[image:] ISO/IEC JTC 1/SC 29/WG 7 N226

ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics Coding
Convenorship: AFNOR (France)

Document type:	Output Document

Title:	Insert Document

Status:	Approved

Date of document:	2021-10-30

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:	None

Action due date:	None

No. of pages:	29 (with cover page)

Email of Convenor:	marius.preda @ imt . fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N226
October 2021, Virtual

	Title
	Anchors for Mesh Coding evaluation

	Source
	WG 7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	20995

[bookmark: _Toc86247321]Abstract

In this document we describe the generation of the anchors for Mesh Coding evaluation. The anchors are obtained by coding the mesh geometry (vertices connectivity, position, and 3D to 2D mapping) using SC3DMC, the MPEG reference software for static mesh compression, as well as Draco, a mesh compression tool from Google. Moreover, the texture maps represented by a sequence of PNG files are converted to BGR444 or YUV420 video sequences and encoded with HEVC HM 16.21 with Screen Content Coding Extension (SCC) 8.8.

Contents
Abstract	1
Introduction	3
Mesh Content	4
Floating-point mesh content	4
Mesh voxelization	4
Data pre-processing	7
Anchor generation	9
Category 1 anchor generation - textured meshes	11
Lossless anchors	11
Lossy anchors	13
Open Issues	24
Artifacts in basketball sequence	24
Hard to encode texture mapping	24
Rendering issues with quantized meshes	25
Conclusion	26
References	27

[bookmark: _Toc86247322]Introduction
[bookmark: _Hlk79760228]In this document we report the anchor generation process and its recent results, similar to what was presented in the report of EE4.0 on content preparation and anchor generation for mesh content [1],[14], as well as some additional results obtained during the MPEG 135th meeting, related to the selection of a combination of parameters for lossy compression [15] and an alternative coding method for color-per-vertex meshes [16].

The anchors presented in [14] were generated by coding the texture maps using HEVC HM 16.21 with Screen Content Coding Extension (SCC) 8.8 [12] and the meshes with either Draco [8] or AFX [10]. Pre-processing techniques, such as mesh decimation and texture sub-sampling, were also applied to achieve the desired target bitrate.

Here we will present the most recent results, with the latest selection of parameters as defined in [15], considering a newer version of HM (16.21 instead of 16.20), and evaluating the texture reconstruction by using HDRTools to generate the sequence of PNG texture files.

Along with the description on how to generate the anchors, we will also provide objective and subjective scores for the proposed anchor results, as discussed during a dry-run in the 136th MPEG meeting [17]. The metrics presented are based on the mmetric software [2], release 0.1.13. Nevertheless, more discussion on the proper parameter selection is expected for the 137th MPEG meeting, so the results presented in this document could be subject to some update.

[bookmark: _Toc86247323]Mesh Content
[bookmark: _Toc86247324]Floating-point mesh content
The mesh content collected for this activity can be seen in Figure 1. Table 1 provides information on the available content, such as the frame range as well as the references to the MPEG documents where the content was provided. Some of it are original mesh content (such as basketball, dancer, mitch, Thomas, football and levi), while the remaining content are meshes converted from point clouds (such as longdress and soldier). The procedure used to convert point clouds to meshes is described in [4] and [5].

[bookmark: _Ref70163108][image:]
[bookmark: _Ref81297712]Figure 1: Available mesh content

[bookmark: _Ref76474570]Table 1: Description of original mesh content
	Seq. name
	Provider
	#frames
	FR(Hz)
	Native
mesh?
	# vertices
	# faces
	tracked?
	Texture
Resolution
	Proposed Frame Range
	Reference

	Longdress
	8i
	300
	30
	N
	22K
	40K
	N
	2Kx2K
	1051-1350
	[4],[5]

	Soldier
	8i
	300
	30
	N
	22K
	40K
	N
	2Kx2K
	536-835
	[4],[5]

	Basketball
	Owlii
	600
	30
	Y
	20K
	40K
	N
	2Kx2K
	1-300
	[3]

	Dancer
	Owlii
	600
	30
	Y
	20K
	40K
	N
	2Kx2K
	1-300
	[3]

	Mitch
	VoluCap
	475
	25
	Y
	16K
	3K
	Y
	4Kx4K
	1-300
	[6]

	Thomas
	VoluCap
	748
	25
	Y
	16K
	3K
	Y
	4Kx4K
	618-917
	[6]

	Football
	XDProd
	120
	25
	N
	25K
	40K
	N
	4Kx4K
	445-744
	[6]

	Levi
	Vsense
	150
	30
	Y
	20K
	40K
	N
	4Kx4K
	0-149
	[7]

Some content has been re-submitted to better conform with the current mesh compression activities. For instance, the football sequence [6] was initially provided with 250k triangles, but later re-submitted to contain only 40k triangles and higher resolution texture map (4k x 4k). The content is usually provided in floating point precision, and the texture map is given in PNG format (some contributors provided the texture map in JPG format, see [7]).

In the scope of the EE 4.0 [15], we collected the original materials and stored them in a single repository:
· https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/CfP/Mesh/ORIGINAL

[bookmark: _Toc70274612][bookmark: _Toc86247325]Mesh voxelization
The meshes provided have vertex positions and UV coordinates in floating-point notation, and one of the actions executed in the scope of EE 4.0 [15] was to voxelize the content, that is, to quantize the positions and UV coordinates into integer values.

Voxelization of mesh content is done in the following manner. The first step is to determine the bounding boxes of each frame and use the largest/smallest values for the derivation of the sequence bounding box, as shown in Figure 2.

[image:]
[bookmark: _Ref70164072]Figure 2: Sequence bounding box

The sequence bounding box can be determined by reading out the values for globalMinPos and globalMaxPos obtained with the analyse option of the mmetric software [2], as shown below:mm \
 sequence --firstFrame ${firstFr} --lastFrame ${lastFr} END \
 analyse --inputModel ${meshPattern} --outputVar ${statistics}

Then voxelization is done by translating and scaling the mesh according to the sequence bounding box. The translation will set the minimum value of the sequence bounding box to the origin of the plane, while the scaling factor is obtained dividing the maximum dimension of the sequence bounding box by two to the power of a chosen quantization parameter, QP (see Table 3 for the list of QPs for each sequence).

