
©	ISO/IEC	2021	–	All	rights	reserved	

Document	type:			International	Standard	
Document	subtype:				
Document	stage:		(30)	Commitee		
Document	language:			E	
	
ISO_IEC_23008-3_201X_CD_3rdEd.docx		STD	Version	2.8f	
	

	

ISO/IEC	JTC	1/SC	29				
Date:			2021-04-30	

ISO/IEC	CD	23008-3:202X(E)	

ISO/IEC	JTC	1/SC	29/WG	11	

Secretariat:			JISC	

Information	technology	—	High	efficiency	coding	and	media	
delivery	in	heterogeneous	environments	—	Part	3:	3D	audio	

	

ISO/IEC	23008-3:202X(E)	

ii	 ©	ISO/IEC	2021	–	All	rights	reserved	
	
	

	 COPYRIGHT	PROTECTED	DOCUMENT	
All	rights	reserved.	Unless	otherwise	specified,	no	part	of	this	publication	may	be	reproduced	or	
utilized	otherwise	in	any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,	
or	 posting	 on	 the	 internet	 or	 an	 intranet,	 without	 prior	written	permission.	Permission	can	be	
requested	 from	 either	 ISO	 at	 the	 address	 below	 or	 ISO’s	 member	 body	 in	 the	 country	 of	 the	
requester.	

ISO	copyright	office	
Ch.	de	Blandonnet	8	•	CP	401	
CH-1214	Vernier,	Geneva,	Switzerland	
Tel.		+	41	22	749	01	11	
Fax		+	41	22	749	09	47	
copyright@iso.org	
www.iso.org	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 iii	
	
	

Contents	 Page	

1	 Scope ... 1
2	 Normative	references .. 1
3	 Terms,	definitions,	symbols,	abbreviated	terms	and	mnemonics ... 2
3.1	 Terms,	definitions,	symbols	and	abbreviated	terms .. 2
3.2	 Mnemonics ... 2
4	 Technical	overview .. 2
4.1	 Decoder	block	diagram .. 2
4.2	 Overview	over	the	codec	building	blocks .. 3
4.3	 Efficient	combination	of	decoder	processing	blocks	in	the	time	domain	and	QMF	domain 6
4.4	 Rule	set	for	determining	processing	domains .. 9

 Audio core codec processing domain .. 9
	 Mixing ... 9
	 DRC-1	Operation	domains	(DRC	in	rendering	context) .. 10
	 Audio	core	codec	interface	domain	to	rendering ... 10
	 Rendering	context .. 10
	 Post-processing	context ... 10
	 End-of-chain	context .. 11

4.5	 Sample	rate	converter .. 11
4.6	 Decoder	delay ... 11
4.7	 Contribution	mode	of	MPEG-H	3D	audio ... 12
4.8	 MPEG-H	3D	audio	profiles	and	levels .. 12

	 General ... 12
	 Profiles ... 12

5	 MPEG-H	3D	audio	core	decoder ... 26
5.1	 Definitions .. 26

	 Joint	stereo ... 26
	 MPEG	surround	based	stereo	(MPS	212) .. 26

5.2	 Syntax ... 26
	 General ... 26
	 Decoder	configuration ... 26
	 MPEG-H	3D	audio	core	bitstream	payloads .. 45

5.3	 Data	structure .. 64
	 General ... 64
	 General	configuration	data	elements .. 65
	 Loudspeaker	configuration	data	elements ... 67
	 Core	decoder	configuration	data	elements ... 69
	 Downmix	matrix	data	elements ... 73
	 HOA	rendering	matrix	data	elements ... 76
	 Signal	group	information	elements ... 79
	 Low	frequency	enhancement	(LFE)	channel	element,	mpegh3daLfeElement() 79
	 Compatible	profile	and	levels	sets ... 80

5.4	 Configuration	element	descriptions .. 80
	 General ... 80
	 Downmix	configuration ... 81
	 HOA	rendering	matrix	configuration .. 86

5.5	 Tool	descriptions ... 90
	 General ... 90
	 Quad	channel	element ... 90
	 Transform	splitting .. 92
	 MPEG	surround	for	mono	to	stereo	upmixing .. 99
	 Enhanced	noise	filling .. 102
	 Audio	pre-roll ... 125
	 Fullband	LPD .. 128
	 Time-domain	bandwidth	extension .. 139

ISO/IEC	23008-3:202X(E)	

iv	 ©	ISO/IEC	2021	–	All	rights	reserved	
	
	

	 LPD	stereo	coding ... 151
	 Multichannel	coding	tool .. 158
	 Filterbank	and	block	switching ... 168
	 Frequency	domain	prediction ... 169
	 Long-term	postfilter ... 172
	 Tonal	component	coding .. 177
	 Internal	channel	on	MPS212	for	low	complexity	format	conversion 187
	 High	resolution	envelope	processing	(HREP)	tool .. 198

5.6	 Buffer	requirements ... 204
	 Minimum	decoder	input	buffer .. 204
	 Bit	reservoir ... 205
	 Maximum	bit	rate ... 205

5.7	 Stream	access	point	requirements	and	inter-frame	dependency .. 205
6	 Dynamic	range	control	and	loudness	processing ... 207
6.1	 General .. 207
6.2	 Description ... 207
6.3	 Syntax .. 207

	 Loudness	metadata .. 207
	 Dynamic	range	control	metadata .. 207
	 Data	elements ... 208

6.4	 Decoding	process .. 209
	 General .. 209
	 Dynamic	range	control ... 211
	 Usage	of	downmixId	in	MPEG-H ... 211
	 DRC	set	selection	process ... 212
	 DRC-1	for	SAOC	3D	Content .. 214
	 DRC-1	for	HOA	content ... 214
	 Loudness	normalization .. 216
	 Peak	limiter .. 216
	 Time-synchronization	of	DRC	gains ... 216
	 Default	parameters .. 216

7	 Object	metadata	decoding .. 217
7.1	 General .. 217
7.2	 Description ... 217
7.3	 Syntax .. 218

	 Object		metadata	configuration ... 218
	 Top	level	object	metadata	syntax .. 219
	 Subsidiary	payloads	for	efficient	object	metadata	decoding .. 220
	 Subsidiary	payloads	for	object	metadata	decoding	with	low	delay 225
	 Enhanced	object	metadata	configuration .. 230

7.4	 Data	structure ... 233
	 Definition	of	ObjectMetadataConfig()	payloads .. 233
	 Efficient	object	metadata	decoding ... 233
	 Object	metadata	decoding	with	low	delay ... 242
	 Enhanced	object	metadata ... 247

8	 Object	rendering ... 250
8.1	 Description ... 250
8.2	 Terms	and	definitions .. 250
8.3	 Input	data ... 251
8.4	 Processing ... 252

	 General	remark .. 252
	 Imaginary	loudspeakers .. 252
	 Dividing	the	loudspeaker	setup	into	a	triangle	mesh ... 253
	 Rendering	algorithm .. 255

9	 SAOC	3D .. 259
9.1	 Description ... 259
9.2	 Definitions .. 259

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 v	
	
	

9.3	 Delay	and	synchronization .. 261
9.4	 Syntax ... 261

	 Payloads	for	SAOC	3D ... 261
	 Definition	of	SAOC	3D	payloads ... 265

9.5	 SAOC	3D	processing ... 267
	 Compressed	data	stream	decoding	and	dequantization	of	SAOC	3D	data 267
	 Time/frequency	transforms .. 267
	 Signals	and	parameters .. 267
	 SAOC	3D	decoding .. 269
	 Dual	mode ... 274

10	 Generic	loudspeaker	rendering/format	conversion .. 275
10.1	 Description ... 275
10.2	 Definitions .. 276

	 General	remarks .. 276
	 Variable	definitions .. 276

10.3	 Processing .. 277
	 Application	of	transmitted	downmix	matrices ... 277
	 Application	of	transmitted	equalizer	settings .. 281
	 Downmix	processing	involving	multiple	channel	groups .. 281
	 Initialization	of	the	format	converter .. 282
	 Audio	signal	processing ... 298

11	 Immersive	loudspeaker	rendering/format	conversion ... 303
11.1	 Description ... 303
11.2	 Syntax ... 305
11.3	 Definitions .. 305

	 General	remarks .. 305
	 Variable	definitions .. 306

11.4	 Processing .. 307
	 Initialization	of	the	format	converter .. 307
	 Audio	signal	processing ... 347

12	 Higher	order	ambisonics	(HOA) .. 354
12.1	 Technical	overview .. 354

	 Block	diagram .. 354
	 Overview	of	the	decoder	tools ... 355

12.2	 Syntax ... 357
	 Configuration	of	HOA	elements ... 357
	 Payloads	of	HOA	elements ... 360

12.3	 Data	structure .. 372
	 Definitions	of	HOA	Config .. 372
	 Syntax	of	getSubbandBandwidths() .. 377
	 Definitions	of	HOA	payload .. 377

12.4	 HOA	tool	description .. 385
	 HOA	frame	converter ... 385
	 Spatial	HOA	decoding ... 402
	 HOA	renderer ... 431
	 Layered	coding	for	HOA ... 438

13	 Binaural	renderer .. 441
13.1	 General ... 441
13.2	 Frequency-domain	binaural	renderer .. 442

	 General ... 442
	 Definitions .. 444
	 Parameterization	of	binaural	room	impulse	responses ... 448
	 Frequency-domain	binaural	processing ... 460

13.3	 Time-domain	binaural	renderer ... 467
	 General ... 467
	 Definitions .. 468
	 Parameterization	of	binaural	room	impulse	responses ... 470

ISO/IEC	23008-3:202X(E)	

vi	 ©	ISO/IEC	2021	–	All	rights	reserved	
	
	

	 Time-domain	binaural	processing .. 474
14	 MPEG-H	3D	audio	stream	(MHAS) ... 475
14.1	 Overview ... 475
14.2	 Syntax .. 475

	 Main	MHAS	syntax	elements .. 475
	 Subsidiary	MHAS	syntax	elements ... 477

14.3	 Semantics .. 478
	 mpeghAudioStreamPacket() ... 478
	 MHASPacketPayload() ... 479
	 Subsidiary	MHAS	packets ... 480

14.4	 Description	of	MHASPacketTypes ... 480
	 PACTYP_FILLDATA ... 480
	 PACTYP_MPEGH3DACFG .. 481
	 PACTYP_MPEGH3DAFRAME ... 481
	 PACTYP_SYNC ... 481
	 PACTYP_SYNCGAP ... 481
	 PACTYP_MARKER ... 481
	 PACTYP_CRC16	and	PACTYP_CRC32 .. 482
	 PACTYP_DESCRIPTOR .. 482
	 PACTYP_USERINTERACTION .. 483
	 PACTYP_LOUDNESS_DRC .. 483
	 PACTYP_BUFFERINFO ... 483
	 PACTYP_GLOBAL_CRC16	and	PACTYP_	GLOBAL_CRC32 ... 483
	 PACTYP_AUDIOTRUNCATION .. 484
	 PACTYP_AUDIOSCENEINFO .. 485
	 PACTYP_EARCON .. 485
	 PACTYP_PCMCONFIG .. 485
	 PACTYP_PCMDATA ... 485
	 PACTYP_LOUDNESS .. 485
	 MHASPacketType	specific	requirements	for	MHASPacketLabel .. 486

14.5	 Application	examples ... 487
	 Light-weighted	broadcast .. 487
	 MPEG-2	transport	stream .. 487
	 CRC	error	detection .. 488
	 Audio	sample	truncation .. 488

14.6	 Multi-stream	delivery	and	interface .. 489
14.7	 Carriage	of	generic	data ... 491

	 Syntax .. 491
	 Semantics .. 492
	 Processing	at	the	MPEG-H	3D	audio	decoder .. 493

15	 Metadata	audio	elements	(MAE) .. 493
15.1	 General .. 493
15.2	 Syntax .. 495
15.3	 Semantics .. 502
15.4	 Definition	of	mae_metaDataElementIDs ... 515
15.5	 Loudness	compensation	after	gain	interactivity ... 516
16	 Loudspeaker	distance	compensation .. 517
17	 Interfaces	to	the	MPEG-H	3D	audio	decoder ... 518
17.1	 General .. 518
17.2	 Interface	for	local	setup	information .. 519

	 General .. 519
	 WIRE	output ... 519
	 Syntax	for	local	setup	information .. 519
	 Semantics	for	local	setup	information ... 520

17.3	 Interface	for	local	loudspeaker	setup	and	rendering ... 520
	 General .. 520
	 Syntax	for	local	loudspeaker	signalling ... 521

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 vii	
	
	

	 Semantics	for	local	loudspeaker	signalling ... 521
17.4	 Interface	for	binaural	room	impulse	responses	(BRIRs) ... 522

	 General ... 522
	 Syntax	of	binaural	renderer	interface ... 523
	 Semantics .. 526

17.5	 Interface	for	local	screen	size	information ... 530
	 General ... 530
	 Syntax ... 530
	 Semantics .. 531

17.6	 Interface	for	signaling	of	local	zoom	area ... 531
	 General ... 531
	 Syntax ... 532
	 Semantics .. 532

17.7	 Interface	for	user	interaction .. 532
	 General ... 532
	 Definition	of	user	interaction	categories .. 533
	 Definition	of	an	interface	for	user	interaction .. 533
	 Syntax	of	interaction	interface .. 534
	 Semantics	of	interaction	interface ... 535

17.8	 Interface	for	loudness	normalization	and	dynamic	range	control	(DRC) 537
17.9	 Interface	for	scene	displacement	data .. 537

	 General ... 537
	 Definition	of	an	interface	for	scene-displacement	data .. 537
	 Syntax	of	the	scene	displacement	interface .. 538
	 Semantics	of	the	scene	displacement	interface .. 538

17.10	 Interfaces	for	channel-based,	object-based,	and	HOA	metadata	and	audio	data 539
	 General ... 539
	 Expectations	on	external	renderers .. 539
	 Object-based	metadata	and	audio	data	(object	output	interface) ... 539
	 Channel-based	metadata	and	audio	data .. 546
	 HOA	metadata	and	audio	data ... 551
	 Audio	PCM	data .. 555

17.11	 Interface	for	positional	scene	displacement	data ... 555
	 General ... 555
	 Syntax	of	the	positional	scene	displacement	interface ... 555
	 Semantics	of	the	positional	scene	displacement	interface ... 555
	 Processing .. 556

18	 Application	and	processing	of	local	setup	information	and	interaction	data	and	scene	
displacement	data .. 556

18.1	 Element	metadata	preprocessing .. 556
18.2	 Interactivity	limitations	and	restrictions .. 562

	 General	information ... 562
	 WIRE	interactivity .. 562
	 Position	interactivity ... 563
	 Screen-related	element	remapping	and	object	remapping	for	zooming 563
	 Closest	loudspeaker	playout .. 563

18.3	 Screen-related	element	remapping ... 563
18.4	 Screen-related	adaptation	and	zooming	for	higher	order	ambisonics	(HOA) 566
18.5	 Object	remapping	for	zooming .. 568
18.6	 Determination	of	the	closest	loudspeaker .. 569
18.7	 Determination	of	a	list	of	loudspeakers	for	conditioned	closest	loudspeaker	playback 569
18.8	 Processing	of	scene	displacement	angles	for	channels	and	objects	(CO) 571
18.9	 Processing	of	scene	displacement	angles	for	scene-based	content	(HOA) 573
18.10	 Determination	of	a	reduced	reproduction	layout	based	on	excluded	sectors 574
18.11	 Diffuseness	rendering .. 575
19	 MPEG-H	3D	audio	profile	definition .. 577
20	 Carriage	of	MPEG-H	3D	audio	in	ISO	base	media	file	format .. 577
20.1	 General ... 577

ISO/IEC	23008-3:202X(E)	

viii	 ©	ISO/IEC	2021	–	All	rights	reserved	
	
	

20.2	 Random	access	and	stream	access ... 578
20.3	 Overview	of	new	box	structures .. 578
20.4	 MHA	decoder	configuration	record ... 578

	 Definition .. 578
	 Syntax .. 578
	 Semantics .. 579

20.5	 MPEG-H	audio	sample	entry .. 579
	 Definition .. 579
	 Syntax .. 579
	 Semantics .. 580

20.6	 MPEG-H	audio	MHAS	sample	entry .. 580
	 Definition .. 580
	 Syntax .. 581

20.7	 MHA	dynamic	range	control	and	loudness .. 582
	 Definition .. 582
	 Syntax .. 582
	 Semantics .. 583

20.8	 MHA	multi-stream	signalling ... 584
	 Definition .. 584
	 Syntax .. 584
	 Semantics .. 585

20.9	 Audio	scene	information .. 585
	 MHA	group	definition ... 585
	 MHA	switch	group	definition ... 587
	 MHA	group	preset	definition ... 588
	 MHA	group	description	text	label .. 590
	 MHA	scene	information .. 592

20.10	 Track	references .. 592
20.11	 MPEG-H	Audio	profile	and	level	compatibility	sets .. 592

	 Definition .. 592
	 Syntax .. 593
	 Semantics .. 593

21	 Sub-parameters	for	the	MIME	type	‘Codecs’	parameter ... 593
21.1	 General .. 593
21.2	 ‘Codecs’	parameter	for	MPEG-H	3D	audio ... 593
22	 Timing	considerations	and	decoder	behaviour .. 593
23	 Multi-stream	handling ... 594
23.1	 Restrictions	on	extension	payloads ... 595
24	 Low	complexity	generic	loudspeaker	rendering/format	conversion 596
24.1	 Description ... 596
24.2	 Definitions .. 597

	 General	remarks ... 597
	 Variable	definitions .. 598

24.3	 Processing ... 598
	 Application	of	transmitted	downmix	matrices ... 598
	 Application	of	transmitted	equalizer	settings ... 603
	 Downmix	processing	involving	multiple	channel	groups ... 603
	 Initialization	of	the	format	converter .. 604
	 Audio	signal	processing ... 619

25	 Low	complexity	immersive	loudspeaker	rendering/format	conversion 622
25.1	 Description ... 622
25.2	 Syntax .. 623
25.3	 Definitions .. 623

	 General	remarks ... 623
	 Variable	definitions .. 624

25.4	 Processing ... 625
	 Initialization	of	the	format	converter .. 625

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 ix	
	
	

	 Audio	signal	processing ... 666
26	 MPEG	surround .. 669
26.1	 Technical	overview .. 669
26.2	 Syntax	and	data	structure .. 670
26.3	 Tool	description ... 670
27	 Production	metadata	decoding ... 670
27.1	 General ... 670

	 Object	distance	coding ... 670
	 Direct	headphone	signalling .. 670
	 Reference	distance	coding ... 671

27.2	 Syntax ... 672
	 Production	metadata	configuration .. 672
	 Production	metadata	frame ... 672

27.3	 Semantics .. 674
	 Production	metadata	configuration .. 674

27.4	 Decoding	process ... 675
28	 Earcon	metadata .. 675
28.1	 General ... 675
28.2	 Syntax ... 675
28.3	 Semantics .. 677
28.4	 Decoding	process ... 681
Annex A (normative) Tables for arithmetic decoding of IGF information 683
A.1 cf_se01[27] ... 683
A.2 cf_se10[27] ... 683
A.3 cf_se02[7][27] .. 683
A.4 short cf_se20[7][27] .. 683
A.5 short cf_se11[7][7][27] .. 684
A.6 cf_off_se01 ... 685
A.7 cf_off_se10 ... 685
A.8 cf_off_se02[7] .. 685
A.9 short cf_off_se20[7] .. 686
A.10 cf_off_se11[7][7] .. 686
Annex B (normative) SAOC 3D Decorrelator pre-mixing matrices .. 687
B.1 Premixing matrix for 22.2 output configuration ... 687
B.2 Algorithm for generating pre-mixing matrices ... 689
B.2.1	 Input	to	the	algorithm	and	representations ... 689
B.2.2	 Algorithm	steps .. 689
Annex C (informative) Encoder tools .. 693
C.1 General overview ... 693
C.1.1	 Encoder	block	diagram .. 693
C.1.2	 Overview	of	the	encoder	and	decoder	building	blocks ... 693
C.2 Core encoder tools .. 694
C.2.1	 Quad	channel	element ... 694
C.2.2	 Transform	splitting .. 695
C.2.3	 Calculation	of	residual	signal	for	MPEG	surround	with	hybrid	residual	coding 696
C.2.4	 Enhanced	noise	filling .. 696
C.3 Object metadata encoding ... 697
C.3.1	 Pre-processing	of	the	object	metadata .. 697
C.3.2	 Efficient	object	metadata	encoding ... 698
C.3.3	 Object	metadata	encoding	with	low	delay .. 698
C.3.4	 Spatially	skipping	objects .. 698
C.4 SAOC 3D encoder ... 698
C.4.1	 Overview ... 698
C.4.2	 Calculation	of	the	SAOC	3D	parameters .. 699
C.4.3	 Time/frequency	transform .. 699
C.4.4	 Framing .. 699

ISO/IEC	23008-3:202X(E)	

x	 ©	ISO/IEC	2021	–	All	rights	reserved	
	
	

C.4.5	 Parameter	quantization	and	coding .. 700
C.5 HOA encoder .. 700
C.5.1	 Specification	of	value	ranges	for	HOA	coefficients .. 700
C.5.2	 Encoder	block	diagram .. 703
C.5.3	 Spatial	HOA	encoding ... 703
C.6 MPEG surround encoder tool ... 738
Annex D (normative) Peak limiter for unguided clipping prevention .. 740
Annex E (normative) Compact template downmix matrices .. 741
Annex F (normative) HOA tables ... 742
F.1 HOA format description .. 742
F.1.1	 Spherical	coordinate	system	for	HOA .. 742
F.1.2	 General .. 742
F.1.3	 Definition	of	real	valued	spherical	harmonics .. 743
F.1.4	 Definition	of	the	HOA	signal	matrix ... 744
F.1.5	 Definition	of	the	mode	matrix .. 744
F.2 Uniformly distributed positions Ωq(N = 1) = θqN = 1,ϕqN = 1, 1 ≤ j ≤ O = 4 744
F.3 Uniformly distributed positions Ωq(N = 2) = θqN = 2,ϕqN = 2, 1 ≤ j ≤ O = 9 744
F.4 Uniformly distributed positions Ωq(N = 3) = θqN = 3,ϕqN = 3, 1 ≤ j ≤ O = 16 745
F.5 Uniformly distributed positions Ωq(N = 4) = θqN = 4,ϕqN = 4, 1 ≤ j ≤ O = 25 745
F.6 32 Uniformly distributed positions in spherical coordinates .. 746
F.7 Uniformly distributed positions Ωq(N = 5) = θqN = 5,ϕqN = 5, 1 ≤ j ≤ O = 36 746
F.8 Uniformly distributed positions Ωq(N = 6) = θqN = 6,ϕqN = 6, 1 ≤ j ≤ O = 49 747
F.9 Uniformly distributed positions Ωq(N = 29) = θqN = 29,ϕqN = 29, 1 ≤ j ≤ O = 900 748
F.10 Uniformly distributed positions Ωq(N = 17) = θqN = 17,ϕqN = 17, 1 ≤ j ≤ O = 324 755
F.11 Uniformly distributed positions Ωq(N = 15) = θqN = 15,ϕqN = 15, 1 ≤ j ≤ O = 256 757
F.12 Table of loudspeaker directions .. 760
F.13 Table of 64 horizontal-only directions ... 761
F.14 Table of 256x8 weighting values, WeightValCdbk ... 762
F.15 Huffman tables for HuffTabIndex=6 ... 768
F.16 Huffman tables for HuffTabIndex=7 ... 768
F.17 Huffman tables for HuffTabIndex=8 ... 768
F.18 Huffman tables for HuffTabIndex=9 ... 769
F.19 Huffman tables for HuffTabIndex=10 ... 769
F.20 Huffman tables for HuffTabIndex=11 ... 769
F.21 Huffman tables for HuffTabIndex=12 ... 769
F.22 Huffman tables for HuffTabIndex=13 ... 770
F.23 Huffman tables for HuffTabIndex=14 ... 770
F.24 Huffman tables for HuffTabIndex=15 ... 771
F.25 HOA Spherical grid for DRC DSHT for order N=1 .. 771
F.26 Spherical grid for DRC DSHT for order N=2 ... 771
F.27 Spherical grid for DRC DSHT for order N=3 ... 772
F.28 Spherical grid for DRC DSHT for order N=4 ... 772
F.29 Spherical grid for DRC DSHT for order N=5 ... 773
F.30 Spherical grid for DRC DSHT for order N=6 ... 773
F.31 Spherical grid for DRC DSHT for order N=7 ... 774
F.32 Spherical grid for DRC DSHT for order N=8 ... 775
F.33 Spherical grid for DRC DSHT for order N=9 ... 776
F.34 Huffman table for decoding HuffmanMagDiffNoSbr .. 778
F.35 Huffman table for decoding HuffmanMagDiffSbr ... 778
F.36 Huffman table for decoding DecTableAngleDiff ... 779
F.37 Huffman table for decoding ParHuffmanMagDiffNoSbr .. 779
F.38 Huffman table for decoding ParHuffmanMagDiffSbr ... 780
F.39 Huffman table for decoding ParDecTableAngleDiff ... 780
F.40 Table for ParDecorrSigsSelectionTableIdx referring to

NumOfDecorrSigsPerParSubbandTable and ParSelectedDecorrSigsIdxMatrixTable 781
F.41 Table for ParDecorrSigsSelectionTableIdx referring to ParPermIdxVectorTable 781

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 xi	
	
	

F.42 Table for ParDecorrSigsSelectionTableIdx referring to
NumOfDecorrSigsPerFirstOrderParSubbandTable and
ParFirstOrderSelectedDecorrSigsIdxMatrixTable .. 782

F.43 Table for ParDecorrSigsSelectionTableIdx referring to ParFirstOrderPermIdxVectorTable
 .. 782

Annex G (informative) Low complexity HOA rendering .. 783
G.1 General ... 783
G.2 Detailed description .. 785
G.2.1	 Realization	of	combined	HOA	synthesis	and	rendering ... 786
G.2.2	 Further	remarks ... 795
Annex H (informative) Information on delay and complexity of time-domain binauralization 797
H.1 Complexity and latency .. 797
H.1.1	 Algorithm	description .. 797
H.1.2	 Complexity .. 798
H.1.3	 Latency ... 798
H.2 Experimental results ... 799
H.3 Alternative low-delay implementations ... 800
Annex I (informative) Determination of a rotation matrix for processing of scene displacement

data ... 802
Annex J (informative) Decorrelation filtering for ‘diffuseness’ processing 803
Annex K (informative) Distance and depth spread rendering .. 804
Annex L (informative) HREP encoder description ... 806
L.1 Computation of the gains and the beta factor .. 806
L.2 Computation of the LP part and the HP part .. 807
L.3 Computation of the output signal .. 807
L.4 Encoding of gains using arithmetic coding .. 807
Annex M (informative) Screen-related adaptation of HOA content in complexity constrained

implementations .. 810
Annex N (normative) Retaining original file length with MPEG-H 3D audio 811
N.1 General ... 811
N.2 Avoiding leading zero samples .. 811
N.3 Avoiding trailing zero samples .. 812
Annex O (normative) Codebook tables used to de-quantize high band time domain bandwidth

extension parameters ... 813
O.1 Codebook table for tbeLSFCB1_7b ... 813
O.2 Codebook table for tbeLSFCB2_7b ... 815
O.3 Codebook table for tbeExcFilterCB1_7b ... 817
O.4 Codebook table for tbeExcFilterCB2_4b ... 820
O.5 Codebook table for SHBCB_SubGain5bit ... 820
O.6 Codebook table for SHBCB_GainFrame5bit ... 820
O.7 Codebook table for win_flatten .. 820
O.8 Codebook table for RVEC ... 821
Annex P (informative) Implementation and usage guidelines for signalling of profile and level

compatibility sets .. 822
P.1 Baseline profile signalling .. 822

ISO/IEC	23008-3:202X(E)	

xii	 ©	ISO/IEC	2021	–	All	rights	reserved	
	
	

Foreword

ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	
members	 of	 ISO	 or	 IEC	 participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	
ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	 international	
organizations,	governmental	and	non-governmental,	 in	 liaison	with	 ISO	and	 IEC,	also	 take	part	 in	 the	
work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	technical	committee,	
ISO/IEC	JTC	1.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular,	the	different	approval	criteria	needed	for	the	
different	types	of	document	should	be	noted.	This	document	was	drafted	in	accordance	with	the	editorial	
rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	Details	
of	any	patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	
on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 of	 the	 voluntary	 nature	 of	 standards,	 the	 meaning	 of	 ISO	 specific	 terms	 and	
expressions	related	to	conformity	assessment,	as	well	as	information	about	ISO's	adherence	to	the	World	
Trade	 Organization	 (WTO)	 principles	 in	 the	 Technical	 Barriers	 to	 Trade	 (TBT)	 see	
www.iso.org/iso/foreword.html.	

This	 document	 was	 prepared	 by	 Technical	 Committee	 ISO/IEC	 JTC	1,	 Information	 technology,	
Subcommittee	SC	29,	Coding	of	audio,	picture,	multimedia	and	hypermedia	information.	

This	 third	 edition	 cancels	 and	 replaces	 the	 second	 edition	 (ISO/IEC	23008-3:2019),	 which	 has	 been	
technically	 revised.	 It	 also	 incorporates	 ISO/IEC	23008-3:2019/Amd.1:2019	 and	 ISO/IEC	23008-
3:2019/Amd.2:2020.		

The	main	changes	compared	to	the	previous	edition	are	as	follows:	

—	 specification	of	audio	metadata	enhancements;	

—	 carriage	of	Earcon	metadata	and	PCM	data	in	MHAS	packets;	

—	 specification	of	baseline	profile;	

—	 signaling	of	compatibility	to	multiple	profiles	and	levels;	

A	list	of	all	parts	in	the	ISO/IEC	23008	series	can	be	found	on	the	ISO	website.	

Any	feedback	or	questions	on	this	document	should	be	directed	to	the	user’s	national	standards	body.	A	
complete	listing	of	these	bodies	can	be	found	at	www.iso.org/members.html.			

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 xiii	
	
	

Introduction	

3D	 sound	 systems	 are	 able	 to	 realize	 a	 significantly	 enhanced	 sound	 experience	 relative	 to	 current	
widespread	5.1	channel	audio	programs	and	playback	systems.	These	systems	demand	high	quality	audio	
coding	 and	 error-free	 transmission	 in	 order	 to	 keep	 the	 timbre,	 sound	 localization	 and	 sound	
envelopment	of	the	original	audio	program.	Presentation	over	headphones	with	suitable	spatialization	
are	also	considered.	

This	document	provides	means	for	all	scenarios	where	there	is	a	need	to	compress	a	multi-channel	audio	
program	(e.g.	22.2	channel	program)	and	to	render	it	to	the	native	target	number	of	 loudspeakers.	 In	
order	 to	 reach	 a	wide	market,	 a	 3D	 audio	program	 is	 able	 to	 be	downmixed	 to	 a	 lower	hierarchy	of	
loudspeakers,	for	example	10.1	or	8.1	channels.	In	addition,	all	scenarios	support	a	level	of	random	access	
to	facilitate	broadcast	break-in,	and	“trick	modes”	such	as	fast	forward	when	playing	from	stored	media.	

This	document	focuses	on	applications	such	as	audio	for	home	theatres	where	the	audio	presentation	is	
immersive,	 involving	many	loudspeakers	(e.g.	 from	10	to	more	than	20)	surrounding	the	 listener	and	
placed	below,	at	and	above	ear-level.	Moreover,	applications	as	personal	TV,	TV	for	smartphones	and	
multi-channel	 audio-only	 programs	 are	 envisioned.	 These	 require	 that	 3D	 audio	 encoding/decoding	
systems	are	able	to	operate	at	low	bitrates	appropriate	for	efficient	transmission	over	a	cellular	channel.	
At	the	same	time,	the	sense	of	envelopment	and	accurate	sonic	localization	even	for	systems	having	a	
tablet-sized	 visual	 displays	 with	 loudspeakers	 built	 into	 the	 device	 and	 headphone	 listening	 are	
maintained.	

The	International	Organization	for	Standardization	(ISO)	and	International	Electrotechnical	Commission	
(IEC)	draw	attention	to	the	fact	that	it	is	claimed	that	compliance	with	this	document	may	involve	the	use	
of	patents.	ISO	and	IEC	take	no	position	concerning	the	evidence,	validity	and	scope	of	these	patent	rights.		

The	holders	of	these	patent	rights	have	assured	ISO	and	IEC	that	they	are	willing	to	negotiate	licences	
under	reasonable	and	non-discriminatory	terms	and	conditions	with	applicants	throughout	the	world.	In	
this	 respect,	 the	 statements	 of	 the	 holders	 of	 these	 patent	 rights	 are	 registered	 with	 ISO	 and	 IEC.	
Information	may	be	obtained	from:	

Electronics	and	Telecommunications	
Research	Institute	(ETRI)	

218	Gajeong-ro,	Yuseong-gu,	Daejeon,	34129,	KOREA	

Koninklijke	Philips	N.V.	 High	Tech	Campus	5,	5656AE	Eindhoven,	THE	
NETHERLANDS	

Thomson	Licensing	 Suite	303,	4	Research	Way,	Princeton,	NJ	08540,	USA	

Wilus	Inc.	 48	Mabang-ro,	Seocho-gu,	Seoul,	137-894,	KOREA	

Fraunhofer	Gesellschaft	zur	Foerderung	
der	angewandten	Forschung	e.V.	

Am	Wolfsmantel	33,	90158	Erlangen,	GERMANY	

Qualcomm	Incorporated	 5775	Morehouse	Drive,	San	Diego,	CA	92021,	USA	

Dolby	Laboratories	Licensing	Corporation	 100	Potrero	Avenue,	San	Francisco,	CA	94103-4938,	USA	

Dolby	International	AB	 999	Brannan	Street,	San	Francisco,	CA	94103-4938,	USA	

	

	

INTERNATIONAL	STANDARD	 ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 1	
	

Information	technology	—	High	efficiency	coding	and	
media	delivery	in	heterogeneous	environments	—		
Part	3:	3D	audio	

1 Scope	

This	document	specifies	technology	that	supports	the	efficient	transmission	of	immersive	audio	signals	
and	flexible	rendering	for	the	playback	of	immersive	audio	in	a	wide	variety	of	listening	scenarios.	These	
include	home	theatre	setups	with	3D	loudspeaker	configurations,	22.2	loudspeaker	systems,	automotive	
entertainment	systems	and	playback	over	headphones	connected	to	a	tablet	or	smartphone.	

2 Normative	references	

The	 following	 documents	 are	 referred	 to	 in	 the	 text	 in	 such	 a	way	 that	 some	 or	 all	 of	 their	 content	
constitutes	 requirements	 of	 this	 document.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	
undated	references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO/IEC	13818-1,	Information	technology	—	Generic	coding	of	moving	pictures	and	associated	audio	
information	—	Part	1:	Systems	

ISO/IEC	14496-3:2009,	Information	technology	—	Coding	of	audio-visual	objects	—	Part	3:	Audio	

ISO/IEC	14496-11,	Information	technology	—	Coding	of	audio-visual	objects	—	Part	11:	Scene	description	
and	application	engine	

ISO/IEC	23001-8,	Information	technology	—	MPEG	systems	technologies	—	Part	8:	Coding-independent	
code-points1		

ISO/IEC	23003-1:2007,	Information	technology	—	MPEG	audio	technologies	—	Part	1:	MPEG	Surround	

ISO/IEC	23003-2,	Information	technology	—	MPEG	audio	technologies	—	Part	2:	Spatial	Audio	Object	
Coding	(SAOC)	

ISO/IEC	23003-3:2012,	Information	technology	—	MPEG	audio	technologies	—	Part	3:	Unified	speech	and	
audio	coding	

ISO/IEC	23003-4:2015,	Information	technology	—	MPEG	audio	technologies	—	Part	4:	Dynamic	range	
control	

IETF	RFC	4122,	July	2005,	A	Universally	Unique	IDentifier	(UUID)	URN	Namespace	

1 ISO/IEC	23001-8	has	been	superseded	by	ISO/IEC	23091	(all	parts).

ISO/IEC	23008-3:202X(E)	

2	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

3 Terms,	definitions,	symbols,	abbreviated	terms	and	mnemonics	
3.1 Terms,	definitions,	symbols	and	abbreviated	terms	

For	the	purposes	of	this	document,	the	terms,	definitions,	symbols	and	abbreviations	in	ISO/IEC	14496-
3:2009,	1.3	and	1.4	and	in	ISO/IEC	23003-3:2012,	3.1	apply.	

ISO	and	IEC	maintain	terminological	databases	for	use	in	standardization	at	the	following	addresses:	

—	 ISO	Online	browsing	platform:	available	at	https://www.iso.org/obp		

—	 IEC	Electropedia:	available	at	http://www.electropedia.org/		

3.2 Mnemonics	

The	following	mnemonics	are	defined	to	describe	the	different	data	types	used	in	the	coded	bitstream	
payload.	

bslbf	 Bit	string,	left	bit	first,	where	“left”	is	the	order	in	which	bit	strings	are	written	
in	ISO/IEC	14496	(all	parts).	Bit	strings	are	written	as	a	string	of	1s	and	0s	
within	single	quote	marks,	for	example	'1000	0001'.	Blanks	within	a	bit	string	
are	for	ease	of	reading	and	have	no	significance.	

uimsbf	 Unsigned	integer,	most	significant	bit	first.	

vlclbf	 Variable	length	code,	left	bit	first,	where	“left”	refers	to	the	order	in	which	the	
variable	length	codes	are	written.	

tcimsbf		 Two’s	complement	integer,	most	significant	(sign)	bit	first.	

4 Technical	overview	
4.1 Decoder	block	diagram	

The	3D	audio	codec	system	consists	of	an	MPEG-H	3D	audio	core	codec	for	coding	of	channel,	object	and	
higher	order	ambisonics	(HOA)	signals.	The	core	codec	is	based	on	the	MPEG-D	USAC	codec.	To	increase	
the	efficiency	for	coding	a	 large	amount	of	objects,	MPEG	SAOC	technology	has	been	adopted.	Several	
types	of	renderers	perform	the	tasks	of	rendering	objects	to	channels,	rendering	channels	to	a	different	
loudspeaker	 setup,	 rendering	HOA	signals	 to	 the	 loudspeaker	 setup	or	 rendering	virtual	 loudspeaker	
channels	or	HOA	components	to	headphones.	

When	object	signals	are	explicitly	transmitted	or	parametrically	encoded	using	SAOC,	the	corresponding	
object	metadata	information	is	compressed	and	multiplexed	into	the	3D	audio	bitstream.		

Figure	1	shows	the	different	algorithmic	blocks	of	the	3D	audio	system.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 3	
	

	

Key	
DRC	 dynamic	range	control	 HREP	 high	resolution	envelope	processing	
SAOC	 spatial	audio	object	coding	 OAM	 object	audio	metadata	
HOA	 higher	order	ambisonics	 H2B	 HOA	to	binaural	
LN	 loudness	normalization	 PL	 peak	limiter	

Figure	1	—	3D	audio	decoder	

4.2 Overview	over	the	codec	building	blocks	

The	 MPEG-H	 3D	 audio	 core	 codec	 for	 loudspeaker-channel	 signals,	 discrete	 object	 signals,	 object	
downmix	signals	and	pre-rendered	signals	is	based	on	MPEG-D	USAC	technology.	It	handles	the	coding	
of	the	multitude	of	signals	by	creating	channel-	and	object-mapping	information	based	on	the	geometric	
and	 semantic	 information	 of	 the	 input’s	 channel	 and	 object	 assignment.	 This	 mapping	 information	
describes	how	input	channels	and	objects	are	mapped	to	channel	elements	(CPEs,	SCEs,	LFEs)	and	the	
corresponding	information	is	transmitted	to	the	decoder.	

ISO/IEC	23008-3:202X(E)	

4	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	
Figure	2	—	Simplified	typical	MPEG-H	core	decoder	configuration	

Figure	2	shows	a	simplified	block	diagram	of	the	typical	MPEG-H	core	decoder	building	blocks.	The	major	
differences	compared	to	MPEG-D	USAC	technology	are	highlighted	in	yellow.	The	highlighted	tools	are	
described	in	detail	in	Clause	5.	

The	coding	of	objects	is	possible	in	different	ways,	depending	on	the	rate/distortion	requirements	and	
the	interactivity	requirements	for	the	renderer.	The	following	object	coding	variants	are	possible.	

Transition
Windowing

Signal

Control

In/
Out

Functional UnitScaling

Noise
Filling
Synth.

Bit
Demux

FDP

Bit
Demux

Block
Switching

Filter Bank

IGF

M/S

TNS

MCT

ACELP

LPC
Coeff

Dequant.

Bit
DemuxFAC

IMDCT

FDNS

TBE

TNS

Pitch
Enhancement

LPD
StereoPart 1

Part 2

MPEG
Surround

eSBR

á sbrRatio

Bit
Demux

Output
Time

Signal

LTPF

IGF

Inv.
Quant.

Arithm.
Decod.

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 5	
	

— Prerendered	objects:	Object	 signals	are	pre-rendered	and	mixed	 to	multi-channel	or	HOA	signals	
before	encoding,	as	appropriate.	The	subsequent	coding	chain	 then	operates	on	multi-channel	or	
HOA	signals.	

— Discrete	 object	waveforms:	 Objects	 are	 supplied	 as	monophonic	waveforms	 to	 the	 encoder.	 The	
encoder	uses	single	channel	elements	SCEs	to	transmit	the	objects	in	addition	to	the	channel	signals.	
The	 decoded	 objects	 are	 rendered	 and	mixed	 at	 the	 receiver	 side.	 Compressed	 object	metadata	
information	is	transmitted	to	the	receiver/renderer	alongside.	

— Parametric	object	waveforms:	Object	properties	and	their	relation	to	each	other	are	described	by	
means	of	SAOC	parameters.	The	downmix	of	the	object	signals	is	coded	with	the	MPEG-H	3D	audio	
core	codec.	The	parametric	information	is	transmitted	alongside.	The	number	of	downmix	channels	
is	chosen	depending	on	the	number	of	objects	and	the	overall	data	rate.	Compressed	object	metadata	
information	is	transmitted	to	the	SAOC	renderer.	

The	SAOC	encoder	and	decoder	for	object	signals	are	based	on	MPEG	SAOC	technology.		The	system	is	
capable	of	recreating,	modifying	and	rendering	a	number	of	audio	objects	based	on	a	smaller	number	of	
transmitted	channels	and	additional	parametric	data	(OLDs,	IOCs,	DMGs).		

The	SAOC	decoder	reconstructs	the	object/channel	signals	from	the	decoded	SAOC	transport	channels	
and	parametric	information,	and	generates	the	output	audio	scene	based	on	the	reproduction	layout,	the	
decompressed	object	metadata	information	and	optionally	on	the	user	interaction	information.	

The	 object	 metadata	 codec	 efficiently	 codes	 the	 associated	 metadata	 that	 specifies	 the	 geometrical	
position	and	volume	of	each	object	in	3D	space	by	quantization	of	the	object	properties	in	time	and	space.	
The	compressed	object	metadata	is	transmitted	to	the	receiver	as	side	information.	

The	object	renderer	utilizes	the	compressed	object	metadata	to	generate	object	waveforms	according	to	
the	 given	 reproduction	 format.	 Each	 object	 is	 rendered	 to	 certain	 output	 channels	 according	 to	 its	
metadata.	The	output	of	this	block	results	from	the	sum	of	the	partial	results.		

The	 loudspeaker	 renderer	 converts	 between	 the	 transmitted	 channel	 configuration	 and	 the	 desired	
reproduction	 format.	 It	 is	 thus	 called	 ‘format	 converter’.	 In	 case	 of	 conversions	 to	 lower	numbers	 of	
output	channels	it	creates	downmixes.	The	system	automatically	generates	optimized	downmix	matrices	
for	the	given	combination	of	input	and	output	formats	and	applies	these	matrices	in	a	downmix	process.	
The	 format	 converter	 allows	 for	 standard	 loudspeaker	 configurations	 as	 well	 as	 for	 random	
configurations	with	non-standard	loudspeaker	positions.	

The	higher	order	ambisonics	(HOA)	decoder/renderer	reconstructs	the	HOA	coefficient	signals	based	on	
the	HOA	transport	channels	decoded	by	the	3D	audio	core	decoder	and	the	HOA	specific	side	information.	
The	coding	principle	is	based	on	a	separate	transmission	of	so-called	predominant	sounds	and	ambient	
sound	 scene	 components.	 Subsequently	 the	 HOA	 renderer	 generates	 the	 loudspeaker	 channel	 feeds	
based	on	the	reproduction	layout.	

If	two	or	more	groups	of	channel	based	content,	discrete/parametric	objects	or	HOA	based	content	are	
decoded,	the	corresponding	waveforms	are	delay-aligned	and	sample-wise	added	by	the	mixer	before	
providing	 the	 resulting	 waveforms	 (or	 before	 feeding	 them	 to	 a	 postprocessor	 module	 such	 as	 the	
binaural	renderer,	DRC-2,	DRC-3,	the	peak	limiter	PL,	or	the	loudspeaker	distance	compensation).	

The	 sample	 rate	 converter	 block	 converts	 between	 the	 core	 decoder	 sampling	 rate	 and	 the	 decoder	
output	sampling	rate.	It	enables	a	constant	output	sampling	rate	in	case	of	varying	core	coding	sampling	
rates	 and	 allows	 for	 resampling	 of	 audio	 scenes,	 which	may	 be	 coded	 in	multiple	 sub-streams	with	
different	core	sampling	rates,	to	a	common	output	sampling	rate.	

ISO/IEC	23008-3:202X(E)	

6	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Note	that	in	case	DRC-2/3	gains	need	to	be	applied	in	the	post-processing	context	(see	Figure	2),	the	DRC-
2/3	gains	should	be	resampled	similar	to	the	audio	samples.	

The	MPEG	surround	decoder	takes	the	downmix	signals	coming	from	the	MPEG-H	3D	audio	decoder	and	
performs	the	guided	MPEG	surround	upmix	using	the	MPEG	surround	side	information	to	reproduce	the	
multichannel	signal	for	the	transmitted	loudspeaker	layout.	

The	binaural	renderer	module	produces	a	binaural	downmix	of	the	multichannel	audio	material,	such	
that	each	input	channel	is	represented	by	a	virtual	sound	source.	The	processing	is	conducted	frame-wise	
in	 the	QMF	domain	 or	 in	 the	 time	domain.	 The	 binauralization	 is	 based	 on	measured	binaural	 room	
impulse	responses	(BRIRs).		

Virtual	layout	information	fed	from	an	application	shall	be	consistent	with	the	corresponding	BRIR	set	
provided	 (expressed	 with	MeasurementSetup,	 see	 Table	 253),	 in	 the	 sense	 that	 the	 set	 of	 positions	
corresponding	to	the	virtual	layout	is	a	subset	of	the	set	of	positions	corresponding	to	the	BRIRs.	

4.3 Efficient	combination	of	decoder	processing	blocks	in	the	time	domain	and	QMF	
domain	

There	 are	 numerous	 processing	 blocks	 in	 the	MPEG-H	3D	 audio	 decoding,	 rendering	 and	 processing	
framework.	In	general	these	blocks	can	be	classified	into	different	classes:	

1) Block	operates	in	the	time	domain	(TD)	

2) Block	operates	in	frequency	domain	(FD)	–	also	called	QMF	domain	
3) Block	is	“neutral”	and	can	operate	in	FD	or	TD.		

Signal-processing-wise	the	same	operation	is	carried	out	in	either	FD	or	TD.	Operation	in	a	
different	domain	may	cause	no	difference	or	only	a	small	but	perceptually	negligible	difference	
to	the	output	signal.	

Table	1	 lists	 all	 blocks	with	 their	 corresponding	processing	domain.	 For	 the	 sake	of	 clarification,	 the	
functional	blocks	are	grouped	 into	 semantically	differentiable	 contexts,	which	 follow	 the	MPEG-H	3D	
audio	signal	processing	as	shown	in	Figure	3.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 7	
	

Table	1	—	MPEG-H	3D	audio	functional	blocks	and	internal	processing	domain	

Processing	
context	 Functional	block	 Processing	

domain	

Delay	
samples	
[1/fs,core]	

or	
[1/fs,out]	

	

Contribution	
to	maximum	

delay	
high	profile	
samples	
[1/fs,out]	

Contribution	
to	maximum	
delay	low	
complexity	
profile	
samples	
[1/fs,out]	

Audio	core

	 TD,	Core	
frame	length	
=	1024	

0 	 	

SBR	/	MPS212	 FD,	Core	
frame	length	
=	2048	or	
4096	

0 	 	

SBR/MPS212,	
stereoConfigIndex==3	

FD,	Core	
frame	length	
=	2048	or	
4096	

384	 384	×	RSRmax	 	

MPEG-H	3D	audio	core	coder	 FD	or	TD	 	 	
MPEG	surround	 FD	 640	 640	×	RSRmax	 	
HREP	 TD,	Core	

frame	length	
=	1024	

64 	 	

HREP,	QMF-synthesis	and	
QMF-analysis	pair	and	
alignment	to	64	sample	grid	

FD	TD	FD	 64	+	257	+	
320	+	63	

(64	+	257	+	
320	+	63)	×	
RSRmax	

	

 	 QMF-analysis	 TD,	FD	 320	 320	×	RSRmax	 	
 	 QMF-synthesis	 FD,	TD	 257	 257	×	RSRmax	 	
 	 Hybrid	filter/SBR	 FD	 384	 384	×	RSRmax	 	

Rendering	

DRC-1	 if	multiband:	
TD	(STFT)	
or	FD	
else:	neutral	

0 	 	

Format	converter,	
core	frame	length	=	1024	

FD	 3072	 3072	×	RSRmax	 	

Format	converter,	core	frame	
length	=	2048	or	4096	

FD	 2048 	 	

STFT	format	converter	 TD	(STFT)	 256 	 256	×	RSRmax	
Object	renderer	 Neutral	 0 	 	
SAOC	3D	decoder,	
bsDoubleFrameLengthFlag=0	

FD	 0 	 	

SAOC	3D	decoder,	
bsDoubleFrameLengthFlag=1	
Core	frame	length	=	1024	

FD	 1024 	 	

SAOC	3D	decoder,	
bsDoubleFrameLengthFlag=1	
Core	frame	length	=	2048	

FD	 2048 	 	

HOA	decoder	 TD,	(FD)	c	 0	|	577 	 	
HOA	decoder	with	multiband	
DRC-1	

TD,	FD	or	
TD	(STFT),	
TD		

577	|	256 	 	

Sample	rate	converter	 FD,	TD	 256	 256	 256	
Mixing	 Mixer	 FD,	TD	 0 	 	

ISO/IEC	23008-3:202X(E)	

8	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Processing	
context	 Functional	block	 Processing	

domain	

Delay	
samples	
[1/fs,core]	

or	
[1/fs,out]	

	

Contribution	
to	maximum	

delay	
high	profile	
samples	
[1/fs,out]	

Contribution	
to	maximum	
delay	low	
complexity	
profile	
samples	
[1/fs,out]	

Maximum	accumulated	delay	to	mixer:	 5761	×	RSRmax	
+	256	

256	×	RSRmax	+	
256	

Post-
processing	

QMF-analysis	 TD,	FD	 320	 320	 320	
QMF-synthesis	 FD,	TD	 257	 257	 257	
DRC-2	 if	multiband:	

FD	
else:	neutral	

0 	 	

FD	binauralizer	 FD	 0 	 	
TD	binauralizer	 TD	 0 	 	

End	of	chain	

DRC-3	(only	singleband)	 TD	 0 	 	
Loudness	normalization	 TD	 0 	 	
Peak	limiter	a	 TD	 240	

	
240	 240	

LS	distance	compensation	 TD	 0 	 	

Maximum	accumulated	delay	to	decoder	output	a,	b:		
5761	×	RSRmax	
+	1073	
=	18356	

256	×	RSRmax	+	
1073	
=	1841	

a	 The	given	values	are	valid	for	fs,out	=48	kHz.	The	peak	limiter	shall	introduce	a	delay	of	5ms,	i.e.	the	limiter	delay	
in	samples	shall	be	determined	as	floor(fs,out	·	5/kHz).	The	maximum	accumulated	delay	to	the	decoder	output	
has	to	be	adapted	accordingly	for	output		 sampling	rates	the	differ	from	fs,out	=	48	kHz.	

b	 The	maximum	resampling	factor	RSRmax	of	the	sampling	rate	converter	is	3.	
c		 HOA	Decoder:	FD	in	case	subband	directional	prediction	or	PAR	is	used	(only	high	profile),	low	complexity	

profile	only	operates	in	TD.	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 9	
	

	

Figure	3	—	MPEG-H	3D	audio	decoder	overview	with	signal	processing	context	

Operating	blocks	that	are	directly	connected	in	the	signal	chain	and	which	operate	in	the	same	domain	
can	interface	in	that	common	domain.	

Operating	blocks	that	are	directly	connected	in	the	signal	chain	and	which	operate	in	different	domains	
require	a	transformation	block	which	turns	one	signal	representation	into	another,	i.e.	a	QMF	analysis	
(TD	to	FD)	or	a	QMF	synthesis	(FD	to	TD).	This	transform	causes	additional	delay	and	hence	needs	to	be	
taken	into	account	when	determining	the	overall	signal	processing	delay.	

The	 following	 subclause	 describes	 formal	 generic	 rules	which	 determine	 how	 the	 various	 functional	
blocks	can	be	connected.	

4.4 Rule	set	for	determining	processing	domains	

 Audio core codec processing domain

The	incoming	bitstream	configuration	determines	which	core	decoder	tools	are	active	and	whether	
parts	of	the	core	codec	operate	in	QMF	domain	/	FD.	

a) If	last	decoding	stage	is	in	QMF	domain	(SBR	and/or	MPS212	active)	
(typical	for	mid	to	low	bit	rate	coding)	
1) formal	audio	core	codec	processing	domain	is	FD	

b) If	last	decoding	stage	is	not	in	QMF	domain	(neither	SBR	nor	MPS212	active)	
(typical	for	high	rate	coding)	
1) formal	audio	core	codec	processing	domain	is	TD	

 Mixing	
— The	mixer	may	operate	in	TD	or	in	FD	

ISO/IEC	23008-3:202X(E)	

10	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 DRC-1	Operation	domains	(DRC	in	rendering	context)	

— If	multiband	DRC-1	data	is	present	in	the	bitstream	for	a	DRC-1	module,	
— the	corresponding	DRC-1	processing	block	should	operate	in	FD	or	TD	(STFT)	
 Audio	core	codec	interface	domain	to	rendering	

— If	the	audio	core	codec	processing	domain	is	TD	

— If	the		rendering	block	requires	operation	in	FD	
— apply	QMF	analysis	and	output	FD	for	this	rendering	block	

— else	

— output	TD	

— If	the	audio	core	codec	processing	domain	is	FD	
— If	the	subsequent	rendering	block	requires	operation	in	TD	

— apply	QMF	synthesis	and	output	TD	for	this	rendering	block	

— else	

— output	FD	

 Rendering	context	
Rendering	paths	are	considered	individually:	

— If	the	rendering	block	operates	in	FD	and	mixer	operates	in	TD	

— apply	QMF	synthesis	after	renderer	and	output	TD	

— If	the	rendering	block	operates	in	TD	and	mixer	operates	in	FD	

— apply	QMF	analysis	after	renderer	and	output	FD	
— else	

— keep	processing	domain	
In	case	the	core	decoder	operates	in	the	time	domain	(TD),	i.e.	if	the	core	decoder	does	not	apply	QMF	
domain	 processing	 like	 SBR	 or	MPS-212,	 the	 low-complexity	 STFT	 domain	 downmix	 as	 specified	 in	
clauses	24	and	25	shall	be	applied	for	format	conversion	if	format	conversion	is	requested.	

 Post-processing	context	

— If	mixer	operates	TD	

— If	any	block	in	post-processing	context	requires	operation	in	FD	
— convert	to	FD	immediately	after	mixer;		

— after	the	FD	operation	convert	to	TD,	i.e.	prior	to	end-of-chain	context	

— else	
— stay	in	TD	

— If	Mixer	operates	in	FD	

— If	no	block	in	post-processing	context	requires	operation	in	FD	

— convert	to	TD	prior	to	DRC-2	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 11	
	

— else	
— convert	to	TD	prior	to	end-of-chain	context	

 End-of-chain	context	
All	blocks	shall	operate	in	TD.	

4.5 Sample	rate	converter	

The	sample	rate	converter	performs	sample	rate	conversion	between	the	core	coder	sampling	rate	and	
the	output	sampling	rate	of	the	decoder.	The	signal	delay	introduced	by	the	sample	rate	converter	shall	
not	exceed	256	samples,	measured	in	samples	at	the	output	sampling	rate	of	the	decoder.	The	sample	
rate	converter	shall	be	able	 to	perform	sampling	rate	conversions	with	resampling	ratios	 (defined	as	
decoder	output	sampling	rate	divided	by	core	decoder	output	sampling	rate)	of	3/2,	2,	and	3.	The	sample	
rate	converter	block	shall	further	be	able	to	pass	through	the	signal(s)	if	the	core	decoder	sampling	rate	
matches	the	decoder	output	sampling	rate.	

4.6 Decoder	delay	

If	a	constant	decoder	delay	application	is	signalled	in	the	bitstream	(receiverDelayCompensation==1,	
as	defined	in	subclause	5.2.2)	then	the	decoding	and	rendering	delay	from	the	IMDCT	output	of	the	core	
decoder	to	the	mixing	block	of	the	MPEG-H	3D	audio	decoder	shall	be	kept	constant	by	introducing	delay	
lines	where	required.	Similarly,	the	overall	delay	from	the	IMDCT	output	to	the	decoder	output	shall	be	
kept	constant	by	introducing	delay	lines	where	required.	The	constant	delay	values	that	shall	be	fulfilled	
are	determined	by	the	maximum	accumulated	delay	numbers	in	Table	1.	

Enforcing	a	constant	delay	 from	the	 IMDCT	output	 to	 the	mixer	 implies	 that	all	 signals	at	 the	 IMDCT	
output	shall	be	aligned.	Accordingly,	the	decoder	shall	compensate	for	different	delays	that	may	occur	in	
the	processing	of	the	IMDCT	output	signals,	e.g.	different	SBR/MPS	processing	delays	for	SCEs	and	CPEs	
in	case	of	stereoConfigIndex==3.	

Further,	all	side	information	utilized	in	the	rendering	blocks	as	well	as	for	DRC	processing	shall	be	sent	
aligned	to	the	IMDCT	output	waveforms	independent	of	the	value	of	receiverDelayCompensation.	The	
rendering	 and	DRC	 side	 information	 shall	 be	 applied	 delayed	 in	 the	 rendering/DRC	blocks.	 The	 side	
information	delays	are	determined	by	the	delays	the	waveforms	encounter	 in	the	processing	pipeline	
from	the	IMDCT	output	until	reaching	the	corresponding	rendering/DRC	blocks.	The	following	kinds	of	
side	information	shall	be	aligned	to	the	IMDCT	output	waveforms	and	shall	be	applied	delayed	as	defined	
above:	

—	 OAM	object	metadata;	

—	 DRC	side	information;	

—	 SAOC	side	information;	

—	 HOA	side	information.	

In	 case	 a	 bitstream	 contains	 multiple	 signal	 groups	 with	 different	 signalGroupTypes,	 the	 bitstream	
element	receiverDelayCompensation	shall	be	set	to	1.	

ISO/IEC	23008-3:202X(E)	

12	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

4.7 Contribution	mode	of	MPEG-H	3D	audio	

The	contribution	mode	of	MPEG-H	3D	audio	specifies	a	generic	transport	mechanism	for	audio	signals	
with	accompanying	metadata	and	it	is	designed	to	be	unaware	of	the	signal	type	and	of	the	content	and	
structure	of	the	associated	metadata.	

A	value	of	speakerLayoutType	==	3	as	defined	in	Table	69	in	the	signalling	of	the	referenceLayout	in	
the	 mpegh3daConfig()	 indicates	 that	 MPEG-H	 3D	 audio	 shall	 operate	 in	 contribution	 mode.	 In	
contribution	mode	the	rendering	context	shall	operate	in	a	pass-through	mode,	i.e.	the	format	converter	
shall	 apply	 an	 identity	 matrix	 to	 the	 signal.	 contribution	 mode	 bitstreams	 shall	 have	 the	 following	
additional	restrictions:	

— bsNumSignalGroups	==	0	(one	single	signal	group);	
— SignalGroupType	==	0	(channel	signal	group);	

— differsFromReferenceLayout[0]	==	0	(no	audioChannelLayout	in	the	signal	group);	

— core	coder	delay	lines	for	compensation	of	SBR,	MPS212,	shall	be	applied;	
— Content	of	extension	elements	shall	not	be	processed	in	the	decoder	but	shall	be	made	available	to	

an	external	framework.	

4.8 MPEG-H	3D	audio	profiles	and	levels	

 General	

This	subclause	defines	profiles	and	their	levels	for	MPEG-H	3D	audio.	

Complexity	units	are	defined	to	give	an	approximation	of	the	decoder	complexity	in	terms	of	processing	
power	 required	 for	 the	 decoding	 process.	 The	 approximated	 processing	 power	 is	 given	 in	 processor	
complexity	units	(PCU),	specified	in	millions	operations	per	second	(MOPS).	

 Profiles	

The	following	audio	profiles	are	defined:	

1) The	main	profile	of	MPEG-H	3D	audio	provides	a	complete	set	of	features	for	low-bitrate	and	
high-quality	coding,	and	rendering	for	all	playback	scenarios.		

NOTE	 The	 definition	 of	 the	 main	 profile,	 its	 associated	 bitstream	 syntax,	 semantics,	 and	 decoding	
process	description	was	captured	in	ISO/IEC	23008-3:2015	(the	first	edition	of	this	document).		

2) The	high	profile	of	MPEG-H	3D	audio	provides	a	complete	set	of	features	for	low-bitrate	and	
high-quality	coding,	and	rendering	for	all	playback	scenarios.	The	high	profile	is	a	superset	of	
the	low-complexity	profile.	

3) The	 low	 complexity	 profile	 provides	 features	 for	 broadcasting	 and	 streaming	 with	 reduced	
decoder	complexity.	

4) The	baseline	profile	is	a	subset	of	the	low-complexity	profile	which	supports	channel	and	object	
signals.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 13	
	

Table	2	—	Summary	of	the	location	of	and	normative	reference	to	the	definitions	of	
MPEG-H	3D	audio	profiles	

Tool/Module
Defined	

in	
ISO/IEC

Subcla
use

USAC	
23003-3

MPEG-H	3D	
audio	
High	
profile

MPEG-H	3D	
audio	
Low-	

complexity	
profile

MPEG-H	3D	
audio	
Baseline	
profile

block	
switching

	 14496-3 4.6.11 X X X X

window	
shapes

AAC	based 14496-3 4.6.11 X X X X

Additional	
windows 23003-3 6.2.9.3 X X X X

filter	bank
AAC	based 14496-3 4.6.11 X X X X

additional	USAC 23003-3 7.9 X X X X

TNS 	 14496-3 4.6.9 X X X X

intensity 	 14496-3 4.6.8.2 	 	 	 	

coupling 	 14496-3 4.6.8.3 	 	 	 	

perceptual	
noise	
synthesis

PNS 14496-3 4.6.13 	 	 	 	

noise	filling 23003-3 7.2 X X X X

MS

basic	mid/side	
coding 14496-3 4.6.8.1 X X X X

MDCT	based	
complex	
prediction

23003-3 7.7.2 X X X X

quantizatio
n

non-uniform 14496-3 4.6.1 X X X X

uniform 23003-3 7.1 X X X 	

entropy	
coding

Huffman 14496-3 4.6.3 	 	 	 	

context	adaptive	
arithmetic	coding 23003-3 7.4 X X X X

SBR
base 14496-3 4.6.18 X X 	 	

enhanced 23003-3 7.5 X X 	 	

parametric	
stereo	
extension

parametric	
stereo 14496-3

8.6.4	/	
8.A

	 	 	 	

MPEG	surround	
2-1-2	(incl.	
residual	coding)

23003-3 6.2.13 X X 	 	

quad	channel	
element 23008-3 5,5 	 X 	 	

ACELP 	 23003-3 7.14 X X X 	

frequency	
domain	
noise	
shaping

scale	factor	based 14496-3 4.6.2 X X X X

LPC	based 23003-3 	 X X X 	

ISO/IEC	23008-3:202X(E)	

14	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Tool/Module
Defined	

in	
ISO/IEC

Subcla
use

USAC	
23003-3

MPEG-H	3D	
audio	
High	
profile

MPEG-H	3D	
audio	
Low-	

complexity	
profile

MPEG-H	3D	
audio	
Baseline	
profile

intelligent	
gap	filling IGF	for	FD 23008-3 	 	 X X X

improved	
LPD	coding

IGF	for	TCX	and	

TBE	in	ACELP
23008-3 	 	 X X 	

LPD	stereo 23008-3 	 	 X X 	

predictors	
for	FD

frequency-	
domain	
prediction	and	
time-domain	
post-filtering

23008-3 	 	 X X X

predictors	
for	TCX

frequency-	
domain	
prediction	and	
time-domain	
post-filtering

23008-3 	 	 X X 	

discrete	
multi-
channel	
coding

MCT 23008-3 	 	 X X X

format	
converter generic	downmix 23008-3 10,	24 	 X Xd Xd	

immersive	
rendering

immersive	
rendering	within	
format	converter

23008-3 11,	25 	 X Xd Xd

static	
metadata

metadata	audio	
elements	(MAE)	
and	audio	scene	
information	(ASI) 23008-3 15 	 X X X

decoder	and	
renderer

dynamic	
object	
metadata

object	audio	
metadata	(OAM)

23008-3 7,	8 	 X X X
decoder	and	
renderer

MPS
MPEG	surround	
extension 23003-1 10 	 X 	 	

SAOC-3D decoder	and	
renderer 23008-3 9 	 X 	 	

HOA

decoder	and	
renderer 23008-3 12 	 X Xe 	

near	field	
compensation 23008-3 	 	 X Xa 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 15	
	

Tool/Module
Defined	

in	
ISO/IEC

Subcla
use

USAC	
23003-3

MPEG-H	3D	
audio	
High	
profile

MPEG-H	3D	
audio	
Low-	

complexity	
profile

MPEG-H	3D	
audio	
Baseline	
profile

subband	
directional	
prediction

23008-3 	 	 X 	 	

parametric	
ambiance	
replication	(PAR)

23008-3 	 	 X 	 	

phase-based	
decorrelation 23008-3 	 	 X 	 	

Binaural

FD-binaural,	TD-
binaural 23008-3 13 	 X Xb Xb

HOA2Binaural	
H2B 23008-3 	 	 X Xb 	

DRC

DRC-1 23003-4 	 	 X Xc Xc

DRC-2	(single	
band) 23003-4 	 	 X X X

DRC-2	(multi	
band) 23003-4 	 	 	 	 	

DRC-3	(single	
band) 23003-4 	 	 X X X

sample	rate	
converter

	

23008-3 	 	 X X X

peak	
limiter

unguided	
clipping	
prevention

23008-3	

23003-4
D 	 X X X

loudness

loudness	
metadata	and	
handling

23003-4 6 	 X X X

loudness	
compensation 23008-3 	 	 X X X

MHAS

MPEG-H	3D	
Audio	stream 23008-3 14 	 X X X

truncation	
message	and	CRC	
packet	type,	ASI	
packet	type

23008-3 	 	 X X X

file	format

carriage	of	
MPEG-H	3D	
audio	in	ISO	base	
media	file	format

23008-3 	 	 f

interfaces	
and	
processing

interfaces	and	
processing	for	
interaction	data	

23008-3 17,18 	 X X X

ISO/IEC	23008-3:202X(E)	

16	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Tool/Module
Defined	

in	
ISO/IEC

Subcla
use

USAC	
23003-3

MPEG-H	3D	
audio	
High	
profile

MPEG-H	3D	
audio	
Low-	

complexity	
profile

MPEG-H	3D	
audio	
Baseline	
profile

and	local	setup	
info

carriage	of	
generic	
data

carriage	of	
generic	data	for	
the	interaction	
with	system	
engine

23008-3 	 	 X X 	

TCC
tonal	component	
coding 23008-3 	 	 X 	 	

IC internal	channel 23008-3 	 	 X 	 	

HREP
high	resolution	
envelope	
processing

23008-3 	 	 X 	 	

a					Restrictions	apply	dependent	on	the	levels.		
b					Implementation	of	binaural	rendering	is	only	mandated	if	headphone	reproduction	is	supported.	
c					Multi-band	DRC-1	shall	be	applied	in	the	STFT	domain	of	the	TD	format	converter.	
d					The	TD	format	converter	downmix	shall	be	applied	for	downmixing.	
e					In	order	to	achieve	target	complexity	for	the	LC	profile	at	a	given	level,	study	Annex	G.	
f					File	format	encapsulation	is	independent	of	the	profile	that	is	used	for	the	bitstream.	A	profile	level	indicator	is	part	of	the	file	
format	specification	(see	subclause	20.4).

The	 baseline	 profile	 is	 a	 subset	 of	 the	 low-complexity	 profile.	 If	 a	 decoder	 implementation	 supports	
decoding	 of	 low	 complexity	 profile	 level	 3	 bitstreams	 and	 supports	 the	 configuration	 extension	
CompatibleProfileLevelSet(),	then	the	decoder	shall	support	decoding	of	bitstreams	encoded	according	
to	the	baseline	profile	level	3.	Bitstreams	complying	to	the	baseline	profile	may	be	signalled	using:	

— the	mpegh3daProfileLevelIndication	field	set	to	indicate	baseline	profile	as	specified	in	Table	67,	or	
alternatively,	

— the	mpegh3daProfileLevelIndication	field	set	to	indicate	low	complexity	profile	as	specified	in	Table	
67	 and	 the	 CompatibleProfileLevelSet	 configuration	 extension	 for	 indicating	 compatibility	 to	
baseline	profile,	as	described	in	Annex	P;	

Additionally,	 it	 is	 strongly	 recommended	 that	 low	 complexity	 profile	 bitstreams	conforming	 to	 the	
baseline	profile,	are	signalled	using	the	profile	and	level	values	for	mpegh3daProfileLevelIndication	and	
CompatibleSetIndication	given	in	Table	P1.

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 17	
	

4.8.2.1 Levels	of	the	low	complexity	profile	

Table	3	—	Levels	and	their	corresponding	restrictions	for	the	low	complexity	profile	

Level
Max.	
samp
ling	
rate

Max.	
no.	of	
core	ch.	
in	

compre
ssed	
data	
stream

Max.	no.	
of	

decoder	
process
ed	core	
ch.

Max.	
no.	of	
loud	

speaker	
output	
ch.

Example	of	
max.	loud	
speaker	

configurati
on

Max.	no.		
of	

decoded	
objects

Example	of	a	
	max.		config	

C+O

Max.	
HOA	
order

Example	of		
max.	HOA	order	

+	O

1 48000 10 5 2 2.0 5 2	ch.	+	3	static	
obj.	a 2 2nd	order	+	3	static	

obj.	a

2 48000 18 9 8 7.1 9 6	ch.	+	3	static	
obj.	a 4 4th	order	+	3	static	

obj.	a

3 48000 32 16 12 11.1 16 12	ch.	+	4	obj. 6 6th	order	+	4	obj.

4 48000 56 28 24 22.2 28 24	ch.	+	4	obj. 6 6th	order	+	4	obj.

5 96000 56 28 24 22.2 28 24	ch.	+	4	obj. 6 6th	order	+	4	obj.

a					In	this	context	“static	objects”	are	understood	as	channel-based	signals	without	accompanying	OAM	data	which	are	not	
also	associated	to	a	channel	bed.	

—	 The	use	of	switch	groups	determines	the	subset	of	core	channels	from	the	core	channels	in	the	
bitstream	that	shall	be	decoded.	

—	 If	the	mae_AudioSceneInfo()	contains	switch	groups	(mae_numSwitchGroups>0),	then	the	
elementLengthPresent	flag	shall	be	1.	

—	 The	number	of	channels	of	the	signalled	referenceLayout	shall	not	exceed	the	maximum	number	of	
loudspeaker	output	channels	as	defined	in	the	levels	Table	3.	

Table	4	—	Approximated	worst	case	processing	power	(PCU)	of	decoder	modules	and	the	whole	
decoder	for	the	different	levels	of	the	low	complexity	profile	given	in	MOPS	

Level	 Core		
LC	

Format	
converter	

Object	
renderer	

HOA	a	 Objects	
only	

renderer	

DRC	 Limiter	 Binaural	b	 Worst	case	
PCU

1	 33	 3	 0	 3	 9	 6	 4	 7	 58	

2	 59	 10	 0	 17	 16	 18	 5	 19	 118	

3	 106	 36	 7	 36	 29	 24	 6	 27	 206	

4	 186	 113	 7	 93	 50	 30	 9	 46	 392	

5	 373	 226	 14	 186	 50	 34	 19	 92	 758	

a					The	 complexity	 numbers	 for	 the	 HOA	 spatial	 decoding	 and	 rendering	 are	 based	 on	 the	 low	
complexity	combined	HOA	spatial	decoding	and	rendering	described	in	Annex	G.	
b					The	 complexity	 numbers	 for	 binaural	 processing	 are	 calculated	 on	 the	 basis	 of	 BRIR	 filters	 of		
1	second	length	measured	in	a	BS.1116	compliant	room.	

ISO/IEC	23008-3:202X(E)	

18	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

4.8.2.2 Restrictions	for	the	low	complexity	profile	and	levels	

In	the	low	complexity	profile	the	core	decoder,	format	converter,	object	renderer,	HOA	renderer	and	
DRC	and	peak	limiter	operate	in	the	time	domain,	MDCT-domain	or	STFT-domain.	

The	following	restrictions	apply	for	HOA	renderer	and	decoder.	

Table	5	—	Restrictions	for	the	HOA	spatial	decoding	and	rendering	according	to	the	level	of	the	
low	complexity	profile	

Restriction	applies	to	

Maximum	allowed	value	depending	on	
Mpegh3daProfileLevelIndication

Lvl	1 Lvl	2 Lvl	3 Lvl	4 Lvl	5

HOA	order	(max) 2 4 6 6 6
Number	of	predominant	sounds	(max) 3 5 7 8 8
Number	of	directional	signals	used	in	prediction	
(max):	MaxNoOfDirSigsForPrediction 2 3

no	restric	
tions	apply

no	restric	
tions	apply

no	restric	
tions	apply

The	near	field	compensation	(NFC)	processing	
may	be	applied	to	HOA	content	of	an	order	
which	is	smaller	or	equal	to:	

N/A	
(NFC	not	
allowed)	

1 2 3 3	

NFC	may	be	employed	in	not	more	than	one	signal	group	of	type	SignalGroupTypeHOA.	

The	following	restrictions	apply	to	MPEG-D	DRC	(ISO/IEC	23003-4)	when	employed	as	part	of	MPEG-H	
3D	audio.	

—	 drcFrameSizePresent	and	timeDeltaMinPresent	shall	be	set	to	0.	

—	 gainInterpolationType	shall	be	set	to	1.	

—	 dependsOnDrcSetPresent	shall	be	set	to	0	for	drcInstructionsUniDrc()	with	downmixId	==	0.	

—	 HOA	signal	groups	shall	be	restricted	to	one	drcChannelGroup	and	DRC	gains	shall	be	applied	to	the	
HOA	core	channels	(HOATransportChannels).	

—	 The	values	of	bsSequenceIndex	within	drcInstructionsUniDrc()	 shall	be	unique	 in	simultaneously	
applied	DRC	sets	except	for	bsSequenceIndex	==	0.	

—	 Multiband	DRC	shall	be	restricted	to	drcInstructionsUniDrc()	with	downmixId	==	0.	If	the	bitstream	
should	contain	multiband	DRC,	the	number	of	multiband	DRC	core	channels	shall	be	restricted	as	
follows:	

(numAudioChannels	+		
numAudioObjects		 	 	 +	numAudioObjectsMB	+		
numHOATransportChannels		 +	numHOATransportChannelsMB)	
≤	(numCoreChannelsMax(Lvl)	–	dependsOnDrcSetPresentFlag	–	1),	
	
where	

— numAudioChannels,	numAudioObjects	and	numHOATransportChannels	are	the	number	of	C,	O	
and	HOA	core	channels	as	specified	in	Table	17;	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 19	
	

— numAudioObjectsMB	and	numHOATransportChannelsMB	are	 the	number	of	O	and	HOA	core	
channels	out	of	numAudioObjects	and	numHOATransportChannels	that	contain	multiband	DRC;	

— numCoreChannelsMax	is	the	maximum	number	of	decoder	processed	core	channels	depending	
on	the	Mpegh3daProfileLevelIndication	field	as	defined	in	Table	3;	

— dependsOnDrcSetPresentFlag	 is	 set	 to	 one	 if	 the	 bitstream	 contains	 any	 configuration	 with	
dependsOnDrcSetPresent==1	(otherwise	zero).	

—	 nNodes	shall	be	restricted	to	a	maximum	value	of	32,	where	nNodes	is	the	number	of	encoded	gain	
values	in	the	current	DRC	frame.	

—	 loudnessInfoSetPresent	within	mpegh3daUniDrcConfig()	shall	be	set	to	0.	

—	 nDrcChannelGroups	shall	be	restricted	to	1	for	drcInstructionsUniDrc()	with	downmixId	!=	0.	

Table	6	—	Restrictions	applying	to	DRC	processing	according	to	the	levels	of	the	
low	complexity	profile	

Restriction	applies	to	

Maximum	allowed	value	depending	
on	Mpegh3daProfileLevelIndication

Lvl	1	 Lvl	2	 Lvl	3	 Lvl	4	 Lvl	5

nDrcChannelGroupsTotal	a 5 9 16 28 28
drcCoefficientsUniDrcCount 4 4 4 4 4
bandCount	b 2 4 4 4 4
sequenceCountTotal	c 24 28 32 48 63
drcInstructionsUniDrcCount 16 16 32 32 32
a					Maximum	allowed	number	of	simultaneously	active	DRC	channel	groups	in	all	applied	DRC	sets.	
b					Maximum	allowed	number	of	DRC	bands	for	multiband	DRC.	
c					Sum	of	all	nDrcBands	in	drcGainSequence()	structures	plus	number	of	sequences	with	
gainCodingProfile=3.	

The	following	tool	specific	restrictions	apply:	

—	 If	 the	 independent	 noise	 filling	 (INF)	 of	 the	 intelligent	 gap	 filling	 (IGF)	 is	 activated	 (i.e.	 if	
igfUseEnf==1),	 then	 the	 complex	 prediction	 tool	 shall	 be	 restricted	 to	 real-only	 prediction,	 i.e.	
complex_coef	shall	be	0.	

—	 If	 stereo	 filling	 is	 activated	 (i.e.	 if	 stereo_filling==1),	 then	 the	 complex	 prediction	 tool	 shall	 be	
restricted	to	real-only	prediction,	i.e.	complex_coef	shall	be	0.	

—	 The	independent	noise	filling	of	the	intelligent	gap	filling	shall	not	be	employed	in	cases	where	igfBgn	
corresponds	to	an	audio	frequency	higher	than	8	kHz.	

—	 The	 LPD	 mode	 shall	 only	 be	 employed	 at	 3D	 audio	 core	 coder	 sampling	 rates	 (as	 defined	 in		
Table	15)	≤32	000	Hz.	

EXAMPLE	 For	a	48	kHz	input	signal,	the	encoder	resamples	the	signal	to	a	32	kHz	core	coder	sampling	rate	
and	the	LPD	decoder	operates	at	this	lower	sampling	rate.	After	the	core	decoding	the	signal	is	resampled	to	48	kHz.	

—	 The	multi-channel	coding	tool	(MCT)	shall	not	employ	more	stereo	boxes	than	specified	in	Table	7.		

ISO/IEC	23008-3:202X(E)	

20	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	7	—	Restrictions	applying	to	MCT	processing	according	to	the	levels	of	the	
low	complexity	profile	

Restriction	applies	to	

Maximum	allowed	value	depending	
on	Mpegh3daProfileLevelIndication

Lvl	1	 Lvl	2	 Lvl	3	 Lvl	4	 Lvl	5

Number	of	stereo	boxes	in	MCT 5 9 16 28 28	

The	following	restrictions	apply	to	coding	of	audio	objects	and	the	associated	OAM	data.	

Table	8	—	Restrictions	applying	to	object	processing	according	to	the	levels	of	the	
low	complexity	profile	

Restriction	applies	to	

Maximum	allowed	value	n	depending	
on	Mpegh3daProfileLevelIndication

Lvl	1	 Lvl	2	 Lvl	3	 Lvl	4	 Lvl	5

(number	of	objects	without	divergence)	+		
3·(number	of	objects	with	divergence	>	0)	≤	n 5 9 16 28 28	

—	 Efficient	object	metadata	decoding	is	not	permitted,	i.e.	lowDelayMetadataCoding	shall	be	1.	

—	 Furthermore	the	OAM	frame	length	shall	comply	to:	

OAMFrameLength	=	outputFrameLength	/	n,		
with	n	being	a	positive	integer	in	the	range	of	{1,…,4}	

—	 Objects	shall	not	employ	divergence	and	spread	at	the	same	time.	

— If	an	object	is	defined	with	a	spatial	extent	(spread	α	>	0,0°	for	uniform	spread,	spread_width	
αwidth	>	0,0°	for	non-uniform	spread)	it	shall	have	a	divergence	value	equal	to	zero.	

— If	an	object	is	defined	with	a	divergence	value	>	0,	it	shall	not	have	a	spatial	extent	(spread	α	shall	
be	equal	to	0,0°	for	uniform	spread,	spread_width	αwidth	shall	be	equal	to	0,0°	for	non-uniform	
spread).	

The	following	restrictions	apply	to	binaural	rendering:	

The	 value	 of	 bsBinauralDataFormatID	 in	 BinauralRendering()	 should	 be	 set	 to	 1	 (if	 the	 FD	 Binaural	
renderer	 is	 implemented)	 or	 to	 2	 (if	 the	 TD	 Binaural	 renderer	 is	 implemented).	 The	 value	 of	
bsBinauralDataFormatID	 can	be	 set	 to	0	 if	 the	parameterization	of	 binaural	 room	 impulse	 responses	
according	to	subclauses	13.2.3	or	13.3.3	is	implemented.	

The	number	of	BRIR	sets	is	restricted	to	a	maximum	number	of	3.		

In	case	of	H2B	filters,	the	number	of	BRIR	filter	pairs	to	be	provided	shall	correspond	to	‘Maximum	H2B	
filter	order’	column	in	Table	9.	In	the	other	cases,	the	following	applies.	

The	number	of	BRIR	pairs	in	each	BRIR	set	shall	correspond	to	the	number	indicated	in	the	relevant	level-
dependent	 row	 of	 Table	 9.	 The	measured	 BRIR	 positions	 shall	 correspond	 to	 all	 nominal	 geometric	
positions	 corresponding	 to	 the	 list	 of	 LoudspeakerGeometry	 indices	 in	 Table	 9.	 The	 correspondence	
between	LoudspeakerGeometry	 index	and	nominal	geometric	position	 is	defined	 in	 ISO/IEC	23001-8.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 21	
	

Thereby,	it	is	ensured	that	one	BRIR	pair	is	available	for	each	possible	regular	input	channel	configuration	
that	can	be	used	within	the	indicated	level.	

An	 input	 channel	 configuration	 is	 regular	 if	 it	 is	 defined	 by	 means	 of	 an	 ISO/IEC	23001-8	
ChannelConfiguration	or	a	list	of	ISO/IEC	23001-8	LoudspeakerGeometry	(CICPspeakerIdx).	

If	 binaural	 rendering	 is	 activated,	 the	 measured	 BRIR	 positions	 shall	 be	 passed	 to	 the	
mpegh3daLocalSetupInformation().	Thus,	all	renderer	stages	are	set	to	the	target	layout	that	is	equal	to	
the	transmitted	channel	configuration.	As	one	BRIR	 is	available	per	regular	 input	channel,	 the	 format	
converter	can	be	passed	through	in	case	regular	input	channel	positions	are	used.	

Table	9	—	The	binaural	restrictions	for	the	low	complexity	profile	

Level	
Number	
of	BRIR	
pairs	

Maximum	
H2B	filter	
order	

BRIR	positions	by	means	of	
loudspeaker	position	

abbreviation	

BRIR	positions	by	means	of	
loudspeakergeometry	according	

to	ISO/IEC	23001-8

1	 3	 1	 L,	R,	C	 0,	1,	2

2	 10	 2	 L,	R,	C,	LS,	Rs,	Lc,	Rc,	Lsr,	Rsr,	Cs	 0,	1,	2,	4,	5,	8,	9,	10,	15,	16

3	 21	 3	
L,	R,	C,	Ls,	Rs,	Lc,	Rc,	Lsr,	Rsr,	Cs,	
Lss,	Rss,	 Lv,	Rc,	 Cv,	 Lvr,	Rvr,	 Cvr,	
Rs,	Lvs,	Rvs	

0,	1,	2,	4,	5,	8,	9,	10,	13,	14,15,	16,	17,	
18,	19,	20,	21,	22,	25,	30,	31

4	 28	 5	
L,	R,	C,	Ls,	Rs,	Lc,	Rc,	Lsr,	Rsr,	Cs,	
Lss,	Rss,	 Lv,	Rc,	 Cv,	 Lvr,	Rvr,	 Cvr,	
Lvss,	Rvss,	Ts,	Lb,	Rb,	Cb,	Lvs,	Rvs,	
Lbs,	Rbs,		

0,	1,	2,	4,	5,	8,	9,	10,	13,	14,	15,	16,	17,	
18,	19,	20,	21,	22,	23,	24,	25,	27,	28,	
29,	30,	31,	37,	38

5	 28	 6	
L,	R,	C,	Ls,	Rs,	Lc,	Rc,	Lsr,	Rsr,	Cs,	
Lss,	Rss,	 Lv,	Rc,	 Cv,	 Lvr,	Rvr,	 Cvr,	
Lvss,	Rvss,	Ts,	Lb,	Rb,	Cb,	Lvs,	Rvs,	
Lbs,	Rbs,		

0,	1,	2,	4,	5,	8,	9,	10,	13,	14,15,	16,	17,	
18,	19,	20,	21,	22,	23,	24,	25,	27,	28,	
29,	30,	31,	37,	38	

The	following	additional	parameter	values	restrictions	apply.	

—	 The	value	of	kMax	in	FdBinauralRendererParam()	shall	be	equal	to	or	less	than	48	(bands).	

—	 The	value	of	kConv	in	FdBinauralRendererParam()	shall	be	equal	to	32.	

—	 The	values	of	rt60[k]	in	SfrBrirParam()	shall	be	less	than	or	equal	to	1,0	(sec).	

—	 The	average	of	the	values	of	nFilter[k]	shall	be	less	than	or	equal	to	64.		

—	 The	values	of	nFilter[k]	in	VoffBrirParam()	should	be	less	than	or	equal	to	256.	

The	following	coding	tools,	modules,	or	features	shall	not	be	employed:	

—	 Time	warped	filterbank;	

—	 768	sample	outputFrameLength,	i.e.	coreSbrFrameLengthIndex	shall	not	be	0	

The	following	text	describes	restrictions	dependent	on	the	length	of	the	arithmetic	coder	codeword,	
arith_data().	For	this	text	the	following	definitions	apply.	

ISO/IEC	23008-3:202X(E)	

22	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

FsOut		 core	coder	sampling	rate	as	indicated	by	means	of	
usacSamplingFrequencyIndex	or	usacSamplingFrequency	in	
mpegh3daConfig()	

FsMax	 maximum	allowed	sampling	rate	of	a	given	level	in	this	profile	

NchMax	 maximum	number	of	decoder	processed	core	channels	of	a	given	level	in	this	
profile	according	to	Table	3.	

NchLtpf	 number	of	core	coder	channels	in	which	the	long	term	post	filter	(LTPF)	is	
applied	

NchInf	 number	of	core	coder	channels	in	which	the	independent	noise	filling	(INF)	
is	applied	

Nbitsarith_data()(ch)		 number	of	bits	used	for	arithmetic	coding	of	spectral	data,	arith_data(),	for	
core	coder	channel	ch	for	a	given	frame	

Nbitsarith_all	=		∑ ()*+,!"#$%_'!$!()(.ℎ)!**	,%!--.*/ ,	i.e.	the	sum	of	all	bits	used	for	the	arithmetic	
coding	of	spectral	data	of	all	core	coder	channel	

—	 In	any	given	audio	frame	Nbitsarith_all	shall	comply	with	the	following	restriction:	

Nbitsarith_all	<	(6789∙;01234<97=>∙;015678<97=>∙;019:8)∙?;<=>?;?@A
	

The	following	restrictions	apply	to	the	AudioPreRoll()	extension.	

—	 Decoders	 conforming	 to	 this	 profile	 shall	 support	 the	 full	 decoding	 and	 correct	 handling	 of	 the	
AudioPreRoll()	extension.	

—	 The	number	of	pre-roll	frames,	numPreRollFrames,	in	an	AudioPreRoll()	extension	payload	shall	not	
exceed	1	(one).	

—	 In	 access	 units	 that	 are	 embedded	 as	 pre-roll	 in	 an	 AudioPreRoll()	 extension	 the	
usacExtElementPresent	field	for	extensions	of	type	ID_EXT_ELE_AUDIOPREROLL	shall	be	0.	

The	following	restrictions	apply	to	the	employed	sampling	rate	and	the	resampler	block.	

—	 The	 sampling	 rate	 that	 is	 signalled	 by	 means	 of	 usacSamplingFrequencyIndex	 as	 defined	 in	
ISO/IEC	23003-3:2012,	Table	67	or	usacSamplingFrequency	shall	be	one	of	 the	values	 in	 the	 first	
column	of	Table	10.	

—	 Depending	on	the	above	mentioned	sampling	rate	and	the	profile	level	the	resampler	may	employ	
one	of	the	resampling	ratios	indicated	in	Table	10.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 23	
	

Table	10	—	Allowed	sampling	rates	and	resampling	ratios	

Allowed	
sampling	rate	

Allowed	resampling	ratio	depending	on	
Mpegh3daProfileLevelIndication

Lvl	1	 Lvl	2	 Lvl	3	 Lvl	4	 Lvl	5

96	000	 N/A	 N/A	 N/A	 N/A	 1

88	200	 N/A	 N/A	 N/A	 N/A	 1

64	000	 N/A	 N/A	 N/A	 N/A	 1.5

58	800	 N/A	 N/A	 N/A	 N/A	 1.5

48	000	 1	 1	 1	 1	 1	or	2

44	100	 1	 1	 1	 1	 1	or	2

32	000	 1.5	 1.5	 1.5	 1.5	 1.5	or	3

29	400	 1.5	 1.5	 1.5	 1.5	 1.5	or	3

24	000	 2	 2	 2	 2	 2

22	050	 2	 2	 2	 2	 2

16	000	 3	 3	 3	 3	 3

14	700	 3	 3	 3	 3	 3	

The	following	restrictions	apply	to	the	coding	of	the	audio	scene	information	structure.	

Table	11	—	ProfileLevel	dependent	restrictions	to	selected	fields	of	the	mae_AudioSceneInfo()	

Restriction	applies	to	

Allowed	maximum	value	depending	on	
Mpegh3daProfileLevelIndication

Lvl	1	 Lvl	2	 Lvl	3	 Lvl	4	 Lvl	5

mae_numGroups		 5	 9	 16	 28	 28

mae_numSwitchGroups	 2	 4	 8	 14	 14

mae_numGroupPresets	 4	 4	 8	 16	 31

(mae_bsGroupPresetNumConditions	+1)	 5	 9	 16	 16	 16

mae_numDownmixIdGroupPresetExtensions	per	
mae_groupPresetID	 4	 4	 8	 16	 31

(mae_bsNumDescLanguages	+1)	 4	 4	 4	 8	 16

(mae_bsDescriptionDataLength	+1)	 256	 256	 256	 256	 256	

—	 If	mae_numSwitchGroups	>	0,	then	elementLengthPresent	shall	be	set	to	1.	

The	following	restriction	applies	to	the	usage	of	the	contribution	mode.	

—	 For	end	user	devices	the	contribution	mode	of	MPEG-H	3D	audio	as	defined	in	subclause	4.7	shall	not	
be	supported.	

ISO/IEC	23008-3:202X(E)	

24	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

4.8.2.3 Levels	of	the	main	profile	

ISO/IEC	23008-3:2015	(the	first	edition	of	this	document)	captured	the	definition	of	the	main	profile,	its	
associated	bitstream	syntax,	semantics,	and	decoding	process	description.	

4.8.2.4 Levels	of	the	high	profile	

Currently	blank	—	Placeholder	for	high	profile.	

4.8.2.5 Levels	of	the	baseline	profile	

4.8.2.5.1 General	

Table	12	—	Levels	and	their	corresponding	restrictions	for	the	baseline	profile	

Level
Max.	

sampling	
rate

Max.	number	of	
core	channels	in	
compressed	data	

stream

Max.	number	of	
decoder	processed	
core	channels

Max.	number	of	
channels	in	

referenceLayout

1 48000 10 5 5

2 48000 18 9 9

3 48000 32 16a	or	24b 16a	or	24b

4 48000 56 28 24

5 96000 56 28 24
a			No	additional	complexity	restrictions	are	applied.	
b			Additional	complexity	restrictions	given	in	4.8.2.5.2	are	applied.	

—	 The	 use	 of	 switch	 groups	 determines	 the	 subset	 of	 core	 channels	 from	 the	 core	 channels	 in	 the	

bitstream	that	shall	be	decoded.	

—	 If	 the	 mae_AudioSceneInfo()	 contains	 switch	 groups	 (mae_numSwitchGroups>0),	 then	 the	
elementLengthPresent	flag	shall	be	1.	

—	 The	number	of	channels	of	the	signalled	referenceLayout	shall	not	exceed	the	values	defined	in	the	
levels	in	Table	12.	

—	 Object	 renderer	 and	 binaural	 renderer	 that	 perform	 at	 least	 as	 well	 as	 the	 object	 and	 binaural	
renderer	specified	in	Clauses	8	and	13	may	be	integrated	using	the	output	interfaces	for	un-rendered	
channels	and	objects	described	in	subclause	17.10.	

NOTE	 The	performance	recommendation	covers	the	behaviour	of	the	decoder	over	the	complete	decoding	
and	rendering	chain,	especially	for	the	case	of	configuration	changes	as	described	in	subclause	5.5.6,	mixing	of	
channel	and	object	content	or	DRC	processing,	loudness	compensation	and	user	interactivity.	

—	 For	Level	3	 the	maximum	number	of	decoder	processed	core	channels	and	maximum	number	of	
channels	signalled	in	referenceLayout	is:	

a) 16	if	no	additional	complexity	restrictions	are	applied,	

b) 24	if	all	the	complexity	restrictions	in	4.8.2.5.2	are	applied.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 25	
	

4.8.2.5.2 Complexity	restrictions	for	Level	3	with	more	than	16	decoder	processed	core	channels	

¾ signalGroupType	in	Signals3d()	shall	indicate	SignalGroupTypeObject	(Objects	only).	

¾ usacElementType[elemIdx]	 in	 mpegh3daDecoderConfig()	 shall	 indicate	 ID_USAC_SCE	 or	
ID_USAC_EXT.	

¾ noiseFilling	and	enhancedNoiseFilling	in	mpegh3daCoreConfig()	shall	be	set	to	"0".	

¾ usacExtElementType	in	mpegh3daExtElementConfig()	shall	not	be	set	to	ID_EXT_ELE_MCT.	

¾ Long	term	prediction	filter	shall	not	be	used,	i.e.,	ltpf_data_present	and	common_ltpf	shall	be	
set	to	"0".	

¾ Frequency	domain	predictor	shall	not	be	used,	i.e.,	fdp_data_present	shall	be	set	to	"0".	

4.8.2.6 Restrictions	for	the	baseline	profile	and	levels	

All	restrictions	defined	for	low	complexity	profile	in	subclause	4.8.2.2	shall	apply.	

The	LPD	path	of	the	core	coder	and	HOA	path	are	not	supported.	

Restrictions	defined	in	Table	13	shall	apply.	

Table	13	—	Baseline	profile	restrictions	

MPEG-H	3D	audio	bit	field Structure Use	description
phaseAlignStrength downmixConfig() Shall	have	the	value	“0”

SignalGroupType[grp] Signals3d()
Shall	have	the	value	
"SignalGroupTypeChannels"	or	
"SignalGroupTypeObject"

qceIndex mpegh3daChannelPair	
ElementConfig() Shall	have	the	value	“0”

lpdStereoIndex mpegh3daChannelPair	
ElementConfig() Shall	have	the	value	“0”

tw_mdct mpegh3daCoreConfig() Shall	have	the	value	“0”
fullbandLpd mpegh3daCoreConfig() Shall	have	the	value	“0”
core_mode[ch] mpegh3daCoreCoderData() Shall	have	the	value	“0”
common_max_sfb StereoCoreToolInfo() Shall	have	the	value	“1”
tns_on_lr StereoCoreToolInfo() Shall	have	the	value	“1”
common_tw StereoCoreToolInfo() Shall	have	the	value	“0”
fac_data_present fd_channel_stream() Shall	have	the	value	“0”

4.8.2.7 Signalling	of	profile	and	level	compatibility	sets	

MPEG-H	 3d	 audio	 bitstreams	 may	 comply	 with	 multiple	 profiles	 and	 levels	 and	 the	
CompatibleProfileLevelSet()	syntax	element	defined	in	Table	14	may	be	used	to	signal	the	compatibility	
to	multiple	profiles.	

The	CompatibleProfileLevelSet()	syntax	element	contains	a	list	of	profile-level	numbers	the	content	is	
compatible	with.	 Only	 the	 lowest	 level	 per	 profile	 needs	 to	 be	 present,	 as	 higher	 level	 decoders	 are	
inherently	compatible	with	lower	level	content.	

ISO/IEC	23008-3:202X(E)	

26	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	14	—	Syntax	of	CompatibleProfileLevelSet()	

Syntax No.	of	bits Mnemonic
CompatibleProfileLevelSet() 	 	
{ 	 	
	 bsNumCompatibleSets; 4 uimsbf
	 numCompatibleSets	=	bsNumCompatibleSets	+	1; 	 	
	 reserved; 4 uimsbf
	 for	(idx	=	0;	idx	<	numCompatibleSets;	idx++)	{ 	 	
	 	 	 CompatibleSetIndication; 8 uimsbf
	 } 	 	
} 	 	

	

5 MPEG-H	3D	audio	core	decoder	
5.1 Definitions	

 Joint	stereo	

The	MDCT	domain-based	joint	stereo	coding	tool	with	the	possibility	of	complex	stereo	prediction	is	as	
defined	in	ISO/IEC	23003-3:2012,	subclause	7.7.	

 MPEG	surround	based	stereo	(MPS	212)	

The	 MPEG	 surround	 2-1-2	 based	 stereo	 tool	 working	 in	 QMF	 domain	 is	 as	 defined	 in	
ISO/IEC	23003-3:2012,	subclause	7.11,	with	the	possibility	of	using	residual	coding	(unified	stereo)	as	
specified	in	ISO/IEC	23003-3:2012,	B.21.	

5.2 Syntax	

 General	

The	bitstream	syntax	is	based	on	ISO/IEC	23003-3:2012,	Clause	5.	

Modifications	and	amendments	to	the	existing	bitstream	syntax	are	listed	below.	

In	 environments	 that	 require	 byte	 alignment,	 MPEG-H	 3D	 audio	 configuration	 elements	 or	 payload	
elements	that	are	not	an	integer	number	of	bytes	in	length	are	padded	at	the	end	to	achieve	an	integer	
byte	count.	

 Decoder	configuration	

5.2.2.1 General	configuration	syntax	

Table	15	—	Syntax	of	mpegh3daConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daConfig() 	 	

{ 	 	

	 mpegh3daProfileLevelIndication	 8	 uimsbf	
	 usacSamplingFrequencyIndex;	 5	 bslbf	
	 if	(usacSamplingFrequencyIndex	==	0x1f)	{ 	 	
	 	 usacSamplingFrequency;	 24	 uimsbf	
	 } 	 	

	 coreSbrFrameLengthIndex;	 3	 uimsbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 27	
	

	 cfg_reserved;	 1	 uimsbf
	 receiverDelayCompensation;	 1	 uimsbf
	 referenceLayout	=	SpeakerConfig3d();	 	 	

	 FrameworkConfig3d();	 	 	

	 mpegh3daDecoderConfig();	 	 	

	 if	(usacConfigExtensionPresent)	{	 1	 uimsbf	
	 	 mpegh3daConfigExtension();	 	 	

	 } 	 	

} 	 	

Table	16	—	Syntax	of	FrameworkConfig3d()	

Syntax	 No.	of	bits	 Mnemonic	
FrameworkConfig3d() 	 	

{ 	 	

	 Signals3d(); 	 	
} 	 	

Table	17	—	Syntax	of	Signals3d()	

Syntax	 No.	of	bits	 Mnemonic	
Signals3d() 	 	

{ 	 	

	 numAudioChannels	 	 	 	 =	0;
	 numAudioObjects	 	 	 	 =	0;
	 numSAOCTransportChannels		 =	0;
	 numHOATransportChannels	 	 =	0;

	 bsNumSignalGroups;	 5	 uimsbf
	 for	(grp	=	0;	grp	<	bsNumSignalGroups	+	1	;	grp++)	{
	 	 signal_groupID[grp]	=	grp;
	 	 differsFromReferenceLayout[grp]	=	0;
	 	 signalGroupType[grp];	 3	 bslbf
	 	 bsNumberOfSignals[grp]		=	escapedValue(5,	8,	16);
	 	 if	(SignalGroupType[grp]	==	SignalGroupTypeChannels)	{
	 	 	 numAudioChannels	+=	bsNumberOfSignals[grp]	+	1;
	 	 	 differsFromReferenceLayout[grp];	 1	 bslbf
	 	 	 if(differsFromReferenceLayout[grp])	{
	 	 	 	 audioChannelLayout[grp]	=	SpeakerConfig3d();	
	 	 	 }
	 	 	 else	{ 	 	
	 	 	 	 audioChannelLayout[grp]	=	referenceLayout; 	 	
	 	 	 } 	 	
		 	 }
	 	 if	(SignalGroupType[grp]	==	SignalGroupTypeObject)	{
	 	 	 numAudioObjects	+=	bsNumberOfSignals[grp]	+	1;
		 	 }
	 	 if	(SignalGroupType[grp]	==	SignalGroupTypeSAOC)	{
	 	 	 numSAOCTransportChannels	+=	bsNumberOfSignals[grp]	+	1;
	 	 	 saocDmxLayoutPresent;	 1	 bslbf
	 	 	 if	(saocDmxLayoutPresent	==	1)	{
	 	 	 	 saocDmxChannelLayout	=	SpeakerConfig3d();	
	 	 	 }
		 	 }

ISO/IEC	23008-3:202X(E)	

28	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 if	(SignalGroupType[grp]	==	SignalGroupTypeHOA)	{
	 	 	 numHOATransportChannels	+=	bsNumberOfSignals[grp]	+	1;
		 	 }
	 }
} 	 	

5.2.2.2 Loudspeaker	configuration	syntax	

Table	18	—	Syntax	of	SpeakerConfig3d()	

Syntax No.	of	bits Mnemonic	
SpeakerConfig3d() 	
{ 	
	 speakerLayoutType; 2 uimsbf	
	 if	(speakerLayoutType	==	0)	{ 	
	 	 CICPspeakerLayoutIdx; 6 uimsbf	
	 } 	
	 else	{ 	
	 	 numSpeakers	=	escapedValue(5,	8,	16)	+	1; 	
	 	 if	(speakerLayoutType	==	1)	{ 	
	 	 	 for	(i	=	0;	i	<	numSpeakers;	i++)	{ 	
	 	 	 	 CICPspeakerIdx; 7 uimsbf	
	 	 	 } 	
	 	 } 	
	 	 if	(speakerLayoutType	==	2)	{ 	
	 	 	 mpegh3daFlexibleSpeakerConfig(numSpeakers); 	
	 	 } 	
	 } 	
} 	

Table	19	—	Syntax	of	mpegh3daFlexibleSpeakerConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daFlexibleSpeakerConfig(numSpeakers) 	 	

{ 	 	

	 angularPrecision;	 1	 uimsbf	
	 for	(i	=	0;	i	<	numSpeakers;	i++)	{ 	 	

	 	 mpegh3daSpeakerDescription(); 	 	
	 	 if	((AzimuthAngle	!=	0°)	&&	(AzimuthAngle	!=	180°))	{	 	 a	

	 	 	 alsoAddSymmetricPair;	 1	 uimsbf	
	 	 	 if	(alsoAddSymmetricPair)	{ 	 	

	 	 	 	 (also	add	the	loudspeaker	with	the	opposite	
AzimuthDirection);	

	 	 	
	 (also	
add	the	
speaker	with	
the	opposite	
AzimuthDire
ction);	

	

	 	 	 	 i++; 	 	
	 	 	 } 	 	

	 	 } 	 	

	 } 	 	

} 	 	
a	 The	value	of	AzimuthAngle	can	be	calculated	using	Table	20.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 29	
	

Table	20	—	Syntax	of	mpegh3daSpeakerDescription()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daSpeakerDescription() 	 	

{	 	 	

	 isCICPspeakerIdx	 1	 uimsbf	
	 if	(isCICPspeakerIdx)	{ 	 	
	 	 CICPspeakerIdx;	 7	 uimsbf	
	 }	 	 	
	 else	{ 	 	

	 	 ElevationClass;	 2	 uimsbf	
	 	 if	(ElevationClass	==	3)	{ 	 	
	 	 	 ElevationAngleIdx;		 5,	7	 uimsbf	
	 	 	 if	(ElevationAngle	!=	0°)	{ 	 a	

	 	 	 	 ElevationDirection;		 1	 uimsbf	
	 	 	 } 	 	

	 	 } 	 	

	 	 AzimuthAngleIdx;	 6,	8	 uimsbf	
	 	 if	((AzimuthAngle	!=	0°)	&&	(AzimuthAngle	!=	180°))	{ 	 a	

	 	 	 AzimuthDirection;		 1	 uimsbf	
	 	 } 	 	

	 	 isLFE;	 1	 uimsbf	
	 } 	 	

} 	 	

 	 	

a	 The	number	of	bits	for	ElevationAngleIdx	and	AzimuthAngleIdx	depends	on	the	value	of	
angularPrecision	according	to	Table	70.	The	value	of	ElevationAngle	and	AzimuthAngle	can	be	derived	
from	Table	72	and	Table	74,	respectively.	In	case	isCICPspeakerIdx	is	one,	ElevationAngle	and	
AzimuthAngle	shall	be	signalled	by	means	of	a	LoudspeakerGeometry	as	defined	in	ISO/IEC	23001-8.	

5.2.2.3 Core	decoder	configuration	

Table	21	—	Syntax	of	mpegh3daDecoderConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daDecoderConfig() 	 	

{ 	 	

	 numElements	=	escapedValue(4,8,16)	+	1; 	 	
	 elementLengthPresent	 1	 	
 	 	

	 for	(elemIdx=0;	elemIdx<numElements;	++elemIdx)	{ 	 	

	 	 usacElementType[elemIdx]	 2	 uimsbf	
	 	 switch	(usacElementType[elemIdx])	{ 	 	

	 	 case	ID_USAC_SCE:	
	 	 	 mpegh3daSingleChannelElementConfig(sbrRatioIndex);		
	 	 	 break;

	 	

	 	 case	ID_USAC_CPE:	
	 	 	 mpegh3daChannelPairElementConfig(sbrRatioIndex);	
	 	 	 break;

	 	

	 	 case	ID_USAC_LFE: 	 	

	 	 	 mpegh3daLfeElementConfig();		
	 	 	 break;

	 	

	 	 case	ID_USAC_EXT: 	 	

	 	 	 mpegh3daExtElementConfig();	
	 	 	 break;

	 	

ISO/IEC	23008-3:202X(E)	

30	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 } 	 	

} 	 	

NOTE	 mpegh3daSingleChannelElementConfig(),	mpegh3daChannelPairElementConfig(),	
mpegh3daLfeElementConfig()	and	mpegh3daExtElementConfig()	signalled	at	position	elemIdx	refer	to	
the	corresponding	elements	in	mpegh3daFrame()	at	the	respective	position	elemIdx.	

Table	22	—	Syntax	of	mpegh3daSingleChannelElementConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daSingleChannelElementConfig(sbrRatioIndex) 	 	

{ 	 	

	 mpegh3daCoreConfig(); 	 	
	 if	(sbrRatioIndex	>	0)	{ 	 	
	 	 SbrConfig(); 	 	

	 } 	 	

} 	 	

Table	23	—	Syntax	of	mpegh3daChannelPairElementConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daChannelPairElementConfig(sbrRatioIndex) 	 	

{ 	 	

	 mpegh3daCoreConfig(); 	 	
	 if	(enhancedNoiseFilling)	{ 	 	
	 	 igfIndependentTiling;	 1	 bslbf	
	 } 	 	
	 if	(sbrRatioIndex	>	0)	{ 	 	
	 	 SbrConfig(); 	 	

	 	 stereoConfigIndex;	 2	 uimsbf	
	 }	else	{ 	 	
	 	 stereoConfigIndex	=	0; 	 	
	 } 	 	
	 if	(stereoConfigIndex	>	0)	{ 	 	

	 	 Mps212Config(stereoConfigIndex); 	 	

	 } 	 	

	 qceIndex;	 2	 Uimsbf	
	 if	(qceIndex	>	0)	{ 	 	
	 	 shiftIndex0;	 1	 uimsbf	
	 	 if(shiftIndex0	>	0)	{ 	 	
	 	 	 shiftChannel0;	 nBits	a	 	
	 	 } 	 	
	 } 	 	
	 shiftIndex1;	 1	 uimsbf	
	 if	(shiftIndex1	>	0)	{
	 	 shiftChannel1;	 nBits	a
	 }
	 if	(sbrRatioIndex	==	0	&&	qceIndex	==	0)	{
	 	 lpdStereoIndex;	 1	 bslbf
	 }	else	{ 	 	

	 	 lpdStereoIndex	=	0 	 	

	 }
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 31	
	

Syntax	 No.	of	bits	 Mnemonic	
a					nBits	=	floor(log2(numAudioChannels	+	numAudioObjects	+	numHOATransportChannels	+	
numSAOCTransportChannels	-	1))	+	1.	

Table	24	—	Syntax	of	mpegh3daCoreConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daCoreConfig() 	 	

{ 	 	

	 tw_mdct;	 1	 bslbf	
	 fullbandLpd;	 1	 bslbf	
	 noiseFilling;	 1	 bslbf	
	 if	(enhancedNoiseFilling)	{	 	 	 1	 bslbf	
	 	 igfUseEnf;	 1	 bslbf	
	 	 igfUseHighRes;	 1	 bslbf	
	 	 igfUseWhitening;	 1	 bslbf	
	 	 igfAfterTnsSynth;	 1	 bslbf	
	 	 igfStartIndex;	 5	 uimsbf	
	 	 igfStopIndex;	 4	 uimsbf	
	 } 	 	
} 	 	

Table	25	—	Syntax	of	mpegh3daLfeElementConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daLfeElementConfig() 	 	

{ 	 	

	 tw_mdct	=	0;
	 fullbandLpd	=	0;
	 noiseFilling	=	0;
	 enhancedNoiseFilling	=	0;
} 	 	

Table	26	—	Syntax	of	mpegh3daExtElementConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daExtElementConfig() 	 	

{ 	 	

	 usacExtElementType		 	 =	escapedValue(4,	8,	16); 	 	

	 usacExtElementConfigLength	=	escapedValue(4,	8,	16); 	 	
 	 	
	 if	(usacExtElementDefaultLengthPresent)	{	 1	 uimsbf	
	 	 usacExtElementDefaultLength	=	escapedValue(8,	16,	0)	+	1; 	 	
	 }	else	{ 	 	
	 	 usacExtElementDefaultLength	=	0; 	 	

	 } 	 	

 	 	
	 usacExtElementPayloadFrag;	 1	 uimsbf	
 	 	
	 switch	(usacExtElementType)	{ 	 	

	 case	ID_EXT_ELE_FILL: 	 	

	 	 /*	No	configuration	element	*/ 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_MPEGS: 	 	

	 	 SpatialSpecificConfig(); 	 	

	 	 break; 	 	

ISO/IEC	23008-3:202X(E)	

32	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 case	ID_EXT_ELE_SAOC: 	 	

	 	 SAOCSpecificConfig(); 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_AUDIOPREROLL: 	 	

	 	 /*	No	configuration	element	*/ 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_UNI_DRC: 	 	

	 	 mpegh3daUniDrcConfig(); 	 	
	 	 break; 	 	

	 case	ID_EXT_ELE_OBJ_METADATA: 	 	

	 	 ObjectMetadataConfig(); 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_SAOC_3D: 	 	

	 	 SAOC3DSpecificConfig(); 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_HOA: 	 	

	 	 HOAConfig(); 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_FMT_CNVRTR 	 	

	 	 /*	No	configuration	element	*/ 	 	

	 	 break; 	 	

	 case	ID_EXT_ELE_MCT:	 	 	

	 	 MCTConfig();	 	 	

	 	 break;	 	 	

	 case	ID_EXT_ELE_TCC:		 	 	

	 	 TccConfig();	 	 	

	 	 break;	 	 	

	 case	ID_EXT_ELE_HOA_ENH_LAYER:	 	 	

	 	 HOAEnhConfig();	 	 	

	 	 break;	 	 	

	 case	ID_EXT_ELE_HREP:	 	 	

	 	 HREPConfig(current_signal_group);	 	 	

	 	 break;	 	 	

	 case	ID_EXT_ELE_ENHANCED_OBJ_METADATA:	 	 	

	 	 EnhancedObjectMetadataConfig();	 	 	

	 	 break;	 	 	

	 case	ID_EXT_ELE_PROD_METADATA:	 	 	

	 	 prodMetadataConfig();	 	 	

	 	 break;	 	 	

	 default:	 a	 	
	 	 while	(usacExtElementConfigLength--)	{ 	 	

	 	 	 tmp;	 8	 uimsbf	
	 	 } 	 	

	 	 break; 	 	

	 } 	 	

} 	 	
a	 The	default	entry	for	the	usacExtElementType	is	used	for	unknown	extElementTypes	so	that	legacy	
decoders	can	cope	with	future	extensions.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 33	
	

Table	27	—	Syntax	of	mpegh3daConfigExtension()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daConfigExtension() 	 	

{ 	 	

	 numConfigExtensions	=	escapedValue(2,4,8)	+	1; 	 	

 	 	

	 for	(confExtIdx=0;	confExtIdx<numConfigExtensions;	confExtIdx++)	{	
	 	 usacConfigExtType[confExtIdx]		 	 =	escapedValue(4,8,16);	 	
	 	 usacConfigExtLength[confExtIdx]		 =	escapedValue(4,8,16); 	 	
 	 	
	 	 switch	(usacConfigExtType[confExtIdx])	{ 	 	

	 	 case	ID_CONFIG_EXT_FILL: 	 	

	 	 	 while	(usacConfigExtLength[confExtIdx]--)	{ 	 	

	 	 	 	 fill_byte[i];	/*	should	be	'10100101'	*/	 8	 uimsbf	
	 	 	 } 	 	

	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_DOWNMIX: 	 	

	 	 	 downmixConfig();	 	
	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_LOUDNESS_INFO: 	 	

	 	 	 mpegh3daLoudnessInfoSet();	 	
	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_AUDIOSCENE_INFO: 	 	

	 	 	 mae_AudioSceneInfo(); 	 	

	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_HOA_MATRIX: 	 	

	 	 	 HoaRenderingMatrixSet(); 	 	

	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_ICG: 	 	

	 	 	 ICGConfig(); 	 	

	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_SIG_GROUP_INFO: 	 	

	 	 	 SignalGroupInformation(); 	 	

	 	 	 break; 	 	

	 	 case	ID_CONFIG_EXT_COMPATIBLE_PROFILELVL_SET: 	 	

	 	 	 CompatibleProfileLevelSet(); 	 	

	 	 	 break; 	 	

	 	 default: 	 	

	 	 	 while	(usacConfigExtLength[confExtIdx]--)	{ 	 	

	 	 	 	 tmp;	 8	 uimsbf	
	 	 	 } 	 	

	 	 	 break; 	 	

	 	 } 	 	

	 } 	 	

} 	 	

Table	28	—	References	to	USAC	configuration	syntactic	elements	

Syntax	of	 shall	be	as	defined	in
escapedValue()	 ISO/IEC	23003-3
SbrConfig()	 ISO/IEC	23003-3
Mps212Config()	 ISO/IEC	23003-3
SAOCSpecificConfig()	 ISO/IEC	23003-2
SpatialSpecificConfig()	 ISO/IEC	23003-1	

ISO/IEC	23008-3:202X(E)	

34	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.2.2.4 Syntax	of	downmix	matrix	elements	

Table	29	—	Syntax	of	downmixConfig()	

Syntax	 No.	of	bits	 Mnemonic	
downmixConfig	() 	 	

{ 	 	

	 downmixConfigType;	 2	 uimsbf	
	 if	(downmixConfigType	==	0	||	downmixConfigType	==	2)	{ 	 	
	 	 passiveDownmixFlag	 1	 uimsbf	
	 	 if	(passiveDownmixFlag	==0)	{ 	 	

	 	 	 phaseAlignStrength	 3	 uimsbf	
	 	 }	 	 	

	 	 immersiveDownmixFlag	 1	 uimsbf	
	 }	 	 	

	 if	(downmixConfigType	==	1	||	downmixConfigType	==	2)	{ 	 	
	 	 DownmixMatrixSet() 	 	
	 } 	 	

} 	 	

Table	30	—	Syntax	of	DownmixMatrixSet()	

Syntax	 No.	of	bits	 Mnemonic	
DownmixMatrixSet() 	 	

{ 	 	

	 downmixIdCount;	 5	 uimsbf	
	 for	(k=0;	k<	downmixIdCount;	++k)	{ 	 	

	 	 downmixId;	 7	 uimsbf	
	 	 downmixType;	 2	 uimsbf	
	 	 if	(downmixType	==	0)	{ 	 	
	 	 	 CICPspeakerLayoutIdx;	 6	 uimsbf	
	 	 }	else	if	(downmixType	==	1)	{ 	 	
	 	 	 CICPspeakerLayoutIdx;	 6	 uimsbf	
	 	 	 bsDownmixMatrixCount[k]	=	escapedValue(1,3,0);	 1..4	 	
	 	 	 for	(l=0;	l<	bsDownmixMatrixCount[k]+1;	++l)	{ 	 	

	 	 	 	 bsNumAssignedGroupIDs[k][l]	=	escapedValue(1,4,4);	 1..9	 	
	 	 	 	 for	(m=0;	m<bsNumAssignedGroupIDs[k][l]+1;	++m)	{ 	 	

	 	 	 	 	 signal_groupID[k][l][m];	 5	 uimsbf	
	 	 	 	 } 	 	
	 	 	 	 DmxMatrixLenBits	=	escapedValue(8,8,12);	 8..28	 	
	 	 	 	 DownmixMatrix(inputConfig(audioChannelConfig),	 DmxMatrixLenBits	
	 	 	 	 	 	 	 inputCount(audioChannelConfig),		
	 	 	 	 	 	 	 outputConfig(CICPspeakerLayoutIdx),		
	 	 	 	 	 	 	 outputCount(CICPspeakerLayoutIdx));	
	 	 	 } 	 	

	 	 } 	 	

	 } 	 	

} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 35	
	

Table	31	—	Syntax	of	DownmixMatrix()	

Syntax	 No.	of	bits	 Mnemonic
DownmixMatrix(inputConfig,	inputCount,	outputConfig,	outputCount) 	 	

{ 	 	

				equalizerPresent;	 1	 uimsbf	
				if	(equalizerPresent)	{ 	 	

								EqualizerConfig	(inputConfig,	inputCount); 	 	

				} 	 	

 	 	

				precisionLevel;	 2	 uimsbf	
				maxGain	=	escapedValue(3,	4,	0); 	 	

				minGain	=	(-1)	∙	(escapedValue(4,	5,	0)	+	1); 	 	

 	 	

				(compactInputConfig,	compactInputCount)	=	ConvertToCompactConfig(inputConfig,	inputCount);	
				(compactOutputConfig,	compactOutputCount)	=	ConvertToCompactConfig(outputConfig,	
outputCount);	
 	 	

				isAllSeparable;	 1	 uimsbf	
				if	(!isAllSeparable)	{ 	 	

								for	(i	=	0;	i	<	compactOutputCount;	i++)	{ 	 	

												if	(compactOutputConfig[i].pairType	==	SYMMETRIC)	{ 	 	

																isSeparable[i];	 1	 uimsbf	
												} 	 	

								} 	 	

				}	else	{ 	 	

								for	(i	=	0;	i	<	compactOutputCount;	i++)	{ 	 	

												if	(compactOutputConfig[i].pairType	==	SYMMETRIC)	{ 	 	

																isSeparable[i]	=	1; 	 	

												} 	 	

								} 	 	

				} 	 	

				isAllSymmetric;	 1	 uimsbf	
				if	(!isAllSymmetric)	{ 	 	

								for	(i	=	0;	i	<	compactOutputCount;	i++)	{ 	 	

												isSymmetric[i];	 1	 uimsbf	
								} 	 	

				}	else	{ 	 	

								for	(i	=	0;	i	<	compactOutputCount;	i++)	{ 	 	

												isSymmetric[i]	=	1; 	 	

	 } 	 	

				} 	 	

 	 	

ISO/IEC	23008-3:202X(E)	

36	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
				mixLFEOnlyToLFE;	 1	 uimsbf
				rawCodingCompactMatrix;	 1	 uimsbf
				if	(rawCodingCompactMatrix)	{
								for	(i	=	0;	i	<	compactInputCount;	i++)	{
												for	(j	=	0;	j	<	compactOutputCount;	j++)	{
																if	(!mixLFEOnlyToLFE	||	(compactInputConfig[i].isLFE	==
																								compactOutputConfig[j].isLFE))	{
																				compactDownmixMatrix[i][j];	 1	 uimsbf
																}	else	{
																				compactDownmixMatrix[i][j]	=	0;
																}
												}
								}
				}	else	{
								totalCount	=	CalculateTotalCount();
								useCompactTemplate;	 1	 uimsbf
								nBits	=	3;	if	(totalCount	>=	256)	nBits	=	4;
								runLGRParam;	 nBits	 uimsbf
								count	=	0;
								while	(count	<	totalCount)	{
												zeroRunLength;		 varies	 bslbf
	 	 /*	limited	Golomb-Rice	using	p	=	runLGRparam		and	N	=	totalCount+1*/
												flatCompactMatrix[count	..	count	+	zeroRunLength]	=	{0,	...,	0,	1};
												count	+=	zeroRunLength	+	1;
								}

								count	=	0;
								compactTemplate	=		
	 	 	 	 	 FindCompactTemplate(inputConfig,	inputCount,	outputConfig,	outputCount);
								for	(i	=	0;	i	<	compactInputCount;	i++)	{
												for	(j	=	0;	j	<	compactOutputCount;	j++)	{
																if	(mixLFEOnlyToLFE	&&	compactInputConfig[i].isLFE	&&
																								compactOutputConfig[j].isLFE)	{
																				compactDownmixMatrix[i][j];	 1	 uimsbf
																}	else	if	(mixLFEOnlyToLFE	&&		
	 	 	 	 	 (compactInputConfig[i].isLFE	||	compactOutputConfig[j].isLFE))		{
																				compactDownmixMatrix[i][j]	=	0;
																}	else	{
																				compactDownmixMatrix[i][j]	=	flatCompactMatrix[count++];
	 	 	 if	(useCompactTemplate)	{
	 	 	 	 compactDownmixMatrix[i][j]	^=	compactTemplate[i][j];
	 	 	 }
																}
												}
								}

				fullForAsymmetricInputs;	 1	 uimsbf
				rawCodingNonzeros;	 1	 uimsbf
				if	(!rawCodingNonzeros)	{
								gainLGRParam;	 3	 uimsbf
								gainTableSize	=	generateGainTable(maxGain,	minGain,	
precisionLevel);

				}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 37	
	

Syntax	 No.	of	bits	 Mnemonic
				for	(i	=	0;	i	<	compactInputCount;	i++)	{
								iType	=	compactInputConfig[i].pairType;
								for	(j	=	0;	j	<	compactOutputCount;	j++)	{
												oType	=	compactOutputConfig[j].pairType;
												i1	=	compactInputConfig[i].originalPosition;
												o1	=	compactOutputConfig[j].originalPosition;

												if	((iType	!=	SYMMETRIC)	&&	(oType	!=	SYMMETRIC))	{
																downmixMatrix[i1][o1]	=	0.0;
																if	(!compactDownmixMatrix[i][j])	continue;

																downmixMatrix[i1][o1]	=	DecodeGainValue();
												}	else	if	(iType	!=	SYMMETRIC)	{
																o2	=	compactOutputConfig[j].SymmetricPair.originalPosition;
																downmixMatrix[i1][o1]	=	0.0;
																downmixMatrix[i1][o2]	=	0.0;
																if	(!compactDownmixMatrix[i][j])	continue;

																downmixMatrix[i1][o1]	=	DecodeGainValue();
																useFull	=	(iType	==	ASYMMETRIC)	&&	
fullForAsymmetricInputs;

																if	(isSymmetric[j]	&&	!useFull)	{
																				downmixMatrix[i1][o2]	=	downmixMatrix[i1][o1];
																}	else	{
																				downmixMatrix[i1][o2]	=	DecodeGainValue();
																}
												}	else	if	(oType	!=	SYMMETRIC)	{
																i2	=	compactInputConfig[i].SymmetricPair.originalPosition;
																downmixMatrix[i1][o1]	=	0.0;
																downmixMatrix[i2][o1]	=	0.0;
																if	(!compactDownmixMatrix[i][j])	continue;

																downmixMatrix[i1][o1]	=	DecodeGainValue();
																if	(isSymmetric[j])	{
																				downmixMatrix[i2][o1]	=	downmixMatrix[i1][o1];
																}	else	{
																				downmixMatrix[i2][o1]	=	DecodeGainValue();
																}
												}	else	{
																i2	=	compactInputConfig[i].SymmetricPair.originalPosition;
																o2	=	compactOutputConfig[j].SymmetricPair.originalPosition;
																downmixMatrix[i1][o1]	=	0.0;
																downmixMatrix[i1][o2]	=	0.0;
																downmixMatrix[i2][o1]	=	0.0;
																downmixMatrix[i2][o2]	=	0.0;
																if	(!compactDownmixMatrix[i][j])	continue;

																downmixMatrix[i1][o1]	=	DecodeGainValue();
																if	(isSeparable[j]	&&	isSymmetric[j])	{
																				downmixMatrix[i2][o2]	=	downmixMatrix[i1][o1];
																}	else	if	(!isSeparable[j]	&&	isSymmetric[j])	{
																				downmixMatrix[i1][o2]	=	DecodeGainValue();
																				downmixMatrix[i2][o1]	=	downmixMatrix[i1][o2];
																				downmixMatrix[i2][o2]	=	downmixMatrix[i1][o1];
																}	else	if	(isSeparable[j]	&&	!isSymmetric[j])	{
																				downmixMatrix[i2][o2]	=	DecodeGainValue();
																}	else	{

ISO/IEC	23008-3:202X(E)	

38	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
																				downmixMatrix[i1][o2]	=	DecodeGainValue();
																				downmixMatrix[i2][o1]	=	DecodeGainValue();
																				downmixMatrix[i2][o2]	=	DecodeGainValue();
																}
												}
								}
				}
}	
 	 	

Table	32	—	Syntax	of	DecodeGainValue()	

Syntax	 No.	of	bits	 Mnemonic	
DecodeGainValue() 	 	
{ 	 	
	 if	(rawCodingNonzeros)	{ 	 	
	 	 nAlphabet	=	((maxGain	-	minGain)	*	2	^	precisionLevel)	+	2; 	 	
	 	 gainValueIndex	=	ReadRange(nAlphabet); 	 	
	 	 gainValue	=	maxGain	-	gainValueIndex	/	2	^	precisonLevel; 	 	
	 }	else	{ 	 	
	 	 gainValueIndex;		 varies	 bslbf	
	 	 /*	limited	Golomb-Rice	using	p	=	gainLGRParam	and	N	=	gainTableSize*/	
	 	 gainValue	=	gainTable[gainValueIndex]; 	 	
	 } 	 	
	 if	(gainValue	<	minGain)	gainValue	=	-infinity; 	 	
	 return	gainValue; 	 	
} 	 	
 	 	

Table	33	—	Syntax	of	ReadRange()	

Syntax	 No.	of	bits	 Mnemonic	
ReadRange(alphabetSize)	 	 	
{	 	 	
	 nBits	=	floor(log2(alphabetSize));	 	 	
	 nUnused	=	2	^	(nBits	+	1)	-	alphabetSize;	 	 	
	 range;	 nBits	 uimsbf	
	 if	(range	>=	nUnused)	{	 	 	
	 	 rangeExtra;	 1	 uimsbf	
	 	 range	=	range	*	2	-	nUnused	+	rangeExtra;	 	 	
	 }	 	 	
	 return	range;	 	 	
} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 39	
	

Table	34	—	Syntax	of	EqualizerConfig()	

Syntax	 No.	of	bits	 Mnemonic	
EqualizerConfig(inputConfig,	inputCount) 	 	

{ 	 	

	 numEqualizers	=	escapedValue(3,	5,	0)	+	1; 	 	

 	 	

	 eqPrecisionLevel;	 2	 uimsbf	
	 eqExtendedRange;	 1	 uimsbf	
	 for	(i	=	0;	i	<	numEqualizers;	i++)	{ 	 	

	 	 numSections	=	escapedValue(2,	4,	0)	+	1; 	 	

	 	 lastCenterFreqP10	=	0; 	 	

	 	 lastCenterFreqLd2	=	10; 	 	

	 	 maxCenterFreqLd2	=	99; 	 	

	 	 for	(j	=	0;	j	<	numSections;	j++)	{ 	 	

	 	 	 centerFreqP10	=	lastCenterFreqP10	+	ReadRange(4	-	lastCenterFreqP10);	
	 	 	 if	(centerFreqP10	>	lastCenterFreqP10)	{	lastCenterFreqLd2	=	10;}	
	 	 	 if	(centerFreqP10	==	3)	{	maxCenterFreqLd2	=	24;	} 	 	

	 	 	 centerFreqLd2	=	lastCenterFreqLd2	+ 	 	

	 	 	 	 ReadRange(1	+	maxCenterFreqLd2	-	lastCenterFreqLd2);	

	 	 	 lastCenterFreqP10	=	centerFreqP10; 	 	

	 	 	 lastCenterFreqLd2	=	centerFreqLd2; 	 	

 	 	

	 	 	 qFactorIndex;	 5	 uimsbf	
	 	 	 if	(qFactorIndex	>	19)	{ 	 	

	 	 	 	 qFactorExtra;	 3	 uimsbf	
	 	 	 } 	 	

	 	 	 cgBits	=	4	+	eqExtendedRange	+	eqPrecisionLevel; 	 	

	 	 	 centerGainIndex;	 cgBits	 uimsbf	
	 	 } 	 	

	 	 sgBits	=	4	+	eqExtendedRange	+	min(eqPrecisionLevel	+	1,	3); 	 	

	 	 scalingGainIndex;	 sgBits	 uimsbf	
	 } 	 	

 	 	

	 for	(i	=	0;	i	<	inputCount;	i++)	{ 	 	

	 	 hasEqualizer[i];	 1	 uimsbf	
	 	 if	(hasEqualizer[i])	{ 	 	
	 	 	 equalizerIndex[i]	=	ReadRange(numEqualizers); 	 	
	 	 }	else	{ 	 	
	 	 	 equalizerIndex[i]	=	-1; 	 	
	 	 } 	 	
	 } 	 	
} 	 	

5.2.2.5 Syntax	of	HOA	matrix	elements	

Table	35	—	Syntax	of	HoaRenderingMatrixSet()	

Syntax	 No.	of	bits	 Mnemonic	
HoaRenderingMatrixSet() 	 	

{ 	 	

	 numOfHoaRenderingMatrices;	 5	 uimsbf	
	 for	(k=0;	k<	numOfHoaRenderingMatrices;	++k)	{ 	 	

	 	 HoaRenderingMatrixId;	 7	 uimsbf	

ISO/IEC	23008-3:202X(E)	

40	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 	 CICPspeakerLayoutIdx;	 6	 uimsbf	
	 	 HoaMatrixLenBits	=	escapedValue(8,8,12);	 8..28	 	
	 	 HoaRenderingMatrix(NumOfHoaCoeffs,	 HoaMatrixLenBits	
	 	 	 	 	 	 		outputConfig(CICPspeakerLayoutIdx),		
	 	 	 	 	 	 		outputCount(CICPspeakerLayoutIdx));	
	 } 	 	

} 	 	

Table	36	—	Syntax	of	HoaRenderingMatrix()	

Syntax	 No.	of	bits	 Mnemonic	
HoaRenderingMatrix(NumOfHoaCoeffs,	outputConfig,	outputCount) 	 	
{ 	 	
	 lfeExist	=	0; 	 	
	 hasLfeRendering	=	0; 	 	
	 for	(i=0;	i<	inputCount;	++i)		 	 	 	
	 	 isHoaCoefSparse[i]	=	0; 	 	
	 maxHoaOrder	=	sqrt(NumOfHoaCoeffs)-1; 	 	
	 precisionLevel	 2	 uimsbf	
	 isNormalized	 1	 uimsbf	
	 if	(gainLimitPerHoaOrder)	{	 1	 uimsbf	
	 	 for	(i	=	0;	i<(maxHoaOrder+1);	++i)	{ 	 	
	 	 	 maxGain[i]	=	-	escapedValue(3,	5,	6);	 	 	
	 	 	 minGain[i]	=	-(escapedValue(4,	5,	6)	+	1	–	maxGain[i]); 	 	
	 	 } 	 	
	 }	else	{	 	 	
	 	 maxGain[0]	=	-	escapedValue	(3,	5,	6);	 	 	
	 	 minGain[0]	=	-(escapedValue	(4,	5,	6)	+	1-	maxGain[0]); 	 	
	 	 for	(i	=	1;	i<(maxHoaOrder+1);	++i)	{	
	 	 	 maxGain[i]	=	maxGain[0]; 	 	
	 	 	 minGain[i]	=	minGain[0]; 	 	
	 	 } 	 	
	 } 	 	
	 if	(isFullMatrix==0)	{	 1	 uimsbf	
	 	 nbitsHoaOrder	=	ceil(log2(maxHoaOrder+1)); 	 	
	 	 firstSparseOrder	 nbitsHoaOrder	 uimsbf	
	 	 for	(i	=	(firstSparseOrder*firstSparseOrder);	i<inputCount;	++i) 	 	
	 	 	 isHoaCoefSparse[i]	=	1; 	 	
	 }	 	 	
	 for	(i=0;	i<	outputCount;	++i){ 	 	
	 	 if	(outputConfig[i].isLFE) 	 	
	 	 	 lfeExist	=	1; 	 	
	 } 	 	
	 if	(lfeExist)	 	 	
	 	 hasLfeRendering;	 1	 uimsbf	
	 numPairs	=	findSymmetricSpeakers(outputCount,	outputConfig,		
	 	 	 	 	 	 	 	 	 	 	 hasLfeRendering);	
	 for	(i=0;	i<numPairs;	++i)	{ 	 	
	 	 valueSymmetricPairs[i]	=	0; 	 	
	 	 signSymmetricPairs[i]	=		0; 	 	
	 } 	 	
	 zerothOrderAlwaysPositive;	 1	 uimsbf	
	 if	(isAllValueSymmetric)	{	 1	 uimsbf	
	 	 for	(i=0;	i<numPairs;	++i)	{	valueSymmetricPairs[i]	=	1;	} 	 	
	 }	else	{ 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 41	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 if	(isAnyValueSymmetric)	{	 1	 uimsbf	
	 	 	 for	(i=0;	i<numPairs;	++i)	 	 	
	 	 	 	 valueSymmetricPairs[i]	=	boolVal;	 1	 uimsbf	
	 	 	 if	(isAnySignSymmetric)	{	 1	 uimsbf	
	 	 	 	 for	(i=0;	i<numPairs;	++i)	{ 	 	
	 	 	 	 	 if	(0==valueSymmetricPairs[i]) 	 	
	 	 	 	 	 	 signSymmetricPairs[i]	=	boolVal;	 1	 uimsbf	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 }	else	{ 	 	
	 	 if	(isAllSignSymmetric)	{	 1	 uimsbf	
	 	 	 for	(i=0;	i<numPairs;	++i) 	 	
	 	 	 	 signSymmetricPairs[i]	=	1; 	 	
	 	 }	else	{	 	 	
	 	 if	(isAnySignSymmetric)	{	 1	 uimsbf	
	 	 	 for	(i=0;	i<numPairs;	++i)	 	 	
	 	 	 	 signSymmetricPairs[i]	=	boolVal;	 1	 uimsbf	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
	 hasVerticalCoef;	 1	 uimsbf	
	 DecodeHoaMatrixData() 	 	
} 	 	

Table	37	—	Syntax	of	DecodeHoaMatrixData()	

Syntax	 No.	of	bits	 Mnemonic	
DecodeHoaMatrixData() 	 	
{ 	 	
	 j	=	0;	
	 for	(i=0;	i<outputCount;	++i)	{	
	 isValueSymmetric[i]	=	0;	
	 isSignSymmetric[i]	=	0;	
	 	 	if	((outputConfig[i].pairType	==	SP_PAIR_SYMMETRIC)	&&		
	 	 	 (outputConfig[i].symmetricPair	!=	NULL))	{	
	 	 	 if	(0==(outputConfig[i].isLFE	&&	(0==hasLfeRendering)))	{	
	 	 	 	 isValueSymmetric[i]	=	valueSymmetricPairs[j];	
	 	 	 	 isSignSymmetric[i]	=	signSymmetricPairs[j++];	
	 	 	 }	
	 	 }	
	 }	
	 for	(i	=	0;	i	<	inputCount;	++i)	{	
	 	 currentHoaOrder	=	ceil(sqrt(i+1)-1);	
	 	 for	(j	=	outputCount-1;	j	>=	0;	--j)	{	
	 	 	 signMatrix[i	*	outputCount	+	j]	=	1;	
	 	 	 hoaMatrix	[i	*	outputCount	+	j]		=	0.0;	
	 	 	 if	((vertBitmask[i]	&&	hasVerticalCoef)	||	!vertBitmask[i])	{	
	 	 	 	 hasValue	=	1;	
	 	 	 	 if	(0	==	isValueSymmetric[j])	{	
	 	 	 	 	 if	((hasLfeRendering	&&	outputConfig[j].isLFE)	||		
	 	 	 	 	 	 (!outputConfig[j].isLFE))	{	
	 	 	 	 	 	 if	(isHoaCoefSparse[i])	{

	 	

	 	 	 	 	 	 	 hasValue;	 1	 uimsbf	
	 	 	 	 	 	 } 	 	

ISO/IEC	23008-3:202X(E)	

42	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 	 	 if	(hasValue)	{	
	 	 	 	 	 	 	 hoaMatrix	[i	*	outputCount	+	j]	=	
	 	 	 	 	 	 	 	 	 	 DecodeHoaGainValue(currentHoaOrder);	
	 	 	 	 	 	 	 if	(0==isSignSymmetric[j])	{ 	 	
	 	 	 	 	 	 	 	 if	(hoaMatrix	[i	*	outputCount	+	j]	!=	0.0)	{	
	 	 	 	 	 	 	 	 	 if	(currentHoaOrder	||	!zerothOrderAlwaysPositive)	{	
	 	 	 	 	 	 	 	 	 	 signMatrix[i	*	outputCount	+	j]	= 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 signVal*2-1;	 1	 uimsbf	
	 	 	 	 	 	 	 	 	 } 	 	
	 	 	 	 	 	 	 	 } 	 	
	 	 	 	 	 	 	 }	else	{	//	isSignSymmetric[i]		==	1 	 	
	 	 	 	 	 	 	 	 pairIdx	=	outputConfig[j].symmetricPair->originalPosition;	
	 	 	 	 	 	 	 	 signMatrix[i	*	outputCount	+	j]	=		
	 	 	 	 	 	 	 	 	 symSigns[i]	*	signMatrix[i	*	outputCount	+	pairIdx];	
	 	 	 	 	 	 	 } 	 	
	 	 	 	 	 	 }	/*	has	value	*/ 	 	
	 	 	 	 	 }	 	 	
	 	 	 	 } 	 	
	 	 	 	 else	{	/*	isValueSymmetric	*/ 	 	
	 	 	 	 	 pairIdx	=	outputConfig[j].symmetricPair->originalPosition;	
	 	 	 	 	 hoaMatrix	[i*outputCount+j]	=		
	 	 	 	 	 	 	 	 hoaMatrix	[i*outputCount+pairIdx];	
	 	 	 	 	 signMatrix[i	*outputCount+j]	=		
	 	 	 	 	 	 	 	 symSigns[i]	*	signMatrix[i*outputCount+pairIdx];	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
	 for	(i	=	0;	i	<	inputCount;	++i)	{ 	 	
	 	 for	(j	=	0;	j	<	outputCount;	++j)	{ 	 	
	 	 	 hoaMatrix[i	*outputCount+j]	*=	signMatrix[i*outputCount+j]; 	 	
	 	 	 hoaMatrix[i	*outputCount+j]	/=	sqrt(2	∙	ceil(sqrt(i+1)-1)	+	1); 	 	
	 	 } 	 	
	 } 	 	
if(isNormalized)	{ 	 	
	 currentScalar	=	0.0; 	 	
	 for	(i	=	0;	i	<	inputCount;	++i)	{ 	 	
	 	 for	(j	=	0;	j	<	outputCount;	++j)	{ 	 	
	 	 	 if	(!outputConfig[j].isLFE) 	 	
	 	 	 	 currentScalar	+=	hoaMatrix[i	*	outputCount	+	j]	*		 	
	 	 	 	 	 	 	 	 hoaMatrix[i	*	outputCount	+	j];

	 	

	 	 } 	 	
	 } 	 	
	 currentScalar	=	1.0/sqrt(currentScalar); 	 	
	 for	(i	=	0;	i	<	inputCount;	++i)	{ 	 	
	 	 for	(j	=	0;	j	<	outputCount;	++j)	{ 	 	
	 	 	 if(!outputConfig[j].isLFE) 	 	
	 	 	 	 hoaMatrix[i	*	outputCount	+	j]	*=	currentScalar; 	 	
	 	 } 	 	
	 } 	 	
} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 43	
	

Table	38	—	Syntax	of	DecodeHoaGainValue()	

Syntax	 No.	of	bits	 Mnemonic	
DecodeHoaGainValue(order) 	 	
{ 	 	
	 nAlphabet	=	((maxGain[order]	–	minGain[order])	*	2	^	precisionLevel)	+	2;	
	 gainValueIndex	=	ReadRange(nAlphabet); 	 	
	 gainValue	=	maxGain[order]	-	gainValueIndex	/	2	^	precisonLevel; 	 	
	 if	(gainValue	<	minGain[order])	{ 	 	
	 	 gainValue	=	0.0; 	 	
	 }	else	{ 	 	
	 	 gainValue	=	10.0	^	(gainValue	/	20.0); 	 	
	 } 	 	
	 return	gainValue; 	 	
} 	 	

5.2.2.6 Syntax	for	internal	channel	processing	configuration		

The	ICGConfig	defines	which	type	of	processing	is	required	in	the	internal	channel	processing	block.	For	
each	CPE,	one	bit	flag	of	ICGPreAppliedCPE	is	read	if	ICGPreAppliedPresent	equals	one.	

Table	39	—	Syntax	of	ICGConfig()	

Syntax	 No.	of	bits	 Mnemonic
ICGConfig	()
{
	 if	(ICPresent)	{	 1	 Uimsbf
	 	 for	(elemIdx=0,	elemCPE=0;	elemIdx<numElements;	++elemIdx)	
	 	 {
	 	 	 if	(usacElementType[elemIdx]	==	ID_USAC_CPE)
	 	 	 {
	 	 	 	 ICinCPE[elemCPE];	 1	 Uimsbf
	 	 	 	 elemCPE++;
	 	 	 }
	 	 }
	 	 if	(ICGPreAppliedPresent)	{	 1	 Uimsbf
	 	 	 for	(elemIdx=0,	elemCPE=0;	elemIdx<numElements;	++elemIdx)	
	 	 	 {
	 	 	 	 if	(usacElementType[elemIdx]	==	ID_USAC_CPE)
	 	 	 	 {
	 	 	 	 	 ICGPreAppliedCPE[elemCPE];	 1	 Uimsbf
	 	 	 	 	 elemCPE++;
	 	 	 	 }
	 	 	 }
	 	 }
	 }
} 	 	

ICPresent	 This	field	indicates	whether	at	least	one	of	CPEs	has	channel	assignment	
capable	of	internal	channel	processings.		

ICinCPE	 This	field	indicates	whether	each	of	CPEs	shall	use	internal	channel	
processings	based	on	the	paired	channel	information	

ISO/IEC	23008-3:202X(E)	

44	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ICGPreAppliedPresent	 This	field	indicates	whether	at	least	one	CPE	is	encoded	with	the	
consideration	of	internal	channel	gain.		

ICGPreAppliedCPE	 This	field	indicates	whether	each	CPE	is	encoded	with	the	consideration	
of	internal	channel	gain.	

5.2.2.7 Syntax	of	signal	group	information	

Table	40	—	Syntax	of	SignalGroupInformation()	

Syntax	 No.	of	bits	 Mnemonic
SignalGroupInformation(bsNumSignalGroups)	
{
	 for	(grp	=	0;	grp	<	bsNumSignalGroups	+	1	;	grp++)	{
	 	 groupPriority[grp];	 3	 uimsbf
	 	 fixedPosition[grp];	 1	 uimsbf
	 }
} 	 	

5.2.2.8 Extension	element	configurations	

Table	41	—	HREPConfig	()	

Syntax	 No.	of	bits Mnemonic
HREPConfig(current_signal_group)	 	
{	 	
	 signal_type	=	signalGroupType[current_signal_group];	 	
	 signal_count	=	bsNumberOfSignals[current_signal_group]	+	1;	 	
	 if	(signal_type	==	SignalGroupTypeChannels)	{	 	
	 	 channel_layout	=	audioChannelLayout[current_signal_group];	 	
	 }	 	
	 	
	 extendedGainRange;	 1 uimsbf	
	 extendedBetaFactorPrecision;	 1 uimsbf	
	 	
	 for	(sig	=	0;	sig	<	signal_count;	sig++)	{	 a 	
	 	 if	((signal_type	==	SignalGroupTypeChannels)	&&	isLFEChannel(channel_layout,	sig))	{	
	 	 	 isHREPActive[sig]	=	0;	 	
	 	 }	else	{	 	
	 	 	 isHREPActive[sig];	 1 uimsbf	
	 	 }	 	
	 	 if	(isHREPActive[sig])	{	 	
	 	 	 if	(sig	==	0)	{	 	
	 	 	 	 lastFFTLine[0];	 4 uimsbf	
	 	 	 	 transitionWidthLines[0];	 4 uimsbf	
	 	 	 	 defaultBetaFactorIdx[0];	 nBitsBeta uimsbf	
	 	 	 }	else	{	 b 	
	 	 	 	 if	(useCommonSettings)	{	 1 uimsbf	
	 	 	 	 	 lastFFTLine[sig]	=	lastFFTLine[0];	 	
	 	 	 	 	 transitionWidthLines[sig]	=	transitionWidthLines[0];	 	
	 	 	 	 	 defaultBetaFactorIdx[sig]	=	defaultBetaFactorIdx[0];	 	
	 	 	 	 }	else	{	 	
	 	 	 	 	 lastFFTLine[sig];	 4 uimsbf	
	 	 	 	 	 transitionWidthLines[sig];	 4 uimsbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 45	
	

Syntax	 No.	of	bits Mnemonic
	 	 	 	 	 defaultBetaFactorIdx[sig];	 nBitsBeta uimsbf	
	 	 	 	 }	 	
	 	 	 }	 	
	 	 }	 	
	 }	 	
}	 	

a	 The	helper	function	isLFEChannel(channel_layout,	sig)	returns	1	if	the	channel	on	position	sig	in	
channel_layout	is	a	LFE	channel	or	0	otherwise.	
b	 nBitsBeta	=	3	+	extendedBetaFactorPrecision.	

Table	42	—	Syntax	of	MCTConfig()	

Syntax	a	 No.	of	bits	 Mnemonic	

MCTConfig() 	 	

{ 	 	

	 nMCTChannels	=	0; 	 	

	 for(chan=0;chan	<	bsNumberOfSignals[grp]+1;	chan++)	{ 	 	

	 	 mctChanMask[chan];	 1	 uimsbf	

	 	 if(mctChanMask[chan]	>	0)	{ 	 	

	 	 	 mctChannelMap[nMCTChannels]=chan; 	 	

	 	 	 nMCTChannels++; 	 	

	 	 } 	 	

	 } 	 	

} 	 	

a					The	corresponding	ID_USAC_EXT	element	shall	be	prior	to	any	audio	element	of	the	corresponding	
signal	group.	

Table	43	—	Syntax	of	TccConfig()	

Syntax	 No.	of	bits	 Mnemonic	

TccConfig() 	 	

{ 	 	

	 for(elemIdx=0;	elemIdx	<	numElements;	++elemIdx)	{ 	 	

	 	 tccMode[elemIdx];	 2	a	 uimsbf	

	 } 	 	

} 	 	

a	 tccMode	is	set	only	for	SCE	and	CPE	channel	elements,	so	elemIdx	should	refer	only	to	those	elements.	

 MPEG-H	3D	audio	core	bitstream	payloads	

5.2.3.1 Payloads	for	MPEG-H	3D	audio	core		

The	bitstream	syntax	is	based	on	ISO/IEC	23003-3:2012,	subclause	5.3.1.	Modifications	and	amendments	
are	listed	below.	

Table	44	—	Syntax	of	mpegh3daFrame(),	top	level	payload	for	MPEG-H	3D	audio	Core	

Syntax	 No.	of	bits	 Mnemonic
mpegh3daFrame()
{
	 usacIndependencyFlag;	 1	 uimsbf

ISO/IEC	23008-3:202X(E)	

46	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic

	 for	(elemIdx=0;	elemIdx<numElements;	++elemIdx)	{	
	 	 if	((usacElementType[elemIdx]	!=	ID_USAC_EXT)		&&	
	 	 	 (elementLengthPresent	==	1))	{	
	 	 	 elementLength	 16	 uimsbf
	 	 }	 	
	 	 switch	(usacElementType[elemIdx])	{	
	 	 case	ID_USAC_SCE:	
	 	 	 mpegh3daSingleChannelElement(usacIndependencyFlag);	 elementLength,	a
	 	 	 break;	
	 	 case	ID_USAC_CPE:	
	 	 	 mpegh3daChannelPairElement(usacIndependencyFlag);	 elementLength,	a
	 	 	 break;	
	 	 case	ID_USAC_LFE:	
	 	 	 mpegh3daLfeElement(usacIndependencyFlag);	 elementLength,	a
	 	 	 break;	
	 	 case	ID_USAC_EXT:	
	 	 	 mpegh3daExtElement(usacIndependencyFlag);	
	 	 	 break;	

	 }	
}
a	 If	present,	elementLength	represents	the	length	of	the	corresponding	element	it	refers	to	in	number	
of	bits.	

Table	45	—	Syntax	of	mpegh3daSingleChannelElement()	

Syntax	 No.	of	bits	 Mnemonic
mpegh3daSingleChannelElement(indepFlag)
{
	 mpegh3daCoreCoderData(1,	indepFlag);

	 if	(sbrRatioIndex	>	0)	{
	 	 UsacSbrData(1,	indepFlag);
	 }
}	 	 	

Table	46	—	Syntax	of	mpegh3daChannelPairElement()	

Syntax	 No.	of	bits	 Mnemonic
mpegh3daChannelPairElement(indepFlag)
{
	 if	(stereoConfigIndex	==	1)	{
	 	 nrCoreCoderChannels	=	1;
	 }	else	{
	 	 nrCoreCoderChannels	=	2;
	 }

	 mpegh3daCoreCoderData(nrCoreCoderChannels,	indepFlag);

	 if	(sbrRatioIndex	>	0)	{
	 	 if	(stereoConfigIndex	==	0	||	stereoConfigIndex	==	3)	{
	 	 	 nrSbrChannels	=	2;
	 	 }	else	{

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 47	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 nrSbrChannels	=	1;
	 	 }
	 	 UsacSbrData(nrSbrChannels,	indepFlag);
	 }

	 if	(stereoConfigIndex	>	0)	{
	 	 Mps212Data(indepFlag);
	 }
} 	 	

Table	47	—	Syntax	of	mpegh3daLfeElement()	

Syntax	 No.	of	bits	 Mnemonic

mpegh3daLfeElement(indepFlag)

{

	 fd_channel_stream(0,	0,	0,	0,	0,	indepFlag);

} 	 	

Table	48	—	Syntax	of	mpegh3daExtElement()	

Syntax	 No.	of	
bits	

Mnemonic

mpegh3daExtElement(indepFlag)
{
	 usacExtElementPresent	 1	 uimsbf
	 if	(usacExtElementPresent==1)	{
	 	 usacExtElementUseDefaultLength;	 1	 uimsbf
	 	 if	(usacExtElementUseDefaultLength)	{
	 	 	 usacExtElementPayloadLength	=	usacExtElementDefaultLength;
	 	 }	else	{
	 	 	 usacExtElementPayloadLength;	 8	 uimsbf
	 	 	 if	(usacExtElementPayloadLength	==	255)
	 	 	 	 valueAdd	 16	 uimsbf
	 	 	 	 usacExtElementPayloadLength	+=	valueAdd	-	2;
	 	 	 }
	 	 }
	 	 if	(usacExtElementPayloadLength>0)	{
	 	 	 if	(usacExtElementPayloadFrag)	{
	 	 	 	 usacExtElementStart;	 1	 uimsbf
	 	 	 	 usacExtElementStop;	 1	 uimsbf
	 	 	 }	else	{
	 	 	 	 usacExtElementStart	=	1;		

	 	 	 	 usacExtElementStop	=	1;

	 	 	 }
	 	 	 for	(i=0;	i<usacExtElementPayloadLength;	i++)	{
	 	 	 	 usacExtElementSegmentData[i];	 8	 uimsbf
	 	 	 }
	 	 }
	 }
} 	 	

ISO/IEC	23008-3:202X(E)	

48	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	49	—	Syntax	of	ics_info()	

Syntax	 No.	of	bits	 Mnemonic
ics_info()
{
	 window_sequence;	 2	 uimsbf
	 window_shape;	 1	 uimsbf
	 if	(window_sequence	==	EIGHT_SHORT_SEQUENCE)	{
	 	 max_sfb;	 4	 uimsbf
	 	 scale_factor_grouping;	 7	 uimsbf
	 }
	 else	{
	 	 max_sfb;	 6	 uimsbf
	 }
} 	 	

5.2.3.2 Subsidiary	payloads	

Table	50	—	Syntax	of	mpegh3daCoreCoderData()	

Syntax	 No.	of	bits	 Mnemonic
mpegh3daCoreCoderData(nrChannels,	indepFlag)
{
	 for	(ch=0;	ch	<	nrChannels;	ch++)	{
	 	 core_mode[ch];	 1	 uimsbf	
	 }

	 if	(nrChannels	==	2)	{
	 	 StereoCoreToolInfo(core_mode);
	 }	else	{
	 	 common_ltpf	=	0;
	 }

	 for	(ch	=	0;	ch	<	nrChannels;	ch++)	{
	 	 if	(core_mode[ch]	==	1)	{
	 	 	 if	(lpdStereoIndex	==	1	&&	ch	==	1	&&	core_mode[0]	==	1)	{
	 	 	 	 lpd_stereo_stream(indepFlag);
	 	 	 }	else	{
	 	 	 	 lpd_channel_stream(noiseFilling,	fullbandLpd,	indepFlag);
	 	 	 }
	 	 }
	 	 else	{
	 	 	 if	((nrChannels	==	1)	||	(core_mode[0]	!=	core_mode[1]))	{
	 	 	 	 tns_data_present[ch];	 1	 uimsbf
	 	 	 }
	 	 	 fd_channel_stream(common_window,	common_tw,		

	 	 	 	 tns_data_present[ch],	noiseFilling,	fullbandLpd,	indepFlag);

	 	 }
	 }
} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 49	
	

Table	51	—	Syntax	of	StereoCoreToolInfo()	

Syntax	 No.	of	bits	 Mnemonic
StereoCoreToolInfo(core_mode)
{
	 if	(core_mode[0]	==	0	&&	core_mode[1]	==	0)	{
	 	 tns_active;	 1	 uimsbf
	 	 if	(common_window)	{	 1	 uimsbf
	 	 	 ics_info();
	 	 	 if	(common_max_sfb)	{	 1	 uimsbf
	 	 	 	 max_sfb1	=	max_sfb;
	 	 	 }	else	{
	 	 	 	 if	(window_sequence	==	EIGHT_SHORT_SEQUENCE)	{
	 	 	 	 	 max_sfb1;	 4	 uimsbf
	 	 	 	 }	else	{	

	 	 	 	 	 max_sfb1;	 6	 uimsbf
	 	 	 	 }
	 	 	 }
	 	 	 max_sfb_ste	=	max(max_sfb,	max_sfb1);
	 	 	 if	(enhancedNoiseFilling	&&	!igfIndependentTiling)	{
	 	 	 	 max_sfb_ste	=	min(max_sfb_ste,	igf_sfb_start);
	 	 	 }
	 	 	 ms_mask_present;	 2	 uimsbf
	 	 	 if	(ms_mask_present	==	1)	{
	 	 	 	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 	 	 	 for	(sfb	=	0;	sfb	<	max_sfb_ste;	sfb++)	{
	 	 	 	 	 	 ms_used[g][sfb];	 1	 uimsbf
	 	 	 	 	 }
	 	 	 	 }
	 	 	 }
	 	 	 if	(ms_mask_present	==	3)	{
	 	 	 	 cplx_pred_data();
	 	 	 }	else	{
	 	 	 	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 	 	 	 for	(sfb	=	0;	sfb	<	max_sfb_ste;	sfb++)	{
	 	 	 	 	 	 alpha_q_re[g][sfb]	=	0;
	 	 	 	 	 	 alpha_q_im[g][sfb]	=	0;
	 	 	 	 	 }
	 	 	 	 }
	 	 	 }
	

	 	 	 if	(enhancedNoiseFilling	&&	!igfIndependentTiling)	{
	 	 	 	 igf_ms_mask_present;	 2	 uimsbf
	 	 	 	 if	(igf_ms_mask_present	==	1)	{
	 	 	 	 	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 	 	 	 	 for	(sfb	=	igf_sfb_start;	sfb	<	igf_sfb_stop;	sfb	+=	(2	–	igfUseHighRes))	{
	 	 	 	 	 	 	 ms_used[g][sfb];	 1	 uimsbf
	 	 	 	 	 	 	 if	(!igfUseHighRes	&&	(sfb	+	1)	<	igf_sfb_stop)	{
	 	 	 	 	 	 	 	 ms_used[g][sfb+1]	=	ms_used[g][sfb];
	 	 	 	 	 	 	 }
	 	 	 	 	 	 }
	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 if	(igf_ms_mask_present	==	3)	{
	 	 	 	 	 igf_stereo_pred_data();
	 	 	 	 }	else	{

ISO/IEC	23008-3:202X(E)	

50	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 	 	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 	 	 	 	 for	(sfb	=	max_sfb_ste;	sfb	<	igf_sfb_stop;	sfb++)	{
	 	 	 	 	 	 	 alpha_q_re[g][sfb]	=	0;
	 	 	 	 	 	 	 alpha_q_im[g][sfb]	=	0;
	 	 	 	 	 	 }
	 	 	 	 	 }
	 	 	 	 }
	 	 	 }
	 	 }	

	 	 if	(tw_mdct)	{
	 	 	 if	(common_tw)	{	 1	 uimsbf
	 	 	 	 tw_data();
	 	 	 }
	 	 }
	 	 if	(common_ltpf)	{	 1	 uimsbf
	 	 	 if	(ltpf_data_present)	{	 1	 uimsbf
	 	 	 	 ltpf_pitch_lag_index;	 9	 uimsbf
	 	 	 	 ltpf_gain_index;	 2	 uimsbf
	 	 	 }
	 	 }
	 	 if	(tns_active)	{
	 	 	 if	(common_window)	{
	 	 	 	 common_tns;	 1	 uimsbf
	 	 	 }	else	{
	 	 	 	 common_tns	=	0;	

	

	 	 	 }
	 	 	 if	(!enhancedNoiseFilling	||	igfAfterTnsSynth)	{
	 	 	 	 tns_on_lr;	
	

	

	

}	

1	 uimsbf
	 	 	 }	else	{
	 	 	 	 tns_on_lr	=	1;
	 	 	 }
	 	 	 if	(common_tns)	{
	 	 	 	 tns_data();
	 	 	 	 tns_data_present[0]	=	0;
	 	 	 	 tns_data_present[1]	=	0;
	 	 	 }	else	{
	 	 	 	 if	(tns_present_both)	{	 1	 uimsbf
	 	 	 	 	 tns_data_present[0]	=	1;
	 	 	 	 	 tns_data_present[1]	=	1;
	 	 	 	 }	else	{
	 	 	 	 	 tns_data_present[1];	 1	 uimsbf
	 	 	 	 	 tns_data_present[0]	=	1	–	tns_data_present[1];
	 	 	 	 }
	 	 	 }
	 	 }	else	{
	 	 	 common_tns	=	0;
	 	 	 tns_data_present[0]	=	0;
	 	 	 tns_data_present[1]	=	0;
	 	 }
	 }	else	{
	 	 common_window	=	0;
	 	 common_ltpf	=	0;
	 	 common_tw	=	0;
	 }
} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 51	
	

Table	52	—	Syntax	of	lpd_stereo_stream()	

Syntax	 No.	of	bits	 Mnemonic
lpd_stereo_stream(indepFlag)
{
	 res_mode;	 1	 uimsbf
	 q_mode;	 1	 uimsbf
	 ipd_mode;	 2	 uimsbf
	 pred_mode;	 1	 uimsbf
	 cod_mode;	 2	 uimsbf

	 nbands	=	band_config(N,	res_mode);
	 ipd_band_max	=	max_band[res_mode][ipd_mode];
	 cod_band_max	=	max_band[res_mode][cod_mode];
	 cod_L	=	2*(band_limits[cod_band_max]-1);	

	 for	(k	=	ccfl	/	M;	k	>=	0;	k--)	{
	 	 if	(q_mode	==	0	||	k	%	2		==	1)	{
	 	 	 for	(b	=	0;	b	<	nbands;	b++)	{
	 	 	 	 ild_idx[k][b];	 5	 uimsbf
	 	 	 }
	 	 	 for	(b	=	0;	b	<	ipd_band_max;	b++)	{
	 	 	 	 ipd_idx[k][b];	 3	 uimsbf
	 	 	 }
	 	 	 if	(pred_mode	==	1)	{
	 	 	 	 for	(b	=	cod_band_max;	b	<	nbands;b++)	{
	 	 	 	 	 pred_gain_idx[k][b];	 3	 uimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }

	 if	(cod_mode	>0)	{
	 	 cod_gain_idx[k];	 7	 uimsbf
	 	 for	(i	=	0;	i	<	cod_L/8;	i++)	{
	 	 	 code_book_indices(i,	1,	1);
	 	 }
	 }
} 	 	

Table	53	—	Syntax	of	fd_channel_stream()	

Syntax	 No.	of	bits	 Mnemonic
fd_channel_stream(common_window,	common_tw,	tns_data_present,	noiseFilling,	fullbandLpd,	indepFlag)
{
	 global_gain;	 8	 uimsbf
	 if	(noiseFilling)	{
	 	 noise_level;	 3	 uimsbf
	 	 noise_offset;	 5	 uimsbf
	 }	else	{
	 	 noise_level	=	0;
	 }
	 if	(!common_window)	{
	 	 ics_info();
	 }

ISO/IEC	23008-3:202X(E)	

52	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 if	(tw_mdct	&&	!common_tw)	{
	 	 tw_data();
	 }	

	
	 if	(!common_ltpf)	{
	 	 if	(ltpf_data_present)	{	 1	 uimsbf
	 	 	 ltpf_pitch_lag_index;	 9	 uimsbf
	 	 	 ltpf_gain_index;	 2	 uimsbf
	 	 }
	 }
	 if	((!indepFlag)	&&		
											(window_sequence	!=	EIGHT_SHORT_SEQUENCE))	{	
	 	 	(window_sequence	!=	EIGHT_SHORT_SEQUENCE))	{

	 	 (window_sequence	!=	EIGHT_SHORT_SEQUENCE))	{
	 	 if	(fdp_data_present)	{	 	 	 1	 uimsbf
	 	 	 fdp_spacing_index;	 8	 uimsbf
	 	 }
	 }	else	{
	 	 fdp_data_present	=	0;
	 }
	 if	(indepFlag)	{
	 	 prev_aliasing_symmetry;	 1	 uimsbf
	 }	else	{
	 	 prev_aliasing_symmetry	=	curr_aliasing_symmetry;
	 }
	 curr_aliasing_symmetry;	 1	 uimsbf
	 scale_factor_data();

	 if	(enhancedNoiseFilling)	{
	 	 igf_AllZero;	 1	 uimsbf
	 	 igf_level(igf_AllZero,	indepFlag);	 0…	 NOTE
	 	 if	(!igf_AllZero)	{
	 	 	 igf_data(indepFlag,	0);
	 	 }	else	{
	 	 	 igfCurrTileIdx	=	{3,	3,	3,	3};
	 	 	 igfPrevTileIdx	=	{3,	3,	3,	3};
	 	 	 igf_PrevWhiteningLevel	=	{0,	0,	0,	0};
	 	 	 igf_WhiteningLevel	=	{0,	0,	0,	0};
	 	 	 igfApplyTNF	=	0;
	 	 }

	 if	(tns_data_present)	{
	 	 tns_data();
	 }
	 ac_spectral_data(indepFlag);

	 if	(fac_data_present)	{	 1	 uimsbf
	 	 if	(fullbandLpd)	{
	 	 	 fac_length	=	(window_sequence==EIGHT_SHORT_SEQUENCE)	?	ccfl/32	:	ccfl/16;
	 	 }	else	{
	 	 	 fac_length	=	(window_sequence==EIGHT_SHORT_SEQUENCE)	?	ccfl/16	:	ccfl/8;
	 	 }
	 	 fac_data(1,	fac_length);
	 }
}

NOTE	 For	details	on	igf_level()	see	subclause	5.5.5. 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 53	
	

Table	54	—	Syntax	of	igf_stereo_pred_data()	

Syntax	 No.	of	
bits	

Mnemonic

igf_stereo_pred_data(igf_sfb_start,	igf_sfb_stop,	indepFlag)
{
	 igf_stereo_pred_all;	 1	 uimsbf
	 if	(igf_stereo_pred_all	==	0)	{
	 	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 	 for	(sfb	=	igf_sfb_start;	sfb	<	igf_sfb_stop;	sfb	+=	SFB_PER_PRED_BAND)	{
	 	 	 	 cplx_pred_used[g][sfb];	 1	 uimsbf
	 	 	 	 if	((sfb	+	1)	<	igf_sfb_stop)	{
	 	 	 	 				cplx_pred_used[g][sfb+1]	=	cplx_pred_used[g][sfb];
	 	 	 	 }
	 	 	 }
	 	 }
	 }	else	{
	 	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 	 for	(sfb	=	igf_sfb_start;	sfb	<	igf_sfb_stop;	sfb++)	{
	 	 	 	 cplx_pred_used[g][sfb]	=	1;
	 	 	 }
	 	 }
	 }
	 igf_pred_dir;	 1	 uimsbf
	 if	(indepFlag)	{
	 	 igf_delta_code_time	=	0;
	 }	else	{
	 	 igf_delta_code_time;	 1	 uimsbf
	 }
	 for	(g	=	0;	g	<	num_window_groups;	g++)	{
	 	 for	(sfb	=	igf_sfb_start;	sfb	<	igf_sfb_stop;	sfb	+=	SFB_PER_PRED_BAND)	{
	 	 	 if	(cplx_pred_used[g][sfb])	{
	 	 	 	 hcod_sf[dpcm_alpha_q_re[g][sfb]];	 1..19	 vlclbf
	 	 	 }	else	{
	 	 	 	 alpha_q_re[g][sfb]	=	0; [1] [2]
	 	 	 }
	 	 	 alpha_q_im[g][sfb]	=	0;
	 	 }
	 }
} 	 	

Table	55	—	Syntax	of	igf_data()	

Syntax	 No.	of	bits	 Mnemonic
igf_data(indepFlag,	core_mode)
{
	 if	(!indepFlag)	{
	 	 igf_UsePrevTileIdx;	 1	 uimsbf
	 }	else	{
	 	 igf_UsePrevTileIdx	=	0;
	 }
	 if	(igf_UsePrevTileIdx)	{
	 	 for	(i	=	0;	i	<	igfNTiles;	i++)	{
	 	 	 igfCurrTileIdx[i]	=	igfPrevTileIdx[i];
	 	 }
	 }	else	{

ISO/IEC	23008-3:202X(E)	

54	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 for	(i	=	0;	i	<	igfNTiles;	i++)	{
	 	 	 igfCurrTileIdx[i];	 2	 uimsbf
	 	 }
	 }
	 for	(i	=	0;	i	<	igfNTiles;	i++)	{
	 	 igfPrevTileIdx[i]	=	igfCurrTileIdx[i];
	 	 igf_WhiteningLevel[i]	=	0;
	 }
	 for	(i	=	igfNTiles;	i	<	4;	i++)	{
	 	 igfCurrTileIdx[i]	=	3;
	 	 igfPrevTileIdx[i]	=	3;
	 	 igf_WhiteningLevel[i]	=	0;
	 }	

	 If	(core_mode	==	0)	{
	 	 igfEnableWht	=	(window_sequence	!=	EIGHT_SHORT_SEQUENCE);
	 }	else	{
	 	 igfEnableWht	=	1;
	 }
	 if	(igfUseWhitening	&&	igfEnableWht)	{
	 	 if	(indepFlag)	{
	 	 	 igf_UsePrevWhiteningLevel	=	0;
	 	 }	else	{
	 	 	 igf_UsePrevWhiteningLevel;	 1	 uimsbf
	 	 }
	 	 if	(igf_UsePrevWhiteningLevel)	{
	 	 	 for	(i	=	0;	i	<	igfNTiles;	i++)	{
	 	 	 	 igf_WhiteningLevel[i]	=	igf_PrevWhiteningLevel[i];
	 	 	 }
	 	 }	else	{
	 	 	 if	(igf_WhiteningLevel[0])	{	 1	 uimsbf
	 	 	 	 igf_WhiteningLevel[0]	=	1	+	tmp;	 1	 uimsbf
	 	 	 }
	 	 	 if	(remainingTilesDifferent)	{	 1	 uimsbf
	 	 	 	 for	(i	=	1;	i	<	igfNTiles;	i++)	{
	 	 	 	 	 if	(igf_WhiteningLevel[i])	{	 1	 uimsbf
	 	 	 	 	 	 igf_WhiteningLevel[i]	=	1	+	tmp;	 1	 uimsbf
	 	 	 	 	 }
	 	 	 	 }
	 	 	 }	else	{
	 	 	 	 for	(i	=	1;	i	<	igfNTiles;	i++)	{
	 	 	 	 	 igf_WhiteningLevel[i]	=	igf_WhiteningLevel[0];
	 	 	 	 }
	 	 	 }
	 	 }
	 }
	 for	(i	=0;	i	<	4;	i++)	{
	 	 igf_PrevWhiteningLevel[i]	=	igf_WhiteningLevel[i];
	 }
	 if	(igfUseEnf)	{
	 	 if	(window_sequence	!=	EIGHT_SHORT_SEQUENCE)	{
	 	 	 igfApplyTNF;	 1	 uimsbf
	 	 }
	 }
} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 55	
	

Table	56	—	Syntax	of	lpd_channel_stream()	

Syntax	 No.	of	bits	 Mnemonic
lpd_channel_stream(noiseFilling,	fullbandLpd,	indepFlag)	
{	
	 if	(fullbandLpd)	{
	 	 tns_data_present;	 1	 uimsbf
	 	 if	(noiseFilling	||	tns_data_present)	{
	 	 	 window_shape;	 1	 uimsbf
	 	 	 max_sfb;	 4	 uimsbf
	 	 }	else	{
	 	 	 window_shape	=	max_sfb	=	0;
	 	 }
	 }	else	{
	 	 tns_data_present	=	0;
	 }
	 acelp_core_mode;	 3		 uimsbf

	 if	(fullbandLpd)	{ 	 a
	 	 lpd_mode;	 3	 uimsbf
	 	 bpf_control_info	=	1;
	 }	else	{
	 	 lpd_mode;	 5	 uimsbf
	 	 bpf_control_info;	 1	 uimsbf
	 }
	 core_mode_last;	 1	 uimsbf
	 fac_data_present;	 1	 uimsbf

	 first_lpd_flag	=	!core_mode_last;
	 first_tcx_flag	=	TRUE;
	 k	=	0;
	 if	(first_lpd_flag)	{
	 	 last_lpd_mode	=	-1; 	 b
	 }
	 nbDiv	=	(fullbandLpd	==	1)	?	2	:	4;
	 while	(k	<	nbDiv)	{
	 	 if	(k	==	0)	{
	 	 	 if	((core_mode_last	==	1)	&&	(fac_data_present	==	1))	{
	 	 	 	 fac_data(0,	ccfl/8);
	 	 	 }
	 	 }	else	{
	 	 	 if	((last_lpd_mode	==	0	&&	mod[k]	>	0)	||
	 	 	 	 (last_lpd_mode	>	0	&&	mod[k]	==	0))	{
	 	 	 	 fac_data(0,	ccfl/8);
	 	 	 }
	 	 }
	 	 if	(mod[k]	==	0)	{
	 	 	 acelp_coding(acelp_core_mode,	fullbandLpd);
	 	 	 last_lpd_mode	=	0;
	 	 	 k	+=	1;
	 	 }	else	{
	 	 	 window_sequence	=	EIGHT_SHORT_SEQUENCE; 	 c

ISO/IEC	23008-3:202X(E)	

56	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 tcx_coding(lg(mod[k]),	first_tcx_flag,	tns_data_present,	noiseFilling,	

enhancedNoiseFilling,	indepFlag);
	 	 	 last_lpd_mode	=	mod[k];
	 	 	 k	+=	(1	<<	(mod[k]-1));
	 	 	 first_tcx_flag	=	FALSE;
	 	 }
	 }

	 lpc_data(first_lpd_flag);

	 if	((core_mode_last	==	0)	&&	(fac_data_present	==	1))	{
	 	 short_fac_flag;	 1	 uimsbf
	 	 if	(fullbandLpd)	{
	 	 	 fac_length	=	short_fac_flag	?	ccfl/32	:	ccfl/16;
	 	 }	else	{
	 	 	 fac_length	=	short_fac_flag	?	ccfl/16	:	ccfl/8;
	 	 }
	 	 fac_data(1,	fac_length);
	 }
}	
a					lpd_mode	defines	the	contents	of	the	array	mod[]	as	described	in	ISO/IEC	23003-3:2012,	Table	89	or,	if	
fullbandLpd	is	equal	to	1,	in	Table	89.	
b					first_lpd_flag	is	defined	in	ISO/IEC	23003-3,	subclause	6.2.10.2.		
c					The	number	of	spectral	coefficients,	lg,	depends	on	mod[k]	according	to	ISO/IEC	23003-3:2012, Table	148	or,	if	
fullbandLpd	is	equal	to	1,	in	Table	91.

Table	57	—	Syntax	of	acelp_coding()	

Syntax	 No.	of	bits	 Mnemonic
acelp_coding(acelp_core_mode,	fullbandLpd)	
{	
	 mean_energy;		 2		 uimsbf	

	 nb_subfr	=	coreCoderFrameLength	/	256; 	 a	

	 for	(sfr	=	0;	sfr	<	nb_subfr;	sfr++)	{	
	 	 if	((sfr	==	0)	||	((nb_subfr	==	4)	&&	(sfr	==	2)))	{	
	 	 	 acb_index[sfr];		 9		 uimsbf	
	 	 }	else	{	
	 	 	 acb_index[sfr];		 6		 uimsbf	
	 	 }	
	 	 ltp_filtering_flag[sfr];		 1		 bmsbf	

	 	 switch	(acelp_core_mode)	{	
	 	 	 case	0	
	 	 	 	 icb_index[sfr];		 20	 uimsbf	
	 	 	 	 break;	
	 	 	 case	1	
	 	 	 	 icb_index[sfr];		 28	 uimsbf	
	 	 	 	 break;	
	 	 	 case	2	
	 	 	 	 icb_index[sfr];		 36	 uimsbf	
	 	 	 	 break;	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 57	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 case	3	
	 	 	 	 icb_index[sfr];		 44	 uimsbf	
	 	 	 	 break;	
	 	 	 case	4	
	 	 	 	 icb_index[sfr];		 52	 uimsbf	
	 	 	 	 break;	
	 	 	 case	5	
	 	 	 	 icb_index[sfr];		 64	 uimsbf	
	 	 	 	 break;	
	 	 	 case	6	
	 	 	 	 icb_index[sfr];		 12	 uimsbf	
	 	 	 	 break;	
	 	 	 case	7	
	 	 	 	 icb_index[sfr];		 16	 uimsbf	
	 	 	 	 break;	
	 	 }	
	 	 gains[sfr];		 7		 uimsbf	
	 }

	 if	(fullbandLpd)	{
	 	 tbe_data();
	 }
}	
a	 coreCoderFrameLength	designates	the	core	frame	length	in	samples	and	is	equal	to	either	1024	or	768.	

Table	58	—	Syntax	of	tcx_coding()	

Syntax	 No.	of	bits	 Mnemonic
tcx_coding(lg,	first_tcx_flag,	tns_data_present,	noiseFilling,	enhancedNoiseFilling,	indepFlag)
{
	 if	(noiseFilling)	{
	 	 noise_factor;		 3		 uimsbf	
	 }	else	{
	 	 noise_factor	=	8;
	 }
	 global_gain;	 7	 uimsbf

	 if	(lg	==	ccfl)	{
	 	 if	(ltpf_data_present)	{	 1	 uimsbf
	 	 	 ltpf_pitch_lag_index;	 9	 uimsbf
	 	 	 ltpf_gain_index;	 2	 uimsbf
	 	 }
	 }	else	{
	 	 ltpf_data_present	=	0;
	 }

	 if	((indepFlag	==	0)	&&	(lg	==	ccfl))	{
	 	 if	(fdp_data_present)	{	 1	 uimsbf
	 	 	 fdp_spacing_index;	 8	 uimsbf
	 	 }
	 }	else	{
	 	 fdp_data_present	=	0;
	 }

ISO/IEC	23008-3:202X(E)	

58	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic

	 if	(enhancedNoiseFilling)	{
	 	 num_windows	=	1;
	 	 igf_AllZero;	 1	 uimsbf
	 	 igf_level(igf_AllZero,	indepFlag);	 0…	 a

	 	 if	(!igf_AllZero)	{
	 	 	 igf_data(indepFlag,	1);
	 	 }	else	{
	 	 	 igfCurrTileIdx	=	{3,	3,	3,	3};
	 	 	 igfPrevTileIdx	=	{3,	3,	3,	3};
	 	 	 igf_PrevWhiteningLevel	=	{0,	0,	0,	0};
	 	 	 igf_WhiteningLevel	=	{0,	0,	0,	0};
	 	 	 igfApplyTNF	=	0;
	 	 }
	 }

	 if	(tns_data_present)	{
	 	 num_windows	=	1;
	 	 tns_data();
	 }

	 if	(first_tcx_flag)	{
	 	 if	(indepFlag)	{
	 	 	 arith_reset_flag	=	1;
	 	 }	else	{
	 	 	 arith_reset_flag;	 1	 uimsbf
	 	 }
	 }	else	{
	 	 arith_reset_flag	=	0;
	 }
	 arith_data(lg,	arith_reset_flag);
} 	 	
a					For	details	on	igf_level()	see	subclause	5.5.5.	 	 	

Table	59	—	Syntax	of	tbe_data()	

Syntax		 No.	of	bits		 Mnemonic
tbe_data()
{
	 tbe_heMode;	 1	 uimsbf
	 idxFrameGain;	 5	 uimsbf
	 idxSubGains;	 5	 uimsbf
	 lsf_idx[0];	 7	 uimsbf
	 lsf_idx[0];	 7	 uimsbf
	 if	(tbe_heMode	==	0)	{
	 	 tbe_hrConfig;	 1	 uimsbf
	 	 tbe_nlConfig;	 1	 uimsbf

	 idxMixConfig;	 2	 uimsbf
	 	 if	(tbe_hrConfig	==	1)	{

	 	 idxShbFrGain;	 6	 uimsbf
	 	 idxResSubGains;	 5	 uimsbf

	 	 }	else	{

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 59	
	

Syntax		 No.	of	bits		 Mnemonic
	 	 idxShbExcResp[0];	 7	 uimsbf
	 	 idxShbExcResp[0];	 4	 uimsbf
	 }

	 }	else	{
	 	 tbe_nlConfig	=	1;

}
} 	 	

Table	60	—	References	to	USAC	syntactic	elements	

Syntax	of	 Defined	in
ics_info()	 ISO/IEC	23003-3:2012,	5.3,	Table	22
tw_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	27
scale_factor_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	28
tns_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	29
ac_spectral_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	30
lpc_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	32
code_book_indices()	 ISO/IEC	23003-3:2012,	5.3,	Table	35
arith_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	38
fac_data()	 ISO/IEC	23003-3:2012,	5.3,	Table	39
UsacSbrData()	 ISO/IEC	23003-3:2012,	5.3,	Table	40
Mps212Data()	 ISO/IEC	23003-3:2012,	5.3,	Table	52	

5.2.3.3 Extension	element	payloads	

Table	61	—	Syntax	of	AudioPreRoll()	

Syntax	 No.	of	bits	 Mnemonic	
AudioPreRoll() 	 	

{ 	 	

	 configLen	=	escapedValue(4,4,8);	 4..16	 	
	 Config()	 8*configLen	 	
 	 	

	 applyCrossfade;	 1	 bool	
	 apr_reserved;	 1	 bool	
 	 	

	 numPreRollFrames	=	escapedValue(2,4,0);	 2..6	 	
 	 	

	 for	(frameIdx=0;	frameIdx	<	numPreRollFrames;	++frameIdx)	{ 	 	

	 	 auLen	=	escapedValued(16,16,0)	 16..32	 uimsbf	
	 	 AccessUnit()	 8*auLen	 	
	 } 	 	

} 	 	

Table	62	—	Syntax	of	TccGroupOfSegments()	

Syntax	 No.	of	bits	 Mnemonic	

TccGroupOfSegments() 	 	
{ 	 	
	 if	(tccDataPresent)	{	 1	 uimsbf	
	 	 numSegments;	 3	 uimsbf	
	 	 for	(k=0;k<	numSegments;k++)	{ 	 	
	 	 	 isContinued[k];	 1	 uimsbf	
	 	 	 segLength[k];	 2	 uimsbf	

ISO/IEC	23008-3:202X(E)	

60	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	

	 	 	 amplQuant[k];	 1	 uimsbf	
	 	 	 amplTransformCoeffDC[k];	 8	 uimsbf	
	 	 	 j	=	0;	 a	 	

	 	 	 while	(amplTransformIndex[k][j]	=	huff_dec(huffWord))	
	 	 	 {	

1..12	 	

	 	 	 	 if	(amplTransformIndex[k][j]	==	0)	{ 	 	
	 	 	 	 	 numAmplCoeffs	=	j; 	 	
	 	 	 	 	 break; 	 	
	 	 	 	 } 	 	
	 	 	 	 j++; 	 	
	 	 	 } 	 	
	 	 	 for	(j=0;	j	<	numAmplCoeffs;	j++)	{	 b	 	
	 	 	 	 amplTransformCoeffAC[k][j]=	huff_dec(huffWord);	 1..15	 	
	 	 	 	 amplSgn[k][j];	 1	 uimsbf	
	 	 	 } 	 	
	 	 	 freqQuant[k];	 	 1	 uimsbf	
	 	 	 freqTransformCoeffDC[k];	 11	 uimsbf	
	 	 	 j	=	0;	 a	 	

	 	 	 while	(freqTransformIndex[k][j]	=		huff_dec(huffWord))	
	 	 	 {	

1..12	 	

	 	 	 	 if	(freqTransformIndex[k][j]	==	0)	{ 	 	
	 	 	 	 	 numFreqCoeffs	=	j; 	 	
	 	 	 	 	 break; 	 	
	 	 	 	 } 	 	
	 	 	 	 j++; 	 	
	 	 	 } 	 	
	 	 	 for	(j=0;	j	<	numFreqCoeffs;	j++)	{	 b	 	
	 	 	 	 freqTransformCoeffAC[k][j]	=	huff_dec(huffWord);	 1..15	 	
	 	 	 	 freqSgn[k][j];	 1	 uimsbf	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
} 	 	
a					Huffman	codes	table:	Table	122.	
b					Huffman	codes	table:	Table	123.	

Table	63	—	Syntax	of	MultichannelCodingBoxRotation()	

Syntax	 No.	of	bits	 Mnemonic	

MultichannelCodingBoxRotation() 	 	

{ 	 	

	 if	(keepTree	==	0)	{	 a	 	

	 	 channelPairIndex;	 nBits			 	

	 } 	 	

	 else	{ 	 	

	 	 channelPairIndex=lastChannelPairIndex; 	 	

	 } 	 	

 	 	

	 hasMctMask;	 1	 uimsbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 61	
	

Syntax	 No.	of	bits	 Mnemonic	

	 hasBandwiseAngles;	
	

1	 uimsbf	

	 windowsPerFrame	=1; 	 	

	 if	(hasMctMask	||	hasBandwiseAngles)	{ 	 	

	 	 isMCTShort;	 1	 uimsbf	

	 	 numMaskBands;	 5	 uimsbf	

	 	 if	(isMCTShort)	{ 	 	

	 	 	 numMaskBands	=	numMaskBands*8;	

	 	 	 windowsPerFrame	=8;
	 	

	 	 } 	 	

	 }	else	{ 	 	

	 	 numMaskBands	=	MAX_NUM_MC_BANDS; 	 	

	 } 	 	

	 if	(hasMctMask)	{ 	 	

	 	 for(j=0;j<numMaskBands;j++)	{ 	 	

	 	 	 mctMask[j];	 1	 uimsbf	

	 	 }	

	 }	else	{	

	 	 for(j=0;j<numMaskBands;j++)	{

	 	

	 	 	 mctMask[j]	=	1; 	 	

	 	 } 	 	

	 } 	 	

	 if	(indepFlag	>	0)	{ 	 	

	 	 mct_delta_time	=	0; 	 	

	 }	else	{ 	 	

	 	 mct_delta_time;	 1	 uimsbf	

	 } 	 	

	 if	(hasBandwiseAngles	==	0)	{ 	 	

	 	 hcod_angle[dpcm_beta[0]];	 1..10	 vlclbf	

	 } 	 	

	 else	{ 	 	

	 	 for(j=0;j<numMaskBands;j++)	{ 	 	

	 	 	 if	(mctMask[j]	==1)	{ 	 	

	 	 	 	 hcod_angle[dpcm_beta[j]];	 1..10	 vlclbf	

	 	 	 } 	 	

	 	 } 	 	

	 } 	 	

} 	 	

a					nBits	=	max(1,	floor(log2(nMCTChannels	·	(nMCTChannels-1)/2	–	1))+1).	

Table	64	—	Syntax	of	MultichannelCodingBoxPrediction()	

Syntax	 No.	of	bits	 Mnemonic	

MultichannelCodingBoxPrediction() 	 	

{ 	 	

	 if	(keepTree	==	0)	{	 a	 	

	 	 channelPairIndex;	 nBits			 uimsbf	

	 } 	 	

	 else	{ 	 	

ISO/IEC	23008-3:202X(E)	

62	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	

	 	 channelPairIndex=	lastChannelPairIndex; 	 	

	 } 	 	

 	 	

	 hasMctMask;	 1	 uimsbf	

	 hasBandwiseCoeff;	 1	 uimsbf	

	 	

	 windowsPerFrame	=1;
	 	

	 if	(hasMctMask	||	hasBandwiseCoeff)	{ 	 	

	 	 isMCTShort;	 1	 uimsbf	

	 	 numMaskBands;	 5	 uimsbf	

	 	 if	(isMCTShort)	{ 	 	

	 	 	 numMaskBands	=	numMaskBands*8;	

	 	 	 windowsPerFrame	=8;
	 	

	 	 } 	 	

	 }	else	{ 	 	

	 	 numMaskBands	=	MAX_NUM_MC_BANDS; 	 	

	 } 	 	

	 if	(hasMctMask)	{ 	 	

	 	 for(j=0;j<numMaskBands;j++)	{ 	 	

	 	 	 mctMask[j];	 1	 uimsbf	

	 	 }	

	 }	else	{	

	 	 for(j=0;j<numMaskBands;j++)	{

	 	

	 	 	 mctMask[j]	=	1; 	 	

	 	 } 	 	

	 } 	 	

	 pred_dir;	 1	 	

	 if	(indepFlag	>	0)	{ 	 	

	 	 mct_delta_time	=	0; 	 	

	 }	else	{ 	 	

	 	 mct_delta_time;	 1	 uimsbf	

	 } 	 	

	 if	(hasBandwiseCoeff	==	0)	{ 	 	

	 	 hcod_sf[dpcm_alpha_q_re[0]];	 1..19	 vlclbf	

	 } 	 	

	 else	{ 	 	

	 	 for(j=0;j<numMaskBands;j++)	{ 	 	

	 	 	 if	(mctMask[j]	==1)	{ 	 	

	 	 	 	 hcod_sf[dpcm_alpha_q_re[j]];	 1..19	 vlclbf	

	 	 	 } 	 	

	 	 } 	 	

	 } 	 	

} 	 	

a					nBits	=	max(1,	floor(log2(nMCTChannels	·	(nMCTChannels-1)/2	–	1))+1).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 63	
	

Table	65	—	Syntax	of	MultichannelCodingFrame()	

Syntax	 No.	of	bits	 Mnemonic	

MultichannelCodingFrame() 	 	

{ 	 	

	 MCTSignalingType;	 2	 uimsbf	

	 if	(indepFlag	==	1)	{ 	 	

	 	 keepTree	=	0; 	 	

	 }	else	{ 	 	

	 	 keepTree;	 1	 uimsbf	

	 } 	 	

	 if	(keepTree==0)	{ 	 	

	 	 numPairs	=	escapedValue(5,8,16); 	 	

	 } 	 	

	 else	{ 	 	

	 	 numPairs	=	lastNumPairs; 	 	

	 } 	 	

	 MCTStereoFilling	=	0;
	 if	(MCTSignalingType	>	1)	{
	 	 MCTSignalingType	=	MCTSignalingType	–	2;
	 	 MCTStereoFilling	=	1;
	 }
	 for(pair=0;	pair<numPairs;pair++)	{ 	 	

	 	 hasStereoFilling[pair]	=	0;
	 	 if	(MCTStereoFilling	==	1)	{
	 	 	 hasStereoFilling[pair];	 1	 uimsbf
	 	 }
	 	 if	(MCTSignalingType	==	0)	{	/*	tree	of	stereo	prediction	boxes	*/ 	 	

	 	 	 MultichannelCodingBoxPrediction(); 	 	

	 	 } 	 	

	 	 if	(MCTSignalingType	==	1)	{	/*	tree	of	rotation	boxes	*/ 	 	

	 	 	 MultichannelCodingBoxRotation(); 	 	

	 	 } 	 	

	 } 	 	

} 	 	

ISO/IEC	23008-3:202X(E)	

64	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	66	—	Syntax	of	HREPFrame()	

Syntax	 No.	of	bits	 Mnemonic
HREPFrame(outputFrameLength,	current_signal_group)
{
	 gain_count	=	outputFrameLength	/	64;
	 signal_count	=	bsNumberOfSignals[current_signal_group]	+	1;

	 useRawCoding;	 1	 uimsbf
	 if	(useRawCoding)	{
	 	 for	(pos	=	0;	pos	<	gain_count;	pos++)	{
	 	 	 for	(sig	=	0;	sig	<	signal_count;	sig++)	{	 	
	 	 	 	 if	(isHREPActive[sig]	==	0)	continue;
	 	 	 	 gainIdx[pos][sig];	 nBitsGain	 uimsbf
	 	 	 	 }	 a
	 	 	 }
	 }	else	{
	 	 HREP_decode_ac_data(gain_count,	signal_count);
	 }

	 for	(sig	=	0;	sig	<	signal_count;	sig++)	{
	 	 if	(isHREPActive[sig]	==	0)	continue;
	 	 all_zero	=	1;	/*	all	gains	are	zero	for	the	current	channel	*/
	 	 for	(pos	=	0;	pos	<	gain_count;	pos++)	{
	 	 	 if	(gainIdx[pos][sig]	!=	GAIN_INDEX_0dB)	{
	 	 	 	 all_zero	=	0;
	 	 	 	 break;
	 	 	 }
	 	 }
	 	 if	(all_zero	==	0)	{
	 	 	 useDefaultBetaFactorIdx;	 1	 uimsbf
	 	 	 if	(useDefaultBetaFactorIdx)	{
	 	 	 	 betaFactorIdx[sig]	=	defaultBetaFactorIdx[sig];
	 	 	 }	else	{
	 	 	 	 betaFactorIdx[sig];	 nBitsBeta	 uimsbf
	 	 	 }
	 	 }
	 }
}
a					nBitsGain	=	3	+	extendedGainRange.	

5.3 Data	structure	

 General	

The	data	structure	is	based	on	ISO/IEC	23003-3:2012,	Clause	6.	

Modifications	and	amendments	are	listed	below.	

Signal	 groups	 are	 represented	 by	 audio	 data	 elements	 which	 are	 configured	 in	 the	
mpegh3daDecoderConfig().	The	bitstream	element	Signals3d()	specifies	 the	assignment	of	audio	data	
elements	 to	 signal	 groups.	 In	 case	 a	 signal	 group	 requires	 extension	 payloads,	 the	 corresponding	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 65	
	

mpegh3daExtElementConfig()s	shall	immediately	precede	the	configuration	elements	for	the	audio	data	
elements	which	belong	to	the	associated	signal	group.	

 General	configuration	data	elements	

mpegh3daProfileLevelIndication	 Indication	of	MPEG-H	3D	audio	profile	and	level	according	
to	Table	67.	

Table	67	—	Value	of	mpegh3daProfileLevelIndication	and	CompatibleSetIndication	

value	 Indication	of	profile	 Indication	of	level

0x00	 reserved	for	ISO	use —
0x01	 main	profile	 L1
0x02	 main	profile	 L2
0x03	 main	profile	 L3
0x04	 main	profile	 L4
0x05	 main	profile	 L5
0x06	 high	profile	 L1
0x07	 high	profile	 L2
0x08	 high	profile	 L3
0x09	 high	profile	 L4
0x0A	 high	profile	 L5
0x0B	 low	complexity	profile	 L1
0x0C	 low	complexity	profile	 L2
0x0D	 low	complexity	profile	 L3
0x0E	 low	complexity	profile	 L4
0x0F	 low	complexity	profile	 L5
0x10	 baseline	profile	 L1
0x11	 baseline	profile	 L2
0x12	 baseline	profile	 L3
0x13	 baseline	profile	 L4
0x14	 baseline	profile	 L5

0x15-0xFF	 reserved	for	future	profile	definition	 	

	

cfg_reserved	 reserved,	value	shall	be	ignored.	

receiverDelayCompensation	 This	flag	forces	the	decoder	to	operate	in	a	constant	delay.	The	
decoder	delay	shall	be	kept	constant	by	employing	appropriate	
delay	lines	to	obtain	the	delays	noted	in	Table	1.	

ISO/IEC	23008-3:202X(E)	

66	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

referenceLayout	 This	structure	describes	the	loudspeaker	layout	which	the	
content	of	the	present	audio	stream	was	originally	designed	or	
produced	for.	In	that	sense	it	represents	the	optimal	
loudspeaker	layout	from	the	content	creator's	perspective.	This	
layout	also	acts	as	default	rendering	layout	in	the	case	where	
the	targetLayout	is	not	known	to	the	decoder.	The	
referenceLayout	shall	contain	a	specific	and	real	layout.	A	
ChannelConfiguration	value	of	0	(“any	setup”)	of	
ISO/IEC	23001-8	is	not	allowed.		

audioChannelLayout	 This	structure	describes	the	loudspeaker	layout	for	a	group	
with	SignalGroupType	==	SignalGroupTypeChannels.	If	the	
audioChannelLayout	is	different	from	the	referenceLayout	
(differsFromReferenceLayout==1),	then	the	
audioChannelLayout	shall	be	smaller	than	the	referenceLayout.	

targetLayout	 This	structure	describes	the	target	loudspeaker	layout,	i.e.	the	
actual	loudspeaker	constellation	which	the	audio	content	shall	
be	rendered	to.	This	information	will	typically	come	from	
outside	of	the	decoder.	If	the	targetLayout	is	unknown,	it	shall	
be	assumed	that	targetLayout	=	referenceLayout.	

bsNumSignalGroups	 This	field	defines	the	number	of	signal	groups	that	are	present	
in	the	bitstream.	

signal_groupID	 This	variable	implicitly	assigns	an	ID	to	the	signal	groups	listed	
in	the	Signals3d()	syntax	element.	The	ID	is	used	to	assign	
signal	groups	to	transmitted	downmix	matrices	in	the	
DownmixMatrixSet()	syntax	element.	Only	signal	groups	of	
type	SignalGroupTypeChannels	may	be	assigned	to	downmix	
matrices.	

signalGroupType	 This	field	defines	the	type	of	a	signal	group.		

Table	68	—	Value	of	signalGroupType	

signalGroupType	 Value	 Meaning

SignalGroupTypeChannels	 0	 Signal	group	contains	channel	signals,	i.e.	signals	that	should	
be	played	back	from	one	static	position,	e.g.	by	a	specific	
loudspeaker	

SignalGroupTypeObject	 1	 Signal	group	contains	object	signals,	i.e.	signals	that	should	
be	rendered	to	the	reproduction	layout	

SignalGroupTypeSAOC	 2	 Signal	group	contains	SAOC	signals	

SignalGroupTypeHOA	 3	 Signal	group	contains	HOA	signals	
reserved	 4	-	7	 n.a.	

	

differsFromReferenceLayout	 This	flag	indicates	whether	the	layout	for	which	the	signal	
group	(of	type	SignalGroupTypeChannels)	is	intended	
differs	from	the	reference	layout.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 67	
	

numAudioChannels	 Explicit	number	of	audio	channels	that	are	conveyed	in	the	
present	stream	by	means	of	SCEs,	CPEs,	QCEs,	and	LFEs.	The	
value	of	this	bitstream	field	shall	correspond	to	the	number	
of	channels	as	signalled	with	the	help	of	
audioChannelLayout.	In	the	element	loop	of	
mpegh3daDecoderConfig()	these	elements	shall	be	located	
before	all	object	related	elements.	

numAudioObjects	 Explicit	number	of	audio	objects	channels	that	are	conveyed	
in	the	present	stream	by	means	of	SCEs,	CPEs,	and	QCEs	and	
that	are	further	processed	in	the	object	renderer.	In	the	
element	loop	of	mpegh3daDecoderConfig()	these	elements	
shall	be	located	after	all	audio	channel	related	elements.	

numSAOCTransportChannels	 Explicit	number	of	SAOC	audio	transport	channels	that	are	
conveyed	in	the	present	stream	by	means	of	SCEs,	CPEs,	
QCEs,	and	LFEs	and	that	are	further	processed	in	the	SAOC	
3D	Decoder.	In	the	element	loop	of	
mpegh3daDecoderConfig()	these	elements	shall	be	located	
after	all	audio	channel	and	audio	object	related	elements.	

saocDmxLayoutPresent	 This	flag	indicates	if	the	SAOC	audio	transport	channels	
contain	a	meaningful	downmix	of	the	input	channels	and	
objects.	If	saocDmxLayoutPresent	==	1	the	
saocDmxChannelLayout	is	associated	with	the	SAOC	audio	
transport	channels.	Additionally,	if	the	number	of	output	
channels	is	smaller	than	the	number	of	SAOC	audio	
transport	channels,	the	SAOC	audio	transport	channels	
should	be	further	processed	as	signals	of	type	
SignalGroupTypeChannels	with	the	audio	channel	layout	
saocDmxChannelLayout.	and	the	SAOC	payload	should	be	
discarded.	

saocDmxChannelLayout	 This	structure	describes	the	loudspeaker	layout	of	the	SAOC	
audio	transport	channels,	if	saocDmxLayoutPresent	==	1.	
The	number	of	loudspeakers	signalled	in	
saocDmxChannelLayout	shall	be	equal	to	
(bsNumberOfSignals[grp]	+	1),	if	SignalGroupType[grp]	==	
SignalGroupTypeSAOC.	

numHOATransportChannels	 Explicit	number	of	HOA	transport	channels	that	are	
conveyed	in	the	present	stream	by	means	of	SCEs,	CPEs,	
QCEs	and	that	are	further	processed	in	the	HOA	Decoder.	In	
the	element	loop	of	mpegh3daDecoderConfig()	these	
elements	shall	be	located	after	all	audio	channel,	audio	
object	and	SAOC	related	elements.	

 Loudspeaker	configuration	data	elements	

speakerLayoutType	 This	field	indicates	by	which	means	the	loudspeaker	layout	is	conveyed	
in	the	bitstream	element	according	to	Table	69.	

ISO/IEC	23008-3:202X(E)	

68	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	69	—	Meaning	of	speakerLayoutType	

Value	 Meaning

0	 Loudspeaker	layout	shall	be	signalled	by	means	of	ChannelConfiguration	index	as	defined	in	
ISO/IEC	23001-8.	

1	 Loudspeaker	layout	shall	be	signalled	by	means	of	a	list	of	LoudspeakerGeometry	indices	as	
defined	in	ISO/IEC	23001-8.	

2	 Loudspeaker	layout	is	signalled	by	means	of	a	list	of	explicit	geometric	position	information.	
3	 Contribution	Mode:	No	associated	loudspeaker	layout;	Renderers	shall	operate	as	defined	in	

subclause	4.7.	This	value	is	only	allowed	when	signaling	the	referenceLayout.	
	

CICPspeakerLayoutIdx	 ChannelConfiguration	value.	Shall	be	as	defined	in	ISO/IEC	23001-8.	

CICPspeakerIdx	 LoudspeakerGeometry	value.	Shall	be	as	defined	in	ISO/IEC	23001-8.	

angularPrecision	 This	flag	signals	the	angular	precision	of	loudspeaker	geometry	
information	according	to	Table	70.	

Table	70	—	Meaning	of	angularPrecision	

Value	of	
angularPrecision	

Angular	precision	
degrees	(°)	

Number	of	bits	used	for	coding	of	
bitstream	field:

ElevationAngleIdx	 AzimuthAngleIdx

0	 5	 5	 6	
1	 1	 7	 8	

	

alsoAddSymmetricPair	 This	flag	signals	if	a	symmetric	pair	on	the	horizontal	plane	is	directly	
following.	

isCICPspeakerIdx	 This	flag	signals	whether	the	loudspeaker	position	shall	be	signalled	by	
means	of	a	LoudspeakerGeometry	according	to	ISO/IEC	23001-8.	

ElevationClass	 Indicates	loudspeaker	elevation	by	means	of	a	simple	middle/	
upper/lower	layer	indication	according	to	Table	71.	

Table	71	—	Meaning	of	ElevationClass	field	

Value	 Meaning	 ElevationAngle

0	 Loudspeaker	is	located	in	the	middle	layer.	 0°	

1	 Loudspeaker	is	located	in	the	upper	layer.	 35°	

2	 Loudspeaker	is	located	in	the	lower	layer.	 -15°	

3	 Loudspeaker	position	signalled	explicitly.	 N.A.	

	

ElevationAngleIdx	 Index	for	calculating	the	elevation	(i.e.	vertical)	angle	for	a	given	
loudspeaker	according	to	Table	72.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 69	
	

Table	72	—	Calculation	of	ElevationAngle	from	ElevationAngleIdx	

ElevationAngleIdx	 angularPrecision	==	0	 angularPrecision	==	1

0-18	 ElevationAngle	=	ElevationAngleIdx	*	5°	
ElevationAngle	=	ElevationAngleIdx	

*	1°	
19-31	 reserved	
32-90	 N.A.	
91-127	 N.A.	 reserved	

	

ElevationDirection	 This	flag	signals	the	direction	of	increasing	elevation	according	to	
Table	73.	

Table	73	—	Meaning	of	ElevationDirection	

Value	of	ElevationDirection	 Direction

0	 Upwards	
1	 Downwards	

	

AzimuthAngleIdx	 Index	for	calculating	the	azimuth	(i.e.	horizontal)	angle	for	a	given	
loudspeaker	according	to	Table	74.	

Table	74	—	Calculation	AzimuthAngle	from	AzimuthAngleIdx	

AzimuthAngleIdx	 angularPrecision	==	0	 angularPrecision	==	1

0-36	 AzimuthAngle	=	AzimuthAngleIdx	*	5°	
AzimuthAngle	=	AzimuthAngleIdx	*	1°	

37-180	 N.A.	
181-255	 N.A.	 reserved	

	

AzimuthDirection	 This	flag	signals	the	direction	of	increasing	azimuth	angles	according	to	
Table	75.	

Table	75	—	Meaning	of	AzimuthDirection	

Value	of	AzimuthDirection	 Direction

0	 Counter-clockwise	
1	 clockwise	

	

isLFE	 This	flag	signals	if	the	given	loudspeaker	is	an	LFE	loudspeaker.	

 Core	decoder	configuration	data	elements	

qceIndex	 This	index	describes	whether	two	subsequent	elements	of	type	
mpegh3daChannelPairElement()	are	treated	as	a	quadruple	channel	
element	(QCE).	The	different	QCE	modes	are	given	in	Table	76.	The	
qceIndex	shall	be	the	same	for	the	two	subsequent	elements	forming	one	
QCE.		

ISO/IEC	23008-3:202X(E)	

70	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	76	—	Value	of	qceIndex	

qceIndex	 Meaning

0	 Stereo	CPE	
1	 QCE	without	residual	
2	 QCE	with	residual	
3	 reserved	

	

shiftIndex0	 This	flag	signals	if	the	first	channel	in	the	element	is	the	next	non-
assigned	channel	or	if	the	element	is	shifted	in	the	channel	map	relative	
to	the	next	non-assigned	channel.	

shiftIndex1	 This	flag	signals	if	the	second	channel	in	element	is	the	next	non-assigned	
channel	or	if	the	second	channel	in	the	element	is	shifted	in	the	channel	
map	relative	to	the	next	non-assigned	channel.	

shiftChannel0	 Offset	by	which	the	first	channel	in	the	element	is	shifted	relative	to	the	
next	non-assigned	channel.	

shiftChannel1	 Offset	by	which	the	second	channel	in	the	element	is	shifted	relative	to	
the	next	non-assigned	channel.	

enhancedNoiseFilling	 This	flag	signals	the	usage	of	the	enhanced	noise	filling	tool.		

igfUseEnf	 This	flag	signals	the	usage	of	IGF	envelope	noise	flattening.	

igfUseWhitening	 This	flag	signals	the	usage	of	IGF	spectral	whitening.	

igfAfterTnsSynth	 This	flag	signals	that	IGF	should	be	applied	after	TNS	synthesis	filtering.	

igfIndependentTiling	 This	flag	signals	that	IGF	is	applied	in	discrete	channel	mode.	

igfStartIndex	 This	flag	signals	the	IGF	start	index,	which	is	mapped	to	a	scalefactor	
band	index.	

igfStopIndex	 This	flag	signals	the	IGF	stop	index,	which	is	mapped	to	a	scalefactor	band	
index.	

igfUseHighRes	 This	flag	signals	that	for	every	scalefactor	band	in	IGF	range	a	IGF	level	
value	is	transmitted.	If	the	flag	is	zero,	low	resolution	is	used	which	
implies,	that	for	two	scalefactor	bands	only	one	IGF	level	value	is	
transmitted.	

igfCurrTileIdx[]	 Vector	of	length	4	containing	the	tile	index.	

igfApplyTNF	 Flag	indicating	the	application	of	IGF-TNF	filtering.	

igf_data()	 Syntax	element	which	reads	IGF	tile	and	whitening	side	information	for	
each	channel	ch.	

igf_level()	 Syntax	element	which	reads	the	IGF	level	information	for	each	channel	
ch.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 71	
	

igf_AllZero	 This	flag	signals	that	all	levels	in	IGF	range	are	zero.	

igf_UsePrevTileIdx	 This	flag	signals	that	previous	values	of	tile	indices	should	be	used.	

igf_UsePrevWhiteningLevel	This	flag	signals	that	previous	values	of	whitening	levels	should	be	used.	

igf_WhiteningLevel[]	 This	values	describe	which	whitening	should	be	used,	see	Table	77.	

igf_ms_mask_present	 this	two	bit	field	indicates	that	the	MS	mask	is:	
00	All	zeros.	
01	A	mask	of	max_sfb	bands	of	ms_used	follows	this	field.	
10	All	ones.	
11	M/S	coding	is	disabled,	real	stereo	prediction	is	enabled.	

igf_pred_dir	 Indicates	the	direction	of	prediction	(same	as	cplx_pred_dir).	

Table	77	—	Value	of	igf_WhiteningLevel	

igf_WhiteningLevel	 Meaning

0	 use	medium	whitening	
1	 do	not	use	whitening	
2	 use	pseudo-random	noise	

	

usacExtElementType	 This	element	allows	to	signal	bitstream	extensions	types.	The	meaning	of	
usacExtElementType	is	defined	in	Table	78.	

Table	78	—	Value	of	usacExtElementType	

usacExtElementType	 Value

ID_EXT_ELE_FILL	 0	
ID_EXT_ELE_MPEGS	 1	
ID_EXT_ELE_SAOC	 2	
ID_EXT_ELE_AUDIOPREROLL	 3	
ID_EXT_ELE_UNI_DRC	 4	
ID_EXT_ELE_OBJ_METADATA	 5	
ID_EXT_ELE_SAOC_3D	 6	
ID_EXT_ELE_HOA	 7	
ID_EXT_ELE_FMT_CNVRTR	 8	
ID_EXT_ELE_MCT	 9
ID_EXT_ELE_TCC	 10
ID_EXT_ELE_HOA_ENH_LAYER	 11
ID_EXT_ELE_HREP	 12
ID_EXT_ELE_ENHANCED_OBJ_METADATA	 13	
ID_EXT_ELE_PROD_METADATA	 14	
/*	reserved	for	ISO	use	*/	 15-127	
/*	reserved	for	use	outside	of	ISO	scope	*/	 128	and	higher	
NOTE	 Application-specific	usacExtElementType	values	are	mandated	to	be	in	the	space	reserved	for	
use	outside	of	ISO	scope.	These	are	skipped	by	a	decoder	as	a	minimum	of	structure	is	required	by	the	
decoder	to	skip	these	extensions.	

	

ISO/IEC	23008-3:202X(E)	

72	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

usacExtElementSegmentData		 The	concatenation	of	all	usacExtElementSegmentData	
from	mpegh3daExtElement()	of	consecutive	frames,	
starting	from	the	mpegh3daExtElement()	with	
usacExtElementStart==1	up	to	and	including	the	
mpegh3daExtElement()	with	usacExtElementStop==1	
forms	one	data	block.	In	case	a	complete	data	block	is	
contained	in	one	mpegh3daExtElement(),	
usacExtElementStart	and	usacExtElementStop	shall	both	
be	set	to	1.	The	data	blocks	are	interpreted	as	a	byte	
aligned	extension	payload	depending	on	
usacExtElementType	according	to	Table	79.	

Table	79	—	Interpretation	of	data	blocks	for	extension	payload	decoding	

usacExtElementType	 The	concatenated	
usacExtElementSegmentData	shall	be:

ID_EXT_ELE_FILL	 Series	of	fill_byte	
ID_EXT_ELE_MPEGS	 SpatialFrame()	as	defined	in	

ISO/IEC	23003-1	
ID_EXT_ELE_SAOC	 SAOCFrame()	as	defined	in	ISO/IEC	23003-

2	
ID_EXT_ELE_AUDIOPREROLL	 AudioPreRoll()	
ID_EXT_ELE_UNI_DRC	 uniDrcGain()	as	defined	in	ISO/IEC	23003-

4	
ID_EXT_ELE_OBJ_METADATA	 objectMetadataFrame()		
ID_EXT_ELE_SAOC_3D	 Saoc3DFrame()	
ID_EXT_ELE_HOA	 HOAFrame()	
ID_EXT_ELE_FMT_CNVRTR	 FormatConverterFrame()	
ID_EXT_ELE_MCT	 MultichannelCodingFrame()	
ID_EXT_ELE_TCC	 TccGroupOfSegments()	
ID_EXT_ELE_HOA_ENH_LAYER	 HOAEnhFrame()	
ID_EXT_ELE_HREP	 HREPFrame(outputFrameLength,	

current_signal_group)	
ID_EXT_ELE_ENHANCED_OBJ_METADATA	 EnhancedObjectMetadataFrame()	
ID_EXT_ELE_PROD_METADATA	 prodMetadataFrame()	
unknown	 unknown	data.	The	data	block	shall	be	

discarded.	

	

usacConfigExtType	 This	element	allows	to	signal	configuration	extension	types.	The	meaning	
of	usacConfigExtType	is	defined	in	Table	80.	

Table	80	—	Value	of	usacConfigExtType	

usacConfigExtType	 Value

ID_CONFIG_EXT_FILL	 0
ID_CONFIG_EXT_DOWNMIX	 1
ID_CONFIG_EXT_LOUDNESS_INFO	 2
ID_CONFIG_EXT_AUDIOSCENE_INFO	 3
ID_CONFIG_EXT_HOA_MATRIX	 4
ID_CONFIG_EXT_ICG	 5
ID_CONFIG_EXT_SIG_GROUP_INFO	 6
ID_ CONFIG_EXT_COMPATIBLE_PROFILELVL_SET	 7

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 73	
	

/*	reserved	for	ISO	use	*/	 8-127
/*	reserved	for	use	outside	of	ISO	scope	*/	 128	and	higher	

 Downmix	matrix	data	elements	

downmixIdCount	 number	of	downmixId	definitions	present	in	the	bitstream	element.	

downmixId	 This	field	uniquely	defines	an	ID	for	a	default	downmix	matrix	available	
on	the	decoder	side	or	a	transmitted	downmix	matrix.	downmixId	has	
two	reserved	values,	which	are	forbidden,	namely	0x0	and	0x7F.	All	
other	values	can	be	freely	chosen.	Further	details	on	the	usage	of	
downmixId	can	be	found	in	subclause	6.4.3.	

downmixType	 This	index	defines	whether	a	downmixId	is	connected	with	a	default	
downmix	matrix	available	on	the	decoder	side	or	a	transmitted	downmix	
matrix.		

