[image:] 	ISO/IEC JTC 1/SC 29/WG 6	N0086

ISO/IEC JTC 1/SC 29/WG 6
MPEG Audio Coding Convenorship: US

Document type:	General

Title:	MPEG-I Immersive Audio Documentation for the Audio Evaluation Platform, Version 1

Status:	Approved

Date of document:	2021-07-16

Source:	ISO/IEC JTC 1/SC 29/WG 6

Expected action:	None

Action due date:	None

No. of pages:	54 (including cover page)

Email of Convenor:	srq @ audioresearchlabs . com

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg6

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG6, MPEG AUDIO CODING

ISO/IEC JTC1/SC29/WG6 N0086
July 2021, Virtual

	Title
	MPEG-I Immersive Audio Documentation for the Audio Evaluation Platform, Version 1

	Source
	WG 6, MPEG Audio Coding

	Status
	Approved

	Serial Number
	20665

Attachments:
· AEP_documentation_MaxExternalInterface.pdf

Contents
1	Introduction	4
2	Purpose	4
3	Creating the Evaluation Platform	5
3.1	Hardware	5
3.2	Commercial Software	6
3.3	MPEG Audio Working Group Software	6
3.4	MPEG GitLab Repository Access	7
4	Platform Overview	7
5	Conducting a Virtual Reality Example Test	8
5.1	VR Test Configuration	8
5.1.1	Setting up Unity	8
5.1.2	Setting up Max/MSP	8
5.2	Test Operation	10
6	Appendix A: Internal Workings	14
6.1	Max/MSP Overview	14
6.2	Output Loudness Matching	14
6.3	External Channel Routing	14
6.4	User interaction	15
6.4.1	General	15
6.4.2	Encoder Input Format (EIF)	15
6.4.3	Unity Scene Update Logic (Visual)	15
6.4.4	Max Scene Update Logic (Audio)	15
6.5	Temporal Synchronization	16
6.5.1	General	16
6.5.2	Max External Synchronization	16
6.5.3	Audio to Video Synchronization	16
6.5.4	Audio Signal to Audio Metadata Synchronization	16
6.6	Interfaces	17
6.6.1	Unity to Max	17
6.6.2	Max to Unity	17
6.6.3	Max to Externals	18
6.6.4	Sequence diagrams	18
6.6.5	Messaging in the AR extension	21
6.7	File management	22
6.8	Test Configuration File Generator Tool	23
6.8.1	Generator Tool	23
6.8.2	Example TCF	25
6.8.3	Example Session File	27
6.9	Loudness measurements	28
6.9.1	Overview	28
6.9.2	Generating a ‘consistent’ signal	29
6.9.3	Scene Database	30
6.9.4	Measuring the loudness	31
6.9.5	Calculating level alignment gains	31
6.9.6	Applying the level alignment gain	31
6.10	Complexity Measurement	31
6.10.1	Installation	31
6.10.2	Data collection	31
6.10.3	Results	32
6.10.4	Data analysis	32
6.10.5	Complexity self-evaluation	33
6.10.6	33
6.10.7	Examples	33
6.11	Log Files and Result Files	33
7	Appendix B: Additional information regarding the AR Extension to the AEP	34
7.1	Overview	34
7.2	AR Audio Scene Description	34
7.3	AR Visual Scene Description	34
7.4	Calibration and LSDF	36
7.5	LSDF Validation	36
7.6	Interactions and Hand Gestures	37
7.6.1	Creating Interactable Content	38
7.6.2	Current Limitations of Interactable Objects	38
7.7	Adding scene tasks	39
7.8	Performing an AR listening test	39
8	References	54

[bookmark: _Toc77343797]Introduction

The Moving Picture Experts Group (MPEG) is an ISO/IEC JTC1 sub-committee developing standards to create coded representations of digital audio, video and 3D graphics. The MPEG-I Immersive Audio standard, ISO/IEC 23090-4, specifically addresses architecture and coding needed to render audio content for presentation in virtual and/or augmented reality settings, in which a user can move with six degrees-of-freedom (6-DoF). Unlike traditional cinematic content, 6-DoF VR/AR allows movement in user orientation (pitch, yaw, roll) and translation (along the X, Y and Z axis in space) in the VR environment. Typical use cases for this technology could be a tour of a virtual museum, or presentation of a holiday destination before purchase. In addition, the technology includes the potential for users to interact and manipulate elements of their surroundings.

[bookmark: _Toc77343798]Purpose

In order to assess the performance of submitted proponent technologies an Audio Evaluation Platform (AEP) has been developed and is described in this document. Using the AEP, multiple proponent technologies can be subjectively evaluated in parallel, in real-time, whilst the user is free to fully explore the virtual and augmented reality environment.

The aim of the AEP is to allow assessors to capture quantitative subjective listening test data such that all aspects and experiences from a user can be considered when assessing quality for the next generation of audio coding for virtual and augmented reality.

 
[bookmark: _Toc77343799]Creating the Evaluation Platform
[bookmark: _Toc77343800]Hardware

Table 1 - List of Hardware Requirements
	Hardware
	Description

	VR Capable PC
	Mandatory System

	
	Graphics Card: NVIDA GeForce GTX 3000 series or higher
Processor: Intel(R) Core(TM) i9-10900K
10 Core(s), 20 Logical Processor(s)
Memory: 64GB RAM
Storage: SSD

	VR System
	The AEP has been developed for intended use with the HTC Vive or HTC Vive PRO. The installation of this hardware is not covered in this document. Links to installation guides and FAQs are provided. Please ensure that a large enough physical space is cleared for the play area. The minimum play area size is 3 m by 3 m, and a maximum of 4.5m by 4.5m.

	(Vive Store)
	https://www.vive.com/

	(Installation FAQ)
	https://support.steampowered.com/kb_article.php?ref=7770-WRUP-5951

	External Sound Card
	While the HTC Vive pro offers audio through the HDMI output to the provided headphones, to ensure a minimum standard audio quality suitable for evaluation, an external low latency sound card has been decided upon

	
	Focusrite Scarlett 2i2 3rd Gen:
https://focusrite.com/audio-interface/scarlett/scarlett-2i2

	Headphones
	Separate wired headphones, specifically the Beyerdynamic DT-990 Pro, other than those provided with commercial VR systems should be used to assure industry grade audio quality presentation. The cable should be long enough to allow 6-DoF movement around the playable area.

	AR Headset
	User tracking and AR visualizations for AR testing are done using the Microsoft HoloLens (version 1 or 2, 2 is preferred).

	Wi-Fi Router
	Communication between the AR headset and the computer running the AR controller and MAX is handled through a Wi-Fi router.

	(Example)
	NETGEAR Nighthawk X10
https://www.netgear.com/landings/ad7200/

	Mobile Device
	User input (scores, changing scenes) is done through a web browser on a mobile device (smartphone or tablet).

	(Examples)
	Samsung Galaxy Tab S5e, LG V30, iPhone 11 Pro

 
[bookmark: _Ref77320242][bookmark: _Toc77343801]Commercial Software

Table 2 - List of Software Requirements
	Software
	Description

	Operating System
	Windows 10

	
	All downloads for the following software should be for Windows 10, 64-bit.

	Unity3d
	Unity3d is used to host all VR related components. Please ensure that you purchase the correct license relevant for your firm / institute / company. The version of Unity to install is Version 2019.2.19f1.

	(Unity3d)
	Purchase your license: https://store.unity.com/

	(Download Archive)
	Version 2019.2.19f1: https://unity3d.com/get-unity/download/archive

	Max/MSP
	Max/MSP is used to host and control all audio related aspects of the evaluation platform. Please ensure you have Max 8 installed on your VR capable PC. There is no need to purchase a Max 8 license in order to run software. A license is only required for coding. More information can be found with the links below. Currently version 8.1.8 is supported, if there is issues downloading this version please contact the WG6 convenor.

	(Max 8)
	Download: https://cycling74.com/downloads

	(Max 8)
	FAQ: https://cycling74.com/support/faq-max8/

	SteamVR Runtime
	If you already have installed the HTC Vive/PRO on your PC, you will already have the SteamVR Runtime installed – this is required for setup and calibration. This is the driver for the hardware, and will be necessary in order to communicate with VR components inside Unity during run-time.

	Python
	Python is used in facilitating communication between the AR headset and MaxMSP. Version 3.4 onwards is required.

	
	Download: python.org/downloads

[bookmark: _Ref77327602][bookmark: _Toc77343802]	MPEG Audio Working Group Software
In conjunction with commercial software listed in Section 3.2, standalone software (Table 3) has been developed to be used specifically with the AEP. The location of this software is hosted in the GitLab repository of the platform.

[bookmark: _Ref77320262]Table 3 - MPEG Audio Working Group Software
	Software
	Description

	Python Controller Software
	Software for facilitating communication between the AR headset and MaxMSP.