The UV coordinates are floating values between 0 and 1 that multiplied by the dimension of the texture map can indicate the position of the color value of a vertex in a 2D image. The quantization of those floating-point values considers the size of the texture map. For the UV conversion, it was suggested to use a quantization step that allows for ½ pixel precision, that is, if the texture map has a size of 2048 x 2048, the quantization parameter for texture QT, should be log2(2048)+1=12 (see Table 3 for a list of QTs for each sequence)

The voxelization procedure will generate integer values for the meshes’ position coordinates, but it may be interesting to return to the floating-point values, that is, to dequantize the values. The V3C standard [10] provides a mechanism to transmit the scaling and translation of volumetric content via a non-ACL NAL unit (e.g. AAPS). The syntax elements represent the scaling and translation in fixed point notation, using 16 bits for the fraction part. Therefore, in our experiments, we modified the translation and scaling values to a fixed-point notation, so that they could be carried using the V3C standard. The conversion is implemented internally in the mmetric software [2] by using the option --useFixedPoint, as shown in the command line below.
Additionally, the option --dequantize can be used to save the dequantized mesh, that is converting back to floating-point value, with the defined output model name. mm \
 quantize --inputModel ${inMesh} --outputModel ${outMesh}_qp#_qt#.obj \
 --qp ${qp} --qt ${qt} \
 --minPos ${globalPosMin} --maxPos ${globalMaxPos} \
 --minUV “0.0 0.0” --maxUV “1.0 1.0” \
 --useFixedPoint

mm \
 quantize --inputModel ${inMesh} --outputModel ${outMesh}.obj \
 --qp ${qp} --qt ${qt} --dequantize\
 --minPos ${globalPosMin} --maxPos ${globalMaxPos} \
 --minUV “0.0 0.0” --maxUV “1.0 1.0” \
 --useFixedPoint

To be used for the mesh CfP [13], we processed the original floating-point mesh materials and stored the voxelized content in a single repository:
· https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/CfP/Mesh/CONTENT/voxelized
Note that each zip file of a test material dataset contains a sequence of frames, consisting of for each mesh frame one PNG, one MTL and one OBJ file, whereby the OBJ naming convention includes a suffix that indicates the precision for geometry and texture coordinates integer values. The PNG corresponds to the texture map, the MTL file corresponds to the wavefront material template library file that links the mesh with the corresponding texture image, and the OBJ corresponds to the voxelized mesh. The voxelized meshes available in the dataset contain only one unique connectivity information for both vertex position and texture coordinates (notice that this could lead to vertices with duplicate 3D position but different texture coordinates).

For the voxelized content, the vertices attributes (3D position and texture coordinate) are provided in integer format. For correct visualization of these voxelized meshes, a dequantization procedure that converts the integer values to floating point values should be conducted. The mmetric software provides the capability to dequantize the voxelized meshes by applying the following command line:
mm \
 dequantize --inputModel ${voxelizedMesh} --outputModel ${outMesh} \
 --qp ${qp} --qt ${qt} \
 --minPos ${globalPosMin} --maxPos ${globalMaxPos} \
 --minUV “0.0 0.0” --maxUV “1.0 1.0” \
 --useFixedPoint

The values for qp (quantization parameter for vertex 3D coordinate) and qt (quantization parameters for texture coordinate) is equivalent to the options of Geometry Precision and Texture Coordinate Precision respectively and are indicated in Table 3. The values for globalPosMin and globalPosMax are provided in Table 2.

	Test material
dataset filename
	globalPosMin
	globalMaxPos

	
	(x)
	(y)
	(z)
	(x)
	(y)
	(z)

	Longdress
	-0.475553989
	-1.4576
	-0.284981996
	481.324005
	1023.37
	659.137024

	Soldier
	-0.366236001
	1.10722005
	0.224947006
	508.764008
	1023.37
	637.421997

	Basketball_player
	-725.812988
	-483.908997
	-586.02002
	767.517029
	1411.98999
	829.09198

	Dancer
	-902.244995
	-486.196991
	-670.518005
	621.093994
	1576.04004
	738.028992

	Mitch
	-588.255981
	5.80515003
	-469.799011
	734.567993
	1829.69995
	697.179016

	Thomas
	-265.006989
	-4.04448986
	-248.710999
	320.546997
	1820.93005
	400.225006

	Football
	-0.000159517003
	3.32326999e-06
	0.000132931003
	1024
	980.619995
	966.692993

	Levi
	-0.780686975
	-0.0424938016
	-0.594317973
	0.857237995
	1.90897
	0.687259018

[bookmark: _Ref78299887][bookmark: _Ref76561516]Table 2 Conversion parameters for the Mesh sequences
The dequantized meshes of the voxelized content were also made available in the following URL:
· https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/CfP/Mesh/CONTENT/dequantized
Each zip file of a test material dataset contains an MD5 file (with the corresponding md5 sums for each file in the archive). Only the meshes are provided, the texture map is the same as the ones in the voxelized folder. We also provided a script that can automatically generate the voxelized content from the floating-point content (prepare_content.sh), available in the git repository:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts

The content was divided into two categories, one that is reserved for meshes with corresponding texture maps (Dynamic Objects with Texture Mapping), and another that only contains meshes with color per vertex (Dynamic Objects with Per-Vertex Attribute). The categories are further divided into sub-classes, according to the level of how complex it is to encode the meshes. For category 1, we have 3 classes: A) Low precision mesh geometry (10 bits) and low-resolution texture map (2k), B) High precision mesh geometry (12 bits) and low-resolution texture map (2k), and C) High precision mesh geometry (12 bits) and high-resolution texture map (4k). For category 2 we only have one single sub-class, A) Low precision mesh geometry (10 bits). Table 3 summarizes the properties of the voxelized meshes.

