5.2.1. MPEG_node_transformation_external.matrix

• Type: any

• Required: No

2.5.2.2. MPEG_node_transformation_external.rotation

The node’s unit quaternion rotation in the order (x, y, z, w), where w is the scalar.

• Type: any

• Required: No

2.5.2.3. MPEG_node_transformation_external.scale

• Type: any

• Required: No

2.5.2.4. MPEG_node_transformation_external.translation

• Type: any

• Required: No

2.5.2.5. MPEG_node_transformation_external.name

The user-defined name of this object. This is not necessarily unique, e.g., an accessor and a buffer
could have the same name, or two accessors could even have the same name.

• Type: string

• Required: No

2.5.2.6. MPEG_node_transformation_external.extensions

JSON object with extension-specific objects.

22

• Type: object

• Required: No

• Type of each property: Extension

2.5.2.7. MPEG_node_transformation_external.extras

Application-specific data.

• Type: any

• Required: No

2.5.3. Processing Model

The processing model could be the following.

• Application parses scene description document, which contains MPEG node transformation
external extension.

• MPEG node transformation extension identifies that a node in glTF document may be linked
with external information.

• The application decides, which type of external information suits the handle defined in MEPG
node transformation external extension.

• The application applies transformation properties, as described by the extension, received from
the external information source to the related node.

• The external transformation information is always applied on top of the node default
properties.

It is always left for the application to decide, how to precisely map the URIs in the extension with
external information sources visible to it. If no proper mapping can be performed, application may
choose to ignore rendering of such nodes.

2.5.4. Example

23

{
 "nodes": [
 {
 "name": "Box 1",
 "translation": [
 0.0,
 0.0,
 0.2
]
 },
 {
 "name": "Box 2 with external transformation",
 "extensions": {
 "MPEG_node_transformation_external": {
 "matrix": {
 "uri": "mpeg:transformation:viewer:hand:left"
 }
 }
 }
 }
]
}

In the example a virtual object is positioned in the scene in relation to information received with
what application considers as proper input for: mpeg:transformation:viewer:hand:left. The virtual
object is properly transformed according to left hand controller and always positioned with offset
of 0.2m in z-axis. Other examples of URIs may include the following:

• mpeg:transformation:viewer

• mpeg:transformation:viewer:hand:right

• mpeg:transformation:viewer:hand:left

• mpeg:transformation:viewer:bounding_box

• mpeg:transformations:marker:plane

• mpeg:transformations:play_area:bounding_box The URI could be defined as well outside of the
MPEG.

• geo location URI could have embedded base64-encoded data in the following format
data:[<mediatype>][;base64],<data>. For example ‘data:text/plain;charset=UTF-8; 35.1592;-
98.4422;410’

• geo location URI according to RFC 5870 ‘geo:37.786971,-122.399677;u=35’

2.6. MPEG_buffer_circular
Source: m58186

24

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/199

2.6.1. General

The definition of the MPEG_buffer_circular extension includes properties such as source and tracks
to refer to an index in MPEG media entry and index to a track in the MPEG media entry
respectively. In the definition of the MPEG_media extension, the tracks array is contained in an
array of alternatives. The alternatives array is contained in media. Items in tracks[] may not
necessarily follow the same indexing across different items in alternatives[]. Therefore, it is unclear
from the MPEG_buffer_circular extension definition which item from the alternatives array is used.

2.6.2. MPEG_buffer_circular

glTF extension to specify circular buffer

Table 9. MPEG_buffer_circular Properties

Type Description Required

count integer This provides the
number of frames that
are offered by this
buffer.

No, default: 2

media integer The index of the MPEG
media entry that
provides the source.

 Yes

tracks integer [1-*] The array of indices of
tracks the MPEG media
entry that provides the
source.

No

alternative integer The index of the
alternative entry in
MPEG media that
provides the source.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_buffer_circular.schema.json

2.6.2.1. MPEG_buffer_circular.count

This provides the number of frames that are offered by this buffer.

• Type: integer

25

• Required: No, default: 2

• Minimum: >= 2

2.6.2.2. MPEG_buffer_circular.media

The index of the MPEG media entry that provides the source.

• Type: integer

• Required:  Yes

• Minimum: >= 0

2.6.2.3. MPEG_buffer_circular.tracks

The array of indices of tracks the MPEG media entry that provides the source.

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required: No

2.6.2.4. MPEG_buffer_circular.alternative

The index of the alternative entry in MPEG media that provides the source.

• Type: integer

• Required: No

• Minimum: >= 0

2.6.2.5. MPEG_buffer_circular.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

2.6.2.6. MPEG_buffer_circular.extras

Application-specific data.

• Type: any

• Required: No


Note

Items in alternatives[] should provide alternative to the equivalent content
offered in the parent MPEG_media.media[] item.

26

Chapter 3. ISOBMFF

3.1. Carriage Format for animation timing
Source: m56039

3.1.1. Multiple animations

3.1.1.1. Problem description

The current syntax for glTFAnimationSample allows multiple animations to be triggered at a
certain point in time that applies to several objects. Also, while playing an animation, a further
animation could be triggered simultaneously affecting the same object that is started on top on the
already running one.

There are different examples for which multiple animations running in parallel might be useful.
One could be two sequential animation having a short overlapping interval so that the transition
phase from one animation to another does not look abrupt. For instance, if the first animation is
walking slowly and the second is running one could have a transition phase where the two
animations (walking and running) are actuating onto the 3D object and being each of it balanced
properly so that the overall timeline looks good and there is not an abrupt change.

Other might be simply a complete overlap of multiple animations that might actuate at the same
time. E.g., a person walking and at a certain point on top of walking a head turning animation is
triggered for a while. In such a case, the walking animation will also have an impact on joints
involving head movement, e.g., some tilting of the head. As for the current solution, there is no clue
on how such animations are to be played at the same time.

• Are both of the animations being applied simultaneously?

• In which order are the animations are applied if both applied at the same time? The result
might not be the same if they are applied in different order.

