
[image:]ISO/IEC JTC 1/SC 29/WG 03 N00481

ISO/IEC JTC 1/SC 29/WG 03
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	WD of ISO/IEC 23090-7 AMD 1 Common Metadata for Immersive Media
Status:	Approved
Date of document:	2022-01-26
Source:	ISO/IEC JTC 1/SC 29/WG 03
No. of pages:	11 (with cover page)
Email of Convenor:	young.L @ samsung . com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 03 MPEG SYSTEMS
ISO/IEC JTC 1/SC 29/WG 03 N00481
January 2022, Virtual
	Title
	WD of ISO/IEC 23090-7 AMD 1 Common Metadata for Immersive Media

	Source
	WG 03, MPEG Systems

	Status
	Approved

	Serial Number
	21197

1	Introduction	3
2	Scope	3
3	Guiding principles 	3
4	Usage of Metadata in ISOBMFF	3
5	Metadata of individual features	3
5.1	Basic	3
5.1.1	Coordinate Systems	3
5.1.2	Vector3	4
5.1.3	Orientation in 3D space	4
5.1.4	Rotations in the Unit Sphere Coordinate System	5
5.1.5	Scaling	5
5.2	Viewing Spaces	6
5.2.1	Cuboid Viewing Spaces	6
5.3	Regions	6
5.3.1	Cuboid Regions	6
5.4	Viewpoint	7
5.4.1	Syntax	7
5.4.2	Semantics	7
5.5	Extrinsics	7
5.5.1	Syntax	8
5.5.2	Semantics:	8
5.6	Intrinsics	9
6	Metadata of spatially related features	10
6.1	Localized coordinate systems (e.g., one is in another “global” coordinate system)	10
6.2	Localized viewing spaces (e.g., one is in another “larger” viewing space)	10
6.3	Sub-regions (e.g., one or more are parts of another “source” region)	10
6.4	Objects in Regions (e.g., one or more objects are in a “containing” region)	10
6.5	Overlay of Regions/Objects (e.g., one is in front a “background” region)	10
7	Dynamic metadata tracks	10
8	DASH descriptors	10

[bookmark: _Toc94083873]Introduction
Many parts of ISO/IEC 23090 have developed metadata definitions. Some of them are quite very similar to each other. For harmonization amongIn order to harmonize between the parts and to reuse of already defined metadata for the future development, the purpose of this amendment intends is to collect the metadata defined by the parts of ISO/IEC 23090, e.g. 23090-10, 23090-18 and so onetc., and study to explore harmonization among between them. The scope of the new amendment does no’t expand the scope of the original project.

[bookmark: _Toc94083874]Scope:
· metadata collected from and applicable to all MPEG-I parts
· 23090: 5, 7, 9, 10, 12, 14, 18
· 23001: 10
[bookmark: _Toc94083875]Guiding principles 	Comment by Dimitri Podborski: What is this?
TBD

[bookmark: _Toc94083876]Usage of Metadata in ISOBMFF	Comment by Dimitri Podborski: Why do we need this subsection?
· Static: extension of containing boxes
· Dynamic: timed metadata tracks
·
[bookmark: _Toc94083877]Metadata of individual features
[bookmark: _Toc94083878]Basic
[bookmark: _Toc94083879]Coordinate Systems
The following MPEG-I reference coordinate system is a right-handed 3D Cartesian coordinate system with 6 degrees of freedoms (DoFs): 3 translations along the 3 x-y-z dimensions, and 3 rotations about the 3 x-y-z dimensions with the right-hand:

With this coordinate system, the following variations can be derived:
· Coordinate system – Cartesian coordinate system: the reference coordinate system with the 3 translations but without the 3 rotations.
· Unit sphere coordinate system (OMAF specific): the reference coordinate system on the unite sphere with only the 3 rotations.
· Object coordinate space – referring to object space, where manipulation is done relative to object origin: the reference coordinate system with the origin at the object origin and with the 3 translations and 3 rotations limited to the object space (or object viewing space).
· World coordinate space – referring to scene space, where manipulation is done relative to scene origin: the reference coordinate system with the origin at the scene origin and with the 3 translations and 3 rotations limited to the scene space (or scene viewing space).
· Provide example of how to move between different spaces; (TBD)
[bookmark: _Toc94083880]Vector3
Dimensions, Positions (or Offsets, Translations, Locations), Sizes (or Ranges)

[bookmark: _Toc80301694]Dimensions, positions, and sizes are can be defined using the following 3D vector data structure.
Syntax
aligned(8) class Vector3(unsigned int precision_bytes_minus1 = 32) {
	int reserved_bits = 8 - (precision*3) % 8;
	if (reserved_bits != 8) {
		bit(reserved_bits) reserved = 0;
	}

	unsigned int((precision_bytes_minus1+1)*8precision) x;

	unsigned int((precision_bytes_minus1+1)*8precision) y;

	unsigned int((precision_bytes_minus1+1)*8precision) z;

}
Semantics
precision_bytes_minus1: Plus 1, specifies the precision of Vector3 components in bytes.
x, y and z: specify the x, y, and z coordinate values, respectively, of a 3D point in the Cartesian coordinate system
x, y, and z specify the x, y, and z coordinate values, respectively, of a 3D point in the Cartesian coordinate system.