Table	81	—	Value	of	downmixType	

downmixType	 Meaning

0	 Format	conversion	with	
default	downmix	matrix	
available	on	the	decoder	
side

1	 Format	conversion	with	
transmitted	downmix		
matrix

2	 reserved
3	 reserved	

	

ISO/IEC	23008-3:202X(E)	

74	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

CICPspeakerLayoutIdx	 This	value	describes	the	target	loudspeaker	layout	for	the	given	
downmix	matrix.	The	value	shall	correspond	to	ChannelConfiguration	
as	defined	in		ISO/IEC	23001-8.	

DmxMatrixLenBits	 length	of	the	following	bitstream	element	in	bits.	

paramConfig,	
inputConfig,	
outputConfig

Channel	configuration	vectors	specifying	the	information	about	each	
loudspeaker.	The	information	is	assumed	to	be	known	from	the	channel	
configurations	of	the	input	and	output	layouts.	Each	entry,	
paramConfig[i],	is	a	structure	with	the	members:	
AzimuthAngle,		 the	absolute	value	of	the	loudspeaker	azimuth	
	 angle	
AzimuthDirection,		 the	direction	of	increasing	azimuth,		

0	(left)	or	1	(right)	
ElevationAngle,		 the	absolute	value	of	the	loudspeaker	elevation	

angle	
ElevationDirection,		the	direction	of	increasing	elevation,	

0	(up)	or	1	(down)	
isLFE,		 indicates	whether	the	loudspeaker	is	a	LFE	

loudspeaker
paramCount,	
inputCount,	
outputCount

Number	of	loudspeakers	in	the	corresponding	channel	configuration	
vectors.	

compactParamConfig,	
compactInputConfig,	
compactOutputConfig

Compact	channel	configuration	vectors	specifying	the	information	
about	each	loudspeaker	group.	Each	entry,	compactParamConfig[i],	is	a	
structure	with	the	members:	
pairType,		 type	of	the	loudspeaker	group,	

which	can	be	SYMMETRIC	(a	
symmetric	pair	of	two	
loudspeakers),	CENTRE,	or	
ASYMMETRIC	

isLFE,		 indicates	whether	the	loudspeaker	
group	consists	of	LFE	loudspeakers	

originalPosition,		 position	in	the	original	channel	
configuration	of	the	first	(i.e.	left)	
loudspeaker,	or	the	only	
loudspeaker,	in	the	group	

symmetricPair.originalPosition,		 position	in	the	original	channel	
configuration	of	the	second	(i.e.	
right)	loudspeaker	in	the	group,	for	
SYMMETRIC	groups	only

compactParamCount,	
compactInputCount,	
compactOutputCount

Number	of	loudspeaker	groups	in	the	corresponding	compact	channel	
configuration	vectors.	

equalizerPresent Boolean	indicating	whether	equalizer	information	that	is	to	be	applied	
to	the	input	channels	is	present.	

precisionLevel Precision	used	for	uniform	quantization	of	the	gains	according	to	Table	
82.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 75	
	

Table	82	—	Uniform	quantization	step	size	of	gain	depending	on	precisionLevel	

precisionLevel	 smallest	quantization	step	
size	[dB]

0	 1	
1	 0,5	
2	 0,25	
3	 reserved	

	

maxGain Maximum	actual	gain	in	the	matrix,	expressed	in	dB:	
possible	values	from	0	to	22.	

minGain Minimum	actual	gain	in	the	matrix,	expressed	in	dB:	
possible	values	from	-1	to	-47.	

isAllSeparable Boolean	indicating	whether	all	the	output	loudspeaker	groups	
satisfy	the	separability	property.	

isSeparable[i] Boolean	indicating	whether	the	output	loudspeaker	group	with	
index	i	satisfies	the	separability	property.	

isAllSymmetric Boolean	indicating	whether	all	the	output	loudspeaker	groups	
satisfy	the	symmetry	property.	

isSymmetric[i] Boolean	indicating	whether	the	output	loudspeaker	group	with	
index	i	satisfies	the	symmetry	property.	

mixLFEOnlyToLFE Boolean	indicating	whether	the	LFE	loudspeakers	are	mixed	only	to	
LFE	loudspeakers	and,	at	the	same	time,	the	non-LFE	loudspeakers	
are	mixed	only	to	non-LFE	loudspeakers.	

rawCodingCompactMatrix Boolean	indicating	whether	compactDownmixMatrix	is	coded	raw	
(using	one	bit	per	entry)	or	it	is	coded	using	run-length	coding	
followed	by	limited	Golomb-Rice.	

compactDownmixMatrix[i][j] An	entry	in	compactDownmixMatrix	corresponding	to	input	
loudspeaker	group	i	and	output	loudspeaker	group	j,	indicating	
whether	any	of	the	associated	gains	is	nonzero:	
0	=	all	gains	are	zero,	1	=	at	least	one	gain	is	nonzero.	

useCompactTemplate Boolean	indicating	whether	to	apply	an	element-wise	XOR	to	
compactDownmixMatrix	with	a	predefined	compact	template	
matrix,	to	improve	the	efficiency	of	the	run-length	coding.	

runLGRParam Limited	Golomb-Rice	parameter	p	used	to	code	the	zero	run-
lengths	in	the	linearized	flatCompactMatrix.	

flatCompactMatrix Linearized	version	of	compactDownmixMatrix	with	the	predefined	
compact	template	matrix	already	applied;	
When	mixLFEOnlyToLFE	is	enabled,	it	does	not	include	the	entries	
known	to	be	zero	(due	to	mixing	between	non-LFE	and	LFE)	or	
those	used	for	LFE	to	LFE	mixing.	

ISO/IEC	23008-3:202X(E)	

76	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

compactTemplate Predefined	compact	template	matrix,	having	“typical”	entries,	
which	is	XORed	element-wise	to	compactDownmixMatrix,	in	order	
to	improve	coding	efficiency	by	creating	mostly	zero	value	entries.	

zeroRunLength The	length	of	a	zero	run	always	followed	by	a	one,	in	the	
flatCompactMatrix,	which	is	coded	with	limited	Golomb-Rice	
coding,	using	the	parameter	runLGRParam.	

fullForAsymmetricInputs Boolean	indicating	whether	to	ignore	the	symmetry	property	for	
every	asymmetric	input	loudspeaker	group;	
When	enabled,	every	asymmetric	input	loudspeaker	group	will	
have	two	gain	values	decoded	for	each	symmetric	output	
loudspeaker	group	with	index	i,	regardless	of	isSymmetric[i].	

gainTable Dynamically	generated	gain	table	which	contains	the	list	of	all	
possible	gains	between	minGain	and	maxGain	with	precision	
precisionLevel.	

rawCodingNonzeros Boolean	indicating	whether	the	nonzero	gain	values	are	coded	raw	
(uniform	coding,	using	the	ReadRange	function)	or	their	indexes	in	
the	gainTable	list	are	coded	using	limited	Golomb-Rice	coding.	

gainLGRParam Limited	Golomb-Rice	parameter	p	used	to	code	the	nonzero	gain	
indexes,	computed	by	searching	each	gain	in	the	gainTable	list.	

 HOA	rendering	matrix	data	elements	

numOfHoaRenderingMatrices	 Number	of	HoaRenderingMatrixId	definitions	present	in	the	
bitstream	element.	

HoaRenderingMatrixId	 This	field	references	a	downmixId	for	which	the	HOA	rendering	
matrix	is	available.	

CICPspeakerLayoutIdx	 This	value	describes	the	output	loudspeaker	layout	for	the	given	
HOA	rendering	matrix.	The	value	shall	correspond	to	
ChannelConfiguration	as	defined	in	ISO/IEC	23001-8	and	shall	
be	consistent	with	the	CICPspeakerLayoutIdx	value	as	defined	in	
the	DownmixMatrixSet()	for	the	same	dowmnixId.	

HoaRenderingMatrixLenBits	 Length	of	the	following	bitstream	element	in	bits.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 77	
	

outputConfig	 Channel	configuration	vectors	specifying	the	information	about	
each	loudspeaker.	The	information	is	assumed	to	be	known	from	
the	channel	configurations	of	the	output	layout.	Each	entry,	
outputConfig[i],	is	a	structure	with	the	members:	
AzimuthAngle,		 the	absolute	value	of	the	loudspeaker	
	 azimuth	angle;	
AzimuthDirection,		 direction	of	increasing	azimuth,		

0	(left)	or	1	(right);	
ElevationAngle,		 the	absolute	value	of	the	loudspeaker	

elevation	angle;	
ElevationDirection,		direction	of	increasing	elevation,		

0	(up)	or	1	(down);	
isLFE,		 indicates	whether	the	loudspeaker	is	a	LFE	

loudspeaker.	
	
The	helper	function	findSymmetricSpeakers	further	specifies	the	
following	specifications.	
pairType,		 can	be	SYMMETRIC	(a	symmetric	pair	of	

two	loudspeakers),	CENTRE,	or	
ASYMMETRIC;	

symmetricPair->originalPosition,		position	in	the	original	
channel	configuration	of	the	second	(i.e.	right)	loudspeaker	in	
the	group,	for	SYMMETRIC	groups	only.	

outputCount	 Number	of	loudspeakers	the	HOA	rendering	matrix	is	defined	
for.	

numPairs Number	of	symmetric	loudspeaker	pairs	identified	in	the	output	
loudspeaker	setup	which	can	be	considered	for	efficient	
symmetry	coding.	

maxHoaOrder HOA	Order	of	the	transmitted	matrix.	

isNormalized	 Indicates	if	the	HOA	rendering	matrix	1	is	energy	normalized,	so	
that	||	1||B = ∑ ∑ 5C,E

F(GHI)!

EJI
K
CJI = 1	with	6	being	the	non-LFE	

loudspeakers	in	the	outputConfig.	

precisionLevel Precision	used	for	uniform	quantization	of	the	gains	according	to	
Table	83.	

ISO/IEC	23008-3:202X(E)	

78	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	83	—	Uniform	quantization	step	size	for	HOA	rendering	matrices		
as	a	function	of	the	precisionLevel	

precisionLevel	 Smallest	quantization	step	
size	[dB]

0	 	 	 1.0	
1	 	 	 0.5	
2	 	 	 0.25	
3	 	 	 0.125	

	

gainLimitPerHoaOrder This	flag	indicates	if	the	maxGain	and	minGain	are	individually	
specified	for	each	order	or	for	the	entire	HOA	matrix.	

maxGain[i] Maximum	actual	gain	in	the	matrix	for	coefficients	for	the	HOA	
order	i,	expressed	in	dB.	

minGain[i] Minimum	actual	gain	in	the	matrix	for	coefficients	of	the	HOA	order	
i,	expressed	in	dB.	

isFullMatrix This	flag	indicates	if	the	HOA	matrix	is	sparse	or	full.	

nbitsHoaOrder Number	of	bits	reading	firstSparseOrder.	

firstSparseOrder In	case	the	HOA	matrix	was	specified	as	sparse,	this	field	defines	
the	first	HOA	order	which	is	sparsely	coded.	

isHoaCoefSparse Bitmask	vector	derived	from	firstSparseOrder.	

currentHoaOrder Variable	which	indicates	the	current	HOA	order	during	the	
decoding	process.	

hasValue A	flag	used	in	case	the	matrix	element	is	sparsely	coded.	

lfeExist This	flag	indicates	if	one	or	more	LFE	channels	exist	in	
outputConfig.	

hasLfeRendering This	flag	indicates	if	the	rendering	matrix	contains	non-zero	
elements	for	the	LFE	channels.	The	signals	for	the	LFE	channels	are	
rendered	without	additional	spectral	filtering.	

zerothOrderAlwaysPositive This	flag	indicates	if	the	0th	HOA	order	has	only	positive	values.	

isAllValueSymmetric This	flag	indicates	if	all	symmetric	loudspeaker	pairs	have	equal	
absolute	values	in	the	HOA	rendering	matrix.	

isAnyValueSymmetric if	isAllValueSymmetric	is	false,	this	flag	indicates	if	some	of	the	
symmetric	loudspeaker	pairs	have	equal	absolute	values	in	the	
HOA	rendering	matrix.	

valueSymmetricPairs Bitmask	of	length	numPairs	indicating	the	loudspeaker	pairs	with	
value-symmetry.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 79	
	

isValueSymmetric Bitmask	derived	from	valueSymmetricPairs.	

isAllSignSymmetric If	there	are	no	value	symmetries	in	the	matrix,	this	flag	indicates	if	
all	symmetric	loudspeaker	pairs	have	at	least	number	sign	
symmetries.		

isAnySignSymmetric This	flag	indicates	if	there	are	at	least	some	symmetric	loudspeaker	
pairs	with	number	sign	symmetries.	

signSymmetricPairs Bitmask	of	length	numPairs	indicating	the	loudspeaker	pairs	with	
sign-symmetry.	

signVal Number	sign	value.	

isSignSymmetric Bitmask	derived	from	signSymmetricPairs.	

hasVerticalCoef This	flag	indicates	if	this	is	a	horizontal-only	HOA	rendering	matrix.	

boolVal A	variable	used	in	the	decoding	loop.	

signMatrix Matrix	with	the	sign	values	of	the	HOA	rendering	matrix	in	
linearized	vector-form.	

hoaMatrix Final	HOA	rendering	matrix	values	in	linearized	vector-form.	

 Signal	group	information	elements	

groupPriority	 This	field	defines	the	priority	of	the	group.	It	can	take	integer	values	
between	0	and	7.	The	group	may	be	discarded	from	rendering	and	
decoding	if	the	priority	is	lower	than	7.	If	groups	are	discarded,	the	
groups	with	lowest	priority	should	be	discarded	first.	

fixedPosition	 This	field	defines	if	the	positions	of	the	members	of	a	group	shall	be	
updated	in	the	context	of	processing	of	tracking	data	(scene	displacement	
data).	In	case	the	flag	is	equal	to	zero,	the	position	of	the	corresponding	
group’s	members	are	updated	during	the	processing	of	scene	
displacement	angles.	In	case	the	flag	is	equal	to	one,	the	positions	of	the	
corresponding	group’s	members	are	not	updated	during	the	processing	
of	scene	displacement	angles.	The	default	value	for	fixedPosition	is	zero	
for	all	groups.	

 Low	frequency	enhancement	(LFE)	channel	element,	mpegh3daLfeElement()	

In	 order	 to	 maintain	 a	 regular	 structure	 in	 the	 decoder,	 the	 mpegh3daLfeElement()	 is	 defined	 as	 a	
standard	 fd_channel_stream(0,0,0,0,0,x)	 element,	 i.e.	 equal	 to	 a	mpegh3daCoreCoderData()	 using	 the	
frequency	 domain	 coder	 (core_mode[ch]	 equals	 0).	 Thus,	 decoding	 can	 be	 done	 using	 the	 standard	
procedure	for	decoding	a	mpegh3daCoreCoderData()-element.	

In	 order	 to	 accommodate	 a	more	bitrate	 and	hardware	 efficient	 implementation	of	 the	 LFE	decoder,	
however,	several	restrictions	apply	to	the	options	used	for	the	encoding	of	this	element:	

—	 The	window_sequence	field	shall	always	be	set	to	0	(ONLY_LONG_SEQUENCE);	

—	 The	prev_aliasing_symmetry	field	and	curr_aliasing_symmetry	field	shall	always	be	set	to	0;	

ISO/IEC	23008-3:202X(E)	

80	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 Only	the	lowest	24	spectral	coefficients	of	any	LFE	may	be	non-zero;	

—	 No	temporal	noise	shaping	is	to	be	used,	i.e.	tns_data_present	shall	be	set	to	0;	

—	 Time	warping	shall	not	be	active,	i.e.	tw_mdct	shall	be	set	to	0;	

—	 No	noise	filling	shall	be	applied,	i.e.	noiseFilling	shall	be	set	to	0;	

—	 No	enhanced	noise	filling	shall	be	applied,	i.e.	enhancedNoiseFilling	shall	be	set	to	0;	

—	 No	long	term	prediction	filter	shall	be	used,	i.e.	ltpf_data_present	and	common_ltpf	shall	be	set	to	0;	

—	 No	frequency	domain	predictor	shall	be	used,	i.e.	fdp_data_present	shall	be	set	to	0.	

 Compatible	profile	and	levels	sets	

bsNumCompatibleSet	 This	field	defines	the	number	of	compatible	profile	sets	present	in	the	
bitstream.	The	number	of	compatible	profile	sets	is	defined	as:	
numCompatibleSets	=	bsNumCompatibleSets	+	1.

CompatibleSetIndication	 Indication	of	the	profile	and	level	according	to	Table	67.

5.4 Configuration	element	descriptions	

 General	

The	configuration	elements	are	based	on	ISO/IEC	23003-3:2012,	subclause	6.1.	Additional	information	
is	given	in	the	following	subclause.	

The	mapping	of	core	audio	elements	to	audio	channels	is	applied	according	to	the	following	rule.	

1) Obtain	the	number	of	audio	channels	(numAudioChannels)	from	Signals3d().	

2) Determine	the	already	decoded	successive	elements	until	the	currently	processed	element	
from	mpegh3daDecoderConfig().	

3) Decode	shiftChannel0	and	shiftChannel1	from	corresponding	CPE	elements.	The	default	
value	for	shiftChannel0	and	shiftChannel1	shall	be	zero.	

The	decoding	procedure	is	specified	as	follows.	

a) Create	an	array	with	the	size	of	the	number	of	all	loudspeaker	signals	and	initialize	it	with	-1.	

b) Determine	the	smallest	non-assigned	channel	ch	that	is	missing	in	the	array	starting	with	ch=0.	

c) Proceed	 to	 the	 next	 position	 pos	 in	 the	 array	 that	 equals	 -1.	 i.e.	 find	 the	 smallest	 pos	 such	 that	
array[pos]	=	-1.	

d) if	shiftIndexX	is	zero:	write	the	channel	index	ch	into	the	array	at	the	position	pos.	i.e.	array[pos]	=	
ch.	

e) if	shiftIndexX	is	greater	than	zero:	increment	ch	by	(shiftIndexX+1)	and	write	it	into	the	array	at	the	
position	pos.	i.e.	array[pos]	=	ch	+	shiftIndexX	+	1.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 81	
	

f) Repeat	b)	-	e)	for	all	channels	in	an	element.	

g) Repeat	b)	-	f)	for	all	successive	elements.	

Apply	the	same	algorithm	to	audio	objects	for	mapping	the	core	audio	elements	to	audio	object	channels.	

 Downmix	configuration	

5.4.2.1 General	

Downmix	matrix	coefficients	and/or	active	downmix	setting	parameters	may	be	transmitted	by	the	
encoder	to	enable	control	over	the	format	conversion	process	at	the	decoder.	Transmission	is	facilitated	
by	means	of	a	mpegh3daConfigExtension	of	Type	ID_CONFIG_EXT_DOWNMIX	for	downmixType	==	1.	
The	mpegh3daConfigExtension	may	contain	downmix	matrices	as	well	as	an	active	downmix	setting	
parameter.	If	downmix	matrices	are	transmitted,	each	downmix	matrix	signals	its	associated	target	
loudspeaker	layout	that	determines	the	matrix	dimensions	and	identifies	which	kind	of	downmix	
matrix	operation	the	transmitted	coefficients	are	suitable	for.	

The	transmission	of	a	unique	downmixId	allows	referencing	to	a	default	downmix	matrix	available	on	
the	decoder	side,	or	to	a	transmitted	downmix	matrix	from	outside	of	the	audio	stream,	e.g.	from	
dynamic	range	compression	related	information	in	higher	systems	layers.	

5.4.2.2 Data	elements	and	variables	

downmixConfigType	 This	parameter	defines	whether	an	active	downmix	control	parameter	
(value	0)	or	downmix	matrices	(value	1)	or	both	(value	2)	are	
transmitted.	Value	3	is	reserved.	

passiveDownmixFlag	 Signals	that	a	passive	downmix	shall	be	applied	in	the	format	converter	
downmix	if	value=1.	If	not	transmitted,	passiveDownmixFlag	shall	be	
set	to	0,	resulting	in	the	application	of	the	active	downmix	processing	of	
the	format	converter	downmix.	

immersiveDownmixFlag	 Signals	whether	the	immersive	rendering	format	converter	or	the	
generic	format	converter	shall	be	applied	in	the	decoder	to	convert	
channel	signals	to	the	target	loudspeaker	configuration	as	defined	in	
Table	84.	If	not	transmitted,	immersiveDownmixFlag	shall	be	set	to	0.	

Table	84	—	Meaning	of	immersiveDownmixFlag	

immersiveDownmixFlag	 Meaning

0	 Generic	format	converter	shall	be	applied	as	defined	in	Clauses	10	and	24	
according	to	subclause	4.4.5.		

1	

If	the	target	layout,	signalled	by	LoudspeakerRendering(),	is	signalled	as	
	 (speakerLayoutType==0,CICPspeakerLayoutIdx==5)		
or	as		
	 (speakerLayoutType==0,CICPspeakerLayoutIdx==6),		
independently	of	potentially	signalled	loudspeaker	displacement	angles,	
then	immersive	rendering	format	converter	shall	be	applied	as	defined	in	
Clauses	11	and	25	according	to	subclause	4.4.5.	
In	all	other	case	the	generic	format	converter	shall	be	applied	as	defined	in	
Clauses	10	and	24	according	to	subclause	4.4.5.	

	

ISO/IEC	23008-3:202X(E)	

82	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.4.2.3 Golomb-Rice	coding	

Golomb-Rice	coding	is	used	to	code	any	non-negative	integer	n ≥ 0,	using	a	given	non-negative	integer	
parameter	p ≥ 0	as	follows:	first	code	the	number	h = ⌊n/2L⌋	using	unary	coding,	as	h	one	bits	followed	
by	a	terminating	zero	bit;	then	code	the	number	l = n − h ⋅ 2L	uniformly	using	p	bits.	

Limited	Golomb-Rice	coding	is	a	trivial	variant	used	when	it	is	known	in	advance	that	n < N,	for	a	given	
integer	N ≥ 1.	It	does	not	include	the	terminating	zero	bit	when	coding	the	maximum	possible	value	of	h,	
which	 is	hM!N = ⌊(N − 1)/2L⌋.	More	exactly,	 to	encode	h = hM!N 	we	write	only	h	one	bits,	but	not	 the	
terminating	zero	bit,	which	is	not	needed	because	the	decoder	can	implicitly	detect	this	condition.	

5.4.2.4 Helper	functions	

The	function	ConvertToCompactConfig()specified	below	is	used	to	convert	the	given	paramConfig	
configuration	 consisting	 of	 paramCount	 loudspeakers	 into	 the	 compact	 compactParamConfig	
configuration	 consisting	 of	 compactParamCount	 loudspeaker	 groups.	 The	
compactParamConfig[i].pairType	 field	 can	 be	 SYMMETRIC	 (S),	 when	 the	 group	 represents	 a	 pair	 of	
symmetric	loudspeakers,	CENTRE	(C),	when	the	group	represents	a	centre	loudspeaker,	or	ASYMMETRIC	
(A),	when	the	group	represents	a	loudspeaker	without	a	symmetric	pair.	

ConvertToCompactConfig(paramConfig, paramCount)
{
 for (i = 0; i < paramCount; ++i) {
 alreadyUsed[i] = 0;
 }

 idx = 0;
 for (i = 0; i < paramCount; ++i) {
 if (alreadyUsed[i]) continue;
 compactParamConfig[idx].isLFE = paramConfig[i].isLFE;

 if ((paramConfig[i].AzimuthAngle == 0) ||
 (paramConfig[i].AzimuthAngle == 180°) {
 compactParamConfig[idx].pairType = CENTER;
 compactParamConfig[idx].originalPosition = i;
 } else {
 j = SearchForSymmetricSpeaker(paramConfig, paramCount, i);
 if (j != -1) {
 compactParamConfig[idx].pairType = SYMMETRIC;
 if (paramConfig.AzimuthDirection == 0) {
 compactParamConfig[idx].originalPosition = i;
 compactParamConfig[idx].symmetricPair.originalPosition = j;
 } else {
 compactParamConfig[idx].originalPosition = j;
 compactParamConfig[idx].symmetricPair.originalPosition = i;
 }
 alreadyUsed[j] = 1;
 } else {
 compactParamConfig[idx].pairType = ASYMMETRIC;
 compactParamConfig[idx].originalPosition = i;
 }
 }
 idx++;
 }

 compactParamCount = idx;

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 83	
	

 return (compactParamConfig, compactParamCount);
}

CalculateTotalCount()
{
 if (mixLFEOnlyToLFE) {
 compactInputLFECount = 0;
 compactOutputLFECount = 0;
 for (i = 0; i < compactInputCount; i++) {
 if (compactInputConfig[i].isLFE) compactInputLFECount++;
 }
 for (i = 0; i < compactOutputCount; i++) {
 if (compactOutputConfig[i].isLFE) compactOutputLFECount++;
 }
 totalCount = (compactInputCount - compactInputLFECount) *
 (compactOutputCount - compactOutputLFECount);
 } else {
 totalCount = compactInputCount * compactOutputCount;
 }
 return totalCount;
}
	

The	 function	 FindCompactTemplate(inputConfig, inputCount, outputConfig,
outputCount)	 is	 used	 to	 find	 a	 compact	 template	matrix	matching	 the	 input	 channel	 configuration	
represented	 by	 inputConfig	 and	 inputCount,	 and	 the	 output	 channel	 configuration	 represented	 by	
outputConfig	and	outputCount.	

The	 compact	 template	matrix	 shall	 be	 found	by	 searching	 in	 the	predefined	 list	 of	 compact	 template	
matrices	defined	in	Annex	E,	available	at	both	the	encoder	and	decoder,	for	the	one	with	the	same	list	of	
input	loudspeakers	as	inputConfig	and	the	same	list	of	output	loudspeakers	as	outputConfig.		

Use	of	template	matrices	for	efficient	coding	of	downmix	matrices	is	only	allowed	when	both	the	input	
and	output	channel	configurations	exactly	correspond	to	a	codepoint	ChannelConfiguration	as	defined	in	
ISO/IEC	23001-8	and	if	an	exactly	matching	template	matrix	is	defined	in	this	standard.	This	ensures	that	
the	correct	order	of	channels	is	obeyed	at	the	decoder	as	well	as	at	the	encoder.	Template	matrices	are	
defined	in	this	standard	only	for	pairs	of	ChannelConfiguration	codepoints.	For	matching	of	a	template	
matrix,	if	an	input	or	output	configuration	is	given,	instead	of	a	ChannelConfiguration	codepoint,	as	a	list	
of	predefined	loudspeakers	indexes	or	geometry	description	according	to	subclause	5.2.2.2,	an	additional	
check	shall	be	made	to	verify	whether	this	provided	description	exactly	matches	a	ChannelConfiguration	
codepoint.	In	case	of	an	exact	match,	the	corresponding	ChannelConfiguration	codepoint	will	therefore	
be	used	in	the	selection	procedure	of	a	matching	template	matrix.	

The	function	SearchForSymmetricSpeaker(paramConfig, paramCount, i)	is	used	to	search	
the	channel	configuration	represented	by	paramConfig	and	paramCount	for	the	symmetric	loudspeaker	
corresponding	to	the	loudspeaker	paramConfig[i].	This	symmetric	loudspeaker,	paramConfig[j],	shall	be	
situated	after	 the	 loudspeaker	paramConfig[i],	 therefore	 j	 can	be	 in	 the	range	 i+1	 to	paramCount	 –	1,	
inclusive.	

5.4.2.5 Gain	value	quantization	

The	function	readRange()	is	used	to	read	a	uniformly	distributed	integer	in	the	range	[0	alphabetSize-
1]	inclusive.	

ISO/IEC	23008-3:202X(E)	

84	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	 function	 generateGainTable(maxGain, minGain, precisionLevel)	 is	 used	 to	
dynamically	 generate	 the	 gain	 table	 gainTable	 which	 contains	 the	 list	 of	 all	 possible	 gains	 between	
minGain	 and	maxGain	 with	 precision	 precisionLevel.	 The	 table	 is	 terminated	 by	 adding	 an	 element	
signalling	minus	 infinity	 dB	 gain	 having	 the	 placeholder	 value	minGain-1.	 The	 order	 of	 the	 values	 is	
chosen	so	that	the	most	frequently	used	values	and	also	more	“round”	values	would	be	typically	closer	to	
the	beginning	of	the	list.	The	gain	table	of	length	gainTableSize	with	the	list	of	all	possible	gain	values	is	
generated	as	follows:	

— add	integer	multiples	of	3	dB,	going	down	from	0	dB	to	minGain;	

— add	integer	multiples	of	3	dB,	going	up	from	3	dB	to	maxGain;	

— add	remaining	integer	multiples	of	1	dB,	going	down	from	0	dB	to	minGain;	

— add	remaining	integer	multiples	of	1	dB,	going	up	from	1	dB	to	maxGain;	
— stop	here	if	precisionLevel	is	0	(corresponding	to	1	dB)	and	add	minGain-1;	

— add	remaining	integer	multiples	of	0,5	dB,	going	down	from	0	dB	to	minGain;	

— add	remaining	integer	multiples	of	0,5	dB,	going	up	from	0,5	dB	to	maxGain;	

— stop	here	if	precisionLevel	is	1	(corresponding	to	0,5	dB)	and	add	minGain-1;	
— add	remaining	integer	multiples	of	0,25	dB,	going	down	from	0	dB	to	minGain;	

— add	remaining	integer	multiples	of	0,25	dB,	going	up	from	0,25	dB	to	maxGain;	

— add	minGain-1.	
EXAMPLE	 When	maxGain	is	2	dB	and	minGain	is	-6	dB,	and	precisionLevel	is	0,5	dB,	the	following	list	is	
created:	
	0,	-3,	-6,	-1,	-2,	-4,	-5,	1,	2,	-0.5,	-1.5,	-2.5,	-3.5,	-4.5,	-5.5,	0.5,	1.5,	-7.	

5.4.2.6 Equalizer	Config	

numEqualizers Number	of	different	equalizer	filters	present

eqPrecisionLevel Precision	used	for	uniform	quantization	of	the	gains:	
0	=	1	dB,	1	=	0,5	dB,	2	=	0,25	dB,	3	=	0,1	dB

eqExtendedRange Boolean	indicating	whether	to	use	an	extended	range	for	the	gains;	if	
enabled,	the	available	range	is	doubled

numSections Number	of	sections	of	an	equalizer	filter,	each	one	being	a	peak	filter

centerFreqLd2 The	 leading	 two	 decimal	 digits	 of	 the	 centre	 frequency	 for	 a	 peak	
filter;	the	maximum	range	is	10	..	99

centerFreqP10 Number	 of	 zeros	 to	 be	 appended	 to	 centerFreqLd2;	 the	maximum	
range	is	0	..	3

qFactorIndex Quality	factor	index	for	a	peak	filter

qFactorExtra Extra	bits	for	decoding	a	quality	factor	larger	than	1.0

centerGainIndex Gain	at	the	centre	frequency	for	a	peak	filter

scalingGainIndex Scaling	gain	for	an	equalizer	filter

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 85	
	

hasEqualizer[i] Boolean	 indicating	whether	 the	 input	 channel	 with	 index	 i	 has	 an	
equalizer	associated	to	it

equalizerIndex[i] The	 index	 of	 the	 equalizer	 associated	with	 the	 input	 channel	with	
index	i	

5.4.2.7 Decoding	of	downmix	coefficients	

The	syntax	element	DownmixMatrixSet()	contains	one	or	more	downmix	matrices	that	may	be	applied	to	
achieve	a	format	conversion	to	a	desired	loudspeaker	layout.	A	given	bitstream	shall	not	contain	more	
than	one	instance	of	DownmixMatrixSet().	

The	syntax	element	DownmixMatrix()	contains	the	downmix	matrix	information.	The	decoder	first	reads	
the	 equalizer	 information	 represented	by	 the	 syntax	 element	EqualizerConfig(),	 if	 enabled.	The	 fields	
precisionLevel,	maxGain,	and	minGain	are	then	read.	The	input	and	output	configurations	are	converted	
to	compact	configurations	using	the	function	ConvertToCompactConfig().	Then,	the	flags	indicating	if	the	
separability	and	symmetry	properties	are	satisfied	for	each	output	loudspeaker	group	are	read.	

The	significance	matrix	compactDownmixMatrix	is	then	read,	either	a)	raw	using	one	bit	per	entry,	or	b)	
using	 the	 limited	 Golomb-Rice	 coding	 of	 the	 run	 lengths,	 and	 then	 copying	 the	 decoded	 bits	 from	
flatCompactMatrix	to	compactDownmixMatrix	and	applying	the	compactTemplate	matrix.	

Finally,	the	nonzero	gains	are	read.	For	each	nonzero	entry	of	compactDownmixMatrix,	depending	on	the	
field	pairType	of	the	corresponding	input	group	and	the	field	pairType	of	the	corresponding	output	group,	
a	sub-matrix	of	size	up	to	2	by	2	has	to	be	reconstructed.	Using	the	associated	separability	and	symmetry	
properties,	a	number	of	gain	values	are	read	using	the	function	DecodeGainValue().	A	gain	value	can	be	
decoded	uniformly,	by	using	the	function	ReadRange(),	or	using	the	limited	Golomb-Rice	decoding	of	the	
index	of	the	gain	in	the	gainTable	table,	which	contains	all	the	possible	gain	values.	

5.4.2.8 Decoding	of	equalizer	config	

The	syntax	element	EqualizerConfig()	contains	the	equalizer	information	that	is	to	be	applied	to	the	input	
channels.	A	number	of	numEqualizers	equalizer	filters	is	first	decoded	and	thereafter	selected	for	specific	
input	 channels	 using	 equalizerIndex[i].	 The	 fields	 eqPrecisionLevel	 and	 eqExtendedRange	 indicate	 the	
quantization	precision	and	the	available	range	of	the	scaling	gains	and	of	the	peak	filter	gains.	

Each	equalizer	 filter	 is	a	serial	cascade	consisting	 in	a	number	of	numSections	of	peak	 filters	and	one	
scalingGain.	Each	peak	filter	is	fully	defined	by	its	centerFreq,	qualityFactor,	and	centerGain.	

The	centerFreq	parameters	of	the	peak	filters	which	belong	to	a	given	equalizer	filter	shall	be	given	in	
ascending	order.	The	parameter	is	limited	to	10	..	24000	Hz	inclusive,	and	it	is	calculated	as	

.EF+EGHGEI = .EF+EGHGEIJK2 ∙ 10OPEQPRSRPTUIV	

The	qualityFactor	parameter	of	the	peak	filter	can	represent	values	between	0.05	and	1.0	inclusive	with	
a	precision	of	0.05	and	from	1.1	to	10.6	inclusive	with	a	precision	of	0.1	and	it	is	calculated	as	

qualityFactor = W
0.05 ∙ (qFactorIndex + 1),		if	qFactorIndex ≤ 19

1.0 + 0.1 ∙ [(qFactorIndex − 20) ∙ 8 + qFactorExtra + 1],	otherwise	

The	 vector	 eqPrecisions	 gives	 the	 precision	 in	 dB	 corresponding	 to	 a	 given	 eqPrecisionLevel,	 and	 the	
eqMinRanges	 and	eqMaxRanges	matrices	 give	 the	minimum	and	maximum	values	 in	dB	 for	 the	 gains	
corresponding	to	a	given	eqExtendedRange	and	eqPrecisionLevel.	

ISO/IEC	23008-3:202X(E)	

86	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

eqPrecisions[4]	=	{1.0,	0.5,	0.25,	0.1};	

eqMinRanges[2][4]	=	{{-8.0,	-8.0,	-8.0,	-6.4},	{-16.0,	-16.0,	-16.0,	-12.8}};	

eqMaxRanges[2][4]	=	{{7.0,	7.5,	7.75,	6.3},	{15.0,	15.5,	15.75,	12.7}};	

The	parameter	scalingGain	uses	the	precision	level	min	(eqPrecisionLevel + 1,3),	which	is	the	next	better	
precision	 level	 if	 not	 already	 the	 last	 one.	 The	 mappings	 from	 the	 fields	 centerGainIndex	 and	
scalingGainIndex	to	the	gain	parameters	centerGain	and	scalingGain	are	calculated	as:	

centerGain		
=	eqMinRanges[eqExtendedRange][eqPrecisionLevel]	
+	eqPrecisions[eqPrecisionLevel]	·	centerGainIndex	
	

scalingGain		
=	eqMinRanges[eqExtendedRange][min(eqPrecisionLevel	+	1,3)]	
+	eqPrecisions[min(eqPrecisionLevel	+	1,3)]	·	scalingGainIndex	
	

 HOA	rendering	matrix	configuration	

5.4.3.1 General	

Higher	Order	Ambisonics	(HOA)	rendering	matrices	may	be	transmitted	by	the	encoder	to	enable	control	
over	 the	 HOA	 rendering	 process	 at	 the	 decoder.	 Transmission	 is	 facilitated	 by	 means	 of	 a	
mpegh3daConfigExtension	of	Type	ID_CONFIG_EXT_HOA_MATRIX.	The	mpegh3daConfigExtension	may	
contain	several	HOA	rendering	matrices	for	different	loudspeaker	reproduction	configurations.	If	HOA	
rendering	matrices	are	transmitted,	each	HOA	rendering	matrix	signals	its	associated	target	loudspeaker	
layout	 that,	 together	with	 the	HoaOrder	 (see	Table	190),	determines	 the	dimensions	of	 the	rendering	
matrix.		

The	 transmission	 of	 a	 unique	HoaRenderingMatrixId	 allows	 referencing	 to	 a	 default	 HOA	 rendering	
matrix	available	on	the	decoder	side,	or	to	a	transmitted	HOA	rendering	matrix	from	outside	of	the	audio	
stream.		

A	signalled	HOA	rendering	matrix	shall	expect	full	3D	normalised	(N3D)	HOA	coefficients	as	its	input.	
Further,	 a	 rendering	 matrix	 shall	 adhere	 to	 the	 ordering	 of	 the	 HOA	 coefficients	
.EW	that	is	used	by	the	HOA	decoder,where	F	is	the	order,p	is	the	degree, and	(is	 the	 maximum	 HOA	
order.	(see	also	Annex	F):		

r = s.V
V .I

XI .I
V .I

I .F
XF .F

XI .F
V .F

I .F
F …	.G

GXI					.G
G
t
Y

5.4.3.2 Helper	functions	

The	function	findSymmetricSpeakers	(not	displayed	here)	indicates	the	total	number	and	position	
of	 all	 loudspeaker	 pairs	within	 the	 provided	 loudspeaker	 setup	which	 are	 left-right	 symmetric	 for	 a	
listener	at	the	sweet	spot.		

int findSymmetricSpeakers(int outputCount, SpeakerInformation*
outputConfig, int hasLfeRendering);

The	function	createSymSigns	is	used	to	compute	a	vector	of	1	and	-1	values	which	is	used	to	generate	
the	matrix	elements	associated	with	symmetric	loudspeakers.	
	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 87	
	

void createSymSigns(int* symSigns, int hoaOrder)
{
 int n, m, k = 0;
 for (n = 0; n<=hoaOrder; ++n) {
 for (m = -n; m<=n; ++m)
 symSigns[k++] = ((m>=0)*2)-1;
 }
}
	
The	function	create2dBitmask	generates	a	bitmask	to	identify	the	HOA	coefficients	that	are	only	used	in	
the	horizontal	plane.		

void create2dBitmask(int* bitmask, int hoaOrder)
{
 int n, m, k = 0;
 bitmask[k++] = 0;
 for (n = 1; n<=hoaOrder; ++n) {
 for (m = -n; m<=n; ++m)
 bitmask[k++] = abs(m)!=n;
 }
}

5.4.3.3 Decoding	of	HOA	rendering	matrix	coefficients	

The	syntax	element	HoaRenderingMatrixSet()	contains	one	or	more	HOA	rendering	matrices	that	may	be	
applied	to	achieve	HOA	rendering	to	a	desired	loudspeaker	layout.	A	given	bitstream	shall	not	contain	
more	than	one	instance	of	HoaRenderingMatrixSet().	

The	syntax	element	HoaRenderingMatrix()	contains	the	HOA	rendering	matrix	information.	The	decoder	
first	reads	the	config	 information	that	guides	 the	reading	and	matrix	decoding	process.	After	 that	 the	
matrix	elements	are	read	from	the	bitstream	accordingly.		

At	 the	 beginning	 the	 fields	 precisionLevel	 and	 gainLimitPerOrder	 are	 read.	 If	 the	 flag	
gainLimitPerOrder	is	set,	then	the	following	fields	maxGain,	and	minGain	are	read	and	decoded	
for	each	HOA	order	separately.	If	the	flag	gainLimitPerOrder	is	not	set,	then	the	fields	maxGain	and	
minGain	are	only	read	and	decoded	once	and	applied	to	all	HOA	orders	during	the	decoding	process.	
The	minGain	value	shall	be	between	0	db	and	-101	dB.	The	maxGain	value	shall	be	between	1	dB	and	
111	dB	lower	than	the	minGain	value.		

ISO/IEC	23008-3:202X(E)	

88	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	4	—	Example	for	HOA	order	dependent	min	and	max	gains	within	an	
HOA	rendering	matrix	

The	next	field	to	read	is	the	flag	isFullMatrix	which	signals	if	a	matrix	is	defined	as	full	or	as	partially	
sparse.	In	case	the	matrix	is	defined	as	partially	sparse,	the	next	field	firstSparseOrder	specifies	the	
starting	 HOA	 order,	 after	 which	 the	 HOA	 rendering	 matrix	 is	 sparsely	 coded.	 For	 example,	 if	
firstSparseOrder signals	4,	then	all	matrix	elements	associated	with	the	HOA	order	4	and	above	
are	sparsely	coded.	HOA	rendering	matrices	are	dense	 for	 low	order	and	often	become	sparse	 in	 the	
higher	 orders,	 depending	 on	 the	 loudspeaker	 reproduction	 setup.	 As	 an	 example	 Figure	 5	 depicts	 a	
partially	sparse	6th	order	HOA	rendering	matrix	for	22	loudspeakers.		

	

Figure	5	—	Example	for	an	HOA	rendering	matrix	with	sparsity	starting	at	the	26th	HOA	
coefficient	(HOA	order	5)	

Depending	 whether	 LFE	 channels	 exist	 within	 the	 loudspeaker	 reproduction	 setup,	 the	 field	
hasLfeRendering	is	read.	If	hasLfeRendering	is	not	set,	then	the	matrix	elements	related	to	the	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 89	
	

LFE	 channels	 are	 assumed	 to	 be	 digital	 zeroes.	 The	 next	 field	 read	 by	 the	 decoder	 is	 the	 flag	
zerothOrderAlwaysPositive	and	signals	if	the	matrix	elements	associated	with	the	coefficient	of	
the	0th	order	are	positive.	In	this	case	no	number	signs	are	coded.		

In	the	following,	properties	of	the	HOA	rendering	matrix	are	signalled	for	loudspeaker	pairs	symmetric	
with	regards	to	the	median	plane.	There	are	two	symmetry	properties:	a)	value	symmetry	and	b)	sign	
symmetry.	In	the	case	of	value	symmetry,	the	matrix	elements	of	the	left	loudspeaker	of	the	symmetric	
loudspeaker	pair	are	not	coded,	but	derived	from	the	decoded	matrix	elements	of	the	right	loudspeaker	
by	employing	the	helper	function	createSymSigns:

pairIdx = outputConfig[j].symmetricPair->originalPosition;
hoaMatrix[i * outputCount + j] = hoaMatrix[i * outputCount + pairIdx];
signMatrix[i * outputCount + j] = symSigns[i] * signMatrix[i * outputCount
+ pairIdx];

If	a	loudspeaker	pair	is	not	value	symmetric,	then	the	matrix	elements	may	be	symmetric	with	regards	to	
their	number	signs.	If	a	loudspeaker	pair	is	sign	symmetric,	the	number	signs	of	the	matrix	elements	of	
the	left	loudspeaker	of	the	symmetric	loudspeaker	pair	are	not	coded,	but	derived	from	the	number	signs	
of	 the	 matrix	 elements	 associated	 to	 the	 right	 loudspeaker	 by	 employing	 the	 helper	 function	
createSymSigns:

pairIdx = outputConfig[j].symmetricPair->originalPosition;
signMatrix[i * outputCount + j] = symSigns[i] * signMatrix[i * outputCount
+ pairIdx];

The	signalling	of	the	symmetry	properties	is	visualised	in	Figure	6.	A	loudspeaker	pair	cannot	be	defined	
as	value	symmetric	and	sign	symmetric	at	the	same	time.	The	final	decoding	flag	hasVerticalCoef	
specifies	 if	 only	 the	matrix	 elements	 associated	with	 circular	 (i.e.,	 2D)	HOA	 coefficients	 are	 coded.	 If	
hasVerticalCoef	is	not	set	the	matrix	elements	associated	with	the	HOA	coefficients	defined	with	the	
helper	function	create2dBitmask are	set	to	digital	zero.	

	

Figure	6	—	Signalling	of	symmetry	properties	in	HOA	rendering	matrices	

Using	 the	 above	mentioned	 properties,	 a	 series	 of	matrix	 element	 gain	 values	 are	 read.	 To	 read	 the	
absolute	gain	value,	the	function	DecodeGainValue()	is	used.	The	gain	values	are	uniformly	decoded	by	

read flag
isAllValueSymmetric

•• • • •••• •
isAnyValueSymmetric

for (i=0; i<numPairs; ++i)
 valueSymmetricPairs[i] = 1;

true

false

for (i=0; i<numPairs; ++i)
 valueSymmetricPairs[i] = read 1 bit

true

•• • • •••• •
isAllSignSymmetricfalse

for (i=0; i<numPairs; ++i)
 signSymmetricPairs[i] = 1;

true

•• • • •••• •
isAnySignSymmetric

for (i=0; i<numPairs; ++i) {
 if (0==valueSymmetricPairs[i])
 signSymmetricPairs[i] = read 1 bit
}

true

•• • • •••• •
isAnySignSymmetric

for (i=0; i<numPairs; ++i)
 signSymmetricPairs[i] = read 1 bit

false

true

ISO/IEC	23008-3:202X(E)	

90	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

using	the	function	ReadRange()	of	the	alphabet	index.	If	the	decoded	gain	value	is	not	digital	zero,	the	
number	 sign	 value	 (signVal)	 is	 additionally	 read	 [see	 also	 Figure	 7	a)].	 If	 the	 matrix	 element	 is	
associated	 with	 an	 HOA	 coefficient	 that	 was	 signalled	 to	 be	 sparse	 (via	 isHoaCoefSparse), the	
hasValue	 flag	precedes	 the	gainValueIndex	 [see	Figure	7	b)].	 If	 the	hasValue	 flag	 is	 zero,	 this	
element	is	set	to	digital	zero	and	no	gainValueIndex	and	signVal	are	signalled.	

	

Figure	7	—	Examples	for	bitstream	syntax	to	decode	a	rendering	matrix	element	

Depending	on	the	specified	symmetry	properties	for	loudspeaker	pairs,	the	matrix	elements	associated	
with	the	left	loudspeaker	are	derived	from	the	right	loudspeaker.	In	this	case	the	code	words	to	decode	
the	individual	matrix	elements	for	the	left	loudspeaker	are	reduced	or	completely	omitted.	

If	the	bitfield	isNormalized	was	set	to	1	the	final	HOA	rendering	matrix	D	shall	be	created	by	dividing	
each	 weighting	 value	 in	 the	 L	 rows	 of	 the	 HOA	 rendering	 matrix	 that	 are	 associated	 with	 non-LFE	
loudspeakers	 by	 the	matrix’s	 Frobenius	 Norm	∑ ∑ 5C,E

F(GHI)!

EJI
K
CJI 	computed	 from	 its	J 	rows	 associated	

with	non-LFE	loudspeakers.	

5.5 Tool	descriptions	

 General	

The	tool	descriptions	are	based	on	ISO/IEC	23003-3:2012,	Clause	7.	

Modifications	and	amendments	to	the	existing	tool	descriptions	are	listed	below.	

 Quad	channel	element	

5.5.2.1 Tool	description	

The	quad	channel	element	(QCE)	is	a	method	for	joint	coding	of	four	channels	for	more	efficient	coding	
of	horizontally	and	vertically	distributed	channels.	A	QCE	consists	of	two	consecutive	CPEs	and	is	formed	
by	 hierarchically	 combining	 the	 joint	 stereo	 tool	 with	 possibility	 of	 complex	 stereo	 prediction	 in	
horizontal	direction	and	the	MPEG	surround	based	stereo	tool	in	vertical	direction.	This	is	achieved	by	
enabling	 both	 stereo	 tools	 and	 swapping	 output	 channels	 between	 applying	 the	 tools.	 Stereo	 SBR	 is	
performed	in	horizontal	direction	to	preserve	the	left-right	relations	of	high	frequencies.	

5.5.2.2 Definitions	

Help	elements:	

cplx_out_dmx_L[]	 First	channel	of	first	CPE	after	complex	prediction	stereo	decoding.	

cplx_out_dmx_R[]	 Second	channel	of	first	CPE	after	complex	prediction	stereo	decoding.	

cplx_out_res_L[]	 Second	CPE	after	complex	prediction	stereo	decoding.	
(zero	if	qceIndex	=	1)	

hasValue gainValueIndex signVal

1 alphabetSize 1

bitfield

size

gainValueIndex signVal

alphabetSize 1

bitfield

size

a) b)

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 91	
	

cplx_out_res_R[]	 Second	channel	of	second	CPE	after	complex	prediction	stereo	decoding.	
(zero	if	qceIndex	=	1)	

mps_out_L_1[]	 First	output	channel	of	first	MPS	box.	

mps_out_L_2	[]	 Second	output	channel	of	first	MPS	box.	

mps_out_R_1[]	 First	output	channel	of	second	MPS	box.	

mps_out_R_2[]	 Second	output	channel	of	second	MPS	box.	

sbr_out_L_1[]	 First	output	channel	of	first	Stereo	SBR	box.	

sbr_out_R_1[]	 Second	output	channel	of	first	Stereo	SBR	box.	

sbr_out_L_2[]	 First	output	channel	of	second	Stereo	SBR	box.	

sbr_out_R_2[]	 Second	output	channel	of	second	Stereo	SBR	box.	

5.5.2.3 Decoding	process	

The	 syntax	 element	 qceIndex	 in	 mpegh3daChannelPairElementConfig()	 indicates	 whether	 a	 CPE	
belongs	to	a	QCE	and	if	residual	coding	is	used.	In	case	that	qceIndex	is	unequal	0,	the	current	CPE	forms	
a	QCE	together	with	its	subsequent	element	which	shall	be	a	CPE	having	the	same	qceIndex.	Stereo	SBR	
is	always	used	for	the	QCE,	thus	the	syntax	item	stereoConfigIndex	shall	be	3	and	bsStereoSbr	shall	be	
1.		

In	case	of	qceIndex	==	1	only	the	payloads	for	MPEG	Surround	and	SBR	and	no	relevant	audio	signal	data	
is	contained	in	the	second	CPE	and	the	syntax	element	bsResidualCoding	is	set	to	0.	

The	presence	of	a	residual	signal	in	the	second	CPE	is	indicated	by	qceIndex	==	2.	In	this	case	the	syntax	
element	bsResidualCoding	is	set	to	1.	

Decoding	of	Joint	Stereo	is	performed	as	specified	in	ISO/IEC	23003-3:2012,	7.7.	The	resulting	output	of	
the	first	CPE	are	the	MPS	downmix	signals	cplx_out_dmx_L[]	and	cplx_out_dmx_R[].	If	residual	coding	is	
used	(i.e.	qceIndex	==	2),	 the	output	of	the	second	CPE	are	the	MPS	residual	signals	cplx_out_res_L[],	
cplx_out_res_R[],	if	no	residual	signal	has	been	transmitted	(i.e.	qceIndex	==	1),	zero	signals	are	inserted.	

The	structure	of	the	QCE	decoding	process	is	illustrated	in	Figure	8.	

ISO/IEC	23008-3:202X(E)	

92	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	8	—	QCE	decoder	schematics		

Before	applying	MPEG	surround	decoding,	the	second	channel	of	the	first	element	(cplx_out_dmx_R[])	
and	the	first	channel	of	the	second	element	(cplx_out_res_L[])	are	swapped.		

Decoding	 of	MPEG	 surround	with	 residual	 is	 performed	 as	 specified	 in	 ISO/IEC	23003-3:2012,	 7.11.	
Decoding	of	MPEG	surround	without	residual	using	SBR	as	defined	in	ISO/IEC	23003-3:2012,	subclause	
7.11.2.7,	is	modified	so	that	stereo	SBR	is	also	used	for	bsResidualCoding	==	1,	resulting	in	the	following	
decoder	schematics	(see	Figure	9).		

	

Figure	9	—	bsResidualCoding	==	0,	bsStereoSbr	==	1	

Before	applying	stereo	SBR,	the	second	channel	of	the	first	element	(mps_out_L_2[])	and	the	first	channel	
of	the	second	element	(mps_out_R_1[])	are	swapped	to	allow	right-left	stereo	SBR.	After	application	of	
stereo	SBR,	the	second	output	channel	of	the	first	element	(sbr_out_R_1[])	and	the	first	channel	of	the	
second	element	(sbr_out_L_2[])		are	swapped	again	to	restore	the	input	channel	order.		

 Transform	splitting	

5.5.3.1 Tool	description	

When	 transform	 splitting	 (TS)	 is	 active	 in	 a	 long	 transform,	 two	 half-length	 lapped	 transforms	 	 are	
employed	 instead	 of	 one	 full-length	 transform.	 The	 coefficients	 of	 the	 two	 lapped	 transforms	 are	
transmitted	in	a	line-by-line	interleaved	fashion	as	a	traditional	frequency	domain	(FD)	transform,	with	
the	coefficients	of	the	first-in-time	transform	placed	at	even	and	the	coefficients	of	the	second-in-time	
transform	placed	at	odd	indices.	

MPS	
decoder	

Stereo	
SBR	

decoder	

MPEG-H	3D	
audio	Core	
decoder	

DMX	 L	

R	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 93	
	

5.5.3.2 Operational	constraints	

TS	can	only	be	used	in	a	FD	long-start	or	stop-start	window	(window_sequence	==	1).	Also,	TS	can	only	
be	applied	when	noiseFilling	is	1	in	mpegh3daCoreConfig().	When	TS	is	signalled,	all	FD	tools	except	for	
TNS	and	inverse	transform	operate	on	the	interleaved	(long)	set	of	TS	coefficients.	This	allows	the	reuse	
of	the	scalefactor	band	offset	and	long-transform	arithmetic	coder	tables	as	well	as	the	window	shapes	
and	overlap	lengths.	

5.5.3.3 Definitions	

Help	elements:	

common_window	 indicates	if	channel	0	and	channel	1	of	a	CPE	use	identical	window	
parameters	(see	ISO/IEC	23003-3:2012	subclause	6.2.5.1.1).	

window_sequence	 FD	window	sequence	type	for	the	current	frame	and	channel	(see	
ISO/IEC	23003-3:2012	subclause	6.2.9).	

tns_on_lr	 indicates	the	mode	of	operation	for	TNS	filtering	(see	
ISO/IEC	23003-3:2012	subclause	7.8.2).	

noiseFilling	 this	flag	signals	the	usage	of	the	noise	filling	of	spectral	holes	in	the	FD	
core	coder	(see	ISO/IEC	23003-3:2012	subclause	6.1.1.1).	

noise_offset	 noise-fill	offset	to	modify	scale	factors	of	zero-quantized	bands	(see	
ISO/IEC	23003-3:2012	subclause	7.2).	

noise_level	 noise-fill	level	representing	amplitude	of	added	spectrum	noise	(see	
ISO/IEC	23003-3:2012	subclause	7.2).	

split_transform	 binary	flag	indicating	whether	TS	is	utilized	in	the	current	frame	and	
channel.	

half_transform_length	 one	half	of	coreCoderFrameLength	(ccfl,	the	transform	length,	see	
ISO/IEC	23003-3:2012,	subclause	6.1.1).	

half_lowpass_line	 one	half	of	the	number	of	transform	lines	transmitted	for	the	current	
channel.	

5.5.3.4 Decoding	process	

5.5.3.4.1 General	

The	decoding	of	an	FD	(stop-)start	transform	with	TS	is	performed	in	three	sequential	steps	as	follows.	

5.5.3.4.2 Decoding	of	split_transform	and	half_lowpass_line	

The	help	element	split_transform	does	not	represent	an	independent	bit-stream	element	but	is	derived	
from	 the	 noise	 filling	 elements,	 noise_offset	 and	 noise_level,	 and	 in	 case	 of	 a	
mpegh3daChannelPairElement(),	the	common_window	flag	in	StereoCoreToolInfo().	If	noiseFilling	==	
0,	split_transform	is	0.	Otherwise,	

if ((noiseFilling != 0) &&
 (noise_level == 0) &&
 (noise_offset != 0) &&

ISO/IEC	23008-3:202X(E)	

94	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 (window_sequence == 1)) {
 split_transform = 1;
 noise_level = (noise_offset & 28) / 4;
 noise_offset = (noise_offset & 3) * 8;
}
else {
 split_transform = 0;
}

In	other	words,	if	split_transform	==	1,	noise_offset	contains	5	bits	of	noise	filling	data,	which	are	then	
rearranged.	Since	this	operation	changes	the	values	of	noise_level	and	noise_offset,	it	shall	be	executed	
before	the	noise	filling	process	of	ISO/IEC	23003-3:2012,	subclause	7.2.		

Furthermore,	 if	 common_window	 ==	 1	 in	 a	 mpegh3daChannelPairElement(),	 split_transform	 is	
determined	only	in	the	left	(first)	channel;	the	right	channel’s	split_transform	is	set	equal	to	(i.e.	copied	
from)	 the	 left	 channel’s	 split_transform,	 and	 the	 following	 pseudo-code	 is	 not	 executed	 in	 the	 right	
channel.	

The	 help	 element	 half_lowpass_line	 is	 determined	 from	 the	 “long”	 scalefactor	 band	 offset	 table,	
swb_offset_long_window,	 and	 the	 max_sfb	 of	 the	 current	 channel,	 or	 in	 case	 of	 stereo	 and	
common_window	==	1,	max_sfb_ste.	

	

Based	on	the	enhancedNoiseFilling	flag,	half_lowpass_line	is	derived:	

if (enhancedNoiseFilling != 0) {
 lowpass_sfb = max(lowpass_sfb, m_igFStopSfb);
}
half_lowpass_line = swb_offset_long_window[lowpass_sfb] / 2;

5.5.3.4.3 De-interleaving	of	half-length	spectra	for	temporal	noise	shaping	

After	spectrum	de-quantization,	noise	filling,	and	scalefactor	application	and	prior	to	the	application	of	
temporal	noise	shaping	(TNS),	the	TS	coefficients	in	spec[]	are	de-interleaved	using	a	helper	buffer[]:	

for (i = 0, i2 = 0; i < half_lowpass_line; i += 1, i2 += 2) {
 spec[i] = spec[i2]; /* isolate 1st window */
 buffer[i] = spec[i2+1]; /* isolate 2nd window */
}
for (i = 0; i < half_lowpass_line; i += 1) {
 spec[i+half_lowpass_line] = buffer[i]; /* copy 2nd window */
}

The	in-place	de-interleaving	effectively	places	the	two	half-length	TS	spectra	on	top	of	each	other,	and	the	
TNS	tool	now	operates	as	usual	on	the	resulting	full-length	pseudo-spectrum.	

5.5.3.4.4 Temporary	re-interleaving,	two	sequential	inverse	lapped	transforms	

If	common_window	==	1	in	the	current	frame	or	the	stereo	decoding	is	performed	after	TNS	decoding	
(tns_on_lr	==	0	in	ISO/IEC	23003-3:2012,	subclause	7.8),	spec[]	shall	be	re-interleaved	temporarily	into	
a	full-length	spectrum:	

for (i = 0; i < half_lowpass_line; i += 1) {
 buffer[i] = spec[i]; /* copy 1st window */
}

 1,

==ì
= í
î

max_sfb_ste 	in	elements	with StereoCoreToolInfo()	and	lowpass_sfb max_sfb otherwise.
common_window

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 95	
	

for (i = 0, i2 = 0; i < half_lowpass_line; i += 1, i2 += 2) {
 spec[i2] = buffer[i]; /* merge 1st window */
 spec[i2+1] = spec[i+half_lowpass_line]; /* merge 2nd window */
}

The	resulting	pseudo-spectrum	is	used	for	stereo	decoding	(ISO/IEC	23003-3:2012,	subclause	7.7)	and	
to	update	dmx_re_prev[]	(ISO/IEC	23003-3:2012	subclauses	7.7.2	and	5.5.3.6).	In	case	of	tns_on_lr	==	0,	
the	 stereo-decoded	 full-length	 spectra	are	again	de-interleaved	by	 repeating	 the	process	of	 subclause	
5.5.3.4.3.	Finally,	the	2	lapped	transforms	are	calculated	with	ccfl	and	the	channel’s	window_shape	of	the	
current	and	last	frame.	

5.5.3.5 Filterbank	and	block	switching	

5.5.3.5.1 Inverse	Lapped	Transform	

The	 processing	 for	 TS	 follows	 the	 description	 given	 in	 ISO/IEC	23003-3:2012,	 subclause	7.9.	 The	
following	modifications	or	additions	shall	be	taken	into	account.	See	also	subclause	5.5.11.	

The	TS	coefficients	in	spec[]	are	de-interleaved	using	a	helper	buffer[]	with	N,	the	window	length	based	
on	 the	 window_sequence	 value	 (N	 =	 ccfl·2	 since,	 by	 definition,	 the	 sequence	 isn’t	 an	
EIGHT_SHORT_SEQUENCE):	

for (i = 0, i2 = 0; i < N/2; i += 1, i2 += 2) {
 spec[0][i] = spec[i2]; /* isolate 1st window */
 buffer[i] = spec[i2+1]; /* isolate 2nd window */
}
for (i = 0; i < N/2; i += 1) {
 spec[1][i] = buffer[i]; /* copy 2nd window */
}
The	inverse	transform	for	each	half-length	TS	spectrum	spec[0,	1]	is	then	defined	as	follows,	with	cs()	
and	k0	as	specified,	via	the	prev_aliasing_symmetry	and	curr_aliasing_symmetry	values,	by	Table	116.	

	 	for	0	≤	n	<	N/2	

where	

		 j	 is	the	window	index,	shall	be	0	or	1;	

		 n	 is	the	time-domain	sample	index;	
		 k	 is	the	spectral	coefficient	index;	

		 n0	 (N/4	+	1)/2.	
Note	that	for	the	second	inverse	transform	x1,n,	prev_aliasing_symmetry	is	set	to	curr_aliasing_symmetry.	
Subsequent	windowing	and	block	switching	steps	for	the	transform	outputs	x(0,1)	are	defined	in	the	next	
subclauses.	

5.5.3.5.2 Transform	splitting	with	STOP_START_SEQUENCE	

The	 STOP_START_SEQUENCE	 in	 combination	 with	 transform	 splitting	 is	 depicted	 in	 Figure	 10.	 It	
comprises	two	overlapped	and	added	half-length	windows	with	a	length	of		N_l/2		which	is	1024	(768).	
N_s	is	set	to	256	(192)	respectively.	

1
4

, 0 0
0

2 4[][] cs ()()

N

j n
k

x spec j k n n k k
N N

p
-

=

æ ö= × + +ç ÷
è ø

å

ISO/IEC	23008-3:202X(E)	

96	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	10	—	Transform	splitting	for	STOP_START_WINDOW	

The	windows	(0,1)	for	the	two	half-length	inverse	lapped	transforms	are	given	as	follows:	

	

	
where	for	the	first	inverse	lapped	transform	the	windows	

,	

	

are	applied	and	for	the	second	inverse	lapped	transform	the	windows:	

	

	

are	applied.	

The	overlap	and	add	between	the	two	half-length	windows	resulting	in	the	windowed	time	domain	values	
zi,n	is	specified	as	follows.	Here,	Nl		is	set	to	2048	(1536),	Ns	to	256	(192)	respectively:	

	

(0,1), ,

(0,1)

(0,1), ,

/ 20.0 0
4

/ 2 / 2 / 2()
4 4 4

/ 2 3 / 2() 1.0
4 4

3 / 2 3 / 23 / 2() 4 44 3 / 20.0
4

s

s

l s

l s l s l s
LEFT N

l s l s

l s l s
l s

RIGHT N

l s
l

N Nn

N N N N N NW n n

N N N NW n n

N N N NN N nW n
N N n N

-
£ <

- - +
- £ <

+ -= £ <

- +- £ <-
+

£ <

, for	

, for	

, for	

, for	

, for	

 / 2

ì
ï
ï
ï
ï
ïï
í
ï
ï
ï
ï
ï
ïî

_ ,
0, ,

_ ,

() window_shape_previous_block == 1
()

() window_shape_previous_block == 0
, if
, if

s

s

s

KBD LEFT N
LEFT N

SIN LEFT N

W n
W n

W n
ìï= í
ïî

_ ,
0, ,

_ ,

() window_shape == 1
()

() window_shape == 0
, if
, if

s

s

s

KBD RIGHT N
RIGHT N

SIN RIGHT N

W n
W n

W n
ìï= í
ïî

_ ,
1, ,

_ ,

() window_shape == 1
()

() window_shape == 0
, if
, if

s

s

s

KBD LEFT N
LEFT N

SIN LEFT N

W n
W n

W n
ìï= í
ïî

_ ,
1, ,

_ ,

() window_shape == 1
()

() window_shape == 0
, if
, if

s

s

s

KBD RIGHT N
RIGHT N

SIN RIGHT N

W n
W n

W n
ìï= í
ïî

0, 0

, 0, 0 1, (/2) 1

1, (/2) 1

0.0 0
2()
4

2 2() () ((/ 2))
4 4

2((/ 2))
4

0.0

s

s l s

l s

s

l s
n N s s

l s l s
i n n N s n N N l s

l s
n N N l s l s

n N
N Nx W n N N n

N N N NZ n x W n N x W n N N n

N Nx W n N N n N N

-

- - -

- -

£ <
-

× - £ <

- += × - + × - - £ <

+
× - - £ < -

, for	

, for	

, for	

, for	

,

l s lN N n N

ì
ï
ï
ï
ïï
í
ï
ï
ï
ï

- £ <ïî for	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 97	
	

5.5.3.5.3 Transform	splitting	with	LONG_START_SEQUENCE	

The	LONG_START_SEQUENCE	in	combination	with	transform	splitting	is	depicted	in	Figure	11.	

	

Figure	11	—	Transform	splitting	for	LONG_START_WINDOW	

It	comprises	three	windows	defined	as	follows,	where	N_l/2		is	set	to	1024	(768),		N_s	is	set	to	256	(192),	
respectively.	

	

	

	

The	left/right	window	halves	are	given	by:	

	,	

	

The	third	window	equals	the	left	half	of	a	LONG_START_WINDOW:	

	

with	

0 0, ,

3 / 21.0 0
4

3 / 2 3 / 2 3 / 2() ()
4 4 4

3 / 20.0 / 2
4

s

l s

l s l s l s
RIGHT N

l s
l

N Nn

N N N N N NW n W n n

N N n N

-ì £ <ï
ï

- - +ï= - £ <í
ï

+ï £ <ïî

, for

, for

, for

1, ,

1

1, ,

/ 20.0 0
4

/ 2 / 2 / 2()
4 4 4

/ 2 3 / 2() 1.0
4 4

3 / 2 3 / 23 / 2() 4 44 3 / 20.0 / 2
4

s

s

l s

l s l s l s
LEFT N

l s l s

l s l s
l s

RIGHT N

l s
l

N Nn

N N N N N NW n n

N N N NW n n

N N N NN N nW n
N N n N

-ì £ <ï
ï

- - +ï - £ <ï
ïï + -= £ <í
ï
ï - +- £ <ï -
ï

+ï £ <ïî

, for

, for

, for

, for

, for

_ ,
1, ,

_ ,

() window_shape == 1
()

() window_shape == 0
s

s

s

KBD LEFT N
LEFT N

SIN LEFT N

W n
W n

W n
ìï= í
ïî

,	if
,	if

_ ,
(0,1), ,

_ ,

() window_shape == 1
()

() window_shape == 0
s

s

s

KBD RIGHT N
RIGHT N

SIN RIGHT N

W n
W n

W n
ìï= í
ïî

,	if
,	if

,
2

() 0 / 2
()

1.0 / 2
lLEFT N l

l l

W n n N
W n

N n N

£ <ìï= í
£ <ïî

, for
, for

ISO/IEC	23008-3:202X(E)	

98	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

The	overlap	and	add	between	 the	 two	half-length	windows	resulting	 in	 intermediate	windowed	 time	

domain	values	 	is	specified	as	follows.	Here,	Nl		is	set	to	2048	(1536),	Ns	to	256	(192)	respectively:	

	

where	sign	=	–1	if	prev_aliasing_symmetry	==	0,	or	sign	=	1	otherwise.	The	final	windowed	time-domain	
values	Zi,n	are	obtained	by	applying	W2:	

	

5.5.3.6 Modification	to	complex	prediction	stereo	decoding	

Since	the	FD	stereo	tools	operate	on	an	interleaved	pseudo-spectrum	when	TS	is	active	in	a	channel	pair,	
no	 changes	 are	 necessary	 to	 the	 underlying	 M/S	 or	 complex	 prediction	 processing.	 However,	 the	
derivation	of	the	previous	frame’s	downmix	dmx_re_prev[]	and	the	computation	of	the	downmix	MDST	
dmx_im[]	in	ISO/IEC	23003-3:2012,	subclause	7.7.2	need	to	be	adapted	if	TS	is	used	in	either	channel	in	
the	last	or	current	frame:	

— use_prev_frame	shall	be	0	if	the	TS	activity	changed	in	either	channel	from	last	to	current	frame.	In	
other	words,	dmx_re_prev[]	shall	not	be	used	in	that	case	due	to	transform	length	switching.	

— If	TS	was	or	is	active,	dmx_re_prev[]	and	dmx_re[]	are	interleaved	pseudo-spectra	and	shall	be	de-
interleaved	into	their	corresponding	two	half-length	TS	spectra	for	correct	MDST	calculation.	

— Upon	 TS	 activity,	 2	 half-length	MDST	 downmixes	 are	 computed	 using	 adapted	 filter	 coefficients	
(filter_coefs	in	Table	85	and	Table	86)	and	interleaved	into	a	full-length	spectrum	dmx_im[]	(just	like	
dmx_re[]).	

— window_sequence:	 Downmix	 MDST	 estimates	 are	 computed	 for	 each	 group	 window	 pair.	
use_prev_frame	 is	 evaluated	 only	 for	 the	 first	 of	 the	 two	 half-window	 pairs.	 For	 the	 remaining	
window	 pair,	 the	 preceding	 window	 pair	 is	 always	 used	 in	 the	 MDST	 estimate,	 which	 implies	
use_prev_frame	=	1.	

— Window	shapes:	The	MDST	estimation	parameters	for	the	current	window,	which	are	filter	coeffi-
cients	as	specified	below,	depend	on	the	shapes	of	 the	 left	and	right	window	halves.	For	 the	 first	
window,	 this	means	 that	 the	 filter	parameters	are	a	 function	of	 the	current	and	previous	 frames’	
window_shape	flags.	The	remaining	window	is	only	affected	by	the	current	window_shape.	

_ ,
,

_ ,

() window_shape_previous_block == 1
()

() window_shape_previous_block == 0
l

l

l

KBD LEFT N
LEFT N

SIN LEFT N

W n
W n

W n
ìï= í
ïî

,
,
if
if

,i nZ
~

0,3 1 0 1, 1 1

0, 0

,
0, 0 1, (/2) 1

1, (/

((3 1) (1)) 0
2()
4

2 2() () ((/ 2))
4 4

s s

s

s l s

l

N n s N n s s

l s
n N s s

l s l si n
n N s n N N l s

n N

sign x W N n x W N n n N

N Nx W n N N n

N N N NZ n x W n N x W n N N n

x

- - - -

-

~

- - -

-

× × - - + × - - £ <

-
× - £ <

- += × - + × - - £ <

, for

, for

, for

2) 1
2((/ 2))
4

0.0
s

l s
N l s l s

l s l

N NW n N N n N N

N N n N

-

ì
ï
ï
ï
ïï
í
ï
ï +

× - - £ < -ï
ï

- £ <ïî

, for

, for

,, 2() () (), for 0i ni n lZ n Z n W n n N
~

= × £ <

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 99	
	

Table	85	—	MDST	filter	parameters	for	current	window	(filter_coefs)	

Current	window	sequence Left	half:	sine	shape	
right	half:	sine	shape

Left	half:	KBD	shape	
right	half:	KBD	shape

LONG_START_SEQUENCE	
STOP_START_SEQUENCE

[0.185618,	0.000000,		0.627371,	
0.000000,	

-0.627371,		0.000000,	-0.185618]

	
[0.204932,	0.000000,		0.634159,	

	0.000000,		
-0.634159,		0.000000,	-0.204932]	

Current	window	sequence Left	half:	sine	shape	
right	half:	KBD	shape

Left	half:	KBD	shape	
right	half:	sine	shape

LONG_START_SEQUENCE	
STOP_START_SEQUENCE

[0.194609,		0.006202,		0.630536,		
0.000000,	

	-0.630536,	-0.006202,	-0.194609]

	
[0.194609,	-0.006202,		0.630536,		

0.000000,	
	-0.630536,	0.006202,	-0.194609]	

Table	86	—	MDST	filter	parameters	for	previous	window	(filter_coefs_prev)	

Current	window	sequence Left	half	of	current	window:		
sine	shape

Left	half	of	current	window:		
KBD	shape

LONG_START_SEQUENCE	
STOP_START_SEQUENCE

[0.069608,		0.075028,		0.078423,	
	0.079580,	

		0.078423,		0.075028,		0.069608]	

[0.042172,		0.043458,		0.044248,	
	0.044514,	

		0.044248,		0.043458,		0.042172]	

	

 MPEG	surround	for	mono	to	stereo	upmixing	

5.5.4.1 Calculation	of	pre-matrix	M1	and	mix-matrix	M2	

5.5.4.1.1 General	

The	 calculation	 of	 mix-matrix	 M2,	 which	 is	 a	 interpolated	 version	 of	 ,	 is	 done	 according	 to	
ISO/IEC	23003-3:2012,	7.11.2.3,	but	with	the	modifications	specified	in	the	following	subclause.	

5.5.4.1.2 Upmix	without	decorrelation	

In	case	a	 format	conversion	step	 is	 included,	 the	MPEG	surround	for	mono	to	stereo	upmixing	tool	 is	
modified	as	follows.	

Subclause	10.3.4	defines	a	downmixing	matrix	MDmx	which	is	used	to	calculate	a	mix	matrix	MMix	as	follows.	
Here	Nin	is	the	number	of	source	channels	and	Nout	is	the	number	of	destination	channels.	

MMix = zero Nin x Nin Matrix
for i = 1 to Nout
 for j = 1 to Nin
 set_j = 0
 if MDmx(i, j) > 0.0
 set_j = 1
 end
 for k = 1 to Nin
 set_k = 0
 if MDmx(i, k) > 0.0
 set_k = 1
 end
 if set_j == 1 and set_k == 1

ml,
2R

ISO/IEC	23008-3:202X(E)	

100	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 MMix(j, k)= 1
 end
 end
 end
end
	

Each	OTT	decoding	block	yields	two	output	signals	corresponding	to	channel	number	i	and	j.	If	the	mix	
matrix	 equals	one,	decorrelation	is	switched	off	for	this	decoding	block	which	means	that	the	

elements	 	and	 	of	the	upmix	matrix	 shall	be	calculated	by	setting	 .	

5.5.4.2 Combined	parametric	and	residual	decoding	(hybrid	residual	coding)	

5.5.4.2.1 Overview	

In	addition	to	using	either	decorrelator	based	mono	to	stereo	upmixing	or	residual	coding	as	specified	in	
ISO/IEC	23003-3:2012,	7.11.1,	hybrid	 residual	 coding	allows	a	 signal	dependent	 combination	of	both	
modes.	The	residual	signal	and	the	decorrelator	outputs	are	blended	together,	using	time	and	frequency	
dependent	weighting	factors	depending	on	the	signal	energies	and	the	spatial	parameters,	as	illustrated	
in	the	schematics	below	(Figure	12).	

	

Figure	12	—	Schematics	of	hybrid	residual	decoder	

5.5.4.2.2 Decoding	process	

Hybrid	 residual	 coding	 mode	 is	 indicated	 by	 the	 syntax	 elements	 bsResidualCoding	 ==	 1	 and	
bsResidualBands	 ==	 1	 in	 Mps212Config().	 The	 calculation	 of	 mix-matrix	 M2	 is	 performed	 as	 if	
bsResidualCoding	 ==	 0,	 following	 the	 calculation	 in	 ISO/IEC	23003-3:2012,	 subclause	 7.11.2.3.	 The	
matrix	 	for	the	decorrelator	based	part	is	defined	as:	

	

The	upmixing	process	is	split	up	into	Downmix,	decorrelator	output	and	residual.	The	upmixed	Downmix	
udmx	is	calculated	using:	

MixM (,)i j
,11l mOTTH ,21l mOTTH l,m

2R , 1l mICC =

ml,
2R

ú
û

ù
ê
ë

é
= ml

OTT
ml
OTT

ml
OTT

ml
OTT

HH
HH

,,

,,
ml,
2 2221

1211
R

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 101	
	

	

The	upmixed	decorrelator	output	udec	is	calculated	using:	

	

The	upmixed	residual	signal	ures	is	calculated	using:	

	

In	 case	 a	 format	 conversion	 step	 is	 included	 the	 residual	 upmixing	matrix	 	shall	 be	modified	 as	
follows.	

Each	OTT	decoding	block	yields	two	output	signals	corresponding	to	channel	number	i	and	j.	If	the	mix	
matrix	

	
equals	one	(MMix	defined	in	subclause	5.5.4.1.2),	the	residual	upmixing	matrix	 	shall	

be	set	to:				

	

The	 energies	 of	 the	 upmixed	 residual	 signal	 Eres	 and	 of	 the	 upmixed	 decorrelator	 output	 Edec	 are	
calculated	per	hybrid	band	as	sum	over	both	output	channels	ch	and	all	timeslots	ts	and	of	one	frame	as:	

	

	

The	upmixed	decorrelator	output	is	weighted	using	a	weighting	factor	rdec	calculated	for	each	hybrid	band	
per	frame	as:	

	

With	ε	a	small	number	to	prevent	division	by	zero	(ε	=	1e-9).	

All	three	upmix	signals	are	added	to	form	the	decoded	output	signal.		

ú
û

ù
ê
ë

é
=

021
011

R ,

,
ml,
dmx 2, ml

OTT

ml
OTT

H
H

ú
û

ù
ê
ë

é
= ml

OTT

ml
OTT

H
H

,

,
ml,
dec 2, 220

120
R

ú
û

ù
ê
ë

é

-
=ú

û

ù
ê
ë

é
=

}21,5.0max{0
}11,5.0max{0

220
120

R ,

,

,

,
ml,
res 2, ml

OTT

ml
OTT

ml
RES

ml
RES

H
H

H
H

R2, res
l,m

MMix i, j() R2, res
l,m

l,m
2, res

0 0
R

0 0
é ù

= ê ú
ë û

åå=
ch ts

resres)ts,ch(uE

åå=
ch ts

decdec)ts,ch(uE

res dec

res
dec

dec res

dec

0 if

1 if

otherwise

E E

E
r

E E
E

e

e
e

ì >ï
ï
ï <ï= í
ï
ï

- +ï
ï +î

ISO/IEC	23008-3:202X(E)	

102	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Enhanced	noise	filling	

5.5.5.1 General	

The	enhanced	noise	filling	is	achieved	through	a	tool	named	intelligent	gap	filling	(IGF).	IGF	extends	the	
noise	filling	in	the	decoder	to	alternatively	exploit	neighbouring	spectral	portions,	predefined	source	tiles,	
for	filling	spectral	gaps	in	predefined	target	tiles.	These	gaps	originate	from	coarse	quantization	in	the	
encoder.	Using	these	tiles	for	gap	filling	often	provides	a	perceptually	better	match	than	just	injecting	
random	noise.	The	additional	side	information,	igf_data(),	conveys	control	data,	e.g.	tile	source	and	tile	
target	information,	tile	target	level,	etc.	

5.5.5.2 Data	elements	

indepFlag	 the	MPEG-H	3D	audio	independency	flag.	

pred_dir	 indicates	the	direction	of	prediction	(see	ISO/IEC	23003-3:2012,	7.7.2)	

ms_used[][]	 one-bit	flag	per	scalefactor	band	indicating	that	M/S	coding	or	prediction	
is	being	used	in	windowgroup	g	and	scalefactor	band	sfb,	shared	with	the	
joint	stereo	tool	(ISO/IEC	23003-3:2012	subclause	7.7).	

cplx_pred_used[g][sfb]	 One-bit	flag	per	window	group	g	and	scalefactor	band	sfb	(after	mapping	
from	prediction	bands),	shared	with	the	complex	stereo	prediction	tool	
(see	ISO/IEC	23003-3:2012,	subclause	7.7.2).	

5.5.5.3 Helper	elements	

igfStartSfbLB	 the	IGF	start	scalefactor	band	index	used	with	a	long	window	sequence.	

igfStartSfbSB	 the	IGF	start	scalefactor	band	index	used	with	a	short	window	sequence.	

igfStopSfbLB	 the	IGF	stop	scalefactor	band	index	used	with	a	long	window	sequence.	

igfStopSfbSB	 the	IGF	stop	scalefactor	band	index	used	with	a	shortwindow	sequence.	

igfMin	 is	a	subband	index;	this	index	is	sampling	frequency	and	core	coder	
framelength	dependent	and	determine	a	minimal	frequency	which	is	
used	to	assign	a	source	tile	range.	

igfBgn	 the	IGF	start	subband;	this	helper	element	is	used	for	both,	long	and	short	
window	sequences	and	is	mapped	for	every	frame.	

igfEnd	 the	IGF	stop	subband;	this	helper	element	is	used	for	both,	long	and	short	
window	sequences	and	is	mapped	for	every	frame.	

igfP	 is	1	if	the	flag	igfUseHighRes	is	set	to	one,	2	otherwise.	

m_igfStartSfb	 the	mapped	IGF	start	scalefactorband;	this	helper	element	is	used	for	
both,	long	and	short	window	sequences	and	is	mapped	for	every	frame.	

m_igfStopSfb	 the	mapped	IGF	stop	scalefactorband;	this	helper	element	is	used	for	
both,	long	and	short	window	sequences	and	is	mapped	for	every	frame.	

tile[]	 vector	of	length	4	containing	width	information.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 103	
	

igfNTiles	 number	of	target	tiles	in	IGF	range	(as	calculated	according	to	Figure	14).	

sbs	 start	subband	of	the	current	target	tile.	

rng	 length	of	the	IGF	range	in	subbands.	

ch	 channel	in	scope,	this	value	is	either	0	or	1.	

sfb	 scalefactor	band	in	scope.	

num_windows[ch]	 contains	the	current	number	of	windows.	

num_window_groups[ch]	 contains	the	number	of	window	groups.	

sb	 index	of	the	source	subband.	

tb	 index	of	the	target	subband.	

tileIdx	 index	of	the	IGF	target	tile	in	which	a	tb	under	scope	is	located.	

group_len	 identifies	the	actual	length	of	a	window	group.	

igf_sN[]	 vector	containing	information	on	energies	per	scalefactor	which	have	been	
not	quantized	to	zero.	

igf_pN[]	 vector	 containing	 information	on	energies	per	 scalefactor	which	will	be	
copied	from	the	source	tile	range.	

wg,	wa	 counter	for	the	actual	window	(0,1,…,7).	

w	 the	window	index	in	a	window	group.	

window_sequence	 signals	the	USAC	window	sequence.	

isShortWindow	 1	if	window_sequence	==	EIGHT_SHORT_SEQUENCE,	else	0.	

pMDCT[]	 array	containing	the	transform	spectrum.	

pMDCT_flat[]	 array	containing	the	whitened	transform	spectrum.	

width	 number	of	lines	in	the	sfb	under	scope.	

E	 energy	for	the	current	subband.	

val	 spectral	values	for	the	current	IGF	subband.	

noise_offset	 noise-fill	offset	to	modify	scale	factors	of	zero-quantized	bands	(see	
ISO/IEC	23003-3:2012,	subclause	7.2).	

noise_level	 noise-fill	level	representing	amplitude	of	added	spectrum	noise	(see	
ISO/IEC	23003-3:2012,	subclause	7.2).	

stereo_filling	 flag	indicating	whether	SF	is	utilized	in	the	current	frame	and	channel.	

ISO/IEC	23008-3:202X(E)	

104	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.5.4 IGF	signal	processing	

5.5.5.4.1 	Mapping	of	IGF	bitstream	elements	

5.5.5.4.1.1 Helper	elements	

swb_offset_long[]	 offset	table	for	scalefactor	bands	to	use	with	long	windows.	

swb_offset_short[]	 offset	table	for	scalefactor	bands	to	use	with	short	windows.	

num_swb_short_window	 number	of	scalefactor	bands	with	a	short	window	sequence.	

num_swb_long_window	 number	of	scalefactor	bands	with	a	long	window	sequence.	

sampleRate	 sampling	rate	of	the	core	coder.	

bl	 length	of	the	current	block	in	dependency	of	the	window	sequence.	

5.5.5.4.1.2 Detailed	description	

The	bitstream	elements	igfStartIndex	and	igfStopIndex	are	mapped	to	scale	factor	band	indices:	

igfStartSfbLB = min(11 + igfStartIndex, num_swb_long_window – 5)

If	igfStopIndex	is	not	15,	calculate:	

igfStopSfbLB = min(num_swb_long_window, max(igfStartSfbLB + (((num_swb_long_window -
(igfStartSfbLB + 1)) * (igfStopIndex + 2)) >> 4), igfStartSfbLB + 1))

If	igfStopIndex	equals	15,	set:	

igfStopSfbLB = num_swb_long_window

For	the	appropriate	start	and	stop	boundaries	for	IGF	with	short	window	sequence	calculate:	

igfStartSfbSB = -1;
for (sfb = 0; sfb < num_swb_short_window; sfb++) {
 if (swb_offset_short[sfb] >= swb_offset_long[igfStartSfbLB] >> 3) {
 if (igfStartSfbSB < 0) igfStartSfbSB = sfb;
 }
}
igfStopSfbSB = -1;
for (sfb = 0; sfb < num_swb_short_window; sfb++) {
 if (swb_offset_short[sfb] >= swb_offset_long[igfStopSfbLB] >> 3) {
 if (igfStopSfbSB < 0) igfStopSfbSB = sfb;
 }
}

The	final	mapping	to	m_igfStartSfb,	igfBgn	and	m_igfStopSfb,	igfEnd	depends	on	the	window	sequence	in	
the	actual	processed	frame.		

if (window_sequence == EIGHT_SHORT_SEQUENCE) {
 m_igfStartSfb = igfStartSfbSB;
 m_igfStopSfb = igfStopSfbSB;
 igfBgn = swb_offset_short[m_igfStartSfb];
 igfEnd = swb_offset_short[m_igfStopSfb];
 swb_offset = swb_offset_short;
} else {

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 105	
	

 m_igfStartSfb = igfStartSfbLB;
 m_igfStopSfb = igfStopSfbLB;
 igfBgn = swb_offset_long[m_igfStartSfb];
 igfEnd = swb_offset_long[m_igfStopSfb];
 swb_offset = swb_offset_long;
}

In	the	context	of	IGF	processing	the	frequency	band	offset	tables	as	defined	in	ISO/IEC	14496-3:2009,	
4.5.4	 shall	 be	 extended	 such	 that	 swb_offset_short[num_swb_short_window]	 equals	 half	 the	 window	
length	of	 the	EIGHT_SHORT_SEQUENCE,	e.g.	128,	and	swb_offset_long[num_swb_long_window]	equals	
half	the	window	length	of	the	each	other	sequence,	e.g.	1024.	

If	 the	bitstream	element	 igfUseHighRes	equals	zero,	 the	 IGF	 frequency	resolution	will	be	reduced	by	
pairing	IGF	scalefactor	bands.		

igfMin	is	the	lowest	IGF	source	subband	and	it	is	calculated	as	follows:	

igfMin	=	sb	+	(sb	mod	2)	
where	

	
sb	=	INT(1125	*	bl	*	(2	/	sampleRate))	

	

The	helper	element	bl	is	mapped	according	to	Table	87:	

Table	87	—	Value	of	bl	

window_sequence	 bl

EIGHT_SHORT_SEQUENCE	 ccfl	/	8	
medium	TCX	 ccfl	/	2	

All	other	sequences	 ccfl	

5.5.5.4.2 Computing	IGF	tiles	

IGF	works	with	so	called	tiles	to	determine	target	regions	shown	in	Figure	13.	

	
Figure	13	—	Computing	target	tiles,	overview	

The	flowchart	in	Figure	14	produces	the	tile	vector	tile[]	of	length	4	containing	the	width	of	each	IGF	
target	tile.	Please	note	that	this	flowchart	is	used	for	both,	short	and	long	window	sequences.	

sT[1] sT[3] tile[0] tile[1] tile[2] tile[3]

sT[0] sT[2]

frequency
igfEnd igfBgn

m
ag

ni
tu

de

igfMin

ISO/IEC	23008-3:202X(E)	

106	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	
Figure	14	—	Flowchart	for	calculation	of	tile	width	and	number	of	tiles	

5.5.5.4.3 Decoding	of	IGF	levels	

5.5.5.4.3.1 Helper	elements	

igf_curr[ch][][]	 vector	containing	the	IGF	levels	for	the	current	window.	

igf_prev[ch][]	 vector	containing	the	IGF	levels	for	the	previous	window.	

igf_arith_t[ch]	 time	index,	to	be	increment	per	window	since	the	last	reset.	

igf_prevD[ch]	 context	form	the	window	before	the	previous	window.	

Start

Done
return igfNTiles, tile[]

tile[n] =

 (max(8, rng)) / 4,

 for n = 0, 1, 2, 3

i = i + 1

k = 0

do { k = k + 1 }

while(min(sbs + tile[i],

igfEnd) > swb_offset[k])

igfBgn >

igfMin && igfBgn <

igfEnd

i >= 4

sbs == igfEnd

True False

False

True

True

 i = 0

 igfBgn = swb_offset[sfbBgn]

 igfEnd = swb_offset[sfbEnd]

 mem = sfbBgn

 sbs = igfBgn

 rng = igfEnd - igfBgn

 igfNTiles = 0

Input variables

 sfbBgn, sfbEnd, bUH,

 igfMin, swb_offset[]

False

tile[i] = max(2,

 min(swb_offset[k] -

 sbs, igfEnd – sbs))

i < 3 &&

(k – sfbBgn) mod 2

&& k – mem > 1

i == 3

 k = k - 1 k = sfbEnd

False

TrueTrue

False

mem = k

sbs = sbs + tile[i]

igfNTiles = igfNTiles + 1

bUH == 0

True

False

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 107	
	

prev_num_windows[ch]	 contains	the	previous	number	of	windows.	

core_mode_prev[ch]	 contains	the	previous	core_mode[ch].	

5.5.5.4.3.2 Decoding	process	

The	subroutine	igf_level()	is	performed	as	outlined	below.	Please	note	that	all	helper	elements	
associated	with	igf_level()	needs	their	own	instance	of	context	memory	per	audio	element	(CPE,	SCE)	
and	per	channel	ch	in	case	of	CPE,	for	proper	decoding.	
	
First	of	all,	the	context	memory	(igf_prev,	igf_prevD,	igf_arith_t)	of	the	IGF	arithmetic	coder,	together	
with	other	helper	elements,	needs	a	reset	under	the	following	conditions:	

if (igf_AllZero
 || indepFlag
 || ((num_windows[ch] != prev_num_windows[ch]) && core_mode[ch] == 0)
 || ((lpd_mode[ch] != last_lpd_mode[ch]) && core_mode[ch] == 1)
 || (core_mode[ch] != core_mode_prev[ch])) {
 igf_curr[ch] = {0};
 igf_prev[ch] = {0};
 igf_arith_t[ch] = 0;
 igf_prevD[ch] = 0;
}
prev_num_windows[ch] = num_windows[ch];
core_mode_prev[ch] = core_mode[ch];

If	the	bitstream	element	igf_AllZero	is	not	true,	the	subroutine	igf_arith_decode()	(see	subclause	
5.5.5.4.4.2)	is	called	as	outlined	below:	

if (!igf_AllZero) {
 for (g = 0; g < num_window_groups; g++) {
 igf_curr[ch][g] = igf_arith_decode(igf_arith_t[ch], igf_prev[ch], igf_prevD[ch])
 igf_prevD[ch] = igf_prev[m_igfStartSfb];
 for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb++) {
 igf_prev[ch][sfb] = igf_curr[ch][g][sfb];
 igf_curr[ch][g][sfb] = igf_curr[ch][g][sfb] * igFP;
 }
 igf_arith_t[ch]++;
 }
 arith_decode_flush(); /* push back 14 bits to the bitstream */
}

The	result,	quantized	energy	information	of	scalefactor	bands	in	the	IGF	region,	is	stored	in	igf_curr[][
][].	For	requantization	use	the	formula:			
	

igf_curr[ch][g][sfb] = 2^((igf_curr[ch][g][sfb]-igf_emphasis)*0.25)

for	each	channel	ch,	window	group	g	and	scalefactor	band	sfb	in	scope	and	where	igf_emphasis	is	
defined	as:	
	

igf_emphasis = 0; if IGF is running in FD mode
igf_emphasis = 40; if IGF is running in TCX mode	

ISO/IEC	23008-3:202X(E)	

108	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.5.4.4 Arithmetic	decoding	of	IGF	average	levels	

5.5.5.4.4.1 Helper	elements	

nBits	 number	of	bits	to	read.	

nBitRead	 decoded	number	read,	of	length	nBits	bits.	

cfTable[]	 cumulative	frequency	table.	

tableOffset	 offset	to	frequency	table.	

decRes	 decoded	prediction	residual.	

extra	 the	position	of	the	residual	in	one	tail	of	the	distribution.	

pred	 predicted	value	computed	using	the	neighbours.	

t	 time	index	since	the	last	reset.	

prevD	 first	IGF	scf	value	from	the	previous	frame.	

ctx	 index	to	the	context	containing	the	probability	distribution.	

5.5.5.4.4.2 Decoding	process	

The	 IGF	 scalefactors	 are	 encoded	 by	 using	 the	 function	 arith_decode()	 as	 in	 ISO/IEC	23003-3:2012	
subclause	7.4.3,	and	by	using	new	probability	tables	(cf_se01,	cf_se02[],	cf_se10,	cf_se20[],	cf_se11[][],	
cf_off_se01,	cf_off_se02[],	cf_off_se10,	cf_off_se20[]	and	cf_off_se11[][]),	see	Annex	A.	

The	subroutine	igf_level(),	see	Table	53,	provides	a	vector	containing	the	IGF	average	energy	information	
per	IGF	scalefactor,	called	SFE,	of	the	transform	spectral	lines	for	each	scale	factor	band	or	group	of	scale	
factor	bands.	

The	SFEs	from	up	to	two	of	the	previous	frames	and	the	already	decoded	SFEs	from	the	current	frame	
are	 taken	 into	account	 in	deriving	a	context	providing	the	probability	distribution	 for	coding.	 In	each	
context	a	fixed	linear	predictor	is	employed,	based	on	the	same	data	as	used	for	the	quantized	context.The	
prediction	residuals	instead	of	the	original	values	are	decoded.	For	large	prediction	residuals,	outside	of	
the	centre	of	the	coding	distribution,	escape	coding	is	used.	

arith_decode_bits(nBits)
{
 cf_for_bit[2] = {8192, 0};
 nBitRead = 0;
 for (i = nBits - 1; i >= 0; --i) {
 bit = arith_decode(cf_for_bit, 2);
 nBitRead = nBitRead + (bit << i);
 }
 return nBitRead;
}

The	helper	function	arith_decode_bits()	uses	the	USAC	arithmetic	decoder	function	arith_decode()	to	
obtain	a	value	of	length	nBits	bits	from	the	bitstream.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 109	
	

arith_decode_residual(cfTable, tableOffset)
{
 val = arith_decode(cfTable, 27);
 if ((val != 0) && (val != 26)) {
 decRes = val - 13;
 } else {
 extra = arith_decode_bits(4);
 if (extra == 15) {
 extra = 15 + arith_decode_bits(7);
 }
 if (val == 0) {
 decRes = -13 - extra;
 } else {
 decRes = 13 + extra;
 }
 }
 decRes -= tableOffset;
 return decRes;
}

The	helper	function	arith_decode_residual()	returns	the	decoded	residual	value,	which	has	to	be	added	
to	the	predicted	value	(pred)	to	obtain	the	original	value.	

igf_arith_decode(t, igf_prev, prevD)
{
 igf_prev += m_igfStartSfb;
 igf_curr = {0};
 igf_curr += m_igfStartSfb;
 igfInc = igfP;
 if (isShortBlock) igfInc = 1;
 for (f = 0; f < m_igfStopSfb - m_igfStartSfb; f += igfInc) {
 if (t == 0) {
 if (f == 0) {
 igf_curr[f] = arith_decode_bits(7);
 } else if (f == igfInc) {
 pred = igf_curr[f - igfInc];
 igf_curr[f] = pred + arith_decode_residual(cf_se01, cf_off_se01);
 } else {
 pred = igf_curr[f - igfInc];
 ctx = quant_ctx(igf_curr[f - igfInc] - igf_curr[f - 2 * igfInc]);
 igf_curr[f] = pred + arith_decode_residual(
 cf_se02[3 + ctx], cf_off_se02[3 + ctx]);
 }
 } else if (f == 0) {
 if (t == 1) {
 pred = igf_prev[f];
 igf_curr[f] = pred + arith_decode_residual(cf_se10, cf_off_se10);
 } else {
 pred = igf_prev[f];
 ctx = quant_ctx(igf_prev[f] - prevD);
 igf_curr[f] = pred + arith_decode_residual(
 cf_se20[3 + ctx], cf_off_se20[3 + ctx]);
 }
 } else {
 pred = igf_prev[f] + igf_curr[f - igfInc] - igf_prev[f - igfInc];
 ctx_f = quant_ctx(igf_prev[f] - igf_prev[f - igfInc]);
 ctx_t = quant_ctx(igf_curr[f - igfInc] - igf_prev[f - igfInc]);
 igf_curr[f] = pred + arith_decode_residual(
 cf_se11[3 + ctx_t][3 + ctx_f],

ISO/IEC	23008-3:202X(E)	

110	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 cf_off_se11[3 + ctx_t][3 + ctx_f]);
 }
 for (z = f + 1; z < min(f + igfInc, m_igfStopSfb - m_igfStartSfb); ++z) {
 igf_curr[z] = igf_curr[f];
 }
 }
 igf_curr -= m_igfStartSfb;
 return igf_curr;
}

The	quantization	function	quant_ctx(),	limits	large	integer	values	to	±3.	It	is	defined	as:	

quant_ctx(x)	=	x;	for	|x|	≤	3	and	

quant_ctx(x)	=	3	·	sign(x);	for	|x|	>	3	

5.5.5.4.5 Applying	IGF	

5.5.5.4.5.1 General	

Application	of	IGF	shall	occur	after	the	following	processing	steps:	

a)	 inverse	quantization	of	MDCT	values;	

b)	 if	 applicable:	 noise	 filling	 (as	 specified	 in	 ISO/IEC	23003-3:2012,	7.2),	 but	 only	 up	 to	 subband	
swb_offset[m_igfStartSfb]-1;	

c)	 if	applicable:	joint	stereo	coding	(as	specified	in	ISO/IEC	23003-3:2012,	7.7),	but	only	up	to	subband	
swb_offset[max_sfb_ste]-1;	

d)	 if	 the	bitstream	element	 igfUseEnf	 is	1,	 IGF	envelope	noise	 flattening	 shall	be	applied	 in	 the	 IGF	
decoding	process.	

Please	 note	 that	 the	 temporal	 noise	 shaping	 (TNS)	 tool	 was	 extended	 in	 case	 of	 IGF	 to	 additionally	
perform	temporal	tile	shaping	(TTS)	on	IGF	tiles.	Therefore,	the	TNS	shaping	filters	are	also	applied	on	
IGF	generated	frequency	tiles	if	indicated	by	igfAfterTnsSynth.	Figure	15	shows	the	position	of	the	IGF	
tool	in	dependency	of	igfAfterTnsSynth	in	the	core	coder.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 111	
	

	

Figure	15	—	Position	of	IGF	in	the	core	coder	
5.5.5.4.5.2 Helper	elements	

top	 TNS	stop	band,	see	14496-3:2009	subclause	4.6.9	

5.5.5.4.5.3 Decoding	process	

There	are	two	options	to	apply	IGF,	signalled	with	igfAfterTnsSynth:		

—	 before	TNS	synthesis;	IGF	is	applied	to	the	TNS	residual,	and	subsequently	TNS/TTS	is	applied.	

—	 after	TNS	synthesis;	IGF	is	applied	to	the	fully	reconstructed	and	TNS	filtered	core	coder	signal.	

Please	note	that	the	behaviour	of	TNS	changes	in	case	of	IGF.	The	following	code	sequence	adjusts	the	
TNS	stop	band	according	to	the	IGF	start	and	stop	scale	factor	band	offset	indices:	

nbands = max_sfb;
if (enhancedNoiseFilling) {
 if (!igfAfterTnsSynth) {
 if (!isShortWindow) {
 if (igfStopSfbLB > nbands) nbands = igfStopSfbLB;
 } else {
 if (igfStopSfbSB > nbands) nbands = igfStopSfbSB;
 }
 } else {
 if (!isShortWindow) {
 if (igfStartSfbLB < nbands) nbands = igfStartSfbLB;
 } else {
 if (igfStartSfbSB < nbands) nbands = igfStartSfbSB;
 }
 }
 top = MIN(top, nbands);
}
	

igfAfterTnsSynth

bitdemux

entropy decoding

apply IGF

inverse TNS/TTS apply IGF

inverse TNS/TTS

Start

Done

inverse MDCT

False

True

ISO/IEC	23008-3:202X(E)	

112	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.5.4.5.4 Creation	of	source	tile	spectra	with	independent	noise	filling	

If	the	bitstream	element	igfUseEnf	equals	1,	nT	copies	of	the	dequantized	MDCT	core-coder	spectrum	
shall	be	created	and	noise	filling	shall	be	applied	for	each	copy	observing	the	descriptions	and	
restrictions	defined	in	subclauses	5.5.5.4.5	and	5.5.5.4.9.	With	igfUseEnf	active	the	nT	MDCT	core-coder	
spectra	with	different	applied	noise	filling	are	the	dedicated	sources	for	further	IGF	processing	where	
every	tileIdx uses	one	of	the	created	copies.	

5.5.5.4.6 Computing	a	source	subband	in	IGF	

5.5.5.4.6.1 Helper	elements	

oS	 offset	between	sb	and	tb.	

nST	 number	of	source	tiles.	

src	 length	of	the	IGF	source	range	in	subbands.	

5.5.5.4.6.2 Detailed	description	

While	applying	IGF,	target	subbands	(tb)	are	identified	which	have	been	quantized	to	zero	by	the	encoder.	
For	each	of	those	target	subbands	a	source	subband	(sb)	is	obtained	with	Figure	16.	Note	that	for	each	
element	and	each	channel,	there	could	be	a	different	set	of	igfCurrTileIdx	obtained	from	the	bitstream.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 113	
	

	
Figure	16	—	Flowchart	for	computing	a	source	subband	sb	

The	function	“calculate	oS()”	returns	the	offset	oS	between	sb	and	tb	using	the	following	formula:	

oS	=	INT((-0.5	*	igfCurrTileIdx[ch][i]	+	2.5)	*	tile[i]	+	sbs	–	igfBgn)	

where	tile[]	is	a	vector	with	a	maximum	length	of	4	containing	the	width	of	each	IGF	target	tile	according	
to	subclause	5.5.5.4.2.	

The	helper	function	get_IGF_tile_idx()	identifies	the	tile	where	tb	is	located.	

get_IGF_tile_idx(tb, igfBgn, igfNTiles, tile[]) {
 sbs = igfBgn;
 for (tileIdx = 0; tileIdx < igfNTiles; tileIdx ++) {
 sbs += tile[tileIdx];
 if (tb < sbs) break;
 }
 return tileIdx;
}

Done
return sb

tb >= sbs &&
tb < (sbs +
tile[i])

sbs = sbs + tile[i]

i >= igfNTiles

sb = tb - oS

src > 0

sb < igfMin

sb = igfMin +
tb mod src

calculate oS
igfCurrTileIdx[i],
tile[i], sbs, igfBgn

False

False

True

True

False

True

i = i + 1

Input variables
 igfCurrTileIdx[], tb,
 igfBgn, igfMin,
 igfNTiles, tile[]

 i = 0
 oS = 0
 sb = tb
 sbs = igfBgn
 src = igfBgn – igfMin

False

Start

True

if ((oS & 1) == 1)
 oS = oS + 1

ISO/IEC	23008-3:202X(E)	

114	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.5.4.6.3 Requirements	

The	computing	of	a	source	subband	sb	is	constrained	to	the	following	requirement	for	the	transmitted	
igfCurrTileIdx.	

igfCurrTileIdx[ch][i]	+	nST[i]		>=	4,	for	i	=	0,	1,	..,	igfNTiles	

The	vector	nST	shall	be	computed	as	follows:	

nST[i]	=	max(1,	min((src	/	(tile[i]	/	2))	–	1,	4)),	for	i	=	0,	1,	...,	igfNTiles	

5.5.5.4.7 Spectral	whitening	in	IGF	

To	reduce	 tonality	or	 spectral	 tilt	of	an	 IGF	 tile,	 the	 following	procedure	uses	 the	MDCT	signal,	 if	 the	
bitstream	element	 igfUseWhitening	 is	 equal	 to	 1,	 to	 produce	 the	whitened	 spectrum	pMDCT_flat[],	
which	is	further	used	in	IGF_mono()	and	IGF_stereo().	

The	IGF	whitening	is	performed	by	dividing	the	spectrum	in	pMDCT[]	by	the	scaled	square	root	of	its	
estimated	spectral	envelope	in	env[]:	

@ABCD!"#$[F] = @ABCD[F] ∙ 2%&

HIJK[F]
, F = LMNALJ, LMNALJ + 1,… , LMNQMJ − 1	

where	the	spectral	envelope	is	estimated	by	filtering	the	squared	spectrum	using	a	moving	average	
filter	of	length	7	where	each	filter	coefficient	equals	1.	

igf_apply_whitening(pMDCT[], pMDCT_flat[])
{
 stop = swb_offset[m_igfStartSfb];
 for (i = igfMin; i < stop - 3; i++) {
 env = 1e-3;
 for (j = i - 3; j <= i + 3; j++) {
 env += pMDCT[j] * pMDCT[j];
 }

 n = FLOOR(log(env)/log(2)); /* C/C++ (see NOTE): frexp(env, &n); n--; */
 fac = pow(2, 21 – 0.5 * n);
 pMDCT_flat[i] = pMDCT[i] * fac;
 }

 for (; i < stop; i++) {
 pMDCT_flat[i] = pMDCT[i] * fac;
 }
}

NOTE	 The	estimation	of	 the	spectral	envelope	comprises	an	approximation	kernel	allowing	 for	an	efficient	
implementation:	

J = ⌊log%(IJK)⌋ = X
log&'(IJK)
log&'(2)

Y	
This	kernel	calculates	the	integral	exponent	for	2	of	IJK.	As	a	guidance	it	is	noted	that	the	standardized	function	
frexp()	as	defined	 in	 ISO/IEC	9899	(Reference	 [14])	 is	well	 suited	 for	 the	given	operation.	The	 function	 frexp()	
breaks	the	floating-point	number	IJK	into	a	normalized	fraction	(Z)	 in	the	range	[0.5, 1)	or	zero,	and	an	integral	
power	of	2	(J),	such	that:	

!"# = % ∙ 2"
In	the	given	context	the	returned	significant	(Z)	is	not	used, the	calculated	exponent	(J)	needs	to	be	decremented	
by	1.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 115	
	

5.5.5.4.8 Single/dual	channel	processing	in	IGF	

5.5.5.4.8.1 Helper	elements	

randomSign()	 function	returning	(pseudo)	random	sign	as	defined	in	ISO/IEC	23003-
3:2012,	subclause	7.2.4	using	latest	seed	state	from	USAC	noise	filling.	

5.5.5.4.8.2 Decoding	process	

If	IGF	is	applied	in	the	discrete	channel	mode,	e.g.	in	a	SCE	element	or	in	a	CPE	element	which	does	not	
make	use	of	joint	stereo	feature	(igfIndependentTiling	is	true)	the	following	calling	sequence	shall	be	
applied.	

IGF_mono(ch, num_window_groups, group_len) {
 if (!isShortWindow && igfUseWhitening) {
 igf_apply_whitening (pMDCT, pMDCT_flat);
 }
 wg = wa = 0;
 for (g = 0; g < num_window_groups; g++) {
 igf_sN[ch] = {0};
 igf_pN[ch] = {0};
for (w = 0; w < group_len[g]; w++) {
 IGF_calc_mono(ch, wg, group_len[g], nfSeed1);
 Wg++;
}
for (w = 0; w y group_len[g]; w++) {
 IGF_apply_mono(ch, wa, nfSeed2);
 wa++;
 }
 }
}

The	initial	value	of	the	pseudo-random	noise	seeds	nfSeed1	and	nfSeed2	shall	be	equal	in	order	to	
synchronize	the	pseudo-random	noise	generator	between	IGF_calc_mono()	and	IGF_apply_mono().	

IGF_calc_mono()	is	used	to	compute	the	vectors	igf_sN[]	and	igf_pN[]	respectively.	The	subroutine	
get_IGF_sb()	is	specified	in	subclause	5.5.5.4.6.	Note	that	igfCurrTileIdx[ch]	is	a	vector	of	length	4,	
describing	the	current	tile	indices	of	the	current	channel	ch,	where	ch	is	0	in	a	SCE	and	ch	is	0	or	1	in	a	
CPE.	

IGF_calc_mono(ch, w, group_len, nfSeed1) {
 igfInc = igfP;
 if (isShortBlock) igfInc = 1;
 for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb += igfInc) {
 width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);
 E = 0;
 for (bin = 0; bin < width; bin++) {
 tb = swb_offset[sfb]+bin;
 E += pMDCT[w][tb] * pMDCT[w][tb];
 }
 igf_sN[ch][sfb] += E/group_len;
 E = 0;
 for (bin = 0; bin < width; bin++) {
 tb = swb_offset[sfb]+bin;
 if (pMDCT[w][tb] == 0) {
 sb = get_IGF_sb(igfCurrTileIdx[ch], tb);
 val = pMDCT[w][sb];
 if (!isShortWindow && igfUseWhitening) {

ISO/IEC	23008-3:202X(E)	

116	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 tileIdx = get_IGF_tile_idx(tb);
 if (igf_WhiteningLevel[tileIdx] == 0) {
 val = pMDCT_flat[w][sb];
 }
 if (igf_WhiteningLevel[tileIdx] == 2) {
 val = randomSign(nfSeed1)*pow(2,21);
 }
 }
 E += val * val;
 }
 }
 igf_pN[ch][sfb] += E/group_len;
 }
}

IGF_apply_mono()	will	fill	spectral	gaps	with	previous	calculated	values:	

IGF_apply_mono(ch, w, nfSeed2) {

 igfInc = igfP;
 if (isShortBlock) igfInc = 1;
 for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb+= igfInc) {
 width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);

 dE = igf_curr[sfb];
 sN = igf_sN[ch][sfb];
 pN = igf_pN[ch][sfb];
 mN = (dE*dE)*width -sN;

 if (mN > 0 && pN > 0) {
 gn = min(10, sqrt(mN/pN));
 } else {
 gn = 0;
 }
 for (bin = 0; bin < width; bin++) {
 tb = swb_offset[sfb]+bin;
 if (pMDCT[w][tb] == 0) {
 sb = get_IGF_sb(igfCurrTileIdx[ch], tb);
 val = pMDCT[w][sb];
 if (!isShortWindow && igfUseWhitening) {
 tileIdx = get_IGF_tile_idx(tb);
 if (igf_WhiteningLevel[tileIdx] == 0) {
 val = pMDCT_flat[w][sb];
 }
 if (igf_WhiteningLevel[tileIdx] == 2) {
 val = randomSign(nfSeed2)*pow(2,21);
 }
 }
 pMDCT[w][tb] = gn * val;
 }
 }
 }
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 117	
	

5.5.5.4.9 Stereo	filling	in	IGF	

5.5.5.4.9.1 General	

When	 stereo	 filling	 (SF)	 is	 active	 in	 a	 FD-only	 CPE,	 the	 MDCT	 coefficients	 of	 empty	 (i.e.	 fully	 zero-
quantized)	scale	factor	bands	of	the	right	(second)	channel	are	replaced	by	a	sum	or	difference	of	the	
corresponding	decoded	left	and	right	channels	MDCT	coefficients	of	the	previous	frame.	If	USAC	noise	
filling	 is	 active	 for	 the	 second	channel,	pseudo-random	values	are	also	added	 to	each	coefficient.	The	
resulting	 coefficients	 of	 each	 scale	 factor	 band	 are	 then	 scaled	 such	 that	 the	 RMS	 (root	 of	 the	mean	
coefficient	square)	of	each	band	matches	the	value	transmitted	by	way	of	that	band’s	scale	factor.	See	in	
ISO/IEC	23003-3:2012,	subclause	7.3.	

5.5.5.4.9.2 Helper	elements	

downmix_prev[][]	 downmix	(i.e.	sum	or	difference)	of	the	previous	frame’s	left	and	right	
channels.	

noiseFillingStartOffset	 line	index	at	or	above	which	noise	filling	is	used	(ISO/IEC	23003-3:2012,	7.2).	

sfbWidth[]	 array	containing	the	number	of	lines	per	sfb.	

energy[]	 energy	of	the	signal	per	sfb.	
energy_dmx[]	 energy	of	the	downmix	signal	per	sfb.	

spectrum[][]	 MDCT	spectrum	for	group	g	after	noise	filling	(i.e.	x_ac_invquant[g][][sfb][]).	

window	 indices	of	windows	of	group	in	scope,	i.e.	all	windows	belonging	to	group	g.	

5.5.5.4.9.3 Operational	constraints	

SF	can	only	be	used	in	the	right	FD	channel	of	a	common	FD	channel	pair	element	(CPE),	i.e.	a	channel	
pair	 element	 transmitting	 a	 StereoCoreToolInfo()	 with	 common_window	 ==	 1.	 Besides,	 due	 to	 its	
signaling,	 SF	 can	 only	 be	 applied	when	noiseFilling	 ==	 1	 in	mpegh3daCoreConfig().	 If	 either	 of	 the	
channels	in	the	pair	is	in	LPD	core_mode,	SF	is	not	used,	even	if	the	right	channel	is	in	FD	mode.	

5.5.5.4.9.4 Decoding	process	

The	decoding	of	a	joint-stereo	coded	FD	channel	with	SF	is	executed	in	3	sequential	steps	as	follows.	

Step	1:	Decoding	of	stereo_filling	

stereo_filling	does	not	 represent	an	 independent	bit-stream	element	but	 is	derived	 from	 the	noise-fill	
elements,	noise_offset	and	noise_level,	in	a	mpegh3daChannelPairElement()	and	the	common_window	
flag	in	StereoCoreToolInfo().	If	noiseFilling	==	0	or	common_window	==	0	or	the	current	channel	is	the	
left	(first)	channel	in	the	element,	stereo_filling	is	0,	and	the	stereo	filling	process	ends.	Otherwise,	

if ((noiseFilling != 0) &&
 (noise_level == 0) &&
 (noise_offset != 0) &&
 (common_window != 0)) {
 stereo_filling = 1;
 noise_level = (noise_offset & 28) / 4;
 noise_offset = (noise_offset & 3) * 8;
}
else {
 stereo_filling = 0;
}

ISO/IEC	23008-3:202X(E)	

118	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	other	words,	 if	 stereo_filling	==	1,	noise_offset	 contains	5	bits	of	noise	 filling	data,	which	are	 then	
rearranged.	Since	this	operation	alters	the	values	of	noise_level	and	noise_offset,	it	shall	be	performed	
before	the	noise	filling	process	as	in	ISO/IEC	23003-3:2012,	subclause	7.2.	Moreover,	the	above	pseudo-
code	is	not	executed	in	the	left	channel	of	a	mpegh3daChannelPairElement()	or	any	other	element.	

Step	2:	Calculation	of	downmix_prev	

downmix_prev[],	the	spectral	mix	which	is	to	be	used	for	stereo	filling,	is	identical	to	the	dmx_re_prev[]	
used	 for	 the	 MDST	 spectrum	 estimation	 in	 complex	 stereo	 prediction	 (see	 ISO/IEC	23003-3:2012,	
subclause	7.7.2.3).	This	means	that:	

—	 All	coefficients	of	downmix_prev[]	shall	be	zero	if	any	of	the	channels	of	the	frame	and	element	with	
which	 the	 downmixing	 is	 performed	 –	 i.e.	 the	 frame	 before	 the	 currently	 decoded	 one	 –	 use	
core_mode	==	1	(LPD)	or	if	the	channels	use	unequal	transform	lengths	(split_transform	==	1	or	
block	switching	to	window_sequence	==	EIGHT_SHORT_SEQUENCE	in	only	one	channel).	

—	 All	 coefficients	of	downmix_prev[]	 shall	 be	 zero	during	 the	 stereo	 filling	process	 if	 the	 channel’s	
transform	length	changed	from	the	last	to	the	current	frame	(i.e.	split_transform	==	1	preceded	by	
split_transform	 ==	 0,	 or	 window_sequence	 ==	 EIGHT_SHORT_SEQUENCE	 preceded	 by	
window_sequence	 !=	 EIGHT_SHORT_SEQUENCE,	 or	 vice	 versa	 resp.)	 in	 the	 current	 element	 or	
usacIndependencyFlag	==	1.	

—	 If	transform	splitting	is	applied	in	the	channels	of	the	previous	or	current	frame,	downmix_prev[]	
represents	a	line-by-line	interleaved	spectral	downmix.	See	the	transform	splitting	tool	for	details.	

—	 If	complex	stereo	prediction	is	not	utilized	in	the	current	frame	and	element,	pred_dir	equals	0.	

Consequently,	the	previous	downmix	only	has	to	be	computed	once	for	both	tools,	saving	complexity.	The	
only	difference	between	downmix_prev[]	and	dmx_re_prev[]	in	ISO/IEC	23003-3:2012,	subclause	7.7.2	
is	 the	 behaviour	 when	 complex	 stereo	 prediction	 is	 not	 currently	 used,	 or	 when	 it	 is	 active	 but	
use_prev_frame	==	0.	In	that	case,	downmix_prev[]	is	computed	for	stereo	filling	decoding	according	to	
ISO/IEC	23003-3:2012,	subclause	7.7.2.3	even	though	dmx_re_prev[]	is	not	needed	for	complex	stereo	
prediction	decoding	and	is,	therefore,	undefined/zero.	

Step	3:	Stereo	filling	of	empty	scale	factor	bands	

If	stereo_filling	==	1,	the	following	procedure	is	carried	out	after	the	noise	filling	process	in	all	initially	
empty	 scale	 factor	 bands	 sfb	 at	 or	 above	 noiseFillingStartOffset	 (see	 FD	 noise	 filling)	 and	 below	
max_sfb_ste,	i.e.	all	bands	in	which	all	MDCT	lines	were	quantized	to	zero.	First,	the	energies	energy[]	and	
energy_dmx[]	of	the	given	sfb	and	the	corresponding	lines	in	downmix_prev[],	respectively,	are	computed	
via	sums	of	the	squares.	

energy_dmx[sfb] = 1e-8;
energy[sfb] = 0;
for (index = swb_offset[sfb]; index < swb_offset[sfb+1]; index++) {
 energy_dmx[sfb] += downmix_prev[window][index] * downmix_prev[window][index];
 spectrum[window][index] *= 4;
 energy[sfb] += spectrum[window][index] * spectrum[window][index];
}

Then,	given	sfbWidth[]	containing	the	number	of	lines	per	sfb,	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 119	
	

if (energy[sfb] < sfbWidth[sfb]) {
 tmp = min(10, sqrt((sfbWidth[sfb] – energy[sfb]) / energy_dmx[sfb]));
 factor = 0;
 for (index = swb_offset[sfb]; index < swb_offset[sfb+1]; index++) {
 spectrum[window][index] += downmix_prev[window][index] * tmp;
 factor += spectrum[window][index] * spectrum[window][index];
 }
 if ((factor != sfbWidth[sfb]) && (factor > 0)) {
 factor = min(10, sqrt(sfbWidth[sfb] / (factor + 1e-8)));
 for (index = swb_offset[sfb]; index < swb_offset[sfb+1]; index++) {
 spectrum[window][index] *= factor;
 }
 }
}

for	the	spectrum	of	each	group	window.	Then	the	scale	factors	are	applied	on	the	resulting	spectrum	as	
in	ISO/IEC	23003-3:2012,	7.3	with	the	scale	factors	of	the	empty	bands	being	processed	like	regular	scale	
factors.	

Note	 that,	unlike	described	 in	 ISO/IEC	23003-3:2012,	7.3,	noise_offset	 is	allowed	 to	be	non-zero	 (i.e.	
scf[g][sfb]	of	an	empty	band	can	be	adjusted	by	noise_offset)	even	if	noise_level	equals	zero	after	Step	1.	

5.5.5.4.10 MS	and	complex	prediction	processing	in	IGF	

5.5.5.4.10.1 General	

IGF	stereo	coding	is	applied	to	CPEs	where	igfIndependentTiling	is	zero	and	then	replaces	the	channel-
wise	decoding	in	subclause	5.5.5.4.8.	

The	IGF	joint	stereo	tool	is	based	on	the	joint	stereo	tool,	the	decoding	after	filling	is	done	the	same	way,	
in	comparison	to	independent	patching	the	residuals	are	transformed	from	the	already	decoded	left/right	
values	to	the	appropriate	mid/side	values	for	bands	where	joint	stereo	is	active.	

5.5.5.4.10.2 Helper	elements	

l_spec[]	 Array	containing	the	left	channel	spectrum	of	the	respective	channel	pair.	

r_spec[]	 Array	containing	the	right	channel	spectrum	of	the	respective	channel	
pair.	

l_pMDCT_flat[]	 Array	containing	the	left	channel	whitened	spectrum.	

r_pMDCT_flat[]	 Array	containing	the	right	channel	whitened	spectrum.		

l_E,	r_E	 Energies	 for	 the	 current	 subband,	 for	 the	 left	 and	 right	 channel	
respectively.	

l_igf_sN[],	r_igf_sN[]	 vectors	containing	information	on	energies	per	scalefactor	which	have	
been	not	quantized	to	zero,	for	the	left	and	right	channel	respectively.	

l_igf_pN[],	r_igf_pN[]	 vector	containing	information	on	energies	per	scalefactor	which	will	be	
copied	from	the	source	tile	range,	for	the	left	and	right	channel	
respectively.	

l_sb,	r_sb	 current	IGF	source	subbands,	for	the	left	and	right	channel	respectively.	

ISO/IEC	23008-3:202X(E)	

120	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

l_val,	r_val	 left	and	right	spectral	values	for	the	current	IGF	subband.	

sfb_per_ms_band	 Number	of	scalefactor	bands	per	M/S	band,	dependent	on	igfUseHighRes.	

SFB_PER_PRED_BAND	 Number	of	scalefactor	bands	per	complex	prediction	band,	equal	to	2.	

dpcm_alpha_q_re[][]	 Differentially	 coded	 real	 part	 of	 prediction	 coefficient	 of	 group	 g,	
scalefactor	band	sfb.	

alpha_q[][]	 real	or	imaginary	parts	of	prediction	coefficients.	

5.5.5.4.10.3 Decoding	process	

The	decoding	of	MS	and	complex	prediction	is	divided	into	3	parts	as	follows.	

Part	1:	Decoding	of	prediction	coefficients	

Equal	 to	 the	 decoding	 of	 the	 complex	 prediction	 coefficients,	 but	 only	 for	 the	 real	 part	 as	 in	
ISO/IEC	23003-3:2012,	subclause	7.7.2.3.2.	

Part	2:	Inverse	quantization	of	prediction	coefficients		

Equal	 to	 the	 inverse	quantization	of	 the	 complex	prediction	 coefficients	 as	 in	 ISO/IEC	23003-3:2012,	
subclause	7.7.2.3.3.	

Part	3:	IGF	apply	joint	stereo	process		

If	IGF	is	used	in	a	joint	stereo	manner	(igfIndependentTiling	is	false)	the	following	calling	sequence	shall	
be	applied:	

IGF_stereo(num_window_groups, num_windows, group_len) {
 if (!isShortWindow && igfUseWhitening) {
 igf_apply_whitening (l_spec, l_pMDCT_flat);
 igf_apply_whitening (r_spec, r_pMDCT_flat);
 }

 wg = wa = 0;
 for (g = 0; g < num_window_groups; g++) {
 l_igf_sN = {0};
 r_igf_sN = {0};
 l_igf_pN = {0};
 r_igf_pN = {0};
 for (w = 0; w < group_len[g]; w++) {
 IGF_calc_stereo(wg, group_len[g], l_nfSeed1, r_nfSeed1);
 Wg++;
 }
 for (w = 0; w y group_len[g]; w++) {
 IGF_apply_stereo(wa, l_nfSeed2, r_nfSeed2);
 wa++;
 }
 }
}

The	initial	value	of	the	pseudo-random	noise	seeds	l_nfSeed1	and	l_nfSeed2	as	well	as	the	initial	values	
of		r_nfSeed1	and	r_nfSeed2	shall	be	equal	in	order	to	synchronize	the	pseudo-random	noise	generator	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 121	
	

between	IGF_calc_stereo()	and	IGF_apply_stereo()	for	the	first	channel	and	for	the	second	channel	
respectively.	

IGF_calc_stereo()	is	used	to	compute	the	value	sets	igf_sN	and	igf_pN	respectively.	The	subroutine	
get_IGF_sb()	is	specified	in	subclause	5.5.5.4.6.	Please	note	that	igfCurrTileIdx[0]	is	a	vector	of	length	4,	
describing	the	current	tile	indices	of	channel	0,	and	igfCurrTileIdx[1]	is	a	vector	of	length	4	too,	
describing	the	current	tile	indices	of	channel	1	of	the	actual	CPE	element.	

IGF_calc_stereo(w, group_len, l_nfSeed1, r_nfSeed1) {
 igfInc = igfP;
 if (isShortBlock) igfInc = 1;
 for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb+=igfInc) {
 width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);

 r_E = 0; l_E = 0;
 for (bin = 0; bin < width; bin++) {
 tb = swb_offset[sfb]+bin;
 l_E += l_spec[w][tb] * l_spec[w][tb];
 r_E += r_spec[w][tb] * r_spec[w][tb];
 }
 l_igf_sN[sfb] += l_E/group_len;
 r_igf_sN[sfb] += r_E/group_len;

 r_E = 0; l_E = 0;
 for (bin = 0 ; bin < width ; bin++) {
 tb = swb_offset[sfb]+bin;
 l_sb = get_IGF_sb(igfCurrTileIdx[0], tb);
 r_sb = get_IGF_sb(igfCurrTileIdx[1], tb);
 l_val = l_spec[w][l_sb];
 r_val = r_spec[w][r_sb];
 if (!isShortWindow && igfUseWhitening) {
 l_tileIdx = get_IGF_tile_idx(tb);
 if (l_igf_WhiteningLevel[l_tileIdx] == 0) {
 l_val = l_pMDCT_flat[w][l_sb];
 }
 if (l_igf_WhiteningLevel[l_tileIdx] == 2) {
 l_val = randomSign(l_nfSeed1)*pow(2,21);
 }
 r_tileIdx = get_IGF_tile_idx(tb);
 if (r_igf_WhiteningLevel[r_tileIdx] == 0) {
 r_val = r_pMDCT_flat[w][r_sb];
 }
 if (r_igf_WhiteningLevel[r_tileIdx] == 2) {
 r_val = randomSign(r_nfSeed1)*pow(2,21);
 }
 }
 if (ms_used[g][sfb] || cplx_pred_used[g][sfb]) {
 tmp = l_val;
 l_val = 0.5 * (tmp + r_val);
 r_val = 0.5 * (tmp - r_val);
 }
 if (l_spec[w][tb] == 0) {
 l_E += l_val * l_val;
 }
 if (r_spec[w][tb] == 0) {
 r_E += r_val * r_val;
 }
 }
 l_igf_pN[sfb] += l_E/group_len;
 r_igf_pN[sfb] += r_E/group_len;
 }
}

ISO/IEC	23008-3:202X(E)	

122	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

IGF_apply_stereo	will	fill	spectral	gaps	with	previous	calculated	values:	
IGF_apply_stereo(w, l_nfSeed2, r_nfSeed2) {
 igfInc = igfP;
 if (isShortBlock) igfInc = 1;
 for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb += igfInc) {
 width = (swb_offset[MIN(sfb + igfInc, m_igfStopSfb)] - swb_offset[sfb]);

 l_dE = l_igf_curr[sfb];
 r_dE = r_igf_curr[sfb];
 l_sN = l_igf_sN[sfb];
 r_sN = r_igf_sN[sfb];
 l_pN = l_igf_pN[ch][sfb];
 r_pN = r_igf_pN[ch][sfb];
 l_mN = (l_dE*l_dE) * width – l_sN;
 r_mN = (r_dE*r_dE) * width – r_sN;

 if (l_mN > 0 && l_pN > 0) {
 l_gn = min(10, sqrt(l_mN/l_pN));
 } else {
 l_gn = 0;
 }
 if (r_mN > 0 && r_pN > 0) {
 r_gn = min(10, sqrt(r_mN/r_pN));
 } else {
 r_gn = 0;
 }
 for (bin = 0; bin < width; bin++) {
 tb = swb_offset[sfb]+bin;
 l_sb= get_IGF_sb(igfCurrTileIdx[0], tb);
 r_sb= get_IGF_sb(igfCurrTileIdx[1], tb);
 l_val = l_spec[w][l_sb];
 r_val = r_spec[w][r_sb];
 if (!isShortWindow && igfUseWhitening) {
 l_tileIdx = get_IGF_tile_idx(tb);
 if (l_igf_WhiteningLevel[l_tileIdx] == 0) {
 l_val = l_pMDCT_flat[w][l_sb];
 }
 if (l_igf_WhiteningLevel[l_tileIdx] == 2) {
 l_val = randomSign(l_nfSeed2)*pow(2,21);
 }
 r_tileIdx = get_IGF_tile_idx(tb);
 if (r_igf_WhiteningLevel[r_tileIdx] == 0) {
 r_val = r_pMDCT_flat[w][r_sb];
 }
 if (r_igf_WhiteningLevel[r_tileIdx] == 2) {
 r_val = randomSign(r_nfSeed2)*pow(2,21);
 }
 }
 if (ms_used[g][sfb] || cplx_pred_used[g][sfb]) {
 tmp = l_val;
 l_val = 0.5 * (tmp + r_val);
 r_val = 0.5 * (tmp - r_val);
 }
 if (l_spec[w][tb] == 0) {
 l_spec[w][tb] = l_gn * l_val;
 }
 if (r_spec[w][tb] == 0) {
 r_spec[w][tb] = r_gn * r_val;
 }
 }
 }
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 123	
	

After	the	filling	process,	the	upmix	is	now	applied	from	subband	swb_offset[m_igfStartSfb]	to	subband	
swb_offset[m_igfStopSfb]	as	specified	in	ISO/IEC	23003-3:2012,	7.7	replacing	pred_dir	by	igf_pred_dir	if	
prediction	is	active.	Note	that	since	only	real	prediction	is	used,	no	MDST	has	to	be	generated	for	these	
bands.	

5.5.5.4.11 Temporal	noise	flattening	in	IGF	

If	igfApplyTNF	is	1,	the	reconstructed	signal	by	IGF	is	temporally	flattened	in	the	frequency	domain.	The	
temporal	 noise	 flattening	 (TNF)	 is	 performed	 in	 a	 frequency-selective	 manner.	 The	 selection	 of	 the	
spectral	contents	to	be	temporally	flattened	is	achieved	by	comparing	the	quantized	MDCT	coefficients	
with	0.	The	contents	whose	coefficients	are	quantized	to	0	are	selected.	

In	 order	 to	 maintain	 the	 significant	 MDCT	 contents,	 they	 are	 temporarily	 replaced	 by	 the	 MDCT	
coefficients	which	are	similarly	generated	to	the	filled	coefficients	by	IGF:	

@ABCD$()*[i][jk] = l @ABCD[u][+)]vF ∙ wx6															
, *y	z{5|}Z[\]^[[u][+)] = 0											

, *y	x),mz{5|}Z[\]^[[u][+)]n > 0
,	

where	 z{5|}_PB`RP[u][+)] 	are	 the	 quantized	 MDCT	 coefficients,	 z{5|}[u][+)] 	are	 the	 MDCT	
coefficients	 after	 applying	 IGF,	 and	 vF 	and	 wx6 	are	 obtained	 by	 the	 same	 manner	 as	 defined	 in	
IGF_apply_mono()	and	IGF_apply_stereo(),	see	subclause	5.5.5.4.8.	

Afterwards	the	linear	prediction	of	the	MDCT	coefficients	z{5|}QPWa[u][+)]	is	performed	in	order	to	
obtain	the	temporally	flattened	MDCT	coefficients	z{5|}QEB[u][+)]	according	to	the	following	filtering:	

@ABCD$+![i][jk] = @ABCD$()*[i][jk] + o p,-!.+!(q) ∙ @ABCD$()*[i][jk −q]
/

)0&

	

where	{	is	equal	to	8. The	required	linear	prediction	coefficients	xbcBYEB(p)	are	derived	as	described	in	
the	following	three	steps:	

— First,	for	each	TNF	subdivisions	,5*w	the	normalization	factors	+FyE`RW(,5*w)	are	calculated:	

jJN123)(ZBLK) = o @ABCD$()*[i][jk]%, ZBLK = 0,… , 2
$+!!"#(56,7)

90+!$%"(56,7)

	

where	the	TNF	start	and	stop	bands	for	each	subdivision	are	defined	as:	

jJN:-+(ZBLK) = rLMN:-+ + mLMN;+< − LMN:-+n ∙
ZBLK
3 s , ZBLK = 0,… , 2	

jJN;+<(ZBLK) = rLMN:-+ + mLMN;+< − LMN:-+n ∙
ZBLK + 1

3 s , ZBLK = 0,… , 2	

— Second,	 the	windowed	normalized	autocorrelation	!!! 	of	 the	MDCT	spectrum	in	the	TNF	range	 is	
computed	 if	 the	normalization	 factor	"#$"#$%(&'())	exceeds	 the	 given	 threshold.	The	 following	
pseudo	code	describes	this	process.	

tnfAcfWindow[8] = {
 0.997803, 0.991211, 0.980225, 0.964844,
 0.945068, 0.920898, 0.892334, 0.859375}

threshold = 0.0000000037252902984619140625;
for (sDiv = 0; (sDiv < 3) && (tnfNorm[sDiv] > threshold); sDiv ++) {

ISO/IEC	23008-3:202X(E)	

124	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 rxx[0] = 3;
 for (lag = 1; lag <= 8; lag++) {
 rxx[lag] = 0;
 }
 for (lag = 1; lag <= 8; lag++) {
 acc = 0;
 for (tb = tnfBgn(sDiv); tb < tnfEnd(sDiv) - lag; tb++) {
 acc += pMDCTtemp[tb] * pMDCTtemp[tb + lag];
 }
 rxx[lag] += 1 / tnfNorm(sDiv) * tnfAcfWindow[lag - 1] * acc;
 }
}

— Third,	the	windowed	normalized	autocorrelation	values,	!!! ,	are	used	in	order	to	finally	calculate	the	

linear	prediction	coefficients	(LPC)	+&'()*((,)	by	solving	the	set	of	equations	given	by:	
op,-!.+!(q) ∙ t==(|L − q|)
/

)0&

= −t==(L), L = 1,… ,A	

This	set	of	equations	is	solved	using	the	Levinson-Durbin	recursion	given	by	the	following	pseudo	
code.	

pMemory = &memory[8]
for (i = 0; i < 8; i++) {
 memory[i] = rxx[i];
 pMemory[i] = rxx[i+1];
}

for (i = 0; i < 8; i++) {
 tmp = 0;
 if (memory[0] >= 1 / 65536) {
 tmp = -pMemory[i] / memory[0];
 }

 tmp = MIN(0.999, MAX(-0.999, tmp));
 parCoeff[i] = tmp;

 for (j = i; j < 8; j++) {
 k = pMemory[j] + tmp * memory[j - i];
 memory[j - i] += tmp * pMemory[j];
 pMemory[j] = k;
 }
}

a[0] = 1.0f;
a[1] = parCoeff[0];

for (i = 1; i < 8; i++) {
 for (j = 0; j < (i >> 1); j++) {
 tmp = a[j + 1];
 a[j + 1] += parCoeff[i] * a[i - 1 - j + 1];
 a[i - 1 - j + 1] += parCoeff[i] * tmp;
 }
 if (i & 1) {
 a[j + 1] += parCoeff[i] * a[j + 1];
 }
 a[i + 1] = parCoeff[i];
}
The	final	solution	for	the	LP	coefficients	is	then	given	as:	
	 	 p,-!.+!(q) = p(q),q = 0,… ,A − 1	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 125	
	

5.5.5.4.12 IGF	core	rescaling	

If	IGF	is	used	in	TCX	mode,	i.e.	fullbandLpd	is	equal	to	1	and	the	current	frame	is	LPD/TCX	coded,	the	
decoded	IGF	levels	are	used	for	rescaling	the	MDCT	coefficients	in	the	IGF	range.	This	process	mimics	the	
quantization	noise	adjustment	described	in	4.6.2	in	ISO/IEC	14496-3:2009	for	the	TCX	core	coder.	

After	 decoding	 the	 IGF	 levels	 as	 described	 in	 subclause	 5.5.5.4.4,	 for	 each	 IGF	 scalefactor	 band	 the	
corresponding	IGF	level	stored	in	igf_curr[]	is	multiplied	on	the	MDCT	coefficients	of	the	TCX	spectrum	
of	the	current	frame:	

for (tile = 0; tile < nT; tile++) {
 for (sfb = m_igfStartSfb; sfb < m_igfStopSfb; sfb++)
 width = (swb_offset[MIN(sfb + 1, m_igfStopSfb)] - swb_offset[sfb]);
 for (bin = 0; bin < width; bin++) {
 tb = swb_offset[sfb]+bin;
 pMDCT[tb] *= igf_curr[sfb];
 }
}

As	TCX	does	not	support	grouping	of	windows,	i.e.	num_windows	=	1,	the	window	index	w	is	always	0.	

 Audio	pre-roll	

5.5.6.1 General	

The	AudioPreRoll()	syntax	element	is	used	to	transmit	audio	information	of	previous	frames	along	with	
the	data	of	the	present	frame.	The	additional	audio	data	can	be	used	to	initialize	the	decoder	processing	
pipeline	 (pre-roll),	 thus	 enabling	 random	 access	 at	 stream	 access	 points	 (SAP)	 that	 make	 use	 of	
AudioPreRoll(),	seamless	transition	between	different	codec	configurations	including	bitrate	adaptation.	

An	mpegh3daExtElement()	with	the	usacExtElementType	of	ID_EXT_ELE_AUDIOPREROLL	shall	be	used	
to	transmit	the	AudioPreRoll().	

5.5.6.2 Semantics	

configLen	 Size	of	the	configuration	syntax	element	in	bytes.	

Config()	 The	decoder	configuration	syntax	element.	In	the	context	of	this	standard	this	
shall	 be	 the	Mpegh3daConfig()	 as	 defined	 in	 subclause	 5.2.2.1.	 The	 Config()	
field	 may	 be	 transmitted	 to	 be	 able	 to	 respond	 to	 changes	 in	 the	 audio	
configuration	(e.g.	switching	of	streams).	

numPreRollFrames	 The	number	of	pre-roll	access	units	(AUs)	transmitted	as	audio	pre-roll	data.	
Typically,	a	value	of	1	is	signalled	for	initializing	inverse	transform	filterbanks	
of	the	core	decoder	and	the	renderers.	

auLen		 AU	length	in	bytes.	

AccessUnit()	 The	pre-roll	AU(s).	

applyCrossfade		 If	this	flag	is	set	to	1,	a	linear	crossfade	shall	be	applied	in	case	of	configuration	
change,	as	defined	in	subclause	5.5.6.3.3.	

apr_reserved		 reserved	bit	shall	be	zero.	

ISO/IEC	23008-3:202X(E)	

126	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

NOTE	 The	 pre-roll	 data	 carried	 in	 the	 extension	 element	 can	 be	 transmitted	 “out	 of	 band”,	 i.e.	 the	 buffer	
requirements	might	not	be	satisfied.	

In	order	to	use	AudioPreRoll()	for	both	random	access	and	seamless	configuration	changes	the	following	
restrictions	apply.	

— The	 first	 element	 of	 every	 frame	 shall	 be	 an	 extension	 element	 (mpegh3daExtElement)	 of	 type	
ID_EXT_ELE_AUDIOPREROLL.	

— The	corresponding	mpegh3daExtElement()	shall	be	configured	as	specified	in	Table	88.	

— Consequently,	 if	pre-roll	data	 is	present,	 this	mpegh3daFrame()	 shall	 start	with	 the	 following	bit	
sequence:	

— “1”:	usacIndependencyFlag;	
— “1”:	usacExtElementPresent	(referring	to	audio	pre-roll	extension	element);	

— “0”:	usacExtElementUseDefaultLength	(referring	to	audio	pre-roll	extension	element).	
— If	 no	 AudioPreRoll()	 is	 transmitted,	 the	 extension	 payload	 shall	 not	 be	 present	

(usacExtElementPresent	=	0).	

— The	pre-roll	frames	with	index	“0”	shall	be	independently	decodable,	i.e.	usacIndependencyFlag	shall	
be	set	to	“1”.	

— To	enable	seamless	configuration	changes	and	bitrate	adaptations	the	involved	bitstreams	shall	have	
the	element	receiverDelayCompensation	set	to	one.	

Table	88	—	Setup	of	mpegh3daExtElementConfig()	for	AudioPreRoll()	

Bitstream	Field	 Value

usacExtElementType	 ID_EXT_ELE_AUDIOPREROLL		
usacExtElementConfigLength	 0	
usacExtElementDefaultLengthPresent	 0	
usacExtElementPayloadFrag	 0	

5.5.6.3 Decoding	process	

5.5.6.3.1 General	

This	 subclause	 describes	 the	 decoding	 process	 for	 both	 random	 access/immediate	 play-out	 and	
configuration	changes	including	bitrate	adoption	scenarios.	

5.5.6.3.2 Random	access	and	immediate	play-out	

Random	 access	 and	 immediate	 play-out	 is	 possible	 at	 every	 frame	 that	 utilizes	 the	 AudioPreRoll()	
structure	as	specified	in	this	subclause.	The	following	pseudo-code	describes	the	decoding	process.	

if(usacIndependencyFlag == 1){
 if(usacExtElementPresent == 1){

 /* In this case usacExtElementUseDefaultLength shall be 0! */
 if(usacExtElementUseDefaultLength != 0) goto error;

 /* parse over length information and discard */
 getmpegh3daExtElementPayloadLength();

 /* Check for presence of config and re-initialize if necessary */

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 127	
	

 int configLen = getConfigLen();
 if(configLen > 0){
 config c = getConfig(configLen);
 ReConfigureDecoder(c);
 }

 /* Get pre-roll AUs and decode, discard output samples */
 int numPreRollFrames = getNumPreRollFrames();
 for(auIdx = 0; auIdx < numPreRollFrames; auIdx++)
 int auLen = getAuLen();
 AU nextAU = getPreRollAU(auLen);
 DecodeAU(nextAU);
 /* outSamplesFrame are discarded */
 }
 }
}
/* Internal decoder states are initialized at this point. Continue normal
decoding */

5.5.6.3.3 Configuration	change	and	bitrate	adaption	

If	receiverDelayCompensation==1	 the	AudioPreRoll()	structure	as	specified	in	this	subclause	can	be	
used	to	enable	seamless	configuration	changes	and	bitrate	adaptions.	The	decoding	process	is	specified	
below.	

If	 a	 configuration	 change	 is	detected	by	 the	decoder	 the	 following	 steps	 shall	be	applied.	Note	 that	 a	
configuration	 (and	 thus	 a	 configuration	 change)	 may	 be	 signalled	 to	 the	 decoder	 either	 by	 a	 new	
mpegh3daConfig()	 element	 (e.g.	 in	 an	 MHAS	 packet	 of	 type	 PACTYP_MPEGH3DACFG)	 or	 within	 the	
AudioPreRoll()	structure.	

— Flush	 the	 internal	 decoder	 states	 and	 buffers	 for	 the	 core	 decoder	 and	 rendering	 path	
(FlushDecoder())	by	decoding	hypothetical	access	units	composed	of	all	zero	samples.	Store	the	
resulting	 output	 samples	 (outSamplesFlush)	 in	 a	 temporary	 buffer.	 The	 number	 of	 flushed	
samples	(numSamplesFlushed)	shall	equal	the	core	decoder	and	rendering	path	delay.	

— Re-initialize	the	decoder	with	the	new	configuration.	
— Decode	 and	 render	 all	 contained	pre-roll	AUs	 and	discard	 the	 resulting	 rendered	 samples	 at	 the	

mixer.	

— Decode	 and	 render	 the	 current	 AU	 and	 following	 AUs	 and	 store	 the	 resulting	 output	 samples	
(outSamplesFrame).	Discard	 the	 first	numSamplesFlushed	 samples	of	outSamplesFrame.	
After	discarding,	the	first	remaining	sample	in	outSamplesFrame	 is	the	first	valid	decoded	and	
rendered	sample.	

— During	 startup	 of	 the	 reinitialized	 decoder	 feed	 samples	 from	 the	 temporary	 buffer	
(outSamplesFlush)	into	the	post-processor.	Note	that	due	to	the	constant	decoder	delay	enforced	
by	receiverDelayCompensation==1	the	temporary	buffer	will	cover	exactly	the	startup	phase	of	
length	numSamplesFlushed	until	valid	samples	from	the	reinitialized	decoder	will	arrive	at	the	
mixer.	

— After	 the	 startup	 of	 the	 reinitialized	 decoder	 feed	 samples	 from	 the	 reinitialized	 decoder
(outSamplesFrame)	into	the	post-processor.	

— In case applyCrossfade is set to 1 and	the	mixer	operates	in	the	time	domain,	an	additional	buffer	
of	 128	 samples	 (crossfadeFlush)	 shall	 be	 flushed	 in	 the	 FlushDecoder()	 call.	 The	

ISO/IEC	23008-3:202X(E)	

128	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

crossfadeFlush	 buffer	 shall	 be	 used	 for	 a	 128	 sample	 linear	 crossfade	 between	
crossfadeFlush	and	the	first	128	valid	samples	of	the	reinitialized	decoder	arriving	at	the	mixer:	

 /* Apply crossfade */
 if(applyCrossfade) {
 for(i = 0; i < 128; i++){
 outSamples[i] = crossfadeFlush [i] * (1-i/127) +
 outSamplesFrame[i] * (i/127)
 }
 }

 Fullband	LPD	

5.5.7.1 Tool	description	

In	the	fullband	LPD	mode,	the	ACELP	core	mode	(see	ISO/IEC	23003-3:2012,	7.14)	is	operated	at	half	the	
sampling	frequency	of	the	MDCT	based	TCX	core	mode	(see	ISO/IEC	23003-3:2012,	7.15),	i.e.	

N5,.?@ = 2 ∙ N5,A?;BC	
To	adjust	the	output	signals	at	different	sampling	frequencies,	the	ACELP	output	is	upsampled	applying	
a	 time-domain	 resampler.	 The	missing	 bandwidth	 ranging	 from	 fs,ACELP/2	 to	 fs,TCX/2	 in	 case	 of	 ACELP	
processing	in	comparison	to	TCX	in	combination	with	enhanced	noise	filling	(see	subclause	5.5.7.8.5)	is	
addressed	by	the	time-domain	bandwidth	extension	(see	subclause	5.5.8).	This	subclause	describes	the	
decoding	of	fullband	LPD	and	related	changes	in	decoding	with	existing	tools.	

5.5.7.2 Data	elements	

fullbandLpd	 this	flag	signals	the	usage	of	the	fullband	LPD	tool.	

window_shape	 window	shape	of	the	current	subframe.	

5.5.7.3 Helper	elements	

fs,TCX	 sampling	rate	of	the	fullband	TCX.	

fs,ACELP	 sampling	rate	of	the	ACELP.	

lg	 number	of	spectral	coefficients	of	the	current	TCX	subframe.	

rl[]	 TCX	noise	generation	flag	array,	contains	only	the	values	1	and	0.	

rr[]	 reconstructed	spectrum.	

x[]	 output	of	the	IMDCT.	

nfBgn	 subband	index;	this	index	indicates	the	start	of	the	TCX	noise	generation.	

nfEnd	 subband	index;	this	index	indicates	the	stop	of	the	TCX	noise	generation.	

g	 re-scaling	gain	factor.	

zTCX,FB	 time-domain	output	of	TCX	sampled	at	fs,TCX.	

zTCX,LB	 time-domain	output	of	TCX	sampled	at	fs,ACELP.	

zACELP	 time-domain	output	of	ACELP	sampled	at	fs,ACELP.	

zOUT	 mixed	time-domain	output	sampled	at	fs,TCX.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 129	
	

z_fb[]	 decoded	windowed	time	domain	signal	of	the	fullband	TCX	@	fs,TCX.	

z_lb[]	 decoded	windowed	time	domain	signal	of	the	fullband	TCX	@	fs,ACELP.	

5.5.7.4 Framing	

In	 case	 of	 fullband	 LPD	 coding,	 i.e.	 fullbandLpd	 is	 equal	 to	 1,	 long	 TCX	 frames	 correspond	 to	
coreCoderFrameLength	 samples	 @	 fs,TCX	 and	 medium	 TCX	 frames	 correspond	 to	
coreCoderFrameLength/2	 samples	 @	 fs,TCX.	 For	 ACELP,	 the	 standard	 frame	 size	 of	
coreCoderFrameLength/4	samples	@	fs,ACELP	as	described	in	ISO/IEC	23003-3:2012,	7.14	is	used,	while	
coreCoderFrameLength=1024	is	fixed.	Possible	frame	combinations	within	one	superframe	are	shown	in	
Figure	17.	

	
Figure	17	—	Possible	frame	combinations	in	fullband	LPD	within	one	superframe	

5.5.7.4.1 Mode	coding	

In	case	of	fullband	LPD,	i.e.	fullbandLpd	is	equal	to	1,	the	lpd	mode	coding	is	the	same	as	described	in	
ISO/IEC	23003-3:2012,	6.2.10	while	one	“superframe”	consists	of	only	two	frames	instead	of	four.	Due	to	
this,	the	definitions	in	ISO/IEC	23003-3:2012,	Table	89	are	replaced	with	those	in	Table	89.	

Table	89	—	Mapping	of	coding	modes	for	lpd_channel_stream()	in	case	of	fullband	LPD	

	 meaning	of	bits	in	bit-field	lpd_mode	 remaining	
mod[]	entries

lpd_mode	 bit	2	 bit	1	 bit	0

0..3	 0	 mod[1]	 mod[0]

4	 1	 0	 0	 mod[1]=2	

mod[0]=2	

ACELP
256 @ fs,ACELP

ACELP
256 @ fs,ACELP

ACELP
256 @ fs,ACELP

ACELP
256 @ fs,ACELP

medium TCX
512 @ fs,TCX

medium TCX
512 @ fs,TCX

medium TCX
512 @ fs,TCX

medium TCX
512 @ fs,TCX

long TCX
1024 @ fs,TCX

coreCoderFrameLength

ISO/IEC	23008-3:202X(E)	

130	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	case	of	fullband	LPD,	as	there	are	only	two	frames,	coding	mode	3	is	not	applicable,	thus	the	definitions	
in	ISO/IEC	23003-3:2012,	Table	92	are	replaced	with	those	in	Table	90.	

Table	90	—	Coding	modes	indicated	by	mod[]	in	case	of	fullband	LPD	

Value	of	
mod[x]	 Coding	mode	in	frame	 Bitstream	

element

0	 ACELP	 acelp_coding()

1	 medium	TCX	(ccfl/2)	 tcx_coding()

2	 long	TCX	(ccfl)	 tcx_coding()	

In	case	of	fullband	LPD,	as	there	are	only	two	frames,	coding	mode	3	is	not	applicable,	thus	the	definitions	
in	ISO/IEC	23003-3:2012,	Table	148	are	replace	with	those	in		Table	91.	

Table	91	—	number	of	spectral	coefficients	as	a	function	of	mod[]	and	
coreCoderFrameLength	(ccfl)	

Value	of	
mod[x]	

Number	lg	of	spectral	
coefficients	 ZL	 L	 M	 R	 ZR

1	 ccfl/2	 0	 ccfl/2	 0	 ccfl/2	 0

2	 ccfl	 ccfl/4	 ccfl/2	 ccfl/2	 ccfl/2	 ccfl/4	

5.5.7.5 TD	resampler	

The	 time-domain	 (TD)	 resampler	 is	 used	 to	 upsample	 the	 time-domain	 output	 of	 ACELP	 (see	
ISO/IEC	23003-3:2012,	 7.14)	 and	 the	 forward	 aliasing	 cancellation	 tool	 (see	 ISO/IEC	23003-3:2012,	
7.16)	by	the	factor	of	2,	in	order	to	bring	the	output	to	the	same	sampling	rate	as	the	fullband	MDCT	based	
TCX	output.	

Every	 2	 samples	 of	 the	 time-domain	 input	 signal	 are	 separated	 by	 a	 zero-valued	 sample	 to	 form	 a	
sequence	with	a	sampling	frequency	(fs,out)	which	is	increased	by	the	factor	of	2	compared	to	the	sampling	
frequency	of	the	input	signal	(fs,in	=	fs,out/2).	Subsequently,	the	upsampled	sequence	sup	is	filtered	using	an	
FIR	interpolation	filter	of	length	N	given	by	the	symmetric	filter	coefficients	bk	in	Table	92	to	form	the	
time-domain	output	signal	sout	for	each	sample	of	index	i	by:	

Z2D$(L) = okE ∙ ZD*
1F&

E0'

(L − F)	

The	resampler	introduces	a	delay	of	30	samples	at	fs,out	to	the	upsampled	signal	,`dQ .	

Table	92	—	Interpolation	filter	coefficients	bk	

k	 bk

30	 1

29,	31	 0,634	876	04

28,	32	 0

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 131	
	

k	 bk

27,	33	 -0,207	013	53

26,	34	 0

25,	35	 0,118	794	87

24,	36	 0

23,	37	 -0,079	265	75

22,	38	 0

21,	39	 0,056	156	42

20,	40	 0

19,	41	 -0,04	070	711

18,	42	 0

17,	43	 0,029	576	17

16,	44	 0

15,	45	 –0,021	220	66

14,	46	 0

13,	47	 0,014	831	15

12,	48	 0

11,	49	 0,009	939	03

10,	50	 0

9,	51	 0,006	248	19

8,	52	 0

7,	53	 -0,003	554	76

6,	54	 0

5,	55	 0,001	705	82

4,	56	 0

3,	57	 -0,000	577	01

2,	58	 0

1,	59	 0,000	060	13

0,	60	 0	

5.5.7.6 LPC	filter	

Yet,	as	there	are	only	2	ACELP	frames	per	superframe	in	case	of	fullbandLPD,	the	maximum	number	of	
LPC-filters	to	be	present	within	1	superframe	changes	from	5	to	3.	The	LPC-filters	LPC2	and	LPC3	are	not	
used,	while	the	remaining	LPC-filters	correspond	to	LPC0,	LPC1	and	LPC4.	Thus,	in	case	of	fullbandLPD,	
the	conditions	of	presence	of	LPC-filters	are	defined	according	to	Table	93,	and	possible	quantization	
modes	are	defined	according	to	Table	94.	

ISO/IEC	23008-3:202X(E)	

132	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	93	—	Conditions	for	the	presence	of	a	given	LPC	filter	in	the	bitstream	in	fullbandLPD	

LPC	filter	 Present	if

LPC0	 first_lpd_flag=1

LPC1	 mod[0]<2

LPC4	 always	

Table	94	—	Allowed	absolute	and	relative	quantization	modes,	corresponding	bitstream	
signaling	of	mode_lpc	and	coding	modes	for	codebook	numbers	nk	

Pos.	in	
Bitstr.	 Present	if	 Filter	 Quantization	mode	 mode_lpc	 Binary	

Code	
nk	

mode

1.	 always	 LPC4	 Absolute	 0	 (none)	 0

2.	 first_lpd_flag=1	 LPC0	
Absolute	 0	 0	 0

Relative	to	LPC4	 1	 1	 3

3.	 mod[0]<2	 LPC1	

Absolute	 0	 10	 0

Relative	to	
(LPC0+LPC4)/2	a	 1	 11	 1

Relative	to	LPC4	 2	 0	 3
a	 In	this	mode,	there	is	no	second-stage	AVQ	quantizer.	

5.5.7.7 ACELP	decoding	

In	case	of	fullband	LPD,	i.e.	fullbandLpd	is	equal	to	1,	ACELP	is	decoded	and	processed	as	described	in	
ISO/IEC	23003-3:2012,	7.14.	Subsequent	 to	 the	ACELP	synthesis	and	prior	 to	writing	 it	 to	 the	output	
buffer,	the	ACELP	output	is	upsampled	by	the	factor	of	2	using	the	time-domain	resampler	described	in	
subclause	 5.5.7.5.	 The	 TD	 resampler	 is	 initialized	 by	 filtering	 previous	 samples	 to	 enable	 delayless	
upsamling.	

5.5.7.8 TCX	decoding	

5.5.7.8.1 TCX	frequency	band	offset	tables	

For	the	noise	filling,	intelligent	gap	filling,	and	temporal	noise	shaping	algorithms	applied	in	the	MDCT	
based	TCX,	a	vector	swb_offset_tcx[]	of	frequency	band	offsets	(i.	e.	indices	of	spectral	bins	representing	
frequency	band	borders)	is	required.	Identically	to	8-short-window	FD	channels	and	frames	coded	using	
window_sequence	==	EIGHT_SHORT_SEQUENCE,	these	TCX	band	offsets	are	based	on	the	sampling-rate	
dependent	swb_offset_short_window[]	values	defined	in	ISO/IEC	14496-3:2009,	Tables	4.130	to	4.141.	
In	 the	 context	 of	 TCX	 decoding	 the	 frequency	 band	 offset	 tables	 shall	 be	 extended	 such	 that	
swb_offset_short[num_swb_short_window]	 equals	 half	 the	 window	 length	 of	 the	
EIGHT_SHORT_SEQUENCE,	e.g.	128.	

The	swb_offset_tcx[]	vector	for	a	given	TCX	window	is	determined	using	value	lg	from	Table	91:	

swb_offset_tcx[i]	=	swb_offset_short_window[i]	·	f(lg),	i	=	0,	1,	2,	…,	num_swb_short_window,	

where	f(lg)	=	lg	/	128,	with	lg	being	based	on	vector	mod[]	defined	according	to	Table	56	in	5.2.3.2.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 133	
	

5.5.7.8.2 TCX	noise	generation	

The	noise	filling	in	MDCT	based	TCX	is	applied	as	described	in	ISO/IEC	23003-3:2012,	subclause	7.15.3.	
However,	the	noise	filling	start	index,	lg/6	and	stop	index,	lg	are	modified	as	follows	if	fullbandLpd	==	1.	

A	run	of	8	non-zeros	is	detected	according	to	the	following	pseudo	code,	where	nfBgn	and	nfEnd	depend	
on	fullbandLpd	and	enhancedNoiseFilling	and,	in	case	of	the	latter,	the	swb_offset_tcx	bin	index	array:	

if (fullbandLpd) {
 nfBgn = (lg/6) & 2040;
 nfEnd = enhancedNoiseFilling ? igfBgn : lg;
 nfEnd = min(nfEnd, min(lg, swb_offset_tcx[max_sfb]));
} else {
 nfBgn = (lg/6);
 nfEnd = lg;
}

for (i = 0; i < nfBgn; i++) {
 rl[i] = 1;
}

for (i = nfBgn; i < nfEnd; i += 8) {
 int k, maxK = min(nfEnd, i+8);
 tmp = 0;
 for (k = i; k < maxK; k++) {
 tmp += x_tcx_invquant[k] * x_tcx_invquant[k];
 }

 if (tmp != 0) {
 for (k = i; k < maxK; k++) {
 rl[k] = 1;
 }
 } else {
 for (k = i; k < maxK; k++) {
 rl[k] = 0;
 }
 }
}

5.5.7.8.3 Adaptive	low-frequency	de-emphasis	

The	purpose	of	the	adaptive	low-frequency	emphasis	and	de-emphasis	(ALFE)	processes	is	to	improve	
the	subjective	performance	of	the	frequency-domain	TCX	codec	at	low	frequencies.	To	this	end,	the	TCX	
low-frequency	MDCT	spectral	lines	are	amplified	prior	to	quantization	in	the	encoder,	thereby	increasing	
their	quantization	SNR,	and	this	boosting	is	reversed	prior	to	the	inverse	MDCT	operation	in	the	decoder.	

The	ALFE	operates	on	the	spectral	lines	in	vector	x[]	directly	after	the	above-noted	inverse	quantization,	
noise	filling	and	if	enabled,	frequency-domain	prediction	(i.	e.	x[]	represents	either	the	x_tcx_invquant[]	
or	outputSpecCurr[]).	If	both	fullbandLpd	and	enhancedNoiseFilling	are	zero	the	conventional	ALFE	
algorithm,	described	as	a	four-step	“de-shaping”	procedure	in	ISO/IEC	23003-3:2012,	7.15,	is	applied.	

Otherwise,	the	ALFE	operates	based	on	the	LPC	frequency-band	gains,	lpcGains[],	which	are	derived	from	
the	gains	g1	and	g2	used	for	FD	noise	shaping,	as	defined	in	ISO/IEC	23003-3:2012,	7.15,	by:	

lpcGains[k]	=	sqrt(g1[k]	*	g2[k]),	i.	e.	the	geometric	mean	of	g1	and	g2	at	each	index	k.	

ISO/IEC	23008-3:202X(E)	

134	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	ALFE	decoding	is	achieved	as	follows.	First,	the	minimum	and	maximum	of	the	first	nine	gains	–	the	
low-frequency	gains	–	are	found	using	comparison	operations	executed	within	a	loop	over	the	gain	
indices	0	to	8.,	i.	e.	over	lpcGains[i]	with	i	=	0,	1,..,	8.	Then,	if	the	ratio	between	the	minimum	and	
maximum	gain	values	exceeds	a	threshold	of	1/32,	a	gradual	lowering	of	the	lowest	lines	in	x	is	
performed	such	that	the	line	at	index	0	is	attenuated	by	(max/(32	·	min))0.25	and	the	line	at	index	
alfeLength	is	not	attenuated:	

alfeLength = lg / 8;
tmp = 32 * min;
if ((max < tmp) && (tmp > 0)) {
 fac = tmp = pow(max / tmp, 1/(4 * alfeLength));
 /* gradual lowering of lowest alfeLength lines: */
 for (i = alfeLength-1; i >= 0; i--) {
 x[i] *= fac;
 fac *= tmp;
 }
}

5.5.7.8.4 	MDCT	domain	rescaling	in	TCX	

In	MDCT	 based	 TCX	 coding,	 the	 reconstructed	 spectrum	 rr[]	 is	 fed	 into	 an	 inverse	MDCT.	 The	 non-
windowed	 output	 signal,	 x[],	 is	 re-scaled	 by	 the	 gain,	 g,	 obtained	 by	 an	 inverse	 quantization	 of	 the	
decoded	global_gain	index	as	described	in	ISO/IEC	23003-3:2012,	7.15.3.	If	fullbandLpd	 is	equal	to	1,	
the	rescaling	of	the	spectrum	is	performed	in	the	MDCT	domain.	The	stop	index	of	the	core	coder	rescaling	
depends	on	enhancedNoiseFilling:	

rsEnd = enhancedNoiseFilling ? min(lg, igfBgn) : lg;
rr[i] = rr[i]·g; i = 0 .. rsEnd – 1

5.5.7.8.5 Enhanced	noise	filling	in	TCX	

In	MDCT	based	TCX	coding,	enhanced	noise	filling	is	carried	out	by	the	intelligent	gap	filling	(IGF)	tool	as	
described	in	subclause	5.5.5	if	enhancedNoiseFilling	is	equal	to	1.	

The	IGF	decoding	process	for	each	TCX	spectrum	is	performed	after	the	arithmetic	decoding	noise	filling	
and	rescaling,	but	before	the	de-shaping	is	applied	to	the	spectrum.	

5.5.7.8.6 De-shaping	

The	spectrum	de-shaping	is	applied	to	the	reconstructed	spectrum	according	to	ISO/IEC	23003-3:2012,	
7.15.3.	If	fullbandLpd	is	equal	to	1,	the	inverse	FDNS	operation	consists	in	filtering	the	reconstructed	
spectrum	r[i]	using	the	recursive	filter:	

rr[i] = a[i]·r[i]+b[i]·rr[i-1], i = 0 ... lg/2-1,

where	a[i]	and	b[i]	are	derived	from	the	left	and	right	gains	g1[k],	g2[k]	using	the	formulae:	

a[i] = 2·g1[k]·g2[k]/(g1[k]+g2[k]),
b[i] = (g2[k]-g1[k])/(g1[k]+g2[k])

In	the	above,	the	variable	k	is	equal	to	i/(lg/M)	to	take	into	consideration	the	fact	that	the	LPC	spectrums	
are	decimated,	where	M=coreCoderFrameLenght/16.	

The	spectral	coefficients	between	lg/2	and	lg	are	filtered	by	holding	the	last	calculated	filter	coefficients:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 135	
	

rr[i] = a[i]·r[i]+b[i]·rr[i-1], i = lg/2 ... lg-1,

where	a[i]	and	b[i]	are	derived	from	the	left	and	right	gains	g1[M-1],	g2[M-1]	using	the	formulae:	

a[i] = 2·g1[M-1]·g2[M-1]/(g1[M-1]+g2[M-1]),
b[i] = (g2[M-1]-g1[M-1])/(g1[M-1]+g2[M-1])

5.5.7.8.7 Temporal	noise	shaping	in	TCX	

In	MDCT	based	TCX	coding,	temporal	noise	shaping	(TNS)	is	applied	as	in	short-block	FD	channels	(i.e.	
channels	and	 frames	with	window_sequence==EIGHT_SHORT_SEQUENCE)	and	 follows	the	bitstream	
syntax	and	description	specified	in	ISO/IEC	23003-3:2012,	5.3.2	and	7.8.	If	tns_data_present	≠	0	for	a	
given	lpd_channel_stream(),	a	single-window	instance	of	tns_data()	is	read	for	each	TCX	spectrum.	

The	TNS	decoding	(i.e.	synthesis	filtering)	process	for	each	TCX	spectrum	is	performed	after	the	arithme-
tic	decoding,	noise	filling,	frequency-domain	prediction	and	enhanced	noise	filling	steps,	as	referenced	in	
ISO/IEC	23003-3:2012,	7.8	and,	in	case	of	intelligent	gap	filling	with	TTS,	in	subclause	5.5.5.4.5.	The	only	
difference	is	that	the	swb_offset_short_window[]	values	employed	for	frequency	band	restriction	of	the	
TNS	filtering	process	are	multiplied	with	a	factor	f(mod[k]),	as	described	in	subclause	5.5.7.8.1.	

5.5.7.8.8 Inverse	MDCT	in	TCX	

The	reconstructed	spectrum	rr[]	is	fed	into	an	inverse	modified	discrete	cosine	transform	(IMDCT)	to	
obtain	the	non-windowed	time	domain	output	signal	x[]	as	described	in	ISO/IEC	23003-3.	If	fullbandLpd	
is	equal	to	1,	it	is	necessary	to	perform	two	independent	IMDCTs,	one	for	the	fullband	TCX	output	z_fb[]	
and	one	for	the	down-sampled	lowband	TCX	output	z_lb[]	which	will	be	 later	used	for	 initializing	the	
ACELP	core.	The	down-sampling	by	the	constant	factor	of	2	is	achieved	by	applying	an	IMDCT	of	half	the	
length	of	the	regular	IMDCT,	i.e.	by	applying	an	IMDCT	of	length	lg/2.	

5.5.7.8.9 TCX	windowing	

In	case	of	fullband	LPD,	i.e.	fullbandLpd	is	equal	to	1,	the	windows	applied	to	the	TCX	frames	prior	to	the	
transform	and	after	inverse	transform	are	depicted	in	Table	95.	

Table	95	—	Window	shapes	for	TCX	frames	in	fullband	LPD	

Frame	 Window	shape	(schematic)

medium	TCX

	

long	TCX	

	

	

coreCoderFrameLength/2 @ fs,TCX

coreCoderFrameLength @ fs,TCX

ISO/IEC	23008-3:202X(E)	

136	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

However,	when	switching	from	or	to	FD	mode,	the	TCX	windows	are	adapted	in	fullband	LPD	mode,	i.e.	
fullbandLpd	 is	 equal	 to	1,	while	 the	windows	 for	 the	FD	core	 remain	 the	 same.	The	TCX	 transitions	
window	shapes	are	schematically	depicted	in	Table	96	and	Table	97.	

Table	96	—	Transition	window	shapes	of	length	N=1024	samples	for	medium	TCX	frames	in	
fullband	LPD	

Transition	 Window	shape	(schematic)

medium	TCX	à	

LONG_STOP_SEQUENCE	/	
STOP_START_SEQUENCE	

	

medium	TCX	à	

EIGHT_SHORT_SEQUENCE	

	

LONG_START_SEQUENCE	/	
STOP_START_SEQUENCE	à	

medium	TCX	

	

EIGHT_SHORT_SEQUENCE	à	

medium	TCX	

	

	

Table	97	—	Transition	window	shapes	of	length	N=1536	samples	for	long	TCX	frames	in	
fullband	LPD	

Transition	 Window	shape	(schematic)

long	TCX	à	

LONG_STOP_SEQUENCE	/	
STOP_START_SEQUENCE	

	

long	TCX	à	

EIGHT_SHORT_SEQUENCE	

	

LONG_START_SEQUENCE	/	
STOP_START_SEQUENCE	à	

long	TCX	

	

EIGHT_SHORT_SEQUENCE	à	

long	TCX	

	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 137	
	

The	 calculation	 formulae	 of	 the	 window	 shapes	 are	 described	 in	 ISO/IEC	23003-3:2012,	 7.9.3.2.	 In	
accordance	to	the	previous	frame,	the	left	slope	of	the	window	shape	and	according	to	the	presence	of	
window_shape,	 the	 right	 slope	 of	 the	 window	 shape	 can	 either	 be	 a	 sine	 or	 a	 KBD	 window.	 For	
window_shape	==	1,	the	window	coefficients	used	for	the	IMDCT	are	given	by	the	Kaiser–Bessel	derived	
(KBD)	window,	otherwise	the	sine	window	is	employed	(see	ISO/IEC	23003-3:2012,	7.9.3.2).	

If	the	first	access	unit	(AU)	is	in	fullband	LPD	mode,	i.e.	fullbandLpd	is	equal	to	1,	and	the	first	subframe	
within	this	AU	is	TCX	coded,	then	the	window_shape	of	the	left	half	of	this	subframe	window	shall	adopt	
the	window_shape	of	the	right	half.	

5.5.7.9 Forward	aliasing	cancellation	(FAC)	tool	

In	 case	 of	 fullband	 LPD,	 i.e.	 fullbandLpd	 is	 equal	 to	 1,	 the	 FAC	 tool	 is	 decoded	 as	 described	 in	
ISO/IEC	23003-3:2012,	7.16.	Subsequent	to	the	decoding	and	prior	to	writing	it	to	the	output	buffer,	the	
FAC	 signal	 is	 upsampled	by	 the	 factor	 of	 2,	 using	 the	 time-domain	 resampler	described	 in	 subclause	
5.5.7.5.	

Therefore	the	FAC	signal	fac	is	extended	to	fac_ext	as	described	by	the	following	pseudo	code	in	order	to	
allow	for	delayless	upsampling	using	the	TD	resampler:	

for (i = 0; i < 2 * lfac; i++) {
 fac_ext[15 + i] = fac[i];
}
for (i = 0; i < 15; i++) {
 fac_ext[15 - 1 - i] = 2 * fac[0] – fac[1 + i];
 fac_ext[15 + 2 * lfac + i] = 2 * fac[2 * lfac – 1] – fac[2 * lfac – 2 - i];
}

Subsequently	the	TD	resampler	is	applied	to	the	signal	fac_ext	as	described	in	subclause	5.5.7.5.	After	
upsampling	the	first	60	samples	of	the	upsampled	signal	are	discarded.	

The	different	core	coder	sampling	frequencies	fs,ACELP	&	fs,TCX	in	case	of	fullband	LPD	need	to	be	considered	
when	determining	the	length	of	the	FAC	transform	(fac_length)	for	decoding	(fs,ACELP)	and	writing	to	the	
output	buffer	(fs,TCX):	

fac_length	=	coreCoderFrameLength	/	32	@	fs,ACELP	if	transitioning	between	ACELP	and	
EIGHT_SHORT_SEQUENCES;	

fac_length	=	coreCoderFrameLength	/	16	@	fs,ACELP	if	transitioning	from	ACELP	to	
LONG_STOP_SEQUENCE	or	from	LONG_START_SQUENCE	to	ACELP;	

fac_length	=	coreCoderFrameLength	/	8	@	fs,ACELP	if	transitioning	between	ACELP	and	TCX;	

5.5.7.10 Post-processing	of	the	synthesis	signal	

In	 case	 of	 fullband	 LPD,	 i.e.	 fullbandLpd	 is	 equal	 to	 1,	 the	 post-processing	 of	 the	 synthesis	 signal	 is	
performed	 as	 described	 in	 ISO/IEC	23003-3:2012,	 7.17.	 While	 the	 control	 coefficient	 for	 the	 inter-
harmonic	attenuation	a	and	the	post-filter	gain	gPF	are	determined	based	on	the	ACELP	synthesis	signal	
before	 resampling	 (see	 subclause	 5.5.7.7),	 the	 filtering	 is	 applied	 to	 the	 upsampled	ACELP	 synthesis	
output.	In	case	of	post-processing	of	transitions	between	FD	mode	to	and	from	ACELP,	the	adapted	FAC	
area	lengths	shall	be	considered	(see	subclause	5.5.7.9).	The	bass-post	filter	is	always	enabled	for	ACELP	
frames	 and	 FAC	 areas	 in	 case	 of	 fullband	 LPD,	 constantly	 changing	 the	 value	 of	 bpf_control_info	 in	
ISO/IEC	23003-3:2012,	Table	90	to	bpf_control_info=1.	

ISO/IEC	23008-3:202X(E)	

138	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.7.11 Coding	mode	switching	

As	described	in	subclause	5.5.7.8.8,	the	MDCT	based	TCX	decoder	generates	2	time-domain	output	signals	
at	sampling	frequencies	fs,ACELP	and	fs,TCX,	respectively.	The	signal	sampled	at	fs,ACELP	is	used	to	update	the	
ACELP	memories	to	enable	seamless	transitions	when	switching	between	MDCT	based	TCX	and	ACELP.	

To	avoid	discontinuities,	crossfading	is	applied	as	given	by:	

vGH.wx!3#)(−x=!#<(+ Fy = 	 v.?@,I:wx!3#)(−x=!#<(+ Fy ∙ z
x=!#<(− F
x=!#<(

{ + v.?@,B:wx!3#)(−x=!#<(+ Fy ∙ z
F

x=!#<(
{	

N|t	F = 0,… ,x=!#<(− 1	

and	depicted	schematically	in	Table	98	for	switching	from	MDCT	based	TCX	to	ACELP,	and	by:	

vGH.[F] = 	 v.?@,I:[F] ∙ z
F

x=!#<(
{ + v.?@,B:[F] ∙ z

x=!#<(− F
x=!#<(

{	

N|t	F = 0,… ,x=!#<(− 1	

and	depicted	schematically	in	Table	99	for	switching	from	ACELP	to	MDCT	based	TCX,	where	(BReWPis	
the	frame	length	of	the	TCX	frame	in	samples	at	yf,Ygh	and	(iBejP 	is	the	length	of	the	crossfade	range	in	
samples	at	yf,Ygh ,	which	corresponds	to	the	delay	of	the	TD	resampler	(30	samples	at	yf,Ygh)	described	in	
subclause 5.5.7.5.	

Table	98	—	Schematic	depiction	of	switching	from	TCX	to	ACELP	

Coding	mode	 TCX	 ACELP

Frame	index	 n-1	 n

Fullband	TCX	output	

Upsampled	lowband	TCX	and	
ACELP	output

Mixed	fullband	output	

Table	99	—	Schematic	depiction	of	switching	from	ACELP	to	TCX	

Coding	mode	 ACELP	 TCX

Frame	index	 n-1	 n

Fullband	TCX	output	

Upsampled	 lowband	 TCX	 and	
ACELP	output

Mixed	fullband	output	

zTCX,FB

zTCX,LB zACELP

zOUT

zTCX,FB

zTCX,LBzACELP

zOUT

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 139	
	

 Time-domain	bandwidth	extension	

5.5.8.1 General	

This	clause	describes	the	decoding	process	of	time-domain	bandwidth	extension	(TBE).	The	TBE	decoder	
tool	is	used	to	enable	low	bit	rate	coding	of	speech	via	the	MPEG-H	3D	audio	codec’s	LPD	path	for	ACELP	
mode.	

5.5.8.2 Overview	

Figure	18	shows	a	high	level	framework	of	the	TBE	decoder.	The	input	bitstream	is	de-multiplexed	and	
decoded	by	the	MPEG-H	3D	audio	core	decoder	to	produce	the	ACELP	low	band	(LB)	excitation	and	low	
band	synthesis.	The	TBE	bitstream	is	parsed	and	the	parameters	are	passed	to	the	TBE	decoding	tool.	
The	high	band	synthesis	 is	performed	using	the	TBE	parameters	and	the	harmonically-extended	high	
band	excitation	signal.		

The	synthesized	high	band	is	then	up-sampled	and	spectrally	flipped	in	the	time-domain	to	generate	a	
high	band	component	associated	with	the	final	decoded	audio.	The	low	band	is	also	up-sampled	to	the	
same	sampling	rate	as	the	high	band,	and	then	mixed	with	the	“delay-adjusted”	high	band	component	to	
generate	the	output.	In	particular,	the	low-band	core	decoder	may	exhibit	more	delay	than	the	high	band	
processing,	which	would	require	that	the	high	band	is	delayed	accordingly	before	mixing	with	low	band	
such	that	the	low	band	and	high	band	are	time-aligned	to	avoid	any	artifacts.	

	

Figure	18	—	Simplified	MPEG-H	3D	audio	core	decoder	with	TBE	tools	
5.5.8.3 Summary	of	the	TBE	decoding	tools	

Figure	 19	 shows	 an	 overview	 of	 the	 TBE	 decoder	 tools.	 The	 TBE	 frame	 converter	 parses	 the	 TBE	
bitstream	configuration	data,	tbe_data(),	as	described	in	Table	59,	and	passes	the	parameters	to	the	TBE	
decoding	module.	The	parameters	associated	with	the	TBE	configuration	data	are	described	in	subclause	
5.5.8.4.	The	acelp_coding()	configuration	data	as	described	in	Table	57	is	used	by	the	MPEG-H	3D	audio	
LPD	core	decoder	to	generate	the	low	band	excitation,	-+, 	(E_LB).	The	nonlinear	modelling	module	is	
used	to	generate	the	harmonically-extended	high	band	excitation	signal,	--. 	(E_HE).	

LB excitation
ACELP

bitstream

TBE
bitstream

Resampler,
LB/HB
delay

adjuster,
and mixer

OutputNonlinear
modeling

TBE
decoding

Low band
synthesis

High band
synthesis

0-fs/4

fs/4-fs/2

ACELP
(MPEG-H 3D Audio,
LPD core decoder)

HE LB excitation

ISO/IEC	23008-3:202X(E)	

140	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	19	—	TBE	decoder	tools	

The	TBE	decoding	process	includes	the	following	steps.	

— TBE	decoding	
— Nonlinear	modelling		

— Resampling	of	LB	excitation	

— Harmonically	extending	the	LB	excitation	based	on	tbe_nlConfig	

— Dequantization	of	high	band	parameters	
— Line	spectral	frequencies,	temporal	gains	(gain	shapes	and	gain	frame),	mixing	configuration,	

high	band	reference	gain,	residual	gain	shapes,	high	band	excitation	inverse	function.	

— High	band	LP	estimation	

— High	band	excitation	generation	
— A:	Spectral	flip	in	the	time	domain	and	decimation	of	E_HE	

— B:	Adaptive	whitening	of	A	

— C:	Temporal	envelope-modulated	noise	generation	based	on	B	

— HB	excitation	estimation	based	on	B	and	C	
— High	band	LP	synthesis	

— Temporal	envelope	adjustment	of	HB	synthesis	

— Spectral	flip	and	upsampling.	

High band

synthesis

ACELP

(MPEG-H 3D

Audio, LPD core

decoder)

acelp_coding()

TBE

Frame

Converter

tbe_data()

Nonlinear

modeling

E_LB

tbe_nlConfig

TBE

decoding

tbe_heMode

idxFrameGain

idxSubGains

lsf_idx[0, 1]

idxShbFrGain

tbe_hrConfig

idxMixConfig

idxShbExcResp[0,1]

idxResSubGains

E_HE

VF

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 141	
	

5.5.8.4 Definitions	of	TBE	payloads	

tbe_data()	 This	element	contains	information	about	the	high	band	audio	content.	

tbe_heMode	 This	element	determines	whether	the	TBE	decoding	of	current	frame	
uses	low	bit	rate	high	efficiency	mode.	If	the	flag	is	set	to	zero,	then	the	
high	resolution	configuration	(tbe_hrConfig)	is	enabled.	

idxFrameGain	 This	payload	contains	data	for	the	overall	frame	gain	adjustment.	

idxSubGains	 This	payload	contains	data	for	the	temporal	sub-frame	gain	shape	
adjustment.	

lsf_idx[0]	 This	payload	contains	LSF	data	associated	with	the	first	stage	LSFs	used	
to	estimate	the	LSP	and	then	subsequently	the	interpolated	sub-frame	LP	
parameters.	

lsf_idx[1]	 This	payload	contains	LSF	data	associated	with	the	second	stage	LSFs	
used	to	estimate	the	LSP	and	then	subsequently	the	interpolated	sub-
frame	LP	parameters.	

tbe_hrConfig	 This	flag	signals	whether	the	current	frame	uses	high	resolution	
configuration.	The	flag	is	only	read	from	the	bitstream	if	the	tbe_heMode	
is	set	to	zero.	

tbe_nlConfig	 This	flag	signals	the	NL	configuration	that	is	to	be	used	to	generate	the	HE	
LB	excitation.	The	flag	is	only	read	from	the	bitstream	if	the	tbe_heMode	
is	set	to	zero.	The	default	value	of	tbe_nlConfig	is	set	to	1,	if	tbe_heMode	is	
set	to	1.		

idxMixConfig	 This	payload	contains	data	to	control	HB	excitation	generation	based	on	
B	and	C	in	subclause	5.5.8.5.	The	flag	is	only	read	from	the	bitstream	if	the	
tbe_heMode	is	set	to	zero.		

idxShbFrGain	 This	payload	contains	data	for	the	overall	high	band	target	gain.	The	flag	
is	only	read	from	the	bitstream	if	the	tbe_heMode	is	set	to	zero	and	
tbe_hrConfig	is	set	to	1.	

idxResSubGains	 This	payload	contains	data	for	temporal	sub-frame	residual	gain	shape	
adjustment.	The	flag	is	only	read	from	the	bitstream	if	the	tbe_heMode	is	
set	to	zero	and	tbe_hrConfig	is	set	to	1.	

idxShbExcResp[0]	 This	payload	contains	data	to	filter	the	HE	excitation	B	in	subclause	
5.5.8.5.	The	flag	is	only	read	from	the	bitstream	if	the	tbe_heMode	is	set	to	
zero	and	tbe_hrConfig	is	not	set	to	1.		

idxShbExcResp[1]	 This	payload	contains	data	 to	 filter	 the	HE	LB	excitation	B	 in	 subclause	
5.5.8.5.	The	flag	is	only	read	from	the	bitstream	if	the	tbe_heMode	is	set	to	
zero	and	tbe_hrConfig	is	not	set	to	1.	

ISO/IEC	23008-3:202X(E)	

142	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.8.5 TBE	decoder	processing	

5.5.8.5.1 General	overview	

An	overview	of	TBE	decoder	processing	steps	is	shown	in	Figure	20.	

	

Figure	20	—	Overview	of	the	TBE	decoder	processing	

5.5.8.5.2 De-quantization	of	HB	parameters	

The	codebooks	used	to	de-quantize	some	of	the	high	band	TBE	parameters	are	summarized	in	Table	100.	
Pseudo-code	that	describes	the	de-quantization	process	is	given	below.		

ACELP
(MPEG-H 3D Audio, LPD core

decoder)

De-quantize
HB parameters

Nonlinear modeling

Resampling

Harmonic
extension

LB Exc

HE Exc

HB Excitation Generation

Spectral flip
and

decimation

Adaptive
whitening

Temporal
envelope

modulationNoise

HB excitation
estimation

tbe_nlConfig

tbe_hrConfig

HB LP estimation

Synthesis, 1/A(z)

Temporal envelope
adjustment

ACELP
bitstream

TBE
bitstream

A B

C

Spectral flip and
upsampling

HB synthesis

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 143	
	

Table	100	—	Codebook	tables	used	to	de-quantize	some	of	the	high	band	TBE	parameters	

Codebook	table	 Parameter

SHBCB_GainFrame5bit	 Gain	frame,	Table	O.6,	5	bits	

SHBCB_SubGain5bit	 Subframe	gains,	Table	O.5,	5	bits	

tbeLSFCB1_7b	 LSF	first	stage,	Table	O.1,	7	bits	

tbeLSFCB2_7b	 LSF	second	stage,	Table	O.2,	7	bits	

tbeExcFilterCB1_7b	 tbeExcFilter1,	Table	O.3,	7	bits	

tbeExcFilterCB2_4b	 tbeExcFilter2,	Table	O.4,	4	bits	

	
frameGain = SHBCB_GainFrame5bit[idxFrameGain];

j = 4*idxSubGain;
for (i = 0; i < 4; i++) {
 subGain[i] = SHBCB_SubGain5bit[j++];
}

copyVector(tbeLSFCB1_7b + 10 * lsf_idx[0], qLsf, 10);
copyVector(tbeLSFCB2_7b + 10 * lsf_idx[1], qtemp, 10);
for (i = 0; i < 10; i++) {
 qLsf[i] = qLsf[i] + qtemp[i];
}

if (tbe_heMode==0) {
 mixFac = (idxMixConfig + 1) / 4;
 if (tbe_hrConfig == 1) {
 hbEnerTarget = 10^(0.0625 * idxShbFrGain);
 j = 4 * idxResSubGains;
 for (i = 0; i < 4; i++) {
 resSubGain[i] = SHBCB_SubGain5bit[j++];
 }
 } else {
 copyVector(tbeExcFilterCB1_7b + 10 * idxShbExcResp[0], tbeExcFilter1, 10);
 copyVector(tbeExcFilterCB2_4b + 6 * idxShbExcResp[1], tbeExcFilter2, 6);
 }
}

5.5.8.5.3 Nonlinear	modelling	

5.5.8.5.3.1 General	

This	clause	describes	the	steps	to	generate	the	high	band	excitation	from	the	low	band	ACELP	core.	To	
generate	a	high-band	excitation	signal	that	preserves	the	harmonic	structure	of	the	low	band	excitation	
signal,	a	nonlinear	function	is	used.	The	time-domain	harmonic	extension	of	the	low	band	excitation	is	
performed	after	sufficient	over-sampling	in	order	to	minimize	aliasing.	

5.5.8.5.3.2 Resampling	of	LB	excitation	

As	 shown	 in	 Figure	 21,	 an	 up-sampled	 low	 band	 excitation	 signal	 is	 derived	 from	 both	 the	 periodic	
(adaptive	codebook,	ACB)	and	aperiodic	(fixed	codebook,	FCB)	excitation	components	of	the	low	band	
ACELP	core	coder.	The	ACELP	innovation	codebook	excitation	is	first	scaled	by	the	FCB	gain,	gc,	and	then	
up-sampled	 by	 2.	 A	 simple	 linear	 interpolator	 is	 used	 to	 perform	 the	 resampling	 of	 the	 scaled	 fixed	
codebook	excitation	by	a	factor	of	2	as	shown	in	Figure	21.	The	ACB	component	in	the	resampled	domain	
is	obtained	by	shifting	the	past	resampled	LB	excitation,	-+, ,	based	on	the	fractional	closed-loop	pitch	

ISO/IEC	23008-3:202X(E)	

144	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

estimate,	T,	from	the	current	frame.	The	up-sampled	past	excitation	samples	are	scaled	by	the	pitch	gain,	
gp,	and	combined	with	the	up-sampled	FCB	excitation	to	generate	the	resampled	low	band	excitation,	-+, 	
as	shown	in	Figure	21.	

	
Figure	21	—	Overview	of	low	band	excitation	resampling	process	

5.5.8.5.3.3 Harmonic	extension	

The	resampled	low	band	excitation	signal,	-+, 	,	is	processed	to	extend	the	low	band	pitch	harmonics	into	
the	high	band.	The	harmonically	extended	excitation,		-/0,	is	generated	using	a	nonlinear	function,	based	
on	the	tbe_nlConfig	flag	from	tbe_data().	

}J; = ~
|}B:|, LN		jkI_JÄC|JNLM = 1

Å1		ZLMJ(}B:)	}B:% , LN	jkI_JÄC|JNLM	 = 0
ÇBC(v)	Å1	ZLMJ(}B:)	}B:% +ÇJC(v)|}B:|, LN	jkI_JÄC|JNLM = 0	&&	LÑÖALÖC|JNLM ≤ 1

	

where	ÇG 	is	 the	 energy	 normalization	 factor	 between	ÉKk 	and	ÉKkF .	 The	 above	 NL	 generation	 is	 for	
tbe_heMode=0	case.	 In	 the	case,	when	 tbe_heMode	 flag=1,	 the	NL	generation	uses	 the	 tbe_nlConfig=1	
configuration	 if	 idxSubGains	 is	 an	 odd	 value,	 and	 the	 tbe_nlConfig=0	 configuration	 otherwise.	 In	
particular,	 the	energy	normalization	 factor	 is	 the	 ratio	of	 frame	energies	of	ÉKk 	and	ÉKkF .	The	 transfer	
functions	ÑKU(Ö)	and	ÑlU(Ö)	correspond	to	low	pass	and	high	pass	filters	with	a	cut-off	frequency	3fs/4.	
The	transfer	functions	are	given	as	follows:	

ÇBC(v) =
0,57(1 + 2vF& + vF%)
1 + 0,94vF& + 0,33vF% , ÇJC(v) =

0,098	(1 − 2vF& + vF%)
1 + 0,94vF& + 0,33vF% 	

5.5.8.5.4 High	band	LP	estimation	

5.5.8.5.4.1 General	

The	de-quantized	LSF	parameters	are	first	converted	to	LSP.	

for (i = 0; i < 10; i++) {
 hbLsp_curr[i] = (float) cos(qLsf[i] * 2PI);
}

For	smoother	evolution	of	the	LP	polynomial,	the	LSPs	from	current	frame,	hbLsp_curr,	are	interpolated	
with	LSPs	from	previous	frame	over	four	sub-frames	as	shown	in	the	pseudocode	below.	If	the	previous	
frame	is	not	a	TBE	frame	(i.e.,	indicated	using	first_frame==1),	then	interpolation	is	not	performed.	

Scale
by gc

Σ

Z-2TScale
by gp

Resampled
ACELP past excitation

+
+

ACELP
fixed codebook

excitation
Up-sampled

LB excitation, ELBResample by
a factor 2

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 145	
	

lspInterCoeff[8] = { 0.7, 0.3, 0.5, 0.5, 0.3, 0.7, 0.1, 0.9 };

if (!first_frame) {
 copyVector(memory->hbLsp_prevmem, hbLsp_prev, 10);
} else {
 copyVector(hbLsp_curr, hbLsp_prev, 10);
}

ptrLspInterpCoef = lspInterCoeff;
for(j = 0; j < 4; j++) {
 for(i = 0; i < 10; i++) {
 lsp_temp[i] = hbLsp_prev[i] * (*ptrLspInterpCoef)
 + hbLsp_curr[i] * (*(ptrLspInterpCoef+1));
 }

 ptrLspInterpCoef += 2;

 libLsp2A(lsp_temp, lpcShb+j*(11), 10);
 lpcShb[j*11] = 1.0;
}

copyVector(hbLsp_curr, memory->hbLsp_prevmem, 10);

Subsequent	 to	 interpolation,	 the	 LSPs	 are	 converted	 to	 LP	 coefficients	 as	 described	 in	
ISO/IEC	23003-3:2012,	7.13.11	considering	an	order	of	10.	

5.5.8.5.4.2 High	band	excitation	generation	

The	harmonically-extended	excitation,	--. ,	from	subclause	5.5.8.5.3.3	is	used	as	input	to	the	high	band	
excitation	generation.	

5.5.8.5.4.3 Spectral	flip	

The	 harmonic	 excitation,	--. ,	 is	 spectrally	 flipped	 so	 that	 the	 high	 band	 portion	 of	 the	 excitation	 is	
modulated	down	to	the	low	frequency	region.	This	spectral	flip	is	accomplished	in	the	time	domain	as	
follows:	

Élm
B (F) = (−1)E	Élm(F), F = 0,1,2…(− 1	

where	. = 512		is	the	number	of	samples	per	frame.	
for(i = 0; i < 512; i++) {
 Ef_HE[i] = ((i%2) == 0) ? (-E_HE[i]) : (E_HE[i]);
}

5.5.8.5.4.4 Decimation	

The	spectrally-flipped	harmonic	excitation,	Élm
B ,	is	then	decimated	using	a	pair	of	all-pass	filters	to	obtain	

an	downsampled	excitation	signal,	-12 .	This	is	done	by	filtering	the	even	samples	of,	--.((#),	by	an	all-
pass	filter	whose	transfer	function	is	given	by:	

ÑnUI(Ö) = Ü
xV,I + ÖXI

1 + xV,IÖXI
áÜ

xI,I + ÖXI

1 + xI,IÖXI
áÜ

xF,I + ÖXI

1 + xF,IÖXI
á

And	the	odd	samples	of	--.((#)	are	filtered	using	an	all-pass	filter	whose	transfer	function	is	given	by:	

ISO/IEC	23008-3:202X(E)	

146	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ÑnUF(Ö) = Ü
xV,F + ÖXI

1 + xV,FÖXI
áÜ

xI,F + ÖXI

1 + xI,FÖXI
áÜ

xF,F + ÖXI

1 + xF,FÖXI
á

The	excitation	signal,	-12 ,	 is	estimated	by	averaging	the	outputs	of	the	above	two	filters,	3345(4)	and	
3346(4).	The	filter	coefficients	are	specified	in	Table	101.	

Table	101	—	All-pass	filter	coefficients	for	decimation	

	 All	pass	filter	coefficients
p',&	 0,060	565	419	242	91
p&,&	 0,429	434	015	492	35
p%,&	 0,808	730	483	065	52
p',%	 0,220	630	248	296	30
p&,%	 0,635	939	439	617	08
p%,%	 0,941	515	830	956	82	

5.5.8.5.4.5 Adaptive	spectral	whitening	

Due	 to	 the	 nonlinear	 processing	 applied	 to	 obtain	 the	 excitation	 signal,	-12 ,	 the	 spectrum	 of	 this	
excitation	 is	no	 longer	 flat.	 In	order	to	 flatten	the	spectrum	of	 the	excitation	signal,	a	 fourth-order	LP	
whitening	 is	 applied	 to	-12 .	 The	 excitation	 signal	 is	 windowed	 using	 the	 Hanning-based	 window	
u*FBCeQQPE 	as	 given	 in	 Annex	 O.3	 prior	 to	 calculation	 of	 the	 autocorrelation	 coefficients.	 The	
autocorrelation	of	the	windowed	excitation	signal	is	estimated	as	follows.	

}6K(J) 										= }6K(J) ∙ iLJ!"#$$(+(J),																														J = 0, 1, … , áx2 − 1à ,x = 256	

}6K áJ +
x
2à = }6K án +

x
2à ∙ iLJ!"#$$(+ á

x
2 − 1 − Jà , J = 0, 1, … , áx2 − 1à ,x = 256	

t(=L(F) = o }6K(J) ∙ }6K(J + F)
1F&FE

+0'

, F = 0, 1, … , 4;x = 256

A	bandwidth	expansion	is	applied	to	the	autocorrelation	coefficients	by	multiplying	the	coefficients	by	an	
expansion	function.	The	expansion	function	is	as	given	below:	

t(=L(F) = t(=L(F) ∗ 	QãIÖ@C|IN(F),			F = 0,1,2,3,4	

Table	102	—	Bandwidth	expansion	coefficients	

	 BW	expansion	coefficients

BWexpCoef[5]	 [1.000030000, 0.999876638, 0.999506642, 0.998890286,
0.998028026]	

The	bandwidth	expanded	autocorrelation	coefficients	are	used	 to	obtain	 the	LPC	using	 the	Levinson-
Durbin	 algorithm.	 Inverse	 LP	 filtering	 is	 performed	 to	 obtain	 the	whitened	 excitation,	-12_8 .	 In	 the	
tbe_hrConfig==1	mode,	the	whitened	excitation	is	further	modulated	by	the	normalized	residual	energy	
(based	on	idxResSubGains):	

}6K_N(J) = }6K_N(J) ∗ tIZåçképLJ è
J
64ê ,			F =

J
64 = 0,1,2,3,			J = 0,1, . .255	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 147	
	

In	the	tbe_hrConfig	!=	1	mode,	the	whitened	excitation	is	filtered	using	an	FIR	filter	that	is	derived	from	
the	 idxShbExcResp	 payload.	 A	 FIR	 filter,	ÑRPfa(Ö) 	is	 constructed	 by	 concatenating	 the	 coefficients	 of	
tbeExcFilter1	and	tbeExcFilter2.	The	whitened	excitation,	Éop_q ,	is	filtered	using	the	FIR	filter	ÑRPfa(Ö).	

5.5.8.5.4.6 Envelope	modulated	noise	mixing	

The	 whitened	 harmonic	 excitation	 is	 further	 modified	 by	 adding	 random	 noise	 whose	 amplitude	 is	
modulated	according	to	the	envelope	of	the	whitened	excitation,	Éop_q .	The	pseudo-random	noise,	ÉG ,	is	
further	perceptually	shaped	using	the	high	band	perceptually-weighted	filter	(PWF	=	A(z/àI)/A(z/àF)	
using	àI = 0,55	and	àF = 0,7 .	 The	 pseudo-random	 noise	 can	 be	 generated	 using	 the	 random	 noise	
generator	utility	function	TBE_genRandVec()as	described	with	the	following	pseudo	code.	

TBE_genRandVec(){
 k1 = (TBE_randomSign(seed1, idx1) < 0) ? -563.154 : 563.154;
 k2 = (TBE_randomSign(seed2, idx2) < 0) ? -225.261 : 225.261;
 for (i = 0; i < length; i++, idx1++, idx2++) {
 idx1 &= 0x00ff;
 idx2 &= 0x00ff;
 output[i] = k1 * RVEC[idx1] + k2 * RVEC[idx2];
 }
}

TBE_randomSign(seed, idx) {
 seed = (short)(seed * 31821L + 13849L); /* random number generator */
 idx = ABS((short)((float)seed * 0.0078f)); /* ABS is the absolute operator */
 return (seed < 0? -1: 1);
}

where	seed1	and	seed2	are	initialized	to	23	and	59	respectively,	if	the	previous	frame	was	not	a	TBE	
frame.	

The	 ratio	 at	 which	 the	 whitened	 excitation	 and	 the	 envelope-modulated	 noise,	Émr# ,	 are	 mixed	 is	
dependent	on	how	strongly-voiced	the	speech	segment	is.	For	example,	the	envelope-modulated	noise	
and	the	spectrally	whitened	excitation	are	mixed	as	follows	to	estimate	the	high	band	excitation:	

}J:(J) = Hëí,m}6K&(J)n + Hì1/ì2(1 − ëí,)	è};/'(J)ê ,			J = 0,1,2… ,127	

where	äHb 	are	the	voice	factors	derived	from	LB	as	explained	below,	P1	and	P2	are	the	power	estimated	
from	spectrally	whitened	excitation	Éop_s	and	the	envelope	modulated	noise,	Émr_G .	In	particular,	given	
that	the	fine	signal	structure	in	the	higher	bands	is	closely	related	to	that	in	the	lower	band,	the	mixing	
ratio	may	be	estimated	from	the	low	band	core	ACELP	parameters.	For	example,	the	voicing	from	low	
band	 is	normalized	 to	a	 smaller	 scale,	 i.e.,	ãb = 0,95 ∗ ãb − 0,05	and	 then	mapped	 to	a	voice	 factor	as	
follows.	For	each	subframe,	*,	 the	normalized	correlation,	ãb ,	 from	the	 low	band	 is	mapped	 to	a	voice	
factor	parameter,	äHb 	

ëí, =
1

1 + IFO∝(,			L = 1,2,3,4	

Next	the	voice	factors,	äHb ,	are	limited	to	the	range	of	[0,	1].	The	voice	factors	undergo	further	smoothing	
to	compensate	for	any	sudden	variations	in	the	low	band	voicing	within	a	frame.	For	the	HR	configuration,	
the	voicing	factors	are	modified	based	on	the	idxMixConfig	to	compensate	for	any	mismatch	between	the	
LB	and	HB	voicing.	Next	the	envelope-modulated	noise	is	power	normalized	such	that	it	is	at	the	same	
level	as	that	of	the	harmonic	excitation	(as	shown	in	the	equation	to	estimate	EHB	above).	At	each	sub-

ISO/IEC	23008-3:202X(E)	

148	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

frame,	*,	the	harmonic	excitation	that	is	scaled	by	the	factor,	äHb ,	and	the	normalized	modulated	noise	
that	is	scaled	by	the	factor	(1 − äHb)	are	mixed	to	generate	the	high	band	excitation.	

5.5.8.5.4.7 	High	band	synthesis	

The	high	band	excitation	is	then	passed	through	the	high	band	LP	sub-frame	synthesis	filters	to	obtain	
the	spectrally	shaped	excitation.	In	the	tbe_hrConfig==1	mode,	first	a	memory-less	synthesis	is	performed	
(with	past	LP	filter	memories	set	to	zero)	and	the	energy	of	the	synthesized	high	band	is	matched	to	that	
of	 the	 target	 signal	 energy	 (based	 on	 idxShbFrGain).	 In	 the	 subsequent	 step,	 the	 scaled	 or	 energy	
compensated	excitation	signal	is	used	to	perform	synthesis	to	obtain	the	spectrally	shaped	excitation,	SHB.	
The	spectrally	shaped	high	band	signal	 is	 then	scaled	using	 the	decoded	gain	shapes.	The	gain	shape	
scaled	highband	signal	is	finally	multiplied	by	the	decoded	gain	frame	to	obtain	the	gain	adjusted	high	
band	synthesized	signal.	The	gain	shapes	and	gain	frame	are	applied	on	the	synthesized	high	band,	SHB,	
as	follows:	

å′J:(J) = éíoi(J − ñ64)MZ(ñ)åJ:(J), J = 0,1,2…271
Q

R0'

	

where	v,(ç)	j=0,1,2,3	are	the	gain	shapes,	GF	is	the	gain	frame,	and	the	window	w(n)	is	defined	as	follows.	

Table	103	—	SHB	gain	shape	synthesis	window,	w(n)	

w(n),	n	=	
0,1,2..15	

0.007312931, 0.033416940, 0.077119580, 0.136556101,
0.209438491, 0.293364150, 0.385224703, 0.481317588,
0.577845599, 0.671497772, 0.758927143, 0.836651580,
0.901448444, 0.951083203, 0.984171147, 1.000000000

w(n),	
n=16,	
17,..63.	

1.0

w(n),	
n=64,65,	
79	

0.984171147, 0.951083203, 0.901448444, 0.836651580,
0.758927143, 0.671497772, 0.577845599, 0.481317588,
0.385224703, 0.293364150, 0.209438491, 0.136556101,
0.077119580, 0.033416940, 0.007312931, 0

w(n),	 for	
other	n	

0

5.5.8.5.4.8 Resampling	of	HB	synthesis	

The	 gain	 adjusted	 HB	 synthesis	 is	 up-sampled	 by	 2	 and	 flipped	 (i.e.,	 flip	 from	 low	 to	 high	 band,	 as	
described	in	subclause	5.5.8.5.4.3)	to	generate	a	high	band	component	associated	with	the	final	decoded	
speech	as	shown	in	Figure	22.	The	upsampling	is	based	on	an	all-pass	filter	as	shown	below:	

ÇACS+$(3*,&(v) = z
k',& + vF&
1 + k',&vF&

{z
k&,& + vF&
1 + k&,&vF&

{z
k%,& + vF&
1 + k%,&vF&

{	

and	

ÇACS+$(3*,%(v) = z
k',% + vF&
1 + k',%vF&

{z
k&,% + vF&
1 + k&,%vF&

{z
k%,% + vF&
1 + k%,%vF&

{

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 149	
	

Table	104	—	All-pass	filter	coefficients	for	interpolation	by	a	factor	of	2	

	 All	pass	coefficients
b0,1	 0,060	565	419	242	91
b1,1	 0,429	434	015	492	35
b2,1	 0,808	730	483	065	52
b0,2	 0,220	630	248	296	30	
b1,2	 0,635	939	439	617	08
b2,2	 0,941	515	830	956	82	

The	low	band	is	up-sampled	to	the	same	sampling	rate	as	the	high	band	and	mixed	with	the	high	band	
component.	

	

Figure	22	—	Spectral	flip	of	HB	synthesis	

5.5.8.5.4.9 Switching	transition	signal	generation	

When	switching	from	ACELP	to	TCX	core,	and	thus	from	TBE	to	IGF,	or	vice	versa,	the	transition	of	the	
high-band	signals	is	performed	implicitly	by	the	cross-fade	transition	mechanism	of	the	core	signals	as	
described	in	subclause	5.5.7.11.	To	fill	the	gap	caused	by	the	TBE	delay	(see	subclause	5.5.8.5.4.10)	and	
provide	overlapping	signals	for	cross-fading,	a	transition	signal	,éFQReEf	is	generated	as	follows.	

To	obtain	a	 continuous	high	band	 signal	 to	 the	previous	 frame,	 the	overlap	portion	of	 the	high	band	
synthesized	signal	,éFfOeCPj 	is	used,	as	described	in	subclause	5.5.8.5.4.7.	This	overlap	portion	,éF`tPRCea	
is	 upsampled	 using	 the	 same	 filter	Ñu,I 	and	Ñu,F 	and	 flipped	 subsequently	 as	 described	 in	 subclause	
5.5.8.5.4.8,	resulting	in	the	upsampled	high	band	signal	,éF`tPRCea,da.	

The	targeted	length	of	,éFQReEf	is	given	by:	

x5T+,$3#+5 = ítpqIóIJMjℎ 2⁄ + ÑIÄ.63(5 −x#",-+ = 74	Zpq@ÄIZ	

where	(eCbcE	 = 212	,xpz6E,	and	HGxpEJEFv+ℎ 2⁄ 	are	explained	in	subclause	5.5.8.5.4.10	and	
KE6YoRPf = 30	,xpz6E,	is	the	delay	of	the	TD	resampler,	which	is	used	for	cross-fading,	see	subclauses	
5.5.7.5	and	5.5.7.11.	

To	obtain	the	74	samples,	the	32	samples	of	,éF`tPRCea,da	are	extrapolated	using	the	temporally	mirrored	
end	,éFaRPt,WbRR`R 	of	the	high	band	synthesized	signal	of	the	previous	frame	,éFaRPt ,	where:	

ZöJ*3(7,),3323(J) = ZöJ*3(7(512 + 1 − J); 						N|t	J = 1,… ,74	

Spectral flip
and mix with

low band core

Frequency

Am
pl

itu
de

0 fsfs/2
Frequency

Am
pl

itu
de

0 fsfs/2

HB synthesis

Low
band
core

ISO/IEC	23008-3:202X(E)	

150	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	signals	,éF`tPRCea,da	and	,éFaRPt,WbRR`R 	are	merged	to	generate	,éFQReEf	by	overlap	and	add	using	
the	window	u*FQReEf	as	given	in	Table	105,	as:	

ZöJ$3#+5(J) = 	õ
iLJ$3#+5(33 − J) ∙ ZöJ27(3"#*,D*(J) + iLJ$3#+5(J) ∙ ZöJ*3(7,),3323(J); 			N|t	J = 1,… , 32
ZöJ*3(7,),3323(J); 																																																																																																								N|t	J = 33	… , 74	

Table	105	—	Window	for	generation	of	transition	signal	

n	 wintrans(n)	 n	 wintrans(n)	 n	 wintrans(n)
1	 0.000000000	 12	 0.250082925	 23	 0.758927143
2	 0.002057320	 13	 0.293364150	 24	 0.799044170
3	 0.007312931	 14	 0.338401147	 25	 0.836651580
4	 0.017743483	 15	 0.385224703	 26	 0.870644917
5	 0.033416940	 16	 0.432854509	 27	 0.901448444
6	 0.053210367	 17	 0.481317588	 28	 0.927953529
7	 0.077119580	 18	 0.529597392	 29	 0.951083203
8	 0.104915089 19	 0.577845599 30	 0.969773527
9	 0.136556101 20	 0.625078725 31	 0.984171147
10	 0.171354547 21	 0.671497772 32	 0.993264992
11	 0.209438491	 22	 0.716039678	 33	 1.000000000	

5.5.8.5.4.10 Temporal	alignment	and	mixing	of	HB	and	ACELP	synthesis	

Due	 to	 the	 overlap	 of	 half	 a	 TCX	 frame	 length	 (256	 samples	 at	 yf,Ygh),	 the	 ACELP	 synthesis	
(,éF+ℎngmKU,`Rbc)	is	delayed	by	half	a	frame	length,	to	be	synchronized	to	TCX	frames	in	case	of	mode	
switching,	before	being	played	out	by	the	LPD	module.	To	compensate	for	this	delay	and	the	intrinsic	
delay	of	 the	TBE,	 the	TBE	HB	synthesis	needs	 to	be	 temporally	aligned,	before	mixing	both	synthesis	
signals.	

The	 intrinsic	 TBE	 delay	 is	 composed	 of	 the	 internal	 gain	 shape	 look-ahead	 which	 corresponds	 to	
KE6vebEpweaP = 16	,xpz6E,	at	 internal	sampling	 frequency	(i.e.	downsampled	domain)	as	described	 in	
subclause	 5.5.8.5.4.7	 and	 the	 look-ahead	 of	 the	 harmonic	 extension	 which	 corresponds	 to	KE6GK =
12	,xpz6E,	at	 fullband	sampling	frequency	as	described	in	subclause	5.5.8.5.3.3.	Thus,	the	entire	TBE	
delay	is	given	by	

ÑIÄ.:; = 2 ∙ ÑIÄU#,+KV#*(+ ÑIÄ1B = 44	Zpq@ÄIZ	

at	fullband	sampling	frequency.	The	TBE	HB	synthesis	(,éF+ℎYkm,`Rbc)	shall	be	delayed	by	

x#",-+ = ítpqIóIJMjℎ 2⁄ − ÑIÄ.:; = 212	Zpq@ÄIZ	

at	 fullband	sampling	 frequency	 to	obtain	a	TBE	HB	synthesis	 signal	 (,éF+ℎYkm,eCbcE)	aligned	with	 the	
synchronized	ACELP	synthesis	(,éF+ℎngmKU,fxEO).	

By	adding	the	TBE	HB	synthesis	signal	and	the	synchronized	ACELP	synthesis,	the	fullband	output signal	
is	obtain,	given	by	

ZLMI:(J) = ZöJjℎA?;BC,5T+L + ZöJjℎ.:;,#",-+(J); 					N|t	J = 1,… , ítpqIóIJMjℎ	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 151	
	

 LPD	stereo	coding	

5.5.9.1 Tool	description	

LPD	stereo	is	a	discrete	M/S	stereo	coding,	where	the	mid-channel	is	coded	by	the	mono	LPD	core	coder	
and	 the	 side	 signal	 coded	 in	 the	DFT	domain.	 The	decoded	mid	 signal	 is	 output	 from	 the	LPD	mono	
decoder	and	then	processed	by	the	LPD	stereo	module.	The	stereo	decoding	is	done	in	the	DFT	domain	
where	the	L	and	R	channels	are	decoded.	The	two	decoded	channels	are	transformed	back	in	the	time	
domain	and	can	be	then	combined	in	this	domain	with	the	decoded	channels	from	the	FD	mode.	FD	mode	
uses	 its	 own	 stereo	 tools,	 i.e.	 discrete	 stereo	 with	 or	 without	 complex	 prediction	 described	 in	
ISO/IEC	23003-3:2012,	7.12.	
5.5.9.2 Data	elements	

lpd_stereo_stream()		 Data	element	to	decode	the	stereo	data	for	the	LPD	mode.	

lpdStereoIndex	 Flag	which	indicates	if	LPD	stereo	is	activated.		

res_mode	 Flag	which	indicates	the	frequency	resolution	of	the	parameter	bands.		

q_mode	 Flag	which	indicates	the	time	resolution	of	the	parameter	bands.	

ipd_mode	 Bit	field	which	defines	the	maximum	of	parameter	bands	for	the	IPD	
parameter.		

pred_mode	 Flag	which	indicates	if	prediction	is	used.	

cod_mode	 Bit	field	which	defines	the	maximum	of	parameter	bands	for	which	the	
side	signal	is	quantized.		

ild_idx[k][b]	 ILD	parameter	index	for	the	frame	k	and	band	b.		

ipd_idx[k][b]	 IPD	parameter	index	for	the	frame	k	and	band	b.	

pred_gain_idx[k][b]	 Prediction	gain	index	for	the	frame	k	and	band	b.	

cod_gain_idx		 Global	gain	index	for	the	quantized	side	signal.	

fullBandLpd		 Flag	which	indicates	if	LPD	mode	is	in	full	band	mode.	