• Is there some kind of average contribution of each animation computed to the final render? For
a realistic combination of multiple animations, it is necessary to allow controlling how multiple
animations affect the target nodes and its property (i.e. animation.channel.target.path). For
instance, in case of multiple animation, if only one animation is allowed to affect a node. Then
any effect from any other animations on that particular node must be zeroed. Also, in the
example mentioned above, only the tilting of the head from the walking animation could be
kept and any other channel acting on a node affecting the head movement would be zeroed.
Therefore, weight for each channel of the animations is provided in the proposed solution.

In order to address the questions: * With simultaneous playback of multiple animations, a subset of
channels can be allowed to influence the node transformations partially or fully (depending on the
weights)

• With an explicit order index assigned to an animation, simultaneous animations can be applied
in an orderly manner

• The associated weight factor for an animation, influence its contribution to the final render

27

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/88

3.1.1.2. Syntax

aligned(8) class glTFAnimationSample
{
 unsigned int(1) apply_to_all;
 unsigned int(7) reserved;
 unsigned int(16) num_events;
 for(i=0; i < num_events; i++){
 unsigned int(32) index;
 int(32) speed;
 unsigned int(8) state;
 unsigned int (8) order_id;
 unsigned int(32) num_channels;
 for (int j = 0; j < num_channels; j++) {
 int (8) weight[j];
 unsigned int (32) channel_index[j];
 }
 }
}

3.1.1.3. Semantics

order_id – specifying a value to indicate the order in which animations are applied. Animations
with lower values are applied before animation with higher values.

num_channels – specifying the number of channels of an animation for which a weight is provided.

weight[j] – specifying the weight to be applied to the j-th channel of the animation in units of 1/255.

channel_index[j] – specifying the index of the j-th channel of the animation.

3.1.2. Interaction of animation and dynamic 3D object

3.1.2.1. Problem description

Similar to the discussion above, it is currently not clear on how an animation or multiple
animations and a dynamic 3D object can be combined together. The problem statement is:

• What is the result of a video of a dynamic 3D object when it is still being actively played (i.e., a
dynamic object that changes over time) and an animation is triggered on top of it?

The proposed solution is similar to what it is proposed for multiple animations above. In this
solution, the dynamic behavior of the 3D object can be expressed by channels specific to the objects.
Thereby each channel transformations can be controlled and merged with transformations
introduced by any externally triggered animations.

Taking the same example as above, a dynamic 3D object could be walking and a head turning
animation is trigger to be played on top.

28

3.1.2.2. Syntax

aligned(8) class glTFAnimationSample
{
 unsigned int(1) apply_to_all;
 unsigned int(7) reserved;
 unsigned int(16) num_events;
 unsigned int(16) num_objects;
 for(i=0; i < num_objects; i++){
 unsigned (8) obj_order_id;
 unsigned int(32) obj_num_channels;
 unsigned int (32) object_index;
 for (int j = 0; j < obj_num_channels; j++) {
 unsigned (8) obj_weight[j];
 unsigned int (32) obj_channel_index[j];
 }
 }
 for(i=0; i < num_events; i++){
 unsigned int(32) index;
 int(32) speed;
 unsigned int (8) order_id;
 unsigned int(32) num_channels;
 for (int j = 0; j< num_channels; j++) {
 int (8) weight[j];
 unsigned int (32) channel_index[j];
 }
 }
}

3.1.2.3. Semantics

num_objects – specifying the number of dynamic 3D objects

object_index - specifying the node index of a dynamic 3D object

obj_order_id – specifying a value to indicate the order in which transformations are applied.
Dynamic transformation of 3D objects with lower values are applied before the transformation
introduced with higher values.

obj_num_channels – specifying the number of channels which are dynamically changing the 3D
object

obj_weight[j] – specifying the influence for each channel which affects the dynamicity of the 3D
object

obj_channel_index[j] - specifying the index for the channel which affects the dynamicity of the 3D
object.

order_id – specifying a value to indicate the order in which transformations are applied.
Transformations with lower values are applied before transformations with higher values.

29

num_channels – specifying the number of channels of an animation for which a weight is provided.

weight[j] – specifying the weight to be applied to the j-th channel of the animation in units of 1/255.

channel_index[j] – specifying the index of the j-th channel of the animation.

3.2. Improvements for MPEG-I SD random access
description
Source: m58853

3.2.1. General

For random access of the MPEG-I Scene Description data in a ISOBMFF file tracks, play of the track
must start from either a sync sample or a redundant coding sample containing glTF JSON
document. Draft FDIS of ISO/IEC 23090-14 Scene Description for MPEG Media indicates that glTF
JSON documents shall be marked as sync samples and potential usage of redundant samples for
random access but it does not provide detailed descriptions on how to process such samples for
random access. This contribution proposes improvements on such description to avoid any
confusion by the readers.

3.2.2. Characteristics of random access points of MPEG-I Scene Description

For traditional audio-visual media data, sync samples are simply considered as random access
points as processing of a sync sample is same for a decoder playing a sync sample as the first
sample and a decoder already processed other sync samples and non-sync samples. When a sync
sample of traditional audio-visual media data is processed the result of previously processed
samples does not have to be preserved as they are not used for decoding of a sync sample and a
decoder is fully refreshed regardless of the status of the decoder before processing a sync sample.
This processing model cannot be simply applied to the processing of a sync sample of scene
description data as the status of Presentation Engine should not be fully refreshed and the status of
Presentation Engine before processing a sync sample needs to be preserved for efficient processing.
Therefore, appropriate processing model of sync sample of scene description needs to be described.

Table 1. Comparison of characteristics of sync samples characteristics of sync samples traditional
audio-visual media scene description data dependency to the previous samples No No continuity of
the decoder status No Yes

As shown in the Table 1, characteristics of sync sample of traditional audio-visual data and scene
description data are different. For traditional audio-visual media, sync samples are not dependent
to the previous samples and continuity of the data from the previous sample does not exist.
However, for scene description data, sync samples are not dependent to the previous samples but
continuity of the data from the previous sample may exist.