· Define syntax structures Vector3Uint, Vector3Int, Vector3Float
· Define translation processes whenever required
· Use them consistently when 3d positions, offsets, dimensions, translations or scaling is handled
[bookmark: _Toc94083881]Orientation in 3D space	Comment by Dimitri Podborski: I think here the process of how to apply quaternions should be described. Things like, change orientation, apply rotation around a sphere, interpolate between two points etc.
Rotations and orientations in Quaternion Representation

Rotations and orientations using the following quaternion representation are defined as follows:
[bookmark: _Toc57208312]Syntax	Comment by Dimitri Podborski: I don’t think we need it. The Class is exactly the same as Vector3 we should not re-define the same thing.
aligned(8) class QuaternionRotation () {

	signed int(32) quat_x; 	Comment by XinWang MediaTek: Or
 unsigned int(8) quaternion_precision;
 Vector3 rotation(quaternion_precision);

	signed int(32) quat_y;

	signed int(32) quat_z;

}
[bookmark: _Toc57208313]Semantics
quat_x, quat_y, and quat_z, indicate the x, y, and z components, respectively, of the rotation using the quaternion representation. The values shall be in the range of – 230 to 230, inclusive. When the component of rotation is not present, its value shall be inferred to be equal to 0. The value of rotation components may be calculated as follows:
qX = quat_x 230, qY = quat_y 230, qZ = quat_z 230
The fourth component, qW, for the rotation using the quaternion representation is calculated as follows:
qW = Sqrt(1 – (qX2 + qY2 + qZ2))
The point (w, x, y, z) represents a rotation around the axis directed by the vector (x, y, z) by an angle 2*cos ^{-1}(w)=2*sin ^{-1}(sqrt(x^{2}+y^{2}+z^{2})).
NOTE – As aligned ISO/IEC FDIS 23090-5, qW is always positive. If a negative qW is desired, one can signal all three syntax elements, quat_x, quat_y, and quat_z with an opposite sign, which is equivalent.

[bookmark: _Toc94083882]Rotations in the Unit Sphere Coordinate System
Rotations in the Unit Sphere Coordinate System

Rotations in the unit sphere coordinate system are defined as follows:
Syntax
[bookmark: _Hlk92919195]aligned(8) class UnitRotation () {
	signed int(32) y; 	Comment by XinWang MediaTek: Or
 unsigned int(8) rotation_precision;
 Vector3 rotation(rotation_precision);

	Comment by Dimitri Podborski: I don’t understand why we need such a definition. We will end up defining a lot of similar syntax again if we continue like this.
	signed int(32) p;
	signed int(32) r;
}
Semantics
y, p, and r indicate the yaw, pitch and roll specify the yaw, pitch, and roll angles, respectively, of the rotation that is applied to the unit sphere, in units of 2−16 degrees, relative to underlying coordinate axes. y shall be in the range of −180 * 216 to 180 *216 − 1, inclusive. p shall be in the range of −90 * 216 to 90 * 216, inclusive. r shall be in the range of −180 * 216 to 180 * 216 − 1, inclusive.
· Define syntax structures and processes for rotation and orientation
· Make sure that other syntax structures use orientation and rotation correctly and efficiently
[bookmark: _Toc94083883]Scaling
[bookmark: _Toc94083884]Scaling
[bookmark: _Toc94083885]
Scaling in 3-dimension is defined using the following data structure:

Syntax
aligned(8) class 3DScaling (unsigned int(8) scale_precision) {
 Vector3 scale(scale_precision);
}
Semantics
scale_precision indicates the precision of scale in number of bits.
scale.x, scale.y, and scale.z indicate the scaling extension in the Cartesian coordinates along the x, y, and z axes, respectively, relative to the origin (0,0,0).