5.5.9.3 Help	elements	

ccfl	 Core	coder	frame	length.	

M	 Stereo	LPD	frame	length	as	defined	in	Table	106.	

band_config()	 Function	that	returns	the	number	of	coded	parameter	bands.	

band_limits()	 Function	that	returns	the	number	of	coded	parameter	bands.	

max_band()	 Function	that	returns	the	number	of	coded	parameter	bands.	

cod_L	 Number	of	DFT	lines	for	the	decoded	side	signal.	

ISO/IEC	23008-3:202X(E)	

152	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.9.4 Decoding	process	

5.5.9.4.1 General	

The	stereo	decoding	is	performed	in	the	frequency	domain.	It	acts	as	a	post-processing	of	the	LPD	decoder.	
It	receives	from	the	LPD	decoder	the	synthesis	of	the	mono	mid	signal.	The	side	signal	is	then	predicted	
and	decoded	in	frequency	domain.	Left	(L)	and	right	(R)	channel	spectrums	are	then	reconstructed	in	
frequency	domain	before	being	resynthesized	in	the	time	domain.	LPD	stereo	works	with	a	fixed	frame	
size	equal	to	the	size	of	the	ACELP	frame	independently	of	the	coding	mode	used	in	LPD	mode.	

5.5.9.4.2 Frequency	analysis		

The	DFT	spectrum	of	the	frame	index	i	is	computed	from	the	decoded	frame	x	of	the	mid	signal	of	length	
M	as	follows:	

X,[k] = oi[J] ∙ Ö[L ∙ M+J − ó] ∙ IF%WRE+/1
1F&

+0'

	

where	N	is	the	size	of	the	signal	analysis,	w	is	the	analysis	window	and	x	the	decoded	time	signal	from	the	
LPD	decoder	at	frame	index	i	delayed	by	the	overlap	size	L	of	the	DFT.	M	is	equal	to	the	size	of	the	ACELP	
frame	at	the	output	sampling	rate.	The	DFT	analysis	window	size	N	is	equal	to	the	LPD	stereo	frame	size	
plus	the	overlap	size	of	the	DFT.	The	sizes	are	depending	whether	the	LPD	mode	is	running	in	full-band	
mode	as	defined	in	Table	106.	

Table	106	—	DFT	and	frame	sizes	of	the	stereo	LPD	

fullBandLpd	 ccfl	 DFT	size	N	 Frame	size	M	 Overlap	size	L

0	 1024	 336	 256	 80	
1	 1024	 672	 512	 160	
0	 768	 256	 192	 64	
1	 768	 512	 384	 128	

The	window	w	is	a	sine	window	defined	as:	

i[J] =

⎩
⎪
⎨

⎪
⎧sinz

£
2ó áJ +

1
2à{ 																				for	0 ≤ J < ó											

1																																																			for	ó ≤ J < A										
sin z £2ó áó −A + J + 12à{ 			for	A ≤ J < A + ó

5.5.9.4.3 Configuration	of	the	parameter	bands	

The	 DFT	 spectrum	 is	 divided	 into	 non-overlapping	 frequency	 bands	 called	 parameter	 bands.	 The	
partitioning	 of	 the	 spectrum	 is	 non-uniform	 and	mimics	 the	 auditory	 frequency	 decomposition.	 Two	
different	divisions	of	the	spectrum	are	possible	with	bandwidths	following	roughly	either	two	or	four	
times	the	equivalent	rectangular	bandwidths	(ERB).	

The	 spectrum	 partitioning	 is	 selected	 by	 the	 data	 element	 res_mode	 and	 defined	 by	 the	 following	
pseudo-code:	

function nbands = band_config(N, res_mod)
band_limits[0] = 1;
nbands = 0;
while(band_limits[nbands++] < (N/2)) {

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 153	
	

 if (res_mode == 0) {
 band_limits[nbands] = band_limits_erb2[nbands];
 } else {
 band_limits[nbands] = band_limits_erb4[nbands];
 }
}
nbands--;
band_limits[nbands] = N/2;
return nbands

where	nbands	is	the	total	number	of	parameter	bands	and	N	the	DFT	analysis	window	size.	The	tables	
band_limits_erb2	and	band_limits_erb4	are	defined	in	Table	107.	The	decoder	can	adaptively	change	the	
resolution	of	the	parameter	bands	at	every	two	LPD	stereo	frames.	

Table	107	—	Parameter	band	limits	in	term	of	DFT	index	k	

Parameter	band	
index	b	 band_limits_erb2	 band_limits_erb4

0	 1	 1
1	 3	 3
2	 5	 7
3	 7	 13
4	 9	 21
5	 13	 33
6	 17	 49
7	 21	 73
8	 25	 105
9	 33	 177
10	 41	 241
11	 49	 337
12	 57
13	 73
14	 89
15	 105
16	 137
17	 177
18	 241
19	 337	 	

The	maximum	number	of	parameter	bands	for	IPD	is	sent	within	the	2	bits	field	ipd_mode	data	element:		
*zK_pxí	 _)xFK = pxí_)xFK[GE,_pìKE][*zK_pìKE]	

The	maximum	number	of	parameter	bands	for	the	coding	of	the	Side	signal	is	sent	within	the	2	bits	field	
cod_mode	data	element:		

.ìK_pxí	 _)xFK = pxí_)xFK[GE,_pìKE][.ìK_pìKE]	

The	table	max_band[][]	is	defined	in	Table	108.		

The	number	of	decoded	lines	to	expect	for	the	side	signal	is	then	computed	as:	

.ìK_J	 = 2 ∙ ()xFK_6*p*+,[.ìK_pxí_)xFK] 	− 1)	

ISO/IEC	23008-3:202X(E)	

154	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	108	—	Maximum	number	of	bands	for	different	code	modes	

Mode	index	 max_band[0]	 max_band[1]

0	 0	 0
1	 7	 4
2	 9	 5
3	 11	 6	

5.5.9.4.4 Inverse	quantization	of	stereo	parameters	

The	 stereo	parameters	 interchannel	 level	differences	 (ILD),	 interchannel	phase	differences	 (IPD)	and	
prediction	gains	are	sent	either	every	frame	or	every	two	frames	depending	of	flag	q_mode.	If	q_mode	
equal	0,	the	parameters	are	updated	every	frame.	Otherwise,	the	parameters	values	are	only	updated	for	
odd	indices	i	of	the	LPD	stereo	frame	within	the	USAC	frame.	The	index	i	of	the	LPD	stereo	frame	within	
a	USAC	frame	can	be	either	between	0	and	3	in	LPD	version	0	and	between	0	and	1	in	LPD	version	1.	

The	ILD	are	decoded	as	follows:	

ILD,[b] = LÄÑ_´[LÄÑ_LÑÖ[L][k]]	,	for	0 ≤ k < JkpJÑZ	

The	IPD	are	decoded	for	the	ipd_max_band	first	bands:	

IPDb[b] =
ï

4
∙ *zK_*Kí[*][)] 	− ï,		for	0 ≤) < *zK_pxí	 _)xFK

The	prediction	gains	are	only	decoded	if	pred_mode	flag	is	set	to	one.	The	decoded	gains	are	then:	

zGEK_vx*Fb[b] = W
0																																																																												,	for	0 ≤) < .ìK_max	 _)xFK												
GE,_zGEK_vx*F_I[zGEK_vx*F_*Kí[*][)]]		,	for	.ìK_max_)xFK ≤) < F)xFK,

If	the	pred_mode	is	equal	to	zero,	all	gains	are	set	to	zero.	

Independently	 of	 the	 value	 of	 q_mode,	 the	 decoding	 of	 the	 side	 signal	 is	 performed	 every	 frame	 if	
cod_mode	is	a	non-zero	value.	It	first	decodes	a	global	gain:	

.ìK_vx*Fb = 10O`j_cebE_bji[b]/(FV∙
IF}
~V)

The	decoded	shape	of	the	Side	signal	is	the	output	of	the	AVQ	described	in	ISO/IEC	23003-3:2012,	7.12.	

ñb[1 + 8ó + F] = ów[ó][0][F],	for	0 ≤ F < 8	and	0 ≤ ó <
.ìK_J

8

Table	109	—	Inverse	quantization	table	ild_q[]	

index	 output	 index	 Output

0	 -50	 16	 2	
1	 -45	 17	 4	
2	 -40	 18	 6	
3	 -35	 19	 8	
4	 -30	 20	 10	
5	 -25	 21	 13	
6	 -22	 22	 16	
7	 -19	 23	 19	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 155	
	

index	 output	 index	 Output

8	 -16	 24	 22	
9	 -13	 25	 25	
10	 -10	 26	 30	
11	 -8	 27	 35	
12	 -6	 28	 40	
13	 -4	 29	 45	
14	 -2	 30	 50	
15	 0	 31	 reserved	

Table	110	—	Inverse	quantization	table	res_pred_gain_q[]	

index	 output

0	 0	
1	 0,117	0	
2	 0,227	0	
3	 0,340	7	
4	 0,464	5	
5	 0,605	1	
6	 0,776	3	
7	 1	

5.5.9.4.5 Inverse	channel	mapping	

The	mid	signal	X	and	side	signal	S	are	first	converted	to	the	left	and	right	channels	L	and	R	as	follows:	
ó,[k] = ,̈[F] + M ,̈[F],	for	kpJÑ_ÄLqLjZ[k] 	≤ 	F < kpJÑ_ÄLqLjZ[k + 1]		
≠,[k] = ,̈[F] − M ,̈[F],	for	kpJÑ_ÄLqLjZ[k] 	≤ 	F < kpJÑ_ÄLqLjZ[k + 1]		

	
where	the	gain	g	per	parameter	band	is	derived	from	the	ILD	parameter:	

g = c − 1
Æ + 1 ,where	c = 10SB6([9]/%'.	

	
For	parameter	bands	below	cod_max_band,	the	two	channels	are	updated	with	the	decoded	side	signal:	

ó,[F] = ó,[F] + Æ|Ñ_MpLJ, ∙ å,[F],	for	1	 ≤ 	F < kpJÑ_ÄLqLjZ[Æ|Ñ_qpÖ	 _kpJÑ]	
≠,[F] = ≠,[F] − Æ|Ñ_MpLJ, ∙ å,[F],	for	1	 ≤ 	F < kpJÑ_ÄLqLjZ[Æ|Ñ_qpÖ	 _kpJÑ]	

	
For	higher	parameter	bands,	the	side	signal	is	predicted	and	the	channels	updated	as:	
ó,[k] = ó,[F] + @tIÑ_MpLJ,[k] ∙ ,̈F&[F],	for	kpJÑ_ÄLqLjZ[k] 	≤ 	F < kpJÑ_ÄLqLjZ[k + 1]
≠,[k] = ≠,[F] − @tIÑ_MpLJ,[k] ∙ ,̈F&[F],	for	kpJÑ_ÄLqLjZ[k] 	≤ 	F < kpJÑ_ÄLqLjZ[k + 1]

	
Finally,	the	channels	are	multiplied	by	a	complex	value	aiming	to	restore	the	original	energy	and	the	inter-
channel	phase	of	the	original	stereo	signal.	First,	absolute	values	a[k]	are	computed	for	each	frequency:	

p[F] = Ø2 ∙ ,̈
%[F]

ó,%[F] + ≠,%[F]
	

before	being	employed	on	the	left	and	right	spectra	in	combination	with	a	rotation	angle	β:	
ó,[F] = p[F] ∙ IR%W[∙ ó,[F],	for	kpJÑ_ÄLqLjZ[k] 	≤ 	F < kpJÑ_ÄLqLjZ[k + 1]	
≠,[F] = p[F] ∙ IR%W[∙ ≠,[F],	for	kpJÑ_ÄLqLjZ[k] 	≤ 	F < kpJÑ_ÄLqLjZ[k + 1]	

	
where	a[k]	is	bounded	between	-12	and	12	dB,	and	where	β = ”x+xF2”(sin(IPD#[b]) , cos(IPD#[b]) + c)d	
where	atan2(x,y)	is	the	four-quadrant	inverse	tangent	of	x	over	y.	

ISO/IEC	23008-3:202X(E)	

156	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.9.4.6 Time	domain	synthesis	

From	the	two	decoded	spectrums	L	and	R,	two	time	domain	signals,	l	and	r,	are	synthesized	by	an	inverse	
DFT:	

Ä,[J] =
1
x
⎝

⎜
⎛≥ó,[F] ∙ I

%WRE+
1

1/%

E0'

+ ≥ ó,∗[x − F] ∙ I
%WRE+
1

1F&

E01%]& ⎠

⎟
⎞ ,			for	0 ≤ J < x	

t,[J] =
1
x
⎝

⎜
⎛≥≠,[F] ∙ I

%WRE+
1

1/%

E0'

+ ≥ ≠,∗[x − F] ∙ I
%WRE+
1

1F&

E01%]& ⎠

⎟
⎞ ,			for	0 ≤ J < x	

where	*	denotes	the	complex	conjugation.	

Finally,	an	overlap-add	operation	allows	reconstructing	a	frame	of	M	samples:	

Ä[L ∙ M+J − ó] = lÄ,F&[A + J] ∙ i[ó − 1 − J] + Ä,[J] ∙ i[J],	for	0 ≤ J < ó	
Ä,[J]																																																																					,	for	ó ≤ J < A	

t[L ∙ M+J − ó] = lt,F&[A + J] ∙ i[ó − 1 − J] + t,[J] ∙ i[J],	for	0 ≤ J < ó	
t,[J]																																																																					,	for	ó ≤ J < A

5.5.9.4.7 Post-processing	

The	bass	post-processing	is	applied	on	two	channels	separately.	The	processing	is	for	both	channels	the	
same	as	described	in	ISO/IEC	23003-3:2012,	7.17.	

5.5.9.4.8 Transition	from	FD	mode	

The	transitions	 from	FD	to	LPD	mode	are	done	 first	on	 the	decoded	mid	signal	as	 in	mono	case.	 It	 is	
achieved	by	artificially	creating	a	Mid-signal	from	the	time	domain	signal	decoded	in	FD	mode.		

Ö[J − ÆÆNÄ/2] = 0.5 ∙ Ä,F&[J] + 0.5 ∙ t,F&[J],	for	ÆÆNÄ ≤ J < ÆÆNÄ
2 + ó_NpÆ		

	
This	 signal	 is	 then	 conveyed	 to	 the	 LPD	 decoder	 for	 updating	 the	 memories	 and	 applying	 the	 FAC	
decoding	 as	 it	 is	 done	 in	 the	mono	 case	 for	 transitions	 from	 FD	mode	 to	 ACELP.	 The	 processing	 is	
described	 in	 ISO/IEC	23003-3:2012,	 7.16.	 In	 case	 of	 FD	mode	 to	 TCX,	 a	 conventional	 overlap-add	 is	
performed.	The	LPD	stereo	decoder	receives	as	input	signal	a	decoded	Mid	signal	where	the	transition	is	
already	done.	The	stereo	decoder	outputs	then	a	left	and	right	channel	signals	which	overlap	the	previous	
frame	decoded	in	FD	mode.	The	signals	are	then	cross-faded	on	each	channel	for	smoothing	the	transition	
in	the	left	and	right	channels:	

Ä ∑J −
ÆÆNÄ
2 + ó_NpÆ∏

=

⎩
⎪
⎨
⎪
⎧Ä,F&[ÆÆNÄ + J]																																																																																										,	for	0 ≤ J <	 ÆÆNÄ2 − ó_NpÆ − ó

Ä,F& ∑ÆÆNÄ +
ÆÆNÄ
2 − ó_NpÆ − ó + J∏ ∙ i[ó − 1 − J] + Ä,[J] ∙ i[J],	for	0 ≤ J < ó																											

Ä,[J]																																																																																																													,	for	ó ≤ J < A																									

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 157	
	

t ∑J −
ÆÆNÄ
2 + ó_NpÆ∏

=

⎩
⎪
⎨
⎪
⎧t,F&[ÆÆNÄ + J]																																																																																										,	for	0 ≤ J <	 ÆÆNÄ2 − ó_NpÆ − ó

t,F& ∑ÆÆNÄ +
ÆÆNÄ
2 − ó_NpÆ − ó + J∏ ∙ i[ó − 1 − J] + t,[J] ∙ i[J],	for	0 ≤ J < ó																											

t,[J]																																																																																																													,	for	ó ≤ J < A																									

	

	
A	schematic	illustration	of	the	transitions	is	depicted	in	Figure	23	in	case	LPD	is	in	full-band	mode	where	
M=ccfl/2.	

	
Figure	23	—	Schematic	representation	of	the	transition		

from	FD	to	LPD	mode	with	LPD	stereo	
5.5.9.4.9 Transition	to	FD	mode	

For	transitions	from	LPD	mode	to	FD	mode,	an	extra	frame	is	decoded	by	the	LPD	stereo	decoder.	The	
mid	signal	coming	from	the	LPD	decoder	is	extended	with	zero	for	the	frame	index	i=ccfl/M.	

Ö[L ∙ M+J − ó] = l Ö[L ∙ M+J − ó]	,	for	0 ≤ J < ó + 2 ∙ ó_NpÆ
0																												,	for	ó + 2 ∙ ó_NpÆ ≤ J < A	

The	 stereo	decoding	 as	described	 in	 the	previous	 subclauses	 is	performed	by	holding	 the	 last	 stereo	
parameters,	and	by	switching	off	the	Side	signal	inverse	quantization,	i.e.	cod_mode	is	set	to	0.	Moreover,	
the	right	side	windowing	after	the	inverse	DFT	is	not	applied.	

The	resulting	left	and	right	channels	are	then	combined	to	the	FD	mode	decoded	channels	of	the	next	
frame	by	using	an	overlap-add	processing	in	case	of	TCX	to	FD	mode	or	by	using	a	FAC	for	each	channel	
in	case	of	ACELP	to	FD	mode.	

In	the	latter	case,	the	ZIR	of	the	ACELP	decoded	mid	signal	shall	also	be	used	for	the	processing	of	the	
extra	LPD	stereo	frame.	The	resulting	left	and	right	signals	are	thus	containing	channel	specific	ZIR	and	
folded	ACELP	synth	signals	as	required	for	the	FAC	processing	described	in	ISO/IEC	23003-3:2012,	7.16.	
Afterwards	the	left	and	right	signals	provided	by	the	LPD	stereo	tool	and	the	channel	specific	decoded	
FAC	signals	are	added	to	form	the	final	channel	dependent	FAC	synthesis	signals.	

LPD decoded Mid signal

L

R

L

R

LPD decoded stereo channels

FD decoded stereo channels

FD computed Mid-signal

Usac frame (ccfl size)

FAC or
OLA

Cross-
fading

Time

Usac frame (ccfl size)

ACELP
or TCX

FD decoded stereo channels

ISO/IEC	23008-3:202X(E)	

158	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	case	of	fullband	LPD,	i.e.	fullbandLpd	is	equal	to	1,	prior	to	the	addition	of	the	signals	only	the	decoded	
FAC	signal	shall	be	upsampled	by	the	factor	of	2,	as	the	ACELP	decoded	mid	signal	containing	the	ZIR	
signal	 is	 already	 upsampled	 to	 fs,tcx	 prior	 to	 the	 LPD	 stereo	 processing.	Note	 that	 this	 procedure	 of	
upsampling	is	different	than	described	in	5.5.7.9.	

A	schematic	illustration	of	the	transitions	is	depicted	in	Figure	24	in	case	LPD	is	in	full	band	mode	where	
M=ccfl/2.	

Figure	24	—	Schematic	representation	of	the	transition		
from	LPD	to	FD	mode	with	LPD	stereo	

 Multichannel	coding	tool	

5.5.10.1 	Tool	description	

The	multichannel	coding	tool	(MCT)	is	a	method	for	joint	coding	of	multiple	channels	for	more	efficient	
coding	of	time-variant	horizontally	and	vertically	distributed	channels.	

5.5.10.2 Definitions	

Help	elements:	

mctChanMask[chan]	 Indicates	the	use	of	the	tool	for	a	certain	channel	according	to	Table	111.	
The	value	of	mctChanMask[chan]	shall	be	0	for	any	LFE	channel.	

Table	111	—	mctChanMask	

mctChanMask	 Meaning

0	 Multichannel	coding	tool	not	applied		
1	 Multichannel	coding	tool	applied	

	

channelPairIndex	 A	list	of	channel	pair	indices	for	each	pair	of	channels	processed	by	the	
MCT.	The	channelPairIndex	is	decoded	to	two	channel	indices	with	
decode_channel_pair_index().	

hasMctMask	 Indicates	the	transmission	of	a	mask	that	indicates	the	use	of	the	tool	for	
certain	scale	factor	bands.		

LPD decoded Mid signal

L

R

LPD decoded stereo channels

Zero padding

Usac frame (ccfl size)
Usac frame (ccfl size)

FD decoded stereo channels

Time

FAC or OLA

or TCX

Extra LPD stereo
window

L

R

L

R

ACELP
+ZIR

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 159	
	

Table	112	—	hasMctMask	

hasMctMask	 Meaning

0	 MCT	is	applied	to	all	bands		

1	 A	mask	indicating	the	usage	of	MCT	per	
band	is	transmitted	

	

hasBandwiseAngles	 Indicates	whether	a	single	angle	or	multiple	angles	are	transmitted.	

hasBandwiseCoeff	 Indicates	whether	a	single	prediction	coefficient	or	multiple	prediction	
coefficients	are	transmitted.	

isMCTShort	 Indicates	whether	the	current	processing	is	applied	to	a	frame	containing	
eight	sub-windows.	

Table	113	—	isMCTShort	

isMCTShort	 Meaning

0	 Stereo	parameters	applied	to	one	
MDCT	frame	

1	 Stereo	parameters	applied	to	eight	
MDCT	sub-windows	

numMaskBands	 The	number	of	processing	bands	that	are	processed	by	MCT.	

pair	 The	index	of	the	currently	processed	stereo	processing	box.	

band	 A	stereo	processing	band	containing	two	scalefactor	bands.	

mctMask	[band]	 Indicates	the	activity	of	the	MCT	for	a	certain	parameter	band	within	a	
certain	parameter	pairing.	

mct_delta_time	 Indicates	the	coding	scheme	used	for	the	MCT	parameters:	

Table	114	—	mct_delta_time	

mct_delta_time	 Meaning

0	 frequency	differential	coding	of	
MCT	parameters	

1	 time	differential	coding	of	
MCT	parameters	

hcod_angle[]	 The	Huffman	code	book	for	angles.	

dpcm_beta[band]	 The	differentially	encoded	angle	to	be	applied.	

dpcm_alpha_q_re[band]	 The	differentially	encoded	prediction	coefficient	to	be	applied.	

pred_dir	 Indicates	the	direction	of	prediction	according	to	ISO/IEC	23003-3:2012,	
Table	120.	

DEFAULT_ALPHA	 Initialization	value	for	stereo	prediction,	equal	to	0.	

ISO/IEC	23008-3:202X(E)	

160	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

DEFAULT_BETA	 Initialization	value	for	rotation	angle,	equal	to	48.	

MAX_NUM_MC_BANDS	 Maximum	number	of	MCT	bands,	equal	to	64.	

MCTSignalingType	 The	type	of	signaling	MCT	data.	

keepTree	 Indicates	whether	to	use	the	same	tree	of	channel	pairs	as	in	the	previous	
frame.	

numPairs	 The	number	of	MCT	channel	pairs.	The	maximum	number	of	MCT	
channel	pairs	per	signal	group	shall	not	exceed		
(nMCTChannels	·	(nMCTChannels	-1)	/	2)	of	that	signal	group.	

nMCTChannels	 The	number	of	active	MCT	channels,	where	mctChanMask[chan]	==1.	

5.5.10.3 Decoding	process	

5.5.10.3.1 General	

In	case	an	element	with	usacExtElementType	ID_EXT_ELE_MCT	belongs	to	the	currently	processed	
signal	group,	the	affected	channels	according	to	mctChanMask[]	shall	be	decoded	by	the	MCT.	Here,	
the	 extension	 element	with	usacExtElementType	ID_EXT_ELE_MCT	 shall	 be	written	 before	 any	
audio	 element	 of	 a	 certain	 signal	 group.	 Further,	 the	 extension	 element	 properties	
usacExtElementPayloadFrag	 shall	 be	 zero,	usacExtElementPresent	 shall	 be	 1	 and	 the	 transmitted	
data	shall	conform	to	the	syntax	element	MultichannelCodingFrame()	as	described	in	Table	65.	

The	decoding	of	the	multichannel	coding	tool	(MCT)	is	performed	in	multiple	steps	as	follows:	

5.5.10.3.2 Decoding	of	channel	pair	index	

Channel	 pairs	 are	 efficiently	 signalled	 using	 a	 unique	 index	 channelPairIndex	 for	 each	 pair,	
dependent	on	the	sum	nMCTChannels	of	active	channels	in	the	vector	mctChanMask[].	The	decoding	
process	is	described	in	the	function	decode_channel_pair_index()	as	follows:	

decode_channel_pair_index(channelPairIndex, channelPair[2])
{
 maxNumPairIdx = nMCTChannels*(nMCTChannels-1)/2 - 1;
 numBits = floor(log2(maxNumPairIdx))+1;
 pairCounter = 0;

 for (chan1=1; chan1 < nMCTChannels; chan1++) {
 for (chan0=0; chan0 < chan1; chan0++) {
 if (pairCounter == channelPairIndex) {
 channelPair[0] = chan0;
 channelPair[1] = chan1;
 return;
 }
 else
 pairCounter++;
 }
 }
 }
}

For	instance,	all	possible	channel	pairs	when	using	6	channels	can	be	indexed	according	to	Table	112.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 161	
	

Table	115	—	Coding	of	channelPairIndex	for	a	setup	with	6	MCT	channels	

ch		
nr	 0	 1	 2	 3	 4	 5	

0 	 0	 1	 2	 3	 4	

1 	 5	 6	 7	 8	

2 	 9	 10	 11	

3 	 12	 13	

4 	 14	

5 	 	

5.5.10.3.3 Decoding	process	for	rotation	angles	

In	case	MCTSignalingType = 1, the	MultichannelCodingBoxRotation()	bitstream	element	
is	used.	For	all	rotation	angles	the	difference	to	a	preceding	(in	time	or	frequency)	value	is	coded	using	
the	Huffman	code	book	specified	in	subclause	5.5.10.3.6.	See	ISO/IEC	14496-3:2009,	4.6.3,	for	a	detailed	
description	of	the	Huffman	decoding	process.	Rotation	angles	are	not	transmitted	for	mctMask[band]
= 0.	The	following	pseudo	code	describes	how	to	decode	the	rotation	angles	pairBeta[band].	

decode_rotation()
{
 for(pair=0; pair<numPairs; pair++) {
 mctBandsPerWindow = numMaskBands[pair]/windowsPerFrame;
 for(band=0; band<numMaskBands[pair]; band++) {
 if(mct_delta_time[pair] > 0) {
 lastVal = beta_prev_frame[pair][band%mctBandsPerWindow];
 }
 else {
 if ((band % mctBandsPerWindow) == 0) {
 lastVal = DEFAULT_BETA;
 }
 }
 if (mctMask[pair][band] > 0) {

 newBeta = lastVal + dpcm_beta[pair][band];
 if(newBeta >= 65) {
 newBeta -= 65;
 }
 pairBeta[pair][band] = newBeta;
 beta_prev_frame[pair][band%mctBandsPerWindow] = newBeta;
 lastVal = newBeta;
 }
 else {
 beta_prev_frame[pair][band%mctBandsPerWindow] = DEFAULT_BETA; /* -45° */
 }

 /* reset fullband angle */
 beta_prev_fullband[pair] = DEFAULT_BETA;
 }
 for(band=bandsPerWindow; band<MAX_NUM_MC_BANDS; band++) {
 beta_prev_frame[pair][band] = DEFAULT_BETA;
 }
 }
}

ISO/IEC	23008-3:202X(E)	

162	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

beta_prev_frame[pair][sfb] contains	the	decoded	rotation	angles	of	the	corresponding	stereo	
channel	pair	of	 the	 last	 sub-window	of	 the	previous	 frame.	 If	no	differential	 coding	was	used	 for	 the	
previous	frame	or	for	the	respective	scale	factor	band	in	the	previous	frame,	beta_prev_frame[sfb]
is	set	to	DEFAULT_BETA.		

All	rotation	angles	shall	be	reset	to	DEFAULT_BETA	upon	a	transform	length	change	and	for	all	cases	the	
memory	is	not	used	for	the	current	frame.	

5.5.10.3.4 Decoding	process	for	real-valued	stereo	prediction	

In	 case	 MCTSignalingType = 0, the	 MultichannelCodingBoxPrediction()	 bitstream	
element	is	used.	Decoding	is	performed	similar	to	the	decoding	of	prediction	coefficients	as	defined	in	
ISO/IEC	23003-3:2012,	 7.7.2.3.2.	 The	 following	 pseudo	 code	 describes	 how	 to	 decode	 the	 prediction	
coefficients	pairAlpha[band].	

decode_prediction()
{
 for(pair=0; pair<numPairs; pair++) {
 mctBandsPerWindow = numMaskBands[pair]/windowsPerFrame;
 for(band=0; band<numMaskBands[pair]; band++) {
 if(mct_delta_time[pair] > 0) {
 lastVal = alpha_prev_frame[pair][band%mctBandsPerWindow];
 }
 else {
 if ((band % mctBandsPerWindow) == 0) {
 lastVal = DEFAULT_ALPHA;
 }
 }
 if (mctMask[pair][band] > 0) {

 dpcm_alpha = -decode_huffman() + 60; /* function returns dpcm_alpha_[sfb]*/
 newAlpha = lastVal + dpcm_alpha;

 pairAlpha[pair][band] = newAlpha;
 alpha_prev_frame[pair][band%mctBandsPerWindow] = newAlpha;
 lastVal = newAlpha;
 }
 else {
 alpha_prev_frame[pair][band%mctBandsPerWindow] = DEFAULT_ALPHA;
 }

 /* reset fullband angle */
 alpha_prev_fullband[pair] = DEFAULT_ALPHA;
 }
 for(band=bandsPerWindow; band<MAX_NUM_MC_BANDS; band++) {
 alpha_prev_frame[pair][band] = DEFAULT_ALPHA;
 }
 }
}

All	prediction	coefficients	shall	be	reset	to	DEFAULT_ALPHA	upon	a	transform	length	change	and	for	all	
cases	the	memory	is	not	used	for	the	current	frame.		

5.5.10.3.5 Decoding	of	quantized	rotation	angles	

To	 avoid	 floating	 point	 differences	 of	 trigonometric	 functions	 on	 different	 platforms,	 the	 following	
lookup-tables	for	converting	rotation	angle	indices	directly	to	sin/cos	shall	be	used.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 163	
	

tabIndexToSinAlpha[65] = {
 -1.000000f,-0.998795f,-0.995185f,-0.989177f,-0.980785f,
 -0.970031f,-0.956940f,-0.941544f,-0.923880f,-0.903989f,
 -0.881921f,-0.857729f,-0.831470f,-0.803208f,-0.773010f,
 -0.740951f,-0.707107f,-0.671559f,-0.634393f,-0.595699f,
 -0.555570f,-0.514103f,-0.471397f,-0.427555f,-0.382683f,
 -0.336890f,-0.290285f,-0.242980f,-0.195090f,-0.146730f,
 -0.098017f,-0.049068f, 0.000000f, 0.049068f, 0.098017f,
 0.146730f, 0.195090f, 0.242980f, 0.290285f, 0.336890f,
 0.382683f, 0.427555f, 0.471397f, 0.514103f, 0.555570f,
 0.595699f, 0.634393f, 0.671559f, 0.707107f, 0.740951f,
 0.773010f, 0.803208f, 0.831470f, 0.857729f, 0.881921f,
 0.903989f, 0.923880f, 0.941544f, 0.956940f, 0.970031f,
 0.980785f, 0.989177f, 0.995185f, 0.998795f, 1.000000f
};
	

tabIndexToCosAlpha[65] = {
 0.000000f, 0.049068f, 0.098017f, 0.146730f, 0.195090f,
 0.242980f, 0.290285f, 0.336890f, 0.382683f, 0.427555f,
 0.471397f, 0.514103f, 0.555570f, 0.595699f, 0.634393f,
 0.671559f, 0.707107f, 0.740951f, 0.773010f, 0.803208f,
 0.831470f, 0.857729f, 0.881921f, 0.903989f, 0.923880f,
 0.941544f, 0.956940f, 0.970031f, 0.980785f, 0.989177f,
 0.995185f, 0.998795f, 1.000000f, 0.998795f, 0.995185f,
 0.989177f, 0.980785f, 0.970031f, 0.956940f, 0.941544f,
 0.923880f, 0.903989f, 0.881921f, 0.857729f, 0.831470f,
 0.803208f, 0.773010f, 0.740951f, 0.707107f, 0.671559f,
 0.634393f, 0.595699f, 0.555570f, 0.514103f, 0.471397f,
 0.427555f, 0.382683f, 0.336890f, 0.290285f, 0.242980f,
 0.195090f, 0.146730f, 0.098017f, 0.049068f, 0.000000f
};

5.5.10.3.6 Huffman	tables	for	differential	rotation	angles	

The	following	Huffman	tables	huff_ctabAngle[] and huff_ltabAngle[] for	the	code	words	
and	the	code	word	lengths,	respectively,	shall	be	used	for	decoding	the	rotation	angle	differences.	

huff_ctabAngle[65] = {
 0x00000000, 0x0000000B, 0x00000012, 0x0000001B, 0x0000001F,
 0x00000031, 0x0000003A, 0x00000043, 0x00000065, 0x00000073,
 0x00000082, 0x0000009A, 0x000000CE, 0x000000EE, 0x00000106,
 0x0000013A, 0x000001D9, 0x000001DE, 0x00000202, 0x00000261,
 0x0000020F, 0x0000020E, 0x00000263, 0x00000266, 0x00000272,
 0x00000271, 0x00000277, 0x00000276, 0x00000334, 0x00000325,
 0x00000326, 0x00000327, 0x00000324, 0x00000323, 0x00000335,
 0x00000322, 0x00000320, 0x00000321, 0x00000273, 0x00000270,
 0x00000267, 0x00000260, 0x000004C4, 0x000004C5, 0x00000203,
 0x000001DF, 0x000001DA, 0x000001D8, 0x0000019B, 0x000001DB,
 0x00000132, 0x00000100, 0x000000CF, 0x000000CC, 0x0000009B,
 0x00000081, 0x00000072, 0x0000004F, 0x00000042, 0x00000038,
 0x00000030, 0x0000001E, 0x0000001A, 0x00000011, 0x0000000A
};
	

huff_ltabAngle[65] = {
 0x00000001, 0x00000004, 0x00000005, 0x00000005, 0x00000005,
 0x00000006, 0x00000006, 0x00000007, 0x00000007, 0x00000007,
 0x00000008, 0x00000008, 0x00000008, 0x00000008, 0x00000009,
 0x00000009, 0x00000009, 0x00000009, 0x0000000A, 0x0000000A,

ISO/IEC	23008-3:202X(E)	

164	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A,
 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A,
 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A,
 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A, 0x0000000A,
 0x0000000A, 0x0000000A, 0x0000000B, 0x0000000B, 0x0000000A,
 0x00000009, 0x00000009, 0x00000009, 0x00000009, 0x00000009,
 0x00000009, 0x00000009, 0x00000008, 0x00000008, 0x00000008,
 0x00000008, 0x00000007, 0x00000007, 0x00000007, 0x00000006,
 0x00000006, 0x00000005, 0x00000005, 0x00000005, 0x00000004
};

5.5.10.3.7 Application	of	multichannel	coding	tool	

5.5.10.3.7.1 General	

Reconstruct	 the	 spectral	 coefficients	of	 all	 channels	by	 iteratively	 looping	over	all	 transmitted	 stereo	
boxes		and	frequency	bands	as	follows.	

decode_mct()
{
 for (pair=0; pair < numPairs; pair++) {

 mctBandOffset = 0;
 alphaSfb = pairAlpha[pair];
 betaSfb = pairBeta[pair];

 /* inverse MCT application */
 for (win = 0, group = 0; group <num_window_groups; group++) {

 for (groupwin = 0; groupwin < window_group_length[group]; groupwin++, win++) {
 *dmx = spectral_data[ch1][win];
 *res = spectral_data[ch2][win];
 apply_mct_wrapper(self,dmx,res,
 &alphaSfb[mctBandOffset], &betaSfb[mctBandOffset],
 &mctMask[mctBandOffset],mctBandsPerWindow, alpha,
 pair,nSamples);
 }
 mctBandOffset += mctBandsPerWindow;
 }
 }
}

Thereby	spectral_data[ch1]	 and	spectral_data[ch2]	 represent	 the	 two	 input	 and	 output	
channels	of	the	channel	pair	that	is	currently	processed	in	the	MCT	stereo	processing	box.	

Further	processing	of	every	MCT	stereo	processing	box	is	achieved	as	follows.	

apply_mct_wrapper(self, *dmx, *res,
 *alphaSfb, *betaSfb,
 *mctMask, mctBandsPerWindow, alpha,
 pair, nSamples)
{
 sfb = 0;

 if (MCTSignalingType == 0) {
 if (!bHasBandwiseCoeff[pair] && !bHasMctMask[pair]) {
 apply_mct_prediction(dmx, res, alphaSfb[0], nSamples);
 }

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 165	
	

 else {
 /* apply bandwise processing */
 for (i = 0; i< mctBandsPerWindow; i++) {
 if (mctMask[i] == 1) {
 startLine = swb_offset [sfb];
 stopLine = (sfb+2<num_swb)? swb_offset [sfb+2] : swb_offset [sfb+1];
 nSamples = stopLine-startLine;

 apply_mct_prediction(&dmx[startLine], &res[startLine],
 alphaSfb[i], nSamples, pred_dir);
 }
 sfb += 2;

 /* break condition */
 if (sfb >= num_swb) {
 break;
 }
 }
 }
 }
 else if (MCTSignalingType == 1) {

 /* apply fullband box */
 if (!bHasBandwiseAngles[pair] && !bHasMctMask[pair]) {
 apply_mct_rotation(dmx, res, betaSfb[0], nSamples);
 }
 else {
 /* apply bandwise processing */
 for (i = 0; i< mctBandsPerWindow; i++) {
 if (mctMask[i] == 1) {
 startLine = swb_offset [sfb];
 stopLine = (sfb+2<num_swb)? swb_offset [sfb+2] : swb_offset [sfb+1];
 nSamples = stopLine-startLine;

 apply_mct_rotation(&dmx[startLine], &res[startLine],
 betaSfb[i], nSamples);
 }
 sfb += 2;

 /* break condition */
 if (sfb >= num_swb) {
 break;
 }
 }
 }
 }
 else if (MCTSignalingType == 2) {
 /* reserved */
 }
 else if (MCTSignalingType == 3) {
 /* reserved */
 }
}

5.5.10.3.7.2 Application	of	rotation	angles	

apply_mct_rotation(*dmx, *res, aIdx, nSamples)
{
 for (n=0;n<nSamples;n++) {

ISO/IEC	23008-3:202X(E)	

166	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 L = dmx[n] * tabIndexToCosAlpha [aIdx] - res[n] * tabIndexToSinAlpha [aIdx];
 R = dmx[n] * tabIndexToSinAlpha [aIdx] + res[n] * tabIndexToCosAlpha [aIdx];
 dmx[n] = L;
 res[n] = R;
 }
}

5.5.10.3.7.3 Application	of	real-valued	stereo	prediction	coefficients	

Real-valued	stereo	prediction	is	performed	like	the	upmixing	process	described	in	ISO/IEC	23003-
3:2012,	subclause	7.7.2.3.4	under	the	assumption	that	ms_mask_present = 3;
num_window_groups = windowsPerFrame; window_group_length = 1;
cplx_pred_used[g][sfb] = mctMask[sfb]; alpha_im = 0;	

Thus,	in	the	context	of	the	MCT,	the	prediction	upmixing	process	can	be	calculated	using	the	following	
pseudo	code.	

apply_mct_prediction(*dmx, *res, alpha_q, nSamples, pred_dir)
{
 alpha_re = alpha_q * 0.1;

 for (n=0;n<nSamples;n++) {
 if (pred_dir == 0) {
 L = dmx[n] + alpha * dmx[n] + res[n];
 R = dmx[n] - alpha * dmx[n] - res[n];

 }
 else {
 L = dmx[n] + alpha * dmx[n] + res[n];
 R = - dmx[n] + alpha * dmx[n] + res[n];
 }
 dmx[n] = L;
 res[n] = R;
 }
}

5.5.10.4 Stereo	filling	in	the	MCT	

Like	stereo	filling	for	IGF	in	a	channel	pair	element,	described	in	subclause	5.5.5.4.9,	stereo	filling	in	the	
multichannel	coding	Tool	(MCT)	fills	“empty”	scale	factor	bands	(which	are	fully	quantized	to	zero)	at	
and	above	the	noise	filling	start	frequency	using	a	downmix	of	the	previous	frame’s	output	spectra.	

5.5.10.4.1 Tool	description	

When	stereo	filling	is	active	in	a	MCT	joint-channel	pair	(hasStereoFilling[pair]	≠	0	in	Table	65),	all	
“empty”	scale	factor	bands	in	the	noise	filling	region	(i.	e.	starting	at	or	above	noiseFillingStartOffset)	of	
the	pair’s	second	channel	are	filled	to	a	specific	target	energy	using	a	downmix	of	the	corresponding	
output	spectra	(after	MCT	application)	of	the	previous	frame.	This	is	performed	after	the	FD	noise	filling	
(see	ISO/IEC	23003-3:2012,	7.2)	and	prior	to	scale	factor	and	MCT	joint-stereo	application.	All	output	
spectra	after	completed	MCT	processing	are	saved	for	potential	Stereo	Filling	in	the	next	frame.	

5.5.10.4.2 Operational	constraints	

Cascaded	execution	of	stereo	filling	algorithm	(hasStereoFilling[pair]	≠	0)	in	empty	bands	of	the	second	
channel	is	not	supported	for	any	following	MCT	stereo	pair	with	hasStereoFilling[pair]	≠	0	if	the	second	
channel	is	the	same.	In	a	channel	pair	element,	active	IGF	stereo	filling	in	the	second	(residual)	channel	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 167	
	

according	 to	 subclause	 5.5.5.4.9	 takes	 precedence	 over	 –	 and,	 thus,	 disables	 –	 any	 subsequent	
application	of	MCT	stereo	filling	in	the	same	channel	of	the	same	frame.	

5.5.10.4.3 Definitions	

hasStereoFilling[pair]	 indicates	usage	of	stereo	filling	in	currently	processed	MCT	channel	pair.	

ch1,	ch2	 indices	of	channels	in	currently	processed	MCT	channel	pair.	

spectral_data[][]	 spectral	coefficients	of	channels	in	currently	processed	MCT	channel	pair.	

spectral_data_prev[][]	 output	spectra	after	completed	MCT	processing	in	previous	frame.	

downmix_prev[][]	 estimated	downmix	of	previous	frame’s	output	channels	with	indices	
given	by	currently	processed	MCT	channel	pair.	

num_swb	 total	number	of	scale	factor	bands,	see	ISO/IEC	23003-3:2012,	subclause	
6.2.9.4.	

ccfl	 coreCoderFrameLength,	transform	length,	see	ISO/IEC	23003-3:2012,	
subclause	6.1.	

noiseFillingStartOffset	 Noise	filling	start	line,	defined	depending	on	ccfl	in	ISO/IEC	23003-
3:2012,	Table	109.	

igf_WhiteningLevel	 Spectral	whitening	in	IGF,	see	subclause	5.5.5.4.7.	

seed[]	 Noise	filling	seed	used	by	randomSign(),	see	ISO/IEC	23003-3:2012,	
subclause	7.2.	

5.5.10.4.4 Decoding	process	

MCT	stereo	filling	is	performed	using	four	consecutive	operations,	which	are	described	in	the	following	
steps.	

Step	1:	 Preparation	of	second	channel’s	spectrum	for	stereo	filling	algorithm	

If	the	stereo	filling	indicator	for	the	given	MCT	channel	pair,	hasStereoFilling[pair],	equals	zero,	stereo	
filling	is	not	used	and	the	following	steps	are	not	executed.	Otherwise,	scale	factor	application	is	
reversed	if	it	was	previously	applied	to	the	pair’s	second	channel	spectrum,	spectral_data[ch2].	

Step	2:	 Generation	of	previous	downmix	spectrum	for	given	MCT	channel	pair	

The	previous	downmix	is	estimated	from	the	previous	frame’s	output	signals	spectral_data_prev[][]	
that	was	stored	after	application	of	MCT	processing.	If	a	previous	output	channel	signal	is	not	available,	
e.g.	due	to	an	independent	frame	(indepFlag>0),	a	transform	length	change	or	core_mode	==	1	,	the	
previous	channel	buffer	of	the	corresponding	channel	shall	be	set	to	zero.	

For	prediction	stereo	pairs,	 i.e.	MCTSignalingType	==	0,	 the	previous	downmix	 is	calculated	 from	the	
previous	 output	 channels	 as	 downmix_prev[][]	 defined	 in	 step	 2	 of	 subclause	 5.5.5.4.9.4,	 whereby	
spectrum[window][]	is	represented	by	spectral_data[][window].	

For	 rotation	 stereo	 pairs,	 i.e.	 MCTSignalingType	 ==	 1,	 the	 previous	 downmix	 is	 calculated	 from	 the	
previous	output	channels	by	inverting	the	rotation	operation	defined	in	subclause	5.5.10.3.7.1.	

ISO/IEC	23008-3:202X(E)	

168	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

apply_mct_rotation_inverse(*R, *L, *dmx, aIdx, nSamples)
{
 for (n=0; n<nSamples; n++) {
 dmx = L[n] * tabIndexToCosAlpha[aIdx] + R[n] * tabIndexToSinAlpha[aIdx];
 }
}

using	 L	 =	 spectral_data_prev[ch1][],	 R	 =	 spectral_data_prev[ch2][],	 dmx	 =	 downmix_prev[]	 of	 the	
previous	frame	and	using	aIdx,	nSamples	of	current	frame	and	MCT	pair.	

Step	3:	 Execution	of	stereo	filling	algorithm	in	empty	bands	of	second	channel	

Stereo	filling	is	applied	in	the	MCT	pair’s	second	channel	as	in	step	3	of	subclause	5.5.5.4.9.4,	whereby	
spectrum[window]	is	represented	by	spectral_data[ch2][window]	and	max_sfb_ste	is	given	by	
num_swb.	

Step	4:	 Scale	factor	application	and	adaptive	synchronization	of	Noise	Filling	seeds	

As	after	step	3	of	 subclause	5.5.5.4.9.4,	 the	scale	 factors	are	applied	on	 the	resulting	spectrum	as	 in		
ISO/IEC	23003-3:2012,	7.3,	with	 the	scale	 factors	of	empty	bands	being	processed	 like	regular	scale	
factors.	In	case	a	scale	factor	is	not	defined,	e.g.	because	it	is	located	above	max_sfb,	its	value	shall	equal	
zero.	If	IGF	is	used,	igf_WhiteningLevel	equals	2	in	any	of	the	second	channel’s	tiles,	and	both	channels	
do	not	employ	eight-short	transformation,	the	spectral	energies	of	both	channels	in	the	MCT	pair	are	
computed	 in	 the	 range	 from	 index	 noiseFillingStartOffset	 to	 index	 ccfl/2	 –	 1	 before	 executing	
decode_mct().	 If	 the	computed	energy	of	the	first	channel	 is	more	than	eight	times	greater	than	the	
energy	of	the	second	channel,	the	second	channel’s	seed[ch2]	is	set	equal	to	the	first	channel’s	seed[ch1].	

 Filterbank	and	block	switching	

The	frequency-to-time	transformation,	windowing,	block	switching,	and	overlap-and-add	operations	are	
carried	 out	 as	 specified	 in	 ISO/IEC	23003-3:2012,	 subclause	 7.9.	 The	 only	 exception	 is	 the	 analytical	
expression	for	the	inverse	lapped	transform	xi,n	of	the	spectral	coefficients	spec[i]	for	the	window	index	i,	
which	is	now	given	by:	

		 for	0	≤	n	<	N	,	

with	i,	k,	n,	N,	and	n0	defined	as	in	ISO/IEC	23003-3:2012,	7.9.3.1,	and	with	cs()	and	k0	as	tabulated,	using	
the	prev_aliasing_symmetry	and	curr_aliasing_symmetry	values,	in	Table	116	below.	Note	that	for	the	7	
last	 transforms	 (at	 i	 >	 0)	 of	 an	 EIGHT_SHORT_SEQUENCE,	 prev_aliasing_symmetry	 is	 set	 to	
curr_aliasing_symmetry.	

1
2

, 0 0
0

2 2[][] cs ()()

N

i n
k

x spec i k n n k k
N N

p
-

=

æ ö= × + +ç ÷
è ø

å

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 169	
	

Table	116	—	Mapping	of	aliasing	symmetry	values	to	parameters	of	the	
inverse	lapped	transform	xi,n	

last	frame	i-1	
current	frame	i

right-side	symmetry	
even	(symmi=0)	

right-side	symmetry	odd	
(symmi=1)

right-side	symmetry	
even	(symmi-1=0)	

cs(…)	=	cos(…)	
k0	=	0.5

cs(…)	=	sin(…)	
k0	=	1.0	

right-side	symmetry	
odd	(symmi-1=1)	

cs(…)	=	cos(…)	
k0	=	0.0

cs(…)	=	sin(…)	
k0	=	0.5	

NOTE	 symmi	–1	=	value	of	prev_aliasing_symmetry,		
symmi	=	value	of	curr_aliasing_symmetry.	

.	

In	 channels	 and	 frames	 with	 LPD	 coding	 (core_mode[ch]	 ≠ 	0),	 prev_aliasing_symmetry	 and	
curr_aliasing_symmetry	shall	be	zero.	

 Frequency	domain	prediction	

5.5.12.1 Tool	description	

The	frequency	domain	prediction	(FDP)	tool	can	be	utilized	for	subjective	quality	improvement	of	low-
frequency	harmonic	signal	components.	 It	 is	 largely	designed	using	 fixed	point	arithmetic	 in	order	 to	
ensure	consistent	operation	across	different	platforms.	FDP	is	applied	individually	for	each	channel	of	
the	given	element	in	the	TNS	filtered	(and	in	the	case	of	channel	pair	elements,	the	joint-stereo	coded)	
MDCT	spectral	domain,	as	obtained	after	the	entropy	decoding	and	noise	filling	steps,	and	is	supported	
in	both	the	MDCT	based	TCX	and	FD	coding	modes.	

5.5.12.2 Operational	constraints	

The	FDP	tool	 is	only	available	 in	dependently	coded	channels/frames	(i.	e.	 indepFlag	==	0)	which	are	
transform	 coded	 using	 the	maximum	MDCT	 length	 (i.	 e.	 largest	 available	mod[k]	 in	 case	 of	 TCX	 and	
window_sequence	!=	EIGHT_SHORT_SEQUENCE	in	case	of	FD	coding)	and	for	which	no	transition	from	
TCX	to	FD	coding,	or	vice	versa,	occurred	between	the	last	and	current	frame.	If	these	requirements	are	
not	 satisfied,	 the	 FDP	 indicator,	 fdp_data_present,	 should	 equal	 zero,	 and	 all	 FDP	helper	 states	 (see	
5.5.12.3)	shall	be	set	to	zero.	

5.5.12.3 Definitions	

fdp_data_present	 binary	flag	indicating	whether	the	FDP	tool	is	active	(1)	or	disabled	
(0)	in	the	channel.	

fdp_spacing_index	 eight-bit	integer	holding	the	harmonic	spacing	index	used	during	the	
FDP	processing.	

ccfl	 coreCoderFrameLength,	the	transform	length,	see	ISO/IEC	23003-
3:2012,	subclause	6.1.	

g	 re-scaling	gain,	based	on	global_gain	value,	see	ISO/IEC	23003-
3:2012,	subclause	7.15.	

ISO/IEC	23008-3:202X(E)	

170	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

lg	 number	of	quantized	MDCT	bins,	see	ISO/IEC	23003-3:2012,	
subclauses	6.2.9.2	and	subclause	7.15.	

noiseFillingStartOffset	 noise	filling	start	line,	defined	depending	on	ccfl	in	ISO/IEC	23003-
3:2012,	Table	109.	

samplingFrequency	 core-coder	sample	rate	defined	by	usacSamplingFrequency	or	
usacSamplingFrequencyIndex	as	defined	in	Table	15.	

harmonicSpacing	 helper	element,	unsigned	integer	holding	a	harmonic	spacing	value	
for	FDP	decoding.	

predictionBandwidth	 helper	element,	unsigned	integer	holding	the	maximum	line	count	for	
FDP	decoding.	

quantSpecPrev[][]	 helper	array,	internal	signed-integer	MDCT	line	memory	for	the	
inter-frame	prediction.	

fdp_exp[]	 constant	array	holding	the	integer	line-expansion	data	
!"!# $64 ∙ (! "#),	with	0	≤	i	≤	181.	

fdp_scf[]	 constant	array	holding	the	integer	scale-factor	power	data	
!"!# $2(%&') !#),	with	0	≤	s	≤	63.	

fdp_sin[]	 constant	array	holding	the	floating-point	sine	values	of	sin$π ∙ (2560),	
with	0	≤	i	≤	128.	

fdp_int[]	 output	array	holding	the	signed-integer	predictor	values	derived	
during	FDP	decoding.	

5.5.12.4 Decoding	process	

The	FDP	decoding	procedure	is	performed	in	four	consecutive	operations,	which	are	described	in	the	
following	steps.	

Step	1:	 Derivation	of	harmonic	spacing	value	

If	 fdp_data_present	 ==	 0,	 this	 step	 is	 skipped.	 Otherwise,	 harmonicSpacing	 is	 derived	 from	
fdp_spacing_index:	

harmonicSpacing	=	(894	·	512	+	fdp_spacing_value)	/	(2	·	fdp_spacing_value)	

with	fdp_spacing_value	=	894	/	3	–	fdp_spacing_index.	The	division	in	the	above	equation	is	an	integer	
division.	

Step	2:	 Determination	of	prediction	bandwidth	

If	 ccfl	 ≠ 	768	 and	 samplingFrequency	≥	44	100	Hz	 (i.e.	 usacSamplingFrequencyIndex	<	5),	
predictionBandwidth	 equals	 132.	 Otherwise,	 predictionBandwidth	 equals	 the	 long-window-sequence	
value	 of	 noiseFillingStartOffset.	 Also,	 predictionBandwidth	 is	 limited	 to	 lg,	 the	 number	 of	 quantized	
MDCT	lines	given	by	the	arithmetic	decoder:	

predictionBandwidth	=	min(lg,	predictionBandwidth).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 171	
	

Step	3:	 Execution	of	MDCT-domain	prediction	

The	FDP	decoding	process,	which	returns	the	predictor	values	fdp_int[i],	0	≤	i	<	predictionBandwidth,	
depends	 on	 the	mode	 of	 the	 current	 frame	 and	 channel.	 If	 fdp_data_present	 ==	 0,	 all	 fdp_int[i]	 =	 0.	
Otherwise,	 in	 case	 of	 FD	 coding,	 FDP	 decoding	 is	 applied	 to	 the	 expanded,	 scaled	 MDCT	 values	
outputSpecCurr[i]	after	noise	filling.	

 harmIndex = -128, compIndex = 256; /* harmonic and compare indices */
 s1 = 0; s2 = 0; /* LPC coefficients, adapt both for each harmonic */

 if (fdp_data_present) { /* FDP active and allowed, obtain estimate */
 for (i = 0; i < predictionBandwidth; i++) {
 if (abs(i * 256 - harmIndex) >= 384) { /* bin is not harmonic */
 fdp_int[i] = 0;
 } else { /* bin is part of the currently active harmonic line */
 reg32 = s1 * quantSpecPrev[0][i] + s2 * quantSpecPrev[1][i];
 fdp_int[i] = sign(reg32) * (((unsigned int)abs(reg32) + 16384) >> 15);
 outputSpecCurr[i] += i_gain * fdp_int[i]; /* actual decoding */
 }
 if (i * 256 == compIndex) { /* update indices and LPC coeffs */
 harmIndex += harmonicSpacing;
 compIndex = harmIndex & 255;
 if (compIndex > 128) {
 compIndex = 256 - compIndex; /* exploit trigonom. symmetry */
 }
 s1 = NINT(768*min(82-18*fdp_sin[compIndex]^2, 77-6*fdp_sin[compIndex]^2)*
 fdp_sin[compIndex]);
 s2 = NINT(-4.5*min(82-18*fdp_sin[compIndex]^2, 77-
6*fdp_sin[compIndex]^2)^2);
 compIndex = harmIndex >> 8; /* integer unscaled harm. index */
 if ((compIndex & 1) == 0) {
 s1 *= -1; /* negate first LPC coeff for even harm. indices */
 }
 compIndex = 256 + ((harmIndex + 128) >> 8) * 256; /* update */
 }
 }
 }

Note	that,	in	case	of	MDCT	based	TCX	coding	in	the	given	frame	and	channel	(core_mode[ch]	==	1),	inverse	
gain	i_gain	=	64	/	g,	i.e.	an	amplified	version	of	the	re-scaling	gain,	and	in	case	of	FD	coding,	i_gain	=	
512.	

Step	4:	 Update	of	spectral	prediction	memory	

For	each	line	at	 index	0	≤	i	<	predictionBandwidth	an	integer	representation	x_int[i]	of	the	expanded,	
scaled	line	value	is	computed.	In	case	of	FD	coding,	this	depends	on	the	quantized	value	x_ac_quant[i]	and	
its	associated	scale	factor	scf[sfb]	for	band	sfb	(see	ISO	23003-3:2012,	subclauses	7.1	and	7.2).	If	scf[sfb]	
<	21,	x_int[i]	=	fdp_int[i].	Otherwise,	

x[i]	=	fdp_exp[min(abs(x_ac_quant[i]),	181)]	·	fdp_scf[min(scf[sfb]	–	21,	63)],	

x_int[i]	=	sign(x_ac_quant[i])	·	((x[i]	+	512)	>>	10)	+	fdp_int[i]		(“>>”	is	a	binary	shift).	

In	case	of	MDCT	based	TCX	coding,	x_int[i]	is	derived	from	the	x_tcx_invquant[i]	coefficients	and	the	gain	
g:	

x_int[i]	=	x_tcx_invquant[i]	·	NINT(g	/	64)	+	fdp_int[i].	

ISO/IEC	23008-3:202X(E)	

172	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

For	 all	 0	≤	i	<	predictionBandwidth,	 the	 update	 is	 finalized	 using	 quantSpecPrev[1][i]	=	
quantSpecPrev[0][i]	and,	afterwards,	

quantSpecPrev[0][i]	=	min(max(x_int[i],	–31775),	31775).	

All	x_int[]	associated	with	uncoded	scale	factor	bands	(i.e.	bands	whose	sfb	≥	max_sfb)	shall	equal	zero.	

 Long-term	postfilter	

5.5.13.1 Tool	description	

The	long-term	postfilter	(LTPF)	tool	can	be	utilized	for	subjective	quality	improvement	of	low-frequency	
harmonic	signal	components.	LTPF	is	applied	individually	for	each	channel	of	the	given	element	in	the	
time	domain	as	obtained	after	FD/LPD	decoding.	More	specifically,	it	is	applied	on	the	time-domain	signal	
obtained	after	the	overlap-and-add	operation	in	case	of	the	FD	mode	(see	ISO/IEC	23003-3:2012,	7.9.3.3)	
and	after	the	bass	postfilter	in	case	of	the	LPD	mode	(see	ISO/IEC	23003-3:2012,	7.17).	

5.5.13.2 Operational	constraints	

The	LTPF	tool	is	supported	in	both	the	FD	mode	and	in	the	longest	MDCT	based	TCX	mode,	but	not	in	the	
shorter	MDCT	based	TCX	modes	nor	in	the	ACELP	mode.	However,	to	avoid	any	discontinuities	that	could	
be	introduced	when	switching	from	a	frame	where	the	tool	is	supported	to	a	frame	where	the	tool	is	not	
supported,	the	LTPF	decoding	process	is	still	applied	in	the	modes	where	the	tool	is	not	supported	but	
with	ltpf_data_present	equal	zero.	

5.5.13.3 Definitions	

ltpf_data_present	 binary	flag	indicating	whether	the	LTPF	tool	is	active	(1)	or	disabled	(0)	in	the	
channel.	

ltpf_pitch_lag_index	 nine-bit	integer	holding	the	pitch	lag	index	used	during	the	LTPF	decoding	
process.		

ltpf_gain_index	 two-bit	integer	holding	the	gain	index	used	during	the	LTPF	decoding	process.	

pit_int	 integer	part	of	the	pitch	lag	used	during	the	LTPF	decoding	process.		

pit_fr	 fractional	part	of	the	pitch	lag	used	during	the	LTPF	decoding	process.		

gain	 gain	used	during	the	LTPF	decoding	process.		

Fs	 the	sampling	frequency	at	which	the	core	coder	operates.	

ccfl	 core	coder	frame	length	in	samples.	

5.5.13.4 Decoding	process	

5.5.13.4.1 General	

The	 LTPF	 tool	 processes	 the	 output	 signal	 of	 the	 FD/LPD	 core	 decoder	 with	 an	 IIR	 filter,	 whose	
coefficients	are	derived	from	three	parameters	that	are	decoded	from	the	bitstream.	These	parameters	
are	estimated	at	the	encoder	side	on	a	frame	of	length	ccfl	whose	middle	point	coincides	with	the	middle	
point	of	the	MDCT	window.	The	frame	of	output	signal	coming	from	the	FD/LPD	core	decoder	is	however	
delayed	by	ccfl/2.	At	the	decoder	side,	the	LTPF	tool	then	filters	the	first	half	of	the	current	frame	using	
the	parameters	decoded	in	the	previous	frame	and	filters	the	second	half	of	the	current	frame	using	the	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 173	
	

parameters	decoded	in	the	current	frame.	To	avoid	any	discontinuities	that	could	be	introduced	when	
the	filter	parameters	change	between	the	previous	and	the	current	frame,	the	beginning	portion	of	the	
second	half	of	the	current	frame	is	processed	with	a	transition	filter.	

The	decoding	of	the	filter	parameters	is	described	in	subclause	5.5.13.4.2.	The	IIR	filtering	of	the	core	
decoder	output	signal	is	described	in	subclause	5.5.13.4.3.	The	transition	filter	used	to	remove	possible	
discontinuities	is	described	in	subclause	5.5.13.4.4.	

5.5.13.4.2 Decoding	of	the	filter	parameters	

5.5.13.4.2.1 General	

There	are	three	parameters	per	frame:	the	integer	part	of	the	pitch	lag,	the	fractional	part	of	the	pitch	lag,	
and	the	gain.	If	ltpf_data_present	equals	zero,	then	the	three	parameters	are	set	to	zero.	Otherwise,	the	
parameters	are	decoded	as	described	in	the	following	subclauses.	

5.5.13.4.2.2 Decoding	of	the	integer	and	fractional	parts	of	the	pitch	lag	

A	fractional	pitch	delay	is	used	with	resolutions	1⁄2	in	the	range	[pit_min,	pit_fr2-1⁄2],	integers	only	in	
the	range	[pit_fr2,	pit_fr1-1],	and	integers	with	increments	by	2	in	the	range	[pit_fr1,	pit_max].	pit_min,	
pit_fr2,	pit_fr1	and	pit_max	are	the	boundaries	of	the	segments	of	the	quantizers	which	depend	on	Fs	and	
they	are	determined	as	follows.	

pit_min = round(34 * (Fs / 2) / 12800) * 2;
pit_fr2 = 324 - pit_min;
pit_fr1 = 320;
pit_max = 54 + 6 * pit_min;

The	integer	and	fractional	parts	of	the	pitch	lag	are	then	decoded	as	follows.	

if (ltpf_pitch_lag_index < (pit_fr2-pit_min)*2)
{
 pit_int = pit_min + (ltpf_pitch_lag_index/2);
 pit_fr = ltpf_pitch_lag_index – (pit_int - pitmin)*2;
}
else if (ltpf_pitch_lag_index < (pit_fr2-pit_min)*2 + (pit_fr1-pit_fr2))
{
 pit_int = pit_fr2 + ltpf_pitch_lag_index - (pit_fr2-pit_min)*2;
 pit_fr = 0;
}
else
{
 pit_int = (ltpf_pitch_lag_index-(pit_fr2-pit_min)*2-(pit_fr1-pit_fr2))*2 +
pit_fr1;
 pit_fr = 0;
}

5.5.13.4.2.3 Decoding	of	the	gain	

The	gain	is	decoded	as	follows.	

gain = (ltpf_gain_index + 1) * 0.0625;

ISO/IEC	23008-3:202X(E)	

174	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.13.4.3 IIR	filtering	

The	LTPF	processes	the	core	decoder	output	with	an	IIR	filter	whose	coefficients	are	derived	from	the	
integer	and	 fractional	parts	of	 the	pitch	 lag	and	 from	the	gain.	The	 IIR	 filter	 is	 implemented	with	 the	
function	given	below,	assuming	filtering	a	portion	of	signal,	where	*x	points	to	the	first	sample	of	the	
portion	of	input	signal,	*y	points	to	the	first	sample	of	the	portion	of	output	signal,	and	N	is	the	length	of	
the	portion	of	signal.	

function ltpf_filter(*x, *y, N, gain, ltpf_gain_index, pit_int, pit_fr)

if (gain == 0)
{
 for (n = 0; n < N; n++)
 {
 y[n] = x[n];
 }
}
else
{
 for (n = 0; n < N; n++)
 {
 s1 = 0;
 for (k = 0; k < 8; k++)
 {
 s1 += y[n-pit_int+k-4] * ltpf_filter_coef1[pit_fr][k];
 }
 s2 = 0;
 for (k = 0; k < 7; k++)
 {
 s2 += x[n-k] * ltpf_filter_coef2[ltpf_gain_index][k];
 }
 y[n] = x[n] + gain * s1 - 0.95 * gain * s2;
 }
}

The	two	tables	ltpf_filter_coef1	and	ltpf_filter_coef2	are	given	below.	

ltpf_filter_coef1[2][8] =
{
 {0.0000000,0.0304386,0.1162701,0.2195613,0.2674597,0.2195613,0.1162701,0.0304386},
 {0.0076226,0.0676508,0.1700032,0.2547232,0.2547232,0.1700032,0.0676508,0.0076226}
}

ltpf_filter_coef2[4][7] =
{
 {0.27150189,0.44286013,0.23027992,0.05759155,-0.00172290,-0.00045168,-0.00005891},
 {0.27581838,0.44682277,0.22783915,0.05410054,-0.00353758,-0.00092331,-0.00011995},
 {0.28044685,0.45103979,0.22519192,0.05037740,-0.00545541,-0.00141719,-0.00018336},
 {0.28543320,0.45554676,0.22230634,0.04638935,-0.00749011,-0.00193612,-0.00024943}
}

5.5.13.4.4 Transition	filtering	

The	first	half	of	the	current	frame	is	always	filtered	with	the	function	ltpf_filter	using	the	parameters	
of	the	previous	frame	and	N=ccfl/2.	

If	the	parameters	of	the	current	frame	are	the	same	as	the	ones	from	the	previous	frame,	the	second	half	
of	 the	 current	 frame	 is	 also	 filtered	with	 the	 function	ltpf_filter	 using	 the	 same	 parameters	 and	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 175	
	

N=ccfl/2.	However,	if	the	parameters	change	between	the	previous	and	the	current	frame,	a	discontinuity	
can	be	introduced.	In	that	case,	the	beginning	portion	(ccfl/8	samples)	of	the	second	half	of	the	current	
frame	is	processed	with	a	transition	filter	described	in	the	following.	The	remaining	3*ccfl/8	samples	are	
then	 processed	 with	 the	 function	 ltpf_filter	 using	 the	 parameters	 from	 the	 current	 frame	 and	
N=3*ccfl/8.	

Three	cases	are	considered:	

a)	 The	gain	of	the	previous	frame	is	equal	to	zero	and	the	gain	of	the	current	frame	is	not	equal	to	zero.	

A	 simple	 fade-in	 mechanism	 is	 used	 where	 the	 function	 ltpf_filter	 is	 applied	 using	 the	 filter	
parameters	of	the	current	frame,	N=ccfl/8,	and	changing	the	line	of	code:	

 y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

by	the	following	lines	of	code:	

 y[n] = x[n] + alpha * (gain * s1 - 0.95 * gain * s2);
 alpha += 1/N;

and	by	setting	alpha	to	zero	at	the	beginning	of	the	function.		

b)	 The	gain	of	the	previous	frame	is	not	equal	to	zero	and	the	gain	of	the	current	frame	is	equal	to	zero.	

A	 simple	 fade-out	 mechanism	 is	 used	 where	 the	 function	 ltpf_filter	 is	 applied	 using	 the	 filter	
parameters	of	the	previous	frame,	N=ccfl/8,	and	changing	the	line	of	code	

 y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

by	the	following	lines	of	code	

 y[n] = x[n] + alpha * (gain * s1 - 0.95 * gain * s2);
 alpha -= 1/N;

and	by	setting	alpha	to	one	at	the	beginning	of	the	function.	

c)	 The	gain	of	the	previous	frame	is	not	equal	to	zero	and	the	gain	of	the	current	frame	is	not	equal	to	
zero.	

The	discontinuity	is	removed	using	the	zero-impulse-response	(ZIR)	of	a	LPC	synthesis	filter	estimated	
on	the	previous	frame,	and	with	memories	computed	using	the	filter	parameters	of	the	current	frame.	

The	coefficients	of	the	LPC	synthesis	filter	are	estimated	using	the	classic	autocorrelation	and	levinson-
durbin	approach	and	is	implemented	using	the	function	given	below,	where	x[]	is	the	portion	of	LTPF	
output	signal	corresponding	to	the	last	ccfl/4	samples,	a[]	are	the	LPC	coefficients,	N=ccfl/4	is	the	length	
of	the	portion	of	signal,	and	M=24	is	the	order	of	the	LPC	synthesis	filter.	

function ltpf_get_lpc(x[], a[], N, M)

for (m = 0; m <= M; m++)
{
 s = 0.0;
 for (n = 0; n < N-m; n++)
 {
 s += x[n] * x[n+m];

ISO/IEC	23008-3:202X(E)	

176	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 }
 r[m] = s;
}
if (r[0] < 100.0)
{
 r[0] = 100.0;
}
r[0] *= 1.0001;
a[0] = 1.0;
rc[0] = -r[1] / r[0];
a[1] = rc[0];
sigma2 = r[0] + r[1] * rc[0];
for (m = 2; m <= M; m++)
{
 sum = 0.0f;
 for (i = 0; i < m; i++)
 {
 sum += r[m-i] * a[i];
 }
 rc[m-1] = -sum / sigma2;
 sigma2 = sigma2 * (1.0 - rc[m-1] * rc[m-1]);
 if (sigma2 <= 1.0E-09)
 {
 sigma2 = 1.0E-09;
 for (i = m; i <= M; i++)
 {
 rc[i-1] = 0.0;
 a[i] = 0.0;
 }
 break;
 }
 for (i = 1; I <= (m/2); i++)
 {
 value = a[i] + rc[m-1] * a[m-i];
 a[m-i] += rc[m-1] * a[i];
 a[i] = value;
 }
 a[m] = rc[m-1];
}

Then,	the	ZIR	of	the	LPC	synthesis	filter	is	computed	using	the	following	function,	where	*x	points	to	the	
first	sample	of	the	beginning	portion	of	the	second	half	of	the	current	frame	of	input	signal,	*y	points	to	
the	first	sample	of	the	beginning	portion	of	the	second	half	of	the	current	frame	of	output	signal,	and	
Lz=ccfl/8	is	the	length	of	the	ZIR.	

function ltpf_get_zir(*x, *y, a[], zir[], M, Lz)

for (m = 0; m < M; n++)
{
 s1 = 0;
 for (k = 0; k < 8; k++)
 {
 s1 += y[m-M-pit_int+k-4] * ltpf_filter_coef1[pit_fr][k];
 }
 s2 = 0;
 for (k = 0; k < 7; k++)
 {
 s2 += x[m-M-k] * ltpf_filter_coef2[ltpf_gain_index][k];
 }

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 177	
	

 buf[n] = (x[m-M] - 0.95 * gain * s2) – (y[m-M] - gain * s1);
}
for (i = 0; i < Lz; i++)
{
 for (j = 1; j <= M; j++)
 {
 buf[M+i] -= a[M] * buf[M+i-j];
 }
}
for (i = 0; i < Lz/2; i++)
{
 zir[i] = buf[M+i];
}
alpha = 1;
for (i = Lz/2; i < Lz; i++)
{
 zir[i] = buf[M+i]*alpha;
 alpha -= 2/Lz;
}

And	 finally,	 the	 function	 ltpf_filter	 is	 applied	 using	 the	 filter	 parameters	 of	 the	 current	 frame,	
N=ccfl/8,	and	changing	the	line	of	code:	

 y[n] = x[n] + gain * s1 - 0.95 * gain * s2;

by	the	following	line	of	code:	

 y[n] = x[n] + gain * s1 - 0.95 * gain * s2 – zir[n];

 Tonal	component	coding		

5.5.14.1 Tool	description	

The	tonal	component	coding	(TCC)	is	a	tool	for	coding	of	selected	high	frequency	tonal	components	using	
an	approach	based	on	sinusoidal	modelling.	Tonal	components	are	represented	as	sinusoidal	trajectories	
–	data	vectors	with	varying	amplitude	and	frequency	values.	The	trajectories	are	divided	into	segments	
and	encoded	with	technique	based	on	discrete	cosine	transform.	

Each	individually	encoded	sinusoidal	component	is	uniquely	represented	by	its	parameters:	frequency	
and	amplitude,	one	pair	of	values	per	component	per	each	output	data	frame	containing	H	=	256	samples.	
The	parameters	describing	one	 tonal	component	are	 linked	 into	so	called	sinusoidal	 trajectories.	The	
original	sinusoidal	trajectories	constructed	in	the	encoder	may	have	an	arbitrary	length.	For	the	purpose	
of	coding,	these	trajectories	are	partitioned	into	segments.	The	length	of	the	segments	into	which	each	
trajectory	 is	 split	 are	 individually	 adjusted	 in	 time	 for	 each	 trajectory.	 Finally,	 segments	 of	 different	
trajectories	starting	within	a	particular	time	are	grouped	into	groups	of	segments	(GOS).	

Data	values	within	each	segment	are	encoded	jointly.	All	segments	of	a	trajectory	can	have	lengths	in	the	
range	from	TCC_MIN_SEG_LENGTH=GOS_LENGTH	to	TCC_MAX_SEG_LENGTH	=	32	and	they	are	always	
multiples	of	8.	So,	the	possible	segment	length	values	are:	8,	16,	24,	and	32.	During	encoding,	the	lengths	
of	the	segments	are	adjusted	by	an	extrapolation	process.	Thanks	to	this	the	partitioning	of	the	trajectory	
into	segments	is	synchronized	with	the	endpoints	of	GOS	structure,	i.e.	each	segment	always	starts	and	
ends	at	the	endpoints	of	the	GOS	structure.		

Upon	decoding,	each	segment	may	continue	to	the	next	GOS	(or	even	further),	as	shown	in	Figure	25.	
After	decoding,	the	segmented	trajectories	are	joined	together	in	the	trajectory	buffer.	

ISO/IEC	23008-3:202X(E)	

178	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	25	—	Partitioning	of	sinusoidal	trajectories	into	segments	and	their	relation	to	GOS	

The	 encoding	 algorithm	 also	 has	 an	 ability	 to	 jointly	 encode	 clusters	 of	 segments	 belonging	 to	 the	
harmonic	 structure	 of	 the	 sound	 source,	 i.e.	 clusters	 represent	 the	 fundamental	 frequency	 of	 each	
harmonic	 structure	 and	 its	 integer	 multiplications.	 It	 can	 exploit	 the	 fact	 that	 each	 segment	 is	
characterized	with	a	very	similar	FM	and	AM	modulations.	

For	stereo	and	multichannel	signals	each	channel	is	encoded	independently.	The	TCC	tool	is	optional	and	
may	be	active	only	for	some	of	the	audio	channels.	The	TCC	payload	is	transmitted	in	USAC	extension	
element.	It	is	possible	to	send	additional	information	related	to	trajectory	panning	as	illustrated	in	Figure	
26	 below	 to	 further	 save	 some	 bits.	 However,	 due	 to	 low	 bitrate	 overhead	 introduced	 by	 TCC	 each	
channel	can	also	be	encoded	independently	as	illustrated	in	Figure	27.	

	

Figure	26	—	Sending	additional	information	related	to	trajectory	panning	

Trajectory
processing	

Sinusoidal	
trajectories	A	

Sinusoidal	
trajectories	B	

Sinusoidal	
trajectories	A	

Channel	#1	

Channel	#2	

Channel	#N	

…
	

Bitstream
trajectories
A +header	

Bitstream
trajectories
B + header	

…
	

…
	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 179	
	

	

Figure	27	—	Independent	encoding	for	each	channel	

5.5.14.2 Definitions	

Help	elements:	

tccMode[elemIdx]	 Indicates	the		use	of	the	tool	for	a	certain	group	of	audio	channel	elements	
(SCEs	and	CPEs):	

Table	117	—	tccMode	

tccMode	 Meaning

0	 TCC	tool	not	applied		
1	 One	TCC	frame	for	corresponding	SCE/CPE	
2	 Two	TCC	frames	for	corresponding	CPE	
3		 Reserved	

TccGroupOfSegments	()	 Syntactic	element	that	contains	TCC	Group	Of	Segment	data.	

tccDataPresent	 Indicates	if	TCC	data	are	transmitted	in	current	group	of	segments	(GOS).	

numSegments	 Indicates	the	number	of	trajectory	segments	transmitted	in	current	GOS.	

isContinued	 Indicates	whether	this	particular	segment	will	have	its	continuation	in	
next		GOS.	

Table	118	—	isContinued	

isContinued	 Meaning

0	 Segment	will	not	be	continued	
1	 Segment	will	be	continued	

segLength	 Indicates	the	length	of	the	currently	decoded		segment.	

Bitstream
channel #1	

Bitstream
channel #2	

Bitstream
channel #N	

…
	

Sinusoidal	trajectories	A	

Sinusoidal	trajectories	B	

Sinusoidal	trajectories	A	

Channel	#1	

Channel	#2	

Channel	#N	

…
	

ISO/IEC	23008-3:202X(E)	

180	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	119	—	segLength	

segLength	 Trajectory	segment	length

00	 8	
01	 16	
10	 24	
11	 32	

amplQuant		 Quantization	step	for	amplitude	coefficients.	

Table	120	—	amplQuant	

amplQuant	 Amplitude	quantization	step	in	dB

0	 0.5	
1	 1	

freqQuant		 Quantization	step	for	frequency	coefficients.	

Table	121	—	freqQuant	

freqQuant	 Frequency	quantization	step	in	cents

0	 2	
1	 4	

huffWord	 Huffman	codeword.	

amplTransformCoeffDC	 Amplitude	DCT	transform	DC	coefficient.	

freqTransformCoeffDC	 Frequency	DCT	transform	DC	coefficient.	

numAmplCoeffs		 Number	of	decoded	amplitude	AC	coefficients.	

numFreqCoeffs		 Number	of	decoded	frequency	AC	coefficients.	

amplTransformCoeffAC	 Array	with	amplitude	DCT	transform	AC	coefficients.	

freqTransformCoeffAC	 Array	with	frequency	DCT	transform	AC	coefficients.	

amplTransformIndex	 Array	with	amplitude	DCT	transform	AC	indices.	

freqTransformIndex	 Array	with	frequency	DCT	transform	AC	indices.	

amplOffsetDC		 Constant	integer	added	to	each	decoded	amplitude	DC	coefficient,	equal	
to	32.	

freqOffsetDC		 Constant	integer	added	to	each	decoded	frequency	DC	coefficient,	equal	
to	600.	

offsetAC		 Constant	integer	added	to	each	decoded	amplitude	and	frequency	AC	
coefficient,	equal	to	1.	

amplSgn		 Bit	indicating	the	sign	of	decoded	amplitude	AC	coefficient,	1	indicates	
negative	value.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 181	
	

freqSgn		 Bit	indicating	the	sign	of	decoded	frequency	AC	coefficient,	1	indicates	
negative	value.	

MAX_NUM_TRJ		 Maximum	number	of	processed	trajectories,	equal	to	8.	

TCC_BUFFER_LENGTH		 Length	of	buffer	for	storing	decoded	trajectory	amplitude	and	frequency	
data,	equal	to	32.	

TCC_SYNTH_LENGTH		 Length	of	buffer	for	storing	synthesized	TCC	samples,	equal	to	2048.	

TCC_FS		 Nominal	sampling	frequency	for	TCC	sinusoidal	trajectory	data,	equal	to	
48	000	Hz.	

5.5.14.3 Decoding	process	

5.5.14.3.1 General	

Elements	of	usacExtElementType	 ID_EXT_ELE_TCC	according	 to	 tccMode[elemIndex]	 contain	TCC	data	
(TCC	Groups	of	Segments	-	GOS)	corresponding	to	the	currently	processed	channel	elements,	i.e.	SCE	or	
CPE,	in	the	currently	processed	signal	group.	The	number	of	transmitted	GOS	structures	for	a	particular	
type	of	channel	element	is	defined	in	Table	117.	

The	very	first	step	for	decoding	of	each	GOS	starts	with	reading	the	number	of	transmitted	segments:	

K	=	numSegments	+	1	

Next,	the	decoding	of	the	individual	k-th	segment	starts	with	decoding	its	length	segLength[k]	and	
isContinued[k]	flag	according	to	Table	118	and	Table	119.

5.5.14.3.2 Decoding	of	segment	amplitude	data	

The	following	procedures	are	performed	for	decoding	of	the	k-th	segment	of	amplitude	data.	

1) The	amplitude	quantization	stepA	step	is	calculated	according	to	the	formula:	

	

where	amplQuant[k]	is	expressed	in	dB.	

2) The	amplTransformCoeffDC[k]	is	decoded	according	to	the	formula:	
	

3) The	 amplitude	 AC	 indices	 amplIndex[k][j]	 are	 decoded	 by	 starting	 with	 j=0	 and	 decoding	
consecutive	amplTransformIndex[k][j]	Huffman	code	words	and	incrementing	j,	until	a	codeword	
representing	 0	 is	 encountered.	 The	 Huffman	 code	 words	 are	 listed	 in	 huff_idxTab[]	 table.	 The	
number	of	decoded	indices	indicates	the	number	of	further	transmitted	coefficients	–	numCoeff[k].	
After	decoding,	each	index	should	be	incremented	by	offsetAC.	

4) The	 amplitude	 AC	 coefficients	 are	 also	 decoded	 by	means	 of	 Huffman	 code	words	 specified	 in	
huff_acTab[]	table.	The	AC	coefficients	are	signed	values,	and	so	an	additional	sign	bit	amplSgn[k][j]	
after	each	Huffman	code	word	is	transmitted,	where	1	indicates	negative	value.	Finally,	the	value	of	
the	AC	coefficient	is	decoded	according	to	the	formula:	

Decoded	amplitude	transform	DC	and	AC	coefficients	are	placed	into	vector	amplCoeff	of	length	equal	

amplQuant[k]
20stepA[k] log 10= æ ö

ç ÷
è ø

() stepA[k]DCamplOffset[k]ormCoeffDCamplTransfamplDC[k] ´+-=

() stepA[k]0.25offsetAC[k][j]ormCoeffACamplTransf[j]amplSgn[k]j]amplAC[k][´-+=

ISO/IEC	23008-3:202X(E)	

182	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

to	 segLength[k].	 The	 amplDC[k]	 coefficient	 is	 placed	 at	 index	 0	 and	amplAC[k][j]	 coefficients	 are	
placed	according	to	decoded	amplIndex[k][j]	indices.	

5) The	sequence	of	trajectory	amplitude	data	on	a	logarithmic	scale	is	reconstructed	from	the	inverse	
discrete	cosine	transform	and	moved	into	segAmpllog[k][i]	buffer	according	to:	

	

where:	

	 	 	
	

The	 amplitude	 data	 is	 placed	 in	 segAmpllog	 buffer	 of	 length	 equal	 to	 TCC_BUFFER_LENGTH,	
beginning	with	the	index	i	=	1.	Setting	the	value	with	index	i	=	0	is	explained	in	subclause	5.5.14.3.5.	

6) The	linear	values	of	amplitudes	in	segAmpl[k][i]	are	calculated	by:	

		
5.5.14.3.3 Decoding	of	segment	frequency	data	

The	following	procedures	are	performed	for	k-th	segment	frequency	data	decoding.	

1) The	frequency	quantization	stepF[k]	is	calculated	according	to	formula:	

	

where	freqQuant[k]	is	expressed	in	cents.	

2) The	freqTransformCoeffDC[k]	is	decoded	according	to	formula:	
	

3) Decoding	process	of	frequency	AC	indices	is	the	same	as	for	amplitude	AC	indices.	The	resulting	
data	vector	is	freqIndex[k][j].	

4) Decoding	process	of	 frequency	AC	coefficients	 is	 the	same	as	 for	amplitude	AC	coefficients.	The	
resulting	data	vector	is	freqAC[k][j].	

5) Decoded	frequency	transform	DC	and	AC	coefficients	are	placed	into	vector	freqCoeff	of	length	equal	
to	segLength[k].	The	freqDC[k]	coefficient	is	placed	in	position	j=0	and	freqAC[k][j]	coefficients	are	
placed	according	to	decoded	freqIndex[k][j]	indices.	

6. The	reconstruction	of	the	sequence	of	trajectory	frequency	data	in	logarithmic	scale	and	further	
transformation	to	linear	scale	is	performed	in	the	same	manner	as	for	amplitude	data.	The	resulting	
vector	is	segFreq[k][i].	The	linear	values	of	frequency	data	are	stored	in	the	normalized	frequency	
range	from	0.07	–	0.5.	In	order	to	obtain	proper	frequency	values	in	Hz,	they	shall	be	multiplied	by	
TCC_FS:	

	

÷÷
ø

ö
çç
è

æ +
= å

-

= [k]2segLength
1)π(2icosw[r]k][r]amplCoeff[[k][i]segAmpl

1k]segLength[

0r
log

0.5

0.5

(segLength[k]) r 0
w[r]

2(segLength[k]) r 0

-

-

ì =ï= í
>ïî

, for
, for

()[k][i]segAmplexp[i]segAmpl[k] log=

1
1200stepF[k] freqQuant[k] log 2= ´ æ ö

ç ÷
è ø

() stepF[k]DCfreqOffset[k]ormCoeffDCfreqTransffreqDC[k] ´+-=

FSTCC[i]segFreq[k][k][i]segFreqHz _´=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 183	
	

5.5.14.3.4 Ordering	and	linking	of	trajectory	segments	

The	 original	 sinusoidal	 trajectories	 built	 in	 the	 encoder	 are	 partitioned	 into	 an	 arbitrary	 number	 of	
segments.	The	length	of	currently	processed	segment	segLength[k]	and	continuation	flag	isContinued[k]	
is	used	to	determine	when	(i.e.	in	which	of	the	following	GOS)	the	continuation	segment	will	be	received.	
Linking	of	segments	relies	on	the	particular	order	the	trajectories	are	transmitted.	The	order	of	decoding	
and	linking	segments	is	presented	and	explained	in	Figure	28.		

	

NOTE	 Segments	decoded	within	one	GOS	are	marked	with	 the	 same	 colour.	Each	 segment	 is	marked	with	 a	
number	 (e.g.	 SEG	#5.1)	which	determines	 the	order	of	decoding	 (i.e.	 order	of	 receiving	 the	 segment	data	 from	
bitstream	in	given	GOS).	In	this	example	SEG	#1.1	has	length	of	32	data	points	and	is	marked	to	be	continued	(isCont	
=	1).	Therefore,	SEG	#1.1	is	going	to	be	continued	in	GOS	#5,	where	there	are	two	new	segments	received	(SEG	#5.1	
and	SEG	#5.2).	Decoding	order	of	these	segments	indicates	that	the	continuation	for	SEG	#1.1	is	SEG	#5.1.	

Figure	28	—	Scheme	of	linking	trajectory	segments	

5.5.14.3.5 Synthesis	of	decoded	trajectories	

The	received	representation	of	trajectory	segments	is	temporarily	stored	in	data	buffers	segAmpl[k][i]	
and	 segFreq[k][i],	where	k	 represents	 the	 index	of	 segment	not	 greater	 than	MAX_NUM_TRJ	=	8,	 and	 i	
represents	 the	trajectory	data	 index	within	a	segment,	0<=	i	<	TCC_BUFFER_LENGTH.	The	 index	 i=0	of	
buffers	segAmpl	and	segFreq	is	filled	with	data	depending	on	the	one	of	two	possible	scenarios	for	further	
processing	of	particular	segments.	

1) The	received	segment	is	starting	a	new	trajectory,	then	the	i=0	index	amplitude	and	frequency	
data	are	provided	by	simple	extrapolation	process:	

segFreq[k][0]	=	segFreq[k][1],	

segAmpl[k][0]	=	0.	

2) The	 received	 segment	 is	 recognized	 as	 a	 continuation	 for	 the	 segment	 processed	 in	 the	
previously	received	GOS	structure,	then	the	i=0	index	amplitude	and	frequency	data	are	copy	of	
the	last	data	points	from	the	segment	being	continued.	

The	 output	 signal	 is	 synthesized	 from	 sinusoidal	 trajectory	 data	 stored	 in	 the	 synthesis	 region	 of	
segAmpl[k][l]	and	segFreq[k][l],	where	each	column	corresponds	to	one	synthesis	frame	and	l=0,	1,…,8.	
For	the	purpose	of	synthesis,	these	data	are	to	be	interpolated	on	a	sample	basis,	taking	into	account	the	
synthesis	frame	length	H	=	256.	The	samples	of	the	output	signal	are	calculated	according	to	

	
()[n]cos[n]A[n]y k

K[n]

1k
kTCC jå

=

=

ISO/IEC	23008-3:202X(E)	

184	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

where	

	 n	 =	0…	TCC_SYNTH_LENGTH-1;	

		 K[n]	 denotes	the	number	of	currently	active	trajectories,	i.e.	the	number	of	rows	synthesis	region	
of	segAmpl[k][l]	and	segFreq[k][l]	which	have	valid	data	in	the	frame	l	=	floor(n/H)	and	
l	=	floor(n/H)+1;	

		 Ak[n]	 denotes	the	interpolated	instantaneous	amplitude	of	k-th	partial;	

		 jk[n]	 denotes	the	interpolated	instantaneous	phase	of	k-th	partial.	
The	instantaneous	phase	φk[n]	is	calculated	from	the	instantaneous	frequency	Fk[n]	according	to:	

	

The	initial	value	of	phase	φk[0]	is	not	transmitted	and	should	be	stored	between	consecutive	buffers,	so	
that	the	evolution	of	phase	is	continuous.	For	this	purpose	the	final	value	of	φk[TCC_SYNTH_LENGTH-1]	
is	written	to	a	vector	segPhase[k].	This	value	is	used	as	φk[0]	during	the	synthesis	in	the	next	buffer.	At	
the	beginning	of	each	new	trajectory,	φk[0]	=	0	is	set.	

The	instantaneous	parameters	Ak[n]	and	Fk[n]	are	interpolated	on	a	sample	basis	from	trajectory	data	
stored	in	trajectory	buffers	segAmpl[k][h]	and	segFreq[k][h].	The	values	between	two	consecutive	(h	and	
h+1)	trajectory	nodes	are	calculated	by	linear	interpolation:	

	

where	

	
	

In	order	to	reduce	the	computational	complexity,	the	cos	function	should	be	calculated	according	to	the	
Taylor	 series	 expansion.	 This	 process	 is	 described	 in	 the	 function	 get_taylor_cos(phase,N) as	
follows.	

get_taylor_cos(phase,N){
 sign = 1;
 /* convert phase if phase > PI/2 */
 phase = abs(phase);
 if (phase > (PI/2)) {
 sign = -1;
 phase = PI - phase;
 }
 output = 1;
 phase2 = phase * phase;
 phase_pow = phase2;
 for(i = 1; i<=N; i++){
 output += (phase_pow * inv_factorial_tab[i-1]) ;
 phase_pow *= phase2;
 }
 return sign*output;
}

å
=

+=
n

0m
kkk [m]F2π[0][n] jj

()

()
H
Hn[h]segFreq[k]1][hsegFreq[k][h]segFreq[k][n]F

H
Hn[h]segAmpl[k]1][hsegAmpl[k][h]segAmpl[k][n]A

k

k

mod

mod

´-++=

´-++=

úû
ú

êë
ê=
H
nh

1H0,1,2,...,n -=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 185	
	

The	 input	 phase	 values	 should	 be	 kept	 in	 the	[-PI,PI]	 range	 and	N	 is	 equal	 to	 3.	 The	 consecutive	
inverted	factorial	values	are	stored	in	the	following	table:	

inv_factorial_tab[] = {-5.0000000000e-01, 4.1666666667e-02, -1.3888888889e-03}

Once	 the	 group	 of	 TCC_SYNTH_LENGTH	 samples	 is	 synthesized,	 the	 content	 of	 segAmpl[k][l]	 and	
segFreq[k][l]	is	shifted	by	8	trajectory	data	points	and	updated	with	new	data	from	incoming	GOS.	The	
synthesized	samples	are	passed	to	the	output	buffer,	where	the	data	is	mixed	with	the	contents	produced	
by	the	core	decoder	with	appropriate	scaling	to	the	output	data	range	through	multiplication	by	215.	The	
TCC	 tool	 does	 not	 introduce	 any	 delay	 during	 decoding	 process,	 so	 there	 should	 be	 a	 proper	 buffer	
management	performed,	depending	on	the	current	core	decoder	configuration	(delays	introduced	by	SBR	
and/or	MPS/MPS212	decoding).	

5.5.14.3.6 Output	signal	domain	switching	

Tonal	 component	 tool	 always	 generates	 signal	 in	 the	 time	domain.	 If	 the	 core	 decoder	 output	 signal	
representation	 is	 in	 QMF	 domain,	 an	 additional	 QMF	 analysis	 of	 the	 TCC	 output	 signal	 should	 be	
performed	 according	 to	 ISO/IEC	14496-3:2009,	 subclause	 4.B.18.2.	 Another	 option	 can	 be	 direct	
synthesis	of	sinusoidal	partials	to	the	frequency	domain	(e.g.,	MDCT/QMF).	

5.5.14.3.7 Huffman	tables	for	AC	indices	

The	following	Huffman	table	huff_idxTab[] shall	be	used	for	decoding	the	DCT	AC	indices:	

Table	122	—	Huffman	table	for	decoding	the	DCT	AC	indices	
huff_idxTab[] =
{
 /* index, length/bits, deccode, bincode */
 { 0, 1, 0}, // 0
 { 1, 3, 6}, // 110
 { 2, 3, 7}, // 111
 { 3, 4, 9}, // 1001
 { 4, 4, 11}, // 1011
 { 5, 5, 17}, // 10001
 { 6, 6, 32}, // 100000
 { 7, 6, 40}, // 101000
 { 8, 6, 42}, // 101010
 { 9, 7, 67}, // 1000011
 { 10, 7, 83}, // 1010011
 { 11, 8, 133}, // 10000101
 { 12, 8, 132}, // 10000100
 { 13, 8, 165}, // 10100101
 { 14, 8, 173}, // 10101101
 { 15, 8, 175}, // 10101111
 { 16, 9, 329}, // 101001001
 { 17, 9, 344}, // 101011000
 { 18, 9, 348}, // 101011100
 { 19, 10, 656}, // 1010010000
 { 20, 10, 698}, // 1010111010
 { 21, 10, 699}, // 1010111011
 { 22, 11, 1380}, // 10101100100
 { 23, 11, 1382}, // 10101100110
 { 24, 11, 1383}, // 10101100111
 { 25, 12, 2628}, // 101001000100
 { 26, 12, 2763}, // 101011001011

ISO/IEC	23008-3:202X(E)	

186	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 { 27, 12, 2629}, // 101001000101
 { 28, 12, 2631}, // 101001000111
 { 29, 13, 5525}, // 1010110010101
 { 30, 12, 2630}, // 101001000110
 { 31, 13, 5524}, // 1010110010100
};

5.5.14.3.8 Huffman	tables	for	AC	coefficients	

The	following	Huffman	table	huff_acTab[]	shall	be	used	for	decoding	the	DCT	AC	values.	Before	further	
processing	and	dequantization,	the	decoded	AC	values	need	to	be	increased	by	adding	the	offsetAC	value.	

The	encoding	of	AC	coefficients	with	absolute	value	higher	than	49	uses	the	escape	code,	which	is	the	last	
codeword	in	the	table.	After	the	escape	code	is	put	in	the	bitstream,	the	actual	AC	value	is	transmitted	
with	7	bit	unsigned	integer.	

Table	123	—	Huffman	table	for	decoding	the	DCT	AC	values	
huff_acTab[] =
{
 /* index, length/bits, deccode, bincode */
 { 0, 6, 31}, // 011111
 { 1, 3, 5}, // 101
 { 2, 3, 1}, // 001
 { 3, 3, 2}, // 010
 { 4, 3, 4}, // 100
 { 5, 3, 7}, // 111
 { 6, 4, 6}, // 0110
 { 7, 4, 13}, // 1101
 { 8, 5, 2}, // 00010
 { 9, 5, 14}, // 01110
 { 10, 6, 0}, // 000000
 { 11, 6, 2}, // 000010
 { 12, 6, 7}, // 000111
 { 13, 6, 30}, // 011110
 { 14, 6, 50}, // 110010
 { 15, 7, 2}, // 0000010
 { 16, 7, 6}, // 0000110
 { 17, 7, 96}, // 1100000
 { 18, 7, 98}, // 1100010
 { 19, 7, 99}, // 1100011
 { 20, 8, 6}, // 00000110
 { 21, 8, 27}, // 00011011
 { 22, 8, 7}, // 00000111
 { 23, 8, 15}, // 00001111
 { 24, 8, 26}, // 00011010
 { 25, 8, 206}, // 11001110
 { 26, 9, 50}, // 000110010
 { 27, 9, 49}, // 000110001
 { 28, 9, 28}, // 000011100
 { 29, 9, 48}, // 000110000
 { 30, 9, 390}, // 110000110
 { 31, 9, 389}, // 110000101
 { 32, 9, 51}, // 000110011
 { 33, 10, 59}, // 0000111011
 { 34, 10, 783}, // 1100001111

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 187	
	

 { 35, 9, 408}, // 110011000
 { 36, 10, 777}, // 1100001001
 { 37, 10, 58}, // 0000111010
 { 38, 10, 782}, // 1100001110
 { 39, 8, 205}, // 11001101
 { 40, 9, 415}, // 110011111
 { 41, 10, 829}, // 1100111101
 { 42, 10, 819}, // 1100110011
 { 43, 10, 828}, // 1100111100
 { 44, 11, 1553}, // 11000010001
 { 45, 11, 1637}, // 11001100101
 { 46, 12, 3105}, // 110000100001
 { 47, 14, 12419}, // 11000010000011
 { 48, 11, 1636}, // 11001100100
 { 49, 14, 12418}, // 11000010000010
 { 50, 13, 6208}, // 1100001000000
};

 Internal	channel	on	MPS212	for	low	complexity	format	conversion	

5.5.15.1 General	

For	 the	stereo	reproduction	 layouts,	 internal	channel	 is	 chosen	 to	reduce	 the	required	complexity	by	
removing	redundant	processing	of	upmixing	by	MPS212	and	downmixing	by	format	conversion.	When	a	
CPE	has	two	output	channels	signal	whose	mix	matrix	MMix(i,j)	equals	one,	both	the	decorrelation	and	
residual	processing	blocks	are	switched	off	by	setting	ICCl,m=1	as	introduced	in	subclause	5.5.4.	In	this	
case,	 the	 stereo	 output	 signal	 of	 MPEG	 Surround	 212	 upmixer	 has	 no	 phase	 difference	 but	
implementation	of	the	MPEG	Surround	upmixing	as	in	subclause	5.5.4	results	in	unnecessary	complexity	
with	an	increased	number	of	input	channels	in	following	format	conversion	as	shown	in	Figure	29.	When	
the	 reproduction	 layout	 is	 stereo,	 internal	 channel	 shall	 be	 chosen	 to	 reduce	 required	 complexity	 in	
MPEG-H	3D	audio	decoding	process.	

	

Figure	29	—	Redundant	decoding	structure	of	MPS212	and	format	conversion	to	stereo		
which	results	in	24	input	channels	for	22.2-to-stereo	format	conversion	

Internal	channel	is	defined	as	an	intermediate	imaginary	channel	which	corresponds	to	the	input	of	the	
format	converter.	As	shown	in	Figure	30,	each	internal	channel	processing	block	generates	an	internal	
channel	signal	using	MPS212	payloads	and	rendering	parameters	of	EQ	and	gain	value	defined	in	format	
converter	rules	table	corresponding	to	the	output	channel	of	MPS212	block.	

MPS212Downmixed in CPE

MPS212Downmixed in CPE

MPS212Downmixed in CPE

MPS212Downmixed in CPE

MPS212Downmixed in CPE

Format Conversion
(24-to-2 Downmixing)

L
R

ISO/IEC	23008-3:202X(E)	

188	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	30	—	Decoding	process	of	internal	channel	and	format	conversion	to	stereo		
which	results	in	13	input	channels	for	22.2-to-stereo	format	conversion	

In	 format	 conversion,	 the	 internal	 channel	 signal	 uses	 additional	 converter	 rules	 in	 generic	 format	
converter	with	the	gain	value	of	1.0	and	EQ	index	of	0	as	shown	in	Table	124	because	the	internal	channel	
signal	is	created	with	the	consideration	of	the	gain	and	EQ	values	for	the	format	conversion.	

Table	124	—	Additional	converter	rules	

Source	 Destination	 Gain	 EQ	index

CH_I_CNTR	 CH_M_L030,	CH_M_R030	 1.0	 0	(off)										
CH_I_LFE	 CH_M_L030,	CH_M_R030	 1.0	 0	(off)										
CH_I_LEFT	 CH_M_L030	 1.0		 0	(off)										
CH_I_RIGHT	 CH_M_R030	 1.0	 0	(off)										

The	 internal	 channel	 shall	 be	 implemented	 providing	 two	 types	 of	 processing;	 pre-processing	 at	 the	
MPEG-H	 3D	 audio	 encoder	 and	 post-processing	 at	 the	MPEG-H	 3D	 audio	 decoder,	 depending	 on	 the	
configuration	parameters.	As	QCE	is	another	form	of	a	pair	of	CPEs,	 internal	channel	 for	QCE	shall	be	
implemented	as	defined	in	subclauses	5.5.15.4.4	and	5.5.15.4.5.	

5.5.15.2 Definitions	

Internal	channel	 An	intermediate	imaginary	channel	with	the	consideration	
of	stereo	output	in	the	format	conversion	replacing	
redundant	upmixing	in	MPS212	and	downmixing	in	format	
converter.	

Internal	channel	signal	 A	mono	signal	to	be	mixed	in	the	format	converter	to	
provide	the	stereo	signal.	This	signal	is	generated	using	
internal	channel	gain.		

Internal	channel	processing	 A	processing	block	that	creates	internal	channel	signal	
based	on	the	MPS212	decoding	block.		

Internal	channel	gain	 A	gain	calculated	from	CLD	value	and	format	conversion	
parameters	of	EQ	and	gain	in	the	Internal	channel	
processing.	

Internal Channel
ProcessingDownmixed in CPE

Internal Channel
ProcessingDownmixed in CPE

Internal Channel
ProcessingDownmixed in CPE

Internal Channel
ProcessingDownmixed in CPE

Internal Channel
ProcessingDownmixed in CPE

Format Conversion
(13-to-2 Downmixing)

L
R

Internal Channel Signals

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 189	
	

Internal	channel	group	 One	of	the	four	values	CH_I_LEFT,	CH_I_RIGHT,	CH_I_CNTR,	
and	CH_I_LFE,	depending	on	the	core	codec	output	channel	
position	as	defined	in	Table	125.	Note	that	the	internal	
channel	group	is	correspondent	to	the	additional	converter	
rules	defined	in	Table	124.	

Table	125	—	Groups	of	internal	channel	

Group	 Core	codec	output	channels	 Panning	
(L,R)

CH_I_LFE CH_LFE1,	CH_LFE2,	CH_LFE3 (0.707,	0.707)

CH_I_CNTR CH_M_000,	CH_L_000,	CH_U_000,	CH_T_000,	CH_M_180,	CH_U_180 (0.707,	0.707)

CH_I_LEFT
CH_M_L022,	CH_M_L030,	CH_M_L045,	CH_M_L060,	CH_M_L090,	CH_M_L110,	
CH_M_L135,	CH_M_L150,	CH_L_L045,	CH_U_L045,	CH_U_L030,	CH_U_L045,	
CH_U_L090,	CH_U_L110,	CH_U_L135,	CH_M_LSCR,	CH_M_LSCH

(1,	0)

CH_I_RIGHT
CH_M_R022,	CH_M_R030,	CH_M_R045,	CH_M_R060,	CH_M_R090,	CH_M_R110,	
CH_M_R135,	CH_M_R150,	CH_L_R045,	CH_U_R045,	CH_U_R030,	CH_U_R045,	
CH_U_R090,	CH_U_R110,	CH_U_R135,	CH_M_RSCR,	CH_M_RSCH

(1,	0)	

5.5.15.3 Variable	definitions	

For	a	CPE	encoded	by	MPS212:	

cplx_out_dmx	[]	 Donwmix	signal	in	a	CPE	after	complex	prediction	stereo	decoding.	

cplx_out_dmx_preICG	[]	 ICG	Pre-applied	mono	signal	in	hybrid	QMF	domain	by	decoding	complex	
prediction	stereo	decoding	and	hybrid	QMF	analysis	filterbank.		

cplx_out_dmx_postICG	[]	 ICG	Post-applied	mono	signal	in	hybrid	QMF	domain	by	decoding	
complex	prediction	stereo	decoding	and	internal	channel	processing.	

cplx_out_dmx_ICG	[]	 Fullband	internal	channel	signal	in	hybrid	QMF	domain.	

For	a	QCE	as	a	pair	of	CPE	encoded	by	MPS212:	

cplx_out_dmx_L[]	 First	channel	of	first	CPE	after	complex	prediction	stereo	decoding.	

cplx_out_dmx_R[]	 Second	channel	of	first	CPE	after	complex	prediction	stereo	decoding.	

cplx_out_dmx_L_preICG	[]	 First	ICG	pre-applied	internal	channel	signal	in	hybrid	QMF	domain.	

cplx_out_dmx_R_preICG	[]		 Second	ICG	pre-applied	internal	channel	signal	in	hybrid	QMF	domain.	

cplx_out_dmx_L_postICG	[]	 First	ICG	post-applied	internal	channel	signal	in	hybrid	QMF	domain.	

cplx_out_dmx_R_postICG	[]		 Second	ICG	post-applied	internal	channel	signal	in	hybrid	QMF	domain.	

cplx_out_dmx_L_ICG_SBR	 First	fullband	decoded	internal	channel	signal	with	high	frequency	
components	generated	by	SBR	with	downmixed	parameters	as	defined	in	
subclauses	5.5.15.4.5	and	5.5.15.4.6	for	the	22.2-to-2	format	conversion.		

ISO/IEC	23008-3:202X(E)	

190	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

cplx_out_dmx_R_ICG_SBR	 Second	fullband	decoded	internal	channel	signal	with	high	frequency	
components	generated	by	SBR	with	downmixed	parameters	as	defined	in	
subclauses	5.5.15.4.5	and	5.5.15.4.6	for	the	22.2-to-2	format	conversion.		

5.5.15.4 Decoding	process	

When	an	element	of	immersive	input	signal	is	encoded	using	CPE	or	QCE	with	MPS212	and	the	output	
layout	 is	 stereo,	 an	 internal	 channel	 signal	 shall	 be	generated	 in	 the	 core	 codec	decoding	 so	 that	 the	
following	format	conversion	uses	a	reduced	number	of	input	channels	for	efficient	covariance	analysis	
except	for	the	CPEs	for	which	ICinCPE	equals	zero.	The	internal	channel	processing	is	simply	achieved	
by	multiplying	the	internal	channel	gain,	calculated	from	CLD	and	format	conversion	parameters,	to	the	
decoded	mono	signal.	

5.5.15.4.1 Internal	channel	calculation	conditions	and	applying	ICG	

The	 ICinCPE[n]	describes	whether	 internal	 channel	processing	 for	 the	nth	CPE	 is	possible.	When	 two	
output	 channels	 in	 the	 CPE	 are	 in	 the	 same	 output	 internal	 channel	 group	 as	 defined	 in	 Table	 125,	
ICinCPE[n]	shall	be	encoded	to	1	at	the	encoder.	For	example,	ICinCPE[n]	shall	be	encoded	as	1	when	a	
CPE	carries	CH_M_L060	and	CH_T_L045,	which	results	in	the	internal	channel	group	of	CH_I_LEFT,	and	
ICinCPE[n]	shall	be	0	when	a	CPE	carries	CH_M_L060	and	CH_M_000,	which	is	not	able	to	result	in	one	
internal	channel	group.		

For	a	QCE	as	a	pair	of	CPEs,	both	ICinCPE[n]	and	ICinCPE[n+1]	shall	be	encoded	to	1	at	the	encoder	for	
two	conditions:	(1)	if	a	QCE	contains	four	channels	in	one	group,	(CH_M_000,	CH_L_000,	CH_U_000,	and	
CH_T_000	resulting	in	CH_I_CNTR),	or	(2)	if	a	QCE	contains	two	channels	in	one	group	and	the	other	two	
channels	 in	 the	 other	 group,	 (CH_M_L060,	 CH_U_L045,	 CH_M_R060,	 and	 CH_U_R045	 resulting	 in	
CH_I_LEFT	and	CH_I_RIGHT).	In	other	cases,	both	ICinCPE[n]	and	ICinCPE[n+1]	shall	be	0.	

While	 the	 internal	 channel	 gain	 can	 be	 applied	 at	 the	 decoder,	 applying	 the	 gain	 at	 the	 encoder	will	
efficiently	 reduce	 the	 required	 complexity	 in	 the	 decoder.	 The	 ICGPreAppliedCPE[n]	 in	 ICGConfig	
indicates	whether	the	internal	channel	gain	for	the	nth	CPE	is	applied	in	the	encoder	side	or	not.	If	it	is	
true,	 internal	 channel	 processing	 block	 bypasses	 the	 downmix	 signal	 cplx_out_dmx	 for	 the	 stereo	
reproduction.	 If	 it	 is	 false,	 internal	 channel	 processing	 shall	 apply	 the	 internal	 channel	 gain	 to	 the	
cplx_out_dmx	at	the	decoder.	Note	that	ICGPreAppliedCPE[n]	shall	be	encoded	as	0	if	ICinCPE[n]	is	0	
because	the	calculation	of	the	internal	channel	gain	for	the	CPE	or	QCE	is	not	possible.	For	a	QCE	as	a	pair	
of	 CPEs,	 both	 ICGPreAppliedCPE[n]	 and	 ICGPreAppliedCPE[n+1]	 shall	 have	 the	 same	 value.	 For	
convenience,	different	decoding	scenarios	are	explained	in	different	subclauses	as	shown	in	Table	126.	

Table	126	—	Decoding	scenario	and	explained	subclause	

Reproduction	layout	 Element	 Order	of	MPS	and	SBR	 Subclause
Stereo	 CPE	 An	MPS	after	mono	SBR	 5.5.15.4.2
Stereo	 CPE	 An	MPS	before	Stereo	SBR	 5.5.15.4.3
Stereo	 QCE	 Two	MPS	before	two	Stereo	SBR	 5.5.15.4.4

Non-stereo	 CPE/QCE	 Independent	of	the	order	 5.5.15.4.5	

5.5.15.4.2 Internal	channel	processing	for	decoding	MPS212	after	mono	SBR	for	stereo	
reproduction	

As	shown	in	Figure	31,	if	the	ICGinCPE[n]	is	false,	the	element	shall	be	decoded	as	defined	in	subclauses	
5.5.1	 to	 5.5.6.	 If	 it	 is	 true,	 after	 creating	 downmixed	 signal	 cplx_out_dmx	 by	 stereo	 decoding	
(ISO/IEC	23003-3:2012,	subclause	7.7)	and	SBR	defined	in	ISO/IEC	23003-3	if	required,	internal	channel	
processing	creates	the	ICG	post-applied	downmixed	signal	cplx_out_dmx_postICG	in	hybrid	QMF	domain	
when	the	ICGPreAppliedCPE[n]	is	false.	If	ICGPreAppliedCPE[n]	equals	1,	cplx_out_dmx	is	analysed	so	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 191	
	

that	 the	 ICG	pre-applied	downmixed	signal	cplx_out_dmx_preICG	 is	 in	 the	hybrid	QMF	domain.	 In	 the	
internal	 channel	 processing,	 the	 dequantized	 linear	 CLD	 value	 for	 the	 CPE	 is	 calculated	 according	 to	
subclause	5.5.4	and	the	internal	channel	gain	calculated	by	the	equation	given	below	is	multiplied	by	the	
cplx_out_dmx	to	create	cplx_out_dmx_postICG.		

öugl
C,W = õú.CPBQ

C,W × öCPBQ × öm�,CPBQ
W û

F
+ ú.RbcwQ

C,W × öRbcwQ × öm�,RbcwQ
W û

F

where		

⎩
⎪
⎨

⎪
⎧c*.Ä$

*,M 	and	c"#Å%$
*,M dequantized	linear	CLD	value	of	lst	time	slot	and	mth	hybrid	QMF	band	for	the	CPE

G*.Ä$	and	G"#Å%$ gain	column	value	of	Table	167		for	the	output	channels	corresponding	to	the	MPS212

GÖÜ,*.Ä$
M 	and	GÖÜ,"#Å%$

M gain	of	m$%	band	in	the	EQ	defined	in		Table	167		

for	the	output	channels	corresponding	to	the	MPS212

As	a	result,	either	cplx_out_dmx_preICG	or	dplx_out_dmx_postICG	in	hybrid	QMF	domain	is	used	as	the	
internal	channel	signal	cplx_out_dmx_ICG.	

	

Figure	31	—	Internal	channel	processing	for	decoding	CPE	with	MPS212	after	mono	SBR	

ICinCPE[n]

Stereo Decoding for CPE

ICGPreAppliedCPE[n]?
Internal Channel Processing

In Hybrid QMF Domain

CPE Bitstream

cplx_out_dmx

cplx_out_dmx

cplx_out_dmx

cplx_out_dmx_postICG

cplx_out_dmx_ICG

MPS Parms (1-to-2)

Y

N

Y

N Decode without
Internal Channel processing

Hybrid QMF Analysis Filterbank

cplx_out_dmx_preICG

ISO/IEC	23008-3:202X(E)	

192	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.15.4.3 Internal	channel	processing	for	decoding	MPS212	with	stereo	SBR	for	stereo	
reproduction	

In	 this	 operation	 configuration,	 the	 ICG	 applied	 signal	 of	 either	 cplx_out_dmx_preICG	 or	
cplx_out_dmx_postICG,	which	is	calculated	by	multiplying	internal	channel	gain	calculated	using	equation	
given	 in	 subclause	5.5.15.4.2,	depending	on	 the	 configuration	by	 ICGConfig	as	described	 in	 subclause	
5.5.15.4.2	 is	bandlimited	because	 the	high	 frequency	 components	 shall	 be	 extended	by	SBR	after	 the	
internal	 channel	 processing.	 A	 pair	 of	 SBR	 parameters	 designed	 for	 the	 bandlimited	 upmixed	 stereo	
signal	by	MPS212	from	the	bandlimited	mono	signal	of	cplx_out_dmx	shall	be	downmixed	into	mono	SBR	
parameters	in	the	parametric	domain	in	the	SBR	parameter	downmixer.	The	SBR	parameter	downmixer	
shall	include	multiplication	of	the	EQ	and	gain	parameters	in	the	format	converter.	The	mono	SBR	block	
in	Figure	31	generates	a	full	band	internal	channel	signal	from	the	bandlimited	internal	channel	signal	
extending	high	frequency	components	using	the	downmixed	mono	SBR	parameters.	

	

Figure	32	—	Internal	channel	processing	for	decoding	CPE	with	MPS212	and	stereo	SBR	

ICinCPE[n]

Stereo Decoding for CPE

ICGPreAppliedCPE[n]?
Internal Channel Processing

In Hybrid QMF Domain

CPE Bitstream

cplx_out_dmx (bandlimited)

cplx_out_dmx
(bandlimited)

cplx_out_dmx
 (bandlimited)

cplx_out_dmx_postICG
(bandlimited)

cplx_out_dmx_ICG
 (Fullband)

MPS Parms (1-to-2)

Y

N

Y

N Decode without
Internal Channel processing

Hybrid QMF Analysis Filterbank

cplx_out_dmx_preICG
(bandlimited)

Mono SBRSBR Parm
Downmixer

Rendering
parameters from
Format Converter

SBR Parms (1ch)

SBR Parms (2ch)

Rendering
parameters from
Format Converter

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 193	
	

5.5.15.4.4 Internal	channel	processing	for	decoding	a	QCE	with	two	stereo	SBR	for	stereo	
reproduction	

When	a	pair	of	CPEs,	CPE1	and	CPE2,	has	both	ICGinCPE[n]	and	ICGinCPE[n+1]	set	to		0,	the	decoding	
process	shall	follow	the	procedure	described	in	subclause	5.5.2.	When	a	pair	of	CPEs	for	a	QCE	has	both	
ICGinCPE[n]	and	ICGinCPE[n+1]	set	to	1,	internal	channel	signal	is	created.		

If	both	ICGPreAppliedCPE[n]	and	ICGPreAppliedCPE[n+1]	are	equal	to	0,	each	stereo	decoded	signal	
of	 cplx_dmx_L	 and	 cplx_dmx_R	 are	 sent	 to	 Internal	 Channel	 processing	 block	 in	 order	 to	 apply	
bandlimited	 internal	 channel	 signals	 of	 cplx_dmx_L_PostICG	 and	 cplx_dmx_R_PostICG	 by	 using	 the	
equation	given	in	subclause	5.5.15.4.2	in	the	hybrid	QMF	domain.	Then	using	stereo	SBR,	two	fullband	
internal	channel	signals	of	cplx_dmx_L_ICG_SBR	and	cplx_dmx_R_ICG_SBR	in	the	hybrid	QMF	domain	shall	
be	generated	as	shown	in	Figure	33.	

	
Figure	33	—	Internal	channel	processing	or	decoding	a	QCE	with	two	stereo	SBR	

when	ICGPreAppliedCPE[n]	and	ICGPreAppliedCPE[n+1]	equal	0	

If	both	ICGPreAppliedCPE[n]	and	ICGPreAppliedCPE[n+1]	are	equal	to	1,	each	stereo	decoded	signal	
of	cplx_dmx_L	and	cplx_dmx_R	are	sent	to	the	stereo	SBR	block	directly	because	the	internal	channel	gain	
is	 applied	 at	 the	 encoder.	 	After	 the	 stereo	SBR	block,	 the	 stereo	 fullband	 internal	 channel	 signals	 of	
cplx_dmx_L_ICG	and	cplx_dmx_R_ICG	shall	be	generated	as	shown	in	Figure	34.	

Bitstream
Decoding

Stereo Decoding
(Complex Prediction) Internal Channel Stereo SBR

SBR Payload
Downmixer

Bitstream
Decoding

Stereo Decoding
(Complex Prediction) Internal Channel Stereo SBR

CplxPred payload MPS212 Payload Downmixed SBR Parms

SBR Payload

SBR Payload

(1)

(2)

(3)

(4)

(5)

(6)

(1) cplx_dmx_L
(2) cplx_dmx_R
(3) cplx_dmx_L_PostICG
(4) cplx_dmx_R_PostICG
(5) cplx_dmx_L_ICG_SBR
(6) cplx_dmx_R_ICG_SBR

Unrequired processing block
for Internal Channel in QCE

Hybrid QMF Analysis

Hybrid QMF Analysis

Rendering Parameters from Format Converter

CPE2

MPS212 Payload

CPE1

ISO/IEC	23008-3:202X(E)	

194	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	34	—	Internal	channel	processing	for	decoding	a	QCE	with	two	stereo	SBR	
when	ICGPreAppliedCPE[n]	and	ICGPreAppliedCPE[n+1]	equal	1	

5.5.15.4.5 Internal	channel	processing	for	decoding	MPS212	after	mono	SBR	for	non-stereo	
reproduction	

For	the	non-stereo	layout	reproduction,	inverse	ICG	calculation	is	performed	using	MPS	parameters	and	
format	 conversion	 parameters	 as	 given	 in	 the	 equation	 below.	 If	 ICGPreAppliedCPE[n]	 is	TRUE,	 nth	
cplx_dmx	shall	be	multiplied	by	the	inverse	ICG	before	MPS	block	and	the	rest	of	the	decoding	process	
shall	follow	this	document.	

®öugl
C,W =

I

áàO$%&'
$,) ×v$%&'×v*+,$%&'

) ä
!
HàO,-./'

$,) ×v,-./'×v*+,,-./'
) ä

!

where		

⎩⎪
⎨
⎪⎧
Æ"(!$",) 	pJÑ	Æ3,-V$",) dequantized	linear	CLD	value	for	the	CPE
é"(!$	pJÑ	é3,-V$ gain	column	value	of		Table	167	for	the	output	channels	corresponding	to	the	MPS212	
é;^,"(!$) 	pJÑ	é;^,3,-V$) gain	of	m_`	band	in	the	EQ	defined	in		Table	167		

for	the	output	channels	corresponding	to	the	MPS212

5.5.15.4.6 Parameter	downmixing	for	stereo	SBR	for	internal	channel	

5.5.15.4.6.1 General	

When	 the	 internal	 channel	 processing	 block	 is	 used	 or	 internal	 channel	 gain	 is	 pre-processed	 at	 the	
encoder	and	the	output	layout	is	stereo,	before	the	SBR	block	as	introduced	in	subclauses	5.5.15.4.3	and	
5.5.15.4.4,	the	bandlimited	internal	channel	signals	for	a	CPE/QCE	are	generated	instead	of	MPS	upmixed	
stereo/quad	channel	signals	for	the	CPE/QCE.	While	the	SBR	payload	is	encoded	for	the	MPS	upmixed	
stereo/quad	channel	signal,	it	shall	be	downmixed	in	the	parametric	domain.	For	that,	the	gain	and	EQ	in	
format	converter	shall	be	multiplied	during	the	parameter	downmixing	for	stereo	SBR.	

Bitstream
Decoding

Stereo Decoding
(Complex Prediction) Stereo SBR

SBR Payload
Downmix

Bitstream
Decoding

Stereo Decoding
(Complex Prediction) Stereo SBR

CplxPred payload Downmixed SBR Parms

SBR Payload

SBR Payload

(5)

(6)

(1) cplx_dmx_L
(2) cplx_dmx_R
(3) cplx_dmx_L_PreICG
(4) cplx_dmx_R_PreICG
(5) cplx_dmx_L_ICG_SBR
(6) cplx_dmx_R_ICG_SBR

Unrequired processing block
for Internal Channel in QCE

(1)

(2)

Hybrid QMF Analysis

Hybrid QMF Analysis

(3)

(4)

Rendering Parameters from Format Converter

CPE2

CPE1

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 195	
	

5.5.15.4.6.2 Inverse	filtering	

The	inverse	filtering	mode	is	selected	by	taking	the	maximum	value	from	stereo	SBR	parameters	for	each	
noise	floor	band.	

for	©i = 0; i < (�; * + +´	
),_*Fwy_pìKEo`qEWbiPj(*) 	= {¨≠(),_*Fwy_pìKEOwI(*),),_*Fwy_pìKEOwF(*))

©OwI,%F´ = Æ
úKPBQ	`B	gUmIKPBQ	`B	gUmFû 	in	case	of		Cplx_out_dmx_L

úãbcwQ	`B	gUmIãbcwQ	`B	gUmFû 	in	case	of		Cplx_out_dmx_R
,

5.5.15.4.6.3 Additional	harmonics	

The	additional	harmonics	are	the	union	of	the	additional	sinusoids	present	in	stereo	channels	as	shown	
below.	

 for	©i = 0; i < (lbcw; * + +´	
),_xKK_ℎxGpìF*.o`qEWbiPj(*) 	= ∞±(),_xKK_ℎxGpìF*.OwI(*),),_xKK_ℎxGpìF*.OwF(*))

5.5.15.4.6.4 Envelope	time	borders	

The	time	envelope	grid	tE_Merged	for	internal	channel	SBR	is	generated	from	stereo	SBR	time	grids	to	divide	
into	the	smallest	pieces	with	the	highest	resolution.	The	start	border	value	for	tE_Merged	is	set	to	the	largest	
of	 the	 start	 border	 values	 for	 the	 stereo	 channels.	 Envelope	between	 time	grid	0	 and	 start	 border	 is	
already	processed	in	the	previous	frame.	The	stop	border	of	the	last	envelope	is	selected	by	taking	the	
maximum	value	from	stop	borders	of	the	last	envelopes	for	both	channels.	Start/Stop	borders	between	
the	 first	and	the	 last	envelope	are	determined	to	provide	the	maximum	segment	resolution	by	taking	
intersection	of	time	borders	of	both	channels	as	shown	in	Figure	35.	If	there	are	more	than	5	envelopes,	
the	number	of	envelopes	shall	be	reduced	by	starting	from	the	end	of	tE_Merged	and	searching	towards	the	
beginning	of	 tE_Merged	 for	 the	 length	of	 envelope	 smaller	 than	4	 and	 removing	 the	 start	 border	of	 that	
envelope.	This	continues	until	there	are	5	envelopes	left.	

	

	

(a) Case 1: start border of the first envelope and stop of the last envelope are same

ISO/IEC	23008-3:202X(E)	

196	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

	

Figure	35	—	Merging	of	envelope	time	borders	

5.5.15.4.6.5 Noise	time	borders	

The	number	of	downmixed	noise	time	borders	LQ_Merged	is	determined	by	taking	the	larger	value	between	
noise	time	borders	of	both	channels.	The	first	grid	and	the	last	grid	of	merged	noise	time	borders	tQ_Merged	
is	determined	by	taking	the	first	grid	and	the	last	grid	of	envelope	time	borders	tE_Merged.	If	the	number	of	
the	noise	time	borders	LQ_Merged	is	larger	than	tQ_Merged(1)	is	selected	as	tQ(1)	of	the	channel	whose	number	
of	the	noise	time	border	LQ	is	larger	than	1.	If	both	channels	have	J�	larger	than	1,	the	minimum	value	of	
≤�(1)	is	selected	as	a	≤�_rPRcPj(1).	

5.5.15.4.6.6 Envelope	data	

Frequency	resolution	≥rPRcPj 	of	 the	merged	envelope	time	borders	for	each	envelope	is	selected.	The	
maximum	 value	 between	 frequency	 resolution	≥OwI ,	≥OwF 	corresponding	 to	 each	 section	 of	≥rPRcPj 	is	
selected	as	shown	in	Figure	36.	

	

Figure	36	—	Merging	frequency	resolution	

The	envelope	data	¥åRbc_rPRcPj 	for	every	envelope	shall	be	calculated	from	envelope	data	¥åRbc	with	the	
considerations	of	format	conversion	parameters	as	shown	below.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 197	
	

¬G3,-)*+%*#(k, l) =	

¬LV&G3,-mMLV&(F), ℎLV&(Ä)n × è}ƒLV&mF, ℎLV&(Ä)nê
%
+	

¬LV%G3,-mMLV%(F), ℎLV%(Ä)n × (}ƒLV%(F, ℎLV%(Ä))%	
with	0 ≤ k < ∆ è«/(3-(<(Ä)ê , 0 ≤ Ä < ó;_/(3-(<	

	

where	

}ƒLV&(F, Ä) =
∑ (U,*-.×U!/,,*-.

1)1

cdE]&,e)*+%*#(")fFc(E,e)*+%*#("))
, »(F, «/(3-(<(Ä)) ≤ m < »(F + 1, «/(3-(<(Ä))	,	

}ƒLV%(F, Ä) =
∑ (U+(%2.×U!/,+(%2.

1)1

cdE]&,e)*+%*#(")fFc(E,e)*+%*#("))
, »(F, «/(3-(<(Ä)) ≤ m < »(F + 1, «/(3-(<(Ä))	,	

ℎLV&(Ä)	is	defined	by	…;_LV&(ℎLV&(Ä)) ≤ …;_/(3-(<(Ä) < …;_LV&(ℎLV&(Ä) + 1)	,	

ℎLV%(Ä)	is	defined	by	…;_LV%(ℎLV%(Ä)) ≤ …;_/(3-(<(Ä) < …;_LV%(ℎLV%(Ä) + 1)	,	

MLV&(F)	is	defined	by	F(MLV&(F), «LV&(ℎLV&(Ä))) ≤ F(k, «/(3-(<(Ä)) < F(MLV&(F) + 1, «LV&(ℎLV&(Ä)))	,	

MLV%(F)	is	defined	by	F(MLV%(F), «LV%(ℎLV%(Ä))) ≤ F(k, «/(3-(<(Ä)) < F(MLV%(F) + 1, «LV%(ℎLV%(Ä)))	,	

é"(!$,é3,-V$,é;^,"(!$) , and	é;^,3,-V$) 	are	the	rendering	parameters	from	the	format	converter	as	introduced	in	
subclause	5.5.15.4.2	

5.5.15.4.6.7 Noise	floor	data	

The	merged	noise	floor	data	µåRbcrPRcPj 	is	determined	as	the	sum	of	data	from	both	channel	according	
to	the	function	below.	

ÀG3,-/(3-(<(F, Ä) = ÀG3,-LV&(F, ℎLV&(Ä)) + ÀG3,-LV%(F, ℎLV%(Ä))	

,0 ≤ k < x^ , 0 ≤ Ä < ó^_/(3-(<,	

where		

ℎLV&(Ä)	is	defined	by	…^_LV&(ℎLV&(Ä)) ≤ …^_/(3-(<(Ä) < …^_LV&(ℎLV&(Ä) + 1)	and	

ℎLV%(Ä)	is	defined	by	…^_LV%(ℎLV%(Ä)) ≤ …^_/(3-(<(Ä) < …^_LV%(ℎLV%(Ä) + 1).		

5.5.15.4.7 Spectral	band	replication	for	internal	channel	

Spectral	band	replication	part	is	identical	to	ISO/IEC	23003-3	except	for	one	change.	While	the	SBR	in	
ISO/IEC	23003-3	is	defined	in	the	QMF	domain,	the	internal	channel	processes	are	in	the	hybrid	QMF	
domain.	For	that,	the	frequency	indexes	for	the	whole	SBR	processes	for	internal	channels	are	updated	
from	k	to	k+7.	Note	that	the	downmixed	SBR	parameters	described	in	subclause	5.5.15.4.3	shall	be	used	
to	generate	the	fullband	internal	channel	signal	for	the	bandwidth	extension	of	the	bandlimited	internal	
channel	signal	in	the	cases	introduced	in	subclauses	5.5.15.4.3	and	5.5.15.4.4.	

ISO/IEC	23008-3:202X(E)	

198	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5.5.15.4.8 Interface	with	the	format	conversion	

As	the	output	of	the	core	codec	with	internal	channel	processing	is	in	the	hybrid	QMF	domain,	the	process	
defined	in	subclause	10.3.5.2	shall	be	discarded.	In	order	to	assign	each	channel	of	the	core	coder,	the	
following	additional	channel	assignment	and	downmix	rules	shall	be	used	for	each	internal	channel	signal	
as	shown	in	Table	124	and	Table	127.	

Table	127	—	Additional	channels	definitions	for	internal	channel	

Channel	 Azimuth	
[deg]	

Elevation	
[deg]	

Azimuth	
start	

angle	of	
sector	
[deg]	

Azimuth	
end	

angle	of	
sector	
[deg]	

Elevation	
start	

angle	of	
sector	
[deg]	

Elevation	
end	angle	
of	sector	
[deg]	

Ch.	is	
LFE	

Position	
is	

relative

CH_I_CNTR	 0	 0	 0	 0	 0	 0	 0	 0	
CH_I_LFE	 0	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
CH_I_LEFT	 30	 0	 30	 30	 0	 0	 0	 0	
CH_I_RIGHT	 -30	 0	 -30	 -30	 0	 0	 0	 0	

 High	resolution	envelope	processing	(HREP)	tool	

5.5.16.1 Tool	description	

The	HREP	tool	provides	improved	coding	performance	for	signals	that	contain	densely	spaced	transient	
events,	 such	 as	 applause	 signals	 as	 they	 are	 an	 important	part	 of	 live	 recordings.	 Similarly,	 sound	of	
raindrops	or	other	sounds	such	as	fireworks	can	show	such	characteristics.	Unfortunately,	this	class	of	
sounds	presents	difficulties	to	existing	audio	codecs,	especially	when	coded	at	low	bitrates	and/or	with	
parametric	coding	tools.	

	

Figure	37	—	Overview	of	signal	flow	in	an	HREP	equipped	codec	

Figure	37	depicts	the	signal	flow	in	an	HREP	equipped	codec.	At	the	encoder,	the	tool	preprocesses	the	
input	signal	to	temporally	flatten	high	frequencies	while	generating	a	small	amount	of	side	information	
(1-4	kbps	for	stereo	signals).	An	exemplary	description	of	an	HREP	encoder	can	be	found	in	Annex	L.	At	
the	decoder,	the	tool	post-processes	the	output	signal	to	temporally	restore	the	high	frequencies,	making	
use	of	the	side	information.	The	benefits	of	applying	HREP	are	two-fold:	HREP	relaxes	the	bitrate	demand	
imposed	on	the	encoder	by	reducing	short	time	dynamics	of	the	input	signal;	additionally,	HREP	ensures	
proper	 envelope	 restoration	 in	 the	 decoder’s	 (up-)mixing	 stage,	 which	 is	 all	 the	 more	 important	 if	
parametric	multi-channel	coding	techniques	have	been	applied	within	the	codec.	The	HREP	tool	works	
for	all	input	channel	configurations	(mono,	stereo,	multi-channel	including	3D)	and	also	for	audio	objects.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 199	
	

5.5.16.2 Data	and	help	elements	

current_signal_group	 The	current_signal_group	parameter	 is	based	on	 the	Signals3d()	
syntax	 element	 and	 the	 mpegh3daDecoderConfig()	 syntax	
element.	

signal_type	 The	type	of	the	current	signal	group,	used	to	differentiate	between	
channel	signals	and	object,	HOA,	and	SAOC	signals.	

signal_count	 The	number	of	signals	in	the	current	signal	group.	

channel_layout	 In	case	the	current	signal	group	has	channel	signals,	it	contains	the	
properties	of	loudspeakers	for	each	channel,	used	to	identify	LFE	
loudspeakers.	

extendedGainRange	 Indicates	whether	the	gain	indexes	use	3	bits	(8	values)	or	4	bits	
(16	values),	as	computed	by	nBitsGain.	

extendedBetaFactorPrecision	 Indicates	whether	the	beta	factor	indexes	use	3	bits	or	4	bits,	as	
computed	by	nBitsBeta.	

isHREPActive[sig]	 Indicates	whether	the	tool	is	active	for	the	signal	on	index	sig	in	
the	current	signal	group.	

lastFFTLine[sig]	 The	 position	 of	 the	 last	 non-zero	 line	 used	 in	 the	 low-pass	
procedure	implemented	using	FFT.	

transitionWidthLines[sig]	 The	width	 in	 lines	of	 the	 transition	 region	used	 in	 the	 low-pass	
procedure	implemented	using	FFT.	

defaultBetaFactorIdx[sig]	 The	default	beta	factor	index	used	to	modify	the	gains	in	the	gain	
compensation	procedure.	

outputFrameLength	 The	equivalent	number	of	 samples	per	 frame,	using	 the	original	
sampling	frequency,	as	defined	in	ISO/IEC	23003-3.	

gain_count	 The	number	of	gains	per	signal	in	one	frame.	

useRawCoding	 Indicates	whether	the	gain	indexes	are	coded	raw,	using	nBitsGain	
each,	or	they	are	coded	using	arithmetic	coding.	

gainIdx[pos][sig]	 The	gain	index	corresponding	to	the	block	on	position	pos	of	the	
signal	 on	 position	 sig	 in	 the	 current	 signal	 group.	 If	
extendedGainRange	=	0,	the	possible	values	are	in	the	range	{0,	…,	
7},	and	 if	extendedGainRange	=	1,	 the	possible	values	are	 in	 the	
range	{0,	…,	15}.	

GAIN_INDEX_0dB	 The	gain	index	offset	corresponding	to	0	dB,	with	a	value	of	4	being	
used	if	extendedGainRange	=	0,	and	with	a	value	of	8	being	used	if	
extendedGainRange	 =	 1.	 The	 gain	 indexes	 are	 transmitted	 as	
unsigned	 values	 by	 adding	 GAIN_INDEX_0dB	 to	 their	 original	
signed	data	ranges.	

ISO/IEC	23008-3:202X(E)	

200	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

all_zero	 Indicates	whether	all	the	gain	indexes	in	one	frame	for	the	current	
signal	are	having	the	value	GAIN_INDEX_0dB.	

useDefaultBetaFactorIdx	 Indicates	whether	the	beta	factor	index	for	the	current	signal	has	
the	default	value	specified	by	defaultBetaFactor[sig].	

betaFactorIdx[sig]	 The	 beta	 factor	 index	 used	 to	 modify	 the	 gains	 in	 the	 gain	
compensation	procedure.	

5.5.16.3 Decoding	process	

5.5.16.3.1 General	

In	the	syntax	element	mpegh3daExtElementConfig()	the	field	usacExtElementPayloadFrag	shall	be	zero	in	
the	 case	 of	 an	 ID_EXT_ELE_HREP	 element.	 The	HREP	 tool	 is	 applicable	 to	 signal	 groups	 of	 any	 type:	
SignalGroupTypeChannels,	SignalGroupTypeObject,	SignalGroupTypeSAOC,	or	SignalGroupTypeHOA	as	
defined	by	SignalGroupType[grp]	in	the	Signals3d()	syntax	element.		

The	block	size	and	correspondingly	the	FFT	size	used	is	(= 128.	

The	entire	processing	is	performed	independently	on	each	signal	in	the	current	signal	group.	Therefore,	
to	simplify	notation,	the	decoding	process	is	described	just	for	one	signal	having	index	position	sig.	

	

Figure	38	—	High	resolution	envelope	processing	(HREP)	tool	decoder	

5.5.16.3.2 Decoding	of	gains	using	arithmetic	coding	

The	helper	 function	HREP_decode_ac_data(gain_count,	 signal_count)	describes	 the	reading	of	 the	gain	
values	into	the	array	gainIdx	using	the	following	USAC	low-level	arithmetic	coding	functions	as	defined	
in	ISO/IEC	23003-3.	Corresponding	encoder	helper	functions	are	provided	in	L.4.	

arith_decode(*ari_state, cum_freq, cfl),
arith_start_decoding(*ari_state),
arith_done_decoding(*ari_state).

Two	additional	helper	functions	are	introduced,	

ari_decode_bit_with_prob(*ari_state, count_0, count_total),

Windowing
(sine) w[]

FFT
(size 128)

IFFT
(size 128)

Windowing
(sine) w[]

Windowing
(squared sine)

w^2[]
-

LP block lpb[k][]

HP block hpb[k][]

input block
ib[k][]

+
output block

ob[k][]

Adaptive
LP shape rs[]

scalar gain g[k]

Gain
Compensation

Interpolation
Correction

corr[]

c[k][]

g[k]

1/gc[k]

g[k-1], g[k], g[k+1]

beta_factor

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 201	
	

which	decodes	one	bit	with zV = count_0/total_count and zI = 1 − zV, and	

ari_decode_bit(*ari_state),

which	decodes	one	bit	without	modelling,	with	zV = 0.5	and	zI = 0.5.	

ari_decode_bit_with_prob(*ari_state, count_0, count_total)
{
 prob_scale = 1 << 14;
 tbl[0] = probScale - (count_0 * prob_scale) / count_total;
 tbl[1] = 0;
 res = arith_decode(ari_state, tbl, 2);
 return res;
}
	
ari_decode_bit(*ari_state)
{
 prob_scale = 1 << 14;
 tbl[0] = prob_scale >> 1;
 tbl[1] = 0;
 res = arith_decode(ari_state, tbl, 2);
 return res;
}
	
HREP_decode_ac_data(gain_count, signal_count)
{
 cnt_mask[2] = {1, 1};
 cnt_sign[2] = {1, 1};
 cnt_neg[2] = {1, 1};
 cnt_pos[2] = {1, 1};

 arith_start_decoding(&ari_state);

 for (pos = 0; pos < gain_count; pos++) {
 for (sig = 0; sig < signal_count; sig++) {
 if (!isHREPActive[sig]) {
 continue;
 }
 mask_bit = ari_decode_bit_with_prob(&ari_state, cnt_mask[0],
 cnt_mask[0] + cnt_mask[1]);
 cnt_mask[mask_bit]++;

 if (mask_bit) {
 sign_bit = ari_decode_bit_with_prob(&ari_state, cnt_sign[0],
 cnt_sign[0] + cnt_sign[1]);
 cnt_sign[sign_bit] += 2;

 if (sign_bit) {
 large_bit = ari_decode_bit_with_prob(&ari_state, cnt_neg[0],
 cnt_neg[0] + cnt_neg[1]);
 cnt_neg[large_bit] += 2;
 last_bit = ari_decode_bit(&ari_state);
 gainIdx[pos][sig] = -2 * large_bit - 2 + last_bit;
 } else {
 large_bit = ari_decode_bit_with_prob(&ari_state, cnt_pos[0],
 cnt_pos[0] + cnt_pos[1]);
 cnt_pos[large_bit] += 2;
 if (large_bit) {
 gainIdx[pos][sig] = 3;

ISO/IEC	23008-3:202X(E)	

202	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 } else {
 last_bit = ari_decode_bit(&ari_state);
 gainIdx[pos][sig] = 2 - last_bit;
 }
 }
 } else {
 gainIdx[pos][sig] = 0;
 }

 if (extendedGainRange) {
 prob_scale = 1 << 14;
 esc_cnt = prob_scale / 5;
 tbl_esc[5] = {prob_scale-esc_cnt, prob_scale-2*esc_cnt,
 prob_scale-3*esc_cnt, prob_scale-4*esc_cnt, 0};
 sym = gainIdx[pos][sig];
 if (sym <= -4) {
 esc = arith_decode(ari_state, tbl_esc, 5);
 sym = -4 - esc;
 } else if (sym >= 3) {
 esc = arith_decode(ari_state, tbl_esc, 5);
 sym = 3 + esc;
 }
 gainIdx[pos][sig] = sym;
 }

 gainIdx[pos][sig] += GAIN_INDEX_0dB;
 }
 }

 arith_done_decoding(&ari_state);
}

5.5.16.3.3 Decoding	of	quantized	beta	factors	

The	following	lookup	tables	for	converting	beta	factor	index	betaFactorIdx[sig]	to	beta	factor	beta_factor	
should	be	used,	depending	on	the	value	of	extendedBetaFactorPrecision.	

tab_beta_factor_dequant_coarse[8]	=	{	
				0.000f,	0.035f,	0.070f,	0.120f,	0.170f,	0.220f,	0.270f,	0.320f	
}	
	
tab_beta_factor_dequant_precise[16]	=	{	
				0.000f,	0.035f,	0.070f,	0.095f,	0.120f,	0.145f,	0.170f,	0.195f,	
				0.220f,	0.245f,	0.270f,	0.295f,	0.320f,	0.345f,	0.370f,	0.395f	
}	

If	extendedBetaFactorPrecision	=	0,	the	conversion	is	computed	as	

beta_factor	=	tab_beta_factor_dequant_coarse[betaFactorIndex[sig]]	

If	extendedBetaFactorPrecision	=	1,	the	conversion	is	computed	as	

beta_factor	=	tab_beta_factor_dequant_precise[betaFactorIndex[sig]]	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 203	
	

5.5.16.3.4 Decoding	of	quantized	gains	

One	frame	is	processed	as	gain_count	blocks	consisting	of	(samples	each,	which	are	half-overlapping.	
The	scalar	gains	for	each	block	are	derived,	based	on	the	value	of	extendedGainRange.	

M[F] = 2
gainIdx[E][5,-]FGAIN_INDEX_0dB

O ,	for	0 ≤ F < gain_count	

5.5.16.3.5 	Computation	of	the	LP	part	and	the	HP	part	

The	 input	 signal	, 	is	 split	 into	 blocks	 of	 size	(,	 which	 are	 half-overlapping,	 producing	 input	 blocks	
ib[ó][*] = ,[ó ∙

G

F
+ *],	where	ó	is	the	block	index	and	*	is	the	sample	position	in	the	block	ó.	A	window	

u[*]	is	applied	to	ib[ó],	in	particular	the	sine	window,	defined	as	

i[L] = sin £
(L + 0.5)
x , for 0 ≤ L < x,

and	after	computing	an	FFT,	the	complex	coefficients	.[ó][y]	are	obtained	as	

Æ[F][N] = FFT(w[i]×ib[F]), for 0 ≤ N ≤ x
2 .

On	the	encoder	side,	as	further	described	in	L.2,	to	obtain	the	low-pass	(LP)	filtered	part,	an	element-wise	
multiplication	of	.[ó]	with	the	processing	shape	ps[y]	may	be	applied,	which	consists	of	the	following.	

ps[y] =

⎩
⎪
⎨

⎪
⎧

1,	for	0 ≤ y < lp_size

1 −
y − lp_size+1
tr_size+ 1 ,	for	lp_size ≤ y < lp_size+ tr_size

0,	for	lp_size+ tr_size ≤ y ≤
(
2
+ 1

	

The	lp_size = lastFFTLine[,*v] + 1 − transitionWidthLines[,*v]	parameter	represents	the	width	in	FFT	
lines	of	the	low-pass	region,	and	the	tr_size = transitionWidthLines[,*v]	parameter	represents	the	width	
in	FFT	lines	of	the	transition	region.	

On	 the	 decoder	 side,	 in	 order	 to	 get	 perfect	 reconstruction	 in	 the	 transition	 region,	 an	 adaptive	
reconstruction	shape	rs[y]	in	the	transition	region	shall	be	used,	instead	of	the	processing	shape	ps[y]	
used	at	the	encoder	side,	depending	on	the	processing	shape	ps[y]	and	v[ó]	as	

rs[N] = 1 − (1 − ps[N]) × M[F]
1 + (M[F] − 1) ∙ (1 − ps[N])

The	LP	block	lpb[ó]	is	obtained	by	applying	IFFT	and	windowing	again	as:	

lpb[ó][*] = u[*] × ®HH}(rs[y] × .[ó][y]),	for	0 ≤ * < (

The	high-pass	(HP)	filtered	block	hpb[ó]	is	then	obtained	by	simple	subtraction	in	the	time	domain	as:	

hpb[ó][*] = in[ó][*] × uF[*] − lpb[ó][*],	for	0 ≤ * < (

5.5.16.3.6 Computation	of	the	interpolation	correction	

The	gains	g[k-1]	and	g[k]	to	be	applied	on	the	encoder	side	to	blocks	on	positions	k-1	and	k,	as	suggested	
in	L.1,	are	implicitly	interpolated	due	to	the	windowing	and	overlap-add	operations.	In	order	to	achieve	

ISO/IEC	23008-3:202X(E)	

204	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

perfect	reconstruction	in	the	HP	part	above	the	transition	region,	an	interpolation	correction	factor	is	
needed	as:	

corr[ñ] = 1 + z
M[F − 1]
M[F] + M[F]

M[F − 1] − 2{ ∙ i
%[ñ] ∙ (1 − i%[ñ]), for 0 ≤ ñ < x

2 .

corr ∑ñ +
x
2∏ = 1 + z

M[F]
M[F + 1] +

M[F + 1]
M[F] − 2{ ∙ i%[ñ] ∙ (1 − i%[ñ]), for 0 ≤ ñ < x

2 .

5.5.16.3.7 Computation	of	the	compensated	gains	

The	 core	 encoder	 and	 decoder	 introduce	 additional	 attenuation	 of	 transient	 events,	 which	 is	
compensated	by	adjusting	the	gains	v[ó]	using	the	previously	computed	beta_factor	as:	

v.[ó] = (1 + beta_factor)v[ó] − beta_factor

5.5.16.3.8 Computation	of	the	output	signal	

Based	on	v.[ó]	and	corr[i],	the	value	of	the	output	block	ob[k]	is	computed	as:	

ob[ó][*] = lpb[ó][*] +
1

v.[ó]
∙

1

corr[*]
∙ hpb[ó][*],	for	0 ≤ * < (

Finally,	the	output	signal	is	computed	from	the	output	blocks	using	overlap-add	processing	as:	

ì só ∙
(

2
+ çt = ob[ó − 1] sç +

(

2
t + ob[ó][ç], for 0 ≤ ç <

(

2

ì s(ó + 1) ∙
(

2
+ çt = ob[ó] sç +

(

2
t + ob[ó + 1][ç], for 0 ≤ ç <

(

2

5.6 Buffer	requirements	

 Minimum	decoder	input	buffer	

The	following	rules	are	used	to	calculate	the	maximum	number	of	bits	in	the	input	buffer	for	any	of	the	
following:	the	bitstream	as	a	whole,	for	any	given	program,	or	for	any	given	elements	of	type	ID_USAC_SCE	
(SCE)	and	ID_USAC_CPE	(CPE).	

The	input	buffer	size	is	6144	bits	per	SCE	plus	12288	bits	per	CPE	(6144 ∙ (||),	irrespective	of	whether	
these	elements	are	used	for	channels,	objects,	SAOC	transport	channels	or	HOA	transport	channels.	Both	
the	total	buffer	and	the	individual	buffer	sizes	are	limited,	so	that	the	buffering	limit	can	be	calculated	for	
either	the	entire	bitstream	payload	or	the	individual	audio	elements	permitting	unnecessary	bitstream	
elements	 to	be	 stripped	 from	 the	3D	audio	bitstream	payload	 to	 form	a	new	bitstream	payload	with	
reduced	buffer	requirements.	All	bits	for	LFEs	shall	be	supplied	from	the	total	buffer	requirements	based	
on	the	SCEs	and	CPEs.	

Furthermore,	all	bits	contained	in	an	access	unit,	including	any	extension	element	payloads	and	MHAS	
transport	overhead,	shall	also	be	considered	in	the	total	buffer	requirements.	

For	the	definition	of	NCC	(number	of	considered	channels),	see	ISO/IEC	14496-3:2009,	1.3.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 205	
	

 Bit	reservoir	

The	bit	reservoir	is	controlled	at	the	encoder.	The	maximum	bit	reservoir	in	the	encoder	depends	on	the	
NCC	and	the	mean	bitrate.	The	maximum	bit	reservoir	size	for	constant	rate	channels	can	be	calculated	
by	subtracting	the	mean	number	of	bits	per	frame	from	the	minimum	decoder	input	buffer	size.	

For	example,	at	32	kbit/s	with	two	48	kHz	sampled	mono	objects	and	a	frame	length	of	1024	samples	the	
mean	number	of	bits	per	frame	(pExF_x∂6EFvℎ)	is:	

,6+#_+896#:"ℎ = 	
32	000	Zçéèè[ê 	 ∙ 1024	

èëíìî[è
\^ëí[

48	000	èëíìî[è
è[ê

= 682.666…	
Zçéè

\^ëí[

This	leads	to	a	maximum	bit	reservoir	size	(max_bit_reservoir)	of:	

pxí	 _)*+_GE,EGwì*G = HJ∞∞± ú	12288	 0-'1
&,2)%

			− 682.666…	 0-'1
&,2)%

û = 11605 0-'1
&,2)%

 .

For	variable	bitrate	channels	the	encoder	should	operate	in	a	way	that	the	input	buffer	requirements	do	
not	exceed	the	minimum	decoder	input	buffer.	

For	 a	 delay	 optimized	 decoder	 start	 up	 the	 state	 of	 the	 bit	 reservoir	 (bit_reservoir_state)	 can	 be	
transmitted	in	a	buffer_fullness		field.	If	the	buffer	fullness	is	known	at	the	decoder,	the	decoder	does	not	
have	to	wait	until	the	input	buffer	is	fully	filled.	Instead,	the	decoder	only	needs	to	buffer	the	actual	frame	
and	a	number	of	additional	bits	as	indicated	in	bit_reservoir_state	before	starting	to	decode.		

The)*+_GE,EGwì*G_,+x+E	of	subsequent	frames	can	be	derived	as	follows:	

)*+_GE,EGwì*G_,+x+E[yGxpE]
=)*+_GE,EGwì*G_,+x+E[yGxpE − 1] + pExF_x∂6EFv+ℎ − x∂6EFv+ℎ[yGxpE]

x∂6EFv+ℎ	has	to	be	adjusted	such	that	the	following	restriction	is	met:	

0 ≤)*+_GE,EGwì*G_,+x+E[yGxpE] ≤ pxí_)*+_GE,EGwì*G
 Maximum	bit	rate	

The	maximum	bitrate	depends	on	the	audio	sampling	rate	(as	given	by	usacSamplingFrequencyIndex	
and	usacSamplingFrequency)	and	the	output	frame	length	(as	given	by	coreSbrFrameLengthIndex).	
It	can	be	calculated	based	on	the	minimum	input	buffer	size	according	to	the	formula:	

6144	 _bQf_C`Oï 	 ∙ 	∂,x.ñxpz6*FvHGEI∂EF.é

ì∂+z∂+HGxpEJEFv+ℎ
∙ (||

To	give	an	example	the	maximum	bitrate	per	channel	for	a	sampling	rate	of	48	kHz	and	
outputFrameLength	of	768	samples	is	384	 ó)*+ ,E.∑ 	per	NCC.	

5.7 Stream	access	point	requirements	and	inter-frame	dependency	

For	the	sake	of	increased	coding	efficiency	the	MPEG-H	3D	audio	coding	scheme	may	exploit	inter-frame	
redundancy.	This	coding	strategy	introduces	inter-frame	dependencies,	which	means	that	the	decoding	
process	of	one	frame	requires	the	knowledge	of	the	previously	decoded	frame.		

ISO/IEC	23008-3:202X(E)	

206	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

To	 allow	 for	 (random)	 stream	 access	 MPEG-H	 3D	 audio	 features	 the	 concept	 of	 the	 independently	
decodable	frame	in	which	no	such	inter-frame	dependencies	exist.	Decoders	can	easily	identify	and	use	
this	independently	decodable	frame	for	start-up	or	as	stream	access	points.	

The	bitstream	field	which	indicates	that	a	frame	is	independently	decodable	is	usacIndependencyFlag.	
The	 flag	 is	 conveniently	 located	 at	 the	 very	 beginning	 of	 each	 mpegh3daFrame().	 If	
usacIndependencyFlag	 ==	 1	 then	 the	 present	 frame	 shall	 be	 independently	 decodable.	 See	 also	 the	
definition	of	usacIndependencyFlag	in	ISO/IEC	23003-3.	

Consequently,	an	independently	decodable	frame	shall	have	the	following	properties.	

— No	processing	block	may	operate	in	a	state	in	which	it	requires	information	from	the	previous	frame	
to	perform	the	decoding	process.	In	particular:	

— The	context	of	the	arithmetic	coder	shall	be	reset	(arith_reset_flag	==	1).	

— if	eSBR	is	used:	

— it	shall	not	employ	delta	coding	in	the	time	direction	over	SBR	frame	borders;	
— sbrInfo()	and	sbrHeader()	shall	be	present	(sbrInfoPresent	==	1,	sbrHeaderPresent	==	1);	

— re-use	of	PVC	IDs	is	not	allowed	(reuse_pvcID	==	0).	

— if	IGF	is	used:	
— it	shall	not	employ	delta	coding	in	time	direction	over	frame	borders;	

— it	shall	not	make	use	of	previous	tile	indices	nor	previous	whitening	levels.	

— if	complex	prediction	stereo	is	used:	

— it	shall	not	employ	delta	coding	in	time	direction	(delta_code_time	==	0)	over	frame	borders;	
— it	shall	not	make	use	of	previous	frame	information	(use_prev_frame==0).	

— if	MPS212	is	used,	bsIndependencyFlag	shall	be	1.	

— if	SAOC	3D	is	used,	bsIndependencyFlag	shall	be	1.	

— if	HOA	is	used,	hoaIndependencyFlag	shall	be	1.	
— If	 object_metadata	 (OAM)	 is	 used,	 independently	 decodable	 oam_metadata()	 has	 to	 be	 available	

(intracoded_object_metadata_efficient()	 in	 case	 of	 efficient	 object	 metadata	 coding	 or	
intracoded_object_metadata_low_delay()	in	case	of	object	metadata	coding	with	low	delay).	

Note	that	most	of	the	above	requirements	are	fulfilled	intrinsically	by	the	design	of	the	bitstream	syntax.	

An	 independently	 decodable	 frame	 may	 contain	 audio	 pre-roll	 information	 as	 described	 in	
subclause	5.5.6.	

In	an	MHAS	stream,	an	independently	decodable	frame	containing	audio	pre-roll	(IPF)	as	in	subclause	
5.5.6	may	be	signalled	by	means	of	a	previously	transmitted	MHAS	packet	of	type	PACTYP_MARKER	as	
defined	in	subclause	14.4.6.3.	

In	order	to	decode	the	 frame	the	 information	from	mpegh3daConfig()	 is	required	to	be	known	to	the	
decoder	as	well.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 207	
	

6 Dynamic	range	control	and	loudness	processing	
6.1 General	
This	 clause	 describes	 the	 decoding	 process	 of	 loudness	metadata	 and	 dynamic	 range	 control	 (DRC)	
metadata.	 These	 are	 needed	 for	 different	 tasks	 including	 loudness	 monitoring	 and	 normalization,	
dynamic	 range	 control	 in	 noisy	 and	 quiet	 playback	 environments,	 or	 for	 other	 audio	 enhancement	
scenarios.	

6.2 Description	
Coding,	transmission	and	application	of	loudness	information	and	dynamic	range	control	gains	shall	be	
based	on	ISO/IEC	23003-4.	

6.3 Syntax	

 Loudness	metadata	
The	loudness	metadata	is	located	in	an	mpegh3daConfigExtension	as	defined	in	Table	27.	The	content	of	
mpegh3daLoudnessInfoSet()	is	listed	in	Table	128.	loudnessInfo()	and	loudnessInfoSetExtension()	are	
defined	in	ISO/IEC	23003-4.	Other	syntax	elements	are	either	defined	in	subclause	6.3.3	or	in	other	parts	
of	ISO/IEC	23003.		

Table	128	—	Syntax	of	mpegh3daLoudnessInfoSet()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daLoudnessInfoSet	() 	 	

{ 	 	

	 loudnessInfoCount;	 6	 uimsbf	
	 for	(i=0;	i<loudnessInfoCount;	i++)	{ 	 	

	 	 loudnessInfoType;	 2	 uimsbf	
	 	 if	(loudnessInfoType	==		1	||	loudnessInfoType	==	2)	{	 	 	

	 	 	 mae_groupID;	 7	 uimsbf	
	 	 }	else	if	(loudnessInfoType	==	3)	{	 	 	

	 	 	 mae_groupPresetID;	 5	 uimsbf	
	 	 }	 	 	

	 	 loudnessInfo(); 	 	

	 } 	 	

	 loudnessInfoAlbumPresent;	 1	 uimsbf	
	 if	(loudnessInfoAlbumPresent)	{ 	 	

	 	 loudnessInfoAlbumCount;	 6	 uimsbf	
	 	 for	(i=0;	i<	loudnessInfoAlbumCount;	i++)	{ 	 	

	 	 	 loudnessInfoType	=	0; 	 	

	 	 	 loudnessInfo(); 	 	

	 	 } 	 	

	 } 	 	

	 loudnessInfoSetExtensionPresent;	 1	 uimsbf	
	 if	(loudnessInfoSetExtensionPresent	==	1)	{ 	 	

	 	 loudnessInfoSetExtension(); 	 	

	 } 	 	

} 	 	

 Dynamic	range	control	metadata	
The	 dynamic	 range	 control	 (DRC)	 metadata	 is	 located	 in	 an	 mpegh3daExtElementConfig	 and	 an	
mpegh3daExtElement	 as	 defined	 in	 Table	 26	 and	 Table	 79.	 The	 static	 DRC	 metadata	 is	 defined	 by	
mpegh3daUniDrcConfig()	 listed	 in	Table	129.	The	dynamic	DRC	metadata	 is	defined	by	uniDrcGain()	

ISO/IEC	23008-3:202X(E)	

208	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

listed	 in	 ISO/IEC	23003-4.	 drcCoefficientsUniDrc(),	 drcInstructionsUniDrc(),	 uniDrcConfigExtension(),	
drcSampleRate,	and	baseChannelCount	are	defined	in	ISO/IEC	23003-4.	Other	syntax	elements	are	either	
defined	in	subclause	6.3.3	or	in	other	parts	of	ISO/IEC	23008.		

Table	129	—	Syntax	of	mpegh3daUniDrcConfig()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daUniDrcConfig() 	 	

{ 	 	

	 drcSampleRate	=	sampling	frequency	as	determined	from	mpegh3daConfig();	
	 drcCoefficientsUniDrcCount;	 3	 uimsbf	
	 drcInstructionsUniDrcCount;	 6	 uimsbf	
	 mpegh3daUniDrcChannelLayout();	 	 	

	 for	(i=0;	i<	drcCoefficientsUniDrcCount;	i++)	{	 	 	

	 	 drcCoefficientsUniDrc(); 	 	

	 } 	 uimsbf	
	 for	(i=0;	i<	drcInstructionsUniDrcCount;	i++)	{ 	 	

	 	 drcInstructionsType;	 1..2	 vlclbf
	 	 if	(drcInstructionsType	==	2)	{ 	 	

	 	 	 mae_groupID;	 7	 uimsbf	
	 	 }	else	if	(drcInstructionsType	==	3)	{	 	 	

	 	 	 mae_groupPresetID;	 5	 uimsbf	
	 	 }	 	 	 	 	

	 	 drcInstructionsUniDrc();	 a	 	
	 } 	 	

	 uniDrcConfigExtPresent;	 1	 uimsbf	
	 if	(uniDrcConfigExtPresent	==	1)	{ 	 	

	 	 uniDrcConfigExtension(); 	 	

	 } 	 	

	 loudnessInfoSetPresent;	 1	 uimsbf	
	 if	(loudnessInfoSetPresent	==	1)	{ 	 	

	 	 mpegh3daLoudnessInfoSet(); 	 	

	 } 	 	

} 	 	
a		 Parsing	of	the	drcInstructionsUniDrc()	structure	might	require	information	on	present	downmixId	
definitions	as	specified	by	the	downmixConfig()	structure	(see	Table	29).	

Table	130	—	Syntax	of	mpegh3daUniDrcChannelLayout()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daUniDrcChannelLayout	() 	 	

{ 	 	

	 baseChannelCount;	 7	 uimsbf	
} 	 	

 Data	elements	
loudnessInfoType	 This	 field	 signals	 whether	 the	 following	 loudnessInfo()	 block	 refers	 to	 a	 fixed	

audio	scene	(default),	to	a	specific	audio	element	(mae_groupID),	to	an	audio	scene	
which	 includes	 a	 specific	 audio	 element	 (mae_groupID),	 or	 to	 an	 audio	 scene	
defined	by	a	combination	of	audio	elements	(mae_groupPresetID).	The	encoding	
of	loudnessInfoType	is	specified	in	Table	131.	Note	that	a	value	of	0	represents	the	
default	 audio	 scene	 selected	 by	 the	 decoder.	 If	mae_numGroupPresets	 >	 0,	 the	
group	preset	with	the	lowest	mae_groupPresetID	value	is	selected	as	the	default	
audio	scene	(see	subclause	15.3).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 209	
	

Table	131	—	Coding	and	meaning	of	loudnessInfoType	

loudnessInfoType		
(value)	

binary		
encoding	

codeword		
size	[bits]	

meaning

0	 ‘00’	 2	 loudnessInfo()	for	fixed	audio	scene	(default	audio	
scene)	

1	 ‘01’	 2	 loudnessInfo()	for	single	audio	element	defined	by	
mae_groupID

2	 ‘10’	 2	 loudnessInfo()	for	audio	scene	which	includes	a	
specific	mae_groupID

3	 ‘11’	 2	 loudnessInfo()	for	audio	scene	defined	by	
mae_groupPresetID	

drcInstructionsType	This	field	signals	whether	the	following	drcInstructionsUniDrc()	block	refers	to	a	
fixed	audio	scene	(default),	to	an	audio	scene	which	includes	a	specific	audio	
element	(mae_groupID),	or	to	an	audio	scene	defined	by	a	combination	of	audio	
elements	(mae_groupPresetID).	

Table	132	—	Coding	and	meaning	of	drcInstructionsType	

drcInstructionsType	
(value)	

binary		
encoding	

codeword		
size	[bits]	

meaning

0	 ‘0’	 1	 drcInstructionsUniDrc()	for	fixed	audio	scene	
(default)	

2	 ‘10’	 2	 drcInstructionsUniDrc()	for	audio	scene	which	
includes	a	specific	mae_groupID

3	 ‘11’	 2	 drcInstructionsUniDrc()	for	audio	scene	defined	
by	mae_groupPresetID	

baseChannelCount	 Sum	of	all	present	channels,	objects,	internal	SAOC	3D	channels/objects	and	HOA	
coefficient	channels.	baseChannelCount	shall	have	a	value	as	determined	by	the	
following	pseudo	code:	

 baseChannelCount = numAudioChannels; NOTE: from Signals3d()
 baseChannelCount += numAudioObjects; NOTE: from Signals3d()
 if (numSAOCTransportChannels > 0) {
 baseChannelCount += NumInputSignals; NOTE: from SAOC3DSpecificConfig()
 }
 if (numHOATransportChannels > 0) {
 baseChannelCount += NumOfHoaCoeffs NOTE: from HoaConfig()
 }

6.4 Decoding	process	

 General	

The	decoding	 and	 application	of	 dynamic	 range	 control	 gains	 and	 loudness	normalization	 gains	 is	 in	
general	 identical	 to	 the	 specification	 in	 ISO/IEC	23003-4.	 Therefore,	 the	 following	 subclauses	 only	
provide	differences	and	specific	MPEG-H	related	configuration	details.	A	high-level	block	diagram	of	the	
complete	 MPEG-H	 decoder	 processing	 chain	 including	 blocks	 for	 dynamic	 range	 control,	 loudness	
normalization	and	peak	limiting	is	depicted	in	Figure	39.	Note	that	the	definitions	and	descriptions	for	
loudnessInfoSet()	 and	 uniDrcConfig()	 as	 specified	 in	 ISO/IEC	23003-4	 equally	 hold	 for	
mpegh3daLoudnessInfoSet()	and	mpegh3daUniDrcConfig()	in	MPEG-H	unless	stated	otherwise.	

ISO/IEC	23008-3:202X(E)	

210	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	39	—	MPEG-H	decoder	processing	chain	including	blocks	for	dynamic	range	control,	
loudness	normalization	and	peak	limiting	

Fo
rm

at
Co

nv
er

te
r

O
bj

ec
t

Re
nd

er
er

SA
O

C
3D

D
ec

od
er

H
O

A
D

ec
od

er

M
ix

er

Pe
ak

Li
m

ite
r

D
RC

-1
 G

ai
n

D
ec

od
er

D
RC

-2
 G

ai
n

D
ec

od
er

D
RC

-3
 G

ai
n

D
ec

od
er

M
PE

G
-H

 3
D

Au
di

o
Co

re
D

ec
od

er

m
p4

Decoded DRC-1 Gains

D
yn

am
ic

 D
RC

 M
et

ad
at

a

St
at

ic
 D

RC
 M

et
ad

at
a

Co
nt

ro
l D

at
a

(S
el

ec
te

d
D

RC
 se

ts
, L

ou
dn

es
s N

or
m

al
iz

at
io

n
G

ai
n)

D
RC

 S
et

Se
le

ct
io

n

Pr
op

er
tie

s o
f D

es
ire

d
D

RC
Ta

rg
et

 L
ou

dn
es

s
Ta

rg
et

 L
ay

ou
t

Au
di

o
El

em
en

ts
 S

ce
ne

Re
qu

es
t

Ch
an

ne
l

Co
nt

en
t

O
bj

ec
t

Co
nt

en
t

SA
O

C
3D

Co
nt

en
t

H
O

A
Co

nt
en

t

m
ul

ti-
di

m
.

Decoded DRC-2 Gains

m
ul

ti-
di

m
.

Decoded DRC-3 Gains

Loudness Normalization Gain

m
ul

ti-
di

m
.

TD
 o

r F
D

TD
 o

r F
D

TD
 o

r F
D

TD
TD

TD
 o

r F
D

FD

TD
 =

 T
im

e-
D

om
ai

n
FD

 =
 F

re
qu

en
cy

-D
om

ai
n

N
L

=
Lo

ud
ne

ss
 N

or
m

al
iz

er

Transmission Channel

Co
nt

ro
l D

RC
-1

Co
nt

ro
l D

RC
-2

Co
nt

ro
l D

RC
-3

Co
nt

ro
l N

L

D
RC

 D
ec

od
er

 In
pu

t P
ar

am
et

er
s

Lo
ud

ne
ss

 M
et

ad
at

a

Playback Channel

TD

on
e-

di
m

.

D
el

ay
tim

e
al

ig
nm

en
t o

f D
RC

 g
ai

ns

to
 a

ud
io

 si
gn

al
 if

 re
qu

ire
d

D
el

ay
D

el
ay

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 211	
	

 Dynamic	range	control	

There	 are	 three	DRC	 gain	 decoders	 (denoted	 by	DRC-1,	DRC-2,	 and	DRC-3)	 available	 in	 the	MPEG-H	
decoder	processing	chain.	All	three	decoders	are	identical	and	conform	to	ISO/IEC	23003-4.	Each	decoder	
addresses	different	 tasks	and	scenarios.	The	decoded	gains	are	applied	by	multiplication	of	 the	audio	
signal	in	the	time-	or	frequency-domain	as	shown	in	Figure	39.	Note	that	all	three	DRC	gain	decoders	are	
driven	by	the	same	DRC	metadata	stream.	

DRC-1	addresses	dynamic	range	control	for	individual	channels,	individual	objects,	SAOC	3D	content	and	
HOA	content.	Additionally,	DRC-1	shall	support	multi-band	DRC.	Dependent	on	the	availability	of	the	QMF	
or	STFT	representation	of	the	audio	signal,	single-band	DRC	gains	should	be	either	applied	in	the	time-
domain	or	in	the	frequency-domain.	Further	details	on	the	DRC	application	to	SAOC	3D	and	HOA	content	
are	defined	in	subclauses	6.4.5	and	6.4.6,	respectively.		

DRC-2	addresses	dynamic	range	control	for	the	entire	audio	scene.	DRC-2	shall	also	support	multi-band	
DRC.	Dependent	on	the	availability	of	the	QMF	or	STFT	representation	of	the	audio	signal,	single-band	
DRC	gains	should	be	either	applied	in	the	time-domain	or	in	the	frequency-domain.	DRC	sets	designed	
for	DRC-2	are	restricted	to	one	DRC	channel	group	to	be	compatible	to	all	target	rendering	layouts	after	
the	 mixer	 module.	 Thus,	 DRC-2	 is	 also	 best	 suited	 for	 simple	 DRC	 tasks	 especially	 in	 case	 of	 low-
complexity	requirements.		

Note	that	in	MPEG-H	multi-band	DRC	gains	shall	always	be	applied	in	the	QMF-domain,	STFT-domain	or	
in	 the	 SAOC	 processing	 band	 domain.	 The	 usage	 of	 the	 multi-band	 DRC	 filterbank	 defined	 in	
ISO/IEC	23003-4	is	not	permitted.	

DRC-3	addresses	dynamic	range	control	and/or	playback	level	dependent	guided	clipping	prevention	for	
specific	target	layouts	(channel	configurations).	DRC-3	shall	always	operate	in	the	time-domain.	Thus,	
DRC-3	only	supports	single-band	DRC.	However,	it	shall	support	multiple	DRC	channel	groups.	Note	that	
the	gain	application	of	DRC-2	and	DRC-3	can	be	only	combined	if	both	operate	in	the	time-domain.		

Due	to	general	restrictions	in	ISO/IEC	23003-4,	either	one	or	two	DRC	decoders	are	active	simultaneously	
to	achieve	one	specific	DRC	effect.	Note	that	the	DRC-3	gain	decoder	is	only	suited	for	a	restricted	number	
of	target	layouts.	In	all	cases,	the	DRC	gain	decoders	shall	provide	gains	suitable	for	the	present	audio	
signal	 representation	 according	 to	 the	 downsampling	 and	 frequency	 mapping	 rules	 defined	 in	
ISO/IEC	23003-4.	Note	that	if	one	DRC	gain	decoder	is	used	to	apply	a	non-DRC	effect,	such	as	fading	or	
ducking,	 all	 three	 DRC	 gain	 decoders	 can	 be	 active	 simultaneously	 if	 the	 others	 additionally	 serve	 a	
specific	DRC	effect.	

If	binaural	rendering	is	enabled,	DRC-2	shall	be	applied	to	the	output	of	the	binaural	renderer	(not	shown	
in	 Figure	 39).	 The	 same	 holds	 for	 the	 loudness	 normalization	 gain.	 Note	 that	 DRC-3	 gains	 are	 not	
supported	in	case	of	binaural	rendering.		

 Usage	of	downmixId	in	MPEG-H	

According	to	ISO/IEC	23003-4,	a	non-zero	identifier,	termed	downmixId,	can	be	used	to	externally	refer	
to	 a	 specific	 downmix	 or	 rendering	 layout.	 In	 ISO/IEC	23003-4,	 downmixId	 is	 defined	 in	 the	
downmixInstructions()	payload.	If	a	DRC	set	contains	a	specific	downmixId,	the	DRC	set	shall	be	applied	
to	the	output	of	the	downmix	or	rendering	which	downmixId	refers	to.	If	loudness	metadata	contains	a	
specific	 downmixId,	 this	 indicates	 that	 the	 loudness	 metadata	 was	 obtained	 from	 the	 output	 of	 the	
downmix	or	rendering	which	downmixId	refers	to.	

In	MPEG-H,	downmixInstructions()	 is	 replaced	by	DownmixMatrixSet()	as	defined	 in	Table	30,	which	
permits	the	definition	of	a	downmixId	not	only	for	transmitted	downmix	matrices,	but	also	for	default	

ISO/IEC	23008-3:202X(E)	

212	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

downmix	 matrices	 available	 on	 the	 decoder	 side	 (format	 converter).	 At	 the	 decoder	 a	 downmixId	
matching	algorithm	determines	which	downmixId	is	present	as	outlined	in	subclause	10.3.1.2.	

According	to	ISO/IEC	23003-4,	downmixId	has	two	reserved	values,	namely	0x0	and	0x7F,	which	are	also	
reserved	values	in	MPEG-H.	

A	downmixId	of	0x0	indicates	that	a	DRC	set	shall	be	applied	to	the	unmodified	MPEG-H	3D	audio	core	
decoder	output	by	DRC-1.	On	the	encoder	side,	the	DRC	gain	sequences	have	to	be	sequentially	assigned	
to	the	mixed-content	multi-channel	output	of	the	MPEG-H	3D	audio	core	decoder.	For	combined	channel-,	
object-,	SAOC-	and	HOA-content,	the	size	of	the	DRC	assignment	loop	is	defined	by	the	baseChannelCount,	
which	 is	 the	sum	of	all	 channels,	all	objects,	all	 internal	SAOC	3D	channels/objects	and	 the	square	of	
HoaOrder+1,	NumOfHoaCoeffs	(see	definition	in	Table	130).	In	contrast	to	ISO/IEC	23003-4,	DRC	sets	
with	ducking	effect	are	only	permitted	for	DRC	sets	with	a	downmixId	of	0x0.	Furthermore,	in	MPEG-H	it	
is	permitted	to	define	more	than	one	DRC	set	with	ducking	effect	for	the	same	downmixId	if	those	DRC	
sets	are	differentiated	by	unique	audio	element	group	identifiers	(mae_groupIDs/mae_groupPresetIDs)	
(see	 Table	 129	 and	 Clause	 15).	 In	 case	 of	 loudness	metadata	 a	 downmixId	 of	 0x0	 shall	 refer	 to	 the	
reference	layout	(referenceLayout)	specified	in	mpegh3daConfig().		

A	downmixId	of	0x7F	indicates	that	a	DRC	set	shall	be	applied	by	DRC-2.	In	contrast	to	ISO/IEC	23003-4,	
it	is	not	allowed	to	freely	choose	the	application	position	of	DRC	sets	coded	with	a	downmixId	of	0x7F.	
For	example,	the	clipping	behaviour	for	one	specific	downmix	configuration	will	be	different	if	a	DRC	set	
is	applied	before	or	after	the	format	converter	in	MPEG-H.	Note	that	DRC-2	sets	can	always	be	applied	
irrespective	of	the	actual	target	layout.	In	case	of	loudness	metadata	a	downmixId	of	0x7F	is	not	permitted.		

All	other	downmixId	values	(except	0x0	and	0x7F)	indicate	that	a	DRC	set	shall	be	applied	to	a	specific	
target	layout	by	DRC-3.	In	case	of	loudness	metadata	all	other	downmixId	values	shall	refer	to	the	target	
layout	specified	by	downmixId.	

The	MPEG-H	meaning	of	downmixId	is	again	summarized	in	Table	133.	

Table	133	—	Meaning	of	downmixId	in	MPEG-H	

Metadata	type	 downmixId	==	0x0	 downmixId	==	0x7F	 downmixId	!=	0x0	&&	
downmixId	!=	0x7F

drcInstructionsUniDrc()	
(DRC	set)	

Shall	be	applied	by	
DRC-1.	

Shall	be	applied	by	
DRC-2.	

Shall	be	applied	by	
DRC-3.

loudnessInfo()	
(loudness	metadata)	

Measurement	of	
reference	layout.	 Not	permitted.		

Measurement	of	target	
layout	specified	by	
downmixId.	

 DRC	set	selection	process	

6.4.4.1 General	

The	 DRC	 set	 selection	 process	 shall	 be	 implemented	 according	 to	 ISO/IEC	23003-4.	 Note	 that	
dmxInstructions()	 is	 replaced	 by	DownmixMatrixSet()	 in	MPEG-H.	DownmixMatrixSet()	 is	 defined	 in	
Table	30.	

If	information	on	present	audio	elements	is	available	(mae_groupID/mae_groupPresetID)	(see	Clause	15),	
the	pre-selection	process	specified	in	ISO/IEC	23003-4	shall	be	extended	by	two	additional	requirements	
as	listed	in	Table	134.	Note	that	if	in	pre-selection	step	#8	the	requirement	of	clipping	prevention	needs	
to	be	relaxed,	at	least	one	DRC	set	has	to	remain	that	either	matches	the	present	audio	elements	or	has	to	
be	independent	of	any	audio	elements	(drcInstructionsType==0).	The	final	selection	based	on	present	
audio	elements	shall	be	performed	after	the	final	selection	based	on	output	peak	value	(see	subclauses	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 213	
	

6.4.4.2,	6.4.4.3	and	ISO/IEC	23003-4).	 If	 information	on	present	audio	elements	is	not	available	to	the	
DRC	selection	process,	DRC	sets	and	 loudness	metadata	with	defined	audio	element	group	 identifiers	
(mae_groupID/mae_groupPresetID)	shall	be	ignored	by	the	DRC	selection	process.		

Note	that	the	applicable	loudnessInfo()	block	for	loudness	normalization	according	to	ISO/IEC	23003-4	
is	also	dependent	on	the	present	audio	elements.	If	loudnessInfo()	blocks	with	matching	group	identifiers	
for	present	audio	elements	are	not	available,	loudnessInfo()	blocks	with	undefined	group	identifiers	shall	
be	used	instead	(loudnessInfoType==0).	

A	 DRC	 set	with	 ducking	 effect	 is	 automatically	 selected	 if	 the	 group	 identifiers	 of	 the	 present	 audio	
elements	match	the	group	identifier	of	the	DRC	set	with	ducking	effect.	Note	that	in	MPEG-H	a	DRC	set	
with	ducking	effect	is	always	automatically	selected	if	it	doesn’t	define	an	audio	element	group	identifier	
(drcInstructionsType==0).	

The	selection	of	DRC	sets	with	fading	effect	shall	be	done	according	to	ISO/IEC	23003-4.	

Table	134	—	Requirements	for	DRC	pre-selection	(additional	MPEG-H	requirements)	

#	 Requirement	 Applicability	 Comment

9	 mae_groupPresetID	matches		
or	is	undefined	

If	mae_groupPresetID	is	present.	 See	subclause	
6.4.4.2

10	 mae_groupID	matches		
or	is	undefined	

If	mae_groupID	is	present		
and	no	match	was	found	in	step	#9.	

See	subclause	
6.4.4.3	

6.4.4.2 Pre-selection	based	on	present	mae_groupPresetID	(#9)	

This	pre-selection	step	addresses	the	case	when	a	specific	audio	scene	defined	by	a	combination	of	audio	
elements	(mae_groupPresetID)	is	present.	All	DRC	sets,	which	define	a	matching	mae_groupPresetID	(see	
Table	129)	shall	be	selected	 in	 this	step.	All	other	DRC	sets	with	defined	mae_groupPresetID	shall	be	
discarded.	 If	at	 least	one	DRC	set	has	a	matching	mae_groupPresetID,	pre-selection	step	#10	shall	be	
omitted	and	all	DRC	sets	with	defined	mae_groupID	shall	be	discarded.	 If	no	DRC	set	has	a	matching	
mae_groupPresetID,	all	DRC	sets	with	defined	mae_groupPresetID	are	discarded	and	the	pre-selection	
shall	 continue	with	 step	#10.	 If	 several	mae_groupPresetIDs	 are	present,	 the	matching	 shall	 be	done	
separately	for	each	identifier.	Note	that	DRC	sets	which	don’t	define	a	mae_groupPresetID	shall	also	pass	
this	pre-selection	step.	

If	 in	 the	 final	 selection	 according	 to	 ISO/IEC	23003-4	 multiple	 DRC	 sets	 with	 different	
mae_groupPresetIDs	 are	 selected,	 the	 DRC	 set,	 which	 defines	 the	 largest	 number	 of	 members	 in	 its	
associated	 mae_groupPresetID,	 shall	 be	 selected.	 If	 there	 are	 still	 multiple	 DRC	 sets	 with	 different	
mae_groupPresetIDs	selected,	select	the	DRC	set	with	the	lowest	mae_groupPresetID.	Note	that	if	the	user	
has	actively	chosen	a	specific	mae_groupPresetID,	all	corresponding	DRC	sets	shall	be	preferred	in	this	
final	selection	step.	

If	 in	 the	 final	 selection	 according	 to	 ISO/IEC	23003-4	multiple	 DRC	 sets	with	 defined	 and	 undefined	
mae_groupPresetID	are	selected,	all	DRC	sets	with	undefined	mae_groupPresetID	shall	be	discarded.	

6.4.4.3 Pre-selection	based	on	present	mae_groupID	(#10)	

This	pre-selection	step	addresses	the	case	when	an	audio	scene	is	present	which	includes	a	specific	audio	
element	 (mae_groupID).	All	DRC	sets	which	define	a	matching	mae_groupID	 (see	Table	129)	 shall	be	
selected	in	this	step.	All	other	DRC	sets	with	defined	mae_groupID	shall	be	discarded.	If	no	DRC	set	has	a	
matching	 mae_groupID,	 all	 DRC	 sets	 with	 defined	 mae_groupID	 shall	 be	 discarded.	 If	 several	

ISO/IEC	23008-3:202X(E)	

214	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_groupIDs	are	present,	the	matching	shall	be	done	separately	for	each	identifier.	Note	that	DRC	sets	
which	don’t	define	a	mae_groupID	shall	also	pass	this	pre-selection	step.	

If	 in	 the	 final	 selection	 according	 to	 ISO/IEC	23003-4	multiple	 DRC	 sets	with	 defined	 and	 undefined	
mae_groupID	are	selected,	all	DRC	sets	with	undefined	mae_groupID	shall	be	discarded.	

 DRC-1	for	SAOC	3D	Content	

For	SAOC	3D,	the	DRC-1	decoder	shall	produce	one	DRC	gain	 	per	QMF	time	slot	n,	per	

SAOC	3D	processing	band	m	and	per	internal	SAOC	3D	channel/object	i.	Appropriate	down-sampling	and	
frequency	mapping	rules	are	specified	in	ISO/IEC	23003-4.	

The	decoded	DRC	gains	are	always	applied	to	the	SAOC	3D	processing	bands.	More	precisely,	the	gains	
are	applied	on	the	SAOC	3D	rendering	matrix.	The	corresponding	SAOC	3D	rendering	coefficients	are	
defined	for	each	parameter	time	slot	l	and	processing	band	m.	The	SAOC	3D	decoder	shall	provide	the	
number	of	processing	bands	to	the	DRC	decoder.	The	corresponding	centre	frequencies	shall	be	derived	
in	accordance	with	ISO/IEC	23003-1.	

The	final	SAOC	3D	DRC	rendering	matrix	is	computed	by	replacing	the	SAOC	3D	unmodified	rendering	
matrix	R	defined	in	subclause	9.5.3.4	by:	

,	

where	DRCch	of	 size	Nch	×	Nch	 represents	 the	DRC	gain	matrix	 associated	with	 the	 channel-content	
input	and	DRCobj	of	size	Nobj	×	Nobj	represents	the	DRC	gain	matrix	associated	with	the	object-content	
input.	

The	DRC	gain	matrices	are	defined	for	each	parameter	time	slot	l	and	processing	band	m	and	given	by:	

,	

and	

,	

where	 	represents	the	last	time	slot	in	parameter	set	l.	

 DRC-1	for	HOA	content	

6.4.6.1 General	

The	DRC-1	gains	 for	HOA	are	applied	 to	 the	HOA	signal	before	rendering	and	may	be	combined	with	
rendering.	The	DRC-1	gains	for	HOA	are	either	applied	in	the	time-domain	or	in	the	QMF-domain.	

drcch/obj n,m,i()

ch
ch obj

obj

0
0

é ù
é ù= ê úë û

ë û

DRC
R R R

DRC

() ()ch 0,
ch

drc , ,
,

0
l m n m i i j
i j

ì =ï= í
ïî

DRC
 , if

,otherwise

() ()obj 0,
obj

drc , , , if
,

0 , otherwise
l m n m i i j
i j

ì =ï= í
ïî

DRC

0n

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 215	
	

6.4.6.2 Application	of	DRC-1	gains	in	the	time-domain	
The	DRC	decoder	shall	provide	((+ 1)F	gain	values	∏jRO = πvI, . . , v(GHI)!∫

Y 	according	to	the	number	of	
HOA	coefficient	channels	of	the	HOA	signal	r.	(is	the	HOA	order.			

Application	of	DRC	gains	to	the	HOA	signals:	

Ãvew = Õ6KJ.
F& ÑLpM(Œ<3L)Õ6KJ.	Ã,	

where	r	is	a	vector	of	one	time	sample	of	HOA	coefficients	(r	ª	ℝ(GHI)!N	I),	and	1xyz{	ª	ℝ
(GHI)!N	(GHI)! 			

and	its	inverse	1xyz{
Xñ 		are	matrices	related	to	a	discrete	spherical	harmonics	transform	(DSHT)	optimized	

for	DRC	purposes.		

Informative	remark:	To	decrease	the	computational	load	by	((+ 1)ó	operations	per	sample,	it	may	be	
found	advantageous	to	include	the	rendering	step	and	to	calculate	the	loudspeaker	signals	directly	by:	
Ωòôö = (1	1oplY

XI)		(K*xv(∏jRO)1oplY)	r,	where	1	is	 the	rendering	matrix	and	(1	1oplYXI)		 can	be	pre-
computed.	

If	all	gains	vI, . . , v(GHI)! 	have	the	same	value	of	v'",,	then	a	single	DRC	channel	group	has	been	used.	This	
case	shall	be	flagged	by	the	DRC-1	decoder	because	in	this	case	the	calculation	of	the	spatial	filter	is	not	
necessary	and	the	calculation	simplifies	to	ròôö = v'",	Ã.	

6.4.6.3 Calculation	of	DSHT	matrices	for	DRC-1	gains	
The	matrix	coefficients	and	operations	required	to	determine	the	spatial	filter	1xyz{	and	its	inverse	
1xyz{
Xñ 		are	calculated	as	follows:	

A	set	of	spherical	positions	æxyz{	=	 [øI, … , ø*, … , ø(õHI)!]	with	ø* = [¿C , ¡C]Y 		and	related	quadrature	
gains	¬	ª	ℝ(GHI)!N	I		are	selected	from	the	Table	in	Annex	F.25	based	upon	the	HOA	order	(as	an	index.		

A	mode	matrix	√xyz{	related	to	these	positions	is	calculated.	For	details	see	Annex	F.1.	A	first	prototype	
matrix	is	calculated	by	1ƒI = K*xv(¬)

ú3456
(GHI)!

.	A	compact	singular	value	decomposition	is	performed	

1ƒI = ≈∆«Y 	and	a	new	prototype	matrix	is	calculated	by:	1ƒ»F = ≈«Y .	This	matrix	is	normalized	by:	1…F =
ùûü3

†°ùûü!°†
&,4

	.		A	row-vector	 	is	calculated	by	= ñ5
6ù¢!–	[I,V,V,..,V]

(õHI)!
	,	where	[1,0,0, . . ,0]		is	a	row	vector	of	((+ 1)F	

all	zero	elements	except	for	the	first	element	with	a	value	of	one.		ÀKY1…F	denotes	the	sum	of	rows	of	1…F.		

The	optimized	DSHT	matrix	1xyz{	is	now	derived	by	1xyz{ =	1…F − [Y , Y , Y , . .]Y .	

6.4.6.4 Application	of	DRC-1	gains	in	the	QMF-domain	
The	DRC-1	 decoder	 provides	 a	 gain	 value	vOw(F,p)	for	 every	 time	 frequency	 tile	 (F,p)	for	((+ 1)F	
spatial	channels.	The	gains	for	time	slot	n	and	frequency	band	p	are	arranged	in	∏(F,p)	ª	ℝ(GHI)!N	I.		

Multi-band	DRC	gains	are	applied	in	the	QMF-domain.	The	processing	steps	are	shown	in	Figure	40.	The	
reconstructed	HOA	signal	is	transformed	into	the	spatial	domain	by	(inverse	DSHT):	 	Ãxyz{ = 5xyz{|	,	
where	Õª	ℝ(GHI)!N	• 	is	 a	 block	 of	τ	HOA	 samples	 and	œxyz{ª	ℝ

(GHI)!N	• 		 is	 a	 block	 of	 spatial	 samples	
matching	the	input	time	granularity	of	the	QMF	filter	bank.	Then	the	QMF	analysis	filter	bank	is	applied.	
Let	Ω–xyz{(F,p)	ª	ℂ(GHI)

!N	I		denote	the	vector	of	spatial	channels	per	time	frequency	tile	(F,p).	Then	the	
DRC	 gains	 are	 applied:	 	Ω“oãg(F,p) = 	K*xv©∏(F,p)´	Ω–xyz{(F,p). 	To	 minimize	 the	 computational	
complexity	 the	 DSHT	 and	 rendering	 to	 loudspeaker	 channels	 are	 combined:	 Ω(F,p) =

ISO/IEC	23008-3:202X(E)	

216	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

1	1oplY
XI 	Ω“oãg(F,p),		where		1	denotes	the	HOA	rendering	matrix.	The	QMF	signals	shall	then	be	fed	to	

the	mixer	for	further	processing.			

	

Figure	40	—	DRC-1	gain	application	for	HOA	in	the	QMF-domain	combined	with	rendering	step		

If	only	a	single	DRC	channel	group	is	present,	this	should	be	flagged	by	the	DRC-1	decoder	since	again	
computational	simplifications	are	possible	(Figure	41).	In	this	case	the	gains	in	vector	v(F,p)	all	share	
the	same	value	of	vjRO(F,p).	The	QMF	filter	bank	may	be	directly	applied	to	the	HOA	signal	and	the	gain	
vjRO(F,p)	shall	then	be	multiplied	in	the	QMF-domain.	The	resulting	loudspeaker	channels	in	the	QMF-
domain	after	rendering	are	obtained	by	Ω(F,p) = vjRO(F,p)1roãg(F,p).	

	

Figure	41	—	DRC-1	gain	application	for	HOA	in	the	QMF-domain	combined	with	rendering	step	
for	the	simple	case	of	a	single	DRC	channel	group	

Tables	for	the	application	of	DRC	in	HOA	can	be	found	in	Annex	F.25	

 Loudness	normalization	

Loudness	normalization	 shall	 be	 performed	 in	 the	 time-domain	 after	DRC-3.	 The	processing	 shall	 be	
conducted	according	to	ISO/IEC	23003-4.	Note	that	the	normalization	gain	also	depends	on	the	result	of	
the	 DRC	 set	 selection	 process	 as	 shown	 in	 Figure	 39.	 Configuration	 changes	 restricted	 to	 the	
mpegh3daLoudnessInfoSet()	structure	shall	not	re-initialize	the	decoder	but	update	the	normalization	
gain	by	smooth	interpolation	over	one	DRC	frame.	

In	case	of	binaural	rendering,	loudness	normalization	shall	be	applied	after	DRC-2.		

 Peak	limiter		

The	application	of	a	peak	limiter	is	mandatory.	Further	details	are	specified	in	Annex	D.	The	peak	limiter	
shall	be	placed	at	the	very	end	of	the	audio	processing	chain.	

 Time-synchronization	of	DRC	gains	

DRC	 gains	 shall	 be	 sent	 aligned	 to	 the	 IMDCT	output	waveforms	 as	 specified	 in	 subclause	 4.6.	 If	 the	
waveforms	encounter	delays	in	the	processing	pipeline	from	the	IMDCT	output	until	reaching	the	DRC	
application	block,	e.g.	due	to	an	analysis	filterbank	for	DRC	application	in	the	frequency	domain,	the	DRC	
gains	shall	be	delayed	accordingly	at	the	decoder	before	application	to	the	audio	signal.	

 	Default	parameters	

The	following	default	parameters	as	defined	in	ISO/IEC	23003-4	shall	be	applied	to	the	DRC	decoder:	

— loudnessDeviationMax	=	0	dB;	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 217	
	

— outputPeakLevelMax	=	0	dBFS.	
The	following	default	parameters	as	defined	in	ISO/IEC	23003-4	should	be	applied	to	the	DRC	decoder:	

— numDrcEffectTypeRequests	 >=	 6	 (see	 ISO/IEC	23003-4:2015,	 Annex	 E.2.2	 for	 recommended	
drcEffectTypeRequest	fallback	settings).	

7 	Object	metadata	decoding	
7.1 General	

This	clause	describes	the	decoding	process	of	object	metadata,	 i.e.	geometrical	data	 for	audio	objects.		
These	are	needed	to	apply	the	object	rendering	specified	in	Clause	8.	

7.2 Description	

Metadata	 is	 conveyed	 for	 every	 audio	 object	 providing	 its	 spatial	 positions	 (azimuth,	 elevation,	 and	
radius)	and	a	linear	gain	at	defined	timestamps.	In	addition	to	that,	either	a	uniform	spread	value	of	three	
distinct	spread	values	(spread	in	width,	height	and	depth	dimension),	as	well	as	a	dynamic	object	priority	
value	may	also	be	defined.	
The	units	for	each	of	the	different	metadata	components	are	given	in	Table	135.	A	visualization	of	the	
polar	coordinate	system	for	azimuth	and	elevation	is	shown	in	Figure	42.	

Table	135	—	Units	of	the	decoded	object	metadata	components	

Component	 Unit	 Value	range

azimuth	 °	(degrees)	 -180;	180	
elevation	 °	(degrees)	 -90;	90	
radius	 m	(meter)	 0.5;	16	
gain	 none	(linear)	 0.004;	5.957	

spread	(uniform)	 °	(degrees)	 0;	180	
spread	width	 °	(degrees)	 0;	180	
spread	height	 °	(degrees)	 0;	90	
spread	depth	 m	(metre)	 0;	15.5	
dynamic	object	

priority	
none	 0;	7	

ISO/IEC	23008-3:202X(E)	

218	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	42	—	Visualization	of	polar	coordinate	system		
for	signalling	spatial	positions	of	audio	objects	

7.3 Syntax	

 Object		metadata	configuration	

As	mentioned	in	the	extension	payload	(see	Table	26),	the	ObjectMetadataConfig()	specifies	the	metadata	
decoding	method.	

Table	136	—	Syntax	of	ObjectMetadataConfig()	

Syntax	 No.	of	bits	 Mnemonic
ObjectMetadataConfig()
{
	 lowDelayMetadataCoding;	 1	 bslbf
	 hasCoreLength;	 1	 bslbf
	 if	(!hasCoreLength)	{
	 	 frameLength;	 6	 uimsbf
	 	 OAMFrameLength	=	(frameLength+1)<<6;
	 }	else	{
	 	 OAMFrameLength	=	outputFrameLength;
	 }
	 hasScreenRelativeObjects;	 1	 bslbf
	 if(hasScreenRelativeObjects)	{
	 	 for	(o	=	0;	o	<	num_objects;	o++)	{				/*	NOTE	1	*/
	 	 	 isScreenRelativeObject[o];	 1	 bslbf
	 	 }
	 }
	 hasDynamicObjectPriority	 1	 bslbf
	 hasUniformSpread;	 1	 bslbf
}
NOTE	 	num_objects	is	equal	to	the	number	of	objects	in	the	associated	signal	group.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 219	
	

If	the	flag	lowDelayMetadataCoding	is	true,	low	delay	object	metadata	are	present	in	the	bitstream	and	
therefore,	the	low	delay	object	metadata	syntax	shall	be	used.	Otherwise,	efficient	object	metadata	are	
present	int	the	bitstream	and	the	according	syntax	shall	be	used.	

The	 coreCoderFrameLength	 (given	 by	 mpegh3daConfig())	 shall	 be	 an	 integer	 multiple	 of	 the	
OAMFrameLength.	The	OAMFrameLength	shall	not	be	greater	than	the	coreCoderFrameLength.	

If	the	coreCoderFrameLength	is	an	integer	multiple	of	the	OAMFrameLength	(coreCoderFrameLength	=	
OAMFrameLength),	 the	structure	object_metadata()	 is	sent	F	times	in	the	objctMetadataFrame()	as	

shown	in	Table	137.	In	this	case,	the	ith	object_metadata()	(i = 0,1,2,..,n-1)	is	available	at	the	sample	index	
s[i],	with	s[i]	given	by	the	following	equation:	

s[i]	=	(i	+	1)	OAMFramelength-1		

where	s	is	the	sample	index	of	an	audio	frame	(0,1,2,..,	 	OAMFramelength-1).	

 Top	level	object	metadata	syntax	

Table	137	—	Syntax	of	objectMetadataFrame()	

Syntax	 No.	of	bits	 Mnemonic
objectMetadataFrame()	{
	 if	(OAMFrameLength*	<	coreCoderFrameLength**)	{
	 	 for	(i	=	0;	i	<	coreCoderFrameLength	/	OAMFrameLength;	++i)	{
	 	 	 object_metadata_present;	 1	 uimsbf
	 	 	 if	(object_metadata_present)
	 	 	 	 object_metadata();
	 	 }
	 }
	 else	{	 		 	
	 	 object_metadata();
	 }
}
*	given	by	ObjectMetadataConfig()
**	given	by	mpegh3daConfig() 	 	

Table	138	—	Syntax	of	object_metadata()	

Syntax	 No.	of	bits	 Mnemonic
object_metadata()
{
	 if	(lowDelayMetadataCoding==0)	{
	 	 object_metadata_efficient()
	 }	else	{
	 	 object_metadata_low_delay()
	 }
} 	 	

×n

×n

ISO/IEC	23008-3:202X(E)	

220	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Subsidiary	payloads	for	efficient	object	metadata	decoding	

Table	139	—	Syntax	of	object_metadata_efficient()	

Syntax	 No.	of	bits	 Mnemonic
object_metadata_efficient()
{
	 intracoded_object_metadata_efficient();
	 has_differential_metadata;	 1	 bslbf
	 if	(has_differential_metadata)	{
	 	 differential_object_metadata();
	 }
} 	 	

Table	140	—	Syntax	of	intracoded_object_metadata_efficient()	

Syntax	 No.	of	bits	 Mnemonic
intracoded_object_metadata_efficient()
{
	 ifperiod;	 6	 uimsbf
	 if	(num_objects>1)	{
	 	 common_azimuth;	 1	 bslbf
	 	 if	(common_azimuth)	{	
	 	 	 default_azimuth;	 8	 tcimsbf
	 	 }
	 	 else	{
	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 position_azimuth[o];	 8	 tcimsbf
	 	 	 }
	 	 }
	 	 common_elevation;	 1	 bslbf
	 	 if	(common_elevation)	{
	 	 	 default_elevation;	 6	 tcimsbf
	 	 }
	 	 else	{
	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 position_elevation[o];	 6	 tcimsbf
	 	 	 }
	 	 }
	 	 common_radius;	 1	 bslbf
	 	 if	(common_radius)	{
	 	 	 default_radius;	 4	 uimsbf
	 	 }
	 	 else	{
	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 position_radius[o];	 4	 uimsbf
	 	 	 }
	 	 }
	 	 common_gain;	 1	 bslbf
	 	 if	(common_gain)	{
	 	 	 default_gain;	 7	 tcimsbf
	 	 }
	 	 else	{

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 221	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{	
	 	 	 	 gain_factor[o];	 7	 tcimsbf
	 	 	 }	
	 	 }	
	 	 common_spread;	 1	 bslbf	
	 	 if	(common_spread)	{ 	 	

	 	 	 if	(hasUniformSpread)	{ 	 	

	 	 	 	 default_spread;	 7	 uimsbf	
	 	 	 }		
	 	 	 else	{	
	 	 	 	 default_spread_width;	 7	 uimsbf
	 	 	 	 default_spread_height;	 5	 uimsbf
	 	 	 	 default_spread_depth;	 4	 uimsbf
	 	 	 }	
	 	 }	
	 	 else	{ 	 	

	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{ 	 	

	 	 	 	 if	(hasUniformSpread)	{
	 	 	 	 	 spread[o];	 7	 uimsbf
	 	 	 	 }	
	 	 	 	 else	{
	 	 	 	 	 spread_width[o];	 7	 uimsbf
	 	 	 	 	 spread_height[o];	 5	 uimsbf
	 	 	 	 	 spread_depth[o];	 4	 uimsbf
	 	 	 	 }
	 	 	 } 	 	

	 	 } 	 	

	 	 if	(hasDynamicObjectPriority)	{
	 	 	 common_dynamic_object_priority;	 1	 bslbf
	 	 	 if	(common_dynamic_object_priority)	{
	 	 	 	 default_dynamic_object_priority;	 3	 uimsbf
	 	 	 }
	 	 	 else	{
	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 dynamic_object_priority[o];	 3	 uimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }
	 else	{
	 	 position_azimuth;	 8	 tcimsbf
	 	 position_elevation;	 6	 tcimsbf
	 	 position_radius;	 4	 uimsbf
	 	 gain_factor;	 7	 tcimsbf
	 	 if	(hasUniformSpread)	{
	 	 	 spread;	 7	 uimsbf
	 	 }	
	 	 else	{
	 	 	 spread_width;	 7	 uimsbf
	 	 	 spread_height;	 5	 uimsbf
	 	 	 spread_depth;	 4	 uimsbf
	 	 }
	 	 if	(hasDynamicObjectPriority)	{

ISO/IEC	23008-3:202X(E)	

222	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 dynamic_object_priority;	 3	 uimsbf
	 	 }
	 }
} 	 	

Table	141	—	Syntax	of	differential_object_metadata()	

Syntax	 No.	of	bits	 Mnemonic
differential_object_metadata()	{
	 bits_per_point;	 4	 uimsbf
	 fixed_azimuth;	 1	 bslbf
	 if	(!fixed_azimuth)	{
	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 flag_azimuth;	 1	 bslbf
	 	 	 if	(flag_azimuth)	{
	 	 	 	 num_points_azimuth	=	offset_data(bits_per_point);
	 	 	 	 nbits_azimuth;	 3	 uimsbf
	 	 	 	 for	(p	=	0;	p	<	num_points_azimuth;	p++)	{
	 	 	 	 	 differential_azimuth[o][p];	 nbits_azimuth	+	2	 tcimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }
	 fixed_elevation;	 1	 bslbf
	 if	(!fixed_elevation)	{
	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 flag_elevation;	 1	 bslbf
	 	 	 if	(flag_elevation)	{
	 	 	 	 num_points_elevation	=	offset_data(bits_per_point);
	 	 	 	 nbits_elevation;	 3	 uimsbf
	 	 	 	 for	(p	=	0;	p	<	num_points_elevation;	p++)	{
	 	 	 	 	 differential_elevation[o][p];	 nbits_elevation	+	2	 tcimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }
	 fixed_radius;	 1	 bslbf
	 if	(!fixed_radius)	{
	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 flag_radius;	 1	 bslbf
	 	 	 if	(flag_radius)	{
	 	 	 	 num_points_radius	=	offset_data(bits_per_point);
	 	 	 	 nbits_radius;	 3	 uimsbf
	 	 	 	 for	(p	=	0;	p	<	num_points_radius;	p++)	{
	 	 	 	 	 differential_radius[o][p];	 nbits_radius	+	2	 tcimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }
	 fixed_gain;	 1	 bslbf
	 if	(!fixed_gain)	{
	 	 for	(o	=	0;	o	<	num_objects;	o++)	{

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 223	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 flag_gain;	 1	 bslbf
	 	 	 if	(flag_gain)	{
	 	 	 	 num_points_gain	=	offset_data(bits_per_point);
	 	 	 	 nbits_gain;	 3	 uimsbf
	 	 	 	 for	(p	=	0;	p	<	num_points_gain;	p++)	{
	 	 	 	 	 differential_gain[o][p];	 nbits_gain	+	2	 tcimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }
	 fixed_spread;	 1	 bslbf	
	 if	(!fixed_spread)	{ 	 	

	 	 for	(o	=	0;	o	<	num_objects;	o++)	{ 	 	

	 	 	 if	(hasUniformSpread)	{ 	 	 	
	 if	
(hasUnifo
rmSpread
)	{

	 	 	 	 flag_spread;	 1	 	 	
	
	 flag_s
pread;

	 	 	 	 if	(flag_spread)	{ 	 	 	
	 	 if	
(flag_spre
ad)	{

	 	 	 	 	 num_points_spread	=	offset_data(bits_per_point); 	 	 	
	 	
	 num_
points_sp
read	 =	
offset_dat
a(bits_per
_point);

	 	 	 	 	 nbits_spread;	 3	 	 	
	 	
	 nbits
_spread;

	 	 	 	 	 for	(p	=	0;	p	<	num_points_spread;	p++)	{ 	 	 	
	 	
	 for	 (p	
=	 0;	 p	 <	
num_poin
ts_spread;	
p++)	{

	 	 	 	 	 	 differential_spread[o][p];	 nbits_spread	+	2	 	 	
	 	
	
	 differ
ential_sp
read[o][p
];

	 	 	 	 	 }	
	 	 	 	 } 	 	

	 	 	 } 	 	

ISO/IEC	23008-3:202X(E)	

224	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 else	{
	 	 	 	 flag_spread_width;	 1	 bslbf
	 	 	 	 if	(flag_spread_width)	{
	 	 	 	 	 num_points_spread_width	=	offset_data(bits_per_point);	 	 	
	 	 	 	 	 nbits_spread_width;	 3	 uimsbf
	 	 	 	 	 for	(p	=	0;	p	<	num_points_spread_width;	p++)	{
	 	 	 	 	 	 differential_spread_width[o][p];	 nbits_spread_width	+	2	 tcimsbf
	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 flag_spread_height;	 1	 bslbf
	 	 	 	 if	(flag_spread_height)	{
	 	 	 	 	 num_points_spread_height	=	offset_data(bits_per_point);	 	 	

	 	 	 	 	 nbits_spread_height;	 3	 uimsbf
	 	 	 	 	 for	(p	=	0;	p	<	num_points_spread_height;	p++)	{
	 	 	 	 	 	 differential_spread_height[o][p];	 nbits_spread_height	+	2	 tcimsbf
	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 flag_spread_depth;	 1	 bslbf
	 	 	 	 if	(flag_spread_depth)	{
	 	 	 	 	 num_points_spread_depth	=	offset_data(bits_per_point);	 	 	

	 	 	 	 	 nbits_spread_depth;	 3	 uimsbf
	 	 	 	 	 for	(p	=	0;	p	<	num_points_spread_depth;	p++)	{
	 	 	 	 	 	 differential_spread_depth[o][p];	 nbits_spread_depth	+	2	 tcimsbf
	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 }	
	 	 } 	 	

	 } 	 	

	 if	(hasDynamicObjectPriority)	{
	 	 fixed_dynamic_object_priority;	 1	 bslbf
	 	 if	(!fixed_dynamic_object_priority)	{
	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 flag_dynamic_object_priority;	 1	 bslbf
	 	 	 	 if	(flag_dynamic_object_priority)	{
	 	 	 	 	 num_points_dynamic_object_priority	=	offset_data(bits_per_point);
	 	 	 	 	 nbits_dynamic_object_priority;	 2	 uimsbf
	 	 	 	 	 for	(p	=	0;	p	<	num_points_dynamic_object_priority;	p++)	{
	 	 	 	 	 	 differential_dynamic_object_priority[o][p];	 nbits_dynamic_	

object_priority	
+	2	

tcimsbf

	 	 	 	 	 }
	 	 	 	 }
	 	 	 }
	 	 }
	 }
} 	 	

Table	142	—	Syntax	of	offset_data()	

Syntax	 No.	of	bits	 Mnemonic
int	offset_data(bits_per_point)	{
	 bitfield_syntax;	 1	 bslbf
	 if	(bitfield_syntax)	{
	 	 offset_bitfield;	 ifperiod	a	 bslbf

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 225	
	

	 	 num_points	=	sum(offset_bitfield);
	 }
	 else	{
	 	 npoints;	 bits_per_point	 uimsbf
	 	 num_points	=	npoints	+	1;
	 	 for	(p	=	0;	p	<	num_points;	p++)	{
	 	 	 foffset[p];	 ceil(log2(ifperiod*))	 uimsbf
	 	 }
	 }
	 return	num_points;
}
a					Known	from	the	intracoded	object	metadata	for	this	current	iframe_period.	