	Test Configuration File Tool
	A GUI tool (compiled Matlab) for preparing a listening test. Scenes, test conditions and other required settings are identified in the tool and a corresponding configuration file can be generated for the platform.

	Loudness Measurement Tool
	A compiled Python tool for automatically controlling the AEP for making repeatable measurements of proponent renderer output.

	Complexity Measurement Tool
	Python scripts for making automatic measurements of renderer complexity [see section Error! Reference source not found.]

[bookmark: _Toc77343803]MPEG GitLab Repository Access
The MPEG Audio Evaluation Platform code is in the MPEG GitLab Repository. To be granted access please register an account here: http://mpegx.int-evry.fr/software/users/sign_in

After you have received confirmation of your account, please contact the WG6 Convener with the following access request information. You will receive a confirmation email followed by further steps for your login details. Once you have access, you will be given Guest level permission to the relevant repositories.

Contact:			To: Schuyler Quakenbush	
Email: srq@audioresearchlabs.com
Subject: MPEG Audio Evaluation Platform Request

Request Information:		Name:
Company / Affiliation:
Email:
Telephone:
Country:

The project is located at:
http://mpegx.int-evry.fr/software/MPEG/ImmersiveAudio/audio_evaluation_platform

You may download the project in two ways:

1. Direct download – Download a static copy of the project with no version control. This can be done by navigating to the Repository Tab and clicking the download icon at the top right:

2. [bookmark: _Hlk77320448]Repository Clone – Clone the repository via git to a folder on your machine. This will allow you to pull any further updates made to the platform. To clone the repository and its sub-modules, the command line text is provided In the Readme.md in the repository.

[bookmark: _Toc77343804]Platform Overview
Figure 1 shows a general overview of all components necessary to conduct an evaluation. The figure is broken up into two components of off-line processing (left), and processing done by the real-time audio evaluation platform itself (right). The red line indicates the division between the two processing stages (i.e. off-line and real-time). The list below provides some information on all components and processing required to conduct a test. Short descriptions of each component are provided in Table 4.

[bookmark: _Ref77320614]Table 4 - AEP Component Overview
	Component
	Description

	Raw audio .WAV files.
	Unprocessed audio files provided in demoAudioContent folder. All files have a sample rate of 48 kHz.

	MPEG-H processing
	This processing will be done by the MPEG Audio working group.

	Test Config File
	Configuration file to load into Max/MSP to conduct a test. This will be provided by the MPEG Audio working group.

	PCM Data
	MPEG-H decoded audio files to use within the test, provided in the demoAudioContentDecoded folder. The locations of these files are provided in the configuration file and loaded upon a new scene. All files have a sample rate of 48 kHz and are time aligned with the raw .WAV files. Multichannel files will be split into mono files by the Test Config File Gen tool.

	Directivity files
	Directivity files for sources to be provided to each proponent encoder.

	HR filter set files
	HR filter set files for the mandated HR filter set used by the renderers and other distorted filter sets possibly used by anchor-renderers to render anchor conditions. The filters are stored as impulse responses.

	Model Files / Video data
	Graphical data to be loaded into the Unity (VR) or Python (AR) software.

	Scene EIFs
	Encoder Input Format .xml files are a complete description of the AR/VR scene, together with the specified directivity files, to be encoded into a bitstream.

	MPEG-I encoders
	Proponent dependent encoders.

	Bitstreams
	Proponent dependent bitstreams. These will be loaded by the respective renderers.

	Max/MSP
	The commercial Max/MSP software (Section 3.2) is used to run the main Max/MSP test patch provided within the GitLab repository. Start-up and operation of the correct Test patch is discussed in Section 5.1.2.

	Renderers
	Proponent dependent decoder-renderers provided as Max External.

	Unity (Virtual Reality)
	The commercial Unity software (Section 3.2) is use to run the main Unity project. This Unity project is comprised of multiple test scenes and data. Start-up and operation of the correct start scene is discussed in Section 5.1.1.

	Python controller Software (Augmented Reality)
	Standalone Python software (Section 3.3) for facilitating communication between the AR headset and MaxMSP for conducting an AR test.

	Listening space description file (LSDF)
	For AR tests, the renderers read listening space information from a listening space description file [3].

[image:][bookmark: _Ref77327464]Figure 1 - Overview of Audio Evaluation Platform and Process

[bookmark: _Toc77343805]Conducting a Virtual Reality Example Test
The following chapter provides a walkthrough of an example test. Please ensure that the folder structure located on your machine is the same as described in Section 6.7. To run an example test, an example.JSON file is used, located in the <TestConfigFiles> folder. For more information on test configuration files and how to generate one, see Section 6.8.

[bookmark: _Toc77343806]VR Test Configuration
[bookmark: _Ref77327593][bookmark: _Toc77343807]Setting up Unity

1. Navigate to <AEPUnityProject/Assets> and open the “_Main.unity” file. This should open Unity (already installed on the PC) and load the starting scene of the test ready to run.

[bookmark: _Ref77327555][bookmark: _Toc77343808]Setting up Max/MSP

1. Navigate to the <maxMSP/v2.1> directory of the package and open the “EvaluationPlatform_Main_v3.maxpat” file.
2. Check that the sample rate, I/O vector, Signal Vector and Overdrive settings are set correctly (options menu, AudioStatus). These should automatically be set to 48000, 256, 256 and off respectively. The ASIO driver should be used which requires that the sample rate and buffer size is also set in the Focusrite Scarlett Device Settings (as below)

[image:]
Figure 2 – Max Audio Settings

3. In Max/MSP, switch to the TestSettings tab.

[image:]
Figure 3 - Max/MSP Test Settings Tab.

4. Load the JSON test configuration file by pressing ‘Load TCF’, and navigating to the file. Load a session file by pressing the ‘Load Session File’ button and selecting the desired JSON session file. This should load in all Max/MSP Externals and required audio files, and the HRIR filter set specified in the Test Configuration File (Section 6.8).
5. Switch back to the ‘EvaluationPlatform’ tab, and enter the subject information, and select where to save the results file.
[image:]
Figure 4 - Main EvaluationPlatform Tab of Max/MSP
6. In the case of wanting to continue an unfinished listening session, please ensure you reopen the same session file, and instead of opening a new results file, press the “Continue Existing Results File” button and select the previous partially complete file.

[bookmark: _Toc77343809]Test Operation
Once the configuration file has been loaded, we are able to run a test. For the test administrator to begin the test, make sure the ‘_Main’ scene is loaded. Afterwards, press the PLAY button at the top of the Unity scene window (alternatively press CTRL + P). This should initialise SteamVR, and movement in the HMD should be reflected in the VR world shown in the Game window.

The following steps are provided in order for a subject to perform a VR test.

1. 	Read through the functionality for the controls, then put the HMD on and familiarize yourself with the VR environment.

a. The instructions shown in Figure 5 for controller usage are also provided inside the ‘_Main’ scene for you to refer too. These will not be shown again in subsequent scenes in the test, so make sure you can easily control what you would like to do so as not cause a distraction during evaluation.

[image:][bookmark: _Ref77327731]Figure 5 - HTC Vive Control Usage

b. [image: U:\rbo_VR_Evaluation\mpeg-i documents\MPEG-I AEP Documentation\wordImages\Teleportation.png]Teleportation within the AEP uses a point and click, blink system (Figure 6). Holding down the [GRIP] button will activate a pointer, displaying a Bézier curve and target location. The Bézier curve is used to restrict the teleportation to a maximum distance. Holding down the [GRIP] button and pulling the [TRIGGER] will teleport the user to the target location. A small fade-out/in (blink) of visuals is present, and no matter how far the distance, teleportation time is always 5 ms.
[bookmark: _Ref77327748]Figure 6 - Teleportation Usage

c. Some scenes make use of an alternative way of moving within a scene where the user can glide smoothly in any direction by pointing with a hand controller and using the touchpad to glide forward, backwards, left or right relative to the pointing direction. Touching the touchpad closer to the center will make the movement slow whereas a touch closer to the edge will result in a faster movement. This can be useful e.g. when the user wants to move over larger distances while evaluating rendering aspects that vary with the position. This functionality is disabled whenever the UI panel, as described below, is brought up.Touching the touchpad at the top middle move the user in the direction that the controller is pointed.

Touching any other part of the touchpad will move the user to the right, left or backwards relative to the direction of the controller.

Figure 7 –Touchpad Walking Usage

d. Pressing [BUTTON A] on the controller will bring up the UI Panel, this is the main interface to use throughout the evaluation. The Panel will always instantiate in the user’s field of view, after which, it will remain static at this position. If you wish to reposition the UI panel, press [BUTTON A] to hide the panel, then again to re-instantiate it.

At the same time the panel appears, a laser pointer is also activated. The laser pointer can be used to interact with the buttons on the panel (see Figure 8). Mousing over a button using the laser pointer will highlight the item, pressing the [TRIGGER] will ‘push’ the button.