3.2.3. Description and processing of random access points

30

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/246

3.2.3.1. Random access points with sync samples

One type of random access point is sync sample. Currently, the specification is silent about the case
of having a sync sample in the middle of a track and how such samples should be process by a
Presentation Engine already in the processing of that track without breaking continuity of the
Presentation Engine. So, there must be description about how to process sync samples by a
Presentation Engine already in the processing of a track. In this case, an ISOBMFF file track
carrying scene description data can have more than one sync sample and all of each sync samples
will contain a glTF JSON document which defines the status of the nodes at the presentation time of
the sync sample. The Presentation Engine which has not processed any sample before the current
sync sample can process a sync sample as normal scene description document. However, the
Presentation Engine already processed any samples before the current sync sample in decoding
order should process a sync sample as scene update even though document in the sample is not in
the form of JSON patch. Therefore, the description about such processing model should be defined.
Otherwise, there should be a restriction that only one sync sample is allowed in the track with
MPEG-I Scene Description data.

3.2.3.2. Random access points with redundant coding

The other type of random access point is redundant coding sample. Currently, the specification
mentions that the scene description data track can contain some non-sync samples which have
sample_has_redundancy flag set to '1'. As such samples will be parsed by a Presentation Engine
starting play from such sample and ignored by a Presentation Engine already in the processing of a
track, this sample will not break continuity of a Presentation Engine already in the processing of a
track. To use such samples as a random access point, such sample should carry a glTF JSON
document and the document should have the description of a scene same as the scene at the
composition time of that sample. In addition, it also needs to be mentioned that there should be no
update of scene between the sample preceding such samples and the sample succeeding such
samples.

Figure 4 shows an example with redundant samples for random access. In this example, a track
with scene description data has two redundant samples denoted as R. The redundant sample R8
whose composition time is between U7 and U9 contains a glTF JSON document contains description
of the scene at the time of the composition time of R8. The The Presentation Engine starting from
middle of the track starts play either R5 or R8, then play U6 or U9, respectively. The The
Presentation Engine starting from the begining of the track starts play D0 and ignore R5 and R8. As
the sample duration of U4 and U7 will be extended by sample duration of R5 and R8, respectively,
the scene description information in U4 and U7 must consider that the Presentation Engine will
play it longer than the duration of the sample containing it. For example, the animation of active
scene of the Presentation Engine according to the animation samplers provided by the sample U4
and the samples before that sample may continue until it receives any updated animation samplers
by the U6 sample or the samples after that sample.

Figure 4. An example structure of scene description data with shadow sync samples

Therefore some additional description about the scene description for such samples should be
provided.

31

3.2.4. Proposed text improvements

3.2.4.1. Sync Samples

It is proposed to add a section about processing of sync samples as follows.

Processing of sync sample

When no nodes in the currently active scene of the Presentation Engine matches a node in a glTF JSON
document from a sync sample, the Presentation Engine shall add such node and interact with the MAF
to fetch any new content associated with the scene update. When a node in the currently active scene
of the Presentation Engine dose not match to any nodes in a glTF JSON document from a sync sample,
such nodes shall be removed from the currently active scene of the Presentation Engine. When a node
in the currently active scene of the Presentation Engine matches a node in a glTF JSON document from
a sync sample, then the status of such node shall be updated to the status of the node described by the
sync sample.

3.2.4.2. Redundant coding

It is proposed to improve a section about sample redundancies in section 8.7 of ISO/IEC 23090-14 as
follows.

Sample redundancies

For all tracks defined in this document, if a sample has its sample_has_redundancy flag set to '1' and
sample_depends_on flag set to '2', then it is expected that that sample contains a glTF JSON document
describing the status of the scene at the compsotion time of that sample and would only be made
available by the ISOBMFF parser to the Presentation Engine if the processing of the file starts with
this sample. Otherwise, it is expected that the sample be ignored, and that processing of the current
sample is continued beyond the duration of current sample for a duration equal to the duration of the
ignored sample, as defined in ISO/IEC 14496-12.

If the scene description preceding the sample ignored, then the Presentation Engine should continue
play of the currently active scene until it receives any updates from the next samples after the sample
ignored. Therefore, the scene description in the sample immediately preceding the sample in decoding
order whose sample_has_redundancy set to '1' and sample_depends_on set to '2 should consider that
the Presentation Engine will play the scene beyond the duration of that sample by the amount of the
duration of the next sample. In addition, the glTF JSON document in the sample whose sample_has
sample_has_redundancy set to '1' and sample_depends_on set to '2' shall not introduce any scene
description which make the status of active scene of a Presentation Engine different from the stauts of
the active scene of a Presentation Engine played immediately preceding this sample during the time
between the composition time of this sample and the composition time of immediately succeding
sample.

32

Chapter 4. Codec Support

4.1. On V3C Support in Scene Description
Source: m56240

The MPEG-I Scene Description solution defines an MPEG_media extension that is used to reference
external media. The media can be used for different purposes, e.g. to provide vertex buffers, vertex
indices, vertex attributes, texture, audio samples, or metadata.

Scene Description has a requirement to support V-PCC compressed media and V3C by
generalization. The MPEG_media element would point into a V3C compressed stream, which is
identified through appropriate MIME type settings. The MAF will then set up the appropriate media
pipeline to decode and process the V3C data to match the requested output buffer format(s). The
buffer format(s) are described by the corresponding timed accessor and buffer views.

Figure 5 shows different ways of creating media pipelines for the processing and rendering of V3C
compressed data.

Figure 5. n/a

As shown in the figure, the V3C content may be coming from a single track or from multiple tracks,
but has to ultimately be demultiplexed and each component decoded separately. Finally, the data
may be passed in an interleaved manner or in separate buffers to the Presentation Engine. It is up
to the Presentation Engine to decide how it wants to receive the data. Note that both Pipeline #1 and
#2 can branch into Options #1 or #2 when handing over the data to the Presentation Engine.

In Option #1, which is the simplest, the full 3D reconstruction is performed by the media pipeline to
reproduce a reconstructed 3D object. In this option, the 3D reconstruction usually takes place in the
CPU, which might result in performance degradation.

An alternative to this approach is shown in Option #2 of the diagram. As stated earlier, the data can
come from a single track or from multiple tracks. However, in this case, the Presentation Engine
expects each component to be available in a separate buffer. It then uses custom shader programs
to reconstruct and render the point cloud in the GPU. This has the advantage of improved
rendering performance and lower CPU load.