 Subsidiary	payloads	for	object	metadata	decoding	with	low	delay	

Table	143	—	Syntax	of	object_metadata_low_delay	()	

Syntax	 No.	of	bits	 Mnemonic
object_metadata_low_delay	()
{
	 has_intracoded_object_metadata;	 1	 bslbf
	 if	(has_intracoded_object_metadata)	{
	 	 intracoded_object_metadata_low_delay();
	 }
	 else	{
	 	 dynamic_object_metadata();
	 }
} 	 	

	
Table	144	—	Syntax	of	intracoded_object_metadata_low_delay()	

Syntax	 No.	of	bits	 Mnemonic
intracoded_object_metadata_low_delay()
{
	 if	(num_objects>1)	{
	 	 fixed_azimuth;	 1	 bslbf
	 	 if	(fixed_azimuth)	{	
	 	 	 default_azimuth;	 8	 tcimsbf
	 	 }	
	 	 else	{
	 	 	 common_azimuth;	 1	 bslbf
	 	 	 if	(common_azimuth)	{	
	 	 	 	 default_azimuth;	 8	 tcimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 position_azimuth[o];	 8	 tcimsbf
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 	 fixed_elevation;	 1	 bslbf
	 	 if	(fixed_elevation)	{	
	 	 	 default_elevation;	 6	 tcimsbf

ISO/IEC	23008-3:202X(E)	

226	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 }	
	 	 else	{
	 	 	 common_	elevation;	 1	 bslbf
	 	 	 if	(common_elevation)	{	
	 	 	 	 default_elevation;	 6	 tcimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 position_elevation[o];	 6	 tcimsbf
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 	 fixed_radius;	 1	 bslbf
	 	 if	(fixed_radius)	{	
	 	 	 default_radius;	 4	 uimsbf
	 	 }	
	 	 else	{
	 	 	 common_radius;	 1	 bslbf
	 	 	 if	(common_radius)	{	
	 	 	 	 default_radius;	 4	 uimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 position_	radius[o];	 4	 uimsbf
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 	 fixed_gain;	 1	 bslbf
	 	 if	(fixed_gain)	{	
	 	 	 default_gain;	 7	 tcimsbf
	 	 }	
	 	 else	{
	 	 	 common_gain;	 1	 bslbf
	 	 	 if	(common_gain)	{	
	 	 	 	 default_gain;	 7	 tcimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 gain_factor[o];	 7	 tcimsbf
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 	 fixed_spread;	 1	 bslbf	
	 	 if	(fixed_spread)	{
	 	 	 if	(hasUniformSpread)	{
	 	 	 	 default_spread;	 7	 uimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 default_spread_width;	 7	 uimsbf
	 	 	 	 default_spread_height;	 5	 uimsbf
	 	 	 	 default_spread_depth;	 4	 uimsbf
	 	 	 }	
	 	 }	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 227	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 else	{ 	 	

	 	 	 common_spread;	 1	 bslbf	
	 	 	 if	(common_spread)	{ 	 	

	 	 	 	 if	(hasUniformSpread)	{
	 	 	 	 	 default_spread;	 7	 uimsbf
	 	 	 	 }		
	 	 	 	 else	{
	 	 	 	 	 default_spread_width;	 7	 uimsbf
	 	 	 	 	 default_spread_height;	 5	 uimsbf
	 	 	 	 	 default_spread_depth;	 4	 uimsbf
	 	 	 	 }	
	 	 	 }	
	 	 	 else	{
	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 if	(hasUniformSpread)	{
	 	 	 	 	 	 spread[o];	 7	 uimsbf
	 	 	 	 	 }		
	 	 	 	 	 else	{
	 	 	 	 	 	 spread_width[o];	 7	 uimsbf
	 	 	 	 	 	 spread_height[o];	 5	 uimsbf
	 	 	 	 	 	 spread_depth[o];	 4	 uimsbf
	 	 	 	 	 }	
	 	 	 	 } 	 	

	 	 	 } 	 	

	 	 } 	 	

	 	 if	(hasDynamicObjectPriority)	{
	 	 	 fixed_dynamic_object_priority;	 1	 bslbf
	 	 	 if	(fixed_dynamic_object_priority)	{
	 	 	 	 default_dynamic_object_priority;	 3	 uimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 common_dynamic_object_priority;	 1	 bslbf
	 	 	 	 if	(common_dynamic_object_priority)	{
	 	 	 	 	 default_dynamic_object_priority;	 3	 uimsbf
	 	 	 	 }	
	 	 	 	 else	{
	 	 	 	 	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 	 	 	 	 dynamic_object_priority[o];	 3	 uimsbf
	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 }	
	 else	{
	 	 fixed_azimuth	=	0;
	 	 fixed_elevation	=	0;
	 	 fixed_radius	=	0;
	 	 fixed_gain	=	0;
	 	 fixed_spread	=	0;
	 	 position_azimuth;	 8	 tcimsbf
	 	 position_elevation;	 6	 tcimsbf
	 	 position_radius;	 4	 uimsbf
	 	 gain_factor;	 7	 tcimsbf
	 	 if	(hasUniformSpread)	{

ISO/IEC	23008-3:202X(E)	

228	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 spread;	 7	 uimsbf
	 	 }		
	 	 else	{
	 	 	 spread_width;	 7	 uimsbf
	 	 	 spread_height;	 5	 uimsbf
	 	 	 spread_depth;	 4	 uimsbf
	 	 }
	 	 if	(hasDynamicObjectPriority)	{
	 	 	 dynamic_object_priority;	 3	 uimsbf
	 	 }	
	 }	
}	 	 	

Table	145	—	Syntax	of	dynamic_object_metadata()	

Syntax	 No.	of	bits	 Mnemonic
dynamic_object_metadata()	{
	 flag_absolute;	 1	 bslbf
	 for	(o	=	0;	o	<	num_objects;	o++)	{
	 	 has_object_metadata;	 1	 bslbf
	 	 if	(has_object_metadata)	{
	 	 	 single_dynamic_object_metadata(flag_absolute);
	 	 }	
	 }	
}	 	 	

Table	146	—	Syntax	of	single_dynamic_object_metadata()	

Syntax	 No.	of	bits	 Mnemonic
single_dynamic_object_metadata	(flag_absolute)	{
	 if	(flag_absolute)	{
	 	 if	(!fixed_azimutha)	{
	 	 	 position_azimuth;	 8	 tcimsbf
	 	 }
	 	 if	(!fixed_elevationa)	{
	 	 	 position_elevation;	 6	 tcimsbf
	 	 }
	 	 if	(!fixed_radiusa)	{
	 	 	 position_radius;	 4	 uimsbf
	 	 }
	 	 if	(!fixed_gaina)	{
	 	 	 gain_	factor;	 7	 tcimsbf
	 	 }
	 	 if	(!fixed_spreada)	{ 	 	
	 	 	 if	(hasUniformSpread)	{
	 	 	 	 spread;	 7	 uimsbf
	 	 	 }	
	 	 	 else	{
	 	 	 	 spread_width;	 7	 uimsbf
	 	 	 	 spread_height;	 5	 uimsbf
	 	 	 	 spread_depth;	 4	 uimsbf
	 	 	 }	
	 	 }
	 	 if	(hasDynamicObjectPriority)	{

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 229	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 	 if	(!fixed_dynamic_object_prioritya)	{
	 	 	 	 dynamic_object_priority;	 3	 uimsbf
	 	 	 }
	 	 }
	 }
	 else	{
	 	 nbits;	 3	 uimsbf
	 	 num_bits	=	nbits	+2;
	 	 if	(!fixed_azimutha)	{
	 	 	 flag_azimuth;	 1	 bslbf
	 	 	 if	(flag_azimuth)		{
	 	 	 	 position_azimuth_difference;	 num_bits	 tcimsbf
	 	 	 }
	 	 }
	 	 if	(!fixed_elevationa)	{
	 	 	 flag_elevation;	 1	 bslbf
	 	 	 if	(flag_elevation)	{
	 	 	 	 position_elevation_difference;	 min(num_bits,7)	 tcimsbf
	 	 	 }
	 	 }
	 	 if	(!fixed_radiusa)	{
	 	 	 flag_radius;	 1	 bslbf
	 	 	 if	(flag_radius)		{
	 	 	 	 position_radius_difference;	 min(num_bits,5)	 tcimsbf
	 	 	 }
	 	 }
	 	 if	(!fixed_gaina)	{
	 	 	 flag_gain;	 1	 bslbf
	 	 	 if	(flag_gain)		{
	 	 	 	 gain_factor_difference	;	 min(num_bits,8)	 tcimsbf
	 	 	 }
	 	 }

ISO/IEC	23008-3:202X(E)	

230	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 if	(!fixed_spreada)	{ 	 	
	 	 	 if	(hasUniformSpread)	{
	 	 	 	 flag_spread;	 1	 bslbf
	 	 	 	 if	(flag_spread)		{
	 	 	 	 	 spread_difference	;	 min(num_bits,8)	 tcimsbf
	 	 	 	 }
	 	 	 }
	 	 	 else	{
	 	 	 	 flag_spread_width;	 1	 bslbf
	 	 	 	 if	(flag_spread_width)		{
	 	 	 	 	 spread_width_difference	;	 min(num_bits,8)	 tcimsbf
	 	 	 	 }
	 	 	 	 flag_spread_height;	 1	 bslbf
	 	 	 	 if	(flag_spread_height)		{
	 	 	 	 	 spread_height_difference	;	 min(num_bits,6)	 tcimsbf
	 	 	 	 }
	 	 	 	 flag_spread_depth;	 1	 bslbf
	 	 	 	 if	(flag_spread_depth)		{
	 	 	 	 	 spread_depth_difference	;	 min(num_bits,5)	 tcimsbf
	 	 	 	 }
	 	 } 	 	

	 	 if	(hasDynamicObjectPriority)	{
	 	 	 if	(!fixed_dynamic_object_prioritya)	{
	 	 	 	 flag_dynamic_object_priority;	 1	 bslbf
	 	 	 	 if	(flag_dynamic_object_priority)		{
	 	 	 	 	 dynamic_object_priority_difference;	 min(num_bits,4)	 tcimsbf
	 	 	 	 }
	 	 	 }
	 	 }
	 }
}
a			Given	by	the	preceding	intracoded_object_metadata_low_delay()	frame	

 Enhanced	object	metadata	configuration	

Table	147	—	Syntax	of	EnhancedObjectMetadataConfig()	

Syntax	 No.	of	bits	 Mnemonic	
EnhancedObjectMetadataConfig()	 	 	

{	 	 	
	 /*	static	per	group	*/	 	 	
	 hasDiffuseness;	 1	 bslbf	
	 if	(hasDiffuseness)	{	 	 	
	 	 hasCommonGroupDiffuseness;	 1	 bslbf	
	 	 }	 	 	
	 }	 	 	
	 hasExcludedSectors;	 1	 bslbf	
	 if	(hasExcludedSectors)	{	 	 	
	 	 hasCommonGroupExcludedSectors;	 1	 bslbf	
	 	 if	(hasCommonGroupExcludedSectors)	{	 	 	
	 	 	 useOnlyPredefinedSectors;	 1	 bslbf	
	 	 }	 	 	
	 }	else	{	 	 	
	 	 hasCommonGroupExcludedSectors	=	0;	 	 	
	 }	 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 231	
	

Syntax	 No.	of	bits	 Mnemonic	
	 hasClosestSpeakerCondition;	 1	 bslbf	
	 if	(hasClosestSpeakerCondition)	{	 	 	
	 	 closestSpeakerThresholdAngle;	 7	 uimsbf	
	 }	 	 	
	 	 	
	 /*	static	per	object	*/	 	 	
	 for	(o	=	0;	o	<	num_objects;	o++)	{	 	 	
	 	 hasDivergence[o];	 1	 bslbf	
	 	 if	(hasDivergence[o])	{	 	 	
	 	 	 divergenceAzimuthRange[o];	 6	 uimsbf	
	 	 }	 	 	
	 	 if	(hasCommonGroupExcludedSectors	==	0)	{	 	 	
	 	 	 useOnlyPredefinedSectors[o];	 1	 bslbf	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	148	—	Syntax	of	EnhancedObjectMetadataFrame()	

Syntax	 No.	of	bits	 Mnemonic	
EnhancedObjectMetadataFrame()	 	 	
{	 	 	
	 /*	dynamic	per	group	*/	 	 	
	 if	(hasDiffuseness	&&	hasCommonGroupDiffuseness)	{	 	 	
	 	 if	(independencyFlag	==	0)	{	 	 	
	 	 	 keepDiffuseness;	 1	 bslbf	
	 	 }	else	{	 	 	
	 	 	 keepDiffuseness	=	0;	 	 	
	 	 }	 	 	
	 	 if	(keepDiffuseness	==	0)	{	 	 	
	 	 	 diffuseness;	 7	 uimsbf	
	 	 }	 	 	
	 }	 	 	
	 	 	
	 if	(hasCommonGroupExcludedSectors)	{	 	 	
	 	 if	(independencyFlag	==	0)	{	 	 	
	 	 	 keepExclusion;	 1	 bslbf	
	 	 }	else	{	 	 	
	 	 	 keepExclusion	=	0;	 	 	
	 	 }	 	 	
	 	 if	(keepExclusion	==	0)	{	 	 	
	 	 	 numExclusionSectors;	 4	 uimsbf	
	 	 	 if	(useOnlyPredefinedSectors)	{	 	 	
	 	 	 	 for	(sc	=	0;	sc	<	numExclusionSectors;	sc++)	{	 	 	
	 	 	 	 	 excludeSectorIndex[sc];	 4	 uimsbf	
	 	 	 	 }	 	 	
	 	 	 }	else	{	 	 	
	 	 	 	 for	(sc	=	0;	sc	<	numExclusionSectors;	sc++)	{	 	 	
	 	 	 	 	 usePredefinedSector[sc];	 1	 uimsbf	
	 	 	 	 	 if	(usePredefinedSector[sc])	{	 	 	
	 	 	 	 	 	 excludeSectorIndex[sc];	 4	 uimsbf	
	 	 	 	 	 }	else	{	 	 	
	 	 	 	 	 	 excludeSectorMinAzimuth[sc];	 7	 uimsbf	
	 	 	 	 	 	 excludeSectorMaxAzimuth[sc];	 7	 uimsbf	
	 	 	 	 	 	 excludeSectorMinElevation[sc];	 5	 uimsbf	
	 	 	 	 	 	 excludeSectorMaxElevation[sc];	 5	 uimsbf	
	 	 	 	 	 }	 	 	

ISO/IEC	23008-3:202X(E)	

232	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 }	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
	 	 	
	 /*	dynamic	per	object	*/	 	 	
	 for	(o	=	0;	o	<	num_objects;	o++)	{	 	 	
	 	 closestSpeakerPlayout[o];	 1	 bslbf	
	 	 	
	 	 if	(hasDiffuseness	&&	(hasCommonGroupDiffuseness	==	0))	{	
	 	 	 if	(independencyFlag	==	0)	{	 	 	
	 	 	 	 keepDiffuseness[o];	 1	 bslbf	
	 	 	 }	else	{	 	 	
	 	 	 	 keepDiffuseness[o]	=	0;	 	 	
	 	 	 }	 	 	
	 	 	 if	(keepDiffuseness[o]	==	0)	{	 	 	
	 	 	 	 diffuseness[o];	 7	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 	 	
	 	 if	(hasDivergence[o])	{	 	 	
	 	 	 if	(independencyFlag	==	0)	{	 	 	
	 	 	 	 keepDivergence[o];	 1	 bslbf	
	 	 	 }	else	{	 	 	
	 	 	 	 keepDivergence[o]	=	0;	 	 	
	 	 	 }	 	 	
	 	 	 if	(keepDivergence[o]	==	0)	{	 	 	
	 	 	 	 divergence[o];	 7	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 	 	
	 	 if	(hasCommonGroupExcludedSectors	==	0)	{	 	 	
	 	 	 if	(independencyFlag	==	0)	{	 	 	
	 	 	 	 keepExclusion[o];	 1	 bslbf	
	 	 	 }	else	{	 	 	
	 	 	 	 keepExclusion[o]	=	0;	 	 	
	 	 	 }	 	 	
	 	 	 if	(keepExclusion[o]	==	0)	 	 	
	 	 	 {	 	 	
	 	 	 	 numExclusionSectors[o];	 4	 uimsbf	
	 	 	 	 if	(useOnlyPredefinedSectors[o])	{	 	 	
	 	 	 	 	 for	(sc	=	0;	sc	<	numExclusionSectors[o];	sc++)	{	 	 	
	 	 	 	 	 	 excludeSectorIndex[o][sc];	 4	 uimsbf	
	 	 	 	 	 }	 	 	
	 	 	 	 }	else	{	 	 	
	 	 	 	 	 for	(sc	=	0;	sc	<	numExclusionSectors[o];	sc++)	{	 	 	
	 	 	 	 	 	 usePredefinedSector[o][sc];	 1	 uimsbf	
	 	 	 	 	 	 if	(usePredefinedSector[o][sc])	{	 	 	
	 	 	 	 	 	 	 excludeSectorIndex[o][sc];	 4	 uimsbf	
	 	 	 	 	 	 }	else	{	 	 	
	 	 	 	 	 	 	 excludeSectorMinAzimuth[o][sc];	 7	 uimsbf	
	 	 	 	 	 	 	 excludeSectorMaxAzimuth[o][sc];	 7	 uimsbf	
	 	 	 	 	 	 	 excludeSectorMinElevation[o][sc];	 5	 uimsbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 233	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 	 	 	 excludeSectorMaxElevation[o][sc];	 5	 uimsbf	
	 	 	 	 	 	 }	 	 	
	 	 	 	 	 }		
	 	 	 	 }			 	 	
	 	 	 }		 	 	
	 	 }	 	 	
	 }		 	 	
}	 	 	

7.4 Data	structure	

 Definition	of	ObjectMetadataConfig()	payloads	

lowDelayMetadataCoding	 indicates	whether	object	metadata	decoding	with	low	delay	is	used.	
Otherwise,	efficient	object	metadata	are	present	in	the	bitstream.	

hasCoreLength	 indicates	whether	the	core	coder	works	with	the	same	number	of	audio	
samples	per	channel	as	the	object	metadata	coder.	

OAMFrameLength	 if	the	frame	length	of	the	core	coder	does	not	match	the	time	resolution	of	
the	 object	 metadata	 coder,	 the	OAMFrameLength	 defines	 the	 size	 (in	
multiples	 of	 64	 audio	 samples)	 of	 a	 time	 slice	 for	which	 a	 set	 of	 object	
metadata	is	available.	

hasScreenRelativeObjects	 This	flag	specifies	whether	screen-relative	objects	are	present.	

isScreenRelativeObject	 This	flag	defines	whether	an	object	position	is	screen-relative.	The	object	
shall	 be	 rendered,	 such	 that	 its	 position	 is	 remapped	 according	 to	
subclause	18.2.4.	It	can	still	contain	all	valid	angular	values.	

hasDynamicObjectPriority	 This	flag	indicates	whether	there	is	dynamic	object	priority	data	present	
in	the	bitstream	or	not.	If	there	is	no	dynamic	object	priority	data	in	the	
bitstream,	mae_groupPriority	indicates	the	dynamic	object	priority.	

hasUniformSpread	 This	 flag	 indicates	whether	 the	 spread	 of	 an	 object	 is	 given	 as	 uniform	
spread	(flag	is	equal	to	1)	or	as	three	independent	values	for	width,	height	
and	depth	(flag	is	equal	to	0).	

num_objects	 Is	equal	to	the	number	of	objects	in	the	associated	signal	group.	

 Efficient	object	metadata	decoding	

7.4.2.1 Definition	of	object	metadata	payloads	

7.4.2.1.1 Definition	of	object_metadata_efficient()	payloads	

has_differential_metadata	 indicates	whether	differential	object	metadata	are	present	in	the	
bitstream.	

7.4.2.1.2 Definition	of	intracoded_object_metadata_efficient()	payloads	

ifperiod	 defines	the	number	of	audio	frames	for	which	OAM	data	
are	processed	in	intracoded_object_metadata_efficient()	
minus	1	(iframe_period	=	ifperiod	+	1).	

ISO/IEC	23008-3:202X(E)	

234	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

common_azimuth	 indicates	whether	a	common	azimuth	angle	is	used	for	all	
objects.	

default_azimuth	 defines	the	value	of	the	common	azimuth	angle.	

position_azimuth	 if	there	is	no	common	azimuth	value,	a	value	for	each	
object	is	transmitted.	If	there	is	only	one	object,	this	is	its	
azimuth	angle.	

common_elevation	 indicates	whether	a	common	elevation	angle	is	used	for	all	
objects.	

default_elevation	 defines	the	value	of	the	common	elevation	angle.	

position_elevation	 if	there	is	no	common	elevation	value,	a	value	for	each	
object	is	transmitted.	If	there	is	only	one	object,	this	is	its	
elevation	angle.	

common_radius	 indicates	whether	a	common	radius	value	is	used	for	all	
objects.	

default_radius	 defines	the	value	of	the	common	radius.	

position_radius	 if	there	is	no	common	radius	value,	a	value	for	each	object	
is	transmitted.	If	there	is	only	one	object,	this	is	its	radius.	

common_gain	 indicates	whether	a	common	gain	value	is	used	for	all	
objects.	

default_gain	 defines	the	value	of	the	common	gain	factor.	

gain_factor	 if	there	is	no	common	gain	value,	a	value	for	each	object	is	
transmitted.	If	there	is	only	one	object,	this	is	its	gain	
factor.	

common_spread	 indicates	whether	a	common	spread	parameter	is	used	for	
all	objects.	

default_spread	 Defines	the	value	of	the	common	spread	parameter	in	the	
case	that	there	is	just	one	uniform	spread	value.	

default_spread_width	 Defines	the	value	of	the	common	spread	parameter	for	the	
spread	in	the	dimension	of	width	in	the	case	of	three	
independent	spread	values.	

default_spread_height	 Defines	the	value	of	the	common	spread	parameter	for	the	
spread	in	the	dimension	of	height	in	the	case	of	three	
independent	spread	values.	

default_spread_depth	 Defines	the	value	of	the	common	spread	parameter	for	the	
spread	in	the	dimension	of	depth	in	the	case	of	three	
independent	spread	values.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 235	
	

spread	 If	there	is	no	common	spread	parameter,	a	value	for	each	
object	is	transmitted.	If	there	is	only	one	object,	this	is	its	
spread	parameter.	

spread_width	 If	there	is	no	common	spread	parameter,	one	value	for	the	
spread	in	the	dimension	of	width	is	transmitted	for	each	
object.	If	there	is	only	one	object,	this	is	its	spread	
parameter	in	the	dimension	of	width.	

spread_height		 If	there	is	no	common	spread	parameter,	one	value	for	the	
spread	in	the	dimension	of	height	is	transmitted	for	each	
object.	If	there	is	only	one	object,	this	is	its	spread	
parameter	in	the	dimension	of	height.	

spread_depth		 If	there	is	no	common	spread	parameter,	one	value	for	the	
spread	in	the	dimension	of	depth	is	transmitted	for	each	
object.	If	there	is	only	one	object,	this	is	its	spread	
parameter	in	the	dimension	of	depth.	

common_dynamic_object_priority	 indicates	whether	a	common	dynamic_object_priority	is	
used	for	all	objects.	

default_dynamic_object_priority	 defines	the	value	of	the	common	dynamic_object_priority.	

dynamic_object_priority	 This	field	defines	the	priority	of	the	object.		

	 This	field	can	take	integer	values	between	0	and	7.	The	
object	may	be	discarded	from	rendering	and	decoding	if	
the	priority	is	lower	than	7.	If	objects	are	discarded,	the	
objects	with	lowest	priority	should	be	discarded	first.	If	
there	is	only	one	object,	this	is	its	dynamic_object_priority.	

7.4.2.1.3 Definition	of	differential_object_metadata()	payloads	

bits_per_point	 number	of	bits	required	to	represent	each	of	the	polygon	
points	(used	in	offset_data()).	

fixed_azimuth	 flag	indicating	whether	the	azimuth	value	is	fixed	for	all	
objects.	

flag_azimuth	 flag	per	object	indicating	whether	the	azimuth	value	
changes	for	this	iframe_period.	

nbits_azimuth	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_azimuth	 value	of	the	difference	between	the	linearly	interpolated	
and		the	actual	value.	

fixed_elevation	 flag	indicating	whether	the	elevation	value	is	fixed	for	all	
objects.	

ISO/IEC	23008-3:202X(E)	

236	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

flag_elevation	 flag	per	object	indicating	whether	the	elevation	value	
changes	for	this	iframe_period.	

nbits_elevation		 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_elevation	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

fixed_radius		 flag	indicating	whether	the	radius	is	fixed	for	all	objects.	

flag_radius		 flag	per	object	indicating	whether	the	radius	changes	for	
this	iframe_period.	

nbits_radius	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_radius		 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

fixed_gain	 flag	indicating	whether	the	gain	factor	is	fixed	for	all	
objects.	

flag_gain	 flag	per	object	indicating	whether	the	gain	radius	changes	
for	this	iframe_period.	

nbits_gain	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_gain	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

fixed_spread	 flag	indicating	whether	the	spread	parameter	is	fixed	for	
all	objects.	

flag_spread	 flag	per	object	indicating	whether	the	spread	parameter	
changes	for	this	iframe_period.	

nbits_spread	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_spread	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

flag_spread_width	 flag	per	object	indicating	whether	the	spread	parameter	in	
width	dimension	changes	for	this	iframe_period.	

nbits_spread_width	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_spread_width	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 237	
	

flag_spread_height	 flag	per	object	indicating	whether	the	spread	parameter	in	
height	dimension	changes	for	this	iframe_period.	

nbits_spread_height	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_spread_height	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

flag_spread_depth	 flag	per	object	indicating	whether	the	spread	parameter	in	
depth	dimension	changes	for	this	iframe_period.	

nbits_spread_depth	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_spread_depth	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

fixed_dynamic_object_priority	 flag	indicating	whether	the	dynamic_object_priority	is	
fixed	for	all	objects.	

flag_dynamic_object_priority	 flag	per	object	indicating	whether	the	
dynamic_object_priority	changes	for	this	iframe_period.	

nbits_dynamic_object_priority	 how	many	bits	are	required	to	represent	the	differential	
value	minus	2.	

differential_dynamic_object_priority	 value	of	the	difference	between	the	linearly	interpolated	
and	the	actual	value.	

7.4.2.1.4 Definition	of	offset_data()	payloads	

bitfield_syntax	 flag	indicating	whether	a	vector	with	polygon	time	slice	indices	is	present	
in	the	bitstream.	

offset_bitfield	 bool	array	containing	ifperiod	flags	for	each	time	slice	whether	they	are	
polygon	points	or	not.	

npoints	 number	of	polygon	points	minus	1	(num_points	=	npoints	+	1).	

foffset	 time	slice	indices	of	the	polygon	points	within	iframe_period	
(frame_offset	=	foffset+1).	

7.4.2.2 Decoding	process	

Each	audio	object	has	associated	object	metadata	that	describe	the	following	properties:	

— the	temporal	change	of	its	position,	given	in	spherical	coordinates:	

— azimuth;	

— elevation;	
— radius;	

— a	linear	gain	that	is	to	be	applied	by	the	object	renderer;	

ISO/IEC	23008-3:202X(E)	

238	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— one	or	more	values	defining	the	object	spread	(either	uniform	or	non-uniform);	
— a	value	describing	the	dynamic	object	priority.	

Each	 of	 these	 components	 is	 generally	 described	by	 a	 discrete	 time	 signal	 y(n).	 In	 the	 following,	 the	
discrete	time	index	n	 is	used	to	denote	the	time	slice	to	avoid	confusion	with	the	sample	index	of	the	
audio	signal	that	is	sampled	at	a	much	higher	sampling	rate.	

The	general	idea	of	encoding	the	object	metadata	is	to	segment	y(n)	into	periods	of	a	fixed	length	and	to	
approximate	 these	 periods	 by	means	 of	 polygons.	 Each	 transmitted	 frame	 contains	 at	 least	 one	 new	
polygon	point,	i.e.	the	final	value.	The	OAM	decoder	always	stores	the	last	polygon	point	of	a	frame	and	
uses	it	as	a	starting	point	for	the	next	frame.	This	is	important	for	the	first	frame	since	there	is	no	previous	
value	in	this	case.	

Each	OAM	frame	consists	of	iframe_period	time	slices	which	correspond	to	the	audio	frame	length	(per	
channel)	of	the	core	coder	(in	case,	hasCoreLength	is	true).		

7.4.2.3 Decoding	the	transmitted	data	

First,	as	shown	in	Figure	43	by	the	dashed	line,	the	values	in	between	the	last	intracoded	object	metadata	
value	ylast_iframe	and	the	value	of	the	current	intracoded	object	metadata	ycurrent_iframe	are	calculated	for	each	
component	 (azimuth	 elevation,	 radius,	 gain,	 spread	 and	 dynamic	 object	 priority)	 using	 linear	
interpolation.	

When	differential	object	metadata	values	are	present	in	the	bitstream,	these	are	also	used	to	calculate	
interpolated	values.	Those	describe	the	difference	between	the	interpolated	intracoded	object	metadata	
values	and	the	desired	object	metadata	values.	Hence,	the	interpolated	output	values	yi	are	retrieved	by	
summing	 up	 the	 components	 of	 the	 interpolated	 intracoded	 object	metadata	 and	 –	 if	 present	 in	 the	
bitstream	–	the	interpolated	differential	object	metadata	for	each	time	slice	xi	(depicted	in	Figure	43	as	
the	dotted	line).	

In	Figure	43,	there	are	num_points	=	2	new	polygon	points	given	by	differential_object_metadata()	and	
the	 iframe_period	 is	 14.	 The	 given	 polygon	 points	 are	 denoted	 as ,	 ,	 ,	 and	

	which	can	be	values	for	azimuth,	elevation,	radius,	and	gain.	Each	of	these	has	a	distinct	
time	 slice	 index	which	 is	 denoted	 as ,	 ,	 	and .	 The	 indices	 of	 these	
given	values	are	referred	to	as	p	=	{0,1,2,3}.	

The	 corresponding	 payload	 element	 name	 for	 time	 indices	 in	 case	 of	 differential	 object	metadata	 is	
frame_offset[p]	=	foffset[p]	+1	for	p	=	{1,	2}.	The	indices	 	to	 	represent	the	scale	of	the	output	time	
axis.	For	each	xi	an	interpolated	yi	has	to	be	calculated,	as	shown	in	Figure	44.		

0last_iframey y= 1y 2y
3_ yy iframecurrent =

0_ xx iframelast = 1x 2x 3_ xx iframecurrent =

1xi 14xi

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 239	
	

note 	

NOTE	 The	dashed	line	depicts	the	first	step	(interpolation	of	intracoded	object	metadata).	The	dotted	line	
shows	the	result	of	both	interpolation	steps.	

Figure	43	—	Interpolation	in	between	the	given	polygon	points	

The	positions	(x-values)	of	the	polygon	points	may	be	either	given	in	the	form	of	a	sequence	of	integer	
values	of	the	size	num_points,	indicated	by	bitfield_syntax	=	0.	They	may	also	be	given	by	the	boolean	
array	offset_bitfield,	indicated	by	bitfield_syntax	=	1.	In	the	latter	case,	offset_bitfield[n]	=	1	indicates	
the	presence	of	a	polygon	point	at	time	slice	n.	An	offset_bitfield	has	the	length	of	ifperiod	time	slices	
since	the	first	polygon	point	is	always	known	from	the	previous	frame	and	polygon	point	for	the	last	time	
slice	is	given	by	the	intracoded	object	metadata.	

The	formula	for	the	linear	interpolation	process	is:	

	

	
where	xin	is	the	current	time	index	within	the	period	[xp,	xp+1]	that	is	specified	by	the	frame_offset	values.	
This	yields	the	output	depicted	in	Figure	44.	

pp

pn

xx
xxi
-
-

=
+ 1

a

11(+×+×)-= pyyyi pn aa

ISO/IEC	23008-3:202X(E)	

240	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	44	—	Interpolated	output	values	yi	for	each	time	slice	xi	

7.4.2.4 Post	processing	of	object	metadata	

7.4.2.4.1 Scaling	of	object	metadata	

Apply	scaling	factors	to	revert	encoder	scaling	of	the	input	data	for	each	component	of	every	object.	

descale_multidata()
{
 for (o = 0; o < num_objects; o++)
 azimuth[o] = azimuth[o] * 1.5;

 for (o = 0; o < num_objects; o++)
 elevation[o] = elevation[o] * 3.0;

 for (o = 0; o < num_objects; o++)
 radius[o] = pow(2.0, (radius[o] / 3.0)) / 2.0;

 for (o = 0; o < num_objects; o++)
 gain[o] = pow(10.0, (gain[o] - 32.0) / 40.0);

 if (uniform_spread == 1)
 {
 for (o = 0; o < num_objects; o++)
 spread[o] = spread[o] * 1.5;
 }
 else
 {
 for (o = 0; o < num_objects; o++)
 spread_width[o] = spread_width[o] * 1.5;

 for (o = 0; o < num_objects; o++)
 spread_height[o] = spread_height[o] * 3.0;

 for (o = 0; o < num_objects; o++)

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 241	
	

 spread_depth[o] = (pow(2.0, (spread_depth[o] / 3.0)) / 2.0) – 0.5;
 }
 for (o = 0; o < num_objects; o++)
 dynamic_object_priority[o] = dynamic_object_priority[o];
}
	
7.4.2.4.2 Limiting	the	object	metadata	

Apply	limiting	to	the	decoded	values	to	keep	the	values	within	a	valid	range.	

limit_range()
{
 minval = -180;
 maxval = 180;
 for (o = 0; o < num_objects; o++)
 azimuth[o] = MIN(MAX(azimuth[o], minval), maxval);

 minval = -90;
 maxval = 90;
 for (o = 0; o < num_objects; o++)
 elevation[o] = MIN(MAX(elevation[o], minval), maxval);

 minval = 0.5;
 maxval = 16;
 for (o = 0; o < num_objects; o++)
 radius[o] = MIN(MAX(radius[o], minval), maxval);

 minval = 0.004;
 maxval = 5.957;
 for (o = 0; o < num_objects; o++)
 gain[o] = MIN(MAX(gain[o], minval), maxval);

 if (uniform_spread == 1)
 {
 minval = 0;
 maxval = 180;
 for (o = 0; o < num_objects; o++)
 spread[o] = MIN(MAX(spread[o], minval), maxval);
 }
 else
 {
 minval = 0;
 maxval = 180;
 for (o = 0; o < num_objects; o++)
 spread_width[o] = MIN(MAX(spread_width[o], minval), maxval);

 minval = 0;
 maxval = 90;
 for (o = 0; o < num_objects; o++)
 spread_height[o] = MIN(MAX(spread_height[o], minval), maxval);

 minval = 0;
 maxval = 15.5;
 for (o = 0; o < num_objects; o++)
 spread_depth[o] = MIN(MAX(spread_depth[o], minval), maxval);
 }
 minval = 0;
 maxval = 7;
 for (o = 0; o < num_objects; o++)
 dynamic_object_priority[o] = MIN(MAX(dynamic_object_priority[o], minval),
 maxval);
}

ISO/IEC	23008-3:202X(E)	

242	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Object	metadata	decoding	with	low	delay	

7.4.3.1 Definition	of	object	metadata	payloads	

7.4.3.1.1 Definition	of	object_metadata_low_delay()	payloads	

has_intracoded_object_metadata	 indicates	whether	the	current	frame	is	intracoded	or	
differentially	coded.	

7.4.3.1.2 Definition	of	intracoded_object_metadata_low_delay()	payloads	

fixed_azimuth	 flag	indicating	whether	the	azimuth	value	is	fixed	for	all	
object	and	not	transmitted	in	case	of	
dynamic_object_metadata().	

default_azimuth	 defines	the	value	of	the	fixed	or	common	azimuth	angle.	

common_azimuth	 indicates	whether	a	common	azimuth	angle	shall	be	used	
for	all	objects.	

position_azimuth	 if	there	is	no	common	azimuth	value,	a	value	for	each	
object	is	transmitted.	If	there	is	only	one	object,	this	is	its	
azimuth	angle.	

fixed_elevation	 flag	indicating	whether	the	elevation	value	is	fixed	for	all	
objects	and	not	transmitted	in	case	of	
dynamic_object_metadata().	

default_elevation	 defines	the	value	of	the	fixed	or	common	elevation	angle.	

common_elevation	 indicates	whether	a	common	elevation	angle	shall	be	used	
for	all	objects.	

position_elevation	 if	there	is	no	common	elevation	value,	a	value	for	each	
object	is	transmitted.	If	there	is	only	one	object,	this	is	its	
elevation	angle.	

fixed_radius		 flag	indicating	whether	the	radius	is	fixed	for	all	objects	
and	not	transmitted	in	case	of	dynamic_object_metadata().	

default_radius	 defines	the	value	of	the	fixed	or	common	radius.	

common_radius	 indicates	whether	a	common	radius	value	shall	be	used	for	
all	objects.	

position_radius	 if	there	is	no	common	radius	value,	a	value	for	each	object	
is	transmitted.	If	there	is	only	one	object,	this	is	its	radius.	

fixed_gain	 flag	indicating	whether	the	gain	factor	is	fixed	for	all	
objects	and	not	transmitted	in	case	of	
dynamic_object_metadata().	

default_gain	 defines	the	value	of	the	fixed	or	common	gain	factor.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 243	
	

common_gain	 indicates	whether	a	common	gain	value	shall	be	used	for	
all	objects.	

gain_factor	 if	there	is	no	common	gain	value,	a	value	for	each	object	is	
transmitted.	If	there	is	only	one	object,	this	is	its	gain	
factor.	

fixed_spread	 flag	indicating	whether	the	spread	parameter	is	fixed	for	
all	objects	and	not	transmitted	in	case	of	
dynamic_object_metadata().	

default_spread	 defines	the	value	of	the	fixed	or	common	spread	
parameter.	

default_spread_width	 defines	the	value	of	the	fixed	or	common	spread	parameter	
in	the	width	dimension.	

default_spread_height	 defines	the	value	of	the	fixed	or	common	spread	parameter	
in	the	height	dimension.	

default_spread_depth	 defines	the	value	of	the	fixed	or	common	spread	parameter	
in	the	depth	dimension.	

common_spread	 indicates	whether	a	common	spread	parameter	shall	be	
used	for	all	objects.	

spread	 if	there	is	no	common	spread	parameter,	a	value	for	each	
object	is	transmitted.	If	there	is	only	one	object,	this	is	its	
spread	parameter.	

spread_width	 if	there	is	no	common	spread	parameter,	a	value	for	the	
spread	in	the	width	dimension	is	transmitted	for	each	
object.	If	there	is	only	one	object,	this	is	its	spread	
parameter	in	width	dimension.	

spread_height	 if	there	is	no	common	spread	parameter,	a	value	for	the	
spread	in	the	height	dimension	is	transmitted	for	each	
object.	If	there	is	only	one	object,	this	is	its	spread	
parameter	in	height	dimension.	

spread_depth	 if	there	is	no	common	spread	parameter,	a	value	for	the	
spread	in	the	depth	dimension	is	transmitted	for	each	
object.	If	there	is	only	one	object,	this	is	its	spread	
parameter	in	depth	dimension.	

fixed_dynamic_object_priority	 flag	indicating	whether	the	dynamic_object_priority	is	
fixed	for	all	objects	and	not	transmitted	in	case	of	
dynamic_object_metadata().	

default_dynamic_object_priority	 defines	the	value	of	the	fixed	or	common	
dynamic_object_priority.	

ISO/IEC	23008-3:202X(E)	

244	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

common_dynamic_object_priority	 indicates	whether	a	common	dynamic_object_priority	
value	shall	be	used	for	all	objects.	

dynamic_object_priority	 This	field	defines	the	priority	of	the	object.		

	 This	field	can	take	integer	values	between	0	and	7.	The	
object	may	be	discarded	from	rendering	and	decoding	if	
the	priority	is	lower	than	7.	If	objects	are	discarded,	the	
objects	with	lowest	priority	should	be	discarded	first.		

	 If	there	is	only	one	object,	this	is	its	
dynamic_object_priority.	

7.4.3.1.3 Definition	of	dynamic_object_metadata()	payloads	

flag_absolute	 indicates	whether	the	values	of	the	components	are	transmitted	
differentially	or	in	absolute	values.	

has_object_metadata	 indicates	whether	there	are	object	metadata	present	in	the	bitstream	or	
not.	

7.4.3.1.4 Definition	of	single_dynamic_object_metadata()	payloads	

position_azimuth	 the	absolute	value	of	the	azimuth	angle	if	the	value	is	not	
fixed.	

position_elevation	 the	absolute	value	of	the	elevation	angle	if	the	value	is	
not	fixed.	

position_radius	 the	absolute	value	of	the	radius	if	the	value	is	not	fixed.	

gain_factor	 the	absolute	value	of	the	gain	factor	if	the	value	is	not	
fixed.	

spread	 the	absolute	value	of	the	spread	parameter	if	the	value	is	
not	fixed.	

spread_width	 the	absolute	value	of	the	spread	parameter	in	the	width	
dimension	if	the	value	is	not	fixed.	

spread_height	 the	absolute	value	of	the	spread	parameter	in	theheight	
dimension	if	the	value	is	not	fixed.	

spread_depth	 the	absolute	value	of	the	spread	parameter	in	the	depth	
dimension	if	the	value	is	not	fixed.	

dynamic_object_priority	 the	absolute	value	of	the	dynamic_object_priority	if	the	
value	is	not	fixed.	

nbits	 how	many	bits	are	required	to	represent	the	differential	
values.	

flag_azimuth	 flag	per	object	indicating	whether	the	azimuth	value	
changes.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 245	
	

position_azimuth_difference	 difference	between	the	previous	and	the	active	value.	

flag_elevation	 flag	per	object	indicating	whether	the	elevation	value	
changes.	

position_elevation_difference	 value	of	the	difference	between	the	previous	and	the	
active	value.	

flag_radius		 flag	per	object	indicating	whether	the	radius	changes.	

position_radius_difference	 difference	between	the	previous	and	the	active	value.	

flag_gain	 flag	per	object	indicating	whether	the	gain	radius	
changes.	

gain_factor_difference	 difference	between	the	previous	and	the	active	value.	

flag_spread	 flag	per	object	indicating	whether	the	spread	parameter	
changes.	

spread_difference	 difference	between	the	previous	and	the	active	value.	

flag_spread_width	 flag	per	object	indicating	whether	the	spread	parameter	
in	the	width	dimension	changes.	

spread_width_difference	 difference	between	the	previous	and	the	active	value.	

flag_spread_height	 flag	per	object	indicating	whether	the	spread	parameter	
in	the	height	dimension	changes.	

spread_height_difference	 difference	between	the	previous	and	the	active	value.	

flag_spread_depth	 flag	per	object	indicating	whether	the	spread	parameter	
in	the	depth	dimension	changes.	

spread_depth_difference	 difference	between	the	previous	and	the	active	value.	

flag_dynamic_object_priority	 flag	per	object	indicating	whether	the	
dynamic_object_priority	changes.	

dynamic_object_priority_difference	 difference	between	the	previous	and	the	active	value.	

7.4.3.2 Decoding	process	

7.4.3.2.1 General	
Object	 metadata	 with	 low	 delay	 follows	 a	 modified	 DPCM	 procedure.	 It	 allows	 switching	 between	
differentially	and	absolutely	coded	values.	

7.4.3.2.2 Decoding	the	transmitted	data	

In	case	intracoded	object	metadata	are	present	in	the	bitstream,	the	object	metadata	values	can	be	read	
from	the	bitstream	directly.	If	dynamic	object	metadata	are	in	the	bitstream,	the	object	metadata	values	
can	be	read	from	the	bitstream	as	well	when	flag_absolute	is	true.	Otherwise,	the	following	equation	is	
to	be	used.	

ISO/IEC	23008-3:202X(E)	

246	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

where	y	denotes	the	output	value,	d	is	the	difference	value	read	from	the	bitstream	and	n	is	the	active	
time	slice	for	each	component.	

7.4.3.2.3 Post	processing	of	object	metadata	

7.4.3.2.3.1 Scaling	of	object	metadata	

Apply	a	scaling	factor	to	reverse	the	encoder	scaling	of	the	input	data	for	each	component	of	every	object.	

descale_multidata()
{
 for (o = 0; o < num_objects; o++)
 azimuth[o] = azimuth[o] * 1.5;

 for (o = 0; o < num_objects; o++)
 elevation[o] = elevation[o] * 3.0;

 for (o = 0; o < num_objects; o++)
 radius[o] = pow(2.0, (radius[o] / 3.0)) / 2.0;

 for (o = 0; o < num_objects; o++)
 gain[o] = pow(10.0, (gain[o] - 32.0) / 40.0);

 if (uniform_spread == 1)
 {
 for (o = 0; o < num_objects; o++)
 spread[o] = spread[o] * 1.5;
 }
 else
 {
 for (o = 0; o < num_objects; o++)
 spread_width[o] = spread_width[o] * 1.5;

 for (o = 0; o < num_objects; o++)
 spread_height[o] = spread_height[o] * 3.0;

 for (o = 0; o < num_objects; o++)
 spread_depth[o] = (pow(2.0, (spread_depth[o] / 3.0)) / 2.0) – 0.5;
 }
 for (o = 0; o < num_objects; o++)
 dynamic_object_priority[o] = dynamic_object_priority[o];
}

7.4.3.2.3.2 Limiting	the	object	metadata	

Apply	limiting	to	the	decoded	values	for	each	component	of	every	object	to	keep	the	values	within	a	valid	
range.	

limit_range()
{
 minval = -180;
 maxval = 180;
 for (o = 0; o < num_objects; o++)
 azimuth[o] = MIN(MAX(azimuth[o], minval), maxval);

 minval = -90;
 maxval = 90;

][]1[][ndnyny +-=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 247	
	

 for (o = 0; o < num_objects; o++)
 elevation[o] = MIN(MAX(elevation[o], minval), maxval);

 minval = 0.5;
 maxval = 16;
 for (o = 0; o < num_objects; o++)
 radius[o] = MIN(MAX(radius[o], minval), maxval);

 minval = 0.004;
 maxval = 5.957;
 for (o = 0; o < num_objects; o++)
 gain[o] = MIN(MAX(gain[o], minval), maxval);

 if (uniform_spread == 1)
 {
 minval = 0;
 maxval = 180;
 for (o = 0; o < num_objects; o++)
 spread[o] = MIN(MAX(spread[o], minval), maxval);
 }
 else
 {
 minval = 0;
 maxval = 180;
 for (o = 0; o < num_objects; o++)
 spread_width[o] = MIN(MAX(spread_width[o], minval), maxval);

 minval = 0;
 maxval = 90;
 for (o = 0; o < num_objects; o++)
 spread_height[o] = MIN(MAX(spread_height[o], minval), maxval);

 minval = 0;
 maxval = 15.5;
 for (o = 0; o < num_objects; o++)
 spread_depth[o] = MIN(MAX(spread_depth[o], minval), maxval);
 }
 minval = 0;
 maxval = 7;
 for (o = 0; o < num_objects; o++)
 dynamic_object_priority[o] = MIN(MAX(dynamic_object_priority[o], minval),
 maxval);
}

 Enhanced	object	metadata	

7.4.4.1 Enhanced	object	metadata	configuration	semantics	

hasDiffuseness	 Flag	which	indicates	whether	diffuseness	information	is	
present	in	the	payload	frame.	

hasCommonGroupDiffuseness	 Flag	which	indicates	whether	the	transmitted	diffuseness	
information	applies	to	a	whole	group	or	to	individual	
objects.	

hasExcludedSectors	 Flag	which	indicates	whether	information	about	
exclusion	sectors	is	present	in	the	payload	frame.	

ISO/IEC	23008-3:202X(E)	

248	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

hasCommonGroupExcludedSectors	 Flag	which	indicates	whether	the	transmitted	
information	about	exclusion	sectors	applies	to	a	whole	
group	or	to	individual	objects.	

useOnlyPredefinedSectors	 This	flag	determines	whether	all	exclusion	sectors	are	
chosen	from	the	set	of	predefined	sectors	(value	of	1)	as	
identified	by	a	table	entry	or	whether	sectors	may	also	
be	signalled	by	means	of	explicit	azimuth	and	elevation	
ranges	in	the	bitstream	(value	of	0).	

hasClosestSpeakerCondition	 If	the	‘closest	loudspeaker	playout	flag’	of	the	current	
group	is	set	to	1,	it	is	possible	to	restrict	the	processing	
to	loudspeakers	that	are	located	in	a	specified	area	
around	the	members	of	the	group.	This	flag	defines	if	the	
‘closest	loudspeaker	processing’	shall	happen	
unconditioned	(value	of	0)	or	conditioned	(value	of	1).	

closestSpeakerThresholdAngle	 If	the	‘closest	loudspeaker	processing’	shall	only	happen	if	
one	or	more	 loudspeakers	are	 located	 in	a	defined	area	
around	the	members	of	the	group,	the	threshold	angle	for	
this	area	is	given	by	this	field.		

	 	=	1.5	·	closestSpeakerThresholdAngle;	

	
	=	min	(max	(,	0),	180);		

	 	=	1.5	·	closestSpeakerThresholdAngle;	

	 	=	min	(max	(,	0),	90);		

hasDivergence	 Flag	which	indicates	whether	divergence	information	is	
present	in	the	payload	frame.	

divergenceAzimuthRange	 If	the	divergence	of	the	object	or	group	is	larger	than	0.0	
(divergence	 >	 0),	 the	 divergenceAzimuthRange	 defines	
the	positioning	of	 the	virtual	sources.	The	field	can	take	
values	 between	 0	 and	 63,	 resulting	 in	 azimuth	 offset	
angles	between	0°	and	180°:	

	 	=	min(max(3.0	·	divergenceAzimuthRange,	
0),180);	

7.4.4.2 Enhanced	object	metadata	frame	semantics	

keepDiffuseness	 Flag	which	indicates	whether	the	diffuseness	from	the	previous	frame	
shall	be	re-used	for	the	current	frame	(value	of	0)	or	whether	a	new	
diffuseness	shall	be	transmitted	in	the	subsequent	bitstream	field.	

threshj

threshj threshj

threshq

threshq threshq

offsetj

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 249	
	

diffuseness	 Definition	of	the	diffuseness	of	the	objects	(of	a	group);	this	field	can	take	
values	between	0	and	127,	corresponding	to	diffuseness	values	between	
0.0	and	1.0:	

	 	 diffuseness	=	(diffuseness	/	127);	
keepExclusion	 Flag	which	indicates	whether	the	exclusion	sectors	from	the	previous	

frame	shall	be	re-used	for	the	current	frame	(value	of	0)	or	whether	new	
exclusion	sectors	shall	be	transmitted	in	the	subsequent	bitstream	fields.	

numExclusionSectors	 This	field	defines	the	number	of	sectors/areas	that	shall	be	excluded	from	
rendering	the	of	the	affected	object(s).	It	allows	for	values	between	0	and	
15.	A	value	of	0	indicates	that	no	loudspeakers	shall	be	excluded.	

usePredefinedSector	 This	flag	defines	if	the	following	sector	is	a	predefined	one	(value	of	1)	
identified	by	a	table	entry	or	if	a	detailed	sector	definition	by	azimuth	and	
elevation	ranges	follows	in	the	bitstream	(value	of	0).	

excludeSectorIndex	 Identifier	of	the	predefined	exclusion	sector	as	defined	in	Table	149.	

Table	149	—	Value	of	excludeSectorIndex	

Value	of	
excludeSectorIndex	 Short	description	 Explanation

0	 No	positive	elevation	 Exclude	all	loudspeaker	with	positive	elevation	angles	
1	 No	negative	elevation	 Exclude	all	loudspeakers	with	negative	elevation	angles	
2	 No	front	 Exclude	all	front	loudspeakers
3	 No	right	side	 Exclude	all	right	side	loudspeakers	
4	 No	left	side	 Exclude	all	left	side	loudspeakers	
5	 No	surround	 Exclude	all	surround	loudspeakers

6	 Screen	only	 Exclude	all	loudspeakers	that	are	not	located	in	the	
reproduction	screen	area

7-15	 Reserved	 n/a	

excludeSectorMinAzimuth	 This	field	defines	the	minimum	azimuth	of	the	excluded	area.	
	=	3.0	·	(excludeSectorMinAzimuth	-	63);	

	=	min	(max	(,	-180),	180);			

excludeSectorMaxAzimuth	 This	field	defines	the	maximum	azimuth	of	the	excluded	area.	
	=	3.0	·	(excludeSectorMaxAzimuth	-	63);	

	=	min	(max	(,	-180),	180);	

excludeSectorMinElevation	This	field	defines	the	minimum	elevation	of	the	excluded	area.	
	=	6.0	·	(excludeSectorMinElevation	-	15);	

	=	min	(max	(,	-90),	90);		

sector,minj

sector,minj sector,minj

sector,maxj

sector,maxj sector,maxj

sector,minq

sector,minq sector,minq

ISO/IEC	23008-3:202X(E)	

250	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

excludeSectorMaxElevation	This	field	defines	the	maximum	elevation	of	the	excluded	area.	
	=	6.0	·	(excludeSectorMaxElevation	-	15);	

	=	min	(max	(,	-90),	90);	

closestSpeakerPlayout	 This	flag	defines	that	the	object	shall	not	be	rendered	with	the	object	
renderer	but	instead	directly	be	played	back	by	the	loudspeaker	which	is	
nearest	to	the	geometric	position	of	the	object	as	defined	in	
subclause	18.6.	

keepDivergence	 Flag	which	indicates	whether	the	divergence	from	the	previous	frame	
shall	be	re-used	for	the	current	frame	(value	of	0)	or	whether	a	new	
divergence	shall	be	transmitted	in	the	subsequent	bitstream	field.	

divergence	 This	field	defines	the	divergence	of	the	objects	(of	a	group).	The	field	can	
take	 values	 between	 0	 and	 127,	 corresponding	 to	 divergence	 values	
between	0.0	and	1.0:	

	 	 divergence	=	(divergence	/	127);	

8 Object	rendering	
8.1 Description	

The	audio	object	rendering	is	carried	out	as	a	process	to	convert/render	the	object	based	audio	signals	
into	a	channel	based	representation.	

8.2 Terms	and	definitions	

	 Unit	length	vector	representing	the	direction	of	the	audio	object.	

	 Unit	length	vector	representing	the	direction	of	loudspeaker	n.	

Labc	 Triplet	of	unit	length	loudspeaker	vectors	 	in	matrix	form.	

r	 Object	position:	radius	in	[m].	

θ	 Object	position:	elevation	angle	in	[°].	

φ	 Object	position:	azimuth	angle	in	[°].	

ã, ãwidth,ãheight	 Spread	parameter	in	[°].	

a	 Audio	object	linear	gain	factor.	

X	 Matrix	with	audio	samples	of	all	objects	(rows:	objects,	columns:	
samples).	

Y	 Matrix	with	loudspeaker	samples	(rows:	loudspeakers,	columns:	
samples).	

Audio	object	 Audio	+	metadata.	

sector,maxq

sector,maxq sector,maxq

p̂

ˆ
nl

ˆ ˆ ˆ, ,a b cl l l

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 251	
	

VBAP	 Vector	base	amplitude	panning	[1].	

8.3 Input	data	

Audio	objects	consist	of	audio	data	x	and	metadata.	Metadata	is	conveyed	for	every	audio	object	at	defined	
timestamps.	The	metadata	consists	of	the	following	data	organized	per	each	audio	object:	

— Spherical	coordinates	with	radius	r	[m],	elevation	angle	 	[°]	and	azimuth	angle	 	[°]:	

	 	(see	Figure	45).	

— Linear	gain	factor	a.	

— Uniform	spread	parameter	ã ∈ [0°, 180°]	or	non-uniform	spread	parameters	ãwidth	∈	[0°,180°]	and	
ãheight	∈	[0°,	90°].	

	

Figure	45	—	Polar	coordinate	system	used	to	specify	the	object	position	

Additionally,	the	following	definitions	apply.	

— Forward	looking	(frontal	direction)	is	along	the	x-axis:θ	=	0°,	φ	=	0°.	
— Azimuth	(φ)	angle	increases	with	counter	clockwise	rotation;	
— 0°	≤	φ	≤	180°	 Left	hemisphere.	

— -180°	≤	φ	≤	0°	 Right	hemisphere.	

— 0°	≤	θ	≤	90°	 Upper	hemisphere.	

— -90°	≤	θ	≤	0°	 Lower	hemisphere.	
The	 calculations	 described	 here	 require	 Cartesian	 coordinates.	 For	 this	 purpose,	 the	 coordinates	 are	
converted	according	to:	

q j

r
q
j

é ù
ê ú= ê ú
ê úë û

s

ISO/IEC	23008-3:202X(E)	

252	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 	

8.4 Processing	

 General	remark	

Object	rendering	shall	be	restricted	to	non-LFE	output	channels,	i.e.	the	object	renderer	shall	ignore	LFE	
channels	 in	 the	 target	 loudspeaker	 configuration,	 if	 present.	 LFE	 channels	 in	 the	 target	 loudspeaker	
configuration	shall	thus	neither	be	taken	into	account	in	the	triangulation,	as	defined	in	subclause	8.4.3,	
nor	in	the	rendering,	as	defined	in	subclause	8.4.4.	

 Imaginary	loudspeakers	

Not	all	considered	loudspeaker	configurations	are	complete	3D	setups	that	cover	all	solid	angles.	Hence,	
with	regard	to	the	triangulation	that	is	required	for	the	VBAP	rendering	algorithm,	there	are	voids	in	the	
triangulation	surface	which	may	be	considered	as	invalid	solid	angles.	These	voids	are	filled	by	adding	
imaginary	loudspeakers.	The	object	renderer	first	computes	the	panning	gains	for	the	extended	set	of	
loudspeakers	which	also	includes	these	imaginary	loudspeakers	(see	subclause	8.4.4).	In	a	second	step,	
a	 downmix	matrix	 is	 applied	 to	 the	 gain	 vector	 which	 equally	 distributes	 the	 sound	 energy	 of	 each	
imaginary	loudspeaker	among	his	neighbours	by	applying	a	weighting	factor	of	1/sqrt(N)	where	N	is	the	
number	of	neighbours.	Finally,	the	down-mixed	gain	vector	is	power	normalized.	

Imaginary	loudspeakers	are	added	according	to	the	following	rules.	In	the	definition	of	the	loudspeaker	
sub-sets,	“A”,	“B”,	“C”,	“D”,	the	tolerances	defined	in	Table	165	shall	be	taken	into	account	when	matching	
the	actual	loudspeaker	positions	(azimuth	and	elevation	angles)	to	the	channel	labels.	

1) If	no	loudspeaker	exists	at	or	above	45°	elevation,	add	an	imaginary	loudspeaker	at	[0°,90°].	

2) If	no	loudspeaker	exists	at	or	below	-45°	elevation,	add	an	imaginary	loudspeaker	at	[0°,-90°].	

3) If	exactly	one	of	the	loudspeaker	sub-sets	

¾ sub-set	A:	{CH_M_L030,	CH_M_R030,	CH_U_L030,	CH_U_R030}	

or	

¾ sub-set	B:	{CH_M_L045,	CH_M_R045,	CH_U_L045,	CH_U_R045}	

exists,	but	no	other	loudspeaker	exists	within	or	on	the	edges	of	the	quadrilateral	defined	by	the	
actual	positions	of	the	4	sub-set	loudspeakers,	then	add	an	imaginary	loudspeaker	at	the	mean	
azimuth	angle	of	those	4	sub-set	loudspeakers	and	the	mean	elevation	angle	of	those	4	sub-set	
loudspeakers,	where	 the	mean	angles	 shall	 be	derived	 from	 the	 actual	 azimuth	and	elevation	
angles	of	those	4	sub-set	loudspeakers.	

4) If	exactly	one	of	the	sub-sets		

¾ sub-set	C:	{CH_M_L110,	CH_M_R110,	CH_U_L110,	CH_U_R110}	

or		

() ()
() ()
()

 cos cos

 cos

s
in

i
s

n

x r

y r

z r

q

q

q

j

j

=

=

=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 253	
	

¾ sub-set	D:	{CH_M_L135,	CH_M_R135,	CH_U_L135,	CH_U_R135}	

exists,	but	no	other	loudspeaker	exists	within	or	on	the	edges	of	the	quadrilateral	defined	by	the	
actual	positions	of	the	4	sub-set	loudspeakers,	then	add	an	imaginary	loudspeaker	at	the	mean	
azimuth	angle	of	those	4	sub-set	loudspeakers	plus	180°	and	the	mean	elevation	angle	of	those	4	
sub-set	 loudspeakers,	 where	 the	 mean	 angles	 shall	 be	 derived	 from	 the	 actual	 azimuth	 and	
elevation	angles	of	those	4	sub-set	loudspeakers.	

5) Sort	all	loudspeakers	with	an	absolute	elevation	angle	smaller	than	45°	according	to	their	azimuth	
angle	 and	 fill	 gaps	 greater	 than	 160°	 by	 the	 minimum	 number	 of	 equally	 spaced	 imaginary	
loudspeakers	with	0°	elevation.	

The	 neighbourhood	 of	 an	 imaginary	 loudspeaker	 is	 defined	 by	 the	 edges	 of	 the	 triangulation	 mesh	
specified	 in	 subclause	8.4.3.2.	 If	 an	edge	exists	between	a	 loudspeaker	and	 the	 considered	 imaginary	
loudspeaker,	then	this	loudspeaker	is	a	neighbour.	

The	purpose	of	the	downmix	matrix	is	to	eliminate	the	added	imaginary	loudspeakers	and	to	restrict	the	
calculated	gains	to	the	existing	loudspeakers.	If	an	imaginary	loudspeaker	is	the	neighbour	of	another	
imaginary	loudspeaker,	then	the	gains	cannot	be	reduced	to	the	existing	loudspeakers.	This	problem	is	
solved	 by	 the	 following	 approach:	 First,	 an	 energy	 distribution	 matrix	 D	 is	 constructed	 where	 the	
elements	 K#´ = 1/(# 	specifies	 the	 amount	 of	 energy	 which	 is	 re-distributed	 from	 the	 imaginary	
loudspeaker	i	to	loudspeaker	j	where	(#	denotes	the	number	of	neighbours.	Column	vectors	which	belong	
to	an	existing	loudspeaker	have	only	one	non-zero	value	K## = 1.	In	each	iteration	step	we	then	multiply	
this	matrix	by	D.	This	corresponds	to	re-distributing	energy	portions	to	the	neighbours	according	to	the	
given	weights.	This	is	repeated	until	all	elements	which	belong	to	the	imaginary	loudspeakers	are	less	
than	or	equal	to	10Xó	(≤-40dB).	The	element-wise	square	root	finally	yields	the	elements	of	the	downmix	
matrix.	Mathematically,	the	whole	process	is	given	as	follows:	

	 œ = sqrt(Õ+)	

where	n	denotes	the	number	of	iterations,	sqrt(•)	denotes	the	element-wise	square	root,	and	M	denotes	
the	resulting	downmix	matrix.		

NOTE	 Faster	convergence	is	achieved	by	computing	Õ(%")	instead	of	Õ+.	This	means	that	the	renderer	does	not	
multiply	the	iteration	result	by	D,	but	by	itself.	

 Dividing	the	loudspeaker	setup	into	a	triangle	mesh	

8.4.3.1 General	

To	calculate	3D	VBAP,	a	triangulation	of	the	convex	hull	around	the	given	loudspeaker	setup	is	required.	
Within	this	hull	loudspeaker	triplets	are	defined	that	consist	of	three	adjacent	loudspeaker	positions	in	
3D	space.	Each	 loudspeaker	 triplet	 shall	 fulfil	 the	 following	 requirements	 in	order	 to	generate	useful	
results.	

— The	vectors	from	the	listener	position	to	the	triangle	corners	shall	be	linearly	independent.	

— Shall	not	intersect	with	any	other	loudspeaker	triplet.	

The	triangulation	in	3D	space	can	be	performed	in	several	different	ways	and	there	are	many	ways	to	
divide	a	loudspeaker	setup	into	triangles.	Please	note	that	the	additional	triangles	for	the	areas	covered	
by	the	imaginary	loudspeakers	are	defined	by	the	imaginary	loudspeaker	and	two	successive	neighbours.	

ISO/IEC	23008-3:202X(E)	

254	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	46	—	Triangulation	example	–		
Triplet	tabc	defined	by	Spka,	Spkb,	Spkc,	vectors	

	
8.4.3.2 Automatic	triangulation	

The	triangulation	mesh	is	determined	by	means	of	a	Delaunay	triangulation	algorithm.	As	all	vertices,	i.e.	
the	 loudspeaker	 positions,	 are	 located	 on	 a	 sphere	 surface,	 the	 Delaunay	 solution	 can	 be	 found	 by	
calculating	 the	 convex	 hull	 of	 the	 given	 vertex	 set.	 The	 automatic	 triangulation	 algorithm	 uses	 the	
QuickHull	algorithm	which	has	been	extended	to	yield	left-right	and	front-back	symmetric	triangulation	
meshes.	

1) Sort	all	vertices	in	ascending	order	according	to	the	vertex	index	specified	in	the	following	pseudo	
code.	

function index = vertex_index(azimuth, elevation)
{
 azimuth = 180 - mod(180 - azimuth, 360);
 elevation = max(-90, min(90, elevation));
 idx_azi = round(abs(90 - abs(azimuth)));
 idx_ele = round(abs(elevation));
 index = idx_azi + 181 * idx_ele;
}

where	the	modulo	operator	mod(x,y)	returns	values	in	the	range	[0,y[according	to:	

mod(x,y)	=	x	-	n*y,		where	n	=	floor(x/y)	

with	floor(i)	rounding	i	to	the	nearest	integer	towards	minus	infinity.	

2) Choose	any	sub-set	of	the	vertices	with	a	convex	hull	as	initial	polyhedron.	

3) Extend	the	initial	polyhedron	sequentially	by	the	sorted	list	of	vertices.	If	the	new	vertex	is	located	
outside	of	the	polyhedron	or	on	its	surface,	replace	those	surface	patches	by	the	triangles	that	are	
defined	by	the	new	vertex	and	the	border	(the	outer	edges)	of	those	surface	patches.	

As	a	 result,	 the	most	 recently	added	vertex	defines	 the	 sub-division	of	a	planar	polyeder	 into	
triangles.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 255	
	

 Rendering	algorithm	

8.4.4.1 General	

The	rendering	is	based	on	VBAP.	The	algorithm	and	descriptions	are	based	on	[1].	As	all	setups	are	
extended	by	imaginary	loudspeakers	to	a	complete	3D	setup,	3D	VBAP	shall	be	used	for	rendering.	

An	example	of	a	realization	of	distance	and	spread	depth	rendering	can	be	found	in	Annex	K.	

8.4.4.2 3D	VBAP	

A	triplet-wise	panning	shall	be	applied	for	3D	setups	and	for	all	other	setups.	This	is	because	all	setups	
are	extended	by	imaginary	loudspeakers,	if	necessary.	For	this,	the	audio	object	is	applied	to	a	maximum	
of	 three	 loudspeakers.	 All	 calculations	 are	 performed	 for	 each	 loudspeaker	 triplet.	 The	 triplets	 are	
defined	by	the	loudspeaker	triangulation	(see	subclause	8.4.3).	

	

NOTE	 For	the	sake	of	simplicity,	here	the	2D	VBAP	case	is	shown	with	two	instead	of	3	base	vectors.	

Figure	47	—	Audio	object	described	as	linear	combination	of	loudspeaker	vectors	

The	audio	object	vector	 	is	expressed	as	a	linear	combination	of	the	loudspeaker	triplet	 :	

	 	

In	matrix	form	and	transposed,	gain	factors	can	be	calculated	using	the	formula:	

	 	

p̂ ˆ ˆ ˆ, ,1 2 3l l l

1 2 3
ˆ ˆ ˆˆ g g g= + +1 2 3p l l l

[]

1
11 12 13

1 2 3 21 22 23

31 32 33

ˆ
l l l

g p p p l l l
l l l

-
é ù
ê ú= = ê ú
ê úë û

T -1
123p L

ISO/IEC	23008-3:202X(E)	

256	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	 loudspeaker	 triangle	 which	 contains	 the	 panning	 direction	 is	 found	 by	 sequentially	 calculating	
vI, vF, v¨	for	the	list	of	triplets	until	all	gain	factors	are	greater	than	or	equal	to	zero.	This	set	yields	the	
vector:	

Œ = [M&, M%, MQ].

Finally,	the	audio	object’s	gain	factor	a	is	applied	and	power	normalization	is	performed:	

	 Œ|}~�ÄÅ =	
#Ç
‖Ç‖
	

This	is	the	vector	which	is	then	used	to	construct	the	rendering	matrix	G.	
8.4.4.3 Audio	processing	

The	audio	processing	function	transforms	audio	objects	into	channel	based	loudspeaker	signals.	

Let	X	be	the	audio	samples	of	all	objects	in	matrix	representation	with	dimension	O-	number	of	objects,	

N-	number	of	audio	samples	per	audio	processing	block.	Each	row	contains	the	audio	samples	of	one	

object.	

	
Let	G	be	the	gain	factors	of	all	audio	objects	and	loudspeakers	in	matrix	representation	with	dimension	

O-	number	of	objects,	S-	number	of	 loudspeakers.	Each	column	contains	all	gain	factors	for	one	audio	

object.	

	

NOTE	 There	will	be	a	maximum	of	three	non-zero	values	per	column.	

Matrix	Y	contains	the	output	samples	that	can	be	calculated	with	the	formula:		

Y	=	GX	

	 Each	row	in	Y	contains	the	output	audio	samples	for	one	loudspeaker.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 257	
	

8.4.4.4 Gain	factor	crossfading	

Metadata	is	conveyed	for	every	audio	object	at	defined	timestamps.	To	achieve	a	smooth	transition	when	
metadata	changes,	the	G	matrices	are	interpolated	linearly	between	adjacent	timestamps	and	applied	on	
a	per	sample	basis.		

8.4.4.5 Audio	processing	in	QMF-domain	

Alternatively,	 object	 rendering	may	 be	 performed	 in	 the	QMF-domain	 using	QMF-transformed	 audio	
signals.	In	the	QMF-domain,	the	input	data	is	given	by	a	three-dimensional	matrix	with	complex	elements	

where	o	denotes	the	object	 index,	n	denotes	the	slot	 index,	and	k	denotes	the	band	index.	As	the	
VBAP	 panning	 gains	 are	 frequency	 independent,	 object	 rendering	 in	 the	 QMF-domain	 is	 realized	
analogously	to	the	time	domain	processing,		

Yk	=	GXk	,	

where	

	
denotes	the	two-dimensional	sub-set	of	the	input	data	matrix	that	belongs	to	QMF	band	k.	The	matrix	

	

denotes	 the	 two-dimensional	 sub-set	 of	 the	 output	 data	matrix	with	 complex	 elements	 where	 s	
denotes	the	loudspeaker	index,	n	denotes	the	slot	index,	and	k	denotes	the	band	index.	The	gain	factor	
cross-fading	is	realized	analogously	to	the	time	domain	processing	with	the	only	difference	that	the	cross-
fading	relates	to	slot	indices	rather	than	sample	indices.	

8.4.4.6 Time-alignment	

Object	rendering	requires	object	metadata	side	information	embedded	into	a	MPEG-H	3D	audio	bitstream	
(see	Clause	15)	in	combination	with	the	audio	signals	which	are	associated	with	each	audio	object.	Both	
data	streams	shall	be	time-aligned	for	proper	rendering.	This	time-alignment	is	realized	by	the	encoder	
such	that	the	first	 frame	of	the	current	decoded	object	metadata,	which	specifies	the	metadata	values	
over	a	period	of	iframe_period	frames,	is	applied	to	the	current	audio	data	frame.		

8.4.4.7 Spreading	

The	object	spreading	specified	in	the	following	subclause	is	applied	if	all	of	the	following	conditions	are	
satisfied.	

k
nox ,

k
nsy ,

ISO/IEC	23008-3:202X(E)	

258	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Audio	objects	with	a	spatial	extent	(spread	α	>	0.0°	(uniform	spread)	or	spread_width	αwidth	>	0.0°	(non-
uniform	spread))	are	processed	by	means	of	the	multiple	direction	amplitude	panning	(MDAP)	method	
[7].	 This	 method	 involves	 the	 computation	 of	 a	 set	 of	 panning	 gains	
g/,!*.',M	for	M	 = 	18	MDAP	directions	pM	around	the	panning	direction	pV = p’ .	

The	determination	of	the	MDAP	directions	requires	the	computation	of	two	base	vectors,	u	and	v.	If	the	
loudspeaker	setup	contains	height	loudspeakers,	these	vectors	are	computed	as	follows:	

	 v = õcart(φ,θ+ 90°, 1), θ < 0°
cart(φ,θ− 90°, 1), θ ≥ 0°

	

	 u = v × p'	

where	 cart(·)	 denotes	 the	 transform	 from	 spherical	 coordinates	 to	 Cartesian	 coordinates	 and	
× 	denotes	the	cross	product. Otherwise, u	and	v	are	computed	as	follows:	

	 w = õcart(φ,θ+ 90°, 1), θ < 0°
cart(φ,θ− 90°, 1), θ ≥ 0°

	

	 u = w × p'	

	 v = [0,… ,0]Ñ	

If	non-uniform	spread	values	are	transmitted,	the	ratio	of	the	spread	parameter	in	the	width	direction	
αwidth	and	the	spread	parameter	in	the	height	direction	αheight are	used	to	determine	the	ratio.	

	

This	ratio	shall	be	used	to	scale	the	base	vector	v:	

.	

The	MDAP	directions	are	then	computed	from	18	pattern	vectors	pm′:	

 pI′ = u
 pF′ = 	0.75	u + 0.25		pV
 p¨′ = 	0.375	u + 0.625	pV
 pó′ =	−u
 p≠′ =	−0.75	u + 0.25	pV
 pÆ′ =	−0.375	u + 0.625	pV
 p}′ = 	0.5	u + 0.866	v + pV/3
 pØ′ = 	0.5	p}′+ 0.5	pV
 p~′ = 	0.25	p}′+ 0.75	pV
 pIV′ =	−0.5	u + 0.866	v + pV/3
 pII′ = 	0.5	pIV′+ 0.5	pV
 pIF′ = 	0.25	pIV′+ 0.75	pV
 pI¨′ =	−0.5	u − 0.866	v + pV/3
 pIó′ = 	0.5	pI¨′+ 0.5	pV

height

width
ra
a
a=

rv v a= ×

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 259	
	

 pI≠′ = 	0.25	pI¨′+ 0.75	pV
 pIÆ′ = 	0.5	u − 0.866	v + pV/3
 pI}′ = 	0.5	pIÆ′+ 0.5	pV
 pIØ′ = 	0.25	pIÆ′+ 0.75	pV

Together	with	the	spread	parameter	α	(uniform	spread)	or	the	spread	parameter	αwidth	(non-uniform	
spread),	this	yields	the	MDAP	directions	pm:	

 pM = pM′ +
L7

$!-	(∞8)

where	α'	 is	equal	to	α	 limited	to[0.001°, 90°],	or	respectively	to	αwidth	 limited	to	[0.001°, 90°]	for	
the	 transmission	 of	 non-uniform	 spread.	 The	 normalization	 to	 unit	 norm	 is	 not	 necessary	 since	 the	
normalization	to	unit	norm	is	performed	when	gscaled,m	is	computed	for	the	MDAP	directions	pm.	

If	the	spread	parameter	α	(or	respectively	αwidth	for	non-uniform	spread)	exceeds	90°,	then	a	cross-fading	
towards	 power-normalized	 unit	 gain	1/√N	for	 all	 of	 the	N	 loudspeakers	 is	 applied	 to	 yield	 the	 final	
panning	gains:	

	 λ = α-Ü'°
Ü'°

,	or	λ = αwidth-Ü'°

Ü'°
	(non-uniform	spread)	respectively.	

 g±≤≥¥′ =	©1	–λ´
∑ Å9:;<=>,?
@
?A7

∂∑ Å9:;<=>,?
@
?A7 ∂

+λ	[1, … ,1]∑/√N

 g±≤≥¥ = a
Å@BCD′

∂Å@BCD′∂

Otherwise,	the	final	panning	gains	are	computed	as	follows:	

 g±≤≥¥ = a
∑ Å9:;<=>,?
@
?A7

∂∑ Å9:;<=>,?
@
?A7 ∂

9 SAOC	3D		
9.1 Description	

Spatial	audio	object	coding	3D	audio	reproduction	(SAOC	3D)	shall	be	based	on	MPEG	SAOC	technology	
specified	 in	 ISO/IEC	23003-2.	 The	 SAOC	 3D	 technology	 is	 used	 to	 enable	 interactive	 rendering	
functionality	for	audio	object-based	content.	

9.2 Definitions	

K	 is	the	number	of	hybrid	subbands	

L	 is	the	number	of	parameter	sets	

	 is	the	number	of	used	decorrelators	

	 is	the	number	of	processing	bands	

decN

procM

ISO/IEC	23008-3:202X(E)	

260	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 is	the	number	of	QMF	subbands	depending	on	sampling	frequency	

	 is	the	number	of	SAOC	3D	input	signals	(channels	and	objects)	

	 is	the	number	of	SAOC	3D	input	channels	

	 is	the	number	of	SAOC	3D	input	audio	objects	

	 is	the	number	of	SAOC	3D	downmix	signals	(channel	and	object	signals)	

	 is	the	number	of	SAOC	3D	downmix	signals	for	channel	inputs	

	 is	the	number	of	SAOC	3D	downmix	signals	object	inputs	

	 is	the	number	of	premix	channels	

	 is	the	number	of	SAOC	3D	output	channels	

	 is	the	number	of	downmix	signals	assigned	to	group	gq,	defined	for	all	group	indices	
q	

	 is	a	vector	with	the	indices	of	the	downmix	signals	assigned	to	the	same	group,	
defined	for	all	group	indices	q	

	
is	the	time	and	frequency	variant	rendering	matrix,	defined	for	all	parameter	time	
slots	l	and	all	processing	bands	m	

	 is	a	vector	with	the	hybrid	subband	(encoder)	input	channels,	defined	for	all	time	
slots	n	and	all	hybrid	subbands	k	

	 is	a	vector	with	the	hybrid	subband	(decoder)	input	signals	(downmix),	defined	for	
all		time	slots	n	and	all	hybrid	subbands	k	

	 is	a	vector	with	the	(decoder)	output	hybrid	subband	signals,	which	are	fed	into	the	
hybrid	synthesis	filter	banks,	defined	for	all	time	slots	n	and	all	hybrid	subbands	k	

	 is	a	vector	with	the	parametrically	estimated	hybrid	subband	signals,	defined	for	all	
time	slots	n	and	all	hybrid	subbands	k	

	 is	a	vector	with	the	decorrelated	hybrid	subband	signals,	defined	for	all	time	slots	n	
and	all	hybrid	subbands	k	

D	 is	the	downmixing	matrix	

DDMG	 is	the	three	dimensional	matrix	holding	the	dequantized,	and	mapped	DMG	data	for	
every	input	signal,	downmix	channel,	and	parameter	set	

DIOC	 is	the	four	dimensional	matrix	holding	the	dequantized,	and	mapped	IOC	data	for	
every	input	channel	pair,	every	parameter	set,	and	 	bands	

QMFM

N

chN

objN

Ndmx

Ndmx
ch

N dmx
obj

Npremix

outN

qNg

qg

,l mR

,n ks

,n kx

,ˆ n ky

,
dry
n ky

,
wet
n ky

procM

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 261	
	

DOLD	 is	the	three	dimensional	matrix	holding	the	dequantized,	and	mapped	OLD	data	for	
every	input	channel,	every	parameter	set,	and	 	bands	

	 is	the	main	diagonal	of	matrix	M	

	 is	a	matrix	containing	the	elements	from	the	main	diagonal	of	matrix	M	on	the	main	
diagonal	and	zero	values	on	the	off-diagonal	positions	

	 is	a	constant	used	to	avoid	division	by	zero	 	

SAOC	3D	 Spatial	audio	object	coding	for	3D	audio	reproduction	

9.3 Delay	and	synchronization	

The	 SAOC	 3D	 decoder	 introduces	 a	 delay	 when	 processing	 the	 time	 domain	 signal	 coming	 from	 a	
downmix	decoder.	The	transmission	of	the	SAOC	3D	side	information	with	respect	to	the	transmission	of	
the	coded	downmix	signal	is	performed	in	such	a	manner	that	there	is	no	need	to	delay	the	downmix	
signal	further	before	the	SAOC	processing.	

9.4 	Syntax	

 Payloads	for	SAOC	3D	

Table	150	—	Syntax	of	SAOC3DSpecificConfig()	

Syntax	 No.	of	bits	 Mnemonic
SAOC3DSpecificConfig()
{
	 bsSamplingFrequencyIndex;	 4	 uimsbf	
	 if	(bsSamplingFrequencyIndex	==	15)	{
	 	 bsSamplingFrequency;	 24	 uimsbf	
	 }
	 bsFreqRes;	 3	 uimsbf	
	 bsDoubleFrameLengthFlag;	 1	 uimsbf	
	 bsNumSaocDmxChannels;	 5	 uimsbf	
	 bsNumSaocDmxObjects;	 5	 uimsbf	
	 bsDecorrelationMethod;	 1	 uimsbf
	 NumInputSignals	=	0;	
	 if	(bsNumSaocDmxChannels	>	0)	{
	 	 saocChannelLayout	=	SpeakerConfig3d(); 	 	
	 	 NumSaocChannels	=	SAOC3DgetNumChannels(saocChannelLayout); 	 a	

	 	 NumInputSignals	+=	NumSaocChannels;
	 }
	 bsNumSaocObjects;	 8	 uimsbf	
	 NumInputSignals	+=	bsNumSaocObjects;
	 for	(i=0;	i<NumSaocChannels;	i++)	{
	 	 bsRelatedTo[i][i]	=	1;
	 	 for(j=i+1;	j<	NumSaocChannels;	j++)	{ 	 	
	 	 	 bsRelatedTo[i][j];	 1	 uimsbf	
	 	 	 bsRelatedTo[j][i]	=	bsRelatedTo[i][j];
	 	 }
	 }
	 for	(i=NumSaocChannels;	i<NumInputSignals;	i++)	{

procM

()=m Mdiag

()=H Mmatdiag

e 910e -=

ISO/IEC	23008-3:202X(E)	

262	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 for(j=0;	j<NumSaocChannels;	j++)	{ 	 	
	 	 	 bsRelatedTo[i][j]	=	0; 	 	

	 	 	 bsRelatedTo[j][i]	=	0;
	 	 }
	 }
	 for	(i=NumSaocChannels;	i<NumInputSignals;	i++)	{
	 	 bsRelatedTo[i][i]	=	1;
	 	 for(j=i+1;	j<NumInputSignals;	j++)	{ 	 	
	 	 	 bsRelatedTo[i][j];	 1	 uimsbf	
	 	 	 bsRelatedTo[j][i]	=	bsRelatedTo[i][j];
	 	 	}
	 }
	 bsOneIOC;	 1	 uimsbf
	 bsSaocDmxMethod;	 1	 uimsbf
	 if	(bsSaocDmxMethod	==	1)	{
	 	 NumPremixedChannels	=	SAOC3DgetNumChannels(referenceLayout); 	 a,	b	
	 }
	 bsDualMode;	 1	 uimsbf	
	 if	(bsDualMode)	{
	 	 bsBandsLow;	 5	 uimsbf
	 	 bsBandsHigh	=	numBands; 	 c
	 }	else	{
	 	 bsBandsLow	=	numBands;
	 }
	 bsDcuFlag;	 1	 uimsbf	
	 if	(bsDcuFlag	==	1)		{
	 	 bsDcuMandatory;	 1	 uimsbf	
	 	 bsDcuDynamic;	 1	 uimsbf
	 	 if	(bsDcuDynamic	==	0)	{
	 	 	 bsDcuMode;	 1	 uimsbf
	 	 	 bsDcuParam;	 4	 uimsbf
	 	 }
	 }	else	{ 	 	
	 	 bsDcuMandatory	=	0; 	 	

	 	 bsDcuDynamic	=	0; 	 	

	 	 bsDcuMode	=	0; 	 	

	 	 bsDcuParam	=	0; 	 	

	 } 	 	
	 ByteAlign(); 	 	
	 SAOC3DExtensionConfig(); 	 	
} 	 	
a					SAOC3DgetNumChannels()	defines	the	number	of	SAOC	3D	input	channels	from	data	obtained	by	the	
bitstream	syntax	element	SpeakerConfig3d().	
b						referenceLayout	is	defined	in	subclause	5.3.2.	
c						numBands	shall	be	as	defined	in	ISO/IEC	23003-2.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 263	
	

Table	151	—	Syntax	of	SAOC3DgetNumChannels()	

Syntax	 No.	of	bits	 Mnemonic
SAOC3DgetNumChannels(Layout) 	 a

{
	 numChannels	=	numSpeakers; 	 b

	 for	(i	=	0;	i	<	numSpeakers;	i++)	{
	 	 if	(Layout.isLFE[i]	==	1)	{
	 	 	 numChannels	=	numChannels	-	1;
	 	 }
	 }
	 return	numChannels;
}
a						The	function	SAOC3DgetNumChannels()	returns	the	number	of	available	non-LFE	channels	numChannels.	
b						numSpeakers	is	defined	in	Syntax	of	SpeakerConfig3d().	If	speakerLayoutType	==	0,	numSpeakers	shall	
represent	the	number	of	loudspeakers	corresponding	to	the	ChannelConfiguration	value,	CICPspeakerLayoutIdx,	
as	defined	in	ISO/IEC	23001-8.	

Table	152	—	Syntax	of	Saoc3DFrame()	

Syntax	 No.	of	bits	 Mnemonic
Saoc3DFrame()
{
	 SAOC3DFramingInfo();
	 bsIndependencyFlag;	 1	 uimsbf
	 for(i=0;	i<NumInputSignals;	i++)	{
	 	 idxOLD[i]	=	EcDataSaoc(OLD,	i,	numBands); a	
	 }
	 k=0;
	 iocIdx1=0;
	 iocIdx2=0;
	 for(i=0;	i<NumInputSignals;	i++)	{
	 idxIOC[i][i]	=	0;	
	 	 for(j=i+1;	j<NumInputSignals;	j++)	{	
	 	 	 if	(bsRelatedTo[i][j]	!=	0)	{	
	 	 	 	 if	(bsOneIOC	==	0)	{	
	 	 	 	 	 idxIOC[i][j]	=	EcDataSaoc(IOC,	k,	numBands);
	 	 	 	 	 k++;
	 	 	 	 }	else	{
	 	 	 	 	 if	(k	==	0)	
	 	 	 	 	 	 idxIOC[i][j]	=	EcDataSaoc(IOC,	k,	numBands);
	 	 	 	 	 	 k++;
	 	 	 	 	 	 iocIdx1=i;
	 	 	 	 	 	 iocIdx2=j;
	 	 	 	 	 }	else	{
	 	 	 	 	 	 idxIOC[i][j]	=	idxIOC[iocIdx1][iocIdx2];	
	 	 	 	 	 }	
	 	 	 	 }
	 	 	 }	else	{
	 	 	 	 idxIOC[i][j]	=	5;
	 	 	 }
	 	 idxIOC[j][i]	=	idxIOC[i][j];
	 	 }
	 }

ISO/IEC	23008-3:202X(E)	

264	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 if	(bsNumSaocDmxObjects==0)		{
	 	 for(i=0;	i<	bsNumSaocDmxChannels;	i++)	{
	 	 	 idxDMG[i]	=	EcDataSaoc(DMG,	0,		NumInputSignals);
	 	 }
	 }		else	{
	 	 dmgIdx	=	0;	
	 	 for(i=0;	i<bsNumSaocDmxChannels;	i++)	{
	 	 	 idxDMG[i]	=	EcDataSaoc(DMG,	0,	NumSaocChannels);
	 	 }	
	 	 dmgIdx	=	bsNumSaocDmxChannels;	
	 	 if	(bsSaocDmxMethod	==	0)	{
	 	 	 for(i=dmgIdx;	i<dmgIdx	+	bsNumSaocDmxObjects;	i++)	{
	 	 	 	 idxDMG[i]	=	EcDataSaoc(DMG,	0,		bsNumSaocObjects);
	 	 	 }
	 	 }		else	{
	 	 	 for(i=dmgIdx;	i<dmgIdx	+	bsNumSaocDmxObjects;	i++)	{
	 	 	 	 idxDMG[i]	=	EcDataSaoc(DMG,	0,	NumPremixedChannels);
	 	 	 }
	 	 }
	 }
	 if	(bsDcuFlag	==	1)	&&	(bsDcuDynamic	==	1)	{
	 	 if	(bsIndependencyFlag	==	1)	{
	 	 	 bsDcuDynamicUpdate	=	1;
	 	 }	else	{
	 	 	 bsDcuDynamicUpdate;	 1	 uimsbf
	 	 }
	 	 if	(bsDcuDynamicUpdate	==	1)	{
	 	 	 bsDcuMode;	 1	 uimsbf
	 	 	 bsDcuParam;	 4	 uimsbf
	 	 }
	 }
	 ByteAlign();
	 SAOC3DExtensionFrame();
}
a						numBands	shall	be	as	defined	in	ISO/IEC	23003-2.	

Table	153	—	Syntax	of	SAOC3DFramingInfo()	

Syntax	 No.	of	bits	 Mnemonic	
SAOC3DFramingInfo()	 	 	
{	 	 	
	 bsFramingType;	 1	 uimsbf	
	 bsNumParamSets;	 3	 uimsbf	
	 if	(bsFramingType)	{	 	 	
	 	 for	(ps=0;	ps<numParamSets;	ps++)	{	 	 a	

	 	 	 bsParamSlot[ps];	 nBitsParamSlot	b	 uimsbf		
	 	 }	 	 	
	 }	 	 	
}	 	 	
a						numParamSets	is	defined	by	numParamSets	=	bsNumParamSets	+	1.	
b						nBitsParamSlot	is	defined	according	to	nBitsParamSlot	=	ceil(log2(numSlots)).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 265	
	

 Definition	of	SAOC	3D	payloads	

The	following	tables	contain	definitions	of	used	SAOC	3D	bitstream	syntactic	elements	and	variables.	

Table	154	—	Definitions	of	SAOC	3D	syntactic	elements	

SAOC	3D	syntactic	elements	
Definition	

(in	accordance	with	
ISO/IEC	23003-2)	

Reference

EcDataSaoc()	 EcDataSaoc()	 Table	22
SAOC3DExtensionConfig()	 SAOCExtensionConfig()	 Table	6
SAOC3DExtensionConfigData(bsSaoc3DExtType)	 N/A
SAOC3DExtensionFrame()	 SAOCExtensionFrame()	 Table	27
SAOC3DExtensionFrameData(bsSaoc3DExtType)	 N/A
ByteAlign()	 ByteAlign()	 	

Table	155	—	Definitions	of	SAOC	3D	bitstream	variables	

SAOC	3D	bitstream	variables	
Definition	

(in	accordance	with		
ISO/IEC	23003-2)

bsSamplingFrequencyIndex	 bsSamplingFrequencyIndex
bsSamplingFrequency	 bsSamplingFrequency
bsDcuFlag	 bsDcuFlag
bsOneIOC	 bsOneIOC
bsDcuMode	 bsDcuMode
bsDcuMandatory	 bsDcuMandatory
bsDcuDynamic	 bsDcuDynamic
bsDcuDynamicUpdate	 	 bsDcuDynamicUpdate	
bsDcuParam	 bsDcuParam
bsIndependencyFlag	 bsIndependencyFlag
bsRelatedTo	 bsRelatedTo	

	
saocChannelLayout	 Defines	the	input	channel	layout	for	which	SAOC	3D	parameters	are	

transmitted.	

NumSaocChannels	 Defines	the	number	of	input	channels	for	which	SAOC	3D	parameters	are	
transmitted.	

bsNumSaocObjects	 Defines	the	number	of	input	objects	for	which	SAOC	3D	parameters	are	
transmitted.	

bsDoubleFrameLengthFlag	 Indicates	whether	the	SAOC	3D	frame	length	is	equal	to	or	double	of	the	core	
coder	output	frame	length.	The	number	of	time	slots	is	given	by:		
numSlots	=	((bsDoubleFrameLengthFlag	+	1)	·	outputFrameLength)	/	64,	
where	outputFrameLength	is	defined	in	ISO/IEC	23003-3:2012,	6.1,	Table	70.	

bsNumSaocDmxChannels	 Defines	the	number	of	SAOC	3D	downmix	channels	for	channel	based	
content.	

bsNumSaocDmxObjects	 Defines	the	number	of	SAOC	3D	downmix	channels	for	object	based	
content	according	to	Table	153.	

ISO/IEC	23008-3:202X(E)	

266	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	156	—	Definition	of	decoding	mode	

bsNumSaocDmxObjects	 Mode	 Meaning

0	 “Combined”	 All	input	signals	are	combined	into	Nch	
channels	

1	…	31	 “Independent”	 The	channel-based	and	object-based	
signals	are	downmixed	independently	
into	Nch	and	Nobj	channels	

bsSaocDmxMethod	 Defines	the	downmix	matrix	mode	and	number	of	premixing	channels	according	
to	Table	154.	

Table	157	—	bsSaocDmxMethod	

bsSaocDmxMethod	 Mode	 Meaning

0	 “Direct”	 Downmix	matrix	is	defined	directly	by	DMGs.	
1	 “Premixing”	 Downmix	matrix	is	defined	as	a	product	of	the	

matrix	obtained	from	the	dequantized	DMGs	
and	a	premixing	matrix	obtained	from	the	
spatial	information	of	the	input	audio	objects	
and	the	reference	layout.	The	Premixing	mode	
can	be	used	only	if	the	reference	layout	is	
defined	in	mpegh3daConfig().	

	

NumPremixedChannels	 Defines	the	number	of	premixing	channels	(Npremix)	for	the	input	audio	
objects.	

bsDecorrelationMethod	 Defines	the	decorrelation	method	according	to	Table	155.	

Table	158	—	bsDecorrelationMethod	

bsDecorrelationMethod	 Meaning

0	 “Energy	compensation	method”	
1	 “Covariance	adjustment	method”	

bsDualMode	 Indicates	if	decoding	operates	in	different	modes	for	a	low	and	high	band	range	
according	to	Table	156.	

Table	159	—	bsDualMode	

bsDualMode	 Meaning

0	 Same	decoding	mode	for	full	band	range	(i.e.,	no	separate	
high	band	range)	

1		 Different	decoding	modes	for	low	and	high	band	ranges	

bsBandsLow	 Defines	the	number	of	parameter	bands	for	which	decoding	should	be	processed	
according	to	prediction	based	scheme.		

	 	 Prediction	 based	 scheme	 should	 be	 used	 for	 the	 parameter	 band	 range:	
0	<=	pb	<	bsBandsLow.	

	 	 Energy	based	scheme	should	be	used	for	the	parameter	band	range:	bsBandsLow	
<=	pb	<	numBands.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 267	
	

bsSaocExtType	 Indicates	type	of	the	SAOC	3D	extension	data	according	to	Table	157.	
Table	160	—	bsSaoc3DExtType	

bsSaoc3DExtType	 SAOC3DExtensionFrameData()

0	...	7	 present	
8	...	15	 not	present	

9.5 SAOC	3D	processing	

 Compressed	data	stream	decoding	and	dequantization	of	SAOC	3D	data	

The	process	for	dequantization	of	the	DMG,	OLD,	IOC	parameters	shall	be	as	specified	in	ISO/IEC	23003-2.	

 Time/frequency	transforms	

The	hybrid	filterbank	as	specified	in	ISO/IEC	23003-1	shall	be	applied.	

 Signals	and	parameters	

9.5.3.1 Dimensionality	of	signals	and	parameters	

The	audio	signals	are	defined	for	every	time	slot	n	and	every	hybrid	subband	k.	The	corresponding	SAOC	
3D	 parameters	 are	 defined	 for	 each	 parameter	 time	 slot	 l	 and	 processing	 band	m.	 The	 subsequent	
mapping	between	 the	hybrid	and	parameter	domains	 shall	be	as	 specified	by	 ISO/IEC	23003-1:2007,	
Table	A.31.	Hence,	all	calculations	are	performed	with	respect	to	the	appropriate	time/band	indices	and	
the	corresponding	dimensionalities	are	implied	for	each	introduced	variable.	

The	data	available	at	the	SAOC	3D	decoder	consists	of	the	multi-channel	downmix	signal	X,	the	covariance	
matrix	E,		the	rendering	matrix	R	and	downmix	matrix	D.	

9.5.3.2 Object	parameters	

The	covariance	matrix	E	of	size	N	×	N	with	elements	ei,j	represents	an	approximation	of	the	original	signal	
covariance	matrix	 	and	is	obtained	from	the	OLD	and	IOC	parameters	as:	

	 	

Here,	the	dequantized	object	parameters	are	obtained	as:	

	 ,	 	

9.5.3.3 Downmix	matrix	

The	downmix	matrix	D	applied	to	the	input	audio	signals	S	determines	the	downmix	signal	as	X	=	DS.	The	
downmix	matrix	D	of	size	Ndmx	×	N	is	obtained	as:	

D	=	DdmxDpremix.	

¾ “Direct	mode”	(bsSaocDmxMethod	==	0):	

The	matrix	Dpremix	of	size	N	×	N	is	defined	as:		

*»E SS

, ,i j i j i je OLDOLD IOC=

()OLD , ,iOLD i l m=D (), IOC , , ,i jIOC i j l m=D

ISO/IEC	23008-3:202X(E)	

268	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 Dpremix	=	I.		

¾ “Premixing	mode”	(bsSaocDmxMethod	==	1):	

The	matrix	Dpremix	of	size	(Nch	+	Npremix)	×	N	is	defined	as:	

		 .	

The	premixing	matrix	A	of	size	Npremix	×	Nobj	is	received	as	an	input	to	the	SAOC	3D	decoder	from	the	
object	renderer	as	a	function	of	decoded	object	metadata	and	channel	configuration	of	the	reference	
output	format	(number	and	geometric	positions	of	premixed	channels,	“referenceLayout”).	

The	matrix	Ddmx	of	size	 	is	obtained	from	the	DMG	parameters	as:	

¾ “	“Combined	decoding	mode”	(bsNumSaocDmxObjects	==	0):	

	

¾ “Independent	decoding	mode”	(bsNumSaocDmxObjects	>=	1):	

,	

where	 	for	the	“direct	mode”	or	 	for	the	“premixing	mode”.	

Here,	the	dequantized	downmix	parameters	are	obtained	as:	

	 DMGi,j	=	DDMG	(i,j,l).	

9.5.3.4 Rendering	matrix	

The	 rendering	matrix	R	 applied	 to	 the	 input	 audio	 signals	 S	 determines	 the	 target	 rendered	 output	
.	

The	rendering	matrix	R	of	size	Nout	×	N	is	given	by:	

	 R	=	[Rch			Robj],	

where	the	matrix	Rch	of	size	Nout	×	Nch	is	associated	with	input	channels	and	matrix	Robj	of	size	Nout	×	Nobj		is	
associated	with	input	objects.	

The	rendering	matrix	Rch	is	received	as	an	input	to	the	SAOC	3D	decoder	from	the	format	converter	as	a	
function	of	the:	channel	configuration	of	the	channels	for	which	SAOC	3D	parameters	are	transmitted	
(number	and	geometric	positions	of	SAOC	3D	input	channels,	saocChannelLayout)	and	the	reproduction	
layout	which	is	received	as	input	to	the	SAOC	3D	decoder:	

premix
é ù

= ê ú
ë û

I 0
D

0 A

N N´dmx

,0.05
, 10 i jDMG
i jd =

,

,

0.05

0.05

,

10 0 ,0

10 ,
0

i j

i j N

DMG

DMG

i j

i N j N

d N i N N j N-

ì £ < £ <
ï
ï= £ < £ <í
ï
ïî

ch

,

,

dmx
ch ch

dmx
ch dmx ch

,otherwise

N N= N N N= +ch premix

RSY =ˆ

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 269	
	

	 Rch	=	MDMX	,	
where	matrix	MDMX	is	defined	in	subclause	10.2.2.	The	downmix	matrix	MDMX	is	different	to	the	one	which	
is	used	for	regular	audio	channels,	but	is	just	computed	in	the	same	way	by	the	format	converter	

The	rendering	matrix	Robj	is	received	as	an	input	to	the	SAOC	3D	decoder	from	the	object	renderer	as	a	
function	of	decoded	object	metadata	and	the	reproduction	layout	which	is	received	as	input	to	the	SAOC	
3D	decoder:	

Robj	=	G	,	

where	matrix	G	is	defined	in	subclause	8.4.4.3	for	the	specified	timestamps.	The	rendering	matrix	Robj	is	
determined	 for	 each	 parameter	 time-slot	 l	 by	 linear	 interpolation	 of	 the	 gain	 factors	G,	 between	 the	
timestamps	preceding	and	following	the	parameter	time-slot	l.	

9.5.3.5 Target	output	covariance	matrix	

The	 covariance	matrix	C	 of	 size	Nout	×	Nout	 representing	 an	 approximation	 of	 the	 target	 output	 signal	
covariance	 	is	obtained	as:	

	

 SAOC	3D	decoding		

9.5.4.1 Overview	

The	method	 for	 obtaining	 an	 output	 signal	 using	 SAOC	 3D	 parameters	 and	 rendering	 information	 is	
described	 in	 this	 subclause.	The	basic	 structure	of	 the	SAOC	3D	decoder,	 consisting	of	 the	parameter	
processor	and	the	downmix	processor,	is	depicted	in	Figure	48.	

			 	

Figure	48	—	Structure	of	the	SAOC	3D	decoder	

9.5.4.2 SAOC	3D	downmix	processor	

9.5.4.2.1 General	

The	detailed	structure	of	the	SAOC	3D	downmix	processor	is	depicted	in	Figure	49.	

» *C YY
*=C RER

Rendering	
matrix	R	

	

SAOC	3D	
Parameter	
Processor	

	

SAOC	3D		
Downmix	
Processor	

Bitstream	

Downmix	
of	channels	

and	
objects	

	

SAOC	3D	decoder	

	
Output	

Premixing	
matrix	A	
Optional	

ISO/IEC	23008-3:202X(E)	

270	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	49	—	Structure	of	the	downmix	processor	

The	output	signal	 	is	computed	from	the	signals	Ydry	and	Ywet	as:	

	

The	signals	Ydry	and	Ywet	are	calculated	from	the	downmix	signal	X	and	the	decorrelated	signal	Xd	as:	

Ydry	=	RUX		

Ywet	=	MpostXd		

The	 matrix	 product	 (RU)l,k	 and	 the	 matrix	 (P)l,k,	 computed	 for	 every	 parameter	 time-slot	 l,	 are	
interpolated	over	all	time-slots	n	in	accordance	with	ISO/IEC	23003-1:2007,	6.5.2.1,	considering:	

,	for	computing	 	

and	

,		for	computing	 	

where	 	and	 	shall	be	variables	as	specified	in	ISO/IEC	23003-1.	

9.5.4.2.2 	 Parametric	unmixing	matrix		

The	parametric	unmixing	matrix	U	is	obtained	according	to	the	“decoding	mode”	as:	

¾ “Combined	decoding	mode”	(bsNumSaocDmxObjects	==	0):	

U	=	ED*J	.	

The	matrix	 	of	size	 	for	 	is	derived	according	to	subclause	9.5.4.2.5.	

¾ “Independent	decoding	mode”	(bsNumSaocDmxObjects	>=	1):	

	 ,	 ,	 .		

Ŷ

ˆ é ù
= ê ú

ë û

Y
Y P

Y
dry

wet

() ,,
1

l kl k =W RU () , ,
1

n k n k=RU M

, ,
1
l k l k=W P () , ,

1
n k n k=P M

,
1
l kW ,

1
n kM

1-»J Δ dmx dmxN N´ *=Δ DED

ch

obj

0
0

é ù
= ê ú
ë û

U
U

U
*

ch ch ch ch=U E D J *
obj obj obj obj=U E D J

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 271	
	

The	channel	based	covariance	matrix	Ech	of	size	Nch	×	Nch	and	the	object	based	covariance	matrix	Eobj	of	
size	Nobj	×	Nobj	 are	 obtained	 from	 the	 covariance	matrix	E	 by	 selecting	 only	 the	 corresponding	main	
diagonal	blocks:	

.	

The	object-channel	cross-covariance	matrix	 	is	not	used	in	the	computations.	

The	channel	based	downmix	matrix	Dch	of	size	 	and	the	object	based	downmix	matrix		Dobj	of	
size	 	are	 obtained	 from	 the	 downmix	matrix	D	 by	 selecting	 only	 the	 corresponding	main	
diagonal	blocks:	

.	

The	 matrices	 	of	 size	 	for	 	and	 	of	 size	 	for	

	are	derived	according	to	subclause	9.5.4.2.5.	

9.5.4.2.3 	 Decorrelation		

The	pre-processing	matrix	Mpre	is	defined	for	different	output	configurations	in	Annex	B.		

The	post-processing	matrix	Mpost	is	obtained	as:	

.	

The	matrix	 	is	derived	according	to	subclause	9.5.4.2.5.	

The	decorrelated	signals	Xd	shall	be	created	from	the	decorrelator	as	specified	in	ISO/IEC	23003-1:2007,	
6.6.2,	with	bsDecorrConfig	==	0	and	a	decorrelator	index	X	according	to	Tables	B.1	and	B.2.	Hence,	the	
function	 	denotes	the	decorrelation	process:	

.	

9.5.4.2.4 	 Mixing	matrix	P	

The	following	covariance	matrices	notation	is	introduced:	

—	 The	matrix	 	representing	the	covariance	of	the	parametrically	estimated	signal	 	
and	defined	as:	

	

ch ch,obj

obj,ch obj

é ù
= ê ú
ë û

E E
E

E E

*
ch,obj obj,ch=E E

N N´dmx
ch ch

N N´dmx
obj obj

ch

obj

0
0

é ù
= ê ú
ë û

D
D

D

1-»J Δch N N´dmx dmx
ch ch

*=Δ D E Dch ch ch
1-»J Δobj N N´dmx dmx

obj obj

*=Δ D E Dobj obj obj

*
post pre pre=M M J

() 1* -
»J M Mpre pre pre

()decorrFunc ×

()decorrFunc=X M Yd pre dry

dry
YE dry *

dry dry»YE Y Y

()dry * * *=YE RU DED U R

ISO/IEC	23008-3:202X(E)	

272	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 The	matrix	 	representing	the	covariance	matrix	of	the	decorrelated	signal	 	and	
defined	as:	

	

—	 The	matrix	 	describing	difference	between	the	target	output	covariance	and	the	covariance	of	the	
parametrically	estimated	signals	and	computed	as:	

	 	

The	mixing	matrix	P	of	size	Nout	×	2Nout	is	given	by:	

	 	

The	limitation	matrix	Awet	of	size	Nout	×	Nout	is	given	by:		

	

where	 	is	a	constant	used	to	limit	the	amount	of	decorrelated	component	added	to	the	output	

signals.	The	matrix	 	representing	the	estimated	covariance	matrix	of	the	decorrelated	signals	after	
the	mixing	matrix	Pwet	has	been	applied,	and	defined	as:	

	

The	mixing	matrices	Pdry,	Pwet	of	size	Nout	×	Nout	are	obtained	according	to	the	“decorrelation	method”	as:	

—	 “Energy	compensation	method”	(bsDecorrelationMethod	==	0):	

	 Pdry	=	I	

	 	

—	 “Covariance	adjustment	method”	(bsDecorrelationMethod	==	1):	

Pdry	=	I		

	

The	matrices	V1	and	Q1	are	determined	as	the	singular	value	decomposition	of	the	matrix	 	as:	

wet
YE

wet *
wet wet»YE Y Y

wet dry * *
post pre pre post()matdiagé ù= ë ûY YE M M E M M

EΔ

dry=E - YΔ C E

é ù= ë ûP P A Pdry wet wet

()
dry

wet wet

(,)matdiag min 1, max 0, ˆmax , (,)Dec
i i
i i

l
e

æ öæ öæ öç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷ç ÷è øè øè ø

Y

Y

EA
E

4Decl =
wetˆ
YE

wet wet *
wet wet

ˆ =Y YE P E P

()
dry

wet
wet

(,) (,)max 0, ,
(,) = max , (,)

0 .

i i i i i j
i j i i

i j

e

ì æ ö-ï ç ÷ =ï ç ÷í è øï
¹ïî

Y

Y

C E
P E

()()* *
wet 1 1 1 2 2 2= invP V Q V V Q V

EΔ

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 273	
	

	

The	matrices	V2	and	Q2	are	determined	as	the	singular	value	decomposition	of	the	matrix	 	as:	

	 	

9.5.4.2.5 	 Regularized	inverse	operation	

The	regularized	inverse	matrix	J	approximating	 	is	calculated	as:	

.	

The	matrices	V	and	 	are	determined	as	the	singular	value	decomposition	of	the	matrix	Δ	as:	

.	

The	regularized	inverse	 	of	the	diagonal	singular	value	matrix	 	is	computed	according	to	subclause	
9.5.4.2.6.	

In	the	case	the	matrix	Δ	is	used	in	the	calculation	of	the	parametric	un-mixing	matrix	U,	the	operations	
described	 are	 applied	 for	 all	 sub-matrices	 .	 A	 sub-matrix	 of	 size	 ,	 with	 elements	

,	is	obtained	by	selecting	the	elements	 	corresponding	to	the	downmix	channels	
ch1	and	ch2	assigned	to	the	group	gq	(i.e.,	gq	(idx1)	=	ch1	and	gq	(idx2)	=	ch2).		

The	 group	 gq	 of	 size	 	is	 defined	 by	 the	 smallest	 set	 of	 downmix	 channels	 with	 the	 following	
properties.	

k)	 The	 input	 signals	 contained	 in	 the	downmix	channels	of	group	gq	 are	not	 contained	 in	any	other	
downmix	 channel.	 An	 input	 signal	 is	 not	 contained	 in	 a	 downmix	 channel	 if	 the	 corresponding	
downmix	gain	is	given	by	the	smallest	allowed	value	of	the	quantization	index	see	idxDMG,	as	defined	
in	ISO/IEC	23003-2.	

l)	 All	input	signals	i	contained	in	the	downmix	channels	of	group	gq	are	not	related	to	any	input	signal	
j	contained	in	any	downmix	channel	of	any	other	group	(i.e.,	bsRelatedTo[i][j]	==	0).	

The	results	of	the	independent	regularized	inversion	operations	 	are	combined	for	obtaining	the	
matrix	J	as:	

	

9.5.4.2.6 	 Regularization	of	singular	values	

The	regularized	inverse	operation	 	used	for	the	diagonal	singular	value	matrix	 	is	determined	as:	

*
1 1 1=EΔ VQ V

wet
YE

wet *
2 2 2=YE V Q V

1-»J Δ
inv *=J VΛ V

Λ

=*VΛV Δ
invΛ Λ

qΔ qΔ q qN N´g g

()1 2,q idx idxΔ ()1 2,ch chΔ

1 qN´ g

1
q q

-»J Δ

() () () ()1 2 1 1 2 2
1 2

, ,
,

0
q q qidx idx idx ch idx ch

ch ch
= =ìï= í

ïî

J g g
J

, if and
,otherwise.

()inv× Λ

ISO/IEC	23008-3:202X(E)	

274	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

The	relative	regularization	scalar	 	is	determined	using	absolute	threshold	 	and	maximal	value	of	

Λ	as	follows:	

,	 with	 	

 Dual	mode	

The	SAOC	3D	decoder	can	use	an	alternative	scheme	for	calculation	of	the	parameters	U	and	P	for	the	
upper	 frequency	 range,	 defined	 by	 parameter	 bands	 .	 This	 scheme	 is	
particularly	useful	for	downmix	signals	where	the	upper	frequency	range	is	coded	by	a	non-waveform	
preserving	coding	algorithm	e.g.	SBR	in	high	efficiency	AAC.	The	matrices	U,	Pdry	and	Pwet	are	determined	
as:	

	 U	=	GT,	

Pdry	=	I,	

Pwet	=	0.	

The	matrix	T	is	defined	as:	

	

The	matrix	 	of	size	Ndmx	×	Ndmx	for	 	is	derived	according	to	subclause	9.5.4.2.5.	

The	gain	matrix	G	of	size	Nout	×	Nout	is	given	by:	

	

The	energy	upmix	vector	 	of	size	 	is	given	by:	

	 	

The	unmixing	matrix	U	contains	the	rendering	matrix	R	thus	the	rendering	block	in	Figure	49	is	omitted	
for	the	upper	frequency	range.	

The	matrix	 ,	computed	for	every	parameter	time-slot	l,	shall	be	interpolated	over	all	time-slots	n	as	
defined	in	ISO/IEC	23003-1:2007,	6.5.2.1,	considering:	

	 for		computing	 	

(),1
,,

1 ,

0

i i reginv
i ii j

i j abs Tl
ll

L
-

ì = ³ï= = í
ï
î

Λ
 ,	if and

,	otherwise.

regT
L

regT

()(),max absreg i i regi
T TlL = 210regT

-=

pb£ <bsBandsLow numBands

*=T RD J

1-»J Δ *=Δ DD

,

,
,

0

i i
upmix

i j i

c
i j

g e
ì

=ï
= = í

ï
î

G

,	if

,	otherwise.
upmix
ie 1 outN´

()()* *upmix
ie diag matdiag eé ù= +ë ûT DED T I

() ,l kU

, ,
1
l k l k=W U , ,

1
n k n k=U M

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 275	
	

where	 	and	 	shall	be	variables	as	specified	in	ISO/IEC	23003-1.	

10 Generic	loudspeaker	rendering/format	conversion	
10.1 Description	

The	loudspeaker	renderer	converts	multichannel	signals	from	the	transmitted	channel	configuration	to	
the	desired	reproduction	format.	It	is	therefore	also	referred	to	as	a	“format	converter”.	If	the	channel	
configuration	of	the	channels	routed	to	the	format	converter	exactly	matches	the	signalled	reproduction	
layout	 (i.e.	 the	 target	 channel	 configuration),	 the	 format	 converter	 shall	 be	 bypassed.	 The	 format	
converter	consists	of	two	major	building	blocks:	
	

¾ an	 initialization	algorithm	 that	 takes	 into	account	 static	parameters	 like	 the	 input	and	output	
format;	

¾ a	signal	adaptive	downmixing	process	that	operates	in	a	subband	domain.	

	
Figure	50	—	Main	building	blocks	of	the	generic	format	converter	

In	 the	 initialization	 phase	 the	 format	 converter	 automatically	 generates	 optimized	 downmixing	
parameters	 (like	 the	 downmixing	matrix)	 for	 the	 given	 combination	 of	 input	 and	 output	 formats.	 It	
applies	an	algorithm	that	selects	for	each	input	loudspeaker	the	most	appropriate	mapping	rule	from	a	
list	of	rules	that	has	been	designed	to	incorporate	psychoacoustic	considerations.	Each	rule	describes	the	
mapping	from	one	input	channel	to	one	or	several	output	loudspeaker	channels.	

Input	channels	are		

¾ either	mapped	to	a	single	output	channel;	

¾ or	panned	to	two	output	channels;	

¾ or	(in	case	of	the	‘Voice	of	God’	channel)	distributed	over	a	larger	number	of	output	channels.	

The	optimal	mapping	for	each	input	channel	is	selected	depending	on	the	list	of	output	loudspeakers	that	
are	available	in	the	desired	output	format.	Each	mapping	defines	downmix	gains	for	the	input	channel	
under	consideration	as	well	as	potentially	also	an	equalizer	that	is	applied	to	the	input	channel	under	
consideration.	

Output	setups	with	non-standard	loudspeaker	positions	can	be	signalled	to	the	system	by	providing	the	
azimuth	and	elevation	deviations	from	a	regular	loudspeaker	setup.	

The	actual	downmixing	of	the	audio	signals	is	performed	on	a	hybrid	QMF	subband	representation	of	the	
signals.	The	algorithm	makes	use	of	two	mechanisms	to	avoid	signal	deteriorations	like	comb-filtering,	
colouration,	or	modulation	artifacts.	

,
1
l kW ,

1
n kM

��������	

������������

����
������������

���	��������

�����

���	��������
������

����
�	��	�

�����

�	����������
������

ISO/IEC	23008-3:202X(E)	

276	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

¾ Phase-alignment	of	the	multichannel	input	signals:	Correlated	input	signals	that	differ	in	phase	
are	aligned	prior	to	downmixing	them.	The	alignment	process	makes	use	of	an	attraction	measure	
to	 only	 align	 the	 relevant	 channels	 for	 the	 relevant	 time-frequency	 tiles	 and	 to	 avoid	
modifications	 to	other	parts	of	 the	 input	 signal.	The	alignment	 is	 further	 regularized	 to	avoid	
artifacts	due	to	rapid	changes	to	the	phase	alignment	modification	terms.	The	phase-alignment	
improves	the	output	signal	quality	by	avoiding	narrow	spectral	notches	due	to	out-of-phase	signal	
cancellations	 that	 cannot	 be	 compensated	 for	 by	 energy	 normalization	 because	 of	 a	 limited	
frequency	 resolution.	 It	 further	 reduces	 the	 need	 to	 boost	 signals	 in	 the	 energy	 preserving	
normalization,	thus	minimizes	modulation	artifacts.	

¾ Normalization	of	 the	downmix	process	 to	preserve	 the	 input	energies	 (except	 for	 the	desired	
energy	scaling	that	may	be	inherent	in	the	downmix	matrix).	

10.2 Definitions	

 General	remarks	

Audio	signals	that	are	fed	into	the	format	converter	are	referred	to	as	input	signals	in	the	following.	Audio	
signals	that	are	the	result	of	the	format	conversion	process	are	referred	to	as	output	signals.	Note	that	the	
audio	input	signals	of	the	format	converter	are	audio	output	signals	from	the	core	decoder.		

Vectors	 and	 matrices	 are	 denoted	 by	 bold-faced	 symbols.	 Vector	 elements	 or	 matrix	 elements	 are	
denoted	 as	 italic	 variables	 supplemented	 by	 indices	 indicating	 the	 row/column	 of	 the	 vector/matrix	
element	in	the	vector/matrix,	e.g.	 	denotes	a	vector	and	its	elements.	Similarly,	Ma,b	
denotes	the	element	in	the	ath	row	and	bth	column	of	a	matrix	M.		

 Variable	definitions	

Nin	 Number	of	channels	in	the	input	channel	configuration.	

Nout	 Number	of	channels	in	the	output	channel	configuration.	

MDMX	 Downmix	 matrix	 containing	 real-valued	 non-negative	 downmix	 coefficients	
(downmix	gains).	MDMX	is	of	dimension	(Nout	×	Nin).	

GEQ	 Matrix	 consisting	 of	 gain	 values	 per	 processing	 band	 determining	 frequency	
responses	of	equalizing	filters.	

IEQ	 Vector	signalling	which	equalizer	filters	to	apply	to	the	input	channels	(if	any).	

L	 Frame	length	measured	in	the	time	domain	audio	samples.	

ν	 Time	domain	sample	index.	

n	 QMF	time	slot	index	(=	subband	sample	index).	

Ln	 Frame	length	measured	in	QMF	slots.	

F	 Frame	index	(frame	number).	

K	 Number	of	hybrid	QMF	frequency	bands,	K=	71.	

k	 QMF	band	index	(1..64)	or	hybrid	QMF	band	index	(1..	K).	

1[]a Ny y y = y! !

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 277	
	

A,	B	 Channel	indices.	
eps	 Numerical	constant,	 .	

10.3 Processing	

 Application	of	transmitted	downmix	matrices	

10.3.1.1 General	

MPEG-H	3D	audio	allows	transmission	of	downmix	definitions	for	specific	target	channel	configurations.	
downmixIds	 are	 assigned	 to	 the	 transmitted	 downmix	 specifications,	 allowing	 DRC	 to	 adapt	 to	 the	
downmix	specification	applied	in	the	MPEG-H	decoder	(e.g.	to	select	an	appropriate	DRC	gain	sequence).	
Further,	loudness	metadata	values	may	be	coupled	with	downmixIds.	downmixIds	are	transmitted	in	the	
bitstream	 together	with	 the	downmixType	as	well	 as	 the	nominal	 loudspeaker	 layouts	 for	which	 the	
embedded	downmix	matrices	(and/or	DRC	and	loudness	data)	have	been	designed.		

In	the	MPEG-H	3D	audio	decoder	the	selection	of	a	downmixIds	thus:	

— determines	whether	transmitted	downmix	coefficients	(downmixType=1)	or	decoder	side	generated	
downmix	coefficients	(downmixType=0)	are	applied	in	the	downmix	process;	

— influences	DRC/loudness	processing.	
Even	 moderately	 displaced	 reproduction	 layouts	 benefit	 from	 the	 transmission	 and	 application	 of	
transmitted	downmix	coefficients	as	follows.	

— The	selection	of	a	significantly	different	downmix	matrix	(transmitted	vs.	decoder	generated)	results	
in	large	perceptual	changes	of	the	downmix	result.		

— The	 artistic	 intent	 of	 transmitted	 downmix	 coefficients	 would	 be	 lost	 if	 a	 transmitted	 downmix	
matrix	is	not	applied.	

Of	course,	in	the	situation	that	the	loudspeaker	displacements	of	the	reproduction	setup	are	too	large,	the	
application	of	the	transmitted	downmix	coefficients	may	result	in	a	larger	perceptual	distance	from	the	
intended	reproduction	than	the	application	of	decoder	generated	downmix	coefficients.	As	a	consequence,	
the	allowed	loudspeaker	displacement	values	are	restricted	in	the	following	matching	scheme.	

10.3.1.2 Loudspeaker	layout	matching	scheme	

The	 downmixId	matching	 algorithm	 is	 specified	 by	 the	 flowchart	 of	 Figure	51.	 It	 takes	 as	 input	 the	
geometry	 of	 the	 actual	 reproduction	 setup	 and	 outputs	 the	 present	 downmixId	 (if	 applicable).	 The	
present	downmixId	determines	the	downmix	processing	in	the	decoder	as	shown	in	subclause	10.3.1.4.	
Further,	the	present	downmixId	may	affect	DRC	and	loudness	processing.	

35eps 10-=

ISO/IEC	23008-3:202X(E)	

278	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

a	 Channel	labels	shall	be	assigned	according	to	Table	161.	
b	 CICP	Loudspeaker	Layout	definitions	according	to	Table	166.	

Figure	51	—	Flowchart	for	loudspeaker	layout	matching	and	to	determine	downmixId		

The	matching	 distance	 is	 defined	 as	 the	 sum	 of	 all	 absolute	 azimuth	 and	 elevation	 angle	 differences	
between	 the	 channel	 positions	 of	 the	 reproduction	 layout	 and	 the	 tested	 CICP	 loudspeaker	 layout,	
summed	over	all	channels	of	the	reproduction	setup,	excluding	the	LFE	channels:	

	 	

where	 	denotes	azimuth	angles	and	 	denotes	elevation	angles.	

Reproduction setup
geometry (azimuth,

elevation of all channels)

Assign channel label(s)
to each channel.a

Test all possible channel label permutations for
matches with CICP Loudspeaker Layout

definitions.b

downmixID for one of the matched
CICPLayoutIndices in bitstream? No present downmixID.No

Yes

Compute matching distance to all
matched CICPLayoutIndices for which
downmixIDs exists. See definition of

matching distance below.

Is there a single CICPLayoutIndex with
minimum matching distance? No

Yes

Select out of the CICPLayoutIndices with the same
minimum matching distance the one with the

smallest CICPLayoutIndex number.

Select this CICPLayoutIndex

Does matching downmixID exist for
downmixType==1? No

Select downmixID for downmixType==1
as present downmixID. downmixType=1.

Yes

Present dowmixID found.
downmixType=0.

{ }
matching CICPLayout, reprodcutionLayout, CICPLayout, reprodcutionLayout,

all channels
except LFEs

ch ch ch ch
ch

d j j J J
Î

= - + -å

j J

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 279	
	

Table	161	—	Channel	matching	tolerances	for	matching	downmixIds	to	reproduction	layouts	

Loudspeaker
Geometry		
(as	defined	in	
ISO/IEC	
23001-8)	

Channel	 Azimuth	
[deg]	

Elevation	
[deg]	

Azimuth	
start	

angle	of	
sector	
[deg]	

Azimuth	
end	

angle	of	
sector	
[deg]	

Elevation	
start	

angle	of	
sector	
[deg]	

Elevation	
end	angle	
of	sector	
[deg]	

Ch.	is	
LFE	

Position	
is	

relative

	 CH_EMPTY	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	 0	 0	

0	 CH_M_L030	 30	 0	 15	 45	 -15	 15	 0	 0	
1	 CH_M_R030	 -30	 0	 -45	 -15	 -15	 15	 0	 0	
2	 CH_M_000	 0	 0	 -10	 10	 -15	 15	 0	 0	
3	 CH_LFE1	 0	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
4	 CH_M_L110	 110	 0	 90	 130	 -15	 15	 0	 0	
5	 CH_M_R110	 -110	 0	 -130	 -90	 -15	 15	 0	 0	
6	 CH_M_L022	 22	 0	 7	 37	 -15	 15	 0	 0	
7	 CH_M_R022	 -22	 0	 -37	 -7	 -15	 15	 0	 0	
8	 CH_M_L135	 135	 0	 120	 150	 -15	 15	 0	 0	
9	 CH_M_R135	 -135	 0	 -150	 -120	 -15	 15	 0	 0	
10	 CH_M_180	 180	 0	 170	 190	 -15	 15	 0	 0	
13	 CH_M_L090	 90	 0	 70	 110	 -15	 15	 0	 0	
14	 CH_M_R090	 -90	 0	 -110	 -70	 -15	 15	 0	 0	
15	 CH_M_L060	 60	 0	 40	 80	 -15	 15	 0	 0	
16	 CH_M_R060	 -60	 0	 -80	 -40	 -15	 15	 0	 0	
17	 CH_U_L030	 30	 35	 15	 45	 15	 55	 0	 0	
18	 CH_U_R030	 -30	 35	 -45	 -15	 15	 55	 0	 0	
19	 CH_U_000	 0	 35	 -15	 15	 15	 55	 0	 0	
20	 CH_U_L135	 135	 35	 115	 155	 15	 55	 0	 0	
21	 CH_U_R135	 -135	 35	 -155	 -115	 15	 55	 0	 0	
22	 CH_U_180	 180	 35	 165	 195	 15	 55	 0	 0	
23	 CH_U_L090	 90	 35	 70	 110	 15	 55	 0	 0	
24	 CH_U_R090	 -90	 35	 -110	 -70	 15	 55	 0	 0	
25	 CH_T_000	 0	 90	 -180	 180	 60	 90	 0	 0	
26	 CH_LFE2	 45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
27	 CH_L_L045	 45	 -15	 25	 65	 -40	 0	 0	 0	
28	 CH_L_R045	 -45	 -15	 -65	 -25	 -40	 0	 0	 0	
29	 CH_L_000	 0	 -15	 -15	 15	 -40	 0	 0	 0	
30	 CH_U_L110	 110	 35	 90	 130	 15	 55	 0	 0	
31	 CH_U_R110	 -110	 35	 -130	 -90	 15	 55	 0	 0	
32	 CH_U_L045	 45	 35	 30	 60	 15	 55	 0	 0	
33	 CH_U_R045	 -45	 35	 -60	 -30	 15	 55	 0	 0	
34	 CH_M_L045	 45	 0	 30	 60	 -15	 15	 0	 0	
35	 CH_M_R045	 -45	 0	 -60	 -30	 -15	 15	 0	 0	
36	 CH_LFE3	 -45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
37	 CH_M_LSCR	 60	 0	 15	 80	 -15	 15	 0	 1	
38	 CH_M_RSCR	 -60	 0	 -80	 -15	 -15	 15	 0	 1	
39	 CH_M_LSCH	 30	 0	 7	 40	 -15	 15	 0	 1	
40	 CH_M_RSCH	 -30	 0	 -40	 -7	 -15	 15	 0	 1	
41	 CH_M_L150	 150	 0	 135	 165	 -15	 15	 0	 0	
42	 CH_M_R150	 -150	 0	 -165	 -135	 -15	 15	 0	 0	

NOTE					Azimuth	and	elevation	tolerance	intervals	are	defined	as	sectors,	where	azimuth	start	and	end	values	are	
connected	in	counterclockwise	direction	and	elevation	start	and	end	values	are	connected	in	ascending	elevations.	
Start	and	end	values	of	the	sectors	are	considered	part	of	the	sectors.	

ISO/IEC	23008-3:202X(E)	

280	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

10.3.1.3 Visualization	of	azimuth	tolerances	

The	following	figures	depict	the	azimuth	matching	sectors	for	each	loudspeaker.	The	tolerances	reflect	
the	non-isotropic	sound	localization	performance	of	the	human	auditory	system.	

	

a)	Top	layer

	

b)	Upper	layer

	

c)	Middle	layer

	

d)	Lower/bottom	layer	

NOTE	 Arcs	have	been	plotted	on	different	radii	just	for	clarity	of	presentation.	Nominal	positions	of	the	
channels	have	been	marked	with	asterisks	and	labels	indicating	the	nominal	azimuth	angle	in	degrees.	

Figure	52	—	Visualization	of	azimuth	tolerances	

10.3.1.4 Determination	of	downmix	processing	depending	on	present	downmixId	

The	downmix	processing	in	the	MPEG-H	decoder	is	determined	by	the	present	downmixId	as	follows.	

— If	there	is	no	present	downmixId	for	the	current	reproduction	setup,	the	downmix	coefficients	shall	
be	derived	as	specified	in	the	format	converter	initialization.	

— If	 downmixType==0	 for	 the	 present	 downmixId,	 the	 downmix	 coefficients	 shall	 be	 derived	 as	
specified	in	the	format	converter	initialization.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 281	
	

— If	 downmixType==1	 for	 the	 present	 downmixId,	 the	 downmix	 coefficients	 transmitted	 with	 the	
downmixId	shall	be	applied	in	the	downmix.	

 Application	of	transmitted	equalizer	settings	

Equalizer	 settings	 may	 be	 transmitted	 together	 with	 downmix	 matrices,	 as	 indicated	 by	 the	
EqualizerPresent	bitstream	element.	In	case	equalizer	settings	have	been	transmitted	together	with	a	
downmix	matrix	that	is	applied	in	the	format	converter,	the	equalizers	shall	be	applied	to	this	downmix	
matrix	as	follows.	

The	 transmitted	 equalizer	 parameters	 shall	 be	 decoded	 into	 frequency	 dependent	 gains	 (i.e.	 into	
equalizer	frequency	responses)	according	to	subclause	10.3.4.6.4.	Next,	the	transmitted	downmix	matrix	
gains	 shall	 be	multiplied	by	 the	 frequency	dependent	 equalizer	 gains	 to	 arrive	 at	 the	 final	 frequency	
dependent	downmix	matrix	that	shall	be	applied	in	the	downmix.	Note	that	the	assignment	of	equalizer	
gains	to	downmix	matrix	elements	is	given	by	the	vector	equalizerIndex	that	is	derived	according	to	
Table	34:	equalizerIndex	tells	for	each	input	channel	whether	an	equalizer	(and	if	any,	which)	shall	be	
applied	 to	 an	 input	 channel	 by	 applying	 the	 corresponding	 equalizer	 gains	 to	 all	 downmix	 matrix	
coefficients	associated	with	the	respective	input	channel.	

 Downmix	processing	involving	multiple	channel	groups	

10.3.3.1 General	

In	case	multiple	channel	groups	are	transmitted	in	the	MPEG-H	3D	audio	bitstream	and	routed	to	the	
format	converter,	one	instance	of	the	format	converter	shall	perform	a	downmix	of	all	 input	channels	
routed	to	the	format	converter	to	the	desired	target	channel	configuration.	Therefore,	all	channels	routed	
to	 the	 format	 converter	 are	 compiled	 in	 a	 group	of	 channels	 that	 constitutes	 the	 input	 to	 the	 format	
conversion	process.	

If	 downmix	matrices	 to	 one	 or	more	 target	 channel	 configurations	 are	 transmitted	 in	 the	 bitstream,	
downmix	 matrices	 for	 those	 target	 channel	 configurations	 shall	 be	 transmitted	 for	 all	 channel	
groups/channel	elements	present	in	the	bitstream.		

10.3.3.2 Downmix	processing	with	decoder	generated	downmix	gains	

In	case	no	appropriate	downmix	matrices	have	been	transmitted	 for	 the	signalled	target	 loudspeaker	
configuration,	 the	 downmix	 gains	 are	 generated	 during	 the	 initialization	 of	 the	 format	 converter	
according	 to	 subclause	 10.3.4.	 The	 channels	 are	 fed	 to	 the	 format	 converter	 as	 a	 group	 of	 all	 input	
channels	 routed	 to	 the	 format	 converter.	 The	 input	 channel	 configuration	 signalled	 to	 the	 format	
converter	shall	reflect	the	channel	geometry	of	this	group	of	channels.	
10.3.3.3 Downmix	processing	with	transmitted	downmix	gains	

In	 case	 downmix	 matrices	 have	 been	 transmitted	 that	 are	 applicable	 to	 the	 desired	 target	 channel	
configuration,	 those	downmix	matrices	shall	be	applied	 in	 the	 format	converter	 instead	of	generating	
downmix	gains	in	the	format	converter	initialization	process.	Whether	a	downmix	matrix	is	applicable	
for	a	desired	target	setup,	or	not,	is	determined	according	to	subclause	10.3.1.	

All	channels	(and/or	groups	of	channels)	shall	be	compiled	in	one	group	of	channels,	where	this	group	of	
channels	consists	of	blocks	of	channels	that	are	the	channels	(and/or	groups	of	channels)	routed	to	the	
format	converter.	

The	 transmitted	downmix	matrices	 assigned	 to	 the	 channels	 routed	 to	 the	 format	 converter	 shall	 be	
concatenated	according	to	the	order	of	the	blocks	of	channels	in	the	group	of	channels	that	forms	the	

ISO/IEC	23008-3:202X(E)	

282	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

input	 to	 the	 format	converter.	The	concatenated	downmix	matrix	 shall	 then	be	applied	 in	 the	 format	
converter	to	derive	the	downmixed	signal	in	the	desired	target	channel	configuration.	

 Initialization	of	the	format	converter	

10.3.4.1 General	description	of	the	initialization	

The	initialization	of	the	format	converter	is	carried	out	before	processing	of	the	audio	samples	delivered	
by	the	core	decoder	takes	place.		

The	initialization	takes	into	account	as	input	parameters.	

— The	sampling	rate	of	the	audio	data	to	process.	

— The	 channel	 configuration	 of	 the	 audio	 data	 to	 process	with	 the	 format	 converter	 (number	 and	
geometric	positions	of	input	channels).	

— The	channel	configuration	of	the	desired	output	format	(number	and	geometric	positions	of	output	
channels).	

— Optional:	Parameters	signaling	the	deviation	of	the	output	loudspeaker	positions	from	a	standard	
loudspeaker	setup	(random	setup	functionality).	

It	returns		

— a	frequency	dependent	downmix	matrix	MDMX	that	is	applied	in	the	audio	signal	processing	of	the	
format	converter.	MDMX	is	also	taken	into	account	in	the	core	decoding	process,	see	subclause	5.5.3.1.2.	

The	input	parameters	to	the	initialization	algorithm	are	listed	in	Table	162.	

Table	162	—	Format	converter	initialization	input	parameters	

	 Input	format:	number	of	channels	and	nominal	channel	setup	geometry.	

	 Output	format:	number	of	channels	and	nominal	channel	setup	geometry.	

fs	 Sampling	frequency	in	Hertz.	
razi,A	 For	each	output	channel	A,	an	azimuth	angle	is	specified,	determining	the	deviation	

from	the	standard	format	loudspeaker	azimuth.	
Rele,A	 For	 each	 output	 channel	 A,	 an	 elevation	 angle	 is	 specified,	 determining	 the	

deviation	from	the	standard	format	loudspeaker	elevation.	

Table	163	lists	the	output	parameters	that	are	derived	during	the	initialization	of	the	format	converter.	

Table	163	—	Format	converter	initialization	output	parameters	

MDMX		 Downmix	matrix	[linear	gains]	

10.3.4.2 Assignment	of	format	converter	channel	labels	to	input/output	format	channels	

The	 format	 converter	 initialization	 is	 based	on	 a	 system	of	 rules	 that	 are	defined	 in	 terms	of	 format	
converter	channel	labels,	see	Table	165.	To	allow	the	application	of	the	initialization	rules,	the	channel	
labels	have	to	be	assigned	to	the	channels	of	the	input	and	output	formats.	Each	format	converter	channel	
label	is	associated	with	a	segment	of	the	surface	of	the	unit	sphere,	as	defined	in	Table	165.	The	segments	
are	designed	to	be	non-overlapping.	

The	assignment	of	channel	labels	to	channels	is	achieved	by	geometrically	matching	the	segments	to	the	
position	data	associated	with	the	channels	of	the	input	and	output	formats.	The	azimuth	and	elevation	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 283	
	

angles	in	degrees	of	the	position	data	associated	with	the	channels	shall	be	rounded	towards	the	nearest	
integer	number	before	performing	the	channel	label	assignment.	Note	that	the	nominal	channel	positions	
shall	 be	 applied	 in	 the	 following	manner	 for	matching	 to	 channel	 label	 sectors,	 i.e.	 the	 azimuth	 and	
elevation	angles	without	taking	into	account	potential	angle	deviations	signalled	in	razi,A	and/or	rele,A.	

For	each	channel	that	is	not	an	LFE	(low	frequency	enhancement)	channel.	

If	the	nominal	position	of	the	current	channel,	defined	by	its	azimuth	angle	and	elevation	angle,	is	within	
or	on	the	border	of	one	of	the	segments	defined	in	Table	165	then:	

¾ Assign	the	corresponding	channel	label	(e.g.		CH_M_L030)	associated	with	the	matching	
segment.	

¾ Add	the	angle	differences	between	the	nominal	position	of	the	current	channel	and	the	nominal	
position	associated	with	the	matching	segment	(i.e.	the	angles	in	the	second	and	third	column	of	
Table	165)	to	the	angle	deviations	stored	in	razi,A	and	rele,A.	

Else	(i.e.	no	matching	sector	found),	then:	

¾ Assign	the	CH_EMPTY	label.	

If	an	input	or	output	format	contains	exactly	one	LFE	channel,	then	the	label	CH_LFE2	shall	be	assigned	
to	this	channel.		

If	an	input	or	output	format	contains	exactly	two	LFE	channels,	then	the	labels	CH_LFE2	and	CH_LFE3	
shall	be	assigned	to	the	two	LFE	channels	in	the	order	that	minimizes	the	maximum	azimuth	distance	of	
the	two	LFE	channels	to	the	assigned	CH_LFE2	and	CH_LFE3	nominal	azimuth	positions.	

If	an	input	or	output	format	contains	more	than	2	LFE	channels,	then	two	of	the	LFE	channels	from	the	
considered	setup	shall	be	selected	and	assigned	 that	minimize	 the	maximum	azimuth	distance	 to	 the	
CH_LFE2	and	CH_LFE3	nominal	azimuth	positions.	The	labels	CH_LFE2	and	CH_LFE3	shall	be	assigned	as	
in	 the	 case	 of	 two	 LFE	 channels.	 The	 remaining	 LFE	 channels	 shall	 not	 be	 considered	 further	 in	 the	
calculation	of	downmix	coefficients,	 i.e.	 the	corresponding	lines/columns	of	the	downmix	matrix	shall	
remain	filled	with	zeros.	

10.3.4.3 Handling	for	unknown	input	channels	

If	the	label	CH_EMPTY	is	assigned	to	an	input	channel,	this	channel	shall	be	considered	unknown	to	the	
rules-based	 initialization	 and	 the	 downmix	 coefficients	 for	mapping	 this	 input	 channel	 to	 the	 output	
channels	shall	be	derived	as	specified	in	subclause	10.3.4.6.7.	

10.3.4.4 Handling	for	unknown	output	formats	

If	the	output	format	contains	at	least	one	channel	with	the	label	CH_EMPTY	assigned	to	it,	or	if	at	least	
one	channel	label	is	assigned	to	more	than	one	channel	of	the	output	format,	the	output	format	shall	be	
considered	unknown	and	the	derivation	of	the	downmixing	coefficients	shall	be	carried	out	as	specified	
in	 subclause	 10.3.4.6.7.	 The	 rules-based	 derivation	 of	 downmix	 coefficients	 shall	 not	 be	 applied	 for	
unknown	output	formats.	

ISO/IEC	23008-3:202X(E)	

284	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

10.3.4.5 Handling	of	deviations	from	standard	loudspeaker	positions	

If	any	of	the	below	conditions	are	not	met,	the	rules-based	initialization	is	considered	to	have	failed,	the	
output	format	shall	be	considered	to	be	unknown,	and	the	downmixing	gains	shall	be	obtained	as	defined	
in	subclause	10.3.4.6.7.	

— The	absolute	values	of	razi,A	and	rele,A	shall	not	exceed	35	and	55	degrees,	respectively.	The	minimum	
angle	between	any	loudspeaker	pair	(without	LFE	channels)	shall	not	be	smaller	than	15	degrees.	

— The	values	of	razi,A	shall	be	such	that	the	ordering	by	azimuth	angles	of	the	horizontal	loudspeakers	
does	not	change.	Likewise,	the	ordering	of	the	height	and	low	loudspeakers	shall	not	change.	

— The	values	of	 rele,A	 shall	 be	 such	 that	 the	ordering	by	 elevation	 angles	 of	 loudspeakers	which	 are	
(approximately)	above/below	each	other	does	not	change.	To	verify	this,	the	following	procedure	is	
applied:	

For	each	row	of	Table	170	which	contains	two	or	three	channels	of	the	output	format,	do:	

— Order	the	channels	by	elevation	without	randomization;	
— Order	the	channels	by	elevation	with	considering	randomization;	

— If	the	two	orderings	differ,	return	an	initialization	error.	
10.3.4.6 Rules-based	initialization	algorithm	

10.3.4.6.1 General	

The	rules-based	initialization	algorithm	is	defined	in	the	following	subclauses.	The	algorithm	shall	not	be	
applied	if	the	output	format	is	considered	unknown	as	defined	in	the	previous	subclause.	For	clarity	the	
following	description	makes	use	of	intermediate	parameters	listed	in	Table	164	but	an	implementation	
may	omit	the	explicit	use	of	these	intermediate	parameters.	

Table	164	—	Format	converter	initialization	intermediate	parameters	

S Vector	of	converter	source	channels	[input	channel	indices]	
D Vector	of	converter	destination	channels	[output	channel	indices]	
G Vector	of	converter	gains	[linear]	
E Vector	of	converter	EQ	indices	
GEQ Matrix	containing	equalizer	gain	values	for	all	EQ	indices	and	frequency	

bands	

The	intermediate	parameters	describe	the	dowmixing	parameters	according	to	the	mapping,	i.e.	as	sets	
of	parameters	Si,	Di,	Gi,	Ei,	per	mapping	i.	

The	format	converter	initialization	output	parameters	are	derived	as	described	in	the	following	steps:	

10.3.4.6.2 Random	setups	pre-processing	

Random	output	loudspeaker	setups,	i.e.	output	setups	that	contain	loudspeakers	at	positions	deviating	
from	 the	positions	defined	 for	 the	desired	output	 format	 are	 signalled	by	 specifying	 the	 loudspeaker	
position	deviation	angles	as	input	parameters	razi,A	and	rele,A.	The	angle	deviations	are	taken	into	account	
as	a	pre-processing	step.	

Modify	the	channels’	azimuth	and	elevation	angles	according	to	Table	165	by	adding	razi,A	and	rele,A	to	the	
corresponding	channels’	azimuth	and	elevation	angles.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 285	
	

10.3.4.6.3 Derivation	of	input	channel/output	channel	mapping	parameters	

The	parameters	vectors	S,	D,	G,	E	define	 the	mapping	of	 input	channels	 to	output	channels.	For	each	
mapping	 i	 from	 an	 input	 channel	 to	 an	 output	 channel	with	 non-zero	 downmix	 gain	 they	 define	 the	
downmix	gain	as	well	as	an	equalizer	index	that	indicates	which	equalizer	curve	has	to	be	applied	to	the	
input	channel	under	consideration	in	mapping	i.	

The	elements	of	the	parameter	vectors	S,	D,	G,	E	are	derived	by	the	following	algorithm:	

Initialize	the	mapping	counter	i:	i	=	1.	

For	each	input	channel,	ignoring	channels	with	label	CH_EMPTY	assigned	to	them:	

If	the	input	channel	also	exists	in	the	output	format	(e.g.	input	channel	under	consideration	is	CH_M_R030	
and	channel	CH_M_R030	exists	in	the	output	format),	then:	

¾ Si	=	index	of	source	channel	in	input		
EXAMPLE	 channel	CH_M_R030	in	ChannelConfiguration	6	is	at	second	place	according	to	Table	166,	i.e.	
has	index	2	in	this	format.	

¾ Di	=	index	of	same	channel	in	output	
¾ Gi	=	1.0	
¾ Ei	=	0	
¾ i = i + 1	

	
Else	(i.e.	if	the	input	channel	does	not	exist	in	the	output	format)	

¾ search	the	first	entry	of	this	channel	in	the	Source	column	of	Table	167,	for	which	the	channels	in	
the	corresponding	row	of	the	Destination	column	exist.	The	ALL_U	destination	shall	be	
considered	valid	(i.e.	the	relevant	output	channels	exist)	if	the	output	format	contains	at	least	one	
“CH_U_”	channel.	The	ALL_M	destination	shall	be	considered	valid	(i.e.	the	relevant	output	
channels	exist)	if	the	output	format	contains	at	least	one	“CH_M_”	channel.	If	for	no	entry	in	Table	
167	corresponding	to	the	input	channel	the	channels	in	the	Destination	column	exist,	the	rules-
based	initialization	shall	terminate	and	the	downmix	gains	shall	be	derived	according	to	
subclause	10.3.4.6.7.	
	
If	Destination	column	contains	ALL_U,	then:	

For	each	output	channel	x	with	“CH_U_”	in	its	name,	do:	

¾ Si =	index	of	source	channel	in	input		
¾ Di =	index	of	channel	x	in	output	
¾ Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_U_”	output	channels)	
¾ Ei	=	value	of	EQ	column	
¾ i = i + 1	

	
Else	if	Destination	column	contains	ALL_M,	then:	

For	each	output	channel	x	with	“CH_M_”	in	its	name,	do:	

¾ Si	=	index	of	source	channel	in	input	
¾ Di	=	index	of	channel	x	in	output	
¾ Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_M_”	output	channels)	

ISO/IEC	23008-3:202X(E)	

286	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

¾ Ei	=	value	of	EQ	column	
¾ i = i + 1	
	

Else	If	there	is	one	channel	in	the	Destination	column,	then:	

¾ Si	=	index	of	source	channel	in	input	
¾ Di	=	index	of	destination	channel	in	output	
¾ Gi	=	value	of	Gain	column	
¾ Ei	=	value	of	EQ	column	
¾ i = i + 1	
	

Else	(two	channels	in	Destination	column)	

¾ Si	=	index	of	source	channel	in	input	
¾ Di	=	index	of	first	destination	channel	in	output	
¾ Gi	=	(value	of	Gain	column)	×	g1		
¾ Ei	=	value	of	EQ	column	
¾ i = i + 1	

	

¾ Si =	Si -1	
¾ Di	=	index	of	second	destination	channel	in	output	
¾ Gi	=	(value	of	Gain	column)	×	g2	
¾ Ei	=	Ei -1 	
¾ i = i + 1	

	
The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	
way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	angles	of	the	destination	channels	are	 	and	 	(see	Table	165).	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

— 	

— 	

— 	

— 	

1a 2a

srca

1 2
0 2

a a
a

-
=

1 2
center 2

a aa +
=

() ()center src 2 1sgna a a a a= - × -

10
0

1 2 102 2
0

tan tan 101, with
tan tan 101 1

gg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 287	
	

10.3.4.6.4 Derivation	of	equalizer	gains	GEQ	

GEQ	comprises	a	set	of	gain	values	for	each	frequency	band	k	and	equalizer	 index	e.	The	5	predefined	
equalizers	are	combinations	of	different	peak	filters.	Each	equalizer	is	a	serial	cascade	of	one	or	more	
peak	filters	and	an	associated	gain:	

	

where	band(k)	is	the	normalized	centre	frequency	of	frequency	band	k,	specified	in	Table	168,	fs	is	the	
sampling	frequency,	and	function	peak()	is	for	negative	G:	

	

and	otherwise	

	

The	parameters	for	the	equalizers	are	specified	in	Table	169.	

10.3.4.6.5 Post-processing	for	random	setups	

Once	the	output	parameters	are	computed,	they	are	modified	according	to	the	specific	random	azimuth	
and	elevations	angles.	This	step	only	has	to	be	carried	out,	if	not	all	rele,A	are	zero.	The	post-processing	
algorithm	proceeds	as	follows.	

For	each	element	i	in	Di,	do:	

if	the	output	channel	with	index	Di	is	a	horizontal	channel	by	definition	(i.e.	output	channel	label	contains	
the	label	‘_M_’),	and	

if	this	output	channel	is	now	a	height	channel	(elevation	in	range	0..60	degrees),	and	

if	input	channel	with	index	Si	is	a	height	channel	(i.e.	label	contains	‘_U_’),	then	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35;	

¾ ;	

¾ Apply	compensation	gain	to	DMX	gain:	 ;	

20
EQ, , , ,

1
10 peak () , , ,

2=

æ ö= ç ÷
è ø

Õ
g N

k s
e f n Q n g n

n

fG band k P P P

()
4 2 2 4

2

10
4 2 2 4

2

1 2
peak , , ,G

10 2

G

b f b f
Q

b f Q

b f b f
Q

-

æ ö
+ - +ç ÷
è ø=
æ ö
ç ÷+ - +ç ÷ç ÷
è ø

()

10
4 2 2 4

2

4 2 2 4
2

10 2

peak , , ,G
1 2

G

b f b f
Q

b f Q
b f b f

Q

æ ö
ç ÷+ - +ç ÷ç ÷
è ø=
æ ö

+ - +ç ÷
è ø

()comp
1 1
0.85

G h h= × + -

compi iG G G= ×

ISO/IEC	23008-3:202X(E)	

288	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

¾ 	Define	new	equalizer	with	a	new	index	e,	where	 ;	
¾ Ei	=	e;	

else	if	input	channel	with	index	Si	is	a	horizontal	channel	(label	contains	‘_M_’)	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35;	
¾ Define	new	equalizer	with	a	new	index	e,	where	;

;	
¾ Ei	=	e.	

Explanation	of	the	post-processing	steps	defined	above:	

h	is	a	normalized	elevation	parameter	indicating	the	elevation	of	a	nominally	horizontal	output	channel	
(‘_M_’)	due	to	a	random	setup	elevation	offset	rele,A.	For	zero	elevation	offset	h=0	follows	and	effectively	
no	post-processing	is	applied.	

The	rules	table	(Table	167)	in	general	applies	a	gain	of	0.85	when	mapping	an	upper	input	channel	(‘_U_’	
in	 channel	 label)	 to	 one	or	 several	 horizontal	 output	 channels	 (‘_M_’	 in	 channel	 label(s)).	 In	 case	 the	
output	 channel	gets	elevated	due	 to	a	 random	setup	elevation	offset	 rele,A,	 the	gain	of	0.85	 is	partially	
(0<h<1)	or	fully	(h=1)	compensated	for.	Similarly	the	equalizer	definitions	fade	towards	a	flat	EQ-curve	
()	for	h	approaching	h	=1.	

In	case	a	horizontal	input	channel	gets	mapped	to	an	output	channel	that	gets	elevated	due	to	a	random	
setup	elevation	offset	rele,A,	the	equalizer	 	is	partially	(0<h<1)	or	fully	(h=1)	applied.	

10.3.4.6.6 Derivation	of	rules-based	initialization	downmix	matrix:	

MDMX	 is	derived	by	rearranging	 the	 temporary	parameters	 from	the	mapping-oriented	representation	
(enumerated	by	mapping	counter	i)	to	a	channel-oriented	representation	as	defined	in	the	following:	

Initialize	 as	an	Nout	×	Nin	zero	matrix	for	all	processing	bands	k.	

For	each	i	do:	

If	()	

	

Else	

	 	 	

where	 	denotes	the	matrix	element	in	the	Ath	row	and	Bth	column	of	 .	Note	that	after	the	
rules-based	initialization	this	matrix	of	downmix	coefficients	will	contain	columns	of	zeros,	if	unknown	
channels	are	present	in	the	input	format.	Those	columns	are	filled	with	downmix	gains	as	specified	in	
subclause	10.3.4.6.7.	

, ,(1) G= + - ×
i

k k
EQ e EQ EG h h

, ,5 ,G (1) G= × + - ×
i

k k k
EQ e EQ EQ EG h h

, . 1.0= =k
EQ eG const

,5
k
EQG

DMX
kM

0iE =

DMX, , for , , 0k
A B i i iM G A D B S k K= = = £ <

DMX, , , for , , 1= × = = £ <
i

k k
A B i EQ E i iM G G A D B S k K

DMX, ,
k

A BM DMX
kM

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 289	
	

10.3.4.6.7 VBAP-based	downmix	coefficients	derivation	

This	subclause	defines	how	downmix	gains	are	derived	in	a	generic	manner	using	VBAP	in	the	case	of	
unknown	output	formats	or	unknown	input	channels.	The	following	restrictions	apply.	

— If	the	target	setup	contains	at	least	one	LFE,	then	map	each	LFE	channel	directly	to	the	LFE	of	the	
target	 setup	 that	 minimizes	 the	 azimuth	 angle	 deviation.	 No	 VBAP-based	 downmix	 coefficients	
derivation	shall	be	applied	for	the	LFE	channels.	The	downmix	coefficient	for	the	direct	mapping	shall	
be	set	to	unity	gain,	i.e.	to	1.0.	

— Otherwise	apply	the	VBAP-based	downmix	coefficients	derivation	defined	in	the	following	also	to	the	
LFE	channels.	

Handling	of	unknown	output	formats:	

In	case	the	output	format	is	considered	unknown,	the	downmix	coefficients	for	all	input	channels	shall	
be	derived	as	follows.	

Each	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	the	azimuth	
and	elevation	angles	associated	with	the	input	channel.	For	each	input	channel	the	mixing	gains	to	all	
output	loudspeakers	are	calculated	as	VBAP	panning	gains	gscaled	according	to	subclause	8.4.4,	where	the	
same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	converter.	The	panning	gain	
vectors	gscaled	shall	be	post-processed	according	to	subclause	10.3.4.6.8.	

The	 downmix	matrix	 is	 finally	 derived	 by	 filling	 each	matrix	 column	with	 the	 post-processed	
panning	gain	vector	elements	of	the	corresponding	input	channel,	independently	of	the	processing	band	
index	k.	

Handling	of	unknown	input	channels:	

In	case	the	input	format	contains	unknown	input	channels,	the	downmix	coefficients	for	these	channels	
shall	be	derived	as	follows.	

Each	unknown	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	
the	azimuth	and	elevation	angles	associated	with	the	input	channel.	For	each	unknown	input	channel	the	
mixing	 gains	 to	 all	 output	 loudspeakers	 are	 calculated	 as	 VBAP	 panning	 gains	 gscaled	 according	 to	
subclause	8.4.4,	where	the	same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	
converter.	The	panning	gain	vectors	gscaled	shall	be	post-processed	according	to	subclause	10.3.4.6.8.	

The	 downmix	 matrix	 is	 finally	 derived	 by	 filling	 each	 matrix	 column,	 corresponding	 to	 an	
unknown	 input	 channel,	with	 the	post-processed	panning	 gain	 vector	 elements	 of	 the	 corresponding	
unknown	input	channel,	independently	of	the	processing	band	index	k.	

10.3.4.6.8 VBAP	gains	post-processing	

The	mixing	gains	obtained	from	the	VBAP	rendering	algorithm	shall	be	post-processed	to	avoid	excessive	
use	of	phantom	sources.	Therefore,	small	matrix	gains	are	set	to	zero,	followed	by	a	renormalization	of	
the	panning	gains	to	ensure	energy-preservation.	

For	each	panning	gain	vector	gscaled	do:	

—	 If	the	vector	contains	at	least	one	panning	gain	that	exceeds	the	threshold	value	0.3,	then;	

—	 Set	all	vector	elements	smaller	or	equal	to	0,3	to	the	value	0,0;	

DMX
kM

DMX
kM

ISO/IEC	23008-3:202X(E)	

290	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 Normalize	the	gain	vector	such	that	the	sum	of	squares	of	the	vector	elements	remains	the	same	as	
before	the	post-processing.	

10.3.4.7 Format	converter	initialization	tables	

Table	165	lists	channel	labels,	corresponding	azimuth	and	elevation	angles,	and	associated	sectors.	The	
sectors	are	defined	as	points	on	the	unit	sphere,	whose	azimuth/elevation	angles	are	within	or	on	the	
borders	of	 the	 intervals	given	by	 the	azimuth/elevation	 start	 and	end	values	 in	 the	 table,	 connecting	
azimuth	start	and	end	values	 in	a	counter-clockwise	direction	and	connecting	elevation	start	and	end	
values	in	the	direction	of	increasing	elevation	angles.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 291	
	

Table	165	—	Channels	definitions:	Channel	labels,	corresponding	azimuth	and	elevation	angles,	
and	associated	sectors	

Loudspeaker
Geometry		
(as	defined	in	
ISO/IEC	
23001-8)	

Channel	 Azimuth	
[deg]	

Elevat
ion	
[deg]	

Azimuth	
start	angle	
of	sector	
[deg]	

Azimuth	
end	angle	
of	sector	
[deg]	

Elevation	
start	

angle	of	
sector	
[deg]	

Elevation	
end	angle	
of	sector	
[deg]	

Ch.	
is	
LFE	

Position	
is	

relative

	 CH_EMPTY	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	 0	 0	

0	 CH_M_L030	 +30	 0	 +23	 +37	 -9	 +20	 0	 0	
1	 CH_M_R030	 -30	 0	 -37	 -23	 -9	 +20	 0	 0	
2	 CH_M_000	 0	 0	 -7	 +7	 -9	 +20	 0	 0	
3	 CH_LFE1	 0	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
4	 CH_M_L110	 +110	 0	 +101	 +124	 -45	 +20	 0	 0	
5	 CH_M_R110	 -110	 0	 -124	 -101	 -45	 +20	 0	 0	
6	 CH_M_L022	 +22	 0	 +8	 +22	 -9	 +20	 0	 0	
7	 CH_M_R022	 -22	 0	 -22	 -8	 -9	 +20	 0	 0	
8	 CH_M_L135	 +135	 0	 125	 142	 -45	 +20	 0	 0	
9	 CH_M_R135	 -135	 0	 -142	 -125	 -45	 +20	 0	 0	
10	 CH_M_180	 180	 0	 158	 -158	 -45	 +20	 0	 0	
13	 CH_M_L090	 +90	 0	 +76	 +100	 -45	 +20	 0	 0	
14	 CH_M_R090	 -90	 0	 -100	 -76	 -45	 +20	 0	 0	
15	 CH_M_L060	 +60	 0	 +53	 +75	 -9	 +20	 0	 0	
16	 CH_M_R060	 -60	 0	 -75	 -53	 -9	 +20	 0	 0	
17	 CH_U_L030	 +30	 +35	 +11	 +37	 +21	 +60	 0	 0	
18	 CH_U_R030	 -30	 +35	 -37	 -11	 +21	 +60	 0	 0	
19	 CH_U_000	 0	 +35	 -10	 +10	 +21	 +60	 0	 0	
20	 CH_U_L135	 +135	 +35	 +125	 +157	 +21	 +60	 0	 0	
21	 CH_U_R135	 -135	 +35	 -157	 -125	 +21	 +60	 0	 0	
22	 CH_U_180	 180	 +35	 +158	 -158	 +21	 +60	 0	 0	
23	 CH_U_L090	 +90	 +35	 +67	 +100	 +21	 +60	 0	 0	
24	 CH_U_R090	 -90	 +35	 -100	 -67	 +21	 +60	 0	 0	
25	 CH_T_000	 0	 +90	 -180	 +180	 +61	 +90	 0	 0	
26	 CH_LFE2	 +45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
27	 CH_L_L045	 +45	 -15	 +11	 +75	 -45	 -10	 0	 0	
28	 CH_L_R045	 -45	 -15	 -75	 -11	 -45	 -10	 0	 0	
29	 CH_L_000	 0	 -15	 -10	 +10	 -45	 -10	 0	 0	
30	 CH_U_L110	 +110	 +35	 +101	 +124	 +21	 +60	 0	 0	
31	 CH_U_R110	 -110	 +35	 -124	 -101	 +21	 +60	 0	 0	
32	 CH_U_L045	 +45	 +35	 +38	 +66	 +21	 +60	 0	 0	
33	 CH_U_R045	 -45	 +35	 -66	 -38	 +21	 +60	 0	 0	
34	 CH_M_L045	 +45	 0	 +38	 +52	 -9	 +20	 0	 0	
35	 CH_M_R045	 -45	 0	 -52	 -38	 -9	 +20	 0	 0	
36	 CH_LFE3	 -45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
37	 CH_M_LSCR	 +60	 0	 n/a		 n/a	 n/a	 n/a	 0	 1	
38	 CH_M_RSCR	 -60	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	
39	 CH_M_LSCH	 +30	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	
40	 CH_M_RSCH	 -30	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	
41	 CH_M_L150	 +150	 0	 143	 157	 -45	 +20	 0	 0	
42	 CH_M_R150	 -150	 0	 -157	 -143	 -45	 +20	 0	 0	

ISO/IEC	23008-3:202X(E)	

292	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	166	—	Formats	with	corresponding	number	of	channels	and	channel	ordering	

Loudspeaker	layout	
index	or	

ChannelConfiguration		
as	defined	in	

ISO/IEC	23001-8	

Number	of	
channels	 Channels	(with	ordering)

1	 1	 CH_M_000	
2	 2	 CH_M_L030,	CH_M_R030	
3	 3	 CH_M_L030,	CH_M_R030,	CH_M_000	
4	 4	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M180	
5	 5	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M_L110,	CH_M_R110	
6	 6	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110	
7	 8	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L060,	CH_M_R060	
8 	 n.a.	
9	 3	 CH_M_L030,	CH_M_R030,	CH_M_180	
10	 4	 CH_M_L030,	CH_M_R030,	CH_M_L110,	CH_M_R110	
11	 7	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_180	
12	 8	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L135,	CH_M_R135	
13	 24	 CH_M_L060,	CH_M_R060,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	

CH_M_L030,	CH_M_R030,	CH_M_180,	CH_LFE3,	CH_M_L090,	CH_M_R090,	
CH_U_L045,	CH_U_R045,	CH_U_000,	CH_T_000,	CH_U_L135,	CH_U_R135,	
CH_U_L090,	CH_U_R090,	CH_U_180,	CH_L_000,	CH_L_L045,	CH_L_R045	

14	 8	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030	

15	 12	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	
CH_LFE3,	CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_180	

16	 10	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_L110,	CH_U_R110	

17	 12	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_000,	CH_U_L110,	CH_U_R110,	CH_T_000	

18	 14	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_M_L150,	CH_M_R150,	CH_U_L030,	CH_U_R030,	CH_U_000,	
CH_U_L110,	CH_U_R110,	CH_T_000	

19	 12	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L030,	CH_U_R030,	CH_U_L135,	
CH_U_R135	

20	 14	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_L135,	
CH_U_R135,	CH_M_LSCR,	CH_M_RSCR	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 293	
	

Table	167	—	Converter	rules	matrix	

Source	 Destination	 Gain	 EQ	index

CH_M_000	 CH_M_L022,	CH_M_R022	 1.0	 0	(off)										
CH_M_000	 CH_M_L030,	CH_M_R030	 1.0	 0	(off)										
CH_M_L022	 CH_M_000,	CH_M_L030	 1.0	 0	(off)										
CH_M_L022	 CH_M_L030	 1.0		 0	(off)										
CH_M_R022	 CH_M_000,	CH_M_R030	 1.0	 0	(off)										
CH_M_R022	 CH_M_R030	 1.0		 0	(off)										
CH_M_L045	 CH_M_L030,	CH_M_L060	 1.0	 0	(off)										
CH_M_L045	 CH_M_L030	 1.0		 0	(off)										
CH_M_R045	 CH_M_R030,	CH_M_R060	 1.0	 0	(off)										
CH_M_R045	 CH_M_R030	 1.0		 0	(off)										
CH_M_L060	 CH_M_L045,	CH_M_L090	 1.0	 0	(off)										
CH_M_L060	 CH_M_L030,	CH_M_L090	 1.0	 0	(off)										
CH_M_L060	 CH_M_L045,	CH_M_L110	 1.0	 0	(off)										
CH_M_L060	 CH_M_L030,	CH_M_L110	 1.0	 0	(off)										
CH_M_L060	 CH_M_L030	 0.8		 0	(off)										
CH_M_R060	 CH_M_R045,	CH_M_R090	 1.0					 0	(off)										
CH_M_R060	 CH_M_R030,	CH_M_R090	 1.0					 0	(off)										
CH_M_R060	 CH_M_R045,	CH_M_R110	 1.0					 0	(off)										
CH_M_R060	 CH_M_R030,	CH_M_R110	 1.0					 0	(off)										
CH_M_R060	 CH_M_R030	 0.8	 0	(off)										
CH_M_L090	 CH_M_L060,	CH_M_L110	 1.0	 0	(off)										
CH_M_L090	 CH_M_L045,	CH_M_L110	 1.0	 0	(off)										
CH_M_L090	 CH_M_L030,	CH_M_L110	 1.0	 0	(off)										
CH_M_L090	 CH_M_L030	 0.8		 0	(off)										
CH_M_R090	 CH_M_R060,		CH_M_R110	 1.0		 0	(off)										
CH_M_R090	 CH_M_R045,		CH_M_R110	 1.0		 0	(off)										
CH_M_R090	 CH_M_R030,		CH_M_R110	 1.0		 0	(off)										
CH_M_R090	 CH_M_R030	 0.8	 0	(off)										
CH_M_L110	 CH_M_L135	 1.0	 0	(off)										
CH_M_L110	 CH_M_L090	 0.8	 0	(off)										
CH_M_L110	 CH_M_L045	 0.8	 0	(off)										
CH_M_L110	 CH_M_L030	 0.8	 0	(off)										
CH_M_R110	 CH_M_R135	 1.0	 0	(off)										
CH_M_R110	 CH_M_R090	 0.8	 0	(off)										
CH_M_R110	 CH_M_R045	 0.8	 0	(off)										
CH_M_R110	 CH_M_R030	 0.8	 0	(off)										
CH_M_L135	 CH_M_L110	 1.0	 0	(off)										
CH_M_L135	 CH_M_L150	 1.0	 0	(off)										
CH_M_L135	 CH_M_L090	 0.8	 0	(off)										
CH_M_L135	 CH_M_L045	 0.8	 0	(off)										
CH_M_L135	 CH_M_L030	 0.8	 0	(off)										
CH_M_R135	 CH_M_R110	 1.0	 0	(off)										
CH_M_R135	 CH_M_R150	 1.0	 0	(off)										
CH_M_R135	 CH_M_R090	 0.8	 0	(off)										
CH_M_R135	 CH_M_R045	 0.8	 0	(off)										
CH_M_R135	 CH_M_R030	 0.8	 0	(off)										
CH_M_L150	 CH_M_L135	 1.0	 0	(off)										
CH_M_L150	 CH_M_L110	 1.0	 0	(off)										
CH_M_L150	 CH_M_L045	 0.8	 0	(off)										
CH_M_L150	 CH_M_L030	 0.8	 0	(off)										
CH_M_R150	 CH_M_R135	 1.0	 0	(off)										

ISO/IEC	23008-3:202X(E)	

294	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Source	 Destination	 Gain	 EQ	index

CH_M_R150	 CH_M_R110	 1.0	 0	(off)										
CH_M_R150	 CH_M_R045	 0.8	 0	(off)										
CH_M_R150	 CH_M_R030	 0.8	 0	(off)										
CH_M_180	 CH_M_R150,		CH_M_L150	 1.0	 0	(off)										
CH_M_180	 CH_M_R135,		CH_M_L135	 1.0	 0	(off)										
CH_M_180	 CH_M_R110,		CH_M_L110	 1.0	 0	(off)										
CH_M_180	 CH_M_R090,		CH_M_L090	 0.8	 0	(off)										
CH_M_180	 CH_M_R045,		CH_M_L045	 0.6	 0	(off)										
CH_M_180	 CH_M_R030,		CH_M_L030	 0.6	 0	(off)										
CH_U_000	 CH_U_L030,		CH_U_R030	 1.0	 1										
CH_U_000	 CH_M_L030,		CH_M_R030	 0.85	 0	(off)										
CH_U_L045	 CH_U_L030	 1.0	 0	(off)										
CH_U_L045	 CH_M_L045	 0.85	 1	
CH_U_L045	 CH_M_L030	 0.85	 1	
CH_U_R045	 CH_U_R030	 1.0	 0	(off)										
CH_U_R045	 CH_M_R045	 0.85	 1	
CH_U_R045	 CH_M_R030	 0.85	 1	
CH_U_L030	 CH_U_L045	 1.0	 0	(off)										
CH_U_L030	 CH_M_L030	 0.85	 1	
CH_U_R030	 CH_U_R045	 1.0	 0	(off)										
CH_U_R030	 CH_M_R030	 0.85	 1	
CH_U_L090	 CH_U_L030,		CH_U_L110	 1.0	 0	(off)										
CH_U_L090	 CH_U_L030,		CH_U_L135	 1.0	 0	(off)										
CH_U_L090	 CH_U_L045	 0.8	 0	(off)										
CH_U_L090	 CH_U_L030	 0.8	 0	(off)										
CH_U_L090	 CH_M_L045,		CH_M_L110	 0.85	 2	
CH_U_L090	 CH_M_L030,		CH_M_L110	 0.85	 2	
CH_U_L090	 CH_M_L030	 0.85	 2	
CH_U_R090	 CH_U_R030,		CH_U_R110	 1.0	 0	(off)										
CH_U_R090	 CH_U_R030,		CH_U_R135	 1.0	 0	(off)										
CH_U_R090	 CH_U_R045	 0.8	 0	(off)										
CH_U_R090	 CH_U_R030	 0.8	 0	(off)										
CH_U_R090	 CH_M_R045,		CH_M_R110	 0.85	 2	
CH_U_R090	 CH_M_R030,		CH_M_R110	 0.85	 2	
CH_U_R090	 CH_M_R030	 0.85	 2	
CH_U_L110	 CH_U_L135	 1.0	 0	(off)										
CH_U_L110	 CH_U_L090	 0.8	 0	(off)										
CH_U_L110	 CH_U_L045	 0.8	 0	(off)										
CH_U_L110	 CH_U_L030	 0.8	 0	(off)										
CH_U_L110	 CH_M_L110	 0.85	 2	
CH_U_L110	 CH_M_L045	 0.85	 2	
CH_U_L110	 CH_M_L030	 0.85	 2	
CH_U_R110	 CH_U_R135	 1.0	 0	(off)										
CH_U_R110	 CH_U_R090	 0.8	 0	(off)										
CH_U_R110	 CH_U_R045	 0.8	 0	(off)										
CH_U_R110	 CH_U_R030	 0.8	 0	(off)										
CH_U_R110	 CH_M_R110	 0.85	 2	
CH_U_R110	 CH_M_R045	 0.85	 2	
CH_U_R110	 CH_M_R030	 0.85	 2	
CH_U_L135	 CH_U_L110	 1.0	 0	(off)										
CH_U_L135	 CH_U_L090	 0.8	 0	(off)										
CH_U_L135	 CH_U_L045	 0.8	 0	(off)										
CH_U_L135	 CH_U_L030	 0.8	 0	(off)										

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 295	
	

Source	 Destination	 Gain	 EQ	index

CH_U_L135	 CH_M_L110	 0.85	 2	
CH_U_L135	 CH_M_L045	 0.85	 2	
CH_U_L135	 CH_M_L030	 0.85	 2	
CH_U_R135	 CH_U_R110	 1.0	 0	(off)										
CH_U_R135	 CH_U_R090	 0.8	 0	(off)										
CH_U_R135	 CH_U_R045	 0.8	 0	(off)										
CH_U_R135	 CH_U_R030	 0.8	 0	(off)										
CH_U_R135	 CH_M_R110	 0.85	 2	
CH_U_R135	 CH_M_R045	 0.85	 2	
CH_U_R135	 CH_M_R030	 0.85	 2	
CH_U_180	 CH_U_R135,		CH_U_L135	 1.0	 0	(off)										
CH_U_180	 CH_U_R110,		CH_U_L110	 1.0	 0	(off)										
CH_U_180	 CH_M_180	 0.85	 2	
CH_U_180	 CH_M_R110,		CH_M_L110	 0.85	 2	
CH_U_180	 CH_U_R030,	CH_U_L030	 0.8	 0	(off)										
CH_U_180	 CH_M_R030,		CH_M_L030	 0.85	 2	
CH_T_000	 ALL_U	 0.8	 3	
CH_T_000	 ALL_M	 0.8	 4	
CH_L_000	 CH_M_000	 1.0	 0	(off)										
CH_L_000	 CH_M_L030,		CH_M_R030	 1.0	 0	(off)										
CH_L_L045	 CH_M_L045	 1.0	 0	(off)										
CH_L_L045	 CH_M_L030	 1.0	 0	(off)										
CH_L_R045	 CH_M_R045	 1.0	 0	(off)										
CH_L_R045	 CH_M_R030	 1.0	 0	(off)										
CH_LFE2	 CH_LFE3	 1.0	 0	(off)										
CH_LFE2	 CH_M_L030,		CH_M_R030	 1.0	 0	(off)										
CH_LFE3	 CH_LFE2	 1.0	 0	(off)										
CH_LFE3	 CH_M_L030,		CH_M_R030	 1.0	 0	(off)										

Table	168	—	Normalized	centre	frequencies	of	the	71	filter-bank	bands	

Normalized	frequency	[0,	1]

0,004	583	30	
0,000	833	33	
0,002	083	30	
0,005	875	00	
0,009	791	70	
0,014	292	00	
0,019	792	00	
0,027	000	00	
0,035	417	00	
0,042	625	00	
0,056	750	00	
0,072	375	00	
0,088	000	00	
0,103	620	00	
0,119	250	00	
0,134	870	00	
0,150	500	00	
0,166	120	00	
0,181	750	00	
0,197	370	00	
0,213	000	00	

ISO/IEC	23008-3:202X(E)	

296	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Normalized	frequency	[0,	1]

0,228	620	00	
0,244	250	00	
0,259	880	00	
0,275	500	00	
0,291	130	00	
0,306	750	00	
0,322	380	00	
0,338	000	00	
0,353	630	00	
0,369	250	00	
0,384	880	00	
0,400	500	00	
0,416	130	00	
0,431	750	00	
0,447	380	00	
0,463	000	00	
0,478	630	00	
0,494	250	00	
0,509	870	00	
0,525	500	00	
0,541	120	00	
0,556	750	00	
0,572	370	00	
0,588	000	00	
0,603	620	00	
0,619	250	00	
0,634	870	00	
0,650	500	00	
0,666120	00	
0,681	750	00	
0,697	370	00	
0,713	000	00	
0,728	620	00	
0,744	250	00	
0,759	870	00	
0,775	500	00	
0,791	120	00	
0,806	750	00	
0,822	370	00	
0,838	000	00	
0,853	620	00	
0,869	250	00	
0,884	870	00	
0,900	500	00	
0,916	120	00	
0,931	750	00	
0,947	370	00	
0,963	000	00	
0,974	540	00	
0,999	040	00	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 297	
	

Table	169	—	Equalizer	parameters	

Equalizer	 Pf	[Hz]	 PQ	 Pg[dB]	 g	[dB]

	 12	000	 0,3	 -2	 1,0	

	 12	000	 0,3	 -3,5	 1,0	

	 200,1	300,	600	 0,3,	0,5,	1,0	 -6,5,	1,8,	2,0	 0,7	

	 5	000,	1	100	 1,0,	0,8	 4,5,	1,8	 -3,1	

	 35	 0,25	 -1,3	 1,0	

Table	170	—	Vertically	corresponding	channels:	Each	row	lists	channels	which	are	considered	to	
be	above/below	each	other	

CH_L_000	 	CH_M_000	 		CH_U_000	
CH_L_L045	 CH_M_L030	 	CH_U_L030	
CH_L_L045	 CH_M_L030	 	CH_U_L045	
CH_L_L045	 CH_M_L045	 	CH_U_L030	
CH_L_L045	 CH_M_L045	 	CH_U_L045	
CH_L_L045	 CH_M_L060	 	CH_U_L030	
CH_L_L045	 CH_M_L060	 	CH_U_L045	
CH_L_R045	 CH_M_R030	 	CH_U_R030	
CH_L_R045	 CH_M_R030	 	CH_U_R045	
CH_L_R045	 CH_M_R045	 	CH_U_R030	
CH_L_R045	 CH_M_R045	 	CH_U_R045	
CH_L_R045	 CH_M_R060	 	CH_U_R030	
CH_L_R045	 CH_M_R060	 	CH_U_R045	
CH_M_180	 	CH_U_180	 	
CH_M_L090	 CH_U_L090	 	
CH_M_L110	 CH_U_L110	 	
CH_M_L135	 CH_U_L135	 	
CH_M_L090	 CH_U_L110	 	
CH_M_L090	 CH_U_L135	 	
CH_M_L110	 CH_U_L090	 	
CH_M_L110	 CH_U_L135	 	
CH_M_L135	 CH_U_L090	 	
CH_M_L135	 CH_U_L135	 	
CH_M_R090	 CH_U_R090	 	
CH_M_R110	 CH_U_R110	 	
CH_M_R135	 CH_U_R135	 	
CH_M_R090	 CH_U_R110	 	
CH_M_R090	 CH_U_R135	 	
CH_M_R110	 CH_U_R090	 	
CH_M_R110	 CH_U_R135	 	
CH_M_R135	 CH_U_R090	 	
CH_M_R135	 CH_U_R135	 	

EQ,1G

EQ,2G

EQ,3G

EQ,4G

EQ,5G

ISO/IEC	23008-3:202X(E)	

298	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Audio	signal	processing	

10.3.5.1 General	

The	audio	processing	block	of	the	format	converter	obtains	time	domain	audio	samples	for	Nin	channels	
from	the	core	decoder	and	generates	a	downmixed	time	domain	audio	output	signal	consisting	of	Nout	
channels.	

The	processing	takes	as	input	

¾ the	audio	data	decoded	by	the	core	decoder,	and	

¾ the	static	downmix	matrix	MDMX	returned	by	the	initialization	of	the	format	converter.	

It	 returns	 an	Nout-channel	 time	domain	output	 signal	 for	 the	OutConf	 channel	 configuration	 signalled	
during	the	initialization	of	the	format	converter.	

The	format	converter	operates	on	contiguous,	non-overlapping	frames	of	 length	L=2048	time	domain	
samples	of	the	input	audio	signals	and	outputs	one	frame	of	L	samples	per	processed	input	frame	of	length	
L.	

10.3.5.2 T/F-transform	(hybrid	QMF	analysis)	

As	the	first	processing	step,	the	converter	transforms	L=2048	samples	of	the	Nin	channel	time	domain	

input	signal	 	to	a	hybrid	QMF	Nin	channel	signal	representation	consisting	of	Ln	=	32	

QMF	time	slots	(slot	index	n)	and	K	=	71	frequency	bands	(band	index	k).	A	QMF	analysis	according	to	
ISO/IEC	14496-3:2009,	subclause	4.6.18.4,	is	performed	first:	

	with	 	and	 	
followed	by	a	hybrid	analysis:	

	

The	hybrid	filtering	shall	be	carried	out	as	specified	in	ISO/IEC	14496-3:2009,	8.6.4.3	for	the	10,20	bands	
configuration	of	parametric	stereo,	resulting	in	a	71-band	hybrid	QMF	domain	representation.		

10.3.5.3 Covariance	analysis	

Note	that	for	clarity	the	frequency	band	parameter	(superscript	k)	is	omitted	in	the	following	equations	
if	it	is	not	required	for	the	presentation.	

Let	F	be	a	monotonically	increasing	frame	index	denoting	the	current	frame	of	input	data,	e.g.	 	
for	frame	F,	starting	at	F	=	0	for	the	first	frame	of	input	data	after	initialization	of	the	format	converter.	
An	analysis	frame	of	length	2Ln	is	formulated	from	the	input	hybrid	QMF	spectra	as:	

	

inch,1 ch, chNy y
n n n~ ~ ~é ù

=ê ú
ë û

y!

in

, , ,
ch,1 ch, ch chˆ ˆ ˆ ()n k n k n k

Ny y
n~

é ù = =ë û y y! QmfAnalysis 0 £ < Ln 0 £ < nn L

in

, , , ,
ch,1 ch, ch chˆ()n k n k n k n k

Ny yé ù = =ë û y y! HybridAnalysis

,
ch ch=F n ny y

1,,
in, ch in, ch

,
ch

0 0 , 0
0 , 0

2 , 0

n

n

n
F n LF n

n
F n L

n n

n L F
n L F

L n L F

- +

-

£ < =ì
ï= £ < >í
ï £ < ³î

y y
y

, for
, for
, for

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 299	
	

Note	that	 is	a	row	vector	with	Nin	elements	in	case	of	Nin	input	channels.	The	covariance	matrix	is	

analysed	from	four	quarter	segments	of	 ,	so	that:	

,	

where	

		 	 denotes	the	transpose;	

	 	 denotes	the	complex	conjugate	of	a	variable;	

		 	 is	an	Nin	×	Nin	matrix	for	each	q	=	0,1,2,3.	

and	 are	the	same	as	 	and	 ,	correspondingly,	and	are	not	required	to	be	re-calculated.	
The	 covariance	matrices	 of	 the	 four	 quarter	 segments	 are	 added	 with	 centre	 weighting	 assuming	 a	
staircase	shape:	

	

The	final	estimation	for	the	covariance	matrix	 	is	obtained	by	modifying	the	entries	of	 with	a	
small	channel	dependent	offset	

	

where	the	two	indices	in	a	notation	Cy,a,b	denote	the	matrix	element	in	the	ath	row	and	bth	column	of	Cy.	
From	the	covariance	matrix	Cy	inter-channel	correlation	coefficients	between	the	channels	A	and	B	are	
derived	as:	

	

10.3.5.4 Phase-alignment	matrix	formulation	

10.3.5.4.1 General	

The	 	values	are	mapped	to	an	attraction	measure	matrix	T	with	elements:	

	

where	PasMax,	PasCurveSlope,	PasCurveShift	are	derived	from	Table	171.	

,
in, ch
F ny

,
in, ch
F ny

() ()
16 15 T *, ,

, in, ch in, ch
16

0,1,2,3
q

F F n F n
y q

n q
q

+

=

= =åC y y , for

()T×

()*×

,
F
y qC

,0
F
yC ,1

F
yC

1
,2
-F
yC

1
,3
-F
yC

F
,sum ,0 ,1 ,2 ,34 4= + + +F F F F
y y y y yC C C C C

F
yC ,sum

F
yC

, , ,sum, ,(1 0.0002)= +y a b y a bC ab C

2

, ,
,

, , , ,eps
=

+ ×
y A B

A B
y A A y B B

C
ICC

C C

,A BICC

()()
()()

,

,

,

min ,max 0,

min 1,max 0,2.5 1.2

A B

A B

A B

PasMax PasCurveSlope ICC PasCurveShift A B
T

ICC A B

ì × + ¹ï= í
× - =ïî

, for

, for

ISO/IEC	23008-3:202X(E)	

300	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	171	—	Phase	attraction	mapping	curve	parameters	
	

phaseAlignStrength	 PasMax	 PasCurveSlope	 PasCurveShift

0	 0	 0	 0	
1	 0,071	4	 0,170	1	 -0,089	1	
2	 0,154	8	 0,377	1	 -0,189	6	
3	 0,25	 0,625	 -0,3	
4	 0,357	1	 0,918	4	 -0,418	4	
5	 0,476	2	 1,262	3	 -0,542	7	
6	 0,607	1	 1,662	4	 -0,670	7	
7	 0,75	 2,125	 -0,8	

phaseAlignStrength	shall	be	set	to	3	if	no	other	value	has	been	signalled	in	the	
bitstream.		
If	passiveDownmixFlag==1,	then	phaseAlignStrength	shall	be	set	to	0.	

An	intermediate	phase-aligning	mixing	matrix	Mint	is	calculated.	With		

	and	

V	=	MDMXP	

the	matrix	elements	are	derived	as:	

	

The	intermediate	phase-aligning	mixing	matrix	Mint	is	modified	to	avoid	abrupt	phase	shifts,	resulting	in	
Mmod.	This	is	a	recursive	regularization	process,	running	for	each	frame	F,	processing	the	frequency	bands	
k	in	ascending	order.		

The	regularization	against	phase	shifts	 takes	place	 in	 two	stages:	 In	 the	 first	stage,	 the	regularization	
performs	amplitude-weighted	phase	comparison	against	the	previous	frame,	previous	band,	while	also	
linking	the	phase-attracted	channels.	In	the	second	stage,	the	regularization	limits	the	update	rate	of	the	
phase	coefficients	in	comparison	to	the	previous	frame	only.	

Both	regularization	stages	make	use	of	a	phase	update	limiting	parameter,	 ,	which	is	formulated	as	

a	function	of	an	onset	measure	 	so	that	a	low	energy	portion	of	a	signal	does	not	affect	the	phase	
processing	after	an	onset:	

	

	

, , , ,= ×A B A B y A BP T C

DMX,
int, , ,

,

=
+

B,A
B A B A

B A

M
M V

eps V

,
diff,
F k
Aq

,F k
Ao

,
, ,,
, 1,
, , , ,

-=
+ +

F k
y A AF k

A F k F k
y A A y A A

C
o

eps C C

, ,
diff, max(0.15,20.3 19)= -F k F k

A Aoq p

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 301	
	

10.3.5.4.2 Regularization	stage	1	

Stage	1	recursively	takes	into	account	comparison	values	Mcmp	from	the	last	frame	index	(F-1)	as	well	as	
for	the	last	processing	band	(k-1).	Mcmp	is	derived	from	Mmod	at	the	end	of	the	regularization	process.	The	
first	step	of	regularization	stage	1	combines	the	comparison	data	across	frequency	and	time	as	follows:	

if	(F=0)	

	

else	(i.e.	for	F>0)	

	

where	the	complex	conjugate	processing	for	the	third	band	(k=3)	accounts	for	the	complex	conjugate	
properties	of	the	filterbank.	

The	frequency	index	k	is	omitted	in	the	following	since	the	inter-band	dependency	is	now	contained	in	
the	matrix .	The	phase	change	of	the	current	unregularized	phase-aligning	matrix	 	relative	to	

is	measured	 by	 amplitude	weighting	with	 	and	 comparison	 against	 ,	 forming	

	with	elements:	

	

To	 also	 take	 into	 account	 the	 interdependent	 channels	 in	 the	 regularization,	 the	 relevant	 entries	 are	
intermixed	with	the	attraction	matrix	TF:	

	

The	phase	values	of	the	elements	of	matrix	 are:	

	

To	avoid	constant	phase	offsets,	 is	adjusted	towards	zero	by	 :	

	

()

, F,k-1
cmpFk cmp

*F,k-1
cmp

0 1
1 3

3

,for
,for

,for

F k

k
k k

k

ì =ïï= > Ù ¹í
ï

=ïî

M M

M

()

1,
cmp

, 1,
cmpFk cmp cmp

*1,
cmp cmp

1
1 3

3

F,k-1

F,k-1

,for
,for

,for

F k

F k F k

F k

k
k k

k

-

-

-

ì =ïï= + > Ù ¹í
ï

+ =ïî

M
M M M

M M

,
cmpFk
F kM int

FM
,

cmpFk
F kM , ,

F
y A AC cmpFk

FM

timeFreq
FM

()*timeFreq, cmpFk, int, , ,=F F F F
B,A B,A B,A y A AM M M C

timeFreqChan timeFreq=F F FM M T

timeFreqChans
FM

()timeFreqChan, , timeFreqChan, ,arg=F F
B A B AMq

timeFreqChan, ,
F

B Aq diff,
F
Aq

() ()timeFreqChanStage1, , timeFreqChan, , timeFreqChan, , diff ,sign max 0, ()= -F F F F
B A B A B A Aabsq q q q

ISO/IEC	23008-3:202X(E)	

302	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

10.3.5.4.3 Regularization	stage	2	

In	stage	2	of	the	regularization	another	phase	comparison	parameter,	only	across	time,	is	calculated:	

	

The	 final	 regularization	 parameter	 is	 defined	 to	 be	 as	 close	 as	 possible	 to	 ,	 but	 not	

further	 than	 	from	 .	 Let	unwrap()	 be	 a	 function	 that	maps	 any	 angular	parameter	 to	 the	
corresponding	angle	in	the	interval	 .	The	final	phase	parameter	is	calculated	as:	

	

and	the	modified,	i.e.	phase-regularized,	mixing	matrix	elements	are	obtained	as:	

	

Finally,	Mmcp	is	derived	by	amplitude	weighting	the	regularized	downmixing	coefficients,	

	

Note	that	Mmcp	is	used	in	the	time	and	frequency	recursive	formulation	of	regularization	stage	1.	

10.3.5.4.4 Energy	scaling	

An	energy	scaling	is	applied	to	the	mixing	matrix	to	obtain	the	final	phase-aligning	mixing	matrix	MPA.	
With		

	

where	 denotes	the	conjugate	transpose	operator,	and	

	

	

where	 the	 limits	 are	 defined	 as	 and	 ,	 the	 final	 phase-aligning	 mixing	 matrix	
elements	follow	as:	

	

where	AES	=	(1	–	passiveDownmixFlag).	

()()*1
time, , PA, , int, ,arg -=F F F

B A B A B AM Mq

timeFreqChanStage1, ,
F

B Aq

diff,
F
Aq time, ,

F
B Aq

...-p p

()
()

update, , timeFreqChanStage1, , time, ,

,
mod, , time, , update, , update, , diff ,

,

max(0, ()),

= -

= + -

F F F
B A B A B A

F F F k F F
B A B A B A B A A

unwrap

sign abs

q q q

q q q q q

()mod, , int, , mod, ,exp= × ×F F F
B A B A B AM M j q

cmp,B,A mod, , , ,=F F F
B A y A AM M C

H
mod mod=Cy yM M C M

()H×

DMX, DMX, , ,
1

, ,eps
=

× ×
=

+

å
inN

B,A B,A y A A
A

B
Cy B B

M M C
S

M

()()lim, max minmin ,max ,=B BS S S S

0.4
max 10=S 0.5

min 10-=S

, , lim, mod, ,M ((1)) M= × + - ×PA B A B B AS AES AES

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 303	
	

10.3.5.5 Calculation	of	output	data	

The	output	signals	for	the	current	frame	F	are	computed	by	linearly	interpolating	the	mixing	matrices	
from	the	previous	frame	to	the	current	frame:	

	

Note	that	the	input	audio	for	the	above	mixing	procedure	is	the	first	half	of	the	analysis	window.	

10.3.5.6 F/T-transform	(hybrid	QMF	synthesis)	

Note	 that	 the	 processing	 steps	 described	 above	 have	 to	 be	 carried	 out	 for	 each	 hybrid	 QMF	 band	k	
(recursively,	 for	 ascending	 k).	 In	 the	 following	 procedure	 the	 band	 index	 k	 is	 reintroduced,	 i.e.	

	The	hybrid	QMF	 frequency	domain	output	signal	 	is	 transformed	to	an	Nout-channel	
time	 domain	 signal	 frame	 of	 length	L	 time	 domain	 samples	 per	 output	 channel	B,	 yielding	 the	 time	

domain	output	signal	 :	

The	hybrid	synthesis:	

	

is	carried	out	as	defined	in	ISO/IEC	14496-3:2009,	Figure	8.21,	i.e.	by	summing	the	sub-subbands	of	the	
three	lowest	QMF	subbands	to	obtain	the	three	lowest	QMF	subbands	of	the	64band	QMF	representation.	
The	subsequent	QMF	synthesis:	

	

shall	be	carried	out	as	defined	in	ISO/IEC	14496-3:2009,	4.6.18.4.	

11 Immersive	loudspeaker	rendering/format	conversion	
11.1 Description	

For	 the	 5.0	 and	 5.1	 channel	 output	 layouts,	 immersive	 loudspeaker	 rendering	 is	 chosen	 to	 provide	
overhead	sound	images	using	surround	channel	loudspeakers.	The	immersive	loudspeaker	renderer	is	a	
downmixer	 that	 converts	 multichannel	 signals	 from	 transmitted	 channel	 configurations	 with	 	
channels	to	desired	reproduction	format	of	either	5.1	or	5.0	system.	It	has	a	switching	scheme	between	
3D	rendering	and	2D	rendering	using	different	elevation	rendering	for	height	input	channels	depending	
on	the	transmitted	bitstream	rendering3DType	to	provide	overhead	sound	image	properly.	It	is	thus	
also	called	‘immersive	format	converter’.	The	system	consists	of	two	major	building	blocks:	

¾ an	 initialization	algorithm	 that	 takes	 into	account	 static	parameters	 like	 the	 input	and	output	
format;	

¾ a	 signal	 adaptive	 downmixing	 process	 that	 operates	 in	 a	 subband	 domain	 with	 a	 switching	
scheme	according	to	the	transmitted	flag	rendering3DType.	

()
T

T, 1 ,
ch PA PA in, ch

11 for 0-æ öæ ö- -+
= + £ <ç ÷ç ÷ç ÷è øè ø

F n F F F nn
n

n n

L nn n L
L L

z M M y

, , ,
ch ch=F n k F nz z , ,

ch
F n kz

ch

F,n~

z

, , , ,
ch chˆ HybridSynthesis()=F n k F n kz z

,
, ,

ch chˆQMFSynthesis()
F

F n k
n~

= zz

inN

ISO/IEC	23008-3:202X(E)	

304	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	
Figure	53	—	Main	building	blocks	of	the	immersive	format	converter	

In	 the	 initialization	 phase	 the	 format	 converter	 automatically	 generates	 optimized	 downmixing	
parameters	 (like	 the	 downmixing	matrix)	 for	 the	 given	 combination	 of	 input	 and	 output	 formats.	 It	
applies	an	algorithm	that	selects	for	each	input	loudspeaker	the	most	appropriate	mapping	rule	from	a	
list	of	rules	that	has	been	designed	to	incorporate	psychoacoustic	considerations.	Each	rule	describes	the	
mapping	from	one	input	channel	to	one	or	several	output	loudspeaker	channels.	

Input	channels	are		

¾ either	mapped	to	a	single	output	channel:	

¾ or	panned	to	two	output	channels;	

¾ or	(in	case	of	the	‘Voice	of	God’	channel)	distributed	over	a	larger	number	of	output	channels;	

¾ or	(in	case	of	the	‘elevation	rendering’)	panned	to	multiple	output	channels	with	different	panning	
coefficients	over	frequency.	

The	optimal	mapping	for	each	input	channel	is	selected	depending	on	the	list	of	output	loudspeakers	that	
are	available	in	the	desired	output	format.	Each	mapping	defines	downmix	gains	for	the	input	channel	
under	consideration	as	well	as	potentially	also	an	equalizer	that	is	applied	to	the	input	channel	under	
consideration.	

Output	setups	with	non-standard	loudspeaker	positions	can	be	signalled	to	the	system	by	providing	the	
azimuth	and	elevation	deviations	from	a	regular	loudspeaker	setup.	Further,	distance	variations	of	the	
desired	target	loudspeaker	positions	are	taken	into	account.	

For	each	frame,	a	bit	called	rendering3DType	is	decoded	by	the	decoder	and	passed	to	the	immersive	
format	converter.	The	rendering3DType	indicates	whether	the	sound	scene	 is	appropriate	 for	the	3D	
rendering	 or	 2D	 rendering	 over	 either	 5.0	 or	 5.1	 channel	 layout.	 For	 the	 height	 input	 channels,	 the	
immersive	 format	 converter	 uses	 the	 “spatial	 elevation	 rendering”	 for	 3D	 rendering	 when	 the	
rendering3DType	 is	 TRUE	 and	 “timbral	 elevation	 rendering”	 for	 the	 2D	 rendering	 when	 the	
rendering3DType	is	FALSE.	For	the	non-height	input	channels,	non-elevation	rendering	uses	the	same	
downmix	coefficients	regardless	of	the	rendering3DType.	

DMX process in
QMF domain

DMX
configurator

mixer output
signals

mixer output
layout

reproduction
layout

loudspeaker
signalsDecoder

bitstream

rendering3DType

Format Converter

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 305	
	

The	actual	downmixing	of	the	audio	signals	is	performed	on	a	hybrid	QMF	subband	representation	of	the	
signals.	The	algorithm	makes	use	of	two	mechanisms	to	avoid	signal	deteriorations	like	comb-filtering,	
coloration,	or	modulation	artifacts.	

¾ Phase-alignment	of	the	multichannel	input	signals:	Correlated	input	signals	that	differ	in	phase	
are	aligned	prior	to	downmixing	them.	The	alignment	process	makes	use	of	an	attraction	measure	
to	 only	 align	 the	 relevant	 channels	 for	 the	 relevant	 time-frequency	 tiles	 and	 to	 avoid	
modifications	 to	other	parts	of	 the	 input	 signal.	The	alignment	 is	 further	 regularized	 to	avoid	
artifacts	due	to	rapid	changes	of	the	alignment	phase	modification	terms.	The	phase-alignment	
improves	the	output	signal	quality	by	avoiding	narrow	spectral	notches	due	to	out-of-phase	signal	
cancellations	that	could	not	be	compensated	 for	by	energy	normalization	because	of	a	 limited	
frequency	resolution.	 It	 further	 reduces	 the	need	of	boosting	signals	 in	 the	energy	preserving	
normalization,	thus	minimizes	modulation	artifacts.	For	the	downmix	cases	with	the	‘elevation	
rendering’,	the	frequency	components	in	the	range	2,8	kHz	~	10	kHz	are	not	aligned	in	order	to	
provide	 accurate	 synchronization	 of	 the	 rendered	 output	 signal.	 This	 stage	 is	 explained	 in	
subclause	11.4.2.5.	

¾ Normalization	of	 the	downmix	process	 to	preserve	 the	 input	energies	 (except	 for	 the	desired	
energy	scaling	that	may	be	inherent	in	the	downmix	matrix).	

11.2 Syntax	

The	FormatConverterFrame	defines	the	proper	rendering	type	for	the	immersive	format	converter.	

Table	172	—	Syntax	of	FormatConverterFrame()	

Syntax	 No.	of	bits	 Mnemonic
FormatConverterFrame()
{
	 rendering3DType;	 1	 uimsbf
} 	 	

The	flag	rendering3DType	is	created	at	the	encoder	based	on	the	audio	scene.	When	the	audio	scene	is	
wideband	and	highly	decorrelated	at	a	frame,	the	flag	rendering3DType	becomes	false	and	rendering	is	
achieved	by	the	secondary	downmix	matrix	MDMX2.	In	all	other	cases,	the	flag	becomes	true	and	rendering	
is	achieved	by	the	primary	downmix	matrix	MDMX,	which	provides	elevated	sound	images.	

11.3 Definitions	

 General	remarks	

Audio	signals	that	are	fed	into	the	format	converter	are	referred	to	as	input	signals	in	the	following.	Audio	
signals	that	are	the	result	of	the	format	conversion	process	are	referred	to	as	output	signals.	Note	that	the	
audio	input	signals	of	the	format	converter	are	audio	output	signals	from	the	core	decoder.		

Vectors	 and	 matrices	 are	 denoted	 by	 bold-faced	 symbols.	 Vector	 elements	 or	 matrix	 elements	 are	
denoted	 as	 italic	 variables	 supplemented	 by	 indices	 indicating	 the	 row/column	 of	 the	 vector/matrix	
element	in	the	vector/matrix,	e.g.	

	
denotes	a	vector	and	its	elements.	Similarly,	Ma,b	

denotes	the	element	in	the	ath	row	and	bth	column	of	a	matrix	M.		
1[]a Ny y y = y! !

ISO/IEC	23008-3:202X(E)	

306	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Variable	definitions	

Nin	 Number	of	channels	in	the	input	channel	configuration.	

Nout		 Number	of	channels	in	the	output	channel	configuration.	

MDMX	 Primary	downmix	matrix	containing	real-valued	non-negative	downmix	
coefficients	(downmix	gains)	for	the	non-elevation	rendering	and	spatial	
elevation	rendering	for	3D	rendering	over	2D	layout.	MDMX	is	basically	of	
dimension	(Nout	×	Nin)	but	possibly	increased	to	(Nout	×	(Nin	+5))	
depending	on	the	input	and	output	layouts.	See	how	the	dimension	is	
changed	in	subclause	11.4.2.3.	

MDMX2	 Secondary	downmix	matrix	containing	real-valued	non-negative	
downmix	coefficients	(downmix	gains)	for	the	non-elevation	rendering	
and	timbral	elevation	rendering	for	2D	rendering	over	2D	layout.	The	
downmix	coefficients	for	the	horizontal	input	channels	are	identical	to	
those	in	MDMX.	The	MDMX	is	dimension	of	(Nout	x	Nin)	but	possibly	
increased	to	(Nout	x	(Nin+5))	depending	on	the	input	and	output	layouts.	
See	how	the	dimension	is	changed	in	subclause	11.4.2.3.	

GEQ	 Matrix	consisting	of	gain	values	per	processing	band	determining	
frequency	responses	of	equalizing	filters	for	all	rendering	mapping.	
GEQ,1~5	are	used	for	the	non-elevation	rendering	and	timbral	elevation	
rendering,	GEQ,7~14	are	used	for	spatial	elevation	rendering,	GEQ,15~20	are	
used	for	spatial	coloration	filter,	and	GEQ,21~	are	used	for	modified	EQ	for	
randomized	setup	in	subclause	11.4.1.6.5	and	coloration	filter	in	
subclause	11.4.1.6.7.6.	

IEQ	 Vector	signalling	which	equalizer	filters	to	apply	to	the	input	channels	
(if	any).	

L	 Frame	length	measured	in	the	time	domain	audio	samples.	

ν	 Time	domain	sample	index.	

n	 QMF	time	slot	index	(=	subband	sample	index).	

Ln	 Frame	length	measured	in	QMF	slots.	

F	 Frame	index	(frame	number).	

K	 Number	of	hybrid	QMF	frequency	bands,	K	=	71.	

k	 QMF	band	index	(1..64)	or	hybrid	QMF	band	index	(1..	K).	

A,	B	 Channel	indices.	

eps	 Numerical	constant,	 .	35eps 10-=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 307	
	

rendering3DType	 Flag	from	the	bitstream	identifying	the	rendering	type	for	the	elevation	
rendering.	True	for	the	general	audio	scene	and	false	for	the	highly	
decorrelated	wideband	scene	(e.g.	applause).	Accordingly,	the	primary	
downmix	matrix	MDMX	is	chosen	when	the	rendering3DType	is	TRUE	
and	the	secondary	downmnix	matrix	MDMX2	is	chosen	when	the	
rendering3DType	is	FALSE	in	the	immersive	format	converter.	

iin		 Label	of	the	input	channel	to	be	rendered	by	immersive	format	
converter	(e.g.	CH_U_000).	

GvH0,1~6	(iin)	 Spatial	elevation	panning	coefficients	for	the	input	channel	(iin)	for	the	
2.8~10kHz	in	order	to	provide	overhead	image.	Note	that	the	coefficient	
is	always	normalized	to	preserve	the	input	power	after	mixing.	The	
number	index	represents	output	channels	as	shown	in	Table	181.		

GvL0,1~6	(iin)	 Spatial	elevation	panning	coefficients	for	the	input	channel	(iin)	for	
below	2.8	kHz	and	above	10kHz.	Note	that	the	coefficient	is	always	
normalized	to	reserve	the			input	power	after	mixing.	The	number	index	
represents	output	channels	as	shown	in	Table	181.	

COLOR_A_B	 Tone	coloration	filter	to	the	output	at	the	azimuth	of	±B	degrees	from	
the	input	at	the	azimuth	of	±A	degrees	based	on	the	ratio	between	HRTF	
at	A	and	HRTF	at	B.	It	is	determined	by	a	frequency	dependent	dynamic	
cue	which	represents	loudspeaker-to-listener	orientation.	

11.4 Processing	

 Initialization	of	the	format	converter	

11.4.1.1 General	description	of	the	initialization	

The	 initialization	 of	 the	 format	 converter	 is	 carried	 out	 before	 audio	 samples	 delivered	 by	 the	 core	
decoder	are	processed.	

The	initialization	takes	the	following	input	parameters	into	account.	

¾ The	sampling	rate	of	the	audio	data	to	process.	

¾ The	channel	configuration	of	the	audio	data	to	process	with	the	format	converter	(number	and	
geometric	positions	of	input	channels).	

¾ The	 channel	 configuration	 of	 the	 desired	 output	 format	 (number	 and	 geometric	 positions	 of	
output	channels).	

¾ Optional:	Parameters	signaling	the	deviation	of	the	output	loudspeaker	positions	from	a	standard	
loudspeaker	setup	(random	setup	functionality).	

It	returns:	

¾ The	 primary	 frequency	 dependent	 downmix	 matrix	MDMX	 that	 is	 applied	 in	 the	 audio	 signal	
processing	of	 the	 format	converter	when	the	rendering3DType	is	TRUE.	Note	that	the	MDMX	 is	
independent	 variable	 in	 the	 format	 converter	 and	 shall	 not	be	 taken	 into	 account	 in	 the	 core	
decoding	process	in	subclause	5.5.3.1.2;	

ISO/IEC	23008-3:202X(E)	

308	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

¾ The	secondary	frequency	dependent	downmix	matrix	MDMX2	 that	 is	applied	in	the	audio	signal	
processing	of	the	format	converter	when	the	rendering3DType	is	FALSE.	The	MDMX2	is	identical	
to	MDMX	if	there	is	no	‘height’	input	channel	or	’spatial	elevation	rendering’	is	not	possible.	

The	input	parameters	to	the	initialization	algorithm	are	listed	in	Table	173.	

Table	173	—	Format	converter	initialization	input	parameters	

	 Input	format:	number	of	channels	and	nominal	channel	setup	geometry	

	 Output	format:	number	of	channels	and	nominal	channel	setup	geometry	

fs	 Sampling	frequency	in	Hertz.	
razi,A	 For	each	output	channel	A,	an	azimuth	angle	is	specified,	determining	the	deviation	

from	the	standard	format	loudspeaker	azimuth.	
Rele,A	 For	each	output	channel	A,	an	elevation	angle	is	specified,	determining	the	

deviation	from	the	standard	format	loudspeaker	elevation.	

Table	174	lists	the	output	parameters	that	are	derived	during	the	initialization	of	the	format	converter.	

Table	174	—	Format	converter	initialization	output	parameters	

MDMX
	

Primary	Downmix	matrix	[linear	gains]	for	spatial	elevation	rendering		
(for	rendering3DType	==	1)	

MDMX2	 Secondary	Downmix	matrix	[linear	gains]	for	timbral	elevation	rendering		
(for	rendering3DType	==	0)	

Note	 that	 the	 MDMX1	 and	 MDMX2	 include	 the	 same	 input-output	 downmix	 matrix	 for	 non-elevation	
rendering	input	channels.		

11.4.1.2 Assignment	of	format	converter	channel	labels	to	input/output	format	channels	

The	 format	 converter	 initialization	 is	 based	on	 a	 system	of	 rules	 that	 are	defined	 in	 terms	of	 format	
converter	channel	labels,	see	Table	183.	To	allow	the	application	of	the	initialization	rules,	the	channel	
labels	have	to	be	assigned	to	the	channels	of	the	input	and	output	formats.	Each	format	converter	channel	
label	is	associated	with	a	segment	of	the	surface	of	the	unit	sphere,	as	defined	in	Table	183.	The	segments	
are	designed	to	be	non-overlapping.	

The	assignment	of	 channel	 labels	 to	 channels	 is	done	by	geometrically	matching	 the	 segments	 to	 the	
position	data	associated	with	the	channels	of	the	input	and	output	formats.	The	azimuth	and	elevation	
angles	in	degrees	of	the	position	data	associated	with	the	channels	shall	be	rounded	towards	the	nearest	
integer	number	before	performing	the	channel	label	assignment.	Note	that	the	nominal	channel	positions	
shall	be	applied	in	the	following	matching	to	channel	label	sectors,	i.e.	the	azimuth	and	elevation	angles	
without	taking	into	account	potential	angle	deviations		signalled	in	razi,A	and/or	rele,A.	

For	each	channel	that	is	not	an	LFE	(low	frequency	enhancement)	channel:	

If	the	nominal	position	of	the	current	channel,	defined	by	its	azimuth	angle	and	elevation	angle,	is	within	
or	on	the	border	of	one	of	the	segments	defined	in	Table	183	then:	

—	 Assign	the	corresponding	channel	label	(e.g.		CH_M_L030)	associated	with	the	matching	segment.	

—	 Add	 the	 angle	 differences	 between	 the	 nominal	 position	 of	 the	 current	 channel	 and	 the	 nominal	
position	associated	with	 the	matching	segment	 (i.e.	 the	angles	 in	 the	second	and	 third	column	of	
Table	183)	to	the	angle	deviations	stored	in	razi,A	and	rele,A.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 309	
	

Else	(i.e.	no	matching	sector	found),	then:	

—	 Assign	the	CH_EMPTY	label.	

If	an	input	or	output	format	contains	exactly	one	LFE	channel,	then	the	label	CH_LFE1	shall	be	assigned	
to	this	channel.		

If	an	input	or	output	format	contains	exactly	two	LFE	channels,	then	the	labels	CH_LFE1	and	CH_LFE2	
shall	be	assigned	to	the	two	LFE	channels	in	the	order	that	minimizes	the	maximum	azimuth	distance	
from	the	channels	to	the	assigned	CH_LFE1	and	CH_LFE2	nominal	azimuth	positions.	

If	an	input	or	output	format	contains	more	than	2	LFE	channels,	then	those	2	LFE	channels	out	of	the	
considered	setup	shall	be	selected	that	minimize	 the	maximum	azimuth	distance	 to	 the	CH_LFE1	and	
CH_LFE2	nominal	azimuth	positions.	The	labels	CH_LFE1	and	CH_LFE2	shall	be	assigned	as	in	the	case	of	
two	 LFE	 channels.	 The	 remaining	 LFE	 channels	 shall	 not	 be	 considered	 further	 in	 the	 calculation	 of	
downmix	coefficients,	 i.e.	 the	corresponding	 lines/columns	of	 the	downmix	matrix	 shall	 remain	 filled	
with	zeros.	

11.4.1.3 Handling	for	unknown	input	channels	

If	the	label	CH_EMPTY	is	assigned	to	an	input	channel,	this	channel	shall	be	considered	unknown	to	the	
rules-based	 initialization	 and	 the	 downmix	 coefficients	 for	mapping	 this	 input	 channel	 to	 the	 output	
channels	shall	be	derived	as	specified	in	subclause	10.3.4.6.7.	

11.4.1.4 Handling	for	unknown	output	formats	

If	the	output	format	contains	at	least	one	channel	with	the	label	CH_EMPTY	assigned	to	it,	or	if	at	least	
one	channel	label	is	assigned	to	more	than	one	channel	of	the	output	format,	the	output	format	shall	be	
considered	unknown	and	the	derivation	of	the	downmixing	coefficients	shall	be	carried	out	as	specified	
in	 subclause	 11.4.1.6.9.	 The	 rules-based	 derivation	 of	 downmix	 coefficients	 shall	 not	 be	 applied	 for	
unknown	output	formats.	

11.4.1.5 Handling	of	deviations	from	standard	loudspeaker	positions	

If	the	below	conditions	are	not	met,	the	rules-based	initialization	is	considered	to	have	failed,	the	output	
format	shall	be	considered	to	be	unknown,	and	the	downmixing	gains	shall	be	obtained	as	defined	 in	
subclause	11.4.1.6.9	

The	absolute	values	of	razi,A	and	rele,A	shall	not	exceed	35	and	55	degrees,	respectively.	The	minimum	angle	
between	any	loudspeaker	pair	(without	LFE	channels)	shall	not	be	smaller	than	15	degrees.	

The	values	of	razi,A	shall	be	such	that	the	ordering	by	azimuth	angles	of	the	horizontal	loudspeakers	does	
not	change.	Likewise,	the	ordering	of	the	height	and	low	loudspeakers	shall	not	change.	

The	 values	 of	 rele,A	 shall	 be	 such	 that	 the	 ordering	 by	 elevation	 angles	 of	 loudspeakers	 which	 are	
(approximately)	 above/below	 each	 other	 does	 not	 change.	 To	 verify	 this,	 the	 following	 procedure	 is	
applied:	

For	each	row	of	Table	188	which	contains	two	or	three	channels	of	the	output	format,	do:	

—	 Order	the	channels	by	elevation	without	randomization;	

ISO/IEC	23008-3:202X(E)	

310	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 Order	the	channels	by	elevation	with	considering	randomization;	

—	 If	the	two	orderings	differ,	return	an	initialization	error.	

If	the	below	conditions	are	not	met,	converter	initialization	is	considered	to	have	failed,	and	an	error	shall	
be	returned.	

11.4.1.6 Rules-based	initialization	algorithm	

11.4.1.6.1 General	

The	rules-based	initialization	algorithm	is	defined	in	the	following	subclauses.	The	algorithm	shall	not	be	
applied	if	the	output	format	is	considered	unknown	as	defined	in	the	previous	subclause.	For	clarity	the	
following	description	makes	use	of	intermediate	parameters	listed	in	Table	175	but	an	implementation	
may	omit	the	explicit	use	of	these	intermediate	parameters.	

Table	175	—	Format	converter	initialization	intermediate	parameters	

S,	SP,	SS		 Vector	of	converter	source	channels	[input	channel	indices]	
D,	DP,	DS		 Vector	of	converter	destination	channels	[output	channel	indices]	
G,	GP,	GS		 Vector	of	converter	gains	[linear]	
E,	EP,	ES		 Vector	of	converter	EQ	indices	
GEQ	 Matrix	containing	equalizer	gain	values	for	all	EQ	indices	and	frequency	bands	

The	 superscript	 S/P	 is	 the	 discriminator	 for	 the	 elevation	 rendering	 type.	 Those	 with	 designated	
superscript	P	are	initialized	to	be	used	for	the	‘spatial	elevation	rendering’	and	used	to	create	the	primary	
downmix	matrix	MDMX,	those	with	designated	superscript	S	are	for	the	‘timbral	elevation	rendering’	and	
used	to	create	the	secondary	downmix	matrix,	and	those	without	superscript	are	for	the	non-elevation	
rendering	and	used	to	create	both	the	primary	and	secondary	downmix	matrixes.	

The	intermediate	parameters	describe	the	dowmixing	parameters	according	to	the	mapping,	i.e.	as	sets	
of	parameters	Si,	Di,	Gi,	Ei,	per	mapping	i.	

The	format	converter	initialization	output	parameters	are	derived	as	described	in	Figure	54.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 311	
	

	

Figure	54	—	Rule-based	downmix	initialization	flow	

With	following	steps	for	each	channel:	

— If	the	destination	of	the	downmix	rule	for	the	input	channel	(iin)	is	VIRTUAL,	isPossibleElev	defines	
whether	the	input	channel	should	be	rendered	by	the	elevation	rendering	defined	in	subclause	
11.4.1.6.7.	

each downmix rule
for the input channel

Destination
 == VIRTUAL?

isPossibleELEV

no : next downmix rule for
the input channel

Valid Rule?

no : next downmix rule
for the input channel

yes

yes : elevation rendering

no

yes

renderElevSptlParms
(with the parameters of

EQSR, GvH, and GvL)
renderElevTmbrParms non-elevation rendering

downmix

each input channel with
the index of (iin)

sS, dS, gS, eS, gainS, nS

next input channel

sP, dP, gP
vH, gP

vL, eP, gEQ,7~14, nP

Post-processing for
Random Setup

Post-processing for
Random Setup

Post-processing for
Random Setup

 SS, DS, GS, ES, GEQ, NS SP, DP, GP
vH, GP

vL, EP, GEQ, NP S, D, G, E, GEQ, N

Merge the input-output mapping and Create downmix Matrixes, MDMX and MDMX2

MDMX and MDMX2

next input channel

For all the input channels, find the rendering rule

collect all the initialization
parameters of

 SS, DS, GS, ES, GainS, NS

collect all the initialization
parameters of

 SP, DP, GP
vH, GP

vL,
EP, GEQ,7~14, NP

collect all the initialization
parameters of

 S, D, G, E, Gain, GEQ,1~5, N

 SS, DS, GS, ES,
GainS, NS SP, DP, GP

vH, GP
vL, EP, GEQ,7~14, NP S, D, G, E, Gain,

GEQ,1~5, N

ISO/IEC	23008-3:202X(E)	

312	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— If	isPossibleElev	returns	TRUE,		
— A	set	of	parameters	of	sP,	dP,	gPH,	gPL,	eP,	ŸÖÜ,.∏(#EF),	and	nP	and	another	set	of	parameters	of	

sS,	dS,	gS,	eS,	gainS,	and	nS	are	initialized	by	the	renderElevParms	and	renderTmbrParms,	
respectively.	The	parameters	of	nP	and	nS	indicate	the	number	of	output	loudspeakers	
required	for	the	input	channel	(iin),	sP,	dP,	gPH,	gPL,	and	eP	are	nP	column	vectors,	sS,	dS,	gS,	eS,	
and	gainS	are	nS	column	vectors,	ŸÖÜ,.∏(#EF)	is	a	71	row	vector	representing	the	EQ	
coefficients	for	the	71	bands	of	the	input	channel	(iin).	

— The	initialization	parameters	are	collected	among	the	group	of	parameters,	each	primary	
or	secondary,	and	the	downmix	rules	for	next	input	channel	are	investigated	until	all	the	
input	channel	mapping	is	found.		

— If	isPossibleElev	returns	FALSE,	the	current	downmix	rule	shall	be	ignored	and	the	next	
downmix	rule	shall	be	investigated.	

— If	the	destination	is	not	VIRTUAL,	the	downmix	rule	shall	be	investigated	to	determine	whether	the	
rule	is	valid;	by	checking	whether	the	output	layout	includes	all	of	the	channels	in	the	destination	
column.		
— If	the	downmix	rule	is	valid,		

— A	set	of	parameters	shall	be	initialized	by	the	non-elevation	rendering	initialization	and	
added	directly	to	the	S,	D,	G,	E,	and	Gain	as	specified	in	subclause	11.4.1.6.3	and	to	the	GEQ	
as	specified	in	subclause	11.4.1.6.4.			