The Audio Evaluation Platform supports uses an A-B comparison test The UI panel looks as in Figure 10. Operations are:
	· ‘A’, ‘B’
	Select conditions A or B.

	· Slider
	Indicate a relative rating for the two conditions.

	· ‘Next’
	Continue to the next evaluation scene.

[image:][bookmark: _Ref53740788]Figure 8 – A-B test panel.

2. Once you are accustomed to the controls, teleporting, and operating the UI panel, navigate to the main menu and press `Begin Test'. This will then load the first evaluation scene.

3. When loading into a new scene, you will be placed in a basic ‘preScene’ Room (Figure 9). In this space, task specific instructions are displayed along with an illustration of certain Points of Interest. Once you have read the instructions and understand where to explore and how to interact, you are ready to begin the evaluation. To do this, please take the headphones presented to the right of the user position with your controller. After which, you will be teleported to the starting location and audio will begin.
4. If, for any reason, you want to skip a given scene, there is a “skip scene” menu opposite to the headphones in the preScene room available. This will directly load into the next scene.

[image:]
[bookmark: _Ref77327789]Figure 9 - PreScene-Room with instructions and illustrations

5. Upon starting the evaluation content, the UI panel will be hidden. Before bringing up the panel, take a moment to look, move, and teleport around your surroundings to become accustomed to the environment. Once you have an understanding of the activity within this scene, continue with the evaluation using the controls shown in Step 3. Once you feel like the ratings you have provided for all conditions best reflect your perception, press ‘Next’ to move onto the next trial or scene. Repeat this process until you are returned to the `_Main' scene.

6. You are now finished with the test, put down your controllers and take off the Headphones and HMD

 
[bookmark: _Toc77343810]Appendix A: Internal Workings
[bookmark: _Toc77343811]Max/MSP Overview
Figure 10 shows an overview of the real-time MPEG-I CfP evaluation platform highlighting the specific data flow within Max/MSP. This data flow is the same for both AR and VR evaluations.

[image: MaxMSP]
[bookmark: _Ref77327804]Figure 10 - Internal Workings of Max/MSP

[bookmark: _Toc77343812]Output Loudness Matching
The binaural output of each renderer is passed through a gain module before being fed into the output switcher. The gain levels are controlled, on a per scene basis, by values in the test configuration file. The intention is to minimise any perceived loudness differences between renderers. Each proponent provides measured loudness values for every scene that can be used by the test configuration file generation tool to calculate the required gains. Information on performing the loudness measurements can be found in section 6.9.
The output volume of the Focusrite Scarlett 2i2 should be set to maximum.

[bookmark: _Toc77343813]External Channel Routing
As the evaluation platform runs a listening test, multiple scenes are loaded as the user progresses through the test. The platform must then open a set of .WAV files and ensure that their signals are fed to the correct Max External input channels.

The test configuration file lists all .wav files relevant for each scene, along with an associated aepInputChannel. This information is taken from the Encoder Input Format (EIF) XML files of the respective scenes, and must also be taken into account by the encoders, such that decoders know what metadata corresponds to which incoming signal.
There are two types of signals:
· ‘continuous’ intended for streaming playback and
· ‘event’ representing sound effects for user interaction.
Max opens all files and starts to feed the continuous signals to the pre-delay buffers of each External on the associated External input channels. Channels associated with event signals will carry zeros, unless the sound effect signal is feeding audio to the Externals due to a trigger.

Pre-delays are excluded on the event signals to keep the interaction-to-sound delay as low as possible, but may introduce temporal misalignment between Externals, which can be detected with sufficiently long ‘event’ sound effects.

All .WAV files loaded by the evaluation platform are expected to be mono files. This hugely reduces the complexity and memory usage of the Max patch taking care of channel routing, compared to having .WAV files with varying numbers of channels. Any .WAV file, listed in a scene’s EIF XML file, with more than one channel is split into multiple mono .wav files with a numbered postfix in the pre-processing for the listening tests. This is done by the test config generation tool at the time of generating the test configuration files if no mono files are already provided.

E.g.:
	ambience5.0bed.wav	→	ambience5.0bed_1.wav
						ambience5.0bed_2.wav
						ambience5.0bed_3.wav
						ambience5.0bed_4.wav
						ambience5.0bed_5.wav

[bookmark: _Toc77343814]User interaction

[bookmark: _Toc77343815]General
In applications of a future MPEG-I specification, there is a system component that detects user interactions and handles any intelligence, like randomizing sound effects or running a physics engine that triggers sound effects as a result of non-immediate consequences of user interactions (e.g. sounds of bouncing ball after user has thrown it). This is not the responsibility of the audio specification, yet the metadata and decoder should support such applications.

Content creators determine what user interactions are possible, and how the audio renderer should respond to it by defining audio scene updates.

[bookmark: _Toc77343816]Encoder Input Format (EIF)
In the Encoder Input Format [2], scene updates can be described which in turn can be triggered by user interactions at runtime. The scene updates are identified with an identifier. An update is triggered by an External entity by sending the corresponding identifier to the MPEG-I renderer over a user interaction interface.

These scene updates can describe changes to parameters (e.g. enable/disable ‘continuous’ sound sources, change occlusion parameter) and/or triggering the playback of an ‘event’ sound effect. Sound effects signals are identified by the “mode” attribute in the corresponding audio elements being set to “event”. This information is taken over to the test configuration file that lists all audio signals.

[bookmark: _Toc77343817]Unity Scene Update Logic (Visual)
In the MPEG-I AEP, the Unity scenes must support the visual and logic correspondence of the scene updates as described in the EIF. Embedded scripts detect them from the events of the Vive controller. As a result, Unity shall send a message with the corresponding scene update identifier over OSC to Max (similar to how the listening test GUI interactions are conveyed). For scene updates where attribute float values are provided through Unity such as position or rotation, these values are included in the OSC message in the order as indicated in the scene’s EIF file. Max, in turn, relays it to all Max Externals via an input channel using the integer update identifier, and corresponding float values if required.

[bookmark: _Toc77343818]Max Scene Update Logic (Audio)
In case a sound effect is triggered, Max will start feeding the corresponding PCM signal to all the Externals. The test configuration file (that is partially derived from the EIF XML files of scenes involved in the test) lists sound effect signals and the corresponding user interaction identifiers that trigger it.
E.g.:
{
	"PathToFile": "AudioFiles/Scene2/PianoKeyFX.wav",
	"aepInputChannel": 3
	"PlaybackMode": "event"
	"Trigger": 14
}

Max checks the scene update OSC messages from Unity for identifiers and compares it to identifiers associated with sound effects in the test config file. If a match is found, the sound effect signal is fed to the renderers over the corresponding Max External input channel.

[bookmark: _Toc77343819]Temporal Synchronization
[bookmark: _Toc77343820]General
With video handled by Unity, audio signals by Max/MSP 8 and audio metadata by each Max External, it is crucial to ensure proper time alignment between these three. Additionally, the output of all Max Externals must be synchronized as well. The interfaces described in Section 6.6 include messages that allow communication between these three platform components to establish the synchronizations as described in the following paragraphs.

[bookmark: _Toc77343821]Max External Synchronization
The synchronization between the Externals is achieved by External-dependent delays, placed before the renderers to avoid increasing motion-to-sound latency. This requires that all Externals have a constant delay for a given listening test (i.e. independent of content).

For perfect output alignment of the different renderers, pre-delay D_X (for External X with delay D_PX) is chosen such that D_X+D_PX==D_T for all renderers. The smallest pre-delay is 0 samples. Max obtains the plugin delays (D_PX) from the test configuration file.

[bookmark: _Toc77343822]Audio to Video Synchronization
Upon a scene switch triggered by the user pressing the “Begin Test” or “Next” button in the GUI, a new bitstream identifer is provided to the Max Externals via the LoadScene() function. The bitstream identifier is obtained from the test configuration file (<TestID>_<SceneID>). Renderers should look in the same folder location (see 6.7 for folder structure) as their External file to find their own corresponding bit-stream file. As soon as the LoadScene() message is triggered in Max/MSP, DAC processing is turned off. Once the Externals have successfully loaded their bit-streams, a status message is triggered in Max/MSP to say all renderers are ready to process audio.

Meanwhile, Unity loads the visual scene and turns off any objects with level 1 updates (pre-defined animations). Unity sends a /sceneReady message to Max signalling that it is done loading/compiling. Max will then check both if /sceneReady has been received and all renderer statuses are ready. Once both conditions are met, Max returns a /renderersReady message back to Unity to un-pause time. The time for this round of hand-shake to be completed is normally around 1 second. Once time is un-paused the user is now free to interact in the pre-scene room and read all instructions. When the user would like to start assessing the content, the user interacts with a ‘start object’ (indicated as a red capsule) which then triggers another round of messages. Unity sends a /beginScene message to Max which will turn the DAC processing on, after which Max returns a /startVisuals message to Unity to signal all objects with animation scripts (level 1 updates) to turn on.