	Test Category
	Test
Class
	Test material
dataset filename
	# Frames
	# Vertices
	# Faces
	Geometry
Precision
	Texture Coord.
Precision
	Texture
 Map Size
	Color Attribute
	Sequence
Number

	(1) Dynamic Objects with Texture Mapping
	A
	Longdress
	300
	22k
	40k
	10 bits
	12 bits
	2k x 2k
	NA
	1

	
	
	Soldier
	300
	22k
	40k
	10 bits
	12 bits
	2k x 2k
	NA
	2

	
	B
	Basketball_player
	300
	20k
	40k
	12 bits
	12 bits
	2k x 2k
	NA
	3

	
	
	Dancer
	300
	20k
	40k
	12 bits
	12 bits
	2k x 2k
	NA
	4

	
	C
	Mitch
	300
	16k
	30k
	12 bits
	13 bits
	4k x 4k
	NA
	5

	
	
	Thomas
	300
	16k
	30k
	12 bits
	13 bits
	4k x 4k
	NA
	6

	
	
	Football
	300
	25k
	40k
	12 bits
	13 bits
	4k x 4k
	NA
	7

	
	
	Levi
	150
	20k
	40k
	12 bits
	13 bits
	4k x 4k
	NA
	8

[bookmark: _Ref76370955][bookmark: _Ref480380578][bookmark: _Ref76370960]Table 3 Test material datasets

[bookmark: _Toc86247326]Data pre-processing
In order to achieve low target bitrates, such as 2Mbps, we used pre-processing operations before the actual compression to reduce the overall data. Two techniques were used: mesh decimation and texture sub-sampling.

The mesh decimation was accomplished with Meshlab, by applying the mesh decimation filter that preserves the texture boundaries (“Simplification:Quadric edge Collapse Decimation (with texture)”). In this way, meshes could be reduced but the texture map could stay the same. Five different low-resolution meshes were created (with 5k, 10k, 15k, 20k and 25k triangles), and the following command line was used to obtain the low resolution meshes:
meshlabserver \
 -i ${inMesh} -o ${lowResMesh} -m vt -s mesh_decimation_${numTri}k.mlx

Figure 3 shows an example of the results obtained with the Meshlab filter. Configuration files to obtain the desired triangle count are available on the git repository:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts/cfg/meshlab

[image:]
[bookmark: _Ref76502964]Figure 3: Mesh decimation for dancer sequence
One issue that was recently discovered is a bug in Meshlab when saving meshes with texture coordinate per vertex (see http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/issues/7 for more details). This affected the initial anchor generation and led to a search for new parameter combination after the bug was remedied. In this document we will present the latest anchor obtained after solving this bug.

For texture sub-sampling, HDRTools was used (notice that the software needs ot be compiled with the option -DLIBPNG=ON). First the sequence of PNGs was converted to GBR444 or YUV420 video files, which will also be used for HM encoding. Then the video files were sub-sampled to half and quarter resolution and stored in YUV420 format. The configuration files used in the image to video conversion and the video sub-sampling are available in the git repository:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts/cfg/hdrconvert

[bookmark: _Toc86247327]Anchor generation
Anchors were generated in the following manner.

The texture maps represented by a sequence of PNG files were first converted to BGR444 or YUV420 video formats using HDRTools, and subsequently encoded with HEVC HM 16.21 with Screen Content Coding Extension (SCC) 8.8. The version of HM was changed from 16.20 to 16.21 due to some compilation issues with HM16.20, whereby HM16.21 is a more stable version.

The HDRTools software can be downloaded from the following link:
· https://gitlab.com/standards/HDRTools.git

The configuration files used for conversion can be found at:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts/cfg/hdrconvert

The required version of the HEVC test model can be obtained using the following command:
· git clone --branch HM-16.21+SCM-8.8 https://vcgit.hhi.fraunhofer.de/jvet/HM.git

The HM configuration files used for all-intra and random-access conditions can be found in the following link:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts/cfg/hm

For the lossless case, the mesh geometry was coded using a modified version of SC3DMC, the MPEG reference software for static mesh compression, which can be found in the following link:
· http://mpegx.int-evry.fr/software/MPEG/PCC/tfan_mesh_anchor.git

And the configuration file used for lossless compression is available at:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts/cfg/afx

For the lossy condition, a mesh compression tool from Google, Draco, was used, and available in the following link:
· https://google.github.io/draco/

To achieve certain bitrates, additionally to mesh compression, mesh decimation and texture sub-sampling were also applied to the dataset. For texture sub-sampling, HDRTools was used, while for mesh decimation, Meshlab software was used. The Meshlab software can be downloaded from here:
· git clone https://github.com/cnr-isti-vclab/meshlab/releases/tag/Meshlab-2020.03

And the configuration files used to create the decimated meshes are available here:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts/cfg/meshlab

Since mesh decimation consistent results across platforms could not be guaranteed, the decimated meshes used for the anchor generation are also available in the MPEG repository:
· https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/CfP/Mesh/CONTENT/simplified

The compressed anchor bitstreams for different settings and MD5 checksums are available at:
· https://mpegfs.int-evry.fr/mpegcontent/ws-mpegcontent/CfP/Mesh/ANCHOR/bitstreams

To decode the provided bitstreams and reconstruct the meshes, the following procedure was done:

Texture map files encoded with HM, the binary files can be decoded with the respective HM decoder with the following command
TAppDecoderStatic \
 --BitstreamFile=${inBin} --ReconFile=${outYUV} \
 --OutputBitDepth=8 --OutputBitDepthC=8

We can directly input the decoded video bitstream to mmetric software to collect the objective metrics or to render the sequences. However, if a sequence of texture map images per frame is required, the output of the video decoder can be further transformed to a sequence of PNG files by using HDRTools with the following command:
HDRConvert \
 -f ${config} \
 -p SourceFile=${input_video} \
 -p OutputFile=${seq}_fr%04d.png \
 -p SourceWidth=${width} -p SourceHeight=${height}\
 -p NumberOfFrames=${numFr} \
 -p OuputWidth=${outWidth} -p OutputHeight=${outHeight}

The meshes for the lossy condition can be decoded using the Draco decoder with the following command:
draco_decoder -i ${compMesh}.drc -o ${compMesh}.obj

The meshes for the lossless condition can be decoded using the SC3DMC decoder with the following command:
SC3DMCDecoder ${compMesh} ${compMesh}

For the dataset, the results of the anchor are available in the excel sheet provided with the draft Mesh Coding CfP [13]. The distortion is calculated using the mmetric software, which is available in the following link:
· http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-mmetric

The anchor can be generated and verified with software that may be compiled on a diverse number of platforms, such as MacOS, Linux and/or Windows.