— The	downmix	rules	for	the	next	input	channel	shall	be	investigated	until	all	of	the	input	
channel	mappings	are	found.		

— If	the	downmix	rule	is	invalid,	the	current	downmix	rule	shall	be	ignored	and	the	next	downmix	
rule	shall	be	investigated.		

— After	collecting	all	of	the	initialization	parameters	for	the	‘spatial	elevation	rendering’,	‘timbral	
elevation	rendering’	and	‘non-elevation	rendering’	post-processing	for	random	setup	shall	be	
applied.	

— Create	the	primary	downmix	matrix,	combining	the	‘spatial	elevation	rendering’	and	‘non-elevation	
rendering’	parameters,	and	the	secondary	downmix	matrix,	combining	the	‘timbral	elevation	
rendering’	and	‘non-elevation	rendering’	parameters.	

11.4.1.6.2 Random	setups	pre-processing	

Random	output	loudspeaker	setups,	i.e.	output	setups	that	contain	loudspeakers	at	positions	deviating	
from	the	positions	defined	 for	 the	desired	output	 format,	are	signalled	by	specifying	 the	 loudspeaker	
position	deviation	angles	as	input	parameters	razi,A	and	rele,A.	The	angle	deviations	are	taken	into	account	as	a	pre-processing	step.	

Modify	the	channels’	azimuth	and	elevation	angles	according	to	Table	183	by	adding	razi,A	and	rele,A	to	the	
corresponding	channels’	azimuth	and	elevation	angles.	

11.4.1.6.3 Derivation	of	input	channel/output	channel	mapping	parameters	

The	parameters	vectors	S,	D,	G,	E	define	 the	mapping	of	 input	channels	 to	output	channels.	For	each	
mapping	 i	 from	 an	 input	 channel	 to	 an	 output	 channel	with	 non-zero	 downmix	 gain	 they	 define	 the	
downmix	gain	as	well	as	an	equalizer	index	that	indicates	which	equalizer	curve	has	to	be	applied	to	the	
input	channel	under	consideration	in	mapping	i.	

The	elements	of	the	parameter	vectors	S,	D,	G,	E	are	derived	by	the	following	algorithm:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 313	
	

—	 Initialize	the	mapping	counter	i:			i=1,	iP=1,	iS=1;	

—	 Initialize	the	EQ	counter	e:			e=21		(EQ	slots	for	e	 from	1	to	5	are	occupied	by	subclause	11.4.1.6.4,	
that	for	e	from	7	to	14	are	occupied	by	Table	180,	and	that	for	e	from	15	to	20	are	occupied	by	Table	
177.	The	EQ	counter	e	will	be	shared	in	subclauses	11.4.1.6.5	and	11.4.1.6.7.6	in	an	incremental	way).	

For	each	input	channel,	ignoring	channels	with	label	CH_EMPTY	assigned	to	them:	

If	the	input	channel	also	exists	in	the	output	format	(e.g.	input	channel	under	consideration	is	CH_M_R030	
and	channel	CH_M_R030	exists	in	the	output	format),	then:	

¾ Si	=	index	of	source	channel	in	input		
EXAMPLE	 	channel	CH_M_R030	in	ChannelConfiguration	6	is	at	second	place	according	to	Table	184,	i.e.	
has	index	2	in	this	format.	

¾ Di	=	index	of	same	channel	in	output	
¾ Gi	=	1,0	
¾ Ei	=	0	
¾ i = i + 1	

	
Else	(i.e.	if	the	input	channel	does	not	exist	in	the	output	format)	

¾ search	the	first	entry	of	this	channel	in	the	Source	column	of	Table	185,	for	which	the	channels	
in	the	corresponding	row	of	the	Destination	column	exist.	The	VIRTUAL	destination	shall	be	
considered	valid	if	the	isPossibleElev	returns	TRUE,	which	indicates	the	output	format	
contains	required	channels	for	the	elevation	rendering	of	the	input	channel.	The	isPossibleElev,	
renderElevSptlParms,	and	renderElevTmbrParms	are	defined	in	subclause	11.4.1.6.7.	The	
ALL_U	destination	shall	be	considered	valid	(i.e.	the	relevant	output	channels	exist)	if	the	output	
format	contains	at	least	one	“CH_U_”	channel.	The	ALL_M	destination	shall	be	considered	valid	
(i.e.	the	relevant	output	channels	exist)	if	the	output	format	contains	at	least	one	“CH_M_”	
channel.	If	for	no	entry	in	Table	185	corresponding	to	the	input	channel	the	channels	in	the	
Destination	column	exist,	the	rules-based	initialization	shall	terminate	and	the	downmix	gains	
shall	be	derived	according	to	subclause	11.4.1.6.9.	
	
If	Destination	column	contains	VIRTUAL,	then:	

[sP,	dP,	gPH,	gPL,	eP,	nP]=	renderElevSptlParms	(specified	in	subclause	11.4.1.6.7.4)		

for	n	=	1	to	nP	

m	=	iP	

SPm	=	sPn(iin)	

DPm	=	dPn(iin)	

GPmH	=	gPnH(iin)	

GPmL	=	gPnH(iin)	

EPm	=	ePn(iin)	

ISO/IEC	23008-3:202X(E)	

314	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

CPmi	=	(iin)	

CPmo	=	label	of	the	output	channel	dPn(iin)	

	 iP	=	iP	+	1	

[sS,	dS,	gS,	eS,	gain,	nS]=	renderElevSptlParms	(described	in	subclause	11.4.1.6.7.5)		

for	n	=	1	to	nS	

m	=	iS	

SSm	=	sSn(iin)	

DSm	=	dSn(iin)	

GSm	=	gSn(iin)	

ESm	=	eSn(iin)	

CSmi	=	(iin)	

CSmo	=	label	of	the	output	channel	dPn(iin)	

GainSm	=	gainn	

iS	=	iS	+	1	

where	iin	js	the	input	channel	label.	

Else,	if	Destination	column	contains	ALL_U,	then:	

For	each	output	channel	x	with	“CH_U_”	in	its	name,	do:	

¾ Si	=	index	of	source	channel	in	input		
¾ Di	=	index	of	channel	x	in	output	
¾ Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_U_”	output	channels)	
¾ Ei	=	value	of	EQ	column	
¾ Gaini	=	(value	of	Gain	column)	
¾ i = i + 1	

	
Else	if	Destination	column	contains	ALL_M,	then:	

For	each	output	channel	x	with	“CH_M_”	in	its	name,	do:	

¾ Si	=	index	of	source	channel	in	input	
¾ Di	=	index	of	channel	x	in	output	
¾ Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_M_”	output	channels)	
¾ Ei	=	value	of	EQ	column	
¾ Gaini	=	(value	of	Gain	column)	
¾ i = i + 1	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 315	
	

Else	If	there	is	one	channel	in	the	Destination	column,	then:	

¾ Si	=	index	of	source	channel	in	input	
¾ Di	=	index	of	destination	channel	in	output	
¾ Gi	=	value	of	Gain	column	
¾ Ei	=	value	of	EQ	column	
¾ Gaini	=	(value	of	Gain	column)	
¾ i = i + 1	

	
Else	(two	channels	in	Destination	column):	

¾ Si	=	index	of	source	channel	in	input	
¾ Di	=	index	of	first	destination	channel	in	output	
¾ Gi	=	(value	of	Gain	column)	*	g1		
¾ Ei	=	value	of	EQ	column	
¾ Gaini	=	(value	of	Gain	column)	
¾ i = i + 1	

	
¾ Si = Si -1 	
¾ Di	=	index	of	second	destination	channel	in	output	
¾ Gi	=	(value	of	Gain	column)	*	g2		
¾ Ei = Ei -1	
¾ Gaini	=	(value	of	Gain	column)	
¾ i = i + 1	

	
The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	angles	of	the	destination	channels	are 	and	 	(see	Table	183).	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is .	

— 	

— 	

— 	

— 	

11.4.1.6.4 Derivation	of	equalizer	gains	GEQ	

GEQ	comprises	a	set	of	gain	values	 for	each	 frequency	band	k	and	equalizer	 index	e.	The	5	predefined	
equalizers	are	combinations	of	different	peak	filters	across	different	values	of	e	for	1≤e≤5.	Each	equalizer	
is	a	serial	cascade	of	one	or	more	peak	filters	and	a	gain:	

1a 2a

srca

1 2
0 2

a a
a

-
=

1 2
center 2

a aa +
=

center src 2 1() sgn()a a a a a= - × -

10
0

1 2 102 2
0

tan tan 101,
tan tan 101 1

 withgg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

ISO/IEC	23008-3:202X(E)	

316	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

where	band(k)	is	the	normalized	centre	frequency	of	frequency	band	k,	specified	in	Table	186,	fs	is	the	
sampling	frequency,	and	function	peak()	is	for	negative	G:	

	

and	otherwise:	

	

The	parameters	for	the	equalizers	are	specified	in	Table	187.	

11.4.1.6.5 Post-processing	for	random	setups	

Once	the	output	parameters	are	computed,	they	are	modified	according	to	the	specific	random	azimuth	
and	elevations	angles.	This	step	only	has	to	be	carried	out,	if	not	all	rele,A	are	zero.	The	post-processing	
algorithm	for	non-elevation	rendering	is	defined	as	follows.	

For	each	element	i	in	Di,	do:	

if	the	output	channel	with	index	Di	is	a	horizontal	channel	by	definition	(i.e.	output	channel	label	contains	
the	label	‘_M_’),	and	

if	this	output	channel	is	now	a	height	channel	(elevation	in	range	0..60	degrees),	and	

if	input	channel	with	index	Si	is	a	height	channel	(i.e.	label	contains	‘_U_’),	then	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35	
¾ éL2)* = ℎ ∙ &

U#,+(
+ (1 − ℎ)	

¾ Apply	compensation	gain	to	DMX	gain: 	

¾ 	Define	new	equalizer	—áà,(with	the	index	e,	where	 	

¾ Ei	=	e		
¾ e	=	e	+1	

else	if	input	channel	with	index	Si	is	a	horizontal	channel	(label	contains	‘_M_’)	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35	

20
EQ, , , ,

1
10 peak () , , ,

2=

æ ö= ç ÷
è ø

Õ
g N

k s
e f n Q n g n

n

fG band k P P P

()
4 2 2 4

2

10
4 2 2 4

2

1 2
peak , , ,G

10 2

G

b f b f
Q

b f Q

b f b f
Q

-

æ ö
+ - +ç ÷
è ø=
æ ö
ç ÷+ - +ç ÷ç ÷
è ø

()

10
4 2 2 4

2

4 2 2 4
2

10 2

peak , , ,G
1 2

G

b f b f
Q

b f Q
b f b f

Q

æ ö
ç ÷+ - +ç ÷ç ÷
è ø=
æ ö

+ - +ç ÷
è ø

compi iG G G= ×

EQ, EQ,(1)
i

k k
e EG h h G= + - ×

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 317	
	

¾ Define	new	equalizer	—áà,(with	the	index	e,		
where	é;^,(E = max è0.6310, min	m1.5849, mℎ ∙ 	 “}ƒ(B,)E + (1 − ℎ)n ∙ é;^,;(E nê		
and	“}ƒ(B,)Eis	defined	in	Table	176	

¾ Ei	=	e		
¾ e	=	e	+1	

Table	176	—	Inverse	spatial	elevation	filter	

Azimuth	of	Di	 Front	centre	
(-15	15)	

Front	
(-90	-15)	or	(15	90)	

Side/Rear	
[-180	-90]	or	[90	180]

“}ƒ(B,)E	
1

é;^,ÜE 	
1

é;^,âE 	
1

é;^,äE 	

NOTE					EQ0,lin	is	defined	in	Table	177.	

	
Explanation	of	the	post-processing	steps	defined	above.	

h	is	a	normalized	elevation	parameter	indicating	the	elevation	of	a	nominally	horizontal	output	channel	
(‘_M_’)	due	to	a	random	setup	elevation	offset	rele,A.	For	zero	elevation	offset	h=0	follows	and	effectively	
no	post-processing	is	applied.	

The	rule	table	(Table	185)	in	general	applies	a	gain	of	the	value	in	the	gain	column	when	mapping	an	
upper	input	channel	(‘_U_’	in	channel	label)	to	one	or	several	horizontal	output	channels	(‘_M_’	in	channel	
label(s)).	In	case	the	output	channel	gets	elevated	due	to	a	random	setup	elevation	offset	rele,A,	the	gain	is	
partially	(0<h<1)	or	fully	(h	=	1)	compensated	for.	Similarly	the	equalizer	definitions	fade	towards	a	flat	
EQ-curve	()	for	h	approaching	h	=	1.	

In	 the	case	 that	a	horizontal	 input	 channel	 is	mapped	 to	an	output	 channel	 that	 is	 elevated,	due	 to	a	
random	setup	elevation	offset	rele,A,	the	equalizer	öm�,m-

ï 	is	fully	applied	and	IEQ(Di)k,	an	inverse	form	of	
spatial	elevation	 filter	defined	 in	Table	176,	 is	partially	 (0<h<1)	or	 fully	 (h=1)	applied.	As	 the	spatial	
elevation	 filter	 is	 designed	 to	 provide	 the	 tone	 color	 of	 overhead	 loudspeakers	 on	 horizontal	
loudspeakers,	 the	 inverse	of	 the	spatial	elevation	filter	 is	used	to	provide	the	tone	color	of	horizontal	
loudspeakers	on	overhead	loudspeakers.	The	modified	EQ	is	thresholded	within	the	level	of	4	dB,	[0.6310,	
1.5849].		

11.4.1.6.6 Spatial	coloration	filter	for	the	horizontal	input	channels	

When	a	horizontal	input	channel	at	side	or	rear	is	panned	by	two	output	loudspeakers,	e.g.	CH_M_L090	is	
panned	by	CH_M_L030	and	CH_M_L110,	the	tone	color	changes.	In	order	to	avoid	such	a	change	in	tone	
color,	a	set	of	horizontal	coloration	filters	of	ŸÖÜ,I≠~FV	are	defined	as	in	Table	177.	Here,	the	filter	name	
COLOR_A_B	means	the	coloration	filter	for	the	output	at	the	azimuth	of	±B	from	the	input	at	the	azimuth	
of	±A.	The	filtering	algorithm	is:	

For	each	element	i	in	S	do:		

	 A	:	the	magnitude	of	the	azimuth	of	the	input	channel	with	index	Si	

	 B	:	the	magnitude	of	the	azimuth	of	the	output	channel	with	index	Di	

	 If	both	Si	and	Di	are	horizontal	channels	and	there	exists	a	filter	COLOR_A_B_	in	Table	177,	

EQ, . 1.0k
eG const= =

ISO/IEC	23008-3:202X(E)	

318	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

If	the	output	channel	has	no	deviation	in	azimuth	and	elevation,	(t#ã,,6(= 0	and	t("(,6(=0)	

If		 	 A==60		 &&	B	==	30	 	 Ei	=	15	(COLOR_60_30)	

Elseif		 A==90		 &&	B	==	30	 	 Ei	=	16	(COLOR_90_30)	

Elseif		 A==60		 &&	B	==	110		 Ei	=	17	(COLOR_60_110)	

Elseif		 A==90		 &&	B	==	110		 Ei	=	18	(COLOR_90_110)	

Elseif		 A==135		&&	B	==	110		 Ei	=	19	(COLOR_135_110)	

Elseif		 A==180		&&	B	==	110		 Ei	=	20	(COLOR_180_110)	

Table	177	—	Spatial	coloration	filters	for	horizontal	channels	

Hybrid	
QMF	
band

COLOR_180_110	
∫!",$%

COLOR_090_030	
∫!",&'

COLOR_060_110	
∫!",&(

COLOR_135_110	
∫!",&)

COLOR_090_110	
∫!",&*

COLOR_060_030	
∫!",&+

0	 1.2207277	 0.82575887	 1.0478644	 1.0402648	 0.9383601	 0.92212301	

1	 1.2207277	 0.82575887	 1.0478644	 1.0402648	 0.9383601	 0.92212301	

2	 1.2207277	 0.82575887	 1.0478644	 1.0402648	 0.9383601	 0.92212301	

3	 1.2207277	 0.82575887	 1.0478644	 1.0402648	 0.9383601	 0.92212301	

4	 0.79365081	 1.1754434	 1.01643	 0.9288547	 1.0755285	 1.1108547	

5	 0.79365081	 1.1754434	 1.01643	 0.9288547	 1.0755285	 1.1108547	

6	 0.79365081	 1.1754434	 1.01643	 0.9288547	 1.0755285	 1.1108547	

7	 0.79365081	 1.1585163	 1.0149473	 0.90169001	 0.98411781	 1.1948091	

8	 0.79365081	 1.1585163	 1.0149473	 0.90169001	 0.98411781	 1.1948091	

9	 0.79365081	 1.26	 0.92721885	 1.0003462	 1.0241666	 1.26	

10	 0.79365081	 1.208599	 0.81262708	 0.90693218	 0.87535268	 1.1219938	

11	 0.79365081	 0.97740591	 1.0512857	 1.0171721	 0.97889137	 1.0496904	

12	 0.85933852	 0.84453988	 1.26	 0.97543412	 1.2534994	 0.90018034	

13	 0.90390807	 0.94619727	 1.26	 0.91973215	 1.26	 1.0997185	

14	 0.88763344	 1.0500977	 1.26	 0.86256438	 1.26	 1.1820639	

15	 0.80779493	 1.0856131	 1.26	 0.79612881	 1.26	 1.26	

16	 0.80421317	 0.99716073	 1.26	 0.79365081	 1.26	 1.1002132	

17	 0.85141277	 0.89153987	 1.26	 0.79365081	 1.26	 0.98295653	

18	 0.83064753	 0.94386107	 1.26	 0.79365081	 1.26	 1.0519516	

19	 0.81076753	 0.99713677	 1.26	 0.79365081	 1.26	 1.1632811	

20	 0.79365081	 1.1471872	 1.26	 0.79365081	 1.26	 1.26	

21	 0.79365081	 1.26	 1.26	 0.79365081	 1.26	 1.26	

22	 0.79365081	 1.26	 1.26	 0.79365081	 1.26	 1.26	

23	 0.79365081	 1.26	 1.26	 0.79365081	 1.26	 1.26	

24	 0.79365081	 1.26	 1.1467814	 0.79365081	 1.26	 1.26	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 319	
	

Hybrid	
QMF	
band

COLOR_180_110	
∫!",$%

COLOR_090_030	
∫!",&'

COLOR_060_110	
∫!",&(

COLOR_135_110	
∫!",&)

COLOR_090_110	
∫!",&*

COLOR_060_030	
∫!",&+

25	 0.79365081	 1.26	 1.0131826	 0.79365081	 1.233322	 1.26	

26	 0.79365081	 1.26	 0.90711004	 0.79365081	 1.1852934	 1.26	

27	 0.79365081	 1.26	 0.81770629	 0.79365081	 1.0953486	 1.26	

28	 0.79365081	 1.26	 0.79365081	 0.79365081	 1.0236902	 1.26	

29	 0.79365081	 1.26	 0.79365081	 0.79365081	 0.98883402	 1.26	

30	 0.79365081	 1.26	 0.79365081	 0.79365081	 0.92739761	 1.26	

31	 0.79365081	 1.26	 0.79365081	 0.82225895	 0.9255684	 1.26	

32	 0.79365081	 1.26	 0.82704854	 0.84583306	 0.97202152	 1.26	

33	 0.79365081	 1.26	 1.0166014	 0.79365081	 1.030863	 1.26	

34	 0.79365081	 1.26	 1.2003248	 0.79365081	 1.1947373	 1.26	

35	 0.79365081	 1.26	 1.2016704	 0.79365081	 1.26	 1.26	

36	 0.79365081	 1.26	 1.0472132	 0.79365081	 1.26	 1.26	

37	 0.79365081	 1.26	 0.92362517	 0.79365081	 1.218715	 1.26	

38	 0.79365081	 1.26	 0.8078649	 0.80314553	 1.2225702	 1.26	

39	 0.79365081	 1.26	 0.79365081	 0.825122	 1.1719567	 1.1482208	

40	 0.79365081	 1.26	 0.79365081	 0.82577235	 1.0976481	 0.95546353	

41	 0.79365081	 1.26	 0.79365081	 0.82158899	 1.0299088	 0.81616014	

42	 0.79365081	 1.26	 0.79365081	 0.81514698	 0.98753756	 0.79365081	

43	 0.79365081	 1.1031394	 0.79365081	 0.84100527	 0.99518955	 0.79365081	

44	 0.79365081	 0.95639628	 0.79365081	 0.89222193	 1.0115879	 0.79365081	

45	 0.79365081	 0.79763001	 0.79365081	 0.88660526	 0.97977269	 0.79365081	

46	 0.79365081	 0.79365081	 0.89757115	 0.85831517	 0.99019438	 0.79365081	

47	 0.79365081	 0.79365081	 1.0443652	 0.86586368	 1.0341145	 0.79365081	

48	 0.79365081	 0.79365081	 1.1831371	 0.84102261	 1.0767646	 0.79365081	

49	 0.79365081	 0.79365081	 1.26	 0.86726952	 1.1670161	 0.79365081	

50	 0.79365081	 0.79365081	 1.26	 0.89460015	 1.26	 0.79365081	

51	 0.79365081	 0.79365081	 1.26	 0.80968457	 1.26	 0.79365081	

52	 0.79365081	 0.79365081	 1.26	 0.79365081	 1.26	 0.80474436	

53	 0.79365081	 0.79365081	 1.26	 0.79365081	 1.26	 0.87647426	

54	 0.79365081	 0.87519455	 1.26	 0.79365081	 1.26	 0.93920386	

55	 0.79365081	 0.98095393	 1.26	 0.79365081	 1.26	 0.99611974	

56	 0.79365081	 1.0163895	 1.26	 0.79365081	 1.26	 0.97187245	

57	 0.79365081	 1.0274936	 1.26	 0.79365081	 1.26	 0.93501246	

58	 0.79365081	 1.0639353	 1.26	 0.79365081	 1.26	 0.95474315	

59	 0.79365081	 1.1517589	 1.26	 0.79365081	 1.26	 1.0320153	

60	 0.79365081	 1.22469	 1.26	 0.79365081	 1.26	 1.1006937	

61	 0.79365081	 1.26	 1.2404966	 0.79365081	 1.26	 1.1356862	

ISO/IEC	23008-3:202X(E)	

320	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Hybrid	
QMF	
band

COLOR_180_110	
∫!",$%

COLOR_090_030	
∫!",&'

COLOR_060_110	
∫!",&(

COLOR_135_110	
∫!",&)

COLOR_090_110	
∫!",&*

COLOR_060_030	
∫!",&+

62	 0.79365081	 1.26	 1.226367	 0.79365081	 1.26	 1.1986256	

63	 0.79365081	 1.26	 1.2287724	 0.79365081	 1.26	 1.26	

64	 0.79365081	 1.26	 1.223058	 0.79365081	 1.26	 1.26	

65	 0.79365081	 1.26	 1.1695373	 0.79365081	 1.26	 1.26	

66	 0.79365081	 1.26	 1.1292651	 0.79365081	 1.26	 1.26	

67	 0.79365081	 1.26	 1.0702422	 0.79365081	 1.1744785	 1.26	

68	 0.79365081	 1.26	 0.96692592	 0.79365081	 1.0516917	 1.26	

69	 0.79365081	 1.26	 0.96692592	 0.79365081	 1.0516917	 1.26	

70	 0.79365081	 1.26	 0.99395496	 0.79365081	 0.97151875	 1.26	

11.4.1.6.7 Elevation	rendering	 	

11.4.1.6.7.1 General	

Elevation	rendering	is	intended	to	provide	an	overhead	sound	image	when	using	a	5.1	channel	layout.	
When	the	Destination	column	contains	VIRTUAL,	the	variable	isPossibleElev	determines	whether	the	
input	channel	shall	be	rendered	by	the	elevation	rendering	and	is	determined	by	comparing	the	output	
channel	configuration	and	the	required	output	channels	for	the	spatial	elevation	rendering.	

Table	178	—	Detail	information	of	the	elevation	rendering	initialization	parameters	

SP	 Vector	of	converter	source	channels	[input	channel	indices]	
Initialization	parameters	
for	spatial	elevation	
rendering	
(renderElevSptlParms)	

DP	 Vector	converter	destination	channels	[output	channel	indices]	
GPH	 Vector	of	converter	gains	for	2.8~10kHz	components	
GPL	 Vector	of	converter	gains	below	2.8kHz	and	above	10kHz	

components	
EP	 Vector	of	converter	EQ	indices	
SS	 Vector	of	converter	source	channels	[input	channel	indices]	 Initialization	parameters	

for	timbral	elevation	
rendering	
(renderElevTmbrParms)	

DS	 Vector	converter	destination	channels	[output	channel	indices]	
GS	 Vector	of	converter	gains	[linear]	
ES	 Vector	of	converter	EQ	indices	
GEQ	 Matrix	containing	equalizer	gain	values	for	all	EQ	indices	and	

frequency	bands	
EQ	matrix	for	all	
rendering	types	

When	isPossibleElev	 is	TRUE,	two	sets	of	parameters	for	the	spatial	elevation	rendering	and	timbral	
elevation	 rendering	 are	 initialized	 using	 renderElevSptlParms	 and	 renderElevTmbrParms.	 The	
parameters	of	SP,	DP,	GPH,	GPL,	and	EP,	initialized	by	renderElevSptlParms,	are	for	the	spatial	elevation	
rendering,	 and	SS,	DS,	GS,	 and	 ES,	 initialized	by	renderElevTmbrParms,	 are	 for	 the	 timbral	 elevation	
rendering.	The	intermediate	parameters	describe	the	dowmixing	parameters	per	mapping	index	i,	i.e.	as	
sets	of	parameters	SPi,	DPi,	GPiH,	GPiL,	and	EPi.	

11.4.1.6.7.2 isPossibleElev	:	Decision	whether	elevation	rendering	is	valid	for	the	output	layout	

The	isPossibleElev	boolean	function	returns	TRUE	when	all	of	the	required	output	channels	exist.	The	
required	output	channels	are	defined	in		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 321	
	

Table	 179,	 indicating	 1	 for	 the	 required	 channel	 and	 0	 for	 the	 unnecessary	 channel.	 For	 example,	
CH_M_L030,	CH_M_L110,	and	CH_M_R110	are	required	in	order	to	use	elevation	rendering	for	the	input	
channel	CH_U_L030.	 If	any	of	 the	required	output	channels	 for	 the	 input	channel	 is	not	 in	 the	output	
channel	configuration,	isPossibleElev	shall	return	FALSE	and	elevation	rendering	shall	not	be	applied	
for	that	input	channel.	

Table	179	—	Required	output	channels	for	elevation	rendering	for	isPossibleElev	

Input	
Channel	

Required	Output	Channels	

CH_M_L030	 CH_M_R030	 CH_M_000	 CH_LFE1	 CH_M_L110	 CH_M_R110	

CH_U_000	 1	 1	 1	 0		 1	 1	

CH_U_L045	 1	 1	 0		 0		 1	 1	

CH_U_R045	 1	 1	 0		 0		 1	 1	

CH_U_L030	 1	 1	 0		 0		 1	 1	

CH_U_R030	 1	 1	 0		 0		 1	 1	

CH_U_L090	 1	 0	 0		 0		 1	 1	

CH_U_R090	 0	 1	 0		 0		 1	 1	

CH_U_L110	 1	 0	 0		 0		 1	 1	

CH_U_R110	 0	 1	 0		 0		 1	 1	

CH_U_L135	 1	 0	 0	 0	 1	 1	

CH_U_R135	 0	 1	 0	 0	 1	 1	

CH_U_180	 1	 1	 0	 0	 1	 1	

CH_T_000	 1	 1	 1	 0	 1	 1	

	

11.4.1.6.7.3 initElevSptlParms	:	Initialization	of	elevation	rendering	parameters	based	on	the	
input	channel	elevation	

The	initial	values	of	the	spatial	elevation	filters	and	the	elevation	panning	coefficients	are	defined	in	Table	
180,	Table	181,	and	Table	182	for	the	‘height’	input	channels,	except	CH_T_000.	When	a	‘height’	input	
channel	 (except	 CH_T_000)	 has	 the	 elevation	 higher	 than	 35	 degrees,	 the	 spatial	 elevation	 filter	
coefficients	and	elevation	panning	coefficients	shall	be	updated	according	to	the	degree	of	the	elevation.	
Note	that	the	elevation	sector	is	defined	from	+21	to	+60	degrees	for	the	height	channels	in	Table	185.		

For	the	elevation	rendering	of	an	input	channel,	an	EQ	is	selected	from	the	EQ	column	of	the	Table	185.	
For	convenience,	eq(i#-)	is	defined	as	the	EQ	column,	e.g.	if	the	i#-	is	CH_U_000,	eq(i#-)		is	9	(EQVFC).	

ISO/IEC	23008-3:202X(E)	

322	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	180	—	Spatial	elevation	filter	initial	values	(for	the	35	degrees	in	elevation)	

Hybrid	
QMF	
(71	

bands)	

EQ0,lin	(.)	

7	(EQVF)	 8	(EQVB)	 9	(EQVFC)	 10	
(EQVBC)	

11	
(EQVOG)	

12	
(EQVS)	

13	
(EQBTM)	

14	
(EQVBA)	

0		 0.841395	 0.819093	 0.68508532	 0.770312	 0.62528018	 0.877674	 0.922571	 0.877674	

1		 0.841395	 0.819093	 0.68508532	 0.770312	 0.62528018	 0.877674	 0.922571	 0.877674	

2		 0.874312	 0.922571	 0.71188768	 0.940445	 0.62528018	 0.901571	 1.143756	 0.988553	

3		 0.874312	 0.922571	 0.71188768	 0.940445	 0.62528018	 0.901571	 1.143756	 0.988553	

4		 0.926119	 0.980995	 0.83	 1.015469	 0.67516235	 1	 1.117721	 1.051155	

5		 0.926119	 0.980995	 0.83	 1.015469	 0.67516235	 1	 1.117721	 1.051155	

6		 0.944061	 0.887837	 0.76867877	 1	 0.72902365	 0.905038	 1.023293	 0.951335	

7		 0.944061	 0.887837	 0.76867877	 1	 0.72902365	 0.905038	 1.023293	 0.951335	

8		 0.944061	 0.887837	 0.76867877	 1	 0.72902365	 0.905038	 1.023293	 0.951335	

9		 0.908518	 0.958665	 0.76867877	 0.887837	 0.70157643	 1.039122	 0.922571	 1.027228	

10		 0.908518	 0.958665	 0.76867877	 0.887837	 0.70157643	 1.039122	 0.922571	 1.027228	

11		 0.944061	 0.936843	 0.79875133	 0.838172	 0.72902365	 1.023293	 0.940445	 0.860994	

12		 0.944061	 0.936843	 0.79875133	 0.838172	 0.72902365	 1.023293	 0.940445	 0.860994	

13		 0.944061	 0.936843	 0.79875133	 0.838172	 0.72902365	 1.023293	 0.940445	 0.860994	

14		 0.980995	 0.962351	 0.83	 0.922571	 0.64974255	 0.940445	 0.940445	 0.992354	

15		 0.980995	 0.962351	 0.83	 0.922571	 0.64974255	 0.940445	 0.940445	 0.992354	

16		 0.980995	 0.962351	 0.83	 0.922571	 0.64974255	 0.940445	 0.940445	 0.992354	

17		 0.980995	 0.962351	 0.83	 0.922571	 0.64974255	 0.940445	 0.940445	 0.992354	

18		 0.887153	 0.916638	 0.72234319	 0.916638	 0.63446387	 0.9525	 0.829592	 0.90963	

19		 0.875087	 0.899232	 0.71251848	 0.899232	 0.62583427	 0.934412	 0.813839	 0.892357	

20		 0.933012	 0.863327	 0.7596824	 0.830823	 0.66726037	 0.917998	 0.883436	 0.856726	

21		 0.922109	 0.849236	 0.75080472	 0.817263	 0.65946291	 0.903015	 0.869017	 0.842743	

22		 0.912036	 0.836276	 0.74260266	 0.804791	 0.65225907	 0.889235	 0.855756	 0.829882	

23		 0.902688	 0.824301	 0.73499156	 0.793266	 0.64557314	 0.876501	 0.843501	 0.817998	

24		 0.893979	 0.816315	 0.72790004	 0.813189	 0.61527373	 0.864685	 0.922978	 0.874698	

25		 0.885822	 0.805907	 0.72125921	 0.802821	 0.60966047	 0.853661	 0.91121	 0.863545	

26		 0.878166	 0.796173	 0.71502508	 0.793123	 0.60439092	 0.843349	 0.900203	 0.853114	

27		 0.90502	 0.802272	 0.7368906	 0.78401	 0.64724144	 0.866273	 0.93538	 0.917603	

28		 0.897936	 0.793493	 0.7311221	 0.775431	 0.6421749	 0.856795	 0.925145	 0.907563	

29		 0.7943	 0.785196	 0.64673932	 0.815915	 0.56805749	 0.815915	 1.003794	 0.918991	

30		 0.788618	 0.777344	 0.6421129	 0.807755	 0.56399394	 0.807755	 0.993756	 0.909801	

31		 0.783206	 0.738062	 0.63770643	 0.710275	 0.53903577	 0.769886	 0.84093	 0.790848	

32		 0.778048	 0.731266	 0.63350663	 0.703734	 0.53548544	 0.762797	 0.833186	 0.783566	

33		 0.773116	 0.724785	 0.62949109	 0.697497	 0.53209122	 0.756036	 0.825802	 0.776621	

34		 0.659052	 0.545115	 0.53661741	 0.483973	 0.48977268	 0.566441	 0.691546	 0.584101	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 323	
	

Hybrid	
QMF	
(71	

bands)	

EQ0,lin	(.)	

7	(EQVF)	 8	(EQVB)	 9	(EQVFC)	 10	
(EQVBC)	

11	
(EQVOG)	

12	
(EQVS)	

13	
(EQBTM)	

14	
(EQVBA)	

35		 0.655171	 0.540626	 0.53345677	 0.479988	 0.48688833	 0.561776	 0.685851	 0.579291	

36		 0.651447	 0.536328	 0.53042478	 0.476172	 0.48412123	 0.557311	 0.6804	 0.574686	

37		 0.647865	 0.532204	 0.52750816	 0.47251	 0.48145865	 0.553025	 0.675167	 0.570266	

38		 0.644418	 0.528244	 0.52470193	 0.468995	 0.47889724	 0.54891	 0.670144	 0.566024	

39		 0.641096	 0.524436	 0.52199696	 0.465614	 0.47642896	 0.544953	 0.665313	 0.561943	

40		 0.637889	 0.520767	 0.51938578	 0.462356	 0.39127933	 0.54114	 0.660658	 0.558012	

41		 0.634793	 0.517232	 0.51686507	 0.459218	 0.38937988	 0.537467	 0.656173	 0.554224	

42		 0.631798	 0.513818	 0.5144257	 0.456187	 0.38754274	 0.53392	 0.651843	 0.550566	

43		 0.628901	 0.510523	 0.51206767	 0.453261	 0.3857659	 0.530496	 0.647662	 0.547035	

44		 0.626093	 0.507335	 0.50978102	 0.450431	 0.38404333	 0.527183	 0.643618	 0.543619	

45		 0.623373	 0.504251	 0.50756575	 0.447693	 0.38237503	 0.523978	 0.639706	 0.540315	

46		 0.620731	 0.501262	 0.50541522	 0.445039	 0.3807543	 0.520873	 0.635914	 0.537112	

47		 0.618168	 0.498367	 0.5033286	 0.442469	 0.37918248	 0.517864	 0.632241	 0.53401	

48		 0.615676	 0.495557	 0.50129925	 0.439974	 0.37765354	 0.514944	 0.628675	 0.530998	

49		 0.613254	 0.49283	 0.49932717	 0.437553	 0.37616815	 0.51211	 0.625216	 0.528077	

50		 0.610896	 0.490179	 0.49740738	 0.435199	 0.37472162	 0.509356	 0.621853	 0.525236	

51		 0.608602	 0.487604	 0.49553988	 0.432913	 0.37331462	 0.50668	 0.618586	 0.522477	

52		 0.606366	 0.485097	 0.49371886	 0.430687	 0.37194246	 0.504075	 0.615406	 0.519791	

53		 0.604187	 0.482659	 0.49194432	 0.428522	 0.37060648	 0.501541	 0.612313	 0.517178	

54		 0.602061	 0.480282	 0.49021294	 0.426412	 0.36930199	 0.499072	 0.609298	 0.514632	

55		 0.599987	 0.477968	 0.48852472	 0.424358	 0.36803033	 0.496667	 0.606362	 0.512152	

56		 0.597962	 0.475711	 0.48687551	 0.422354	 0.36678748	 0.494321	 0.603498	 0.509733	

57		 0.595984	 0.47351	 0.48526614	 0.4204	 0.36557478	 0.492034	 0.600706	 0.507375	

58		 0.594051	 0.47136	 0.48369163	 0.418491	 0.36438888	 0.489801	 0.59798	 0.505072	

59		 0.592162	 0.469263	 0.48215364	 0.416629	 0.36322978	 0.487622	 0.595319	 0.502825	

60		 0.590313	 0.467213	 0.48064802	 0.414809	 0.36209614	 0.485492	 0.592718	 0.500628	

61		 0.588505	 0.465211	 0.4791756	 0.413032	 0.36098729	 0.483411	 0.590178	 0.498483	

62		 0.586734	 0.463252	 0.47773389	 0.411293	 0.35990055	 0.481376	 0.587694	 0.496384	

63		 0.585001	 0.461338	 0.47632289	 0.409593	 0.35883726	 0.479386	 0.585265	 0.494332	

64		 0.583302	 0.459463	 0.47493928	 0.407929	 0.35779541	 0.477439	 0.582887	 0.492324	

65		 0.581638	 0.45763	 0.47358472	 0.406301	 0.356775	 0.475533	 0.58056	 0.490359	

66		 0.580006	 0.455833	 0.47225589	 0.404705	 0.35577402	 0.473666	 0.578281	 0.488434	

67		 0.578407	 0.454074	 0.47095362	 0.403144	 0.35479247	 0.471838	 0.57605	 0.486549	

68		 0.576837	 0.45235	 0.46967542	 0.401613	 0.35382968	 0.470046	 0.573862	 0.484701	

69		 0.575697	 0.451098	 0.46874665	 0.400502	 0.3531302	 0.468746	 0.572275	 0.48336	

70		 0.573327	 0.448501	 0.46681773	 0.398196	 0.35167697	 0.466048	 0.56898	 0.480578	

ISO/IEC	23008-3:202X(E)	

324	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

When	the	'height‘	input	channel	iin	has	higher	elevation	than	35	degrees,	the	spatial	elevation	filter	is	
calculated	from	EQV,*#-ª ©eq(i#-)´		in	Table	180	by:	

	 If	the	input	channel,	iin,	is	frontal	side	:	azimuth	is	in	the	range	of	(-90,	90)	

	 	 EQ&,Ååç meq(iéè)n = ~
20 ∙ log&' èEQ',�éèç meq(iéè)nê + 0.05 ∙ log%(fç ∙ f|/6000) + 	1 for	fç ∙ f| > 8000	

20 ∙ log&' èEQ',�éèç meq(iéè)nê + 	1 otherwise
	

	 	 EQ%,Ååç meq(iéè)n = EQ&,Ååç meq(iéè)n ∙ (1 +min	(max(elv − 35, 0) , 25) ∙ 0.05)	

	 	 —áà,Äê(é(")
ç = ‘10

dáà<,=>
? ëÄê(é@A)íF&f %'F'.'î∙�ñó<(ò?∙òB/ô''')ö for	fç ∙ f| > 8000
10dáà<,=>

? ëÄê(é@A)íF&f %'⁄ otherwise
		

else	(the	input	channel	is	rear	side	:	azimuth	is	either	in	[-180,	-90]	or	in	[90,	180])	

	 	 EQ&,Ååç meq(iéè)n = ~
20 ∙ log&' èEQ',�éèç meq(iéè)nê + 0.07 ∙ log%(fç ∙ f|/6000) + 	1 for	fç ∙ f| > 8000	

20 ∙ log&' èEQ',�éèç meq(iéè)nê + 	1 otherwise
	

	 	 EQ%,Ååç meq(iéè)n = EQ&,Ååç meq(iéè)n ∙ (1 +min	(max(elv − 35, 0) , 25) ∙ 0.05)	

	 	 —áà,Äê(é(")
ç = ‘10

dáà<,=>
? ëÄê(é@A)íF&f %'F'.'â∙�ñó<(ò?∙òB/ô''')ö for	fç ∙ f| > 8000
10dáà<,=>

? ëÄê(é@A)íF&f %'⁄ otherwise
	

where	fk	is	the	normalized	centre	frequency	of	frequency	band	k,	specified	in	Table	186,	fs	is	the	sampling	
frequency,	and	elv	is	the	elevation	of	the	input	channel.	

When	the	‘height’	input	channel	iin	does	not	have	higher	elevation	than	35	degrees,	use	the	initial	filter	
coefficients	according	to:	
	 	 —áà,Äê(é(")

ç = EQ',�éèç meq(iéè)n	

The	spatial	elevation	panning	coefficients	shall	also	be	updated	for	the	 ‘height’	 input	channels,	except	
CH_T_000	and	CH_U_180,	for	the	different	elevation	degrees.	Table	181	and	Table	182	show	the	initial	
panning	coefficients	for	the	input	channels	with	the	elevation	of	35	degrees.	When	the	elevation	of	the	
input	channel	is	higher	than	35	degrees,	the	ipsilateral	gain	applied	to	the	input	channel	shall	be	reduced	
and	the	contralateral	channel	shall	be	boosted	with	the	gain	difference	gº(elv)	and	gΩ(elv).		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 325	
	

Table	181	—	Initial	spatial	localization	panning	coefficients	for	2,8	kHz	~	10	kHz	
(35	degrees	in	elevation)	

Channel	
label,	iin	

GvH0,1~6	(iin)	

CH_M_L030	
(GvH0,1(iin))	

CH_M_R030	
(GvH0,2(iin))	

CH_M_000	
(GvH0,3(iin))	

CH_LFE1	
(GvH0,4(iin))	

CH_M_L110	
(GvH0,5(iin))	

CH_M_R110	
(GvH0,6(iin))	

CH_U_000	 0.49146774	 0.49146774	 0.34746769	 0		 0.44507593	 0.44507593	

CH_U_L045	 0.70918131	 0.27444959	 0		 0		 0.56982642	 0.31150770	

CH_U_R045	 0.27444959	 0.70918131	 0		 0		 0.31150770	 0.56982642	

CH_U_L030	 0.70918131	 0.27444959	 0		 0		 0.56982642	 0.31150770	

CH_U_R030	 0.27444959	 0.70918131	 0		 0		 0.31150770	 0.56982642	

CH_U_L090	 0.56040317	 0	 0		 0		 0.81550622	 0.14456093	

CH_U_R090	 0	 0.56040317	 0		 0		 0.14456093	 0.81550622	

CH_U_L110	 0.34278116	 0		 0		 0		 0.91200900	 0.22525696	

CH_U_R110	 0		 0.34278116	 0		 0		 0.22525696	 0.91200900	

CH_U_L135	 0.34278116	 0		 0		 0		 0.91200900	 0.22525696	

CH_U_R135	 0		 0.34278116	 0		 0		 0.22525696	 0.91200900	

CH_U_180	 0.22851810	 0.22851810	 0		 0		 0.66916323	 0.66916323	

CH_T_000	 0.45328009	 0.45328009	 0.33519593	 0	 0.48822021	 0.48822021	

Table	182	—	Initial	spatial	localization	panning	coefficients	below	2,8	kHz	and	above	10	kHz	
(35	degrees	in	elevation)	

Channel	
label,	iin	

GvL0,1~6	(iin)	

CH_M_L030	
(GvL0,1(iin))	

CH_M_R030	
(GvL0,2(iin))	

CH_M_000	
(GvL0,3(iin))	

CH_LFE1	
(GvL0,4(iin))	

CH_M_L110	
(GvL0,5(iin))	

CH_M_R110	
(GvL0,6(iin))	

CH_U_000	 0.61940062	 0.61940062	 0.43791625	 0	 0	 0	

CH_U_L045	 1	 0	 0	 0	 0	 0	

CH_U_R045	 0	 1	 0	 0	 0	 0	

CH_U_L030	 1	 0	 0	 0	 0	 0	

CH_U_R030	 0	 1	 0	 0	 0	 0	

CH_U_L090	 0.36730000	 0	 0	 0	 0.93010002	 0	

CH_U_R090	 0	 0.36730000	 0	 0	 0	 0.93010002	

CH_U_L110	 0	 0	 0	 0	 1	 0	

CH_U_R110	 0	 0	 0	 0	 0	 1	

CH_U_L135	 0.34278116	 0	 0	 0	 0.91200900	 0.22525696	

CH_U_R135	 0	 0.34278116	 0	 0	 0.22525696	 0.91200900	

CH_U_180	 0.22851810	 0.22851810	 0		 0		 0.66916323	 0.66916323	

CH_T_000	 0.45328009	 0.45328009	 0.33519593	 0	 0.48822021	 0.48822021	

For	all	height	input	channel	iin,	the	GvH,1~6	and	GvL,1~6	shall	be	initialized	with		GvH0,1~6:		

ISO/IEC	23008-3:202X(E)	

326	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 	 	 G•¶,&~ô(iéè) = G•¶',&~ô(iéè)	

	 	 	 G•ß,&~ô(iéè) = G•ß',&~ô(iéè)	

For	each	height	input	channel	iin,	the	GvH,1~6	shall	be	calculated	from	GvH0,1~6:	

	 	 If	the	input	channel	is	CH_U_000,	

	 	 	 G•¶,î(iéè) = 10('.%î∙®éè	(®~©(Ä�•FQî,'),%î)) %'⁄ ∙ G•¶',î(iéè)	

	 	 	 G•¶,ô(iéè) = 10('.%î∙®éè	(®~©(Ä�•FQî,'),%î)) %'⁄ ∙ G•¶',ô(iéè)	

	 	 Elseif	the	input	channel	is	not	CH_U_180		

	 	 	 if	the	input	channel	is	side	:	azimuth	is	either	in	(-110,	-70)	or	in	(70,	110),		

	 	 	 	 g™(elv) = 10(F'.'îî%%∙®éè	(®~©(Ä�•FQî,'),%î)) %'⁄ 	

	 	 	 	 g´(elv) = 10('.O&äâÜ∙®éè	(®~©(Ä�•FQî,'),%î)) %'⁄ 	

	 	 	 else	(the	input	channel	is	frontal	or	rear	in	[-70,	70],	[-180,	-110],	or	[110	180])	

	 	 	 	 g™(elv) = 10(F'.'OâO'&∙®éè	(®~©(Ä�•FQî,'),%î)) %'⁄ 	

	 	 	 	 g´(elv) = 10('.&OÜäî∙®éè	(®~©(Ä�•FQî,'),%î)) %'⁄ 	

	 				 For	each	output	channels	ipsilateral	to	the	input	channel,		
	 	 	 (e.g.	CH_M_L030	and	CH_M_L110	for	CH_U_L045)	

	 	 	 	 G•¶,™(iéè) = g™(elv) ∙ G•¶',™(iéè)	

	 	 	 	 where	the	I	of	Gæø,º(i#-)	represents	the	indices	ipsilateral	to	the	i#-	

	 	 For	each	output	channels	contralateral	to	the	input	channel,		
	 	 	 (e.g.	CH_M_R030	and	CH_M_R110	for	CH_U_L045)	

	 	 	 	 Gæø,Ω(i#-) = gΩ(elv) ∙ GæøV,Ω(i#-)	

	 	 	 	 where	the	C	of	Gæø,Ω(i#-)	represents	the	indices	contralateral	to	the	i#-	

	 	 	 	 G•¶,´(iéè) = g´(elv) ∙ G•¶',´(iéè)	

	 	 	 	 where	the	C	of	Gæø,Ω(i#-)	represents	the	indices	contralateral	to	the	i#-	

A	set	of	spatial	localization	panning	coefficients	for	the	input	channel	is	normalized	to	make	the	sum	of	
powers	be	1.	

	 	 	 P̈ CD(iéè) = ÷∑ G•¶,ñ%ô
ñ0& (iéè)		

	 	 	 G•¶,&~ô(iéè) =
&

≠ECD
G•¶,&~ô(iéè)	

	 	 If	the	input	channel	is	in	[-160,	-110)	or	(110	160],	Gæ¿,Ω(i#-)	shall	be	updated	:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 327	
	

	 	 	 	G•ß,™(iéè) = g™(elv) ∙ G•ß',™(iéè)	

	 	 	 	G•ß,´(iéè) = g´(elv) ∙ G•ß',´(iéè)	

	 	 	 P̈ CF(iéè) = ÷∑ G•ß,ñ% (iéè)ô
ñ0& 		

	 	 	 G•ß,&~ô(iéè) =
&

≠ECF
G•ß,&~ô(iéè)	

Note	that	only	the	panning	coefficients	of	the	Gæ¿,I~Æ	for	the	rear	input	channels	change	and	those	for	the	
frontal/side	input	channel	do	not.	

As	a	result	of	initElevSptlParms		following	parameters	are	derived:	

	 —áà,Äê(é(")
ç :	Updated	spatial	elevation	filter	coefficient	vector	(71band)	for	the	input	channel	iin.	

	 G•¶,&~ô(iéè)	:	Updated	spatial	elevation	panning	coefficients	for	the	input	signal	in	the	range	of	2.8~10	
kHz 	

	 G•ß,&~ô(iéè)	:	Updated	spatial	elevation	panning	coefficients	 for	 the	 input	signal	below	2.8	kHz	and	
above	10	kHz	

11.4.1.6.7.4 renderElevSptlParms	:	Derivation	of	input-output	channel	mapping	and	equalizer	
for	spatial	elevation	rendering	

renderElevSptlParms	initializes	the	input-output	channel	mapping	for	spatial	elevation	rendering	for	
an	input	channel	(iin).	

	 Initialize	the	mapping	counter	i=1;	

For	m=1	to	6	

¾ If		 GvH,m	(iin)	>	1	
— sP	i	=	index	of	source	channel	iin		
— dP	i	=	index	of	channel	m	in	output	
— gP	iH		=	(value	of	Gain	column)	*	GvH,m	(iin)	
— gP	iL		=	(value	of	Gain	column)	*	GvL,m	(iin)	
— eP	i		=	eq(i#-)	
— i	=	i	+	1	

nP		 =	i	-	1;	
return	{	sP,	dP,	gPH,	gPL,	eP,	and	nP	}	

Note	that	the	initialization	does	not	add	the	input-output	channel	mapping	that	the	gain	gP	iH		is	zero	and	
eq(i#-)	is	from	7	to	15.	

By	 applying	 the	 downmix	 rules	 defined	 in	 Table	185	 with	 the	 spatial	 elevation	 filter	 and	 spatial	
localization	panning	coefficients,	 the	spatial	elevation	rendering	parameters	 for	each	 input	channel	 is	
summarized	as:	

— CH_U_L135,	CH_U_R135,	CH_U_180,	or	CH_T_000	

ISO/IEC	23008-3:202X(E)	

328	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— Spatial	elevation	filter:	the	HRTF-based	EQs	(EQVB	,	EQVBC,	or	EQVOG)		

— Spatial	elevation	panning:	Filtered	signal	is	multiplied	by	the	same	panning	coefficients	over	all	
frequency	(the	gPH	is	identical	to	the	g

P
L)		

— CH_U_L110,	and	CH_U_R110	

— Spatial	elevation	filter:	the	HRTF-based	EQ	(EQVBA)	

— Spatial	elevation	panning:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gPH	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gPL	 for	the	rest	frequency	range:	Use	the	“add-to-the-closest	channel”	method	in	order	to	
provide	enough	envelopment	and	keep	the	audio	channel	wide	enough.	

— CH_U_L090	and	CH_U_R090	

— Spatial	elevation	filter:	the	HRTF-based	EQs	(EQVS)	

— Spatial	elevation	panning:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gPH	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gPL	 for	 the	 rest	 frequency	 range:	 Panned	 at	 90	 degrees	 using	 front	 and	 surround	
loudspeakers	 in	order	 to	provide	enough	envelopment	and	keep	 the	audio	channel	wide	
enough.	

— CH_U_L030,	CH_U_R030,	CH_U_L045,	CH_U_R045	

— Spatial	elevation	filter:	the	HRTF-based	EQs	(EQVF)		

— Spatial	elevation	panning:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gPH	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gPL	 for	the	rest	frequency	range:	Use	the	“add-to-the-closest	channel”	method	in	order	to	
provide	enough	envelopment	and	keep	the	audio	channel	wide	enough.	

— Signals	 for	 the	 surround	 loudspeakers,	 CH_M_L110	 and	 CH_M_R110,	 are	 delayed	 by	
approximately	3	msec	in	order	to	avoid	front-back	confusion	using	the	precedence	effect.	For	
details	see	subclause	11.4.2.3	

— CH_U_000	

— Spatial	elevation	filter:	the	HRTF-based	EQ	(EQVFC)	

— Spatial	elevation	panning:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gPH	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gPL	for	the	rest	frequency	range:	panned	among	three	frontal	output	channels,	CH_M_L030,	
CH_M_000,	and	CH_M_R030.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 329	
	

— Signals	 for	 the	 surround	 loudspeakers,	 CH_M_L110	 and	 CH_M_R110,	 are	 delayed	 by	
approximately	3	msec	in	order	to	avoid	front-back	confusion	using	the	precedence	effect.	For	
details	see	subclause	11.4.2.3	

11.4.1.6.7.5 renderElevTmbrParms	:	Derivation	of	input-output	channel	mapping	and	equalizer	
for	timbral	elevation	rendering	

In	the	same	manner	as	renderElevSptlParms,	renderElevTmbrParms	initializes	another	input-output	
channel	mapping	 for	 timbral	 elevation	 rendering	 for	 the	 same	 input	 channel	 iin.	 The	 parameters	 are	
initialized	 following	 subclause	 11.4.1.6.3	 but	 ignoring	 the	 downmix	 rules	 with	 a	 destination	 field	 of	
VIRTUAL.	As	a	result,	a	set	of	sS,	dS,	gS,	eS,	and	gainS	are	defined		for	the	input	channel	iin	by	the	process:		

	 Initialize	the	mapping	counter	i=1;	

Search	the	first	entry	of	the	input	channel	in	the	Source	column	of	the	Table	185	and	the	channels	in	
the	Destination	column	exist	below	the	entry	with	VIRTUAL	destination.	

If	Destination	column	contains	ALL_U,	then:	
For	each	output	channel	x	with	“CH_U_”	in	its	name,	do:	

— sSi	=	index	of	source	channel	in	input		

— dSi		=	index	of	channel	x	in	output	

— gSi	=	(value	of	Gain	column)/sqrt(number	of	“CH_U_”	output	channels)	

— eSi	=	value	of	EQ	column	

— gaini	=	(value	of	Gain	column)	

— i	=	i	+	1	

Else	if	Destination	column	contains	ALL_M,	then:	

For	each	output	channel	x	with	“CH_M_”	in	its	name,	do:	

— sSi	=	index	of	source	channel	in	input	

— dSi	=	index	of	channel	x	in	output	

— gSi	=	(value	of	Gain	column)/sqrt(number	of	“CH_M_”	output	channels)	

— eSi	=	value	of	EQ	column	

— gaini	=	(value	of	Gain	column)	

— i	=	i	+	1	

Else	If	there	is	one	channel	in	the	Destination	column,	then:	

— sSi	=	index	of	source	channel	in	input	

— dSi	=	index	of	destination	channel	in	output	

— gSi	=	value	of	Gain	column	

— eSi	=	value	of	EQ	column		

— if	eSi	==	13	(EQBTM)	

— eSi	=	0	(No	Process)	

— gaini	=	(value	of	Gain	column)	

ISO/IEC	23008-3:202X(E)	

330	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— i	=	i	+	1	

Else	(two	channels	in	Destination	column)	

— sSi	=	index	of	source	channel	in	input	

— dSi	=	index	of	first	destination	channel	in	output	

— gSi	=	(value	of	Gain	column)	*	g1	

— eSi	=	value	of	EQ	column	

— if	eSi	==	13	(EQBTM)	

— eSi	=	0	(No	Process)	

— gaini	=	(value	of	Gain	column)	

— i	=	i	+	1	

	

— sSi	=	sSi-1	

— dSi	=	index	of	second	destination	channel	in	output	

— gSi	=	(value	of	Gain	column)	*	g2	

— eSi	=	eSi-1	
— gaini	 =	(value	of	Gain	column)	

— i	=	i	+	1	

nS	=	i	-	1;	

return	{	sS,	dS,	gS,	eS,	gain	and	nS	}	

The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	way.	

1) Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

2) The	azimuth	angles	of	the	destination	channels	are	 	and	 	(see	Table	183).	

3) The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

4) 	

5) 	

6) 	

7) 	

11.4.1.6.7.6 Post-processing	for	random	setups	with	elevation	rendering	

After	 the	parameters	of	SP,	DP,	GPH,	GPL,	 and	EP	 are	 initialized	based	on	channel	 information,	 they	are	
modified	according	to	the	azimuth	and	elevation	deviations.	For	the	convenience,	CP	ii	refers	the	label	of	

1a 2a

srca

1 2
0 2

a a
a

-
=

1 2
center 2

a aa +
=

center src 2 1() sgn()a a a a a= - × -

10
0

1 2 102 2
0

tan tan 101,
tan tan 101 1

 withgg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 331	
	

SPi,	CP	io	refers	the	label	of	DPi,	GPCP,o-refers	the	elevation	deviation	of	the	CP	io,	and		Ge¡b,o-refers	the	azimuth	
deviation	of	the	CP	io,	

1)	 Elevation	post-processing	1	:	Find	the	“practically	identical”	channel	

For	each	element	i	in	SP,	do	

flag(i)=0	

For	each	element	i	in	SP,	do	

If	GPCP,o- 	> 	20	and		Ge¡b,o-≤	15	
	 if	(CP	io	==	CH_M_L030	and	(CP	ii	==	CH_U_L030	||	CP	ii	==	CH_M_L045))	||	
	 			(CP	io	==	CH_M_R030	and	(CP	ii	==	CH_U_R030	||	CP	ii	==	CH_M_R045))	||	
	 			(CP	io	==	CH_M_000	and	CP	ii	==	CH_U_000)	||	
	 		{	
	 	 GP	iH		=	1	
	 	 GP	iL		=	1	
	 	 flag(i)=	1	
	 	 For	each	element	j	in	SP,	do	
	 	 	 If	CP	ii	==	CP	ji		&&		i	≠	j	
	 	 	 	 GP	jH		=	0	
	 	 	 	 GP	jL		=	0	
	 	 	 	 flag(j)=	1	
	 		}	
If	GPCP,o- 	> 	20	and		Ge¡b,o-≤	25	
	 if	(CP	io	==	CH_M_L110	and	(CP	ii	==	CH_U_L110	||	CP	ii	==	CH_M_L135))	||	
	 			(CP	io	==	CH_M_R110	and	(CP	ii	==	CH_U_R110	||	CP	ii	==	CH_M_R135))	
	 		{	
	 	 GP	iH		=	1	
	 	 GP	iL		=	1	
	 	 flag(i)=	1	
	 	 For	each	element	j	in	SP,	do	
	 	 	 If	CP	ii	==	CP	ji		&&		i	≠	j	
	 	 	 GP	jH		=	0	
	 	 	 GP	jL		=	0	
	 	 	 flag(j)=	1	
	 		}	
For	each	element	i	in	SP,	do	
	 If	GPCP,o- 	>	20	and	CP	io	==	CH_M_L110	and	CP	ii	==	CH_U_L090		
	 	 For	each	element	j	in	SP,	do	
	 	 	 If	GPCP,oG 	>	20	and	CP	jo	==	CH_M_L030	and	CP	ii	==	CH_U_L090	
	 	 	 	 For	each	element	k	in	SP,	do	
	 	 	 	 	 If	CP	ki	==	CH_U_L090	
	 	 	 	 	 	 GP	kH		=	0	
	 	 	 	 	 	 GP	kL		=	0	

ISO/IEC	23008-3:202X(E)	

332	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 	 	 	 	 	 flag(k)=	1	
	 	 	 	 GP	iH		=	g1	
	 	 	 	 GP	iL		=	g1	
	 	 	 	 GP	jH		=	g2	
	 	 	 	 GP	jL		=	g2	
	 	 	 	 flag(i)=	1	
	 	 	 	 flag(j)=	1	
	 If	GPCP,o- 	>	20	and	CP	io	==	CH_M_R110	and	CP	ii	==	CH_U_R090	
	 	 For	each	element	j	in	SP,	do	
	 	 	 If	GPCP,oG 	>	20	and	CP	jo	==	CH_M_R030	and	CP	ii	==	CH_U_R090	
	 	 	 	 For	each	element	k	in	SP,	do	
	 	 	 	 	 If	CP	ki	==	CH_U_R090	
	 	 	 	 	 	 GP	kH		=	0	
	 	 	 	 	 	 GP	kL		=	0	
	 	 	 	 	 	 flag(k)=	1	
	 	 	 	 GP	iH		=	g1	
	 	 	 	 GP	iL		=	g1	
	 	 	 	 GP	jH		=	g2	
	 	 	 	 GP	jL		=	g2	
	 	 	 	 flag(i)=	1	
	 	 	 	 flag(j)=	1	
	

The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	with	the	deviation	for	CP	io	and	CP	jo	are 	and	 .	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

— 	

— 	

— 	

— 	

2)	 Elevation	post-processing	2	on	panning	coefficients	:	Find	the	“practically	dual	mono”	channel	

For	each	element	i	in	SP,	if	flag(i)==0	

	 If	both	CH_M_L030	and	CH_M_R030	have	elevation	deviations	more	than	20	degrees	
if	CP	ii	==	CH_U_000		

if	CP	io	==	CH_M_L030	||	CH_M_R030	
GP	iH		=	1	

1a 2a

srca

1 2
0 2

a a
a

-
=

1 2
center 2

a aa +
=

center src 2 1() sgn()a a a a a= - × -

10
0

1 2 102 2
0

tan tan 101,
tan tan 101 1

 withgg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 333	
	

GP	iL		=	1	
flag(i)=1	

else		
GP	iH		=	0	
GP	iL		=	0	
flag(i)=1	

	 If	both	CH_M_L110	and	CH_M_R110	are	elevated	
if	CP	ii	==	CH_U_180		

if	CP	io	==	CH_M_L110	||	CH_M_R110	
GP	iH		=	1	
GP	iL		=	1	
flag(i)=1	

else		
GP	iH		=	0	
GP	iL		=	0	
flag(i)=1	
	

3)	 Elevation	post-processing	3	on	panning	coefficients	:	Keep	the	central	image	

For	each	element	i	in	SP,	if	flag(i)==0	

if	CP	ii	==	CH_U_000	||	CH_T_000	||	CH_U_180	
if	only	one	of	the	output	channels	of	CH_M_L030	or	CH_M_R030	has	an	elevation	deviation	
more	than	20	degrees,	then	

if	CP	ii	==	CH_U_000	||	CH_T_000	
if	CP	io	==	CH_M_L030	||	CH_M_R030	

if	CP	io		is	elevated	

GP iH		=	G
P iH	×	10

G
<H∙

+*,*,I(
GJ 	

if	CP ii	==	CH_U_000	

GP iL		=	G
P iL	×	10

<
<H∙

+*,*,I(
GJ 	

if	CP ii	==	CH_T_000	

GP iL		=	G
P iL	×	10

G
<H∙

+*,*,I(
GJ 	

flag(i)=1	
else

GP iH		=	G
P iH	×	10

<
<H∙

+*,*,I(
GJ 		

GP iL		=	G
P iL	×	10

<
<H∙

+*,*,I(
GJ 	

flag(i)=1	
if	CP io	==	CH_M_000	

GP iH		=	G
P iH	×	10

<
<H∙

+*,*,I(
GJ 	

GP iL		=	G
P iL	×	10

<
<H∙

+*,*,I(
GJ 	

flag(i)=1	
if	CP ii	==	CH_U_180		

if	CP io	==	CH_M_L030	||	CH_M_R030	
if	CP io	is	not	elevated	

ISO/IEC	23008-3:202X(E)	

334	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

GP iH		=	G
P iH	×	10F

<
<H∙

+*,*,I(
GJ 	

GP iL		=	G
P iL	×	10F

<
<H∙

+*,*,I(
GJ 	

flag(i)=1	
if	only	one	of	the	output	channels	of	CH_M_L110	or	CH_M_R110	has	an	elevation	deviation	
more	than	20	degrees,	then	

if	CP	ii	==	CH_U_180	||	CH_T_000	
if	CP	io	==	CH_M_L110	||	CH_M_R110	

if	CP	io		is	elevated	

GP iH		=	G
P iH	×	10

<
<H∙

+*,*,I(
GJ 	

GP iL		=	G
P iL	×	10

<
<H∙

+*,*,I(
GJ 	

flag(i)=1	
if	CP ii	==	CH_U_000		

if	CP io	==	CH_M_L110	||	CH_M_R110	
if	CP io	is	not	elevated	

GP iH		=	G
P iH	×	10F

<
<H∙

+*,*,I(
GJ 	

GP iL		=	G
P iL	×	10F

<
<H∙

+*,*,I(
GJ 	

flag(i)=1	
	
4)	 Elevation	post-processing	4	on	panning	coefficients	:	Keep	the	L/R	balance	when	the	contralateral	
frontal	channel	elevated	

For	each	element	i	in	SP,	if	flag(i)==0	
if	CH_M_L030	is	elevated	more	than	20	degrees	and	CH_M_R030	is	not		
if	CP	ii	==	CH_U_R030	||	CP	ii	==	CH_U_R045,	do	
if	CP	io	==	CH_M_L030	

GP	iH		=	G
P	iH	×	10X

H
!7∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

H
!7∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10X

L
!7∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

L
!7∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	ii	==	CH_U_L090,	do	
if	CP	io	==	CH_M_L030	

GP	iH		=	G
P	iH	×	10

M.O
!7 ∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10X

L
!7∙

,%$%,I-
JK 	

flag(i)	=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	0	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 335	
	

flag(i)=1	
elseif	CP	ii	==	CH_U_L110	||	CP	ii	==	CH_U_L135,	do	
if	CP	io	==	CH_M_L030	

GP	iH		=	G
P	iH	×	10

K.P
!7 ∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10

K.P
!7 ∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10X

L.P
!7 ∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

L,P
!7 ∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10X

H
!7∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

H
!7∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CH_M_R030	is	elevated	more	than	20	degrees	and	CH_M_L030	is	not		

if	CP	ii	==	CH_U_L030	||	CP	ii	==	CH_U_L045,	do	
if	CP	io	==	CH_M_R030	

GP	iH		=	G
P	iH	×	10X

H
!7∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

H
!7∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10X

L
!7∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

L
!7∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	ii	==	CH_U_R090,	do	
if	CP	io	==	CH_M_R030	

GP	iH		=	G
P	iH	×	10

M.O
!7 ∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10X

L
!7∙

,%$%,I-
JK 	

flag(i)	=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	0	
flag(i)=1	

elseif	CP	ii	==	CH_U_R110	||	CP	ii	==	CH_U_R135,	do	
if	CP	io	==	CH_M_R030	

GP	iH		=	G
P	iH	×	10

K.P
!7 ∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL×	10

K.P
!7 ∙

,%$%,I-
JK 	

flag(i)=1	

ISO/IEC	23008-3:202X(E)	

336	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10X

L.P
!7 ∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

L,P
!7 ∙

,%$%,I-
JK 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10X

H
!7∙

,%$%,I-
JK 	

GP	iL		=	G
P	iL	×	10X

H
!7∙

,%$%,I-
JK 	

flag(i)=1	
	

5)	 Azimuth	post-processing	on	panning	coefficients	

fbias	=	razi,A(CH_M_L030)+	razi,A(CH_M_R030)	
bbias	=	razi,A(CH_M_L110)+	razi,A(CH_M_R110)	
For	each	element	i	in	SP,	

	 if		fbias	>	10	
	 if	(CP	ii	==	CH_U_000	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_L030)	

GP	iH		=	G
P	iH	×	10X

H
!7∙

(&0-21)
HK 	

if		CP	ii	==	CH_U_000		

GP	iL		=	G
P	iL	×	10X

!
!7∙

(&0-21)
HK 	

elseif	CP	ii	==	CH_T_000		

GP	iL		=	G
P	iL	×	10X

H
!7∙

(&0-21)
HK 	

flag(i)=1	
	 if		fbias	<	-10	
	 	 if	(CP	ii	==	CH_U_000	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_R030)	

GP	iH		=	G
P	iH	×	10

H
!7∙

(&0-21)
HK 	

if		CP	ii	==	CH_U_000		

GP	iL		=	G
P	iL	×	10

!
!7∙

(&0-21)
HK 	

elseif	CP	ii	==	CH_T_000		

GP	iL		=	G
P	iL	×	10

H
!7∙

(&0-21)
HK 	

	
flag(i)=1	

	 if		bbias	>	10	
	 	 if	(CP	ii	==	CH_U_180	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_L110)	

GP	iH		=	G
P	iH	×	10

H
!7∙

(00-21)
HK 	

GP	iL		=	G
P	iL	×	10

H
!7∙

(00-21)
HK 	

flag(i)=1	
	 if		bbias	<	-10	
	 	 if	(CP	ii	==	CH_U_180	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_R110)	

GP	iH		=	G
P	iH	×	10X

H
!7∙

(00-21)
HK 	

GP	iL		=	G
P	iL	×	10X

H
!7∙

(00-21)
HK 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 337	
	

flag(i)=1	
	
6)	 Spatial	elevation	coefficient	normalization	

For	each	element	i	in	SP,	if	flag(i)==1	
	 €bK	=	0	
	 €bl 	=	0	
For	each	element	i	in	SP,	if	flag(i)==1	
	 For	each	element	k	in	SP	

	 				 	 If	CP	ii	==	CP	ki		
	 	 	 	 €bK = €bK + (öUbK)F	
	 	 	 	 €bl = €bl + (öUbl)F	
	 	 	 	 flag(i)==0	

	 For	each	element	k	in	SP	
	 				 	 If	CP	ii	==	CP	ki		
	 	 	 	 öUbK = öUbK ×‹€bK	
	 	 	 	 öUbl = öUbl × ‹€bl 	
	 	 	 	 flag(i)==0	
	
7)	 Elevation	post-processing	on	spatial	elevation	filters	

For	each	element	i	in	SP	

	 If	CP	io	is	elevated	(rele,A(CP	io)	>	20)	

EP	i		=	0	(no	EQ)	

8)	 Update	the	ES,	GEQ	by	same	process	defined	in	subclause	11.4.1.6.5	as	below.	

For	each	element	i	in	DSi,	do:	

if	the	output	channel	with	index	DSi	is	a	horizontal	channel	by	definition	(i.e.	output	channel	label	contains	the	label	‘_M_’),	and	

if	this	output	channel	is	now	a	height	channel	(elevation	in	range	0..60	degrees),	and	

if	input	channel	with	index	SSi		is	a	height	channel	(i.e.	label	contains	‘_U_’),	then	

¾ h	=	min(elevation	of	randomized	output	channel,	35)	/	35	
¾ éL2)* = ℎ ∙ &

U#,+(
K + (1 − ℎ)	

¾ Apply	compensation	gain	to	DMX	gain:	GSi	=	GSi	×Gcomp	

¾ 	Define	new	equalizer	ŸÖÜ,P 	with	the	index	e,	where	 	

¾ ESi	=	e		
¾ e	=	e	+1	

else	if	input	channel	with	index	SSi	is	a	horizontal	channel	(label	contains	‘_M_’)	

¾ h	=	min(elevation	of	randomized	output	channel,	35)	/	35	

EQ, EQ,(1)
i

k k
e EG h h G= + - ×

ISO/IEC	23008-3:202X(E)	

338	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

¾ Define	new	equalizer	ŸÖÜ,P 	with	the	index	e,		

where	 	

¾ ESi	=	e		
¾ e	=	e	+1	

11.4.1.6.7.7 Merge	general	downmix	rules	and	elevation	rules	

After	the	elevation	rendering	parameters	are	initialized,	the	vectors	of	SP,	DP,	GPH,	GPL,	and	EP	that	cover	
the	elevation	rendered	height	input	channel	shall	be	merged	with	S,	D,	G,	E,	and	GEQ	that	cover	the	rest	of	
the	input	channels	by:	

	 	ÿ≠ = ∑ÿ
≠

ÿ ∏ ,				Ÿ
≠ = ∑Ÿ

≠

Ÿ ∏ ,				—
≠
¶ = ∑—

≠
¶
— ∏ ,					—≠ß = ∑—

≠
ß

— ∏ ,				⁄≠ = ∑⁄
≠

⁄ ∏	

SS,	DS,	GS,	and	ES	are	also	merged	with	S,	D,	G,	and	E	by:	

	 	ÿÆ = ∑ÿ
Æ

ÿ ∏ ,				Ÿ
Æ = ∑Ÿ

Æ

Ÿ ∏ ,				—
Æ = ∑—

Æ

— ∏ ,					⁄
Æ = ∑⁄

Æ

⁄ ∏,	

When	no	input	channel	is	rendered	by	elevation	rendering,	the	vectors	of	SP,	DP,	GPH	(or	GPL),	and	EP	are	
identical	to	SS,	DS,	GS,	and	ES	and	also	to	S,	D,	G,	and	E.	

11.4.1.6.8 Derivation	of	rules-based	initialization	downmix	matrix:	

MDMX	 and	MDMX2	 are	 derived	 by	 rearranging	 the	 temporary	 parameters	 from	 the	 mapping-oriented	
representation	(enumerated	by	mapping	counter	i)	to	a	channel-oriented	representation	as	defined	in	
the	following.	

Initialize	MDMX	and	MDMX2	as	Nout	×	Nin	zero	matrixes	for	all	processing	bands	k.	

For	each	i	in	SP	do:	

If	(EPi	=	0)	

{orh,n,k
ï = öUbK	for	A	=	D	P	i,	B	=	S	P	i	,			 for	fk	✕	fs	/	2	<	2	800		

{orh,n,k
ï = öUbl 	for	A	=	D	P	i,	B	=	S	P	i	,		 for	2	800≤fk	✕	fs	/	2	≤	10	000		

{orh,n,k
ï = öUbK	for	A	=	D	P	i,	B	=	S	P	i	,		 for	fk	✕	fs	/	2	>	10	000		

Else	

{orh,n,k
ï = öUbK × öïm�,m-S 	for	A	=	D	

P	i,	B	=	S	P	i	,		fk	✕	fs	/	2	<	2	800		

{orh,n,k
ï = öUbl × öïm�,m-S 	for	A	=	D	

P	i,	B	=	S	P	i,	2	800≤fk	✕	fs	/	2	≤	10	000		

{orh,n,k
ï = öUbK × öïm�,m-S 	for	A	=	D	

P	i,	B	=	S	P	i,		fk	✕	fs	/	2	>	10	000		

For	each	i	in	SSdo:	

If	(ESi	=	0)	

EQ, EQ,5 EQ,(1)
i

k k k
e EG h G h G= × + - ×

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 339	
	

A6/@%,A,:
E = éK,	for	A	=	D	S	i,	B	=	S	S	i	,		 for	1	≤	k	≤	K	

Else	

A6/@%,A,:
E = éK, × éE;^,;(K	for	A	=	D	S	i,	B	=	S	S	i,	1	≤	k	≤	K	

where	fk	is	the	normalized	centre	frequency	of	frequency	band	k,	specified	in	Table	186,	fs	is	the	sampling	
frequency,		A6/@,A,:

E 	and	A6/@%,A,:
E 	denotes	the	matrix	element	in	the	Ath	row	and	Bth	column	of	MDMX	and	

MDMX2.	After	 the	rules-based	 initialization	 this	matrix	of	downmix	coefficients	will	 contain	columns	of	
zeros	if	unknown	channels	are	present	in	the	input	format.	Those	columns	of	zeros	shall	be	filled	with	
downmix	gains	as	specified	in	subclause	11.4.1.6.9.	

11.4.1.6.9 VBAP-based	downmix	coefficients	derivation	

This	subclause	defines	how	to	generically	derive	downmix	gains	using	VBAP	in	case	of	unknown	output	
formats	or	unknown	input	channels.	The	following	restrictions	apply.	

— If	the	target	setup	contains	at	least	one	LFE,	then	map	each	LFE	channel	directly	to	the	LFE	of	the	
target	 setup	 that	 minimizes	 the	 azimuth	 angle	 deviation.	 No	 VBAP-based	 downmix	 coefficients	
derivation	shall	be	applied	for	the	LFE	channels.	The	downmix	coefficient	for	the	direct	mapping	shall	
be	set	to	unity	gain,	i.e.	to	1.0.	

— Otherwise	apply	the	VBAP-based	downmix	coefficients	derivation	defined	in	the	following	also	to	the	
LFE	channels.	

Handling	of	unknown	output	formats:	

In	case	the	output	format	is	considered	unknown,	the	downmix	coefficients	for	all	input	channels	shall	
be	derived	as	follows.	

Each	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	the	azimuth	
and	elevation	angles	associated	with	the	input	channel.	For	each	input	channel	the	mixing	gains	to	all	
output	 loudspeakers	 are	 calculated	 as	VBAP	panning	 gains	gscaled	 according	 to	8.4.4,	where	 the	 same	
output	 format	 shall	be	 signalled	 to	 the	VBAP	algorithm	as	 to	 the	 format	 converter.	The	panning	gain	
vectors	gscaled	shall	be	post-processed	according	to	subclause	11.4.1.6.10.	

The	 downmix	matrix 	is	 finally	 derived	 by	 filling	 each	matrix	 column	with	 the	 post-processed	
panning	gain	vector	elements	of	the	corresponding	input	channel,	independently	of	the	processing	band	
index	k.	

Handling	of	unknown	input	channels:	

In	case	the	input	format	contains	unknown	input	channels,	the	downmix	coefficients	for	these	channels	
shall	be	derived	as	follows:	

Each	unknown	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	
the	azimuth	and	elevation	angles	associated	with	the	input	channel.	For	each	unknown	input	channel	the	
mixing	 gains	 to	 all	 output	 loudspeakers	 are	 calculated	 as	 VBAP	 panning	 gains	 gscaled	 according	 to	
subclause	8.4.4,	where	the	same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	
converter.	The	panning	gain	vectors	gscaled	shall	be	post-processed	according	to	subclause	11.4.1.6.10.	

DMX
kM

ISO/IEC	23008-3:202X(E)	

340	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	downmix	matrix 	is	finally	derived	by	filling	each	matrix	column	corresponding	to	an	unknown	
input	 channel	with	 the	 post-processed	 panning	 gain	 vector	 elements	 of	 the	 corresponding	 unknown	
input	channel,	independently	of	the	processing	band	index	k.	

11.4.1.6.10 VBAP	gains	post-processing	

The	mixing	gains	obtained	from	the	VBAP	rendering	algorithm	shall	be	post-processed	to	avoid	excessive	
use	of	phantom	sources.	Therefore,	small	matrix	gains	are	set	to	zero,	followed	by	a	renormalization	of	
the	panning	gains	to	ensure	energy-preservation.	

For	each	panning	gain	vector	gscaled	do:	

—	 If	the	vector	contains	at	least	one	panning	gain	that	exceeds	the	threshold	value	0.3,	then;	

—	 Set	all	vector	elements	smaller	or	equal	to	0.3	to	the	value	0.0;	

—	 Normalize	the	gain	vector	such	that	the	sum	of	squares	of	the	vector	elements	remains	the	same	as	
before	the	post-processing.	

11.4.1.7 Format	converter	initialization	tables	

Table	183	lists	channel	labels,	corresponding	azimuth	and	elevation	angles,	and	associated	sectors.	The	
sectors	are	defined	as	points	on	the	unit	sphere,	whose	azimuth/elevation	angles	are	within	or	on	the	
borders	of	 the	 intervals	given	by	 the	azimuth/elevation	 start	 and	end	values	 in	 the	 table,	 connecting	
azimuth	start	and	end	values	 in	a	counter-clockwise	direction	and	connecting	elevation	start	and	end	
values	in	the	direction	of	increasing	elevation	angles.	

Table	183	—	Channels	definitions:	Channel	labels,	corresponding	azimuth	and	elevation	angles,	
and	associated	sectors	

Loudspeaker
Geometry		
(as	defined	in	
ISO/IEC	2300

1-8)

Channel Azimuth	
[deg]

Elevati
on	
[deg]

Azimuth	
start	angle	
of	sector	
[deg]

Azimuth	
end	angle	
of	sector	
[deg]

Elevation	
start	angle	
of	sector	
[deg]

Elevation	
end	angle	of	
sector	[deg]

Ch.	is	
LFE

Position	
is	

relative

 CH_EMPTY n/a n/a n/a n/a n/a n/a 0 0	
0 CH_M_L030 +30 0 +23 +37 -9 +20 0 0	
1 CH_M_R030 -30 0 -37 -23 -9 +20 0 0	
2 CH_M_000 0 0 -7 +7 -9 +20 0 0	
3 CH_LFE1 0 n/a n/a n/a n/a n/a 1 0	
4 CH_M_L110 +110 0 +101 +124 -45 +20 0 0	
5 CH_M_R110 -110 0 -124 -101 -45 +20 0 0	
6 CH_M_L022 +22 0 +8 +22 -9 +20 0 0	
7 CH_M_R022 -22 0 -22 -8 -9 +20 0 0	
8 CH_M_L135 +135 0 125 142 -45 +20 0 0	
9 CH_M_R135 -135 0 -142 -125 -45 +20 0 0	
10 CH_M_180 180 0 158 -158 -45 +20 0 0	
13 CH_M_L090 +90 0 +76 +100 -45 +20 0 0	
14 CH_M_R090 -90 0 -100 -76 -45 +20 0 0	
15 CH_M_L060 +60 0 +53 +75 -9 +20 0 0	
16 CH_M_R060 -60 0 -75 -53 -9 +20 0 0	
17 CH_U_L030 +30 +35 +11 +37 +21 +60 0 0	
18 CH_U_R030 -30 +35 -37 -11 +21 +60 0 0	
19 CH_U_000 0 +35 -10 +10 +21 +60 0 0	
20 CH_U_L135 +135 +35 +125 +157 +21 +60 0 0	

DMX
kM

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 341	
	

Loudspeaker
Geometry		
(as	defined	in	
ISO/IEC	2300

1-8)

Channel Azimuth	
[deg]

Elevati
on	
[deg]

Azimuth	
start	angle	
of	sector	
[deg]

Azimuth	
end	angle	
of	sector	
[deg]

Elevation	
start	angle	
of	sector	
[deg]

Elevation	
end	angle	of	
sector	[deg]

Ch.	is	
LFE

Position	
is	

relative

21 CH_U_R135 -135 +35 -157 -125 +21 +60 0 0	
22 CH_U_180 180 +35 +158 -158 +21 +60 0 0	
23 CH_U_L090 +90 +35 +67 +100 +21 +60 0 0	
24 CH_U_R090 -90 +35 -100 -67 +21 +60 0 0	
25 CH_T_000 0 +90 -180 +180 +61 +90 0 0	
26 CH_LFE2 +45 n/a n/a n/a n/a n/a 1 0	
27 CH_L_L045 +45 -15 +11 +75 -45 -10 0 0	
28 CH_L_R045 -45 -15 -75 -11 -45 -10 0 0	
29 CH_L_000 0 -15 -10 +10 -45 -10 0 0	
30 CH_U_L110 +110 +35 +101 +124 +21 +60 0 0	
31 CH_U_R110 -110 +35 -124 -101 +21 +60 0 0	
32 CH_U_L045 +45 +35 +38 +66 +21 +60 0 0	
33 CH_U_R045 -45 +35 -66 -38 +21 +60 0 0	
34 CH_M_L045 +45 0 +38 +52 -9 +20 0 0	
35 CH_M_R045 -45 0 -52 -38 -9 +20 0 0	
36 CH_LFE3 -45 n/a n/a n/a n/a n/a 1 0	
37 CH_M_LSCR +60 0 n/a	 n/a n/a n/a 0 1	
38 CH_M_RSCR -60 0 n/a n/a n/a n/a 0 1	
39 CH_M_LSCH +30 0 n/a n/a n/a n/a 0 1	
40 CH_M_RSCH -30 0 n/a n/a n/a n/a 0 1	
41 CH_M_L150 +150 0 143 157 -45 +20 0 0	
42 CH_M_R150 -150 0 -157 -143 -45 +20 0 0	

Table	184	—	Formats	with	corresponding	number	of	channels	and	channel	ordering	

Loudspeaker	layout	
index	or	

ChannelConfiguration		
as	defined	in	

ISO/IEC	23001-8	

Number	of	
channels	 Channels	(with	ordering)

1	 1	 CH_M_000	
2	 2	 CH_M_L030,	CH_M_R030	
3	 3	 CH_M_L030,	CH_M_R030,	CH_M_000	
4	 4	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M180	
5	 5	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M_L110,	CH_M_R110	
6	 6	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110	
7	 8	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L060,	CH_M_R060	
8 	 n.a.	

9	 3	 CH_M_L030,	CH_M_R030,	CH_M_180	
10	 4	 CH_M_L030,	CH_M_R030,	CH_M_L110,	CH_M_R110	
11	 7	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_180	
12	 8	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L135,	CH_M_R135	
13	 24	 CH_M_L060,	CH_M_R060,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	

CH_M_L030,	CH_M_R030,	CH_M_180,	CH_LFE3,	CH_M_L090,	CH_M_R090,	
CH_U_L045,	CH_U_R045,	CH_U_000,	CH_T_000,	CH_U_L135,	CH_U_R135,	
CH_U_L090,	CH_U_R090,	CH_U_180,	CH_L_000,	CH_L_L045,	CH_L_R045	

14	 8	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030	

ISO/IEC	23008-3:202X(E)	

342	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Loudspeaker	layout	
index	or	

ChannelConfiguration		
as	defined	in	

ISO/IEC	23001-8	

Number	of	
channels	 Channels	(with	ordering)

15	 12	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	
CH_LFE3,	CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_180	

16	 10	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_L110,	CH_U_R110	

17	 12	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_000,	CH_U_L110,	CH_U_R110,	CH_T_000	

18	 14	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_M_L150,	CH_M_R150,	CH_U_L030,	CH_U_R030,	CH_U_000,	
CH_U_L110,	CH_U_R110,	CH_T_000	

19	 12	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L030,	CH_U_R030,	CH_U_L135,	
CH_U_R135	

20	 14	 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_L135,	
CH_U_R135,	CH_M_LSCR,	CH_M_RSCR	

Table	185	—	Converter	rules	matrix	

Source	 Destination	 Gain	 EQ	index
CH_M_000	 CH_M_L022,	CH_M_R022	 1.0	 0	(off)										
CH_M_000	 CH_M_L030,	CH_M_R030	 1.0	 0	(off)										
CH_M_L022	 CH_M_000,	CH_M_L030	 1.0	 0	(off)										
CH_M_L022	 CH_M_L030	 1.0		 0	(off)										
CH_M_R022	 CH_M_000,	CH_M_R030	 1.0	 0	(off)										
CH_M_R022	 CH_M_R030	 1.0		 0	(off)										
CH_M_L045	 CH_M_L030,	CH_M_L060	 1.0	 0	(off)										
CH_M_L045	 CH_M_L030	 1.0		 0	(off)										
CH_M_R045	 CH_M_R030,	CH_M_R060	 1.0	 0	(off)										
CH_M_R045	 CH_M_R030	 1.0		 0	(off)										
CH_M_L060	 CH_M_L045,	CH_M_L110	 1.0	 0	(off)										
CH_M_L060	 CH_M_L030,	CH_M_L110	 1.0	 0	(off)										
CH_M_L060	 CH_M_L030	 0.8		 0	(off)										
CH_M_R060	 CH_M_R045,		CH_M_R110,	 1.0					 0	(off)										
CH_M_R060	 CH_M_R030,		CH_M_R110,	 1.0					 0	(off)										
CH_M_R060	 CH_M_R030,	 0.8	 0	(off)										
CH_M_L090	 CH_M_L045,	CH_M_L110	 1.0	 0	(off)										
CH_M_L090	 CH_M_L030,	CH_M_L110	 1.0	 0	(off)										
CH_M_L090	 CH_M_L030	 0.8		 0	(off)										
CH_M_R090	 CH_M_R045,		CH_M_R110	 1.0		 0	(off)										
CH_M_R090	 CH_M_R030,		CH_M_R110	 1.0		 0	(off)										
CH_M_R090	 CH_M_R030	 0.8	 0	(off)										
CH_M_L110	 CH_M_L135	 1.0	 0	(off)										
CH_M_L110	 CH_M_L090	 0.8	 0	(off)										
CH_M_L110	 CH_M_L045	 0.8	 0	(off)										
CH_M_L110	 CH_M_L030	 0.8	 0	(off)										
CH_M_R110	 CH_M_R135	 1.0	 0	(off)										
CH_M_R110	 CH_M_R090	 0.8	 0	(off)										
CH_M_R110	 CH_M_R045	 0.8	 0	(off)										
CH_M_R110	 CH_M_R030	 0.8	 0	(off)										
CH_M_L135	 CH_M_L110	 1.0	 0	(off)										

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 343	
	

Source	 Destination	 Gain	 EQ	index
CH_M_L135	 CH_M_L150	 1.0	 0	(off)										
CH_M_L135	 CH_M_L090	 0.8	 0	(off)										
CH_M_L135	 CH_M_L045	 0.8	 0	(off)										
CH_M_L135	 CH_M_L030	 0.8	 0	(off)										
CH_M_R135	 CH_M_R110	 1.0	 0	(off)										
CH_M_R135	 CH_M_R150	 1.0	 0	(off)										
CH_M_R135	 CH_M_R090	 0.8	 0	(off)										
CH_M_R135	 CH_M_R045	 0.8	 0	(off)										
CH_M_R135	 CH_M_R030	 0.8	 0	(off)										
CH_M_L150	 CH_M_L135	 1.0	 0	(off)										
CH_M_L150	 CH_M_L110	 1.0	 0	(off)										
CH_M_L150	 CH_M_L045	 0.8	 0	(off)										
CH_M_L150	 CH_M_L030	 0.8	 0	(off)										
CH_M_R150	 CH_M_R135	 1.0	 0	(off)										
CH_M_R150	 CH_M_R110	 1.0	 0	(off)										
CH_M_R150	 CH_M_R045	 0.8	 0	(off)										
CH_M_R150	 CH_M_R030	 0.8	 0	(off)										
CH_M_180	 CH_M_R150,		CH_M_L150	 1.0	 0	(off)										
CH_M_180	 CH_M_R135,		CH_M_L135	 1.0	 0	(off)										
CH_M_180	 CH_M_R110,		CH_M_L110	 1.0	 0	(off)										
CH_M_180	 CH_M_R090,		CH_M_L090	 0.8	 0	(off)										
CH_M_180	 CH_M_R045,		CH_M_L045	 0.6	 0	(off)										
CH_M_180	 CH_M_R030,		CH_M_L030	 0.6	 0	(off)										
CH_U_000	 CH_U_L030,		CH_U_R030	 1.0	 1										
CH_U_000	 VIRTUAL	 1.0	 9	(EQVFC)	
CH_U_000	 CH_M_L030,		CH_M_R030	 0.85	 0	(off)										
CH_U_L045	 CH_U_L030	 1.0	 0	(off)										
CH_U_L045	 VIRTUAL	 1.0	 7	(EQVF)	
CH_U_L045	 CH_M_L045	 0.85	 1										
CH_U_L045	 CH_M_L030	 0.85	 1										
CH_U_R045	 CH_U_R030	 1.0	 0	(off)										
CH_U_R045	 VIRTUAL	 1.0	 7	(EQVF)	
CH_U_R045	 CH_M_R045	 0.85	 1										
CH_U_R045	 CH_M_R030	 0.85	 1										
CH_U_L030	 CH_U_L045	 1.0	 0	(off)										
CH_U_L030	 VIRTUAL	 1.0	 7	(EQVF)	
CH_U_L030	 CH_M_L030	 0.85	 1										
CH_U_R030	 CH_U_R045	 1.0	 0	(off)										
CH_U_R030	 VIRTUAL	 1.0	 7	(EQVF)	
CH_U_R030	 CH_M_R030	 0.85	 1										
CH_U_L090	 CH_U_L030,		CH_U_L110	 1.0	 0	(off)										
CH_U_L090	 CH_U_L030,		CH_U_L135	 1.0	 0	(off)										
CH_U_L090	 CH_U_L045	 0.8	 0	(off)										
CH_U_L090	 CH_U_L030	 0.8	 0	(off)										
CH_U_L090	 VIRTUAL	 1.0	 12	(EQVS)	
CH_U_L090	 CH_M_L045,		CH_M_L110	 0.85	 2	
CH_U_L090	 CH_M_L030,		CH_M_L110	 0.85	 2	
CH_U_L090	 CH_M_L030	 0.85	 2	
CH_U_R090	 CH_U_R030,		CH_U_R110	 1.0	 0	(off)										
CH_U_R090	 CH_U_R030,		CH_U_R135	 1.0	 0	(off)										
CH_U_R090	 CH_U_R045	 0.8	 0	(off)										
CH_U_R090	 CH_U_R030	 0.8	 0	(off)										
CH_U_R090	 VIRTUAL	 1.0	 12	(EQVS)	
CH_U_R090	 CH_M_R045,		CH_M_R110	 0.85	 2	

ISO/IEC	23008-3:202X(E)	

344	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Source	 Destination	 Gain	 EQ	index
CH_U_R090	 CH_M_R030,		CH_M_R110	 0.85	 2	
CH_U_R090	 CH_M_R030	 0.85	 2	
CH_U_L110	 CH_U_L135	 1.0	 0	(off)										
CH_U_L110	 CH_U_L045	 0.8	 0	(off)										
CH_U_L110	 CH_U_L030	 0.8	 0	(off)										
CH_U_L110	 VIRTUAL	 1.0	 14	(EQVBA)	
CH_U_L110	 CH_M_L110	 0.85	 2	
CH_U_L110	 CH_M_L045	 0.85	 2	
CH_U_L110	 CH_M_L030	 0.85	 2	
CH_U_R110	 CH_U_R135	 1.0	 0	(off)										
CH_U_R110	 CH_U_R045	 0.8	 0	(off)										
CH_U_R110	 CH_U_R030	 0.8	 0	(off)										
CH_U_R110	 VIRTUAL	 1.0	 14	(EQVBA)	
CH_U_R110	 CH_M_R110	 0.85	 2	
CH_U_R110	 CH_M_R045	 0.85	 2	
CH_U_R110	 CH_M_R030	 0.85	 2	
CH_U_L135	 CH_U_L110	 1.0	 0	(off)										
CH_U_L135	 CH_U_L045	 0.8	 0	(off)										
CH_U_L135	 CH_U_L030	 0.8	 0	(off)										
CH_U_L135	 VIRTUAL	 1.0	 8	(EQVB)	
CH_U_L135	 CH_M_L110	 0.85	 2	
CH_U_L135	 CH_M_L045	 0.85	 2	
CH_U_L135	 CH_M_L030	 0.85	 2	
CH_U_R135	 CH_U_R110	 1.0	 0	(off)										
CH_U_R135	 CH_U_R045	 0.8	 0	(off)										
CH_U_R135	 CH_U_R030	 0.8	 0	(off)										
CH_U_R135	 VIRTUAL	 1.0	 8	(EQVB)	
CH_U_R135	 CH_M_R110	 0.85	 2	
CH_U_R135	 CH_M_R045	 0.85	 2	
CH_U_R135	 CH_M_R030	 0.85	 2	
CH_U_180	 CH_U_R135,		CH_U_L135	 1.0	 0	(off)										
CH_U_180	 CH_U_R110,		CH_U_L110	 1.0	 0	(off)										
CH_U_180	 VIRTUAL	 1.0	 10	(EQVBC)	
CH_U_180	 CH_M_180	 0.85	 2	
CH_U_180	 CH_M_R110,		CH_M_L110	 0.85	 2	
CH_U_180	 CH_U_R030,	CH_U_L030	 0.8	 0	(off)										
CH_U_180	 CH_M_R030,		CH_M_L030	 0.85	 2	
CH_T_000	 ALL_U	 0.8	 3	
CH_T_000	 VIRTUAL	 1.0	 11	(EQVOG)	
CH_T_000	 ALL_M	 0.8	 4	
CH_L_000	 CH_M_000	 1.0	 13	(EQBTM)										
CH_L_000	 CH_M_L030,		CH_M_R030	 1.0	 13	(EQBTM)										
CH_L_L045	 CH_M_L045	 1.0	 13	(EQBTM)										
CH_L_L045	 CH_M_L030	 1.0	 13	(EQBTM)										
CH_L_R045	 CH_M_R045	 1.0	 13	(EQBTM)										
CH_L_R045	 CH_M_R030	 1.0	 13	(EQBTM)										
CH_LFE1	 CH_LFE2	 1.0	 0	(off)										
CH_LFE1	 CH_M_L030,		CH_M_R030	 1.0	 0	(off)										
CH_LFE2	 CH_LFE1	 1.0	 0	(off)										
CH_LFE2	 CH_M_L030,		CH_M_R030	 1.0	 0	(off)										

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 345	
	

Table	186	—	Normalized	centre	frequencies	of	the	71	filter-bank	bands	

Normalized	frequency	[0,	1]

0,004	583	30	
0,000	833	33	
0,002	083	30	
0,005	875	00	
0,009	791	70	
0,014	292	00	
0,019	792	00	
0,027	000	00	
0,035	417	00	
0,042	625	00	
0,056	750	00	
0,072	375	00	
0,088	000	00	
0,103	620	00	
0,119	250	00	
0,134	870	00	
0,150	500	00	
0,166	120	00	
0,181	750	00	
0,197	370	00	
0,213	000	00	
0,228	620	00	
0,244	250	00	
0,259	880	00	
0,275	500	00	
0,291	130	00	
0,306	750	00	
0,322	380	00	
0,338	000	00	
0,353	630	00	
0,369	250	00	
0,384	880	00	
0,400	500	00	
0,416	130	00	
0,431	750	00	
0,447	380	00	
0,463	000	00	
0,478	630	00	
0,494	250	00	
0,509	870	00	
0,525	500	00	
0,541	120	00	
0,556	750	00	
0,572	370	00	
0,588	000	00	
0,603	620	00	
0,619	250	00	
0,634	870	00	
0,650	500	00	
0,666	120	00	
0,681	750	00	
0,697	370	00	

ISO/IEC	23008-3:202X(E)	

346	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Normalized	frequency	[0,	1]

0,713	000	00	
0,728	620	00	
0,744	250	00	
0,759	870	00	
0,775	500	00	
0,791	120	00	
0,806	750	00	
0,822	370	00	
0,838	000	00	
0,853	620	00	
0,869	250	00	
0,884	870	00	
0,900	500	00	
0,916	120	00	
0,931	750	00	
0,947	370	00	
0,963	000	00	
0,974	540	00	
0,999	040	00	

Table	187	—	Equalizer	parameters	

Equalizer	 Pf	[Hz]	 PQ	 Pg	[dB]	 g	[dB]

	 12	000	 0,3	 -2	 1,0	

	 12	000	 0,3	 -3,5	 1,0	

	 200,1	300,	600	 0,3,	0,5,	1,0	 -6,5,	1,8,	2,0	 0,7	

	 5	000,	1	100	 1,0,	0,8	 4,5,	1,8	 -3,1	

	 35	 0,25	 -1,3	 1,0	

Table	188	—	Vertically	corresponding	channels	

CH_L_000	 	CH_M_000	 		CH_U_000	
CH_L_L045	 CH_M_L030	 	CH_U_L030	
CH_L_L045	 CH_M_L030	 	CH_U_L045	
CH_L_L045	 CH_M_L045	 	CH_U_L030	
CH_L_L045	 CH_M_L045	 	CH_U_L045	
CH_L_L045	 CH_M_L060	 	CH_U_L030	
CH_L_L045	 CH_M_L060	 	CH_U_L045	
CH_L_R045	 CH_M_R030	 	CH_U_R030	
CH_L_R045	 CH_M_R030	 	CH_U_R045	
CH_L_R045	 CH_M_R045	 	CH_U_R030	
CH_L_R045	 CH_M_R045	 	CH_U_R045	
CH_L_R045	 CH_M_R060	 	CH_U_R030	
CH_L_R045	 CH_M_R060	 	CH_U_R045	
CH_M_180	 	CH_U_180	 	
CH_M_L090	 CH_U_L090	 	
CH_M_L110	 CH_U_L110	 	
CH_M_L135	 CH_U_L135	 	
CH_M_L090	 CH_U_L110	 	
CH_M_L090	 CH_U_L135	 	

EQ,1G

EQ,2G

EQ,3G

EQ,4G

EQ,5G

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 347	
	

CH_M_L110	 CH_U_L090	 	
CH_M_L110	 CH_U_L135	 	
CH_M_L135	 CH_U_L090	 	
CH_M_L135	 CH_U_L135	 	
CH_M_R090	 CH_U_R090	 	
CH_M_R110	 CH_U_R110	 	
CH_M_R135	 CH_U_R135	 	
CH_M_R090	 CH_U_R110	 	
CH_M_R090	 CH_U_R135	 	
CH_M_R110	 CH_U_R090	 	
CH_M_R110	 CH_U_R135	 	
CH_M_R135	 CH_U_R090	 	
CH_M_R135	 CH_U_R135	 	

NOTE					Each	row	lists	channels	which	are	considered	to	be	above/below	each	other.	

 Audio	signal	processing	

11.4.2.1 General	

The	audio	processing	block	of	the	format	converter	obtains	time	domain	audio	samples	for	Nin	channels	
from	the	core	decoder	and	generates	a	downmixed	time	domain	audio	output	signal	consisting	of	Nout	
channels.	

The	processing	takes	as	input:	

¾ the	audio	data	and	the	flag	rendering3DType	decoded	by	the	core	decoder;	

¾ the	static	downmix	matrixes	MDMX	and	MDMX2	returned	by	the	initialization	of	the	format	converter.	

It	 returns	 an	Nout-channel	 time	domain	output	 signal	 for	 the	OutConf	 channel	 configuration	 signalled	
during	the	initialization	of	the	format	converter.	

The	format	converter	operates	on	contiguous,	non-overlapping	frames	of	length	L	=	2048	time	domain	
samples	of	the	input	audio	signals	and	outputs	one	frame	of	L	samples	per	processed	input	frame	of	length	
L.	

The	rendering3DType	is	used	in	the	selection	of	the	downmix	matrix	as	shown	in	Figure	55.	

	

Figure	55	—	Audio	signal	processing	with	switching	scheme	by	rendering3DType	

Input audio signal

Downmix with MDMX
(with Spatial Elevation Rendering)

Downmix with MDMX2
(with Timbral Elevation Rendering)

rendering3DType = 1

rendering3DType = 0

Output audio signal

Audio signal processing

ISO/IEC	23008-3:202X(E)	

348	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

11.4.2.2 T/F-transform	(hybrid	QMF	analysis)	

As	the	first	processing	step	the	converter	transforms	L	=	2048	samples	of	the	Nin	channel	time	domain	

input	signal	 	to	a	hybrid	QMF	Nin	channel	signal	representation	consisting	of 	

QMF	time	slots	(slot	index)	and	K	=	71	frequency	bands	(band	index	k).	A	QMF	analysis	according	to	
ISO/IEC	14496-3:2009,	subclause	4.6.18.4,	is	performed	first:	

	
	
followed	by	a	hybrid	analysis:	

	

The	hybrid	filtering	shall	be	carried	out	as	specified	in	ISO/IEC	14496-3:2009,	8.6.4.3	for	the	10,20	bands	
configuration	of	parametric	stereo,	resulting	in	a	71-band	hybrid	QMF	domain	representation.		

11.4.2.3 Delayed	channels	and	downmix	matrix	modification	

If	there	exists	a	frontal	height	input	channel	to	be	rendered	by	spatial	elevation	rendering,	delayed	QMF	
samples	of	the	input	channel	are	added	to	the	input	QMF	samples	and	the	downmix	matrix	is	expanded	
with	modified	coefficients.	This	step	leads	to	the	spatial	elevation	rendered	signal	being	more	stable	by	
avoiding	the	front-back	confusion.	The	process	is	achieved	by:	

For		each	input	channel	i	in	[1	Nin],	do	

	 	 If	 the	 ith	 input	 channel	 has	 attached	 one	 of	 the	 labels	 CH_U_L030,	 CH_U_L045,	 CH_U_R030,	
CH_U_R045,	and	CH_U_000	

	 	 	 If	the	channel	i	is	to	be	rendered	by	spatial	rendering	

	 	 	 (1)	Create	delayed	QMF	samples	of	the	input	channel	by:	

	 	 	 	 ÑIÄpö = round(N5 ∙ 0.003/64)	

	 	 	 	 fi}`è,ç = ‘
wfi}`è,ç ö}`,,

+F<("#T,Ey for	n ≥ delay
‡fi}`è,ç ö}`,±≤Ä•,,

B"](+F<("#T),E· otherwise
,	

		 	 	 	 uℎEGE	é,%,L".æ,b
KWH(EXjPCex),ï 	is	the ó+ + (J − ÑIÄpö)th	QMF	subband	sample	in	kth	band	of	the	

previous	frame	

	 	 	 (2)	Modify	the	downmix	matrix	MDMX	for	the	CH_M_L110	and	CH_M_R110	

	 	 	 	 ‚≥¥µ = [‚≥¥µ A6/@,&~1LM.,,]	

	 	 	 	 ‚≥¥µ% = [‚≥¥µ% [0	0…0]Ñ]	

	 	 	 	 x,+ = x,+ + 1	

inch,1 ch, ch...
v v v

N

~ ~ ~é ù
=ê ú

ë û
y y y n 32L =

n

in

, , ,
chch,1 ch, chˆ ˆ ˆ... 0 0 ,
v

n k n k n k
N ny y v L n L

~æ ö
é ù = = £ < £ <ç ÷ë û

è ø
y QmfAnalysis with andy

()
in

, , , ,
ch,1 ch, ch chˆ... .n k n k n k n k

Ny yé ù = =ë û y yHybridAnalysis

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 349	
	

For		each	j	in	[1	Nout],	do	

	 	If	 the	 channel	 jth	 output	 channel	 has	 attached	 the	 label	 of	 either	 CH_M_L110	 or	
CH_M_R110	

	 	 	 	 	 	 A6/@,R,, = 0	

	 	 	 	 	 Else	
	 	 	 	 	 	 A6/@,R,1(" = 0	

Explanation:	 By	 reproducing	 the	 spatial	 elevation	 rendered	 output	 surround	 channel	 for	 the	 frontal	
height	input	channel	with	a	delay	of	approximately	3	msec,	front-back	confusion	is	avoided	through	the	
precedence	effect.	The	delay	for	48	kHz	sampled	input	signal	is	2	subband	samples.	

11.4.2.4 Covariance	analysis	

Note	that	for	clarity	the	frequency	band	parameter	(superscript	k)	is	omitted	in	the	following	equations	
if	it	is	not	required	for	the	presentation.	

Let	F	be	a	monotonically	increasing	frame	index	denoting	the	current	frame	of	input	data,	e.g.	 	
for	frame	F,	starting	at	F	=	0	for	the	first	frame	of	input	data	after	initialization	of	the	format	converter.	
An	analysis	frame	of	length	2Ln	is	constructed	from	the	input	hybrid	QMF	spectra	as:	

	

Note	that	 is	a	row	vector	with	Nin	elements	in	case	of	Nin	input	channels.	The	covariance	matrix	is	

analysed	from	four	quarter	segments	of	 ,	so	that:	

	

where	

		 	 denotes	the	transpose;	

		 	 denotes	the	complex	conjugate	of	a	variable;	

		 	 is	an	Nin	×	Nin		matrix	for	each	 .	

Note	 that	 and	 are	 the	 same	 as	 	and	 ,	 correspondingly,	 and	 do	 not	 need	 to	 be	 re-
calculated.	 The	 covariance	 matrices	 of	 the	 four	 quarter	 segments	 are	 added	 with	 centre	 weighting	
assuming	a	staircase	shape:	

	

,
ch ch=F n ny y

1,,
in, ch in, ch

,
ch

0 0 , 0
0 , 0

2 , 0

n

n

n
F n LF n

n
F n L

n n

n L F
n L F

L n L F

- +

-

£ < =ì
ï= £ < >í
ï £ < ³î

y y
y

, for
, for
, for

,
in, ch
F ny

,
in, ch
F ny

() ()
16 15 T *, ,

, in, ch in, ch
16

0,1,2,3
q

F F n F n
y q

n q
q

+

=

= =åC y y for

()T×

()*×

,
F
y qC 0,1,2,3=q

,0
F
yC ,1

F
yC

1
,2
-F
yC

1
,3
-F
yC

F
,sum ,0 ,1 ,2 ,34 4= + + +F F F F
y y y y yC C C C C

ISO/IEC	23008-3:202X(E)	

350	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	final	estimation	for	the	covariance	matrix	 	is	obtained	by	modifying	the	entries	of	 with	a	
small	channel	dependent	offset:	

	

where	the	two	indices	in	a	notation	 	denote	the	matrix	element	in	the	ath	row	and	bth	column	of	

.	From	the	covariance	matrix	 	inter-channel	correlation	coefficients	between	the	channels	A	and	B	
are	derived	as	follows:	

	

11.4.2.5 Phase-alignment	matrix	formulation	

11.4.2.5.1 General	

The	 	values	are	mapped	to	an	attraction	measure	matrix	T	with	elements:	

	

where	PasMax,	PasCurveSlope,	PasCurveShift	are	derived	from	Table	189.	

Table	189	—	Phase	attraction	mapping	curve	parameters	

phaseAlignStrength	 PasMax	 PasCurveSlope	 PasCurveShift

0	 0	 0	 0	
1	 0,071	4	 0,170	1	 -0,089	1	
2	 0,154	8	 0,377	1	 -0,189	6	
3	 0,25	 0,625	 -0,3	
4	 0,357	1	 0,918	4	 -0,418	4	
5	 0,476	2	 1,262	3	 -0,542	7	
6	 0,607	1	 1,662	4	 -0,670	7	
7	 0,75	 2,125	 -0,8	

phaseAlignStrength	shall	be	set	to	3	if	no	other	value	has	been	signalled	in	the	bitstream.		
If	passiveDownmixFlag==1,	then	phaseAlignStrength	shall	be	set	to	0.	

An	intermediate	phase-aligning	mixing	matrix	Mint	is	calculated.	With		

	

compute	Mint	depending	on	the	rendering3DType	by:	

If		 rendering3DType	==	TRUE	

	 	V	=	MDMXP	

	 If	the	input	channel	A	is	rendered	by	spatial	elevation	rendering,		

F
yC ,sum

F
yC

, , ,sum, ,(1 0.0002)= +y a b y a bC ab C

, ,y a bC

yC yC

2

, ,
,

, , , ,eps
=

+ ×
y A B

A B
y A A y B B

C
ICC

C C

,A BICC

()()
()()

,

,

,

min ,max 0,
,

min 1.0,max 0, 4 4

A B

A B

A B

PasMax PasCurveSlope ICC PasCurveShift A B
T

PasCurveSlope ICC PasCurveShift A B

ì × + ¹ï= í
× × + × =ïî

, for
, for

, , , ,= ×A B A B y A BP T C

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 351	
	

	 	 A,+$,:,A
E = A6/@,:,A

E 		 	 for	fk	✕	fs	/	2	≥	2	800	and	fk	✕	fs	/	2	≤	10	000

	 	 A,+$,:,A
E = /I)N,$,O

P

(*5]	∂∑$,O∂
ë:,A		 otherwise	

	 else	

	 	 A,+$,:,A
E = /I)N,$,O

P

(*5]	∂∑$,O∂
ë:,A	

else	
 V = MDMX2P	

	 	 A,+$,:,A
E = /I)N<,$,O

P

(*5]	∂∑$,O∂
ë:,A		 for	all	k

where	fk	is	the	normalized	centre	frequency	of	frequency	band	k,	specified	in	Table	186,	fs	is	the	sampling	
frequency,	and	A6/@,A,:

E 	and	A6/@%,A,:
E 		denotes	the	matrix	element	in	the	Ath	row	and	Bth	column	of	MDMX	

and	MDMX2.	

Note	 that	 the	phase	alignment	 for	 the	 frequency	components	of	2,8	~10	kHz	 for	 the	spatial	elevation	
rendered	 downmix	 coefficients	 are	 avoided	 for	 the	 spatial	 elevation	 rendering	 when	 the	
rendering3DType	is	true.	Although	the	immersive	format	converter	has	an	active	downmix	with	phase	
correction,	 the	 synchronization	 of	 the	 spatial	 elevation	 rendered	 signal	 from	 a	 height	 input	 channel	
without	phase	correction	plays	an	important	role	in	providing	an	overhead	sound	image	in	3D	rendering.		

The	intermediate	phase-aligning	mixing	matrix	Mint	is	modified	to	avoid	abrupt	phase	shifts,	resulting	in	
Mmod.	This	is	a	recursive	regularization	process,	running	for	each	frame	F,	processing	the	frequency	bands	
k	in	ascending	order.		

The	regularization	against	phase	shifts	 takes	place	 in	 two	stages:	 In	 the	first	stage,	 the	regularization	
performs	amplitude-weighted	phase	comparison	against	the	previous	frame,	previous	band,	while	also	
linking	the	phase-attracted	channels.	In	the	second	stage,	the	regularization	limits	the	update	rate	of	the	
phase	coefficients	in	comparison	to	the	previous	frame	only.	

Both	regularization	stages	make	use	of	a	phase	update	limiting	parameter,	 ,	which	is	formulated	as	

a	function	of	an	onset	measure	 	so	that	a	low	energy	portion	of	a	signal	does	not	affect	the	phase	
processing	after	an	onset:	

	

	

11.4.2.5.2 Regularization	stage	1	

Stage	1	recursively	takes	into	account	comparison	values	Mcmp	from	the	last	frame	index	(F-1)	as	well	as	
for	the	last	processing	band	(k-1).	Mcmp	is	derived	from	Mmod	at	the	end	of	the	regularization	process.	The	
first	step	of	regularization	stage	1	combines	the	comparison	data	across	frequency	and	time	as	follows:	

if	(F=0)	

,
diff,
F k
Aq

,F k
Ao

,
, ,,
, 1,
, , , ,

-=
+ +

F k
y A AF k

A F k F k
y A A y A A

C
o

eps C C

, ,
diff, max(0.15,20.3 19)= -F k F k

A Aoq p

ISO/IEC	23008-3:202X(E)	

352	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

else	(i.e.	for	F>0)	

	

where	the	complex	conjugate	processing	for	the	third	band	(k=3)	accounts	for	the	complex	conjugate	
properties	of	the	filterbank.	

The	frequency	index	k	is	omitted	in	the	following	since	the	inter-band	dependency	is	now	contained	in	
the	matrix .	The	phase	change	of	the	current	unregularized	phase-aligning	matrix	 	relative	to	

is	measured	 by	 amplitude	weighting	with	 	and	 comparison	 against	 ,	 forming	

	with	elements:	

	

To	 also	 take	 into	 account	 the	 interdependent	 channels	 in	 the	 regularization,	 the	 relevant	 entries	 are	
intermixed	with	the	attraction	matrix	TF		

	

The	phase	values	of	the	elements	of	matrix	 are:	

	

To	avoid	constant	phase	offsets,	 is	adjusted	towards	zero	by	 :	

	

11.4.2.5.3 Regularization	stage	2	

In	stage	2	of	the	regularization	another	phase	comparison	parameter,	only	across	time,	is	calculated:	

	

()

, F,k-1
cmpFk cmp

*F,k-1
cmp

0 for 1
for 1 3

for 3

ì =ïï= > Ù ¹í
ï

=ïî

F k

k
k k

k

M M

M

()

1,
cmp

, 1, F,k-1
cmpFk cmp cmp

*1, F,k-1
cmp cmp

for 1
for 1 3

for 3

-

-

-

ì =ïï= + > Ù ¹í
ï

+ =ïî

F k

F k F k

F k

k
k k

k

M
M M M

M M

,
cmpFk
F kM int

FM
,

cmpFk
F kM , ,

F
y A AC cmpFk

FM

timeFreq
FM

()*timeFreq, cmpFk, int, , ,=F F F F
B,A B,A B,A y A AM M M C

timeFreqChan timeFreq=F F FM M T

timeFreqChans
FM

()timeFreqChan, , timeFreqChan, ,arg=F F
B A B AMq

timeFreqChan, ,
F

B Aq diff,
F
Aq

() ()timeFreqChanStage1, , timeFreqChan, , timeFreqChan, , diff ,sign max 0, ()= -F F F F
B A B A B A Aabsq q q q

()()*1
time, , PA, , int, ,arg -=F F F

B A B A B AM Mq

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 353	
	

The	final	regularization	parameter	is	such	that	is	as	close	as	possible	to	 ,	but	not	further	

than	 	in	 respect	 to	 .	 Let	unwrap()	 be	 a	 function	 that	maps	any	angular	parameter	 to	 the	
corresponding	angle	in	the	interval	 .	The	final	phase	parameter	is	calculated	as:	

	

and	the	modified,	i.e.	phase-regularized,	mixing	matrix	elements	are	obtained	as:	

	

Finally,	Mcmp	is	derived	by	amplitude	weighting	the	regularized	downmixing	coefficients:	

.	

Note	that	Mcmp	is	used	in	the	time	and	frequency	recursive	formulation	of	regularization	stage	1.	

11.4.2.5.4 Energy	scaling	

An	energy	scaling	is	applied	to	the	mixing	matrix	to	obtain	the	final	phase-aligning	mixing	matrix	MPA.	
With		

	

where	 denotes	the	conjugate	transpose	operator,	and	

if	rendering3DType	==	TRUE	

 ñk = fi
∑ rIXY,Z,[∙rIXY,Z,[∙g\,[,[
#-W
[AH

PafHr]\,Z,Z

Else	

 ñk = fi
∑ rIXY!,Z,[∙rIXY!,Z,[∙g\,[,[
#-W
[AH

PafHr]\,Z,Z
,

	

where	 the	 limits	 are	 defined	 as	 and	 ,	 the	 final	 phase-aligning	 mixing	 matrix	
elements	follow	as:	

	

timeFreqChanStage1, ,
F

B Aq

diff,
F
Aq time, ,

F
B Aq

...-p p

()
()

update, , timeFreqChanStage1, , time, ,

,
mod, , time, , update, , update, , diff ,

,

max(0, ()),

= -

= + -

F F F
B A B A B A

F F F k F F
B A B A B A B A A

unwrap

sign abs

q q q

q q q q q

()mod, , int, , mod, ,exp= × ×F F F
B A B A B AM M j q

cmp,B,A mod, , , ,=F F F
B A y A AM M C

H
mod mod=Cy yM M C M

()H×

()()lim, max minmin ,max ,=B BS S S S

0.4
max 10=S 0.5

min 10-=S

()()PA, , lim, mod, .1 ,B A B B AM S AES AES M= × + - ×

ISO/IEC	23008-3:202X(E)	

354	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

where	AES	=	(1	–	passiveDownmixFlag).	

11.4.2.6 Calculation	of	output	data	

The	output	signals	for	the	current	frame	F	are	computed	by	linearly	interpolating	the	mixing	matrices	
from	the	previous	frame	to	the	current	frame:	

	

Note	that	the	input	audio	for	the	above	mixing	procedure	is	the	first	half	of	the	analysis	window.	

11.4.2.7 F/T-transform	(hybrid	QMF	synthesis)	

Note	 that	 the	 processing	 steps	 described	 above	 have	 to	 be	 carried	 out	 for	 each	 hybrid	QMF	 band	
(recursively,	 for	 ascending	 k).	 In	 the	 following	 procedure	 the	 band	 index	 k	 is	 reintroduced,	 i.e.	

.	The	hybrid	QMF	frequency	domain	output	signal	 is	 transformed	to	an	Nout-channel	
time	domain	signal	frame	of	length	L	time	domain	samples	per	output	channel	B,	yielding	the	time	domain	

output	signal	 .	

The	hybrid	synthesis:	

	

is	carried	out	as	defined	in	Figure	8.21	of	ISO/IEC	14496-3:2009,	i.e.	by	summing	the	sub-subbands	of	
the	 three	 lowest	 QMF	 subbands	 to	 obtain	 the	 three	 lowest	 QMF	 subbands	 of	 the	 64band	 QMF	
representation.	The	subsequent	QMF	synthesis:	

	

shall	be	carried	out	as	defined	in	ISO/IEC	14496-3:2009,	4.6.18.4.	

12 Higher	order	ambisonics	(HOA)	
12.1 Technical	overview	

 Block	diagram	

A	block	diagram	of	the	HOA	decoder	architecture	is	shown	in	Figure	56.	First,	the	input	bitstream	is	de-
multiplexed	and	decoded	by	the	MPEG-H	3D	audio	Core	decoder	into	®	PCM	transport	channels	plus	the	
HOA	bitstream	that	contains	parameters	required	to	recompose	the	full	HOA	representation	from	these	
PCM	signals.	In	the	successive	spatial	decoding	component,	first,	the	actual	value	range	of	these	signals	is	
reconstructed	by	the	inverse	gain	control	processing.	In	a	next	step,	the	®	signals	are	re-distributed	to	
provide	the	{	predominant	signals	and	(® − {)	HOA	coefficient	signals	representing	the	more	ambient	
HOA	components.		

()
T

T, 1 ,
ch PA PA in, ch

11 for 0-æ öæ ö- -+
= + £ <ç ÷ç ÷ç ÷è øè ø

F n F F F nn
n

n n

L nn n L
L L

z M M y

k

, , ,
ch ch
F n k F n=z z , ,

ch
F n kz

,

ch

F v~

z

(), , , ,
ch chˆ HybridSynthesisF n k F n k=z z

()
, ,

, ,
ch chˆQMFSynthesis
F n k

F n k
~

= zz

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 355	
	

Figure	56	—	Simplified	decoder		

The	fixed	subset	of	the	(® − {)	HOA	coefficient	signals	is	re-correlated,	this	means	the	decorrelation	at	
the	HOA	encoding	stage	is	reversed.	Next,	all	of	the	(® − {)	HOA	coefficient	signals	are	used	to	create	the	
ambient	HOA	component.	The	ambient	HOA	component	is	an	input	to	the	directional	signals	synthesis	
and	 the	 preliminary	 HOA	 composition.	 The	 directional	 signals	 synthesis	 creates	 a	 new	 HOA	
representation	from	the	ambient	HOA	component	by	prediction.	The	predominant	HOA	component	is	
synthesized	from	the	{	predominant	sound	signals	and	the	corresponding	parameters.	The	predominant	
and	the	ambient	HOA	components	are	combined	into	the	preliminary	HOA	representation,	which	is	then	
fed	to	the	parametric	ambience	replication	(PAR).	The	PAR	adds	missing	ambience	components	to	the	
preliminary	 HOA	 representation,	 which	 is	 parametrically	 created	 from	 its	 input	 signals.	 Finally,	 the	
output	of	the	PAR,	the	preliminary	HOA	representation	and	the	output	of	the	directional	signals	synthesis	
are	combined	to	the	decoded	HOA	representation	that	is	rendered	to	the	loudspeaker	setup	by	the	HOA	
renderer.	

 Overview	of	the	decoder	tools	

12.1.2.1 HOA	decoding	tools	

The	inputs	of	the	HOA	frame	converter	are	the	HOA	configuration	data	HOAConfig()	and	the	HOA	Frame	
HOAFrame(),	as	it	is	depicted	in	Figure	57.	The	variables	of	Figure	57	are	defined	in	subclauses	12.3	and	
12.4.1.	

ISO/IEC	23008-3:202X(E)	

356	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	57	—	The	architecture	of	the	HOA	decoder	tools	

The	HOA	frame	converter	(Convert)	and	the	MPEG-H	3D	audio	core	decoder	provide	the	data	 for	 the	
spatial	HOA	decoding.	

The	spatial	HOA	decoding	re-creates	the	HOA	time	domain	signals	of	the	previous	frame	from	the	signals	
Öb(ó) 	and	 from	 the	 spatial	 side	 information	 provided	 by	 the	 HOA	 frame	 converter.	 The	 spatial	 HOA	
decoding	consists	of	the	following	coding	tools,	which	are	specified	in	subclause	12.4:	

— inverse	gain	control;	

— channel	reassignment;	

— predominant	sound	synthesis;	

— ambience	synthesis;	
— preliminary	HOA	composition;	

— sub-band	directional	signals	synthesis;	

— parametric	ambience	replication	decoder;	
— HOA	composition.	

12.1.2.2 HOA	renderer	

The	HOA	renderer	converts	the	HOA	signal	matrix	Õ(ó)	to	the	loudspeaker	signals	œ¬¥Ö≥√Öƒ(ó)	using	
the	loudspeaker	position	matrix	ø¬¥Ö≥√Öƒ	and	the	HOAConfig()	(subclause	12.3.1)	for	its	initialization.	

12.1.2.3 Layered	coding	for	HOA	

For	the	streaming	of	the	compressed	HOA	sound	field	representation	over	a	transmission	channel	with	
time-varying	 conditions	 layered	 coding	 is	 a	 means	 to	 adapt	 the	 quality	 of	 the	 received	 sound	
representation	to	the	transmission	conditions,	and	in	particular	to	avoid	undesired	signal	dropouts.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 357	
	

For	layered	coding	the	compressed	HOA	sound	field	representation	is	subdivided	into	a	high	priority	base	
layer	 of	 a	 relatively	 small	 size	 and	 additional	 enhancement	 layers	 with	 decremental	 priorities	 and	
arbitrary	sizes.	Each	enhancement	layer	is	assumed	to	contain	incremental	information	to	complement	
that	 of	 all	 lower	 priority	 layers	 in	 order	 to	 improve	 the	 quality	 of	 the	 compressed	HOA	 sound	 field	
representation.	The	idea	is	to	control	the	amount	of	error	protection	for	the	transmission	of	the	individual	
layers	according	to	their	priority.	In	particular,	it	is	intended	that	the	base	layer	may	be	provided	with	a	
high	error	protection,	which	is	reasonable	and	affordable	due	to	its	low	size.	

12.2 Syntax	

 Configuration	of	HOA	elements	

Table	190	—	Syntax	of	HOAConfig()	

Syntax	 No.	of	bits	 Mnemonic	
HOAConfig() 	 	

{ 	 	

	 HoaOrder	=	escapedValue(3,5,0);	 3,8	 uimsbf	
	 NumOfHoaCoeffs	=	(HoaOrder	+	1)^2; 	 	

	 IsScreenRelative;	 1	 uimsbf	
	 UsesNfc;	 1	 bslbf	
	 if	(UsesNfc)	{ 	 	
	 	 NfcReferenceDistance;	 32	 bslbf	
	 } 	 	

	 HOADecoderConfig(numHOATransportChannels);	 	 	
} 	 	

NOTE	 HoaOrder	=	30	…	38	are	reserved.	

Table	191	—	Syntax	of	HOADecoderConfig()	

Syntax	 No.	of	bits	 Mnemonic	
HOADecoderConfig(numHOATransportChannels) 	 	

{ 	 	

	 MinAmbHoaOrder	=	escapedValue(3,5,0)	–	1;	 3,8	 uimsbf	
	 MinNumOfCoeffsForAmbHOA	=	(MinAmbHoaOrder	+	1)^2;	 	 	
	 NumOfAdditionalCoders	=	numHOATransportChannels	–		
	 	 	 	 	 	 	 				MinNumOfCoeffsForAmbHOA;

	 NumLayers	=	1;
	 NumHOAChannelsLayer[0]	=	numHOATransportChannels;
	 if(SingleLayer	==	0){	 1	 bslbf
	 	 HOALayerChBits	=	ceil(log2(NumOfAdditionalCoders));
	 	 NumHOAChannelsLayer[0]	=	codedLayerCh	+		
	 	 	 	 	 	 	 	 	 	 MinNumOfCoeffsForAmbHOA;	

HOALayer
ChBits	

uimsbf

	 	 remainingCh	=	numHOATransportChannels	–		

	 	 	 	 	 	 	 	 	 	 NumHOAChannelsLayer[0];

	 	 while	(remainingCh>1)	{
	 	 	 HOALayerChBits	=	ceil(log2(remainingCh));
	 	 	 NumHOAChannelsLayer[NumLayers]	=		
	 	 	 	 NumHOAChannelsLayer[NumLayers-1]	+	
	 	 	 	 	 codedLayerCh	+	1;	

HOALayer
ChBits	

uimsbf

	 	 	 remainingCh	=	numHOATransportChannels	–		

	 	 	 	 	 	 	 	 NumHOAChannelsLayer[NumLayers];

	 	 	 NumLayers++;
	 	 }
	 	 if	(remainingCh)	{

ISO/IEC	23008-3:202X(E)	

358	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 NumHOAChannelsLayer[NumLayers]	=	
	 	 	 	 	numHOATransportChannels;

	 	 	 NumLayers++;
	 	 }
	 }
	 CodedSpatialInterpolationTime;	 3	 uimsbf	
	 SpatialInterpolationMethod;	 1	 bslbf	
	 CodedVVecLength;	 2	 uimsbf
	 MaxGainCorrAmpExp;	 3	 uimsbf	
	 HOAFrameLengthIndicator;	 2	 uimsbf	
	 	 	
	 if(MinAmbHoaOrder	<	HoaOrder)	{	 	 	
	 	 DiffOrderBits	=	ceil(log2(HoaOrder-	MinAmbHoaOrder+1))	 	 	
	 	 MaxHoaOrderToBeTransmitted	=	DiffOrder	+		 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 MinAmbHoaOrder;	

DiffOrderB
its	

uimsbf	

	 }	 	 	
	 else	{	 	 	
	 	 MaxHoaOrderToBeTransmitted	=	HoaOrder;	 	 	
	 }	 	 	
	 MaxNumOfCoeffsToBeTransmitted	=		
	 	 	 	 	 (MaxHoaOrderToBeTransmitted	+	1)^2;	

	 	

	 MaxNumAddActiveAmbCoeffs	=		
	 	 	 	 	 MaxNumOfCoeffsToBeTransmitted			
	 	 	 	 	 	-	MinNumOfCoeffsForAmbHOA;	

	 	

	 VqConfBits	=	ceil	(log2(ceil(log2(NumOfHoaCoeffs+1))));	 	 	
	 NumVVecVqElementsBits;	 VqConfBits	 uimsbf	
	 if(MinAmbHoaOrder	==	1)	{	 	 	
	 	 UsePhaseShiftDecorr;	 1	 bslbf	
	 }	 	 	
	 	 	
	 if(SingleLayer==1)	{	 	 	
	 	 HOADecoderEnhConfig();	 	 	
	 }	 	 	
	 AmbAsignmBits	=	ceil(log2(MaxNumAddActiveAmbCoeffs));	 	 	
	 ActivePredIdsBits	=	ceil(log2(NumOfHoaCoeffs)); 	 	

	 i	=	1; 	 	

	 while(i	*	ActivePredIdsBits		
	 	 			+	ceil(log2(i))	<	NumOfHoaCoeffs){	

	 	 i++; 	 	

	 } 	 	

	 NumActivePredIdsBits	=	ceil(log2(max(1,	i	–	1))); 	 	

	 GainCorrPrevAmpExpBits	=	ceil(log2(ceil(log2(
	 	 	 	 	 	 	 	 								1.5	*	NumOfHoaCoeffs))
	 	 					2	*	NumOfHoaCoeffs))	
	 	 	 	 	 	 	 	 					+	MaxGainCorrAmpExp	+	1));
	 	 			+	MaxGainCorrAmpExp	+	1));

	 	

} 	 	

NOTE	 MinAmbHoaOrder	=	30	…	37	are	reserved.		HOAFrameLengthIndicator	=	3	is	reserved.	
CodedVVecLength	=	3	is	reserved.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 359	
	

Table	192	—	Syntax	of	HOAEnhConfig()	

Syntax	 No.	of	bits	 Mnemonic
HOAEnhConfig()
{
	 HOALayerIdxBits	=	ceil(log2(NumOfAdditionalCoders+1));
	 LayerIdx	 HOALayerId

xBits	
uimsbf

	 HOADecoderEnhConfig();
} 	 	

Table	193	—	Syntax	of	HOADecoderEnhConfig()	

Syntax	 No.	of	bits	 Mnemonic
HOADecoderEnhConfig()
{
	 MaxNoOfDirSigsForPrediction	=		
	 	 (bsMaxNoOfDirSigsForPrediction	+	1);	

	
2	

	
uimsbf

	 NoOfBitsPerScalefactor	=	bsNoOfBitsPerScalefactor	+	1;	 4	 uimsbf

	 if(PredSubbandsIdx	<	3)	{	 2	 uimsbf
	 	 NumOfPredSubbands	=		
	 	 	 NumOfPredSubbandsTable[PredSubbandsIdx];

	 	 PredSubbandWidths	=		
	 	 	 PredSubbandWidthTable[PredSubbandsIdx];

	 }
	 else	{
	 	 NumOfPredSubbands	=	bsNumOfPredSubbands+1;
	 	 PredSubbandWidths	=		
	 	 	 getSubbandWidths(NumOfPredSubbands);

	 }
	 if	(NumOfPredSubbands	>	0)	{
	 	 FirstSBRSubbandIdxBits	=	ceil(log2	(NumOfPredSubbands+1));
	 	 FirstSBRSubbandIdx;	 FirstSBRS

ubbandId
xBits	

uimsbf

	 	 MaxNumOfPredDirs	=		2^(MaxNumOfPredDirsLog2);	 3	 uimsbf
	 	 MaxNumOfPredDirsPerBand	=	escapedValue(3,2,5)	+	1;
	 	 NumOfBitsPerDirIdx	=		
	 	 	 	 NumOfBitsPerDirIdxTable[DirGridTableIdx];	

	
2	

	
uimsbf

	 }
	 if(ParSubbandTableIdx	<	3)	{	 2	 uimsbf
	 	 NumOfParSubbands	=		
	 	 	 NumOfParSubbandsTable[ParSubbandTableIdx];

	 	 ParSubbandWidths	=		
	 	 	 ParSubbandWidthTable[ParSubbandTableIdx];

	 }
	 else	{
	 	 NumOfParSubbands	=	bsNumOfParSubbands+1;
	 	 ParSubbandWidths	=		
	 	 	 getSubbandWidths(NumOfParSubbands);

	 }
	 if(NumOfParSubbands	>	0)	{
	 	 LastFirstOrderSubbandIdxBits	=		
	 	 	 ceil(log2(NumOfParSubbands	+	1));

ISO/IEC	23008-3:202X(E)	

360	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic
	 	 LastFirstOrderSubbandIdx;	 LastFirstO

rderSubba
ndIdxBits	

uimsbf

	 	 for	(idx	=	0;	idx	<	NumOfParSubbands;	idx++)	{
	 	 	 UseRealCoeffsPerParSubband[idx];	 1	 bslbf
	 	 }
	 	 for	(idx	=	0;	idx	<	LastFirstOrderSubBandIdx;	idx++)	{
	 	 	 UpmixHoaOrderPerParSubband[idx]	=	1;
	 	 	 MaxNumOfDecoSigs[idx]=	
	 	 	 	 (UpmixHoaOrderPerParSubband[idx]	+	1)^2;

	 	 }
	 	 for	(idx	=	LastFirstOrderSubBandIdx;		
	 	 	 idx	<	NumOfParSubbands;	idx++)	{

	 	 	 UpmixHoaOrderPerParSubband[idx]	=	2;
	 	 	 MaxNumOfDecoSigs[idx]	=	
	 	 	 	 (UpmixHoaOrderPerParSubband[idx]	+	1)^2;

	 	 }
	 }
} 	 	

Table	194	—	Syntax	of	getSubbandWidths()	

Syntax	 No.	of	bits	 Mnemonic	
getSubbandWidths(NumberOfSubbands) 	 	

{ 	 	

	 totalBwSum	=	0; 	 	
	 if(NumberOfSubbands	>	1)	{ 	 	
	 	 CodedBwFirstBand	 1..	 uclbf	
	 	 bw[0]	=	CodedBwFirstBand+1; 	 	
	 	 totalBwSum	=	totalBwSum	+	bw[0]; 	 	
	 	 if(NumberOfSubbands	>	2)	{ 	 	
	 	 	 for	(nb	=	1;	nb	<	NumberOfSubbands-2;	nb++)	{ 	 	
	 	 	 	 bw[nb]	=	bw[nb-1]	+	bw_diff;	 1..	 uclbf	
	 	 	 	 totalBwSum	=	totalBwSum	+	bw[nb]; 	 	
	 	 	 } 	 	
	 	 	 bw[nb]	=	bw[nb-1]	+	bw_diff;	 5	 uimsbf	
	 	 	 totalBwSum	=	totalBwSum	+	bw[nb]; 	 	
	 	 } 	 	
	 } 	 	
	 bw[NumberOfSubbands-1]	=	64	–	totalBwSum; 	 	
	 return(bw); 	 	
} 	 	

 Payloads	of	HOA	elements	

Table	195	—	Syntax	of	HOAFrame()	

Syntax	 No.	of	bits	 Mnemonic	
HOAFrame() 	 	

{ 	 	

	 NumOfDirSigs	=	0; 	 	
	 NumOfVecSigs	=	0; 	 	
	 NumOfContAddHoaChans	=	0; 	 	
	 for(lay=0;	(lay<	NumLayers);	++lay){ 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 361	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 NumOfDirSigsPerLayer[lay]	=	0; 	 	
	 	 NumOfAddHoaChansPerLayer[lay]	=	0; 	 	
	 	 NumOfContAddHoaChans[lay]	=	0; 	 	
	 	 NumOfNewAddHoaChans[lay]	=	0; 	 	
	 } 	 	
	 	 	
	 hoaIndependencyFlag;	 1	a	 bslbf	
 	 	
	 for(i=0;	i<	NumOfAdditionalCoders;	++i){ 	 	
	 	 ChannelSideInfoData(i); 	 	
	 	 HOAGainCorrectionData(i); 	 	
	 	 switch	ChannelType[i]	{ 	 	

	 	 case	0: 	 	

	 	 	 DirSigChannelIds[NumOfDirSigs]	=	i	+	1; 	 	
	 	 	 NumOfDirSigs++; 	 	
	 	 	 for(lay=0;	(lay<	NumLayers);	++lay){ 	 	
	 	 	 	 if((MinNumOfCoeffsForAmbHOA	+	i)	<		
	 	 	 	 	 	 NumHOAChannelsLayer[lay]){

	 	

	 	 	 	 	 NumOfDirSigsPerLayer[lay]++; 	 	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 	 break; 	 	
	 	 case	1: 	 	
	 	 	 VecSigChannelIds[NumOfVecSigs]	=	i	+	1; 	 	
	 	 	 lay	=	0; 	 	
	 	 	 while((MinNumOfCoeffsForAmbHOA	+	i)		
	 	 	 	 	 ≥	NumHOAChannelsLayer[lay])	{

	 	

	 	 	 	 lay	++; 	 	
	 	 	 } 	 	
	 	 	 VecSigLayerIdx[NumOfVecSigs]	=	lay; 	 	
	 	 	 NumOfVecSigs++; 	 	
	 	 	 break; 	 	
	 	 case	2: 	 	
	 	 	 for(lay=0;	(lay<	NumLayers);	++lay){ 	 	
	 	 	 	 if((MinNumOfCoeffsForAmbHOA	+	i)	<		
	 	 	 	 	 	 NumHOAChannelsLayer[lay]){

	 	

	 	 	 	 	 if	(AmbCoeffTransitionState[i]	==	0)	{ 	 	
	 	 	 	 	 	 ContAddHoaCoeff[lay]	
	 	 	 	 	 	 	 [NumOfContAddHoaChans[lay]]			
		 	 	 	 	 	 	 	 =	AmbCoeffIdx[i];

	 	

	 	 	 	 	 	 NumOfContAddHoaChans[lay]++; 	 	
	 	 	 	 	 } 	 	
	 	 	 	 }else{	 	 	
	 	 	 	 	 if(AmbCoeffTransitionState[i]	==	1)	{ 	 	
	 	 	 	 	 	 NewAddHoaCoeff[lay]		 	 	 	 	 	
	 	 	 	 	 		 	 	[NumOfNewAddHoaChans]		
	 	 	 	 	 	 	 	 =	AmbCoeffIdx[i];

	 	

	 	 	 	 	 	 NumOfNewAddHoaChans[lay]++; 	 	
	 	 	 	 	 } 	 	
	 	 	 	 	 AddHoaCoeffPerLayer[lay]		 		 		 		 		 	
	 		 		 		 		 		 	[NumOfAddHoaChans]	
		 	 	 	 	 	 	 =	AmbCoeffIdx[i];

	 	

	 	 	 	 	 NumOfAddHoaChansPerLayer[lay]++; 	 	

ISO/IEC	23008-3:202X(E)	

362	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 	 AddHoaCoeff[NumOfAddHoaChans]	=	AmbCoeffIdx[i]; 	 	
	 	 	 NumOfAddHoaChans++; 	 	
	 	 	 break; 	 	
	 	 } 	 	

	 } 	 	

	 for	(i=	NumOfAdditionalCoders;		
	 	 	 i<	NumHOATransportChannels;	++i){

	 	

	 	 HOAGainCorrectionData(i); 	 	
	 } 	 	

 	 	

	 for(i=0;	i<	NumOfVecSigs;	++i){ 	 	

	 	 VVectorData	(VecSigChannelIds(i)); 	 	

	 } 	 	

 	 	

	 if(SingleLayer==1)	{ b	 	
	 	 HOAEnhFrame(); 	 	

	 } 	 	

} 	 	
a	 The	encoder	shall	set	hoaIndependencyFlag	to	1	if	usacIndependencyFlag	(see	mpegh3daFrame()	in	
Table	44)	is	set	to	1.	
b	 If	SingleLayer	==	1	set	NumLayers	=	1.	

Table	196	—	Syntax	of	HOAEnhFrame()	

Syntax	 No.	of	bits	 Mnemonic
HOAEnhFrame()
{
	 if(((SingleLayer==1)	&	(NumOfDirSigs	>	0))	|		
	 				((SingleLayer==0)	&	(NumOfDirSigsPerLayer[lay])	>	0)){

a

	 	 HOAPredictionInfo(DirSigChannelIds,	NumOfDirSigs);
	 }
	 if(NumOfPredSubbands	>	0)	{
	 	 HOADirectionalPredictionInfo();
	 }
	 if(NumOfParSubbands	>	0)	{
	 	 HOAParInfo();
	 }
}
a	 lay	is	the	index	of	the	currently	active	HOA	enhancement	layer	
If	SingleLayer==0	then	use	NumOfPredSubbands	and	NumOfParSubbands	from	the	
HOADecoderEnhConfig	of	the	corresponding	layer	with	index	lay.	

Table	197	—	Syntax	of	ChannelSideInfoData(i)	

Syntax	 No.	of	bits	 Mnemonic	
ChannelSideInfoData(i) 	 	
{ 	 	

	 ChannelType[i]	 2	 uimsbf	
	 switch	ChannelType[i] 	 	
	 { 	 	
	 	 case	0: 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 363	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 ActiveDirsIds[i];	 10	 uimsbf	
	 	 	 break; 	 	
	 	 case	1: 	 	
	 	 	 if(hoaIndependencyFlag){ 	 	
	 	 	 	 if(CodedVVecLength==1){ 	 	
	 	 	 	 	 NewChannelTypeOne(k)[i];	 1	 bslbf	
	 	 	 	 } 	 	
	 	 	 	 NbitsQ(k)[i]	 4	 uimsbf	
	 	 	 	 if	(NbitsQ(k)[i]	==	4)	{ 	 	
	 	 	 	 	 CodebkIdx(k)[i];	 3	 uimsbf	
	 	 	 	 	 NumVvecIndices(k)[i]++;	 NumVVecV

qElementsB
its	

uimsbf	

	 	 	 	 } 	 	
	 	 	 	 elseif	(NbitsQ(k)[i]	>=	6)	{ 	 	
	 	 	 	 	 PFlag(k)[i]	=	0; 	 	
	 	 	 	 	 CbFlag(k)[i];	 1	 bslbf	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 	 else{ 	 	
	 	 	 	 if(CodedVVecLength==1){ 	 	
	 	 	 	 	 NewChannelTypeOne(k)[i]	=	(1!=ChannelType(k-1)[i])); 	 	
	 	 	 	 } 	 	
	 	 	 	 bA;	 1	 bslbf	
	 	 	 	 bB;	 1	 bslbf	
	 	 	 	 if	((bA	+	bB)	==	0)	{ 	 	
	 	 	 	 	 NbitsQ(k)[i]	=	NbitsQ(k-1)[i]; 	 	
	 	 	 	 	 PFlag(k)[i]	=	PFlag(k-1)[i]; 	 	
	 	 	 	 	 CbFlag(k)[i]	=	CbFlag(k-1)[i]; 	 	
	 	 	 	 	 CodebkIdx(k)[i]	=	CodebkIdx(k-1)[i]; 	 	
	 	 	 	 	 NumVvecIndices(k)[i]	=		
	 	 	 	 	 	 	 	 NumVvecIndices(k-1)[i];

	 	

	 	 	 	 } 	 	
	 	 	 	 else{ 	 	
	 	 	 	 	 NbitsQ(k)[i]		=	(8*bA)+(4*bB)+uintC;	 2	 uimsbf	
	 	 	 	 	 if	(NbitsQ(k)[i]	==	4)	{ 	 	
	 	 	 	 	 	 CodebkIdx(k)[i];	 3	 uimsbf	
	 	 	 	 	 NumVvecIndices(k)[i]++;	 NumVVecV

qElementsB
its	

uimsbf	

	 	 	 	 	 } 	 	
	 	 	 	 	 elseif	(NbitsQ(k)[i]	>=	6)	{ 	 	
	 	 	 	 	 PFlag(k)[i];	 1	 bslbf	
	 	 	 	 	 CbFlag(k)[i];	 1	 bslbf	
	 	 	 	 	 } 	 	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 	 break; 	 	
	 	 case	2: 	 	
	 	 	 AddAmbHoaInfoChannel(i); 	 	
	 	 	 break; 	 	
	 	 default: 	 	
	 } 	 	
} 	 	
NOTE	 CodebkIdx	=	4	…	6	are	reserved.	 	 	

ISO/IEC	23008-3:202X(E)	

364	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	198	—	ChannelType	definition	

ChannelType:	
	 0	:	 Direction-based	signal	
	 1	:	 Vector-based	signal	
	 2	:	 Additional	ambient	HOA	coefficient	
	 3:	 Empty	

Table	199	—	Syntax	of	AddAmbHoaInfoChannel(i)	

Syntax	 No.	of	bits	 Mnemonic	

AddAmbHoaInfoChannel(i) 	 	

{ 	 	

	 if(hoaIndependencyFlag){ 	 	

	 	 AmbCoeffTransitionState[i];		 2	 uimsbf	
	 	 AmbCoeffIdx[i]	=	 CodedAmbCoeffIdx	+	1		
	 	 	 	 	 	 	 +	MinNumOfCoeffsForAmbHOA;	

AmbAsign
mBits	a	

uimsbf	

	 } 	 	

	 else	{ 	 	

	 	 if(AmbCoeffIdxTransition	==	1)	{	 1	 bslbf	
	 	 	 if	(AmbCoeffTransitionState[i]		>	1)	{ 	 	

	 	 	 	 AmbCoeffTransitionState[i]	=	1;		 	 	
	 	 	 	 AmbCoeffIdx[i]	=		 CodedAmbCoeffIdx	+	1		
	 	 	 	 	 	 	 	 	 +	MinNumOfCoeffsForAmbHOA;	

AmbAsign
mBits		

uimsbf	

	 	 	 } 	 	
	 	 	 else	{	 	 	
	 	 	 	 AmbCoeffTransitionState[i]	=	2; 	 	
	 	 	 } 	 	
	 	 } 	 	
	 	 else	{ 	 	
	 	 	 AmbCoeffTransitionState[i]	=	0; 	 	

	 	 } 	 	

	 } 	 	

} 	 	
a	 The	AmbCoeffIdx	of	the	preceding	frame	shall	be	used	under	the	following	conditions	

	 if	(AmbCoeffIdxTransitionState	==	0	||	AmbCoeffIdxTransitionState	==	2)		

AmbCoeffTransitionState:	
	 0:	 No	transition	(continuous	additional	ambient	HOA	coefficient)	
	 1:	 Fade-in	of	additional	ambient	HOA	coefficient	
	 2:	 Fade-out	of	additional	ambient	HOA	coefficient	
	 3:	 reserved	

Table	200	—	Syntax	of	HOAGainCorrectionData()	

Syntax	 No.	of	bits	 Mnemonic	
HOAGainCorrectionData(i) 	 	

{	 	 	

	 if(hoaIndependencyFlag){ 	 	
	 	 GainCorrPrevAmpExp[i]	=	 bsGainCorrPrevAmpExp		
	 	 	 	 	 	 	 	 -	ceil(log2(1.5	*	NumHoaCoeffs));	

GainCorrPr
evAmpExp
Bits	

uimsbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 365	
	

Syntax	 No.	of	bits	 Mnemonic	
	 } 	 	
	 n=0; 	 	
	 while(1)	{ 	 	
	 	 CodedGainCorrectionExp[i][n]	 1	 bslbf	
	 	 if(CodedGainCorrectionExp[i][n]) 	 	
	 	 	 break; 	 	
	 	 n++; 	 	
	 } 	 	
 	 	
	 GainCorrectionException[i];	 1	 bslbf	
} 	 	

Table	201	—	Syntax	of	VVectorData()	

Syntax	 No.	of	bits	 Mnemonic	
VVectorData(i) 	 	

{ 	 	

	 if	(CodedVVecLength	==	1)	{	
	 	 VVecLengthUsed	=	VVecLength[i];	
	 	 VVecCoeffIdUsed	=	VVecCoeffId[i];	
	 }	else	{	
	 	 VVecLengthUsed	=	VVecLength;	
	 	 VVecCoeffIdUsed	=	VVecCoeffId;	
	 }

	 	

 	 	

	 if	(NbitsQ(k)[i]		==	4)	{ 	 	

	 	 if	(NumVvecIndices(k)[i]	==	1)	{ 	 	

	 	 	 VvecIdx[0]	=	bsVvecIdx	+	1;	 nbitsIdx	 uimsbf	
	 	 	 WeightVal[0]	=	((SgnVal*2)-1);	 1	 uimsbf	
	 	 }	else	{ 	 	

	 	 	 WeightIdx;	 8	 uimsbf	
	 	 	 for	(j=0;	j<	NumVvecIndices(k)[i];	++j)	{ 	 	

	 	 	 	 VvecIdx[j]	=	bsVvecIdx	+	1;	 nbitsIdx	 uimsbf	
	 	 	 	 if	(j<8)	{ 	 	
	 	 	 	 	 WeightVal[j]	=	((SgnVal*2)-1)	*	 	 	 	
	 	 	 	 	 	 	 WeightValCdbk[WeightIdx][j];	

1	 uimsbf	

	 	 	 	 }	else	{	 	 	
	 	 	 	 	 WeightVal[j]	=	((SgnVal*2)-1)	*	 	 	 	
	 	 	 	 	 	 WeightValCdbk[WeightIdx][6+j%2];	

1	 uimsbf	

	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
	 else	if	(NbitsQ(k)[i]	==	5)	{ 	 	
	 	 for	(m=0;	m<	VVecLengthUsed;	++m){ 	 	
	 	 	 aVal[i][m]	=	(VecVal		/	128.0)	–	1.0;	 8	 uimsbf	
	 } 	 	
	 else	if(NbitsQ(k)[i]		>=	6)	{ 	 	
	 	 for	(m=0;	m<	VVecLengthUsed;	++m){ 	 	
	 	 	 huffIdx	=	huffSelect(VVecCoeffIdUsed[m],	PFlag[i],		 	
	 	 	 	 	 	 	 	 CbFlag[i]);

	 	

	 	 	 cid	=	huffDecode(NbitsQ[i],	huffIdx,	huffVal);	 1..11	 vlclbf	
	 	 	 aVal[i][m]	=	0.0; 	 	
	 	 	 if	(cid	>	0)	{ 	 	

ISO/IEC	23008-3:202X(E)	

366	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 aVal[i][m]	=	sgn	=	(sgnVal	*	2)	-	1;	 1	 bslbf	
	 	 	 	 if	(cid	>	1)	{ 	 	
	 	 	 	 	 aVal[i][m]	=		sgn	*	(2.0^(cid	-1)	+	intAddVal);	 cid-1	 uimsbf	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
} 	 	

NOTE	 See	subclause	12.4.1.11	for	computation	of	VVecLength	and	nbitsIdx.	

Table	202	—	Syntax	of	HOAPredictionInfo(DirSigChannelIds,	NumOfDirSigs)	

Syntax	 No.	of	bits	 Mnemonic	

HOAPredictionInfo(DirSigChannelIds,	NumOfDirSigs) 	 	

{ 	 	

	 PredIdsBits	=	ceil(log2(NumOfDirSigs	+	1)); 	 	
	 if(PSPredictionActive){	 1	 bslbf	
	 	 NumActivePred	=	0; 	 	

	 	 if(KindOfCodedPredIds){	 1	 bslbf	
	 	 	 NumActivePred	=	NumActivePredIds	+	1;	 NumActivePredIdsBits	 uimsbf	
	 	 	 i=0; 	 	

	 	 	 while(i	<	NumActivePred){ 	 	

	 	 	 	 PredIds[i]	=	PredIds[i]	+	1;	 ActivePredIdsBits	 uimsbf	
	 	 	 	 i++; 	 	

	 	 	 } 	 	

	 	 } 	 	

	 	 else{ 	 	

	 	 	 for	(i=0;	i<(HoaOrder	+1)^2;	i++)	{ 	 	

	 	 	 	 if(ActivePred[i])	{	 1	 bslbf	
	 	 	 	 	 NumActivePred	++; 	 	

	 	 	 	 } 	 	

	 	 	 } 	 	

	 	 } 	 	

	 	 NumOfGains=0; 	 	

	 	 for	(i=0;	i<NumActivePred	*	MaxNoOfDirSigsForPrediction;	i++)	{	 	

	 	 	 if	(PredDirSigIds[i]	>	0)	{	 PredIdsBits	 uimsbf	
	 	 	 	 PredDirSigIds[i]	=		
	 	 	 	 	 	 	 DirSigChannelIds[PredDirSigIds[i]	-	1];

	 	

	 	 	 	 NumOfGains++; 	 	
	 	 	 } 	 	
	 	 } 	 	

	 	 n=0; 	 	

	 	 for	(i=0;	i<	NumOfGains;	i++)	{ 	 	

	 	 	 if	(PredDirSigIds[i]>0)	{ 	 	
	 	 	 	 bsPredGains;	 NoOfBitsPerScalefactor	 uimsbf	
	 	 	 	 PredGains[i]	=	bsPredGains	–	2^(NoOfBitsPerScalefactor-1) 	 	
	 	 	 } 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 367	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 } 	 	

	 } 	 	

} 	 	

NOTE	 lay	is	the	index	of	the	currently	active	HOA	enhancement	layer.		

In	case	of	SingleLayer==1	set	lay	to	zero.	

Table	203	—	Syntax	of	HOADirectionalPredictionInfo()	

Syntax	 No.	of	bits	 Mnemonic	
HOADirectionalPredictionInfo() 	 	

{ 	 	

	 if(UseDirectionalPrediction)	{	 1	 bslbf	
	 if	(!hoaIndependencyFlag)	{ 	 	
	 	 KeepPreviousGlobalPredDirsFlag;		 1	 bslbf	
	 } 	 	

	 else{ 	 	

	 	 KeepPreviousGlobalPredDirsFlag	=	0; 	 	
	 } 	 	

	 if(!KeepPreviousGlobalPredDirsFlag)	{ 	 	

	 	 	 NumOfGlobalPredDirs	=	bsNumOfGlobalPredDirs	+	1;	 MaxNumOfPredDirsL
og2	

bslbf	

	 	 	 NumBitsForRelDirGridIdx	=	ceil(
	 	 	 	 	 	 	 	 log2(NumOfGlobalPredDirs));

	 	

	 	 	 for	(idx=0;	idx	<	NumOfGlobalPredDirs;	idx++)	{ 	 	
	 	 	 	 GlobalPredDirsIds[idx];		 NumOfBitsPerDir

Idx	
uimsbf	

	 	 	 } 	 	
	 	 } 	 	

	 	 else{ 	 	

	 	 	 /*	Keep	values	from	previous	HOADirectionalPredictionInfo	
	 	 	 	 payload	for	NumOfGlobalPredDirs	and	
	 	 	 	 GlobalPredDirsIds.	*/

	 	

	 	 } 	 	

 	 	

	 	 SortedAddHoaCoeff	=	sort(AddHoaCoeffPerLayer[lay],		
	 	 	 	 	 	 	 	 	 ‘ascend’);

	 	

	 	 for	(band	=	0;	band	<	NumOfPredSubbands;	band++)	{ 	 	

	 	 	 for	(dir	=	0;	dir	<	MaxNumOfPredDirsPerBand;	dir++)	{ 	 	
	 	 	 	 for	(hoaIdx	=	0;		
	 	 	 	 	 hoaIdx	<	MinNumOfCoeffsForAmbHOA;	
	 	 	 	 	 hoaIdx++)	{

	 	

	 	 	 	 	 DecodedMagDiff[band][dir][hoaIdx]	=	0; 	 	
	 	 	 	 	 DecodedAngleDiff[band][dir][hoaIdx]	=	0; 	 	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 } 	 	
 	 	

	 	 for	(band	=	0;	band	<	NumOfPredSubbands;	band++)	{ 	 	

	 	 	 if	(!hoaIndependencyFlag)	{ 	 	
	 	 	 	 KeepPreviousDirPredMatrixFlag[band];		 1	 bslbf	
	 	 	 } 	 	

	 	 	 else{ 	 	

ISO/IEC	23008-3:202X(E)	

368	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 KeepPreviousDirPredMatrixFlag[band]	=	0; 	 	
	 	 	 } 	 	

	 	 	 if	(!KeepPreviousDirPredMatrixFlag[band])	{ 	 	
	 	 	 	 UseHuffmanCodingDiffMag;	 1	 bslbf	
	 	 	 	 if(band	<	FirstSBRSubbandIdx)	{ 	 	
	 	 	 	 	 UseHuffmanCodingDiffAngle;	 1	 bslbf	
	 	 	 	 for	(dir	=	0;	dir	<	MaxNumOfPredDirsPerBand;	dir++)	{ 	 	
	 	 	 	 	 if	(DirIsActive[band][dir])	{	 1	 bslbf	
	 	 	 	 	 	 RelDirGridIdx;	 NumBitsForRelDirGridIdx	 uimsbf	
	 	 	 	 	 	 PredDirGridIdx[band][dir]	=		
	 	 	 	 	 	 	 	 	 GlobalPredDirsIds[RelDirGridIdx];

	 	

	 	 	 	 	 	 for	(hoaIdx	=	0;		
	 	 	 	 	 	 	 hoaIdx	<	MinNumOfCoeffsForAmbHOA;	
	 	 	 	 	 	 	 hoaIdx++)	{

	 	

	 	 	 	 	 	 	 readDirPredDiffValues	(band,	dir,	hoaIdx,		
	 	 	 	 	 	 	 	 UseHuffmanCodingDiffAbs,	
	 	 	 	 	 	 	 	 UseHuffmanCodingDiffAngle,	
	 	 	 	 	 	 	 	 FirstSBRSubbandIdx);

	 	

	 	 	 	 	 	 } 	 	
	 	 	 	 	 	 for	(idx	=	0;		
	 	 	 	 	 	 	 idx	<	NumOfAddHoaChansPerLayer[lay];		
	 	 	 	 	 	 	 idx++)	{

	 	

	 	 	 	 	 	 	 readDirPredDiffValues	(band,	dir,		
	 	 	 	 	 	 	 	 SortedAddHoaCoeff[idx]	-1,		
	 	 	 	 	 	 	 	 UseHuffmanCodingDiffAbs,	
	 	 	 	 	 	 	 	 UseHuffmanCodingDiffAngle,	
	 	 	 	 	 	 	 	 FirstSBRSubbandIdx);

	 	

	 	 	 	 	 	 } 	 	
	 	 	 	 	 } 	 	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
} 	 	

NOTE	 lay	is	the	index	of	the	currently	active	HOA	enhancement	layer.		
In	case	of	SingleLayer==1	set	lay	to	zero.	

Table	204	—	Syntax	for	readDirPredDiffValues()	

Syntax	 No.	of	bits	 Mnemonic	
readDirPredDiffValues(band,	dir,	hoaIdx,		
	 	 	 	 	 UseHuffmanCodingDiffAbs,	
	 	 	 	 	 UseHuffmanCodingDiffAngle,	
	 	 	 	 	 FirstSBRSubbandIdx)

	 	

{ 	 	

	 if(UseHuffmanCodingDiffAbs)	{ 	 	
	 	 if(band	<	FirstSBRSubbandIdx)	{ 	 	
	 	 	 DecodedMagDiff[band][dir][hoaIdx]	=		
	 	 	 	 HuffmanMagDiffNoSbr[HuffmanCodedMagDiff];	

1..10	 vlclbf	

	 	 else	{ 	 	
	 	 	 DecodedMagDiff[band][dir][hoaIdx]	=			
	 	 	 	 HuffmanMagDiffSbr[HuffmanCodedRealMagDiff];	

1..12	 vlclbf	

	 	 } 	 	
	 	 if(DecodedMagDiff[band][dir][hoaIdx]	≤	-8){ 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 369	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 DecodedMagDiff[band][dir][hoaIdx]	=	-8	-		
	 	 	 	 runLengthCodedVal;		

1..	 uclbf	

	 	 	 { 	 	
	 	 	 else	if	(DecodedMagDiff[band][dir][hoaIdx]	≥	9){ 	 	
	 	 	 	 	DecodedMagDiff[band][dir][hoaIdx]	=	9	+		
	 	 	 	 	 runLengthCodedVal;	

1..	 uclbf	

	 	 	 } 	 	
	 	 } 	 	
	 } 	 	

	 else	{ 	 	

	 	 DecodedMagDiff[band][dir][hoaIdx]	=	CodedMagDiff	-7;	 4	 uimsbf	
	 	 if(DecodedMagDiff[band][dir][hoaIdx]	≤	-7){ 	 	
	 	 	 	DecodedMagDiff[band][dir][hoaIdx]	=	-7	-		
	 	 	 	 runLengthCodedVal;		

1..	 uclbf	

	 	 { 	 	
	 	 else	if	(DecodedMagDiff[band][dir][hoaIdx]	≥	8){ 	 	
	 	 	 	DecodedMagDiff[band][dir][hoaIdx]	=	8	+		
	 	 	 	 runLengthCodedVal;	

1..	 uclbf	

	 	 } 	 	
	 } 	 	
	 if(band	<	FirstSBRSubbandIdx)	{ 	 	
	 	 if(UseHuffmanCodingDiffAngle)	{ 	 	
	 	 	 DecodedAngleDiff[band][dir][hoaIdx]	=		
	 	 	 	 	 	 DecTableAngleDiff[HuffCodedAngleDiff];	

1..7	 vlclbf	

	 	 } 	 	
	 	 else	{ 	 	

	 	 	 DecodedAngleDiff[band][dir][hoaIdx]	=		
	 	 	 	 DecTableAngleDiff[CodedAngleDiff];	

4	 uimsbf	

	 	 } 	 	

	 } 	 	
} 	 	

Table	205	—	Syntax	of	HOAParInfo()	

Syntax	 No.	of	bits	 Mnemonic	
HOAParInfo() 	 	

{ 	 	

	 if	(UsePar)	{	 	 1	 bslbf	
	 	 for	(band	=	0;	band	<	NumOfParSubbands;	band++)	{ 	 	
	 	 	 for(n	=	0;		
	 	 	 	 n	<	MaxNumOfDecoSigs[band];	
	 	 	 	 n++)	{

	 	

	 	 	 	 for(m	=	0;		
	 	 	 	 	 m	<	MaxNumOfDecoSigs[band];	
	 	 	 	 	 m++)	{

	 	

	 	 	 	 	 DecodedParMagDiff	[band][n][m]	=	0; 	 	
	 	 	 	 	 DecodedParAngleDiff	[band][n][m]	=	0; 	 	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 	 if	(!hoaIndependencyFlag)	{ 	 	
	 	 	 	 KeepPreviousParMatrixFlag[band];		 1	 bslbf	
	 	 	 } 	 	

	 	 	 else{ 	 	

	 	 	 	 KeepPreviousParMatrixFlag[band]	=	0; 	 	

ISO/IEC	23008-3:202X(E)	

370	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 } 	 	

	 	 	 if	(!KeepPreviousParMatrixFlag[band])	{ 	 	
	 	 	 	 ParDecorrSigsSelectionTableIdx[band]	 2	 uimsbf	
	 	 	 	 if	(UpmixHoaOrderPerParSubband[band]	==	2)	{ 	 	
	 	 	 	 	 NumOfDecorrSigsPerParSubband	=		
	 	 	 	 	 	 NumOfDecorrSigsPerParSubbandTable[
	 	 	 	 	 	 	 ParDecorrSigsSelectionTableIdx[band]]

	 	

	 	 	 	 	 ParSelectedDecorrSigsIdxMatrix	=		
	 	 	 	 	 	 ParSelectedDecorrSigsIdxMatrixTable[
	 	 	 	 	 	 	 ParDecorrSigsSelectionTableIdx[band]]

	 	

	 	 	 	 } 	 	
	 	 	 	 else{ 	 	

	 	 	 	 	 NumOfDecorrSigsPerParSubband	=		
	 	 	 	 	 	 NumOfDecorrSigsPerFirstOrderPar	
	 	 	 	 	 	 SubbandTable[
	 	 	 	 	 	 	 ParDecorrSigsSelectionTableIdx[band]]

	 	

	 	 	 	 	 ParSelectedDecorrSigsIdxMatrix	=		
	 	 	 	 	 	 ParFirstOrderSelectedDecorr	
	 	 	 	 	 	 SigsIdxMatrixTable	[
	 	 	 	 	 	 	 ParDecorrSigsSelectionTableIdx[band]]

	 	

	 	 	 	 } 	 	

	 	 	 	 if	(UseReducedNoOfUpmixSigs){	 1	 bslbf	
	 	 	 	 	 for(n	=	0;		
	 	 	 	 	 	 n	<	MaxNumOfDecoSigs[band];	n++)	{

	 	

	 	 	 	 	 	 UseParUpmixSig[band][n];	 1	 bslbf	
	 	 	 	 	 } 	 	

	 	 	 	 } 	 	
	 	 	 	 else	{ 	 	
	 	 	 	 	 for(n	=	0;		
	 	 	 	 	 	 n	<	MaxNumOfDecoSigs[band];	n++)	{

	 	

	 	 	 	 	 	 UseParUpmixSig[band][n]	=	1; 	 	
	 	 	 	 	 } 	 	
	 	 	 	 } 	 	
	 	 	 	 UseParHuffmanCodingDiffAbs;	 1	 bslbf	
	 	 	 	 if(!UseRealCoeffsPerParSubband[band])	{ 	 	
	 	 	 	 	 UseParHuffmanCodingDiffAngle;	 1	 bslbf	
	 	 	 	 } 	 	
	 	 	 	 for(n	=	0;		
	 	 	 	 	 n	<	MaxNumOfDecoSigs[band];	
	 	 	 	 	 n++)	{

	 	

	 	 	 	 	 if(UseParUpmixSig[band][n])	{ 	 	
	 	 	 	 	 	 for(m	=	0; 	 	
	 	 	 	 	 	 	 m	<	NumOfDecorrSigsPerParSubband	 ;m++)	{ 	 	
	 	 	 	 	 	 	 c	=	ParSelectedDecorrSigsIdxMatrix[n][m]; 	 	
	 	 	 	 	 	 	 readParDiffValues(band,	n,	c,	
	 	 	 	 	 	 	 	 UseParHuffmanCodingDiffAbs,	
	 	 	 	 	 	 	 	 UseParHuffmanCodingDiffAngle);

	 	

	 	 	 	 	 	 } 	 	
	 	 	 	 	 } 	 	
	 	 	 	 } 	 	
	 	 	 } 	 	
	 	 } 	 	
	 } 	 	
} 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 371	
	

Table	206	—	Syntax	for	readParDiffValues()	

Syntax	 No.	of	bits	 Mnemonic	
readParDiffValues	(band,	idx,	decoIdx,	UseParHuffmanCodingDiffAbs,	
	 	 	 	 	 UseParHuffmanCodingDiffAngle)

	 	

{ 	 	

	 if(UseParHuffmanCodingDiffAbs)	{ 	 	
	 	 if(UseRealCoeffsPerParSubband[band])	{ 	 	
	 	 	 DecodedParMagDiff[band][idx][decoIdx]	=		
	 	 	 	 HuffmanMagDiffSbr[HuffmanCodedParMagDiff];	

1..10	 vlclbf	

	 	 else	{ 	 	
	 	 	 DecodedParMagDiff[band][idx][decoIdx]	=		
	 	 	 			HuffmanMagDiffNoSbr[HuffmanCodedRealParMagDiff];	

1..12	 vlclbf	

	 	 } 	 	
	 	 if	(DecodedParMagDiff	[band][dir][hoaIdx]	≤	-8) 	 	
	 	 	 	DecodedParMagDiff[band][idx][decoIdx]	=	-8	-		
	 	 	 	 runLengthCodedVal;		

1..	 uclbf	

	 	 } 	 	
	 	 else	if	(DecodedParMagDiff	[band][dir][hoaIdx]	≥	9) 	 	
	 	 	 	DecodedParMagDiff[band][idx][decoIdx]	=	9	+		
	 	 	 	 runLengthCodedVal;	

1..	 uclbf	

	 	 } 	 	
	 else	{ 	 	

	 	 DecodedParMagDiff[band][idx][decoIdx]	=		
	 	 	 CodedParMagDiff	-	7;	

4	 uimsbf	

	 	 if	(DecodedParMagDiff	[band][dir][hoaIdx]	≤	-7) 	 	
	 	 	 	DecodedParMagDiff[band][idx][decoIdx]	=	-7	-		
	 	 	 	 runLengthCodedVal;		

1..	 uclbf	

	 	 } 	 	
	 	 else	if	(DecodedParMagDiff	[band][dir][hoaIdx]	≥	8) 	 	
	 	 	 	DecodedParMagDiff[band][idx][decoIdx]	=	8	+		
	 	 	 	 runLengthCodedVal;	

1..	 uclbf	

	 	 } 	 	
	 } 	 	
	 if(!UseRealCoeffsPerParSubband[band]){ 	 	
	 	 if(UseParHuffmanCodingDiffAngle)	{ 	 	
	 	 	 DecodedParAngleDiff[band][idx][decoIdx]	=		
	 	 	 	 DecTableAngleDiff[HuffCodedParAngleDiff];	

1..7	 vlclbf	

	 	 } 	 	
	 	 else	{ 	 	

	 	 	 DecodedParAngleDiff[band][idx][decoIdx]	=		
	 	 	 	 DecTableAngleDiff[CodedParAngleDiff];	

4	 uimsbf	

	 	 } 	 	

	 } 	 	
} 	 	

	

ISO/IEC	23008-3:202X(E)	

372	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	58	—	Two	examples	for	HOAFrame()	

12.3 Data	structure	

 Definitions	of	HOA	Config	

HOAConfig()	 This	element	contains	information	about	the	audio	content.	

HoaOrder	 This	element	determines	the	HOA	order	of	the	coded	HOA	signal.	

NumOfHoaCoeffs	 This	element	determines	the	number	of	HOA	coefficients	of	the	coded	
HOA	representation,	which	is	equal	to	the	number	of	HOA	coefficients	to	
be	reconstructed.		

IsScreenRelative	 This	element	indicates	if	the	HOA	representation	shall	be	rendered	with	
respect	to	the	reproduction	screen	size	as	described	in	subclause	18.4.	

UsesNfc	 This	element	determines	whether	or	not	the	HOA	Near	Field	
Compensation	(NFC)	has	been	applied	to	the	coded	signal.	

NfcReferenceDistance	 This	element	determines	the	radius	in	meter	that	has	been	used	for	the	
HOA	NFC	(interpreted	as	float	in	IEEE	754	format	in	little-endian).	

HOADecoderConfig()	 This	element	contains	information	to	initialize	the	HOA	spatial	decoder.	

MinAmbHoaOrder	 This	element	determines	the	minimum	HOA	order	used	for	the	coding	of	
the	ambient	HOA	representation	by	MinAmbHoaOrder		=	
MinAmbHoaOrder	-	1.	The	value	-1	indicates	that	the	number	of	
decorrelated	ambiance	coefficients	is	equal	to	zero.	Thus	the	HOA	
representation	is	transmitted	without	a	residual	ambiance	HOA	
representation	of	lower	order	and	all	transport	channels	have	a	flexible	
channel	type.	The	value	6	is	used	to	extend	the	HOA	order	signaling.		

MinNumOfCoeffsForAmbHOA	This	element	determines	the	minimum	number	of	ambient	HOA	
coefficients.	

NumOfAdditionalCoders	 This	element	determines	the	number	of	additional	transport	channels	
used	for	coding	the	directional	and/or	additional	HOA	coefficients	of	the	
ambient	component.	These	transport	channels	have	a	flexible	
ChannelType	that	is	defined	in	Table	198.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 373	
	

SingleLayer	 This	element	indicates	that	the	HOA	signal	is	provided	in	a	single	layer	
according	to	Table	207.	

Table	207	—	SingleLayer	definition	

Value	 Meaning

0	 HOA	signal	is	provided	in	multiple	layers;	enables	the	signaling	of	the	
distribution	of	the	HOA	transport	channels	into	the	different	layers	

1	 HOA	signal	is	provided	in	a	single	layer	

	
codedLayerCh	 This	element	indicates	for	the	first	(i.e.	base)	layer	the	

number	of	included	transport	signals,	which	is	given	by	
codedLayerCh	+	MinNumOfCoeffsForAmbHOA.	For	the	
higher	(i.e.	enhancement)	layers,	this	element	indicates	the	
number	of	additional	signals	included	into	an	enhancement	
layer	compared	to	the	next	lower	layer,	which	is	given	by	
codedLayerCh	+	1.	

HOALayerChBits	 This	element	indicates	the	number	of	bits	for	reading	
codedLayerCh.	

NumLayers	 This	element	indicates	(after	the	reading	of	the	
HOADecoderConfig())	the	total	number	of	layers	within	the	
bitstream.	

NumHOAChannelsLayer	 This	element	is	an	array	consisting	of	NumLayers	elements,	of	
which	the	i-th	element	indicates	the	number	of	transport	
signals	included	in	all	layers	up	to		the	i-th	layer.	

HOAEnhConfig()	 This	payload	contains	the	HOA	enhancement	configuration	
data	of	an	HOA	enhancement	layer	in	the	HOA	layered	coding	
mode.	

HOALayerIdxBits	 This	element	indicates	the	number	of	bits	used	for	signaling	
the	element	LayerIdx.	

LayerIdx	 This	element	indicates	the	index	of	the	HOA	enhancement	
layer	payload,	where	the	index	is	defined	in	the	range	from	
zero	to	NumLayers-1.	

HOADecoderEnhConfig()	 This	payload	contains	all	configuration	elements	for	the	HOA	
enhancement	layer	payloads.	

CodedSpatialInterpolationTime	 This	element	determines	the	time	of	the	spatio-temporal	
interpolation	of	the	Vector-based	directional	signals	as	defined	
in	Table	212.	

SpatialInterpolationMethod	 This	element	determines	the	interpolation	method	applied	
during	the	spatio-temporal	interpolation	of	the	vector-based	
signals.	

ISO/IEC	23008-3:202X(E)	

374	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

CodedVVecLength	 This	element	indicates	the	length	of	the	transmitted	data	
vector	used	to	synthesize	the	vector-based	signals.		

MaxGainCorrAmpExp	 Gives	the	exponent	of	basis	two	of	the	maximum,	
accumulated	amplification	that	has	been	used	in	the	gain	
correction	tool	of	the	HOA	spatial	encoder	for	amplification	of	
signals	of	the	transport	channel.	This	value	is	required	to	
compute	the	number	of	bits	for	reading	
MaxGainCorrPrevAmpExp	when	the	IndependencyFlag	is	set	
to	true.	

HOAFrameLengthIndicator	 Indicates	the	frame	length	L	(number	of	samples)	of	the	HOA	
spatial	decoding	relative	to	the	core	coder	frame	length	as	
defined	in	Table	211.	

MaxHoaOrderToBeTransmitted	 This	element	indicates	the	maximum	HOA	order	of	the	
additional	ambient	HOA	coefficients	to	be	transmitted.	

MaxNumOfCoeffsToBeTransmitted	 This	element	indicates	the	maximum	number	of	HOA	
coefficients	to	be	transmitted,	computed	depending	on	
MaxHoaOrderToBeTransmitted.	

MaxNumAddActiveAmbCoeffs	 This	element	signals	the	maximum	index	for	the	signaling	of	
additional	ambient	HOA	coefficients.		

VqConfBits	 This	element	indicates	the	number	of	bits	necessary	to	signal	
the	element	NumVVecVqElementsBits	

NumVVecVqElementsBits	 This	element	indicates	the	number	of	bits	used	to	signal	the	
element	NumVvecIndices	in	ChannelSideInfoData()	

UsePhaseShiftDecorr	 This	element	signals	the	usage	of	the	inverse	phase	based	
transform	to	recorrelate	the	ambience	signals.	A	value	of	1	
means	that	it	shall	be	used.	

MaxNoOfDirSigsForPrediction	 This	element	determines	the	number	of	directional	signals	
used	for	the	prediction	of	the	predominant	sound	
components.	

NoOfBitsPerScalefactor	 This	element	determines	the	number	of	bits	for	reading	
PredGains[n].		

PredSubbandsIdx	 This	element	signals	the	table	index	for	the	sub-band	
configuration	of	the	sub-band	directional	signals	synthesis.		

NumOfPredSubbands	 This	element	contains	the	number	of	sub-band	groups	used	
for	the	sub-band	directional	signals	synthesis.	

NumOfPredSubbandsTable	 This	table	contains	the	number	of	sub-band	groups	for	each	
PredSubbandsIdx	for	the	sub-band	directional	signals	
synthesis.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 375	
	

PredSubbandWidths[idx]	 This	array	of	NumOfPredSubbands	elements	contains	the	
number	of	QMF	sub-bands	per	sub-band	group	of	the	sub-
band	directional	signals	synthesis.		

PredSubbandWidthTable	 This	table	contains	the	bandwidths	of	the	sub-band	groups	
for	each	table	index	PredSubbandsIdx	for	the	sub-band	
directional	signals	synthesis.	

Table	208	—	Directional	prediction	subbands	table	

PredSubbandsIdx	 NumOfPredSubbandsTable	 PredSubbandWidthTable	
0	 0	 []	
1	 10	 [1,	1,	1,	2,	2,	2,	3,	6,	11,	35]	
2	 20	 [1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4,5,7,11,	18]	

	
getSubbandWidths()		 This	function	reads	a	flexible	sub-band	group	configuration.	
FirstSBRSubbandIdxBits	 This	element	determines	the	number	of	bits	for	reading	

FirstSBRSubbandIdx.		

FirstSBRSubbandIdx	 Indicates	the	first	sub-band	group	of	the	directional	signals	synthesis	
where	the	samples	are	reconstructed	by	the	SBR	tool.	To	deactivate	the	
special	SBR	processing	in	the	sub-band	directional	signals	synthesis	set	
the	value	of	this	element	to	NumOfPredSubbands	+	1.		

MaxNumOfPredDirsLog2	 This	element	signals	the	logarithm	to	the	base	of	two	from	the	maximum	
number	of	signals	that	are	predicted	in	the	sub-band	directional	signals	
synthesis.	

MaxNumOfPredDirs	 This	element	signals	the	maximum	number	of	signals	that	are	predicted	
in	the	sub-band	directional	signals	synthesis.	

MaxNumOfPredDirsPerBand	 This	element	contains	the	maximum	number	of	predicted	signals	per	
sub-band	group	of	the	sub-band	directional	signals	synthesis.	

DirGridTableIdx	 This	index	determines	the	grid	of	potential	directions	of	directional	sub-
band	signals	created	at	the	sub-band	directional	signals	synthesis.	

NumOfBitsPerDirIdx	 The	element	determines	the	number	of	bits	for	signaling	the	index	of	a	
virtual	loudspeaker	position	index.	

NumOfGridPointsTable	 This	table	determines	the	number	of	potential	directions	of	directional	
sub-band	signals	created	at	the	sub-band	directional	signals	synthesis.	

NumOfBitsPerDirIdxTable	 This	table	determines	the	number	of	bits	used	to	code	each	single	
potential	direction	of	a	directional	sub-band	signal	created	at	the	sub-
band	directional	signals	synthesis.	

Table	209—	Quantized	direction	index	table	

DirGridTableIdx	 NumOfGridPointsTable	 NumOfBitsPerDirIdxTable	
0	 256	 8	
1	 484	 9	
2	 900	 10	
3	 reserved	 reserved	

	
	

ISO/IEC	23008-3:202X(E)	

376	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ParSubbandTableIdx	 This	element	signals	the	table	index	for	the	sub-band	configuration	of	the	
parametric	ambience	replication	decoder.		

NumOfParSubbands	 This	element	signals	the	number	of	sub-band	groups	used	by	the	
parametric	ambience	replication	decoder.	

NumOfParSubbandsTable	 This	table	contains	the	number	of	sub-band	groups	for	each	PAR	sub-
band	group	table	index	ParSubbandTableIdx.		

ParSubbandWidths	 This	array	of	NumOfParSubbands	elements	contains	the	number	of	QMF	
sub-bands	per	sub-band	group	of	the	Parametric	Ambience	Replication	
decoder.		

ParSubbandWidthTable	 This	table	contains	the	bandwidths	of	the	sub-band	groups	for	each	table	
index	ParSubbandTableIdx	for	the	PAR	decoder.	

Table	210—	PAR	subbands	table		

ParSubbandTableIdx	 NumOfParSubbandsTable	 ParSubbandWidthTable	
0	 0	 []	
1	 4	 [1,	1,	22,	40]	
2	 8	 [1,	1,	1,	2,	2,	5,	10,	42]	

	
LastFirstOrderSubbandIdxBits	 This	element	determines	the	number	of	bits	required	

for	reading	LastFirstOrderSubbandIdx.	

LastFirstOrderSubbandIdx	 This	element	indicates	the	index	of	the	last	PAR	sub-
band	group	that	uses	an	HOA	order	of	one.	

UseRealCoeffsPerParSubband[idx]	 This	Boolean	array	indicates	for	each	PAR	sub-band	
group	if	the	mixing	matrix	consists	of	real-valued	non-
negative	(true)	or	complex	valued	elements	matrix	
(false).		

UpmixHoaOrderPerParSubband[idx]	 This	array	contains	the	HOA	order	used	in	each	PAR	
sub-band	group.	

MaxNumOfDecoSigs[idx]	 This	array	contains	the	maximum	number	of	de-
correlated	signals	per	PAR	sub-band	group.	

AmbAsignmBits	 This	element	determines	the	number	of	bits	that	are	
required	for	reading	CodedAmbCoeffIdx[i].	

ActivePredIdsBits	 This	element	determines	the	number	of	bits	for	reading	
ActivePredIds.	

NumActivePredIdsBits	 This	element	determines	the	number	of	bits	for	reading	
NumActivePredIds.	

GainCorrPrevAmpExtBits	 This	element	determines	the	number	of	bits	for	reading	
MaxGainCorrPrevAmpExp.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 377	
	

 Syntax	of	getSubbandBandwidths()	

This	function	reads	the	bandwidth	for	NumberOfSubbands	sub-band	groups.	
	
CodedBwFirstBand	 This	element	signals	the	bandwidth	of	the	first	sub-band	group	by	the	

number	of	QMF	sub-bands.	

NumberOfSubbands	 This	element	contains	the	total	number	of	sub-band	groups.	

bw[idx]	 This	array	holds	the	bandwidth	of	each	sub-band	group	in	the	number	of	
QMF	sub-bands.	

bw_diff	 This	element	contains	the	differentially	coded	bandwidth	of	a	sub-band	
group.	

 Definitions	of	HOA	payload	

12.3.3.1 HOAFrame()	

The	HOAFrame()	holds	the	information	that	is	required	to	decode	the	L	samples	of	an	HOA	frame	of	order	
HoaOrder.		

HOAFrame()	 This	block	of	data	contains	the	data	required	to	decode	
one	frame	of	L	samples	of	the	coded	HOA	representation.	

NumOfDirSigs	 This	element	determines	the	number	of	active	
directional	signals	in	the	current	HOAFrame().		

NumOfVecSigs	 This	element	determines	the	number	of	active	vector-
based	signals	in	the	current	HOAFrame().	

NumOfAddHoaChans	 This	element	determines	the	total	number	of	additional	
ambient	HOA	channels	in	the	current	HOAFrame().		

NumOfDirSigsPerLayer[lay]	 This	element	determines	the	number	of	active	
directional	signals	in	the	current	HOAFrame()	that	are	
actually	used	in	the	HOA	enhancement	layer	lay.		

NumOfAddHoaChansPerLayer[lay]	 This	element	signals	the	total	number	of	additional	
ambient	HOA	coefficients	actually	used	in	the	HOA	
enhancement	layer	lay.	

NumOfContAddHoaChans[lay]	 This	element	determines	the	number	of	continuous	
additional	ambient	HOA	coefficients	in	the	current	
HOAFrame()	that	are	actually	used	in	the	HOA	
enhancement	layer	lay.	

NumOfNewAddHoaChans[lay]	 This	element	determines	the	number	of	newly	
introduced	additional	ambient	HOA	channels	in	the	
current	HOAFrame()	that	are	actually	used	in	the	HOA	
enhancement	layer	lay.	

ISO/IEC	23008-3:202X(E)	

378	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

hoaIndependencyFlag	 This	flag	signals	that	the	current	frame	is	an	independent	
frame	that	can	be	decoded	without	having	knowledge	
about	the	previous	frame.	Otherwise	this	flag	is	equal	to	
the	usacIndependencyFlag.	

ChannelSideInfoData(i)	 This	payload	holds	the	side	information	for	the	i-th	of	the	
NumOfAdditionalCoders	channels	of	flexible	
ChannelType.		

HOAGainCorrectionData(i)	 This	payload	contains	data	for	the	inverse	gain	
correction	of	channel	i.	

DirSigChannelIds[NumOfDirSigs]	 This	element	stores	the	channel	index	of	each	active	
directional	signal	of	the	current	frame.		

VecSigChannelIds[NumOfVecSigs]	 This	element	stores	the	channel	index	of	each	active	
vector-based	signal	of	the	current	frame.	

VecSigLayerIdx[i]	 This	element	indicates	for	the	i-th	vector-based	channel	
element	of	the	current	frame	the	index	of	the	
enhancement	layer	that	transmits	the	corresponding	
vector-based	signal.		

ContAddHoaCoeff	
[lay][NumOfContAddHoaChans]	

This	2D	array	contains	the	HOA	coefficient	indices	for	
each	continuous	additional	ambient	HOA	coefficient	
actually	used	in	the	HOA	enhancement	layer	lay.	For	
these	HOA	coefficients	the	AmbCoeffTransitionState	
word	is	of	value	0	in	the	current	frame.	

NewAddHoaCoeff	
[lay][NumOfContAddHoaChans]	

This	2D	array	contains	the	HOA	coefficient	indices	for	
each	additional	ambient	HOA	coefficient,	which	was	not	
present	in	the	preceding	frame	used	in	the	HOA	
enhancement	layer	lay.	

AddHoaCoeffPerLayer[lay]	 This	array	contains	the	HOA	coefficient	indices	for	each	
additional	ambient	HOA	coefficient	actually	used	in	the	
HOA	enhancement	layer	lay.		

AddHoaCoeff[lay]	 This	element	stores	the	HOA	coefficient	number	of	each	
additional	ambient	HOA	channel	in	the	current	frame.	

HOAEnhFrame()	 This	payload	contains	the	frame	data	for	the	HOA	
enhancement	payloads	HOAPredictionInfo(),	
HOADirectionalPredictionInfo()	and	HOAParInfo().	

12.3.3.2 HOAEnhFrame()	

HOAPredictionInfo()	 This	payload	contains	data	for	the	prediction	of	
dominant	sound	sources	from	the	active	directional	
signals	of	the	current	frame.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 379	
	

HOADirectionalPredictionInfo	 This	payload	contains	data	for	the	sub-band	directional	
signals	synthesis.	

HOAParInfo	 This	payload	contains	data	for	the	parametric	ambience	
replication.	

12.3.3.3 ChannelSideInfoData(i)	

This	payload	holds	the	side	information	for	the	i-th	channel.	The	size	and	the	data	of	the	payload	depend	
on	the	type	of	the	channel.		

ChannelType[i]	 This	element	stores	the	type	of	the	i-th	channel	which	is	defined	in	Table	
198.	

ActiveDirsIds[i]	 This	element	indicates	the	direction	of	the	active	directional	signal	using	
an	index	of	the	900	predefined,	uniformly	distributed	points	from	
Annex	F.9.	The	code	word	0	is	used	for	signalling	the	end	of	a	directional	
signal.		

NewChannelTypeOne[i]	 This	flag	indicates	if	in	the	previous	frame	(k-1)	the	transport	channel	
was	not	initialized	as	a	vector-based	signal.	

PFlag[i]	 The	prediction	flag	used	for	the	Huffman	decoding	of	the	scalar	quantized	
V-vector	associated	with	the	vector-based	signal	of	the	i-th	channel.	

CbFlag[i]	 The	codebook	flag	used	for	the	Huffman	decoding	of	the	scalar	quantized	
V-vector	associated	with	the	Vector-based	signal	of	the	i-th	channel.	

CodebkIdx[i]	 Signals	 the	 specific	 codebook	 used	 to	 dequantize	 the	 vector-quantized	
V-vector	associated	with	the	vector-based	signal	of	the	i-th	channel.	

NumVvecIndices(k)[i]	 The	number	of	vectors	used	to	dequantize	a	vector-quantized	V-vector.	

NbitsQ[i]	 The	 NbitsQ[i]	 value	 determines	 the	 decoding	 method	 of	 the	 V-Vector	
associated	with	 the	Vector-based	signal	of	 the	 i-th	channel.	An	NbitsQ[i]	
value	 of	 4	 determines	 the	 decoding	 of	 a	 vector-quantized	V-vector.	 The	
value	 5	 determines	 the	 decoding	 of	 a	 uniform	 8bit	 scalar	 quantized	 V-
vector.	If	the	value	is	greater	than	5,	Huffman	decoding	of	the	V-vector	is	
determined	 by	 using	 the	 Huffman	 table	 index	 as	 signalled	 with	 the	
NbitsQ[i]	value	(the	Huffman	tables	are	provided	in	Annex	F.15	to	F.24).	

The	two	MSBs	00	signal	the	reuse	of	the	values	NbitsQ[i],	PFlag[i],	CbFlag[i],	
and	CodebkIdx[i]	from	the	previous	frame	(k-1).	

bA,	bB	 	 	 	 	 	 The	msb	(bA)	and	second	msb	(bB)	of	the	NbitsQ[i]	field.	

uintC	 	 	 	 	 	 The	code	word	of	the	remaining	two	bits	of	the	NbitsQ[i]	field.	

AddAmbHoaInfoChannel(i)	 This	payload	holds	the	information	for	additional	ambient	HOA	
coefficients.	

ISO/IEC	23008-3:202X(E)	

380	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

12.3.3.4 AddAmbHoaInfoChannel(i)	

This	 payload	 contains	 the	 information	 required	 to	 add	 an	 additional	 ambient	HOA	 coefficient	 to	 the	
reconstructed	HOA	representation.	

AmbCoeffTransitionState	 This	decoder-internal	variable	tracks	the	state	of	the	life-cycle	of	an	
additional	ambient	HOA	coefficient.	Those	states	are	fade-in,	continous	
state,	and	fade-out.	The	AmbCoeffIdxTransition	signals	a	change	of	the	
state	in	the	bitstream.	When	an	additional	ambient	HOA	coefficient	is	
faded	in,	the	CodedAmbCoeffIdx	word	is	sent	to	signal	the	new	
AmbCoeffIdx.	In	all	other	states,	the	AmbCoeffIdx	of	the	previous	frame	is	
used.	

AmbCoeffIdxTransition	 This	element	indicates	that	in	this	frame	an	additional	ambient	HOA	
coefficient	is	either	being	faded	in	or	faded	out.	This	flag	will	update	the	
decoder-internal	AmbCoeffTransitionState	variable	for	this	transport	
channel	accordingly	(see	Table	199).	

CodedAmbCoeffIdx	 This	element	reads	the	coded	index	of	the	additional	ambient	HOA	
coefficient.	

AmbCoeffIdx[i]	 This	element	determines	the	index	of	the	HOA	signal	where	channel	i	
contributes	to	the	reconstructed	HOA	representation.		

12.3.3.5 HOAGainCorrectionData(i)	

This	structure	comprises	the	parameters	for	the	inverse	gain	correction	of	the	spatial	HOA	decoding	tool	
for	the	i-th	transport	channel.	

HOAGainCorrectionData()	 This	payload	comprises	the	parameters	for	the	inverse	gain	
correction.	

GainCorrPrevAmpExp[i]	 This	element	gives	the	amplification	as	an	exponent	to	the	basis	of	
two	that	has	been	applied	to	the	signal	of	the	transport	channel	i	in	
the	previous	frame.	It	is	only	required	to	send	if	the	
IndependencyFlag	is	set	to	true	for	starting	decoding	at	the	current	
frame.	The	value	range	of	the	element	is	from	–
ceil(log2(1.5*NumOfHoaCoeffs))	to	MaxGainCorrAmpExp,	where	
the	lower	bound	is	the	maximal	amplitude	of	any	transport	
channel	signal.	This	bound	is	computed	from	the	assumption	that	
all	spatial	domain	signals	of	the	encoded	HOA	representation	have	
absolute	amplitudes	less	than	one.	The	spatial	domain	signals	are	
computed	by	the	multiplication	of	the	HOA	representation	with	the	
inverse	of	the	modematrix	created	from	the	uniformly	distributed	
positions	from	F.2	to	F.11	corresponding	to	the	HoaOrder.	

CodedGainCorrectionExp[i][n]	 The	index	n	addresses	the	bits	of	the	run	length	code	to	
determine	the	exponent	used	for	the	inverse	gain	correction	of	
the	i-th	channels.	

GainCorrectionException[i]	 indicates	the	gain	correction	exception	state	for	each	of	the	i-th	
channels.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 381	
	

12.3.3.6 VVectorData(VecSigChannelIds(i))	

This	 structure	 contains	 the	 coded	 V-vector	 data	 used	 for	 the	 vector-based	 signal	 synthesis.	 The	
subfunctions	used	for	the	decoding	are	specified	in	subclause	12.4.1.11.	

VVec(k)[i]	 This	is	the	V-vector	for	the	k-th	HOAframe()	for	the	i-th	channel.		

VVecLength	 This	variable	indicates	the	number	of	vector	elements	to	read	out.		

VVecCoeffId	 This	vector	contains	the	indices	of	the	transmitted	V-vector	coefficients.		

VecVal	 An	integer	value	between	0	and	255.	

aVal	 A	temporary	variable	used	during	decoding	of	the	VVectorData.		

huffVal	 A	Huffman	code	word,	to	be	Huffman-decoded.		

sgnVal	 This	is	the	coded	sign	value	used	during	decoding.		

intAddVal	 This	is	additional	integer	value	used	during	decoding.		

WeightIdx	 The	index	in	WeightValCdbk	used	to	dequantize	a	vector-quantized	
V-vector.		

nBitsW	 Field	size	for	reading	WeightIdx	to	decode	a	vector-quantized	V-vector.		

WeightValCdbk	 Codebook	which	contains	a	vector	of	positive	real-valued	weighting	
coefficients.	Only	necessary	if	NumVvecIndices	is	>	1.	The	WeightValCdbk	
with	256	entries	is	provided	in	Annex	F.14.		

VvecIdx	 An	index	for	VecDict,	used	to	dequantize	a	vector-quantized	V-vector.	

nbitsIdx	 Field	size	for	reading	VvecIdx	to	decode	a	vector-quantized	V-vector.	

WeightVal	 A	real-valued	weighting	coefficient	to	decode	a	vector-quantized	
V-vector.	

12.3.3.7 HOAPredictionInfo(DirSigChannelIds,	NumOfDirSigs)	

The	data	of	this	payload	provides	information	for	the	predominant	sound	synthesis	in	the	HOA	spatial	
decoding	tool.	It	includes	parameters	for	the	prediction	of	the	predominant	sound	component	from	the	
active	directional	signals.		

PredIdsBits	 This	helper	variable	holds	the	number	of	bits	for	reading	
PredDirSigIds[].	The	number	of	bits	is	adapted	to	the	currently	active	
number	of	directional	signals	NumOfDirSigs,	which	is	determined	in	
HOAFrame().		

PSPredictionActive	 This	element	determines	whether	or	not	the	spatial	prediction	tool	
contributes	to	the	decoded	HOA	representation.		

KindOfCodedPredIds	 This	element	indicated	the	method	for	reading	ActivePred[].	

ISO/IEC	23008-3:202X(E)	

382	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

NumActivePredIds	 This	element	indicates	the	number	of	active	prediction	indices	from	the	
NumOfHoaCoeffs	uniformly	distributed	position	indices	from	F.2	to	F.11.	
The	table	is	selected	according	to	HoaOrder.	

NumActivePred	 This	element	determines	the	number	of	active	prediction	indices.	

PredIds[idx]	 This	array	indicates	the	active	prediction	indices	from	F.2	to	F.11.	The	
table	is	selected	according	to	HoaOrder.	

ActivePred[idx]	 This	element	indicates	whether	or	not	(‘1’	or	‘0’)	the	prediction	is	
computed	for	each	of	the	NumOfHoaCoeffs	uniformly	distributed	
positions	from	F.2	to	F.11.	The	table	is	selected	according	to	HoaOrder.	

PredDirSigIds[n]	 This	array	indicates	the	index	of	the	transport	channel	of	the	active	
directional	signals	for	each	active	prediction.		

NumOfGains	 The	variable	indicates	the	number	of	prediction	gains	provided	by	the	
bitstream.	Only	prediction	gains	that	are	greater	than	zero	are	provided.	
The	maximal	number	of	prediction	gains	is	equal	to	NumActivePred	
times	MaxNoOfDirSigsForPrediction.	

PredGains[n]	 This	array	holds	the	NumOfGains	prediction	gains.	

12.3.3.8 HOADirectionalPredictionInfo	

This	payload	contains	data	for	the	directional	signals	synthesis.	

UseDirectionalPrediction	 This	 flag	 indicates	 if	 the	directional	signals	synthesis	 is	
performed	in	the	current	frame.		

KeepPreviousGlobalPredDirsFlag	 This	 flag	 indicates	 that	 the	 elements	
NumOfGlobalPredDirs,	 NumBitsForRelDirGridIdx	 and	
GlobalPredDirsIds	 read	 from	 the	 previous	
HOADirectionalPredictionInfo	payload	are	used.		

NumOfGlobalPredDirs	 This	element	determines	the	available	number	of	global,	
broadband	directions.	

NumBitsForRelDirGridIdx	 This	 element	 indicates	 the	 number	 of	 bit	 required	 for	
reading	GlobalPredDirsIds.		

GlobalPredDirsIds	 This	 array	 contains	 the	 indices	 for	 the	
NumOfGlobalPredDirs	 directions,	 where	 each	 index	
belongs	to	a	direction	from	the	grid	of	positions	selected	
by	DirGridTableIdx.		

SortedAddHoaCoeff	 This	 array	 contains	 the	 HOA	 coefficients	 indices	 from	
AddHoaCoeff	sorted	ascendingly.	

KeepPreviousDirPredMatrixFlag[band]	 This	Boolean	is	true	if	the	signal	prediction	matrix	is	kept	
from	the	previous	frame	and	false	if	the	mixing	matrix	is	
update	by	new	magnitude	and	angle	differences.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 383	
	

UseHuffmanCodingDiffMag	 This	Boolean	element	is	true	if	the	magnitude	differences	
are	encoded	by	Huffman	coding.		

UseHuffmanCodingDiffAngle	 This	Boolean	element	is	true	if	the	angle	differences	are	
encoded	by	Huffman	coding.	

DirIsActive	 This	Boolean	element	 is	 true	 if	 the	current	direction	of	
the	current	sub-band	group	has	been	transmitted.		

RelDirGridIdx	 This	element	holds	the	relative	index	of	the	current	
direction	index	stored	in	GlobalPredDirsIds.	

PredDirGridIdx[band][dir]	 This	2D	array	contains	the	direction	indices	belonging	to	
the	direction	grid	selected	by	DirGridTableIdx	for	all	
active	directions	of	each	sub-band	group.	

readDirPredDiffValues()	 This	function	reads	the	coded	magnitude	and	angle	
differences.	

12.3.3.9 	Syntax	for	readDirPredDiffValues()	

This	function	reads	the	magnitude	and	phase	differences	for	the	directional	signal	synthesis.		

HuffCodedMagDiff	 This	 element	 signals	 the	 Huffman	 coded	magnitude	 difference	
using	Table	F.34.	

DecodedMagDiff[band][dir][idx]	 This	3D	array	holds	the	decoded	magnitude	difference	from	Table	
F.35	for	the	prediction	of	each	directional	signal	with	the	index	
dir	 of	 a	 sub-band	 group	 with	 the	 index	 band	 from	 the	 HOA	
coefficient	with	the	index	idx.	

runLengthCodedVal	 This	 run	 length	 code	 determines	 magnitude	 difference	 if	 a	
corresponding	escape	word	has	been	signalled.		

HuffCodedAngleDiff	 This	element	 signals	 the	Huffman	coded	angle	difference	using	
Table	F.36.	

DecodedAngleDiff[band][dir][hoaIdx]	 This	3D	array	holds	the	decoded	angle	difference	from	Table	F.36	
for	the	prediction	of	each	directional	signal	with	the	index	dir	of	
a	sub-band	group	with	the	index	band	from	the	HOA	coefficient	
with	the	index	idx.	

HuffCodedSbrMagDiff	 This	 element	 signals	 the	 Huffman	 coded	magnitude	 difference	
using	Table	F.35.	

CodedMagDiff	 This	 element	 holds	 the	 magnitude	 difference	 index	 quantized	
with	4	plain	bits.		

CodedAngleDiff	 This	element	holds	the	angle	difference	index	quantized	with	4	
plain	bits.	

12.3.3.10 	HOAParInfo	

This	payload	contains	data	for	the	PAR	decoder.	

ISO/IEC	23008-3:202X(E)	

384	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

UsePar	 This	Boolean	is	true	if	the	PAR	decoding	is	performed	in	
the	current	frame.	

KeepPreviousParMatrixFlag[idx]	 This	Boolean	is	true	if	the	mixing	matrix	is	kept	from	the	
previous	frame	and	false	if	the	mixing	matrix	is	update	by	
new	magnitude	and	angle	differences.		

ParDecorrSigsSelectionTableIdx[idx]	 This	 table	 index	 determines	 the	 number	 and	 the	
corresponding	 indices	 of	 the	 de-correlated	 signals	 that	
are	used	to	create	one	upmix	signal.	

NumOfDecorrSigsPerParSubband	 This	element	indicates	the	number	of	de-correlated	
signals	that	are	used	to	create	one	upmix	signal,	which	is	
obtained	for	UpmixHoaOrderPerParSubband[idx]	of	two	
from	F.40	and	for	UpmixHoaOrderPerParSubband[idx]	
of	one	from	Table	F.40	exploiting	the	index	
ParDecorrSigsSelectionTableIdx[idx].	

ParSelectedDecorrSigsIdxMatrix[sig][idx]	 This	matrix	contains	the	
NumOfDecorrSigsPerParSubband	indices	of	the	de-
correlated	signals	that	are	used	to	create	the	upmix	
signal	with	the	index	sig,	where	the	matrix	is	obtained	
for	UpmixHoaOrderPerParSubband[idx]	of	two	from	
Table	F.40	and	for	UpmixHoaOrderPerParSubband[idx]	
of	one	from	Table	F.43	exploiting	the	index	
ParDecorrSigsSelectionTableIdx[idx].	

UseReducedNoOfUpmixSigs	 This	 element	 signals	 that	 not	 all	 upmix	 signals	 are	
created.	

UseParUpmixSig[idx][n]	 For	each	PAR	sub-band	group	of	index	idx	the	elements	
of	the	Boolean	matrix	are	true	if	the	upmix	signal	with	an	
index	n	is	created	or	false	if	it	is	not	created.	

UseParHuffmanCodingDiffAbs	 This	 Boolean	 indicates	 by	 true	 that	 the	 magnitude	
differences	are	Huffman	coded.		

UseParHuffmanCodingDiffAngle	 This	Boolean	indicates	by	true	that	the	angle	differences	
are	Huffman	coded.		

	 The	index	is	equal	to	the	index	of	the	de-correlated	
signal	used	to	create	the	current	upmix	signal.	It	is	
obtained	from	F.40	for	the	current	value	of	
ParDecorrSigsSelectionTableIdx.	

12.3.3.11 readParDiffValues()	

This	function	reads	magnitude	and	phase	differences	of	the	mixing	matrices	that	are	used	by	the	PAR	
decoder.	

HuffCodedParMagDiff	 This	element	 signals	 the	Huffman	coded	magnitude	
difference	using	Table	F.37.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 385	
	

runLengthCodedVal	 This	 run	 length	 code	 determines	 magnitude	
difference	if	a	corresponding	escape	word	has	been	
signalled.	

DecodedParMagDiff[band][idx][decoIdx]	 This	 3D	 array	 holds	 the	 decoded	 magnitude	
differences	 	 for	 the	 prediction	 of	 each	 virtual	
loudspeaker	signal	with	the	index	idx	of	a	sub-band	
group	 with	 the	 index	 band	 from	 the	 de-correlated	
signal	with	the	index	decoIdx.	

HuffCodedParAngleDiff	 This	 element	 signals	 the	 Huffman	 coded	 angle	
difference	using	Table	F.39.	

DecodedParAngleDiff[band][idx][decoIdx]	 This	3D	array	holds	the	decoded	angle	differences	for	
the	prediction	of	each	virtual	loudspeaker	signal	with	
the	index	idx	of	a	sub-band	group	with	the	index	band	
from	the	de-correlated	signal	with	the	index	idx.	

HuffmanCodedRealParMagDiff	 This	element	 signals	 the	Huffman	coded	magnitude	
difference	using	Table	F.38.	

CodedParMagDiff	 This	element	holds	 the	 coded	magnitude	difference	
index	quantized	with	4	plain	bits.	

CodedParAngleDiff	 This	element	holds	the	coded	angle	difference	index	
quantized	with	4	plain	bits.	

12.4 HOA	tool	description	

 HOA	frame	converter	

12.4.1.1 General	

The	HOA	frame	converter,	shown	in	Figure	57,	converts	the	parameters	from	the	HOAFrame()	payload	
and	from	the	HOAConfig()	payload	to	the	parameters	required	for	the	HOA	decoding	tools.		

12.4.1.2 Global	parameter	

The	HOA	frame	converter	defines	the	following	variables.	

® =NumHOATransportChannels	 Number	 of	 transport	 signals	 used	 as	 input	 for	 the	 spatial	
decoding	tool	

* ∈ {1, … , ®}	 Index	for	the	transport	signals	

(=	HoaOrder	 Ambisonics	order	of	the	coded	HOA	signal	

∞ = ((+1)F		 Number	of	HOA	coefficients	

(±ºõ =	MinAmbHoaOrder	 Minimum	order	of	the	transmitted	ambient	HOA	representation	

∞±ºõ = ((±ºõ+1)F	 Minimum	number	of	ambient	HOA	coefficients	

K	 Direction	index	

ISO/IEC	23008-3:202X(E)	

386	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

5¥ƒÖ≤	=	MaxNoOfDirSigsForPrediction	Maximum	number	of	directional	signals	used	for	the	prediction	
of	dominant	sound	sources	

5¬≈ =	MaxNumOfPredDirsPerBand	 Maximum	 number	 of	 directions	 per	 sub-band	 for	 sub-band	
directional	signals	synthesis		

DMAX =	MaxNumOfPredDirs	 Maximum	number	of	different	directions	over	all	sub-bands	for	
sub-band	directional	signals	synthesis	

5	=	NumOfAdditionalCoders	 Number	of	channels	with	flexible	channel	types		

fl¬Ω =NoOfBitsPerScaleFactor	 Number	of	bits	per	scale	factor	

‡ = 900	 Number	of	direction	indices	

I ∈ {1,… , ‡}	 Quantization	index	of	a	direction	

L	 Frame	length	in	samples	for	the	HOA	spatial	decoding.	The	frame	
length	L	depends	on	outputFrameLength,	which	is	the	number	of	
output	samples	of	the	core	decoder	for	decoding	one	frame	(it	can	
be	768,	1024,	2048	or	4096	output	 samples	 long).	The	Output	
frame	 length	 can	 be	 found	 in	 ISO/IEC	23003-3:2012,	 Table	70.	
Furthermore,	 L	 depends	 on	 the	 value	 of	
HOAFrameLengthIndicator.	The	definition	of	L	can	be	found	in	
Table	211.	

Table	211	—	Value	of	frame	length	L	depending	on		
HOAFrameLengthIndicator	and	outputFrameLength	

outputFrameLength	
HOAFrameLengthIndicator

002	 012	 102	 112

768	 768	 768	 768	
reserved	

1	024	 1	024	 1	024	 1	024	
2	048	 2	048	 1	024	 1	024	
4	096	 4	096	 2	048	 1	024	

	
l	 Sample	index		

k	 Frame	index	

rmax	 Determines	the	maximum	loudspeaker	distance	of	the	listening	
setup.	 In	 case	 the	 actual	 loudspeaker	 distances	 are	 unknown	
(hasLoudspeakerDistance	==	0)	rmax	is	set	to	infinity	(rmax=∞).	

E	=	CodedVVecLength	 Coded	V-vector	length	

VecDict[cdbLen]	 Codebook	with	 cdbLen	 codebook	 entries	 containing	 vectors	 of	
HOA	expansion	 coefficients,	 used	 to	decode	a	vector-quantized	
V-vector.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 387	
	

12.4.1.2.1 Upper	and	lower	bounds	of	sub-band	groups	for	sub-band	directional	signals	
synthesis	

B = NumOfPredSubbands;

ℒ(1) = 1;

for (b=0; b < NumOfPredSubbands − 1; b++)
{
 ‰(b + 1) = ℒ(b) + 	PredSubbandWidths[b] − 1;
 ℒ(b + 1) = 	‰(b + 1) + 1;
}
·(B) = ℒ(B − 1) + 	PredSubbandWidths[B − 1] − 1;

	

12.4.1.2.2 Upper	and	lower	bounds	of	sub-band	groups	for	PAR	

ö = NumOfParSubbands	;

ℒ¥≥ƒ(1) = 1;

for (g=0; g < NumOfParSubbands	 − 1; g++)
{
 ·¥≥ƒ(g + 1) = ℒ¥≥ƒ(g) + 	ParSubbandWidths	[g] − 1;
 ℒ¥≥ƒ(g + 1) = 	·¥≥ƒ(g + 1) + 1;
}
·¥≥ƒ(ö) = ℒ¥≥ƒ(ö − 1) + 	ParSubbandWidths	[ö − 1] − 1;
	

12.4.1.2.3 Orders	‰… À(Â)	for	each	sub-band	group	Â = À,… , Ÿ	for	PAR	

for (g=0; g < NumOfParSubbands; g++)
{
 (¥≥ƒ(v + 1) = 	UpmixHoaOrderPerParSubband[g];
}

12.4.1.3 Frame	and	user	dependent	parameters	

{¿≥Ã(ó)	 Number	of	all	actually	used	layers	for	the	ó-th	frame	(to	be	specified)	at	
the	 decoder	 side.	 Note	 that	 in	 the	 case	 of	 layered	 coding	 (indicated	 by	
SingleLayer==0)	this	number	shall	be	less	or	equal	to	the	total	number	of	
layers	 present	 in	 the	 bitstream,	 i.e.	{¿≥Ã ≤ 	NumLayers .	 In	 the	 case	 of	
single-layered	coding	(indicated	by	SingleLayer==1)	{¿≥Ã	is	set	to	one.	

Dependent	on	the	choice	of	{¿≥Ã(ó)	the	number	®≥≤≤,¿≥Ã	(ó)	of	additional	transport	channels	actually	
used	 for	spatial	HOA	decoding	(i.e.	additional	 to	 the	∞±ºõ	channels	 that	are	 implicitly	always	used)	 is	
computed	as	follows:	

ISO/IEC	23008-3:202X(E)	

388	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

if(SingleLayer	|	(!SingleLayer	&	{¿≥Ã(ó) ==		NumLayers))	
{	
	 ®≥≤≤,¿≥Ã	(ó)	=	NumOfAdditionalCoders;	
}	
else	
{	
	 ®≥≤≤,¿≥Ã	(ó)		=	NumHOAChannelsLayer[0]	-	MinNumOfCoeffsForAmbHOA;	
	 for	(m=1;	m	<	{¿≥Ã	;	m++){	
	 	 I≥≤≤,¿≥Ã	(k)		=	NumHOAChannelsLayer[Mß∏π(k) − 1]	-	MinNumOfCoeffsForAmbHOA;	
	 }	
}	

The	number	is	required	to	extract	from	the	total	side	information	the	part	that	is	relevant	for	the	actually	
used	transport	signals.	For	this	reason,	 in	the	following,	 it	 is	used	for	the	conversion	of	the	bitstream	
parameters	to	the	parameters	used	in	the	description	of	the	actual	spatial	HOA	decoding	in	subclause	
12.4.2.	