To ensure that synchronization is maintained during playback a /loopStream message is sent to Unity when the audio files buffers loop in Max, (at the end of the scene duration), When this message is received the scripted animations are reset to their start states.

[bookmark: _Toc77343823]Audio Signal to Audio Metadata Synchronization
The maximum delay value (D_T) is provided to all Externals at the start of a test session via the “/setmaxDelay” function call. Each External is responsible for using that information to align their metadata bitstream to the PCM data being fed to it. This is part of the interface described in Section 6.6.3.

In the offline processing stage, the output PCM signals of the MPEG-H decoder are time-aligned to the corresponding original signals to make sure that the decoded PCM signals are in line with what the encoder expected based on the raw PCM signals and EIF file.

The plugin's audio processing callback function is called as soon as audio processing is enabled in Max/MSP (dac~). Having received the maximum delay from Max and knowing its own delay (D_PX), each External can calculate how many values to ignore (D_X) before the actual PCM signals from the wav files arrive.

[bookmark: _Toc77343824][bookmark: _Ref77346478]Interfaces
[bookmark: _Toc77343825]Unity to Max
From Unity to Max, an OSC interface is used to send messages with user positional information, messages from the listening test UI and messages about user interactions with the content.

Table 5 - Overview of OSC messages from Unity to Max.
	Message Address
	Value
	Description

	/userPose
	<list>
world.X
world.Y
world.Z
world_rot.Y(yaw)
world_rot.X(pitch)
world_rot.Z(roll)
real.X
real.Y
real.Z
real_rot.Y(yaw)
real_rot.X(pitch)
real_rot.Z(roll)
	User position and orientation within the virtual world(unity) and real world (tracking space).
For world rotations, the angle range is normalized to 180° - ±180°
For real rotations, rotations remain between 0°- +360°

Coordinates are transformed in Unity, from Unity (left-handed) to OpenGL (right-handed) and delivered to Max/MSP.

	/next
/beginTest
/btn/con1
/btn/con2

	N/A
	Listening test events

	/slider1
/slider2

	int [0..100]
	Listening test values

	/teleport
	N/A
	Indicates a teleport occurred

	/interactionEvent
	integer, (float × n)
	User interaction identifier followed by n={0,..,21} floating point parameter values.

	/sceneReady
	N/A
	Sent when a scene is loaded and compiled, and will start playing in Unity. For A-V time alignment.

	/requestScene
	N/A
	Sent to ask Max to provide the name of the next scene at startup and on each scene change.

	/beginScene
	N/A
	Sent to Max to turn DAC processing on as soon as the user moves from the pre-scene room to the main evaluation content.

	/requestTestType
	N/A
	Initialization of the _Main will send an OSC request message to Max/MSP, to determine which test UI will be used.

	/sessionBegin
	N/A
	Sent to Max to indicate Unity is now running, and that the control logger should begin a new session file to write all control data.

	/skipScene
	N/A
	Sent to Max from Unity when the user decides to skip a scene while in the pre-scene room

[bookmark: _Toc77343826]Max to Unity
Max will also send messages to Unity to control the order of the scenes, and ensure A/V sync.

Table 6 - Overview of OSC messages from Max to Unity.
	Message ID
	Value
	Description

	/nextScene
	<string><int>
	Scene name to load and play after the current scene (the scene that will be ‘under’ the “Begin test” or “Next” button).

	/renderersReady
	<int>
	After loading a scene, Unity pauses time until Max sends this message.

	/startVisuals
	<int>
	Max sends this message as soon as audio has begun processing signalling unity to turn on any objects on with any animations.

	/testType
	<string>
	Name of test UI to be used, controlled in the _Main scene.

	/sceneTask
	<int>
	Subcategory of a scene. Used to identify which task within the corresponding scene should be conducted by the listener. The value is used to change scene elements that are specific to a task such as; task instructions, starting location and images.

	/audioLoadingProgress
	<float>
	Loading status of audio files within Max/MSP to be displayed inside Unity for visual feedback.

	/currentTrial
	<int>
	Sends the current trial on trial switching, used in case a session is restarted part way through.

	/lastTrial
	n/a
	Used to signal that the current trial is the last trial in a scene.

[bookmark: _Ref77328265][bookmark: _Toc77343827]Max to Externals
PCM data is provided on Max External input connections with blocks of 256 samples.

To communicate data and instructions from Max/MSP to the Externals all proponent externals must follow the same input structure, as indicated in the following table.

Table 7 - Input Messages to Max/MSP Externals
	Message
	Type [Range]
	Description

	loadScene
	A_SYM (String: bitstream file)
	Provide the relevant bitstream file name to be used for the scene. Audio processing inside MaxMSP should be interrupted between loading scenes. The string argument is: “<sceneID>_<testID>”

	userPose
	A_GIMME
float: × 12
int: teleport {1,0},)
	Update listener position and orientation of user in virtual world and real space, using OpenGL coordinate conventions delivered from Unity. Flag to signal teleportation to suppress Doppler effect.

	triggerUpdate
	A_GIMME (int: id, float: Param1 … float ParamN)
	Pass an update ID of pre-defined EIF update to be triggered immediately. In case of updates where attribute values are provided through Unity, up to 21 additional arguments may be provided with attribute values for the update.

	setMaxDelay
	A_LONG (int: sample length)
	Delay value of the pre-buffer to time align audio with bit-stream

	loadHRIRSet
	A_SYM (String: full path to HRIR file)
	Provide the relevant HRIR to be used for the entire test.

	loadLSDF
	A_SYM (String: full path to LSDF file)
	Provide the relevant LSDF to be used for the scene.

Table 8 - Output messages from Max Externals.
	Message
	Type [Range]
	Description

	status
	int
	Status message(-1: busy, 0: ready, >0: error)

	statusMsg
	String
	Detailed status or error message.

An overview of C-functions that need to be supported by the Max External to communicate with the AEP is given in the PDF enclosed with this document [REF] and in the skeleton code header documentation. The skeleton Max External code can be found at:

http://mpegx.int-evry.fr/software/MPEG/ImmersiveAudio/MaxExternalSkeletonRenderer

[bookmark: _Toc77343828]Sequence diagrams
The figures below show the messaging structure in sequence diagrams.
[image: aep-continuous]Figure 11 - Sequence diagram showing messages conveying tracking data.

[image:]
Figure 12 - Sequence diagram showing messages controlling test execution.

[image: aep-interaction]

Figure 13 - Sequence diagram showing scene update messages originating from UNITY..
[bookmark: _Toc77343829]Messaging in the AR extension
Figure 14 below shows a sequence diagram of the AR extension messaging between the different system components. The messages between the Python Controller and MaxMSP are the same as for the VR case (Unity <-> MaxMSP) explained above. In addition to those messages, the HoloLens and Python Controller exchange information such as visual object files and metadata as shown below.

[image:]
[bookmark: _Ref43713542]Figure 14 - Sequence diagram for the AR extension. 1) apiData contains calibration information and scene information (scene ID, visual object metadata). 2) The http request for model files is done if the scene ID has changed. If models are already loaded to the HoloLens, the model files are not sent. 3) The beginScene message is sent only after audio loading has finished (audioLoadingProgress 1.0) and /renderersReady has been received.

[bookmark: _Ref77327658][bookmark: _Toc77343830]File management
This section provides information regarding the folder structure of the AEP. All is contained within the <ROOT> directory. The .wav files in <ROOT>/SceneAudioContent/AudioContent represent uncoded audio signals. Therefore, an additional folder with MPEG-H decoded content is present with the same substructure and filenames for the .wav files under <ROOT>/SceneAudioContent/AudioContentDecoded. These will be fed to the renderer Max Externals (referred to as Externals).

	<ROOT>
	TestConfigFiles
		Test_1.json
		Test_2.json
	SceneAudioContent
		AudioContent
			<SceneName1>
				<sceneEIF>.xml
				*.sofa
				*.wav
			<SceneName2>
				<sceneEIF>.xml
				*.sofa
				*.wav
		AudioContentDecoded
			<SceneName1>
				*.wav
			<SceneName2>
				*.wav
	MaxMSP
		<version>
			*.maxpat
 logs
	AEPUnityProject
		.
	HRTF
		*.sofa
	ProponentData
		Submission1
			<pluginName1>.mxe64
			<SceneIDFromEIF1>_test1.bin % E.g. Office_test1.bin
			<SceneIDFromEIF1>_test2.bin
			<SceneIDFromEIF2>_test1.bin % E.g. Hospital_test1.bin
			<SceneIDFromEIF2>_test2.bin
			<SceneIDFromEIF3>_test1.bin
			<SceneIDFromEIF3>_test2.bin
			...
		Submission2
			<pluginName2>.mxe64
			<SceneIDFromEIF1>_test1.mpi % E.g. Office_test1.mpi
			<SceneIDFromEIF1>_test2.mpi
			<SceneIDFromEIF2>_test1.mpi % E.g. Hospital_test1.mpi
			<SceneIDFromEIF2>_test2.mpi
			<SceneIDFromEIF3>_test1.mpi
			<SceneIDFromEIF3>_test2.mpi
			...
	LSDF
		LSDF_1.xml
		LSDF_2.xml

For AR testing, the setup is similar to the one previously described. In addition to the folders described there, we need a place for the AR visuals. The visuals for the AR scenes are stored in a folder called ‘scenes’ in the ‘AR_HMD_CONTROL_SOFTWARE’ folder of the AR evaluation software. See Appendix B for more detailed information on the scene configuration and model files.