We also provided scripts to generate and verify the anchor results:
· lossy_anchor_generate.sh: script to generate lossy anchor results
· lossless_anchor_generate.sh: script to generate lossless anchor results
· lossy_anchor_verification.sh: script to check lossy anchor results
· lossless_anchor_verification.sh: script to check lossless anchor results
· all scripts are available at http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-vmesh-anchor/-/tree/master/scripts

Note that the scripts were created for the Linux platform only. All scripts contain an initialize_script() function that will create local directories and check for the presence of the appropriate software, please adjust the paths for your particular system.

[bookmark: _Toc86247328]Category 1 anchor generation - textured meshes
[bookmark: _Toc86247329]Lossless anchors
Texture Coding
[image:]
[bookmark: _Ref76559198]Figure 4: Lossless texture map coding
For lossless compression of texture maps, the sequence of PNG files is first converted to a GBR 444 video format using HDRTools, as shown in Figure 4. The following command line was used:
HDRConvert \
 -f HDRConvertGBR8.cfg \
 -p SourceFile=${seq}_fr%04d.png \
 -p OutputFile=${seq}_${width}x${height}_gbrp.rgb \
 -p SourceWidth=${width} -p SourceHeight=${height}\
 -p NumberOfFrames=${numFr} -p StartFrame=${startFr}

The videos are used as the input for the HM encoder. For the coding of texture map, we replicate the CTC conditions used for V-PCC [11], that is, we use the configuration files from V-PCC and provide results for All Intra. For the simulations, we utilized the configuration files optimized for one layer only, since we only have one texture map per frame. The following command line was used to generate the anchor results.
TAppEncoderStatic \
 -c ctc-hm-texture-ai-lossless-1L.cfg \
 --InputFile=${inRGB} --InputBitDepth=8 --InputChromaFormat=444 \
 --OutputBitDepth=8 --OutputBitDepthC=8 --FrameRate=30 \
 --FrameSkip=0 --SourceWidth=${size} --SourceHeight=${size} \
 --ConformanceWindowMode=1 --FramesToBeEncoded=${numFrames} \
 --BitstreamFile=${outBin} --QP=22 \
 --InternalBitDepth=8 --InternalBitDepthC=8

Texture Coding Results
[image: Chart

Description automatically generated]
Figure 5: Anchor results for lossless texture map compression
Geometry Coding
[image:]
[bookmark: _Ref76714757]Figure 6: Lossless geometry coding
To lossless encode the integer-valued mesh sequences, a modification to skip the quantization procedure for texture coordinates in the AFX software was necessary. The input parameter to skip quantization of the texture coordinates was added to the software available in the MPEG git repository. Both input and output meshes are compared for equality, to guarantee the preservation of vertex attributes, even if the order of vertices and connectivity is changed. Figure 6 shows the sequence of operations done to achieve the results. The following command line is used to perform lossless compression of textured meshes:
SC3DMCEncoder \
 ${inMesh} ${compMesh} tfan.cfg \
 ${qpMesh} ${qtMesh} 0 0 0 (2^qpMesh-1) (2^qpMesh-1) (2^qpMesh-1) 1\`

where qpMesh and qtMesh are the geometry and texture coordinate precision, respectively, and can be found in Table 3.

Geometry Coding Results
[image:]
Figure 7: Lossless anchor for geometry coding of Category 1 dataset
Encoding and Decoding Times

	[image:]
	[image:]

Figure 8: Decoding times (left) and encoding times (right)

[bookmark: _Toc86247330]Lossy anchors
Search for coding parameters
For the lossy condition, many different parameters can be combined to achieve a certain bitrate. The target bitrates for textured meshes was discussed and decided to be lower than the ones used for point clouds, given the fact that meshes usually have a more compact representation. The target bitrates chosen were first chosen to be 2, 4, 8, 16, and 32 Mbps, and the lossy results are expected to be within a range of +/-10% of the target. A dry-run with the data generated for those particular target bitrates was conducted during the 136th MPEG meeting [17], and it was concluded that the points had either too high quality or too low quality. It was then requested to rethink the target bitrates, given the evaluation of the dry-run results, and the following bitrates in Table 4 and Table 5 were defined.

	Test Dataset
	R1
	R2
	R3
	R4
	R5

	Longdress
	4
	8
	11
	14
	21

	Soldier
	4
	8
	11
	14
	21

	Basketball_player
	3
	5
	10
	14
	21

	Dancer
	3
	5
	10
	14
	21

	Mitch
	3
	4
	6
	8
	12

	Thomas
	3
	4
	6
	8
	12

	Football
	4
	8
	12
	17
	25

	Levi
	4*
	8
	12
	17
	25

[bookmark: _Ref86237237][bookmark: _Ref76376002]Table 4 Target bitrates for Category 1 in Mbit/s for Random Access

	Test Dataset
	R1
	R2
	R3
	R4
	R5

	Longdress
	5
	9
	12
	15
	22

	Soldier
	5
	9
	12
	15
	22

	Basketball_player
	3
	5
	10
	14
	21

	Dancer
	3
	5
	10
	14
	21

	Mitch
	4
	6
	11
	16
	24

	Thomas
	4
	6
	11
	16
	24

	Football
	4
	8
	12
	17
	25

	Levi
	4*
	8
	12
	17
	25

[bookmark: _Ref83808015]Table 5 Target bitrates for Category 1 in Mbit/s for All-Intra