12.4.1.4 Helper	functions	

bool isMemberOf(val, array, arraySize)
{
 idx = 0;
 for(idx = 0; idx < arraySize; idx++)
 {
 if(array[idx] == val)
 return true;
 }
 return false;
}

12.4.1.5 Prediction	parameters	Á(Ë)	

The	set	of	predictions	parameters	consists	of	three	arrays	Á(Ë) = ÈÍ∑Ã¥Ö(ó), Îºõ≤(ó), ÎÜ,Õ(ó)Ï.	The	array	
Í∑Ã¥Ö(ó)	consists	of		∞	entries,	Îºõ≤(ó)	and	ÎÜ,Õ(ó)	are	5¥ƒÖ≤x∞	matrices.	

for	(q=1;	q	≤	Ê;	q++)	{	
	 Í∑Ã¥Ö(ó)[I] = 0;	
	 for	(d=1;	d	≤	5¥ƒÖ≤;	d++)	{	
	 	 Îºõ≤(ó)[d][q]	=	0;	
	 	 ÎÜ,Õ(ó)[d][q]	=	0;	
	 }	

}	

if	(PSPredictionActive)	{	
	 if	(!KindOfCodedPredIds)	{	
	 	 i=0;	

	 	 for	(q=0;	q	<	Ê;	q++)	{	
	 	 	 if	(ActivePred[q])	{	
	 	 	 	 Í∑Ã¥Ö(ó)[q+1]	=	1;	
	 	 	 	 i++;	 	

	 	 	 }	

	 	 }	
	 }	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 389	
	

	 else	{	
	 	 for	(i=0;	i	<	NumActivePred;	i++)	{	
	 	 	 Í∑Ã¥Ö(ó)[PredIds[i]]	=	1;	
	 	 }	
	 }	
}	

	

i=0;	

j=0;	

for	(q=1;	q	≤	Ê;	q++)	{	
	 for	(d=1;	d	≤	5¥ƒÖ≤;	d++)	{	
	 	 if	(Í∑Ã¥Ö(ó)[i]>0)	{	
	 	 	 Îºõ≤(ó)[d][q]	=	PredDirSigIds[i];	
	 	 	 i++;	

	 	 	 if	(PredDirSigIds[i]	!=	0)	{	
	 	 	 	 ÎÜ,Õ(ó)[d][q]	=	PredGains[j];	
	 	 	 	 j++;	

	 	 	 }	
	 	 }	

	 }	

}	

12.4.1.6 Assigment	vector	Ì Œœ, ––—∫“(Ë)	

for	(i=0;	i	<®≥≤≤,¿≥Ã	(ó);	i++){	
	 if(ChannelType[i]==2){	
	 	 Ì≥±≈,≥¬¬º”õ(ó)[i+1]	=	AmbCoeffIdx[i];	
	 }	
	 else{	
	 	 Ì≥±≈,≥¬¬º”õ(ó)[i+1]=0;	
	 }	
}	
nIdx	=	1;	
for	(i=	®≥≤≤,¿≥Ã	(ó);	i	<	NumHOATransportChannels;	i++){	
	 Ì≥±≈,≥¬¬º”õ(ó)[i+1]=nIdx;	
	 nIdx++;	
}	
	
12.4.1.7 Tuple	set	Ó‘—À(Ë)	

ℳ≤ºƒ(ó)=∅;	
for	(i=0;	i	<	®≥≤≤,¿≥Ã	(ó);	i++){	
	 if(ChannelType[i]==0){	
	 	 ℳ≤ºƒ(ó)=ℳ≤ºƒ(ó) ∪ (* + 1, ÚÛÙıˆ˜¯ı˘˙˚¸˙[i]);	
	 }	
}	
	

ISO/IEC	23008-3:202X(E)	

390	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

12.4.1.8 The	sets	˝’(Ë), ˝‘(Ë)	˛ˇ¸	˝÷(Ë)			
ℐÖ(ó) = ∅;
ℐ≤(ó) = ∅;
ℐ◊(ó) = {1,…∞ruG};

for (i=0; i < ®ADD,LAY	(ó); i++) {
 switch(AmbCoeffTransitionState[i]) {
 case 0:
 {

ℐ◊(ó) = ℐ◊(ó) ∪ {AmbCoeffIdx[i]};
break;

 }
 case 1:
 {

ℐÖ(ó) = ℐÖ(ó) ∪ {AmbCoeffIdx[i]}	;
break;

 }
 case 2:
 {

ℐ≤(ó) = ℐ≤(ó) ∪ {AmbCoeffIdx[i]}	;
 }

 }
}

12.4.1.9 Gain	correction	exponents	 €(Ë)	
RunIdx = 0;
for (L = 0; 	L < “; 	L + +) {
 if (IndependencyFlag) {
 vº”Ω,b(ó − 1) = pow(2, GainCorrPrevAmpExp[i]);

}
 TmpCodedExp = 0;
 FoundOne = false;

 while (!FoundOne) {
 FoundOne = CodedGainCorrectionExp[L][RunIdx];
 TmpCodedExp++;
 RunIdx++;
 }

 switch (TmpCodedExp) {
 case 1:
 {
 E€Hñ(ó) = 0;
 break;
 }
 case 2:
 {
 E€Hñ(ó) = -1;
 break;
 }
 default:
 {
 E€Hñ(ó) = TmpCodedExp-2;
 }
 }
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 391	
	

12.4.1.10 Gain	correction	exception	flag	"€(Ë)	

for (L = 0; 	L	 < 	“; 	L++) {
 #bHI(ó) = GainCorrectionException[L];
}

12.4.1.11 Decoding	of	V-vector	

12.4.1.11.1 General	

A	V-vector	represents	the	spatial	distribution	of	the	soundfield	for	a	particular	vector-based	predominant	
sound	 and	 is	 decomposed	 from	 the	 HOA	 frame	 using	 a	 vector-based	 synthesis	 approach.	 Various	
examples	of	the	V-vectors	are	illustrated	in	the	following	Figure	59.	

	 	

	

Figure	59	—	Illustrations	of	V-vectors	

These	vectors	were	either	scalar-quantized	or	vector-quantized.	If	the	vectors	are	scalar	quantized,	an	
optional	prediction	from	the	V-vector	of	frame	k-1	as	well	as	efficient	Huffman	coding	can	be	employed	
as	shown	in	the	following	Figure	60.	

Bee sound comes from azimuth=0o and elevation=45o. Helicopter sound comes from the sky.

Modern electronic music comes from two different directions. People are shouting in a stadium.

ISO/IEC	23008-3:202X(E)	

392	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	60	—	Coding	of	V-vector	

To	decode	a	scalar-quantized	V-vector,	the	nbits,	prediction	mode	and	Huffman	Table	index	are	obtained	
from	the	bitstream	as	specified	in	subclauses	12.4.1.11.2,	12.4.1.11.3	and	12.4.1.11.4.	The	bitstream	is	
formulated	to	specify	the	compressed	version	of	this	spatial	component	(V-vector)	along	with	the	nbits,	
prediction	mode	and	Huffman	table	index.	The	compressed	V-vector	is	Huffman	decoded,	predicted	and	
dequantized	to	obtain	a	reconstructed	V-vector,	where	the	V-vectors	for	a	kth	 frame	are	denoted	as	as	
Ì(ó)as	part	of	the	tuple	set	ℳ‹ÖΩ(ó)..	In	the	text	below,	nbits	denotes	the	quantization	step	size.	Portions	
of	nbits	are	denoted	as	unitC,	bB	and	bA	below.	The	prediction	mode	is	denoted	as	PFlag	and	the	Huffman	
table	index	is	denoted	as	huffIdx.	The	Huffman	table	index	is	not	explicitly	signalled	in	the	bitstream	but	
is	derived	as	specified	in	subclause	12.4.1.11.4	based	on	a	CbFlag	specified	in	the	bitstream.	

When	decoding	vector-quantized	V-vectors,	a	V-vector	is	represented	by	a	weighted	summation	of	pre-
defined	vectors	as	given	by:	

	

where	 	and	 	are	an	i-th	weighting	value	and	the	corresponding	vectors,	respectively.	Once	the	V-
vector	is	reconstructed,	a	rescaling	of	the	V-vector	is	performed,	so	that	the	Euclidian	norm	is	of	size	N+1.	

An	example	of	the	vector-quantized	V-vector	decoding	is	illustrated	in	Figure	61.	As	shown	in	Figure	61	
(a),	an	original	V-vector	is	represented	by	a	mixture	of	multiple	vectors.	Thus,	the	original	V-vector	is	
estimated	by	a	weighted	sum	as	shown	in	Figure	61	(b)	where	a	weighting	vector	is	shown	in	Figure	61	
(e).	Figure	61	(c)	and	(f)	illustrate	the	cases	that	only	IS	(IS≤I)	highest	weighting	values	are	selected.	Vector	
quantization	is	performed	for	the	selected	weighting	values	(Figure	61	(g)).	The	codebook	indices	and	
weights	are	signalled	to	the	decoder,	so	that	the	V-vector	as	illustrated	in	Figure	61	(d)	can	be	constructed.		

v

nbits Prediction Mode

Prediction Mode

Codes for all elements in v vector

Encoder
bitstream

Uniform
Quantization Prediction

Huffman Table
Selection

Category and Residual
Coding

nbits

Huffman Table Index

vq

1
å
=

W»
I

i
iiV w

iw iW

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 393	
	

	

Figure	61	—	Example	for	vector-quantization	of	V-vector	

The	size	of	the	vector	codebook	depends	on	the	value	CodebkIdx(k)[i],	on	the	value	NumVvecIndices(k)[i]	
and	on	the	HOA	order.	If	NumVvecIndices	is	larger	than	1,	the	256x8	weighting	values	(Table	F.14)	are	
used.	If	NumVvecIndices	is	larger	than	8,	the	last	2	columns	of	the	256x8	weighting	values	(Table	F.14)	
are	used	repeatedly	with	a	modular	operator.	

If	the	CodebkIdx(k)[i]	 	is	set	to	0,	a	codebook	containing	the	HOA	expansion	coefficients	derived	from	
Annex	F.9	is	used.		

If	the	CodebkIdx(k)[i]	is	set	to	1	the	V-vector	codebook	is	generated	based	on	the	loudspeaker	directions	
in	Table	F.12	and	used	with	scaling.	If	the	CodebkIdx(k)[i]	is	set	to	2,	the	V-vector	codebook	based	on	the	
loudspeaker	directions	in	Table	F.12	is	generated	and	used	without	further	scaling.	If	the	CodebkIdx(k)[i]		
is	set	to	3,	the	V-vector	codebook	with	64	entries	as	shown	in	the	Table	F.13	is	used.	If	the	CodebkIdx(k)[i]	
is	set	to	7,	a	vector	with	O	vectors	is	used.	For	the	HOA	order	4,	the	Vector	codebook	with	32	entries	as	
derived	from	the	Table	F.6	is	used.	

12.4.1.11.2 VVecLength	and	VVecCoeffId	

The	codedVVecLength	word	indicates.	

Value	0:		Complete	vector	length	(NumOfHoaCoeffs elements).	Indicates	that	all	of	the	coefficients	for	
the	predominant	vectors	(NumOfHoaCoeffs) are	specified.	

Value	1:		Vector	elements	1	to	MinNumOfCoeffsForAmbHOA	and	all	elements	defined	in	
ContAddHoaCoeff[lay] are	not	transmitted,	where	lay	is	the	index	of	layer	containing	the	
vector-based	signal	corresponding	to	the	vector.	Indicates	that	only	those	coefficients	of	the	
predominant	vector	corresponding	to	the	number	greater	than	a	MinNumOfCoeffsForAmbHOA	
are	specified.	Further	those	NumOfContAddAmbHoaChan[lay]	coefficients	identified	in	

ISO/IEC	23008-3:202X(E)	

394	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ContAddAmbHoaChan[lay]	are	subtracted.	The	list	ContAddAmbHoaChan[lay]	specifies	
additional	channels	corresponding	to	an	order	that	exceeds	the	order	MinAmbHoaOrder.	

Value	2:	 Vector	elements	1	to	MinNumOfCoeffsForAmbHOA are	not	transmitted.	Indicates	that	those	
coefficients	of	the	predominant	vectors	corresponding	to	the	number	greater	than	a	
MinNumOfCoeffsForAmbHOA	are	specified.		

In	case	of	codedVVecLength==1	both	the	VVecLength[i]	array	as	well	as	the	VVecCoeffId[i][m]	2D	array	
are	 valid	 for	 the	 VVector	 	 of	 index	 i,	 in	 the	 other	 cases	 both	 the	 VVecLength	 element	 as	well	 as	 the	
VVecCoeffId[m]	array	are	valid	for	all	VVector	within	the	HOAFrame.	For	the	assignment	algorithm	below	
a	helper	function	is	defined	as	follows.	

switch CodedVVecLength{
 case 0:
 VVecLength = NumOfHoaCoeffs;
 for (m=0; m<VVecLength; ++m) {
 VVecCoeffId[m] = m;
 }
 break;
 case 1:
 for (i=0; i < NumOfVecSigs; ++i) {
 lay = VecSigLayerIdx[i];
 VVecLength[i] = NumOfHoaCoeffs – MinNumOfCoeffsForAmbHOA –
NumOfContAddHoaChans[lay] - (NewChannelTypeOne[i] * NumOfNewAddHoaChans[lay]);
 CoeffIdx = MinNumOfCoeffsForAmbHOA;
 for (m=0; m<VVecLength[i]; ++m) {
 CoeffIdx++;
 if(NewChannelTypeOne[i]) {
 bIsInArray = (isMemberOf(CoeffIdx, ContAddHoaCoeff[lay],
NumOfContAddHoaChans[lay]) || isMemberOf(CoeffIdx, NewAddHoaChans[lay],
NumOfNewAddHoaChans[lay]));
 while (bIsInArray) {
 CoeffIdx++;
 bIsInArray = ((isMemberOf(CoeffIdx, ContAddHoaCoeff[lay],
NumOfContAddHoaChans[lay]) || isMemberOf(CoeffIdx, NewAddHoaChans[lay],
NumOfNewAddHoaChans[lay]));
 }
 }
 else{
 bIsInArray = isMemberOf(CoeffIdx, ContAddHoaCoeff[lay],
 NumOfContAddHoaChans[lay]);
 while (bIsInArray) {
 CoeffIdx++;
 bIsInArray = isMemberOf(CoeffIdx, ContAddHoaCoeff[lay],
 NumOfContAddHoaChans[lay]);
 }
 }
 VVecCoeffId[i][m] = CoeffIdx-1;
 }
 }
 case 2:
 VVecLength = NumOfHoaCoeffs – MinNumOfCoeffsForAmbHOA;
 for (m=0; m< VVecLength; ++m) {
 VVecCoeffId[m] = m + MinNumOfCoeffsForAmbHOA;
 }
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 395	
	

The	first	switch	statement	with	the	three	cases	(cases	0-2)	thus	provides	a	way	by	which	to	determine	
the	 predominant	 vector	 length	 in	 terms	 of	 the	 number	 (VVecLength)	 and	 indices	 of	 coefficients	
(VVecCoeffId).	

12.4.1.11.3 huffSelect	huffIdx	

huffIdx = 5;
if (CbFlag(k)[i] == 1) {

huffIdx = min(3, max(1, ceil(sqrt(VVecCoeffId[m]+1) - 1)));
}
else if (PFlag(k)[i] == 1) {

huffIdx = 4;
}

12.4.1.11.4 huffDecode	cid	

thisTable = huffmanTable[NbitsQ[i]].codebook[huffIdx];
huffWordFound = 0;
word = 0;
while (huffWordFound == 0) {
 word = concatenate(word, hufVal);
 for (l = 0 ; l < thisTable.length ; l++) {
 if (word == thisTable [l]) {
 huffWordFound = 1;
 cid = word->symbol;
 }

}
}

12.4.1.11.5 Conversion	to	VVec	element	

The	type	of	dequantization	of	the	V-vector	is	signalled	by	the	word	NbitsQ.	The	NbitsQ	value	of	4	indicates	
vector-quantization.	 When	 NbitsQ	 equals	 5,	 a	 uniform	 8	 bit	 scalar	 dequantization	 is	 performed.	 In	
contrast,	an	NbitsQ	value	of	greater	or	equal	to	6	indicates	the	application	of	Huffman	decoding	of	a	scalar-
quantized	V-vector.	The	prediction	mode	is	denoted	as	the	PFlag,	while	the	CbFlag	represents	a	Huffman	
Table	information	bit.		

if (CodedVVecLength == 1) {
 VVecLengthUsed = VVecLength[i];
 VVecCoeffIdUsed = VVecCoeffId[i];
} else {
 VVecLengthUsed = VVecLength;
 VVecCoeffIdUsed = VVecCoeffId;
}
for (m=0; m<O; ++m) {
 w(€)M(ó) = 0;
}

if (NbitsQ(k)[i] == 4) {
 FNorm = 1.0;
for (m=0; m< O; ++m) {
 TmpVVec[m] = 0;
 for (j=0; j< NumVvecIndices(k)[i]; ++j) {
 TmpVVec[m]+=WeightVal[j]*VecDict[CodebkIdx].[VvecIdx[j]][m];
 }

ISO/IEC	23008-3:202X(E)	

396	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 }
if (doScaling) {
 FNorm = 0.0;
 for (m=0; m<O; ++m) {
 FNorm += TmpVVec[m] * TmpVVec[m];
 }
 }
 for (m=0; m< VVecLengthUsed; ++m) {
 idx = VVecCoeffIDUsed[m];
 w(€)#'N(ó) = TmpVVec[idx] * (N+1)/sqrt(FNorm);
 }
}
elseif (NbitsQ(k)[i] == 5) {
 for (m=0; m< VVecLengthUsed; ++m) {
																			w(€)‹‹.,Ω›.ÄÄº'◊/.'[M](ó) =	 (N+1)*aVal[i][m];
 }
}
elseif (NbitsQ(k)[i] >= 6) {
 for (m=0; m< VVecLengthUsed; ++m) {
 w(€)‹‹.,Ω›.ÄÄº'◊/.'[M](ó)	= (N+1) * (2^(16 – NbitsQ(k)[i])*aVal[i][m])/2^15;
 if (PFlag(k)[i] == 1) {
 w(€)‹‹.,Ω›.ÄÄº'◊/.'[M](ó) += y6ììG©0.5 +	w

(€)
‹‹.,Ω›.ÄÄº'[M](ó − 1) ∗ 2Ió´ ∗ 2XIó;

 }
 }
}
if ((CodedVVecLength == 1) & (({¿≥Ã(ó) − 1) > VecSigLayerIdx[i])) {
 for (m=0; m< VVecLengthUsed; ++m) {
 CoeffIdx = VVecCoeffIdUsed[m];
 if (isMemberOf(CoeffIdx, ContAddHoaCoeff[{¿≥Ã(ó) − 1],
 NumOfContAddHoaChans[M¿≥Ã(k) − 1])) {
 w(€)Ω›.ÄÄº'N(ó)= 0;
 }
 }
}

12.4.1.11.6 selectCodebk	

switch CodebkIdx {
 case 0:
 cdbLen = 900;
 nbitsIdx = 10;
 doScaling = 1;
 break;
 case 1:
 cdbLen = 34;
 nbitsIdx = 6;
 doScaling = 1;
 break;
 case 2:
 cdbLen = 34;
 nbitsIdx = 6;
 doScaling = 0;
 break;
 case 3:

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 397	
	

 cdbLen = 64;
 nbitsIdx = 6;
 doScaling = 1;
 break;
 case 7:
 cdbLen = (N+1)*(N+1);
 if (N==4){
 cdbLen = 32;
 }
 nbitsIdx = ceil(log2(NumOfHoaCoeffs));
 doScaling = 1;
}

12.4.1.11.7 Tuple	set	Ófi’fl(Ë)	

ℳ‹ÖΩ(ó) = ∅;

for (i=0; i < ®ADD,LAY	(ó); i++) {
 if (ChannelType[i]==1) {
 ℳ‹ÖΩ(ó) = ℳ‹ÖΩ(ó) ∪ (* + 1, Ì(€)(ó));
 }
}

12.4.1.12 Tuple	sets	Ó$‘—À(Ë,%)		for	sub-band	directional	signals	synthesis	

Q‹≥ƒ = 	NumOfGridPointsTable;	
	
for	(b=0;	b	<	NumOfPredSubbands;	b++)	
{	
	 ℐ&≤ºƒ(k, b) = ∅;	
	 if(KeepPreviousDirPredMatrixFlag[b])	
	 {	
	 	 ℳƒ≤ºƒ(k, b) = ℳƒ≤ºƒ(k − 1, b);	
	 }	

else	
{	

	 	 ℳƒ≤ºƒ(k, b) = ∅;	
	 	 for	(d=0;	d	<	MaxNumOfPredDirsPerBand;	d++)	
	 	 {	
	 	 	 if	(DirIsActive[b][d])	
	 	 	 {	

	 	 	 	 (¬≈,'(k − 1, b) = (¥".'≤#"”"#'º'N[‡][']
·‚Ü^C_XI„ 	;	//	according	to	tables	F.9	–	F.11	

	 	 	 	 ℳƒ≤ºƒ(k, b) = 	ℳƒ≤ºƒ(k, b) ∪ {	(K + 1, (¬≈,'(ó − 1,)))};	
	 	 	 }	
	 	 }	
	 }	
}	

ISO/IEC	23008-3:202X(E)	

398	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

12.4.1.13 Sub-band	prediction	indicator	%ƒ–œ…(Ë)		for	sub-band	directional	signals	synthesis	

kÁÆ∫≠(F) = UseDirectionalPrediction	;

12.4.1.14 Prediction	coefficient	matrices)ƒ(Ë,%)	for	sub-band	directional	signals	synthesis	

Since	 the	 prediction	 coefficient	 matrix	 elements	 are	 coded	 differentially,	 before	 starting	 to	
decode/convert	 the	 elements	 for	 a	k-th	 independent	 frame	 it	 is	 necessary	 to	 initialize	 the	 quantized	
values	to	zero	for	the	previous	frame	as	follows.	

if	(hoaIndependencyFlag(k))	
{	

for	(b=0;	b	<	NumOfPredSubbands;	b++)	
{	

for	(d=0;	d	<	MaxNumOfPredDirsPerBand;	d++)	
{	

for	(n=0;	n	<	MaxNumOfCoeffsToBeTransmitted;	n++)	
{
IntQuantMag(k − 1)[b][d][n] = 0;	
IntQuantAngle(k − 1)[b][d][n] = 0;	

}
}

}
}
	
The	actual	decoding/conversion	is	assumed	to	be	performed	as	follows.	

for	(b=0;	b	<	NumOfPredSubbands;	b++)	
{	
	 if((KeepPreviousDirPredMatrixFlag[)]	! = 0)		&&	!hoaIndependencyFlag)	
	 {	
)ƒ(k, b)	=)ƒ(k − 1, b);	
	 	 for	(d=0;	d	<	MaxNumOfPredDirsPerBand	;	d++){	
	 	 	 for	(n=0;	n	<	MaxNumOfCoeffsToBeTransmitted;	n++){	
	 	 	 	 IntQuantMag(ó)[b][d][n] = IntQuantMag(ó − 1)[b][d][n];	
	 	 	 	 IntQuantAngle(ó)[b][d][n] 	= IntQuantAngle(ó − 1)[b][d][n];	
	 	 	 }	
	 	 }	
	 }	
	 else	
	 {	
	 	 for	(d=0;	d	<	MaxNumOfPredDirsPerBand;	d++)	
	 	 {	
	 	 	 if	(DirIsActive[b][d])	
	 	 	 {	
	 	 	 	 for	(n=0;	n	<	MaxNumOfCoeffsToBeTransmitted;	n++)	
	 	 	 	 {	
	 	 	 	 	 if((F + 1) ∈ 	 ℐÖ(ó) ∪ ℐ≤(ó) ∪	ℐ◊(ó)){	
	 	 	 	 	 	 IntQuantMag(k)[b][d][n] = 	IntQuantMag(k − 1)[b][d][n]	
	 	 	 	 	 	 	 	 	 	 	 	 +	DecodedMagDiff[b][d][n];	
	 	 	 	 	 	 if(IntQuantMag(k)[b][d][n] 	== 0){	
	 	 	 	 	 	 	 IntQuantAngle(k)[b][d][n] 	= 0;	
	 	 	 	 	 	 }	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 399	
	

	 	 	 	 	 	 else{	
	 	 	 	 	 	 	 IntQuantAngle(k)[b][d][n] = 	IntQuantAngle(k − 1)[b][d][n]	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	DecodedAngleDiff[b][d][n];	
	 	 	 	 	 	 	 //	constrain	the	quantized	angle	to	lie	in	interval	[-7,...,8]		
	 	 	 	 	 	 	 IntQuantAngle(k)[b][d][n] = ©(IntQuantAngle(k)[b][d][n] + 7)mod16´ −
7;	
	 	 	 	 	 	 }	
	 	 	 	 	 	 if	(IntQuantMag(k)[b][d][n] > 8){	

	 	 	 	 	 	 	 FloatMag	=	ú
Ø

}
û
(º-$Ü‰!-$±!Å(ª)[‡]['][-]XØ)

;	

	 	 	 	 	 	 }	
	 	 	 	 	 	 else{	
	 	 	 	 	 	 	 FloatMag = 	IntQuantMag(k)[b][d][n] ⋅ 	1 8⁄ 	
	 	 	 	 	 	 }	
	 	 	 	 	 	 FloatAngle	 = 	IntQuantAngle(k)[b][d][n] ⋅ π 8⁄ ;	
)ƒ(k, b)[d + 1][n + 1] = 	FloatMag ⋅ 	exp	(i ⋅ 	FloatAngle);	
	 	 	 	 	 }	
	 	 	 	 	 else{	
)ƒ(k, b)[d + 1][n + 1] = 0;	
	 	 	 	 	 	 	 IntQuantMag(k)[b][d][n] = 0;	
	 	 	 	 	 	 IntQuantAngle(k)[b][d][n] 	= 0;	
	 	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 }	
	 	 	 else	
	 	 	 {	
	 	 	 	 for	(n=0;	n	<	MaxNumOfCoeffsToBeTransmitted;	n++)	
	 	 	 	 {	
	 	 	 	 	 IntQuantMag(k)[b][d][n] = 0;	
	 	 	 	 	 IntQuantAngle(k)[b][d][n] 	= 0;	
)ƒ(k, b)[d + 1][n + 1] = 0;	
	 	 	 	 }	 	
	 	 	 }	
	 	 }	
	 }	
}	

12.4.1.15 Mixing	matrices	.… À(Ë, ∏)for	parametric	ambience	replication	

Since	the	mixing	matrix	elements	are	coded	differentially,	before	starting	to	decode/convert	the	elements	
for	a	k-th	 independent	frame	it	 is	necessary	to	 initialize	the	quantized	values	to	zero	for	the	previous	
frame	as	follows.	

ISO/IEC	23008-3:202X(E)	

400	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

if	(hoaIndependencyFlag(k))	
{	

for	(g=0;	g	<	NumOfParSubbands;	g++)	
{	

for	(d=0;	d	<	MaxNumOfDecoSigs(g);	d++)	
{	

for	(n=0;	n	<	MaxNumOfDecoSigs(g);	n++)	
{
IntQuantMagPAR(k − 1)[g][d][n] = 0;	
IntQuantAnglePAR(k − 1)[g][d][n] = 0;	

}
}

}
}

The	actual	decoding/conversion	is	assumed	to	be	performed	as	follows:	

for	(g=0;	g	<	NumOfParSubbands;	g++)	
{	
	 if((KeepPreviousParMatrixFlag[v]	! = 0)	&&	!hoaIndependencyFlag)	
	 {	
	 	 /ƒ ¥≥ƒ(ó, v)	=	/ƒ ¥≥ƒ(ó − 1, v);	
	 	 for	(d=0;	d	<	MaxNumOfDecoSigs(g);	d++){	
	 	 	 for	(n=0;	n	<	MaxNumOfDecoSigs(g);	n++){	
	 	 	 	 IntQuantParMag(ó)[g][d][n] = IntQuantParMag(ó − 1)[g][d][n];	
	 	 	 	 IntQuantParAngle(ó)[g][d][n] 	= IntQuantParAngle(ó − 1)[g][d][n];	
	 	 	 }	
	 	 }	
	 }	
	 else	
	 {	
	 	 N¬º”(ó, v) = 	NumOfDecorrSigsPerParSubbandTable		
	 	 	 	 	 	 	 	 πParDecorrSigsSelectionTableIdx[v]∫;	

CurrParSelectedDecorrSigsIdxMatrix = ParSelectedDecorrSigsIdxMatrixTable		
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 πParDecorrSigsSelectionTableIdx[v]∫;	
	 	 for	(d=0;	d	<	MaxNumOfDecoSigs(g);	d++)	
	 	 {	
	 	 	 for	(n=0;	n	<	MaxNumOfDecoSigs(g);	n++){	
	 	 	 	 	 IntQuantParMag(k)[g][d][n] = 0;	
	 	 	 	 	 IntQuantParAngle(k)[g][d][n] 	= 0;	
	 	 	 	 	 M¥≥ƒ(Ë, ∏)[d + 1][n + 1] = 0;	
	 	 	 }	
	 	 	 if(UseParUpmixSig[v][K]	! = 0)	
	 	 	 {	
	 	 	 	 for	(n=0;	n	<	N¬º”(k, g);	n++)	
	 	 	 	 {	
	 	 	 	 	 CurrColIdx	=	CurrParSelectedDecorrSigsIdxMatrix	[d][n];	
	 	 	 	 	 IntQuantParMag(k)[g][d][CurrColIdx] = 	IntQuantParMag(k − 1)[g][d][CurrColIdx]	
	 	 	 	 	 	 	 	 +	DecodedParMagDiff[g][d][CurrColIdx];	
	 	 	 	 	 if(IntQuantParMag(k)[g][d][CurrColIdx] 	== 0)	
	 	 	 	 	 {	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 401	
	

	 	 	 	 	 	 IntQuantParAngle(k)[g][d][CurrColIdx] 	= 0;	
	 	 	 	 	 }	
	 	 	 	 	 else	
	 	 	 	 	 {	
	 	 	 	 	 	 IntQuantParAngle(k)[g][d][CurrColIdx] =		
	 	 	 	 	 	 	 IntQuantParAngle(k − 1)[b][g][d][CurrColIdx]	
	 	 	 	 	 	 	 +	DecodedParAngleDiff[b][d][CurrColIdx];	
	 	 	 	 	 	 //	constrain	the	quantized	angle	to	lie	in	interval	[-7,...,8]		
	 	 	 	 	 	 IntQuantParAngle(k)[g][d][CurrColIdx] =	
	 	 	 	 	 	 	 	 ©(IntQuantParAngle(k)[g][d][CurrColIdx] + 7)mod16	´ − 7;	
	 	 	 	 	 }	
	 	 	 	 	 if	(IntQuantParMag(k)[b][d][n] > 8)	
	 	 	 	 	 {	

	 	 	 	 	 	 FloatParMag	=	úØ
}
û
(º-$Ü‰!-$¥!"±!Å(ª)[‡]['][-]XØ)

;	
	 	 	 	 	 }	
	 	 	 	 	 else	
	 	 	 	 	 {	
	 	 	 	 	 	 FloatParMag = 	IntQuantParMag(k)[b][d][n] ⋅ 	1 8⁄ 	
	 	 	 	 	 }	
	 	 	 	 	 FloatParAngle	 = 	IntQuantParAngle(k)[b][d][CurrColIdx] ⋅ π 8⁄ ;	
	 	 	 	 	 /¥≥ƒ(ó, v)[d + 1][CurrColIdx	 + 1] = 	FloatParMag ⋅ exp(i ⋅ 	FloatParAngle);	
	 	 	 }	
	 	 }	
	 }	
}	
	
12.4.1.16 Permutation	matrices	Î… À(Ë, ∏)	for	PAR		

for	(g=0;	g	<	LastFirstOrderSubBandIdx;	g++)	
{	
	 	 N¬º”(k, g) = 	NumOfDecorrSigsPerFirstOrderParSubbandTable	
	 	 	 	 	 	 	 	 	 πParDecorrSigsSelectionTableIdx[v]∫;	
	 	 CurrParPermIdxVector	 =		
	 	 	 	 	 	 	
	 ParFirstOrderPermIdxVectorTableπParDecorrSigsSelectionTableIdx[g]∫;	
	 	 for	(d=0;	d	<	MaxNumOfDecoSigs(g);	d++)	
	 	 {	
	 	 	 for	(n=0;	n	<	MaxNumOfDecoSigs(g);	n++){	
	 	 	 	 Î¥≥ƒ(ó, v)[n + 1][d + 1] = 0;	
	 	 	 }	
	 	 	 Î¥≥ƒ	(ó, v)[CurrParPermIdxVector[d]+1][d + 1]=	1;	
	 	 }	
}	
for	(g=	LastFirstOrderSubBandIdx;	g	<	NumOfParSubbands;	g++)	
{	
	 	 N¬º”(k, g) = 	NumOfDecorrSigsPerParSubbandTable		
	 	 	 	 	 	 	 	 	 πParDecorrSigsSelectionTableIdx[v]∫;	
	 	 CurrParPermIdxVector	 =		
	 	 	 	 	 	 	 	 ParPermIdxVectorTableπParDecorrSigsSelectionTableIdx[g]∫;	
	 	 for	(d=0;	d	<	MaxNumOfDecoSigs(g);	d++)	
	 	 {	

ISO/IEC	23008-3:202X(E)	

402	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 	 	 for	(n=0;	n	<	MaxNumOfDecoSigs(g);	n++){	
	 	 	 	 Î¥≥ƒ(ó, v)[n + 1][d + 1] = 0;	
	 	 	 }	
	 	 	 Î¥≥ƒ	(ó, v)[CurrParPermIdxVector[d]+1][d + 1]=	1;	
	 	 }	
}	

12.4.1.17 Indicator	%ƒ… À(Ë)	for	use	of	PAR	

)1¥≥ƒ(ó) = UsePAR	;

 Spatial	HOA	decoding	

12.4.2.1 General	architecture	

The	Spatial	HOA	decoding	process	describes	how	to	reconstruct	the	HOA	coefficient	sequences	from	the	
HOA	transport	channels	and	the	HOA	side	information	(HOA	extension	payload).	Subsequently	the	HOA	
rendering	matrix	 is	applied	to	the	HOA	coefficient	sequences	to	get	the	final	 loudspeaker	signals.	The	
HOA	renderer	is	described	in	subclause	12.4.3.	Both	processing	steps	can	be	very	efficiently	combined	
resulting	in	an	implementation	with	much	lower	computational	complexity.	Since	the	HOA	synthesis	in	
the	decoding	process	can	be	expressed	as	a	synthesizing	matrix	operation,	the	rendering	matrix	can	be	
applied	to	the	synthesizing	matrix	for	such	combination.	This	realizes	“decoding	and	rendering”	in	one-
step	rendering	without	having	to	reconstruct	full	HOA	coefficient	sequences	when	they	are	not	necessary.	
A	detailed	description	how	to	integrate	the	spatial	HOA	decoding	and	rendering	can	be	found	in	Annex	G.	
However,	for	easier	explanation	the	processing	steps	are	described	separately	in	the	following	subclauses.	

The	architecture	of	the	spatial	HOA	decoder	is	depicted	in	Figure	62.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 403	
	

	

Figure	62	—	Architecture	of	spatial	HOA	decoder	

For	 each	* ∈ {1, … , ®},	 the	ó-th	 frame	 of	 the	*-th	 perceptually	 decoded	 signal,	 i.e.	2b(ó),	 is	 input	 to	 an	
inverse	gain	control	processing	block	together	with	the	associated	gain	correction	exponent	Eb(ó)	and	
gain	correction	exception	flag	#b(ó).	The	*-th	inverse	gain	control	processing	provides	a	gain	corrected	
signal	frame	3b(ó).	

All	 of	 the	® 	gain	 corrected	 signal	 frames	3b(ó) ,	* ∈ {1, … , ®},	 are	 passed	 together	with	 the	 assignment	
vector	Ì≥±≈,≥¬¬º”õ(ó)	and	the	tuple	sets	ℳ≤ºƒ(ó)	and	ℳ‹ÖΩ(ó)	to	the	channel	reassignment	processing	
block,	where	they	are	redistributed	to	create	the	frame	4¥¬(ó)	of	all	predominant	sound	signals	(i.e.,	all	
directional	and	vector-based	signals)	and	the	frame	Õº,≥±≈(ó)	of	an	intermediate	representation	of	the	
ambient	HOA	component.		

The	meaning	of	the	input	parameters	to	the	channel	reassignment	is	as	follows.	The	assignment	vector	
Ì≥±≈,≥¬¬º”õ(ó) 	indicates	 for	 each	 transport	 channel	 the	 index	 of	 a	 possibly	 contained	 coefficient	
sequence	of	the	ambient	HOA	component.	The	tuple	set		

ℳ≥™ª(F) ≔ ÍèL, ÎÑáÆÑ,àº∏ΩÑ,,(F)êÏ L			is		index		of		an		active		direction		for	(F + 1)$V	and		(F)$V	frame	Ì	

ISO/IEC	23008-3:202X(E)	

404	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

consists	of	tuples	of	which	the	first	element	*	denotes	the	index	of	an	active	direction	and	of	which	the	
second	 element	ø∑Ö¬∑,Ü◊≥õ∑,b(ó) 	denotes	 the	 respective	 quantized	 direction	 defined	 in	 F.9.	 In	 other	
words,	the	first	element	of	the	tuple	indicates	the	index	*	of	the	gain	corrected	signal	frame	3b(ó)	that	
represents	the	directional	signal	related	to	the	quantized	direction	ø∑Ö¬∑,Ü◊≥õ∑,b(ó)	given	by	the	second	
element	of	the	tuple.	The	quantized	directions	ø∑Ö¬∑,Ü◊≥õ∑,b(ó)	are	assumed	to	have	been	determined	at	
the	spatial	HOA	encoding	stage	by	an	analysis	of	the	input	HOA	representation.	Such	an	analysis	is	likely	
to	have	been	based	on	a	search	for	the	most	energetically	dominant	components	of	the	sound	scene	using	
the	directional	power	distribution	(see	Annex	C.5.3	for	details).	Since	directions	are	in	fact	computed	with	
respect	to	two	successive	frames	due	to	overlap	add	processing,	it	is	often	the	case	that	for	the	last	frame	
of	the	activity	period	for	a	directional	signal	there	is	actually	no	direction,	which	is	signalled	by	setting	
the	respective	quantized	direction	to	zero.	

The	set	ℳ‹ÖΩ(ó)		

ℳæá´(F):= ÍèL, Ô(ø)(F)êÏ , L		is		the	index		of		a		vector		found		for		(F + 1)$V	and		(F)$V		frame	Ì	

consists	of	tuples	of	which	the	first	element	indicates	the	index	*	of	the	gain	corrected	signal	frame	3b(ó)	
that	represents	the	signal	to	be	reconstructed	by	a	vector	Ì(€)(ó),	which	is	given	by	the	second	element	
of	 the	 tuple.	 The	 vector	Ì(€)(ó)	is	 scalar-dequantized	 or	 vector-dequantized	 as	 specified	 in	 subclause	
12.4.1.11	and	represents	information	about	the	spatial	distributions	(directions,	widths,	shapes)	of	the	
active	signal	3b(ó)	in	the	reconstructed	HOA	frame	Õ(ó).	It	is	assumed	that	Ì(€)(ó)	has	an	Euclidean	norm	
of	(+ 1.	

In	the	predominant	sound	synthesis	processing	block	the	HOA	representation	of	the	predominant	sound	
component	Õ¥¬(ó)	is	computed	from	the	frame	4¥¬(ó)	of	all	predominant	sound	signals.	It	uses	the	tuple	
sets	ℳ≤ºƒ(ó)	and	ℳ‹ÖΩ(ó),	the	set	Á(ó)	of	prediction	parameters,	and	the	sets	ℐÖ(ó),	ℐ≤(ó),	ℐ◊(ó),	which	
contain	indices	of	coefficient	sequences	of	the	ambient	HOA	component,	which	are	to	be	enabled,	to	be	
disabled	and	active	but	not	be	enabled	or	disabled,	respectively.	Additionally,	a	modified	version	Õ¥¬,Õ(ó)	
of	Õ¥¬(ó)	is	computed	by	fading	in	coefficient	sequences	with	indices	contained	in	the	index	set	ℐÖ(ó)	and	
fading	out	coefficient	sequences	with	indices	contained	in	the	index	set	ℐ≤(ó).	The	modified	version	is	
only	needed	for	the	later	computation	of	the	modified	version	Õ¥ƒÖ,Õ(ó)	of	the	preliminary	decoded	HOA	
representation	(see	subclause	12.4.2.6)	to	be	input	to	the	PAR	decoder.	

In	the	ambience	synthesis	processing	block,	the	ambient	HOA	component	frame	Õ≥±≈(ó)	is	created	from	
the	frame	Õº,≥±≈(ó)	of	the	intermediate	representation	of	the	ambient	HOA	component.	This	processing	
also	comprises	an	inverse	spatial	transform	to	invert	the	spatial	transform	applied	in	the	encoder	(see	
Annex	C.5.3)	to	decorrelate	the	first	∞±ºõ	coefficients	of	the	ambient	HOA	component.		

The	 ambient	 HOA	 component	 frame	Õ≥±≈(ó) 	and	 the	 frame	Õ¥¬(ó) 	of	 the	 predominant	 sound	 HOA	
component	are	superposed	in	the	preliminary	HOA	composition	processing	block	to	provide	the	frame	
Õ¥ƒÖ(ó)	of	the	preliminary	decoded	HOA	representation.	Additionally,	the	frame	Õ¥ƒÖ,Õ(ó)	of	a	modified	
version	of	the	preliminary	decoded	HOA	representation	is	computed	by	replacing	the	frame	Õ¥¬(ó)	by	its	
modified	version	Õ¥¬,Õ(ó)	for	the	superposition.	The	resulting	modified	HOA	representation	Õ¥ƒÖ,Õ(ó)	is	
then	 successively	 processed	 by	 the	 PAR	 decoder	 in	 place	 of	 the	 original	 version	Õ¥ƒÖ(ó) .	 This	 PAR	
decoding	 of	Õ¥ƒÖ,Õ(ó) 	avoids	 any	 signal	 discontinuities	 that	 might	 occur	 after	 the	 truncation	 and	
coefficient	selection	have	been	performed	(see	subclause	12.4.2.8.3).		

Finally,	in	the	HOA	composition	processing	block	the	ambient	HOA	component	frame	Õ≥±≈(ó)	and	the	
frame	Õ¥¬(ó)	of	the	predominant	sound	HOA	component	are	superimposed	to	provide	the	decoded	HOA	
frame	Õ(ó).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 405	
	

In	the	sub-band	directional	signals	synthesis	processing	block	the	frame	Õ5≤(ó)	of	the	HOA	representation	
of	the	composition	of	all	predicted	sub-band	directional	signals	is	computed.	Each	directional	sub-band	
signal	 is	 assumed	 to	 be	 predicted	 by	 a	 complex	 valued	weighted	 sum	 of	 the	 transmitted	 coefficient	
sequences	 of	 the	 ambient	HOA	 component	Õ≥±≈(ó),	where	 the	 indices	 of	 the	 transmitted	 coefficient	
sequences	are	assumed	to	be	among	the	first	∞±≥Â.	The	prediction	of	each	directional	signal	related	to	
the	ç-th	sub-band,	ç = 1,… , H,	belonging	to	the)-th	sub-band	group	is	carried	out	using	the	prediction	
coefficients	 matrix	Ú(ó,)) ∈ ℂo`a×å@Cb 	and	 the	 tuple	 set	ℳƒ≤ºƒ(ó,)) .	 The	H 	assumed	 sub-bands	 are	
uniquely	 assigned	 to	fl	sub-band	groups,	which	 are	determined	by	 the	 sub-band	group	 configuration	
specified	in	the	HOAConfig().	It	defines	for	each)-th	sub-band	group	a	lower	index	bound	ℒ())	and	an	
upper	 index	bound	·())	such	that	sub-bands	with	 indices	between	these	bounds,	 i.e.	with	ℒ()) ≤ ç ≤
·()),	are	assumed	to	belong	to	this	sub-band	group.		

Per	 sub-band	 group	 there	 are	 at	 most	5¬≈ 	potential	 active	 direction	 trajectories,	 where	 the	 indices	
identifying	the	active	direction	trajectories	for	the)-th	sub-band	group	are	assumed	to	be	contained	in	
the	 set	 ℐ&≤ºƒ(ó,)) ⊆ {1, … , 5¬≈} .	 For	 each	 index	 K ∈ ℐ&≤ºƒ(ó,)) 	of	 an	 active	 direction	 trajectory	 the	
respective	direction	is	denoted	by	(¬≈,j(ó,)).	Both	the	active	direction	trajectories	and	their	respective	
directions	are	assumed	to	be	contained	as	tuples	in	the	set	ℳƒ≤ºƒ(ó,)),	i.e.		

ℳƒ≤ºƒ(ó,)) = 7úK,(¬≈,j(ó,))û8K ∈ ℐ&≤ºƒ(ó,))9	

Note	that	the	set	ℐ&≤ºƒ(ó,))	can	be	computed	from	ℳƒ≤ºƒ(ó,)),	since	it	contains	the	first	elements	of	all	
tuples	of	ℳƒ≤ºƒ(ó,)).		

In	order	to	avoid	artifacts	in	the	predicted	directional	sub-band	signals	due	to	changes	of	the	estimated	
directions	 and	 prediction	 coefficients	 between	 successive	 frames,	 the	 prediction	 is	 performed	 on	
concatenated	long	frames	consisting	of	two	temporally	successive	frames.	More	specifically,	this	means	
that	 each	 quantity	ℳƒ≤ºƒ(ó,)) 	and	Ú(ó,)) 	is	 related	 to	 the	(ó + 1) -th	 and	ó -th	 frame.	 The	 Boolean	
quantity)1¬≈¥(ó) 	(which	 can	 be	 equal	 to	 zero	 or	 one)	 indicates	 whether	 a	 prediction	 of	 sub-band	
directional	signals	is	to	be	performed	relative	to	the	frames	ó	and	ó + 1.		

The	frame	Õ5≤(ó)	is	assumed	to	have	only	non-zero	contributions	for	those	coefficient	sequences	of	the	
ambient	 HOA	 component	 that	 are	 not	 already	 transmitted	within	 the	 transport	 channels.	 Further,	 if	
coefficient	 sequences	 of	 the	 ambient	 HOA	 component	 are	 faded	 in	 (or	 faded	 out	 respectively),	 the	
corresponding	 coefficient	 sequences	 of	 the	 HOA	 representation	Õ5≤(ó) 	are	 faded	 out	 (or	 faded	 in	
respectively).		

Note	 further	 that	 the	 time	 domain	 coefficient	 sequences	 of	 the	 HOA	 representation	Õ5≤(ó) 	of	 the	
composition	of	all	predicted	sub-band	directional	signals	are	delayed	by	5Ü±Õ = 577	samples	due	to	the	
successive	application	of	the	QMF	based	analysis	and	synthesis	filter	banks,	which	is	expressed	by	the	
breve	symbol	(˘)	above	the	variables.	

Within	the	parametric	ambience	replication	(PAR)	decoder	processing	block	ambient	components,	which	
are	 potentially	 still	 missing	 within	 the	 preliminary	 decoded	 HOA	 representation	 Õ¥ƒÖ(ó) ,	 are	
parametrically	replicated	from	the	modified	version	of	it,	Õ¥ƒÖ,Õ(ó).	The	replication	shall	be	carried	out	
in	 the	 frequency	domain	 using	 quadrature	mirror	 filters	 (QMF)	with	H = 64	sub-bands	 as	 defined	 in	
ISO/IEC	23003-1.	 Each	 individual	 sub-band	 ç ,	 ç = 1,… , H ,	 is	 processed	 using	 the	 corresponding	
parameters	of	the	v-th	sub-band	group,	v = 1,… , ö,	to	which	it	is	uniquely	assigned.	The	assignment	is	
determined	by	the	PAR	related	sub-band	group	configuration	specified	in	the	HOAConfig().	It	defines	for	
each	v-th	sub-band	group	a	 lower	index	bound	ℒ¥≥ƒ(v)	and	an	upper	index	bound	·¥≥ƒ(v)	such	that	
sub-bands	with	indices	between	these	bounds,	i.e.	with	ℒ¥≥ƒ()) ≤ ç ≤ ·¥≥ƒ()),	are	assumed	to	belong	
to	 this	 sub-band	 group.	 The	 PAR	 related	 side	 information	 for	 the	ó -th	 frame	 consists	 of	 the	mixing	

ISO/IEC	23008-3:202X(E)	

406	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

matrices	/¥≥ƒ(ó, v)	and	the	permutation	matrices	Î¥≥ƒ(ó, v)	for	the	individual	ö	sub-band	groups	v =
1,… , ö,	as	well	as	the	boolean	quantity)1¥≥ƒ(ó),	which	indicates	(by	a	zero	or	one)	whether	PAR	is	to	be	
performed	for	the	frames	ó	and	ó + 1.	
	
In	 the	 final	 HOA	 composition	 processing	 block	 the	 frame	Õ¥ƒÖ(ó) 	of	 the	 preliminary	 decoded	 HOA	
representation,	the	frame	Õ5≤(ó)	of	the	HOA	representation	of	the	composition	of	all	predicted	sub-band	
directional	signals	and	the	frame	Õ5¥≥(ó)	of	the	replicated	ambient	HOA	component	are	superposed	to	
provide	the	frame	Õ5(ó)	of	the	decoded	HOA	representation.	As	part	of	this	superposition	of	the	individual	
HOA	representations,	the	various	delays	are	to	be	taken	into	account	appropriately.	

In	the	following,	the	individual	processing	blocks	are	described	in	more	detail.	

12.4.2.2 Inverse	gain	control	

The	goal	of	the	inverse	gain	control	(IGC)	processing	block	is	to	invert	the	gain	modifications	performed	
to	the	signals	before	perceptual	encoding	at	the	HOA	encoding	stage	–	recreating	their	initial	value	range.	

For	that	purpose,	a	fixed	template	transition	window	function		

	 :º”Ω ∶= [yº”Ω(1) yº”Ω(2) … yº”Ω(J)]	 	

is	employed,	whose	elements	are	defined	by		

	 yº”Ω(6):=
I

ó
cos ú

Ê(CXI)

KXI
û +

¨

ó
							for			6 = 1,… , J.	 	

Assuming	the	input	frame	2b(ó)	and	output	frame	3b(ó)	are	expressed	through	their	samples	as		

	 2b(ó):= [Öb(ó, 1) Öb(ó, 2) … Öb(ó, J)]	 	

	 3b(ó):= [éb(ó, 1) éb(ó, 2) … éb(ó, J)],	

the	computation	of	the	samples	of	the	output	frame	is	given	by	

éb(ó, 6) = Æ

¡-(ï,C)

ccde,-(ïXI)
⋅ [yº”Ω(6)]XP-

(ï) 	if			#b(ó) = 0

¡-(ï,C)

ccde,-(ïXI)
⋅ 2P-(ï) 	if			#b(ó) = 1

									for			* = 1,… , ®, 6 = 1,… , J.	 	

The	factor	vº”Ω,b(ó − 1)	is	initialized	by		

	 vº”Ω,b(0):= 1							for			* = 1,… , ®,	 	

and	is	recursively	updated	in	the	ó-th	frame	by		

	 vº”Ω,b(ó) = vº”Ω,b(ó − 1) ⋅ 2XP-
(ï)							for			* = 1,… , ®.	 	

For	 random	 access,	 the	 factor	vº”Ω,b(ó − 1)	is	 provided	 explicitely	 in	HOAGainCorrectionData()	 if	 the	
hoaIndependencyFlag	has	been	signalled	as	true.		

12.4.2.3 Channel	reassignment	

The	channel	reassignment	processing	block	has	the	purpose	of	creating	the	frame	4¥¬(ó)	from	all	of	the	
predominant	 sound	 signals	 and	 from	 the	 frame	Õº,≥±≈(ó) 	of	 an	 intermediate	 representation	 of	 the	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 407	
	

ambient	HOA	component	from	the	gain	corrected	signal	frames	3b(ó),	* ∈ {1, … , ®},	and	the	assignment	
vector	Ì≥±≈,≥¬¬º”õ(ó) .	 The	 assignement	 vector	 indicates,	 for	 each	 transport	 channel,	 the	 index	 of	 a	
possibly	contained	coefficient	sequence	of	the	ambient	HOA	component.	Additionally,	the	sets	ℐ≤ºƒ,≥Ω∑(ó)	
and	 ℐ‹ÖΩ,≥Ω∑(ó) 	are	 used,	 which	 contain	 the	 first	 elements	 of	 all	 tuples	 of	ℳ≤ºƒ(ó) 	and	ℳ‹ÖΩ(ó) ,	
respectively.	It	is	important	to	note	that	these	two	sets	are	assumed	to	be	disjoint.	

For	the	actual	assignment	the	following	steps	are	performed.		

1) The	frame	4¥¬(ó)	of	all	predominant	sound	signals	is	assumed	to	be	composed	of	the	individual	
predominant	sound	signal	frames	according	to	 	

4¥¬(ó) =

⎣
⎢
⎢
⎡
í¥¬,I(ó)
í¥¬,F(ó)
⋮
í¥¬,o(ó)⎦

⎥
⎥
⎤
,	

where	each	frame	consists	of	its	samples	according	to	
	
í¥¬,#(ó) = πí¥¬,b(ó, 1)		í¥¬,b(ó, 2)…	í¥¬,b(ó, J)∫				for			* = 1,… , D,	
where	 D = ® − ∞±ºõ .		
	
The	sample	values	of	the	directional	signal	frames	are	computed	as	follows:	

	
í¥¬,b(ó, 6) = 7yb

(ó, 6) 			if			* ∈ ℐ≤ºƒ(ó) ∪ ℐ‹ÖΩ(k)
0 			else			

							for			* = 1,… , D, 6 = 1,… , J.	
	

2) The	frame	Õº,≥±≈(ó)	of	an	intermediate	representation	of	the	ambient	HOA	omponent	is	assumed	
to	be	composed	according	to		
	

Õº,≥±≈(ó) =

⎣
⎢
⎢
⎢
⎡
rº,≥±≈,I(ó)
rº,≥±≈,F(ó)
⋮
rº,≥±≈,å(ó)

⎦
⎥
⎥
⎥
⎤

	

with		

rº,≥±≈,E(ó) = [.º,≥±≈,E(ó, 1) .º,≥±≈,E(ó, 2) … .º,≥±≈,E(ó, J)]				for			F = 1,… , ∞.	

The	 sample	 values	 of	 the	 intermediate	 representation	 of	 the	 ambient	 HOA	 component	 are	
obtained	as	follows:		

.º,≥±≈,E(ó, 6) = Wéb
(ó, 6) 			if			∃* ∈ {1, … , ®}			such		that			w≥±≈,≥¬¬º”õ,b(ó) = F

0 			else			
.	

In	the	case	that	the	flag	UsePhaseShiftDecorr	has	a	value	of	1,	it	is	assumed	that	the	frame	Õº,≥±≈(ó + 1)	
instead	of	Õº,≥±≈(ó)	is	obtained	from	the	transport	channels,	which	has	to	be	ensured	by	a	respective	
modification	at	the	spatial	HOA	encoding	stage.	

ISO/IEC	23008-3:202X(E)	

408	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

12.4.2.4 Predominant	sound	synthesis	

12.4.2.4.1 General	

The	purpose	of	the	predominant	sound	synthesis	is	to	create	the	frame	Õ¥¬(ó)	of	the	HOA	representation	
of	the	predominant	sound	component	from	the	frame	4¥¬(ó)	of	all	predominant	sound	signals	using	the	
tuple	 set	ℳ≤ºƒ(ó)	and	ℳ‹ÖΩ(ó),	 the	 set	Á(ó)	of	 prediction	parameters,	 and	 the	 sets	ℐÖ(ó),	ℐ≤(ó),	 and	
ℐ◊(ó).	

Additionally,	 the	 frame	ÕPS,F(ó)	of	 a	modified	version	of	ÕPS(ó)	is	 computed,	where	 the	modification	
only	consist	of	fading	in	coefficient	sequences	with	indices	contained	in	the	index	set	ℐE(ó)	and	fading	
out	 coefficient	 sequences	with	 indices	 contained	 in	 the	 index	set	ℐD(k).	The	modified	version	 is	only	
needed	 for	 the	 later	 computation	 of	 the	modified	 version	CPRE,F(k)	of	 the	 preliminary	 decoded	HOA	
representation	(see	subclause	12.4.2.6)	to	be	input	to	the	PAR	decoder.	As	illustrated	in	Figure	63,	the	
processing	can	be	subdivided	into	four	processing	steps,	which	are	described	in	the	following.	

	

Figure	63	—	Predominant	sound	synthesis	

	
12.4.2.4.2 Compute	HOA	representation	of	active	directional	signals	

In	order	to	avoid	artifacts	due	to	changes	in	direction	between	successive	frames,	the	computation	of	the	
HOA	representation	from	the	directional	signals	is	based	on	the	concept	of	overlap	add.	Hence,	the	HOA	
representation	Õ≤ºƒ(ó)	of	active	directional	signals	is	computed	as	the	sum	of	a	faded	out	component	and	
a	faded	in	component:		

Õ≤ºƒ(ó) = Õ≤ºƒ,Ï◊∑(ó) + Õ≤ºƒ,ºõ(ó)	

To	compute	the	two	individual	components,	the	instantaneous	signal	frames	for	directional	signal	indices	
K ∈ ℐ≤ºƒ(óI)	and	directional	signal	frame	index	óF	are	defined	by:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 409	
	

Õ≤ºƒ,º
(j) (óI; óF):= F(G,F~)G

Ìfg`f,hiCjf,k(ïH)
H≤ºƒ,j(óF)	

where	F(G,F~)	denotes	the	mode	matrix	of	order	(with	respect	to	the	predefined	directions	(E
(F~), F =

1,… , ‡ = (29 + 1)F = 900,	is	 defined	 in	 Annex	 F.1.5	 and	F(G,F~)|T 	denotes	 the	I-th	 column	 vector	 of	
F(G,F~).	

In	the	case	of	single-layered	coding	(indicated	by	SingleLayer==1	(see	Table	191)),	the	sample	values	of	
the	faded	out	and	faded	in	directional	HOA	components	are	then	determined	by		

.≤ºƒ,Ï◊∑,b(ó, 6) = I
j∈ℐBc_,jl(ïXI)

.≤ºƒ,º,b
(j) (ó − 1; ó, 6) ⋅ J

u≤ºƒ(J + 6) 			if			K ∈ ℐ≤ºƒ,õ(ó)
u‹ÖΩ(J + 6) 			if			K ∈ ℐ‹ÖΩ(ó)
1 			else			

	

.≤ºƒ,ºõ,b(ó, 6) = I
j∈ℐBc_,jl(ï)

.≤ºƒ,º,b
(j) (ó; ó, 6) ⋅ Wu≤ºƒ

(6) 			if			K ∈ ℐ≤ºƒ,õ(ó − 1) ∪ ℐ‹ÖΩ(ó − 1)
1 			else			

	

where	ℐ≤ºƒ,õ(ó)	denotes	 the	 set	 of	 those	 first	 elements	of	ℳ≤ºƒ(ó)	where	 the	 corresponding	 second	
element	is	non-zero.	

In	the	case	of	multiple	layered	coding	(indicated	by	SingleLayer==0	(see	Table	191)),	the	sample	values	
of	the	faded	out	and	faded	in	directional	HOA	components	are	then	determined	by		

(mno,pqr,s(*, ,) = .
t∈ℐ!"#,%&(wxy)

(mno,n,s
(t) (* − 1; *, ,) ⋅

⎩
⎪⎪
⎨

⎪⎪
⎧
7mno(8 + ,) ⋅ 1 if			= ∈ ℐmno,z{(*) ∧ (A ∉ 	 ℐ|(*) ∪ ℐm(*))
7mno(8 + ,) ⋅ 7mno(8 + ,) if			= ∈ ℐmno,z{(*) ∧ A ∈ 	 ℐ|(*)			
7mno(8 + ,) ⋅ 7mno(,) if			= ∈ ℐmno,z{(*) ∧ A ∈ 	 ℐm(*)
7}|~(8 + ,) if			= ∈ ℐ}|~(*)
1 ⋅ 	7mno(,) if			= ∈ ℐmno,{(*) ∧ A ∈ 	 ℐm(*)		
1 else

	

(mno,nz,s(*, ,) = .
t∈ℐ!"#,%&(w)

(mno,n,s
(t) (*; *, ,) ⋅

⎩
⎪
⎨

⎪
⎧7mno(,) if			G= ∈ ℐmno(* − 1) ∪ ℐ}|~(* − 1)H ∧ GA ∉ 	 ℐ|(*) ∪ ℐm(*)H
7mno(,) ⋅ 7mno(,) if			G= ∈ ℐmno(* − 1) ∪ ℐ}|~(* − 1)H ∧ A ∈ 	 ℐm(*)
7mno(,) ⋅ 7mno(8 + ,) if			G= ∈ ℐmno(* − 1) ∪ ℐ}|~(* − 1)H ∧ A ∈ 	 ℐ|(*)
1 ⋅ 7mno(8 + ,) if			G= ∉ ℐmno(* − 1) ∪ ℐ}|~(* − 1)H ∧ A ∈ 	 ℐ|(*)
1	 else			

	

where	ℐ≤ºƒ,(ó) 	denotes	 the	 set	 of	 those	 first	 elements	 of	ℳ≤ºƒ(ó) 	where	 the	 corresponding	 second	
element	is	zero.	

The	fading	of	the	instantaneous	HOA	representations	for	the	overlap	add	operation	is	accomplished	with	
two	different	fading	windows		

Ω≤ºƒ:= [u≤ºƒ(1) u≤ºƒ(2) … u≤ºƒ(2J)]	

Ω‹ÖΩ:= [u‹ÖΩ(1) u‹ÖΩ(2) … u‹ÖΩ(2J)]	

whose	elements	are	defined	by		

u≤ºƒ(6):=
1

2
s1 − cos K2ï

6 − 1

2J
Lt	

ISO/IEC	23008-3:202X(E)	

410	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

u‹ÖΩ(6):

=

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
6 − 1

Jº¥ − 1
			if			1 ≤ 6 ≤ Jº¥ ∧ 	SpatialInterpolationMethod	=	0

1
2
s1 − cos K2ï

6 − 1
2Jº¥

Lt 			if			1 ≤ 6 ≤ Jº¥ ∧ 	SpatialInterpolationMethod	=	1

1 			if			Jº¥ + 1 ≤ 6 ≤ J

1 −
6 − J − 1

Jº¥ − 1
			if			J + 1 ≤ 6 ≤ J + Jº¥ ∧ 	SpatialInterpolationMethod	=	0	

1 −
1
2
s1 − cos K2ï

6 − J − 1
2Jº¥

Lt	 			if			J + 1 ≤ 6 ≤ J + Jº¥ ∧ 	SpatialInterpolationMethod	=	1

0 			if			J + Jº¥ + 1 ≤ 6 ≤ 2J

	

where	Jº¥		is	defined	in	Table	212.	

Table	212	—	Decoding	of	codedSpatialInterpolationTime	into	N—…	

L	
CodedSpatialInterpolationTime	

0	 1	 2	 3	 4	 5	 6	 7	

768	 0	 32	 64	 128	 256	 384	 512	 768	
1024	 0	 64	 128	 256	 384	 512	 768	 1024	
2048	 0	 128	 256	 512	 768	 1024	 1536	 2048	
4096	 0	 256	 512	 1024	 1536	 2048	 3072	 4096	

12.4.2.4.3 Compute	HOA	representation	of	predicted	directional	signals	

The	parameter	set	Á(ó) = ÈÍ∑Ã¥Ö(ó), Îºõ≤(ó), ÎÜ,Õ(ó)Ï	related	to	the	spatial	prediction	of	the	directional	
signals	consists	of	the	following	components.	

¾ The	vector	Í∑Ã¥Ö(ó),	whose	elements	z∑Ã¥Ö,E(ó),	F = 1,… , ∞	indicate	if	for	the	F-th	direction		
(E
(G),	defined	in	F.2	to	F.11		and	the	ó-th	and	(ó + 1)-th	frame		a	prediction	is	performed	or	not,	

and	if	so,	then	they	also	indicate	the	kind	of	prediction.	In	particular,	the	meaning	of	the	
elements	is	as	follows:	
	

Ir�Ä|,"(*) = J
0 			for		no		prediction		for		the		direction		Ò¿(¡)	and	* − th	and	(* + 1) − th	frame
1 			for		a		full		band		prediction		for		the		direction		Ò¿(¡)	and	* − th	and	(* + 1) − th	frame

.		

¾ The	matrix	Îºõ≤(ó),	whose	elements	zºõ≤,j,E(ó),	K = 1,… , 5¥ƒÖ≤,	F = 1,… , ∞	denote	the	indices	
from	which	directional	signals	the	prediction	for	the	direction		(E

(G)	and	the	ó-th	and	(ó + 1)-th	
frame	 has	 to	 be	 performed.	 If	 no	 prediction	 is	 to	 be	 performed	 for	 a	 direction	 	(E

(G) ,	 the	
corresponding	 column	 of	 the	 matrix	Îºõ≤(ó) 	consists	 of	 zeros.	 Further,	 if	 less	 than	5¥ƒÖ≤	
directional	signals	are	used	for	the	prediction	for	a	direction		(E

(G),	the	non-required	elements	in	
the	F-th	column	of	Îºõ≤(ó)	are	also	zero.	

¾ The	matrix	ÎÜ,Õ(ó),	which	contains	the	corresponding	quantized	prediction	factors	zÜ,Õ,j,E(ó),	
K = 1,… , 5¥ƒÖ≤,	F = 1,… , ∞.		

Note	 that	 the	 prediction	 parameters	Á(ó) 	are	 related	 to	 the	 frames	ó 	and	(ó + 1) .	 Additionally,	 the	
following	dependent	quantity:	

)≥Ω∑(ó) = W1 			if			∃F			such		that			z∑Ã¥Ö,E(ó) = 0
0 	else	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 411	
	

is	 introduced,	which	indicates	whether	a	prediction	is	to	be	performed	relative	to	frames	ó	and	ó + 1.	
Further,	 the	 quantized	 prediction	 factors	zÜ,Õ,j,E(ó) ,	K = 1,… , 5¥ƒÖ≤ ,	F = 1,… , ∞ ,	 are	 dequantized	 to	
provide	the	actual	prediction	factors:	

	 zÕ,j,E(ó) = úzÜ,Õ,j,E(ó) +
I

F
û ⋅ 2Xk`eHI.	

The	idea	behind	the	computation	of	the	predicted	HOA	component	is	to	represent	it	by	directional	signals	
(i.e.	general	plane	wave	functions)	impinging	from	the	predefined	directions	øE

(G),	F = 1,… , ∞,	and	then	
transform	this	representation	to	an	HOA	representation.	These	directional	signals	impinging	from	the	
predefined	directions	øE

(G),	F = 1,… , ∞,	are	predicted	from	the	predominant	sound	signals	4¥¬(ó)	using	
the	parameter	set	Á(ó)	The	computation	of	the	predicted	directional	signals	is	based	on	the	concept	of	
overlap	 add	 in	 order	 to	 avoid	 artifacts	 due	 to	 changes	 of	 prediction	 parameters	 between	 successive	
frames.	Hence,	the	ó-th	frame	of	the	predicted	directional	signals,	denoted	by	O¥≤(ó),	is	computed	as	the	
sum	of	a	faded	out	component	and	a	faded	in	component:		

	 O¥≤(ó) = O¥≤,Ï◊∑(ó) + O¥≤,ºõ(ó).	

The	sample	values	í¥≤,Ï◊∑,E(ó, 6)	and	í¥≤,ºõ,E(ó, 6),	F = 1,… , ∞,	6 = 1,… , J,	of	the	faded	out	and	faded	in	
predicted	directional	signals	are	then	respectively	computed	by:	

Ö≠≥,¬ºÑ,+(F, Ä) = i≥™ª(ó + Ä) ⋅ Û
0 			if			@Ñπ≠á,+(F − 1) = 0

o
6QRST

<0&

@√,<,+(F − 1) ⋅ Ö≠Æ,*UVT,#,"(EF&)(F, Ä) 			if			@Ñπ≠á,+(F − 1) = 1
	

	 Ö≠≥,™Ω,+(F, Ä) = i≥™ª(Ä) ⋅ z
0 			if			@Ñπ≠á,+(F) = 0
∑6QRST<0& @√,<,+(F) ⋅ Ö≠Æ,*UVT,#,"(E)(F, Ä) 			if			@Ñπ≠á,+(F) = 1	

In	a	next	step,	the	predicted	directional	signals	are	transformed	to	the	HOA	domain	by:	

	 Õ¥≤,º(ó) = F(G,G) ⋅ 4¥≤(ó),	

where	F(G,G) 	denotes	 the	mode	matrix	of	order	(with	 respect	 to	 the	predefined	directions	(E
(G), F =

1,… , ∞,	defined	in	Annex	F.1.5,	Assuming	the	preliminary	HOA	representation	Õ¥≤,º(ó)	of	the	predicted	
directional	signals	to	be	expressed	by	means	of	its	samples	by:	

	 Õ¥≤,º(ó) = P
.¥≤,º,I(ó, 1) … .¥≤,º,I(ó, J)
														⋮ ⋱ 													⋮
.¥≤,º,å(ó, 1) … .¥≤,º,å(ó, J)

R	

the	samples	of	the	final	output	HOA	representation:	

	 Õ¥≤(ó) = P
.¥≤,I(ó, 1) … .¥≤,I(ó, J)
														⋮ ⋱ 																⋮
.¥≤,å(ó, 1) … .¥≤,å(ó, J)

R	

of	the	predicted	directional	signals	are	computed:	

ISO/IEC	23008-3:202X(E)	

412	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Æ≠≥,+(F, Ä) =

⎩⎪
⎨
⎪⎧
0 if			J ∈ ℐº(F)
Æ≠≥,™,+(F, Ä) ⋅ i≥™ª(Ä) if			J ∈ ℐ≥(F) ∧ k∏´Ñ(F − 1) = 1
Æ≠≥,™,+(F, Ä) ⋅ i≥™ª(ó + Ä) if			J ∈ ℐá(F) ∧ k∏´Ñ(F) = 1
Æ≠≥,™,+(F, Ä) else			

	for			J = 1,… , Ê, Ä = 1,… , ó.				

12.4.2.4.4 Compute	HOA	representation	of	active	vector-based	signals	

12.4.2.4.4.1 General	

The	 computation	 of	 the	 HOA	 representation	 of	 the	 vector-based	 signals	 may	 be	 considered	 as	 the	
interpolation	 of	 V-vectors	which	 describe	 the	 distribution	 of	 the	 predominant	 sound	 components	 in	
space	 (e.g.,	 directions,	 shapes,	 and	 widths).	 Because	 a	 V-vector	 already	 contains	 all	 relevant	 spatial	
information	about	 the	predominant	sound	components,	a	spatial	prediction,	as	specified	 in	subclause	
12.4.2.4.3,	is	not	used	for	vector-based	signals.	The	interpolation	of	the	V-vector	is	carried	out	over	time.	
This	spatio-temporal	interpolation	ensures	a	continuous	and	smooth	evolution	of	the	soundfield	across	
frame	boundaries,	that	lends	itself	to	perceptually	transparent	quality.	In	this	manner,	the	HOA	signal	is	
re-composed	 from	 the	 original	 decomposition	 comprised	 of	 the	 interpolated	 vectors	 and	 the	
corresponding	predominant	signals.	

Figure	64	 illustrates	how	the	HOA	coefficients	are	reformulated	 from	the	vector-based	signals.	Scalar	
dequantization	 is	 first	 performed	 with	 respect	 to	 each	 V-vector	 to	 generate	ℳ‹ÖΩ(ó) ,	 where	 the	 ith	
individual	vectors	of	the	current	frame	may	be	denoted	as	Ìº

(b)(ó).		The	V-vectors	are	decomposed	from	
the	 HOA	 coefficients	 typically	 employing	 a	 linear	 invertible	 transform	 (see	 Annex	 C.5.3.2.1).	 Spatio-
temporal	 interpolation	 is	 performed	 with	 respect	 to	 the	ℳ‹ÖΩ(ó) 	and	ℳ‹ÖΩ(ó − 1) 	(which	 denotes	
V-vectors	 from	 a	 previous	 frame	 with	 individual	 vectors	 of	ℳ‹ÖΩ(ó − 1) 	denoted	 as	ÌÏ

(b)(ó)).	 The	
interpolation	method	is	controlled	by	u‹ÖΩ(6),	as	described	in	more	detail	below.	Following	interpolation,	
the	ith	interpolated	V-vector	(Ì(Ò)(ó, 6)SSSSSSSSSSS)	are	then	mutliplied	by	the	ith	predominant	signal,	≠Up

(b) (ó, 6),	to	
produce	the	ith	column	of	the	HOA	representation	(r‹ÖΩ

(b) (ó, 6)).	The	column	vectors	are	then	summed	to	
derive	 the	 HOA	 representation	 of	 the	 vector-based	 signals.	 In	 this	 way,	 the	 HOA	 ceofficients	 are	
reconstructed	for	a	frame.	

	

Figure	64	—	Computation	of	vector-based	signals	

12.4.2.4.4.2 Spatio-temporal	interpolation	of	V-vectors	

An	 interpolation	 matrix	 	«(Ò)(ó)SSSSSSSSS = πÌ(Ò)(ó, 1)SSSSSSSSSSSS, Ì(Ò)(ó, 2)SSSSSSSSSSSS, … Ì(Ò)(ó, J)SSSSSSSSSSSS,∫ 	is	 first	 computed	 for	 each	
index	* ∈ ℐ‹ÖΩ(ó) ∪	ℐ‹ÖΩ(ó − 1)	of	a	vector-based	signal	that	is	active	in	the	ó-th	or	(ó − 1)-th	frame.	Its	
columns	Ì(Ò)(ó, 6)SSSSSSSSSSS	represent	for	each	sample	1 ≤ 6 ≤ J	of	a	frame	an	interpolated	vector	defined	by:	

V-Vector
Dequantization

Spatio-Temporal
Interpolation of

V-Vector

HOA
Reconstruction
of active vector-

based Signals

c	•••VEC(k,	l)XPS•••(k,	l)

M VEC(k) v	••••(k)

v	•••(k,	l)

v	O(i)(k)
w	VEC(l)

M VEC(k-1)

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 413	
	

Ì(Ò)(ó, 6)SSSSSSSSSSS 	= uº
(b)(6)Ìº

(b)(ó) + K1 − uu
(b)(6)LÌÏ

(b)(ó)	

In	the	equation	above,	Ìº
(b)(ó)	and	ÌÏ

(b)(ó)	denote	the	vectors	between	which	the	interpolation	takes	place,	
defined	by:	

Ìº
(b)(ó) = WÌ

(b)(ó) if	* ∈ ℐ‹ÖΩ(ó)
T else	

	

ÌÏ
(b)(ó) = WÌ

(b)(ó − 1) if	* ∈ ℐ‹ÖΩ(ó − 1)
T else	

	
where	0	denotes	the	zero	vector.	This	is	shown	in	Figure	65.	

	
Figure	65	—	Interpolation	of	V-vectors	

Further,	the	interpolation	function	uº
(b)(6)	is	defined	by:		

uI
(ç)(6) = 	=

uVEC(6)
1
uDIR(6)

if	* ∈ ℐVEC(ó)	&	if	* ∈ 	 {	ℐVEC(ó − 1) ∪ ℐDIR(ó − 1)	}
if	* ∈ ℐVEC(ó)	&	if	* ∉ 	 {	ℐVEC(ó − 1) ∪ ℐDIR(ó − 1)	}
if	* ∈ ℐVEC(ó − 1)	&	if	* ∈ 	 ℐDIR(ó)

	

0 else	

		

where	

u‹ÖΩ(6) = 		

⎩
⎪
⎨

⎪
⎧
6 − 1
Jº¥ − 1

for	1 ≤ 6 ≤ Jº¥	if		SpatialInterpolationMethod	=	0

1

2
s1 − cos K2ï

6 − 1

2Jº¥
Lt for	1 ≤ 6 ≤ Jº¥	if		SpatialInterpolationMethod	=	1

1 for	Jº¥ + 1 ≤ 6 ≤ J	

				

and	where,	Jº¥	is	indicated	by	the	variable	CodedSpatialInterpolationTime	as	given	by	Table	212.	

The	HOA	representation	Õ‹ÖΩ
(b) (ó) = 	 πr‹ÖΩ

(b) (ó, 1) r‹ÖΩ
(b) (ó, 2) … r‹ÖΩ

(b) (ó, J)∫	for	 each	*Qw	vector-based	
signal	H¥¬,b(ó), * ∈ ℐ‹ÖΩ(ó) ∪	ℐ‹ÖΩ(ó − 1) ,	 is	 a	 matrix	 of	 dimension 	((+ 1)F 	 ∙ 	J ,	 whose	 columns	 are	
given	by:	

V
(25 x 25)

V
(25 x 25)

vI
(i)(k)

vO
(i)(k)

v(i)(k, l)

ISO/IEC	23008-3:202X(E)	

414	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

r‹ÖΩ
(b) (ó, 6) = 	Ì(Ò)(ó, 6)SSSSSSSSSSS	í¥¬,b(ó, 6)	

The	complete	HOA	representation	of	 the	vector-based	signals	can	be	computed	by	summing	the	HOA	
contribution	from	each	individual	vector-based	signal	as	follows:	

Õƒ‹ÖΩ(ó) = I Õ‹ÖΩ
(b) (ó)

b∈ℐ^ge(ï)∪	ℐ^ge(ïXI)

	

In	the	case,	that	É,	the	CodedVVecLength,	has	a	value	of	1,	the	following	operations	have	to	be	performed.	

— If	 there	 are	 coefficient	 sequences	 of	 the	 ambient	HOA	 component	 that	 are	 explicitly	 additionally	
transmitted	and	faded	in	during	the	ó-th	frame	(of	which	the	indices	are	contained	in	the	set	ℐE(ó)),	
and	the	parameter	NewChannelTypeOne[i]	equals	zero,	then	the	respective	coefficient	sequences	of	
the	HOA	representation	Õ%VEC(ó)	have	to	be	faded	out	using	the	fade-out	part	of	the	window	uDIR.	
The	respective	V-vector	elements	in	ÌI

(ç)(ó)	are	discarded	from	the	spatio-temporal	interpolation	in	
the	following	frame	k+1	by	setting	them	to	zero.	

— If	 there	 are	 coefficient	 sequences	 of	 the	 ambient	HOA	 component	 that	 are	 explicitly	 additionally	
transmitted	and	faded	out	during	the	ó-th	frame	(of	which	the	indices	are	contained	in	the	set	ℐ≤(ó)),	
then	 the	 respective	 coefficient	 sequences	of	 the	HOA	 representation	Õƒ‹ÖΩ(ó)	have	 to	be	 faded	 in	
using	the	fade-in	part	of	the	window	u≤ºƒ.	

— Hence,	the	final	HOA	representation	of	the	vector-based	signals	is	obtained	by	

.‹ÖΩ,-(ó, J) = Æ

.̃‹ÖΩ,-(ó, J) ⋅ u≤ºƒ(6) if	F ∈ 	 ℐ≤(ó) ∧ É = 1
.̃‹ÖΩ,-(ó, J) ⋅ u≤ºƒ(J + 6) if	F ∈ 	 ℐÖ(ó) ∧ É = 1

.̃‹ÖΩ,-(ó, J) else
											for		1 ≤ 6 ≤ J	.	

	
Figure	66	—	Example	fade-in	and	fade-out	of	components	

The	above	example	in	Figure	66	shows	how	the	ambient	HOA	coefficient	channels	4,	2,	and	5	and	a	vector-
based	 predominant-signal	 channel	 are	 faded-in	 and	 faded-out	 as	 described	 above.	 The	 ambient	HOA	
coefficient	channel	4	undergoes	a	period	of	transition	(fades	out)	during	frame	13	while	the	elements	of	

Vector-based
Predominant

channel

Frame 10 Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Ambient Channel
(HOA coeff 4)

Vector-based
Predominant channel

Ambient Channel
(HOA coeff 5)

AmbCoeffIdx[1] = 4
AmbCoeffTransitionState[1] = 0
AmbCoefIdxTransition = 0

VVecLength = 23

AmbCoeffIdx[3] = 2
AmbCoeffTransitionState[3] = 0
AmbCoefIdxTransition = 0

VVecLength = 23
VVecLength = 24
(VVec element 2 fade in)

VVecLength = 25
(VVec element 4 fade in,
VVec element 5 fade out) VVecLength = 24 VVecLength = 24

VVecLength = 24 VVecLength = 24

AmbCoeffIdx[1] = 4
AmbCoeffTransitionState[1] = 0
AmbCoefIdxTransition = 0

AmbCoeffIdx[1] = 4
AmbCoeffTransitionState[1] = 0
AmbCoefIdxTransition = 0

AmbCoeffIdx[1] = 4
AmbCoeffTransitionState[1] = 2
AmbCoefIdxTransition = 1

AmbCoeffIdx[3] = 2
AmbCoeffTransitionState[3] = 0
AmbCoefIdxTransition = 0

AmbCoeffIdx[3] = 2
AmbCoeffTransitionState[3] = 2
AmbCoefIdxTransition = 1

AmbCoeffIdx[3] = 5
AmbCoeffTransitionState[3] = 1
AmbCoefIdxTransition = 1

AmbCoeffIdx[3] = 5
AmbCoeffTransitionState[3] = 0
AmbCoefIdxTransition = 0

AmbCoeffIdx[3] = 5
AmbCoeffTransitionState[3] = 0
AmbCoefIdxTransition = 0

Ambient Channel
(HOA coeff 2)

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 415	
	

a	vector	in	the	vector-based	predominant-signal	channel	fade	in	during	frame	14	to	replace	the	ambient	
HOA	coefficient	4	in	the	ambient	channel	during	decoding	of	the	bitstream.	Figure	66	also	shows	that	the	
elements	of	the	vector	change	in	frames	12,	13	and	14,	and	the	V-vector	length	changes	during	the	frames.	
The	ambient	HOA	coefficient	2	undergoes	a	 transition	during	 frame	12	 (fade	out).	The	ambient	HOA	
coefficient	5	undergoes	a	transition	(fades	in)	during	frame	13	to	replace	the	ambient	HOA	coefficient	2	
in	 the	 ambient	 channel	 during	 decoding	 of	 the	 bitstream.	 The	 annotated	 parameter	 exemplifiy	 the	
decoder	state	for	a	4th	order	HOA	content	(25	HOA	coefficients).	

During	the	above	described	periods	of	transition,	the	AmbCoeffIdxTransition	flag	specified	in	Table	199	
indicates	a	transition	of	the	respective	channel.	Given	the	previous	state	of	the	AmbCoeffTransitionState,	
the	AmbCoeffIdxTransition	 flag	 indicates	which	ambient	HOA	coefficient	 should	be	either	 faded-in	or	
faded-out.	

The	 V-vector	 length	 is	 specified	 in	 accordance	 with	 three	 different	 modes.	 If	 the	 parameter	
CodedVVecLength	is	set	to	1,	the	V-vector	is	specified	using	the	reduced	number	of	V-vector	elements	
(VVecLength)	when	energy	from	that	element	has	been	fully	incorporated	into	the	underlying	ambient	
HOA	coefficient.	Therefore,	for	reducing	the	number	of	transmitted	V-vector	elements,	only	the	elements	
of	the	HOA	soundfield	that	are	not	encoded	as	ambient	HOA	coefficients	may	be	transmitted.	The	overall	
number	or	the	actual	HOA	coefficients	of	the	ambient	components	can	be	dynamic	to	account	for	changes	
in	the	sound	field.	For	the	HOA	frames	in	which	an	ambient	HOA	coefficient	channel	is	faded-in	or	faded-
out	some	additional	fade	processing	is	required.	

The	 foregoing	 is	 represented	 by	 the	 following	 pseudo-code	 which	 describes	 how	 to	 process	 the	
reconstructed	vector-based	sound	components	when	ambient	HOA	coefficients	are	in	transition	for	the	
case	when	the	CodedVVecLength	=	1.	

1)	 Reconstructing	newly	introduced	distinct	components	(if	any)	

if exist(newTransportChannelPredSound) {
 for (l= 0; l<L; ++l) {

r‹ÖΩ
(b) (ó, 6) = 	4Up

(b)(ó, 6) ∗ 	Ìº
(b)(ó)	

 }
}

	
2)	 Reconstructing	continuous	distinct	components	(if	any)	and	apply	spatio-temporal	interpolation		

if exist(contTransportChannelPredSound) {
 for (l= 0; l<L; ++l) {

 r‹ÖΩ
(b) (ó, 6)	+= 	Ì(Ò)(ó, 6)SSSSSSSSSSS 	 ∗ 	4Up

(b)(ó, 6);
 }
}

3)	 	If	transitional	ambient	HOA	coefficients	are	present	in	the	frame,	apply	fade	in/fade	out	to	>;.< 			
foreach F ∈ 	 ℐÖ(ó)	{

for (l =0; l<L; ++l) {

Õƒ‹ÖΩ,-(ó, 6) 	 ∗= 	u≤ºƒ(L + l);
 }
}

foreach F ∈ 	 ℐ≤(ó)	{

ISO/IEC	23008-3:202X(E)	

416	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 for (l =0; l<L; ++l) {

 Õƒ‹ÖΩ,-(ó, 6) 	 ∗= 	u≤ºƒ(l);
 }
}
}

The	pseudo-code	above	describes	how	 to	process	 the	 reconstructed	vector-based	 sound	components	
Õƒ‹ÖΩ	when	an	ambient	HOA	coefficient	is	in	transition	in	case	É	has	a	value	of	1.	

The	first	section	provides	pseudo-code	for	reconstructing	newly	introduced	distinct	components	when	
present.	The	second	section	provides	pseudo-code	for	reconstructing	continuous	distinct	components	
when	present	and	applying	spatio-temporal	interpolation.	In	section	three	of	the	pseudo-code,	there	are	
crossfade-in	and	crossfade-out	operations	performed	on	the	V-vector	interpolation	buffer	to	fade-in	new	
HOA	coefficients	and	fade-out	old	HOA	coefficients.	

Referring	 to	 Figure	 66,	 in	 frame	 10	 and	 11	 there	 are	 two	 ambient	 channels	 and	 one	 vector-based	
predominant	sound	channel.	In	frames	10	and	11,	the	V-vector	does	not	include	the	V-vector	element	for	
the	ambient	HOA	coefficients	specified	in	the	ambient	channels	because	the	ambient	HOA	coefficients	
specified	 in	 the	 ambient	 channels	 were	 directly	 coded.	 In	 frame	 12,	 the	 ambient	 HOA	 coefficient	
transmitted	in	the	third	transport	channel	(HOA	coefficient	2)	is	being	faded-out.	In	frame	13,	the	ambient	
HOA	coefficient	 specified	 in	 the	 top	 transport	 channel	 (HOA	coefficient	4)	 is	being	 faded-out	and	 the	
ambient	HOA	coefficient	specified	in	the	third	transport	channel	(HOA	coefficient	5)	is	being	faded-in.	
The	bitstream	signals	the	events	when	an	ambient	HOA	coefficient	specified	 in	an	ambient	channel	 is	
faded-out	 or	 faded-in.	 When	 decoding	 the	 bitstream,	 state	 information	 is	 maintained	 via	 the	
AmbCoeffTransitionMode	parameter	for	each	ambient	HOA	coefficient	specified	in	one	of	the	transport	
channels.	Referring	back	to	the	first	transport	channel,	the	state	information,	at	frame	10,	indicates	that	
the	AmbCoeffTransitionState[i]	element	is	set	to	zero,	where	i	denotes	the	index	of	the	HOA	Transport	
Channel	 in	 the	 bitstream.	 The	 coefficient	 index	 of	 the	 ambient	 HOA	 coefficient	 signalled	 in	 the	 HOA	
transport	channel	i	 is	defined	via	AmbCoeffIdx[i].	When	the	same	HOA	coefficient	4	is	specified	in	the	
previous	frame	9	(not	shown	in	Figure	66),	the	AmbCoeffIdxTransition	syntax	element	signalled	with	a	
value	 of	 zero.	 As	 a	 result,	 the	 V-vector	 may	 have	 a	 total	 of	 23	 elements	 (for	 a	 4th	 order	 HOA	
representation).	Vector	elements	[1,	3,	5	to	25]	are	specified,	omitting	the	elements	that	correspond	to	
the	ambient	HOA	coefficients	having	an	index	of	2	and	4.	Given	that	no	transitions	occur	before	frame	12,	
the	same	state	information	is	maintained	for	the	ambient	HOA	channels	during	frame	11.	

At	frame	12,	the	ambient	HOA	coefficient	having	an	index	of	2	is	faded-out.	The	AmbCoeffIdxTransition	
is	signalled	for	the	corresponding	transport	channel	with	a	value	of	one	(indicating	the	transition).	The	
internal	 state	 element	AmbCoeffTransitionState[3]	 is	 updated	 to	 a	 value	 two.	As	 a	 result	 of	 the	 state	
change	from	no	transition	to	fade-out,	the	V-vector	element	is	added	to	the	V-vector	of	the	predominant	
sound	corresponding	to	the	ambient	HOA	coefficient	having	an	index	of	2.	

In	frame	13,	two	transitions	occur,	one	for	fading-out	ambient	HOA	coefficient	4	and	another	for	fading	
in	ambient	HOA	coefficient	5.	The	state	information	may	be	updated	to	indicate	that	the	ambient	HOA	
coefficients	having	an	index	of	5	is	faded-in	(e.g.	AmbCoeffTransitionState[3]	=	1).	The	state	information	
is	 also	 updated	 to	 indicate	 that	 the	 ambient	 HOA	 coefficient	 is	 fadein-out	 (e.g.	
AmbCoeffTransitionState[1]	=	2).	

Given	that	there	are	three	transport	channels	as	depicted	in	Figure	66,	two	of	which	are	ambient	HOA	
channels	undergoing	a	transition,	the	V-vector	includes	all	25	of	the	V-vector	elements	of	a	4th	order	HOA	
representation.	

At	frame	14,	a	vector-based	predominant	channel	is	faded-in	to	replace	the	ambient	channel	in	the	first	
transport	channel.	Given	that	there	are	no	transitions	of	ambient	HOA	coefficients,	the	V-vectors	includes	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 417	
	

24	elements,	and	that	the	vector	element	corresponding	to	the	ambient	HOA	coefficient	having	an	index	
of	5	needs	not	be	coded.	During	frame	14,	the	flag	AmbCoeffIdxTransition	will	signal	0,	indicating	that	the	
ambient	 HOA	 coefficient	 having	 an	 index	 of	 5	 (AmbCoeffIdx[3]	 =	 5)	 is	 not	 in	 transition	
(AmbCoeffTransitionState[3]	=	0).	

12.4.2.4.5 	Compose	complete	predominant	sound	component	

The	complete	predominant	sound	HOA	component,	Õ¥¬(ó),	is	obtained	as	the	sum	of	the	HOA	component	
Õ≤ºƒ(ó)	of	the	directional	signals,	the	HOA	component	Õ¥≤(ó)	of	the	predicted	directional	signals	and	the	
HOA	component	of	the	vector-based	signals	Õ‹ÖΩ(ó)	by:	

	 Õ¥¬(ó) = Õ≤ºƒ(ó) + Õ¥≤(ó) + Õ‹ÖΩ(ó)	

Note	that	the	HOA	components	Õ≤ºƒ(ó), Õ¥≤(ó),	and	Õ‹ÖΩ(ó)	are	zero	in	case	they	are	not	processed	as	
defined	in	the	ChannelSideInfoData	(Table	196)	for	frame	k.	

The	modified	predominant	 sound	HOA	 representation	Õ¥¬,Õ(ó)	is	 computed	 from	Õ¥¬(ó)	by	 fading	 in	
coefficient	sequences	with	indices	contained	in	the	index	set	ℐÖ(ó)	and	fading	out	coefficient	sequences	
with	 indices	 contained	 in	 the	 index	 set	ℐ≤(ó).	 In	 particular,	 the	 individual	 samples	.¥¬,Õ,E(ó, 6)	of	 the	
modified	predominant	sound	HOA	representation	Õ¥¬,Õ(ó)	are	computed	according	to:	

.¥¬,Õ,E(ó, 6) = Æ

.¥¬,E(ó, 6) ⋅ u≤ºƒ(6) 			if			F ∈ ℐÖ(ó)

.¥¬,E(ó, 6) ⋅ u≤ºƒ(J + 6) 			if			F ∈ ℐ≤(ó)

.¥¬,E(ó, 6) 			else			
						for			F = 1,… , ∞, 6 = 1,… , J.	

12.4.2.5 Ambience	synthesis	

12.4.2.5.1 General	

The	ambient	HOA	component	frame	Õ≥±≈(ó)	is	assumed	to	be	composed	according	to:	

	 Õ≥±≈(ó) =

⎣
⎢
⎢
⎢
⎡
r≥±≈,I(ó)
r≥±≈,F(ó)
⋮
r≥±≈,å(ó)

⎦
⎥
⎥
⎥
⎤

	

with		

r≥±≈,E(ó) = [.≥±≈,E(ó, 1) .≥±≈,E(ó, 2) … .≥±≈,E(ó, J)]							for			F = 1,… , ∞.	

The	 first	∞±ºõ 	coefficient	 sequences	of	 the	 ambient	HOA	component	 are	 computed	as	outlined	 in	 the	
following	two	subclauses.	The	sample	values	of	the	remaining	higher-order	coefficient	sequences	of	the	
ambient	HOA	component	are	set	according	to:	

.≥±≈,E(ó, 6) = .º,≥±≈,E(ó, 6)							for			∞±ºõ < F ≤ ∞.	

By	 default	 the	 first	∞MIN 	HOA	 coefficient	 sequences	 are	 reconstructed	 with	 the	 method	 outlined	 in	
subclause	 12.4.2.8.2.	 If	(MIN 	is	 of	 value	1 ,	 an	 alternative	 synthesis	 method	 described	 in	 subclause	
12.4.2.8.3	may	be	used.	 In	 this	case	 the	 flag	UsePhaseShiftDecorr	signals	which	of	 the	 two	processing	
methods	shall	be	applied.	

ISO/IEC	23008-3:202X(E)	

418	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

12.4.2.5.2 Spatial	transform	

The	first	∞±ºõ	coefficient	sequences	of	the	ambient	HOA	component	are	obtained	by:	

⎣
⎢
⎢
⎢
⎡
Û≥±≈,I(ó)
Û≥±≈,F(ó)
⋮
Û≥±≈,å@cj(ó)

⎦
⎥
⎥
⎥
⎤

= √±ºõ ⋅

⎣
⎢
⎢
⎢
⎡
Ûº,≥±≈,I(ó)
Ûº,≥±≈,F(ó)
⋮
Ûº,≥±≈,å@cj(ó)

⎦
⎥
⎥
⎥
⎤

	

where	√(G@cj,G@cj)	denotes	the	mode	matrix	of	order	(±ºõ	defined	in	Annex	F.1.5	with	respect	to	the	
predefined	directions	øE

(G@cj),	F = 1,… , ∞±ºõ	defined	in	Tables	F.2	-	F.11.	Note	that	the	multiplication	by	
the	mode	matrix	represents	the	inverse	spatial	transform	intended	to	invert	the	spatial	transform	applied	
in	 the	 encoder	 (see	 subclause	 C.5.3.3.3)	 for	 de-correlating	 the	 first	∞±ºõ 	coefficient	 sequences	 of	 the	
ambient	HOA	component.	

12.4.2.5.3 Phase-based	transform	

If	the	flag	UsePhaseShiftDecorr	is	==	1,	the	following	processing	is	applied	to	reconstruct	the	first	four
coefficient	sequences	of	the	ambient	HOA	component	by:	

⎣
⎢
⎢
⎢
⎢
⎡
Û≥±≈,I(ó)
Û≥±≈,F(ó)
Û≥±≈,¨(ó)
Û≥±≈,ó(ó)

⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡.(3) ⋅ ¨H~V

(ó) + .(2) ⋅ πÛº,≥±≈,I(ó) + Ûº,≥±≈,F(ó)∫

flH~V(ó) + .(5) ⋅ πÛº,≥±≈,I(ó) − Ûº,≥±≈,F(ó)∫ + .(6) ⋅ Ûº,≥±≈,¨(ó)

Ûº,≥±≈,ó(ó)

.(4) ⋅ πÛº,≥±≈,I(ó) + Ûº,≥±≈,F(ó)∫ − ¨H~V(ó) ⎦
⎥
⎥
⎥
⎤

	

with	the	coefficients	.	as	defined	in	Table	213	and	¨H~V(ó)	and	flH~V(ó)	are	the	frames	of	+90	degrees	
phase	shifted	signals	¨	and	fl	defined	by:	

¨(ó) = .(0) ⋅ πÛº,≥±≈,I(ó) − Ûº,≥±≈,F(ó)∫	

fl(ó) = .(1) ⋅ πÛº,≥±≈,I(ó) + Ûº,≥±≈,F(ó)∫	

Note	that	the	phase	shift	operation	introduces	a	delay	of	one	frame.	In	order	to	avoid	this	delay	in	the	
decoder	 in	 the	case	 that	 the	 flag	UsePhaseShiftDecorr	has	a	value	of	1,	 it	 is	assumed	that	 the	Channel	
Reassignment	 processing	 block	 (see	 subclause	 12.4.2.3)	 provides	 the	 frame	Õº,≥±≈(ó + 1) 	instead	 of	
Õº,≥±≈(ó),	which	can	be	maintained	by	a	respective	modification	at	the	spatial	HOA	encoding	stage.		

Table	213	—	Coefficients	for	phase-based	transform	

n	 c(n)
0	 1,014	088	753	512	235	6
1	 0,229	027	290	950	227	14
2	 0,981	999	999	999	999	98
3	 0,160	849	826	442	762	05
4	 0,513	168	101	113	075	76
5	 0,974	896	917	627	704	81
6	 -0,880	208	333	333	333	37	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 419	
	

12.4.2.6 Preliminary	HOA	composition	

In	the	case	of	single-layered	coding	(indicated	by	SingleLayer==1	(see	Table	191),	the	frame	Õ¥ƒÖ(ó)	of	
the	preliminary	decoded	HOA	representation	is	computed	by:	

Õ¥ƒÖ(ó) = 	Õ≥±≈(ó) + Õ¥¬(ó) = 	Õ≥±≈(ó) +	Õ≤ºƒ(ó) + Õ¥≤(ó) + Õ‹ÖΩ(ó)	
Additionally,	the	frame	Õ¥ƒÖ,Õ(ó)	of	a	modified	version	of	the	preliminary	decoded	HOA	representation	
is	computed	by:	

Õ¥ƒÖ,Õ(ó) = Õ≥±≈(ó) + Õ¥¬,Õ(ó)	

This	modified	HOA	representation	is	assumed	to	be	successively	processed	by	the	PAR	decoder	instead	
of	 the	 original	 version	 Õ¥ƒÖ(ó) 	to	 avoid	 signal	 discontinuities	 after	 performing	 on	 Õ¥ƒÖ,Õ(ó) 	the	
truncation	and	coefficient	selection	(see	subclause	12.4.2.8.3).	

In	 the	 case	 of	multiple	 layered	 coding	 (indicated	 by	 SingleLayer==0	 (see	 Table	 191),	 the	 coefficient	
sequences	r¥ƒÖ,b(ó)	, * = 1,… , ∞,	of	the	preliminary	decoded	HOA	representation	Õ¥ƒÖ(ó)	are	computed	
by:	

r¥ƒÖ,b(ó) = 	Æ

r≥±≈,b(ó) if		* ∈ 	 ℐ◊(ó)
r≥±≈,b(ó) + r¥¬,b(ó) if		* ∈ ℐÖ(ó) ∪	ℐ≤(ó)

r¥¬,b(ó) else	
.	

This	means	 that	 the	 transmitted	 coefficient	 sequences	with	 indices	* ∈ ℐÖ(ó) ∪ ℐ≤(ó) ∪ 	ℐ◊(ó)	actually	
represent	the	original	HOA	representation	instead	of	its	ambient	component.	Hence,	for	the	transmitted	
coefficient	sequences,	which	are	neither	faded	in	nor	faded	out	within	the	current	frame,	nothing	has	to	
be	added	to	them.	For	the	transmitted	coefficient	sequences	that	are	faded	in	(or	faded	out)	within	the	
current	frame,	 i.e.	 those	with	indices	* ∈ ℐÖ(ó) ∪ ℐ≤(ó),	 the	corresponding	coefficient	sequences	of	the	
predominant	sound	HOA	representation	Õ¥¬(ó)	are	added,	which	are	to	be	appropriately	faded	out	(or	
faded	in)	at	the	predominant	sound	synthesis.	

Similarly,	the	coefficient	sequences	r¥ƒÖ,Õ,b(ó)	of	the	modified	version	of	the	preliminary	decoded	HOA	
frame	Õ¥ƒÖ,Õ(ó)	are	computed	by:	

r¥ƒÖ,Õ,b(ó) = 	Æ

r≥±≈,b(ó) if		* ∈ 	 ℐ◊(ó)
r≥±≈,b(ó) + r¥¬,Õ,b(ó) if		* ∈ ℐÖ(ó) ∪	ℐ≤(ó)

r¥¬,Õ,b(ó) else	
.	

If	the	number	of	actually	used	layers	changes	between	two	successive	frames	(i.e.	if	{¿≥Ã(ó) ≠ {¿≥Ã(ó −
1)),	with	the	above	computation	there	can	occur,	 	 in	the	general	case,	a	discontinuity	in	all	coefficient	
sequences	of	the	preliminary	decoded	HOA	representation	and	its	modified	version	between	the	(ó − 1)-
th	and	ó-th	frame.	One	possible	solution	for	this	problem	is	to	introduce	an	additional	delay	of	one	frame	
within	 the	preliminary	HOA	composition	and	 to	 fade	out	and	 fade	 in	 the	coefficient	 sequences	at	 the	
discontinuity.	

12.4.2.7 Sub-band	directional	signals	synthesis	

12.4.2.7.1 General	

The	 purpose	 of	 the	 sub-band	 directional	 signals	 synthesis	 is	 to	 approximate	 the	 non-transmitted	
coefficient	sequences	of	the	residual	(i.e.	ambient)	HOA	component	by	a	composition	of	directional	sub-
band	signals,	which	are	predicted	by	a	weighted/scaled	sum	of	the	transmitted	coefficient	sequences	of	
the	residual	(i.e.	ambient)	HOA	component,	where	the	scaling	is	complex	valued	in	general.	In	particular,	
each	directional	sub-band	signal	related	to	the	ç-th	sub-band,	ç ∈ {1,… , H},	is	represented	parametrically	
by	complex	valued	prediction	scaling	factor	matrices	Ú(ó,))	and	tuple	sets	ℳƒ≤ºƒ(ó,))	related	to	the)-

ISO/IEC	23008-3:202X(E)	

420	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

th	sub-band	group	() ∈ 1,… , fl)	which	includes	the	ç-th	sub-band.	Per	sub-band	group	there	are	at	most	
5¬≈	potential	active	direction	trajectories,	where	the	indices	identifying	the	active	direction	trajectories	
for	 the)-th	 sub-band	group	are	assumed	 to	be	 contained	 in	 the	 set	ℐ&≤ºƒ(ó,)) ⊆ {1, … , 5¬≈}.	 For	each	
index	K ∈ ℐ&≤ºƒ(ó,))	of	an	active	direction	trajectory	the	respective	direction	is	denoted	by	(¬≈,j(ó,)),	
both	of	which	are	assumed	to	be	contained	as	tuples	in	the	set	ℳƒ≤ºƒ(ó,)),	i.e.		

ℳƒ≤ºƒ(ó,)) = 7úK,(¬≈,j(ó,))û8 K ∈ ℐ&≤ºƒ(ó,))9.	

Note	that	the	set	ℐ&≤ºƒ(ó,))	is	assumed	to	consist	of	the	first	elements	of	the	tuples	of	ℳƒ≤ºƒ(ó,)),	and	can	
hence	be	computed	from	ℳƒ≤ºƒ(ó,)).		

Further	note,	that	in	the	absence	of	predominant	sound	signals	the	ambient	component	corresponds	to	a	
"truncated"	version	of	the	original	HOA	representation.	Truncation	in	this	context	means	that	the	original	
HOA	representation	is	approximated	by	only	®	of	its	total	∞	coefficient	sequences,	i.e.	by	those	that	were	
transmitted	within	the	®	transport	channels.		

The	detailed	architecture	of	 the	sub-band	directional	signals	synthesis	 is	 illustrated	 in	Figure	67.	The	
individual	processing	units	to	compute	the	frame	Õ5≤(ó)	of	the	HOA	representation	of	the	composition	of	
all	predicted	sub-band	directional	signals	will	be	described	in	the	following.		

	

Figure	67	—	Sub-band	directional	signals	synthesis	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 421	
	

12.4.2.7.2 Analysis	filter	banks	

Each	 frame	 r≥±≈,E(ó) ,	 F = 1,… , ∞ ,	 of	 an	 individual	 coefficient	 sequence	 of	 the	 ambient	 HOA	
representationÕ≥±≈(ó)is	 first	decomposed	 into	 frames	of	 individual	 sub-band	signalsrX≥±≈,E(ó, ç),	ç =
1,… , H .	 For	 each	 sub-band	 ç ,	 ç = 1,… , H ,	 the	 frames	 of	 the	 sub-band	 signals	 of	 the	 individual	 HOA	
coefficient	sequences	are	collected	into	the	sub-band	HOA	representation	Yƒ≥±≈(ó, ç)	as		

Yƒ≥±≈(ó, ç) =

⎣
⎢
⎢
⎡
rX≥±≈,I(ó, ç)
rX≥±≈,F(ó, ç)
															⋮
rX≥±≈,å(ó, ç)⎦

⎥
⎥
⎤
							for			ç = 1,… , H.	

The	filter	bank	shall	be	based	on	quadrature	mirror	filters	(QMF)	with	a	total	of	H = 64	sub-bands	as	
defined	in	ISO/IEC	23003-1.	Note	that,	in	contrast	to	the	HOA	coefficient	sequences	r≥±≈,E(ó)	their	sub-
band	 representations	rX≥±≈,E(ó, ç) 	are,	 in	 general,	 complex	 valued.	 Further,	 the	 sub-band	 signals	 are	
decimated	in	time	compared	to	the	original	time-domain	signals	by	a	factor	of	H.	As	a	consequence,	the	
number	of	samples	in	the	frames	rX≥±≈,E(ó, ç)	is	J¬≈ = J/H.	It	is	assumed	that	J	is	an	integral	multiple	of	
H	to	assure	that	J¬≈	has	a	positive	integer	value.		

A	 further	 important	 implementation	 issue	 is	 that	 the	 coefficient	 sequences	 of	 the	 ambient	 HOA	
representation	with	 indices	 greater	 than	∞±≥Â 	are	 assumed	 to	 be	 zero.	Hence,	 the	 application	 of	 the	
analysis	filters	can	be	restricted	to	the	HOA	coefficient	sequences	r≥±≈,E(ó)	with	indices	F = 1,… , ∞±≥Â	
only.	The	sub-band	signal	frames	rX≥±≈,E(ó, ç)	with	indices	F = ∞±≥Â + 1,… , ∞	can	be	set	to	zero.	

12.4.2.7.3 Synthesis	of	directional	sub-band	HOA	representation	for	individual	sub-band	groups	

In	order	to	avoid	artifacts	due	to	changes	of	the	directions	and	prediction	coefficients	between	successive	
frames,	 the	 computation	 of	 the	 directional	 sub-band	HOA	 representation	 is	 based	 on	 the	 concept	 of	
overlap	add	in	the	sub-band	domain.	Hence,	the	HOA	representation	Yƒ≤,Õ(ó, ç)	of	active	directional	sub-
band	signals	related	to	the	ç-th	sub-band,	ç = 1,… , H,	is	computed	as	the	sum	of	a	faded	out	component	
and	a	faded	in	component:		

Yƒ≤,Õ(ó, ç) = Yƒ≤,Õ,Ï◊∑(ó, ç) + Yƒ≤,Õ,ºõ(ó, ç)	

To	compute	the	two	individual	components,	firstly,	the	instantaneous	frame	of	all	directional	sub-band	
signals	Zƒ º(óI; ó; ç)	for	the	ç-th	sub-band	is	computed	by:	

Zƒ º(óI; ó; ç) = Ú(óI,))Yƒ≥±≈(ó, ç)							for			óI ∈ {ó, ó + 1}		and			ℒ()) ≤ ç ≤ ·()).	

using	 the	 ambient	 sub-band	 HOA	 representation	Yƒ≥±≈(ó, ç) 	for	 the	ó -th	 frame	 and	 the	 prediction	
coefficients	matrix	Ú(óI,))	for	the)-th	sub-band	group	including	the	ç-th	sub-band	and	for	the	(óI)-th	
frame,	where	óI ∈ {ó, ó + 1}.	The	 (matrix)	 frame	Zƒ º(óI; ó; ç)	is	assumed	 to	be	composed	of	 the	 (row)	
frames	of	the	individual	directional	sub-band	signals	H[º,j(óI; ó; ç),	K = 1,… , 5¬≈,	according	to:	

Zƒ º(óI; ó; ç) = P
H[º,I(óI; ó; ç)
												⋮
H[º,o`a(óI; ó; ç)

R	

Note	 that	 all	 elements	 of	 the	 frame	Hº,j(óI; ó; ç)	of	 a	 directional	 signal	 are	 zero	 if	 the	 corresponding	
direction	is	not	active,	i.e.,	if	the	corresponding	directional	trajectory	index	K		is	not	contained	in	the	set	
ℐ&≤ºƒ(ó,)).		

ISO/IEC	23008-3:202X(E)	

422	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Next,	the	instantaneous	sub-band	HOA	representation	Yƒ≤,Õ,º
(j) (óI; ó; ç)	of	the	active	directional	sub-band	

signal	 H[º,j(óI; ó; ç) 	with	 direction	 index	 K ∈ ℐ&≤ºƒ(ó,)) 	with	 respect	 to	 the	 direction	(¬≈,j(ó,)) 		 is	
obtained	as:	

Yƒ≤,Õ,º
(j) (óI; ó; ç) = \ ú(¬≈,j(ó,))ûH[º,j(óI; ó; ç)	

where	\ ú(¬≈,j(ó,))û ∈ ℝå	denotes	the	mode	vector	with	respect	to	the	direction	(¬≈,j(ó,)) 	which	 is	
computed	as	described	in	Annex	F.1.5.	

The	matrices	Yƒ≤,Õ,Ï◊∑(ó, ç),Yƒ≤,Õ,ºõ(ó, ç), and	Yƒ≤,Õ,º
(j) (óI; ó; ç)	are	structured	from	their	samples	as	follows		

Yƒ≤,Õ,Ï◊∑(ó, ç) = P
.̃≤,Õ,Ï◊∑,I(ó, ç; 1) … .̃≤,Õ,Ï◊∑,I(ó, ç; J¬≈)
														⋮ ⋱ 																		⋮
.̃≤,Õ,Ï◊∑,å(ó, ç; 1) … .̃≤,Õ,Ï◊∑,å(ó, ç; J¬≈)

R ∈ ℝå×K`a 	

Yƒ≤,Õ,ºõ(ó, ç) = P
.̃≤,Õ,ºõ,I(ó, ç; 1) … .̃≤,Õ,ºõ,I(ó, ç; J¬≈)
														⋮ ⋱ 															⋮
.̃≤,Õ,ºõ,å(ó, ç; 1) … .̃≤,Õ,ºõ,å(ó, ç; J¬≈)

R ∈ ℝå×K`a 	

Yƒ≤,Õ,º
(j) (óI; ó; ç) =]

.̃≤,Õ,º,I
(j) (óI; ó; ç; 1) … .̃≤,Õ,º,I

(j) (óI; ó; ç; J¬≈)
																	⋮ ⋱ 																				⋮
.̃≤,Õ,º,å
(j) (óI; ó; ç; 1) … .̃≤,Õ,º,å

(j) (óI; ó; ç; J¬≈)
^ ∈ ℝå×K`a 	

the	 sample	 values	 of	 the	 faded	 out	 and	 faded	 in	 components	 of	 the	 HOA	 representation	 of	 active	
directional	sub-band	signals	are	finally	determined	for	1 ≤ 6 ≤ J¬≈, 1 ≤ ç ≤ H	and	ℒ()) ≤ ç ≤ ·())	by:	

.̃≤,Õ,Ï◊∑,E(ó, ç; 6) = I
j∈ℐ̃Bc_(ï,_)

	 .̃≤,Õ,º,E
(j) (ó; ó; ç; 6) ⋅ u¬≈(J¬≈ + 6)	

.̃≤,Õ,ºõ,E(ó, ç; 6) = I
j∈ℐ̃Bc_(ïHI,_)

	.̃≤,Õ,º,E
(j) (ó + 1; ó; ç; 6) ⋅ u¬≈(6)	

where	the	vector:	

_¬≈ = [u¬≈(1) u¬≈(2) … u¬≈(2J¬≈)]Y ∈ ℝFK`a 	

represents	an	overlap	add	(periodic	Hann)	window	function	to	be	applied	on	the	sub-band	signals,	of	
which	the	elements	are	defined	by		

u¬≈(6) =
1

2
s1 − cos K2ï

6 − 1

2J¬≈
Lt	

	
12.4.2.7.4 Synthesis	filter	banks	

The	 individual	 time	 domain	 coefficient	 sequences	 r̀≤,Õ,E(ó) ,	F = 1,… , ∞ ,	 of	 the	 HOA	 representation	
Õ5≤,Õ(ó) 	of	 the	 composition	 of	 all	 predicted	 sub-band	 directional	 signals	 are	 synthesized	 from	 the	
corresponding	sub-band	coefficient	sequences	rX≤,Õ,E(ó, ç),	ç = 1,… , H	by	the	synthesis	filter	banks.	Note	
that	the	synthesized	time	domain	coefficient	sequences	have	a	delay	of	5Ü±Õ = 577	samples	due	to	the	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 423	
	

successive	application	of	the	QMF	based	analysis	and	synthesis	filter	banks,	which	is	expressed	by	the	
breve	symbol	(˘)	above	the	variables.	

12.4.2.7.5 Coefficient	sequence	selection	and	fading	

In	the	final	step	of	synthesis,	the	preliminary	computed	HOA	representation	Õ5≤,Õ©óa´	of	the	composition	
of	all	predicted	sub-band	directional	signals	is	modified	to	have	only	contributions	for	those	coefficient	
sequences,	which	have	not	been	explicitly	transmitted	for	the	ambient	HOA	component.	Further,	for	those	
coefficient	 sequences	of	 the	ambient	HOA	component	 that	 are	explicitly	 additionally	 transmitted	and	
faded	 in	 (or	 faded	 out),	 the	 respective	 coefficient	 sequences	 of	 the	 preliminary	 HOA	 representation	
Õ5≤,Õ(ó)	of	the	composition	of	all	predicted	sub-band	directional	signals	have	to	be	modified	by	fading	
them	 out	 (or	 fading	 them	 in),	 respectively.	 Due	 to	 the	 delay	 between	Õ≥±≈(ó) 	and	Õ5≤,Õ(ó) 	of	5Ü±Õ	
samples	 the	 fading	 of	 the	 coefficient	 sequences	 of	Õ5≤,Õ(ó) 	is	 performed	 across	 frame	 boundaries,	 as	
illustrated	in	Figure	68.	The	modified	HOA	representation	of	the	composition	of	all	predicted	sub-band	
directional	signals	is	denoted	by	Õ5≤(ó)	with	its	coefficient	sequences	r̀≤,E(ó),	F = 1,… , ∞.		

	

Figure	68	—	Illustration	of	faded	coefficient	sequences	of	Õ5≤(ó)	

In	 the	case	 that	a	coefficient	sequence	r≥±≈,E 	of	 the	ambient	HOA	component	 is	 faded	out	 in	 the	ó-th	
frame	(i.e.	F ∈ ℐ≤(ó))	as	illustrated	in	Figure	68a,	the	fade	in	of	the	coefficient	sequence	r̀≤,E	in	the	ó-th	
frame	begins	5Ü±Õ	samples	later,	where	in	particular	the	fading	in	is	finished	only	at	the	5Ü±Õ-th	sample	
of	the	(ó + 1)-th	frame.	
Similarly,	in	the	case	that	a	coefficient	sequence	r≥±≈,E	of	the	ambient	HOA	component	is	faded	in	in	the	
ó-th	frame	(i.e.	F ∈ ℐÖ(ó))	as	illustrated	in	Figure	68b,	the	fade	out	of	the	coefficient	sequence	r̀≤,E	in	the	
ó-th	frame	begins	5Ü±Õ	samples	later,	where	in	particular	the	fading	out	is	finished	only	at	the	5Ü±Õ-th	
sample	of	the	(ó + 1)-th	frame.		
Finally,	it	has	to	be	considered	that	a	fade	in	or	fade	out	of	the	coefficient	sequences	r̀≤,Õ,E(ó)	of	the	HOA	
representation	of	the	composition	of	all	predicted	sub-band	directional	signals	is	only	required	if	it	is	not	
already	present,	resulting	from	overlap-add	processing.	

In	the	case	that)1¬≈¥(ó − 1) = 0	and)1¬≈¥(ó) = 1,	there	is	already	a	fade	in	within	each	of	the	ó-th	frames	
r̀≤,Õ,E(ó),	F = 1,… , ∞,	such	that	is	not	necessary	to	apply	an	additional	fade	in.	Similarly,	in	the	case	that	
)1¬≈¥(ó − 1) = 1	and)1¬≈¥(ó) = 0,	there	is	already	a	fade	out	within	each	of	the	ó-th	frames	r̀≤,Õ,E(ó),	F =
1,… , ∞,	and	hence	it	is	not	necessary	to	apply	an	additional	fade	out.	Altogether,	the	computation	of	the	
sample	values	.̆≤,E(ó, 6),	F = 1,… , ∞,	6 = 1,… , J,	of	the	coefficient	sequences	of	the	HOA	representation	
of	the	composition	of	all	predicted	sub-band	directional	signals	is	formally	expressed	by:	

ISO/IEC	23008-3:202X(E)	

424	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Æ̆≥,+(F, Ä) = Æ̆≥,√,+(F, Ä) ⋅

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧i≥™ªmÄ + ó − Bà¥√n 			if			1 ≤ Ä ≤ Bà¥√ ∧ J ∈ ℐ≥(F − 1) ∧ kÁÆ∫≠(F − 2) = 1
i≥™ªmÄ + 2ó − Bà¥√n 			if			1 ≤ Ä ≤ Bà¥√ ∧ J ∈ ℐá(F − 1) ∧ kÁÆ∫≠(F − 1) = 1
1 			if			1 ≤ Ä ≤ Bà¥√ ∧

				{J ∉ ℐº(F − 1) ∪ ℐá(F − 1) ∪ ℐ≥(F − 1)
								∨ mJ ∈ ℐ≥(F − 1) ∧ kÁÆ∫≠(F − 2) = 0n
								∨ mJ ∈ ℐá(F − 1) ∧ kÁÆ∫≠(F − 1) = 0n˚

i≥™ªmÄ − Bà¥√n 			if			Bà¥√ < Ä ≤ ó ∧ J ∈ ℐ≥(F) ∧ kÁÆ∫≠(F − 1) = 1
i≥™ªmÄ + ó − Bà¥√n 			if			Bà¥√ < Ä ≤ ó ∧ J ∈ ℐá(F) ∧ kÁÆ∫≠(F) = 1
1 			if			Bà¥√ < Ä ≤ ó ∧

				{J ∉ ℐº(F) ∪ ℐá(F) ∪ ℐ≥(F)
								∨ mJ ∈ ℐ≥(F) ∧ kÁÆ∫≠(F − 1) = 0n
								∨ mJ ∈ ℐá(F) ∧ kÁÆ∫≠(F) = 0n˚

0 			else			

.	

12.4.2.8 Parametric	ambience	replication	(PAR)	decoder	

12.4.2.8.1 General	

The	parametric	ambience	replication	(PAR)	decoder,	as	illustrated	in	Figure	69,	replicates	an	ambient	
HOA	 component	Õ¥≥(ó)	to	 complement	 the	missing	 ambience	 in	 the	 preliminary	 reconstructed	HOA	
component	Õ¥ƒÖ(ó).	The	replicated	ambient	component	 is	created	 in	 the	sub-band	domain,	where	 its	
sub-band	 representation	Y¥≥(ó, ç) 	related	 to	 the	 ç -th	 sub-band	 is	 assumed	 to	 be	 of	 order	(¥≥ƒ(v)	
depending	 on	 the	 corresponding	v-th	 sub-band	 group	v = 1,… , ö .	 The	 orders	(¥≥ƒ(v)	for	 each	 sub-
band	group	v = 1,… , ö 	are	 specified	 in	 subclause	12.4.1.2.3.	The	sub-band	representation	Y¥≥(ó, ç)	is	
represented	and	created	by	means	of	∞¥≥ƒ(v) = ((¥≥ƒ(v) + 1)F	virtual	 loudspeaker	sub-band	signals	
Z¥≥(ó, ç)	at	directions	(j

·GDC_(c)„,	K = 1,… , ∞¥≥ƒ(v),	defined	in	the	tables	in	Annexes	F.2	to	F.11.	These	
upmix	 sub-band	 signals	 are	 computed	 as	 a	 mixture	 of	 the	 sub-band	 signals	Z≤ÖΩ(ó, ç) ,	 which	 are	
themselves	created	by	de-correlation	filters	from	the	virtual	loudspeaker	sub-band	signals	representing	
a	so-called	truncated	and	sparse	sub-band	HOA	representation	Y¬¥(ó, ç).	The	latter	is	obtained	from	the	
sub-band	 HOA	 representation	Y¥ƒÖ(ó, ç) 	by	 reducing	 its	 order	 to	(¥≥ƒ(v) 	and	 setting	 all	 coefficient	
sequences	 to	zero	which	are	zero	 in	 the	 intermediate	representation	of	 the	ambient	HOA	component	
Cº,≥±≈(k).	The	number	of	de-correlated	sub-band	signals	to	be	mixed	for	the	creation	of	each	upmix	sub-
band	 signal	 is	 allowed	 to	 vary	 over	 time	 according	 to	 the	 values	 of	 NumOfDecorrSigs	
PerParSubbandTable	in	order	to	adapt	to	the	diffuseness	of	the	ambient	HOA	component	to	be	replicated.	
This	number,	denoted	by	(¬º”(ó, v)	specified	in	subclause	12.4.1.16,	offers	the	possibility	to	control	the	
amount	of	side	information	required	to	code	the	mixing	matrices	/¥≥ƒ(ó, v)	for	the	individual	sub-band	
groups	v = 1,… , ö .	 Further,	 for	(¬º”(ó, v) < ∞¥≥ƒ(v)	the	mixing	 uses	 de-correlated	 sub-band	 signals	
obtained	from	virtual	loudspeaker	signals	Z¬¥(ó, ç)	at	directions	in	the	neighbourhood	of	the	direction	
of	the	upmix	signal.	This	operation	prevents	that	directional	components	of	the	truncated	and	sparse	sub-
band	 HOA	 representation	Y¬¥(ó, ç) 	are	 undesirably	 spatially	 distributed	 over	 all	 directions	 for	 the	
replication	of	the	ambient	HOA	component.	An	additional	aspect	is	that	for	each	number	(¬º”(ó, v)	and	
each	individual	upmix	sub-band	signal	it	is	specified	in	Table	F.40,	which	de-correlated	sub-band	signals	
have	to	be	mixed.	In	order	to	decrease	the	mutual	correlation	between	each	group	of	de-correlated	sub-
band	signals	to	be	mixed,	the	assignment	of	the	virtual	loudspeaker	signals	to	the	de-correlation	filters	is	
adapted	 to	 the	 choice	 of	 de-correlated	 sub-band	 signals.	 This	 assignment	 is	 expressed	 through	 the	
permutation	 matrices	 Î¥≥ƒ(ó, v) 	for	 the	 individual	 sub-band	 groups	 v = 1,… , ö .	 The	 individual	
processing	 units	 of	 the	 PAR	 decoder	 to	 compute	 the	 frame	Õ¥≥(ó) 	of	 the	 replicated	 ambient	 HOA	
component	is	described	in	Figure	69.		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 425	
	

	

Figure	69	—	PAR	decoder	

	

ISO/IEC	23008-3:202X(E)	

426	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

12.4.2.8.2 Analysis	filter	banks	

Each	frame	r¥ƒÖ,Õ,E(ó), F = 1,… , ∞¥≥ƒ,±≥Â,	of	the	first		

∞¥≥ƒ,±≥Â = max
c
∞¥≥ƒ(v)	

coefficient	sequences	of	the	modified	version	Õ¥ƒÖ,Õ(ó)	of	the	preliminary	decoded	HOA	representation	
is	first	decomposed	into	frames	of	individual	sub-band	signals	rX¥ƒÖ,E(ó, ç),	ç = 1,… , H.	For	each	sub-band	
ç = 1,… , H,	the	frames	of	the	sub-band	signals	of	the	individual	HOA	coefficient	sequences	are	collected	
into	the	sub-band	HOA	representation	Y¥ƒÖ(ó, ç)	as:	

Yƒ¥ƒÖ(ó, ç) =

⎣
⎢
⎢
⎡
rX¥ƒÖ,I(ó, ç)
rX¥ƒÖ,F(ó, ç)
															⋮
rX¥ƒÖ,åDC_,@Cb(ó, ç)⎦

⎥
⎥
⎤
							for			ç = 1,… , H	

The	filter	bank	is	assumed	to	be	based	on	quadrature	mirror	filters	(QMF)	with	a	total	of	H = 64	sub-
bands	as	defined	in	ISO/IEC	23003-1.	

12.4.2.8.3 Truncation	and	coefficient	selection	

For	each	ç-th	sub-band	belonging	to	the	v-th	sub-band	group,	v = 1,… , ö,	a	truncated	version	Yƒ¬¥(ó, ç)	
of	Yƒ¥ƒÖ(ó, ç)	of	order	(¥≥ƒ(v)	is	computed,	which	 is	composed	of	 the	 individual	coefficient	sequences	
according	to		

Yƒ¬¥(ó, ç) =

⎣
⎢
⎢
⎡
rX¬¥,I(ó, ç)
rX¬¥,F(ó, ç)
												⋮
rX¬¥,åDC_(c)(ó, ç)⎦

⎥
⎥
⎤
							for			ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v)				v = 1,… , ö.	

The	 coefficient	 sequences	 rX¬¥,E(ó, ç) 	with	 F = 1,… , ∞¥≥ƒ(v) 	of	 the	 truncated	 HOA	 representation	
Yƒ¬¥(ó, ç)	are	either	taken	from	Yƒ¥ƒÖ(ó, ç)	if	their	index	is	contained	in	the	index	set	of	the	transmitted	
coefficient	sequences	of	the	ambient	HOA	component,	defined	by		

ℐ≥±≈,≥Ω∑(ó)≔ ℐÖ(ó) ∪ ℐ≤(ó) ∪ ℐ◊(ó),	

or	set	to	zero	else,	i.e.:	

rX¬¥,E(ó, ç) = Wr
X¥ƒÖ,E(ó, ç) 			if			F ∈ ℐ≥±≈,≥Ω∑(ó)
T 			else			

	

12.4.2.8.4 Spatial	transform	

Each	truncated	HOA	sub-band	representation	Yƒ¬¥(ó, ç)	of	 the	ç-th	sub-band	belonging	to	the	v-th	sub-
band	 group,	v = 1,… , ö ,	 is	 subjected	 to	 a	 spatial	 transform.	 This	 spatial	 transform	 is	 equivalent	 to	
performing	the	rendering	to	∞¥≥ƒ(v)	virtual	loudspeaker	signals	d¬¥,j(ó, ç),	at	the	directions	(j

·GDC_(c)„,	
K = 1,… , ∞¥≥ƒ(v) ,	 defined	 in	 the	 tables	 in	 Annexes	 F.2	 to	 F.11.	 Arranging	 the	 individual	 virtual	
loudspeaker	signals	in	the	matrix	Zƒ ¬¥(ó, ç)	according	to		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 427	
	

Zƒ ¬¥(ó, ç) =

⎣
⎢
⎢
⎡
H¬¥,I(ó, ç)
H¬¥,F(ó, ç)
														⋮
H¬¥,åDC_(c)(ó, ç)⎦

⎥
⎥
⎤
							for			ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v),				v = 1,… , ö,	

the	 spatial	 transform	 is	 expressed	 by	 means	 of	 multiplying	 the	 truncated	 HOA	 representation	
Yƒ¬¥(ó, ç)	with	the	inverse	of	the	mode	matrix	F·GDC_(c),GDC_(c)„	(defined	in	Annex	F.1.5)	with	respect	to	
these	directions	by:	

Zƒ ¬¥(ó, ç) = ©F·GDC_(c),GDC_(c)„´
XI
⋅ Yƒ¬¥(ó, ç)							for			ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v).	

12.4.2.8.5 Computation	of	de-correlated	sub-band	signals	

For	the	computation	of	the	de-correlated	signals	Zƒ ≤ÖΩ(ó, ç)	for	the	ç-th	sub-band	belonging	to	the	v-th	
sub-band	group,	the	virtual	loudspeaker	sub-band	signals	H[¬¥,j(ó, ç),	K = 1,… , ∞¥≥ƒ(v)	are	first	assigned	
to	 the	∞¥≥ƒ(v)	de-correlation	 filters.	To	obtain	 continuous	 input	 signals	 for	 the	de-correlation	 filters,	
over-lap	add	processing	is	employed.	In	particular,	the	input	signals	Zƒ ºõ≤ÖΩ(ó, ç)	to	the	de-correlation	
filters	for	the	ç-th	sub-band	are	computed	as	the	sum	of	a	faded	out	component	and	a	faded	in	component:		

Zƒ ºõ≤ÖΩ(ó, ç) = Zƒ ºõ≤ÖΩ,Ï◊∑(ó, ç) +Zƒ ºõ≤ÖΩ,ºõ(ó, ç)	

To	 compute	 the	 two	 individual	 components,	 firstly,	 the	 instantaneous	 frame	Zƒ ºõ≤ÖΩ,º(óI; ó; ç) 	of	 all	
permuted	 virtual	 loudspeaker	 sub-band	 signals	 of	 the	 sparse	 and	 truncated	 HOA	 sub-band	
representation	Yƒ¬¥(ó, ç)	for	the	ó-th	frame	is	computed	by:	

Zƒ ºõ≤ÖΩ,º(óI; ó; ç) = Îƒ¥≥ƒ(óI, v) ⋅Zƒ ¬¥(ó, ç)							for			óI ∈ {ó − 1, ó}		and			ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v)	

where	Îƒ¥≥ƒ(óI, v)	is	 the	permutation	matrix	 for	 the	v-th	sub-band	group	 including	 the	ç-th	sub-band	
and	 for	 the	 (óI)-th	 frame,	 where	óI ∈ {ó − 1, ó} .	 The	 sample	 values	 of	 the	 faded	 out	 and	 faded	 in	
components	 of	 the	 input	 signal	 frames	 to	 the	 de-correlation	 filters	 are	 determined	 for	1 ≤ 6 ≤ J¬≈ ,	
ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v),	v = 1,… , ö,	and	K = 1,… , ∞¥≥ƒ(v)	by:	

íXºõ≤ÖΩ,Ï◊∑,j(ó, ç; 6) = íXºõ≤ÖΩ,º,j(ó − 1; ó; ç; 6) ⋅ u¬≈(J¬≈ + 6)	

íXºõ≤ÖΩ,ºõ,j(ó, ç; 6) = íXºõ≤ÖΩ,º,j(ó; ó; ç; 6) ⋅ u¬≈(6)	

where	u¬≈(6)	denotes	the	elements	of	the	window	function	vector	_¬≈	defined	in	subclause	12.4.2.7.3.	In	
a	next	step,	each	K-th	output	signal	H[≤ÖΩ,j(ó, ç),	K = 1,… , ∞¥≥ƒ(v),	shall	be	computed	by	applying	to	the	
K -th	 input	 sub-band	 signal	H[ºõ≤ÖΩ,j(ó, ç) 	one	 of	 the	 ten	 different	 3rd	 order	 IIR	 de-correlation	 filters	
(indexed	from	0	to	9)	as	specified	in	ISO/IEC	23003-1:2007,	Table	A.29,	where	the	index	of	the	applied	
all-pass	filter	shall	be	selected	via	the	signal	index	K	according	to	Table	214.	

ISO/IEC	23008-3:202X(E)	

428	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	214	—	Assignment	of	signal	index	to	filter	index	

Signal	index		
d	

Filter	set		
X

1	 0
2	 1
3	 2
4	 3
5	 4
6	 5
7	 7
8	 8
9	 9	

12.4.2.8.6 Ambience	replication	

The	replicated	ambient	HOA	component	for	the	ç-th	sub-band	belonging	to	the	v-th	sub-band	group,	v =
1,… . , ö,	is	represented	by	means	of	upmix	signals	being	virtual	loudspeaker	sub-band	signals	H[¥≥,j(ó, ç)	
at	the	directions	(j

·GDC_(c)„,	K = 1,… , ∞¥≥ƒ(v),	defined	in	the	tables	in	Annexes	F.2	to	F.11.	The	upmix	
sub-band	signals	are	computed	by	re-assigning	the	de-correlated	signals	back	to	the	virtual	loudspeaker	
directions	and	successively	mixing	them.	For	the	purpose	of	signal	continuity	overlap-add	processing	on	
the	 upmix	 signals	 is	 carried	 out.	 In	 particular,	 the	 upmix	 signals	Zƒ ¥≥(ó, ç)	for	 the	ç-th	 sub-band	 are	
computed	as	the	sum	of	a	faded	out	component	and	a	faded	in	component:	

Zƒ ¥≥(ó, ç) = Zƒ ¥≥,Ï◊∑(ó, ç) +Zƒ ¥≥,ºõ(ó, ç)	

To	compute	the	two	individual	components,	in	a	first	step	the	instantaneous	frame	Zƒ ¥≥,º(óI; ó; ç)	of	all	
upmix	sub-band	signals	for	the	ó-th	frame	is	computed	by	

Zƒ ¥≥,º(óI; ó; ç) = /ƒ ¥≥ƒ(óI, v) úÎƒ¥≥ƒ(óI, v)û
XI
⋅Zƒ≤ÖΩ(ó, ç)	

							for			óI ∈ {ó − 1, ó}, ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v)			and			v = 1,… , ö	

Here,	Î¥≥ƒ(óI, v)	denotes	the	inverse	of	the	permutation	matrix	describing	the	re-assignment	for	the	v-
th	sub-band	group	and	the	óI-th	frame,	where	óI ∈ {ó − 1, ó}.	Further,	/¥≥ƒ(óI, v)	is	the	corresponding	
mixing	matrix.	Assuming	the	matrices	4¥≥,Ï◊∑(ó, ç),	Zƒ ¥≥,ºõ(ó, ç),	and	Zƒ ¥≥,º(óI; ó; K)ç	to	be	composed	of	
their	samples	by:	

Zƒ ¥≥,Ï◊∑(ó, ç) = P
íX¥≥,Ï◊∑,I(ó, ç; 1) … íX¥≥,Ï◊∑,I(ó, ç; J¬≈)
														⋮ ⋱ 																⋮
íX¥≥,Ï◊∑,åDC_(c)(ó, ç; 1) … íX¥≥,Ï◊∑,åDC_(c)(ó, ç; J¬≈)

R ∈ ℂåDC_(c)×K`a 	

Zƒ ¥≥,ºõ(ó, ç) = P
íX¥≥,ºõ,I(ó, ç; 1) … . íX¥≥,ºõ,I(ó, ç; J¬≈)
														⋮ ⋱ 																			⋮
íX¥≥,ºõ,åDC_(c)(ó, ç; 1) … íX¥≥,ºõ,åDC_(c)(ó, ç; J¬≈)

R ∈ ℂåDC_(c)×K`a 	

Zƒ ¥≥,º(óI; ó; ç) = P
íX¥≥,º,I(óI; ó; ç; 1) … íX¥≥,º,I(óI; ó; ç; J¬≈)
																	⋮ ⋱ 																					⋮
íX¥≥,º,åDC_(c)(óI; ó; ç; 1) … íX¥≥,º,åDC_(c)(óI; ó; ç; J¬≈)

R ∈ ℂåDC_(c)×K`a 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 429	
	

the	 sample	 values	 of	 the	 faded	 out	 and	 faded	 in	 components	 of	 the	 upmix	 sub-band	 signals	 are	
determined	for	1 ≤ 6 ≤ J¬≈, ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v), v = 1,… , ö, and	K = 1,… , ∞¥≥ƒ(v)	by		

íX¥≥,Ï◊∑,j(ó, ç; 6) = íX¥≥,º,j(ó − 1; ó; ç; 6) ⋅ u¬≈(J¬≈ + 6)	

íX¥≥,ºõ,j(ó, ç; 6) = íX¥≥,º,j(ó; ó; ç; 6) ⋅ u¬≈(6)	

where	u¬≈(6)	denote	the	elements	of	the	window	function	vector	_¬≈	defined	in	subclause	12.4.2.7.3.	

12.4.2.8.7 Inverse	spatial	transform	

The	virtual	loudspeaker	signals	Zƒ ¥≥(ó, ç)	representing	the	replicated	ambient	HOA	component	for	the	ç-
th	 sub-band	 belonging	 to	 the	v -th	 sub-band	 group,	v = 1,… , ö ,	 are	 subjected	 to	 an	 inverse	 spatial	
transform	to	provide	their	HOA	representation	Yƒ¥≥,º(ó, ç),	which	is	expressed	by	means	of	multiplication	
with	the	mode	matrix	F·GDC_(c),GDC_(c)„	(defined	in	Annex	F.1.5)	as	

Yƒ¥≥,º(ó, ç) = F·GDC_(c),GDC_(c)„ ⋅Zƒ ¥≥(ó, ç)					for			ℒ¥≥ƒ(v) ≤ ç ≤ ·¥≥ƒ(v)			and			v = 1,… , ö	

The	 final	output	HOA	representation	Yƒ¥≥(ó, ç)	is	obtained	 from	Yƒ¥≥,º(ó, ç)	by	padding	 it	with	zeros	 to	
order	(¥≥ƒ,±≥Â,	i.e.		

Yƒ¥≥,Õ(ó, ç) = sY
ƒ
¥≥,º(ó, ç)
T

t ∈ ℂGDC_,@Cb×K`a 							for			ç = 1,… , H	

12.4.2.8.8 Synthesis	filter	banks	and	coefficient	selection	and	fading	

Firstly,	the	frame	Õ5¥≥,Õ(ó) ∈ ℝå×K	of	the	preliminary	parametrically	replicated	ambient	HOA	component	
is	computed	as	follows:	

Its	first	∞¥≥ƒ,±≥Â	time	domain	coefficient	sequences	r̀¥≥,E(ó),	F = 1,… , ∞¥≥ƒ,±≥Â,	are	synthesized	from	
the	corresponding	sub-band	coefficient	sequences	rX¥≥,E(ó, ç),	ç = 1,… , H,	by	the	Synthesis	filter	banks.	
The	remaining	time-domain	coefficient	sequences	r̀¥≥,E(ó)	with	 indices	F = ∞¥≥ƒ,±≥Â + 1,… , ∞	are	set	
to	zero.	Note	that	the	synthesized	time	domain	coefficient	sequences	have	a	delay	of	5Ü±Õ = 577	samples	
due	to	the	successive	application	of	the	QMF	based	analysis	and	synthesis	filter	banks,	which	is	expressed	
by	the	breve	symbol	(˘)	above	the	variables.		

Next,	 the	 frame	Õ5¥≥,Õ(ó) 	of	 the	 preliminary	 parametrically	 replicated	 ambient	 HOA	 component	 is		
modified	 so	 that	 only	 contributions	 for	 those	 coefficient	 sequences,	 which	 have	 not	 been	 explicitly	
transmitted	for	the	ambient	HOA	component.	Further,	for	those	coefficient	sequences	of	the	ambient	HOA	
component	 that	 are	 transmitted	 in	 addition	 and	 faded	 in	 (or	 faded	 out),	 the	 respective	 coefficient	
sequences	of	the	HOA	representation	Õ5¥≥,Õ(ó)	of	the	parametrically	replicated	ambient	HOA	component	
have	 to	 be	modified	 by	 fading	 them	 out	 (or	 fading	 them	 in),	 respectively.	 Due	 to	 the	 delay	 between	
Õ≥±≈(ó)	and	Õ5¥≥,Õ(ó)	of	5Ü±Õ	samples	the	fading	of	the	coefficient	sequences	of	Õ5¥≥,Õ(ó)	is	performed	
across	 frame	 boundaries	 as	 illustrated	 in	 Figure	 70.	 The	 resulting	 HOA	 representation	 of	 the	
parametrically	replicated	ambient	HOA	component	is	denoted	by	Õ5¥≥(ó)		with	its	coefficient	sequences	
r̀¥≥,E(ó),	F = 1,… , ∞.		

ISO/IEC	23008-3:202X(E)	

430	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	
Figure	70	—	Illustration	of	faded	coefficient	sequences	of	¸̋≠∏(F)	

In	 the	case	 that	a	coefficient	sequence	r≥±≈,E 	of	 the	ambient	HOA	component	 is	 faded	out	 in	 the	ó-th	
frame	(i.e.	F ∈ ℐ≤(ó))	as	illustrated	in	Figure	70a,	the	fade	in	of	the	coefficient	sequence	r̀¥≥,E	in	the	ó-th	
frame	begins	5Ü±Õ	samples	later,	where	in	particular	the	fading	in	is	finished	only	at	the	5Ü±Õ-th	sample	
of	the	(ó + 1)-th	frame.		
Similarly,	in	the	case	that	a	coefficient	sequence	r≥±≈,E	of	the	ambient	HOA	component	is	faded	in	in	the	
ó-th	frame	(i.e.	F ∈ ℐÖ(ó))	as	illustrated	in	Figure	70b,	the	fade	out	of	the	coefficient	sequence	r̀¥≥,E	in	the	
ó-th	frame	begins	5Ü±Õ	samples	later,	where	in	particular	the	fading	out	is	finished	only	at	the	5Ü±Õ-th	
sample	of	the	(ó + 1)-th	frame.		
Finally,	it	has	to	be	considered	that	a	fade	in	or	fade	out	of	the	coefficient	sequences	r̀¥≥,Õ,E(ó)	of	the	HOA	
representation	of	the	composition	of	all	predicted	sub-band	directional	signals	is	only	required	if	it	is	not	
already	present,	resulting	from	overlap-add	processing.		

In	the	case	that)1¥≥ƒ(ó − 1) = 0	and)1¥≥ƒ(ó) = 1,	there	is	already	a	fade	in	within	each	of	the	ó-th	frames	
r̀¥≥,Õ,E(ó),	F = 1,… , ∞,and	hence	it	is	not	necessary	to	apply	an	additional	fade	in.	Similarly,	in	the	case	
that)1¥≥ƒ(ó − 1) = 1 	and)1¥≥ƒ(ó) = 0 ,	 there	 is	 already	 a	 fade	 out	 within	 each	 of	 the	ó -th	 frames	
r̀¥≥,Õ,E(ó),	F = 1,… , ∞ ,	 and	 hence	 it	 is	 not	 necessary	 to	 apply	 an	 additional	 fade	 out.	 Altogether,	 the	
computation	of	the	sample	values	.̆¥≥,E(ó, 6),	F = 1,… , ∞,	6 = 1,… , J,	of	the	coefficient	sequences	of	the	
HOA	 representation	 of	 the	 parametrically	 replicated	 ambient	 HOA	 component	 is	 hence	 formally	
expressed	by:	

Æ̆≠∏,+(F, Ä) = Æ̆≠∏,√,+(F, Ä) ⋅

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧i≥™ªmÄ + ó − Bà¥√n 			if			1 ≤ Ä ≤ Bà¥√ ∧ J ∈ ℐ≥(F − 1) ∧ kÁ≠∏ª(F − 2) = 1
i≥™ªmÄ + 2ó − Bà¥√n 			if			1 ≤ Ä ≤ Bà¥√ ∧ J ∈ ℐá(F − 1) ∧ kÁ≠∏ª(F − 1) = 1
1 			if			1 ≤ Ä ≤ Bà¥√ ∧

				{J ∉ ℐº(F − 1) ∪ ℐá(F − 1) ∪ ℐ≥(F − 1)
								∨ mJ ∈ ℐ≥(F − 1) ∧ kÁ≠∏ª(F − 2) = 0n
								∨ mJ ∈ ℐá(F − 1) ∧ kÁ≠∏ª(F − 1) = 0n˚

i≥™ªmÄ − Bà¥√n 			if			Bà¥√ < Ä ≤ ó ∧ J ∈ ℐ≥(F) ∧ kÁ≠∏ª(F − 1) = 1
i≥™ªmÄ + ó − Bà¥√n 			if			Bà¥√ < Ä ≤ ó ∧ J ∈ ℐá(F) ∧ kÁ≠∏ª(F) = 1
1 			if			Bà¥√ < Ä ≤ ó ∧

				{J ∉ ℐº(F) ∪ ℐá(F) ∪ ℐ≥(F)
								∨ mJ ∈ ℐ≥(F) ∧ kÁ≠∏ª(F − 1) = 0n
								∨ mJ ∈ ℐá(F) ∧ kÁ≠∏ª(F) = 0n˚

0 			else			

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 431	
	

12.4.2.9 HOA	composition	

The	frame	Õ5(ó)	of	the	finally	reconstructed	HOA	representation	is	computed	by	a	superposition	of	the	
frame	 Õ¥ƒÖ(ó) 	of	 the	 preliminary	 decoded	 HOA	 representation,	 the	 frame	 Õ5≤(ó) 	of	 the	 HOA	
representation	of	the	composition	of	all	predicted	sub-band	directional	signals	and	the	frame	Õ5¥≥(ó)	of	
the	replicated	ambient	HOA	component.	For	 the	superposition	 the	delay	between	 the	 individual	HOA	
representations	to	be	superposed	shall	be	taken	into	consideration.	Hence,	the	computation	of	the	sample	
values	.̆E(ó, 6),	F = 1,… , ∞,	6 = 1,… , J,	of	the	individual	coefficient	sequences	of	Õ5(ó)	is	given	by:	

.̆E(ó, 6) = .̆≤,E(ó, 6) + .̆¥≥,E(ó, 6) + e
.¥ƒÖ,E©ó − 1, J + 6 − 5Ü±Õ´ 			if			1 ≤ 6 ≤ 5Ü±Õ
.¥ƒÖ,E©ó, 6 − 5Ü±Õ´ 			if			5Ü±Õ < 6 ≤ J

	

 HOA	renderer	

12.4.3.1 General	

This	subclause	describes	the	conversion	of	the	decoded	higher	order	ambisonics	(HOA)	representation	
to	loudspeaker	signals.	In	subclause	12.4.2.4.2	the	renderer	architecture	is	presented;	the	design	process	
of	the	rendering	matrix	for	flexible	rendering	is	given	in	subclause	12.4.3.3.	Clause	16	gives	information	
about	a	gain	and	delay	compensation	for	non-spherical	placed	loudspeaker	configurations	and	subclause	
12.4.3.4	explains	NFC	processing.	

12.4.3.2 Architecture	overview	

The	conversion	process	is	shown	in	Figure	71.	

The	 decoded	 HOA	 representation	Õ ,	 here	 described	 as	 a	 matrix	 of	((+ 1)F 	rows	 and	}	columns.	(
denotes	the	HOA	order	(HoaOrder)	and	}		is	the	block	size	in	number	of	samples.	Õ	is	converted	to	the	
representation	of	loudspeaker	signals		œ	of	size	J	í	},	where	J	is	the	number	of	loudspeaker	channels,	
by	multiplication	with	the	rendering	matrix	1:		œ = 1	Õ.	A	comprehensive	description	of	the	expected	
HOA	format	(*. E. Õ)	can	be	found	in	Annexes	F.1	and	C.5.1.		

	

NOTE	 Preprocessing	block	NFC	processing	(should	be	switched	active	if	UseNfc	is	true	and	the	loudspeaker	
listener	distance	˛ƒ≈∆	is	smaller	than	NfcReference	Distance),	pre-processing	block	DRC-1	for	HOA	and	as	an	
alternative	to	rendering	to	loudspeakers,	a	computational	efficient	binaural	rendering	directly	using	the	HOA	
coefficients	(H2B,	see	subclause	13.3.1).	Computational	more	efficient	but	mathematically	equivalent	ways	to	
implement	the	processing	chain	may	be	found	in	Annex	G.	

Figure	71	—	HOA	rendering	process	
The	rendering	process	assumes	that	the	loudspeakers	are	positioned	at	equal	distances	from	the	sweet	
spot	(spherical	setup)	and	that	the	gain	and	delay	compensation	is	performed	as	post	processing	of	the	
loudspeaker	signals	before	play	out	to	create	a	virtual	spherical	setup.	Clause	16	provides	an	informative	
description.	A	Peak	Limiter	should	be	implemented	as	part	of	the	post-processing.		

ISO/IEC	23008-3:202X(E)	

432	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	rendering	state	diagram	is	shown	in	Figure	72.	On	creation	the	renderer	receives	the	positions	of	the	
loudspeaker	setup	ø¬¥Ö≥√Öƒ.	ø¬¥Ö≥√Öƒ = [Ĭ, F̆, … , K̆]	is	a	matrix	of	size	3íJ,	where	L	gives	the	number	
of	loudspeakers	and	 C̆ = [GC , ¿C , ¡C]Y = πGC , ø» *

Y∫
Y 	is	the	position	vector	of	loudspeaker	6.	GC 	is	the	distance	

from	 the	 sweet	 spot	 (listening	 position)	 to	 loudspeaker	6 	and	ø» *Y = [¿C , ¡C] 	are	 the	 related	 spherical	
angles.	For	the	definition	of	 the	spherical	coordinate	system	of	the	HOA	rendering	process	see	Annex	
F.1.1,	Figure	F.1.	Note	that	the	definition	of	the	spherical	coordinate	system	used	here	differs	from	the	
one	used	within	other	parts	of	the	standard.	The	inclination	angle	¿C 	here	is	related	to	the	elevation	angle	
in	rad	by	¿C =

Ê

F
− ¿C,PCPteQb`E.	

For	all	HOA	supported	orders	(the	renderer	may	create	rendering	matrices	and	store	these	in	a	data	
base	or	calculate	these	matrices	on	the	fly	when	required	(see	subclause	12.4.3.3	for	details	on	matrix	
construction).	In	case	an	HOA	rendering	matrix	was	signalled	via	HoaRenderingMatrixSet()	(subclause	
5.2.2.5)	 which	 matches	 the	 actual	 reproduction	 setup	 according	 to	 the	 matching	 rules	 defined	 in	
subclause	10.3.1,	the	signalled	HOA	rendering	matrix	shall	be	applied	for	the	rendering	process.	

	

NOTE	 There	are	two	states	of	initialization.	First	the	rendering	matrices	are	created	depending	on	the	
loudspeaker	positions.	A	matrix	suited	for	content	to	process	is	then	selected	using	content	meta	data	information.	

Figure	72	—	Renderer	state	diagram		

When	new	content	is	streamed	to	the	renderer,	it	receives	content	information	extracted	from	HOAConfig	
().	The	renderer	will	try	to	select	a	rendering	matrix	1	using	the	HoaOrder	and	create/select	NFC	filters	
for	pre-processing	if	necessary,	i.e.	if	UsesNfc	is	active	in	the	bitstream	and	NfcReferenceDistance	>	GWei ,	
with	GWei	the	maximum	loudspeaker	distance	of	the	listening	setup.	If	successful,	the	renderer	will	reach	
state	 Initialized.	 Rendering	 block	 processing	 of	 HOA	 data	 then	 creates	J	 loudspeaker	 output	 signals	
(blockProcess()).	

12.4.3.3 Matrix	design	for	flexible	rendering	

12.4.3.3.1 General	

This	subclause	describes	the	design	of	energy	preserving	rendering	matrices,	where	the	number	of	HOA	
coefficients	((+ 1)F	can	be	larger	than	the	number	of	loudspeakers	J.	Energy	preservation	describes	the	
characteristics	that	the	HOA	signal’s	 loudness	 is	preserved	independent	of	the	 loudspeaker	setup	and	
that	constant	amplitude	spatial	sweeps	can	be	perceived	equal	 loud	after	rendering.	The	subclause	 is	
divided	into	two	parts:	First	the	design	for	3D	loudspeaker	setups	are	described,	then	the	design	method	
for	2D	loudspeaker	setups	is	presented.	The	2D	design	method	makes	use	of	the	3D	method	because	it	
uses	virtual	loudspeakers	placed	at	the	pole	positions	of	a	(virtual)	spherical	loudspeaker	setup.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 433	
	

12.4.3.3.2 Matrix	design	for	3D	loudspeaker	setups	

12.4.3.3.2.1 Building	block	overview	

The	building	blocks	are	shown	in	Figure	73.	For	each	supported	HOA	order	(a	matrix	1	is	created.	Main	
input	 to	 the	 design	 are	 the	 loudspeaker	 positions	 which	 are	 here	 indicated	 by	æK 	as	 directions.	J	
loudspeaker	 directions	 are	 given	 by	æK = [ø»I, … , ø»¿]	with	 spherical	 angle	ø» * = π¿fC , ¡fC∫

Y .	 A	 spherical	
setup	 is	 assumed	and	 the	 loudspeaker	distances	 are	neglected.	¿fC 	indicates	 the	 inclination	and	¡fC 	the	
loudspeaker	azimuth,	both	in	radians.	The	related	coordinate	system	in	Cartesian	coordinates	is	centered	
at	the	sweet	spot,	the	X-axis	is	horizontal	with	the	positive	direction	pointing	towards	the	ideal	centre	
loudspeaker	position;	the	Y-axis	is	horizontal	with	the	positive	direction	pointing	to	the	left	of	centre	and	
the	Z-axis	pointing	vertically	upwards.	An	 ideally	placed	centre	 loudspeaker	 thus	would	have	a	 [Ê

F
, 0]	

position.		

	

Figure	73	—	Building	blocks	of	the	matrix	design	procedure	

The	matrix	design	process	also	requires	the	ideal	spherical	design	positions	æp	=	 [øI, … , ø¬]	with	ø/ =
[¿f, ¡f]Y ,	characterized	such	that	they	adequately	sample	the	surface	of	the	unit	sphere	very	regularly.	A	
spherical	grid	of	a	ñ = 324	positions	 is	defined,	which	enable	 the	construction	of	matrices	up	 to	HOA	
order	(= 9.	The	position	tables	are	defined	in	F.11.	

12.4.3.3.2.2 Building	block	—	Get	mode	matrix	

A	mode	matrix	Fƒ 	dependent	upon	æp 	and	N	 is	 calculated	or	 read	 from	memory.	 	Fƒ = [3ñ, …3¯]	with	
3f = [ñV

V(øf), ñI
XI(øf), … , ñG

G(øp)]l ,	 where	 vector	 3f	 	holds	 the	 real	 valued	 spherical	 harmonic	
coefficients	ñEW(øf).	For	the	calculation	of		ñEW(øf)	see	the	definition	in	Annex	F.1.3.		

12.4.3.3.2.3 Building	block	—	Build	mix	matrix	

A	mix	matrix	g = [∏ñ, … , ∏¯]	of	size	Jíñ	is	created	which	holds	gain	vectors	∏˘	to	achieve	a	panned	mix	
in	direction	ø/ 	with	 loudspeakers	positioned	at	æK .		The	method	of	 robust	panning	 is	presented	here	
which	has	been	shown	to	be	 ideal	when	constructed	according	to	the	following	processing	steps.	The	
principle	is	depicted	in	Figure	74.	For	each	and	every	plane	wave	from	direction	ø/,	J	panning	gains	in	
vector	∏˘		(∏˘ = πvf,I, . . , vf,C∫

Y),	intended	to	attenuate	plane	waves	emitted	from	æK	(loudspeakers)	are	
created	 in	 a	 way	 that	 the	 error	 recorded	 at	 virtual	 microphones	 becomes	 minimal.	 Let	h˘ ∈ 	|ri	I	
denote	{	microphone	signals	receiving	the	sound	radiated	from	sources	placed	at	ø/		and		h˙ ∈ 	|riI	
the	sound	from		sources	placed	at	æK .	The	virtual	microphone	signals	are	given	by	the	plane	wave	transfer	
functions	and	an	excitation	signal	∂	by	h˘ = irf∂	and	h˙ = j˚˙	∏˘	∂.	The	error	|h˘ −	h˙|F

F	becomes	
independent	of	∂.		

ISO/IEC	23008-3:202X(E)	

434	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

NOTE	 Virtual	microphones	capture	sound	from	direction	Î«	as	a	plane	wave.	Panning	gains	are	calculated	such	
that	the	sound	recorded	from	loudspeaker	directions	ˇ» = [Î!…, … , Î!]	becomes	as	close	as	possible	compared	to	
first	measurement.	

Figure	74	—	Principle	of	robust	panning		

Minimizing	the	error	term	ÇI = |irf −j˚˙	∏˘|¸
¸		 	 leads	to	the	LMS-error	solution	for	∏˘.	To	make	the	

gain	vector	solution	more	robust	a	regularization	parameter	is	introduced	that	increases	the	costs	if	the	
gains	become	large	for	sources	positioned	far	away	from	direction	ø/:	

Minimize:		ÇF = |irf −j˚˙	∏˘|¸
¸ 	+ 	#	G	k˝∏˘G¸

¸
		

The	LMS	solution	of	this	equation	is	given	by:	

∏˘ = ©j˚˙
˛ 	j˚˙ + 	#	l˛l´

Xñ
	j˚˙

˛ 			irf,	

With		l	an	JíJ	diagonal	matrix	with	diagonal	elements	of	vector	k	:	 	l = K*xv(k);	()Y 		the	transpose,	
and	()l 	the	 complex	 conjugate	 transpose.	 	k = [mI, … ,mK]Y ,	 where	mC 	needs	 to	 become	 larger	 the	
bigger	the	spherical	angle	of	direction	ø/	to	loudspeaker	direction	ø» *	gets:		mC 	~(∡ø/, ø» *)	.	

The	transfer	functions	irf,	j˚˙	are	functions	of	frequency.	To	ensure	that	the	gains	∏˘		are	independent	
of	frequency,	the	virtual	microphone	radius	is	selected	as	a	function	of	frequency.		

Detailed	description:	

1)	 A	test	frequency	y = 1	000	ÑÖ	is	defined.	Calculation	of	
ó =

F	Ê	B

O1
	,		

with		.f		is	the	speed	of	sound	(340m/s).	#	is	selected	dependent	of	the	HOA	order	of	the	
content	to	be	rendered,	see	Table	190.	

2)	 The	spherical	angles	of	virtual	microphone	positions	ær ,	with	ær = [øpI, … , øp±]		with	
øpM = π¿pW, ¡Wp ∫

Y ,	are	defined		with	{ = 256	positions	in	Annex	F.11.	The	microphone	
position	radius	is	calculated	by:		

Gr =
0.4667©√J − 1´

ó
	

with	J	the	number	of	loudspeakers.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 435	
	

3)	 Calculation	of	j˚˙ ∈ 	|ri	K	with	matrix	elements			

ÑW,C = Eb	ï	RX 	,›/(ˇ$,))			

where	àC,W	is	the	spherical	angle	between	øpM	and	ø» *	:		

cos(àC,W)	 = cos(¿fC)	cos	(¿pW) + sin(¿fC)	,*F ©¿pW´	cos(¡fC − ¡Wp)	.	This	is	the	plane	wave	

transfer	function	and	equal	to	Eb	·ï	!ü$6„!"Å 	where		4»C 	are	the	loudspeaker	positions	in	

Cartesian	coordinates	(with	radius	1)	and	4p#		the	microphone	positions	in	Cartesian	

coordinates	(with	radius	Gr).	

4)	 Loop:	yìG(, = 1, , ≤ ñ, , + +)	

	 a)	 Calculation	of	irf	∈ 	|riI	with	vector	elements	

ℎW,f =	Eb	ï	RX 	,›/(
$̌1,))			

where	à’f,W	is	the	spherical	angle	between	øpM	and	ø/	:		

cos(à’f,W)	 = cos(¿f)	cos	(¿pW) + sin(¿f)	,*F ©¿pW´	cos(¡f − ¡Wp)	.	

	 b)	 Calculation	of	q = K*xv(k)	with:	

mC = 1 − ©0.5 + 0.5 cos©à̅f,C´´
F		

and	cos©à̅f,C´ = 	 cos(¿f)	cos	(¿fC) + sin(¿f)	,*F ©¿fC´	cos(¡f − ¡fC)	.	

	 c)	 Calculation	of	∏˘ = ©j˚˙
˛ 	j˚˙ + 	#	l˛l´

Xñ
	j˚˙

˛ 			irf.	

	 d)	 The	J	gain	values	are	complex	with	a	very	small	imaginary	part.	We	use	only	real	

valued	gains:				∏–˘ = ±E(∏˘).	

	 e)	 Fill	in	the	gain	vector	into	the	Mix	Matrix	:	

g = [∏–ñ, . . , ∏–˘, …]	

Table	215	—	Values	of	regularization	parameter	β	depending	on	HOA	content	order	

HOA	order	x	 1	 2	 3	 4	 >4	

"	 1	000	 1	000	 100	 100	 50	

	
12.4.3.3.2.4 Building	block	—	Build	base	matrix	

The	compact	singular	value	decomposition	of	the	matrix	product	of	the	mode	matrix	and	the	transposed	
mixing	matrix	is	calculated	by:	

≈	∆	«l = FƒgY 	

Matrix		∆ = K*xv(ñI, . . . , ñ%)		is	diagonal	with	the	singular	values	as	diagonal	elements.	Let	ñWei	denote	
the	maximal	singular	value.		

A	new	diagonal	matrix	with	∆» = K*xv©	ñsI, … , ñs%´	is	created	with	ñs& = 71 *y		ñï/ñWei ≥ 	x	
0 E6,E

	

A	threshold	value	t	of	–60dB	was	selected:	t = 10X¨.	

ISO/IEC	23008-3:202X(E)	

436	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	base	matrix	is	calculated	as	follows:	1» = «	∆»		≈l 	

12.4.3.3.2.5 Building	block	—	Smooth	matrix	

The	task	of	this	building	block	is	to	smooth	the	directive	properties	of	the	renderer,	i.e.	to	attenuate	the	
back	and	side	 lobes	of	 the	 loudspeaker	panning	pattern	with	the	cost	of	widening	the	main	 lobe.	The	
smoothed	rendering	matrix	1ƒ 	is	created	by:	

1ƒ = 1»	uvw∏	(x)	

where	 	x		 is	a	gain	vector	of	size	((+ 1)F.	The	process	 is	analogous	 to	windowing	 in	 time-frequency	
processing	 and	 is	 equal	 to	 a	 left	 convolution	 on	yF 	(on	 the	 unit	 sphere)	 in	 the	 spatial	 domain.	 The	
smoothing	gains	of	vector	x	are	constructed	from	a	helper	vector	z	with	(+1	elements.	

To	construct	the	helper	vector	z	two	different	approaches	are	to	be	used.	

— If	J ≥ ((+ 1)F,	i.e.	if	the	number	of	loudspeakers	is	larger	or	equal	to	the	number	of	HOA	coefficients,	
so	called	pxí_≥m 	coefficients	are	used.	Algorithm:	
— The	rightmost	zeros	of	the	Lengendre	Polynomials	of	increasing	order	N,	starting	with	order	1	

to	order	13	are	given	in	the	vector	{:	{	= [0.0, 0.5574, 0.7746, 0.8611, 0.9062, 0.9325,
0.9491, 0.9603, 0.9682, 0.9739, 0.9782, 0.9816, 0.9842];	

— select	value	GÉ = ÖGHI	from	{	.	(In	C++	notation	rE	=	z[N])	
— set	|I = 1	and	obtain	the	remaining	values	by	calculating	the	Legendre	polynomial	€E()	of	

order	n	for	the	value	rE:		
for(F = 1; F < (; F + +)	
|-HI = €E(GÉ)	

— if	J < ((+ 1)F	a	Kaiser-Bessel	right	half-window	design	is	used	to	calculate	the	coefficients	|E:		
	

|E =
u7'qbjQw	áIXà!(WÇ#ÉH)$%WÉH

XIä
!
(

u7(qbjQw)
				 for		F = 1…(+ 1	

	
where	®V()	denotes	the	zero-order	Modified	Bessel	function	of	the	first	kind	with	parameters	6EF =
2x + 1	and	iLÑjℎ = x + 1.	

Vector		x	is	now	constructed	from	|E	:x = [|I, |F, |F, |F, |¨, |¨, |¨, |¨, |¨, |ó, . . , |G]Y 	

which	is	to	be	computed	by:	

for	(F = 0; 	F ≤ (, F + +)		

	 	 for(p = −F;p ≤ F;p + +)		

				 	 	 							}E!HE	HWHI =	|EHI	

12.4.3.3.2.6 Building	block0020—	Normalize	matrix	

The	rendering	matrix	is	derived	by	normalization	by	its	Frobenius	norm:	

1 =	
1ƒ

||	1ƒ||B		
		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 437	
	

where	||	1ƒ||B	denotes	the	Frobenius	matrix	norm,	||	1ƒ||B = õ∑ ∑ 5ƒC,E
F(GHI)!

EJI
K
CJI 	

12.4.3.3.3 Matrix	design	for	2D	loudspeaker	setups	

A	2D	 loudspeaker	setup	 is	detected	 if	all	 loudspeaker	elevation	positions	are	within	7	degrees	 to	 the	
horizontal	plane	or	expressed	in	loudspeaker	inclinations	¿fC 	:		

	*y	(¿fC >
Ê

IØV
(90 − 7)	&&		¿f <	

Ê

IØV
(90 + 7))	is	true	for	all	loudspeakers	6 = 1,2, . . , J.	

Then	two	more	(virtual)	loudspeakers	are	added	so	that	the	new	number	of	loudspeakers	JF	becomes	
JF = J + 2	and	the	new	loudspeaker	directions	are	given	by:	

æK! = [ø»I, … , ø»¿… ,ø»¿HI… ,ø»¿HF]	with	 spherical	 angle	ø» * = π¿fC , ¡fC∫
Yand	 		ø»¿HI = [0,0]Y 	and		ø»¿HF =

[ï, 0]Y .	

A	matrix	1~̧ ∈ 	±K!N	(õHI)
!			is	designed	using	the	design	method	for	3D	loudspeaker	setups	with	the		æK! 	

loudspeaker	position	directions.		

A	matrix	1¸ ∈ 	±K	N	(õHI)
!	with	matrix	elements	5FC,E	is	created	from	1~̧ 	by:	

5FC,E =	5F
~

C,E + v	 ú5F
~

KHI,E + 5F
~

KHF,Eû,	

for	= 1,2, . . , J	,	F = 1,2, . . , ((+ 1)F	and	v = I

√K.	

Finally,	the	rendering	matrix	1	is	derived	by	repeating	the	building	block	–	normalize	matrix:	

1 =	
1¸

||	1¸||B		
	,	

where	||	1¸||B	denotes	the	Frobenius	matrix	norm,	||	1¸||B = ∑ ∑ 5FC,E
F(GHI)!

EJI
K
CJI .	

12.4.3.4 NFC	processing	

This	 subclause	 describes	 the	 design	 of	 the	 near-field	 compensating	 filters.	 These	 are	 intended	 to	 be	
applied	to	HOA	signals	before	the	building	block	called	“HOA	to	loudspeaker	conversion”	in	Figure	71.	

NFC	compensation	is	advantageously	used	for	spherical	microphone	recordings	or	artificial	mixing	with	
very	close	sound	sources.	In	this	description	it	is	assumed	that	the	HOA	content	has	maximum	order	N.	

For	a	given	HOA	component	of	order	n,	where	n	 is	0 ≤ F ≤ (,	NFC	HOA	uses	d- =
%7
(!)(ª	"9)

	%F
(!)(ª"9)

%F
(!)(ª	"	jÑe)

	%7
(!)(ª	"	jÑe)

,	

with	h-
(F)	as	the	spherical	Hankel	functions	of	the	second	kind,	r/	is	the	source-sweet	spot	distance,	and	

r	õÕΩ	is	the	compensation	radius	(r	õÕΩ =	NfcReferenceDistance).		

The	 transfer	 function	d- 	introduced	above	applies	 to	any	HOA	signal	of	order	n.	 In	 the	renderer,	 it	 is	
implemented	in	the	time	domain	as	an	n-th	order	IIR	filter	under	the	Direct	Form	II,	with	n/2	second	
order	sections	(or	“cells”)	for	even	n,	or	(n-1)/2	second	order	sections	plus	one	first	order	section	for	odd	
n:	

ISO/IEC	23008-3:202X(E)	

438	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	
the	right	factor	(first	order	cell)	being	present	only	for	odd	orders	n.		

For	a	given	order	n,	filter	coefficients	aé
ê	are	computed	as	follows.	

1) SetÀ03NFC/L	with	the	sound	speed	c	having	a	typical	value	of	340	m/s.	

2) Set	 	
3) For	 second	order	 cells	 (for	1£q£n/2),	derive	 coefficients	a'

ê ,	a&
ê 	and	a%

ê 	from	conjugate	 complex	
roots	Xè,ê		and	Xè,èFê]& = Xè,ê∗ 	exhibited	in	Table	216:	

	
4) For	odd	order	filters,	derive	the	coefficients	of	the	additional	first	order	cell	as	follows:	

	
Filter	coefficients	bé

ê	are	computed	according	the	same	procedure,	where	coefficients	aé
ê	just	have	to	be	

replaced	by	bé
ê		and	step	1	is	replaced	by:	

1) Set*JRmax/O	
Table	216	—	Approximative	values	Xnq	of	the	roots	of	generalized		

Bessel	polynomials	for	the	first	few	orders	n	

n	
q	

1	 2	 3	

1	 -2	 	 	

2	 -3.0000+1.7321j	 	 	

3	 -3.6778+3.5088j	 -4.6444	 	

4	 -4.2076+5.3148j	 -5.7924+1.7345i	 	

5	 -4.6493+7.1420j	 -6.7039+3.4853j	 -7.2935	

6	 -5.0319+8.9853j	 -7.4714+5.2525j	 -8.4967+1.7350j	

 Layered	coding	for	HOA	

12.4.4.1 General	

This	subclause	describes	the	layered	coding	for	HOA	sound	field	representations.	First	the	structure	of	
the	compressed	HOA	sound	field	representation	is	described.	Based	on	this	description	it	is	shown	how	
the	 side	 information	 is	 structured	 in	 the	 case	 of	 the	 mode	 of	 HOA	 layered	 coding.	 In	 the	 following	

1 1
1 2 1/ 2 2 2

0 1 2 0 1
1 11 2

1 10 1 2 2 2
0 1

1
1 2 1/ 2 2

1 2 1
11 2

1 11 2 2
1

()

1 ' ' 1 '
1 ' ' 1 '

n n
q q qn

n n nq q q
q

n
q qn

nq q
q

b b z b z b b zH z
a a z a z a a z

b z b z b zg
a z a z a z

+ +
- - -

+ +- -
= -

+
- - -

+- -
= -

+ + +
= ´

+ +
+

+ + +
= ´

+ +
+

Õ

Õ

ta sf4=

2

,,
0 2

2

,
1 2

2

,,
2 2

Re()
1 2

2 1

Re()
1 2

n qn qq

n qq

n qn qq

XX
a

X
a

XX
a

a a

a

a a

= - +

æ ö
ç ÷= - -
ç ÷
è ø

= + +

1 1
,(1)/2 ,(1)/22 2

0 11 , 1
n n

n n n nX X
a a

a a

+ +
+ +æ ö

= - = - +ç ÷
è ø

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 439	
	

subclauses	 the	 initialization	of	 the	decoder	 and	 the	behaviour	of	 the	decoder	 in	 case	of	 drop	outs	 of	
enhancement	layers	are	described.	

12.4.4.2 Structure	of	compressed	HOA	sound	field	representation	

In	the	following	the	compressed	HOA	representation	is	described	and	structured	from	the	perspective	of	
layered	coding.	It	can	be	generally	decomposed	into	the	following	components:	

¾ A	basic	compressed	HOA	sound	field	representation	consisting	of	a	number	of	complementary	
components	 (ID_USAC_SCE,	 ID_USAC_CPE	 type	 of	 usacElementType	 in	 Table	 44),	 being	 the	
monaural	 transport	 signals	 representing	 either	 predominant	 sound	 signals	 or	 ambient	 HOA	
coefficient	signals.	
	

¾ Basic	 side	 information	 (ID_EXT_ELE_HOA	 type	 of	 usacExtElementType	 in	 Table	 26)	 which	
describes	for	each	of	these	monaural	signals	how	it	spatially	contributes	to	the	sound	field.	This	
can	be	separated	into	the	following	two	different	components.	
	

¾ Side	information	related	to	individual	(monaural)	transport	signals,	which	is	independent	
of	the	existence	of	other	transport	signals.	Such	side	information	may	for	instance	specify	
a	monaural	signal	to	represent	a	directional	signal	(meaning	a	general	plane	wave)	with	
a	 certain	 direction	 of	 incidence.	 Alternatively,	 a	 monaural	 signal	 may	 be	 specified	 as	
ambient	HOA	coefficient	signals	having	certain	indices.	
	

¾ Side	 information	related	to	vector-based	signals	 in	 the	mode	CodedVVecLength	=	1,	of	
which	the	directional	distribution	is	specified	by	means	of	a	vector.	This	side	information	
is	dependent	on	the	transmitted	coefficient	sequences	of	the	original	HOA	component.	In	
the	mentioned	mode	particular	components	of	this	vector	are	implicitly	set	to	zero	and	
are	not	part	of	the	compressed	vector	representation.	These	components	are	those	with	
indices	equal	to	those	of	coefficient	sequence	of	the	original	HOA	representation,	which	
are	part	of	the	basic	compressed	sound	field	representation.	That	means	that	if	individual	
components	of	the	vector	are	coded,	their	total	number	depends	on	the	basic	compressed	
sound	field	representation,	 in	particular	on	which	coefficient	sequences	of	 the	original	
HOA	representation	it	contains.		
If	no	coefficient	sequences	of	the	original	HOA	representation	are	contained	in	the	basic	
compressed	sound	 field	representation,	 the	dependent	basic	side	 information	 for	each	
vector-based	signal	consists	of	all	the	vector	components	and	has	its	greatest	size.	In	the	
case	that	coefficient	sequences	of	the	original	HOA	representation	with	certain	indices	are	
added	to	the	basic	compressed	sound	field	representation,	the	vector	components	with	
those	indices	are	removed	from	the	side	information	for	each	vector-based	signal,	thereby	
reducing	the	size	of	the	dependent	basic	side	information	for	the	vector-based	signals.	
	

¾ Enhancement	side	information	(ID_EXT_ELE_HOA_ENH_LAYER	type	of	usacExtElementType	in	
Table	 26)	 to	 parametrically	 improve	 the	 basic	 compressed	 HOA	 sound	 field	 representation	
consisting	of	the	following	components:	
	

¾ Parameters	 related	 to	 the	 (broadband)	 spatial	 prediction	 to	 (linearly)	 predict	missing	
portions	of	the	sound	field	from	the	directional	signals.	
	

¾ Parameters	 related	 to	 the	 sub-band	 directional	 signals	 synthesis	 and	 the	 parametric	
ambience	 replication,	 which	 allow	 a	 frequency	 dependent,	 parametric	 prediction	 of	
additional	monaural	signals	to	be	spatially	distributed	in	order	to	complement	a	so	far	
spatially	incomplete	or	deficient	compressed	HOA	representation.	The	prediction	is	based	

ISO/IEC	23008-3:202X(E)	

440	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

on	 coefficient	 sequences	 of	 the	 basic	 compressed	 sound	 field	 representation.	 An	
important	aspect	is	that	the	mentioned	complementary	contribution	to	the	sound	field	is	
represented	 within	 the	 compressed	 HOA	 representation	 not	 by	 means	 of	 additional	
quantized	signals,	but	rather	by	means	of	extra	side	information	of	a	comparably	much	
smaller	 size.	 Hence,	 the	 two	 mentioned	 coding	 tools	 are	 especially	 suited	 for	 the	
compression	of	HOA	representations	at	low	data	rates.	

	
The	layered	coding	mode	is	indicated	by	SingleLayer==0	in	the	HOADecoderConfig().		Referring	to	the	
above	described	 structure	of	 the	 compressed	HOA	sound	 field	 representation,	 the	base	 layer	 for	one	
single	 frame	 is	 composed	 of	 the	 basic	 side	 information	 contained	 in	 the	 HOAFrame(),	 the	 payloads	
containing	the	transport	signals	included	in	the	base	layer	(SCEs	and/or	CPEs)	and	zero	or	one	optional	
payload	HOAEnhFrame()	with	enhancement	side	information.		

Each	enhancement	 layer	contains	payloads	with	additional	 transport	signals	 (SCEs	and/or	CPEs)	and	
zero	 or	 one	 optional	 payload	 HOAEnhFrame()	 with	 corresponding	 enhancement	 side	 information	
adapted	to	the	increased	number	of	transport	signals.	

This	structuring	of	the	information	contained	in	the	bitstream	corresponds	to	the	different	types	of	HOA	
extension	elements	provided	in	the	mpegh3daExtElement()s.	The	same	structuring	of	information	can	
be	found	in	the	corresponding	configuration	information,	which	consists	of	the	configuration	information	
for	the	HOA	transport	channels	(ID_USAC_SCE	and	ID_USAC_CPE	in	Table	21)	and	the	HOA	configuration	
information	separated	into	base	(ID_EXT_ELE_HOA)	and	enhancement	(ID_EXT_ELE_HOA_ENH_LAYER)	
configuration	information.	Each	layer	has	its	own	enhancement	configuration	information.	Whereas	only	
the	base	layer	(LayerIdx	==	0)	additionally	contains	the	basic	HOA	configuration	information.	Note:	in	
case	of	single	layer	HOA	coding	the	enhancement	information	in	the	configuration,	as	well	as	in	the	frame	
payload	is	embedded	into	the	basis	information	and	not	sent	as	separate	extension	payload	packet.	

In	case	of	layered	coding	the	information	of	the	sound	field	is	still	part	of	one	and	the	same	SignalGroup	
of	SignalGroupTypeHOA.		

Figure	75	shows	an	example	of	the	ordering	of	MHAS	packets	in	a	stream	for	two	layer	HOA	coding.	

	

NOTE	 The	packets	are	sent	starting	from	the	left	box	to	the	right	box	and	in	the	boxes	from	top	to	bottom.	The	
light	blue	blocks	compile	the	base	layer	and	the	yellow	blocks	compile	the	enhancement	layer.	

Figure	75	—		Example	of	the	ordering	of	MHAS	packets	in	a	stream	for	HOA	coding	with	2	layers	
(base	and	enhancement	layer)		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 441	
	

The	figure	clarifies	an	exception	for	the	general	ordering	of	the	payloads	in	3daFrame().	Generally,	the	
information	of	one	SignalGroup	 is	ordered	 in	 such	a	way	 that,	 firstly,	 all	 extension	payloads	are	 sent	
followed	by	the	SCE	and	CPE	packets	belonging	to	this	group.	In	case	of	layered	coding	this	convention	is	
modified	to	allow	for	easy	extraction	of	the	packets	belonging	to	the	different	layers.	As	shown	in	Figure	
75	the	optional	HOAEnhFrame()	packet	shall	directly	precede	the	SCE	or	CPE	packets	belonging	to	the	
same	layer.		The	partitioning	of	the	payload	information	and	the	ordering	shall	be	the	same	as	signalled	
in	the	HOAConfig().	

Note:	To	enable	a	reasonable	separation	of	the	HOA	transport	channels	into	the	base	and	enhancement	
layers,	 described	 by	 their	 assignment	 to	 the	 mpegh3daChannelElments(),	 the	 parameter	
MinAmbHoaOrder	 in	HOADecoderConfig()	has	to	be	set	to	-1	by	the	encoder.	 If	not	set	to	 -1	then	the	
transport	 channels	 corresponding	 to	 the	 ambiance	 which	 is	 always	 transmitted,	 described	 by	 the	
minimum	ambiance	order,	would	be	 in	 the	highest	 layers,	 i.e.	 in	 the	 last	mpegh3daChannelElments().	
Typically,	this	information	should	be	sent	in	the	base	layer.	In	case	MinAmbHoaOrder=-1	the	assignment	
of	the	transport	channels	to	the	mpegh3daChannelElments()	is	completely	flexible	and	can	be	defined	by	
the	encoder.	

12.4.4.3 Initialization	of	the	decoder	for	HOA	layered	coding	

As	already	shown	in	Figure	75,	the	complete	configuration	information	shall	be	sent	in	the	base	layer.	
This	 ensures	 that	 for	 the	 initialization	 of	 the	 decoder,	 e.g.	 in	 case	 of	 a	 configuration	 change,	 all	
configuration	 information	 is	 available	 to	 initialize	 the	 complete	 decoder	 including	 all	 necessary	 core	
decoder	instances	for	all	 layers.	This	means	the	decoder	is	initialized	in	the	same	way	as	in	the	single	
layer	mode.	

12.4.4.4 Decoder	behaviour	in	HOA	layered	coding	mode	

The	 information	 contained	 in	 the	 different	 layers	 is	 incremental.	 This	 means,	 the	 information	 of	 an	
enhancement	layer	can	only	be	meaningfully	decoded	if	all	lower	layers	are	present.	For	example,	in	case	
of	three	layers,	the	third	layer	can	only	be	decoded	if	the	base	layer	and	the	first	enhancement	layer	are	
both	available.	For	the	HOA	spatial	decoding	process	only	the	HOAEnhFrame()	information	of	the	highest	
available	 layer,	 for	 which	 all	 lower	 layers	 are	 also	 present,	 may	 be	 used.	 All	 other	 HOAEnhFrame()	
packets	shall	not	be	used.	

In	 case	 an	 enhancement	 layer	 is	 not	 available,	 in	 the	 loop	 over	 all	 elements	 of	 the	 frame	 in	
mpegh3daFrame()	the	corresponding	elements	of	the	missing	enhancement	layer	will	not	be	present.	
To	allow	for	consistently	similar	processing	of	all	decoder	 instances	any	missing	 information	
starting	with	the	first	missing	enhancement	 layer	may	be	replaced	by	dummy	payloads	and	the	core	
decoder	instances	may	be	set	to	concealment	mode	and	their	output	signals	faded	out	appropriately.	The	
parsing	of	the	HOAEnhFrame()	blocks	are	skipped	for	non-available	layers	and	the	HOAEnhFrame()	of	
the	next	lower	layer	shall	be	used	for	decoding.	

After	a	dropout	of	an	enhancement	layer	the	decoding	can	only	be	resumed	at	a	random	access	point.	If	
the	random	access	point	is	an	IPF,	the	pre-roll	information	should	be	used	start	the	decoding	of	the	newly	
available	HOA	transport	channels.	An	appropriate	fade-in	may	be	performed	on	the	output	signals	of	the	
transport	channels.	

13 Binaural	renderer	
13.1 General	

Two	binaural	rendering	tools	are	specified	in	subsequent	subclauses:	

ISO/IEC	23008-3:202X(E)	

442	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— time-domain	binaural	renderer;	
— frequency-domain	binaural	renderer.	

13.2 Frequency-domain	binaural	renderer	

 General	

The	frequency-domain	binaural	renderer	may	be	used	for	generating	the	3D	audio	headphone	signal	for	
all	types	of	input	content	(channel	and/or	object	and/or	HOA).	The	Frequency-domain	binaural	renderer	
takes	loudspeaker	feeds	as	input	signals.	

The	frequency-domain	binaural	processing	is	carried	out	as	a	decoder	process	converting	the	decoded	
signal	into	a	binaural	downmix	signal	that	provides	a	surround	sound	experience	when	listened	to	over	
headphones.	

The	binaural	renderer	has	as	input	the	decoded	data	stream.	The	signal	is	processed	by	a	QMF	analysis	
filterbank	as	outlined	in	ISO/IEC	14496-3:2009,	4.B.18.2	with	the	modifications	stated	in	ISO/IEC	14496-
3:2009,	 8.6.4.2.	 The	 renderer	may	 also	process	QMF	domain	 input	 data	 and	 in	 this	 case	 the	 analysis	
filterbank	is	omitted.	

The	 binaural	 room	 impulse	 responses	 (BRIRs)	 are	 represented	 as	 complex	 QMF	 domain	 filters.	 The	
conversion	 of	 the	 time	 domain	 binaural	 room	 impulse	 responses	 to	 the	 complex	 QMF	 filter	
representation	shall	be	as	defined	in	ISO/IEC	23003-1:2007,	Annex	B.	

The	frequency-domain	binaural	renderer	consists	of	three	processing	blocks,	a	variable	order	filtering	in	
the	frequency	domain	(VOFF),	a	sparse	frequency	reverberator	(SFR),	and	a	QMF	domain	tapped-delay	
line	(QTDL).	Figure	76	illustrates	the	time-frequency	processing	regions	for	the	three	processing	blocks.	

The	QMF	domain	BRIRs	are	 truncated	 such	 that	 they	only	 contain	direct	 sound	and	early	 reflections	
(D&E).	 The	 transition	 point	 from	 early	 reflections	 to	 late	 reverberation	(Õ#*$." 	is	 determined	 in	 a	
frequency-dependent	manner	by	a	bandwise	reverberation	time	analysis.	The	QMF	domain	audio	signals	
and	 the	 QMF	 domain	 D&E	 BRIRs	 are	 then	 processed	 by	 a	 bandwise	 partitioned	 fast	 convolution	 to	
perform	 the	 binaural	 processing.	 Since	 the	 filter	 order	 of	 the	 QMF	 domain	 D&E	 BRIRs	 is	 frequency	
dependent,	this	processing	is	referred	to	as	variable	order	filtering	in	the	frequency	domain	(VOFF).	

A	QMF	domain	 sparse	 frequency	 reverberator	 (SFR)	 is	 used	 to	 generate	 2-channel	QMF	domain	 late	
reverberation.	The	 reverberation	module	uses	a	 set	of	 frequency-dependent	 reverberation	 times	and	
energy	values	to	adapt	the	characteristics	of	the	reverberation.	The	waveforms	of	the	reverberation	are	
based	on	a	stereo	downmix	of	the	audio	input	signal	and	it	is	adaptively	scaled	in	amplitude	depending	
on	an	analysis	of	the	audio	signal.	

QMF	domain	tapped-delay	line	(QTDL)	processing	is	used	for	high	frequency	bands.	The	QTDL	processing	
module	employs	a	time	lag	and	a	gain	for	each	band	pf	each	channel	to	mimic	the	most	significant	binaural	
cues	in	the	band.	The	VOFF	and	the	QMF	domain	reverberator	are	turned	off	in	the	bands	where	the	QTDL	
processing	is	active.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 443	
	

	

Figure	76	—	Graphical	representation	of	the	processing	regions	for	the	three	processing	blocks	
of	the	binaural	renderer	

The	2-channel	VOFF	output	and	the	2-channel	SFR	output	are	then	combined	and	mixed	with	the	QTDL	
processed	output	and	finally,	two	QMF	synthesis	filter	banks	compute	the	binaural	time	domain	output	
signals	as	outlined	 in	 ISO/IEC	14496-3:2009,	4.6.18.4.2.	The	renderer	may	also	produce	QMF	domain	
output	data	in	which	case	the	synthesis	filterbank	is	omitted.	

	An	overview	of	the	QMF	domain	binaural	processing	is	given	in	Figure	77.	

ISO/IEC	23008-3:202X(E)	

444	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	77	—	Overview	of	the	binaural	processing	
 Definitions	

Audio	signals	that	are	fed	into	the	binaural	renderer	are	referred	to	as	input	signals	in	the	following.	Audio	
signals	that	are	the	result	of	the	binaural	processing	are	referred	to	as	output	signals.	The	input	signals	of	
the	binaural	renderer	are	audio	output	signals	from	the	core	decoder.	

The	following	variable	definitions	are	used.	

ã	 Azimuth	angle	

x	 Factor	in	downmix	matrix	

)".Å	 Axis	intercept	of	a	regression	line	

#	 Elevation	angle	

.	 BRIR	output	channel	index	(left/right),	. ∈ {0,1}	

.O`RR		 Correlation	coefficient	

..∏,ï 	 Energy	equalizing	factor	

Û/,!*. =	 π./,!*.,V, ./,!*.,I∫	 Scaling	factors	

	ÛX/,!*. =	 π.̃/,!*.,V, .̃/,!*.,I∫	 Smoothed	scaling	factors	

	.ÆV	 Real-valued	 correction	 factor	 for	 the	 calculation	 of	 the	 RT60	
reverberation	time	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 445	
	

EDC	 Energy	decay	curve	

=ÖÜ	 Frequency-dependent	group	delay	of	filter	bank	

K	 Delay	in	time	domain	samples	

K#-#$		 Initial	delay	of	a	BRIR	set	in	time	domain	samples,	propagation	
time	

Kb,W
ï 	 QTDL	lag	

yO,!-!	 Centre	frequencies	of	the	late	reverberation	analysis	bands	

yf	 Sampling	rate	

vb,W,RPeC
ï 	 Real	value	of	QTDL	Gain	

vb,W,bWec
ï 	 Imaginary	value	of	QTDL	Gain	

ℎ1 	 1-channel	time	domain	impulse	response	

�& V
t =	 πh1V,V

+ 	⋯h1V,õa_c_XI
+ ∫	 Time	 domain	 representation	 of	 the	 left	 impulse	 response	 set	

excluding	the	LFE	channels	

�& I
t =	 πh1I,V

+ 	⋯h1I,õa_c_XI
+ ∫	 Time	domain	 representation	of	 the	 right	 impulse	 response	 set	

excluding	the	LFE	channels	

�s V
E,ï =	 πhfV,V

E,ï 	⋯hfV,õa_c_XI
E,ï ∫	 Complex	valued	QMF	domain	representation	of	the	left	impulse	

response	set	excluding	the	LFE	channels	

�s I
E,ï =	 πhfI,V

E,ï 	⋯hfI,õa_c_XI
E,ï ∫	 Complex	valued	QMF	domain	representation	of	the	right	impulse	

response	set	excluding	the	LFE	channels	

Å5,
-,.,/

= πH5V,V
E,ï,C 	⋯H5V,õa_c_XI

E,ï,C ∫	
VOFF	 Coefficient	 for	 output	 channel	 0	 (Left)	 -	 Block-based	
pseudo-FFT	domain	representation	of	the	left	impulse	response	
set	excluding	the	LFE	channels	

j5ñ
-,.,/

= πH5I,V
E,ï,C 	⋯H5I,õa_c_XI

E,ï,C ∫	
VOFF	 Coefficient	 for	 output	 channel	 1	 (Right)	 -	 Block-based	
pseudo-FFT	 domain	 representation	 of	 the	 right	 impulse	
response	set	excluding	the	LFE	channels	

ℎ1ïÑa 	 Filtered	version	of	a	1-channel	time	domain	impulse	response	

ℎ1ïÑa,'≈	 Filtered	 normalized	 squared	 logarithmic	 1-channel	 BRIR	 in	
analysis	band	óÕ≈	

ℎÇ ïÑa,'≈	 Filtered	smoothed	logarithmic	1-channel	BRIR	in	analysis	band	
óÕ≈	

ℎ1ïÑa,-›"M	 Normalized	filtered	1-channel	BRIR	

ISO/IEC	23008-3:202X(E)	

446	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

É!-!	 Number	of	analysis	frequency	bands	

É,%	 Number	of	BRIR	pairs	in	a	BRIR	data	set	(number	of	measured	
positions)	

É,›-æ	 Number	of	QMF	bands	used	for	convolution	

É¿ÕÖ	 Number	of	LFE	BRIR	pairs	in	a	BRIR	data	set	

ÉKã 	 Number	of	late	reverberation	analysis	bands	that	are	fed	into	the	
reverberator	

ÉM!N	 Number	of	QMF	bands	used	for	binaural	processing	

É$"!-/	 Number	of	QMF	bands	used	in	the	analysis	of	the	transition	from	
early	to	late	reflections	

ó	 QMF	domain	frequency	band	index	

É	 Number	of	QMF	domain	frequency	bands,	É = 64	

óÕ≈	 Frequency	band	index	of	the	late	reverberation	analysis	

	óf	 Number	of	windows	for	the	smoothing	of	a	BRIR	

J	 Length	of	audio	frame	in	time	domain	samples,	
L	=	outputFrameLength	

6!-!	 Analysis	length	of	the	late	reverberation	analysis	

J≈ƒºƒ	 Length	of	the	measured	BRIRs	in	time	domain	samples	

JE	 Length	of	an	audio	frame	in	QMF	domain	time	slots	

Ñ,›-æ	 Vector	to	signal	which	channel	of	the	input	signal	corresponds	to	
which	BRIR	pair	in	the	BRIR	data	set	

M≤±Â	 Downmix	matrix		

pM#-æ	 Frequency-dependent	minimum	value	in	dB	

p".Å	 Gradient	of	a	regression	line	

F	 QMF	domain	time	slots	index	

(≈*ª	 Number	of	blocks	

(≈ƒºƒ	 Number	of	BRIRs	used	in	the	parameterization	and	processing	

(≤±Â,!,$	 Number	of	active	downmix	channels	

F≤¬	 Maximum	amplitude	of	a	smoothed	logarithmic	BRIR	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 447	
	

FX≤¬	 Mean	 amplitude	 around	maximum	 of	 a	 smoothed	 logarithmic	
BRIR	

NÕ"M	 Number	of	sub-frames	

(#-	 Number	of	input	audio	channels	

(›‰$	 Number	of	output	audio	channels,	(›‰$ = 2	

ÖÕ#*$."[k]	 VOFF	 filter	 order	 corresponding	 to	 the	 k-th	 QMF	 domain	
frequency	band	

ÖÕÕ∑[k]	 FFT	length	

F-›#/.		 Noise	level	in	dB	

NRG¿ƒ	 Energy	of	the	late	reverberation	

€b 		 Position	 (Azimuth	 and	 elevation	 angle)	 of	 a	 BRIR	 or	 audio	
channel	

RT̈ V	, RTÆV		 Reverberation	times	

ν	 Time	domain	sample	index	

áV, á≠, á¨≠	 Time	domain	indices	with	specified	amplitude	in	the	EDC	

á,"›//		 Crossing	sample	of	two	lines	

á≤¬	 Index	of	the	maximum	of	a	smoothed	logarithmic	BRIR	

ν.-'	 Maximum	frequency-independent	sample	index	used	for	the	late	
reverberation	analysis	

ν.-',B	 Frequency-dependent	ending	time	domain	sample	index	of	the	
late	reverberation	analysis		

á-›#/.	 Index	 where	 a	 smoothed	 logarithmic	 BRIR	 is	 smaller	 than		
F-›#/.	 + 2	for	the	first	time	

ν/$!"$	 Frequency-dependent	starting	time	domain	sample	index	of	the	
late	reverberation	analysis	

ν$"!-/	 Frequency-dependent	 transition	 from	 early	 reflections	 to	 late	
reverberation	 in	 time	 domain	 samples	 (beginning	 from	 the	
direct	sound)	

àX0 = πyXV	
+ 	⋯ yXGEFXI	

+ ∫	 (#--channel	time	domain	input	audio	signal	

à’E,ï 	= πy’V	
E,ï 	⋯ y’õEFXI	

E,ï ∫	 (#--channel	QMF	domain	input	audio	signal	

ISO/IEC	23008-3:202X(E)	

448	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

â’E,ï 	 Combined	 QMF	 domain	 signal	 of	 convolution	 output,	 reverb	
generator	output	and	QTDL	processing	output	

âX0 =	 [zXV
+, zXI

+]	 2-channel	time	domain	output	signal	

ầ,›-æ
E,ï =	 πÖ̆V,,›-æ

E,ï , Ö̆I,,›-æ
E,ï ∫	 VOFF	processed	signal	in	QMF	domain	frequency	band	ó	

2’".æ
E,ï = πÖ̂V,".æ

E,ï , Ö̂I,".æ
E,ï ∫	 Intermediate	reverberation	signal	generated	by	the	reverberator	

module	in	QMF	domain	frequency	band	ó	

2’Ü∑≤¿
E,ï = πÖ̂V,Ü∑≤¿

E,ï , Ö̂I,Ü∑≤¿
E,ï ∫	 QTDL	processed	signal	in	QMF	domain	frequency	band	ó	

 Parameterization	of	binaural	room	impulse	responses	

13.2.3.1 General	

The	 frequency-domain	 binaural	 renderer	 requires	 specific	 metadata	 information	 describing	 the	
properties	of	the	BRIR	set.	These	values	are	calculated	by	a	parameterization	procedure	and	are	stored	
in	a	dedicated	file	in	a	defined	order.	The	file	is	a	binary	file	written	with	32	bits	per	sample,	float	values,	
little-endian	ordering.	

The	parameterization	takes	into	account	as	input	parameters.	

— N	channels,	time	domain	BRIRs	
— Corresponding	elevation	and	azimuth	angles	

It	returns	four	groups	of	parameters:	

¾ General	metadata:	Elevation	and	azimuth	of	the	BRIRs,		the	propagation	time	K#-#$,	the	number	of	
processing	band	ÉM!N,	the	number	of	LFEs	É¿ÕÖ,	the	LFE	channel	indices,	the	sampling	rate	of	the	
BRIRs;	

¾ VOFF	parameters:	The	left/right	VOFF	coefficients	[Å5,
-,.,/	Å5ñ

-,.,/],	the	VOFF	filter	length	ÖÕ#*$.",	the	
FFT	size	per	band	ÖÕÕ∑	and	the	number	of	blocks	per	bands	Ö≈*ª;	

¾ Reverberator	 parameters:	 the	 number	 of	 analysis	 bands	É!-! 	used	 in	 the	 analysis	 of	 late	
reverberation,	 the	 centre	 frequencies	 of	 the	 late	 reverberation	 analysis	 bands	 yO,!-! ,	 	 the	
reverberation	time	RTÆV	and	energy	NRG¿ƒ	of	the	late	reverberation;	

¾ QTDL	parameters:	the	left/right	QTDL	gain	[vb,W,RPeCï 	vb,W,bWec
ï],	the	left/right	QTDL	time	lag	Kb,Wï ,	

the	maximum	band	used	for	convolution	É,›-æ.	

An	overview	of	the	BRIR	parameterization	is	given	in	Figure	78.	

In	the	block	Propagation	Time	Calculation,	 the	propagation	time	of	the	BRIRs	is	calculated	to	truncate	
them	 at	 the	 direct	 sound.	 In	 the	 block	 “Filter	 Converter”,	 the	 truncated	 time	 domain	 BRIRs	 shall	 be	
transformed	to	QMF	domain	BRIRs	according	to	ISO/IEC	23003-1:2007,	Annex	B.	The	prototype	filter	
coefficients	for	the	filter	conversion	shall	be	used	according	to	ISO/IEC	23003-1:2007,	Table	B.1.	

In	 the	block	VOFF	Parameter	Generation,	 a	 frequency-dependent	RT20	 reverberation	 time	analysis	 is	
performed	to	determine	the	frequency-dependent	transition	from	early	reflections	to	late	reverberation.	
Next,	 the	truncated	complex-valued	QMF	domain	BRIRs	up	to	the	frequency-dependent	transition	are	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 449	
	

transformed	 into	a	VOFF	coefficients	 [haV
E,ï,C 		haI

E,ï,C].	The	VOFF	coefficients	 [haV
E,ï,C 		haI

E,ï,C]	will	be	used	 to	
perform	a	fast	convolution	in	the	complex-valued	QMF	domain.	

In	the	block	Sparse	Frequency	Reverberator	Parameter	Generation	(SFR	Parameter	Generation),	the	time	
domain	BRIRs	are	analysed	by	a	one-third	octave	filter	bank	to	determine	the	characteristics	of	the	late	
reverberation.	The	reverberation	time	RT60	of	the	late	reverberation	and	energy	of	the	reverberation	
are	used	to	control	the	sparse	frequency	reverberator.	

In	the	block	QTDL	Parameter	Generation,	the	peak	locations	and	square	root	of	real	and	imaginary	energy	
of	QMF	domain	BRIRs	are	analysed	to	obtain	QTDL	parameters	used	in	QTDL	processing.		

	
Figure	78	—	Details	of	BRIR	parameterization	

The	analysis	steps	are	specified	in	detail	in	the	following	subclauses.	

13.2.3.2 Propagation	time	u1213		calculation	

The	BRIRs	contain	a	redundant	portion	between	the	0th	sample	and	the	location	of	the	impact	of	the	direct	
sound.	The	time	between	the	start	of	the	BRIR	and	the	direct	sound	is	referred	to	as	the	propagation	time.	
Since	this	portion	only	imposes	additional	delay	for	the	binaural	rendered	output	as	well	as	additional	
complexity	for	processing,	the	BRIRs	are	trimmed	to	start	at	the	direct	sound.	Therefore,	the	propagation	
time		K#-#$		is	determined	by	calculating	the	frame	energy.		

The	 following	 intermediate	 parameters	 are	 determined	depending	 on	 the	 overall	 length	 of	 the	 input	
BRIRs.	

If	the	length	of	the	BRIRs	in	time	domain	samples	exceeds	80	ms:	

flag_HRIR	=	0,	
Lfrm		=	32,	

ISO/IEC	23008-3:202X(E)	

450	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Nhop	=	8,	and	
Niter	=	80EX¨yf	/	Nhop	

else	

flag_HRIR	=	1,	
Lfrm		=	8,		
Nhop	=	1,	and	
Niter	=	80IFQN5	/	Nhop	

Then,	the	frame	energy	is	obtained	by	

E(k) =
1

2(kãuã
I I

1

JBRW

I

bJV

I h1 #,M
ªG/4áHE

K&,)XI

EJV

GZàâà

WJI

		ó = 1,…	, (bQPR 	

resulting	in	the	propagation	time:	

K#-#$	 =
K&,)

F
+(w`a ∗ p*F sarg

ï
	(

m(ï)

M!N	(m)
> −60Kfl)t	.	

The	sets	of	truncated	left	and	right	BRIRs	(excluding	the	LFE	channels)	are	then	defined	as:	

�& V
t =	 ãh1,,,

4HjEFEä	 	⋯h1V,õa_c_XI
tHjEFEä	 å		and	�ƒIt =	 ãh1I,V

tHjEFEä	 	⋯h1I,õa_c_XI
tHjEFEä	 å	,		

with:	

	(≈ƒºƒ = 2 ⋅ É,% − 2 ⋅ 	É¿ÕÖ		and	0	 ≤ ν < J≈ƒºƒ − K#-#$.	

13.2.3.3 Filter	conversion	from	time-domain	BRIRs	to	QMF-domain	BRIRs		

The	 conversion	 of	 the	 time	 domain	 filters	 to	 the	 complex-valued	 QMF	 domain	 shall	 be	 carried	 out	
according	to	ISO/IEC	23003-1:2007,	Annex	B.	The	prototype	filter	coefficients	for	the	filter	conversion	
shall	be	used	according	to	ISO/IEC	23003-1:2007,	Table	B.1.	

With	the	time	domain	representation	of	the	impulse	response	sets	excluding	the	LFE	channels	[�& Vt	�& It],	a	
complex-valued	 QMF	 domain	 representation	 shall	 be	 obtained	 according	 to	 ISO/IEC	23003-1:2007,	
Annex	B	as:	

�s V
E,ï =	 πhfV,V

E,ï 	⋯hfV,õa_c_XI
E,ï ∫	and	�s I

E,ï =	 πhfI,V
E,ï 	⋯hfI,õa_c_XI

E,ï ∫		

with	
	0	 ≤ F < 	F.-'	

	F.-' = ⌈(J≈ƒºƒ − K#-#$)/64⌉ + 2	

13.2.3.4 Definition	of	the	number	of	processing	bands	and	convolution	bands	

The	maximum	processing	band	Kmax	and	the	number	of	convolution	bands	Kconv	can	be	received	from	
Table	255	(kMax	 and	kConv,	 respectively).	 In	 the	bands	0	 to	Kconv	 –1,	 the	VOFF	processing	shall	be	
performed	 in	 the	 bands	Kconv	 to	Kmax	 –1,	 the	 QTDL	 processing	 shall	 be	 applied.	 When	 the	 QTDL	
processing	is	not	used,	Kconv	is	overridden	by	Kmax.	The	SFR	processing	shall	be	performed	in	the	VOFF	
processing	bands	as	illustrated	in	Figure	76.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 451	
	

13.2.3.5 Parameter	generation	for	the	variable	order	filtering	in	frequency	domain	(VOFF)	

13.2.3.5.1 General	

A	frequency-dependent	RT20	reverberation	time	analysis	shall	be	performed	to	determine	filter	order	
(SbCQPR 	for	the	VOFF	processing	up	to	band	É,›-æ − 1.	The	filter	order	(SbCQPR 	for	the	VOFF	is	derived	as	
specified	in	the	following	subclauses:	

13.2.3.5.2 Derivation	of	RT20	

The	energy	decay	relief	of	a	BRIR	 is	obtained	 in	 the	complex-valued	QMF	domain	to	derive	 the	RT20	
reverberation	 time	 as	 a	 measure	 for	 the	 transition	 time	 from	 the	 early	 reflections	 to	 the	 late	
reverberation.	

The	energy	decay	relief	of	a	BRIR	(channel	p	of	the	BRIR	set)	in	band	k	is	defined	as:	

É5±b,W
E,ï = I Ghf b,W

C,ï G
F

	E=F>XI

CJE

	

Then	the	averaged	reverberation	time	RT20	is	obtained	by:	

≠D%'E = 1
2N∫ª™ª

o o min #arg
+
	(
}B≠,,)+,E

}B≠,,)
',E < −20ÑQ)$

ΩWRURF&

)0'

&

,0'

	

13.2.3.5.3 Filter	order	decision	

The	 VOFF	 filter	 order	 is	 determined	 using	 the	 logarithmic	 curve	 fitting	 method	 for	 obtaining	 the	
reverberation	 time	 RT20.	 The	 curve	 fitting	 shall	 not	 be	 conducted	 for	 band	 0.	 	 In	 the	 case	 of	 HRIR	
(flag_HRIR=1),	curve	fitting	is	not	to	be	applied.	

To	perform	the	curve	fitting,	two	coefficients	x, xFK)	should	be	obtained.	

í̅ =
1

ÉM!N − 1
I ó

%?;ãXI

ïJI

	

éS =
1

ÉM!N − 1
I logFRTFV

ï

%?;ãXI

ïJI

	

,ii = I óF
%?;ãXI

ïJI

− (ÉM!N − 1)í̅F	

,ix = I ó©logFRTFV
ï ´

%?;ãXI

ïJI

− (ÉM!N − 1)í̅éS	

) = ,ix/,ii	

x = éS −)í̅	

ISO/IEC	23008-3:202X(E)	

452	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	filter	order	(SbCQPR 	for	each	band	ó	is	derived	as:	

if	ó	=	0		

(SbCQPR[0] = min	(25C`c!ƒ∑!7
7 6, FPEj)	

else	if	ó < ÉM!N			

if	flag_HRIR	=	0	

	 (SbCQPR[ó] = min	(2⌊_ïHeHV.≠⌋, FPEj)	

else	

	 (SbCQPR[ó] = min	(29C`c!ƒ∑!7
å HV.≠:, FPEj)	

The	 transition	á$"!-/[ó]	from	 direct	 sound	 and	 early	 reflections	 to	 the	 late	 reverberation	 tail	 in	 time	
domain	samples	is	calculated	from		(SbCQPR[ó]:	

	 á$"!-/[ó] = 64 ⋅ ((SbCQPR[ó] − 2)	

13.2.3.5.4 VOFF	coefficient	generation	

The	complex	valued	QMF	domain	BRIRs	are	truncated	frequency-dependently	at	the	corresponding	value	
of	the	VOFF	filter	order	(Õ#*$."[ó].	The	truncated	complex	valued	QMF	domain	BRIRs	are	split	into	blocks	
to	 perform	 a	 block-wise	 fast	 convolution.	 These	 block-wise	 complex	 valued	 QMF	 domain	 BRIRs	 are	
therefore	transformed	to	VOFF	coefficients.	

First,	a	frequency-dependent	FFT	size	with	a	maximum	of	2JG	is	calculated	according	to:	

(ÕÕ∑[ó] = 	min(2JG , 	2
⌈*›Å! F⋅GçE<ä=é[ï]⌉)	

As	the	next	step,	the	number	of	blocks	per	QMF	band	is	determined:	

(≈*ª[ó] = 	
Fè<êë! !⋅#çE<ä=é[å]ï

GÑÑf[ï]
	

The	truncated	complex	valued	QMF	domain	representations	are	obtained	as:	

�& O
E,ï = W�

s
O
f,ï F < (BbCQPR[ó]
0 ì+ℎEGu*,E

	

If	flag_HRIR	==	1,	the	sparse	frequency	reverberator	is	switched	off.	To	prevent	energy	mismatch	due	to	
residue	of	BRIRs,	energy	compensation	is	carried	out.	

�& O
E,ï

=

⎩
⎪
⎨

⎪
⎧
è

∑ GEx6©�s O
f,ï´

FfJE%WkXI
fJV

∑ GEx6©�s O
f,ï´

FfJGçE<ä=é[ï]XI
fJV

GEx6©�s O
E,ï´ + *è

∑ *pxv©�s O
f,ï´

FfJE%WkXI
fJV

∑ *pxv©�s O
E,ï´

FfJGçE<ä=é[ï]XI
fJV

*pxv©�s O
E,ï´ F < (BbCQPR[ó]

0 ì+ℎEGu*,E

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 453	
	

The	block-wise	complex	valued	QMF	domain	representations	are	obtained	by	partitioning	the	truncated	
complex	valued	QMF	domain	representation.	

�ê O
E,ï,C = W�

&
O
(CXI)Gññ6[ï]/FHE,ï 0 ≤ F < (SSY[ó]/2

0 ì+ℎEGu*,E
	

In	each	QMF	band	ó	each	block	of	the	block-wise	complex	valued	QMF	domain	representations	are	then	
transformed	to	a	pseudo-FFT	domain	by	a	complex-valued	FFT	transform	of	length	(ÕÕ∑[ó]	forming	the	
block-based	pseudo-FFT	domain	representation	j5V

E,ï,C 	(left	ear)	and	Å5I
E,ï,C 	(right	ear)	for	the	blocks	0 ≤

6 < (≈*ª[ó].	The	j5O
E,ï,C 	are	the	VOFF	coefficients.	

Å5ö
-,.,/ = ëëí{�ê O

E,ï,C , (SSY[ó]}	

13.2.3.6 Parameter	generation	for	the	sparse	frequency	reverberator		

13.2.3.6.1 General	

If	flag_HRIR	==	0,	an	analysis	of	the	late	reverberation	parts	of	the	BRIRs	is	carried	out.	Therefore,	all of	
the	BRIRs	excluding	the	LFE	BRIRs	are	filtered	by	a	one-third	octave	filter	bank.	

13.2.3.6.2 One-third	octave	filterbank	analysis		

The	 one-third	 octave	 filter	 bank	 is	 realized	 by	 an	 infinite-impulse-response	 (IIR)	 filter	 with	 the	
coefficients	given	in	Table	218	and	Table	219.	The	filter	coefficients	are	given	in	double	precision.	The	
filter	is	designed	for	a	sampling	frequency	of	48	kHz	and	a	maximum	processing	frequency	of	18	kHz,	
resulting	in	24	one-third	octave	bands.		

If	 the	BRIRs	are	 sampled	at	a	different	 sampling	 frequency,	 the	 same	 filter	 coefficients	 shal	 lbe	used,	
resulting	again	in	a	maximum	processing	frequency	of	0.75 ⋅ yf.	

The	bands	of	the	filtered	BRIRs	are	delay	aligned	according	to	the	group	delay	of	the	filters.	The	delay	
values	measured	in	time	domain	samples	are	given	in	Table	217.	

Table	217	—	Delay	for	the	delay	alignment	of	the	filtered	BRIRs	

Band	F’	
Delay	Ñ√∫[F’]	

time	domain	samples	

0	 702	
1	 1448	
2	 1202	
3	 870	
4	 731	
5	 478	
6	 368	
7	 284	
8	 224	
9	 177	
10	 142	

ISO/IEC	23008-3:202X(E)	

454	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

11	 110	
12	 88	
13	 69	
14	 55	
15	 44	
16	 35	
17	 27	
18	 22	
19	 17	
20	 14	
21	 11	
22	 8	
23	 6	

To	delay	align	the	frequency	bands,	they	are	zero-padded	out	to	the	maximum	delay	number	KÕ≈,M!N		at	
the	beginning.	Afterwards,	each	band	is	time	shifted	to	the	beginning	according	to	its	delay	number	and	
after	that	the	first	KÕ≈,M!N		samples	are	again	removed.	