To enable option 2, appropriate identification of the type and format of data in each buffer as well
as of the role of that component is necessary. Currently, two solutions are proposed to address this
issue:

• Define specific primitive attribute for each component (see contribution m54514)

• Use an association extension to associate components with attributes (see contribution m55929)

33

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/96
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/35
http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/84

These 2 solutions should be evaluated in order to select the most appropriate solution.

4.2. Clarification of type of V-PCC track referenced
from MPEG_media
Source: m57336

4.2.1. Consideration

Though it has been proposed and discussed how to indicate V-PCC-specific attributes and how to
associate those with accessors, it is still unclear how the referenced track is indicated in
MPEG_media.

There are two alternatives in how to encapsulate V-PCC data into ISOBMFF; single track
encapsulation and multi-track encapsulation.

Thus, the referenced track indication in MPEG_media is considerd for all combinations of the
pipeline options and the V-PCC encapsulation options.

For pipeline option#1

A MPEG_media is associated with 1 buffer.

• If V-PCC data is encapsulated as single track, there is one V3C bitstream track in ISOBMFF.
Hence, it is obvious that the referenced track in MPEG_media is V3C bitstream track.

• Otherwise (V-PCC data is encapsulated as multi track), there are multiple tracks such as V3C
atlas track and V3C video component tracks. As V3C atlas track is the entry point and has track
references to the V3C video component tracks, it is straight forward to indicate V3C atlas track
as the referenced track in MPEG_media.

For pipeline option#2

There is one MPEG_media associated with individual buffer for position and V-PCC-specific
attributes.

• If V-PCC data is encapsulated as single track, there is one V3C bitstream track in ISOBMFF.
Hence, the referenced track of MPEG_media needs to be the identical V3C bitstream track.

• Otherwise (V-PCC data is encapsulated as multi track), there are multiple tracks such as V3C
atlas track and V3C video component tracks. As V3C atlas track is the entry point and has track
references to the V3C video component tracks, it is straight forward to indicate V3C atlas track
as the referenced track in MPEG_media.

4.2.2. Proposal

Based on the consideration above, it is proposed to add the following text in the MPEG-I Part 14
specification text.

For both cases that point cloud reconstruction is performed by the MAF and PE,

34

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/144

MPEG_buffer_circular associated with each attribute shall refer the same MPEG_media. The
referenced track in MPEG_media shall be specified as follows.

• For single-track encapsulated V3C data, the referenced track in MPEG_media shall be the V3C
bitstream track.

• For multi-track encapsulated V3C data, the referenced track in MPEG_media shall be the V3C
atlas track.

4.3. Dynamic mesh support in scene description
Source: m57410

4.3.1. Introduction

The support for dynamic meshes in scene description complements the support for dynamic point
clouds. A dynamic mesh is a timed sequence of a mesh representation. A mesh consists of a set of
attributes such as vertex positions, and normals. It also has connectivity information, usually in the
form of a description of faces that usually are in triangular shape. A face is typically identified by its
vertex indices. The faces are usually associated with a material, which is composed of a patch of
texture and its light characteristics.

In this contribution, we describe the support for dynamic meshes in scene description.

4.3.2. Design

The support for dynamic meshes in the MPEG-I scene description is limited to the following
features:

• Timed attributes such as vertex positions, normals, tangents, texture coordinates, …

• Timed indices for indicating dynamic connectivity information

• Video texture for the mesh material

All other components of the dynamic mesh are assumed to remain unchanged (e.g. the material,
the material properties, the mode, weights and morph targets, …)

The support for dynamic meshes doesn’t require the introduction of any new extensions. The timed
attributes and indices are supported through providing a reference to a timed accessor, i.e. an
accessor that provides the MPEG_accessor_timed extension.

The video texture is supported through referencing a texture that has the MPEG_texture_video
extension, which in turn references a timed accessor.

4.3.3. Assets and Implementation

Adding support for timed meshes coincides with the start of the activity by the 3DG group on mesh
coding. Similar to the point cloud support, the support for dynamic meshes can be done
irrespective of whether the mesh is compressed or in raw format. Different pipeline variants
maybe created to handle decompression and reconstruction.

35

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/148

Initially, a single media pipeline is provided that handles mesh input in raw format based on the
wavefront obj format. The assets provided by the mesh compression activity may be used for this
purpose. We propose to use the football sequence in a scene description test scenario.

The only deviation is the compression of the texture image sequence into an HEVC bitstream that
can be used with the already supported video texture extension.

The dynamic mesh pipeline implements a file sequence reader that reads the obj file sequence one
by one to generate the mesh frames.

Figure 6 depicts the setup:

Figure 6. n/a

The Presentation Engine will synchronize the buffer access for each of the components of the mesh
by synchronizing the buffer frame timestamps.

36

Chapter 5. Data Formats

5.1. Support of glTF CBOR binary format
Source: m56102

5.1.1. Problem Statement

The Concise Binary Object Representation (CBOR), IETF RFC 8949, represents a concise data format
compared with the traditional JSON format. CBOR has similar data objects like JSON in a
name/value pair format but in a binary and compact way, also with much more support with key-
value types. The result file size is smaller than JSON, in some case, more than 50% of gain has been
observed. CBOR is registered in IANA as “application/cbor”.

CBOR is chosen as one of the glTF interchangeable compressed file formats which also has been
supported in KhronosGroup due to its compact data size and interchangeability with JSON.

5.1.2. Benefit of CBOR file/data format:

Since the support of CBOR by glTF is getting popular, it is reasonable to add such support into MPEG
scene description for:

• Increasing glTF file format interoperability.

• Reducing file size for local storage or cache.

• Increase data transfer speed

• Reducing glTF file transfer latency with minimum processing power at MAF.