Since this can be achieved with several combination of different parameters, we propose a search that combines different coding results, first trying to match the bitrate, then select the best combination according to the objective quality metrics. We later also proposed to impose a restriction that the bitrate for both geometry and texture is always increasing, so that the algorithm is also forced to improve the quality, by even giving less bits for geometry to still increase the texture quality (see [15] for more details). For our experiments we selected the Image-Based Sampling Metric (IBSM) mode from the mmetric software. The metric has separate values for geometry (GEO_PSNR) and color (RGB_PSNR), so we average them (GEO_PSNR*0.5 + RGB_PSNR*0.5) and use the combined PSNR to select the parameters that achieve the highest value. Below we show the pseudo-code for the parameter search. Notice that the algorithm below still considers the old target bitrates.
minBitrateArray = (-1 1.8 3.5 7.75 15.75 30)
maxBitrateArray = (-1 2.2 4.5 8.25 16.25 34)
lastSelectedGeoBitrate=0
lastSelectedTextBitrate=0
for rate in {1,2,3,4,5}; do
 minBitrate=${minBitrateArray[${rate}]}
 maxBitrate=${maxBitrateArray[${rate}]}
 maxPSNR=0, bestTextBitrate=0, bestGeoBitrate=0
 for meshDecimation in {"original","5","10","15","20","25"}; do
 for qt in {2,3,4,5,6,7,8,9,10,11,12,13}; do
 for qp in {2,3,4,5,6,7,8,9,10,11,12}; do
 for qm in {42,37,32,31,30,29,28,27,22}; do
 for codingMode in {"RA“,}; do
 for textureResolution in {1,2,4}; do
 # bitrate texture from HM log ${textureBitrate}
 # bitrate geometry from Draco log ${geometryBitrate}
 # check if combination of texture and geometry bitrate is possible, and log the combination
 ${totalBitrate}=${textureBitrate} + ${geometryBitrate}
 if (${totalBitrate} > minBitrate) && (${totalBitrate} < masBitrate)
 && (${textureBitrate} > ${lastSelectedTextBitrate}) && (${geometryBitrate} > ${lastSelectedGeoBitrate}); then
 #found parameter combination for Rate:${rate}, calculate PSNR
 COMBINED_PSNR = mmetric(IBSM)_RGB * 0.5 + mmetric(IBSM)_GEO * 0.5
 if (COMBINED_PSNR > ${maxPSNR}); then
 maxPSNR=${COMBINED_PSNR}, bestTextBitrate=${textureBitrate}, bestGeoBitrate=${geometryBitrate} #PARAMETERS SELECTED
 fi
 fi
 done
 done
 done
 done
 done
 done
 lastSelectedTextBitrate=${bestTextBitrate}
 lastSelectedGeoBitrate=${bestGeoBitrate}
done

There are some know limitations to this approach, namely:
· Reduced number of parameter combinations. In our experiments, we use a limited number of QP options, which limits the combination possibilities. We suggest expanding the experiment with more QP options
· The criteria for selection of the parameter combination is only performing an average of two objective metrics, and there might be better ways to evaluate the model. Furthermore, the RGB_PSNR metric is also influence by the geometry, so the weight given to geometry ends up being higher than given to texture, which bias the selection of the parameters towards improved geometry. We suggest utilizing different criteria for combining the objective metrics, according to the target bitrate.
· To save some time, we are also only using one frame only for the search. Since the encoding method for the anchor is intra only, the bitrate estimate for one frame is close to the bitrate estimate for all 300 frames. However, there can be some discrepancies between the rate calculated for one frame and the one calculated for 300 frames. Moreover, the objective metric criteria are also applied only on the first frame, having an average of the quality of all frames would be more accurate.
· We are performing the search using the RA coding condition only, since this is the one that could achieve low bitrates. We propose to use the same QP for the AI condition. Notice that this only affects the texture bitrate and quality, the geometry is coded on a per frame basis for both all intra and random-access conditions.

The search for an appropriate combination of parameters for the longdress sequence can be shown in the Figure 9. With Draco, geometry coding takes values between ~1 - 16Mbps, while with HM we might need to use more QP values to obtain better matching

	[image:]
	[image:]

[bookmark: _Ref76716035]Figure 9: RD performance distribution for a different combination of parameters for longdress sequence
Figure 10 clearly shows the bias towards the geometry. In the first four rate points, the search algorithm ends up selecting a combination that allocates more bits towards geometry than texture. Only at the last rate point do we have enough rate budget to allocate for geometry and texture. At this point, half of the bit budget is spent with geometry, which already achieves a very good quality with Draco, and the other half can be spent coding the texture map. Figure 11 shows a comparison of all rate points for the anchor. As one can see, especially in the video, the texture suffers from blurriness and is also affected by geometry coding, since the bitrate for texture coordinates is also counted as part of geometry.

	[image:]
	[image:]

[bookmark: _Ref76716186]Figure 10: RD performance and bitrate distribution for all five rate points, for longdress sequence
[image:]
[bookmark: _Ref76716363]Figure 11: Subjective evaluation for longdress (notice that the texture artifacts in lower bitrates happen due to the bug in Meshlab when doing mesh resampling)
Another common artifact in the texture is the presence of seams, as shown in the results for the mitch sequence, which can be visualized in Figure 12. With coding of the texture coordinates, texture mapping is not precise and can affect the model reconstruction. A joint optimization of geometry and texture coding could be conducted (for instance, recreating a new texture map once the texture coordinates have been quantized), but this implies also in a more complex coding approach.

	[image:]
	[image:]

	[image:]
	[image:]

	[image:]

[bookmark: _Ref79862768]Figure 12: RD performance, bitrate distribution and subjective evaluation for mitch sequence

Table 6 and Table 7 have the selected combination of parameters for the dataset.