Table	218	—	Forward	filter	coefficients	of	the	used	1/3	octave	filter	bank	

Band	 Yóòôöòõ	
[Hz]	

Filter	coefficients,	forward	path	(B	coefficients)	

0	 99,21	 0.000000002978966	 0	 -0.000000008936898	 0	 0.000000008936898	 0	 -0.000000002978966	

1	 125,00	 0.000000005899584	 0	 -0.000000017698751	 0	 0.000000017698751	 0	 -0.000000005899584	

2	 157,49	 0.000000011789497	 0	 -0.000000035368490	 0	 0.000000035368490	 0	 -0.000000011789497	

3	 198,43	 0.000000023548606	 0	 -0.000000070645819	 0	 0.000000070645819	 0	 -0.000000023548606	

4	 250,00	 0.000000047026089	 0	 -0.000000141078268	 0	 0.000000141078268	 0	 -0.000000047026089	

5	 314,98	 0.000000093874874	 0	 -0.000000281624623	 0	 0.000000281624623	 0	 -0.000000093874874	

6	 396,85	 0.000000187307829	 0	 -0.000000561923486	 0	 0.000000561923486	 0	 -0.000000187307829	

7	 500,00	 0.000000373504653	 0	 -0.000001120513960	 0	 0.000001120513960	 0	 -0.000000373504653	

8	 629,96	 0.000000744228866	 0	 -0.000002232686597	 0	 0.000002232686597	 0	 -0.000000744228866	

9	 793,70	 0.000001481490914	 0	 -0.000004444472741	 0	 0.000004444472741	 0	 -0.000001481490914	

10	 1	000,00	 0.000002945568317	 0	 -0.000008836704950	 0	 0.000008836704950	 0	 -0.000002945568317	

11	 1	259,92	 0.000005847694618	 0	 -0.000017543083853	 0	 0.000017543083853	 0	 -0.000005847694618	

12	 1	587,40	 0.000011587291750	 0	 -0.000034761875251	 0	 0.000034761875251	 0	 -0.000011587291750	

13	 2	000,00	 0.000022906469387	 0	 -0.000068719408160	 0	 0.000068719408160	 0	 -0.000022906469387	

14	 2	519,84	 0.000045150610814	 0	 -0.000135451832443	 0	 0.000135451832443	 0	 -0.000045150610814	

15	 3	174,80	 0.000088673275133	 0	 -0.000266019825400	 0	 0.000266019825400	 0	 -0.000088673275133	

16	 4	000,00	 0.000173370214378	 0	 -0.000520110643135	 0	 0.000520110643135	 0	 -0.000173370214378	

17	 5	039,68	 0.000337103447126	 0	 -0.001011310341379	 0	 0.001011310341379	 0	 -0.000337103447126	

18	 6	349,60	 0.000651075235971	 0	 -0.001953225707913	 0	 0.001953225707913	 0	 -0.000651075235971	

19	 8	000,00	 0.001247284713280	 0	 -0.003741854139840	 0	 0.003741854139840	 0	 -0.001247284713280	

20	 10	079,37	 0.002366322106562	 0	 -0.007098966319686	 0	 0.007098966319686	 0	 -0.002366322106562	

21	 12	699,21	 0.004438169688363	 0	 -0.013314509065088	 0	 0.013314509065088	 0	 -0.004438169688363	

22	 16	000,00	 0.008214651510826	 0	 -0.024643954532479	 0	 0.024643954532479	 0	 -0.008214651510826	

23	 20	158,74	 0.014980703571592	 0	 -0.044942110714776	 0	 0.044942110714776	 0	 -0.014980703571592	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2019	–	All	rights	reserved	 455	
	

Table	219	—	Backward	filter	coefficients	of	the	used	1/3	octave	filter	bank	

Band	 !!"#$"%	[Hz]	 Filter	coefficients,	backward	path	(A	coefficients)	

0	 99,21	 1	 -5,993	751	016	763	135	 14,969	279	072	784	566	 -19,939	603	992	021	354	 14,940	647	795	274	490	 -5,970	844	821	630	246	 0,994	272	962	360	464	
1	 125,00	 1	 	-5,991	961	445	134	535	 14,960	639	671	319	811	 -19,922	939	882	503	549	 14,924	596	293	523	440	 -5,963	124	398	568	642	 0,992	789	761	382	594	
2	 157,49	 1	 -5,989	609	767	964	868	 14,949	371	631	318	428	 -19,901	379	920	011	749	 14,904	008	213	044	975	 -5,953	314	349	635	694	 0,990	924	193	325	314	
3	 198,43	 1	 -5,986	493	089	373	522	 14,934	568	071	720	706	 -19,873	322	981	098	088	 14,877	492	822	310	906	 -5,940	823	535	229	365	 0,988	578	711	974	606	
4	 250,00	 1	 -5,982	322	583	166	484	 14,914	956	502	895	425	 -19,836	561	944	151	942	 14,843	176	218	160	425	 -5,924	879	679	481	255	 0,985	631	486	962	872	
5	 314,98	 1	 -5,976	681	836	082	384	 14,888	729	126	620	820	 -19,788	018	121	780	837	 14,798	506	980	371	531	 -5,904	466	854	668	645	 0,981	930	710	405	792	
6	 396,85	 1	 -5,968	963	204	438	088	 14,853	287	019	657	653	 -19,723	347	050	471	695	 14,739	973	841	057	109	 -5,878	238	363	575	107	 0,977	287	777	184	542	
7	 500,00	 1	 -5,958	270	126	407	491	 14,804	853	333	473	961	 -19,636	351	633	672	902	 14,662	693	694	537	232	 -5,844	394	434	554	799	 0,971	469	244	020	969	
8	 629,96	 1	 -5,943	266	716	356	360	 14,737	888	463	499	093	 -19,518	109	356	078	305	 14,559	810	012	283	357	 -5,800	509	649	746	865	 0,964	187	554	640	025	
9	 793,70	 1	 -5,921	945	879	281	351	 14,644	209	432	330	609	 -19,355	682	487	394	688	 14,421	618	545	659	840	 -5,743	289	060	834	721	 0,955	090	675	488	847	
10	 1	000,00	 1	 -5,891	272	053	317	806	 14,511	677	079	902	135	 -19,130	239	207	390	304	 14,234	312	652	347	755	 -5,668	224	665	450	618	 0,943	751	061	239	065	
11	 1	259,92	 1	 -5,846	632	613	931	893	 14,322	276	215	973	289	 -18,814	390	396	441	560	 13,978	227	786	574	614	 -5,569	116	536	160	665	 0,929	654	821	150	504	
12	 1	587,40	 1	 -5,781	001	286	253	467	 14,049	405	018	511	159	 -18,368	601	439	334	121	 13,625	500	348	622	651	 -5,437	419	214	533	596	 0,912	192	664	215	007	
13	 2	000,00	 1	 -5,683	678	077	357	811	 13,654	293	601	443	985	 -17,736	819	219	552	288	 13,137	230	968	058	500	 -5,261	383	586	695	196	 0,890	655	254	306	507	
14	 2	519,84	 1	 -5,538	431	150	435	243	 13,081	896	267	444	138	 -16,842	288	758	666	236	 12,460	762	205	420	412	 -5,025	009	003	406	554	 0,864	237	092	185	886	
15	 3	174,80	 1	 -5,320	855	496	910	868	 12,257	825	487	897	835	 -15,586	541	172	177	160	 11,528	970	962	883	021	 -4,706	945	111	668	716	 0,832	054	991	343	535	
16	 4	000,00	 1	 -4,994	862	939	199	035	 11,090	899	392	402	983	 -13,858	558	427	508	518	 10,266	297	975	027	744	 -4,279	774	723	365	612	 0,793	189	508	854	480	
17	 5	039,68	 1	 -4,508	633	849	835	456	 9,492	307	997	838	553	 -11,567	081	708	283	867	 8,611	562	042	517	182	 -3,710	717	285	192	899	 0,746	759	879	904	296	
18	 6	349,60	 1	 -3,791	566	479	016	410	 7,433	709	378	886	649	 -8,711	008	375	712	691	 6,575	213	188	380	568	 -2,965	921	277	956	436	 0,692	044	028	301	664	
19	 8	000,00	 1	 -2,756	730	866	820	556	 5,078	384	616	947	228	 -5,476	030	603	444	230	 4,351	407	566	193	580	 -2,022	277	271	752	888	 0,628	653	072	944	205	
20	 10	079,37	 1	 -1,319	726	797	918	420	 3,001	645	881	863	894	 -2,235	723	204	296	885	 2,473	284	706	980	526	 -0,892	513	256	112	752	 0,556	761	178	207	907	
21	 12	699,21	 1	 0,543	821	839	225	891	 2,367	900	783	391	379	 0,842	176	405	781	307	 1,858	884	029	029	895	 0,331	706	060	878	868	 0,477	372	283	671	088	
22	 16	000,00	 1	 2,667	654	841	026	451	 4,479	530	540	428	327	 4,526	976	093	111	068	 3,286	179	336	952	533	 1,426	496	187	396	251	 0,392	570	938	427	190	
23	 20	158,74	 1	 4,472	803	785	543	190	 8,630	679	353	924	112	 9,234	059	565	895	342	 5,792	824	924	160	126	 2,020	263	319	760	948	 0,305	653	299	838	751	

				

	

ISO/IEC	23008-3:202X(E)	

456	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	addition	to	the	1/3	octave	filter	bank,	IIR	low	pass	filtering	shall	be	conducted.	The	filter	coefficients	

of	 the	 IIR	 LPF	 are	 given	 in	 Table	 220.	 The	 resulting	 25	 frequency	 bands	 are	 now	 addressed	 by	 the	

index!!"with	the	lowest	band	!!" = 0	and	the	24	bands	from	the	1/3	octave	filter	bank	analysis	!!" = 1	
to 	!!" = 24 .	 The	 filtered	 version	 of	 a	 1-channel	 time	 domain	 impulse	 response	 ℎ) 	in	 band	 !!"	 is	
called	ℎ)#!" .	

Table	220	—	Filter	coefficients	of	the	additional	low	pass	filter	

Forward	path,	B	coefficients	 Backward	path,	A	coefficients	

4.07451850037432e-14	 1	

2.44471110022459e-13	 -5.95448186943460	

6.11177775056149e-13	 14.7734441411088	

8.14903700074865e-13	 -19.5489429752463	

6.11177775056149e-13	 14.5509829161372	

2.44471110022459e-13	 -5.77650412293260	

4.07451850037432e-14	 0.955501910370147	

The	 transition	 values	ν$%&'([!]	 from	 the	 frequency-dependent	 RT20	 reverberation	 time	 analysis	 are	
mapped	from	QMF	bands	to	the	25	analysis	frequency	bands.	For	each	of	the	analysis	bands	the	transition	

from	the	one	specific	QMF	band	is	used	where	the	difference	of	the	centre	frequency	of	the	analysis	band	

and	the	QMF	band	is	minimal.		

Then,	the	frequency-dependent	value	ν($&%$[!!"] = 	 ν$%&'([!!"] + .)')$		(transition	from	early	reflections	
to	late	reverberation	in	time	domain	samples	plus	the	initial	delay	of	the	BRIR	set)	is	used	as	a	starting	

point	for	the	following	analysis.	

The	last	maximally	used	sample	for	the	analysis	is	calculated	by		ν+', = 2⌊./0#(2"$%$/4)⌋78.		

A	frequency-dependent	terminal	point	sample	is	calculated:	

	ν+',,:[k!"] = 	 1
	ν+',																												 						if		k!" > 3	45.	k!" < 22
	ν+', −	 	ν($&%$[k!"] 						else																

	

For	each	of	the	BRIRs,	omitting	the	LFE	BRIRs,	having	non-zero	values	and	for	each	of	the	25	analysis	

bands	the	steps	in	the	following	subclauses	are	to	be	carried	out	between	ν($&%$[!!"]	and	ν+',,;[!!"].	

13.2.3.6.3 Noise	floor	estimation	

A	noise	floor	estimation	is	carried	out	for	band	!!" = 4	or	higher	to	determine	the	amount	of	noise	in	the	
filtered	BRIRs.		Therefore,	the	filtered	BRIR	is	normalized,	squared	and	the	logarithm	is	calculated:	

h)<!",,"[ν] = 10 ⋅ log8= @
h)<!"[ν] + 10

>?=

maxDEh)<!"EF
G
?

			

A	smoothed	logarithmic	BRIR	ℎH #!",,"	is	then	determined	by	calculating	the	mean	value	in	overlapping	
windows	(50	%	overlap)	of	0,002	5	seconds	duration.	The	number	of	windows	is	!@.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 457	
	

It	is	then	determined	where	the	smoothed	logarithmic	BRIR	rises	above	a	defined	frequency-dependent	

minimum	value	in	dB.	The	minimum	value	is	defined	as:	

mA)'B[k!"] =

⎩
⎪
⎨

⎪
⎧ −98 k!" = 0

mA)'B[k!" − 1] + 2 k!" < 22

O@
1
k(
⋅P hH <!",,"[ν]

<&>8

CD=
G + 0.5R else

		

resulting	in	a	minimum	value	of	-90dB	in	band	4.	

The	 last	 20	%	of	 the	 smoothed	 logarithmic	BRIR	above	 the	minimum	value	defined	 above	 is	 used	 to	

determine	the	noise	level	5'/)(+	by	a	mean-value	calculation	as	defined	below.	

If	the	smoothed	logarithmic	BRIR	never	rises	above	the	minimum	value,	the	noise	level	is	determined	to	

be	the	mean	value	of	the	whole	smoothed	logarithmic	BRIR.	

The	time	domain	sample	where	the	BRIR	is	assumed	to	have	reached	this	noise	level	is	then	defined	by	

calculating	the	crossing	point	of	two	lines,	with	the	one	line	being	parallel	to	the	noise	level	plus	2	dB	and	

the	other	line	being	a	decaying	regression	line	starting	near	the	direct	sound	with	a	defined	gradient.	

The	gradient	of	the	regression	line	is	defined	as:	

m%+0 =
((n'/)(+	 + 2) − ((nEF + nUEF)/2)

WX(ν'/)(+ + 1) ⋅ W0.0025 ⋅
f(
2Z + 0.5[Z −	WX(νEF + 1) ⋅ W0.0025 ⋅

f(
2Z + 0.5[Z

		

with		

nUEF =	
1
l
⋅P hH <!",,"[ν]

C'(78=

CDA&G	(=,C'(>8=)
	

l = 	 νEF + 	10	 − 	max(0, νEF − 10)	+ 	1	

]EF	being	the	index	of	the	maximum	absolute	value	of	the	smoothed	logarithmic	BRIR,	5EF	the	amplitude	
at]EF	and]'/)(+	being	the	index	where	the	smoothed	logarithmic	BRIR	is	smaller	than	5'/)(+	 + 2	for	the	
first	time.	The	axis	intercept	of	the	regression	line	is	defined	as:	

b%+0 =
(''(7'H'()

?
−	m%+0 ⋅ _(νEF + 1) ⋅ `0.0025 ⋅

:&
?
a + 0.5b.	

The	 time	 domain	 sample]I%/((where	 the	 regression	 line	 crosses	 the	 parallel	 line	 for	 the	 first	 time	
specifies	 the	 beginning	 of	 the	 noise	 floor.	 This	 value	 is	 used	 to	 define	 the	 end	 of	 analysis	 in	 the	

corresponding	frequency	bands	for	the	following	parameterization	steps.	

	ν+',,:[k!"] = 	 	ν($&%$[k!"] + 	νI%/(([k!"]									for	k!" > 3	

The	analysis	length	d&'&	is	defined	as			νI%/(([!!"] + 1.	

13.2.3.6.4 Determination	of	the	RT60	reverberation	time	

Between		ν($&%$[!!"]	and		ν+',,;[!!"]	the	RT60	time	is	determined.	To	achieve	this,	the	EDC	(energy	decay	
curve,	Schroeder	integral)	of	the	filtered	BRIR	is	calculated	by	performing	the	following	steps.	

ISO/IEC	23008-3:202X(E)	

458	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— The	filtered	BRIR	is	normalized:	

h)<!",'/%A[ν] =
Eh)<!"[ν]E

maxDEh)<!"EF
			

— A	factor	of	1.0E-20	is	added	where	ℎ#!",'/%A[]]	is	equal	to	zero.	

— The	EDC	is	defined	as:	

EDC[ν] = 10 ⋅ log8= h
∑ h)<!",'/%A[k]
.)*)>8
<DC

∑ h)<!",'/%A[k]
.)*)>8
<D=

j	

Index]=	is	defined	as	the	index	of	the	sample	where	the	EDC	is	bigger	than	zero	for	the	last	time.	If	such	
an	index	does	not	exist,	then]=	is	set	to	zero.	

Initially,	 the	 index	 is	determined	where	 the	EDC	gets	smaller	 than	EDC[]=] − 5	for	 the	 first	 time.	This	
index	is	called	index]J.	Next,	the	index	is	determined	where	the	EDC	gets	smaller	then	EDC[]J] − 35	for	
the	 first	 time.	Accordingly,	 this	 index	 is	 called	 index]KJ .	 The	number	of	 samples	between]J 	and]KJ	
defines	the	reverberation	time	RT30.	To	obtain	the	reverberation	time	RT60,	the	RT30	value	is	multiplied	

by	a	factor	of	kL= = 2.	

An	additional	correction	of	 the	calculated	RT60	reverberation	 time	 is	 introduced.	 If]KJ	is	 larger	 than	
d&'& ⋅ 0.95	then]KJ	is	set	to:	

νKJ =	 ⌊l&'& 	 ⋅ 	0.95 + 0.5⌋	

and	the	correction	factor	is	defined	as:	

cL= =	
−65

EDC[νKJ]
.	

If]J	is	larger	than	d&'& ⋅ 0.5,	then]J	is	set	to	zero.	

The	frequency-dependent	reverberation	time	RT60	is	calculated	by:	

RTL= 	= 	RTK=	 ⋅ cL= =	W
νKJ
f(
–
νJ
f(
Z ⋅ cL=	

13.2.3.6.5 Determination	of	the	energy	

The	energy	(absolute	value	squared)	of	each	sample	between		ν($&%$[!!"]	and		ν+',[!!"]	is	 summed	to	
give	the	total	energy	of	the	late	reverberation:	

NRGMN =	 P Eh)<!"[]]E
?
.

	.)*)>8

CD=

	

The	 values	 of	 RT60	 and	 the	 energy	 are	 now	 averaged	 for	 each	 of	 the	 analysis	 bands	 to	 reflect	 the	

characteristics	of	the	whole	BRIR	set.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 459	
	

13.2.3.7 QTDL	parameter	generation	

The	QMF	domain	TDL	processing	is	an	efficient	binaural	rendering	tool	for	the	high	frequency	bands.	In	

a	QTDL-enabled	QMF	band,	a	single-tap	delay-line	FIR	filter	mimics	the	most	significant	binaural	cues	of	

the	interaural	time	difference	(ITD)	and	the	interaural	level	difference	(ILD)	in	the	band.	

	

Figure	79	—	Geometric	descriptions	of	QTDL	parameters	

	

As	 described	 in	 Figure	 79	 the	 parameter	 generation	 for	 QTDL	 is	 carried	 out	 to	 obtain	 a	 QTDL	 lag	

parameter	and	two	QTDL	gain	parameters	per	output	channel	(left/right),	per	band	from	uI/'B	to	uA&G-
1,	and	per	input	channel.		

The	QTDL	lag	.O,P
# 	is	obtained	as	the	 location	of	 the	maximum	peak	of	 the	magnitude	of	 the	complex-

valued	QMF	domain	representation.	

.O,P
= arg

Q
max(|hw O,P

Q,#|?)	

The	 QTDL	 gain	xO,P
# is	 the	 square	 root	 of	 the	 energy	 of	 the	 real/imaginary	 values	 of	 QMF	 domain	

representation.	

xO,P,RSTU
= sign 1z{4d WhwO,P

V+,-
. ,#

Z|}P z{4dDhwO,P
U,# F

?
Q/01

UD=

	

xO,P,OPTW
= sign 1~�4x(hwO,P

V+,-
. ,#

)| }P ~�4xDhwO,P
U,# F

?
Q/01

UD=

	

ISO/IEC	23008-3:202X(E)	

460	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

13.2.3.8 Multiplexing	of	BRIR	parameters	

The	calculated	BRIR	metadata	 information	 is	stored	according	to	the	defined	 interface	(see	subclause	

17.4.2).	

 Frequency-domain	binaural	processing	

The	 frequency-domain	binaural	 renderer	operates	on	contiguous,	non-overlapping	 frames	of	 length	Ä	
samples	 of	 the	 input	 audio	 signals	 and	 outputs	 one	 frame	 of	Ä	samples.	 A	 standard	 frame	 length	 of	
L	=	4096	is	defined.	

13.2.4.1 Initialization	and	preprocessing	

13.2.4.1.1 General	

The	 initialization	 of	 the	 binaural	 renderer	 is	 carried	 out	 before	 the	 processing	 of	 the	 audio	 samples	

delivered	by	the	core	decoder	takes	place.	The	initialization	consists	of	several	processing	steps.	

13.2.4.1.2 Reading	of	BRIR	metadata	and	pseudo-FFT	BRIRs	

The	binaural	renderer	reads	BRIR	metadata	according	to	the	defined	interface	(see	subclause	17.4.2).	

13.2.4.2 Audio	signal	processing	

13.2.4.2.1 General	

The	audio	processing	of	 the	binaural	 renderer	obtains	Å)' 	input	 channels	 from	 the	 core	decoder	 and	
generates	a	binaural	output	signal	consisting	of	Å/X$=	2	channels.	

The	processing	takes	as	input:	

— the	decoded	audio	data	from	the	core	decoder;	

— the	BRIR	information	from	the	parameterization,	as	is:	

— the	general	BRIR	side	information;	
— the	VOFF	coefficients	set	and	side	information;	

— the	 frequency-dependent	 parameter	 set	 that	 is	 used	 by	 the	 QMF	 domain	 reverberator	 to	
generate	the	late	reverberation;	

— and	the	QTDL	gains	and	QTDL	time	lag	set	and	side	information;	
— and	a	parameter	signalling	the	channel	configuration	of	the	audio	data	to	process.	

The	channel	configuration	parameter	is	defined	by	the	geometric	position	data	(i.e.	azimuth	and	elevation	

angles)	 associated	with	 the	 input	 channels.	 The	 geometric	 data	 can	 either	 be	 signalled	 implicitly	 by	

CICPspeakerLayoutIdx	or	CICPspeakerIdx	(see	ISO/IEC	23001-8)	or	explicitly.	

13.2.4.2.2 QMF	analysis	of	the	audio	signal		

As	the	first	processing	step,	the	binaural	renderer	transforms	L	time	domain	samples	of	the	Nin-channel	
time	domain	input	signal		ÇUY = ÉyU=	

C 	⋯ yUZ2*>8	
C Ü		to	an	Nin	-channel	QMF	domain	signal	representation	of	

dimension	Ln	QMF	time	slots	(slot	 index	n)	and	K	=	64	frequency	bands	(band	 index	k).	 In	case	of	 the	
standard	framelength	of	L	=4096	samples,	Ln	is	equal	to	64	(i.e.	Ln	=	L/64).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 461	
	

A	QMF	analysis	according	to	as	outlined	in	ISO/IEC	14496-3:2009,	4.B.18.2	with	the	modifications	stated	

in	ISO/IEC	14496-3:2009,	8.6.4.2	is	performed	on	a	frame	of	the	time	domain	signal	ÇUY 	to	gain	a	frame	of	
the	QMF	domain	signal	ÇáQ,# 	= Éyá=	

Q,# 	⋯ yá[2*>8	
Q,# Ü	with		0	 ≤ ! < u	and	0	 ≤ 5	 < ÄQ.	

If	the	core	decoder	already	uses	QMF	domain	signals,	such	that	the	QMF	domain	decoded	audio	data	can	

be	obtained,	then	the	QMF	analysis	step	may	be	omitted.	

13.2.4.2.3 Partitioned	fast	convolution	for	VOFF	processing	

A	band-wise	partitioned	fast	convolution	is	carried	out	to	process	the	QMF	domain	audio	signal	and	the	

VOFF	coefficients.	Therefore,	an	FFT	analysis	is	performed	for	each	QMF	frequency	band	k	with		0	 ≤ ! <
K\]Q^	with	for	each	channel	of	the	input	audio	signal.	

The	 audio	 frames	 are	 split	 into	 sub-frames	 when	 the	 number	 of	 timeslots	ÄQ	 	per	 frame	 is	 larger	
than	

Z!!3[#]
?

.	The	number	of	sub-frames	is	determined	according	to	

N!%A[k] = max(1, 	
20	

4!!3[6]
#

).	

A	vector	äI/'B	is	used	to	indicate	which	channel	of	the	input	signal	corresponds	to	which	BRIR	pair	in	
the	BRIR	data	set.	The	audio	channels	and	BRIRs	are	matched	according	to	their	position	data.	The	BRIR	

position	data	is	taken	from	the	metadata	file,	the	position	data	of	the	audio	channels	is	derived	from	the	

input	parameter	signaling	the	channel	configuration.	

If	there	are	audio	channels	with	no	associated	BRIR	after	the	matching	of	the	BRIR	positions	and	the	audio	

channel	positions,	a	fallback	BRIR	is	determined	for	these	channels.	

As	a	first	step	it	is	determined	whether	a	BRIR	is	available	with	the	same	elevation	and	with	a	maximum	

azimuth	deviation	from	the	desired	position	of	+/-	20°.	If	such	a	BRIR	is	not	available,	the	geometrically	

closest	BRIR	 is	 chosen.	 The	 geometrically	 closest	BRIR	 is	 determined	 to	 be	 the	BRIR	 from	 the	 set	 of	

available	BRIRs	that	has	a	minimum	geometric	distance	to	the	desired	position.	The	geometric	distance	

between	two	positions	ã8, ã?	(each	defined	by	azimuth	å	and	elevation	ç)	therefore	is	defined	as:	

∆(ã8, ã?) = 	 |ç8 −	ç?| + |å8 −	å?|		

For	the	set	of	known	BRIR	positions	[ã=, ãZ"$%$>8]	and	a	wanted	position	ãa ,	the	geometrically	closest	
BRIR	is	the	entry	where		 ∆(ãa , ãO)	is	minimized	for	∀	~	 ∈ [0, Å"NbN − 1].	

After	a	BRIR	is	determined	for	each	audio	channel,	the	partitioned	fast	convolution	is	conducted	band-

wise	for	all	QMF	frequency	bands	!	with	0 ≤ ! < uI/'B	and	uI/'B = 32.	This	processing	step	is	computed	
independently	of	the	sampling	rate	of	the	audio	signal.	If	the	audio	sampling	rate	and	the	sampling	rate	

of	the	BRIRs	used	for	the	generation	of	the	VOFF	coefficients	do	not	correspond,	they	are	nonetheless	

used	for	the	VOFF	processing.	If	this	behaviour	is	not	desired,	then	the	BRIRs	should	be	resampled	to	the	

required	audio	sampling	rate	and	the	parameterization	recalculated.	Figure	80	outlines	the	partitioned	

fast	convolution	process.		

ISO/IEC	23008-3:202X(E)	

462	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	80	—	Outlines	of	the	partitioned	fast	convolution	process	

The	sub-frames	(referred	to	as	“audio	frames”	in	Figure	80)	of	channel	k	of	the	overall	audio	frame	of	
length	ÄZ	are	zero-padded.	

Ç̀I	
O,# = íyáI	

Z889
? O7=,#

⋯yáI	
Z889
? O7c,#

⋯yáI	
Z889
? (O78)>8,#

		0⋯0ì	

The	zero-padded	sub-frames	are	transformed	to	the	pseudo-FFT	domain	via	complex-valued	FFT.	

îïI	
O,# = ññóòÇ̀I	

O,#ô = [YõI	
=,O,#⋯YõI	

d,O,#⋯YõI	
Z889>8,O,#]	

To	perform	the	block-wise	fast	convolution,	the	transformed	audio	frame	îï I	
O,#
	is	complex	multiplied	by	

the	 VOFF	 coefficients	 of	 channel	 	äI/'B[k] 	and	 the	 complex	 multiplied	 outputs	 of	 all	 channels	 are	
summed	up.	From	the	second	blocks,	 the	complex	multiplication	results	are	shifted	and	stored	to	 the	

buffers:	

	úùû=,e2f
U = [ü†°=,e2f

=,U ⋯ü†°=,e2f
Z889>8,U]	and	úùû8,e2f

U = [ü†°8,e2f
=,U ⋯ü†°8,e2f

Z889>8,U]	

For		0 ≤ d < Åe2f(k) − 1:	

ü†°=,e2f
d,U = ü†°=,e2f

d,U78 + P Yï I	
d,O,#¢£g,h:;*<(\)

i,j,k
Z2*>8

\D=

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 463	
	

ü†°8,e2f
d,U = ü†°8,e2f

d,U78 + P îï I	
d,O,#¢£l,h:;*<(\)

i,j,k
Z2*>8

\D=

	

Then,	the	fast	convoluted	pseudo-FFT	domain	audio	frame	[§ï =,I/'B	
d,O,# 	§ï 8,I/'B	

d,O,#]	is	defined	as:	

Zï =,I/'B	
d,O,# = ü†°=,e2f

d,=
	

Zï 8,I/'B	
d,O,# = ü†°8,e2f

d,=
	

The	fast	convoluted	pseudo-FFT	domain	audio	frame	[§ï =,I/'B	
d,O,# 	§ï 8,I/'B	

d,O,#]	is	then	inverse	transformed	to	the	

QMF	domain	and	forms	the	fast	convoluted	QMF	domain	audio	frame	[¶̀=,I/'B
O,# 		¶̀8,I/'B

O,#].	

¶̀=,I/'B
O,# = ßññó ®©Zï =,I/'B	

=,O,# ⋯Zï =,I/'B	
Z889>8,O,#™´ = [z̀=,I/'B

=,O,# ⋯ z̀=,I/'B
Z889>8,O,#]	

¶̀8,I/'B	
O,# = ßññó{[Zï 8,I/'B	

=,O,# ⋯Zï 8,I/'B	
Z889>8,O,#]} = [z̀8,I/'B

=,O,# ⋯ z̀8,I/'B
Z889>8,O,#]	

Finally,	the	fast	convoluted	QMF	domain	audio	frame	[¶̀=,I/'B
O,# 		¶̀8,I/'B

O,#]	is	overlapped	and	saved.	

For	0 ≤ ~ < Åmno(k) − 1	do:	

Ø̆=,I/'B

Z889
? O7c,#

=	 z̀=,I/'B
c,O,#

	

Ø̆8,I/'B

Z889
? O7c,#

=	 z̀8,I/'B
c,O,#

	

For	~ = Åmno(k) − 1	do:	

For	0 ≤ ± < Åmmp(k)/2 − 1	do:	

Ø̆=,I/'B

Z889
? O7c,#

=	 z̀=,I/'B
c,O,#

	

Ø̆8,I/'B

Z889
? O7c,#

=	 z̀8,I/'B
c,O,#

	

For	Åmmp(k)/2 − 1 ≤ ± < Åmmp(k) − 1	do:	

ü†°=,mno
c =	 z̀=,I/'B

c,O,#
	

ü†°8,e2f
c =	 z̀8,I/'B

c,O,#
”	

The	convolution	results	from	each	audio	input	channel	with	each	BRIR	pair	are	summed	up	in	each	QMF	

frequency	band	k	with	0	 ≤ !	 < uI/'B 	resulting	 in	 an	 intermediate	2-channel	uI/'B-band	pseudo-FFT	
domain	signal.	

¶≤I/'B
Q,# =	 ÉØ̆=,I/'B

Q,# , Ø̆8,I/'B
Q,# Ü	in	QMF	domain	frequency	band	!.	

ISO/IEC	23008-3:202X(E)	

464	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Next,	a	bandwise	FFT	synthesis	is	carried	out	to	transform	the	convolution	result	back	to	the	QMF	domain	

resulting	in	an	intermediate	2-channel	uI/'B-band	QMF	domain	signal	with	max	(Å!!q[k])	time	slots.	

≥U\]Q^
Q,# =	 ÉØ̃=,\]Q^

Q,# , Ø̃8,\]Q^
Q,# Ü	with	0 ≤ 5 < LZ	and	0	 ≤ !	 < uI/'B.	

For	each	QMF	domain	input	signal	frame	with	ÄQ =	64	timeslots	a	convolution	result	signal	frame	with	
ÄQ =	64	timeslots	is	returned.	The	remaining	timeslots	are	stored	([ü†°=,mno , ü†°8,mno])	and	an	overlap-
add	processing	is	carried	out	in	the	following	frame(s).	

13.2.4.2.4 Generation	of	late	reverberation	

As	 a	 second	 intermediate	 signal	 a	 QMF	 domain	 reverberation	 signal	 called	 ≥á%+B
Q,# = ÉØ̂=,%+B

Q,# , Ø̂8,%+B
Q,# Ü	 is	

generated	up	to	band	uI/'B − 1	by	a	reverberator	module.	

The	reverberator	takes	as	input:	

1) a	QMF	domain	stereo	downmix	of	one	frame	of	the	input	signal;	

2) the	frequency-dependent	RT60	reverberation	time	and	the	late	reverberation	energy	

values	from	the	BRIR	metadata	information;	

and	returns	a	2-channel	QMF	domain	late	reverberation	tail.	

The	RT60	reverberation	time	and	late	reverberation	energy	values	are	kept	as	read	from	the	metadata	

file	independent	on	the	audio	sampling	rate;	they	are	just	remapped	to	different	centre	frequencies	if	the	

audio	 sampling	 rate	 differs	 from	 the	 BRIR	 sampling	 rate	 that	 was	 used	 during	 parameterization.	

Therefore,	 the	 center-frequencies	 of	 the	 late	 reverberation	 analysis	 bands	 from	 the	 BRIR	 metadata	

information	are	recalculated	in	a	first	step,	if	the	audio	sampling	rate	differs	from	the	BRIR	sampling	rate	

that	was	used	during	parameterization.		

°\[!] =
;=[#]
;>,"$%$

⋅ °@	with	0 ≤ ! < uTQT .	

Next,	the	number	of	required	analysis	bands	u2n 	is	determined.	This	is	determined	from:	

°\[!] ≤ °\,PTr	with	°\,PTr	 = 48.5 ⋅ `
;>
?
	/	64a.	

Then,	a	QMF	domain	stereo	downmix	of	one	frame	of	the	input	signal	ÇáQ,# 	is	carried	out	to	form	the	input	
of	 the	 reverberator	 by	 weighted	 summation	 of	 the	 input	 signal	 channels.	 The	 weighting	 gains	 are	

contained	in	the	downmix	matrix	MEst.	These	gains	are	real-valued	and	non-negative	and	the	downmix	
matrix	 is	of	dimension	Å/X$	 × Å)'.	 It	contains	a	non-zero	value	where	a	channel	of	 the	 input	signal	 is	
mapped	to	one	of	the	two	output	channels.	

The	channels	that	represent	loudspeaker	positions	on	the	left	hemisphere	are	mapped	to	the	left	output	

channel	and	the	channels	that	represent	loudspeakers	located	on	the	right	hemisphere	are	mapped	to	

the	right	output	channel.	The	signals	of	these	channels	are	weighted	by	a	coefficient	of	1.	The	channels	

that	represent	 loudspeakers	 in	the	median	plane	are	mapped	to	both	output	channels	of	 the	binaural	

signal.	The	input	signals	of	these	channels	are	weighted	by	a	coefficient	

4 = 0.7071 ≈
1

√2
	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 465	
	

In	addition,	an	energy	equalization	step	is	performed	in	the	downmix.	It	adapts	the	bandwise	energy	of	

one	downmix	channel	to	be	equal	to	the	sum	of	the	bandwise	energy	of	the	input	signal	channels	that	are	

contained	in	this	downmix	channel.	This	energy	equalization	is	conducted	by	a	bandwise	multiplication	

with	a	real-valued	coefficient		

	k+u,# =	º
P)'
#

P/X$
+ ε

	

The	 factor	k+u,< 	is	 limited	 to	 an	 interval	 of	 [0.5,	 2].The	 numerical	 constant	ø 	is	 introduced	 to	 avoid	 a	
division	by	zero.	The	downmix	is	also	bandlimited	to	the	band	uI/'B;	the	values	in	all	higher	frequency	
bands	are	set	to	zero.	

The	downmix	and	the	u2n 	values	of	RT60	and	energy	are	fed	to	the	reverberator.	In	the	reverberator	a	
mono	downmix	of	the	stereo	input	is	calculated.	This	is	performed	by	incoherently	applying	a	90°	phase	

shift	on	one	of	the	stereo	input	channels.	This	mono	signal	is	then	fed	to	a	feedback	delay	loop	in	each	

frequency	 band 	! ,	 which	 creates	 a	 decaying	 sequence	 of	 impulses.	 It	 is	 followed	 by	 parallel	 FIR	
decorrelators	that	distribute	the	wanted	signal	energy	in	a	decaying	manner	into	the	intervals	between	

the	impulses	and	create	incoherence	between	the	output	channels.	A	decaying	filter	tap	density	is	applied	

to	create	the	energy	decay	defined	by	the	RT60	time.	The	filter	tap	phase	operations	are	restricted	to	four	

options	to	implement	a	sparse	and	multiplier-free	decorrelator.	After	the	calculation	of	the	reverberation	

an	inter-channel	coherence	(ICC)	correction	step	is	included	in	the	reverberator	module	for	every	QMF	

frequency	band.	In	the	ICC	correction	step	frequency-dependent	direct	gains	and	crossmix	gains	are	used	

to	adapt	the	ICC.	The	processing	in	the	reverberator	is	shown	in	detail	in	Figure	81.	

	

Figure	81	—	Processing	in	the	reverberator	

The	amount	of	energy	and	the	reverberation	times	for	the	different	frequency	bands	are	defined	by	the	

input	 parameter	 set.	 The	 RT60	 reverberation	 time	 and	 energy	 values	 are	 given	 at	 a	 number	 of	

u2n 	frequency	points	which	are	internally	mapped	to	the	u =	64	QMF	frequency	bands.	

The	reverberation	is	adaptively	scaled	according	to	a	correlation	measure	of	the	input	signal	frame.	The	

scaling	 factor	 is	 defined	 as	 a	 value	 in	 the	 interval	 of	 É¿ÅEst,&I$, ÅEst,&I$Ü 	linearly	 depending	 on	 a	
correlation	coefficient	k\]RR	between	0	and	1.		The	coefficient	k\]RR 	is	set	to	the	value	0.5.	

ÅEst,&I$	is	the	number	of	channels	that	are	active	(carry	signal	energy)	in	the	current	audio	frame	and	
are	downmixed	 to	one	output	 channel	 (e.g.the	 intersection	of	 all	 values	of	 one	 line	of		MEst	and	 the	
currently	active	audio	channels).	

The	scaling	factors	are:	

ISO/IEC	23008-3:202X(E)	

466	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

!!"#$% =	 $%!"#$%,', %!"#$%,(' =
$())*+,#",,' + %"-.. ⋅ ,))*+,#",,' − ())*+,#",,'.	
())*+,#",,(+ %"-.. ⋅ ,))*+,#",,(−())*+,#",,(.'

	

The	number	of	active	downmix	channels	ÅEst,&I$	may	change	over	time.	

The	 scaling	 factors	 are	 smoothed	 over	 audio	 signal	 frames	 by	 a	 1st	 order	 low	pass	 filter	 resulting	 in	

smoothed	scaling	 factors	¡U(I&.+ =	 Ék̃(I&.+,=, k̃(I&.+,8Ü.	The	scaling	 factors	are	 initialized	 in	 the	 first	audio	
input	data	frame.	

13.2.4.2.5 QTDL	processing	

In	the	bands	Kconv	to	Kmax	–1,	a	QMF	domain	tapped	delay	line	(QTDL)	replaces	both	the	VOFF	processing	
and	the	sparse	Frequency	Domain	Reverberator.	

The	QTDL	processing	is	achieved	by	performing	one	complex	multiplication	and	delay.		

!̆!,#$%&',(= $ %),*vwxy[,]
(

.zx

,/0
&'1	
345{,hvwxy[|]

} ,() ∈ {0,1}	

¶≤~qEM
Q,# =	 ÉØ̆=,~qEM

Q,# , Ø̆8,~qEM
Q,# Ü	

For	each	QMF	domain	input	signal	with	ÄQ =	64	timeslots,	64	QTDL	processed	output	signals	¶≤~qEM
Q,#

	are	

returned	 corresponding	 to	 ÄQ =	 64	 timeslots.	 The	 remaining	 timeslots	 (corresponding	 to	 the	 last	
.O,h:;*<[P]
# 	samples)	are	stored	and	an	overlap-add	processing	is	carried	out	in	the	following	frame(s).	

13.2.4.2.6 Mixing	and	combination	of	binaural	processed	outputs	

Next,	the	VOFF	processed	output	≥U\]Q^
Q,# =	 ÉØ̃=,\]Q^

Q,# , Ø̃8,\]Q^
Q,# Ü,	the	reverberator	output	≥á%+B

Q,# = ÉØ̂=,%+B
Q,# , Ø̂8,%+B

Q,# Ü	

and	the	QTDL	processed	output	¶≤~qEM
Q,# =	 ÉØ̆=,~qEM

Q,# , Ø̆8,~qEM
Q,# Ü	for	one	QMF	domain	audio	input	frame	are	

combined	by	a	mixing	process	that	adds	the	signals	on	a	band-by-band	basis.	

The	late	reverberation	output	is	delayed	by	.	time	slots	as	part	of	the	mixing	process.	The	delay	.	takes	
into	 account	 the	 frequency-dependent	 transition	 time	 from	early	 reflections	 to	 late	 reflections	 in	 the	

BRIRs	and	an	initial	delay	of	the	reverberator	of	20	QMF	time	slots,	as	well	as	an	analysis	delay	of	0.5	

QMF	time	slots	for	the	QMF	analysis	of	the	BRIRs	to	ensure	the	insertion	of	the	late	reverberation	at	an	

appropriate	time	slot.		

The	combined	signal	¶áQ,# 	at	one	time	slot	 	is	calculated	by	¶áI/'B
Q,# +	¶á%+B

Q>V,#
	in	the	bands	up	to	uI/'B		and	

is	directly	connected	by	¶≤~qEM
Q,#

	in	the	bands	between	uI/'B	and	uA&G.		For	clarity,	it	should	be	noted	that	

the	bands	beyond	uA&G	are	not	processed	in	the	binaural	rendering	and	thus	no	signal	is	combined	to	the	

output	signal	in	this	band.		

If	flag_HRIR	==	0	

n

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 467	
	

¶áQ,# = ¬
¶áI/'B
Q,# +	¶á%+B

Q>V,# 0 ≤ ! < uI/'B
¶≤~qEM
Q,# uI/'B ≤ ! < uA&G
0 uA&G ≤ ! < 64

	

else	

¶áQ,# = ¬
¶áI/'B
Q,# 0 ≤ ! < uI/'B

¶≤~qEM
Q,# uI/'B ≤ ! < uA&G
0 uA&G ≤ ! < 64

	

13.2.4.2.7 QMF	synthesis	of	binaural	QMF	domain	signal	

One	2-channel	frame	of	L' =	32	time	slots	of	the	QMF	domain	output	signal	¶áQ,# 		is	transformed	to	a	2-
channel	 time	 domain	 signal	 frame	with	 length 	Ä 	by	 the	 QMF	 synthesis	 according	 to	 ISO/IEC	14496-
3:2009,	4.6.18.4.2	yielding	the	final	time	domain	output	signal	¶UY =	 [zU=

C, zU8
C].	

13.3 Time-domain	binaural	renderer	

 General	

The	time-domain	binaural	renderer	may	be	used	for	generating	3D	audio	headphone	signals	for	all	types	

of	input	content	(channel	and/or	object	and/or	HOA).	

In	 the	 general	 case	 (channel	 and/or	 object	 and/or	 HOA	 input),	 the	 time-domain	 binaural	 renderer	

operates	using	the	virtual	 loudspeaker	binaural	(VLB)	approach,	which	converts	a	 loudspeaker	signal	

√F�ÄÅÇÄN	to	the	stereo	output	signal	√MN	using	time-domain	virtual	loudspeaker	binaural	parameters	
for	each	loudspeaker	position.	

	

Figure	82	—	VLB	approach	for	all	types	of	input	content		
(channel	and/or	object	and/or	HOA)	

However,	in	the	specific	case	of	HOA-only	signals,	the	HOA	to	binaural	(H2B)	approach	may	also	be	used,	

which	directly	converts	the	HOA	signal	to	the	stereo	output	signal	using	HOA-based	binaural	parameters.	

The	H2B	approach	may	be	used	for	HOA-only	signals	by	applying	a	binaural	filtering	directly	to	the	HOA	

components	C	to	obtain	the	binaural	signals	√MN	

	

Figure	83	—	H2B	approach	for	HOA-only	signals	

When	using	time-domain	binauralization	for	HOA-only	input	signals,	both	VLB	and	H2B	approaches	shall	

be	supported	in	the	decoder.	In	this	case,	the	approach	used	in	the	decoder	for	a	given	audio	bitstream	

ISO/IEC	23008-3:202X(E)	

468	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

and	given	filters	is	selected	depending	on	the	availability	of	the	filter	format	at	the	decoder	(VLB,	H2B,	or	

both).	H2B	filters	can	be	obtained	from	VLB	filters,	but	not	conversely.	

In	 the	 case	 where	 H2B	 filters	 are	 available,	 the	 H2B	 	 methodology	 is	 to	 be	 used,	 otherwise	 VLB	

methodology	shall	be	used.	

Whatever	the	approach	selected	by	the	decoder	(VLB	or	H2B),	the	binauralization	is	based	on	the	filtering	

(with	summation	for	each	ear)	of	the	input	signals.	In	the	VLB	case,	the	inputs	to	the	filters	are	the	virtual	

loudspeakers	signals,	and	in	the	H2B	case,	the	inputs	are	the	HOA	components.		

For	each	ear,	this	filtering	process	consists	of:	

— applying	a	specific	direct	filter	block,	ideally	modelling	the	direct	path	and	early	reflections	(in	effect	
also	modelling	the	head	and	torso	of	the	listener),	to	each	input	signal;	

— applying	a	common	diffuse	filter	Bmean	(possibly	decomposed	into	M	blocks),	ideally	modelling	the	
diffuse	part	of	the	room	response	(including	late	reflections	and	reverb),	to	a	weighted	sum	(taking	

into	account	the	difference	of	energy	between	BRIRs)	of	the	input	signals;	

— limiting	 the	bandwidth	of	each	block	 (to	save	computational	complexity)	according	 to	 the	cut-off	
frequency	provided	(by	the	filter	design,	but	also	possibly	by	the	decoder,	e.g.	limitation	of	bandwidth	

of	the	content).	

The	 direct	 and	 diffuse	 filter	 coefficients,	 diffuse	weights,	 and	 cut-off	 frequencies	 are	 provided	 by	 an	

adaptive	filter	parameterization	technique.	

Further	information	about	delay	and	complexity	of	time	domain	binauralization	can	be	found	in	Annex	H.	

 Definitions	

13.3.2.1 General	variables	

In	the	following	subclauses,	the	following	variable	conventions	are	used.	

5	 	 	 	 	 	 time	index	

!		 	 	 	 	 	 ear	index	(0=left,	1=right)	

†	 	 	 	 	 	 frequency	index	

Ä	 number	 of	 input	 channels	 (virtual	 loudspeakers	 or	 HOA	 components).	 It	 is	

equal	 to	 the	 number	 of	 BRIRs	 (each	 BRIR	 containing	 a	 pair	 of	 impulse	

responses).	

d ∈ [1; Ä]	 	 	 	 channel	index	

ß(d)		 	 	 	 	 input	signal	for	channel	d	

≈# 		 	 	 	 	 	 output	signal	for	the	left	(! = 0)	or	right	(! = 1)	ear	

ℎ#,U 	 	 	 	 	 	 impulse	response	of	the	left	(! = 0)	or	right	(! = 1)	BRIR	d		

ℎ#,U
[Q?;Q@]	 	 	 	 	 taps	5=	to	58	of	impulse	response	of	the	left	(! = 0)	or	right	(! = 1)	BRIR	d		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 469	
	

13.3.2.2 Filter	parameterization	variables	

∆«»{d4…		 	 	 	 initial	delay	of	a	BRIR	set	in	time	domain	samples	(propagation	time)	

ÅV 	 	 	 	 	 	 size	in	samples	of	the	direct	part	of	BRIRs	

 #(d) 	∈ 	ℝZ1 	 	 	 FIR	coefficients	for	the	direct	block	of	the	left	(! = 0)	or	right	(! = 1)	BRIR	d	

Ã	 	 	 	 	 	 number	of	diffuse	blocks	

� ∈ [1;Ã]	 		 	 	 block	index	

úU
# ∈ 	ℝZ1	.		o	 	 	 FIR	coefficients	for	the	left	(! = 0)	or	right	(! = 1)	diffuse	filter	of	BRIR	d	

úPSTQ# ∈ 	ℝZ1	.		o		 	 FIR	coefficients	for	the	left	(! = 0)	or	right	(! = 1)	average	diffuse	filter	

üPSTQ# (�) ∈ 	ℝZ1 	 FIR	coefficients	for	diffuse	block	�	of	the	left	(! = 0)	or	right	(! = 1)	average	
diffuse	filter	

	°T
#(d)	 	 	 	 	 cut	off	frequency	for	direct	part	of	the	left	(! = 0)	or	right	(! = 1)	BRIR	d	

	°Ö
#(�)	 cut	off	 frequency	for	the	�th	diffuse	block	of	the	 left	(! = 0)	or	right	(! = 1)	

average	diffuse	filter	

»Õ(d)	 	 	 	 	 gain	to	apply	to	the	input	channel	d	before	filtering	with	average	diffuse	filters	

Ø>Z1.P		 	 	 	 	 delay	line	operator	for	a	delay	of	�	frequency	blocks	(i.e.,	ÅV�		time	samples)		

∗[=	;	…	;	:]		 frequency-limited	 convolution	 operator	 (i.e.,	 term-by-term	multiplication	 in	

the	frequency	domain	applied	to	a	limited	number	of	frequency	bins,	from	0	to	
°)	

13.3.2.3 Function	definitions	

The	energy	of	a	time-domain	single-channel	signal	œ(5)	is	defined	by:	

–(œ) = Pœ?(5)

7á

QD=

	

The	cumulative	energy	is	defined	by:	

{(œ, 5) =Pœ?(~)

Q

OD=

	

The	normalized	cumulative	energy	is	defined	by:	

{Q]RP(œ, 5) =
{(œ, 5)
–(œ)

	

The	frequency-domain	cumulative	energy	is	defined	by:	

ISO/IEC	23008-3:202X(E)	

470	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

{;RSc(œ, †) =
∑ —?(~)à
OD=

∑ —?(~)ZâcàO@ä
OD=

	

where	—(†)	is	the	discrete	Fourier	transform	of	the	Å-point	signal	œ(5):	

—(†) = P œ(5){>O?ã
à
ZQ

Z>8

QD=

	

and	Å…±†~«“	is		the	index	of	the	Nyquist	frequency,	i.e.,	
Z
?
	when	Å	is	even.	

 Parameterization	of	binaural	room	impulse	responses	

13.3.3.1 General	

For	each	ear	!	and	channel	d,	the	BRIR	impulse	response	ℎ#,U 	is	parameterized	as:	

— an	initial	propagation	delay	∆«»{d4…	(common	for	all	BRIRs).	This	is	shown	in	Figure	84	as	the	initial	
‘quiet	samples’;	

— a	direct	filter	block	 #(d) 	∈ 	ℝZ1 	(ÅV 	samples	in	the	time	domain).	This	is	shown	in	Figure	84	as	the	
block	following	bsDelay;	

— Ã	diffuse	 filter	blocks	üPSTQ# (�) ∈ 	ℝZ1 ,	 for		� ∈ [1;Ã]	(common	 for	all	BRIRs).	This	 is	 shown	 in	
Figure	84	as	the	blocks	following	the	Direct	block;	

— a	diffuse	gain	Dw(l)	(common	for	left	and	right	impulse	responses).	

The	parameterization	is	composed	of	four	stages	that	are	described	in	details	in	the	next	subclauses:	

1) propagation	time	calculation;	
2) direct/diffuse	automatic	segmentation;	

3) diffuse	filters	computation;	

4) cut-off	frequencies	computation.	
	

As	a	special	case,	if	BRIRs	are	shorter	than	1	024	samples	in	the	time	domain,	then	the	three	first	stages	

of	parameterization	are	ignored	and	:	

— ∆«»{d4…	is	set	to	0;	
— ÅV 	is	set	to	the	power	of	two	above	or	equal	to	the	BRIRs	size;	

— #(d) = ℎ#,U 	(plus	additional	zeros	at	the	end	to	complete	to	ÅV 	samples);	

— Ã	is	set	to	0	(i.e.,	no	diffuse	filter).	
	

13.3.3.2 Propagation	time	calculation	

Starting	 from	 a	 set	 of	 original	 BRIRs,	 the	 offset	 bsDelay	 (in	 sample)	 is	 first	 computed	 to	 remove	
propagation	time	and	samples	with	near-zero	energy	at	the	beginning	of	all	BRIRs.	For	each	ear	!	and	
each	channel	d,	the	integer	time	index	.#,U 	at	which	BRIR	cumulative	energy	reaches	“ℎz{«1 = 10>J	–PTr	
is	computed:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 471	
	

.#,U 	= min ‘arg
Q
	(
{(ℎ#,U 	, 5)
–PTr

> “ℎz{«1)’	

where		–PTr 	is	the	energy	of	the	BRIR	impulse	response	with	maximum	energy	(among	all	filters):	

–PTr =	max#,UÉE(ℎ#,U)	Ü	

The	minimum	of	all	time	indexes	is	then	selected	as	bsDelay:	

∆«»{d4…	 = max#,UÉ.#,UÜ	

All	samples	before	bsDelay	are	set	to	zero	in	the	BRIRs.	

13.3.3.3 Direct/diffuse	automatic	segmentation	

Each	BRIR	is	then	automatically	decomposed	into	a	first	block	(direct	and	first	reflections	part)	and	Ã	
diffuse	blocks	of	the	same	size.	This	segmentation	is	illustrated	on	Figure	84.	

	
Figure	84	—	Automatic	direct/diffuse	segmentation	for	one	BRIR	

The	direct	block	length	is	computed	as	follows.	For	each	ear	!	and	each	channel	d,	the	integer	time	index	
.#,U 	at	which	the	BRIR	normalized	cumulative	energy	reaches	“ℎz{«2 = 1 − 10>8J/8=	is	computed:	

.#,U 	= min ‘arg
Q
	({Q]RPDℎ#,U 	, 5F > “ℎz{«2)’	

The	maximum	time	index	is	selected	and	it	is	increased	to	the	next	power	of	two	to	get	the	direct	block	

length:	

0 1000 2000 3000 4000 5000 6000 7000

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time [sample]

am
pl

itu
de

filter
cumulative energy

thres 3
thres 2

thres 1

Diffuse bloc 2 Diffuse bloc 1Direct bloc

bsDelay lenDirect

ISO/IEC	23008-3:202X(E)	

472	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ÅV = nextpow2(max#,U 	É.#,UÜ)	

Finally,	the	direct	block	length	shall	be	limited	to	be	not	more	that	8192	samples	long:	

ÅV = �~5(8192,	ÅV)	

For	each	ear	!	and	channel	d,	the	direct	filer	 #(d)	is	then	given	by:	

 #(d) = ℎ#,U
[Ö@åSUTâ;Ö@åSUTâ7Z1>8]	 	

The	 total	 number	 of	 diffuse	 blocks	Ã 	is	 computed	 as	 follows.	 For	 each	 ear	! 	and	 each	 channel	d ,	 the	
integer	 time	 index	 .#,U 	at	 which	 BRIR	 normalized	 cumulative	 energy	 reaches	 thres3=1-10-19/10	 is	
computed:	

.#,U 	= min ‘arg
Q
	(
S0AB-çé.,C	,Qè

ê-DE
> “ℎz{«3)’		

Then	Ã	is	given	by	:	

Ã	 = 	ceil(
max#,U 	É.#,UÜ −	(∆«»{d4… + ÅV − 1)

ÅV
)		

where	 ceil	 is	 the	 round	 up	 function.	 If	Ã 	is	 zero,	 then	 there	 is	 no	 diffuse	 filter	 and	 the	 last	 steps	 of	
parameterization	shall	be	skipped.	This	is	the	case	when	thres3	is	reached	before	the	end	of	the	direct	
block	(i.e.,	time	index	∆«»{d4… + ÅV − 1).	

Otherwise	the	Ã-block	long	diffuse	filter	is	computed	for	ear	!	and	channel	d	by:	

úU
= ℎ#,U

[Ö@åSUTâ7Z1;Ö@åSUTâ7(o78).Z1>8]	 	 	 	

A	 smoothing	 window	Õ(5) 	is	 applied	 to	 fade	 out	 the	 last	Å;TVS = 512 	points	 of	úU
# .	 Specifically	 we	

compute	Õ(5)	by:	

Õ(5) =
\]@	(ã.Q/ZFD1/)78

?
	for	5 = [0;Å − 1]		

BRIR	samples	beyond	úU
# 	(i.e.,	time	indexes	superior	to	∆«»{d4… + (Ã + 1). ÅV − 1)	are	to	be	ignored.	If	

the	 end	of	úU
# 	goes	beyond	 the	 end	of	 the	BRIRs,	 then	úU

# 			is	 completed	with	 zeros	 at	 the	 end	 (zero-
padding)	to	reach	(Ã.ÅV)	samples.	This	is	performed	before	applying	the	smoothing	window.		

13.3.3.4 Diffuse	filters	computation	

To	reduce	computational	cost,	a	single	average	diffuse	filter	úPSTQ# 		is	computed	for	ear	!	by	taking	the	
mean	of	all	normalized	contributions	per	channel:	

úPSTQ# =	
1
Ä
P

úU
#

–(úU
#)

2

UD8

	

where	úU
# 	is	the	Ã-block	long	diffuse	filter	for	ear	k	and	channel	l,	and	–DúU

#F	its	energy.	úPSTQ# 		is	then	

cut	into	Ã	contiguous	blocks	üPSTQ# (�)	of	ÅV 	samples	each	for	� ∈ [1;Ã].			

A	compensation	gain	»Õ(d)	is	computed	per	channel	d	by:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 473	
	

»Õ(d) = 	
2. ÷

◊=(d) +◊8(d)
	

where	÷	is	a	global	attenuation	gain	of	6dB	(G	=	10-6/20)	and	◊#(d)	is	a	weight	computed	for	ear	!	and	
channel	d	by:	

◊#(d) =
¿–(úPSTQ

)

ÿ–(úU
#)

	

13.3.3.5 Cut-off	frequencies	computation	

In	typical	BRIRs,	high-frequency	energy	decays	faster	than	low-frequency	energy.	Cut-off	frequencies	are	

extracted	for	direct	and	diffuse	block	filters,	to	avoid	multiplying	frequency	bins	with	low	energy	during	

processing.		

Figure	85	shows	an	example	of	the	decomposition	of	one	BRIR	(left	and	right)	into	1	block	of	direct	part,	

and	2	blocks	of	diffuse	part,	on	a	time	frequency	representation.	Each	block	is	ÅV=	2048	samples	long.	
The	samples	after	3ÅV 	are	not	used.	The	frequencies	above		°T

U(d)	and		°T
R(d)	in	the	direct	block	are	not	

used.	The	frequencies	above		°Ö
U(1)	and		°Ö

R(1)	in	the	 first	diffuse	block	are	not	used.	The	frequencies	
above		°Ö

U(2)	and		°Ö
R(2)		in	the	second	diffuse	block	are	not	used.	During	processing,	unprocessed	bins	

above	 the	 corresponding	 cut-off	 frequencies	 are	 equivalent	 to	 a	multiplication	 by	 0	 (but	 not	 from	 a	

complexity	point	of	view)	which	can	 lead	to	some	artifacts	due	to	circular	convolution	 inside	a	block.	

These	artifacts	 can	generally	be	kept	 low	enough	 in	energy	 to	avoid	audible	artifacts	after	 the	whole	

process.	

	
Figure	85	—	Time	frequency	representation	of	a	pair	of	BRIR	

This	phenomenon	is	exploited	in	the	binaural	renderer.	For	ear	!	and	channel	d,	the	frequency	index	.Ÿ#,U 	
at	which	the	frequency-domain	cumulative	energy	of	the	direct	block	reaches	thres4=0.99	is	computed:	

.Ÿ#,U 	= min ‘arg
à
	({;RScD #(d), †F > “ℎz{«4)’		

Then	the	normalized	cutoff	frequency		°T
#(d)	is	defined	by:	

	°T
#(d) =

.Ÿ#,U 	
Å…±†~«“	

	

ISO/IEC	23008-3:202X(E)	

474	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	a	final	“quantization”	stage,		°T
#(d)	is	set	to	its	closest	value	in	vector	[1/6	1/3	1/2	2/3	5/6	1].	

For	each	channel	l,	each	ear	!	and	each	diffuse	bloc	�,	the	frequency	index	dw .,<,A	at	which	the	frequency-
domain	cumulative	energy	of	the	diffuse	block	�	reaches	thres4	is	computed:	

dw .,<,A 	= min ‘arg
X
	(e:%+uDB.

<(m), uF > thres4)’		

Then	the	normalized	cutoff	frequency		°Ö
#(�)	is	defined	by:	

	fë
<(m) =

max
.
dw.,<,A	

Nyquist	
	

In	a	final	“quantization”	stage,		°Ö
#(�)	is	set	to	its	closest	value	in	vector	[1/6	1/3	1/2	2/3	5/6	1].	

 Time-domain	binaural	processing	

13.3.4.1 General	

The	left/right	output	is	given	by	the	following	formula:	

≈# =P@ #(d) ∗í=;…;	;D.(U)ì
ß(d)G

2

UD8

+ P flüPSTQ# (�) ∗í=;…;	;G.(P)ì
hØ>Z1.P.P»d(d). ß(d)

2

UD8

j‡

o

PD8

	

The	 processing	 is	 achieved	 in	 the	 DFT	 (discrete	 Fourier	 transform)	 domain	 based	 on	 a	 block-wise	

approach.	The	following	constraints	are	associated	to	the	algorithm.	

— The	number	of	samples	ÅV 	of	the	direct	part	shall	be	equal	to	a	power	of	2.	

— The	size	of	each	of	the	Ã	diffuse	block	is	equal	to	ÅV .		
— The	frame	size	of	the	binauralization	process	is	equal	to	ÅV .	

— The	size	of	the	delay	line	is	a	multiple	of	Å.	(delay	of	1	frequency	block).	

— The	size	of	the	DFT	is	2.ÅV 		
Figure	86	shows	the	implementation	with	Ä	input	signals	and	Ã	diffuse	blocks:	

	
Figure	86	—	Description	of	the	binauralization	algorithm	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 475	
	

13.3.4.2 Initialization	

The	Ä	filters	of	 the	direct	block	 #(d)	and	 the	Ã	filters	of	 the	diffuse	blocks	üPSTQ# (�)	are	provided	as	
time	 domain	 blocks	 of	 size	ÅV .	 Each	 time	 domain	 filter	 is	 converted	 to	 the	 frequency	 domain	 in	 an	
initialization	step.	2Ä	buffers	of	2ÅV 	complex	data	for	Direct	part,	and	2Ã	buffers	of	2ÅV 	complex	data	for	
diffuse	blocks	are	provided.	

13.3.4.3 Processing	

The	Ä	input	 signals	 (channel	 or	HOA)	 are	 temporarily	 stored	 in	 buffers	 of	 size	ÅV .	 Using	 an	 overlap-
add/overlap-save	technique,	buffers	of	size	2ÅV 	are	created	and	then	converted	into	the	DFT	domain.		

For	 the	direct	block	and	 for	each	ear,	 these	Ä	frequency	buffers	are	multiplied	 term-by-term	with	 the	
associated	Ä 	direct	 filters	 from	0 	up	 to	 the	 frequency	 	°T

#(d) 	and	 accumulated	 in	 a	 frequency	 output	
buffer	previously	initialized	to	zero.	

These	Ä	frequency	buffers	are	also	multiply-accumulated	by	 the	diffuse	weights	»Õ(d)	for	each	ear	 to	
provide	a	weighted	downmix	buffer	dedicated	to	feed	each	of	the	diffuse	blocks.	

For	each	of	the	Ã	diffuse	blocks	and	for	each	ear,	the	appropriately	delayed	weighted	downmix	buffer	is	
multiplied	 term-by-term	 with	 the	 associated	 diffuse	 filters	 from	 0	 up	 to	 the	 frequency	 	°Ö

#(d) 	and	
accumulated	in	the	frequency	output	buffer.	

14 MPEG-H	3D	audio	stream	(MHAS)	
14.1 Overview	

This	clause	defines	a	self-contained	stream	format	to	transport	MPEG-H	3D	audio	data.	The	transport	

mechanism	uses	a	packetized	approach.	Both,	configuration	data	as	well	as	coded	audio	payload	data	is	

embedded	 into	 separate	 packets.	 Synchronization	 and	 length	 information	 is	 added	 to	 enable	 a	 self-

synchronizing	syntax.	

This	 stream	 format	 is	 intended	 to	 be	 used	 for	 the	 transmission	 over	 channels	 where	 no	 frame	

synchronization	 is	 available	 and	 it	may	be	used	 for	 the	 transmission	over	 channels	with	 fixed	 frame	

synchronization.	

14.2 Syntax	

 Main	MHAS	syntax	elements	

Table	221	—	Syntax	of	mpeghAudioStream()	

Syntax	 No.	of	bits	 Mnemonic	
mpeghAudioStream()	 	 	
{	 	 	
	 while	(bitsAvailable()	!=	0)	{	 	 	
	 	 mpeghAudioStreamPacket();	 	 	
	 }	 	 	
}	 	 	

ISO/IEC	23008-3:202X(E)	

476	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	222	—	Syntax	of	mpeghAudioStreamPacket()	

Syntax	 No.	of	bits	 Mnemonic	
mpeghAudioStreamPacket()	 	 	
{	 	 	
	 MHASPacketType					=	escapedValue(3,8,8);	 3,11,19	 uimsbf	
	 MHASPacketLabel				=	escapedValue(2,8,32);	 2,10,42	 uimsbf	
	 MHASPacketLength		=	escapedValue(11,24,24);	 11,35,59	 uimsbf	
	 MHASPacketPayload(MHASPacketType);	 	 	
}	 	 	
NOTE	 With	the	given	bit	allocation,	MHASPacketPayload()	is	always	byte-aligned.	

Table	223	—	Syntax	of	MHASPacketPayload()	

Syntax	 No.	of	bits	 Mnemonic	
MHASPacketPayload(MHASPacketType)	 	 	
{	 	 	
	 switch	(MHASPacketType)	{	 	 	
	 	 case	PACTYP_SYNC:	 	 	
	 	 	 0xA5;																																								/*	syncword*/	 8	 uimsbf	
	 	 	 break;	 	 	
	 	 case	PACTYP_MPEGH3DACFG:	 	 	
	 	 	 mpegh3daConfig();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_MPEGH3DAFRAME:	 	 	
	 	 	 mpegh3daFrame();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_AUDIOSCENEINFO:	 	 	
	 	 	 mae_AudioSceneInfo();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_FILLDATA:	 	 	
	 	 	 for	(i=0;	i<	MHASPacketLength;	i++)	{	 	 	
	 	 	 	 mhas_fill_data_byte(i);	 8	 bslbf	
	 	 	 }	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_SYNCGAP:	 	 	
	 	 	 syncSpacingLength	=	escapedValue(16,24,24);	 16,40,64	 uimsbf	
	 	 	 break;	 	 	
	 	 case	PACTYP_MARKER:	 	 	
	 	 	 for	(i=0;	i<	MHASPacketLength;	i++)	{	 	 	
	 	 	 	 marker_byte(i);	 8	 bslbf	
	 	 	 }	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_CRC16:	 	 	
	 	 	 mhasParity16Data;	 16	 bslbf	
	 	 	 break;	 	 	
	 	 case	PACTYP_CRC32:	 	 	
	 	 	 mhasParity32Data;	 32	 bslbf	
	 	 	 break;	 	 	
	 	 case	PACTYP_GLOBAL_CRC16:	 	 	
	 	 	 global_CRC_type;	 2	 bslbf	
	 	 	 numProtectedPackets;	 6	 bslbf	
	 	 	 mhasParity16Data;	 16	 bslbf	
	 	 	 break;	 	 	
	 	 case	PACTYP_	GLOBAL_CRC32:	 	 	
	 	 	 global_CRC_type;	 2	 bslbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 477	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 numProtectedPackets;	 6	 bslbf	
	 	 	 mhasParity32Data;	 32	 bslbf	
	 	 	 break;	 	 	
	 	 case	PACTYP_DESCRIPTOR:	 	 	
	 	 	 for	(i=0;	i<	MHASPacketLength;	i++)	{	 	 	
	 	 	 	 mhas_descriptor_data_byte(i);	 8	 bslbf	
	 	 	 }	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_USERINTERACTION:	 	 	
	 	 	 mpegh3daElementInteraction();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_LOUDNESS_DRC:	 	 	
	 	 	 mpegh3daLoudnessDrcInterface();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_BUFFERINFO:	 	 	
	 	 	 mhas_buffer_fullness_present	 1	 uimsbf	
	 	 	 if	(mhas_buffer_fullness_present)	 	 	
	 	 	 	 mhas_buffer_fullness	=	escapedValue(15,24,32);	 15,39,71	 uimsbf	
	 	 	 }	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_AUDIOTRUNCATION:	 	 	
	 	 	 audioTruncationInfo();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_GENDATA:	 	 	
	 	 	 GenDataPayload();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_EARCON:	 	 	
	 	 	 earconInfo();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_PCMCONFIG:	 	 	
	 	 	 pcmDataConfig();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_PCMDATA:	 	 	
	 	 	 pcmDataPayload();	 	 	
	 	 	 break;	 	 	
	 	 case	PACTYP_LOUDNESS:	 	 	
	 	 	 mpegh3daLoudnessInfoSet();	 	 	
	 	 	 break;	 	 	
	 }	 	 	
	 ByteAlign();	 	 	
}	 	 	

 Subsidiary	MHAS	syntax	elements	

Table	224	—	Syntax	of	mpegh3daLoudnessDrcInterface()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daLoudnessDrcInterface()	 	 	
{	 	 	
	 uniDrcInterface();		 	 	 /*	as	defined	in	ISO/IEC	23003-4	*/	 	 	
}	 	 	

Table	225	—	Syntax	of	audioTruncationInfo()	

Syntax	 No.	of	bits	 Mnemonic	

ISO/IEC	23008-3:202X(E)	

478	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

audioTruncationInfo()	 	 	
{	 	 	
	 isActive;	 1	 bool	
	 ati_reserved;	 1	 bool	
	 truncFromBegin;	 1	 bool	
	 nTruncSamples;	 13	 uimsbf	
}	 	 	

14.3 Semantics	

 mpeghAudioStreamPacket()	

MHASPacketType	 This	element	specifies	the	payload	type	in	the	actual	packet.	The	meaning	

of	MHASPacketType	is	defined	in	Table	226.	A	decoder	which	does	not	

support	a	certain	MHASPacketType	shall	skip	this	packet	and	continue	

with	the	next	package.	

Table	226	—	Value	of	MHASPacketType	

MHASPacketType	 Value	

PACTYP_FILLDATA		 0	
PACTYP_MPEGH3DACFG	 1	
PACTYP_MPEGH3DAFRAME	 2	
PACTYP_AUDIOSCENEINFO	 3	
/*	reserved	for	ISO	use	*/	 4-5	
PACTYP_SYNC		 6	
PACTYP_SYNCGAP	 7	
PACTYP_MARKER	 8	
PACTYP_CRC16	 9	
PACTYP_CRC32	 10	
PACTYP_DESCRIPTOR	 11	
PACTYP_USERINTERACTION	 12	
PACTYP_LOUDNESS_DRC	 13	
PACTYP_BUFFERINFO	 14	
PACTYP_GLOBAL_CRC16	 15	
PACTYP_GLOBAL_CRC32	 16	
PACTYP_AUDIOTRUNCATION	 17	
PACTYP_GENDATA	 18	
PACTYP_EARCON	 19	
PACTYP_PCMCONFIG	 20	
PACTYP_PCMDATA	 21	
PACTYP_LOUDNESS	 22	
/*	reserved	for	ISO	use	*/	 23-127	
/*	reserved	for	use	outside	of	ISO	scope	*/	 128-261	
/*	reserved	for	ISO	use	*/	 262-389	
/*	reserved	for	use	outside	of	ISO	scope	*/	 390-517	
Application-specific	MHASPacketType	values	are	mandated	to	be	in	the	space	reserved	
for	use	outside	of	ISO	scope.	These	shall	be	skipped	by	a	decoder	as	a	minimum	of	
structure	is	required	by	the	decoder	to	skip	these	extensions.	

	

MHASPacketLabel	 This	element	provides	an	indication	of	which	packets	belong	together.	

For	example,	with	using	different	labels,	different	MPEG-H	3D	audio	

configuration	structures	may	be	assigned	to	particular	sequences	of	

MPEG-H	3D	audio	access	units.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 479	
	

Conditions	and	restrictions	as	defined	in	subclauses	14.4.15	and	14.6	

shall	apply	to	the	value	of	MHASPacketLabel.	

MHASPacketLength	 This	element	indicates	the	length	of	the	MHASPacketPayload()	in	Bytes.	

MHASPacketPayload()	 The	payload	for	the	actual	MHASPacket.	

 MHASPacketPayload()	

mpegh3daConfig()	 An	MPEG-H	3D	audio	configuration	structure	as	defined	in	

subclause	5.2.2.1.	

mpegh3daFrame()	 An	MPEG-H	3D	audio	payload	as	defined	in	subclause	5.2.3.1.	

mae_AudioSceneInfo()	 An	MPEG-H	3D	audio	scene	information	structure	as	defined	in	

subclause	15.2.	

ByteAlign()	 Up	to	7	fill	bits	to	achieve	byte	alignment	with	respect	to	the	beginning	of	

the	syntactic	element	in	which	ByteAlign()	occurs.	

syncSpacingLength	 the	length	in	Bytes	between	the	last	two	MHASPacketType	
PACTYP_SYNC.	

mhasParity16Data	 a	16-bit	field	that	contains	the	CRC	value	that	yields	a	zero	output	of	the	

16	registers	in	the	decoder	with	the	polynomial:	

œ8L + œ8J + œJ + 1	

and	the	initial	state	of	the	shift	register	of	0xFFFF.	

mhasParity32Data	 a	32-bit	field	that	contains	the	CRC	value	that	yields	a	zero	output	of	the	

32	registers	in	the	decoder	with	the	polynomial:	

œK? + œ?L + œ?K + œ?? + œ8L + œ8? + œ88 + œ8= + œî + œï + œJ + œ4 + œ? + œ + 1	

and	the	initial	state	of	the	shift	register	of	0xFFFFFFFF.	

mhas_fill_data_byte	 8-bit	data	elements,	no	restrictions	apply	

mpegh3daElementInteraction()	 MPEG-H	3D	audio	element	interaction	structure	as	defined	in	

subclause	17.7.4	

mpegh3daLoudnessDrcInterface()	 An	MPEG-H	3D	Loudness	and	DRC	interface	as	defined	in	Table	

224.	

mhas_buffer_fullness_present	 a	bit	signalling	the	presence	of	mhas_buffer_fullness	

mhas_buffer_fullness	 data	element	indicating	the	state	of	the	bit	reservoir	in	the	course	

of	encoding	the	access	unit.	It	is	transmitted	as	the	number	of	

available	bytes	in	the	bit	reservoir.	The	state	of	the	bit	reservoir	is	

derived	according	to	subclause	5.6.2.	

global_CRC_type	 This	element	provides	an	indication	on	the	packet	types	allowed	within	

the	numProtectedPackets	protected	packets	with	the	global	CRC	specified	

ISO/IEC	23008-3:202X(E)	

480	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

in	MHASPacketType	PACTYP_GLOBAL_CRC32	or	

PACTYP_GLOBAL_CRC16,	according	to	Table	227.	

Table	227	—	Value	of	global_CRC_type	

Value	 Indication	on	the	packet	types	allowed	within	the	
numprotectedpackets	

0	 multiple	packets	of	any	packet	type.	
1	 multiple	packets	of	any	packet	type,	of	which	only	one	

packet	of	type	PACTYP_MPEGH3DAFRAME.	
2-3	 reserved	for	ISO	use	

	

numProtectedPackets	 a	6-bit	field	that	indicates	the	number	of	MHAS	packets	protected	by	the	
CRC	check	defined	in	the	MHASPacketType	PACTYP_GLOBAL_CRC16	and	

PACTYP_GLOBAL_CRC32.	

earconInfo()	 Earcon	Info	structure	as	defined	in	28.2.	

pcmDataConfig()	 PCM	data	configuration	structure	as	defined	in	28.2.	

pcmDataPayload()	 PCM	data	payload	structure	as	defined	in	28.2.	

mpegh3daLoudnessInfoSet()	 Loudness	metadata	structure	as	defined	in	6.3.1.	

	

 Subsidiary	MHAS	packets	

isActive		 If	1	the	truncation	message	is	active,	if	0	the	decoder	should	ignore	the	

message.	

ati_reserved	 reserved	bit	shall	be	zero.	

truncFromBegin	 if	0	truncate	samples	from	the	end,	if	1	truncate	samples	from	the	

beginning.	

nTruncSamples	 number	of	samples	to	truncate.	

14.4 Description	of	MHASPacketTypes	

 PACTYP_FILLDATA	

The	 MHASPacketType	 PACTYP_FILLDATA	 provides	 the	 possibility	 to	 add	 fill	 data	 to	 adjust	 the	

instantaneous	bit-rate.	This	may	be	desirable	in	certain	real-time	applications	where	data	is	transmitted	

over	a	constant	rate	channel.	

MHASPacketLabel	shall	be	0,	because	packets	of	this	type	do	not	relate	to	certain	payload	data.	

It	 is	 expected	 that	 decoders	 will	 ignore	 the	 data	 transmitted	 in	 packets	 of	 type	 PACTYP_FILLDATA.	
Furthermore,	 intermediate	 tools	 that	 are	 processing	 an	 MHAS	 streams	 are	 allowed	 to	 remove	 such	

packets	from	the	stream.		

It	is	allowed	to	set	MHASPacketLength	to	0.	This	yields	in	a	minimum	packet	size	of	2	bytes.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 481	
	

 PACTYP_MPEGH3DACFG	

MHAS	 Packets	 of	 the	 MHASPacketType	 PACTYP_MPEG3DACFG	 embed	 an	 MPEG-H	 3D	 audio	

configuration	structure,	mpegh3daConfig(),	in	the	MHASPacketPayload().	

MHASPacketLabel	 indicates	 the	 ID	 used	 for	 this	 configuration.	 This	 configuration	 shall	 be	 used	 for	

packets	 of	 type	 PACTYP_MPEGH3DAFRAME	 that	 have	 the	 same	 ID,	 so	 that	 a	 unique	 link	 between	

configuration	data	and	payloads	is	possible.	

If	MHASPacketType	of	 type	PACTYP_MPEGH3DACFG	 is	not	present,	 the	mpegh3daConfig()	 should	be	

conveyed	through	out-band	means,	such	as	session	announcement/description/control	protocols.	

 PACTYP_MPEGH3DAFRAME	

MHAS	Packets	of	the	MHASPacketType	PACTYP_MPEG3DAFRAME	embed	a	frame	of	MPEG-H	3D	audio,	

mpegh3daFrame(),	in	the	MHASPacketPayload().	

MHASPacketLabel	indicates	the	ID	used	for	this	payload.	Packets	of	type	PACTYP_MPEGH3DACFG	that	

have	the	same	ID	carry	the	corresponding	configuration,	so	that	a	unique	link	between	configuration	data	

and	payloads	is	possible.	

 PACTYP_SYNC	

The	syncword	payload	for	MPEG-H	audio	streams	is	‘1010	0101’.	

For	this	packet	type,	MHASPacketLabel	has	no	meaning	and	shall	be	set	to	0.	

NOTE:	The	complete	syncword	is	not	only	determined	by	the	syncword	payload,	but	by	the	complete	

mpeghAudioStreamPacket()	 with	 the	 MHASPacketType	 of	 PACTYP_SYNC,	 including	 all	 its	 fields.	

Therefore,	a	packet	of	type	PACTYP_SYNC	is	0xC001A5.	

 PACTYP_SYNCGAP	

The	MHASPacketType	PACTYP_SYNCGAP	may	be	used	to	improve	synchronization	to	a	stream.	It	directly	

follows	a	MHASPacketType	PACTYP_SYNC.		

For	this	packet	type,	MHASPacketLabel	has	no	meaning	and	shall	be	set	to	0.	

 PACTYP_MARKER	

14.4.6.1 General	

The	 MHASPacketType	 PACTYP_MARKER	 indicates	 a	 marker	 event	 in	 the	 stream.	 The	 event	 type	 is	

signalled	in	the	packet	payload.	

ISO/IEC	23008-3:202X(E)	

482	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	228	—	Meaning	of	marker_byte	

Value	of	first	
marker_byte	 Meaning	

0x01	 Configuration	change	marker	
0x02	 Random	access/Immediate	playout	marker	
0x03	 Program	boundary	marker	

0x04	...	0xDF	 Reserved	for	ISO	use	
0xE0	...	0xFF	 Reserved	for	non-ISO	use	

14.4.6.2 Configuration	change	marker	

When	 the	 first	 marker_byte	 of	 the	 packet	 payload	 is	 “0x01”,	 a	 configuration	 change	 occurred	 and	

evaluating	 the	 configuration	 structure	 mpegh3daConfig()	 in	 the	 following	 MHASPacketType	

PACTYP_MPEG3DACFG	is	mandatory.		

For	 packets	 of	 PACTYP_MPEG3DACFG	 without	 a	 preceding	 configuration	 change	 marker	 packet,	

evaluation	of	the	configuration	structure	is	not	required.	

14.4.6.3 Random	access/Immediate	playout	marker	

When	 the	 first	 marker_byte	 of	 the	 packet	 payload	 is	 “0x02”,	 the	 following	 packet	 of	 type	

PACTYP_MPEG3DAFRAME	 with	 identical	 MHASPacketLabel	 is	 encoded	 following	 the	 rules	 given	 in	

subclause	5.7.	

14.4.6.4 Program	boundary	marker	

When	the	first	marker_byte	of	the	packet	payload	is	“0x03”,	a	program	boundary	occurs	at	this	point	in	

time	and	all	following	packets	belong	to	a	new	program.	

 PACTYP_CRC16	and	PACTYP_CRC32	

The	MHASPacketType	PACTYP_CRC16	and	PACTYP_CRC32	may	be	used	 for	detection	of	errors	 in	 the	

subsequent	MHAS	packet	with	MHASPacketLabel	set	to	the	same	value.	It	shall	be	directly	followed	by	

the	MHAS	packet	which	its	CRC	value	refers	to.	This	may	be	beneficial	when	an	MHAS	stream	is	conveyed	

over	an	error	prone	channel.	

The	error	detection	method	uses	one	of	the	generator	polynomial	and	associated	shift	register	states	as	

defined	for	mhasParity16Data	or	mhasParity32Data	respectively.		

All	 bits	 of	 the	 MHASPacketPayload()	 (including	 the	 ByteAlign())	 of	 the	 protected	 MHAS	 packet	 are	

included	into	the	CRC-check.	

In	the	case	where	there	are	no	errors,	each	of	the	outputs	of	the	shift	register	shall	be	zero.	At	the	CRC	

encoder	 the	mhasParity16Data/mhasParity32Data	 field	 is	 encoded	 with	 a	 value	 such	 that	 this	 is	
ensured.	

 PACTYP_DESCRIPTOR	

The	PACTYP_DESCRIPTOR	may	be	used	 to	embed	MPEG-2	TS/PS	descriptors	 in	MHAS	streams.	Data	

conveyed	 as	mhas_descriptor_data_byte	 shall	 be	 in	 accordance	 with	 the	 syntax	 and	 semantics	 as	
defined	for	descriptor()	as	defined	in	ISO/IEC	13818-1.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 483	
	

For	 this	 packet	 type	 and	 for	 descriptors	 transmitted	 in	 the	 first	 descriptor	 loop	 in	 the	

TS_program_map_section(),	 MHASPacketLabel	 shall	 be	 0.	 TS_program_map_section()	 is	 defined	 in	

ISO/IEC	13818-1.	

For	this	packet	type	and	for	descriptors	assigned	to	one	elementary	stream	(i.e.	the	second	descriptor	

loop	 in	 the	 TS_program_map_section()),	 MHASPacketLabel	 have	 the	 same	 value	 as	 in	 the	

PACTYP_CONFIG	from	the	associated	elementary	stream.	

 PACTYP_USERINTERACTION	

The	MHASPacketType	PACTYP_USERINTERACTION	may	be	used	to	feed	element	interaction	data	in	the	

form	of	the	mpegh3daElementInteraction()	structure	to	the	decoder.	

For	 this	packet	 type,	MHASPacketLabel	shall	have	 the	same	value	as	 the	packets	of	MHASPacketType	

PACTYP_MPEGH3DACFG	and	PACTYP_AUDIOSCENEINFO	(if	present),	which	 the	user	 interaction	data	

refers	 to.	 If	 its	 value	 is	 different,	 the	 user	 interaction	 specified	 in	 mpegh3daElementInteraction()	
structure	shall	not	be	applied.	

 PACTYP_LOUDNESS_DRC	

The	MHASPacketType	PACTYP_LOUDNESS_DRC	may	be	used	to	feed	Loudness	and	DRC	control	data	to	

the	decoder.	

For	 this	 packet	 type,	 MHASPacketLabel	 has	 the	 same	 value	 as	 the	 packet	 of	 MHASPacketType	

PACTYP_MPEGH3DACFG,	which	the	control	data	refers	to.	

 PACTYP_BUFFERINFO	

The	MHASPacketType	PACTYP_BUFFERINFO	may	be	used	to	indicate	the	buffer	fullness	of	the	encoded	

stream	or	sub-stream	with	MHASPacketLabel	set	to	the	same	value.	

If	MHASPacketLabel	is	set	to	0,	the	information	in	the	packet	relates	to	the	overall	stream	including	all	

available	sub-streams.	

If	present,	this	packet	shall	be	placed	into	the	stream	at	that	point	of	time	it	provides	valid	information;	

i.e.	when	present	after	one	packet	of	MHASPacketType	PACTYP_MPEGH3DAFRAME,	 it	shall	signal	the	

buffer	state	after	encoding	of	that	access	unit.	

 PACTYP_GLOBAL_CRC16	and	PACTYP_	GLOBAL_CRC32	

The	MHASPacketType	PACTYP_GLOBAL_CRC16	and	PACTYP_	GLOBAL_CRC32	may	be	used	for	detection	

of	errors	in	the	subsequent	numProtectedPackets	MHAS	packets.	For	this	packet	type,	MHASPacketLabel	

has	no	meaning	and	shall	be	set	to	0.	This	may	be	beneficial	when	an	MHAS	stream	is	conveyed	over	an	

error	prone	channel.	

The	error	detection	method	uses	one	of	the	generator	polynomials	and	associated	shift	register	states	as	

defined	for	mhasParity16Data	or	mhasParity32Data	respectively.	

The	CRC-check	includes:	

— first	all	bits	positioned	before	the	mhasParity32Data/mhasParity16Data	in	the	MHAS	packet	of	type	
PACTYP_GLOBAL_CRC32	or	PACTYP_GLOBAL_CRC16,	corresponding	to	the	fields:	MHASPacketType,	

MHASPacketLabel,	MHASPacketLength,	global_CRC_type	and	numProtectedPackets;	

ISO/IEC	23008-3:202X(E)	

484	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— and	afterwards	all	bits	of	the	MHASAudioStreamPacket()	of	the	subsequent	numProtectedPackets	
MHAS	packets.	

In	the	case	where	there	are	no	errors,	each	of	the	outputs	of	the	shift	register	shall	be	zero.	At	the	CRC	

encoder	 the	mhasParity16Data/mhasParity32Data	 field	 is	 encoded	 with	 a	 value	 such	 that	 this	 is	
ensured.	

 PACTYP_AUDIOTRUNCATION	

The	MHAS	package	of	type	PACTYP_AUDIOTRUNCATION	indicates	a	potential	truncation.	Truncation	in	

this	context	means	 the	removal	of	audio	samples	 from	the	decoded	PCM	samples.	Audio	samples	are	

removed	either	before	or	after	a	truncation	point	as	signalled	in	the	truncation	packet.		

The	packet	contains	a	flag,	isActive,	which	indicates	whether	the	truncation	shall	actually	be	applied.	If	
this	flag	is	0	the	truncation	package	shall	be	ignored.	

If	 the	 process	 of	 truncation	 is	 applied	 after	 the	mixing	 stage,	 i.e.	 after	 the	 signal	 has	 passed	 all	 core	

decoder	and	rendering	stages,	but	before	the	post-processing	(DRC-2,	binauralization	etc.)	and	end-of-

chain	(DRC-3	etc.)	then	the	truncation	point	will	occur	at	a	point	in	time	delayed	by	the	core	decoding	

and	rendering	delay.	

If	the	process	of	truncation	occurs	at	a	later	stage,	after	the	mixing	stage	(e.g.,	after	end-of-chain),	the	

truncation	point	shall	be	delayed	by	a	period	corresponding	to	a	delay	of	the	additional	processing	blocks	

(e.g.,	DRC-2,	binauralization)	and	the	truncation	shall	be	carried	out	at	this	later	truncation	stage	(e.g.	

after	 end-of-chain).	 The	 decoded	 samples	 are	 either	 truncated	 from	 the	 beginning	 (if	

truncFromBegin==1)	or	from	the	end	(if	truncFromBegin==0).	In	the	case	of	a	truncation	from	the	end,	
the	decoder	shall	discard	all	samples	after	the	truncation	point	during	the	truncation	process.	In	the	case	

of	a	truncation	from	the	beginning,	the	decoder	shall	discard	all	samples	up	to	the	truncation	point	during	

the	truncation	process.	

Metadata	 shall	 be	 applied	 to	 the	 truncated	 audio	 samples	 such	 that	 the	 resulting	 audio	 samples	 are	

identical	 to	 those	 that	 would	 have	 resulted	 from	 applying	 the	metadata	 to	 the	 non-truncated	 audio	

sample	frame.	

For	correct	application	of	the	truncation	the	following	additional	rules	apply:	

	

— If	truncFromBegin	==	1		

— The	MHAS	stream	shall	contain	an	additional	MHAS	packet	of	type	PACTYP_MPEGH3DACFG;	

— The	 MHAS	 truncation	 packet	 shall	 occur	 after	 the	 PACTYP_MPEGH3DACFG	 and	 before	 the	
corresponding	PACTYP_MPEGH3DAFRAME	that	contains	the	AU	to	truncate.	

— If	truncFromBegin	==	0		

— The	MHAS	truncation	packet	shall	occur	before	the	corresponding	PACTYP_MPEGH3DAFRAME	
that	contains	the	AU	to	truncate;	

— If	 isActive==1	the	decoder	shall	perform	a	decoder	re-initialization	as	 if	a	change	of	decoder	
configuration	had	occurred.	

Truncation	messages	shall	be	processed	jointly	with	the	AU	of	the	following	PACTYP_MPEGH3DAFRAME	

packet	with	identical	MHASPacketLabel.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 485	
	

 PACTYP_AUDIOSCENEINFO	

MHAS	Packets	of	the	MHASPacketType	PACTYP_AUDIOSCENEINFO	embed	an	MPEG-H	3D	audio	scene	

information	structure,	mae_AudioSceneInfo(),	in	the	MHASPacketPayload().	

MHASPacketLabel	indicates	the	ID	used	for	this	audio	scene	information.	This	audio	scene	information	

shall	be	used	for	packets	of	type	PACTYP_MPEGH3DAFRAME	that	have	the	same	ID	and	packets	of	type	

PACTYP_MPEGH3DACFG,	so	that	a	unique	link	between	audio	scene	information,	configuration	data	and	

payloads	is	possible.	

If	present,	the	MHASPacketType	PACTYP_AUDIOSCENEINFO	shall	occur	immediately	after	each	MHAS	

packet	of	type	PACTYP_MPEGH3DACFG.	In	this	case	the	mpegh3daConfig()	within	the	MHAS	packet	of	

type	PACTYP_MPEGH3DACFG	shall	not	contain	a	mae_AudioSceneInfo()	structure.	

If	MHAS	packets	of	types	PACTYP_MPEGH3DACFG	and	PACTYP_AUDIOSCENEINFO	are	both	not	present,	

the	 mae_AudioSceneInfo()	 can	 be	 conveyed	 through	 out-of-band	 means,	 such	 as	 session	

announcement/description/control	protocols,	either	within	the	mpegh3daConfig()	or	separately.	

 PACTYP_EARCON	

The	MHASPacketType	PACTYP_EARCON	may	be	used	to	embed	information	about	the	earcons	available	

in	the	earconInfo()	structure	and	to	feed	earcon	info	data	in	the	form	of	the	earconInfo()	structure	to	the	

decoder.	

If	the	earconInfo()	structure	contains	at	least	one	earcon	of	type	PCM	(i.e.	earconType	==	5)	the	MHAS	

stream	shall	contain	at	least	one	MHAS	packet	of	type	PACTYP_PCMCONFIG	and	at	least	one	MHAS	packet	

of	type	PACTYP_PCMDATA.	

 PACTYP_PCMCONFIG	

The	MHASPacketType	PACTYP_PCMCONFIG	may	be	used	 to	 carry	 configuration	 information	 for	PCM	

payload	data	and	to	 feed	 the	PCM	data	configuration	 information	 in	 the	 form	of	 the	pcmDataConfig()	

structure	to	the	decoder.	

If	an	MHASPacketType	PACTYP_PCMCONFIG	is	present	after	an	MHASPacketType	PACTYP_EARCON,	the	

pcmDataConfig()	 structure	 shall	 be	 used	 together	 with	 the	 previous	 earconInfo()	 structure.	 If	 no	

MHASPacketType	 PACTYP_EARCON	 is	 present	 in	 the	 stream	 the	 pcmDataConfig()	 structure	 shall	 be	

ignored.	

 PACTYP_PCMDATA	

The	MHASPacketType	PACTYP_PCMDATA	may	be	used	to	embed	PCM	payload	data	corresponding	to	the	

PCM	 signals	 defined	 in	 the	 pcmDataConfig()	 structure	 and	 to	 feed	 the	 PCM	 data	 in	 the	 form	 of	 the	

pcmDataPayload()	structure	to	the	decoder.	

If	an	MHASPacketType	PACTYP_	PCMDATA	is	present	after	an	MHASPacketType	PACTYP_	PCMCONFIG,	

the	 pcmDataPayload()	 structure	 shall	 be	 used	 together	 with	 the	 previous	 earconInfo()	 and	

pcmDataConfig()	 structures.	 If	 no	 MHASPacketType	 PACTYP_EARCON	 and	 MHASPacketType	

PACTYP_PCMCONFIG	are	present	in	the	stream	the	pcmDataPayload()	structure	shall	be	ignored.	

 PACTYP_LOUDNESS	

The	MHASPacketType	PACTYP_LOUDNESS	may	be	used	to	embed	loudness	metadata	as	defined	in	the	

mpegh3daLoudnessInfoSet()	structure.	If	present	and	supported	by	a	decoder,	it	shall	take	precedence	

ISO/IEC	23008-3:202X(E)	

486	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

over	 the	 in-stream	 loudness	 information	 conveyed	 via	 mpegh3daConfigExtension()	 as	 defined	 in	

Table	27.	

If	 present,	 the	 MHASPacketType	 PACTYP_LOUDNESS	 shall	 follow	 PACTYP_MPEGH3DACFG	 for	 each	

random	access	point	and	stream	access	point.	

Updated	 loudness	 information	 may	 be	 available	 for	 instance	 after	 editing.	 The	 MHASPacketType	

PACTYP_LOUDNESS	can	be	used	 to	convey	 the	updated	 loudness	 information	 to	 the	decoder	without	

requiring	an	update	of	the	audio	stream.	

 MHASPacketType	specific	requirements	for	MHASPacketLabel	

The	value	of	MHASPacketLabel	shall	be	restricted	depending	on	the	MHASPacketType	it	is	contained	in	

according	to	Table	229.	In	single	stream	environments,	the	sole	existing	stream	shall	be	considered	as	

"main	 stream",	 i.e.	MHASPacketLabel	 shall	 be	 in	 the	 range	 of	 0x01	 to	 0x10	 for	 the	 applicable	MHAS	

packets.	

Table	229	—	MHASPacketType	specific	requirements	for	MHASPacketLabel	

MHASPacketType	 Value	

Value	of	MHASPacketLabel	

0	 0x01	–	0x10	
(main	stream)	

0x11	and	larger	
(sub-streams)	

PACTYP_FILLDATA	 0	 required	 not	allowed	 not	allowed	
PACTYP_MPEGH3DACFG	 1	 not	allowed	 no	restriction	 no	restriction	
PACTYP_MPEGH3DAFRAME	 2	 not	allowed	 no	restriction	 no	restriction	
PACTYP_AUDIOSCENEINFO	 3	 not	allowed	 no	restriction	 no	restriction	
/*	reserved	for	ISO	use	*/	 4-5	 —	 —	 —	
PACTYP_SYNC	 6	 required	 not	allowed	 not	allowed	
PACTYP_SYNCGAP	 7	 required	 not	allowed	 not	allowed	
PACTYP_MARKER	 8	 no	restriction	 no	restriction	 no	restriction	
PACTYP_CRC16	 9	 shall	be	 identical	 to	MHASPacketLabel	of	MHAS	packet	

immediately	following	the	present	MHAS	packet	PACTYP_CRC32	 10	
PACTYP_DESCRIPTOR	 11	 required	 not	allowed	 not	allowed	
PACTYP_USERINTERACTION	 12	 not	allowed	 required	 not	allowed	
PACTYP_LOUDNESS_DRC	 13	 not	allowed	 required	 not	allowed	
PACTYP_BUFFERINFO	 14	 no	restriction	 no	restriction	 no	restriction	
PACTYP_GLOBAL_CRC16	 15	 required	 not	allowed	 not	allowed	
PACTYP_GLOBAL_CRC32	 16	 required	 not	allowed	 not	allowed	
PACTYP_AUDIOTRUNCATION	 17	 not	allowed	 no	restriction	 no	restriction	
PACTYP_GENDATA	 18	 no	restriction	 no	restriction	 no	restriction	
PACTYP_	EARCON	 19	 shall	be	identical	to	MHASPacketLabel	of	MHAS	packets	

containing	the	audio	addressed	by	the	earcon	
PACTYP_	PCMCONFIG	 20	 not	allowed	 not	allowed	 >	2048	
PACTYP_	PCMDATA	 21	 not	allowed	 not	allowed	 >	2048	
PACTYP_	LOUDNESS	 22	 not	allowed	 no	restriction	 no	restriction	
/*	reserved	for	ISO	use	*/	 23-127	 —	 —	 —	
/*	reserved	for	use	outside	of	ISO	scope	*/	 128-261	 —	 —	 —	
/*	reserved	for	ISO	use	*/	 262-389	 —	 —	 —	
/*	reserved	for	use	outside	of	ISO	scope	*/	 390-517	 —	 —	 —	
Key:	
—:		 undefined	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 487	
	

MHASPacketType	 Value	

Value	of	MHASPacketLabel	

0	 0x01	–	0x10	
(main	stream)	

0x11	and	larger	
(sub-streams)	

required:		MHASPacketLabel	shall	have	(one	of)	the	value(s)	listed	in	the	title	row	of	this	column	if	packet	is	present	
no	restriction:		MHASPacketLabel	may	have	(one	of)	the	value(s)	listed	in	the	title	row	of	this	column	if	packet	is	present	
not	allowed:		 MHASPacketLabel	shall	not	have	(any	of)	the	value(s)	listed	in	the	title	row	of	this	column	

Application-specific	MHASPacketType	values	are	mandated	to	be	in	the	space	"reserved	for	use	outside	

of	ISO	scope".	Decoders	that	do	not	know	how	to	process	the	respective	packets	shall	ignore	these	packets.	

Additionally,	adaptive	streaming	within	MPEG-DASH	transporting	MPEG-H	3D	audio	payloads	requires	

the	 following	 with	 respect	 to	 MHASPacketLabel.	 Here,	 each	 representation,	 i.e.	 each	 stream	 of	 the	

adaptation	 set,	 shall	 have	 a	 unique	MHASPacketLabel	 at	 the	 same	 instance	 of	 time.	 Additionally,	 the	

MHASPacketLabel	 for	a	 specific	 representation	 shall	 change	with	each	 signalled	 random	access	point	

compliant	to	subclause	5.5.6.	

	

	

14.5 Application	examples	

 Light-weighted	broadcast	

Certain	applications	require	a	minimum	overhead	in	terms	of	bitrate,	while	synchronization	time	is	less	

critical.	(e.g.	internet	radio).	

	

Figure	87	—	Example	1	

 MPEG-2	transport	stream		

When	embedding	MPEG-H	3D	audio	streams	into	MPEG-2	transport	streams,	fast	synchronization	to	a	

stream	 at	 random	 access	 points	 is	 most	 important,	 while	 bitrate	 overhead	 is	 usually	 less	 critical.	

Therefore,	the	configuration	structure	is	sent	on	a	regular	basis,	typically	twice	a	second.		

To	 improve	 synchronization	 to	 the	 stream,	 packets	 of	 type	 PACTYP_SYNC	 may	 be	 embedded	 more	

frequently	and	in	addition	the	PACTYP_SYNCGAP	type	may	also	be	embedded.	

The	figures	below	indicate	some	possible	sequences	of	packet	types	when	the	MPEG-H	audio	stream	is	

intended	to	be	embedded	into	the	MPEG-2	transport	stream.	

SYNC Config Payload Payload Payload

ISO/IEC	23008-3:202X(E)	

488	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	88	—	Example	2	

	

Figure	89	—	Example	3	

	

Figure	90	—	Example	4	

 CRC	error	detection	

Certain	applications	require	additional	error	protection,	for	example	if	MHAS	is	used	on	common	serial	

interfaces	 (e.g.	AES/EBU,	S/PDIF),	while	 a	minimizing	 the	additional	bitrate	overhead.	Figure	91	and	

Figure	92	illustrate	two	examples	on	how	the	CRC	and	global	CRC	packets	can	be	used	for	error	detection.	

	
Figure	91	—	Example	5	

	
Figure	92	—	Example	6	

 Audio	sample	truncation	

Some	applications	may	require	that	at	least	some	audio	frames	need	to	be	truncated	to	a	number	of	audio	

samples	which	is	less	than	the	audio	frame	size.	One	example	of	such	an	application	is	sample	accurate	

alignment	 of	 an	 audio	 stream	 to	 a	 video	 stream	 that	 has	 a	 different	 frame	 rate.	 Furthermore,	 this	

truncation	may	have	to	be	inserted	on	the	fly,	e.g.,	for	stream	splicing.	Such	an	example	of	stream	splicing	

using	the	MHAS	packets	of	type	PACTYP_AUDIOTRUNCATION	for	switching	between	two	MHAS	streams,	

coming	from	different	sources,	is	illustrated	in	Figure	93.		

SYNC Config Payload

SYNC Config SYNC Payload SYNC Payload

SYNC Config SYNC Payload SYNC PayloadSYNCGAP

SYNC CRC Config CRC Payload PayloadCRC

Protected by CRC Protected by CRC Protected by CRC

SYNC G-CRC Config Payload Payload

Protected by Global CRC

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 489	
	

	

Figure	93	—	Example	7	

In	the	first	stream,	the	MHAS	packet	containing	the	truncation	message	with	the	number	of	samples	to	

be	truncated	at	the	end	of	the	AU	of	the	following	PACTYP_MPEGH3DAFRAME	indicates	also	the	end	of	

the	stream.	

14.6 Multi-stream	delivery	and	interface	

This	 subclause	 addresses	 the	 situation	 in	which	multiple	 incoming	 input	 streams	 form	one	program.	

These	incoming	streams	may	be	merged	into	one	MHAS	stream	prior	to	decoding.	By	assigning	each	of	

the	incoming	streams	(i.e.	packets	of	type	PACTYP_MPEGH3DAFRAME)	and	their	related	configuration	

structures	 (i.e.	 packets	 of	 type	 PACTYP_MPEGH3DACFG)	 a	 unique	MHASPacketLabel,	 sub-streams	
within	 one	 MHAS	 stream	 are	 formed.	 As	 the	 sub-streams	 are	 generated	 by	 the	 same	 encoder,	 it	 is	

presumed	that	various	incoming	streams,	despite	being	potentially	delivered	over	different	transmission	

channels,	 are	 completely	 aligned	 and	 have	 no	 phase	 offset.	 Compensation	 for	 different	 transmission	

delays	shall	be	accomplished	by	the	systems	layer	and	is	not	covered	by	this	specification.	

	

Figure	94	—	Merging	two	MHAS	streams	

The	MHAS	packets	of	the	incoming	streams	shall	be	merged	into	the	outgoing	steam	such	that	all	MHAS	

packets	that	belong	to	the	same	time	instance	and	thus	form	one	access	unit	are	consecutively	written	

into	the	outgoing	stream.		

In	general,	no	specific	order	of	MHAS	sub	stream	packets	needs	to	be	maintained	if	the	sub	stream	packets	

belong	to	one	access	unit.	However	it	is	recommended	to	order	the	sub-streams	in	ascending	order	of	the	

MPEGH3DAFRAME
AUDIOTRUNCATION
truncFromBegin==0

MPEGH3DACFG AUDIOTRUNCATION
truncFromBegin==1

MPEGH3DAFRAME

MPEGH3DAFRAME …

…

MHAS Stream #1

MHAS Stream #2

SYNC

SYNC MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 5

SYNC

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 5

Incoming stream #1

Outgoing stream

Incoming stream #2

MHAS merger

MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 20

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 20

MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 5

MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 20

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 5

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 20

...
...

ISO/IEC	23008-3:202X(E)	

490	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

packet	label	number.	Through	this	procedure,	each	received	new	packet	with	a	higher	label	belongs	to	

the	same	time	slot	as	the	previous	packets.	

	

Figure	95	—	Time	slots	with	multiple	MHAS	packets	

Though	it	may	be	desirable,	it	is	not	required	that	the	sub-stream	with	mae_isMainStream	set	to	‘1’	has	
the	lowest	MHASPacketLabel	number.	

The	multi-stream	enabled	decoder	shall	be	capable	of	handling	those	streams	with	sub-streams	labeled	

with	 different	 MHASPacketLabels.	 By	 utilizing	 the	 field	 mae_bsMetaDataElementIDoffset	 in	
mae_AudioSceneInfo()	 (see	 15.3),	 the	 decoder	 shall	 be	 capable	 of	 arranging	 the	 sub-streams	 in	 the	

correct	order	before	decoding.	

To	enable	identification	of	several	configurations	inside	one	stream	in	the	case	of	multi-stream	delivery,	

the	MHAS	packet	label	shall	be	used	as	follows:	The	label	values	“1”	to	“16”	(0x01-0x10)	shall	be	used	for	

the	main	stream,	the	label	values	“17”	to	“32”	(0x11-0x20)	shall	be	used	for	the	first	sub-stream,	the	next	

16	values	(0x21-0x30)	for	the	second	sub-stream,	and	so	on.	

Table	230	—	Meaning	of	MHASPacketLabel	in	multi-stream	environments	

Value	of	
MHASPacketLabel	 Meaning	

0x01-0x10	 Main	stream	
0x11-0x20	 First	sub-stream	
0x21-0x30	 Second	sub-stream	

...	 …	

EXAMPLE	 The	receiver	has	several	incoming	streams,	from	which	he	chooses	the	main	stream	containing	the	
channel	bed,	additional	effect	channels	and	the	main	dialog	in	language	1	and	the	stream	#N	containing	the	audio	
description	in	language	1.	These	two	MHAS	streams	are	merged	by	an	MHAS	merger	into	one	stream	containing	
two	sub-streams.	

MHASPacketLabel
65

MHASPacketLabel
1

MHASPacketLabel
17

MHASPacketLabel
33

MHASPacketLabel
65

MHASPacketLabel
1

MHASPacketLabel
17

MHASPacketLabel
33

time slot • time slot (• • • •

MHASPacketLabel
65

MHASPacketLabel
1

•• •• • •• • • •

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 491	
	

	

Figure	96	—	Example	of	switching	and	merging	multiple	incoming	streams	

The	combined	stream	has	the	following	structure.	

	
Figure	97	—	Example	output	bitstream	from	MHAS	merger	

Additionally,	the	MHAS	merger	may	also	include	or	discard	additional	packages	such	as	PACTYP_CRC32	

as	required	by	the	subsequent	transmission	line.	

14.7 Carriage	of	generic	data	
The	generic	data	is	encapsulated	in	an	MHAS	Packet	as	part	of	an	MHAS	audio	data	stream.	

 Syntax	
For	the	MHAS	packet	with	MHASPacketType	of	PACTYP_GENDATA,	GenDataPayload	is	defined	as	shown	
in	Table	231.	

Groups:
* channel bed
* effects
* main dialog LANG1
mae_isMainStream = 1;

stream #0

Groups:
* main dialog LANG2

mae_isMainStream = 0;
mae_bsMetaDataElementIDoffset = 8;

stream #1

Groups:
* main dialog LANG3

mae_isMainStream = 0;
mae_bsMetaDataElementIDoffset = 10;

stream #2

Groups:
* audio description LANG1

mae_isMainStream = 0;
mae_bsMetaDataElementIDoffset = 27;

stream #N

Systems
Interaction

MHAS

MHAS sub-streams:
- MHASPacketLabel = 1:
 * channel bed
 * effects
 * main dialog LANG1
 mae_isMainStream = 1;

- MHASPacketLabel = 17:
 * audio description LANG1
 mae_isMainStream = 0;
 mae_bsMetaDataElementIDoffset = 27;

...
MHAS merger

MHAS

MHAS

MHAS

MHAS

SYNC CRC

CRC

CRC

user control
data

SYNC
MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 1

SYNC

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 1

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 17

Incoming stream #1

Outgoing stream

Incoming stream #2

M
HAS m

erger

Fill Data

MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 17

MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 1

MHASPacketType = PACTYP_MPEGH3DACFG
MHASPacketLabel = 17

CRC

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 1

MHASPacketType = PACTYP_MPEGH3DAFRAME
MHASPacketLabel = 17

...

...

CRC

ISO/IEC	23008-3:202X(E)	

492	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

If	 a	 packet	with	MHASPacketType	 of	PACTYP_GENDATA	 is	 present	 in	 the	MPEG-H	 3D	 audio	MHAS	
stream,	MHAS	packets	of	type	PACTYP_MPEGH3DAFRAME	shall	also	be	present	in	the	stream.	The	total	
bitrate	associated	with	all	packets	of	type	PACTYP_GENDATA	shall	not	be	greater	than	1	%	of	the	audio	
bitrate,	averaged	over	a	5	s	time	window.	

For	example,	if	the	nominal	audio	bitrate	is	512	kb/s	and	one	PACTYP_GENDATA	MHAS	packet	of	length	
256	bytes	 is	 transmitted	each	second,	 the	bitrate	associated	with	 these	packets	 is	0.4	%	of	 the	audio	

bitrate.	

Table	231	—	Syntax	of	GenDataPayload	

Syntax	 No.	of	bits	 Mnemonic	
GenDataPayload()	 	 	
{	 	 	
	 dataType	 8	 uimsbf	
	 if	(dataType	==	0)	{	 	 	
	 	 t35Code;	 16···40	 uimsbf	
	 }	 	 	
	 else	if	(dataType	==	0xFF)	{	 	 	
	 	 uuid;	 128	 uimsbf	
	 	 shortUuid;	 8	 uimsbf	
	 }	 	 	
	 genData;	 var*8	 uimsbf	
}	 	 	

 Semantics	

dataType	 This	element	indicates	corresponding	reference	of	the	generic	data	as	shown	in	

Table	232.	This	field	takes	either	a	dynamically	assigned	value	(see	below	under		

shortUUID)	or	one	of	two	reserved	values.	

Table	232	—	Value	of	datatype	

Value	 Corresponding	references	

0	 ITU	T.35	ID	follows	

1-254	 dataType	is	UUID	short	form	(no	additional	ID	follows)	
See	uuid	and	shortUuid	field	semantics	below	

255	 Full	UUID	and	its	short	form	follow	

	
t35Code	 For	dataType	value	0,	 this	 field	shall	be	 the	“country	code”	 field	(1	or	2	bytes)	

followed	by	the	“manufacturer	code”	field	(1	or	more	bytes)	as	defined	by	ITU	T.35	

[12].	The	length	is	variable,	but	cannot	be	less	than	2	bytes.	

uuid	 A	binary	encoding	of	UUID.	The	value	of	uuid	shall	be	as	defined	in	IETF	RFC	4122.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 493	
	

shortUuid	 For	dataType	 values	1-254,	 the	dataType	 value	 is	 the	 short	 form	value	of	 the	
UUID	corresponding	 to	 the	previous	 field,	uuid.	The	 long	 form	 identifier	of	 the	
system	type,	uuid,	is	dynamically	mapped	to	this	short	form	identifier,	shortUuid,	
and	this	short	 form	identifier	can	occur	 later	 in	the	same	stream	to	refer	to	the	

associated	UUID.	This	 technique	saves	 identifier	overhead.	The	dataType	value	
255	both	provides	genData	associated	with	a	UUID,	and	establishes	a	mapping	
between	 a		

shortUuid	and	the	full	uuid,	such	that	the	dataType	field	in	subsequent	packets	
may	 be	 equal	 to	 shortUuid	 to	 indicate	 that	 the	 genData	 in	 those	 packets	 is	
associated	with	this	previously	mapped	uuid.	The	value	0	or	255	shall	not	be	used	
for	shortUuid.	

Note	 that	 the	 system	 for	 which	 the	 generic	 metadata	 applies	 is	 responsible	 for	
ensuring	 that	 the	 frequency	 of	 establishment,	 and	 the	 expiry	 period	 (if	 any),	 of	
mappings	 between	 short	 form	 and	 long	 form	 identifiers	 are	 appropriate	 to	 the	
application.	

genData	 The	variable	length	generic	data	payload.	Its	length	is	the	bytes	that	remain	from	

the	MHAS	Packet	length	after	the	preceding	fields	in	GenDataPayload().	

 Processing	at	the	MPEG-H	3D	audio	decoder	

MPEG-H	3D	audio	decoder	should	extract	the	MHAS	packet	with	PACTYP_GENDATA	and,	if	dataType,	
t35Code,	uuid	and	shortUuid	that	occur	in	the	GenDataPayload()	are	understood,	deliver	the	complete	
packet	(including	the	MHAS	header)	in	binary	to	a	generic	data	engine	known	to	handle	such	a	dataType.	
If	the	dataType,	t35Code,	uuid	and	shortUuid	fields	in	the	GenDataPayload()	are	not	understood,	the	
audio	decoder	should	discard	the	packet.	Both	the	length	and	value	of	the	uuid	and	t35Code	fields	of	
interest	to	the	decoder	are	pre-known	to	the	decoder.	For	t35Code,	there	is	the	possibility	of	a	length	
overrun	(e.g.	checking	for	a	length	of	4	bytes	when	it	is	only	3	bytes	long).	Decoders	should	ensure	the	

comparison	length	does	not	exceed	the	MHAS	packet	length.	Any	overrun	on	the	comparison	length	will	

spill	 harmlessly	 into	 the	genData	and	 the	 comparison	will	 always	 fail	 in	 such	 conditions	 due	 to	 the	
progressive	nature	of	the	t35Code	encoding.	That	is,	if	all	the	bytes	match	in	t35Code	then	it	is	a	match	
regardless	of	the	genData	contents.	

15 Metadata	audio	elements	(MAE)	
15.1 General	

The	set	of	metadata	consists	of:	

— Descriptive	metadata:	Information	about	the	existence	of	objects	inside	the	bitstream	and	high-level	
properties	of	objects;	

— Restrictive	metadata:	Information	of	how	interaction	is	possible	or	enabled	by	the	content	creator;	
— Positional	metadata	and	ability	to	render	to	specific	loudspeakers	and	to	signal	channel	content	as	

objects;	

— Structural	metadata:	Grouping	and	combination	of	objects.	

The	metadata	is	organized	as	groups	or	switch	groups	of	elements.	All	static	metadata	is	organized	in	the	

mae_AudioSceneInfo()	in	the	mpegh3daConfigExtension().	The	Main	Audio	Scene	describes	the	full	scene	

in	terms	of	the	static	metadata	of	all	elements.	

ISO/IEC	23008-3:202X(E)	

494	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Groups	of	elements	

Related	 elements	 are	 associated	 with	 a	 group.	 These	 elements	 belong	 together	 and	 can	 only	 be	

manipulated	together.	Elements	of	a	group	can	no	longer	be	interactively	altered	on	their	own	(e.g.	if	a	

group	is	switched	off,	all	its	child	elements	are	switched	off),	but	altered	as	a	unit.	Examples	are	channel-

based	recordings,	e.g.	an	AB	recording	where	the	two	recorded	signals	belong	together	and	should	only	

be	manipulated	as	a	pair.	This	grouping	allows	 for	 signaling	of	 stems	and	submixes	by	gathering	 the	

dedicated	elements	in	groups.	

Switch	groups	of	elements	

It	should	be	possible	to	define	special	groups,	where	just	one	or	a	selected	number	of	grouped	elements	

can	be	switched	on	at	a	given	time.	This	group	is	called	a	switch	group.	This	concept	permits	an	audience	

to	enable	just	one	element	from	a	group	of	related	elements	when	required.	An	example	is	the	possibility	

to	produce	and	transmit	a	multitude	of	language	tracks.	

Group	presets	

Group	presets	define	a	combination	of	groups	in	an	audio	scene.	A	group	preset	contains	a	list	of	groups	

or	 switch	groups,	 each	 referenced	by	 their	unique	 ID	and	an	associated	on/off-status	 for	 each	of	 the	

referenced	structures	(presets’	conditions)	which	are	not	modifiable	by	the	user.	With	group	presets	a	

content	creator	or	an	application	can	provide	a	restricted	number	of	meaningful	rendering	options	to	the	

user.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 495	
	

	

Figure	98	—	Example	structure	of	metadata	elements	

15.2 Syntax	

Table	233	—	Syntax	of	mae_AudioSceneInfo()	

Syntax	 No.	of	bits	 Mnemonic	
mae_AudioSceneInfo()	 	 	
{	 	 	
	 mae_isMainStream;	 1	 bslbf	
	 if	(mae_isMainStream)	{	 	 	
	 	 mae_audioSceneInfoIDPresent;	 1	 bslbf	
	 	 if	(mae_audioSceneInfoIDPresent)	{	 	 	
	 	 	 mae_audioSceneInfoID;	 8	 uimsbf	
	 	 }	 	 	
	 	 mae_numGroups;	 7	 uimsbf	
	 	 mae_GroupDefinition(mae_numGroups);	 	 	
	 	 mae_numSwitchGroups;	 5	 uimsbf	
	 	 mae_SwitchGroupDefinition(mae_numSwitchGroups);	 	 	
	 	 mae_numGroupPresets;	 5	 uimsbf	
	 	 mae_GroupPresetDefinition(mae_numGroupPresets);	 	 	
	 	 mae_Data();	 	 	
	 	 mae_metaDataElementIDoffset	=	0;	 	 	
	 	 mae_metaDataElementIDmaxAvail;			 7	 uimsbf	

ISO/IEC	23008-3:202X(E)	

496	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 }	 	 	
	 else	{	 	 	
	 	 mae_bsMetaDataElementIDoffset;			 7	 uimsbf	
	 	 mae_metaDataElementIDoffset	=	mae_bsMetaDataElementIDoffset	+	1;	
	 	 mae_metaDataElementIDmaxAvail;			 7	 uimsbf	
	 }	 	 	
}	 	 	

Table	234	—	Syntax	of	mae_Data()	

Syntax	 No.	of	bits	 Mnemonic	
mae_Data()	 	 	
{	 	 	
	 mae_numDataSets;	 4	 uimsbf	
	 for	(dscr	=	0;	dscr	<	mae_numDataSets;	dscr	++)	{	 	 	
	 	 mae_dataType[dscr];	 4	 uimsbf	
	 	 mae_dataLength[dscr];	 16		 uimsbf	
	 	 	
	 	 switch	(mae_dataType[dscr])	{	 	 	
	 	 	
	 	 case	ID_MAE_GROUP_DESCRIPTION:	 	 	
	 	 	 mae_Description(ID_MAE_GROUP_DESCRIPTION);	 	 	
	 	 	 break;	 	 	
	 	 case	ID_	MAE_SWITCHGROUP_DESCRIPTION:	 	 	
	 	 	 mae_Description(ID_MAE_SWITCHGROUP_DESCRIPTION);	
	 	 	 break;	 	 	
	 	 case	ID_	MAE_GROUP_PRESET_DESCRIPTION:	 	 	
	 	 	 mae_Description(ID_MAE_GROUP_PRESET_DESCRIPTION);	 	
	 	 	 break;	 	 	
	 	 case	ID_	MAE_GROUP_CONTENT:	 	 	
	 	 	 mae_ContentData();		 	 	
	 	 	 break;	 	 	
	 	 case	ID_MAE_GROUP_COMPOSITE:	 	 	
	 	 	 mae_CompositePair();	 	 	
	 	 	 break;	 	 	
	 	 case	ID_MAE_SCREEN_SIZE:	 	 	
	 	 	 mae_ProductionScreenSizeData();	 	 	
	 	 	 break;	 	 	
	 	 case	ID_MAE_DRC_UI_INFO:	 	 	
	 	 	 mae_DrcUserInterfaceInfo();	 	 	
	 	 	 break;	 	 	
	 	 case	ID_MAE_SCREEN_SIZE_EXTENSION:	 	 	
	 	 	 mae_ProductionScreenSizeDataExtension();	 	 	
	 	 	 break;	 	 	
	 	 case	ID_MAE_GROUP_PRESET_EXTENSION:	 	 	
	 	 	 mae_GroupPresetDefinitionExtension();	 	 	
	 	 	 break;	 	 	
	 	 case	ID_MAE_LOUDNESS_COMPENSATION:	 	 	
	 	 	 mae_LoudnessCompensationData(mae_numGroups,	mae_numGroupPresets);	
	 	 	 break;	 	 	
	 	 	
	 	 default:	 	 	
	 	 	 while	(mae_dataLength[dscr]--)	{	 	 	
	 	 	 	 tmp;	 8	 uimsbf	
	 	 	 }	 	 	
	 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 497	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 break;	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	235	—	Syntax	of	mae_GroupDefinition()	

Syntax	 No.	of	bits	 Mnemonic	
mae_GroupDefinition(mae_numGroups)	 	 	
{	 	 	
	 for	(grp	=	0;	grp	<	mae_numGroups;	grp++)	{	 	 	
	 	 mae_groupID[grp];	 7	 uimsbf	
	 	 mae_allowOnOff[grp];	 1	 bslbf	
	 	 mae_defaultOnOff[grp];	 1	 bslbf	
	 	 	 	 	
	 	 mae_allowPositionInteractivity[grp];	 1	 bslbf	
	 	 if	(mae_allowPositionInteractivity[grp])	{	 	 	
	 	 	 mae_interactivityMinAzOffset[grp];	 7	 uimsbf	
	 	 	 mae_interactivityMaxAzOffset[grp];	 7	 uimsbf	
	 	 	 mae_interactivityMinElOffset[grp];	 5	 uimsbf	
	 	 	 mae_interactivityMaxElOffset[grp];	 5	 uimsbf	
	 	 	 mae_interactivityMinDistFactor[grp];	 4	 uimsbf	
	 	 	 mae_interactivityMaxDistFactor[grp];	 4	 uimsbf	
	 	 }	 	 	
	 	 mae_allowGainInteractivity[grp];	 1	 bslbf	
	 	 if	(mae_allowGainInteractivity[grp])	{	 	 	
	 	 	 mae_interactivityMinGain[grp];	 6	 uimsbf	
	 	 	 mae_interactivityMaxGain[grp];	 5	 uimsbf	
	 	 }	 	 	
	 	 	
	 	 mae_bsGroupNumMembers[grp];	 7	 uimsbf	
	 	 mae_hasConjunctMembers[grp];	 1	 bslbf	
	 	 	
	 	 if	(mae_hasConjunctMembers[grp])	{	 	 	
	 	 	 mae_startID[grp];	 7	 uimsbf	
	 	 }	 	 	
	 	 else	{	 	 	
	 	 	 for	(obj	=	0;	obj	<	mae_bsGroupNumMembers[grp]		+	1;	obj++)	{	
	 	 	 	 mae_metaDataElementID[grp][obj];	 	 7	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	236	—	Syntax	of	mae_SwitchGroupDefinition()	

Syntax No.	of	bits Mnemonic	
mae_SwitchGroupDefinition(numSwitchGroups) 	
{ 	
	 for	(swgrp	=	0;	swgrp	<	numSwitchGroups;	swgrp	++)	{
	 	 mae_switchGroupID[swgrp]; 5 uimsbf
	 	 mae_switchGroupAllowOnOff[swgrp]; 1 bslbf
	 	 if	(mae_switchGroupAllowOnOff[swgrp])	{
	 	 	 mae_switchGroupDefaultOnOff[swgrp]; 1 bslbf

ISO/IEC	23008-3:202X(E)	

498	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax No.	of	bits Mnemonic	
	 	 }
	 	 mae_bsSwitchGroupNumMembers[swgrp]; 5 uimsbf
	 	 for	(grp	=	0;	grp	<	mae_bsSwitchGroupNumMembers[swgrp]	+	1;	grp++)	{
	 	 	 mae_switchGroupMemberID[swgrp][grp]; 7 uimsbf
	 	 }
	 	 mae_switchGroupDefaultGroupID[swgrp]; 7 uimsbf
	 }
} 	

Table	237	—	Syntax	of	mae_Description()	

Syntax	 No.	of	bits	 Mnemonic	
mae_Description(type)	 	 	
{	 	 	
	 mae_bsNumDescriptionBlocks;	 7	 uimsbf	
	 for	(n	=	0;	n	<	mae_bsNumDescriptionBlocks	+	1;	n++)	{	 	 	
	 	 if	(type	==	ID_MAE_GROUP_DESCRIPTION)	{	 	 	
	 	 	 mae_descriptionGroupID[n];	 7	 uimsbf	
	 	 }	 	 	
	 	 else	if	(type	==	ID_MAE_SWITCHGROUP_DESCRIPTION)	{	
	 	 	 mae_descriptionSwitchGroupID[n];	 5	 uimsbf	
	 	 }	 	 	
	 	 else	if	(type	==	ID_MAE_GROUPPRESET_DESCRIPTION)	{	 	 	
	 	 	 mae_descriptionGroupPresetID[n];	 5	 uimsbf	
	 	 }	 	 	
	 	 mae_bsNumDescLanguages[n];	 4	 uimsbf	
	 	 for	(i=0;	i<mae_bsNumDescLanguages[n]	+	1;	i++)	{	 	 	
	 	 	 mae_bsDescriptionLanguage[n][i];	 24	 uimsbf	
	 	 	 mae_bsDescriptionDataLength[n][i];	 8	 uimsbf	
	 	 	 for	(c	=	0;	c	<	mae_bsDescriptionDataLength	[n][i]	+	1;	c++)	{	
	 	 	 	 mae_descriptionData[n][i][c];	 8	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	238	—	Syntax	of	mae_ContentData()	

Syntax	 No.	of	bits	 Mnemonic	
mae_ContentData()	 	 	
{	 	 	
					 mae_bsNumContentDataBlocks;	 7	 uimsbf	
	 for	(n	=	0;	n	<	mae_bsNumContentDataBlocks	+	1;	n++)	{	 	 	
	 	 mae_ContentDataGroupID[n];	 7	 uimsbf	
	 	 mae_contentKind[n];	 4	 uimsbf	
	 	 mae_hasContentLanguage[n];	 1	 bslbf	
	 	 if	(mae_hasContentLanguage[n])	{	 	 	
	 	 	 mae_contentLanguage[n];	 24	 uimsbf	
	 	 }	 	 	
	 }	 	 	
}	 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 499	
	

Table	239	—	Syntax	of	mae_CompositePair()	

Syntax	 No.	of	bits	 Mnemonic	
mae_CompositePair()	 	 	
{	 	 	
	 mae_bsNumCompositePairs;	 7	 uimsbf	
	 for	(sa=0;	sa<mae_bsNumCompositePairs	+	1;	sa++)	{	 	 	
	 	 mae_CompositeElementID	[sa][0];	 7	 uimsbf	
	 	 mae_CompositeElementID	[sa][1];	 7	 uimsbf	
	 }	 	 	
}	 	 	

Table	240	—	Syntax	of	mae_GroupPresetDefinition()	

Syntax	 No.	of	bits	 Mnemonic	
mae_GroupPresetDefinition(mae_numGroupPresets)	 	 	
{	 	 	
	 for	(gp	=	0;	gp	<	mae_numGroupPresets;	gp++)	{	 	 	
	 	 mae_groupPresetID[gp];	 5	 uimsbf	
	 	 mae_groupPresetKind[gp];	 5	 uimsbf	
	 	 	
	 	 mae_bsGroupPresetNumConditions[gp][0];	 4	 uimsbf	
	 	 for	(cnd	=	0;	cnd	<	mae_bsGroupPresetNumConditions[gp][0]	+	1;	cnd++)	{	 	
	 	 	 mae_groupPresetReferenceID[gp][cnd];	 7	 uimsbf	
	 	 	 mae_groupPresetConditionOnOff[gp][0][cnd];	 1	 bslbf	
	 	 	
	 	 	 if	(mae_groupPresetConditionOnOff[gp][0][cnd])	{	 	 	
	 	 	 	 mae_groupPresetDisableGainInteractivity[gp][0][cnd];	 1	 bslbf	
	 	 	 	 mae_groupPresetGainFlag[gp][0][cnd];	 1	 bslbf	
	 	 	 	 if	(mae_groupPresetGainFlag[gp][0][cnd])	{	 	 	
	 	 	 	 	 mae_groupPresetGain[gp][0][cnd];	 8	 uimsbf	
	 	 	 	 }	 	 	
	 	 	 	 mae_groupPresetDisablePositionInteractivity[gp][0][cnd];	 1	 bslbf	
	 	 	 	 mae_groupPresetPositionFlag[gp][0][cnd];	 1	 bslbf	
	 	 	 	 if	(mae_groupPresetPositionFlag	[gp][0][cnd])	{	 	 	
	 	 	 	 	 mae_groupPresetAzOffset[gp][0][cnd];	 8	 uimsbf	
	 	 	 	 	 mae_groupPresetElOffset[gp][0][cnd];	 6	 uimsbf	
	 	 	 	 	 mae_groupPresetDistFactor[gp][0][cnd];	 4	 uimsbf	
	 	 	 	 }	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	241	—	Syntax	of	mae_ProductionScreenSizeData()	

Syntax	 No.	of	bits	 Mnemonic	
mae_ProductionScreenSizeData()	 		 		
{	 		 		
	 hasNonStandardScreenSize;	 1	 bslbf	
	 if	(hasNonStandardScreenSize)	{	 		 		
	 	 bsScreenSizeAz;	 9	 uimsbf	
	 	 bsScreenSizeTopEl;	 9	 uimsbf	
	 	 bsScreenSizeBottomEl;	 9	 uimsbf	
	 }	 		 		
}	 		 		

ISO/IEC	23008-3:202X(E)	

500	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	242	—	Syntax	of	mae_LoudnessCompensationData()	

Syntax	 No.	of	bits	 Mnemonic	
mae_LoudnessCompensationData(mae_numGroups,	mae_numGroupPresets)	 	 	
{	 	 	
	 mae_loudnessCompGroupLoudnessPresent;	 1	 bslbf	
	 if	(mae_loudnessCompGroupLoudnessPresent	==	1)	{	 	 	
	 	 for(grp=0;	grp<mae_numGroups;	grp++)	{	 	 	
	 	 	 mae_bsLoudnessCompGroupLoudness[grp];	 8	 uimsbf	
	 	 }	 	 	
	 }	else	{	 	 	
	 	 /*	not	present	or	provided	by	mpegh3daLoudnessInfoSet()	*/	 	 	
	 }	

	 	

	 mae_loudnessCompDefaultParamsPresent;	 1	 bslbf	
	 if	(mae_loudnessCompDefaultParamsPresent	==	1)	{	 	 	
	 	 for(grp=0;	grp<	mae_numGroups;	grp++)	{	 	 	
	 	 	 groupID	=	mae_groupID[grp];	 	 	
	 	 	 mae_loudnessCompDefaultIncludeGroup[grp];	 1	 bslbf	
	 	 }	 	 	
	 	 mae_loudnessCompDefaultMinMaxGainPresent;	 1	 bslbf	
	 	 if	(mae_loudnessCompDefaultMinMaxGainPresent	==	1)	{	 	 	
	 	 	 mae_bsLoudnessCompDefaultMinGain;	 4	 uimsbf	
	 	 	 mae_bsLoudnessCompDefaultMaxGain;	 4	 uimsbf	
	 	 }	 	 	
	 }	 	 	
	 for	(gp=0;	gp<	mae_numGroupPresets;	gp++)	{	 	 	
	 	 groupPresetID	=	mae_groupPresetID[gp];	 	 	
	 	 mae_loudnessCompPresetParamsPresent[gp];	 1	 bslbf	
	 	 if	(mae_loudnessCompPresetParamsPresent[gp]	==	1)	{	 	 	
	 	 	 for	(grp=0;	grp<	mae_numGroups;	grp++)	{	 	 	
	 	 	 	 groupID	=	mae_groupID[grp];	 	 	
	 	 	 	 mae_loudnessCompPresetIncludeGroup[gp][grp];	 1	 bslbf	
	 	 	 }	 	 	
	 	 	 mae_loudnessCompPresetMinMaxGainPresent[gp];	 1	 bslbf	
	 	 	 if	(mae_loudnessCompPresetMinMaxGainPresent[gp])	{	 	 	
	 	 	 	 mae_bsLoudnessCompPresetMinGain[gp];	 4	 uimsbf	
	 	 	 	 mae_bsLoudnessCompPresetMaxGain[gp];	 4	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	

	 	

}	
	 	

Table	243	—	Syntax	of	mae_ProductionScreenSizeDataExtension()	

Syntax	 No.	of	bits	 Mnemonic	
mae_ProductionScreenSizeDataExtension()	 	 	
{	 	 	
	 mae_overwriteProductionScreenSizeData;	 1	 bslbf	
	 if	(mae_overwriteProductionScreenSizeData)	{	 	 	
	 	 /*	NON-CENTERED	DEFAULT	PRODUCTION	SCREEN	*/	 	 	
	 	 bsScreenSizeLeftAz;	 10	 uimsbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 501	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 bsScreenSizeRightAz;	 10	 uimsbf	
	 }	 	 	
	 	 	
		 mae_NumPresetProductionScreens;	 5	 uimsbf	
	 for	(n	=	0;	n	<	mae_NumPresetProductionScreens;	n++)	{	 	 	
	 	 mae_productionScreenGroupPresetID[n];	 5	 uimsbf	
	 	 mae_hasNonStandardScreenSize[n];	 1	 bslbf	
	 	 if	(mae_hasNonStandardScreenSize[n])	{	 	 	
	 	 	 isCenteredInAzimuth[n];	 1	 bslbf	
	 	 	 if	(isCenteredInAzimuth[n])	{	 	 	
	 	 	 	 bsScreenSizeAz[n];	 9	 uimsbf	
	 	 	 }	else	{	 	 	
	 	 	 	 bsScreenSizeLeftAz[n];	 10	 uimsbf	
	 	 	 	 bsScreenSizeRightAz[n];	 10	 uimsbf	
	 	 	 }	 	 	
	 	 	 bsScreenSizeTopEl[n];	 9	 uimsbf	
	 	 	 bsScreenSizeBottomEl[n];	 9	 uimsbf	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	244	—	Syntax	of	mae_GroupPresetDefinitionExtension()	

Syntax	 No.	of	bits	 Mnemonic	
mae_GroupPresetDefinitionExtension()	 	 	
{	 	 	
	 for	(gp	=	0;	gp	<	mae_numGroupPresets;	gp++)	{	 	 	
	 	 mae_hasSwitchGroupConditions[gp];	 1	 bslbf	
	 	 if	(mae_hasSwitchGroupConditions[gp])		{	 	 	
	 	 	 temp	=	mae_bsGroupPresetNumConditions[gp][0]	+1;	 	 	
	 	 	 for	(cnd	=	0;	cnd	<	temp;	cnd++)	{	 	 	
	 	 	 	 mae_isSwitchGroupCondition[gp][0][cnd];	 	 	 1	 bslbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 	 	
	 	 mae_hasDownmixIdGroupPresetExtensions[gp];	 1	 bslbf	
	 	 if	(mae_hasDownmixIdGroupPresetExtensions[gp])	{	 	 	
	 	 	 mae_numDownmixIdGroupPresetExtensions[gp];	 5	 uimsbf	
	 	 	 for	(egp	=	1;	egp	<	mae_numDownmixIdGroupPresetExtensions[gp]	+1;	egp++)	{	
	 	 	 	 mae_groupPresetDownmixId[gp][egp];	 7	 uimsbf	
	 	 	 	 mae_bsGroupPresetNumConditions[gp][egp];	 4	 uimsbf	
	 	 	 	 for	(cnd	=	0;	cnd	<	mae_bsGroupPresetNumConditions[gp][egp]	+	1;	cnd++)	{	
	 	 	 	 	 mae_isSwitchGroupCondition[gp][egp][cnd];	 1	 bslbf	
	 	 	 	 	 if	(mae_isSwitchGroupCondition[gp][egp][cnd])	{	 	 	
	 	 	 	 	 	 mae_groupPresetSwitchGroupID[gp][egp][cnd];	 5	 uimsbf	
	 	 	 	 	 }	else	{	 	 	
	 	 	 	 	 	 mae_groupPresetGroupID[gp][egp][cnd];	 7	 uimsbf	
	 	 	 	 	 }	 	 	
	 	 	 	 	 mae_groupPresetConditionOnOff[gp][egp][cnd];	 1	 bslbf	
	 	 	 	 	 if	(mae_groupPresetConditionOnOff[gp][egp][cnd]	{	 	 	
	 	 	 	 	 	 mae_groupPresetDisableGainInteractivity[gp][egp][cnd];1	 bslbf	
	 	 	 	 	 	 mae_groupPresetGainFlag[gp][egp][cnd];	 1	 bslbf	
	 	 	 	 	 	 if	(mae_groupPresetGainFlag[gp][egp][cnd])	{	 	 	
	 	 	 	 	 	 	 mae_groupPresetGain[gp][egp][cnd];	 8	 uimsbf	
	 	 	 	 	 	 }	 	 	

ISO/IEC	23008-3:202X(E)	

502	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	 	 	 	 mae_groupPresetDisablePositionInteractivity[gp][egp][cnd];	1	 bslbf	
	 	 	 	 	 	 mae_groupPresetPositionFlag[gp][egp][cnd];	 1	 bslbf	
	 	 	 	 	 	 if	(mae_groupPresetPositionFlag	[gp][egp][cnd])	{	 	 	
	 	 	 	 	 	 	 mae_groupPresetAzOffset[gp][egp][cnd];	 8	 uimsbf	
	 	 	 	 	 	 	 mae_groupPresetElOffset[gp][egp][cnd];	 6	 uimsbf	
	 	 	 	 	 	 	 mae_groupPresetDistFactor[gp][egp][cnd];	 4	 uimsbf	
	 	 	 	 	 	 }	 	 	
	 	 	 	 	 }	 	 	
	 	 	 	 }	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	245	—	Syntax	of	mae_DrcUserInterfaceInfo()	

Syntax	 No.	of	bits	 Mnemonic	
mae_DrcUserInterfaceInfo()	 	 	
{	 	 	
	 version;	 2	 uimsbf	
	 if	(version==0)	{	 	 	
	 	 bsNumTargetLoudnessConditions;	 3	 uimsbf	
	 	 targetLoudnessValueLower[0]	=	-63;	 	 	
	 	 for(c=0;	c<numTargetLoudnessConditions;	c++)	{	 	 	
	 	 	 bsTargetLoudnessValueUpper[c];	 6	 uimsbf	
	 	 	 drcSetEffectAvailable[c];	 16	 bslbf	
	 	 	 targetLoudnessValueLower[c+1]	=	targetLoudnessValueUpper[c];	
	 	 }	 	 	
	 }	else	{	 	 	
	 	 /*	discard	remaining	bits	signalled	by	mae_dataLength	*/	 	 	
	 }	 	 	
}	

	 	

15.3 Semantics	

mae_isMainStream	 This	flag	signals	if	the	actual	MPEG-H	stream	is	the	main	stream.	

mae_audioSceneInfoIDPresent	 This	flag	defines	if	an	ID	for	the	current	audio	scene	is	present	in	

the	bitstream.	

mae_audioSceneInfoID	 This	field	defines	the	ID	for	the	current	audio	scene.	This	field	can	

take	values	between	0	and	255.	A	value	of	0	means	that	the	ID	shall	

not	be	evaluated.	

mae_numGroups	 This	field	signals	the	number	of	groups	in	the	overall	audio	scene	

(complete	number	of	groups	in	the	main	stream	plus	all	possible	

additional	streams).	This	field	shall	take	values	between	0	and	127,	

a	maximum	number	of	127	groups	are	assumed.	

mae_numSwitchGroups	 This	field	signals	the	number	of	switch	groups	in	the	overall	scene	

(complete	number	of	switch	groups	in	the	main	stream	plus	all	

possible	additional	streams).	This	field	can	take	values	between	0	

and	31,	resulting	in	a	maximum	number	of	31	switch	groups.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 503	
	

mae_numGroupPresets	 Number	of	defined	group	presets.	This	field	can	take	values	

between	0	and	31,	resulting	in	a	maximum	number	of	31	group	

presets.	A	group	preset	is	a	subset	of	all	groups	of	an	overall	scene	

where	the	on/off	status	of	each	of	these	groups	is	bound	to	a	

condition.	With	group	presets	it	is	possible	to	define	a	controlled	

behaviour	in	dependence	of	the	on/off	status	of	some	of	the	groups	

and/or	switch	groups	in	an	overall	audio	scene.	A	group	preset	is	

valid	if	all	its	associated	conditions	are	true	(logical	AND	of	the	

conditions	yields	1),	i.e.	if	the	on/off	status	of	all	associated	groups	

and	the	on/off	status	of	each	associated	switch	group	conformas	to	

the	defined	conditions.	A	condition	associated	with	a	switch	group	

with	value	1	is	true	if	one	member	of	the	switch	group	is	switched	

on.	A	condition	associated	with	a	switch	group	with	value	0	is	true	

if	all	members	of	the	switch	group	are	switched	off.	Switch	group	

conditions	with	value	0	are	only	applicable	for	switch	groups	

whose	mae_switchGroupAllowOnOff	flag	is	equal	to	1.	

Any	evaluation	of	the	valid/selected	preset	(and	therefore	the	

application	of	preset-dependent	values)	shall	only	happen	in	the	

defined	‘basic	interaction	mode’	(see	subclause	17.7.3).	The	

chosen/selected	preset	is	indicated	by	the	presetID	that	is	received	

via	the	mpegh3daElementInteraction()	interface.	
mae_bsMetaDataElementIDoffset	This	field	defines	the	offset	for	the	first	metadata	element	of		the	

current	MPEG-H	data	stream.	It	is	zero	if	the	stream	is	the	main	stream.	

mae_numDataSets	 This	field	defines	the	number	of	data	sets	that	are	following	in	the	

bitstream.	

mae_dataType	 For	each	data	element	this	field	defines	the	type	of	description	that	

follows	in	the	bitstream.	

Table	246	—	Value	of	mae_dataType	

mae_dataType	 value	 meaning	

ID_MAE_GROUP_DESCRIPTION	 0	 Group	description	follows	in	the	bitstream	
ID_MAE_SWITCHGROUP_DESCRIPTION	 1	 Switch	group	description	follows	in	the	bitstream	

ID_	MAE_GROUP_CONTENT	 2	 Group	content	information	follows	in	the	
bitstream	

ID_MAE_GROUP_COMPOSITE	 3	 Composite	pair	information	follows	in	the	
bitstream	

ID_MAE_SCREEN_SIZE	 4	 Information	about	the	local	screen	size	follows	in	
the	bitstream	

ID_MAE_GROUP_PRESET_DESCRIPTION	 5	 Group	preset	description	follows	in	the	bitstream		

ID_MAE_DRC_UI_INFO	 6	 Extension	metadata	with	DRC	user	interface	
information	

ID_MAE_SCREEN_SIZE_EXTENSION	 7	 Extension	metadata	of	the	screen	size	information		
follows	in	the	bitstream	

ID_MAE_GROUP_PRESET_EXTENSION	 8	 Extension	metadata	of	the	group	preset	definition	
follows	in	the	bitstream	

ID_MAE_LOUDNESS_COMPENSATION	 9	 Loudness	compensation	information	follows	in	the	
bitstream	

reserved	 10	-	15	 n/a	

mae_dataLength	 This	field	defines	the	length	in	bytes	of	the	data	element	that	

follows	in	the	bitstream.	

ISO/IEC	23008-3:202X(E)	

504	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_groupID	 This	field	uniquely	defines	an	ID	for	a	group	of	metadata	elements.	

This	field	can	take	values	between	0	and	126.	

mae_allowOnOff	 This	flag	defines	if	the	audience	is	allowed	to	switch	a	metadata	

element	group	on	and	off	(enable/disable	playback).	

mae_defaultOnOff	 This	field	defines	the	default	status	of	a	metadata	element	group,	

i.e.	if	this	group	is	switched	on	(=1)	or	off	(=0)	by	default.	

mae_allowPositionInteractivity	 This	flag	defines	if	the	audience	is	allowed	to	change	the	position	of	

the	elements	of	a	metadata	element	group.	

mae_interactivityMinAzOffset	 This	field	defines	the	minimum	azimuth	offset	for	changing	the	

position	of	the	members	of	a	metadata	element	group,	e.g.	changing	

the	original	azimuth	by	a	minimum	offset	of	-30°.	This	field	can	take	

values	between	MinAzOffset	=	-180°	and	MinAzOffset	=	0°:		

MinAzOffset	=	–1.5	·	mae_interactivityMinAzOffset		

mae_interactivityMaxAzOffset	 This	field	defines	the	maximum	azimuth	offset	for	changing	the	

position	of	the	members	of	a	metadata	element	group,	e.g.	changing	

the	original	azimuth	by	a	maximum	offset	of	+30°.	This	field	can	

take	values	between	MaxElOffset	=	0°	and	MaxElOffset	=180°:		

MaxAzOffset	=	+1.5	·	mae_interactivityMaxAzOffset		

mae_interactivityMinElOffset		 This	field	defines	the	minimum	elevation	offset	for	changing	the	

position	of	the	members	of	a	metadata	element	group,	e.g.	changing	

the	original	elevation	by	a	minimum	offset	of	-30°.	This	field	can	

take	values	between	MinElOffset	=	-90°	and	MinElOffset	=	0°:		

MinElOffset	=	–3	·	mae_interactivityMinElOffset		

mae_interactivityMaxElOffset		 This	field	defines	the	maximum	elevation	offset	for	changing	the	

position	of	the	members	of	a	metadata	element	group,	e.g.	changing	

the	original	elevation	by	a	maximum	offset	of	+30°.	This	field	can	

take	values	between	MaxElOffset	=	0°	and	MaxElOffset	=	90°:		

MaxElOffset	=	+3	·	mae_interactivityMaxElOffset		

mae_interactivityMinDistFactor	 This	field	defines	the	minimum	distance	change	factor	for	
interactively	changing	the	position	of	the	members	of	a	metadata	

element	group.	The	field	describes	a	multiplication	factor	by	which	

the	original	distance	is	changed,	e.g.	multiplied	by	a	minimum	

factor	of	0.5.	This	field	can	take	values	between	0	and	15	resulting	

in	MinDistFactor	between	0,000	25	and	8:	

	 MinDistFactor	=	2(mae_interactivityMinDistFactor	–	12)	

mae_interactivitiyMaxDistFactor		This	field	defines	the	maximum	distance	change	factor	for	
interactively	changing	the	position	of	the	members	of	a	metadata	

element	group.	The	field	describes	a	multiplication	factor	by	which	

the	original	distance	is	changed,	e.g.	multiplied	by	a	maximum	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 505	
	

factor	of	4.	This	field	can	take	values	between	0	and	15	resulting	in	

MaxDistFactor	between	0,000	25	and	8:	

	 MaxDistFactor	=	2(mae_interactivityMaxDistFactor	–	12)	

mae_allowGainInteractivity	 This	flag	defines	if	the	audience	is	allowed	to	change	the	gain	of	a	

metadata	element	group.	

mae_interactivityMinGain	 This	field	defines	a	minimum	gain	of	the	members	of	a	metadata	

element	group.	The	field	can	take	values	between		

MinGain	=	–63	dB		

and	

MinGain	=	0	dB		

in	1	dB	steps,	with	

	

MinGain	in	dB	=	mae_interactivityMinGain	–	63	
	

If	mae_interactivityMinGain	is	set	to	0,	MinGain	shall	be	set	to	
minus	infinity	dB.	

mae_interactivityMaxGain		 This	field	defines	a	maximum	gain	of	the	members	of	a	metadata	

element	group.	The	field	can	take	values	between		

MaxGain	=	0	dB		

and		

MaxGain	=31	dB		

in	1	dB	steps,	with	

MaxGain	in	dB	=	mae_interactivityMaxGain			

The	value	of	MinGain	and	MaxGain	define	the	interval	in	dB	of	allowed	interactivity	gain	changes	relative	

to	the	OAM	gain	if	OAM	data	is	present	for	the	current	group.	For	example,	with	a	MinGain	of						-	2	dB	

and	a	MaxGain	of	6	dB,	the	gain	of	the	elements	in	the	group	shall	be	interactively	altered	only	in	the	

interval	between	-2	dB	and	+6	dB	relative	to	their	current	OAM	gain	in	dB.	For	groups	without	OAM	data,	

the	MinGain	and	MaxGain	values	define	the	interval	in	dB	of	allowed	interactivity	gain	changes	relative	

to	the	current	audio	gain	(amplitude	of	the	audio	samples).	

mae_bsGroupNumMembers	 This	 field	 signals	 the	 number	 of	 members	 of	 a	 group	 of	

metadata	elements.	The	field	can	take	values	between	0	and	

127	 resulting	 in	 a	 maximum	 number	 of	 128	 members.	

mae_groups	that	are	part	of	switch	groups	shall	consist	of	one	

or	multiple	complete	signalGroups.	

mae_hasConjunctMembers	 This	flag	defines	if	all	members	of	the	metadata	element	

group	are	coded	consecutively	in	the	bitstream.	

mae_startID	 If	the	members	of	the	element	group	are	coded	

consecutively	this	field	defines	the	offset	for	the	first	

metadata	element	of	this	group.	

ISO/IEC	23008-3:202X(E)	

506	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_metaDataElementID	 This	field	uniquely	defines	an	ID	for	a	metadata	element	(i.e.	

channels,	 dynamic	 objects,	 SAOC	 channels,	 SAOC	 objects,	

SignalGroupTypeSAOC	 signals,	 HOA).	 This	 field	 can	 take	

values	between	0	and	127,	 resulting	 in	 a	maximum	of	128	

metadata	elements.	One	group	shall	only	contain	elements	of	

the	 same	 signal	 type	 (static	 objects	 (channel-based	 signals	

without	accompanying	OAM	data),	objects	(audio	tracks	with	

accompanying	 OAM	 data),	 SAOC	 channels,	 SAOC	 object,	

SignalGroupTypeSAOC	signals,	HOA).	If	a	bitstream	contains	

an	 mae_AudioSceneInfo()	 syntax	 element,	 each	

mae_metaDataElementID	shall	be	referred	to	in	exactly	one	

mae_GroupDefinition()	bitstream	element.	

mae_switchGroupID		 This	field	uniquely	defines	an	ID	for	a	switch	group	of	

metadata	elements	groups.		

mae_switchGroupAllowOnOff		 This	flag	defines	if	the	audience	is	allowed	to	completely	

disable	the	playback	of	the	switch	group.	If	the	flag	is	set	to	

zero,	then	one	member	of	the	group	is	always	played	back,	if	

the	flag	is	set	to	one,	then	either	none	or	one	member	of	the	

group	is	played	back.	

mae_switchGroupDefaultOnOff	 This	flag	defines	if	the	switch	group	is	enabled	or	disabled	

for	playback	by	default.	If	the	flag	is	enabled	by	default,	then	

the	default	member	of	the	group	is	played	back	in	the	initial	

setting.	

mae_bsSwitchGroupNumMembers	 This	field	signals	the	number	of	members	of	a	switch	group.	
It	can	take	values	between	0	and	31,	resulting	in	a	maximum	

number	of	32	members.	If	a	group	is	a	member	of	a	switch	

group,	the	mae_allowOnOff	field	should	be	ignored	during	

processing	and	playback.	

mae_switchGroupMemberID	 This	field	specifes	the	groupIDs	of	the	members	of	the	

switch	group.		

mae_switchGroupDefaultGroupID	 This	field	signals	default	member	of	the	switch	group	(i.e.	if	

a	switch	group	is	selected	for	playback	by	the	audience,	the	

default	member	is	played	back	until	the	audience	switches	

to	another	member).	

mae_bsNumDescriptionBlocks	 This	field	specifies	the	number	of	description	blocks.		

mae_descriptionGroupID	 This	field	specifies	the	mae_groupID	of	the	group	to	which	

the	description	block	applies.		

mae_descriptionSwitchGroupID	 This	field	specifies	the	mae_switchGroupID	of	the	switch	

group	to	which	the	description	block	applies.	

mae_descriptionGroupPresetID	 This	field	specifies	the	mae_groupPresetID	of	the	group	

preset	to	which	the	description	block	applies.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 507	
	

mae_bsNumDescLanguages	 This	field	specifies	the	number	of	available	languages	for	the	

description	text.	

mae_bsDescriptionLanguage	 This	24-bit	field	identifies	the	language	of	the	description	text	

of	a	metadata	element	group.	It	contains	a	3-character	code	

as	specified	by	ISO	639-2.	Both	ISO	639-2/B	and	ISO	639-2/T	

may	be	used.	Each	character	is	coded	into	8	bits	according	to	

ISO/IEC	8859-1	 and	 inserted	 in	 order	 into	 the	 24-bit	 field.	

EXAMPLE:	French	has	3-character	code	“fre”,	which	is	coded	

as:	“0110	0110	0111	0010	0110	0101”.	

mae_bsDescriptionDataLength	 This	field	defines	the	length	of	the	following	group	

description	in	the	bitstream.	

mae_descriptionData	 This	field	contains	a	description	of	a	metadata	element	

group	or	a	switch	group,	i.e.	a	string	describing	the	content	

by	a	high-level	description.	The	format	shall	follow	UTF-8	

according	to	ISO/IEC	10646.	

mae_bsNumContentDataBlocks	 This	field	specifies	the	number	of	ContentData	blocks.		

mae_contentDataGroupID	 This	field	specifies	the	mae_groupID	of	the	group	to	which	

the	ContentData	block	applies.		

mae_contentKind	 This	field	defines	the	kind	of	content	of	a	metadata	element	

group,		

Table	247	—	Value	of	mae_contentKind	

mae_contentKind	 Description	

0	 undefined	
1	 complete	main	
2	 dialogue	
3	 music	
4	 effect	
5	 mixed	
6	 LFE	
7	 voiceover	
8	 spokensubtitle	
9	 audiodescription/visually	impaired	
10	 commentary	
11	 hearing	impaired	
12	 emergency	

13-15	 reserved	

	

mae_hasContentLanguage	 This	field	defines	if	the	actual	metadata	element	group	has	a	language	
assigned	to	its	content.	

ISO/IEC	23008-3:202X(E)	

508	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_contentLanguage	 This	24-bit	field	identifies	the	language	of	a	metadata	element	group.	It	

contains	a	3-character	code	as	specified	by	ISO	639-2.	Both	ISO	639-2/B	

and	ISO	639-2/T	may	be	used.	Each	character	is	coded	into	8	bits	

according	to	ISO/IEC	8859-1	and	inserted	in	order	into	the	24-bit	field.	

EXAMPLE:	French	has	3-character	code	“fre”,	which	is	coded	as:	“0110	

0110	0111	0010	0110	0101”.	

mae_bsNumCompositePairs	This	is	the	number	of	CompositePairs.	

mae_CompositeElementID	 This	field	uniquely	defines	an	ID	for	a	metadata	element.	This	field	can	
take	values	between	0	and	127,	resulting	in	a	maximum	of	128	metadata	

elements.	The	metadata	element	in	position	0,	is	an	independent	object	
and	the	metadata	element	in	position	1	is	a	dependent	object.	These	two	
objects	form	together	the	CompositePair.	This	dependent	object	will	be	

given	the	metadata	of	the	independent	object.	The	dependent	object	and	

the	independent	object	represent	a	composite	object	pair	combining	the	

dependent	object	and	the	independent	object	in	time	or	frequency	

domain.	Each	element	may	be	either	a	discrete	object	or	an	SAOC	object.	

mae_groupPresetID	 This	field	uniquely	defines	an	ID	for	a	group	preset.	This	field	can	take	

values	between	0	and	31.	The	group	preset	the	lowest	

mae_groupPresetID	value	shall	be	selected	as	default.	

mae_groupPresetKind	 This	field	defines	the	kind	of	content	of	a	group	preset.	

Table	248	—	Value	of	mae_groupPresetKind	

mae_groupPresetKind	 Description	

0	 undefined	
1	 integrated	TV	loudspeaker	
2	 high	quality	loudspeaker	
3	 mobile	loudspeakers	
4	 mobile	headphones	
5	 hearing	impaired	(light)	
6	 hearing	impaired	(heavy)	
7	 visually	impaired	/	audio	description	
8	 spoken	subtitles	
9	 loudness/DRC	

10-25	 /*	reserved	for	ISO	use	*/	
26-30	 /*	reserved	for	use	outside	of	ISO	scope	*/	
31	 other	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 509	
	

mae_bsGroupPresetNumConditions	 This	field	defines	the	number	of	group	conditions	

that	are	associated	with	a	group	preset	or	a	group	

preset	extension.	The	field	takes	values	between	0	

and	15;	a	minimum	of	1	condition	and	a	maximum	

of	16	conditions	are	assumed.	A	condition	is	a	

combination	of	a	mae_groupID	or	an	

mae_switchGroupID	(if	

mae_isSwitchGroupCondition	is	equal	to	1)	and	an	
on/off	status.	Use	the	following	signaling	to	define	

a	special	preset	or	a	group	preset	extension	with	

no	groupPresetCondition	for	full	user	interactivity:	

	 				bsGroupPresetNumConditions	=	1	

				group	preset:	mae_groupPresetReferenceID	=	127	
				group	preset	extension:	

mae_groupPresetGroupID	=	127	

				mae_groupPresetConditionOnOff	=	0	

mae_groupPresetReferenceID	 This	field	specifies	the	groups	or	switch	groups	

associated	with	a	group	preset.	By	default,	this	

reference	is	interpreted	as	a	groupID.	The	

reference	can	be	defined	to	be	interpreted	as	a	

switchGroupID	by	extension	metadata.	

mae_groupPresetGroupID	 This	field	specifies	the	groups	associated	with	a	
group	preset	extension.	

mae_groupPresetConditionOnOff	 This	flag	describes	the	required	on/off	status	of	a	

group	or	a	switch	group	associated	with	a	group	

preset	or	a	group	preset	extension.	If	the	flag	is	1	

and	the	referenced	ID	is	defined	to	be	interpreted	

as	a	groupID,	the	associated	group	has	to	be	

switched	on	to	validate	the	group	preset	or	group	

preset	extension.	

	 If	the	referenced	ID	is	defined	to	be	interpreted	as	

a	switchGroupID,	a	groupPresetConditionOnOff	

with	value	1	means	that	one	member	of	the	switch	

group	has	to	be	switched	on	to	validate	the	group	

preset	If	the	flag	is	0,	the	associated	group	or	

switch	group	has	to	be	switched	off.	

mae_groupPresetDisableGainInteractivity	 This	field	defines	whether	the	gain	interactivity	of	

the	currently	referenced	group	or	the	members	of	

the	referenced	switch	group	shall	be	disabled	(flag	

is	equal	to	1)	or	shall	stay	enabled	(flag	is	equal	to	

0)	if	the	preset	or	preset	extension	is	chosen/valid.	

ISO/IEC	23008-3:202X(E)	

510	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_groupPresetGainFlag	 This	field	defines	whether	the	corresponding	

preset	or	preset	extension	specifies	an	initial	gain	

of	the	members	of	a	metadata	element	group	or	of	

the	element	members	of	the	group	members	of	the	

referenced	switch	group.	It	shall	only	be	1	if	the	

flag	mae_allowGainInteractivity	of	the	

corresponding	group	or	of	all	the	members	of	the	

referenced	switch	group	is	set	to	1.	

mae_groupPresetGain	 The	field	defines	the	initial	gain	of	the	members	of	

a	metadata	element	group	or	of	the	element	

members	of	the	group	members	of	the	referenced	

switch	group	when	the	corresponding	preset	or	

preset	extension	is	selected.	

	 groupPresetGain	in	dB	=	0.5	·	

(mae_groupPresetGain	–	255)	+	32	

mae_groupPresetDisablePositionInteractivity	 This	field	defines	whether	the	position	interactivity	

of	the	currently	referenced	group	or	of	the	

members	of	the	referenced	switch	group	shall	be	

disabled	(flag	is	equal	to	1)	or	shall	stay	enabled	

(flag	is	equal	to	0)	if	the	preset	or	preset	extension	

is	chosen/valid.	

mae_groupPresetPositionFlag	 This	field	defines	whether	initial	position	

interactivity	data	(azimuth	offset,	elevation	offset	

and	distance	factor)	is	present	that	shall	be	applied	

to	the	members	of	a	metadata	element	group	or	to	

the	element	members	of	the	group	members	of	the	

referenced	switch	group.	It	shall	only	be	1	if	the	

flag	mae_allowPositionInteractivity	of	the	

corresponding	group	or	of	all	the	members	of	the	

referenced	switch	group	is	set	to	1.	

mae_groupPresetAzOffset	 This	field	defines	the	additional	azimuth	offset	that	

shall	be	applied	to	the	currently	referenced	group	

or	the	members	of	the	referenced	switch	group	if	

the	preset	or	preset	extension	is	chosen/valid.	This	

field	can	take	values	between	

PresetAdditionalAzOffset	=	-180°	and	AzOffset	=	

+180°:	

	 PresetAdditionalAzOffset	=1.5	·	

(mae_groupPresetAzOffset	–	127)	

mae_groupPresetElOffset	 This	field	defines	the	additional	elevation	offset	

that	shall	be	applied	to	the	currently	referenced	

group	or	the	members	of	the	referenced	switch	

group	if	the	preset	or	preset	extension	is	
chosen/valid.	This	field	can	take	values	between	

PresetAdditionalElOffset	=	-90°	and	ElOffset	=	

+90°:	

PresetAdditionalElOffset	=	3	·	

(mae_groupPresetElOffset	–	31)	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 511	
	

mae_groupPresetDistFactor	 This	field	defines	the	additional	distance	change	

factor	that	shall	be	applied	to	the	currently	

referenced	group	or	the	members	of	the	referenced	

switch	group	if	the	preset	or	preset	extension	is	

chosen/valid.	This	field	can	take	values	between	0	

and	15	resulting	in	PresetAdditionalDistFactor	

between	0.000	25	and	8:	

PresetAdditionalDistFactor	=	2(mae_groupPresetDistFactor-

12)	

hasNonStandardScreenSize	 This	flag	specifies	whether	a	nominal	screen	size	is	

defined	that	is	different	than	the	standard	screen	

size.	The	definition	is	done	via	viewing	angles	

corresponding	to	the	screen	edges.	In	case	

hasNonStandardScreenSize	is	zero,	the	following	

values	are	used	as	default	(assuming	a	4k	display	

and	an	optimal	viewing	distance):	

=	29.0°	

=	-29.0°	

=	17.5°	

=	-17.5°	

bsScreenSizeAz	 This	field	defines	the	azimuth	corresponding	to	the	

left	and	right	screen	edge:		

=	0.5	·	bsScreenSizeAz	

=	min	(max	(,	0),	180)	

=	-0.5	·		bsScreenSizeAz	

=	min	(max	(,	-180),	0)	

bsScreenSizeTopEl		 This	field	defines	the	elevation	corresponding	to	

the	top	screen	edge:		

=	0.5	·	(bsScreenSizeTopEl	–	255)	

=	min	(max	(,	-90),	90)	

bsScreenSizeBottomEl	 This	field	defines	the	elevation	corresponding	to	

the	bottom	screen	edge:		

=	0.5	·	(bsScreenSizeBottomEl	–	255)	

=	min	(max	(,	-90),	90)	

nominal
leftj
nominal
rightj
nominal
topq
nominal
bottomq

nominal
leftj

nominal
leftj nominal

leftj

nominal
rightj

nominal
rightj nominal

rightj

nominal
topq
nominal
topq nominal

topq

nominal
bottomq
nominal
bottomq nominal

bottomq

ISO/IEC	23008-3:202X(E)	

512	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_overwriteProductionScreenSizeData	 This	field	defines	if	the	bitstream	contains	azimuth	

values	for	a	non-centered	default	production	

screen.	If	this	flag	is	set	to	1,	the	following	azimuth	

values	shall	be	used	in	the	processing	instead	of	

the	values	from	mae_ProductionScreenSizeData().	

bsScreenSizeLeftAz	 This	field	defines	the	azimuth	corresponding	to	the	

left	screen	edge:	

	=	0.5	·	(bsScreenSizeLeftAz	–	511)	

	=	min	(max	(,	-180),	180)	

bsScreenSizeRightAz	 This	field	defines	the	azimuth	corresponding	to	the	

right	screen	edge:	

	=		0.5	·	(bsScreenSizeRightAz	–	511)	

	=	min	(max	(,	-180),	180)	

mae_NumPresetProductionScreens	 This	field	defines	the	number	of	preset-associated	

production	screens.	

mae_productionScreenGroupPresetID	 This	field	defines	the	presetID	the	current	

production	screen	is	associated	with.	

mae_hasNonStandardScreenSize	 This	field	defines	if	the	bitstream	contains	a	non-

standard	preset-associated	production	screen	size.	

If	the	flag	is	one,	the	non-standard	production	

screen	size	information	follows	in	the	bitstream.	

isCenteredInAzimuth	 This	flag	defines	whether	the	production	screen	is	

centered	in	azimuth	(absolute	values	of	the	

azimuth	angles	of	the	left	and	right	screen	edge	are	

identical)	or	not.	

mae_hasSwitchGroupCondition	 This	flag	defines	whether	a	group	preset	has	switch	

group	conditions	(flag	is	equal	to	1).	

mae_isSwitchGroupCondition	 This	field	defines	whether	the	condition	from	

original	a	preset	definition	or	a	group	preset	

extension	references	a	groupID	

(mae_isSwitchGroupCondition	is	equal	to	0)	or	if	

the	referenced	ID	shall	be	interpreted	as	a	

switchGroupID	(mae_isSwitchGroupCondition	is	

equal	to	1).	

mae_hasDownmixIdGroupPresetExtensions	 This	flag	defines	whether	a	group	preset	has	

layout-dependent	extensions	(flag	is	equal	to	1).	

Group	presets	can	be	extended	by	group	presets	

extensions,	which	are	applicable	for	a	specific	

downmixId.	These	extensions	can	overwrite	the	

preset	conditions	and	other	preset	characteristics,	

e.g.	the	group	preset	gain.	If	a	preset	is	selected	and	

there	is	a	current	downmixId,	the	conditions	and	

characteristics	of	the	appropriate	group	preset	

extension	shall	replace	the	corresponding	values	

nominal
leftj
nominal
leftj nominal

leftj

nominal
rightj
nominal
rightj nominal

rightj

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 513	
	

from	the	chosen/valid	group	preset	in	the	

processing	and	rendering.	

mae_groupPresetDownmixId	 This	field	references	a	downmixId,	for	which	the	

current	group	preset	extension	is	applicable.	

mae_groupPresetSwitchGroupID	 This	field	specifies	the	switch	groups	associated	
with	a	group	preset	extension.	

mae_loudnessCompGroupLoudnessPresent	 A	field	that	indicates	whether	group	loudness	

values	for	loudness	compensation	follow	in	the	

bitstream.	

mae_bsLoudnessCompGroupLoudness	 A	field	that	signals	a	loudness	value	for	the	current	

metadata	element	group	(groupID).	

loudnessCompGroupLoudness	in	dB	=	0.25	∙	

mae_bsLoudnessCompGroupLoudness	-	57.75	

mae_loudnessCompDefaultParamsPresent	 A	field	that	indicates	whether	loudness	

compensation	parameters	for	the	default	scene	

follow	in	the	bitstream.	If	not	present,	all	metadata	

element	groups	shall	be	incorporated	in	the	

computation	of	the	loudness	compensation	gain.	

mae_loudnessCompDefaultIncludeGroup	 A	field	that	signals	whether	the	current	metadata	

element	group	(groupID)	shall	be	incorporated	in	

the	computation	of	the	loudness	compensation	

gain	of	the	default	scene.	

mae_loudnessCompDefaultMinMaxGainPresent	 A	field	that	indicates	whether	min/max	values	for	

loudness	compensation	gain	of	the	default	scene	

follow	in	the	bitstream.	

mae_bsLoudnessCompDefaultMinGain	 A	field	that	signals	a	minimum	value	for	the	

loudness	compensation	gain	of	the	default	scene.	It	

can	take	values	between	0	and	minus	42	dB	in	3	dB	

steps.	A	value	of	minus	infinity	can	be	signalled	by	

the	largest	number	of	

mae_bsLoudnessCompDefaultMinGain	(15).	If	not	

present	the	default	value	is	minus	infinity.	

	 loudnessCompDefaultMinGain	in	dB	=	-3	∙	

mae_bsLoudnessCompDefaultMinGain	

mae_bsLoudnessCompDefaultMaxGain	 	 A	field	that	signals	a	maximum	value	for	the	

loudness	compensation	gain	of	the	default	scene.	It	

can	take	values	between	0	and	45	dB	in	3	dB	steps.	

If	not	present	the	default	value	is	plus	21	dB.	

	 loudnessCompDefaultMaxGain	in	dB	=	3	∙	

mae_bsLoudnessCompDefaultMaxGain	

mae_loudnessCompPresetParamsPresent	 A	field	that	indicates	whether	loudness	

compensation	parameters	for	the	current	preset	

(groupPresetID)	follow	in	the	bitstream.	If	not	

present,	all	metadata	element	groups	shall	be	

incorporated	in	the	computation	of	the	loudness	

compensation	gain.	

ISO/IEC	23008-3:202X(E)	

514	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

mae_loudnessCompPresetIncludeGroup	 A	field	that	signals	whether	the	current	metadata	

element	group	(groupID)	shall	be	incorporated	in	

the	computation	of	the	loudness	compensation	

gain	of	the	current	preset	(groupPresetID).	

mae_loudnessCompPresetMinMaxGainPresent	 A	field	that	indicates	whether	min/max	values	for	

loudness	compensation	gain	of	the	current	preset	

(groupPresetID)	follow	in	the	bitstream.	

mae_loudnessCompPresetMinGain	 A	field	that	signals	a	minimum	value	for	the	

loudness	compensation	gain	of	the	current	preset	

(groupPresetID).	It	can	take	values	between	0	and	

minus	42	dB	in	3	dB	steps.	A	value	of	minus	infinity	

can	be	signalled	by	the	largest	number	of	

mae_bsLoudnessCompPresetMinGain	(15).	If	not	

present	the	default	value	is	minus	infinity.	

	 loudnessCompPresetMinGain	in	dB	=	-3	∙	

mae_bsLoudnessCompPresetMinGain	

mae_loudnessCompPresetMaxGain	 A	field	that	signals	a	maximum	value	for	the	

loudness	compensation	gain	of	the	current	preset	

(groupPresetID).	It	can	take	values	between	0	and	

45	dB	in	3	dB	steps.	If	not	present	the	default	value	

is	plus	21	dB.	

loudnessCompPresetMaxGain	in	dB	=	3	∙	

mae_bsLoudnessCompPresetMaxGain	

mae_metaDataElementIDmaxAvail	 This	field	signals	the	maximum	available	

mae_metaDataElementID	in	a	Main	Stream	or	Sub-

Stream.	

version	 A	version	field	that	shall	be	set	to	zero.	

bsNumTargetLoudnessConditions	 A	field	that	signals	the	number	of	target	loudness	

conditions.	The	field	can	take	values	between	0	and	

7.	

numTargetLoudnessConditions	=	

bsNumTargetLoudnessConditions	+	1	

bsTargetLoudnessValueUpper	 A	field	that	signals	the	upper	limit	of	the	target	

loudness	range	defined	by	

targetLoudnessValueUpper/-Lower.	The	field	can	

take	values	between	-63	and	0	dB.	A	range	check	

shall	include	the	upper	boundary	value	and	

exclude	the	lower	boundary	value.	If	the	requested	

decoder	target	loudness	(targetLoudness)	includes	

any	of	the	signalled	ranges,	the	corresponding	

drcSetEffectAvailable	field	can,	e.g.	be	used	for	

guidance	of	a	user	interface	if	the	content	of	the	

DRC	bitstream	is	not	available.	

targetLoudnessValueUpper	in	dB	=	

bsTargetLoudnessValueUpper	–	63	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 515	
	

drcSetEffectAvailable	 This	field	signals	the	available	DRC	set	effects	in	

the	audio	bitstream	for	a	certain	target	loudness	

range.	Each	bit	represents	a	requestable	DRC	set	

effect	type,	where	ISO/IEC	23003-4:2015,	Table	11	

defines	bit	positions	by	index	(0	corresponds	to	

LSB)	and	the	corresponding	semantics.	If	not	

present,	all	bits	shall	be	set	to	one.	Note	that	the	

DRC	set	selection	process	according	to	Clause	6.4.4	

can	handle	any	request	independent	of	availability	

in	the	bitstream.	

15.4 Definition	of	mae_metaDataElementIDs	

The	definition	of	metadata	groups	(mae_GroupDefinition)	references	signals	via	the	identifiers	

mae_metaDataElementID.	These	identifiers	are	calculated	using	the	following	pseudo	code.	

mae_metaDataElementID = mae_metaDataElementIDoffset;
for (grp = 0; grp < bsNumSignalGroups + 1; grp++) {
 if (SignalGroupType[grp] == SignalGroupTypeChannels) {
 for (id = 0; id < bsNumberOfSignals[grp] + 1; id++) {
 mae_metaDataElementID++;
 }
 }
 else if (SignalGroupType[grp] == SignalGroupTypeObject) {
 for (id = 0; id < bsNumberOfSignals[grp] + 1; id++) {
 mae_metaDataElementID++;
 }
 }
 else if (SignalGroupType[grp] == SignalGroupTypeSAOC) {
 for (id = 0; id < numSpeakers + bsNumSaocObjects; id++) {
 mae_metaDataElementID++;
 }
 if(saocDmxLayoutPresent == 1) {
 mae_metaDataElementID++;
 }
 }
 else if (SignalGroupType[grp] == SignalGroupTypeHOA) {
 mae_metaDataElementID++;
 }
}
	

with	numSpeakers	as	used	when	evaluating	SAOC3DgetNumChannels(saocChannelLayout).	

If	saocDmxLayoutPresent	==	1	the	MAE	information	shall	contain	one	additional	group	with	exactly	one	

data	element.	The	additional	group	shall	be	located	after	the	last	group	containing	elements	of	signal	type	

SAOC	channels	or	SAOC	objects.	The	data	element	in	the	additional	group	shall	be	associated	with	the	

complete	group	of	SAOC	Transport	Channels.	Additionally,	if	saocDmxLayoutPresent	==	1,	the	value	of	

the	variable	baseChannelCount,	defined	in	subclause	6.3.3,	shall	be	increased	by	1,	such	that	an	individual	

DRC	gain	sequence	can	be	assigned	to	the	complete	group	of	SAOC	transport	channels.	

ISO/IEC	23008-3:202X(E)	

516	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

15.5 Loudness	compensation	after	gain	interactivity	

An	important	feature	of	MPEG-H	3D	audio	is	the	support	of	user	interaction	at	the	decoder:	The	user	can,	

e.g.	adjust	the	volume	of	metadata	element	groups	or	even	switch	them	on	and	off.	Changing	the	level	of	

groups	also	implies	that	the	overall	loudness	of	the	rendered	audio	scene	is	changed	compared	to	the	

unmodified	case.	

The	 loudness	 normalization	 feature	 as	 specified	 in	 subclause	 6.4.7,	 applies	 to	 unmodified	 reference	

scenes	dependent	on	the	selected	preset,	target	layout	or	DRC	configuration.	The	loudness	compensation	

tool	specified	in	this	sub-clause	operates	in	addition	to	loudness	normalization	according	to	subclause	

6.4.7	and	compensates	for	any	loudness	change	relative	to	the	unmodified	reference	scene	due	to	user	

interaction	with	the	reference	scene.	

If	the	structure	mae_LoudnessCompensationData()	is	present	in	the	metadata	bitstream	(mae_dataType	

==	 ID_MAE_LOUDNESS_COMPENSATION),	 the	 loudness	 compensation	 tool	 shall	 be	 enabled.	 If	 not	

present,	the	loudness	compensation	tool	shall	be	disabled	by	default.	

If	the	loudness	compensation	tool	is	enabled,	a	loudness	compensation	gain	shall	be	computed	after	any	

gain	interaction	or	preset	selection	according	to	Table	249.	The	computed	compensation	gain	shall	be	

applied	to	each	audio	element.	The	input	parameters	for	the	computation	of	the	loudness	compensation	

gain	are	extracted	as	specified	in	Table	250.		

Group	 loudness	 values	 can	 be	 either	 transmitted	within	mae_LoudnessCompensationData()	 by	 using	

mae_loudnessCompGroupLoudnessPresent==1	 (see	 subclause	15.2)	 or	 within	

mpegh3aLoudnessInfoSet()	by	using loudnessInfoType==1	(see	subclause	6.3).	If	group	loudness	values	
for	one	or	more	metadata	element	groups	are	missing	within	mpegh3aLoudnessInfoSet(),	the	loudness	

compensation	gain	shall	be	computed	as	listed	in	Table	249	for	groupLoudnessValueMissingFlag==1.		

Table	249	—	Pseudo	code	for	computation	of	loudness	compensation	gain
computeLoudnessCompensationGain(numGroups,
 includeGroup[],
 groupLoudnessValueMissingFlag,
 groupLoudness[],
 groupGainDefaultDb[],
 groupGainInteractivityDb[],
 groupStateDefault[],
 groupStateInteractivity[],
 minGainDb,
 maxGainDb)
{
 /* init */
 loudnessReference = 0;
 loudnessAfterInteract = 0;

 /* compute components of loudness compensation gain */
 for (n=0; n<numGroups; n++) {
 if (groupLoudnessValueMissingFlag == 0) {
 tmp1 = pow(10, (groupGainDefaultDb[n] + groupLoudness[n]) / 10.0);
 tmp2 = pow(10, (groupGainInteractivityDb[n] + groupLoudness[n]) / 10.0);
 } else { /* group loudness value missing for one or more groups */
 tmp1 = pow(10, groupGainDefaultDb[n] / 10.0);
 tmp2 = pow(10, groupGainInteractivityDb[n] / 10.0);
 }
 loudnessReference += includeGroup[n]*groupStateDefault[n] * tmp1;
 loudnessAfterInteract += includeGroup[n]*groupStateInteractivity[n] * tmp2;

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 517	
	

 }

 /* loudness compensation gain in dB */
 loudnessCompensationGainDb = 10 * log10(
 loudnessReference / loudnessAfterInteract);

 /* clip loudness compensation gain to min/max gain */
 if (loudnessCompensationGainDb < minGainDb) {
 loudnessCompensationGainDb = minGainDb;
 }
 if (loudnessCompensationGainDb > maxGainDb) {
 loudnessCompensationGainDb = maxGainDb;
 }

 return loudnessCompensationGainDb;
}

Table	250	—	Input	parameters	for	computation	of	loudness	compensation	gain	

Input	parameters	 Default	scene	
(no	preset	selected)	

Preset	scene	
(groupPresetID	selected,		

gp	is	the	index	of	the	selected	preset)	

numGroups	 mae_numGroups	 mae_numGroups	

includeGroup[]	 mae_loudnessCompDefault-
IncludeGroup[]	

mae_loudnessCompPreset-
IncludeGroup[gp][]	

groupLoudness[]	
loudnessCompGroupLoudness[]	if	
present;	alternatively,	extracted	from	
mpegh3daLoudnessInfoSet().	

loudnessCompGroupLoudness[]	if	
present;	alternatively,	extracted	from	
mpegh3daLoudnessInfoSet().	

groupGainDefaultDb[]	 0	dB	for	all	groups.	 If	present,	groupPresetGain[gp][]	and	
otherwise	0	dB	for	all	groups.	

groupGainInteractivityDb[]	 Current	interactivity	gain	in	dB.	 Current	interactivity	gain	in	dB.	

groupStateDefault[]	
“1”	for	groups	that	are	switched	on	in	
the	default	scene,	“0”	for	groups	that	
are	switched	off.	

“1”	for	groups	that	are	switched	on	in	
the	preset	definition,	“0”	for	groups	
that	are	switched	off.	For	groups	that	
are	not	explicitly	referenced	in	the	
preset	definition,	the	respective	state	of	
the	default	scene	applies.	

groupStateInteractivity[]	
“1”	for	groups	that	are	switched	on	
after	interactivity,	“0”	for	groups	that	
are	switched	off.	

“1”	for	groups	that	are	switched	on	
after	interactivity,	“0”	for	groups	that	
are	switched	off.	

minGain	 loudnessCompDefaultMinGain	 loudnessCompPresetMinGain[gp]	
maxGain	 loudnessCompDefaultMaxGain	 loudnessCompPresetMaxGain[gp]	

16 Loudspeaker	distance	compensation	

If	 no	 external	 loudspeaker	 compensation	 is	 conducted	 then	 loudspeaker	 distance	 compensation	

processing	 shall	 be	 applied	 as	 part	 of	 the	 loudspeaker	 feed	 processing	 chain.	 Loudspeaker	 distance	

compensation	processing	performs	distance	compensation	if	the	distances	of	the	local	loudspeakers	from		

the	 listening	 area	 ("sweet	 spot")	 differ	 from	 one	 another.	 The	 processing	 applies	 trim	 parameters	

ISO/IEC	23008-3:202X(E)	

518	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

(compensation	gains	as	well	as	compensation	delays)	to	counter	the	effects	of	non-uniform	loudspeaker	

distances.	

The	trim	parameters:	

Td,A	 trim	delay	in	samples	for	each	output	channel	A;	

Tg,A	 trim	gain	(linear	gain	value)	for	each	output	channel	A;	

shall	be	computed	as	follows	as	a	function	of	the	loudspeaker	distances	in	trimA,	the	distances	given	in	

metres:	

	with	output	sampling	rate	fs	in	Hz	

	

Note	that	 	denotes	the	distance	of	the	loudspeaker	located	farest	away	from	the	sweet	spot.	

Thus,	all	trim	delays	are	non-negative	and	no	trim	gain	exceeds	the	neutral	gain	value	1.0.	

If	 the	 distances	 of	 the	 loudspeakers	 of	 the	 reproduction	 setup	 are	 non-uniform,	 the	 derived	 trim	

parameters	shall	be	applied	accordingly:	The	loudspeaker	signal	of	output	channel	A	shall	be	delayed	by	
Td,A	time	domain	samples	and	the	signal	shall	also	be	multiplied	by	the	linear	gain	Tg,A.	

Besides	the	distance	compensation,	the	loudspeaker	calibration	gains	shall	be	applied	here.	

17 Interfaces	to	the	MPEG-H	3D	audio	decoder	
17.1 General	

	 	

Figure	99	—	Interfaces	to	MPEG-H	3D	audio	decoder	

, 340 /
n An

d A
s

T
f

-æ ö
= ç ÷ç ÷

è ø

max
round

trim trim

,
A

g A
nn

T =
max
trim
trim

nn
maxtrim

Element Metadata Preprocessor

Static metadata
processor

Dynamic metadata
processor

Static object
metadata (MAE)

Dynamic object
metadata (OAM)

Signal routing
preparation

Screen-related
geometric
metadata

modification

Channel signals Format
Converter

Object signals Object
Renderer

SAOC signals SAOC
Renderer

Interface for user element interaction
mpegh3daElementInteraction()

• Signature
• Presets
• Element Interaction
• Zoom Area

Interface for local setup information
mpegh3daLocalSetupInformation()

• Local loudspeaker setup
• Binaural interface (BRIRs)
• WIRE output setup
• Local screen size

HOA signals HOA
Renderer

WIRE signals
WIRE

output

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 519	
	

17.2 Interface	for	local	setup	information	

 General	

The	mpegh3daLocalSetupInformation()	syntax	element	defines	the	formatting	of	local	setup	information	

for	 the	rendering.	 It	defines	 the	rendering	type	and	the	screen	 information	 if	available.	Two	different	

rendering	types	are	defined:	loudspeaker	rendering	and	binaural	rendering.	

 WIRE	output	

In	addition	to	the	signaling	of	the	target	layout	or	the	binaural	configuration,	it	is	also	possible	to	signal	

WIRE	 outputs.	 WIRE	 outputs	 are	 arbitrary	 output	 devices	 (e.g.	 headphone	 outputs	 or	 auxiliary	

loudspeakers)	that	exist	in	addition	to	the	regular	playback	device.	The	output	after	the	decoder	shall	

first	contain	the	regular	loudspeaker	signals	followed	by	the	WIRE	outputs.	A	WIRE	output	can	be	single	

channel	or	multichannel.		

The	element	groups	in	a	WIRE	output	should	be	processed	with	the	same	loudness/DRC	processing	as	if	

they	are	regular	loudspeaker	signals.	The	application	of	a	peak	limiter	at	the	end	of	the	processing	chain	

is	highly	recommended.	

Only	channels	or	objects	can	be	routed	to	WIRE	outputs.	

 Syntax	for	local	setup	information	

Table	251	—	Syntax	for	mpegh3daLocalSetupInformation()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daLocalSetupInformation()	 	 	
{	 	 	
	 bsRenderingType;	 1	 uimsbf	
	 switch	(bsRenderingType)	{	 	 	
	 	 case	0:		 	 	
	 	 	 LoudspeakerRendering();	 	 	
	 	 case	1:	 	 	
	 	 	 BinauralRendering();	 	 	
	 }	 	 	
	 	 	
	 bsNumWIREoutputs;	 16	 uimsbf	
	 if	(bsNumWIREoutputs	>	0)	{	 	 	
	 	 for	(n	=	0;	n	<	bsNumWIREoutputs;	n++)	{	 	 	
	 	 	 WireID[n];	 16	 uimsbf	
	 	 }	 	 	
	 }	 	 	
	 	 	
	 hasLocalScreenSizeInformation;	 1	 bslbf	
	 if	(hasLocalScreenSizeInformation)	{	 	 	
	 	 LocalScreenSizeInformation();	 	 	
	 }	 	 	
}	 	 	

ISO/IEC	23008-3:202X(E)	

520	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Semantics	for	local	setup	information	

bsRenderingType	 Defines	 the	 type	 of	 rendering	 (loudspeaker	 rendering	 or	

binaural	rendering).	

bsNumWIREoutputs	 This	field	defines	the	number	of	WIRE	outputs.	A	maximum	of	

65535	WIRE	outputs	 is	assumed;	 therefore	 the	 field	can	take	

values	between	0	and	65535.	

WireID	 This	field	contains	an	identifier	for	a	WIRE	output.	

hasLocalScreenSizeInformation	 Flag	 that	defines	 if	 information	about	 the	 local	 screen	 size	 is	

available.	 If	 yes,	 the	 local	 screen	 size	 information	 follows	

afterwards.	

17.3 Interface	for	local	loudspeaker	setup	and	rendering	

 General	

The	LoudspeakerRendering()	syntax	element	defines	the	signalling	of	the	local	loudspeaker	setup	and	

target	layout.	

The	target	layout	for	loudspeaker	reproduction	is	signalled	using	the	syntax	element	SpeakerConfig3D()	

(see	subclause	5.2.2.2).	The	target	layout	can	be	given	by	either	

— a	CICPspeakerLayoutIdx	(speakerLayoutType	=	0),	or	

— a	list	of	CICPspeakerIdx	(speakerLayoutType	=	1),	or		
— a	 mixed	 list	 of	 loudspeaker	 positions	 in	 terms	 of	 azimuth	 and	 elevation	 and	 CICPspeakerIdx	

(speakerLayoutType	=	2).	

In	case	speakerLayoutType=0	or	speakerLayoutType=1	is	used,	the	exact	position	may	be	signalled	in	

addition	 for	 each	 loudspeaker.	 In	 this	way	 it	 is	 possible	 to	 signal	 standard	 loudspeaker	 layouts	with	

individual	adjustments	to	the	precise	loudspeaker	positions	(loudspeaker	misplacement).	In	this	case,	

the	decoder	is	able	to	interpret	and	make	use	of	the	implicit	semantic	information	about	the	setup.		

The	format	converter	provides	optimized	behaviour	if	a	standard	setup	is	provided	along	with	additional	

offset	values.	The	format	converter	accepts	offset	values	from	the	nominal	loudspeaker	positions	as	an	

input	parameter	(see	subclause	10.3.4).	In	case	speakerLayoutType<=1	is	used	and	the	exact	position	

information	is	transmitted,	then	the	exact	position	information	shall	be	used	to	calculate	the	offsets	from	

the	nominal	 loudspeaker	positions.	These	offsets	 for	azimuth	and	elevation	angles	are	defined	as	 the	

difference	 between	 signalled	 position	 and	 nominal	 position.	 The	 nominal	 positions	 are	 defined	 in	

ISO/IEC	23001-8.		

If	speakerLayoutType=0	(CICPspeakerLayoutIdx)	is	used,	the	order	of	channels	is	implicitly	given	and	

the	order	of	output	channels	then	follows	the	order	of	channels	in	Table	166.	If	the	channel	order	of	a	

standard	setup	is	permuted	(with	respect	to	the	order	given	in	Table	166),	then	speakerLayoutType=1	

shall	be	used	 for	 signalling,	with	a	different	order	of	CICPspeakerIdx	 than	 in	Table	166.	 Signalling	of	

speakerLayoutType=1	shall	also	be	used	for	setups	that	are	not	standard	layouts	but	consist	of	standard	

loudspeakers.	Completely	arbitrary	setups	shall	be	signalled	by	speakerLayoutType=2.	

If	 speakerLayoutType=1	or	 speakerLayoutType=2	 is	 used,	 the	 output	 of	 the	 decoder	 shall	 follow	 the	

order	given	in	the	LoudspeakerRendering()	syntax	element.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 521	
	

In	addition	to	the	layout	information,	a	distance	to	the	reference	point	(‘sweet	spot’)	is	defined	for	each	

loudspeaker	which	shall	be	applied	by	the	renderer	in	the	loudspeaker	distance	compensation	processing	

(see	Clause	16).		

Further,	a	loudspeaker	calibration	gain	value	is	also	defined	for	each	loudspeaker	which	shall	be	applied	

by	the	renderer	in	the	loudspeaker	compensation	processing	(see	Clause	16).	

 Syntax	for	local	loudspeaker	signalling	

Table	252	—	Syntax	for	LoudspeakerRendering()	

Syntax	 No.	of	bits	 Mnemonic	
LoudspeakerRendering()	 	 	
{	 	 	
	 bsNumLoudspeakers;	 16	 uimsbf	
	 targetLayout	=	SpeakerConfig3d();	 	 	
	 hasLoudspeakerDistance;	 1	 bslbf	
	 hasLoudspeakerCalibrationGain;	 1	 bslbf	
	 useTrackingMode;	 1	 bslbf	
	 for	(n	=	0;	n	<	bsNumLoudspeakers;	n++)		{	 	 	
	 	 if	(speakerLayoutType	<=	1)	{	 	 	
	 	 	 hasKnownPosition[n];	 1	 bslbf	
	 	 	 if	(hasKnownPosition[n])	{	 	 	
	 	 	 	 loudspeakerAzimuth[n];	 9	 uimsbf	
	 	 	 	 loudspeakerElevation[n];	 8	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 	 if	(hasLoudspeakerDistance)	{	 	 	
	 	 	 loudspeakerDistance[n];	 10	 uimsbf	
	 	 }	 	 	
	 	 if	(hasLoudspeakerCalibrationGain)	{	 	 	
	 	 	 loudspeakerCalibrationGain[n];	 7	 uimsbf	
	 	 }	 	 	
	 }	 	 	
	 externalDistanceCompensation;	 1	 bslbf	
}	 	 	

 Semantics	for	local	loudspeaker	signalling	

bsNumLoudspeakers	 Number	of	loudspeakers	in	the	local	reproduction	setup.	

hasLoudspeakerDistance	 This	field	defines	if	a	loudspeaker	distance	is	given	in	the	

bitstream.	

HasLoudspeakerCalibrationGain	 This	field	defines	if	a	loudspeaker	calibration	gain	is	given	in	the	
bitstream.	

useTrackingMode		 This	field	defines	if	a	processing	of	scene	displacement	values	

sent	via	the	mpegh3daSceneDisplacementData()	interface	shall	

happen	or	not.		

hasKnownPosition	 This	flag	defines	if	an	explicit	signaling	of	the	known	position	of	

the	loudspeaker	is	following	in	the	bitstream.	

ISO/IEC	23008-3:202X(E)	

522	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

loudspeakerAzimuth	 This	field	defines	the	azimuth	angle	of	a	loudspeaker.	It	can	take	

values	between	-180°	and	180°	in	1°	steps.	

	 Azimuth	=	(loudspeakerAzimuth	–	256)		

	 Azimuth	=	min	(max	(Azimuth,	-180),	180)	

loudspeakerElevation	 This	field	defines	the	elevation	angle	of	a	loudspeaker.	It	can	

take	values	between	-90°	and	90°	in	1°	steps.	

	 Elevation	=	(loudspeakerElevation	–	128)	

	 Elevation=	min	(max	(Elevation,	-90),	90)	

loudspeakerDistance	 This	field	defines	the	distance	of	a	loudspeaker	to	the	reference	

point	centered	in	the	loudspeaker	setup	in	cm.	The	field	can	

take	values	between	1	and	1	023,	corresponding	to	1	to	

1	023	cm	in	1	cm	steps.	

loudspeakerCalibrationGain	 This	field	defines	a	loudspeaker	calibration	gain	in	dB.	The	field	

can	take	values	between	0	and	127,	corresponding	to	dB	values	

between	Gain	=	-32	dB	and	Gain	=	31,5	dB	in	0.5	dB	steps:	

Gain	[dB]	=	0,5	∙	(loudspeakerGain	–	64)	

	

externalDistanceCompensation	 This	flag	defines	whether	loudspeaker	compensation	shall	be	a	

applied	 to	 the	 decoder	 output	 signals.	 If	 this	 flag	 is	 1,	 the	

loudspeaker	 compensation	 shall	 be	 omitted	 and	

loudspeakerDistance	and	 loudspeakerCalibrationGain	shall	not	

be	applied	in	the	decoder.	

17.4 Interface	for	binaural	room	impulse	responses	(BRIRs)	

 General	

The	BRIR/HRTF	data	 for	 the	binaural	rendering	may	be	provided	 to	 the	decoder	by	using	 the	syntax	

element	BinauralRendering().	It	supports	the	description	of:	

— raw	FIR	filters	(for	both	virtual	loudspeakers	and	HOA-to-binaural	approaches);	
— low-level	parameters	associated	to	the	time-domain	binaural	renderer	(for	both	virtual	loudspeakers	

and	HOA-to-binaural	approaches)	and	the	frequency-domain	binaural	renderer.		

In	case	the	impulse	responses	are	described	as	virtual	loudspeaker	filters,	the	measurement	setup	of	the	

impulse	responses	is	defined,	i.e.	the	positions	of	loudspeakers	during	the	measurement	procedure	or	

sound	sources	in	a	room	simulation.	

The	measurement	 setup	of	 the	 selected	 impulse	 response	 set	 is	 signalled	using	 the	bitstream	 syntax	

element	 SpeakerConfig3d().	 In	 case	 a	 CICPspeakerLayoutIdx	 is	 used	 for	 signalling	 the	measurement	

setup,	 the	 order	 of	 the	 BRIR	 pairs	 has	 to	 follow	 the	 order	 of	 channels	 in	 Table	 166;	 otherwise	
speakerLayoutType=1	or	speakerLayoutType=2	shall	be	used	to	signal	a	different	BRIR	order.	

The	binaural	data	should	contain	at	least	one	representation	that	is	supported	by	the	binaural	renderer,	

otherwise	no	output	is	provided.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 523	
	

Within	the	BinauralRendering()	structure	no	more	than	one	of	the	signalled	sets	of	impulse	responses	

shall	be	applicable	to	each	of	the	three	binaural	rendering	modes.	When	performing	binauralization	the	

choice	of	binaural	rendering	mode	determines	the	BRIR	set	used.	

 Syntax	of	binaural	renderer	interface	
Table	253	—	Syntax	of	BinauralRendering()	

Syntax	 No.	of	bits	 Mnemonic	
BinauralRendering()	 	 	
{	 	 	
	 bsFileSignature;	 32	 bslbf	
	 bsFileVersion;	 8	 uimsbf	
	 bsNumCharName;	 8	 uimsbf	
	 for	(i=0;	i<bsNumCharName;	i++)	{	 	 	
	 	 bsName[i];	 8	 bslbf	

}	 	 	
	 useTrackingMode;	 1	 bslbf	
	 bsNumBinauralDataRepresentation;	 4	 uimsbf	
	 for	(r	=	0;	r	<	bsNumBinauralDataRepresentation;	r++)	{	 	 	

brirSamplingFrequencyIndex;	 5	 uimsbf	
if	(brirSamplingFrequencyIndex	==	0x1f)	{	 	 	
	 brirSamplingFrequency;	 24	 uimsbf	
}	 	 	
isHoaData;	 1	 bslbf	

	 	 if	(isHoaData)	{	 	 	
	 hoaOrderBinaural	=	escapedValue(3,5,0);	 3,8	 uimsbf	
	 nBrirPairs	=	(hoaOrderBinaural+1)^2;	 	 	
}	else	{	 	 	

	 	 	 MeasurementSetup	=	SpeakerConfig3d();	 	 	
	 	 	 if	(speakerLayoutType	==	0)	{	/*	See	SpeakerConfig3d()	*/	 	 	
	 	 	 	 nBrirPairs	=	escapedValue(5,8,0)+1;	 5,13	 uimsbf	
	 	 	 }	else	{	 	 	
	 	 	 	 nBrirPairs	=	numSpeakers;	/*	See	SpeakerConfig3d()	*/	 	
	 	 	 }	 	 	

}	 	 	
bsBinauralDataFormatID;	 2	 uimsbf	
ByteAlign();	 	 	
switch	(bsBinauralDataFormatID)	{	 	 	

	 	 case	0:		 	 	
	 	 	 BinauralFIRData();	 	 	
	 	 	 break;	 	 	
	 	 case	1:	 	 	
	 	 	 FdBinauralRendererParam();	 	 	
	 	 	 break;	 	 	
	 	 case	2:	 	 	
	 	 	 TdBinauralRendererParam();	 	 	
	 	 	 break;	 	 	

}	 	 	
}	 	 	

}	 	 	

ISO/IEC	23008-3:202X(E)	

524	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	254	—	Syntax	of	BinauralFirData()	
Syntax	 No.	of	bits	 Mnemonic	
BinauralFirData()	 	 	
{	 	 	
	 bsNumCoefs;	 24	 uimsbf	
	 for	(pos	=	0;	pos	<	nBrirPairs;	pos++)	{	 	 	
	 	 for	(i	=	0;	i	<	bsNumCoefs;	i++)	{	 	 	
	 	 	 bsFirCoefLeft[pos][i];	 32	 bslbf	
	 	 	 bsFirCoefRight[pos][i];	 32	 bslbf	
	 	 }	 	 	
	 }	 	 	
	 bsAllCutFreq;	 32	 bslbf	
	 if	(bsAllCutFreq	==	0)	{	 	 	
	 	 for	(pos	=	0;	pos	<	nBrirPairs;	pos++)	{	 	 	
	 	 	 bsCutFreqLeft[pos];	 32	 bslbf	
	 	 	 bsCutFreqRight[pos];	 32	 bslbf	
	 	 }	 	 	
	 }	else	{	 	 	
	 	 for	(pos	=	0;	pos	<	nBrirPairs;	pos++)	{	 	 	
	 	 	 bsCutFreqLeft	[pos]	=	bsAllCutFreq;	 	 	
	 	 	 bsCutFreqRight	[pos]	=	bsAllCutFreq;	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	255	—	Syntax	of	FdBinauralRendererParam()	

Syntax	 No.	of	bits	 Mnemonic	
FdBinauralRendererParam()	 	 	
{	 	 	
	 flagHrir;	 1	 bslbf	
	 dInit;	 10	 uimsbf	
	 kMax;	 6	 uimsbf	
	 kConv;	 6	 uimsbf	
	 kAna;	 6	 uimsbf	
	 VoffBrirParam();	 	 	
	 if	(flagHrir==0)	{	 	 	
	 	 SfrBrirParam();	 	 	
	 }	 	 	
	 QtdlBrirParam();	 	 	
}	 	 	

Table	256	—	Syntax	of	VoffBrirParam()	

Syntax	 No.	of	bits	 Mnemonic	
VoffBrirParam()	 	 	
{	 	 	
	 nBitNFilter;	 4	 uimsbf	
	 nBitNFft;	 3	 uimsbf	
	 nBitNBlk;	 3	 uimsbf	
	 for	(k=0;	k<kMax	;	k++)	{	 	 	
	 	 nFilter[k];	 	 nBitNFilter	 uimsbf	
	 	 nFft[k];	 nBitNFft	 uimsbf	
	 	 fftLength	=	pow(2,	nFft[k]);	 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 525	
	

	 	 nBlk[k];	 nBitNBlk	 uimsbf	
	 	 for	(b=0;	b<nBlk[k];	b++)	{	 	 	 	
	 	 	 for	(nr=0;	nr<	nBrirPairs;	nr++)	{	 	 	 	
	 	 	 	 for	(v=0;	v<fftLength;	v++)	{	 	 	
	 	 	 	 	 VoffCoeffLeftReal[k][b][nr][v];	 32	 bslbf	
	 	 	 	 	 VoffCoeffLeftImag[k][b][nr][v];	 32	 bslbf	
	 	 	 	 	 VoffCoeffRightReal[k][b][nr][v];	 32	 bslbf	
	 	 	 	 	 VoffCoeffRightImag[k][b][nr][v];	 32	 bslbf	
	 	 	 	 }	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	257	—	Syntax	of	SfrBrirParameter()	

Syntax	 No.	of	bits	 Mnemonic	
SfrBrirParam()		 	 	
{	 	 	
	 for	(k=0;	k<kAna	;	k++)	{	 	 	
	 	 fcAna[k];	 32	 bslbf	
	 	 rt60[k];	 32	 bslbf	
	 	 nrgLr[k];	 32	 bslbf	
	 }	 	 	
}	 	 	

Table	258	—	Syntax	of	QtdlBrirParameter()	

Syntax	 No.	of	bits	 Mnemonic	
QtdlBrirParam()		 	 	
{	 	 	
	 for	(k=0;	k<kMax-kConv	;	k++)	{	 	 	
	 	 nBitQtdlLag[k];	 4	 uimsbf	
	 	 for	(nr=0;	nr<	nBrirPairs;	nr++)	{	 	 	
	 	 	 QtdlGainLeftReal[k][nr];	 32	 bslbf	
	 	 	 QtdlGainLeftImag[k][nr];	 32	 bslbf	
	 	 	 QtdlGainRightReal[k][nr];	 32	 bslbf	
	 	 	 QtdlGainRightImag[k][nr];	 32	 bslbf	
	 	 	 QtdlLagLeft[k][nr];	 nBitQtdlLag[k]	 uimsbf	
	 	 	 QtdlLagRight[k][nr];	 nBitQtdlLag[k]	 uimsbf	

}	 	 	
	 }	 	 	
}	 	 	

Table	259	—	Syntax	of	TdBinauralRendererParam()	

Syntax	 No.	of	bits	 Mnemonic	
TdBinauralRendererParam()	 	 	
{	 	 	
	 bsDelay;	 16	 uimsbf	
	 bsDirectLen;	 16	 uimsbf	

ISO/IEC	23008-3:202X(E)	

526	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 bsNbDiffuseBlocks;	 8	 uimsbf	
	 for	(chan=0;	chan<	nBrirPairs;	chan++)	{	 	 	
	 	 bsFmaxDirectLeft[chan];	 32	 bslbf	
	 	 bsFmaxDirectRight[chan];	 32	 bslbf	
	 }	 	 	
	 for	(block=0;	block<	bsNbDiffuseBlocks;	block++)	{	 	 	
	 	 bsFmaxDiffuseLeft[block];	 32	 bslbf	
	 	 bsFmaxDiffuseRight[block];	 32	 bslbf	
	 }	 	 	
	 for	(chan=0;	chan<		nBrirPairs;	chan++)	{	 	 	
	 	 bsWeights[chan];	 32	 bslbf	
	 }	 	 	
	 for	(chan=0;	chan<		nBrirPairs;	chan++)	{	 	 	
	 	 for	(tap=0;	tap<	bsDirectLen;	tap++)	{	 	 	
	 	 	 bsFIRDirectLeft[chan][tap];	 32	 bslbf	
	 	 	 bsFIRDirectRight[chan][tap];	 32	 bslbf	
	 	 }	 	 	
	 }	 	 	
	 for	(bloc=0;	bloc<	bsNbDiffuseBlocks;	bloc++)	{	 	 	
	 	 for	(tap=0;	tap<	bsDirectLen;	tap++)	{	 	 	
	 	 	 bsFIRDiffuseLeft[bloc][tap];	 32	 bslbf	
	 	 	 bsFIRDiffuseRight[bloc][tap];	 32	 bslbf	
	 	 }	 	 	
	 }	 	 	
}	 	 	

 Semantics	

bsFileSignature	 A	string	of	4	ASCII	characters	that	reads	“BRIR”.	

bsFileVersion	 File	version	indication.	This	document	describes	version	1	of	

the	file	format.	

bsNumCharName	 Number	of	ASCII	characters	in	the	BRIR	name.	

bsName	 BRIR	name.	

useTrackingMode		 This	flag	defines	if	a	tracker	device	is	connected	and	the	

binaural	rendering	shall	be	processed	in	a	special	

headtracking	mode,	meaning	a	processing	of	scene	

displacement	values	sent	via	the	

mpegh3daSceneDisplacementData()	interface	shall	happen.	

bsNumBinauralDataRepresentation	 Total	number	of	representations	of	the	filters.	

brirSamplingFrequencyIndex	 This	index	determines	the	sampling	frequency	of	the	BRIRs.	

The	 value	 of	 brirSamplingFrequencyIndex	 and	 their	

associated	sampling	frequencies	are	specified	in	Table	260.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 527	
	

Table	260	—	Value	and	meaning	of	brirSamplingFrequencyIndex	

brirSamplingFrequencyIndex	 Sampling	frequency	

0x00		 96	000		
0x01		 88	200		
0x02		 64	000		
0x03		 48	000		
0x04		 44	100		
0x05		 32	000		
0x06		 24	000		
0x07		 22	050		
0x08		 16	000		
0x09		 12	000		
0x0a		 11	025		
0x0b		 8	000		
0x0c		 7	350		
0x0d		 reserved	
0x0e		 reserved	
0x0f	 57	600	
0x10	 51	200	
0x11	 40	000	
0x12	 38	400	
0x13	 34	150	
0x14	 28	800	
0x15	 25	600	
0x16	 20	000	
0x17	 19	200	
0x18	 17	075	
0x19	 14	400	
0x1a	 12	800	
0x1b	 9	600	
0x1c	 reserved	
0x1d	 reserved	
0x1e	 reserved	
0x1f	 escape	value	

NOTE	 The	values	of	brirSamplingFrequencyIndex	0x00	up	to	
0x0e	are	identical	to	those	of	the	samplingFrequencyIndex	0x0	up	to	
0xe	contained	in	the	AudioSpecificConfig()	specified	in	
ISO/IEC	14496-3:2009.	

	

brirSamplingFrequency	 BRIR	 sampling	 frequency	 as	 unsigned	 integer	 value	 in	 case	

brirSamplingFrequencyIndex	equals	zero.	

isHoaData	 Set	to	1,	 this	element	 indicates	that	corresponding	BRIR	coefficients	are	

represented	 in	 the	 spherical	 harmonics	 (HOA)	 domain.	 Otherwise	

corresponding	 BRIR	 coefficients	 are	 represented	 in	 the	 virtual	

loudspeaker	domain.		

hoaOrderBinaural	 This	element	determines	the	HOA	order	of	the	filter	dataset.	The	ordering	

of	components	shall	be	in	accordance	with	the	“Single	Index	Designation	

(SID)”	as	defined	in	ISO/IEC	14496-11.	

ISO/IEC	23008-3:202X(E)	

528	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

nBrirPairs	 	 The	number	of	HRTF	pairs	that	are	transmitted,	i.e.	virtual	loudspeaker	

positions	or	number	of	channels	or	number	of	HOA	components	to	be	

filtered	by	a	pair	of	binaural	filters.	

bsBinauralDataFormatID	 Indicates	the	representation	type	of	the	BRIR	set	(FIR,	FD	parameterized	

or	TD	parameterized).	

bsNumCoefs	 	 Indicates	the	number	of	coefficients	of	a	FIR	filter.	

pos	 	 	 BRIR	index	ranged	from	0	to	nBrirPairs-1.	

i	 	 	 Sample	index	ranged	from	0	to	bsNumCoefs-1.	

bsFirCoefLeft	 	 FIR	coefficient	for	left	ear	(interpreted	as	float	in	IEEE	754	format).	

bsFirCoefRight	 	 FIR	coefficient	for	right	ear	(interpreted	as	float	in	IEEE	754	format).	

bsAllCutFreq	 	 if	non-zero,	the	frequency	above	which	left	and	right	filters	values	can	be	

neglected	are	the	same	for	all	filters	and	this	value	is	bsAllCutFreq.	

bsCutFreqLeft	 	 Frequency	above	which	left	filter	value	can	be	neglected.	

bsCutFreqRight	 Frequency	above	which	right	filter	value	can	be	neglected.	

nr	 BRIR	order	index	ranged	from	0	to	nBrirPairs-1.	

flagHrir	 Indicates	whether	inputted	impulse	response	is	HRIR	or	BRIR.	

Table	261	—	Value	of	flagHrir	

flagHrir	 Meaning	

0	 BRIR,	the	sparse	reverberator	is	switched	on	
1	 HRIR,	the	sparse	reverberator	is	switched	off	

	

dInit	 Value	of	the	propagation	time.	

kMax	 The	maximum	processing	band.	

kConv	 Number	of	bands	used	for	convolution.	

kAna	 Number	of	analysis	bands	used	in	analysis	of	late	reverberation	analysis.	

nBitNFilter	 Number	of	bits	for	nFilter.	

nBitNFft	 Number	of	bits	for	nFftr.	

nBitNBlk	 Number	of	bits	for	n_block.	

k	 Band	index.	

fftLength	 Length	of	VOFF	Coefficient.	

b	 Block	index.	

v	 VOFF	coefficient	index.	

nFilter[k]	 Filter	length	per	band	for	VOFF.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 529	
	

nFft[k]	 The	length	of	the	FFT	for	each	band	is	expressed	as	a	power	of	2,	where	

nFft[k]	is	the	exponent.	i.e.	2nFft[k]	=	FFT	length	per	band	for	VOFF.	

nBlk[k]	 Number	of	blocks	per	band	for	VOFF.	

VoffCoeffLeftReal[k][b][nr][v]	
Real	 values	 of	 left	 VOFF	 coefficients	 (interpreted	 as	 float	 in	 IEEE	754	

format).	

VoffCoeffLeftImag[k][b][nr][v]	
Imaginary	values	of	left	VOFF	coefficients	(interpreted	as	float	in	IEEE	754	

format).	

VoffCoeffRightReal[k][b][nr][v]	
Real	 values	 of	 right	 VOFF	 coefficients	 (interpreted	 as	 float	 in	 IEEE	754	

format).	

VoffCoeffRightImag[k][b][nr][v]		
Imaginary	 values	 of	 right	 VOFF	 coefficients	 (interpreted	 as	 float	 in	

IEEE	754	format).	

fcAna[k]	 Centre	 frequencies	 of	 the	 late	 reverberation	 analysis	 frequency	 bands	

(interpreted	as	float	in	IEEE	754	format).	

RT60[k]	 Reverberation	times	RT60	in	seconds	of	the	late	reverberation	in	the	late	

reverberation	analysis	bands	(interpreted	as	float	in	IEEE	754	format).	

NRG[k]	 Energy	values	that	represent	the	energy	(amplitude	to	the	power	of	two)	

of	the	late	reverberation	part	of	one	BRIR	in	the	late	reverberation	analysis	

bands	(interpreted	as	float	in	IEEE	754	format).	

nBitQtdlLag[k]	 Number	of	bits	used	for	convolution.	

QtdlGainLeftReal[k][nr]	 Real	values	of	left	QTDL	gains(interpreted	as	float	in	IEEE	754	format).	

QtdlGainLeftImag[k][nr]	 Imaginary	 values	 of	 left	 QTDL	 gains(interpreted	 as	 float	 in	 IEEE	 754	

format).	

QtdlGainRightReal[k][nr]	 Real	values	of	right	QTDL	gains(interpreted	as	float	in	IEEE	754	format).	

QtdlGainRightImag[k][nr]	 Imagniary	 values	 of	 right	 QTDL	 gains(interpreted	 as	 float	 in	 IEEE	 754	

format).	

QtdlLagLeft[k][nr][l]	 Left	lag	values	in	samples	for	QTDL.	

QtdlLagRight[k][nr][l]	 Right	lag	values	in	samples	for	QTDL.	

chan	 index	of	channel.	

block	 index	of	diffuse	block.	

tap	 index	of	filter	tap.	

bsDelay	 	 delay	in	sample	to	apply	at	the	beginning	of	output	signals	(to	

compensate	BRIRs	propagation	time	removed	at	parameterization).	

ISO/IEC	23008-3:202X(E)	

530	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

bsDirectLen	 	 size	in	samples	of	the	direct	part	of	parameterized	BRIRs.	

bsNbDiffuseBlocks	 	 number	of	blocks	in	diffuse	part	of	parameterized	BRIRs.	

bsFmaxDirectLeft	 	 cut	off	frequency	of	left	direct	part,	given	by	a	number	between	0	and	1,	

where	1	corresponds	to	the	Nyquist	frequency	(interpreted	as	float	in	
IEEE	754	format).	

bsFmaxDirectRight	 	 cut	off	frequency	of	right	direct	part,	given	by	a	number	between	0	and	1,	

where	1	corresponds	to	the	Nyquist	frequency	(interpreted	as	float	in	
IEEE	754	format).		

bsFmaxDiffuseLeft	 	 cut	off	frequency	of	left	diffuse	part,	given	by	a	number	between	0	and	1,	

where	1	corresponds	to	the	Nyquist	frequency	(interpreted	as	float	in	
IEEE	754	format).	

bsFmaxDiffuseRight	 	 cut	off	frequency	of	right	diffuse	part,	given	by	a	number	between	0	and	

1,	where	1	corresponds	to	the	Nyquist	frequency	(interpreted	as	float	in	

IEEE	754	format).	

bsWeights	 	 gain	to	apply	to	the	input	channels	before	filtering	with	diffuse	part	of	the	

impulse	response	(interpreted	as	float	in	IEEE	754	format).	

bsFIRDirectLeft	 	 FIR	coefficients	of	direct	part	of	left	parameterized	BRIRs	(interpreted	as	

float	in	IEEE	754	format).	

bsFIRDirectRight	 	 FIR	coefficients	of	direct	part	of	right	parameterized	BRIRs	(interpreted	

as	float	in	IEEE	754	format).	

bsFIRDiffuseLeft	 	 FIR	coefficients	of	diffuse	part	of	left	parameterized	BRIRs	(interpreted	as	

float	in	IEEE	754	format).	

bsFIRDiffuseRight	 	 FIR	coefficients	of	diffuse	part	of	right	parameterized	BRIRs	(interpreted	

as	float	in	IEEE	754	format).	

17.5 Interface	for	local	screen	size	information	

 General	

In	both	rendering	cases	(binaural	rendering	or	loudspeaker	rendering)	local	screen	size	information	can	

be	signalled	in	the	mpegh3daLocalSetupInformation()	syntax	element.	This	data	shall	be	used	for	screen-

related	element	remapping	and	zooming	 in	 the	decoder	 if	 screen-related	elements	are	present	 in	 the	

audio	scene.	