<AR_HMD_SOFTWARE> // HoloLens app
<AR_HMD_CONTROL_SOFTWARE> // Python controller code and AR scene visuals
	<scenes>
		<Scene1>
			*.zip // model files
			config.json // scene configuration
			instructions<INT>.txt // scene instructions (see section 7.7)
		<Scene2>
			*.zip // model files
			config.json // scene configuration
			instructions<INT>.txt // scene instructions (see section 7.7)

[bookmark: _Ref77327671][bookmark: _Toc77343831]Test Configuration File Generator Tool
[bookmark: _Toc77343832]Generator Tool
There is a tool to facilitate generating test configuration files (TCF) for different tests or experiments. It is based on a Matlab GUI application that is provided as a standalone application. The basic idea is that scenes and conditions are selected and some further test options are configured. Scenes are added by indicating EIF files and conditions by indicating Max External files. Based on the information provided in the GUI and EIF files, the tool will write a corresponding JSON-based test configuration file that can be parsed by the AEP. Furthermore, upon saving the TCF, the tool will also split non-mono files in the demoAudioContentDecoded folder into mono files as defined in section 6.3.

Figure 15 shows the GUI of the TCF generator tool with various elements annotated with numbers. Below, a short description of these elements will be given.
1. Test type – Indicates what test methodology the TCF should indicate, MUSHRA-VR, A-B or multi-attribute ACR.
2. Scene order – Whether the AEP should randomize the scene order.
3. Level alignment – Indicates what type of level alignment to do; ‘Per scene’ or ‘Per test’.
4. Root folder – The tool expects the folder structure as outlined in section 6.7, this field should contain the root folder of the folder structure. This folder will only be used for the tool accessing the files. All data in the TCF will use relative paths wrt the root folder and is therefore portable. Type or browse for the folder.
5. Test ID – A numerical identification of the test, according to test and evaluation procedure document. E.g. Test 1.
6. Include self – For A-B testing whether to include the comparison of all conditions with themselves (e.g. for post-screening).
7. New scene – Creates a new empty scene slot in (18).
8. Delete scene – Deletes the currently selected scene from (18).
9. Scene name – A scene name for the currently selected scene from (18). Used in the results file of the AEP.
10. Unity identifier – Must be set to the unity scene name corresponding to the currently selected scene from (18).
11. EIF filename – Relative path and filename of the EIF corresponding to the currently selected scene from (18). Type or browse for the file.
12. Scene Task IDs – A list of integer IDs related to the scene tasks to be tested for this scene.
13. LSDF ID – ID of the LSDF to be used for the scene.
14. New condition – Creates a new empty condition slot in (19).
15. Delete condition – Deletes the currently selected condition from (19).
16. Condition name – A name for the currently selected condition from (19). Used in the results file of the AEP.
17. Plugin filename – Relative path and filename of the Max External plugin of the currently selected condition from (19). Type or browse for the file.
18. Plugin latency – Signal latency of the plugin for the currently selected condition from (19) for the configuration used in the respective test.
19. HRTF filename – Relative path and filename of the HRTF SOFA file for this condition. Normally all conditions shall use the same HRTF, but it allows for a mono condition using a SOFA with Diracs in all HRTF pairs. Type or browse for the file.
20. Scenes list – List of scenes in the test.
21. Conditions list – List of conditions in the test.
22. Organizing buttons – Moves the selected scene or condition (whichever was activated last) up or down in the list.
23. Loudness matrix – Matrix in which the BS1770-4, level-gated loudness must be entered per condition and scene. This is used to calculate level alignment gains. Values can only be edited for the column corresponding to the selected condition in 18.
24. TCF preview – TCF file content which is updated with each change made in the UI.
25. Save button – For saving the JSON file and splitting any non-mono input files in the demoAudioContentDecoded.
26. Session menu – Allows to save, open and clear the tool sessions. E.g. sessions for each different test can be managed without re-entering all data after switching.

Note that the tool takes the id attribute of the AudioScene node in each EIF file and combines it with the test ID into a unique scene ID in the TCF, that the AEP sends to the Max External plugins as a bitstream identifier (see section 6.6.3). If this scene ID contains invalid characters for filenames (e.g. ‘:’, ‘*’) or spaces, these will be replaced with a dash ‘-’.

[bookmark: _Ref77328231]Figure 15 - GUI of TCF generator tool with elements annotated

[bookmark: _Toc77343833]Example TCF
The test configuration file per subjective test can be loaded into Max and configures its settings depending on the test, scene or test condition. The purpose is that each test site will get the same configuration of the evaluation platform for a test when they load the same test configuration file.

The test configuration file contains:
· General information such as:
· Test ID
· Test methodology.
· Whether to randomize the scenes or not.
· A list of all the conditions in the test, with for each condition:
· External file name
· The plugin’s signal latency, used for time alignment
· A level alignment gain to be applied to the plugin’s output
· A list of the scenes involved in the test, with for each scene:
· Scene ID
· Unity scene name
· A list of .wav files, including
· Which External input channels they shall be routed to,
· Whether they are a sound effect (event) or not and, if sound effect, which interaction ID triggers their playback.

	{
 % ID of the test covered by the TCF.
 "TestID" : "Test1",

 % Declaration of the test type to be conducted.
 "TestType" : "MUSHRA",

 % Path to the root directory, relative to the Max patch folder.
 "RootDirectory": "./../../",

 % Number of scenes that will be tested.
 "NumberOfScenes": "3",

 % Should the test be carried out randomized, or conducted in the order
 specified in the order below {“Random”, “Fixed”}.
 "SceneOrder": "Random",

 % The following conditions data is loaded for the test.
 "Conditions": [
 {
 % Allocates a label to the External. This will be used in the results file.
 "ConditionName": "Anchor1",

 % The respective path to the Max external relative to RootDirectory.
 "PathToPlugin": "ProponentData/Submission1/<pluginName1>.mxe64",

 % External specific signal latency provided to time-align all externals.
 "External_Latency": 30,

 % Level alignment gains for each scene in dB
 "LevelAlignGain": [-1.2, -0.9,]

 % Level alignment gains for each scene in dB
 "HRTFFile": "HRTF/KU100.sofa"
 },
 {
 % Information for condition 2.
 },
 {
 % Information for condition 3
 },
 {
 % Information for condition 4
 }
],

 "Scene": [
 {
 % Allocates a label to the scene. This will be used in the results file.
 "SceneName": "Archery",

 % Corresponding Unity scene name, for configuring scene order from Max.
 "UnitySceneName": "_Archery",

 % Scene ID (taken from EIF, id attribute of AudioScene)
 "SceneID": "sc-archery",

 % Scene Task IDs of scene tasks to be tested
 "SceneTaskIDs": [2, 3, 5],

 % How many audio FILES are within this scene, NOT the number of audio
 elements. Since all files are mono, corresponds to the nr of signals.
 "NumberOfAudioFiles": 3,

 % Which LSDF to use for this scene. "LSDF": 2 corresponds to LSDF_2.xml,
 for example. To be used only with Test 2 (AR).
 "LSDF": 2,
 % Scene specific audio file information.
 "AudioFiles": [
 {
 % Path to the audio file relative to RootDirectory. Needed for
 MaxMSP to load the file.
 "PathToFile": "demoAudioContentDecoded/Archery/WaltzOfTheCarnies.wav",

 % Routing information for the audio file. i.e., where should this audio
 information be fed to the Max Externals.
 "aepInputChannel": 9,

 % Playback mode of the file
 % Continuous = will be played throughout the scene.
 % Event = will be triggered by an interactive event inside the
 scene.
 "PlaybackMode": "continuous"
 },
 {
 "PathToFile": "demoAudioContentDecoded/Archery/BirdSong.wav",
 "aepInputChannel": 10,
 "PlaybackMode": "continuous"
 },
 {
 "PathToFile": "demoAudioContentDecoded/Archery/BalloonInflate.wav",
 "aepInputChannel": 0,
 "PlaybackMode": "event",