	Test Category
	Test
Class
	Test material
dataset filename
	Rate
	Draco
QP
	Draco
QT
	Mesh Resolution
	HM
QP
	Texture
Resolution

	Dynamic Objects with Texture Mapping
	A
	Longdress
	R1
	7
	7
	5
	51
	1

	
	
	
	R2
	10
	9
	15
	44
	1

	
	
	
	R3
	11
	10
	20
	42
	1

	
	
	
	R4
	12
	9
	25
	40
	1

	
	
	
	R5
	12
	10
	original
	36
	1

	
	
	Soldier
	R1
	7
	7
	10
	51
	1

	
	
	
	R2
	10
	8
	20
	44
	1

	
	
	
	R3
	11
	9
	25
	42
	1

	
	
	
	R4
	12
	9
	25
	36
	1

	
	
	
	R5
	12
	10
	original
	32
	1

	
	B
	Basketball_player
	R1
	7
	8
	5
	51
	1

	
	
	
	R2
	10
	8
	10
	48
	1

	
	
	
	R3
	12
	9
	20
	42
	1

	
	
	
	R4
	12
	10
	25
	36
	1

	
	
	
	R5
	12
	11
	original
	32
	1

	
	
	Dancer
	R1
	7
	7
	5
	48
	1

	
	
	
	R2
	9
	9
	10
	44
	1

	
	
	
	R3
	12
	7
	20
	40
	1

	
	
	
	R4
	12
	10
	25
	36
	1

	
	
	
	R5
	12
	10
	original
	32
	1

	
	C
	Mitch
	R1
	10
	8
	5
	48
	1

	
	
	
	R2
	12
	9
	5
	44
	1

	
	
	
	R3
	12
	8
	10
	42
	1

	
	
	
	R4
	11
	9
	15
	40
	1

	
	
	
	R5
	12
	10
	20
	38
	1

	
	
	Thomas
	R1
	12
	8
	5
	51
	1

	
	
	
	R2
	10
	9
	10
	48
	1

	
	
	
	R3
	11
	9
	15
	44
	1

	
	
	
	R4
	12
	11
	15
	40
	1

	
	
	
	R5
	12
	11
	25
	38
	1

	
	
	Football
	R1
	6
	7
	5
	51
	4

	
	
	
	R2
	10
	9
	15
	48
	4

	
	
	
	R3
	12
	8
	25
	44
	4

	
	
	
	R4
	12
	10
	25
	40
	2

	
	
	
	R5
	12
	11
	original
	44
	1

	
	
	Levi
	R1
	-1
	-1
	-1
	-1
	-1

	
	
	
	R2
	7
	2
	25
	51
	4

	
	
	
	R3
	11
	2
	25
	48
	4

	
	
	
	R4
	10
	7
	25
	42
	4

	
	
	
	R5
	12
	9
	original
	36
	4

[bookmark: _Ref78486265][bookmark: _Ref76404466]Table 6: Coding parameters for random access lossy anchor generation

	Test Category
	Test
Class
	Test material
dataset filename
	Rate
	Draco
QP
	Draco
QT
	Mesh Resolution
	HM
QP
	Texture
Resolution

	Dynamic Objects with Texture Mapping
	A
	Longdress
	R1
	11
	8
	5
	51
	1

	
	
	
	R2
	10
	9
	15
	48
	1

	
	
	
	R3
	12
	10
	10
	44
	1

	
	
	
	R4
	12
	9
	15
	42
	1

	
	
	
	R5
	12
	11
	25
	40
	1

	
	
	Soldier
	R1
	9
	8
	10
	51
	1

	
	
	
	R2
	10
	9
	20
	48
	1

	
	
	
	R3
	12
	8
	20
	44
	1

	
	
	
	R4
	12
	9
	25
	42
	1

	
	
	
	R5
	12
	11
	original
	38
	1

	
	B
	Basketball_player
	R1
	8
	7
	5
	51
	1

	
	
	
	R2
	9
	8
	10
	48
	1

	
	
	
	R3
	12
	10
	15
	44
	1

	
	
	
	R4
	12
	10
	25
	42
	1

	
	
	
	R5
	12
	10
	original
	38
	1

	
	
	Dancer
	R1
	8
	7
	5
	51
	1

	
	
	
	R2
	9
	7
	10
	48
	1

	
	
	
	R3
	11
	8
	20
	44
	1

	
	
	
	R4
	12
	11
	20
	40
	1

	
	
	
	R5
	12
	10
	original
	38
	1

	
	C
	Mitch
	R1
	7
	8
	5
	51
	1

	
	
	
	R2
	10
	8
	5
	48
	1

	
	
	
	R3
	10
	9
	10
	44
	1

	
	
	
	R4
	11
	9
	15
	42
	1

	
	
	
	R5
	12
	11
	20
	40
	1

	
	
	Thomas
	R1
	11
	9
	5
	51
	1

	
	
	
	R2
	11
	7
	10
	48
	1

	
	
	
	R3
	12
	11
	15
	44
	1

	
	
	
	R4
	12
	11
	25
	42
	1

	
	
	
	R5
	12
	12
	original
	38
	1

	
	
	Football
	R1
	6
	7
	5
	51
	4

	
	
	
	R2
	9
	8
	15
	48
	4

	
	
	
	R3
	11
	9
	20
	51
	2

	
	
	
	R4
	12
	11
	25
	48
	2

	
	
	
	R5
	12
	11
	original
	44
	2

	
	
	Levi
	R1
	-1
	-1
	-1
	-1
	-1

	
	
	
	R2
	6
	2
	25
	51
	4

	
	
	
	R3
	9
	3
	25
	48
	4

	
	
	
	R4
	9
	6
	25
	51
	2

	
	
	
	R5
	12
	7
	original
	44
	4

[bookmark: _Ref86156129]Table 7: Coding parameters for all-intra lossy anchor generation
Notice that in the case of Levi dataset, Meshlab could not perform mesh decimation due to the characteristics of the input mesh (the data contain several small texture map islands, so the mesh decimation that preserves the texture island boundaries could not achieve the target triangle count, since most of the vertices belong to a border and could not be modified).