5.1.3. CBOR data size comparison example:

When there there are lots of repeated data structure and types, CBOR shows a significant
compression rate:

Table 10. n/a

Test.json Test.cbor Compression Rate

13MB 258Bytes 1:1000000

5.1.4. Use Cases

5.1.4.1. CBOR binary data associated with “url”

glTF supports an external binary data expressed inline in a binary data blob. As mentioned above,
CBOR is registered in IANA as “application/cbor”. When CBOR is used, binary data may be
associated directly under the “url” parameter as follows:

37

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/95
https://datatracker.ietf.org/doc/html/rfc8949

{
 "url": "application/cbor:xxxxxxxx"
}

5.1.4.2. Using CBOR file instead of JSON

A compatible CBOR file (example.cbor) may be sent to MAF as an input instead of JSON
(example.gltf). In this case, MAF should have capability to identify, parse and verify the data
integrity of the input and parsed the glTF JSON format.

5.1.4.3. Using CBOR as local data storage

As shown in Section 1.1, CBOR may be used to compress glTF file size into local storage if file size is
a concern.

5.1.5. Potential Solutions

5.1.5.1. Proposed CBOR Parser API

The proposed CBOR parser API may be used by MAF to translate CBOR input into glTF native
supported JSON format. It may also be used as a file compressor to save the large glTF file into local
storage or cache.

The CBOR parser API offers the following methods:

Table 11. Description of CBOR Parser API

Method Brief Description

cbor2Json(FILE) Convert a CBOR format into a JSON format

json2Cbor(FILE) Convert a JSON format into a CBOR format

cbor2Json(Object) Convert a CBOR data blob into a JSON format

The IDL description of this interface is provided in the following table:

interface InputFileParser {
 readonly attribute FILE inputFileName;
 readonly attribute FILE outputFileName;
 readonly attribute CBOR cborDataBlob;
 FILE cbor2Json()(FILE cborInput);
 FILE json2Cbor(FILE jsonInput);
 FILE cbor2Json(CBOR cborDataBlob);
 bool save();
};

5.1.5.2. Proposed Test Cases

The testing of the proposed CBOR parser should be implemented under MAF. The use cases could

38

be the followings:

• If input glTF file is in CBOR format, the output shall be a glTF JSON by using cbor2Json(FILE) API

• If there is CBOR binary data specified in “url”, the output shall be a glTF JSON by applying
cbor2Json(Object) API.

• For local storage or cache purpose, a glTF file is desired to save as a CBOR by using json2Cbor()
and save() interface.

5.1.6. Open Issue Discussion

5.1.6.1. CBOR IPR

No IPR disclosures associated with IETF RFC 8949.

5.1.6.2. CBOR data security

Unlike JSON, CBOR is a binary data serialization, which is not human-readable. It is a safe data
format due to its binary nature.

5.1.6.3. Implementation

CBOR has been widely accepted and implemented. It has open-source implementations in most
popular languages. (Python, C++, Java and etc).

5.1.6.4. Potential Data format issue

Currently we did not see any incompatible data type has been used in JSON which can not be
converted to CBOR or vice versa. More testing may need to be done.

39

https://datatracker.ietf.org/doc/html/rfc8949

Chapter 6. Interfaces

6.1. On DASH Dynamic Bitrate Adaption with
Viewpoint Update
Source: m56094

6.1.1. Problem Statement

DASH as an adaptive HTTP-based media streaming method enables a client to automatically adjust
bitstream bitrate with predefined small bitstream segments based on network condition or buffer
status. The advantage of switching up/down the bitrate quality can reduce re-buffer frequency
resulting in a smooth playback experience.

The MPEG media extension, “MPEG_media”, enables scene description for playback DASH-based
timed media. While the current design of DASH adaptive streaming is implementation-specific, the
usage of DASH native switching does not provide optimal networking bandwidth usage in an
immersive or 360 scene environments. For example, a view of a media play may not be always in
the range of the current viewport, which may cause the unnecessary network resource waste. To
provide a smooth timed media playback experience, it is essential to manage how network
bandwidth is consumed.

In this contribution, we propose an extension to enable DASH-base timed media bitrate adaptation
along with viewport update. In the glTF concept, this enables DASH-based media playback to
automatically switch bitrate when the camera on and off focus on a timed media object. In turn, it
improves a user’s quality of experience, increase network bandwidth efficiency.

6.1.2. Use Cases

The following scene objects are used for explanation of potential use cases.

Table 12. n/a

Asset Description

A livingroom scene A glTF asset that represents a living room.

A Big Buck Bunny video DASH-based Big Buck Bunny video files

A Tears of Steal video DASH-based Tears of Steal video files

6.1.2.1. One timed media playback

A simple use case is there is only one DASH-based timed media is played in a scene as shown in
Figure 7. Currently, the media is rendered based on the MPEG_media extension with configurable
parameters such as autoplay, loop, etc. DASH adaptative streaming in this case is used within its
native mechanism by switching bitrate based on either network condition or buffer status. The key
observation in this case is that the video keeps playing even when the viewport is not in focus. In an
adequate network environment, DASH switches to the highest bitrate possible without considering

40

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/94

the overall bandwidth consumption for a scene as a whole. In a less desirable network condition,
with a camera’s focus is on a set of relatively large bandwidth consumption scene objects such as
PCC objects, the unnecessary bandwidth consumption from the ongoing timed media playback is
not an optimal solution for view quality of the current viewport.

Figure 7. One DASH-based Timed Media Playback

6.1.2.2. More than one timed media playback

When there is more than one timed media is played at the same time, as shown in Figure 8,
network bandwidth usage is similar to the use case in Section 6.1.2.1. However, the situation may
get worse when all of the timed media are in a high-resolution setup. The lack of balancing network
resources for each of the media play will worsen the view quality.

There are couple of scenarios in this use case:

• There is more than one DASH-based timed media in the current camera’s viewport

• There are other DASH-based timed medias outside of camera’s current viewport

Figure 8. Two DAH-based Timed Media Playback

Therefore, providing a means to MAF with configurable bandwidth usage for each of the DASH-
based timed media may become a critical feature for scene description.

