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Why VCM?

Video has occupied a very large portion of internet traffic.

Mand more video are consumed by machines.
* Automation, analysis and intelligence without or with human intervention =» machine vision or hybrid vision

Machine-to-Machine (M2M) devices and connections are fast growing.

Machine vision is different from human vision.
* Different purpose and evaluation metrics

Video coding for machines becomes an important topic.
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MPEG VCM

ISO/IEC JTC1/SC29 WG2 committee created the VCM Ad-Hoc Group in July 2019 with the
following mandates:

» Define use cases and requirements for compression for machine vision and hybrid human/machine
visions.

* Collect dataset with ground truth and evaluation metrics.

» Solicit technology evidence for video compression, feature extraction and feature compression.
* Develop a framework to evaluate and compare different technology solutions.

* Develop the standards for video coding for machines.
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Use cases

* Privacy Video Processing

VCM encoder
NP
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Object Detection

* Typical Use cases

e Surveillance

* Intelligent transportation
Smart city
Intelligent industry
Intelligent content
e Consumer electronics

* Typical machine vision tasks
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* Object detection and tracking e ceiviy
* Instance segmentation Inlgonty comectigi g

* Event detection ¥ g

* Action recognition
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Requirements

* Video coding
* Coding efficiency shall be significantly improved compared to that of state-of-the-art
standards.
e Support various intelligent task accuracy, human vision quality and bitrate.

* Either machine only or hybrid machine and human consumption shall be supported.

* Feature extraction

e Computational offloading shall be supported.
* Privacy protection shall be supported.

* Feature coding
* Coding efficiency shall be competitive compared to the state-of-art video coding solution.
* Support various intelligent task accuracy and bitrate.
* The coding technology shall support machine consumption and support multiple tasks.
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VCM Evaluation Methodology (1)

* Five machine vision tasks are selected to cover the main tasks identified in the use cases.

* Five Datasets with suitable license terms are adopted for evaluation.

* Note that HiEve-10 is removed in the last meeting due to lack of details for anchor generations. Update for HiEve-10
is expected in the next meeting.

[\ ET I R E Network Architecture Evaluation Dataset Evaluation Metric

OpenlmageVé6
Faster R-CNN with ResNeXt-101 TVD
backbone FLIR
SFU-HW-object-v1

. Mask R-CNN with ResNeXt-101 OpenimageVé6 mMAP@0.5
Instance Segmentation
backbone TVD

. . TVD
Object Tracking JDE-1088x608 HiEve-10* MOTA

MAP@0.5

Object Detection

mAP@[0.5:0.95]

Action Recognition SlowFast HiEve-10* frame mAP (fmAP)

Pose Estimation HRNet HiEve-10* MAP@0.5



VCM Evaluation Methodology (2)

* Bits per pixel (BPP) is used to measure bitstream cost for image dataset.
Eon Total bitstream size in bits

number of pixels in souce images
* Bitrate in kbps is used to measure bitstream cost for video dataset.

e BD-rate and BD-mAP/BD-MOTA/BD-fmAP are used to compare a proposed solution to the anchor solution
for a single task.

* Note that metric to measure performance for Hybrid vision or multiple machine vision tasks are note yet
decided.

* Excel template is used to compute metrics. An example is shown as following.

Reference: VCM Anchor (VIM-12.0) Test: tested | BDrate | BomaP
Scale Dataset QPISlice] BPP mAF BPP mAF mAF v
100%| OpenimageV6 22 0.863 78.929 0.839 79.504 -18.00% 0.58
27 0.509 77.989 0.5%0 78.913
32 0.287 77.263 0.484 78.709
37 0.153 73.983 0.334 77.918
42 0.078 88.842 0.225 76.723
47 0.037 58.021 0.149 74.674)




VCM Anchor Generation

* The state-of-art video codec, VVC, is adopted as the anchor solution for video compression.
* Either 100% scale or pareto-front results for 100%, 75%, 50% and 25% are used.

* Pipeline for anchor generations is as following:
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Proposed Technologies

* The proposed technologies can be classified into two categories

» Category 1 (Track 1): Feature (map) coding
* (1a) Encode Features as images/video
* (1b) Encode features directly
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Category 1: Feature Map Coding (1)

* Diverse contributions are proposed, make it harder to compare solutions
* Different task networks
* Mask R-CNN with Resnet-50, YOLOv3,Faster R-CNN with ResNeXt101-FPN, Mobile Netv2 + YOLOVS5, etc
 Different partition of task networks
* The output of the stem layer, the output of whole backbone network, etc.
* Different quantization and normalization scheme

* Uniform or non-uniform quantization with different bit-width

* Normalization using mean/standard division or using the max/min range
 Different feature reordering/packing

* Spatial packing, temporal packing, or multi-frame packing

temporal packing

spatial packing multi-frame packing
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Category 1: Feature Map Coding (2)

» Category 1a: Packed features are coded using video codec, such as

e VVC or HEVC codec
* VVC + Deep CABAC with PCA transformation for feature data reduction
* Resulted bitstreams are much larger than those from VCM anchor solution

* Category 1b: Encode features directly
e \Vector quantization + entropy coding
« DCT/DWT + quantization + entropy coding
* End-to-end trained feature compression, which achieves close performance as coding images using VTM codec
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Category 2: Image/Video Coding (1)

* End-to-end trained Learning based image compression
* Image compression network: Cheng2020, bmshj2018 hyperprior, or modified mbt2018-mean network

« Joint training with VCM object detection network in which its parameters are fixed

* MS-SSIM optimized Cheng2020 network (source: M58050)

e Can achieve BD-rate gain 23.56% for instance segmentation using OpenlmageV6 dataset

dataset
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End-to-end training framework

Source: mpeg document: M56445
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Category 2: Image/Video Coding (2)

* Enhancing Image Coding for Machines with Compressed Feature Residuals

» CityScapes dataset is used. Fast R-CNN as the object detection task network
* Compared to VVC/H.266, achieve BD-rate gain 40.5%

Traditional codec
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Category 2: Image/Video Coding (3)

* Region adaptive coding (source: M56572)

* For a given image, two images are generated using the bounding boxes generated from VCM object
detection network.
* Foreground image: contains only foreground object
* Background image: the rest of the image without foreground object
* Both images are selectively scaled and coded using VVC codec
* Foreground image is coded with relatively high QP.

* This solution achieve 30.76% BD rate gain for object detection using FLIR dataset, compared to the
anchor.



Two-Track Work Plan

* In October MPEG meeting, it was decided to split MPEG VCM work into two tracks

* Track 1 — Feature extraction and compression
« Draft CfE: April 2022
e CfE:July 2022

* Track 2 — Images and video compression
e Draft CfP: January 2022
* CfP: April 2022
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