· TBD: How does differ from scaling defined in 4.1.2
[bookmark: _Toc94083886]Viewing Spaces
[bookmark: _Toc94083887]Cuboid Viewing Spaces
[bookmark: _Toc94083888]Viewing Spaces
[bookmark: _Toc94083889]
[bookmark: _Toc94083890]Cuboid Viewing Spaces
[bookmark: _Toc94083891]
A cuboid viewing space is defined as follows:

Syntax
aligned(8) class ViewingSpace(unsigned int(8) precision) {
[bookmark: _Hlk92917845]	Vector3 anchor(precision);	
[bookmark: _Hlk92917979]	Vector3 dimensions(precision);
}

Semantics
anchor.x, anchor.y, and anchor.z indicate the x, y, z position values of the anchor point of the viewing space, respectively, relative to the origin (0,0,0).
dimensions.x, dimensions.y, and dimensions.z indicate the dimensions (or ranges) in the Cartesian coordinates along the x, y, and z axes, respectively, from to the anchor (anchor.x, anchor.y, anchor.z).

· Dimensions: 3D and 2D
· TBD: What is a 2D viewing space?
· Shapes: Cuboid (Bounding Box), Sphere, Cylinder, Ellipsoid, etc.
[bookmark: _Toc94083892]Regions
[bookmark: _Toc94083893][bookmark: _Hlk92919039]Cuboid Regions
aligned(8) class CubiodRegion (

		unsigned int(1) anchor_included,

		unsigned int(1) scale_included,

		unsigned int(8) precision)

{

	 unsigned int(16) id;

	 unsigned int(32) size;

		if (anchor_included) { // anchor is not 0,0,0

			Vector3 anchor(precision);

		}

		if (scale_included) { // scale is not (1,1,1)

			Vector3 scale(precision);

		}

		Vector3 dimension(precision);

	}
Semantics
Semantics

· Dimensions: 2D and 3D
· Shapes
· Sizes
· TBD: Depending on the definition isn’t the size of the region or shape included in the definition itself?
· IDs
· TBD: Not sure if ID can be considered generic enough. People can create other standard specific structures that use the common metadata here.
[bookmark: _Toc94083894]Viewpoint	Comment by Dimitri Podborski: Note that Viewpoint is defined simply as 360 camera in Part7. I think we should remove this completely as it is covered by the exrinsics class already.
[bookmark: _Toc94083895]Viewpoints
[bookmark: _Toc94083896]
[bookmark: _Toc94083897]Viewpoint
[bookmark: _Toc94083898]
A viewpoint (an anchor and a rotation) is defined as follows:

[bookmark: _Toc94083899]Syntax
Syntax

[bookmark: _Hlk92919302]aligned(8) class Viewpoint (
		unsigned int(1) anchor_included,
 		unsigned int(8) precision)

{{

		if (anchor_included) { // anchor is not 0,0,0

			Vector3 anchor(precision);

		}

		UnitRotation rotation(precision);	Comment by Dimitri Podborski: This should be Vector3