 % Numerical trigger ID sent from Unity that triggers playback.
 "Trigger" : 1
 },
 {
 "PathToFile": "demoAudioContentDecoded/Archery/BalloonPop.wav",
 "aepInputChannel": 1,
 "PlaybackMode": "event",
 "Trigger" : [2, 4]
 }
]
 },
 {
 % Information for scene 2.
 },
 {
 % Information for scene 3.
 }
]

[bookmark: _Toc77343834]Example Session File
The total number of pairwise comparisons for all renderers and all scene tasks will be too great for a single listener to carry out all of them, as such each listener is assigned a specific session file. The session file details the exact scenes / scene tasks that a test participant shall do, as well as the pairwise-comparison trials within each scene, and the order in which the scenes and trials should be carried out.
The integer references to Scene, TaskID, and Conditions in the session file are 1-indexed references to the data in the TCF.
	{
 "TestType": "ABTest",
 "SequenceID": 1,
 "TestItem": [
 {
 "Scene": 11,
 "TaskID": 1,
 "ConditionSet": [
 [1, 2],
 [4, 3],
 [2, 7]
]
 },
 {
 "Scene": 8,
 "TaskID": 1,
 "ConditionSet": [
 [5, 2],
 [7, 5],
 [2, 3]
]
 },
 {
 "Scene": 5,
 "TaskID": 1,
 "ConditionSet": [
 [1, 5],
 [3, 7],
 [3, 4]
]
 }
]
}

[bookmark: _Ref77327834][bookmark: _Toc77343835]Loudness measurements
[bookmark: _Toc77343836]Overview
For listening tests performed in the AEP, level alignment needs to be performed on the different conditions used in the test.

In order to align the loudness of multiple conditions, it must first be measured how these conditions differ in loudness without any level adjustments.

The level alignment process consists of four steps.
1. Generate a ‘consistent’ signal with known conditions.
2. Measure the loudness of the generated signal.
3. Calculate level alignment gains.
4. Apply the level alignment gains.

The following sections will discuss these steps in more detail.

[image:]
[bookmark: _Ref77328297]Figure 16 - Automatic AEP control for measuring renderer loudness levels.

[bookmark: _Toc77343837]Generating a ‘consistent’ signal
In order to facilitate repeated, replicable control conditions within the AEP a tool has been created that replaces the functionality of Unity, shown in Figure 16.

The AEP is designed to allow plugins generating a signal dependent on the user’s position and interaction in the scene. For assessing loudness differences accurately across multiple renderers, all renderers must be measured with the same conditions (i.e. the same user input). The automatic control tool, alongside a corresponding sub-patch within the Max environment, ensures that all renderers receive the same user position and dynamic updates, and that the output of each renderer is recorded to a PCM wave file in parallel.

The process to carry out the signal generation is as follows:
1. Load the Max/MSP AEP environment:
file: AudioEvaluationPlatform\maxMSP\v2.1\EvaluationPlatform_Main_v3.maxpat

2. Load the Automated AEP Control tool:
file: AudioEvaluationPlatform\maxMSP\v2.1\LoudnessMeasurement.exe)

3. The tool communicates with Max via UDP, and if a connection is made the Max/MSP Connection button should show green.
If you are using the tool on a machine other than the one that Max is running on, or you have changed the default IP addresses used for communication within the AEP, clicking the “Max/MSP Connection” will allow you to adjust the connection information.

4. Load a Test Configuration File (TCF) that contains the combination of scenes and renderers that you wish to measure. This can either be loaded in Max as you would for running a normal listening test, or can be loaded directly in the measurement tool, using the “Load TCF” button.

5. Set the output path using the “Set Path” button. This is the directory where the audio files will be created when you carry out a measurement.

6. Press the “Start Automatic Measurement” button.

7. The Tool will automatically progress through all scenes in the loaded TCF, and for each renderer a PCM file will be created in the output folder. The files are named as:
<renderer_number>_<renderer_file_name>_<scene_name>_fullAuto.wav

8. The ‘renderer number’ is the Poly Instance that the renderer is loaded into, and corresponds to the order in which they are specified in the TCF.

[bookmark: _Toc77343838]Scene Database
The automated tool needs additional information about each of the scenes that is not contained in the TCF or the corresponding Encoder Input Format. In order to achieve this, a scene database has been created in a JSON file (by default sceneDatabase.json accompanies the tool).

The scene database includes the scene duration for every scene, either taken from the EIF or if it is not specified a default of 120 seconds. Also included is a StartPosition, which is the place where the “listener” should be placed during the measurement, and a list of updates that should be sent to the renderers during run time (supporting both Triggered and Dynamic updates)

An example json file is shown below. Scene content providers should supply the required information such that a fair representation of each scene can be achieved.

	
{
 “Scene": [{
 "SceneName": "Hospital",
			"UnitySceneName": "_Hospital",
			"SceneID": "Hospital",
			"SceneDuration": 138,
			"StartPosition": {
				"Position_1": [-1.13, 1.67, 1.2, 0, 0, 0]
			},
			"Updates": {
				"Update1": {
					"time": 10,
					"index": 1
				},
				"Update2": {
					"time": 20,
					"index": 2
				}
			}
		},
		{
			"SceneName": "VirtualBasketball",
			"UnitySceneName": "_VirtualBasketball",
			"SceneID": "VirtualBasketball",
			"SceneDuration": 120,
			"StartPosition": {
				"Position_1": [1.45, 0.87, 0.89, 0, 0, 0]
			},
			"Updates": {
				"Update1": {
					"time": 0.00,
					"index": 23,
					"parameters": [0.85, -0.796, 1.468001]
				},
				"Update2": {
					"time": 0.00,
					"index": 9
				},
				"Update3": {
					"time": 0.98,
					"index": 23,
					"parameters": [0.849956, -0.796, 1.467891]
				},
				"Update4": {
					"time": 0.98,
					"index": 9
				}
			}
		}
]
}

[bookmark: _Toc77343839]Measuring the loudness
Once an External’s output signals are logged for all scenes, the loudness of these signals must be measured using a BS.1770-4 loudness analysis tool, in the level-gated mode.

Plenty of tools conforming to the BS.1770-4 standard are available. For example recent versions of Adobe Audition CC include a BS.1770-3 measurement in the Amplitude Statistics window (up until 5.1 channels, this is equivalent to BS.1770-4). Also Matlab has a loudness meter function as well as the ‘pyloudnorm’ freely available for Python.

The tools provide the loudness as dBFS, LKFS or LUFS, which are equivalent. These values should be entered in the TCF tool provided with the AEP. For the CfP, proponents should send the measured loudness values for their External to the CfP Test Administrator (see MPEG-I Immersive Audio Call for Proposals document [4]). The CfP Test Administrator will then enter the loudness values for all scenes and all conditions into the TCF tool and generate the TCF.

[bookmark: _Toc77343840]Calculating level alignment gains
With all loudness values entered in the TCF tool (section 6.8), the tool will automatically calculate level alignment gains per condition per scene and include them in the TCF.

All conditions are attenuated to be as loud as the condition with the lowest loudness value in the scene. By attenuating only, there is no risk of introducing additional clipping by this feature.

[bookmark: _Toc77343841]Applying the level alignment gain
When the test is performed, the TCF is loaded into the Max environment. The level alignment gains in the file are applied to the outputs of the renderers, before the output selection matrix, and reconfigured at every scene change.

[bookmark: _Toc77343842]Complexity Measurement
The complexity measurement tool is part of the AEP. The tool consists of several Python3 scripts that collect performance data (e.g. CPU utilization) in an automated fashion.

[bookmark: _Toc77343843]Installation
The scripts are located in the AEP folder TBD but have several dependencies to publicly available Python packages. Review the required packages in requirements.txt and install the dependencies if necessary, e.g., pip:
> pip install -r requirements.txt
Note that the scripts have been developed and tested with Python version 3.8.0.
To enable automatic restart without user interaction, the Max/MSP option “Recover Edits After Crash” (Options -> Preferences -> Interface) must be set to “Never”.

[bookmark: _Toc77343844]Data collection
A high-level overview of the data collection process is shown in the block diagram in Figure 17.