Texture Coding
[image:]
[bookmark: _Ref76743932]Figure 13: Lossy texture map coding for category 1 dataset
For lossy compression of texture maps, the sequence of PNG files is first converted to a YUV420 using 8 bits for each component. The YUV420 files were generated with the following command line:
HDRConvert \
 -f rgb444toyuv420.cfg \
 -p SourceFile=${seq}_fr%04d.png \
 -p OutputFile=${seq}_${width}x${height}_gbrp.rgb \
 -p SourceWidth=${width} -p SourceHeight=${height}\
 -p NumberOfFrames=${numFr} -p StartFrame=${startFr}

The videos are used as the input for the HM encoder. For the coding of texture map, we replicate the CTC conditions used for V-PCC [11], that is, we use the same configuration files defined in V-PCC and provide results for All Intra (AI) and Random Access (RA) with the QP as defined in For the simulations, we utilized the configuration files optimized for one layer only, since we only have one texture map per frame. The following command lines were used to generate the anchor results.
TAppEncoderStatic \
 -c ctc-hm-texture-ai-1L.cfg \
 --InputFile=${inYUV} --InputBitDepth=8 --InputChromaFormat=420 \
 --OutputBitDepth=8 --OutputBitDepthC=8 --FrameRate=30 \
 --FrameSkip=0 --SourceWidth=${size} --SourceHeight=${size} \
 --ConformanceWindowMode=1 --FramesToBeEncoded=${numFrames}\
 --BitstreamFile=${outBin} --ReconFile=${outYUV} --QP=${qp} \
 --InternalBitDepth=10 --InternalBitDepthC=10

TAppEncoderStatic \
 -c ctc-hm-texture-ra-1L.cfg \
 --InputFile=${inYUV} --InputBitDepth=8 --InputChromaFormat=420 \
 --OutputBitDepth=8 --OutputBitDepthC=8 --FrameRate=30 \
 --FrameSkip=0 --SourceWidth=${size} --SourceHeight=${size} \
 --ConformanceWindowMode=1 --FramesToBeEncoded=${numFrames} \
 --BitstreamFile=${outBin} --ReconFile=${outYUV} --QP=${qp} \
 --InternalBitDepth=10 --InternalBitDepthC=10

Geometry Coding
[image:]
Figure 14: Lossy geometry coding for category 1 dataset
Draco is used to encode the mesh connectivity, the vertices 3D position and texture coordinates. We used the slowest configuration with the best performance (-cl 10). Below we show an example of the command lines used by the encoder to obtain the coded results.
draco_encoder \
 -i ${inMesh} -cl 10 -qp ${qp} -qt ${qt} \
 --skip NORMAL --skip GENERIC -o ${compMesh}.drc

Lossy results

We evaluated the performance of the chosen rate points using the pouint-based and the image-based metrics implemented in the mmetric software. The image-based metric uses the default parameters, with a 2k image resolution, while the point-based metric uses a reduced grid size of 512. Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22 present the results. The commands below show how the metrics were applied
mm \
 reindex --sort oriented -i ref.obj -o ID:ref_reordered END
 sample --mode grid \
 --gridSize 512 --useNormal --useFixedPoint --bilinear \
 --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 -i ID:ref_reordered -m ref.png -o ID:pcRef END\
 reindex --sort oriented -i dis.obj -o ID:dis_reordered END
 sample --mode grid \
 --gridSize 512 --useNormal --useFixedPoint --bilinear \
 --minPos "$globalMinPos" --maxPos "$globalMaxPos" \
 -i ID:dis_reordered -m dis.png -o ID:pcDis END\
 compare --mode pcc \
 --inputModelA ID:pcRef --inputModelB ID:pcDis \
 --outputCsv perFrame.csv

mm \
 sequence --firstFrame ${startFr} --lastFrame ${lastFr} END \
 compare --mode ibsm \
 --ibsmResolution ${camRes} --ibsmRenderer gl12_ibsm \
 --inputModelA ${refMesh} --inputMapA ${refTexture} \
 --inputModelB ${compMesh} --inputMapB ${compTexture} \
 --outputCsv ${outCsv}

	[image:] [image:]

[bookmark: _Ref79865641]Figure 15: Lossy compression results for longdress (RA results to the left, AI results to the right)

	[image:][image:]

[bookmark: _Ref79865644]Figure 16: Lossy compression results for soldier (RA results to the left, AI results to the right)

	[image:][image:]

[bookmark: _Ref79865645]Figure 17: Lossy compression results for basketball (RA results to the left, AI results to the right)

	[image:] [image:]

[bookmark: _Ref79865647]Figure 18: Lossy compression results for dancer (RA results to the left, AI results to the right)

	[image:] [image:]

[bookmark: _Ref79865649]Figure 19: Lossy compression results for mitch (RA results to the left, AI results to the right)

	[image:][image:]

[bookmark: _Ref79865651]Figure 20: Lossy compression results for thomas (RA results to the left, AI results to the right)

	[image:][image:]

[bookmark: _Ref79865654]Figure 21: Lossy compression results for football (RA results to the left, AI results to the right)

	[image:][image:]

[bookmark: _Ref79865657]Figure 22: Lossy compression results for levi (RA results to the left, AI results to the right)

[bookmark: _Toc86247331]Open Issues
[bookmark: _Toc86247332][bookmark: _Toc70274613]Artifacts in basketball sequence
One observation is that the basketball sequence presented artifacts at frames 239, 260, 264, 391, 434 and 485. This artifact can be seen at the lower left corner of the frame, and in shown in Figure 23. Notice that the artifact may affect the bounding box calculations and derivation. These artifacts were manually removed using Meshlab. The new cleaned sequences were used to estimate the sequence bounding box.