6.1.3. Current Scene Description Support and Gasps

6.1.3.1. Support of viewpoint data fetching

At this moment, the media access API provided in the MAF supports fetching based on “viewinfo”
by using the following defined programming interface:

interface Pipeline {
 ..
 void startFetching(TimeInfo timeInfo, ViewInfo viewInfo);
};

The “ViewInfo” data structure is as follows:

41

interface ViewInfo {
 attribute Pose pose;
 attribute Transform objectPosition;
};

By definition, the MAF may use the “viewinfo” to optimize the streaming of the requested media
based on the camera’s view distance and orientation of the viewer. Currently, the following
parameters are defined in “viewinfo”:

• Pose

• Transform

6.1.3.2. Gaps Analysis

It is unclear how API and “viewinfo” data structure specified in Section 6.1.3.1 may be used to do
the following:

• How exactly the “viewinfo” is used to identify there are one or more DASH-based timed media
in the current viewport?

• How exactly the “viewinfo” is used to identify which media is current in focus of a viewpoint, in
the case when there is more than one DASH-based timed media in the same viewport?

• How does the current MAF deal with DASH-based timed media fetching including both inside
and outside of the current viewport? That is being said, from a system efficiency point of view,
the current solution in the CD of 23090-12 does not consider the optimization of data fetching
for DASH-based timed media.

6.2. Supporting Multiple Viewers in the Media Access
Function
Source: m58510

6.2.1. General

In the Presentation Engine of the MPEG-I Scene Description architecture, the viewer’s view of the
scene is determined by the camera used for rendering the scene from the viewer’s viewpoint. In
many use cases, the Presentation Engine runs on the end user’s device and therefore there is only
one viewer for the scene and one camera object is used at any given point in time for composition
and rendering. Using the camera information provided by the Presentation Engine, the MAF can
identify which objects in the scene are within the viewing frustum of the camera at a given time
instance.

However, in some scenarios multiple cameras are used for rendering the scene from a number of
viewpoints corresponding to different viewers of the same scene (e.g., in multi-viwer applications
such as online conferencing applications with multiple users). In such scenarios, information about
the cameras used to generate each viewer’s view of the scene, including both intrinsic and extrinsic
camera parameters, are required by the MAF to identify and request the appropriate media or

42

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/242

media parts for each viewer.

Since a media pipeline is tightly coupled with the type of the media, it may not be desirable to have
multiple media pipelines for the same content for different viewers. Rather, the MAF should allow a
single media pipeline for a media content to be used for composition and rendering for different
viewers.

6.2.2. Proposed Updates to MAF API

To support media fetching for multi-viewer applications, where each viewer may have their own
extrinsic and intrinsic camera parameters, relevant methods in the MAF API and their definition
should be updated as follows (updates are in bold).

6.2.2.1. Methods

Table 13. n/a

Methods State after success Description

startFetching() ACTIVE Once initialized and in READY
state, the Presentation Engine
may request the media pipeline
to start fetching the requested
data.

The initialization may be
performed using view
information for one or more
viewers.

updateView() ACTIVE Update the current view
information. This function is
called by the Presentation
Engine to update the current
view information, if the pose or
object position have changed
significantly enough to impact
media access. It is not expected
that every pose change will
result in a call to this function.

A call to this function shall
include the view information
for only those views whose
parameters have significantly
changed.

6.2.2.2. IDL for media pipeline

43

interface Pipeline {
 readonly attribute Buffer buffers[];
 readonly attribute PipelineState state;
 attribute EventHandler onstatechange;
 void initialize. (MediaInfo mediaInfo, BufferInfo bufferInfo[]);
 void startFetching (TimeInfo timeInfo, ViewInfo viewInfo[]);
 void updateView. (ViewInfo viewInfo[]);
 void stopFetching. ();
 void destroy. ();
};

6.3. CoAP API support in MAF
Source: m56739

6.3.1. General

The proposed APIs are assumed under a common CoAP implementation. Take video streaming
from CoAP supported devices as an example, those devices are deployed and implemented as a
CoAP server that captures, generates, and prepares video binary data (compressed or
uncompressed).

6.3.2. MAF as CoAP Client

In this clause, the proposed MAF API in Table 14 applies to the case where the MAF acts as a CoAP
client to fetch timed media from the CoAP media server. The CoAP API offers the following
methods:

Table 14. Description of CoAP Client API

Method Brief Description

fetch () The MAF sends media resource request to a
CoAP server

receive () The MAF receives the requested media resource
from a CoAP server

6.3.3. MAF as HTTP-CoAP Proxy

In this clause, the proposed MAF API in Table 15 applies to the case where the MAF acts as an HTTP-
CoAP proxy.

Table 15. Description of HTTP-CoAP proxy API

Method Brief Description

hc() The MAF maps the HTTP requests to CoAP and
forward them to CoAP Server

44

http://mpegx.int-evry.fr/software/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/116

Appendix A: JSON Schema for extensions

A.1. JSON Schema for MPEG_buffer_circular extension

{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "MPEG_buffer_circular",
 "type" : "object",
 "description": "glTF extension to specify circular buffer",
 "allOf": [{ "$ref": "glTFProperty.schema.json" }],
 "properties" : {
 "count": {
 "type": "integer",
 "default": 2,
 "minimum": 2,
 "description": "This provides the number of frames that are offered by
this buffer."
 },
 "media": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of the MPEG media entry that provides the
source."
 },
 "tracks": {
 "type": "array",
 "items": {
 "allOf": [{ "$ref": "glTFid.schema.json" }]
 },
 "minItems": 1,
 "description": "The array of indices of tracks the MPEG media entry that
provides the source."
 },
 "alternative": {
 "type" :"integer",
 "allOf": [{ "$ref":"glTFid.schema.json"}],
 "description": "The index of the alternative entry in MPEG media that
provides the source."
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["media"]
}