[image:]
[bookmark: _Ref77328504]Figure 17 - Complexity measurement tool – Block Diagram

For the measurements the Max/MSP part of the AEP is re-used. However, to reduce the impact of the Max GUI on the measurements, the AEP is started in the background. This is achieved by launching the AEP through a dedicated “launcher” patcher. The regular AEP OSC interface is used for communication (e.g. change of user pose).
The main script of the complexity estimation tool is run.py. Required arguments (positional, in the order below):
· Patcher: Full path to EvaluationPlatform_Launcher.maxpat
· TCF: Test config file to be used. The TCF is used to specify the renderer and scene under test
· Pose-Trace: Full user logfile (located in maxMSP/*/logs)
Optional parameters:
	Parameter	
	Description

	--ip	
	Change the IP of the OSC server (default: 127.0.0.1)

	--port
	Change the port of the OSC server (default: 8002)

	--iterations
	Number of test runs (using the same TCF and user-pose trace). Note that Max.exe is terminated in between runs

	--rate
	Measurement rate of the MaxMonitor.py script in ms

	-v(v)
	Increase verbosity

[bookmark: _Ref70586365]Table 9: Complexity Estimation Tool – Optional Parameters
The full command-line help is reproduced in the readme.
[bookmark: _Toc70615305][bookmark: _Toc77343845]Results
The result (text) files are collected in the working directory and contain data on the CPU utilization as well as memory consumption of the Max.exe process. The files contain a header with a summary of the measurement, e.g.:
Total timespan: 1.2e+02s
Total samples: 9832
CPU load [%] (min/avg/max): 0.0 / 20.0 / 312.5
Memory [MB] (min/avg/max): 972.172 / 1032.425 / 1037.992
Update rate: 0.012 sec

The data is organized in space-separated columns:
	Colum
	Desription

	time
	Timestamp of the measurement starting at time = 0. Interval can be changed with the --rate switch (Table 1)

	cpu_percent
	Overall CPU utilization in percent in the measurement window

	cpu_user
	CPU time spent in user mode (accumulative)

	cpu_system
	CPU time spent in kernel mode (accumulative)

	cpu_times
	Total CPU time spent (user + kernel, accumulative)

	mem
	Memory used by the Max.exe process

[bookmark: _Toc70615306][bookmark: _Toc77343846]Data analysis
For complexity estimation only the cpu_times values are considered, i.e., the total CPU time used by the Max.exe process (both user and kernel). This includes any CPU load caused by Max.exe and therefore gives no absolute measure of the renderer complexity by itself. However, it can be used to derive comparative complexity. Further, the absolute complexity of a single renderer can be estimated using the “self-comparison method” described in section “Complexity self-evaluation”.
[bookmark: _Ref70606345][bookmark: _Toc70615307][bookmark: _Toc77343847]Complexity self-evaluation
For complexity self-evaluation the “self-comparison method” can be employed as follows:
1. run the AEP with 1 instance of the plugin A and estimate CPU workload A1 (TCF with one instance of the renderer)
1. run the AEP with
1. EITHER N instances of the plugin A and estimate CPU workload AN (TCF with N instances of the renderer)
1. OR a “dummy” plugin (e.g., “MaxExternalSkeletonRenderer”), i.e., N = 0
1. complexity of the plugin A is estimated as Aplugin = (AN – A1)/(N-1)
1. use Aplugin value for comparative complexity estimation
[bookmark: _Toc70615308][bookmark: _Toc77343848]
[bookmark: _Toc77343849]Examples
One-shot measurement (only required arguments):
> .\run.py C:\aep\maxMSP\v2.1\EvaluationPlatform_Launcher.maxpat C:\aep\tcf.json C:\aep\user_xxx.log
Repeat measurements 10 times, set measurement interval to 10ms:
> .\run.py –-rate 10 –-iterations 10 C:\aep\maxMSP\v2.1\EvaluationPlatform_Launcher.maxpat C:\aep\tcf.json C:\aep\user_xxx.log

[bookmark: _Toc70615309][bookmark: _Toc77343850]Log Files and Result Files

Session log files are available in the folder MaxMSP/<version>/logs. System log files are created at start-up and persist throughout the entire session. User log files are generated per test run and record the listeners' movement and interactions with the scenes. Log entries are comma separated values that can be easily exported for further analysis.
If the test administrator did not specify an output result file location a default file is written to the MaxMSP/<version>/ABResults folder with the starting date and time as the filename.

 

[bookmark: _Toc77343851]Appendix B: Additional information regarding the AR Extension to the AEP
To facilitate AR testing using an AR HMD, an extension to the Evaluation Platform was made to allow the use of the Microsoft HoloLens instead of the HTC HMD. We will go through the extension below.
[bookmark: _Toc77343852]Overview

The AR extension uses some of the existing components of the Evaluation Platform without modifications (Max/MSP and VSTs) and replaces some of the components (Unity, HTC Vive) with new ones. The Unity and tracker components are replaced with the following components:

· 	Microsoft HoloLens with an app used for showing AR scene visual and performing tracking duties.

· Controller software running on the same computer as Max/MSP and a wireless access point to handle communication between the HoloLens app and Max/MSP.

· A mobile phone for viewing a web UI served by the controller script for user input (scores, moving between scenes).

[image:] [image:]
		
Figure 18 - A user using the AR extension (left). Close-up of the AB score panel on a mobile phone (right).

[bookmark: _Toc77343853]AR Audio Scene Description
The audio scene for AR is defined, similarly to VR, through the EIF. To indicate to the encoder/renderers that a scene is an AR scene, the type attribute in the <AudioScene/> element in the EIF is set to ‘AR’. When an AR scene is indicated, the LSDF should be read and used. See Section 6.7. for the location of the LSDF.

Two LSDFs are required. One to be used for the ARPortal scene (LSDF_2.xml) and one to be used for the other scenes (LSDF_1.xml). LSDF_1.xml describes the listening space as it is, while LSDF_2.xml requires an acoustic hole to be added to it to accommodate the ARPortal scene. The hole for the ARPortal is 50cm x 70cm. This should be added to the LSDF using <Face> elements with no materials specified and centered around the ‘portal’ anchor.

[bookmark: _Toc77343854]AR Visual Scene Description
The visual part of an AR scene comprises 3D models that are described in an AR scene description file (see example in Figure 19). The AR scene description file is the analog of the Unity scene for VR. The 3D models may be generic 3D model file types (such as .fbx and .obj) or Unity AssetBundle files. For each visual object, information shown in Table may be provided. Additionally an LSDF file reference can be specified as a separate JSON object “LSDF” which denotes the LSDF file that applies for the given scene.
 

Table 10 - AR visual object configuration.
	Object
	Sub-objects
	Data Type
	Description

	

objects
	“x”, “y”, “z”
	float
	position of the visual object

	
	“yaw”, “pitch”, “roll”
	float
	orientation of the visual object

	
	“scale”
	float
	scaling of the model (size)

	
	“model”
	string
	name of the zip file containing the model

	
	“anchor”
	string
	reference to an anchor point in LSDF

	
	“interactable”
	boolean
	indication of whether this visual object may be interacted with (move, rotate)

	
	"updIndex"
	integer
	Integer index of the dynamic update

	LSDF
	N/A
	integer
	Denotes LSDF reference, either 1 or 2. Defaults to 1

	{
 "LSDF" : 1
 "objects":
 {
 "x": -1.5,
 "y": 1.8,
 "z": 1.0,
 "yaw": 0.0,
 "pitch": 0.0,
 "roll": 0.0,
 "scale": 1.0,
 "model": "model1.zip",
 "anchor": "anchor1",
 "interactable”: "true",
 "updIndex": 2
 }
]
}

[bookmark: _Ref77328606]Figure 19 - Example AR scene description file.

The zipped model1.zip file referred by “model” object in Figure 19 contains a model file and an additional “modeldata.json” file where model parameters, such as scaling and rotation of the model, may be set (Figure 20).

	{
 "position": [0.0, 1.65, 0.0],
 "rotation": [180.0, 0.0, 0.0],
 "scale": [1.0, 1.0, 1.0],
 "color": [0.0, 0.0, 1.0]
}

[bookmark: _Ref43709924]Figure 20 - Example modeldata.json file.
Two examples of AR scene visualizations are shown in Figure 21, below.

[image:] [image:]
		[bookmark: _Ref43710028]Figure 21 - Example AR scene visualizations. ‘Gig Advertisement’ scene on the left and ‘Singer in Your Lab’ scene on the right.

		

[bookmark: _Toc77343855]Calibration and LSDF
Aligning of the AR scene to the real-world listening space is done in a calibration step before a test subject performs a listening test. The calibration step is done by the test administrator using the steps below:
Before testing
1. Determine and mark the position of origin in the listening space. The test administrator finds a suitable place for the origin (near the centre of the room) and places a marker on the floor to indicate the origin. Note that the position of origin for the LSDF room mesh is going to be placed relative to the calibrated origin.
2. Determine the front direction. The test administrator places two addition markings one meter away from the origin, one in the desired front direction (0 degrees rotation around the Y-axis) and on towards the right (-90 degrees rotation around the Y-axis).
During testing
3. In the calibration scene, before the test subject is given the HoloLens, the test administrator aligns the AR scenes to the markers described above. This is done by moving a set of calibration spheres to the positions of the markers. This may be done using the Python Controller UI or using pinch and move gestures.

The LSDF is placed in the AEP folder struct as defined in section 6.7.