	}

[bookmark: _Toc94083900]Semantics
[bookmark: _Toc94032974][bookmark: _Toc94033034][bookmark: _Toc94036135]
[bookmark: _Toc94032975][bookmark: _Toc94033035][bookmark: _Toc94036136]Semantics
[bookmark: _Toc94032976][bookmark: _Toc94033036][bookmark: _Toc94036137]
[bookmark: _Toc94083901][bookmark: _Toc94032977][bookmark: _Toc94033037][bookmark: _Toc94036138]Viewports	Comment by XinWang MediaTek: Does MPEG-I Part 18 use the same Viewpoint Information in Section 10 of Part 10, involving extrinsic and intrinsic camera information (that V-PCC and Immersive Video use)?
[bookmark: _Toc94032978][bookmark: _Toc94033038][bookmark: _Toc94036139][bookmark: _Toc94083902]
[bookmark: _Toc94083903]Extrinsics
· Orientations
· Positions
· IDs
Camera extrinsic parameters are often represented by a static metadata, however it may also be desirable to be able to store camera extrinsics as timed metadata tracks. If so, it would be useful if the same structure could be used for both the item property and timed metadata.	Comment by XinWang MediaTek: From m58522, section 3.
To efficiently do that, the following signaling is needed:
1. A variable bit-precision is needed so that the object size can be kept down.
1. The unit positioning needs to be variable to address multiple ranges.
1. The denominator for orientation signaling needs to be variable.
1. [bookmark: _Ref89858337]It needs to be possible to store relative and absolute values.
[bookmark: _Toc94083904]Syntax
class CameraExtrinsics(unsigned char abs_flag, unsigned char mode, unsigned char pos_bytes_minus1, unsigned char pos_unit, unsigned char quat_bytes_minus1, unsigned char quat_den_bits_minus1) {
	if(mode & 0x1 || mode & 0x2) {
		signed int((pos_bytes_minus1+1)*8) pos_x;
	}
	if(mode & 0x2) {
		signed int((pos_bytes_minus1+1)*8) pos_y;
		signed int((pos_bytes_minus1+1)*8) pos_z;
	}
	if(mode & 0x4) {
		signed int((quat_bytes_minus1+1)*8) quat_x;
		signed int((quat_bytes_minus1+1)*8) quat_y;
		signed int((quat_bytes_minus1+1)*8) quat_z;
	}
};
[bookmark: _Toc94083905]Semantics:
abs_flag: If 1, absolute position and orientation is specified. If 0, the specified values are added relative to the previously coded position and orientation.
mode: Signalling mode; Valid values are:
1:	Only the position is signalled along the x-axis.
2:	Only the position is signalled along multiple axes.
4:	Only orientation is signalled.
6:	Orientation and position is signalled along multiple axes.
pos_bytes_minus1: Plus 1 indicates the number of bytes to be read for pos_x, pos_y and pos_z. Valid values are in the range from [0, 3].
pos_unit: Unit of pos_x, pos_y and pos_z. Valid values are in the range from [0, 2], where
	0: µm
	1: mm
	2: m
quat_bytes_minus1: Plus 1 indicates the number of bytes to be read for quat_x, quat_y, quat_z. Valid values are in the range from [0, 1].
quat_den_bits_minus1: Specifies the denominator of quat_x, quat_y and quat_z. Valid values for quat_den_bits_minus1 are in the range from [0, 13]. The denominator is computed as follows:
denominator = 2quat_den_bits_minus1 + 1
pos_x: Specifies the x-coordinate of the location of the camera in units specified by pos_unit. When not present, its value shall be inferred to be 0 if abs_flag is 1.
pos_y: Specifies the y-coordinate of the location of the camera in units specified by pos_unit. When not present, its value shall be inferred to be 0 if abs_flag is 1.
pos_z: Specifies the z-coordinate of the location of the camera in units specified by pos_unit. When not present, its value shall be inferred to be 0 if abs_flag is 1.
quat_x: Specifies the x component, qX, for the rotation of the camera using the quaternion representation. The range of quat_x shall be in the range of -2quat_den_bits_minus1+1 to 2quat_den_bits_minus1+1, inclusive. When not present, its value shall be inferred to be 0 if abs_flag is set to 1.
quat_y: Specifies the y component, qY, for the rotation of the camera using the quaternion representation. The range of quat_y shall be in the range of -2quat_den_bits_minus1+1 to 2quat_den_bits_minus1+1, inclusive. When not present, its value shall be inferred to be 0 if abs_flag is set to 1.
quat_z: Specifies the z component, qZ, for the rotation of the camera using the quaternion representation. The range of quat_z shall be in the range of -2quat_den_bits_minus1+1 to 2quat_den_bits_minus1+1, inclusive. When not present, its value shall be inferred to be 0 if abs_flag is set to 1.
The values of the quaternion representation are computed as follows:
qX = quat_x / denominator
qY = quat_y / denominator
qZ = quat_z / denominator
It is a requirement of bitstream conformance that:
qX2 + qY2 +qZ2 <= 1
The fourth component of the quaternion representation, qW, is computed as follows:
qW = Sqrt(1 – (qX2 + qY2 + qZ2))
[bookmark: _Toc94083906]Intrinsics
TBD
· Intrinsics
· Type
· Type dependent parameters
· Objects/Components
· TBD: we need to discuss, if this is generally used by other specifications.
· Shape
· Sizes
· Attributes
· IDs

[bookmark: _Toc94083907]Metadata of spatially related features
[bookmark: _Toc94083908]Localized coordinate systems (e.g., one is in another “global” coordinate system)
· References to global coordinate systems
· Positions
· Rotations
· Scaling
[bookmark: _Toc94083909]Localized viewing spaces (e.g., one is in another “larger” viewing space)
· References to global viewing spaces
· Positions
· Rotations
· Scaling
[bookmark: _Toc94083910]Sub-regions (e.g., one or more are parts of another “source” region)
· Positions
· Rotations
· Scaling
[bookmark: _Toc94083911]Objects in Regions (e.g., one or more objects are in a “containing” region)
· Positions
· Rotations
· Scaling
[bookmark: _Toc94083912]Overlay of Regions/Objects (e.g., one is in front a “background” region)
· Positions
· Rotations
· Scaling
· Alpha blending
·
[bookmark: _Toc94083913]Dynamic metadata tracks
· TBD: needs to discuss, if we need to define sample and track design for some common dynamic metadata scenarios like viewport tracks. One possibility is to define them in MPEG-B part 10 (Carriage of Timed Metadata in ISOBMFF)
·
[bookmark: _Toc94083914]DASH descriptors
· TBD
·
·

image2.emf
YXZѲd(ɸd,Ѳd) ɸdYawPitchRoll

Microsoft_Visio_Drawing.vsdx
Y
X
Z
Ѳd
(ɸd,Ѳd)
ɸd
Yaw
Pitch
Roll

image1.jpeg