A.2. JSON Schema for MPEG_audio_spatial.source

{

45

 "$schema": "http://json-schema.org/draft-07/schema",
 "title" : "MPEG_audio_spatial.source",
 "type" : "object",
 "description": "",
 "allOf": [{ "$ref": "glTFProperty.schema.json" }],
 "properties": {
 "id": {
 "type": "integer",
 "minItems": 0
 },
 "type": {
 "type": "string",
 "enum": ["Object", "HOA", "Cluster"]
 },
 "pregain": {
 "type": "number",
 "default": 0.0,
 "minimum": 0.0
 },
 "playbackSpeed": {
 "type": "number",
 "minimum": 0.5,
 "maximum": 2.0,
 "default": 1.0
 },
 "attenuation": {
 "enum": ["noAttenuation", "inverseDistance", "linearDistance",
"exponentialDistance", "custom"],
 "default": "linearDistance"
 },
 "attenuationParameters": {
 "type": "array",
 "items": {
 "type": "number"
 },
 "minItems": 1
 },
 "referenceDistance": {
 "type": "number",
 "default": 1.0,
 "minimum": 1.0
 },
 "accessors": {
 "type": "array",
 "items": {
 "allOf": [{ "$ref": "glTFid.schema.json" }]
 },
 "minItems": 1
 },
 "reverbFeed": {
 "type": "array",

46

 "items": {
 "type": "integer"
 }
 },
 "reverbFeedGain": {
 "type": "array",
 "items": {
 "type": "number"
 }
 },
 "clusters": {
 "type": "array",
 "items": {
 "allOf": [{ "$ref": "MPEG_audio_spatial.source.cluster.schema.json" }
]
 }
 }
 },
 "required": [
 "id", "type", "accessor"
]
}

47

A.3. JSON Schema for
MPEG_audio_spatial.source.cluster

{
 "$schema": "http://json-schema.org/draft-07/schema",
 "title" : "MPEG_audio_spatial.source.cluster",
 "type" : "object",
 "description": "Provides a list of cluster elements that are attached to this
node.",
 "properties": {
 "id": {
 "description": "unique identifier of the audio cluster in the scene.",
 "type": "number"
 },
 "sourceId": {
 "description": "indicates the audio source id that represents the
aggregated sources comprising this Cluster.",
 "type": "number"
 },
 "audioSources": {
 "description": "array of audio sources that are aggregated and represented
by this cluster.",
 "type": "array",
 "items": {
 "type": "number"
 }
 },
 "radius": {
 "description": "indicates the distance in meters of the encompassed
aggregated audio sources.",
 "type": "number"
 }
 }
}

48

A.4. JSON Schema for MPEG_media

{
 "$schema": "http://json-schema.org/draft-04/schema",
 "title": "MPEG_media",
 "type": "object",
 "description": "MPEG media used to create a texture, audio source or other objects
in the scene.",
 "allOf": [{ "$ref": "glTFProperty.schema.json" }],
 "properties": {
 "media": {
 "type": "array",
 "description": "An array of MPEG media. A MPEG media contains data
referred by other object in a scene",
 "items": {
 "$ref": "MPEG_media.media.schema.json"
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["media"]
}

49

A.5. JSON Schema for MPEG_media.media

{
 "$schema": "http://json-schema.org/draft-04/schema",
 "title": "MPEG_media.media",
 "type": "object",
 "description": "MPEG media used to create a texture, audio source, or any other
media type defined by MPEG.",
 "properties": {
 "name": { },
 "startTime": {
 "type": "number",
 "minimum": 0.0,
 "default": 0.0,
 "exclusiveMinimum": false,
 "description": "The startTime gives the time at which the rendering of the
timed texture will be in seconds. "
 },
 "startTimeOffset": {
 "type": "number",
 "minimum": 0.0,
 "default": 0.0,
 "exclusiveMinimum": false,
 "description": "The startTimeOffset indicates the time offset into the
source, starting from which the timed texture is generated."
 },
 "endTimeOffset": {
 "type": "number",
 "minimum": 0.0,
 "description": "The endTimeOffset indicates the time offset into the
source, up to which the timed texture is generated. The value is provided in seconds,
where 0 corresponds to the start of the source."
 },
 "autoplay": {
 "type": "boolean",
 "description": "Specifies that the MPEG media start playing as soon as it
is ready."
 },
 "autoplayGroup": {
 "type": "boolean",
 "description": "Specifies that playback starts simultaneously for all
media sources with the autoplay flag set to true."
 },
 "loop": {
 "type": "boolean",
 "default": false,
 "description": "Specifies that the MPEG media start over again, every time
it is finished."
 },
 "controls": {

50

 "type": "object",
 "$ref": "MPEG_media.media.controls.schema.json"
 },
 "alternatives": {
 "type": "array",
 "description": "An array of alternatives of the same media (e.g. different
video code used)",
 "items": {
 "uri": {
 "type": "string",
 "description": "The uri of the media.",
 "format": "uriref",
 "gltf_detailedDescription": "The uri of the media. Relative paths
are relative to the .gltf file.",
 "gltf_uriType": "media"
 },
 "mimeType": {
 "anyOf": [
 {
 "type": "string",
 "enum": ["video/mp4", "application/dash+xml"]
 },
 {
 "type": "string"
 }
],
 "description": "The MPEG media's MIME type."
 },
 "tracks": {
 "type": "array",
 "description": "List of all tracks in MPEG media container (e.g.
mp4 file or DASH manifest",
 "items": {
 "track": {
 "type": "string",
 "description": "URL fragments e.g, DASH : Using MPD
Anchors (URL fragments) as defined in Annex C of ISO/IEC 23009-1 (Table C.1). ISOBMFF:
URL fragments as specified in Annex L of ISO/IEC 14496."
 },
 "codec": {
 "type": "string",
 "description": "The codecs parameter, as defined in IETF
RFC 6381, of the media included in the track."
 }
 }
 },
 "extraparams": {
 "type": "object",
 "additionalProperties": true
 },
 "required": ["uri", "mimeType"]

51

 },
 "minItems": 1
 }
 }
}

52

A.6. JSON Schema for MPEG_media.media.controls

{
 "$schema": "http://json-schema.org/draft-04/schema",
 "title": "MPEG_media.media.controls",
 "type": "object",
 "description": "Specifies that which MPEG media controls should be exposed to end
user",
 "properties": {
 "pauseSupported":{
 "type":"boolean",
 "description": "Pause control displayed for the MPEG media.",
 "default": true
 },
 "fastForwardSupported": {
 "type": "boolean",
 "description": "Fast forward control displayed for the MPEG media.",
 "default": true
 },
 "fastBackwardSupported": {
 "type": "boolean",
 "description": "Fast backward control displayed for the MPEG media.",
 "default": true
 }
 }
}