Additional information about the listening space is given to the renderers using the LSDF [3]. The full folder path to the LSDF needs to be provided to the Python Controller before running the listening tests. This is done by modifying the following line in the AR_HMD_CONTROL_SOFTWARE\evaluationclient\model.py file:

LSDF_PATH = "C:\\audio_evaluation_platform\\LSDF\\"

[bookmark: _Toc70488922][bookmark: _Toc70614065][bookmark: _Toc70614228][bookmark: _Toc70614526][bookmark: _Toc70615326]From the variable LSDF_PATH, the Python Controller will derive the LSDF files themselves on a scene-by-scene basis by searching for an “LSDF” variable in the scene config file. If the “LSDF” variable is not specified, then the LSDF reference defaults to 1.

[bookmark: _Toc77343856]LSDF Validation
The AR extension provides means for visualizing and validating an LSDF file to give the LSDF developers greater confidence that they have designed the description correctly, as well as allow test subjects to fully confirm correct calibration of the system, if desired.
To visualize an LSDF file, the HoloLens device has to be connected to the platform when ‘Visualize LSDF’ is pressed. If a change has been made to an LSDF file, the Python Controller needs to be reinitialized for it to correctly reflect the change in the visualization.

The main bulk of the implementation in Python is done in
./AR_HMD_CONTROL_SOFTWARE/evaluationclient/LsdfProcessing.py

Corresponding implementation on HoloLens side is done in
./AR_HMD_SOFTWARE/Assets/scripts/SourceModel/LsdfModel.cs

[image:]
Figure 22 - Visualize LSDF button in the Python Controller UI.

As the LSDF visualization is initialized, Python Controller will automatically split the mesh into submeshes based on their acoustic material references. The separate submeshes are then sent to HoloLens as raw data where a visual Unity object is built and assigned one of seven different colors at random, as well as added a checkered/lined texture purely for better visualization of edges/corners.
Currently the visualization does not include any captions of the submeshes or materials projected as additionally on the visual objects, although this information can be directly read if the AR AEP is ran in Unity simulator mode and connected to local host, see Figure 23.
The built objects can be accessed through the Unity‘s hierarchy Controller->LsdfObjectManager->mesh:XXX using the following naming convention

„mesh:<LSDF_MESH_NAME>_mat:<MATERIAL_REFERENCE>“

AR Anchors are also included in the visualization as spheres with three axis red(X), green(Y) and blue(Z). Visualization reflects the right-hand coordinate layout.

[image:]
[bookmark: _Ref77328870]Figure 23 - LSDF Visualization in Simulator Mode

[bookmark: _Toc77343857]Interactions and Hand Gestures
HoloLens 1/2 hardware natively supports hand-gestures and interaction with holograms, these features are also supported in the AR evaluation platform in order to open-doors for more sophisticated test content. Hand gestures [5] supported by HoloLens 1 are pinch, tap, bloom. Currently interaction with AR platform is limited to moving and rotating holograms in across all axis, for this functionality, pinch gesture is used.
	
[bookmark: _Toc77343858]Creating Interactable Content
There are a few extra steps that need to be followed alongside the current content authoring procedure for AR platform to allow the evaluation platform to create and respond to interactive objects. Essentially two new attributes need to be specified in the AR .JSON scene description, see Table 11 for description of the attributes. Not to be confused with the .JSON config files used for configuring MaxMSP.

Table 11 - AR visual object configuration
	Attribute
	Value
	Description

	‘interactable’
	Boolean
	Internally adds interactable logic to a visual model

	‘updIndex’
	integer
	Update index from EIF scene description

It is necessary to set an ‘interactable’ parameter to true, this configures the necessary backend logic inside the HoloLens application to mark the corresponding model as an interactable during initialization of a test scene.

Dynamic updates are used to communicate the positional and rotational information from the HoloLens to the MaxMSP patch. This means that, in order for the information to be relayed by the Python controller to the correct EIF update, an ‘updIndex’ attribute with an integer number has to be specified in the AR scene description. The integer values of ‘updIndex’ corresponds to the index of the dynamic update that is specified in the EIF scene description.

When a scene is initialized, the corresponding object, which is marked as interactive, will have an invisible Unity box collider component attached to it. This is used by the HoloLens to detect a collision between the HoloLens cursor and an interactable object. The box collider will always include the whole object although for objects with an arbitrary shape, e.g. sphere, it extends beyond the borders of the object due to geometrical limitations.

[image:]
Figure 24 - Illustration of a box collider applied on a sphere

The interactable object will light up green when the HoloLens cursor is pointed at it and change to blue while interactivity is on-going. Interactable object returns back to its original colors when a cursor is not pointed at it.

[bookmark: _Toc77343859]Current Limitations of Interactable Objects
The current implementation of interactivity functionality is still to be matured and developed, hence currently there are some limitations that are important to note for scene authors. The ambition is to either fully solve or find a reasonable compromise for each of the limitation bullet points in future updates of the AR platform. As of now, it is not possible to control the sequence at which rotation and positional values are presented to Max/MSP. The hard-coded sequence is as follows: position X = $0; position Y = $1; position X = $2; Yaw = $3; Pitch = $4; Roll = $5.

· It is not possible to output either only position or rotation values from the HoloLens application, rotation and position is always outputted.
· It is not possible to limit axis across which an object will be rotated or moved. Interactable objects can be moved and rotated freely around all three axis.
· There are no checks involved whether interactable audio objects have exceeded total amount of 3. It is up to the authors of the scene to ensure that their scene corresponds to agreements of the MPEG-I audio working group
· There is currently no way to disable or change the colors at which objects light up to provide visual feedback of interactivity status, e.g. green when pointed at and interactable, blue when interacting

[bookmark: _Toc77343860]Adding scene tasks
The AR platform also supports displaying scene instructions on a holographic panel during the test. In order to configure scene instructions for a particular scene, it is necessary to add an instructions<INT>.txt text file, where <INT> is substituted with a natural numbers (1..n) which would correspond to a particular scene task configured in the AEP test configuration file.

The process of parsing the text file into the HoloLens application is done by the Python controller and process of formatting and splitting the text into separate components, such as sub-headings, body is done by the HoloLens app.

In order for the HoloLens app to correctly interpret the file and extract the separate components, the instructions<INT>.txt needs to be formatted in a certain way. Consider the following example

Table 12 - Example instructions1.txt
	Scenename:Calibration // Name of the scene to be displayed in the scene instruction panel

Welcome to the AR familiarization scene! // Brief description followed by two new lines

AR Test Mechanics:				// Sub-heading 1, followed by a colomn
- Please carefully read the scene 		// Start of body 1
instructions before starting each scene
- You can proceed to the next scene after
rating all of the conditions			// End of body, followed by two two new lines

Starting the Test:				// Sub-heading 2, followed by a colomn
You may start the test as soon as you // Start of body 2
feel comfortable with the device
- Flick through all the conditions
and press the "Next" button in WebUI
- Await the instruction panel to appear
to display the scene instructions		// End of body 2

The example above is a correctly written scene task that the HoloLens app can divide up in sections and display on a holographic panel. It uses regular expressions to divide the whole text into components and uses two new lines and columns to recognize different sections of the file. Currently for correct display, the sub-heading 1 and 2, and also body1 and 2 sections need to be filled out.

[bookmark: _Toc77343861]Performing an AR listening test
The following slide set describes the listening test procedure for AR. This information is also available in the AR_HMD_SOFTWARE package as ARTest.pptx, http://mpegx.int-evry.fr/software/MPEG/ImmersiveAudio/AudioEvaluationPlatformARExtension

[image:]

[image:]

[image:]
[image:]

[bookmark: _Toc77343862]References

1. M50850, Updated Baseline Renderer for MPEG-I 6DoF Audio Evaluation Platform, October, 2019, Geneva, CH

2. [bookmark: _Ref77327870]N0054, MPEG-I Immersive Audio Encoder Input Format, April 2021, Online

3. [bookmark: _Ref77327625]N0055, Listening Space Description File for MPEG-I 6DoF AR Audio Evaluation, April 2021, Online.

4. [bookmark: _Ref77328451]N0056, MPEG-I Immersive Audio Call for Proposals, April 2021, Online

5. [bookmark: _Ref77328894]Microsoft, “HoloLens 1 gestures for authoring and navigating in Dynamics 365”, 2020. [Online]. Available: https://docs.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-gestures [Accessed: 6th July, 2020]

6. Microsoft,”HoloLens 2 gestures for authoring and navigating in Dynamics 365 Guides”, 2020. [Online] https://docs.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-gestures-hl2

7. Microsoft, “Getting around HoloLens 2” https://docs.microsoft.com/en-us/hololens/hololens2-basic-usage

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.emf
1252356789101114151617182022212324264131912

Microsoft_Visio_Drawing.vsdx
1
25
2
3
5
6
7
8
9
10
11
14
15
16
17
18
20
22
21
23
24
26
4
13
19
12

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image1.jpeg

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