[image:]
[bookmark: _Ref70164071]Figure 23: Basketball frame 239
[bookmark: _Toc86247333]Hard to encode texture mapping

Some sequences have a texture map that is hard to encode, because it has several islands. This also affects the bitrate spent for coding the texture coordinates, and even prevented us from applying some pre-processing techniques. For instance, the levi sequence has a texture map as shown in Figure 24, and Meshlab could not perform mesh decimation by preserving the texture coordinates. This is one of the reasons why very low bitrates could not be achieved. It was suggested to remap the texture map, however it was decided to keep the texture map as is, since this may be a requirement coming from the content producer (this type of texture map may be faster to generate)

[image:]
[bookmark: _Ref79867519]Figure 24: Challenging texture maps from football and levi datasets

[bookmark: _Toc86247334]Rendering issues with quantized meshes
One of the points of discussion was the concern related to the quantization of vertex coordinates, especially when the rendering uses vertex shading. In the case of the PCCRenderer, the meshes are rendered without any shading, so a quantization step of 10 or 12 was deemed good enough for the content available. Moreover, the limited bit depth seemed reasonable for the current video encoder capability. However, it was shown that, if vertex rendering is used (which is often the case specially in AR applications), we might need a higher precision, otherwise artifacts due to shading may be visible, as shown in Figure 25.

	[image:]
(a) no shading
	[image:]
(b) vertex shading

[bookmark: _Ref76755040]Figure 25: Rendering of basketball with (a) no shading and (b) vertex shading
One possible solution would be to keep the quantization and send the per vertex normal, therefore allowing for a better shading by using normal provided by the encoder, and not the ones calculated from the vertices’ positions. However, transmitting the normal may be more costly than simply increasing the QP values. It was presented to the group that simply adding the quantized normal would increase the bitrate more than just increasing the QP. Nevertheless, the normal could be coded more efficiently using some prediction scheme. Another concern is that the group has not reached a consensus related to the normal metric, and how to evaluate compression of normal. We decided then to keep the QP as is, but further return to this topic in the future, and evaluate the coding of normal or the quantization of content with larger QP.

[bookmark: _Toc86247335]Conclusion
In this document we provided coding results using HM and Draco/AFX for dynamic meshes, to be used as anchors for the upcoming Call for Proposal on Dynamic Mesh Coding [13]. All the anchor results are available in the MPEG repository.

`
[bookmark: _Toc86247336]References
[1] [bookmark: _Ref76457512]WG 7, MPEG 3D Graphics Coding, EE 4.0 on content preparation and anchor generation, ISO/IEC JTC1/SC29/WG07, 134th meeting, N00117, Online, April 2021.

[2] [bookmark: _Ref76498687]WG 7, MPEG 3D Graphics Coding, EE 4.1 on mesh coding metric, ISO/IEC JTC1/SC29/WG07, 134th meeting, N00116, Online, April 2021.

[3] [bookmark: _Ref76474672]Yi Xu, Yao Lu, and Ziyu Wen, “Owlii Dynamic human mesh sequence dataset” ISO/IEC JTC1/SC29/WG11 m41658, 120th MPEG Meeting, Macau, October 2017.

[4] [bookmark: _Ref76474630]Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A. Chou, “8i Voxelized Full Bodies – A Voxelized Point Cloud Dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m40059/M74006, Geneva, January 2017.

[5] [bookmark: _Ref76474637]Danillo Graziosi, Alexandre Zaghetto, and Ali Tabatabai, “[V-PCC][EE2.6-related] Mesh generation script update,” ISO/IEC JTC1/SC29/WG07 MPEG2021/m55366, October 2020.

[6] [bookmark: _Ref76474605]Ralf Schaefer, Pierre Andrivon, Julien Ricard, Céline Guede, “Volucap and XD Productions Datasets,”, ISO/IEC JTC1/SC29/WG07 MPEG2021/m56192, January 2021

[7] [bookmark: _Ref76474614]Rafael Pagés, Emin Zerman, Konstantinos Amplianitis, Jan Ondrej and Aljosa Smolic, “Volograms & VSENSE Volumetric Video Dataset”, ISO/IEC JTC1/SC29/WG07 MPEG2021/m56767, April 2021.

[8] [bookmark: _Ref76458290][bookmark: _Hlk76543546]“Google Draco,” https://google.github.io/draco/, accessed: 2021-01-03

[9] [bookmark: _Ref76458280]ISO/IEC 14496-16:2006/AMD 2:2009, “Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX) — Amendment 2: Frame-based Animated Mesh Compression (FAMC)”

[10] [bookmark: _Ref76458301]ISO/IEC FDIS 23090-5:2020, Information technology — Coded representation of immersive media — Part 5: Visual Volumetric Video-based Coding (V3C) and Video-based Point Cloud Compression (V-PCC)

[11] [bookmark: _Ref76558188]WG 7, MPEG 3D Graphics Coding, Common Test Conditions for V-PCC, ISO/IEC JTC1/SC29/WG07, 132nd meeting, N00038, Online, Oct. 2020.

[12] [bookmark: _Ref76458446]ISO/IEC 23008-2, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 2: High efficiency video coding

[13] [bookmark: _Ref76543825]WG 7, MPEG 3D Graphics Coding, CfP for Dynamic Mesh Coding, 136th meeting, N00231, Online, October. 2021.

[14] [bookmark: _Ref79742027]Danillo Graziosi, “[V-Mesh] Report for EE 4.0 on content preparation and anchor generation,” ISO/IEC JTC1/SC29/WG07 MPEG2021/m57303, July 2021.

[15] [bookmark: _Ref79742557]Danillo Graziosi and Marius Preda, “[V-Mesh] A new parameter combination search algorithm for V-Mesh anchors,” ISO/IEC JTC1/SC29/WG07 MPEG2021/m57592, July 2021.

[16] [bookmark: _Ref79742559]Danillo Graziosi, “[V-Mesh] Lossy compression anchor for color-per-vertex,” ISO/IEC JTC1/SC29/WG07 MPEG2021/m57680, July 2021.

[17] [bookmark: _Ref86235492]M. Wien and V. Baroncini, “Report on dry-run results for Anchor bitstreams in Mesh CfP,” ISO/IEC JTC1/SC29/AG5 MPEG2021/m58383, October 2021.

2

image2.png

image3.png

image4.png

image5.png

image6.tmp

image7.png

image8.png

image9.emf

image10.emf

image11.png

image12.png

image13.png

image14.emf

image15.png

image16.png

image17.png

image18.png

image19.emf

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image1.jpeg