53

A.7. JSON Schema for
MPEG_node_transformation_external

{
 "$schema" : "http://json-schema.org/draft-04/schema",
 "title" : "MPEG_node_transformation_external",
 "type" : "object",
 "description": "glTF extension to specify pose in scene is dependent on external
information",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties" : {
 "matrix": {
 "uri": {
 "type": "string",
 "description": "The uri provides node's source of the transformation
matrix",
 "gltf_detailedDescription": "A floating-point 4x4 transformation
matrix stored in column-major order.",
 "gltf_webgl": "`uniformMatrix4fv()` with the transpose parameter equal
to false"
 }
 },
 "rotation": {
 "uri": {
 "type": "string",
 "description": "The uri provides node's source of unit quaternion
rotation in the order (x, y, z, w), where w is the scalar."
 },
 "description": "The node's unit quaternion rotation in the order (x, y, z,
w), where w is the scalar."
 },
 "scale": {
 "uri": {
 "type": "string",
 "description": "The uri provides node's source of non-uniform scale,
given as the scaling factors along the x, y, and z axes."
 }
 },
 "translation": {
 "uri": {
 "type": "string",
 "description": "The uri provides node's source of translation along
the x, y, and z axes."
 }
 }
 }
}

54

A.8. JSON Schema for MPEG_buffer_circular

{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "MPEG_buffer_circular",
 "type" : "object",
 "description": "glTF extension to specify circular buffer",
 "allOf": [{ "$ref": "glTFProperty.schema.json" }],
 "properties" : {
 "count": {
 "type": "integer",
 "default": 2,
 "minimum": 2,
 "description": "This provides the number of frames that are offered by
this buffer."
 },
 "media": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of the MPEG media entry that provides the
source."
 },
 "tracks": {
 "type": "array",
 "items": {
 "allOf": [{ "$ref": "glTFid.schema.json" }]
 },
 "minItems": 1,
 "description": "The array of indices of tracks the MPEG media entry that
provides the source."
 },
 "alternative": {
 "type" :"integer",
 "allOf": [{ "$ref":"glTFid.schema.json"}],
 "description": "The index of the alternative entry in MPEG media that
provides the source."
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["media"]
}

55

Appendix B: Disclaimer


The formatting of the document is based on the Khronos glTF specification
formatting under CC-BY 4.0.


The extensions information are automaticaly generated using wetzel tool under
Apache License 2.0.

56

https://github.com/CesiumGS/wetzel/

	Technology under Consideration for ISO/IEC 23090-14
	Table of Contents
	Chapter 1. Interactivity
	1.1. General
	1.2. On camera constraint related to user and content aspects
	1.2.1. Concept classification
	1.2.2. Possible solutions for each concept
	1.2.3. Conclusion

	Chapter 2. Extensions
	2.1. MPEG_media
	2.1.1. General
	2.1.2. MPEG_media
	2.1.3. MPEG_media.media
	2.1.4. MPEG_media.media.controls

	2.2. MPEG_audio_spatial
	2.2.1. General
	2.2.2. MPEG_audio_spatial.source
	2.2.3. MPEG_audio_spatial.source.cluster

	2.3. MPEG_camera_control
	2.3.1. General
	2.3.2. Semantics
	2.3.3. Processing Model
	2.3.4. Example

	2.4. MPEG_mesh_collision
	2.4.1. General
	2.4.2. Semantics
	2.4.3. Semantics
	2.4.4. Processing Model

	2.5. MPEG_node_transformation_external
	2.5.1. General
	2.5.2. MPEG_node_transformation_external
	2.5.3. Processing Model
	2.5.4. Example

	2.6. MPEG_buffer_circular
	2.6.1. General
	2.6.2. MPEG_buffer_circular

	Chapter 3. ISOBMFF
	3.1. Carriage Format for animation timing
	3.1.1. Multiple animations
	3.1.2. Interaction of animation and dynamic 3D object

	3.2. Improvements for MPEG-I SD random access description
	3.2.1. General
	3.2.2. Characteristics of random access points of MPEG-I Scene Description
	3.2.3. Description and processing of random access points
	3.2.4. Proposed text improvements

	Chapter 4. Codec Support
	4.1. On V3C Support in Scene Description
	4.2. Clarification of type of V-PCC track referenced from MPEG_media
	4.2.1. Consideration
	4.2.2. Proposal

	4.3. Dynamic mesh support in scene description
	4.3.1. Introduction
	4.3.2. Design
	4.3.3. Assets and Implementation

	Chapter 5. Data Formats
	5.1. Support of glTF CBOR binary format
	5.1.1. Problem Statement
	5.1.2. Benefit of CBOR file/data format:
	5.1.3. CBOR data size comparison example:
	5.1.4. Use Cases
	5.1.5. Potential Solutions
	5.1.6. Open Issue Discussion

	Chapter 6. Interfaces
	6.1. On DASH Dynamic Bitrate Adaption with Viewpoint Update
	6.1.1. Problem Statement
	6.1.2. Use Cases
	6.1.3. Current Scene Description Support and Gasps

	6.2. Supporting Multiple Viewers in the Media Access Function
	6.2.1. General
	6.2.2. Proposed Updates to MAF API

	6.3. CoAP API support in MAF
	6.3.1. General
	6.3.2. MAF as CoAP Client
	6.3.3. MAF as HTTP-CoAP Proxy

	Appendix A: JSON Schema for extensions
	A.1. JSON Schema for MPEG_buffer_circular extension
	A.2. JSON Schema for MPEG_audio_spatial.source
	A.3. JSON Schema for MPEG_audio_spatial.source.cluster
	A.4. JSON Schema for MPEG_media
	A.5. JSON Schema for MPEG_media.media
	A.6. JSON Schema for MPEG_media.media.controls
	A.7. JSON Schema for MPEG_node_transformation_external
	A.8. JSON Schema for MPEG_buffer_circular

	Appendix B: Disclaimer