 Syntax	
Table	262	—	Syntax	of	LocalScreenSizeInformation()	

Syntax	 No.	of	bits	 Mnemonic	
LocalScreenSizeInformation()	 	 	
{	 	 	
	 isCenteredInAzimuth;	 1	 bslbf	
	 if	(isCenteredInAzimuth)	{	 	 	
	 	 bsLocalScreenSizeAz;	 9	 uimsbf	
	 }	else	{	 	 	
	 	 bsLocalScreenSizeLeftAz;	 10	 uimsbf	
	 	 bsLocalScreenSizeRightAz;	 10	 uimsbf	
	 }	 	 	
	 hasLocalScreenElevationInformation;	 1	 bslbf	
	 if	(hasLocalScreenElevationInformation)	{	 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 531	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 bsLocalScreenSizeTopEl;	 9	 uimsbf	
	 	 bsLocalScreenSizeBottomEl;	 9	 uimsbf	
	 }	 	 	
}	 	 	

 Semantics	

isCenteredInAzimuth	 This	flag	defines	if	the	screen	is	centered	in	azimuthal	direction	with	

respect	to	the	listening	position	(sweet	spot).	

bsLocalScreenSizeAz	 This	field	defines	the	azimuth	corresponding	to	the	left	and	right	screen	

edge	if	the	screen	is	centered	in	azimuth:	

=	0.5	·	bsLocalScreenSizeAz	

=	min	(max	(,	0),	180)	

=	-0.5	·	bsLocalScreenSizeAz	

=	min	(max	(,	-180),	0)	

bsLocalScreenSizeLeftAz	 This	field	defines	the	azimuth	corresponding	to	the	left	screen	edge	if	the	

screen	is	not	centered	in	azimuth:	

=	0.5	·	(bsLocalScreenSizeLeftAz	–	511)	

=	min	(max	(,	-180),	180)	

bsLocalScreenSizeRightAz	 This	field	defines	the	azimuth	corresponding	to	the	right	screen	edge	if	
the	screen	is	not	centered	in	azimuth:	

=	0.5	·	(bsLocalScreenSizeRightAz	–	511)	

=	min	(max	(,	-180),	180)	

hasLocalScreenElevationInformation	 	
This	flag	defines	if	elevation	information	is	available.	

bsLocalScreenSizeTopEl	 This	field	defines	the	elevation	corresponding	to	the	top	screen	edge:		

=	0,5	·	(bsLocalScreenSizeTopEl	–	255)	

=	min	(max	(,	-90),	90)	

bsLocalScreenSizeBottomEl	This	field	defines	the	elevation	corresponding	to	the	bottom	screen	edge:		

=	0,5	·	(bsLocalScreenSizeBottomEl	–	255)	

=	min	(max	(,	-90),	90)	

17.6 Interface	for	signaling	of	local	zoom	area	

 General	

A	local	zoom	area	can	be	signalled	to	the	decoder	by	the	LocalZoomAreaSize()	interface.	

leftj

leftj leftj

rightj

rightj rightj

leftj

leftj leftj

rightj

rightj rightj

topq

topq topq

bottomq

bottomq bottomq

ISO/IEC	23008-3:202X(E)	

532	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Syntax	

Table	263	—	Syntax	of	LocalZoomAreaSize()	

Syntax	 No.	of	bits	 Mnemonic	
LocalZoomAreaSize()	 		 		
{	 		 		
	 bsZoomAzCenter;	 10	 tcimsbf	
	 bsZoomAz;	 10	 uimsbf	
	 bsZoomElCenter;	 9	 tcimsbf	
	 bsZoomEl;	 10	 uimsbf	
}	 		 		

 Semantics	

bsZoomAzCenter	 This	field	defines	the	azimuth	corresponding	to	the	centre	position	of	left	and	right	

edges	of	a	zoom	area	in	azimuth.	This	field	can	take	integer	values	between	-360	

and	+360.	

	

·=/0H/B
IJJKLMNO = 0.5 ∙ bsZoomAzCenter	

	
·=/0H/B
IJJKLMNO = min	(max(·=/0H/B

IJJKLMNO, −180) , +180)	

bsZoomAz	 This	field	defines	the	azimuth	corresponding	to	the	offset	from	the	centre	position	

to	left	and	right	edges	of	a	zoom	area	in	azimuth.	This	field	can	take	integer	values	

between	0	and	+720.		

·AFF>/H
IJJKLMNO = 0.125	 ∙ bsZoomAz	

·AFF>/H
IJJKLMNO = min	(maxD·AFF>/H

IJJKLMNO, 0F , 90)	

bsZoomElCenter	 This	field	defines	the	elevation	corresponding	to	the	centre	position	of	top	and	

bottom	edges	of	a	zoom	area	in	elevation.	This	field	can	take	integer	values	

between	-180	and	+180.	

‰=/0H/BIJJKLMNO = 0.5 ∙ bsZoomElCenter	

‰=/0H/BIJJKLMNO = min	(max(‰=/0H/BIJJKLMNO, −90) , +90)	

bsZoomEl	 This	field	defines	the	elevation	corresponding	to	the	offset	from	the	centre	

position	to	top	and	bottom	edges	of	a	zoom	area	in	elevation.	This	field	can	take	

integer	values	between	0	and	+720.	

‰AFF>/HIJJKLMNO = 0.125 ∙ bsZoomEl	

‰AFF>/HIJJKLMNO = min	(maxD‰AFF>/HIJJKLMNO, 0F , 90)	

17.7 Interface	for	user	interaction	

 General	

This	subclause	describes	a	syntax	for	a	normative	interface	for	user	interactivity	or	communication	with	

the	application.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 533	
	

 Definition	of	user	interaction	categories	

Different	user	 interaction	categories	are	defined	according	 to	 the	metadata	audio	element	 syntax.	All	

modifications	are	defined	on	the	level	of	a	group	of	elements,	because	groups	gather	related	elements	

that	shall	only	be	manipulated	jointly.	The	possible	modification	is	defined	according	to	the	metadata	

audio	element	fields.	

— On/Off	interactivity:	A	group	of	elements	is	switched	on	or	off	(playback	is	enabled	or	disabled).	
— Position	 interactivity:	The	position	 in	3D	 space	of	 all	 elements	of	 a	 group	 is	 changed	 (azimuth,	

elevation	and	distance	are	modified).	The	interaction	happens	by	offset	values	(azimuth,	elevation)	

or	a	multiplication	factor	(distance)	to	allow	for	an	unchanged	relative	inter-element	relationship.	

— Gain	interactivity:	The	level/gain	of	all	elements	of	a	group	is	changed.	The	interaction	happens	by	
an	 additional	 decibel	 value	 that	 is	 added	 to	 all	 elements	 of	 a	 group,	 such	 that	 the	 relative	 inter-

element	relationship	is	kept	unchanged.	

— WIRE	interactivity:	The	audio	content	of	the	elements	of	a	group	are	routed	to	a	WIRE	output	(e.g.	
content	for	hearing	impaired	or	an	additional	language	track,	a	WIRE	output	is	a	generic	output	in	

addition	to	the	connected	standard	output	device	(loudspeakers	or	headphones)).	No	metadata	is	

sent	along	the	unrendered	audio	content.	

 Definition	of	an	interface	for	user	interaction	

The	mpegh3daElementInteraction()	syntax	element	provides	an	interface	for	all	permitted	forms	of	user	

interaction.	Two	interaction	modes	are	defined	in	the	interface.	

The	first	mode	is	an	advanced	interaction	mode,	where	the	interaction	may	be	signalled	for	each	element	

group	that	is	present	in	the	audio	scene.	This	mode	enables	the	user	to	freely	choose	which	groups	to	play	

back	and	to	 interact	with	all	of	 them	(within	 the	restrictions	of	allowances	and	ranges	defined	 in	 the	

metadata	and	the	restrictions	of	switch	group	definitions).	

The	second	mode	is	a	basic	interaction	mode,	where	the	user	may	choose	one	of	a	set	group	presets	that	

are	defined	in	the	metadata	audio	element	syntax.	With	a	group	preset,	the	on/off	statuses	of	the	groups	

and	switch	groups	that	are	referenced	in	the	conditions	of	the	chosen	preset	are	defined	and	cannot	be	

changed	by	the	user.	The	user	may	only	change	the	on/off	status	of	the	other	groups	and	switch	groups	

that	are	not	referenced	in	the	conditions	of	the	chosen	preset.	The	position	and	gain	of	all	groups	may	be	

changed	according	to	the	defined	restrictions	and	ranges.	

A	 signature	 is	 introduced	 in	 the	 interface.	 The	 electronic	 signature	 may	 be	 used	 to	 identify	 and	

authenticate	a	particular	person,	device	or	software	as	the	originator	of	the	user	interaction	data.	

If	the	current	group	preset	or	group	preset	extension	contains	one	or	more	switch	group	conditions,	the	

following	behaviour	shall	be	verified	by	the	metadata	pre-processor.	

¾ If	a	switch	group	condition	is	equal	to	1,	it	shall	be	verified	that	one	member	of	the	corresponding	
switch	 group	 is	 enabled	 (on/off	 status	 equal	 to	 1).	 If	 no	member	 is	 enabled	 by	 the	 user	 (via	

interaction),	the	default	member	has	to	be	enabled	by	the	metadata	preprocessor.		

¾ All	 preset-dependent	 object	 characteristics	 and	 parameters	 (disable	 gain	 interactivity,	 group	
preset	gain,	disable	position	 interactivity,	 group	preset	 azimuth	offset,	 group	preset	elevation	

offset,	group	preset	distance	factor)	shall	be	applied	to	the	active	member,	independent	on	which	

member	is	currently	active.	

¾ If	a	switch	group	condition	is	equal	to	0,	all	members	of	the	corresponding	switch	group	shall	be	
set	to	inactive/disabled.		

Switch	 group	 conditions	 with	 value	 0	 are	 only	 applicable	 for	 switch	 groups	 whose	

mae_switchGroupAllowOnOff	flag	is	equal	to	1.	

ISO/IEC	23008-3:202X(E)	

534	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Syntax	of	interaction	interface	

Table	264	—	Syntax	of	mpegh3daElementInteraction()	
Syntax	 No.	of	bits	 Mnemonic	
mpegh3daElementInteraction()	 	 	
{	 	 	
	 ei_InteractionSignatureDataLength;	 8	 uimsbf	
	 if	(ei_InteractionSignatureDataLength	>0)	{	 	 	
	 	 ei_InteractionSignatureDataType;	 8	 uimsbf	
	 	 for	(c	=	0;	c	<	ei_InteractionSignatureDataLength	;	c++)	{	 	 	
	 	 	 ei_InteractionSignatureData[c];	 8	 uimsbf	
	 	 }	 	 	
	 }	 	 	
	 ElementInteractionData();	 	 	
	 hasLocalZoomAreaSize;	 1	 bslbf	
	 if	(hasLocalZoomAreaSize)	{	 	 	
	 	 LocalZoomAreaSize();	 	 	
	 }	 	 	
}	 	 	

Table	265	—	Syntax	of	ElementInteractionData()	

Syntax	 No.	of	bits	 Mnemonic	
ElementInteractionData()	 	 	
{	 	 	
	 ei_interactionMode;	 1	 bslbf	
	 ei_numGroups;	/*	Channel,	Object,	HOA,	SAOC	*/	 7	 uimsbf	
	 if	(ei_interactionMode	==	0)	{	 	 	
	 	 ei_GroupInteractivityStatus(ei_numGroups);	 	 	
	 }	else	{	 	 	
	 	 ei_groupPresetID;	 5	 uimsbf	
	 	 ei_GroupInteractivityStatus(ei_numGroups);	 	 	
	 }	 	 	
}	 	 	

Table	266	—	Syntax	of	ei_GroupInteractivityStatus()	

Syntax	 No.	of	bits	 Mnemonic	
ei_GroupInteractivityStatus	(numGroups)	 	 	
{	 	 	
	 for	(grp	=	0;	grp	<	numGroups;	grp++)	{	 	 	
	 	 ei_groupID[grp];	 7	 uimsbf	
	 	 ei_onOff[grp];	 1	 bslbf	
	 	 ei_routeToWIRE[grp];	 1	 bslbf	
	 	 if	(ei_routeToWIRE[grp]	==	1)	{	 	 	
	 	 	 routeToWireID[grp];	 16	 uimsbf	
	 	 }	 	 	
	 	 if	(ei_onOff	[grp]	==	1)	{	 	 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 535	
	

	 	 	 ei_changePosition[grp];	/*	position	change	*/	 1	 bslbf	
	 	 	 if	(ei_changePosition[grp])	{	 	 	
	 	 	 	 ei_azOffset[grp];	 8	 uimsbf	
	 	 	 	 ei_elOffset[grp];	 6	 uimsbf	
	 	 	 	 ei_distFact[grp];	 4	 uimsbf	
	 	 	 }	 	 	
	 	 	 ei_changeGain;		/*	gain	change	*/	 1	 bslbf	
	 	 	 if	(ei_changeGain)	{	 	 	
	 	 	 	 ei_gain;	 7	 uimsbf	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

 Semantics	of	interaction	interface	

ei_InteractionSignatureDataLength	 This	 field	 defines	 the	 length	 of	 the	 following	 interaction	

signature	in	byte.	

ei_InteractionSignatureDataType	 This	field	defines	the	type	of	signature.	The	values	in	Table	263	

are	possible.	

Table	267	—	Value	of	ei_InteractionSignatureDataType	

Value	 Meaning	

0	
Generic	string	in	UTF-8	
according	to	ISO/IEC	10646	

1-127	 Reserved	for	ISO	use.	

128-255	 Reserved	for	use	outside	of	ISO	
scope.	

ei_InteractionSignatureData		 This	field	contains	a	signature	defining	the	originator	of	the	

interaction	data.	

hasLocalZoomAreaSize	 Flag	that	defines	if	information	about	the	local	zoom	area	size	

is	available.	If	this	flag	is	enabled,	object	remapping	for	

zooming	is	applied	according	to	subclause	18.5.	

ei_interactionMode	 Flag	that	defines	if	the	advanced	interaction	type	or	the	basic	

interaction	 mode	 is	 chosen.	 A	 value	 of	 0	 indicates	 the	
advanced	 interaction	mode.	A	 value	of	 1	 indicates	 the	basic	

interaction	mode.	In	case	mae_numGroupPresets	equals	zero	

ei_interactionMode	 shall	 be	 set	 to	 zero,	 otherwise	

ei_interactionMode	shall	be	set	to	one.	

ei_numGroups	 This	field	contains	the	number	of	groups	in	the	audio	scene.	

ei_groupPresetID	 This	field	contains	a	mae_groupPresetID	that	is	defined	in	the	

audio	scene.	This	ID	reflects	the	user’s	preset	choice.	

ISO/IEC	23008-3:202X(E)	

536	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ei_groupID	 mae_groupID	for	the	current	group	for	which	the	interaction	

is	described.	

ei_routeToWIRE	 This	field	defines	if	the	audio	content	of	the	group	should	be	

routed	to	a	WIRE	output.	

ei_routeToWireID	 ID	of	the	WIRE	output	where	the	group	should	be	routed	to.	

ei_onOff	 Defines	the	on/off	status	of	the	current	group.	In	case	the	basic	

interaction	mode	(interaction	on	group	presets)	is	chosen,	this	

value	 has	 to	 be	 identical	 to	 the	 defined	 on/off	 status	 of	 the	

group	with	ei_groupID	if	this	group	is	part	of	the	conditions	of	

the	 chosen	 group	 preset	 with	 ei_groupPresetID.	 For	 basic	

interaction	mode	it	is	not	allowed	to	signal	a	different	on/off	

status	here.	For	all	groups	that	are	not	part	of	the	conditions	

of	the	chosen	group	preset,	the	on/off	status	may	arbitrarily	

be	signalled.	

ei_changePosition	 This	flag	defines	if	the	position	of	the	group	elements	has	been	

changed	 (azimuth	 and/or	 elevation	 and/or	 distance	 have	

been	modified	by	the	user).	

ei_azOffset	 The	change	of	azimuth	is	given	as	an	offset.	This	field	can	take	

values	between	AzOffset=-180°	and	AzOffset=180°:	

AzOffset	=	1.5 ∙ (ei_azOffset	–	128)	

AzOffset	=	min	(max	(AzOffset,	-180),	180)	

ei_elOffset	 The	change	of	azimuth	is	given	as	an	offset.	This	field	can	take	

values	between	ElOffset=-90°	and	ElOffset=90°:	

ElOffset	=	3 ∙ (ei_elOffset	–	32)	

ElOffset	=	min	(max	(ElOffset,	-90),	90)	

ei_distFact	 The	distance	 interactivity	 is	given	as	a	multiplication	 factor.	

The	 field	 can	 take	 values	 between 0 	to	 15 	resulting	 in	
DistFactor	between	0.00025	and	8:	

	 DistFactor	=	2(ei_distFactor-12)	

	 DistFactor	=	min(max	(DistFactor,	0.00025),		8)	

ei_changeGain	 This	 flag	defines	 if	 the	gain/level	of	 the	group	elements	has	

been	changed	(the	gain	has	been	modified	by	the	user)	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 537	
	

ei_gain	 This	field	defines	an	additional	gain	of	the	members	of	the	

current	group.	The	field	can	take	values	between	0	and	127	

representing	gain	values	between		

Gain	=	-63	dB	and	Gain	=	31	dB	in	1	dB	steps,	with	

	

Gain	[dB]	=	ei_gain	–	64	

Gain	[dB]	=	min(max	(Gain,	-63),		31)	

If	ei_gain	is	set	to	0,	Gain	shall	be	set	to	minus	infinity	dB.	

17.8 Interface	for	loudness	normalization	and	dynamic	range	control	(DRC)	

The	interface	for	loudness	normalization	and	dynamic	range	control	is	fully	specified	in	ISO/IEC	23003-

4.	

17.9 Interface	for	scene	displacement	data	

 General	

This	subclause	describes	syntax	for	the	normative	interface	for	scene	displacement	data	received	by	the	

decoder.	Use-cases	 are	 the	deployment	of	 a	 tracking	device	 that	 tracks	 the	user’s	head	 (e.g.	 a	 virtual	

reality	 (VR)	 device)	 resulting	 in	 a	 scene	 displacement	 that	 needs	 to	 be	 processed	 by	 the	 decoder	

framework	or	a	tracking	device	that	directly	tracks	the	scene	displacement	(e.g.	3D	mouse	or	data	glove).	

 Definition	of	an	interface	for	scene-displacement	data	

The	 mpegh3daSceneDisplacementData()	 syntax	 element	 provides	 the	 interface	 for	 the	 scene	

displacement,	given	by	three	Tait-Bryan	angles:	

— ‘yaw’	()	is	a	rotation	around	the	z	axis;	

— ‘pitch’	()	is	a	rotation	around	the	x	axis;	
— ‘roll’	()	is	a	rotation	around	the	y	axis.	

The	three	angles	describe	the	relative	orientation	between	two	orthogonal	right-handed	3D	Cartesian	

coordinate	systems	by	three	rotation	angles	alongside	the	three	coordinate	axes,	namely	between	the	so-

called	‘fixed	scene	setup	coordinate	system’	and	the	‘deflected	scene	coordinate	system’.	

The	coordinate	 system	of	 the	scene-displacement	data	 is	a	 right-handed	coordinate	 system	using	 the	

following	direction	of	the	axes:	

— x	axis	pointing	to	the	right;	

— y	axis	pointing	straight	ahead;	

— z	axis	pointing	straight	up.	

The	fixed	scene	setup	coordinate	system	is	the	original	coordinate	system,	in	which	the	positioning	of	
loudspeakers	(azimuth,	elevation),	reproductions	screen	and	objects	(azimuth,	elevation,	and	radius)	are	

defined.		

The	deflected	scene	coordinate	system	describes	the	orientation	of	the	virtual	scene	after	the	objects	
positions	have	been	updated.		This	coordinate	system	rotates	with	the	deflection	of	a	tracker	device	from	

ISO/IEC	23008-3:202X(E)	

538	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

its	idle	state.	The	origin	is	assumed	to	be	the	same	as	the	scene	coordinate	system,	but	the	coordinate	

system	may	be	deflected	along	all	three	axes,	indicated	by	the	values	given	by	the	scene	displacement	

interface.	

Positive	rotations	correspond	to	the	direction	of	rotation	about	each	axis	as	 indicated	below.	For	this	

definition,	 clockwise	 and	 anti-clockwise	 is	 determined	 by	 looking	 directly	 along	 the	 axis	 of	 rotation,	

towards	the	origin	of	the	coordinate	system.	The	positive	rotations	are	illustrated	in	Figure	100.	

— A	positive	yaw	value	corresponds	to	a	clockwise	rotation	about	z	axis.	

— A	positive	pitch	value	corresponds	to	an	anti-clockwise	rotation	about	the	x	axis.	

— A	positive	roll	value	corresponds	to	an	anti-clockwise	rotation	about	the	y	axis.	

	

Figure	100	—	Directions	of	positive	rotations	

 Syntax	of	the	scene	displacement	interface	

Table	268	—	Syntax	of	mpegh3daSceneDisplacementData()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3daSceneDisplacementData()	 	 	

{		 	 	

	 sd_yaw;		 9	 uimsbf	
	 sd_pitch;		 9	 uimsbf	
	 sd_roll;		 9	 uimsbf	
}	 	 	

 Semantics	of	the	scene	displacement	interface	
sd_yaw	 This	field	defines	the	scene	displacement	angle	about	the	z	axis.	This	field	

can	take	values	between	αñ&ó ==	-180°	and	αñ&ó ==	180°.	

	

αñ&ó	=	min	(max	(αñ&ó,	-180),	180)	

A	positive	yaw	value	corresponds	to	a	clockwise	rotation	about	the	z	axis.	

sd_pitch	 This	field	defines	the	scene	displacement	angle	about	the	x	axis.	This	field	

can	take	values	between	βò)$Iô=	-180°	and	βò)$Iô=	180°.	

	

yaw 8
sd_yaw 1 180
2

æ ö= - ×ç ÷
è ø

a

pitch 8
sd_pitch 1 180
2

æ ö= - ×ç ÷
è ø

b

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 539	
	

βò)$Iô	=	min	(max	(βò)$Iô,	-180),	180)	

A	positive	pitch	value	corresponds	to	an	anti-clockwise	rotation	about	the	

x	axis.	

sd_roll	 This	field	defines	the	scene	displacement	angle	about	the	y	axis.	This	field	

can	take	values	between	θ%/..=	-180°	and	θ%/..=	180°.	

	

θ%/..	=	min	(max	(θ%/..,	-180),	180)	

A	positive	roll	value	corresponds	to	an	anti-clockwise	rotation	about	the	y	axis.	

17.10 Interfaces	for	channel-based,	object-based,	and	HOA	metadata	and	audio	data	

 General	

This	subclause	describes	the	output	interfaces	for	the	delivery	of	un-rendered	channels,	objects,	and	HOA	

content	 and	 associated	 metadata.	 The	 implementation	 of	 these	 interfaces	 is	 optional,	 however,	 if	

implemented,	there	are	specific	parts	which	shall	be	included.	

 Expectations	on	external	renderers	

If	the	output	interfaces	defined	in	this	subclause	are	implemented	and	used	for	connecting	to	external,	

non-MPEG-H	renderers,	then	these	external	renderers	should	apply	and	handle	the	metadata	provided	

in	 this	 interface	 and	 related	 audio	 data	 in	 the	 same	manner	 as	 if	 internal	 rendering	 is	 applied.	 This	

includes,	but	is	not	limited	to:	

— correct	 handling	 of	 loudness-related	metadata	 in	 particular	with	 the	 aim	 of	 preserving	 intended	
target	loudness;	

— preserving	artistic	intent,	such	as	applying	transmitted	Downmix	matrices	correctly;	

— rendering	spatial	attributes	of	objects	appropriately	(position,		spatial	extent,	etc.);	

— correct	handling	of	diffuseness,	divergence	azimuth	range	and	exclusion	sector	metadata;	

— correct	handling	of	group	priorities.	

 Object-based	metadata	and	audio	data	(object	output	interface)	

17.10.3.1 General	

This	interface	provides	the	output	of	metadata	and	audio	data	for	object-based	audio	content	(distinct	

objects	which	have	accompanying	OAM	data,	SignalGroupType	is	equal	to	SignalGroupTypeObject	(given	

by	Signals3d())).	 It	 supports	 the	output	of	metadata	and	audio	data	of	object-based	content	after	 the	

processing	of	the	element	metadata	preprocessor	module.	

The	interface	is	restricted	to	metadata	and	audio	data	for	the	initial	object-based	audio	elements,	that	are	

enabled	for	playback	(switched	on),	when	the	interface	output	data	is	requested.	

The	interface	does	not	support	the	output	of	metadata	or	audio	data	of	other	audio	elements.		

Note	 that	 the	output	of	 channel-based	elements	 that	 are	 routed	 to	 the	object	 renderer	during	 scene-

displacement	processing	(see	subclause	18.8)	is	not	supported	by	this	interface.	

roll 8
sd_roll 1 180
2

æ ö= - ×ç ÷
è ø

q

ISO/IEC	23008-3:202X(E)	

540	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Content	that	is	received	by	the	object	output	interface	should	be	processed	with	the	same	loudness/DRC	

processing	before	output	to	the	interface	in	the	same	manner	as	if	they	are	part	of	the	regular	output	

signals.	The	application	of	a	peak	limiter	at	the	end	of	the	processing	chain	is	highly	recommended.	

The	delay	of	the	received	signals	should	be	adjusted	before	presentation	at	the	interface,	such	that	they	

have	the	same	delay	as	the	regular	output	signals.	The	object	renderer	output	should	be	muted	and	not	

played	back	in	case	an	output	via	the	object	interface	is	requested.	

If	an	object	output	interface	is	provided	by	an	implementation,	the	following	processing	shall	be	applied	

to	the	object-based	content	before	the	object	output	interface:	

— processing	of	the	object	metadata	preprocessor	module	(user	interaction,	screen-related	processing,	
etc.),	except	diffuseness	processing	and	divergence	processing;	

— DRC-1;	

— resampling;	

— frame	truncation	(truncation	of	PCM	data);	
— DRC-2;	

— loudness	normalization;	

— application	of	the	peak	limiter.	
Diffuseness	processing	(i.e.	the	creation	of	the	diffuse	audio	part	as	well	as	weighting	of	the	direct	sound	

part	using	the	diffuseness-dependent	weighting	factor	as	described	in	subclause	18.11)	is	bypassed	in	

the	situation	that	an	output	of	object	audio	data	plus	metadata	is	requested	via	the	object	output	interface.	

Diffuseness	processing	should	instead	be	applied	by	an	external	renderer.	

The	object-based	audio	element	replica	created	during	divergence	processing	(as	defined	in	subclause	

18.1)	shall	not	be	presented	via	the	object	output	interface.	The	weighting	of	the	original	objects	with	the	

divergence-dependent	weighting	factor	ρoriginal	shall	be	bypassed	in	the	situation	that	an	output	of	object	
audio	 data	 plus	metadata	 is	 requested	 via	 the	 object	 output	 interface.	 Divergence	 processing	 should	

instead	be	applied	by	an	external	renderer.	

If	an	object	output	interface	is	provided	by	an	implementation,	the	following	metadata	shall	be	provided	

via	the	application	specific	interface	to	be	interpreted	and	acted	upon	by	potential	external	renderers:	

— number	of	output	objects;	

— information	about	audio	truncation	and	number	of	valid	PCM	frames	for	the	current	frame;	
— OAM	metadata:	

— dynamic	object	priority	(if	available);	

— object	position	(azimuth,	elevation,	radius);	

— spread;	
— object	gain;	

— Signal	group	related	metadata:	

— static	group	priority;	

— “fixed	position”	flag;	
— Enhanced	object	metadata:	

— diffuseness;	

— divergence	and	divergence	azimuth	range;	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 541	
	

— exclusion	sector	metadata; 	
— Production	Metadata.	

The	 following	 sub-clauses	 provide	 syntax	 and	 semantics	 for	 a	 preferred	 implementation	 of	 such	 an	

interface.	 Implementers	 may	 choose	 to	 provide	 the	 information	 outlined	 in	 this	 preferred	

implementation	according	to	a	different	format,	e.g.	using	a	different	structure,	different	ordering	of	data,	

or	different	data	types	for	conveying	the	object	metadata.	

17.10.3.2 Syntax	of	an	interface	for	object-based	metadata		

Table	269	—	Syntax	of	mpegh3da_getObjectAudioAndMetadata()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3da_getObjectAudioAndMetadata()	 	 	
{	 	 	
	 /*	FRAME	CONFIGURATION	*/	 	 	
	 goa_frameLength;	 6	 uimsbf	
	 goa_audioTruncation;	 2	 	 bslbf	
	 if	(goa_audioTruncation>0)	{	 	 	
	 	 	goa_numSamples;	 13	 uimsbf	
	 }	else	{	 	 	
	 	 goa_numSamples	=	goa_frameLength	<<	6;	 	 	
	 }	 	 	
	 	 	
	 /*	OBJECT	METADATA	*/	 	 	
	 goa_numberOfOutputObjects;	 9	 uimsbf	
	 for	(o	=	0;	o	<	goa_numberOfOutputObjects;	o++)	{	 	 	
	 	 goa_elementID[o];	 9	 uimsbf	
	 	 goa_hasDynamicObjectPriority[o];	 1	 bslbf	
	 	 goa_hasUniformSpread[o];	 1	 bslbf	
	 	 	
	 	 /*	OAM	Data	*/	 	 	
	 	 goa_numOAMframes[o];	 6	 uimsbf	
	 	 for	(nf	=	0;	nf	<	goa_numOAMframes[o];	nf++)	{	 	 	
	 	 	 goa_objectMetadataPresent;	 1	 bslbf	
	 	 	 if	(goa_objectMetadataPresent==1)	{	 	 	
	 	 	 	 goa_positionAzimuth[o][nf];	 8	 uimsbf	
	 	 	 	 goa_positionElevation[o][nf];	 6	 uimsbf	
	 	 	 	 goa_positionRadius[o][nf];	 4	 uimsbf	
	 	 	 	 goa_objectGainFactor[o][nf];	 7	 uimsbf	
	 	 	
	 	 	 	 if	(goa_hasDynamicObjectPriority[o])	{	 	 	
	 	 	 	 	 goa_dynamicObjectPriority[o][nf];	 3	 uimsbf	
	 	 	 	 }	 	 	
	 	 	
	 	 	 	 if	(goa_hasUniformSpread[o])	{	 	 	
	 	 	 	 	 goa_uniformSpread[o][nf];	 7	 uimsbf	
	 	 	 	 }	else	{	 	 	
	 	 	 	 	 goa_spreadWidth[o][nf];	 7	 uimsbf	
	 	 	 	 	 goa_spreadHeight[o][nf];	 5	 uimsbf	
	 	 	 	 	 goa_spreadDepth[o][nf];	 4	 uimsbf	
	 	 	 	 }	 	 	
	 	 	 }	 	 	 	
	 	 }	 	 	
	 	 	
	 	 /*	Signal	group	related	data	*/	 	 	
	 	 goa_fixedPosition[o];				 1	 bslbf	

ISO/IEC	23008-3:202X(E)	

542	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 goa_groupPriority[o];	 3	 uimsbf	
	 	 	
	 	 /*	Enhanced	Object	Metadata	*/	 	 	
	 	 goa_diffuseness[o];	 7	 uimsbf	
	 	 goa_divergence[o];	 7	 uimsbf	
	 	 goa_divergenceAzimuthRange[o];	 6	 uimsbf	
	 	 goa_numExclusionSectors[o];	 4	 uimsbf	
	 	 for	(s	=	0;	s	<	goa_numExclusionSectors[o];	s++)	{	 	 	
	 	 	 goa_usePredefinedSector[o][s];	 1	 bslbf	
	 	 	 if	(goa_usePredefinedSector[o][s])	{	 	 	
	 	 	 	 goa_excludeSectorIndex[o][s];	 4	 uimsbf	
	 	 	 }	else	{	 	 	
	 	 	 	 goa_excludeSectorMinAzimuth[o][s];	 7	 uimsbf	
	 	 	 	 goa_excludeSectorMaxAzimuth[o][s];	 7	 uimsbf	
	 	 	 	 goa_excludeSectorMinElevation[o][s];	 5	 uimsbf	
	 	 	 	 goa_excludeSectorMaxElevation[o][s];	 5	 uimsbf	
	 	 	 }	 	 	
	 	 }	/*	for	(s	=	0;	s	<	goa_numExclusionSectors[o];	s++)	*/	 	 	
	 }	/*	for	(o	=	0;	o	<	goa_numberOfOutputObjects;	o++)	*/	 	 	
	 	 	
	 /*	GOA	Extension	Elements	*/	 	 	
	 goa_numberOfExtensionElements;	 3	 uimsbf	
	 	 	 	
	 if	(goa_numberOfExtensionElements)	{	 	 	
	 	 for	(ext	=	0;	ext	<	goa_numberOfExtensionElements;	ext++)	{	 	 	
	 	 	 goa_extElementType;	 3	 uimsbf	
	 	 	 goa_extElementLength;	 10	 uimsbf	
	 	 	 	
	 	 	 switch	(goa_extElementType)	{	 	 	
	 	 	 	 case	ID_EXT_GOA_PROD_METADATA:	 	 	
	 	 	 	 	 goa_Production_Metadata();	 	 	
	 	 	 	 	 break;	 	 	
	 	 	 	 default:	 	 	
	 	 	 	 	 break;	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	
	 	 	

Table	270	—	Syntax	of	goa_Production_Metadata()	

Syntax No.	of	bits Mnemonic
goa_Production_Metadata() 		 		
{ 		 		
						/*	PRODUCTION	METADATA	CONFIGURATION	*/ 		 		
						goa_	hasObjectDistance; 1 bslbf
						if	(goa_hasObjectDistance)	{ 		 		
												for	(o	=	0;	o	<	goa_numberOfOutputObjects;	o++)	{ 		 		
																		goa_bsObjectDistance[o]; 9 uimsbf
												} 		 		
						} 		 		
} 		 		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 543	
	

Table	271	—	Syntax	of	goa_extElementType	

goa_extElementType Value
ID_EXT_GOA_PROD_METADATA 0
/*	reserved	*/ 1-7

17.10.3.3 Semantics	of	the	interface	for	object-based	metadata		

goa_frameLength	 This	field	is	used	to	determine	the	length	of	a	nominal	audio	

frame	in	samples:	

nominal	audio	frame	length	=	goa_frameLength	<<	6;	

goa_audioTruncation	 Determines	whether	the	audio	output	corresponding	to	this	

goa	frame	has	been	truncated	according	to	Table	266.	

Table	272	—	truncation	direction	signalling	

Value	 Truncation	applied	

0	 No	truncation	

1	 From	the	left		
(beginning	of	buffer)	

2	 From	the	right		
(end	of	buffer)	

	

goa_numSamples	 Valid	 output	 PCM	 samples	 the	 decoder	 produced	

corresponding	to	this	goa	frame.	In	case	of	truncation	this	can	

be	different	from	the	nominal	audio	frame	length.	This	value	

should	be	evaluated	by	possible	external	renderers	to	ensure	

the	application	of	the	received	metadata	to	the	correct	audio	

PCM	samples.			

goa_numberOfOutputObjects	 Number	of	output	objects:	

5obj,	out	=	goa_numberOfOutputObjects;	

goa_elementID	 This	 field	 gives	 the	mae_metaDataElementID	 of	 the	 current	

audio	object.	

goa_hasDynamicObjectPriority	 This	 field	 defines	 whether	 the	 current	 object	 contains	 a	

dynamic	object	priority	value.	

goa_hasUniformSpread	 This	field	defines	whether	the	current	object	contains	uniform	

or	non-uniform	spread	values.	

goa_numOAMframes	 This	field	gives	the	number	of	OAM	frames	that	are	available	

in	 the	 current	 audio	 frame	 for	 the	 current	 object.	 The	

minimum	is	1	OAM	frame	per	audio	frame.	

goa_objectMetadataPresent	 Indicates	whether	object	metadata	 is	present	 in	 the	current	

OAM	frame.	

ISO/IEC	23008-3:202X(E)	

544	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

goa_positionAzimuth	 This	 field	 defines	 the	 azimuth	 position	 of	 the	 current	 OAM	

frame	of	the	current	object.	

azimuth	=	(goa_positionAzimuth	-	128)	·	1.5	

azimuth	=	min(max(azimuth,	-180),	180)	

goa_positionElevation	 This	 field	defines	 the	elevation	position	of	 the	current	OAM	

frame	of	the	current	object.	

elevation	=	(goa_positionElevation	-	32)	·	3.0	

elevation	=	min(max(elevation,	-90),	90)	

goa_positionRadius	 This	field	defines	the	radius	of	the	current	OAM	frame	of	the	

current	object.	

radius	=	pow(2.0,	(goa_positionRadius/3.0))/2.0	

radius	=	min(max(radius[o],	0.5),	16)	

goa_objectGainFactor	 This	 field	defines	 the	 gain	of	 the	 current	OAM	 frame	of	 the	

current	object.	

gain	=	pow(10.0,	(goa_objectGainFactor	-	96.0)/40.0)	

gain	=	min(max(gain,	0.004),	5.957)	

goa_dynamicObjectPriority	 This	 field	 defines	 the	 dynamic	 object	 priority	 value	 of	 the	

current	OAM	frame	of	the	current	object.	This	field	can	take	

values	between	0	and	7.	

goa_uniformSpread	 This	 field	 contains	 the	 uniform	 spread	 value	 of	 the	 current	

OAM	frame	of	the	current	object.	

spread	=	goa_uniformSpread	·	1.5	

spread	=	min(max(spread,	0),	180)	

goa_spreadWidth	 This	field	contains	the	spread	value	in	width	dimension	of	the	

current	OAM	frame	of	the	current	object.	

spread_width	=	goa_spreadWidth[o]	·	1.5	

spread_width	=	min(max(spread_width,	0),	180)	

goa_spreadHeight	 This	field	contains	the	spread	value	in	height	dimension	of	the	

current	OAM	frame	of	the	current	object.	

spread_height	=	goa_spreadHeight[o]	·	3.0	

spread_height	=	min(max(spread_height,	0),	90)	

goa_spreadDepth	 This	field	contains	the	spread	value	in	depth	dimension	of	the	

current	OAM	frame	of	the	current	object.	

spread_depth	=	(pow(2.0,	(goa_spread_depth/3.0))/2.0)	–	0.5	

spread_depth	=	min(max(spread_depth,	0),	16)	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 545	
	

goa_fixedPosition	 This	 field	 defines	 if	 the	 current	 object’s	 position	 shall	 be	

updated	during	processing	of	scene	displacement	(tracking)	

data.	If	the	position	shall	not	be	updated,	the	flag	is	set	to	1.	

goa_groupPriority	 This	 field	 defines	 the	 priority	 of	 the	 group	 to	 which	 the	

current	object	belongs	to.	It	can	take	integer	values	between	

0	and	7.	

goa_diffuseness	 This	 field	defines	 the	diffuseness	of	 the	 group	 to	which	 the	

current	object	belongs	to.	This	field	can	take	values	between	

0	and	127,	corresponding	to	diffuseness	values	between	0.0	

and	1.0:	

diffuseness	=	(goa_diffuseness/127)	

goa_divergence	 This	field	defines	the	divergence	of	the	objects.	The	field	can	

take	values	between	0	and	127,	corresponding	to	divergence	

values	between	0.0	and	1.0:	

goa_divergence	=	(goa_divergence/127)	

goa_divergenceAzimuthRange	 If	 the	 divergence	 of	 the	 object	 or	 group	 is	 larger	 than	 0.0	

(goa_divergence	 >	 0),	 the	 goa_divergenceAzimuthRange	

defines	 the	 positioning	 of	 the	 virtual	 sources.	 The	 field	 can	

take	 values	 between	 0	 and	 63,	 resulting	 in	 azimuth	 offset	

angles	between	0°	and	180°:	

	=	3.0	·	goa_divergenceAzimuthRange	

	=	min	(max	(φoffset	,	0),	180)	

goa_numExclusionSectors	 This	 field	 defines	 the	 number	 of	 exclusion	 sectors	 that	 are	

defined	for	the	current	object.	

goa_usePredefinedSector	 This	 field	 defines	 if	 an	 exclusion	 sector	 is	 signalled	 by	 a	

predefined	sector	index	(flag	is	equal	to	1)	or	if	an	arbitrary	

sector	is	specified	(flag	is	equal	to	0).	

goa_excludeSectorIndex	 This	 field	 defines	 the	 sector	 index	 of	 a	 defined	 exclusion	

sector.	

goa_excludeSectorMinAzimuth	 This	field	defines	the	minimum	excluded	azimuth	value	for	a	

defined	exclusion	sector.	

	=	3.0	·	(goa_excludeSectorMinAzimuth	-	63)	

	=	min	(max	(,	-180),	180)	

goa_excludeSectorMaxAzimuth	 This	field	defines	the	maximum	excluded	azimuth	value	for	a	

defined	exclusion	sector.	

	=	3.0	·	(goa_excludeSectorMaxAzimuth	-	63)	

	=	min	(max	(,	-180),	180)	

offsetj

offsetj

sector,minj

sector,minj zone,minj

sector,maxj

sector,maxj zone,maxj

ISO/IEC	23008-3:202X(E)	

546	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

goa_excludeSectorMinElevation	 This	field	defines	the	minimum	excluded	elevation	value	for	a	

defined	exclusion	sector.	

	=	6.0	·	(goa_excludeSectorMinElevation	-	15)	

	=	min	(max	(,	-90),	90)	

goa_excludeSectorMaxElevation	 This	field	defines	the	maximum	excluded	elevation	value	for	a	
defined	exclusion	sector.	

	=		6.0	·	(goa_excludeSectorMaxElevation	-	15)	

	=	min	(max	(,	-90),	90)	

goa_numberOfExtensionElements	 Defines	the	number	of	extension	elements	to	the	GOA	

output	interface.	

goa_extElementType	 Defines	the	type	of	the	extension	element.	

goa_extElementLength	 Defines	the	length	of	the	extension	element.	

goa_hasObjectDistance	 This	flag	defines	if	the	object	distance	parameter	is	signalled	in	

the	production	metadata	frame.	

goa_bsObjectDistance	 This	field	describes	the	distance	of	an	object.	The	field	can	take	

values	between	0	and	511,	which	maps	to	distance	values	

between	0	m	and	177	km.	Table	273	provides	the	mapping	of	
goa_bsObjectDistance	field	to	the	distance.	

	

Table	273	—	Mapping	of	position_distance	field	to	the	distance	

goa_bsObjectDistance distance
0 distance	=	0	m
1	−	511 distance	=	0.01	*	2^(0.0472188798661443	*	(goa_bsObjectDistance	-	1))

 Channel-based	metadata	and	audio	data	

17.10.4.1 General	

This	interface	provides	the	output	of	metadata	for	channel-based	audio	content	(usually	one	complete	

signal	group	with	SignalGroupType	set	to	SignalGroupTypeChannels	(given	by	Signals3d())).	It	supports	

the	 output	 of	metadata	 data	 of	 channel-based	 content	 after	 the	 processing	 of	 the	 element	metadata	

preprocessor	module.	

The	interface	is	restricted	to	metadata	for	the	initial	channel-based	audio	elements,	that	are	enabled	for	

playback	(switched	on),	when	the	interface	output	data	is	requested.	
The	interface	does	not	support	the	output	of	metadata	of	other	audio	elements.		

The	output	of	channel-based	elements,	where	the	positions	shall	be	modified	by	the	element	metadata	

preprocessor,	is	not	supported.	Instead	those	elements	may	be	treated	as	object	content	with	positions	

defined	by	the	indicated	loudspeaker	positions.	

Content	 that	 is	 received	 by	 the	 channel	 output	 interface	 should	 be	 processed	 with	 the	 same	

Loudness/DRC	processing	 before	 presented	 at	 the	 interface	 as	 if	 they	 are	 part	 of	 the	 regular	 output	

signals.	The	application	of	a	peak	limiter	at	the	end	of	the	processing	chain	is	highly	recommended.	

sector,minq

sector,minq zone,minq

sector,maxq

sector,maxq zone,maxq

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 547	
	

The	delay	of	the	received	signals	should	be	adjusted	before	presentation	to	the	interface,	such	that	they	

have	the	same	delay	as	the	regular	output	signals.	The	format	converter	output	should	be	muted	and	not	

played	back	in	case	an	output	via	the	channel	interface	is	requested.	

If	a	channel	output	interface	is	provided	by	an	implementation,	the	following	processing	shall	be	applied	

to	the	channel-based	content	before	the	channel	output	interface:	

— Processing	of	the	metadata	preprocessor	module	(e.g.	user	interaction);	

— DRC-1;	

— Resampling;	

— Frame	truncation	(truncation	of	PCM	data);	
— DRC-2;	

— Loudness	normalization;	

— Application	of	the	peak	limiter.	
If	a	channel	output	interface	is	provided	by	an	implementation,	the	following	metadata	shall	be	provided	

via	the	interface	to	be	evaluated	by	possible	external	renderers:	

— Number	of	channels;	

— Number	of	valid	PCM	samples	for	the	current	frame;	
— elementIDs	for	the	referenced	audio	channels;	

— Channel	configuration;	

— “fixed	position”	flag;	

— Static	group	priority;	
— Downmix	matrix	elements,	if	transmitted	and	matching	the	selected	Reproduction	Layout	(according	

to	subclause	10.3.1); 	

— Production	metadata.	
The	 following	 subclauses	 provide	 syntax	 and	 semantics	 for	 a	 preferred	 implementation	 of	 such	 an	

interface.	 Implementers	 may	 choose	 to	 provide	 the	 information	 outlined	 in	 this	 preferred	

implementation	 in	 a	 different	 format,	 e.g.	 using	 a	 different	 structure,	 different	 ordering	 of	 data,	 or	

different	data	types	for	conveying	the	object	metadata.	

17.10.4.2 Syntax	of	an	interface	for	channel-based	metadata	(informative)	

This	 sub-clause	 provides	 syntax	 and	 semantics	 for	 a	 preferred	 implementation	 of	 the	 channel-based	

metadata	interface.	

Table	274	—	Syntax	of	mpegh3da_getChannelMetadata()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3da_getChannelMetadata()	 	 	
{	 	 	
	 /*	FRAME	CONFIGURATION	*/	 	 	
	 gca_frameLength;	 6	 uimsbf	
	 gca_audioTruncation;	 2	 	 bslbf	
	 if	(gca_audioTruncation>0)	{	 	 	
	 	 	gca_numSamples;	 13	 uimsbf	
	 }	else	{	 	 	
	 	 gca_numSamples	=	gca_frameLength	<<	6;	 	 	
	 }	 	 	

ISO/IEC	23008-3:202X(E)	

548	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Syntax	 No.	of	bits	 Mnemonic	
	 	 	
	 /*	CHANNEL	METADATA	*/	 	 	
	 gca_numberOfOutputChannelGroups;	 9	 uimsbf	
	 for	(cGrp	=	0;	cGrp	<	gca_numberOfOutputChannelGroups;	cGrp	++)	{	 	
	 	 gca_numberOfChannels[cGrp];	 16	 uimsbf	
	 	 gca_channelLayout[cGrp]	=	SpeakerConfig3d();	 	 	
	 	 	
	 	 for	(nChn	=	0;	nChn	<	gca_numberOfChannels[cGrp];	nChn++)	{	
	 	 	 	 gca_elementID[cGrp][nChn];	 9	 uimsbf	
	 	 }	 	 	
	 	 	
	 	 /*	TRACKING-RELATED	METADATA	*/	 	 	
	 	 gca_fixedPosition[cGrp];				 1	 bslbf	
	 	 	
	 	 /*	GROUP-RELATED	METADATA	*/	 	 	
	 	 gca_groupPriority[cGrp];	 3	 uimsbf	
	 	 gca_channelGain[cGrp];	 8	 uimsbf	
	 	 	
	 	 /*	DOWNMIX	MATRIX	ELEMENT	*/	 	 	
	 	 gca_downmixAvailable;	 1	 bslbf	
	 	 if	(gca_downmixAvailable)	{	 	 	
	 	 	 gca_downmixConfig();	 	 	
	 	 }	 	 	
	 }	 	 	
	 	 	
	 /*	GCA	EXTENSION	ELEMENTS	*/	 	 	
	 gca_numberOfExtensionElements;	 3	 uimsbf	
	 	 	
	 if	(gca_numberOfExtensionElements)	{	 	 	
	 	 for	(ext	=	0;	ext	<	gca_numberOfExtensionElements;	ext++)	{	
	 	 	 gca_extElementType;	 3	 uimsbf	
	 	 	 gca_extElementLength;	 10	 uimsbf	
	 	 	
	 	 	 switch	(gca_extElementType)	{	 	 	
	 	 	 	 case	ID_EXT_GCA_PROD_METADATA:	 	 	
	 	 	 	 	 gca_Production_Metadata();	 	 	
	 	 	 	 	 break;	 	 	
	 	 	 	 default:	 	 	
	 	 	 	 	 break;	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 		 		
	 	 	

Table	275	—	Syntax	of	gca_Production_Metadata()	

Syntax	 No.	of	bits	 Mnemonic	
gca_Production_Metadata()	 		 		
{	 		 		
						/*	PRODUCTION	METADATA	CONFIGURATION	*/	 		 		
		 		 		
						for		(gp	=	0;	gp	<	numChannelGroups;	gp++)	{	 		 		
												gca_directHeadphone[gp];	 1	 bslbf	
						}	 		 		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 549	
	

		 		 		
						gca_hasReferenceDistance;	 1	 bslbf	
						if	(gca_hasReferenceDistance)	{	 		 		
												gca_bsReferenceDistance;	 7	 uimsbf	
						}	else	{	 		 		
												gca_bsReferenceDistance	=	57;	
						}	

		 		

}	 		 		

Table	276	—	Syntax	of	gca_extElementType	

gca_extElementType Value
ID_EXT_GCA_PROD_METADATA 0
/*	reserved	*/ 1-7

17.10.4.3 Semantics	of	the	interface	for	channel-based	metadata		

gca_frameLength	 This	field	is	used	to	determine	the	length	of	a	nominal	

audio	frame	in	samples:	

nominal	audio	frame	length	=	gca_frameLength	<<	6	

gca_audioTruncation	 Determines	whether	the	audio	output	corresponding	

to	 this	 gca	 frame	 has	 been	 truncated	 according	 to	

Table	277.	

Table	277	—	Truncation	direction	signalling	

Value	 Truncation	applied	

0	 No	truncation	

1	 From	the	left		
(beginning	of	buffer)	

2	 From	the	right		
(end	of	buffer)	

	

gca_numSamples	 Valid	 output	 PCM	 samples	 the	 decoder	 produced	

corresponding	 to	 this	gca	 frame.	 In	case	of	 truncation	 this	

can	be	different	from	the	nominal	audio	frame	length.	

gca_numberOfOutputChannelGroups	 Definition	of	the	number	of	output	channel	groups.		

gca_elementID	 This	field	gives	the	elementIDs	of	the	audio	channels	out	of	

the	current	channel	group.	

gca_numberOfChannels	 This	 field	 gives	 the	 number	 of	 channels	 present	 in	 the	

current	channel	group.	

gca_channelLayout	 This	field	defines	the	position	of	each	channel.	

ISO/IEC	23008-3:202X(E)	

550	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

gca_fixedPosition	 This	 field	defines	 if	 the	current	channel’s	position	shall	be	

updated	during	processing	of	scene	displacement	(tracking)	

data.	If	the	position	shall	not	be	updated,	the	flag	is	set	to	1.	

gca_groupPriority	 This	 field	 defines	 the	 priority	 of	 the	 group	 to	 which	 the	

current	 channel	 belongs	 to.	 It	 can	 take	 integer	 values	

between	0	and	7.	

gca_channelGain	 This	field	defines	the	gain	of	the	current	frame	of	the	current	

channel	group.	

gain	=	pow(10.0,	gca_channelGain	-	96.0)/40.0)	

gain	=	min(max(gain,	0.004),	5.957)	

gca_downmixAvailable	 This	flag	signals	the	presence	of	downmix	matrix	elements	

for	 the	 given	 channel	 group.	 The	 transmitted	 downmix	

matrix	information	in	downmixConfig()	should	be	evaluated	

by	possible	external	renderers	to	preserve	highest	possible	

artistic	intend	from	the	content	creator	during	the	rendering	

process.	

gca_downmixConfig()	 This	 is	 a	 subset	 of	 the	 original	 downmixConfig()-element,	

only	 including	 the	 elements	 matching	 the	 selected	

reproduction	layout	(according	to	subclause	10.3.1).	

gca_numberOfExtensionElements	 Defines	the	number	of	extension	elements	to	the	GCA	output	

interface.	

gca_extElementType	 Defines	the	type	of	the	extension	element.	

gca_extElementLength	 Defines	the	length	of	the	extension	element.	

gca_directHeadphone	 This	flag	defines	that	the	corresponding	signal	group	of	type	

channels	goes	directly	to	the	headphone	output.	The	signals	

are	routed	to	left	and	right	headphone	channel.	For	mono,	the	

signal	is	mixed	to	left	and	right	headphone	channel	with	a	gain	

factor	of	0.707.	

gca_hasReferenceDistance	 This	flag	defines	if	the	gca_bsReferenceDistance	parameter	is	

signalled	in	the	production	metadata	config.	If	it	is	0,	the	

gca_bsReferenceDistance	is	set	to	57,	meaning	the	reference	

loudspeaker	distance	of	input	layout	as	3.1748	m,	by	default.	

gca_bsReferenceDistance		 This	field	describes	the	reference	loudspeaker	distance	of	

input	layout.	The	field	can	take	values	between	0	and	127,	

which	maps	to	reference	loudspeaker	distance	values	

between	0.5	m	and	31.4	m.	Table	278	provides	the	mapping	of	

gca_bsReferenceDistance	field	to	the	reference	loudspeaker	

distance.	

Table	278	—	Mapping	of	gca_bsReferenceDistance	field	to	the	reference	
loudspeaker	distance	

gca_bsReference	
Distance

reference	distance

0	−	127 reference	distance	=	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 551	
	

0.01	*	2^(0.0472188798661443	*(gca_bsReferenceDistance	+	119))

 HOA	metadata	and	audio	data	

17.10.5.1 General	

This	interface	provides	the	output	of	metadata	for	HOA	audio	content	(usually	one	complete	signal	group	

with	SignalGroupType	set	to	SignalGroupTypeHOA	(given	by	Signals3d())).	It	supports	the	output	of	the	

metadata	of	the	HOA	content	prior	the	HOA	rendering	process.	

The	interface	is	restricted	to	metadata	for	the	decoded	HOA	coefficients,	that	are	enabled	for	playback	

(switched	on),	when	the	interface	output	data	is	requested.	

The	interface	does	not	support	the	output	of	metadata	of	other	audio	elements.		

Content	that	is	received	by	the	HOA	output	interface	should	be	processed	with	the	same	loudness/DRC	

processing	 before	 presentation	 to	 the	 interface	 as	 if	 they	 are	 part	 of	 the	 regular	 output	 signals.	 The	

application	of	a	peak	limiter	at	the	end	of	the	processing	chain	is	highly	recommended.	

The	delay	of	the	received	signals	should	be	adjusted	before	presentation	at	the	interface,	such	that	they	

have	the	same	delay	as	the	regular	output	signals.	The	HOA	interface	and	the	HOA	renderer	should	not	

operate	 simultaneously:	 In	 case	 an	output	 via	 the	HOA	 interface	 is	 requested,	 the	output	of	 the	HOA	

renderer	should	be	muted	and	not	reproduce	audio	and	vice	versa.	

If	the	HOA	output	interface	is	provided	by	an	implementation,	the	following	processing	shall	be	applied	

to	the	HOA	content	before	the	HOA	output	interface:	

— Processing	of	the	metadata	preprocessor	module;	

— DRC-1;	

— Resampling;	
— Frame	truncation	(truncation	of	PCM	data);	

— DRC-2;	

— Loudness	normalization;	
— Peak	limitation.	

If	the	HOA	output	interface	is	provided	by	an	implementation,	the	following	metadata	shall	be	provided	

via	the	interface	to	be	interpreted	and	acted	upon	by	potential	external	renderers:	

— HOA	order;	
— Number	of	valid	PCM	samples	for	the	current	frame;	

— NFC	metadata;	

— A	 flag	 that	 indicates	 if	 HOA	 content	 is	 relative	 to	 a	 screen	 and	 if	 so,	 the	 production	 screen	 size	
information;	

— HOA	rendering	matrix	elements,	if	transmitted	and	matching	the	selected	reproduction	layout;	

— Production	metadata.	

The	following	sub-clauses	provide	syntax	and	semantics	for	a	preferred	implementation	of	such	interface.	

Implementers	may	 choose	 to	provide	 the	 information	outlined	 in	 this	preferred	 implementation	 in	 a	

different	format,	e.g.	using	a	different	structure,	different	ordering	of	data.	

ISO/IEC	23008-3:202X(E)	

552	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

17.10.5.2 Syntax	of	an	interface	for	HOA	metadata		
Table	279	—	Syntax	of	mpegh3da_getHoaMetadata()	

Syntax	 No.	of	bits	 Mnemonic	
mpegh3da_getHoaMetadata()	 	 	
{	 	 	
	 /*	FRAME	CONFIGURATION	*/	 	 	
	 gha_frameLength;	 6	 uimsbf	
	 gha_audioTruncation;	 2	 	 bslbf	
	 if	(gha_audioTruncation>0)	{	 	 	
	 	 	gha_numSamples;	 13	 uimsbf	
	 }	else	{	 	 	
	 	 gha_numSamples	=	gha_frameLength	<<	6;	 	 	
	 }	 	 	
	 gha_numberOfHoaGroups;	 9	 uimsbf	
	 for	(hGrp	=	0;	hGrp	<	gha_numberOfHoaGroups;	hGrp	++)	{	 	 	
	 	 /*	Signal	group	related	data	*/	 	 	
	 	 gha_fixedPosition[hGrp];	 1	 uimsbf	
	 	 gha_groupPriority[hGrp];	 3	 bslbf	
	 	 /*	HOA	METADATA	*/	 	 	
	 	 gha_HoaOrder[hGrp];	 9	 uimsbf	
	 	 gha_UsesNfc[hGrp];	 1	 bslbf	
	 	 if	(gha_UsesNfc[hGrp])	{	
	 	 	 gha_NfcReferenceDistance[hGrp];	 32	 bslbf	
	 	 }	 	 	
	 	 gha_hasSignalledHoaMatrix[hGrp];	 1	 uimsbf	
	 	 if	(gha_hasSignalledHoaMatrix[hGrp])	{	 	 	
	 	 	 gha_HoaRenderingMatrixSet();	 	 	
	 	 }	 	 	
	 	 gha_isScreenRelative[hGrp];	 1	 uimsbf	
	 	 if	(gha_isScreenRelative[hGrp])	{		 	 	
	 	 	 mae_ProductionScreenSizeData();	 	 	
	 	 	 mae_ProductionScreenSizeDataExtension();	 	 	
	 	 }	 	 	
	 }	 	 	
	 	 	
	 /*	GHA	EXTENSION	ELEMENTS	*/	 	 	
	 gha_numberOfExtensionElements;	 3	 uimsbf	
	 	 	
	 if	(gha_numberOfExtensionElements)	{	 	 	
	 	 for	(ext	=	0;	ext	<	gha_numberOfExtensionElements;	ext++)	{	
	 	 	 gha_extElementType;	 3	 uimsbf	
	 	 	 gha_extElementLength;	 10	 uimsbf	
	 	 	
	 	 	 switch	(gha_extElementType)	{	 	 	
	 	 	 	 case	ID_EXT_GHA_PROD_METADATA:	 	 	
	 	 	 	 	 gha_Production_Metadata();	 	 	
	 	 	 	 	 break;	 	 	
	 	 	 	 default:	 	 	
	 	 	 	 	 break;	 	 	
	 	 	 }	 	 	
	 	 }	 	 	
	 }	 	 	
}	 	 	

Table	280	—	Syntax	of	gha_Production_Metadata()	

Syntax No.	of	bits Mnemonic

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 553	
	

gha_Production_Metadata() 		 		
{ 		 		
						/*	PRODUCTION	METADATA	CONFIGURATION	*/ 		 		
		 		 		
						gha_hasReferenceDistance;	
						if	(gha_hasReferenceDistance)	{	
																		gha_bsReferenceDistance;	
						}	
						else	{	
																		gha_bsReferenceDistance	=	57;	
						}

1	
		
7

bslbf	
		
uimsbf

	
}

		 		

Table	281	—	Syntax	of	gha_extElementType	

gha_extElementType Value
ID_EXT_GHA_PROD_METADATA 0
/*	reserved	*/ 1-7

17.10.5.3 Semantics	of	the	interface	for	HOA	metadata		

gha_frameLength	 This	field	is	used	to	determine	the	length	of	a	nominal	audio	

frame	in	samples:	

nominal	audio	frame	length	=	gha_frameLength	<<	6	

gha_audioTruncation	 Determines	whether	the	audio	output	corresponding	to	this	

gha	frame	has	been	truncated	according	Table	282.	

Table	282	—	Truncation	direction	signalling	

Value	 Truncation	applied	

0	 No	truncation	

1	 From	the	left		
(beginning	of	buffer)	

2	 From	the	right		
(end	of	buffer)	

	

gha_numSamples	 Valid	 output	 PCM	 samples	 the	 decoder	 produced	

corresponding	 to	 this	gha	 frame.	 In	case	of	 truncation	 this	

can	be	different	from	the	nominal	audio	frame	length.	

gha_HoaOrder	 The	HOA	order	of	the	outputted	audio	content.	

gha_	numberOfHoaGroups	 This	 element	 indicates	 the	 number	 signal	 groups	 of	 type	

SignalGroupTypeHOA.	

ISO/IEC	23008-3:202X(E)	

554	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

gha_UsesNfc	 This	element	determines	whether	or	not	the	HOA	near	field	

compensation	 (NFC)	 has	 been	 applied	 to	 the	 coefficient	

signals.		

gha_NfcReferenceDistance	 This	element	determines	the	radius	in	meter	that	has	been	

used	 for	 the	 HOA	 NFC	 (interpreted	 as	 float	 in	 IEEE	 754	

format	in	little-endian).		

gha_hasSignalledHoaMatrix	 This	element	 indicates	 if	 the	content	was	transmitted	with	

HOA	rendering	matrices	in	the	bitstream.	

gha_HoaRenderingMatrixSet	 This	 is	 a	 subset	 of	 the	 original	 HOARenderingMatrixSet()-

element,	only	including	the	elements	matching	the	selected	

reproduction	layout.	

gha_isScreenRelative	 This	 element	 indicates	 if	 the	 HOA	 representation	 shall	 be	

rendered	with	respect	to	the	reproduction	screen	size.	

gha_fixedPosition	 This	field	defines	if	the	HOA	soundfield	orientation	shall	be	

updated	during	processing	of	scene	displacement	(tracking)	data.	

If	the	soundfield	orientation	shall	not	be	updated,	the	flag	is	set	to	

1.	

gha_groupPriority	 This	field	defines	the	priority	of	the	group	to	which	the	current	

HOA	soundfield	belongs	to.	It	can	take	integer	values	between	0	

and	7.	

gha_numberOfExtensionElements	 Defines	the	number	of	extension	elements	to	the	GHA	

output	interface.	

gha_extElementType	 Defines	the	type	of	the	extension	element.	

gha_extElementLength	 Defines	the	length	of	the	extension	element.	

gha_isScreenRelative	 This	element	indicates	if	the	HOA	representation	shall	be	

rendered	with	respect	to	the	reproduction	screen	size.	

gha_hasReferenceDistance	 This	flag	defines	if	the	gha_bsReferenceDistance	parameter	is	

signalled	in	the	production	metadata	config.	If	it	is	0,	the	

gha_bsReferenceDistance	is	set	to	57,	meaning	the	reference	

loudspeaker	distance	of	input	layout	as	3.1748	m,	by	default.	

gha_bsReferenceDistance	 This	field	describes	the	reference	loudspeaker	distance	of	input	

layout.	The	field	can	take	values	between	0	and	127,	which	maps	

to	reference	loudspeaker	distance	values	between	0.5	m	and	

31.4	m.	Table	283	provides	the	mapping	of	

gha_bsReferenceDistance	field	to	the	reference	loudspeaker	

distance.	

Table	283	—	Mapping	of	gha_bsReferenceDistance	field	to	the	reference	
loudspeaker	distance	

gha_bsReferenceDistance reference	distance
0	−	127 reference	distance	=	

0.01	*	2^(0.0472188798661443	*(gha_bsReferenceDistance	+	119))

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 555	
	

	

 Audio	PCM	data	

The	PCM	data	of	the	channels	and	objects	interfaces	shall	be	provided	through	the	decoder	PCM	buffer,	

which	first	contains	the	regular	rendered	PCM	signals	(e.g.	12	signals	for	a	7.1+4	setup).	Subsequently	

nchan,	out	additional	signals	carry	the	PCM	data	of	the	originally	transmitted	channel	representation.	These	
are	followed	by	nobj,	out	signals	carrying	the	PCM	data	of	the	un-rendered	output	objects.	Then	additional	
signals	carry	the	nHOA,	out	HOA	data	which	number	is	indicated	in	the	HOA	metadata	interface	via	the	HOA	
order	(e.g.	16	signals	for	HOA	order	3).	The	HOA	audio	data	in	the	HOA	output	interface	is	provided	in	

the	so-called	equivalent	spatial	domain	representation.	The	conversion	from	the	HOA	domain	into	the	

equivalent	spatial	domain	representation	and	vice	versa	is	described	in	Annex	C.5.1.	

The	decoder	shall	signal	the	offset	index	of	the	PCM	buffer	for	the	first	un-rendered	output	object and	the	
offset	index	of	the	PCM	buffer	for	the	first	HOA	audio	signal.	

17.11 Interface	for	positional	scene	displacement	data	
 General	

For	applications	which	allow	small	user	movements	 (−25	cm	…	+25	cm)	 in	 the	audio	scene,	 the	user	

position	data	for	the	binaural	rendering	may	be	provided	to	the	decoder	by	using	the	syntax	element	

mpegh3daPositionalSceneDisplacementData().	 This	 will	 allow	 the	 scene	 displacement	 processing	 to	

account	for	user	orientation	changes	and	positional	displacement.	

 Syntax	of	the	positional	scene	displacement	interface	

Table	284	—	Syntax	of	mpegh3daPositionalSceneDisplacementData()	

Syntax No.	of	bits Mnemonic
mpegh3daPositionalSceneDisplacementData()	 		 		
{	 		 		
						sd_azimuth; 8 uimsbf
						sd_elevation; 6 uimsbf
						sd_radius; 4 uimsbf
}	 		 		

 Semantics	of	the	positional	scene	displacement	interface	

sd_azimuth	 This	field	defines	the	scene	displacement	azimuth	position.	This	field	can	take	

values	from	−180	to	180:	

=	(sd_azimuth	−128)	·	1.5	

.	=	min(max(,	−180),	180)	

sd_elevation	 This	field	defines	the	scene	displacement	elevation	position.	This	field	can	take	

values	from	−90	to	90:	

	=	(sd_elevation	−32)	·	3.0	

	=	min(max(,	−90),	90)	

sd_radius	 This	field	defines	the	scene	displacement	radius.	This	field	can	take	values	from	0	

and	0.25:	

offsetaz

offsetaz offsetaz

offsetel

offsetel offsetel

ISO/IEC	23008-3:202X(E)	

556	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	=	sd_radius	/	60	

 Processing	

When	mpegh3daPositionalSceneDisplacementData()	 is	 used,	 the	 scene	 displacement	 defined	 in	 18.8	

must	be	adjusted	with	the	following	values:	

This	results	in	new	position	transferred	to	Cartesian	coordinates	(x,y,z):	

18 Application	and	processing	of	local	setup	information	and	interaction	
data	and	scene	displacement	data	

18.1 Element	metadata	preprocessing		
A	processing	block	is	defined	that	processes	the	user	interaction	interface	data,	the	scene	displacement	

data	and	prepares	the	audio	elements	for	rendering	and	play-out.	This	“element	metadata	preprocessor”	

also	applies	the	logic	that	is	imposed	by	the	user	interaction	and	the	element	metadata.		

The	 following	processing	 structure	 and	order	of	processing	 the	 interface	data	 (interactivity	 interface	

mpegh3daElementInteraction(),	scene	displacement	interface	mpegh3daSceneDisplacementData()	and	

interface	for	local	setup	information	mpegh3daLocalSetupInformation())	and	metadata	audio	elements	

is	defined.	An	overview	is	given	in	Figure	101.	

The	 divergence	 processing	 has	 to	 be	 conducted	 before	 the	 processing	 of	 scene	 displacement	 angles	

(tracking	processing)	is	carried	out.	

offsetr

= + °¢ 90offset offsetaz az

=¢ °-90offset offsetel el

() () () ()¢= × × + ×¢ ¢ ¢ ×sin cos sin cosoffset offset offsetx r el az r el az

() () () ()¢= × × + ×¢ ¢ ¢ ×sin sin sin sinoffset offset offsety r el az r el az

() ()×¢ ¢= × +cos cosoffset offsetz r el r el

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 557	
	

	
Figure	101	—	Processing	of	metadata	and	interface	data	

As	a	first	step	the	rendering	type,	rendering	layout	and	screen	size	information	is	determined.	Then,	the	

syntax	element	mae_AudioSceneInfo()	is	retrieved.		

The	overall	number	of	object-based	audio	elements	that	need	to	be	rendered	by	the	object	renderer	is	

determined.	The	overall	number	of	object-based	audio	elements	is:	

¾ the	sum	of	the	number	of	elements	with	OAM	data;	
¾ plus	2	times	the	number	of	elements	with	OAM	data	with	a	divergence	value	bigger	than	0	and	whose	

groups	are	not	marked	to	be	sent	to	a	WIRE	output.	

After	the	number	of	object-based	audio	elements	has	been	determined,	the	interactivity	data	is	read	from	

the	interactivity	interface.	

The	interaction	type	(basic	or	advanced)	is	determined.	Next,	it	is	determined	which	elements	have	to	be	

processed.	 This	 is	 defined	 by	 the	 on/off	 status	 of	 their	 corresponding	 groups,	 the	 WIRE	 routing	

information	and	the	implicit	logic	by	switch	group	definitions.	

In	the	basic	interaction	mode,	the	user	may	choose	one	of	a	set	of	defined	group	presets.		

First,	it	has	to	be	checked	if	a	downmixId	is	present	and	if	the	chosen	preset	has	a	group	preset	extension	

(defined	in	mae_GroupPresetDefinitionExtension())	that	references	the	current	downmixId.	If	this	is	the	

case,	the	conditions	of	the	corresponding	group	preset	extension	have	to	be	used	to	determine	which	

groups	 shall	 be	 played	 back/rendered.	 The	 on/off	 status	 of	 the	 groups	 and	 switch	 groups	 that	 are	

ISO/IEC	23008-3:202X(E)	

558	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

referenced	 in	 the	chosen	group	preset’s	or	 the	applicable	group	preset	extension’s	conditions	are	set	

according	 to	 these	 conditions.	 Any	 discrepancy	 in	 these	 values	 compared	 to	 the	 values	 in	 the	

ei_GroupInteractivityStatus()	syntax	element	shall	be	ignored.	

For	the	groups	that	are	not	referenced	in	the	chosen	group	preset’s	conditions,	the	status	is	set	to	the	

mae_defaultOnOff	 value	 as	 a	 default,	 but	 the	 user	 may	 choose	 the	 on/off	 status	 accordingly	 if	 the	

definition	of	the	group	permits	it	and	no	switch	group	logic	is	violated.	

The	elements	from	the	following	groups	have	to	be	processed	in	accordance	with	the	following.	

— All	groups	that	are	switched	on	and	are	not	member	of	a	switch	group.	
— All	groups	that	are	switched	on	and	that	are	member	of	a	switch	group	if	the	switch	group	condition	

is	fulfilled	(a	maximum	of	one	member	of	this	switch	group	is	switched	on).	

— All	groups	that	are	switched	off	but	are	default	members	of	a	switch	group	from	whose	members	no	
other	member	is	marked	as	switched	on.	The	on/off	status	of	this	default	group	shall	then	be	set	to	1	

(on).	

— All	groups	that	are	switched	off	and	are	marked	to	be	routed	to	a	WIRE	output.	

The	relevant	groups	are	known	at	 this	point	 in	time	so	the	core	decoder	may	be	controlled	such	that	

irrelevant	elements	are	ignored	and	not	decoded.	

Next,	the	different	reproduction	layouts	are	determined	by	evaluating	any	excluded	sectors,	according	to	

subclause	18.10.	The	different	reproduction	layouts	(target	rendering	layouts)	are	used	to	control	one	or	

more	instances	of	the	object	renderer.	

Then	 the	 elements	 of	 the	 relevant	 groups	 are	 prepared	 for	 playout	 and	 rendering.	 Updated	 output	

element	characteristics	are	calculated	for	each	element	of	each	group	and	the	additional	virtual	objects	

for	groups	with	divergent	values	greater	than	0,	excluding	those	outputs	destined	for	WIRE	output:	Gain,	

azimuth,	elevation,	and	distance.	Azimuth	and	elevation	either	represent	the	element’s	position	or	the	

element’s	 loudspeaker’s	position	 (in	 case	 the	 closestSpeakerPlayout	 flag	 is	 set	 to	one	and	 the	 closest	

loudspeaker	playout	 is	unconditioned,	or	 in	 case	 the	closestSpeakerPlayout	 flag	 is	 set	 to	one	and	 the	

loudspeaker	 is	 located	 within	 the	 range	 defined	 by	 closestSpeakerThresholdAngle	 as	 defined	 in	

subclause	18.7	if	the	closest	loudspeaker	playout	is	conditioned).	

In	 case	 of	 groups	 with	 SignalGroupTypeChannels,	 azimuth	 and	 elevation	 define	 the	 unmodified	

loudspeaker’s	position	(in	case	the	divergence	related	to	the	element	is	equal	to	0	or	not	existing	and	the	

closestSpeakerPlayout	flag	is	set	to	one	and	the	closest	loudspeaker	playout	is	unconditioned,	or	in	case	

the	closestSpeakerPlayout	flag	is	set	to	one	and	the	loudspeaker	is	located	within	the	range	defined	by	

the	 closestSpeakerThresholdAngle	 as	 defined	 in	 subclause	 18.7	 if	 the	 closest	 loudspeaker	 playout	 is	

conditioned).	

For	 the	 determination	 of	 the	 updated	 element	 characteristics,	 it	 shall	 be	 established	 whether	 each	

element	group	is	marked	to	be	routed	to	a	WIRE	output.		

Any	evaluation	of	a	valid/selected	preset	(and	therefore	the	application	of	preset-dependent	values)	shall	

only	be	performed	in	the	defined	‘basic	interaction	mode’	(see	subclause	17.7.3).	The	chosen/selected	

preset	is	indicated	by	the	presetID	that	is	received	by	the	mpegh3daElementInteraction()	interface.	Any	

preset-dependent	value	 (e.g.	 group	preset	gain)	 is	 therefore	only	applied	 if	basic	 interaction	mode	 is	

enabled.	

If	a	group	is	not	routed	to	a	WIRE	output	(non-WIRE	group),	the	screen-related	remapping	is	conducted	

for	all	group	members	that	are	marked	as	screen-related.	If	a	group	is	marked	as	to	be	routed	to	a	WIRE	

output	(WIRE	group),	then	this	remapping	should	be	skipped.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 559	
	

The	divergence	processing	is	the	next	process	to	be	conducted.	Objects	with	a	divergence	larger	than	0	

are	replicated:	Two	additional	‘virtual	objects’	are	created	in	addition	to	each	object	with	divergence	>	0.	

The	 ‘unmodified’	 positions	 and	 gains	 for	 the	 ‘virtual’	 objects	 for	 the	 reproduction	 of	 objects	 with	 a	

divergence	larger	than	0	are	determined	according	to:	

	

	

	

	

	

	

The	gains	ρ	are	based	on	the	current	OAM	gain	and	the	divergence	value:	

/orig,	temp =	01 − 2divergence'.01234	

/original = /orig,	temp ∙ /orig,	OAM	

/virtual,	temp = 00.5 ⋅ (2divergence)'.01234	

/virtual,	left = /virtual,	right = /virtual,	temp ∙ /orig,	OAM	
After	that,	the	virtual	objects	are	treated	in	the	same	way	as	the	original	objects	from	the	bitstream	for	

the	calculation	of	the	updated	output	element	characteristics.		

In	 particular,	 the	 virtual	 objects	 are	 assigned	 with	 the	 same	 isScreenRelativeObject-value	 as	 their	

corresponding	 original	 object	 for	 screen-related	 remapping	 and	 zooming.	 If	 the	 gain	 interaction	 is	

applied	after	the	divergence	processing,	all	ranges	and	restrictions	of	the	original	objects	shall	also	apply	

to	their	corresponding	virtual	object	copies.	

The	duplicated	objects	are	added	to	the	same	group	as	the	original	object.	They	are	also	assigned	the	

original	group-dependent	characteristics,	e.g.	for	the	subsequent	interaction	processing.	As	a	next	step,	

the	 scene	 displacement	 data	 is	 processed	 if	 the	 ‘useTrackingMode’	 flag	 is	 equal	 to	 one	 in	 either	

binauralRendering()	 or	 loudspeakerRendering().	 Therefore,	 the	 data	 from	 the	 scene	 displacement	

interface	is	read	and	updated	positions	for	all	tracked	objects	and	channels	(indicated	by	‘fixedPosition’	

=	0)	are	calculated	as	defined	in	subclause	18.8.	

Next,	the	gain	interactivity	data	is	processed.	This	step	is	applied	to	all	elements	of		non-WIRE	groups	and	

WIRE	groups.	It	is	first	checked	whether	the	group	of	the	current	element	allows	for	gain	interactivity	

(mae_allowGainInteractivity	flag	is	equal	to	1).	

If	 that	 is	 the	case	and	if	 the	basic	 interaction	mode	is	active,	 it	 is	 then	checked	whether	the	currently	

active/valid	preset	disables	the	gain	interactivity.	

The	gain	interactivity	may	be	processed	at	an	arbitrary	position	in	the	metadata	processing	chain.	If	the	

gain	interactivity	processing	is	performed	after	the	divergence	processing,	then	the	replicated	objects	

should	be	processed	with	the	same	gain	interaction	as	the	corresponding	original	objects.		

()virtual,left orig,OAM offsetj j j= +

() { }virtual,left virtual,left virtual,left180 360if j j j> = -

() { }virtual,left virtual,left virtual,left180 360if j j j< - = +

()virtual,right orig,OAM offsetj j j= -

() { }virtual,right virtual,right virtual,right180 360if j j j> = -

() { }virtual,right virtual,right virtual,right180 360if j j j< - = +

ISO/IEC	23008-3:202X(E)	

560	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

If	the	gain	interactivity	is	still	enabled,	the	output	gain	shall	be	calculated	for	each	element	of	the	group	

and	for	any	additional	virtual	objects	if	the	group	has	a	divergence	value	larger	than	0	(in	case	divergence	

processing	is	conducted	before	gain	interaction),	taking	into	account	the	interactivity	gain	modification,	

and	either	 the	OAM	gain	 (if	 available),	 the	unmodified	gain	of	 the	virtual	objects	 (in	 case	divergence	

processing	is	conducted	before	gain	interaction)	or	the	current	gain	of	an	element	(in	case	no	OAM	data	

is	 available).	 If	 the	 basic	 interaction	mode	 is	 enabled,	 the	 possible	 group	 gain	 value	 of	 the	 currently	

active/selected	preset	or	the	applicable	group	preset	extension	for	the	current	downmixId	shall	also	be	

taken	into	account.	

The	overall	gain	modification	(interactivity	gain	in	dB	plus	group	gain	in	dB)	shall	be	restricted	according	

to	the	given	mae_interactivityMinGain	and	mae_interactivityMaxGain	values	of	the	group	of	the	current	

element.	If	no	gain	interaction	is	allowed,	the	output	gain	shall	either	contain	0dB	(in	case	no	OAM	data	

is	 available),	 the	 OAM	 gain	 in	 dB,	 or	 the	 unmodified	 gain	 in	 dB	 for	 the	 virtual	 objects	 if	 divergence	

processing	is	conducted	before	gain	interaction.	

No	gain	interaction	data	is	given	in	the	following	cases:	

— ei_changeGain	in	ei_GroupInteractivityStatus()	is	zero,	or	

— ei_GroupInteractivityStatus()	is	not	existing.	
Therefore,	the	ei_gain	is	set	to	the	value	corresponding	to	the	current	mae_groupPresetGain	for	the	gain	

interaction	processing.	When	an	interaction	gain	is	given	by	means	of	ei_gain	and	the	ei_changeGain	flag	

is	equal	to	one,	the	value	of	ei_gain	shall	take	priority	over	the	group	preset	gain.	

If	no	mae_groupPresetGain	is	given,	the	groupPresetGain	shall	be	assumed	to	be	0	dB.	

If	the	group	of	the	current	element	is	marked	as	WIRE	output,	then	no	further	interactivity	processing	

shall	be	applied.	

If	 the	 group	 of	 the	 current	 element	 is	 not	 marked	 as	 WIRE	 output,	 then	 the	 application	 of	 further	

processing	 depends	 on	 the	 signal	 type.	 If	 the	 element	 is	 a	 channel-based	 element	

(SignalGroupTypeChannels),	 then	 no	 further	 interactivity	 processing	 shall	 be	 applied.	 Instead	 the	

position	of	 the	predefined	 associated	 loudspeaker	 shall	 be	determined	 from	 the	 audioChannelLayout	

information.	 It	 is	 assumed	 that	 the	member	elements	 in	 the	member	 list	 of	 the	associated	group	are	

ordered	with	respect	to	the	channel	ordering	signalled	in	the	syntax	element	Signals3d().	

If	the	current	element	is	accompanied	by	OAM	data,	then	the	position	interactivity	shall	be	processed.	

Therefore,	 it	 is	 first	 checked	 if	 the	 group	 of	 the	 current	 element	 allows	 for	 position	 interactivity	

(mae_allowPositionInteractivity	flag	is	equal	to	1).	

If	that	is	the	case	and	if	basic	interaction	mode	is	also	active,	then	it	is	established	whether	the	currently	

active/valid	 preset	 or	 the	 applicable	 group	 preset	 extension	 for	 the	 current	 downmixId	 disables	 the	

position	interactivity.	

If	the	position	interactivity	is	still	enabled	for	the	current	group,	azimuth,	elevation	and	distance	values	

are	determined	for	each	element	of	the	group	and	the	additional	virtual	objects	if	the	divergence	of	the	

group	 is	 larger	 than	 0.	 The	 calculation	 of	 the	 output	 values	 shall	 take	 into	 account	 the	 interactivity	

modification	 (offset	 values	 and	 distance	multiplication	 factor)	 and	 the	 values	 from	 the	 OAM	 data	 or	

respectively	the	unmodified	gain	in	dB	for	the	virtual	objects.	If	the	basic	interaction	mode	is	enabled,	the	

possible	 group	 preset	 values	 (PresetAzOffset,	 PresetElOffset,	 PresetDistFactor)	 of	 the	 currently	

selected/valid	preset	are	also	taken	into	account	as	follows:	When	a	preset	is	selected	and	no	position	

interaction	data	 is	given,	 the	group	preset	values	are	 to	be	applied	 to	 the	relevant	elements	as	 initial	

position	interaction.		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 561	
	

No	position	interaction	data	is	given	in	the	following	cases	

— ei_changePosition	in	ei_GroupInteractivityStatus()	is	zero,	or	

— ei_GroupInteractivityStatus()	is	not	existing	

Therefore,	the	values	of	ei_azOffset,	ei_elOffset	and	ei_distFact	are	then	set	to	the	values	corresponding	

to	the	current	mae_groupPresetAzOffset,	mae_groupPresetElOffset	and	mae_groupPresetDistFactor	for	

the	position	interaction	processing.	When	positional	 interaction	data	is	given	by	means	of	ei_azOffset,	

ei_elOffset	 and	 ei_distFact	 and	 the	 ei_changePosition	 flag	 is	 equal	 to	 one,	 the	 values	 of	 ei_azOffset,	

ei_elOffset	and	ei_distFact	shall	take	priority	over	the	corresponding	group	preset	values.	

	

If	no	mae_groupPresetAzOffset	 is	given,	 the	PresetAdditionalAzOffset	shall	be	assumed	to	be	0°.	 If	no	

mae_groupPresetElOffset	 is	 given,	 the	 PresetAdditionalElOffset	 shall	 be	 assumed	 to	 be	 0°.	 If	 no	

mae_groupPresetDistFactor	is	given,	the	PresetAdditionalDistFactor	shall	be	assumed	to	be	equal	to	1.	

The	overall	positional	interactivity	modifications	(given	by	the	values	of	the	interactivity	azimuth	offset,	

interactivity	 elevation	 offset	 and	 interactivity	 distance	 factor	 (either	 ei_azOffset,	 ei_elOffset	 and	

ei_distFact	 or	 mae_groupPresetAzOffset,	 mae_groupPresetElOffset	 and	 mae_groupPresetDistFactor	

respectively	as	defined	above))	shall	be	restricted	according	to	the	given	position	interactivity	ranges.	

As	a	next	step,	the	closest	loudspeaker	playout	processing	shall	be	conducted.	If	an	element	is	marked	as	

closest	 loudspeaker	playout,	 it	 shall	be	evaluated	as	an	 initial	 step	 if	 the	 closest	 loudspeaker	playout	

processing	shall	be	performed	with	or	without	conditioning.	

If	the	closest	loudspeaker	playout	is	unconditioned,	the	position	of	the	closest	loudspeaker	to	the	output	

position	 data	 is	 determined	 as	 defined	 in	 subclause	 18.6,	 taking	 into	 account	 all	 reproduction	

loudspeakers.	 No	 rendering	 shall	 be	 applied;	 it	 therefore	 has	 to	 be	 ensured	 that	 the	 determined	

loudspeaker	position	exists	within	the	reproduction	loudspeaker	setup.	

If	the	closest	loudspeaker	playout	is	conditioned	(a	closestSpeakerThresholdAngle	value	is	given),	it	has	

to	be	determined,	which	of	the	reproduction	loudspeakers	lies	in	the	given	range	according	to	subclause	

18.7.	

After	 determining	 the	 list	 of	 loudspeakers	 in	 the	 range,	 the	 position	 of	 the	 closest	 loudspeaker	with	

respect	to	the	output	position	data	is	determined	as	defined	in	subclause	18.6,	taking	into	account	only	

the	reproduction	loudspeakers	in	the	range.	No	rendering	shall	be	applied;	it	therefore	has	to	be	ensured	

that	the	determined	loudspeaker	position	exists	in	the	reproduction	loudspeaker	setup.	

After	 processing	 the	 interactivity	 data,	 the	 routing	 information	 for	 the	 elements	 is	 determined.	 If	 an	

element	group	is	marked	as	WIRE	output,	the	members	of	this	group	should	be	directly	sent	according	to	

the	WIRE	ID.	The	output	gain	shall	be	applied	before	WIRE	output.	Metadata	regarding	gain	interactivity	

as	well	as	Loudness/DRC	processing	should	be	applied	before	playing	out	the	audio	signal.	Content	that	

is	routed	to	a	WIRE	output	should	be	processed	with	the	same	Loudness/DRC	processing	as	if	they	would	

be	part	of	the	regular	output	signals.	The	application	of	a	peak	limiter	at	the	end	of	the	processing	chain	

is	highly	recommended.	The	signals	on	the	WIRE	output	should	have	the	same	delay	as	signals	after	the	

mixer.	

If	an	element	group	is	not	marked	as	WIRE	output,	then	the	output	depends	on	the	signal	type.	

Channel-based	elements	with	‘fixedPosition	=	1’	are	marked	to	be	sent	to	the	format	converter,	object-

based	element	as	well	as	channel-based	groups	with	‘fixedPosition	=	0’	are	marked	to	be	sent	to	the	object	

renderer,	SAOC-based	elements	are	marked	to	be	sent	to	the	SAOC	renderer,	HOA-based	elements	are	

marked	to	be	sent	to	the	HOA	renderer.	

ISO/IEC	23008-3:202X(E)	

562	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	addition	to	the	decoded	audio	data,	each	renderer	gets	azimuth,	elevation,	distance	(either	element’s	

position	or	element’s	loudspeaker’s	position),	gain	and	the	rendering	layout.	The	SAOC	renderer	and	the	

HOA	renderer	may	require	additional	side	information.	

The	group-dependent	reproduction	layouts	depending	on	the	signalled	excluded	sectors	are	routed	to	

the	object	renderer.	Depending	upon	the	number	of	individual	reproduction	layouts,	multiple	instances	

of	the	object	renderer	may	be	used.	

The	application	of	the	output	element	gains	shall	be	performed	before	playout.	

18.2 Interactivity	limitations	and	restrictions	

 General	information	

The	application	of	user	interactivity	is	restricted	by	the	metadata	audio	element	syntax	that	is	defined	for	

the	groups	of	elements.	There,	the	interaction	possibilities	may	be	limited	for	each	group	by	the	metadata	

fields	mae_allowOnOff,	mae_allowGainInteractivity	and	mae_allowPositionInteractivity.		

In	addition	the	interaction	possibilities	are	restricted	by	the	logic	of	groups	and	switch	groups.	

 WIRE	interactivity		

WIRE	 interactivity	 is	 only	 defined	 if	 the	 local	 reproduction	 setup	 and	 the	 setup	 of	 connected	WIRE	

outputs	(including	WIRE	IDs)	are	known	at	the	user	 interface	or	application.	A	WIRE	output	can	be	a	

device	that	supports	a	single	channel	or	a	multichannel	signal.		

WIRE	output	are	only	allowed	for	groups	of	type	SignalGroupTypeChannels	or	SignalGroupTypeObject.		

The	decoder	output	is	a	single	channel	or	multichannel	signal	that	is	sent	to	the	WIRE	output.	The	number	

of	channels	corresponds	to	the	number	of	members	of	the	element	group	that	is	routed	to	a	WIRE	output.	

If	multiple	groups	are	routed	to	the	same	WIRE	output,	then	the	number	of	channels	corresponds	to	the	

total	number	of	elements	in	these	groups.	

The	channel-order	corresponds	to	the	order	of	elements	in	the	group’s	member	list.	If	multiple	groups	

are	routed	to	the	same	WIRE	output	the	order	of	channels	is	defined	with	ascending	mae_groupID	and	

within	each	group	by	the	order	of	elements	in	the	group’s	member	list.	

If	 the	 number	 of	 elements	 that	 are	 routed	 to	 a	WIRE	 output	 does	 not	 correspond	 to	 the	 number	 of	

channels	that	the	WIRE	output	could	handle	(e.g.	sending	a	channel-based	element	group	with	stereo	

dialogue	to	a	WIRE	headset	with	just	one	output	channel),	the	application	has	to	handle	this	discrepancy.	

As	also	switched-off	groups	can	be	routed	to	a	WIRE	output	(e.g.	for	support	of	alternative	languages	or	

voice-over	content	over	WIRE),	the	audio	decoder	shall	allow	output	of	switched-off	groups	which	are	

routed	to	WIRE	outputs.	

Metadata	 regarding	 gain	 interactivity	 as	 well	 as	 loudness/DRC	 processing	 shall	 be	 applied	 before	

outputting	the	audio	signal.	Content	that	is	routed	to	a	WIRE	output	shall	be	processed	with	the	same	

loudness/DRC	processing	as	if	they	would	be	part	of	the	regular	output	signals.	The	application	of	a	peak	

limiter	at	the	end	of	the	processing	chain	is	highly	recommended.		

If	there	are	WIRE	output	devices	and	audio	content	is	routed	to	a	WIRE	output,	then	the	order	of	outputs	

after	the	decoder	shall	be	as	follows:	first	the	regular	signals	and	then	the	content	for	the	WIRE	outputs	

sorted	by	ascending	WIRE	ID.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 563	
	

 Position	interactivity	

Position	interactivity	is	only	defined	for	elements	where	positional	information	is	provided	(OAM	data	in	

the	syntax	element	object_metadata(),	see	Table	138).	

For	 elements	 with	 SignalGroupTypeChannels,	 no	 position	 interactivity	 is	 defined,	 because	 they	 are	

intended	to	be	played	back	by	a	specific	loudspeaker.	

For	elements	that	are	marked	as	“closestSpeakerPlayout”,	the	determination	of	the	closest	loudspeaker	

should	be	conducted	after	processing	the	position	interactivity	data.	

If	an	element	group	is	marked	to	be	routed	to	a	WIRE	output,	position	interactivity	shall	not	be	applied	

to	the	members	of	the	group.	The	unrendered	audio	content	is	sent	to	the	WIRE	output	and	no	positional	

information	is	sent	along.	

 Screen-related	element	remapping	and	object	remapping	for	zooming	

Screen-related	element	remapping	and	object	remapping	for	zooming	are	only	defined	for	elements	that	

are	accompanied	by	OAM	data	in	the	syntax	element	object_metadata().	

If	no	local	screen	size	information	is	available,	no	screen-related	element	remapping	shall	be	applied.	In	

case	 only	 azimuth	 screen	 size	 information	 is	 given,	 the	 decoder	 shall	 not	 apply	 any	 screen-related	

element	remapping	of	the	elevation	of	screen-related	elements.	

If	no	local	zoom	information	is	available,	no	object	remapping	for	zooming	shall	be	applied.	

If	an	element	group	is	marked	to	be	routed	to	a	WIRE	output,	screen-related	element	remapping	and	

object	remapping	for	zooming	shall	be	skipped	for	the	members	of	this	group,	because	the	unrendered	

audio	content	is	sent	to	the	WIRE	output	without	positional	information.	

 Closest	loudspeaker	playout		

Closest	loudspeaker	playout	is	only	defined	for	elements	that	are	accompanied	by	OAM	data	in	the	syntax	

element	object_metadata().		

If	an	element	group	is	marked	to	be	routed	to	a	WIRE	output,	signalling	of	the	closestSpeakerPlayout	

option	shall	be	ignored	for	the	members	of	this	group,	because	the	unrendered	audio	content	is	sent	to	

the	WIRE	output.	

If	an	element	has	a	divergence	value	bigger	than	0,	the	signaling	of	the	closestSpeakerPlayout	option	shall	

be	 ignored	 and	 no	 closest	 loudspeaker	 playout	 processing	 shall	 be	 conducted.	 Closest	 loudspeaker	

playout	processing	shall	only	be	conducted	 for	objects	with	spread=0°	(uniform	spread	signalling)	or	

spread_width=spread_height=0°	(non-uniform	spread	signalling).	

18.3 Screen-related	element	remapping	

Screen-related	element	remapping	is	only	processed	if	the	bitstream	contains	screen-related	elements	

(isScreenRelativeObject	flag	==	1	for	at	least	one	audio	element)	that	are	accompanied	by	OAM	data	and	

if	the	local	screen	size	is	signalled	to	the	decoder	via	the	LocalScreenSizeInformation()	interface.	

The	 geometric	 positional	 data	 (OAM	 data	 before	 any	 position	 modification	 by	 user	 interaction	 has	

happened)	is	mapped	to	a	different	range	of	values	by	the	definition	and	utilization	of	a	mapping-function.	

The	remapping	changes	the	geometric	positional	data	as	a	pre-processing	step	to	the	rendering,	such	that	

the	renderer	is	agnostic	of	the	remapping	and	operates	unchanged.	

ISO/IEC	23008-3:202X(E)	

564	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	screen	size	of	a	nominal	 reference	screen	(used	 in	 the	mixing	and	monitoring	process)	and	 local	

screen	size	information	in	the	playback	room	are	taken	into	account	for	the	remapping.	

The	size	of	the	applicable	nominal	reference	screen	is	in	general	read	from	the	bitstream,	located	in	the	

mae_ProductionScreenSizeData()	syntax	structure.		

If	 the	 structure	 mae_ProductionScreenSizeDataExtension()	 is	 present	 in	 the	 bitstream,	

mae_NumPresetProductionScreens	is	bigger	than	0	and	the	interaction	mode	is	set	to	‘basic	interaction	

mode’,	 the	 groupPresetID	 of	 the	 currently	 chosen/valid	 group	 preset	 shall	 be	 used	 to	 identify	 the	

applicable	 screen	 size	 of	 the	 reference	 screen	 from	 the	 mae_ProductionScreenSizeDataExtension()	

structure	before	the	remapping	is	applied.	

If	no	is	chosen	or	the	chosen	preset	has	no	associated	production	screen,	the	production	screen	from	the	

mae_ProductionScreenSizeData()	structure		shall	be	used	as	a	default	production	screen.	

If	 the	 structure	 mae_ProductionScreenSizeDataExtension()	 is	 present	 in	 the	 bitstream,	 and	 the	

mae_overwriteProductionScreenSizeData	 flag	 as	 well	 as	 the	 hasNonStandardScreenSize	 flag	 from	

mae_ProductionScreenSizeData()	 are	 equal	 to	 1,	 the	 azimuth	 angle	 data	 originating	 from	

mae_ProductionScreenSizeDataExtension()	 shall	 be	 used	 instead	 of	 the	 azimuth	 angle	 data	 from	

mae_ProductionScreenSizeData()	to	define	the	default	production	screen.	

If	no	nominal	reference	screen	size	is	given,	default	reference	values	are	used	assuming	a	4k	display	and	

an	optimal	viewing	distance.	

If	no	local	screen	size	information	is	given,	then	remapping	shall	not	be	applied.	

Two	linear	mapping	functions	are	defined	for	the	remapping	of	the	elevation	and	the	azimuth	values.	

The	screen	edges	of	the	nominal	screen	size	are	given	by:	

	

The	reproduction	screen	edges	are	abbreviated	by:	

	

Azimuth	values	of	a	temporary	reproduction	screen	are	defined	by:	

	

	

	

Azimuth	values	of	a	temporary	reference	screen	are	defined	by:	

nominal nominal nominal nominal, , ,left right top bottomj j q q

, , ,repro repro repro repro
left right top bottomj j q q

()repro repro repro repro
left right right left

repro
offset

repro repro
left right

1(360) if
2

1() else
2

j j j j
j

j j

ì °+ + × >ïï= í
ï + ×
ïî

repro repro repro
left, temp left offset

repro repro repro
right, temp right offset

j j - j

j j - j

=

=

repro repro
left, temp left, temp

repro repro repro
left, temp left, temp left, temp

repro
left, temp

repro repro
right, temp right, temp

repro
right, temp rig

360 if (180)
360 if (180)

else

360 if (180)

j j
j j j

j

j j
j j

- ° > °
= + ° < - °

- ° > °
= repro repro

ht, temp right, temp
repro
right, temp

360 if (180)
else
j

j
+ ° < - °

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 565	
	

	

	

	

A	temporal	input	azimuth	value	is	defined	according	to:	

	

The	remapping	of	 the	azimuth	and	elevation	position	data	 is	defined	by	the	 following	 linear	mapping	

functions:	

	

	

A	mapping	function	for	the	mapping	of	the	azimuth	is	depicted	in	Figure	102.	The	curve	is	defined	such	

that	the	azimuth	values	between	the	nominal	reference	left	edge	azimuth	and	the	nominal	reference	right	

edge	azimuth	are	mapped	(compressed	or	expanded)	to	the	interval	between	the	given	local	left	screen	

edge	 and	 the	 given	 local	 right	 screen	 edge.	 The	 other	 azimuth	 values	 are	 compressed	 or	 expanded	

accordingly,	such	that	the	whole	range	of	values	is	covered.		

The	remapped	azimuth	can	take	values	between	-180°	and	180°	and	the	remapped	elevation	can	take	

values	between	-90°	and	90°.		

()nominal nominal nominal nominal
left right right left

nominal
offset

nominal nominal
left right

1(360) if
2

1() else
2

j j j j
j

j j

ì °+ + × >ïï= í
ï + ×
ïî

nominal nominal nominal
left, temp left offset

nominal nominal nominal
right, temp right offset

j j - j

j j - j

=

=

nominal nominal
left, temp left, temp

nominal nominal nominal
left, temp left, temp left, temp

nominal
left, temp

nominal
right, temp right

nominal
right, temp

360 if (180)
360 if (180)

else

360 if (

j j
j j j

j

j j
j

ì - ° > °
ï= + ° < - °í
ï
î

- °
=

nominal
, temp

nominal nominal
right, temp right, temp
nominal
right, temp

180)
360 if (180)

else
j j
j

ì > °
ï + ° < - °í
ï
î

nominal
temp offset

temp temp

temp temp temp

temp

360 if (180)
360 if (180)

else

j j- j

j j
j j j

j

=

ì - ° > °
ï= + ° < - °í
ï
î

()

()

repro
right,temp nominal

temp temp right,tempnominal
right,temp

repro repro
left,temp right,temp nominal

temp temp right,temp rightnominal nominal
left,temp right,temp

180
180 180 180

180
for

j
j j j

j

j j
j j j j

j j

+ °
× + ° - ° - ° £ <

+ °

-
¢ = × - +

-

()

repro nominal nominal
,temp right temp left,temp

repro
left,temp nominal repro nominal

temp left,temp left,temp left,temp tempnominal
left,temp

180
180

180

for

for

j j j

j
j j j j j

j

ì
ï
ï
ï
ï £ <í
ï
ï °-ï × - + £ < °
ï °-î

repro
temp offset´ ´

´ 360 if (´ 180)
´ ´ 360 if (´ 180)

´ else

j j j

j j
j j j

j

= +

- ° > °ì
ï= + ° < - °í
ï
î

ISO/IEC	23008-3:202X(E)	

566	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	
Figure	102	—	Remapping	function	of	position	data	

If	the	isScreenRelativeObject	flag	is	set	to	zero,	then	no	screen-related	element	remapping	is	applied	for	

the	corresponding	element	and	the	geometric	positional	data	(OAM	data	plus	positional	change	by	user	

interactivity)	is	directly	used	by	the	renderer	to	compute	the	playback	signals.	

18.4 Screen-related	adaptation	and	zooming	for	higher	order	ambisonics	(HOA)	

Screen-related	adaptation	and	zooming	is	only	possible	if	the	IsScreenRelative	flag	in	the	HOAConfig()	

(see	Table	190)	is	signalled	as	1.	

The	screen-related	adaptation	process	modifies	the	HOA	rendering	matrix	and	is	only	computed	during	

the	initialization	phase.	Figure	103	depicts	the	process.	If	no	local	screen	size	information	is	available,	

no	screen-related	adaptation	shall	be	applied.	In	case	only	azimuth	screen	size	information	is	given,	the	

decoder	shall	not	apply	any	screen-related	adaptation	in	the	vertical	dimension.		

	

Figure	103	—	Screen-related	processing	for	higher	order	ambisonics	

The	screen-related	adaptation	of	the	rendering	matrix	is	achieved	by:	

1) Generating	a	mode	matrix		È(ö,o)	as	described	in	Annex	F.1.5	with	M=900	sampling	points	
which	directions	(‰,	Í)	are	defined	in	Annex	F.9.		È(ö,o) ∶=	 É	Ï8

ö	Ï?
ö …	Ïo

ö Ü	Óℝö×o .	

Azimuth before Remapping

Azimuth ϕ‘temp after Remapping

-180° 180°0°

180°

-180°

Reproduction
screen area

Mapping curve for screen-
relative objects

0°

nominal
,right tempj nominal

,left tempj

,
repro
right tempj

,
repro
left tempj

Nominal
screen area

j

Compute Effect
Matrix

Generate
Rendering Matrix

Locally

HOA
Decoding

Loudspeaker
Rendering HOA domainBitstream

Local loudspeaker configuration

Signaled HOA
Rendering Matrices

Rule-based decision
whether to use a signaled

Rendering matrix

 Production ScreenSize

Local Screen Size

ho
aO

rd
er

D

R

Loudspeaker
Feeds

Core
Decoding

Compute new
Rendering

Matrix

F

R

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 567	
	

	

2) The	directions	of	those	M	sampling	points	are	first	modified	using	the	mapping	function	defined	
in	subclause	18.3.	Then	a	mode	matrix	ÈP

(ö,o)	based	on	these	modified	points	is	computed	
accordingly.	

	

3) Computing	a	preliminary	effect	matrix:		
Ô = ÈP

(ö,o)	È(ö,o)ú,		

where		È(ö,o)údenotes	the	pseudo-inverse	of	the	mode	matrix		È(ö,o).	

4) Computing	a	loudness	correction	value	by	using	the	HOA	rendering	matrix	R	(see	subclause	
12.4.3.2)	for	each	spatial	direction	d = 1…Ã:	

 (d) = 	º
(ù	û-,C

				Q)9(ù	û-,C
				Q)

çù	ü†ûC
Qè

9
(ù	ü†	ûC

Q)
		

5) Computing	the	final	effect	matrix:	
Ô = ÈP

(ö,o).~4x()	È(ö,o)ú,		
	
where	.~4x()	denotes	a	diagonal	matrix	including	the	vector	 .	
	

6) Computing	the	new	rendering	matrix:	
Ò = ÚÔ	
	

The	zoom-depending	adaptation	of	higher	order	ambisonics	is	depicted	in	Figure	104.	If	no	local	zoom	

information	is	available,	zooming	shall	not	be	applied.	The	same	algorithmic	principles	as	described	for	

the	screen-related	processing	for	higher	order	ambisonics	are	applied,	but	the	rendering	matrix	shall	be	

adapted	 at	 runtime	 according	 to	 the	 data	 provided	 by	 the	 LocalZoomAreaSize()	 interface.	 During	 a	

dynamic	zooming	event,	a	new	effect	matrix	F	shall	be	computed	based	a	mode	matrix		È(ö,o)with	Ã =
(Å + 2)?	equally	spatial	sampling	points	which	directions	are	given	in	Annex	F.5	to	F.9.	Once	the	zoom	is	
stationary,	 the	 new	 effect	 matrix	 F	 is	 computed	 based	 a	 mode	 matrix	 	È(ö,o)with	Ã = 900	spatial	
sampling	points	as	decribed	above.		

	

Figure	104	—	Overview	of	zooming	for	higher	order	ambisonics	

Additional	information	about	screen-related	adaptation	of	HOA	can	be	found	in	Annex	M.	

Compute Effect
Matrix

Generate
Rendering Matrix

Locally

HOA
Decoding

Loudspeaker
Rendering HOA domainBitstream

Local loudspeaker configuration

Signaled HOA
Rendering Matrices

Rule-based decision
whether to use a signaled

Rendering matrix

 Production ScreenSize

Local Screen Size

ho
aO

rd
er Compute New

Rendering Matrix

D

R

 F

Loudspeaker
Feeds

Core
Decoding

Local Zoom Area

R

ISO/IEC	23008-3:202X(E)	

568	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

18.5 Object	remapping	for	zooming	

Object	 remapping	 for	 zooming	 is	 only	 processed	 if	 the	 bitstream	 contains	 screen-related	 elements	

(isScreenRelativeObject	==	1	for	at	least	one	audio	element)	that	are	accompanied	by	OAM	data	and	a	

local	zoom	area	is	signalled	to	the	decoder	via	the	LocalZoomAreaSize()	interface.	

If	 zoom	area	 information	 is	 given,	 then	object	 remapping	 for	 zooming	 is	 applied	 after	 screen-related	

element	remapping.	Otherwise,	no	object	remapping	for	zooming	shall	be	applied.	

The	zoom	area	defines	a	part	of	the	video	content	that	is	expanded	to	the	whole	reproduction	screen.		

	

Figure	105	—	Screen-related	object	remapping	for	zooming	

The	position	of	any	element	that	is	marked	as	screen-related	and	that	has	accompanying	OAM	data	is	

changed	accordingly.	The	input	values	for	the	object	remapping	for	zooming	are	the	remapped	values	 	

and	 .	

The	edges	of	the	zoom	area	are	given	by:	

·C/FH
RAA-SB/D,·B+TUH

RAA-SB/D,‰HAVRAA-SB/D,‰GAHHA-RAA-SB/D	

They	are	defined	as:	

·C/FH
RAA-SB/D = ·=/0H/B

RAA-SB/D + ·AFF>/H
RAA-SB/D	

·B+TUH
RAA-SB/D = ·=/0H/B

RAA-SB/D − ·AFF>/H
RAA-SB/D	

‰HAVRAA-SB/D = ‰=/0H/BRAA-SB/D + ‰AFF>/HRAA-SB/D	

'j
'q

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 569	
	

‰GAHHA-RAA-SB/D = ‰=/0H/BRAA-SB/D − ‰AFF>/HRAA-SB/D	

The	mapping	function	for	the	object	remapping	for	zooming	is	defined	just	as	the	mapping	function	for	

the	screen-related	element	remapping;	only	 the	edges	of	 the	nominal	screen	size	are	replaced	by	 the	

edges	of	the	zoom	area.	

18.6 Determination	of	the	closest	loudspeaker	

The	 distance	 of	 two	 positions	P1	 and	P2	 in	 a	 spherical	 coordinate	 system	 is	 defined	 as	 the	 absolute	

difference	of	their	azimuth	angles	 and	elevation	angles .	

	

This	distance	has	to	be	calculated	for	all	known	position	P1	to	PN	of	a	defined	list	of	N	output	loudspeakers	
with	respect	to	the	wanted	position	of	the	audio	element	Pwanted.	

The	nearest	known	loudspeaker	position	is	the	one,	where	the	distance	to	the	wanted	position	of	the	

audio	element	gets	minimal:	

	

If	more	than	one	loudspeaker	position	is	calculated	to	have	the	minimal	distance	to	the	audio	element,	

then	the	loudspeaker	position	shall	be	chosen	which	is	listed	earliest	in	the	list	of	output	loudspeaker	

channels.	

18.7 Determination	of	a	list	of	loudspeakers	for	conditioned	closest	loudspeaker	
playback	

If	 the	 closest	 loudspeaker	 playback	 is	 conditioned,	 the	 ‘closest	 loudspeaker	 processing’	 shall	 only	 be	

conducted	if	one	or	more	loudspeakers	are	located	in	a	defined	area	around	the	members	of	the	group.	

The	 corresponding	object	 should	 then	be	played	back	by	 the	 closest	 loudspeaker	within	 this	defined	

range.	The	area	is	defined	by	minimum	and	maximum	values	based	on	the	given	threshold	angle	(see	

subclause	7.4.4	for	semantics):	

— φmin	=	φobj	–	φthresh			

— φmax	=	φobj	+	φthresh			

— θmin		=	θobj	–	θthresh			
— θmax	=		θobj	+	θthresh	

If	 a	 loudspeaker	 lies	 within	 the	 closest	 loudspeaker	 playout	 processing	 range,	 both	 the	 following	

conditions	have	to	be	true:		

— φspeaker	≥	φobj	–	φthresh		&&	φspeaker	≤	φobj	+	φthresh		

— θspeaker	≥	θobj	–	θthresh		&&		θspeaker	≤	θobj	+	θthresh		

Special	cases	have	to	be	considered	for	values	out	of	the	allowed	range:	

— φmin	<	-180°		
— φmax	>	+180°			

— θmin	<	-90°			

— θmax	>	+90°	

j q

1 2 1 2 1 2(,)P P q q j jD = - + -

1 2min((,), (,),..., (,))next wanted wanted wanted NP P P P P P P= D D D

ISO/IEC	23008-3:202X(E)	

570	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Minimum	or	maximum	elevation	is	out	of	range,	minimum	and	maximum	azimuth	are	within	the	
allowed	range:	

If	((θmax	>	90°	||	θmin<	-90°)	&&	(φmin	≥	-180°	&&	φmax	≤	180°),	the	following	condition	has	to	be	true:	

(φspeaker	≥	φmin	&&	φspeaker	≤	φmax)	&&	(θspeaker	≥	θmin,1	&&	θspeaker	≤	θmax,1)	

||	

(φspeaker	≥	φmin,2	&&	φspeaker	≤	φmax,2)	&&	(θspeaker	≥	θmin,2		&&	θspeaker	≤	θmax,2)	

with	

								 	

Minimum	or	maximum	azimuth	is	out	of	range,	minimum	and	maximum	elevation	are	within	the	
allowed	range:	

If	((φmax	>	180°	||	φmin	<	-180°)	&&	(θmin	≥	-90°	&&	θmax	≤	90°),	the	following	condition	has	to	be	true:	

(φspeaker	≥	φmin,1	&&	φspeaker	≤	φmax,1)	&&	(θspeaker	≥	θmin	&&	θspeaker	≤	θmax)	

||	

(φspeaker	≥	φmin,2	&&	φspeaker	≤	φmax,2)	&&	(θspeaker	≥	θmin	&&	θspeaker	≤	θmax)	

with	

								 	

Minimum	or	maximum	azimuth	 is	out	of	range,	and	minimum	or	maximum	elevation	 is	out	of	
range:	

If	((φmax	>	180°	||	φmin	<	-180°)	&&	(θmin	<	-90°	||	θmax	>	90°),	the	following	condition	has	to	be	true:	

(φspeaker	≥	φmin,1	&&	φspeaker	≤	φmax,1)	&&	(θspeaker	≥	θmin,1	&&	θspeaker	≤	θmax,1)	

||	

(φspeaker	≥	φmin,2	&&	φspeaker	≤	φmax,2)	&&	(θspeaker	≥	θmin,1	&&	θspeaker	≤	θmax,1)	

||	

(φspeaker	≥	φmin,3	&&	φspeaker	≤	φmax,3)	&&	(θspeaker	≥	θmin,2	&&	θspeaker	≤	θmax,2)	

with	

min,1 min

max,1

min,2 max
max

max,2

min,2 min

max,2 max

90
90 90

if 90
90

180
180

q q
q
q q

q
q
j j
j j

= ü
ï= ° ï
ï= °- °- ï > °ý= ° ï
ï= + °
ï

= + ° ïþ

min,1

max,1 max

min,2
min

max,2 min

min,2 min

max,2 max

90

90
if 90

90 90
180
180

q
q q
q

q
q q
j j
j j

= - ° ü
ï= ï
ï= - ° ï < - °ý= °+ °+ ï
ï= + °
ï

= + ° ïþ

min,1

max,1 max
min

min,2 min

max,2

180

if 180
180 (180)
180

j
j j

j
j j
j

= - ° ü
ï= ï < - °ý= °- + ° ï
ï= ° þ

min,1 min

max,1
max

min,2

max,2 max

180
if 180

180
180 (180)

j j
j

j
j
j j

= ü
ï= ° ï > °ý= - ° ï
ï= - °+ - ° þ

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 571	
	

								 	

								 	

For	each	of	the	output	loudspeaker,	it	has	to	be	determined	if	it	lies	within	the	defined	area.	The	closest	

loudspeaker	playout	should	then	only	take	into	account	the	loudspeakers	within	this	range.	

18.8 Processing	of	scene	displacement	angles	for	channels	and	objects	(CO)	

If	the	‘useTrackingMode’	flag	of	either	binauralRendering()	or	loudspeakerRendering()	is	equal	to	one,	

the	 data	 received	 by	 the	 scene	 displacement	 interface	 mpegh3daSceneDisplacementData()	 shall	 be	

processed.	The	received	angles	 ‘yaw’	(αyaw),	 ‘pitch’	(βpitch)	and	 ‘roll’	 (θroll)	describe	how	each	object’s	
position	has	to	be	updated	(i.e.	the	scene	displacement	around	the	z	axis,	x	axis	and	y	axis).	

— A	positive	yaw	value	corresponds	to	a	clockwise	rotation	about	z	axis.	

— A	positive	pitch	value	corresponds	to	an	anti-clockwise	rotation	about	the	x	axis.	

— A	positive	roll	value	corresponds	to	an	anti-clockwise	rotation	about	the	y	axis.	
For	 each	 object	 and	 channel,	 it	 has	 to	 be	 checked	 if	 the	 ‘fixedPosition’	 flag	 indicated	 in	

mae_GroupDefinitionTrackingExtension()	of	mae_Data()	is	equal	to	0	or	1.	Afterwards,	for	each	element	

with	‘fixedPosition’	=	0’,	the	position	has	to	be	updated.	

Channels	are	therefore	interpreted	as	objects	with	the	position	of	their	corresponding	loudspeaker	as	the	

object’s	position:	The	real	playback	loudspeaker	position	shall	be	taken	into	account	if	given	by	‘known	

Position’.	Otherwise	the	ideal	loudspeaker	position	shall	be	assumed.		

No	position	interaction	shall	be	processed	for	these	former	channel-based	elements,	as	well	as	no	closest	

loudspeaker	 processing,	 no	 screen-related	 remapping,	 no	 spread	 rendering,	 no	 excluded	 sectors	

processing	and	no	divergence	or	diffuseness	processing.	

The	position	update	consists	of	the	following	steps.	

— First,	 the	 object	 or	 channel	 position	 	is	 determined.	 For	 channel-based	 signals	 the	
radius	r	is	determined	as	follows:	

— If	the	intended	loudspeaker	exists	in	the	reproduction	loudspeaker	setup	and	the	distance	of	the	
reproduction	setup	is	known,	the	radius	r	is	set	to	the	loudspeaker	distance	(in	cm).	

— If	 the	 intended	 loudspeaker	 does	 not	 exist	 in	 the	 reproduction	 loudspeaker	 setup,	 but	 the	
distance	 of	 the	 reproduction	 loudspeakers	 is	 known,	 the	 radius	 r	 is	 set	 to	 the	 maximum	
reproduction	loudspeaker	distance.	

— If	 the	 intended	 loudspeaker	 does	 not	 exist	 in	 the	 reproduction	 loudspeaker	 setup	 and	 no	
reproduction	loudspeaker	distance	is	known,	the	radius	r	is	set	to	1	023	cm.	

min,1

max,1 max
min

min,2 min

max,2

180

if 180
180 (180)
180

j
j j

j
j j
j

= - ° ü
ï= ï < - °ý= °- + ° ï
ï= ° þ

min,1 min

max,1
max

min,2

max,2 max

180
if 180

180
180 (180)

j j
j

j
j
j j

= ü
ï= ° ï > °ý= - ° ï
ï= - °+ - ° þ

min,1 min

max,1

min,2 max
max

max,2

min,3 min

max,3 max

90
90 90

if 90
90

180
180

q q
q
q q

q
q
j j
j j

= ü
ï= ° ï
ï= °- °- ï > °ý= ° ï
ï= + °
ï

= + ° ïþ

min,1

max,1 max

min,2
min

max,2 min

min,3 min

max,3 max

90

90
if 90

90 90
180
180

q
q q
q

q
q q
j j
j j

= - ° ü
ï= ï
ï= - ° ï < - °ý= °+ °+ ï
ï= + °
ï

= + ° ïþ

(, ,)p az el r=

ISO/IEC	23008-3:202X(E)	

572	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— After	 that,	 the	 position	 p	 is	 converted	 to	 the	 position ,	 according	 to	 the	 ‘common’	 convention,	

where	0°	azimuth	is	at	the	right	ear	(positive	values	going	anti-clockwise)	and	0°	elevation	is	top	of	

the	head	(positive	values	going	downwards),	resulting	in	 	

	

	

— The	position 	is	then	transferred	to	Cartesian	coordinates	(x,y,z),	assuming	the	following	direction	

of	coordinate	axes:	

— x	axis	pointing	to	the	right;	
— y	axis	pointing	straight	ahead;	

— z	axis	pointing	straight	up.	

	

— The	resulting	position	 is	then	rotated	with	the	rotation	being	dependent	on	the	scene	

displacement	input	data.		

— An	intrinsic	rotation	shall	be	calculated	using	a	z-x-y	convention	(‘Yaw-Pitch-Roll	Convention’	(YPR)).	
The	rotation	can	e.g.	be	realized	by	multiplication	with	a	rotation	matrix	Trot.	

— This	rotation	results	in	a	position 	

— This	updates	position	 	is	then	transferred	back	to	an	azimuth-elevation	notation	according	to	the	

‘common’	convention:	

	

	

	

— Position	p?' = Daz?
' , el?

' F	is	then	transferred	back	to	the	MPEG-H	notation,	resulting	in	a	final	updated	
position	p? = (az?, el?)	

	

	

´p

´ (,́ ,́)p az el r=

´ 90az az= + °

´ 90el el= °-
´p

sin()́ cos()́
sin()́ sin()́

cos()́

x r el az
y r el az

z r el

= × ×
= × ×

= ×
(, ,)v x y z=

´ (,́ ,́)́v x y z=

´v

2 2 2 2

´´ arccos
´ ´ ´
zel

x y z

æ ö
ç ÷=
ç ÷+ +è ø

2

90 sign()́ 90 if ´ 0
sign()́ 90 else if ´ 0

´arctan else if ´ 0
´

´ atan2(,́)́
´arctan 180 else if (´ 0)
´
´arctan 180 else
´

x y
y x
y x
x

az y x
y y
x
y
x

°- × ° ==ì
ï × ° ==ï
ï æ ö >ï ç ÷ï è ø= = í

æ öï + ° >ç ÷ï è ø
ï

æ öï - °ç ÷ï è øî

2 2 2
2´ ´ ´ ´r x y z= + +

2 2´ 90az az= - °

2 290 ´el el= °-

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 573	
	

	

After	that,	objects	and	channels	are	fed	to	the	object	renderer	with	their	updated	positions.	The	object	

renderer	 renders	 them	using	 the	 new	 object	 positions.	 The	 underlying	 triangulation	 stays	 the	 same,	

independent	of	the	tracking	data.	

The	DRC	 set	 selection	 process	 according	 to	 subclause	 6.4.4	 shall	 ignore	DRC	 sets	 for	DRC-3	 if	 scene	

displacement	processing	is	enabled	at	the	decoder.	

18.9 	Processing	of	scene	displacement	angles	for	scene-based	content	(HOA)	

The	rotation	of	the	HOA	representation	takes	place	after	spatial	HOA	decoding	and	DRC-1	but	before	the	

optional	 warping	 for	 the	 screen	 adaptation	 and	 rendering.	 It	 can	 be	 achieved	 by	 two	 equivalent	

approaches.	

1) The	first	approach	itself	consists	of	three	following	steps:	
a) Transforming	the	original	HOA	representation	of	order	Å	to	the	spatial	domain,	i.e.	

representing	it	by	general	plane	waves	from	≈ = (Å + 1)?	directions	of	incidence	Ùc
(Z),	

± = 1,… , ≈,	defined	in	Annexes	F.2	to	F.9.	
b) Rotating	the	directions	according	to	the	desired	rotation	of	the	HOA	representation	to	

provide	≈	rotated	directions	Ùõc
(Z),	± = 1,… , ≈.		

c) Applying	an	inverse	spatial	transform	to	the	general	plane	waves	assuming	the	rotated	
directions	to	provide	the	rotated	HOA	representation.	

The	three	operations	can	be	expressed	by		

ıõ = È¢£i		È§
>l		ı	,	

with	ı	∈ ℝ(Z78)
#		G	2			and	ıõ 	∈ ℝ(Z78)

#		G	2		denoting	the	frames	of	the	original	and	rotated	HOA	

representations,	È•
>l	denoting	the	inverse	of	the	mode	matrix	with	respect	to	the	directions	

Ùc
(Z)
	expressing	the	spatial	transform	and	È¶ß®		indicating	the	mode	matrix	with	respect	to	the	

rotated	directions	Ùõc
(Z)
.	The	mode	matrices	are	computed	from	the	directions	as	described	in	

according	in	Annex	F.1.5.	

The	approach	can	be	beneficial	for	lowering	the	computational	complexity	in	cases	the	HOA	

representation	is	already	given	by	in	the	spatial	domain.		

The	rotation	of	the	directions	can	be	accomplished	as	follows:	

First,	the	directions	Ùc
(Z) = (‰c

(Z), Íc
(Z)),	± = 1,… , ≈,	defined	in	Annexes	F.2	to	F.9	and	given	in	

spherical	coordinates	are	first	converted	to	positions	Ù©™´
(Z) =	 [œc , …c , Øc]p 		(assuming	a	radius	of	

one)	in	Cartesian	coordinates	,	i.e.		Ùc
(Z), → 	Ù©™´

(Z)
	by	

œc = «~5	‰cZ 	cosÍcZ	

	 	 	 		 							…c = «~5	‰cZ 	sinÍcZ	

Øc = k˜«	‰cZ		
Then,	the	rotated	positions	are	computed	by:	

ȭ ¨≠Æ
(Z) =	˘Ø∞±WJOÙ©™´

(Z) 	

where	˘Ø∞±WJO 	is	the	rotation	matrix	for	the	HOA	coordinate	system	derived	from	the	scene	

displacement	angles	(yaw,	pitch	roll),	see	Annex	I.	

2 2´r r=

ISO/IEC	23008-3:202X(E)	

574	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Eventually,	the	rotated	positions	are	converted	back	to	the	spherical	coordinate	system	 ȭ¨≠Æ
(Z) →

ȭ (Z)	by:	

	‰wc
(Z) = 4“452 `¿œá? + …á?, Ø̂a,			

Íwc
(Z) = 4“452(…á, œá)		

where	atan2()		is	defined	according	to	18.8.		
	

2) By	expressing	the	rotation	directly	as	one	single	matrix	multiplication	applied	to	the	frame	of	
the	original	HOA	representation	as:	

ıõ = ˙	ı	

where	the	elements	of	the	transform	matrix	˙	can	be	computed	by		˙ = È¢£i		È§
>l	or	directly	

using		so	–called	Wigner-D	functions	[13].	Note	that	the	transform	matrix	˙	has	a	special	block-
diagonal	structure,	which	looks	for	an	HOA	order	of	2	as	follows:	

˚|ZD? = ¸
1 ˝ ˝
˝ [3œ3] ˝
˝ ˝ [5œ5]

˛.	

Due	to	this	rather	sparse	structure,	the	matrix	multiplication	with	˙	can	be	accomplished	very	
efficiently.	

The	DRC	set	selection	process	according	to	subclause	6.4.4	shall	ignore	DRC	sets	for	DRC-3	if	

scene	displacement	processing	is	enabled	at	the	decoder.	

18.10 Determination	of	a	reduced	reproduction	layout	based	on	excluded	sectors	 	

If	it	should	be	determined	for	a	specific	list	of	reproduction	loudspeakers	which	ones	shall	be	excluded	

from	rendering	based	on	a	list	of	signalled	exclusion	sectors,	the	following	processing	has	to	be	conducted.	

¾ For	each	relevant	signal	group	a	‘group-related’	reproduction	layout	is	determined,	based	on	the	
signaling	of	excluded	sectors	in	the	EnhancedObjectMetadataConfig()	and	

EnhancedObjectMetadataFrame()	structures.	

¾ Therefore,	each	excluded	sector	of	the	current	group	is	associated	with	a	‘condition’,	
conditioning	the	positions	of	loudspeakers	that	shall	be	excluded	for	rendering.	

¾ If	the	excluded	sector	is	given	by	a	pre-defined	sector	index,	the	condition	is	defined	as	
stated	in	Table	285.	

¾ If	the	excluded	sector	is	an	arbitrary	sector	defined	by	minimum	and	maximum	
excluded	elevation	and	azimuth	values,	the	condition	is	given	by:	

	

¾ Each	reproduction	loudspeaker’s	position is	compared	to	all	conditions	given	by	the	list	

of	excluded	sectors	associated	with	the	current	group.	If	a	condition	is	true,	the	current	

loudspeaker	shall	be	excluded	from	rendering.	

() ()min max min max()&&() && ()&&()el el el el az az az az³ £ ³ £

(,)az el

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 575	
	

Table	285	—	Conditions	of	excluded	sectors	

Sector	Index	 Short	
description	 Condition	

0	 No	positive	
elevation	

el	>	0	

1	 No	negative	
elevation	

el	<	0	

2	 No	front	 ((abs(az)	<	90)	&&	(abs(el)	<	90))	
3	 No	right	side	 ((az	>	-180)	&&	(az	<	0))	
4	 No	left	side	 ((az	>	0)	&&	(az	<	180))	

5	 No	surround	
((abs(az)	>=	90)		

||		
((az=0)	&&	(el=90)))	

6	 Screen	only	
(((az	>)	||	(az	<))					

&&				
((el	>)	||	(el	<)))	

7-15	 Reserved	 — 	

This	processing	is	only	applied	if	

— the	targetLayout	is	signalled	in	the	LoudspeakerRendering(),	and	

— the	speakerLayoutType	is	0	or	1.	

Any	signalling	of	‘known	Positions’	(in	LoudspeakerRendering())	shall	not	be	taken	into	account.	

Multiple	 instances	of	 the	object	renderer	module	may	be	needed	to	render	the	content	 to	 the	 ‘group-

related’	reproduction	layouts	(group-related	target	rendering	layouts).	

18.11 Diffuseness	rendering	

To	render	objects	whose	groups	have	a	‘diffuseness’	parameter	bigger	than	zero,	a	weighted	sum	of	a	so-

called	direct	 sound	part	 and	a	diffuse	 sound	part	has	 to	be	 calculated	depending	on	 the	value	of	 the	

diffuseness	parameter	before	playback.	

Two	signal	versions	are	created	for	each	object	with	a	diffuseness	value	bigger	than	zero:	A	‘direct	sound	

part’	and	a	‘diffuse	sound	part’.		

The	direct	sound	part	is	the	normal	output	of	the	metadata	preprocessor,	including	all	processing	steps	

that	are	related	to	element	metadata	preprocessing,	such	as:	

¾ spread	processing;	

¾ position	and	gain	interaction;	

¾ closest	loudspeaker	playout	processing;	

¾ screen-related	remapping	and	zooming;	

¾ processing	of	excluded	sectors;	

¾ etc.	

The	diffuse	sound	part	is	created	by	replicating	the	object	audio	content	to	the	number	N,	with	N	being	
the	number	of	total	available	reproduction	loudspeakers	without	LFEs.	

Each	of	these	N	signals	is	filtered	with	a	decorrelation	filter.	Gain	interaction	is	applied	here	as	well,	such	
that	an	interaction	gain	affects	both	parts	equally.	See	Annex	J	for	an	example	of	how	a	decorrelation	filter	

can	be	realized.	

repro
leftj repro

rightj

repro
topq repro

bottomq

ISO/IEC	23008-3:202X(E)	

576	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Both	the	direct	sound	part	and	the	diffuse	sound	part	are	in	addition	weighted	with	a	gain	factor,	which	

is	dependent	of	the	diffuseness	value	of	the	group,	to	which	the	current	object	belongs	to.	

The	following	functions	for	the	two	weights	gdir,	gdiff	are	defined:	

	

EXAMPLE	 Diffuseness	=	0.0		 	 à	only	the	direct	part	is	playing.	

	

EXAMPLE	 Diffuseness	=	1.0		 	 à	only	the	diffuse	part	is	playing.	

	

EXAMPLE	 Diffuseness	=	0.5		 	 à	both	parts	are	playing	with	equal	weights.	

	

The	direct	sound	part	is	sent	to	the	object	renderer;	the	diffuse	sound	part	is	directly	sent	to	the	mixer,	

where	the	two	paths	are	combined	and	a	mix	of	direct	sound	and	diffuse	sound	is	created.	Note	that	the	

diffuse	part	does	not	contain	signals	for	LFE	loudspeakers.	

The	routing	of	the	diffuse	part	to	the	mixer	shall	be	disabled	in	case	an	output	via	the	object	interface	is	

requested.	The	weighting	of	the	direct	sound	part	with	the	factor	gdir	shall	also	be	omitted.	

The	overall	processing	is	depicted	in	Figure	106.	

'
diff

'
dir diff

'
diff diff

diffuseness

1.0

g

g g

g g N

=

= -

= ×

'
dir diff1.0, 0.0g g= =

'
dir diff0.0, 1.0g g= =

'
dir diff0.5, 0.5g g= =

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 577	
	

	

Figure	106	—	Diffuseness	processing	

19 MPEG-H	3D	audio	profile	definition	

ISO/IEC	23008-3:2015	(the	first	edition	of	this	document)	captured	the	definition	of	the	main	profile,	its	

associated	bitstream	syntax,	semantics,	and	decoding	process	description.	

20 Carriage	of	MPEG-H	3D	audio	in	ISO	base	media	file	format	
20.1 General	

This	clause	specifies	the	carriage	of	MPEG-H	3D	audio	in	the	ISO	base	media	file	format.	Subclause	20.2	

describes	the	signalling	of	random	access	points	for	immediate	play-out	frames	(IPF)	and	independently	

decodable	frames	(IF).	Subclause	20.7	describes	the	additional	signalling	of	dynamic	range	control	and	

loudness	 information	 that	 might	 be	 present	 in	 the	 encoded	 bitstream.	 Subclause	 20.9	 describes	 the	

additional	signalling	of	audio	scene	information	data	that	might	be	present	in	the	encoded	bitstream.	If	

the	exact	original	length	(duration)	of	an	input	is	to	be	retained	throughout	the	encode/decode	process,	

then	this	shall	be	done	in	accordance	with	Annex	N.	

ISO/IEC	23008-3:202X(E)	

578	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

20.2 Random	access	and	stream	access	

Frames	 that	 use	 AudioPreRoll()	 following	 the	 restrictions	 in	 subclause	 5.5.6	 are	 considered	 to	 be	

immediate	play-out	frames	(IPF)	and	shall	be	signalled	as	sync	samples	according	to	ISO/IEC	14496-12.	

If	independently	decodable	frames	(IF)	as	described	in	subclause	5.7	are	to	be	signalled,	they	shall	be	

signalled	by	means	of	the	AudioPreRollEntry	according	to	ISO/IEC	14496-12.	

20.3 Overview	of	new	box	structures	

mha1,	
mha2,	
mhm1,	
mhm2	

	 	 *	 sample	entry	

	 mhaC	 	 	 configuration	

	 mhaD	 	 	 dynamic	range	and	loudness	

	 mhaP	 	 	 profile	and	level	compatibility	sets	

	 maeM	 	 	 multi-stream	

	 maeI	 	 	 audio	scene	information	

	 	 maeG	 *	 group	definition	

	 	 maeS	 	 switch	group	definition	

	 	 maeP	 	 preset	definition	

	 	 maeL	 	 text	label	definition	

20.4 MHA	decoder	configuration	record	

 Definition	

This	clause	specifies	the	decoder	configuration	information	for	MPEG-H	3D	audio	(MHA)	content.	

This	 record	contains	a	version	 field.	This	version	of	 the	specification	defines	version	1	of	 this	 record.	

Incompatible	changes	to	the	record	will	be	indicated	by	a	change	of	version	number.	Decoders	shall	not	

attempt	to	decode	this	record	or	the	streams	to	which	it	applies	if	the	version	number	is	unrecognized.	

 Syntax	

aligned(8) class MHADecoderConfigurationRecord {
 unsigned int(8) configurationVersion = 1;
 unsigned int(8) mpegh3daProfileLevelIndication;
 unsigned int(8) referenceChannelLayout;
 unsigned int(16) mpegh3daConfigLength;
 bit(8*mpegh3daConfigLength) mpegh3daConfig;
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 579	
	

 Semantics	

 configurationVersion shall	be	set	to	1	in	this	version	of	the	specification.	

 mpegh3daProfileLevelIndication defined	in	subclause	5.2.2.	

 referenceChannelLayout ChannelConfiguration	value	in	accordance	with	

ISO/IEC	23001-8.	

 mpegh3daConfigLength length	in	bytes	of	mpegh3daConfig.	

 mpegh3daConfig the	 MPEG-H	 3D	 audio	 configuration	 defined	 in	 this	

document.	

20.5 MPEG-H	audio	sample	entry	

 Definition	

Box	Types:	‘mhaC’,	‘mha1’,	‘mha2’	

Container:	Sample	Table	Box	(‘stbl’)	

Mandatory:	No	

Quantity:	One	or	more	sample	entries	may	be	present	

The	MHASampleEntry	shall	contain	a	MHAConfigurationBox,	as	defined	below.	This	includes	the	
MHADecoderConfigurationRecord	as	defined	in	subclause	20.4.	If	the	sample	entry	type	is	‘mha1’,	
multiple	streams	shall	not	be	used.	If	the	sample	entry	name	is	‘mha2’,	multiple	streams	may	be	used.	

If	 an	‘mha1’	 or	‘mha2’ MHASampleEntry	 is	present,	 each	 sample	of	 the	appropriate	 track	 shall	
contain	exactly	one	mpegh3daFrame	as	defined	in	this	document.	An	optional	MPEG4BitRateBox	may	
be	present	 in	 the	MHASampleEntry	 to	signal	 the	bit	rate	 information	of	 the	MHA	stream.	Extension	
descriptors	that	should	be	inserted	into	the	elementary	stream	descriptor,	when	used	in	MPEG-4,	may	

also	be	present.	Other	boxes	may	be	present	in	the	MHASampleEntry.	When	multiple	streams	are	used,	
the	 MHADecoderConfigurationRecord	 for	 each	 track	 shall	 correspond	 to	 the	 appropriate	
mpegh3daFrame	of	that	track.	

The	following	optional	boxes	inherited	from	AudioSampleEntry	from	ISO/IEC	14496-12/Amd	4:2015	
shall	not	be	present.	

—	 DownMixInstructions()	

—	 DRCCoefficientsBasic()	

—	 DRCInstructionsBasic()	

—	 DRCCoefficientsUniDRC()	

—	 DRCInstructionsUniDRC()	

 Syntax	

class MHAConfigurationBox() extends Box(‘mhaC’) {
 MHADecoderConfigurationRecord MHAConfig;
}

ISO/IEC	23008-3:202X(E)	

580	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

class MPEG4BitRateBox() extends Box(‘btrt’) {
 unsigned int(32) bufferSizeDB;
 unsigned int(32) maxBitrate;
 unsigned int(32) avgBitrate;
}
class MPEG4ExtensionDescriptorsBox() extends Box(‘m4ds’) {
 Descriptor Descr[0 .. 255];
}
MHASampleEntry() extends AudioSampleEntry(‘mha1’) {
 MHAConfigurationBox config;
 MPEG4BitRateBox(); // optional
 MPEG4ExtensionDescriptorsBox (); // optional
}
MHASampleEntry() extends AudioSampleEntry(‘mha2’) {
 MHAConfigurationBox config;
 MPEG4BitRateBox(); // optional
 MPEG4ExtensionDescriptorsBox (); // optional
}

 Semantics	

		 ChannelCount inherited	 from	 AudioSampleEntry,	 shall	 be	 set	 to	 0	 (inapplicable)	
The	 MPEG-H	 3D	 audio	 decoder	 is	 capable	 of	 rendering	 a	 scene	 to	 any	 given	

loudspeaker	 setup.	 The	 referenceChannelLayout	 carried	 in	 the	

MHADecoderConfigurationRecord	 shall	 be	 used	 to	 signal	 the	 preferred	
reproduction	layout	for	this	stream	and	replaces	the	ChannelCount.

		 config defined	in	subclause	20.4.

		 Descr is	 a	 descriptor	 which	 should	 be	 placed	 in	 in	 the	

ElementaryStreamDescriptor	 when	 this	 stream	 is	 used	 in	 an	 MPEG-4	
systems	 context.	 This	 does	 not	 include	 SLConfigDescriptor	 or	

DecoderConfigDescriptor,	but	includes	the	other	descriptors	in	order	to	be	
placed	after	the	SLConfigDescriptor.

		 bufferSizeDB gives	the	size	of	the	decoding	buffer	for	the	elementary	stream	in	bytes.

		 maxBitrate gives	the	maximum	rate	in	bits/second	over	any	window	of	1	second.

	 minBitrate gives	the	average	rate	in	bits/second	over	any	window	of	1	second.	

20.6 MPEG-H	audio	MHAS	sample	entry	

 Definition	

Box	Types:	‘mhm1’,	‘mhm2’	

Container:	Sample	Table	Box	(‘stbl’)	

Mandatory:	No	

Quantity:	One	or	more	sample	entries	may	be	present	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 581	
	

Especially	 in	 streaming	 or	 broadcast	 environments	 based	 on,	 e.g.	MPEG-DASH	 or	MPEG-H	MMT,	 the	

MPEG-H	3D	audio	configuration	may	change	at	arbitrary	positions	of	the	stream	and	not	necessarily	only	

on	fragment	boundaries.	To	enable	this	use-case	the	‘mhm1’	and	‘mhm2’ MHASampleEntry	provides	
an	in-band	configuration	mechanism	for	MPEG-H	3D	audio	files.	

If	 an	‘mhm1’	 or	‘mhm2’ MHASampleEntry	 is	present,	 each	 sample	of	 the	appropriate	 track	 shall	
contain	exactly	one	MHAS	packet	with	the	MHASPacketType	PACTYP_MPEGH3DAFRAME	as	defined	in	

Clause	14.	

A	 sample	 may	 contain	 additional	 MHAS	 Packets	 of	 other	 types:	 if	 present,	 an	 MHAS	 packet	 with	

MHASPacketType	 PACTYP_MPEGH3DACFG,	 PACTYP_AUDIOSCENEINFO	 or	

PACTYP_AUDIOTRUNCATION	 shall	 directly	 precede	 the	 MHAS	 packet	 of	 type	

PACTYP_MPEGH3DAFRAME.	

MHAS	packets	with	the	MHASPacketType	PACTYP_CRC16	and	PACTYP_CRC32	shall	not	be	present	in	any	

sample.	Other	MHAS	packets	may	be	present	in	a	sample.	

The	first	sample	of	the	movie	and	the	first	sample	of	every	fragment	(when	applicable)	shall	contain	a	

MHAS	 packet	 with	 the	 type	 PACTYP_MPEGH3DACFG	 followed	 by	 an	 MHAS	 packet	 with	 the	 Type	

PACTYP_AUDIOSCENEINFO	if	present.	

All	 samples	of	 the	movie	 that	 contain	an	MHAS	packet	of	 type	PACTYP_MPEGH3DACFG	shall	be	 sync	

samples.	

If	the	movie	contains	a	configuration	change,	i.e.	one	of	the	samples	of	the	movie	besides	the	first	sample	

contains	an	MHAS	packet	of	type	PACTYP_MPEGH3DACFG,	all	sync	samples	of	the	movie	shall	contain	an	

MHAS	packet	of	type	PACTYP_MPEGH3DACFG.	

If	 the	 sample	 entry	 type	 is	‘mhm1’,	multiple	 streams	 shall	 not	 be	 used.	 If	 the	 sample	 entry	name	 is	
‘mhm2’,	multiple	streams	may	be	used.	

Optional	 boxes	may	 be	 present	 in	 the	MHASampleEntry.	 Optional	 boxes	 for	 the	 sample	 entry	 type	
‘mhm1’	are	handled	according	to	the	sample	entry	type	is	‘mha1’,	optional	boxes	for	the	sample	entry	
type	is	‘mhm2’	are	handled	according	to	the	sample	entry	type	is	‘mha2’.	

In	contrast	to	the	sample	entry	types	‘mha1’	and	‘mha2’	the	MHAConfigurationBox	is	optional	for	the	
sample	entry	types	‘mhm1’	and	‘mhm2’	and	not	mandatory.	

 Syntax	

MHASampleEntry() extends AudioSampleEntry(‘mhm1’) {
 MHAConfigurationBox config; // optional
 MPEG4BitRateBox(); // optional
 MPEG4ExtensionDescriptorsBox(); // optional
}
MHASampleEntry() extends AudioSampleEntry(‘mhm2’) {
 MHAConfigurationBox config; // optional
 MPEG4BitRateBox(); // optional
 MPEG4ExtensionDescriptorsBox(); // optional
}

ISO/IEC	23008-3:202X(E)	

582	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

20.7 MHA	dynamic	range	control	and	loudness	

 Definition	

Box	Type:	‘mhaD’	

Container:	MHA	sample	entry	(‘mha1’, ‘mha2’, ‘mhm1’, ‘mhm2’)	

Mandatory:	No	

Quantity:	Zero	or	one	

This	box	 specifies	 the	dynamic	 range	 control	 and	 loudness	 information	 that	may	be	 contained	 in	 the	

MPEG-H	3D	 audio	 (MHA)	 track.	 The	 provided	 information	 represents	 only	 a	 subset	 of	 the	 in-stream	

configuration	according	to	subclause	6.3.	

 Syntax	

aligned(8) class MHADynamicRangeControlAndLoudnessBox()
 extends FullBox(‘mhaD’, version = 0, 0) {
 unsigned int(2) reserved = 0;
 unsigned int(6) drcInstructionsUniDrcCount;
 unsigned int(2) reserved = 0;
 unsigned int(6) loudnessInfoCount;
 unsigned int(2) reserved = 0;
 unsigned int(6) loudnessInfoAlbumCount;
 unsigned int(3) reserved = 0;
 unsigned int(5) downmixIdCount;

 for (i=0; i < drcInstructionsUniDrcCount; i++) {
 unsigned int(6) reserved = 0;
 unsigned int(2) drcInstructionsType;
 if (drcInstructionsType == 2) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_groupID;
 }
 if (drcInstructionsType == 3) {
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_groupPresetID;
 }
 unsigned int(2) reserved = 0;
 unsigned int(6) drcSetId;
 unsigned int(1) reserved = 0;
 unsigned int(7) downmixId;
 unsigned int(5) reserved = 0;
 unsigned int(3) additionalDownmixIdCount;
 for (j=0; j < additionalDownmixIdCount; j++) {
 unsigned int(1) reserved = 0;
 unsigned int(7) additionalDownmixId;
 }
 unsigned int(16) drcSetEffect;
 unsigned int(7) reserved = 0;
 unsigned int(1) limiterPeakTargetPresent;
 if (limiterPeakTargetPresent == 1) {
 unsigned int(8) bsLimiterPeakTarget;
 }

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 583	
	

 unsigned int(7) reserved = 0;
 unsigned int(1) drcSetTargetLoudnessPresent;
 if (drcSetTargetLoudnessPresent == 1) {
 unsigned int(2) reserved = 0;
 unsigned int(6) bsDrcSetTargetLoudnessValueUpper;
 unsigned int(2) reserved = 0;
 unsigned int(6) bsDrcSetTargetLoudnessValueLower;
 }
 unsigned int(1) reserved = 0;
 unsigned int(6) dependsOnDrcSet;
 if (dependsOnDrcSet == 0) {
 unsigned int(1) noIndependentUse;
 } else {
 unsigned int(1) reserved = 0;
 }
 }

 for (i=0; i < loudnessInfoCount; i++) {
 unsigned int(6) reserved = 0;
 unsigned int(2) loudnessInfoType;
 if (loudnessInfoType == 1 || loudnessInfoType == 2) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_groupID;
 } else if (loudnessInfoType == 3) {
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_groupPresetID;
 }
 LoudnessBaseBox();
 }

 for (i=0; i < loudnessInfoAlbumCount; i++) {
 LoudnessBaseBox();
 }

 for (i=0; i < downmixIdCount; i++) {
 unsigned int(1) reserved = 0;
 unsigned int(7) downmixId;
 unsigned int(2) downmixType;
 unsigned int(6) CICPspeakerLayoutIdx;
 }
}
	

 Semantics	

		 drcInstructionsUniDrcCount number	of	drcInstructions	in	the	MHA	track

		 loudnessInfoCount number	of	loudnessInfo	blocks	in	the	MHA	track

		 loudnessInfoAlbumCount number	 of	 loudnessInfoAlbum	 blocks	 in	 the	 MHA	

track

		 downmixIdCount number	of	downmixId	definitions	in	the	MHA	track

		 drcInstructionsType defined	in	subclause	6.3	a	value	of	‘1’	is	not	defined

ISO/IEC	23008-3:202X(E)	

584	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 mae_groupID defined	in	subclause	15.3

	 mae_groupPresetID defined	in	subclause	15.3

	 drcSetId defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 downmixId defined	in	subclause	5.3.5

	 additionalDownmixId defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 drcSetEffect defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 bsLimiterPeakTarget defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 bsDrcSetTargetLoudnessValueUpper defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 bsDrcSetTargetLoudnessValueLower defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 dependsOnDrcSet defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 noIndependentUse defined	in	ISO/IEC	23003-4:2015,	Annex	A

	 downmixType defined	in	subclause	5.3.5

	 CICPspeakerLayoutIdx defined	in	subclause	5.3.5

	 LoudnessBox() defined	in	ISO/IEC	14496-12:2012/Amd.4:2015	

20.8 MHA	multi-stream	signalling	

 Definition	

Box	Type:		‘maeM’	

Container:	MHA	sample	entry	(‘mha1’,	‘mha2’,	‘mhm1’,	‘mhm2’)	

Mandatory:	No	

Quantity:	Zero	or	one	

This	box	provides	information	on	the	location	of	each	mae_groupID	in	case	of	splitting	the	audio	scene	
over	multiple	streams	or	files.	If	multiple	streams	are	used,	this	box	shall	be	present.	

 Syntax	

aligned(8) class MHAMultiStreamBox()
 extends FullBox(‘maeM’, version=0, 0) {
 unsigned int(1) isMainStream;
 unsigned int(7) thisStreamID;

 if (isMainStream) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_numGroups;

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 585	
	

 unsigned int(1) reserved = 0;
 unsigned int(7) numAuxiliaryStreams;

 for (i=0; i< mae_numGroups; i++) {
 unsigned int(7) mae_groupID;
 unsigned int(1) isInMainStream;
 if (!isInMainStream) {
 unsigned int(1) reserved = 0;
 unsigned int(7) auxiliaryStreamID;
 }
 }
 }
}

 Semantics	

isMainStream flag	indicating	if	this	is	the	main	stream	

thisStreamID unique	ID	of	the	audio	stream	in	the	scope	of	all	available	

streams	in	the	MHA	scene	

mae_numGroups total	number	of	groups	in	the	MHA	scene.	This	value	can	

have	a	value	between	1	and	127,	a	minimum	number	of	1	

and	a	maximum	number	of	127	groups.	This	number	shall	

be	equal	to	mae_numGroups	in	
MHAGroupDefinitionBox()	

numAuxiliaryStreams total	number	of	auxiliary	streams	available	

mae_groupID mae_groupID	(see	subclause	15.3)	the	loop	instance	
refers	to	

isInMainStream if	this	flag	is	set	to	1,	the	audio	data	related	to	the	group	

(indicated	by	mae_groupID)	is	present	in	the	main	
stream,	otherwise	the	data	is	transmitted	in	an	auxiliary	

stream	

auxiliaryStreamID in	case	the	audio	data	identified	by	mae_groupID	is	an	
auxiliary	stream,	this	integer	identifies	the	respective	

auxiliary	stream	

20.9 Audio	scene	information	

 MHA	group	definition	

20.9.1.1 Definition	

Box	Type:	‘maeG’	

Container:	MHA	scene	information	(‘maeI’)	

Mandatory:	Yes	

Quantity:	Zero	or	one	

This	box	provides	 information	about	 interactivity	and	priority	of	groups	contained	 in	an	MPEG-H	3D	

audio	(MHA)	track.	

ISO/IEC	23008-3:202X(E)	

586	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

20.9.1.2 Syntax	

aligned(8) class MHAGroupDefinitionBox()
 extends FullBox(‘maeG’, version = 0, 0) {

 unsigned int(8) mae_audioSceneID;

 unsigned int(1) reserved = 0;
 unsigned int(7) mae_numGroups;
 for (i=0; i < mae_numGroups; i++) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_groupID;
 unsigned int(3) reserved = 0;
 unsigned int(1) mae_allowOnOff;
 unsigned int(1) mae_defaultOnOff;
 unsigned int(1) mae_allowPositionInteractivity;
 unsigned int(1) mae_allowGainInteractivity;
 unsigned int(1) mae_hasContentLanguage;
 unsigned int(4) reserved = 0;
 unsigned int(4) mae_contentKind;

 if (mae_allowPositionInteractivity == 1) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_interactivityMinAzOffset;
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_interactivityMaxAzOffset;
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_interactivityMinElOffset;
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_interactivityMaxElOffset;
 unsigned int(4) mae_interactivityMinDistFactor;
 unsigned int(4) mae_interactivityMaxDistFactor;
 }

 if (mae_allowGainInteractivity == 1) {
 unsigned int(2) reserved = 0;
 unsigned int(6) mae_interactivityMinGain;
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_interactivityMaxGain;
 }

 if (mae_hasContentLanguage == 1) {
 unsigned int(8) mae_contentLanguage;
 }
 }
}
	

20.9.1.3 Semantics	

		 mae_audioSceneID defined	in	subclause	15.3

		 mae_numGroups defined	in	subclause	15.3

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 587	
	

		 mae_groupID defined	in	subclause	15.3

		 mae_allowOnOff defined	in	subclause	15.3

		 mae_defaultOnOff defined	in	subclause	15.3

	 mae_allowPositionInteractivity defined	in	subclause	15.3

	 mae_allowGainInteractivity defined	in	subclause	15.3

	 mae_hasContentLanguage defined	in	subclause	15.3

	 mae_contentKind defined	in	subclause	15.3

	 mae_interactivityMinAzOffset defined	in	subclause	15.3

	 mae_interactivityMaxAzOffset defined	in	subclause	15.3

	 mae_interactivityMinElOffset defined	in	subclause	15.3

	 mae_interactivityMaxElOffset defined	in	subclause	15.3

	 mae_interactivityMinDistFactor defined	in	subclause	15.3

	 mae_interactivityMaxDistFactor defined	in	subclause	15.3

	 mae_interactivityMinGain defined	in	subclause	15.3

	 mae_interactivityMaxGain defined	in	subclause	15.3

	 mae_ContentLanguage defined	in	subclause	15.3	

 MHA	switch	group	definition	

20.9.2.1 Definition	

Box	Type:	‘maeS’	

Container:	MHA	scene	information	(‘maeI’)	

Mandatory:	No	

Quantity:	Zero	or	one	

20.9.2.2 Syntax	

aligned(8) class MHASwitchGroupDefinitionBox()
 extends FullBox(‘maeS’, version = 0, 0) {

 unsigned int(3) reserved = 0;
 unsigned int(5) mae_numSwitchGroups;
 for (i=0; i < mae_numSwitchGroups; i++) {
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_switchGoupID;

ISO/IEC	23008-3:202X(E)	

588	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 unsigned int(3) reserved = 0;
 unsigned int(5) mae_bsSwitchGroupNumMembers;
 for (j=0; j < mae_bsSwitchGroupNumMembers; j++) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_switchGroupMemberID;
 }

 unsigned int(1) reserved = 0;
 unsigned int(7) mae_switchGroupDefaultGroupID;
 }
}

20.9.2.3 Semantics	

		 mae_numSwitchGroups defined	in	subclause	15.3

		 mae_switchGroupID defined	in	subclause	15.3

		 mae_switchGroupAllowOnOff defined	in	subclause	15.3

		 mae_switchGroupDefaultOnOff defined	in	subclause	15.3	

If	mae_switchGroupAllowOnOff	is	0,	then	
mae_switchGroupDefaultOnOff	shall	be	0

		 mae_bsSwitchGroupNumMembers defined	in	subclause	15.3

	 mae_switchGroupMemberID defined	in	subclause	15.3

	 mae_switchGroupDefaultGroupID defined	in	subclause	15.3	

 MHA	group	preset	definition	

20.9.3.1 Definition	

Box	Type:	‘maeP’	

Container:	MHA	scene	information	(‘maeI’)	

Mandatory:	No	

Quantity:	Zero	or	one	

This	box	provides	information	about	group	presets	contained	in	an	MPEG-H	3D	audio	(MHA)	track.	A	

preset	is	a	collection	of	groups	which	cover	a	common	use-case.	In	addition,	a	preset	can	be	used	to	enable	

advanced	DRC	for	audio	object	scenes.	

20.9.3.2 Syntax	

aligned(8) class MHAGroupPresetDefinitionBox()
 extends FullBox(‘maeP’, version=0, 0) {

 unsigned int(3) reserved = 0;

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 589	
	

 unsigned int(5) mae_numGroupPresets;
 for (i=0; i < mae_numGroupPresets; i++) {
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_groupPresetID;
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_groupPresetKind;

 unsigned int(8) numGroupPresetConditions;
 for (j=0; j < numGroupPresetConditions; j++) {
 unsigned int(7) mae_groupPresetGroupID;
 unsigned int(1) mae_groupPresetConditionOnOff;
 if (mae_groupPresetConditionOnOff == 1) {
 unsigned int(4) reserved = 0;
 unsigned int(1) mae_groupPresetDisableGainInteractivity;
 unsigned int(1) mae_groupPresetGainFlag;
 unsigned int(1)
mae_groupPresetDisablePositionInteractivity;
 unsigned int(1) mae_groupPresetPositionFlag;
 if (mae_groupPresetGainFlag == 1) {
 unsigned int(8) mae_groupPresetGain;
 }
 if (mae_groupPresetPositionFlag == 1) {
 unsigned int(8) mae_groupPresetAzOffset;
 unsigned int(8) mae_groupPresetElOffset;
 unsigned int(8) mae_groupPresetDistFactor;
 }
 }
 }
 }
}
	

20.9.3.3 Semantics	

		 mae_numGroupPresets defined	in	subclause	15.3

		 mae_groupPresetID defined	in	subclause	15.3

		 mae_groupPresetKind defined	in	subclause	15.3

		 numGroupPresetConditions number	of	group	preset	conditions

		 mae_groupPresetGroupID defined	in	subclause	15.3

	 mae_groupPresetConditionOnOff defined	in	subclause	15.3

	 mae_groupPresetDisableGainInteractivity defined	in	subclause	15.3

	 mae_groupPresetGainFlag defined	in	subclause	15.3

	 mae_groupPresetDisablePositionInteractivity defined	in	subclause	15.3

	 mae_groupPresetPositionFlag defined	in	subclause	15.3

ISO/IEC	23008-3:202X(E)	

590	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 mae_groupPresetGain defined	in	subclause	15.3

	 mae_groupPresetAzOffset defined	in	subclause	15.3

	 mae_groupPresetElOffset defined	in	subclause	15.3

	 mae_groupPresetDistFactor defined	in	subclause	15.3	

 MHA	group	description	text	label	

20.9.4.1 Definition	

Box	Type:		 ‘maeL’	

Container:	 MHA	scene	information	(‘mael’)	

Mandatory:	 No	

Quantity:	 Zero	or	one	

20.9.4.2 Syntax	

aligned(8) class MHAGroupDescrTextLabelBox()
 extends FullBox(‘maeL’, version = 0, 0) {

 unsigned int(4) reserved = 0;
 unsigned int(4) numDescLanguage;
 for (j=0; j < numDescLanguage; j++) {
 unsinged int(24) descriptionLanguage;

 unsigned int(1) reserved = 0;
 unsigned int(7) numGroupDescriptions;
 for (i=0; i < numGroupDescriptions; i++) {
 unsigned int(1) reserved = 0;
 unsigned int(7) mae_descritptionGroupID;

 unsigned int(8) groupDescriptionDataLength;
 for (c=0; c < groupDescriptionDataLength; c++) {
 groupDescriptionData;
 }
 }

 unsigned int(3) reserved = 0;
 unsigned int(5) numSwitchGroupDescriptions;
 for (i=0; i < numSwitchGroupDescriptions; i++) {
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_descriptionSwitchGroupID;

 unsigned int(8) switchGroupDescriptionDataLength;
 for (c=0; c < switchGroupDescriptionDataLength; c++) {
 switchGroupDescriptionData;
 }
 }

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 591	
	

 unsigned int(3) reserved = 0;
 unsigned int(5) numGroupPresets;
 for (i=0; i < numGroupPresets; i++) {
 unsigned int(3) reserved = 0;
 unsigned int(5) mae_descriptionGroupPresetID;

 unsigned int(8) groupPresetDescriptionDataLength;
 for (c=0; c < groupPresetDescriptionDataLength; c++) {
 groupPresetDescriptionData;
 }
 }
 }
}

20.9.4.3 Sematics	

		 numDescLanguage number	of	available	languages	

		 descriptionLanguage language	of	the	description	text	

The	field	contains	a	3-character	code	as	specified	in	ISO	639-2.	Both	ISO	639-2/B	and	ISO	639-2/T	

may	be	used.	Each	character	is	coded	into	8	bits	according	to	ISO/IEC	8859-1	and	inserted	in	order	

into	the	24-bit	field.		

EXAMPLE	 French	has	3-character	code	"fre",	which	is	coded	as:	"0110	0110	0111	0010	0110	0101".	

		 numGroupDescription number	of	group	definition	blocks

		 mae_descriptionGroupID defined	in	subclause	15.3

	 groupDescriptionDataLength length	in	bytes	of	groupDescriptionData

	 groupDescriptionData description	of	a	group	

A	string	describing	the	content	by	a	high-level	description.	The	format	shall	follow	UTF-8	encoding	

according	to	ISO/IEC	10646.	

		 numSwitchGroupDescriptions number	of	switch	group	definition	blocks

		 mae_descriptionSwitchGroupID defined	in	subclause	15.3

	 switchGroupDescriptionDataLength length	in	bytes	of	switchGroupDescriptionData

	 switchGroupDescriptionData description	of	a	switch	group	

A	string	describing	the	content	by	a	high-level	description.	The	format	shall	follow	UTF-8	encoding	

according	to	ISO/IEC	10646.	

		 numGroupPresets number	of	group	preset	definition	blocks

		 mae_descriptionGroupPresetID defined	in	subclause	15.3

	 groupPresetDescriptionDataLength length	in	bytes	of	groupPresetDescriptionData

ISO/IEC	23008-3:202X(E)	

592	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 groupPresetDescriptionData description	of	a	group	preset	

A	string	describing	the	content	by	a	high-level	description.	The	format	shall	follow	UTF-8	encoding	

according	to	ISO/IEC	10646.	

 MHA	scene	information	

20.9.5.1 Definition	

Box	Type:		 ‘maeI’	

Container:	 MHA	sample	entry	(‘mha1’,	‘mha2’,	‘mhm1’,	‘mhm2’)	

Mandatory:	 No	

Quantity:	 Zero	or	one	

20.9.5.2 Syntax	

class MHASceneInformationBox() extends Box(‘maeI’) {
 MHAGroupDefinitionBox group;
 MHASwitchGroupDefinitionBox switchGroup; // optional
 MHAGroupPresetDefinitionBox preset; // optional
 MHAGroupDescrTextLabelBox label; // optional
}

20.9.5.3 Semantics	

		 groups defined	in	subclause	20.9.1

		 switchGroup defined	in	subclause	20.9.2

	 preset defined	in	subclause	20.9.3

	 label defined	in	subclause	20.9.4

20.10 Track	references	

If	multiple	streams	are	used,	the	track	containing	the	main	stream,	as	indicated	by	isMainStream = 1	
in	the	MHAMultiStreamBox,	shall	have	an	‘maux’	track	reference	to	all	associated	auxiliary	streams	
that	 are	 contained	 as	 individual	 tracks	 in	 the	 same	 file.	 All	 auxiliary	 streams	 that	 are	 contained	 as	

individual	tracks	in	the	same	file,	indicated	by	isMainStream = 0	in	the	MHAMultiStreamBox,	shall	
have	an	‘mbas’	track	reference	to	the	respective	main	stream.	

20.11 MPEG-H	Audio	profile	and	level	compatibility	sets	

 Definition	

Box	Type:		‘mhaP’	

Container:	MHA	sample	entry	(‘mha1’,	‘mha2’,	‘mhm1’,	‘mhm2’)	

Mandatory:	No	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 593	
	

Quantity:	Zero	or	one	

As	specified	in	4.8.2.7	a	MPEG-H	3d	audio	bitstream	may	comply	with	multiple	profiles	and	levels.	This	

box	defines	a	way	of	signalling	the	compatibility	to	different	profiles	and	levels	on	file	format	level.	

 Syntax	

aligned(8) class MHAProfileAndLevelCompatibilitySetBox()
 extends Box(‘mhaP’) {
 unsigned int(8) numCompatibleSets;
 for (i=0; i< numCompatibleSets; i++) {
 unsigned int(8) CompatibleSetIndication;
 }
}

 Semantics	

numCompatibleSets this	field	defines	the	number	of	compatible	profile	sets	

present	in	the	current	box	

CompatibleSetIndication defined	in	5.3.9	

	

21 Sub-parameters	for	the	MIME	type	‘Codecs’	parameter	
21.1 General	

When	the	‘codecs’	parameter	of	a	MIME	type	is	used,	as	defined	in	RFC	6381,	subclause	21.2	documents	

the	sub-parameter	when	the	MIME	type	identifies	the	file	format	of	this	codec	and	the	‘codecs’	parameter	

starts	with	a	sample-entry	code	from	this	specification.	

21.2 ‘Codecs’	parameter	for	MPEG-H	3D	audio	

When	the	first	element	of	a	value	is	a	code	indicating	a	codec	from	this	specification,	as	documented	in	

clauses	 above,	 such	 as	 'mha1',	 'mha2',	 'mhm1'	 or	 'mhm2'	 –	 indicating	MPEG-H	3D	 audio,	 the	 second	

element	is	the	mpegh3daProfileLevelIndication	defined	in	Table	67	(subclause	5.3.2).	

22 Timing	considerations	and	decoder	behaviour	

An	access	unit	is	associated	with	the	composition	time	of	the	first	sample	of	the	respective	encoded	PCM	

data.	The	decoder	shall	not	output	any	additional	samples	that	might	have	been	produced	by	initializing,	

e.g.	filter-banks	or	renderers.	

An	example	decoder	might	accept	multiple	access	units	before	delivering	the	decoded	and	rendered	PCM	

samples	 (composition	unit).	 Timing	 information	needs	 to	be	 calculated	 accordingly,	 i.e.	 re-associated	

with	the	composition	unit.	After	the	last	access	unit,	it	might	be	necessary	to	flush	the	decoder	to	retrieve	

remaining	PCM	samples.	The	last	frame	might	be	shorter	than	the	current	granule-length.	This	may	be	

addressed	 by	 using	 an	MHAS	packet	 of	 PACTYP_AUDIOTRUNCATION.	 In	 case	 of	 ISO	Base	Media	 File	

Format,	the	same	can	be	achieved	by	having	a	separate	entry	in	the	TimeToSampleBox	(‘stts’)	for	the	last	

access	unit	indicating	a	shorter	duration	(sample_delta).	

ISO/IEC	23008-3:202X(E)	

594	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

23 Multi-stream	handling	

In	multi-stream	scenarios	the	main	and	side-streams	are	determined	by	the	mae_isMainStream	flag	as	

defined	in	Clause	15.

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 595	
	

23.1 Restrictions	on	extension	payloads	

In	multi-stream	 scenarios	 extension	 payloads	may	 be	 present	 in	 both	main	 and	 side-stream(s).	 The	

restrictions	as	defined	in	Table	286	and	Table	287	shall	apply.	

Table	286	—		Allowed	configuration	extensions	in	main-	and	side-stream(s)	

usacConfigExtType Main-stream Side-stream(s)

ID_CONFIG_EXT_DOWNMIX	 One	element	for	all	present	
signal	groups	of	type	

SignalGroupTypeChannels.	

One	element	for	all	present	
signal	groups	of	type	

SignalGroupTypeChannels.	

ID_CONFIG_EXT_LOUDNESS_INFO	 One	element	that	comprises	
group	specific	metadata	
(loudnessInfoType=1)	for	

present	signal	groups	and	full	
scene	metadata	including	side-

stream(s)	
(loudnessInfoType=0/2/3).	

One	element	that	comprises	
group	specific	metadata	
(loudnessInfoType=1)	for	
present	signal	groups	only.	

ID_CONFIG_EXT_AUDIOSCENE_INFO	 One	element	with	
mae_isMainStream=1	

One	element	with	
mae_isMainStream=0	

ID_CONFIG_EXT_HOA_MATRIX	 One	element	for	each	present	
signal	group	of	type	
SignalGroupTypeHOA	

One	element	for	each	present	
signal	group	of	type	
SignalGroupTypeHOA	

ISO/IEC	23008-3:202X(E)	

596	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	287	—	Allowed	bitstream	extensions	in	main-	and	side-stream(s)	

usacExtElementType	 Main-stream	 Side-stream(s)	

ID_EXT_ELE_MPEGS	 One	element	for	each	present	signal	
group	of	type	

SignalGroupTypeChannels.	

One	element	for	each	present	
signal	group	of	type	

SignalGroupTypeChannels.	

ID_EXT_ELE_AUDIOPREROLL	 One	element	for	all	present	signal	
groups.	

One	element	for	all	present	
signal	groups.	

ID_EXT_ELE_UNI_DRC	 One	element	that	comprises	group	
specific	metadata	(DRC-1)	for	present	
signal	groups	and	full	scene	metadata	
including	side-stream(s)	(DRC-2/3).	

One	element	that	comprises	
group	specific	metadata	(DRC-
1)	for	present	signal	groups	

only.	

ID_EXT_ELE_OBJ_METADATA	 One	element	for	each	present	signal	
group	of	type	SignalGroupTypeObject.	

One	element	for	each	present	
signal	group	of	type	

SignalGroupTypeObject.	

ID_EXT_ELE_SAOC_3D	 One	element	for	each	present	signal	
group	of	type	SignalGroupTypeSAOC.	

One	element	for	each	present	
signal	group	of	type	

SignalGroupTypeSAOC.	

ID_EXT_ELE_HOA	 One	element	for	each	present	signal	
group	of	type	SignalGroupTypeHOA.	

One	element	for	each	present	
signal	group	of	type	
SignalGroupTypeHOA.	

ID_EXT_ELE_FMT_CNVRTR	 One	element	for	all	present	signal	
groups	of	type	

SignalGroupTypeChannels.	
and	immersiveDownmixFlag=1.	

One	element	for	all	present	
signal	groups	of	type	

SignalGroupTypeChannels.	
and	immersiveDownmixFlag=1.	

24 Low	complexity	generic	loudspeaker	rendering/format	conversion	
24.1 Description	

The	 loudspeaker	 renderer	 converts	multichannel	 signals	 from	 transmitted	 channel	 configurations	 to	

desired	reproduction	formats.	It	is	thus	also	called	‘format	converter’.	If	the	channel	configuration	of	the	

channels	routed	to	the	format	converter	exactly	matches	the	signalled	reproduction	layout	(i.e.	the	target	

channel	 configuration),	 the	 format	 converter	 shall	 be	 bypassed.	 The	 system	 consists	 of	 two	 major	

building	blocks.	

¾ An	 initialization	algorithm	that	 takes	 into	account	static	parameters	 like	 the	 input	and	output	
format.	

¾ A	signal	adaptive	downmixing	process	that	operates	in	a	subband	domain.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 597	
	

	

Figure	107	—	Main	building	blocks	of	the	low	complexity	generic	format	converter	

In	 the	 initialization	 phase	 the	 format	 converter	 automatically	 generates	 optimized	 downmixing	

parameters	 (like	 the	 downmixing	matrix)	 for	 the	 given	 combination	 of	 input	 and	 output	 formats.	 It	

applies	an	algorithm	that	selects	for	each	input	loudspeaker	the	most	appropriate	mapping	rule	from	a	

list	of	rules	that	has	been	designed	to	incorporate	psychoacoustic	considerations.	Each	rule	describes	the	

mapping	from	one	input	channel	to	one	or	several	output	loudspeaker	channels.	

Input	channels	are		

¾ either	mapped	to	a	single	output	channel,		

¾ or	panned	to	two	output	channels,		

¾ or	(in	case	of	the	‘Voice	of	God’	channel)	distributed	over	a	larger	number	of	output	channels.	

The	optimal	mapping	for	each	input	channel	is	selected	depending	on	the	list	of	output	loudspeakers	that	

are	available	in	the	desired	output	format.	Each	mapping	defines	downmix	gains	for	the	input	channel	

under	consideration	as	well	as	potentially	also	an	equalizer	that	is	applied	to	the	input	channel	under	

consideration.	

Output	setups	with	non-standard	loudspeaker	positions	can	be	signalled	to	the	system	by	providing	the	

azimuth	and	elevation	deviations	from	a	regular	loudspeaker	setup.	

The	 actual	 downmixing	 of	 the	 audio	 signals	 is	 performed	 on	 a	 short	 time	 Fourier	 transform	 (STFT)	

representation	of	the	signals.	The	energy-preserving	algorithm	avoids	signal	deteriorations	like	comb-

filtering,	coloration,	or	modulation	artifacts.	

24.2 Definitions	

 General	remarks	

Audio	signals	that	are	fed	into	the	format	converter	are	referred	to	as	input	signals	in	the	following.	Audio	
signals	that	are	the	result	of	the	format	conversion	process	are	referred	to	as	output	signals.	Note	that	the	
audio	input	signals	of	the	format	converter	are	audio	output	signals	of	the	core	decoder.		

Vectors	 and	 matrices	 are	 denoted	 by	 bold-faced	 symbols.	 Vector	 elements	 or	 matrix	 elements	 are	

denoted	 as	 italic	 variables	 supplemented	 by	 indices	 indicating	 the	 row/column	 of	 the	 vector/matrix	

element	in	the	vector/matrix,	e.g.	 	denotes	a	vector	and	its	elements.	Similarly,	Ma,b	

denotes	the	element	in	the	ath	row	and	bth	column	of	a	matrix	M.		
1[]a Ny y y = y! !

ISO/IEC	23008-3:202X(E)	

598	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Variable	definitions	

Nin	 Number	of	channels	in	the	input	channel	configuration.	

Nout	 Number	of	channels	in	the	output	channel	configuration.	

MDMX	 Downmix	 matrix	 containing	 real-valued	 non-negative	 downmix	 coefficients	

(downmix	gains).	MDMX	is	of	dimension	(Nout	×	Nin).	

GEQ	 Matrix	 consisting	 of	 gain	 values	 per	 processing	 band	 determining	 frequency	

responses	of	equalizing	filters.	

IEQ	 Vector	signalling	which	equalizer	filters	to	apply	to	the	input	channels	(if	any).	

L	 Frame	length	measured	in	time	domain	audio	samples.	

ν	 Time	domain	sample	index.	

F	 Frame	index	(frame	number).	

PB	 Number	of	processing	band,	PB=58.	

pb	 Processing	band	index	().	

N	 DFT	length	

K	 Number	of	STFT	frequency	bins,	K	=	257.	

k	 STFT	frequency	bin	index	().	

		 Filter	parameter,	 .	

A,	B	 Channel	indices.	

eps	 Numerical	constant,	 .	

24.3 Processing	

 Application	of	transmitted	downmix	matrices	

24.3.1.1 General	

MPEG-H	 3D	 audio	 allows	 transmission	 of	 downmix	 specifications	 for	 specific	 target	 channel	

configurations.	downmixIds	are	assigned	 to	 the	 transmitted	downmix	 specifications,	 allowing	DRC	 to	

adapt	to	the	downmix	specification	applied	in	the	MPEG-H	decoder	(e.g.	to	select	an	appropriate	DRC	gain	

sequence).	 Further,	 loudness	 metadata	 values	 may	 be	 coupled	 with	 downmixIds.	 downmixIds	 are	

transmitted	in	the	bitstream	together	with	the	downmixType	as	well	as	the	nominal	loudspeaker	layouts	

the	embedded	downmix	matrices	(and/or	DRC	and	loudness	data)	have	been	designed	for.		

In	the	MPEG-H	3D	audio	decoder	the	selection	of	a	downmixIds	thus:	

— determines	whether	transmitted	downmix	coefficients	(downmixType=1)	or	decoder	side	generated	
downmix	coefficients	(downmixType=0)	are	applied	in	the	downmix	process;	

— influences	DRC/loudness	processing.	

0 pb PB£ <

0 k K£ <

a 0.0435a =

35eps 10-=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 599	
	

Two	 arguments	 speak	 in	 favor	 of	 applying	 transmitted	 downmix	 coefficients	 also	 for	 moderately	

displaced	reproduction	layouts.	

— The	selection	of	a	significantly	different	downmix	matrix	(transmitted	vs.	decoder	generated)	results	
in	large	perceptual	changes	of	the	downmix	result.		

— The	 artistic	 intent	 of	 transmitted	 downmix	 coefficients	 would	 be	 lost	 if	 a	 transmitted	 downmix	
matrix	is	not	applied.	

Of	course,	in	case	the	loudspeaker	displacements	of	the	reproduction	setup	are	too	large,	the	application	

of	 the	transmitted	downmix	coefficients	may	result	 in	a	 larger	perceptual	distance	 from	the	 intended	

reproduction	 than	 the	 application	of	 decoder	 generated	downmix	 coefficients.	As	 a	 consequence,	 the	

allowed	loudspeaker	displacement	values	are	restricted	in	the	following	matching	scheme.	

24.3.1.2 	Loudspeaker	layout	matching	scheme	

The	downmixId	matching	algorithm	 is	specified	by	 the	 flow	chart	of	Figure	108.	 It	 takes	as	 input	 the	

geometry	of	 the	actual	reproduction	setup	and	outputs	as	result	 the	present	downmixId	(if	any).	The	

present	downmixId	determines	the	downmix	processing	in	the	decoder	as	shown	in	subclause	24.3.1.4.	

Further,	the	present	downmixId	may	affect	DRC	and	loudness	processing.	

ISO/IEC	23008-3:202X(E)	

600	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

a	 Channel	labels	shall	be	assigned	according	to	Table	288.	
b	 CICP	Loudspeaker	layout	definitions	according	to	Table	293.	

Figure	108	—	Flow	diagram	for	loudspeaker	layout	matching	and	to	determine	downmixId		

The	matching	 distance	 is	 defined	 as	 the	 sum	 of	 all	 absolute	 azimuth	 and	 elevation	 angle	 differences	
between	 the	 channel	 positions	 of	 the	 reproduction	 layout	 and	 the	 tested	 CICP	 loudspeaker	 layout,	

summed	over	all	channels	of	the	reproduction	setup,	excluding	the	LFE	channels:	

	 	

where	 	denotes	azimuth	angles	and	 	denotes	elevation	angles.	

Reproduction setup
geometry (azimuth,

elevation of all channels)

Assign channel label(s)
to each channel.a

Test all possible channel label permutations for
matches with CICP Loudspeaker Layout

definitions.b

downmixID for one of the matched
CICPLayoutIndices in bitstream? No present downmixID.No

Yes

Compute matching distance to all
matched CICPLayoutIndices for which
downmixIDs exists. See definition of

matching distance below.

Is there a single CICPLayoutIndex with
minimum matching distance? No

Yes

Select out of the CICPLayoutIndices with the same
minimum matching distance the one with the

smallest CICPLayoutIndex number.

Select this CICPLayoutIndex

Does matching downmixID exist for
downmixType==1? No

Select downmixID for downmixType==1
as present downmixID. downmixType=1.

Yes

Present dowmixID found.
downmixType=0.

{ }
matching CICPLayout, reproductionLayout, CICPLayout, reproductionLayout,

all channels
except LFEsÎ

= - + -å ch ch ch ch
ch

d j j J J

j J

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 601	
	

Table	288	—	Channel	matching	tolerances	for	matching	downmixIds	to	reproduction	layouts	

Loudspeaker
Geometry		

as	defined	in	
ISO/IEC	
23001-8)

Channel Azimuth	
[deg]

Elevation	
[deg]

Azimuth	
start	

angle	of	
sector	
[deg]

Azimuth	
end	

angle	of	
sector	
[deg]

Elevation	
start	

angle	of	
sector	
[deg]

Elevation	
end	angle	
of	sector	
[deg]

Ch.	is	
LFE

Position	
is	

relative

 CH_EMPTY n/a n/a n/a n/a n/a n/a 0 0	
0 CH_M_L030 30 0 15 45 -15 15 0 0	
1 CH_M_R030 -30 0 -45 -15 -15 15 0 0	
2 CH_M_000 0 0 -10 10 -15 15 0 0	
3 CH_LFE1 0 n/a n/a n/a n/a n/a 1 0	
4 CH_M_L110 110 0 90 130 -15 15 0 0	
5 CH_M_R110 -110 0 -130 -90 -15 15 0 0	
6 CH_M_L022 22 0 7 37 -15 15 0 0	
7 CH_M_R022 -22 0 -37 -7 -15 15 0 0	
8 CH_M_L135 135 0 120 150 -15 15 0 0	
9 CH_M_R135 -135 0 -150 -120 -15 15 0 0	
10 CH_M_180 180 0 170 190 -15 15 0 0	
13 CH_M_L090 90 0 70 110 -15 15 0 0	
14 CH_M_R090 -90 0 -110 -70 -15 15 0 0	
15 CH_M_L060 60 0 40 80 -15 15 0 0	
16 CH_M_R060 -60 0 -80 -40 -15 15 0 0	
17 CH_U_L030 30 35 15 45 15 55 0 0	
18 CH_U_R030 -30 35 -45 -15 15 55 0 0	
19 CH_U_000 0 35 -15 15 15 55 0 0	
20 CH_U_L135 135 35 115 155 15 55 0 0	
21 CH_U_R135 -135 35 -155 -115 15 55 0 0	
22 CH_U_180 180 35 165 195 15 55 0 0	
23 CH_U_L090 90 35 70 110 15 55 0 0	
24 CH_U_R090 -90 35 -110 -70 15 55 0 0	
25 CH_T_000 0 90 -180 180 60 90 0 0	
26 CH_LFE2 45 n/a n/a n/a n/a n/a 1 0	
27 CH_L_L045 45 -15 25 65 -40 0 0 0	
28 CH_L_R045 -45 -15 -65 -25 -40 0 0 0	
29 CH_L_000 0 -15 -15 15 -40 0 0 0	
30 CH_U_L110 110 35 90 130 15 55 0 0	
31 CH_U_R110 -110 35 -130 -90 15 55 0 0	
32 CH_U_L045 45 35 30 60 15 55 0 0	
33 CH_U_R045 -45 35 -60 -30 15 55 0 0	
34 CH_M_L045 45 0 30 60 -15 15 0 0	
35 CH_M_R045 -45 0 -60 -30 -15 15 0 0	
36 CH_LFE3 -45 n/a n/a n/a n/a n/a 1 0	
37 CH_M_LSCR 60 0 15 80 -15 15 0 1	
38 CH_M_RSCR -60 0 -80 -15 -15 15 0 1	
39 CH_M_LSCH 30 0 7 40 -15 15 0 1	
40 CH_M_RSCH -30 0 -40 -7 -15 15 0 1	
41 CH_M_L150 150 0 135 165 -15 15 0 0	
42 CH_M_R150 -150 0 -165 -135 -15 15 0 0	

NOTE					Azimuth	and	elevation	tolerance	intervals	are	defined	as	sectors,	where	azimuth	start	and	end	
values	are	connected	in	counterclockwise	direction	and	elevation	start	and	end	values	are	connected	in	

ascending	elevations.	Start	and	end	values	of	the	sectors	are	considered	part	of	the	sectors.	

ISO/IEC	23008-3:202X(E)	

602	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

24.3.1.3 Visualization	of	azimuth	tolerances	

The	following	figures	depict	the	azimuth	matching	sectors	for	each	loudspeaker.	The	tolerances	reflect	

the	non-isotropic	sound	localization	performance	of	the	human	auditory	system.	

	

a)	Top	layer

	

b)	Upper	layer

	

c)	Middle	layer

	

d)	Lower/bottom	layer	

NOTE	 Arcs	have	been	plotted	on	different	radii	just	for	clarity	of	presentation.	Nominal	positions	of	the	
channels	have	been	marked	with	asterisks	and	labels	indicating	the	nominal	azimuth	angle	in	degrees.	

Figure	109	—	Visualization	of	azimuth	tolerances	

24.3.1.4 Determination	of	downmix	processing	depending	on	present	downmixId	

The	downmix	processing	in	the	MPEG-H	decoder	is	determined	by	the	present	downmixId	as	follows.	

— If	there	is	no	present	downmixId	for	the	current	reproduction	setup,	the	downmix	coefficients	shall	
be	derived	as	specified	in	the	format	converter	initialization.	

— If	 downmixType==0	 for	 the	 present	 downmixId,	 the	 downmix	 coefficients	 shall	 be	 derived	 as	
specified	in	the	format	converter	initialization.	

— If	 downmixType==1	 for	 the	 present	 downmixId,	 the	 downmix	 coefficients	 transmitted	 with	 the	
downmixId	shall	be	applied	in	the	downmix.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 603	
	

 Application	of	transmitted	equalizer	settings	

Equalizer	 settings	 may	 be	 transmitted	 together	 with	 downmix	 matrices,	 as	 indicated	 by	 the	

equalizerPresent	bitstream	element.	In	case	equalizer	settings	have	been	transmitted	together	with	a	
downmix	matrix	that	is	applied	in	the	format	converter,	the	equalizers	shall	be	applied	to	this	downmix	

matrix	as	follows.	

The	 transmitted	 equalizer	 parameters	 shall	 be	 decoded	 into	 frequency	 dependent	 gains	 (i.e.	 into	

equalizer	frequency	responses)	according	to	subclause	24.3.4.6.4.	Next,	the	transmitted	downmix	matrix	

gains	 shall	 be	multiplied	by	 the	 frequency	dependent	 equalizer	 gains	 to	 arrive	 at	 the	 final	 frequency	

dependent	downmix	matrix	that	shall	be	applied	in	the	downmix.	Note	that	the	assignment	of	equalizer	

gains	to	downmix	matrix	elements	is	given	by	the	vector	equalizerIndex	that	is	derived	according	to	
Table	34:	equalizerIndex	tells	for	each	input	channel	whether	an	equalizer	(and	if	any:	which)	shall	be	
applied	 to	 an	 input	 channel	 by	 applying	 the	 corresponding	 equalizer	 gains	 to	 all	 downmix	 matrix	

coefficients	associated	with	the	respective	input	channel.	

 Downmix	processing	involving	multiple	channel	groups	

24.3.3.1 General	

In	case	multiple	channel	groups	are	transmitted	in	the	MPEG-H	3D	audio	bitstream	and	routed	to	the	

format	converter,	one	instance	of	the	format	converter	shall	perform	a	downmix	of	all	 input	channels	

routed	to	the	format	converter	to	the	desired	target	channel	configuration.	Therefore,	all	channels	routed	

to	 the	 format	 converter	 are	 compiled	 in	 a	 group	of	 channels	 that	 constitutes	 the	 input	 to	 the	 format	

conversion	process.	

If	 downmix	matrices	 to	 one	 or	more	 target	 channel	 configurations	 are	 transmitted	 in	 the	 bitstream,	

downmix	 matrices	 for	 those	 target	 channel	 configurations	 shall	 be	 transmitted	 for	 all	 channel	

groups/channel	elements	present	in	the	bitstream.		

24.3.3.2 Downmix	processing	with	decoder	generated	downmix	gains	

In	case	no	appropriate	downmix	matrices	have	been	transmitted	 for	 the	signalled	target	 loudspeaker	

configuration,	 the	 downmix	 gains	 are	 generated	 during	 the	 initialization	 of	 the	 format	 converter	

according	 to	 subclause	 24.3.4.	 The	 channels	 are	 fed	 to	 the	 format	 converter	 as	 a	 group	 of	 all	 input	

channels	 routed	 to	 the	 format	 converter.	 The	 input	 channel	 configuration	 signalled	 to	 the	 format	

converter	shall	reflect	the	channel	geometry	of	this	group	of	channels.

24.3.3.3 Downmix	processing	with	transmitted	downmix	gains	

In	 case	 downmix	 matrices	 have	 been	 transmitted	 that	 are	 applicable	 to	 the	 desired	 target	 channel	

configuration,	 those	downmix	matrices	shall	be	applied	 in	 the	 format	converter	 instead	of	generating	

downmix	gains	in	the	format	converter	initialization	process.	Whether	a	downmix	matrix	is	applicable	

for	a	desired	target	setup,	or	not,	is	determined	according	to	subclause	24.3.1.	

All	channels	(and/or	groups	of	channels)	shall	be	compiled	in	one	group	of	channels,	where	this	group	of	

channels	consists	of	blocks	of	channels	that	are	the	channels	(and/or	groups	of	channels)	routed	to	the	

format	converter.	

The	 transmitted	downmix	matrices	 assigned	 to	 the	 channels	 routed	 to	 the	 format	 converter	 shall	 be	

concatenated	according	to	the	order	of	the	blocks	of	channels	in	the	group	of	channels	that	forms	the	

input	 to	 the	 format	converter.	The	concatenated	downmix	matrix	 shall	 then	be	applied	 in	 the	 format	

converter	to	derive	the	downmixed	signal	in	the	desired	target	channel	configuration.	

ISO/IEC	23008-3:202X(E)	

604	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Initialization	of	the	format	converter	

24.3.4.1 General	description	of	the	initialization	

The	initialization	of	the	format	converter	is	carried	out	before	processing	of	the	audio	samples	delivered	

by	the	core	decoder	takes	place.		

The	initialization	takes	into	account	as	input	parameters.	

¾ The	sampling	rate	of	the	audio	data	to	process.	

¾ The	channel	configuration	of	the	audio	data	to	process	with	the	format	converter	(number	and	
geometric	positions	of	input	channels).	

¾ The	 channel	 configuration	 of	 the	 desired	 output	 format	 (number	 and	 geometric	 positions	 of	
output	channels).	

¾ Optional:	Parameters	signaling	the	deviation	of	the	output	loudspeaker	positions	from	a	standard	
loudspeaker	setup	(random	setup	functionality).	

It	returns		

¾ A	frequency	dependent	downmix	matrix	MDMX	that	is	applied	in	the	audio	signal	processing	of	the	

format	converter.	MDMX	 is	also	 taken	 into	account	 in	 the	core	decoding	process,	 see	subclause	

5.5.4.1.2.	

The	input	parameters	to	the	initialization	algorithm	are	listed	in	Table	289.	

Table	289	—	Format	converter	initialization	input	parameters	

 Input	format:	number	of	channels	and	nominal	channel	setup	geometry.	
 Output	format:	number	of	channels	and	nominal	channel	setup	geometry.	
fs Sampling	frequency	in	Hertz.	
razi,A For	each	output	channel	A,	an	azimuth	angle	is	specified,	determining	the	deviation	

from	the	standard	format	loudspeaker	azimuth.	
rele,A For	 each	 output	 channel	 A,	 an	 elevation	 angle	 is	 specified,	 determining	 the	

deviation	from	the	standard	format	loudspeaker	elevation.	

Table	290	lists	the	output	parameters	that	are	derived	during	the	initialization	of	the	format	converter.	

Table	290	—	Format	converter	initialization	output	parameters	

MDMX Downmix	matrix	[linear	gains]

24.3.4.2 Assignment	of	format	converter	channel	labels	to	input/output	format	channels	

The	 format	 converter	 initialization	 is	 based	on	 a	 system	of	 rules	 that	 are	defined	 in	 terms	of	 format	
converter	channel	labels,	see	Table	292.	To	allow	the	application	of	the	initialization	rules,	the	channel	
labels	have	to	be	assigned	to	the	channels	of	the	input	and	output	formats.	Each	format	converter	channel	

label	is	associated	with	a	segment	of	the	surface	of	the	unit	sphere,	as	defined	in	Table	292.	The	segments	

are	designed	non-overlapping.	

The	assignment	of	 channel	 labels	 to	 channels	 is	done	by	geometrically	matching	 the	 segments	 to	 the	

position	data	associated	with	the	channels	of	the	input	and	output	formats.	The	azimuth	and	elevation	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 605	
	

angles	in	degrees	of	the	position	data	associated	with	the	channels	shall	be	rounded	towards	the	nearest	

integer	number	before	performing	the	channel	label	assignment.	Note	that	the	nominal	channel	positions	
shall	be	applied	in	the	following	matching	to	channel	label	sectors,	i.e.	the	azimuth	and	elevation	angles	

without	taking	into	account	potential	angle	deviations		signalled	in	razi,A	and/or	rele,A.	

For	each	channel	that	is	not	an	LFE	(low	frequency	enhancement)	channel.	

If	the	nominal	position	of	the	current	channel,	defined	by	its	azimuth	angle	and	elevation	angle,	is	within	

or	on	the	border	of	one	of	the	segments	defined	in	Table	292	then:	

—	 Assign	the	corresponding	channel	label	(e.g.		CH_M_L030)	associated	with	the	matching	segment.	

—	 Add	 the	 angle	 differences	 between	 the	 nominal	 position	 of	 the	 current	 channel	 and	 the	 nominal	

position	associated	with	the	matching	segment	(i.e.	the	angles	in	the	second	and	third	column	of	Table	
292)	to	the	angle	deviations	stored	in	razi,A	and	rele,A.	

Else	(i.e.	no	matching	sector	found),	then:	

—	 Assign	the	CH_EMPTY	label.	

If	an	input	or	output	format	contains	exactly	one	LFE	channel,	then	the	label	CH_LFE2	shall	be	assigned	

to	this	channel.		

If	an	input	or	output	format	contains	exactly	two	LFE	channels,	then	the	labels	CH_LFE2	and	CH_LFE3	

shall	be	assigned	to	the	two	LFE	channels	in	the	order	that	minimizes	the	maximum	azimuth	distance	

from	the	channels	to	the	assigned	CH_LFE2	and	CH_LFE3	nominal	azimuth	positions.	

If	an	input	or	output	format	contains	more	than	2	LFE	channels,	then	those	2	LFE	channels	out	of	the	

considered	setup	shall	be	selected	that	minimize	 the	maximum	azimuth	distance	 to	 the	CH_LFE2	and	

CH_LFE3	nominal	azimuth	positions.	The	labels	CH_LFE2	and	CH_LFE3	shall	be	assigned	as	in	the	case	of	

two	 LFE	 channels.	 The	 remaining	 LFE	 channels	 shall	 not	 be	 considered	 further	 in	 the	 calculation	 of	

downmix	coefficients,	 i.e.	 the	corresponding	 lines/columns	of	 the	downmix	matrix	 shall	 remain	 filled	

with	zeros.	

24.3.4.3 Handling	for	unknown	input	channels	

If	the	label	CH_EMPTY	is	assigned	to	an	input	channel,	this	channel	shall	be	considered	unknown	to	the	

rules-based	 initialization	 and	 the	 downmix	 coefficients	 for	mapping	 this	 input	 channel	 to	 the	 output	

channels	shall	be	derived	as	specified	in	subclause	24.3.4.6.7.	

24.3.4.4 Handling	for	unknown	output	formats	

If	the	output	format	contains	at	least	one	channel	with	the	label	CH_EMPTY	assigned	to	it,	or	if	at	least	

one	channel	label	is	assigned	to	more	than	one	channel	of	the	output	format,	the	output	format	shall	be	

considered	unknown	and	the	derivation	of	the	downmixing	coefficients	shall	be	carried	out	as	specified	

in	 subclause	 24.3.4.6.7.	 The	 rules-based	 derivation	 of	 downmix	 coefficients	 shall	 not	 be	 applied	 for	

unknown	output	formats.	

ISO/IEC	23008-3:202X(E)	

606	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

24.3.4.5 Handling	of	deviations	from	standard	loudspeaker	positions	

If	the	below	conditions	are	not	met,	the	rules-based	initialization	is	considered	to	have	failed,	the	output	

format	shall	be	considered	to	be	unknown,	and	the	downmixing	gains	shall	be	obtained	as	defined	 in	

subclause	24.3.4.6.7.	

The	absolute	values	of	razi,A	and	rele,A	shall	not	exceed	35	and	55	degrees,	respectively.	The	minimum	angle	
between	any	loudspeaker	pair	(without	LFE	channels)	shall	not	be	smaller	than	15	degrees.	

The	values	of	razi,A	shall	be	such	that	the	ordering	by	azimuth	angles	of	the	horizontal	loudspeakers	does	
not	change.	Likewise,	the	ordering	of	the	height	and	low	loudspeakers	shall	not	change.	

The	 values	 of	 rele,A	 shall	 be	 such	 that	 the	 ordering	 by	 elevation	 angles	 of	 loudspeakers	 which	 are	
(approximately)	 above/below	 each	 other	 does	 not	 change.	 To	 verify	 this,	 the	 following	 procedure	 is	

applied:	

For	each	row	of	Table	298	which	contains	two	or	three	channels	of	the	output	format,	do:	

— Order	the	channels	by	elevation	without	randomization;	
— Order	the	channels	by	elevation	with	considering	randomization;	

— If	the	two	orderings	differ,	return	an	initialization	error.	

24.3.4.6 Rules-based	initialization	algorithm	

24.3.4.6.1 General	

The	rules-based	initialization	algorithm	is	defined	in	the	following	subclauses.	The	algorithm	shall	not	be	

applied	if	the	output	format	is	considered	unknown	as	defined	in	the	previous	subclause.	For	clarity	the	

following	description	makes	use	of	intermediate	parameters	listed	in	Table	291	but	an	implementation	

may	omit	the	explicit	use	of	these	intermediate	parameters.		

Table	291	—	Format	converter	initialization	intermediate	parameters	

S Vector	of	converter	source	channels	[input	channel	indices]	
D Vector	of	converter	destination	channels	[output	channel	indices]	
G Vector	of	converter	gains	[linear]	
E Vector	of	converter	EQ	indices	
GEQ Matrix	containing	equalizer	gain	values	for	all	EQ	indices	and	processing	bands	

The	intermediate	parameters	describe	the	dowmixing	parameters	according	to	the	mapping,	i.e.	as	sets	

of	parameters	Si,	Di,	Gi,	Ei,	per	mapping	i.	

The	format	converter	initialization	output	parameters	are	derived	as	described	in	the	following	steps.	

24.3.4.6.2 Random	setups	pre-processing	

Random	output	loudspeaker	setups,	i.e.	output	setups	that	contain	loudspeakers	at	positions	deviating	

from	 the	positions	defined	 for	 the	desired	output	 format	 are	 signalled	by	 specifying	 the	 loudspeaker	

position	deviation	angles	as	input	parameters	razi,A	and	rele,A.	The	angle	deviations	are	taken	into	account	
as	a	pre-processing	step.	

Modify	 in	 Table	 292	 the	 channels’	 azimuth	 and	 elevation	 angles	 by	 adding	 razi,A	 and	 rele,A	 to	 the	
corresponding	channels’	azimuth	and	elevation	angles.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 607	
	

24.3.4.6.3 Derivation	of	input	channel/output	channel	mapping	parameters	

The	parameters	vectors	S,	D,	G,	E	define	 the	mapping	of	 input	channels	 to	output	channels.	For	each	
mapping	 i	 from	 an	 input	 channel	 to	 an	 output	 channel	with	 non-zero	 downmix	 gain	 they	 define	 the	
downmix	gain	as	well	as	an	equalizer	index	that	indicates	which	equalizer	curve	has	to	be	applied	to	the	

input	channel	under	consideration	in	mapping	i.	

The	elements	of	the	parameter	vectors	S,	D,	G,	E	are	derived	by	the	following	algorithm:	

Initialize	the	mapping	counter	i:	i	=	1	

For	each	input	channel,	ignoring	channels	with	label	CH_EMPTY	assigned	to	them:	

If	the	input	channel	also	exists	in	the	output	format	(e.g.	input	channel	under	consideration	is	CH_M_R030	

and	channel	CH_M_R030	exists	in	the	output	format),	then:	

—	 Si	=	index	of	source	channel	in	input		

EXAMPLE					channel	CH_M_R030	in	ChannelConfiguration	6	is	at	second	place	according	to	Table	293	i.e.	has	
index	2	in	this	format.	

—	 Di	=	index	of	same	channel	in	output	

—	 Gi	=	1.0	

—	 Ei	=	0	

—	 i	=	i	+	1	

Else	(i.e.	if	the	input	channel	does	not	exist	in	the	output	format)	

—	 search	the	first	entry	of	this	channel	in	the	Source	column	of	Table	294,	for	which	the	channels	in	
the	corresponding	row	of	the	Destination	column	exist.	The	ALL_U	destination	shall	be	considered	valid	
(i.e.	the	relevant	output	channels	exist)	if	the	output	format	contains	at	least	one	“CH_U_”	channel.	The	

ALL_M	destination	shall	be	considered	valid	(i.e.	the	relevant	output	channels	exist)	if	the	output	format	

contains	at	least	one	“CH_M_”	channel.		If	for	no	entry	in	Table	294	corresponding	to	the	input	channel	

the	 channels	 in	 the	Destination	 column	 exist,	 the	 rules-based	 initialization	 shall	 terminate	 and	 the	
downmix	gains	shall	be	derived	according	to	subclause	24.3.4.6.7.	

—	 If	Destination	column	contains	ALL_U,	then:	

—	 For	each	output	channel	x	with	“CH_U_”	in	its	name,	do:	

—	 Si	=	index	of	source	channel	in	input		

—	 Di	=	index	of	channel	x	in	output	

—	 Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_U_”	output	channels)	

—	 Ei	=	value	of	EQ	column	

—	 i	=	i	+	1	

—	 Else	if	Destination	column	contains	ALL_M,	then:	

ISO/IEC	23008-3:202X(E)	

608	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 For	each	output	channel	x	with	“CH_M_”	in	its	name,	do:	

—	 Si	=	index	of	source	channel	in	input	

—	 Di	=	index	of	channel	x	in	output	

—	 Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_M_”	output	channels)	

—	 Ei	=	value	of	EQ	column	

—	 i	=	i	+	1	

—	 Else	If	there	is	one	channel	in	the	Destination	column,	then:	

—	 Si	=	index	of	source	channel	in	input	

—	 Di	=	index	of	destination	channel	in	output	

—	 Gi	=	value	of	Gain	column	

—	 Ei	=	value	of	EQ	column	

—	 i	=	i	+	1	

—	 Else	(two	channels	in	Destination	column)	

—	 Si	=	index	of	source	channel	in	input	

—	 Di	=	index	of	first	destination	channel	in	output	

—	 Gi	=	(value	of	Gain	column)	*	g1	

—	 Ei	=	value	of	EQ	column	

—	 i	=	i	+	1	

—	 Si	=	Si	-	1		

—	 Di	=	index	of	second	destination	channel	in	output	

—	 Gi	=	(value	of	Gain	column)	*	g2	

—	 Ei	=	Ei	-	1	

—	 i	=	i	+	1	

—	 The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	

way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	angles	of	the	destination	channels	are	 	and	 	(see	Table	292).	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

1a 2a

srca

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 609	
	

— 	

— 	

— 	

— 	

24.3.4.6.4 Derivation	of	equalizer	gains	GEQ		

GEQ	consists	of	gain	values	per	processing	band	pb	and	equalizer	index	e.	The	5	predefined	equalizers	are	
combinations	of	different	peak	filters.	Each	equalizer	is	a	serial	cascade	of	one	or	more	peak	filters	and	a	

gain:	

	

where	band(pb)	is	the	normalized	centre	frequency	of	processing	band	pb,	specified	in	Table	295,	fs	is	the	
sampling	frequency,	and	function	peak()	is	for	negative	G:	

	

and	otherwise:	

	

The	parameters	for	the	equalizers	are	specified	in	Table	297.	

24.3.4.6.5 Post-processing	for	random	setups	

Once	the	output	parameters	are	computed,	they	are	modified	related	to	the	specific	random	azimuth	and	

elevations	 angles.	This	 step	has	only	 to	be	 carried	out,	 if	 not	 all	 rele,A	 are	 zero.	Definition	of	 the	post-
processing	algorithm.	

For	each	element	i	in	Di,	do:	

—	 if	the	output	channel	with	 index	Di	 is	a	horizontal	channel	by	definition	(i.e.	output	channel	 label	
contains	the	label	‘_M_’),	and	

—	 if	this	output	channel	is	now	a	height	channel	(elevation	in	range	0..60	degrees),	and	

1 2
0 2

a a
a

-
=

1 2
center 2

a aa +
=

() ()center src 2 1sgna a a a a= - × -

10
0

1 2 102 2
0

tan tan 101, with
tan tan 101 1

gg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

/20
, , , ,

1
10 () , , ,

2

N
pb g s
EQ e f n Q n g n

n

fG peak band pb P P P
=

æ ö= ç ÷
è ø

Õ

()
4 2 2 4

2

10
4 2 2 4

2

1 2
peak , , ,G

10 2

G

b f b f
Q

b f Q

b f b f
Q

-

æ ö
+ - +ç ÷
è ø=
æ ö
ç ÷+ - +ç ÷ç ÷
è ø

()

10
4 2 2 4

2

4 2 2 4
2

10 2

peak , , ,G
1 2

G

b f b f
Q

b f Q
b f b f

Q

æ ö
ç ÷+ - +ç ÷ç ÷
è ø=
æ ö

+ - +ç ÷
è ø

ISO/IEC	23008-3:202X(E)	

610	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 if	input	channel	with	index	Si	is	a	height	channel	(i.e.	label	contains	‘_U_’),	then	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35	

¾ 	

¾ Apply	compensation	gain	to	DMX	gain:	 	

¾ 	Define	new	equalizer	with	a	new	index	e,	where	 		

¾ Ei	=	e	
—	 else	if	input	channel	with	index	Si	is	a	horizontal	channel	(label	contains	‘_M_’)	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35	
¾ Define	new	equalizer	with	a	new	index	e,	where	 		

¾ Ei	=	e	
	

Explanation	of	the	post-processing	steps	defined	above:		

h	is	a	normalized	elevation	parameter	indicating	the	elevation	of	a	nominally	horizontal	output	channel	
(‘_M_’)	due	to	a	random	setup	elevation	offset	 .	For	zero	elevation	offset	h=0	follows	and	effectively	

no	post-processing	is	applied.	

The	rules	table	(Table	294)	in	general	applies	a	gain	of	0.85	when	mapping	an	upper	input	channel	(‘_U_’	

in	 channel	 label)	 to	 one	or	 several	 horizontal	 output	 channels	 (‘_M_’	 in	 channel	 label(s)).	 In	 case	 the	

output	channel	gets	elevated	due	to	a	random	setup	elevation	offset	 ,	 the	gain	of	0.85	 is	partially	

(0<h<1)	or	fully	(h=1)	compensated	for.	Similarly	the	equalizer	definitions	fade	towards	a	flat	EQ-curve	
()	for	h	approaching	h	=1.	

In	case	a	horizontal	input	channel	gets	mapped	to	an	output	channel	that	gets	elevated	due	to	a	random	

setup	elevation	offset	 ,	the	equalizer	 	is	partially	(0<h<1)	or	fully	(h=1)	applied.	

24.3.4.6.6 Derivation	of	rules-based	initialization	downmix	matrix	

MDMX	 is	derived	by	rearranging	 the	 temporary	parameters	 from	the	mapping-oriented	representation	

(enumerated	by	mapping	counter	i)	to	a	channel-oriented	representation	as	defined	in	the	following:	

Initialize	 as	an	Nout	×	Nin	zero	matrix	for	all	STFT	bins	k.	

For	each	i	do:	

—	 If	(Ei	=	0)	

—	 	

—	 Else	

—	 		

()comp
1 1
0.85

G h h= × + -

compi iG G G= ×

, ,(1) G
i

pb pb
EQ e EQ EG h h= + - ×

, ,5 ,G (1) G
i

pb pb pb
EQ e EQ EQ EG h h= × + - ×

ele,Ar

ele,Ar

, . 1.0pb
EQ eG const= =

ele,Ar ,5
pb
EQG

DMX
kM

DMX, , for , , 0k
A B i i iM G A D B S k K= = = £ <

()
DMX, , , for , , 0

i

k pb pbm k
A B i EQ E i iM G G A D B S k K== × = = £ <

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 611	
	

with	the	mapping	pbm	between	processing	bands	pb	and	DFT	frequency	bins	as	defined	in	Table	296,	and	
where	 	denotes	the	matrix	element	in	the	Ath	row	and	Bth	column	of	 .	Note	that	after	the	

rules-based	initialization	this	matrix	of	downmix	coefficients	will	contain	columns	of	zeros,	if	unknown	

channels	are	present	in	the	input	format.	Those	columns	are	filled	with	downmix	gains	as	specified	in	

subclause	24.3.4.6.7.	

24.3.4.6.7 VBAP-based	downmix	coefficients	derivation	

This	subclause	defines	how	to	generically	derive	downmix	gains	using	VBAP	in	case	of	unknown	output	

formats	or	unknown	input	channels.	The	following	restrictions	apply.	

— If	the	target	setup	contains	at	least	one	LFE,	then	map	each	LFE	channel	directly	to	the	LFE	of	the	
target	 setup	 that	 minimizes	 the	 azimuth	 angle	 deviation.	 No	 VBAP-based	 downmix	 coefficients	

derivation	shall	be	applied	for	the	LFE	channels.	The	downmix	coefficient	for	the	direct	mapping	shall	

be	set	to	unity	gain,	i.e.	to	1.0.	

— Otherwise	apply	the	VBAP-based	downmix	coefficients	derivation	defined	in	the	following	also	to	the	
LFE	channels.	

Handling	of	unknown	output	formats:	

In	case	the	output	format	is	considered	unknown,	the	downmix	coefficients	for	all	input	channels	shall	

be	derived	as	follows.	

Each	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	the	azimuth	

and	elevation	angles	associated	with	the	input	channel.	For	each	input	channel	the	mixing	gains	to	all	

output	loudspeakers	are	calculated	as	VBAP	panning	gains	gscaled	according	to	subclause	8.4.4,	where	the	
same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	converter.	The	panning	gain	

vectors	gscaled shall	be	post-processed	according	to	subclause	24.3.4.6.8.	

The	 downmix	matrix	 is	 finally	 derived	 by	 filling	 each	matrix	 column	with	 the	 post-processed	

panning	gain	vector	elements	of	the	corresponding	input	channel,	independently	of	the	DFT	bin	index	k.	

Handling	of	unknown	input	channels:	

In	case	the	input	format	contains	unknown	input	channels,	the	downmix	coefficients	for	these	channels	

shall	be	derived	as	follows.	

Each	unknown	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	

the	azimuth	and	elevation	angles	associated	with	the	input	channel.	For	each	unknown	input	channel	the	

mixing	 gains	 to	 all	 output	 loudspeakers	 are	 calculated	 as	 VBAP	 panning	 gains	 gscaled	 according	 to	
subclause	8.4.4,	where	the	same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	

converter.	The	panning	gain	vectors	gscaled shall	be	post-processed	according	to	subclause	24.3.4.6.8.	

The	downmix	matrix	 is	finally	derived	by	filling	each	matrix	column	corresponding	to	an	unknown	

input	 channel	with	 the	 post-processed	 panning	 gain	 vector	 elements	 of	 the	 corresponding	 unknown	

input	channel,	independently	of	the	DFT	bin	index	k.	

24.3.4.6.8 VBAP	gains	post-processing	

The	mixing	gains	obtained	from	the	VBAP	rendering	algorithm	shall	be	post-processed	to	avoid	excessive	

use	of	phantom	sources.	Therefore,	small	matrix	gains	are	set	to	zero,	followed	by	a	renormalization	of	

the	panning	gains	to	ensure	energy-preservation.	

DMX, ,
k

A BM DMX
kM

DMX
kM

DMX
kM

ISO/IEC	23008-3:202X(E)	

612	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

For	each	panning	gain	vector	gscaled do:	

—	 If	the	vector	contains	at	least	one	panning	gain	that	exceeds	the	threshold	value	0.3,	then,	

—	 Set	all	vector	elements	smaller	or	equal	to	0.3	to	the	value	0.0,	

—	 Normalize	the	gain	vector	such	that	the	sum	of	squares	of	the	vector	elements	remains	the	same	as	

before	the	post-processing.	

24.3.4.7 	Format	converter	initialization	tables	

Table	292	lists	channel	labels,	corresponding	azimuth	and	elevation	angles,	and	associated	sectors.	The	

sectors	are	defined	as	points	on	the	unit	sphere,	whose	azimuth/elevation	angles	are	within	or	on	the	

borders	of	 the	 intervals	given	by	 the	azimuth/elevation	 start	 and	end	values	 in	 the	 table,	 connecting	

azimuth	start	and	end	values	 in	a	counter-clockwise	direction	and	connecting	elevation	start	and	end	

values	in	the	direction	of	increasing	elevation	angles.	

Table	292	—	Channels	definitions:	Channel	labels,	corresponding	azimuth	and	elevation	angles,	
and	associated	sectors	

Loudspeaker
Geometry		
as	defined	in	
ISO/IEC	
23001-8)	

Channel	 Azimuth	
[deg]	

Elevat
ion	
[deg]	

Azimuth	
start	angle	
of	sector	
[deg]	

Azimuth	
end	angle	
of	sector	
[deg]	

Elevation	
start	

angle	of	
sector	
[deg]	

Elevation	
end	angle	
of	sector	
[deg]	

Ch.	
is	
LFE	

Position	
is	

relative	

	 CH_EMPTY	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	 0	 0	

0	 CH_M_L030	 +30	 0	 +23	 +37	 -9	 +20	 0	 0	

1	 CH_M_R030	 -30	 0	 -37	 -23	 -9	 +20	 0	 0	

2	 CH_M_000	 0	 0	 -7	 +7	 -9	 +20	 0	 0	

3	 CH_LFE1	 0	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	

4	 CH_M_L110	 +110	 0	 +101	 +124	 -45	 +20	 0	 0	

5	 CH_M_R110	 -110	 0	 -124	 -101	 -45	 +20	 0	 0	

6	 CH_M_L022	 +22	 0	 +8	 +22	 -9	 +20	 0	 0	

7	 CH_M_R022	 -22	 0	 -22	 -8	 -9	 +20	 0	 0	

8	 CH_M_L135	 +135	 0	 125	 142	 -45	 +20	 0	 0	

9	 CH_M_R135	 -135	 0	 -142	 -125	 -45	 +20	 0	 0	

10	 CH_M_180	 180	 0	 158	 -158	 -45	 +20	 0	 0	

13	 CH_M_L090	 +90	 0	 +76	 +100	 -45	 +20	 0	 0	

14	 CH_M_R090	 -90	 0	 -100	 -76	 -45	 +20	 0	 0	

15	 CH_M_L060	 +60	 0	 +53	 +75	 -9	 +20	 0	 0	

16	 CH_M_R060	 -60	 0	 -75	 -53	 -9	 +20	 0	 0	

17	 CH_U_L030	 +30	 +35	 +11	 +37	 +21	 +60	 0	 0	

18	 CH_U_R030	 -30	 +35	 -37	 -11	 +21	 +60	 0	 0	

19	 CH_U_000	 0	 +35	 -10	 +10	 +21	 +60	 0	 0	

20	 CH_U_L135	 +135	 +35	 +125	 +157	 +21	 +60	 0	 0	

21	 CH_U_R135	 -135	 +35	 -157	 -125	 +21	 +60	 0	 0	

22	 CH_U_180	 180	 +35	 +158	 -158	 +21	 +60	 0	 0	

23	 CH_U_L090	 +90	 +35	 +67	 +100	 +21	 +60	 0	 0	

24	 CH_U_R090	 -90	 +35	 -100	 -67	 +21	 +60	 0	 0	

25	 CH_T_000	 0	 +90	 -180	 +180	 +61	 +90	 0	 0	

26	 CH_LFE2	 +45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 613	
	

27	 CH_L_L045	 +45	 -15	 +11	 +75	 -45	 -10	 0	 0	

28	 CH_L_R045	 -45	 -15	 -75	 -11	 -45	 -10	 0	 0	

29	 CH_L_000	 0	 -15	 -10	 +10	 -45	 -10	 0	 0	

30	 CH_U_L110	 +110	 +35	 +101	 +124	 +21	 +60	 0	 0	

31	 CH_U_R110	 -110	 +35	 -124	 -101	 +21	 +60	 0	 0	

32	 CH_U_L045	 +45	 +35	 +38	 +66	 +21	 +60	 0	 0	

33	 CH_U_R045	 -45	 +35	 -66	 -38	 +21	 +60	 0	 0	

34	 CH_M_L045	 +45	 0	 +38	 +52	 -9	 +20	 0	 0	

35	 CH_M_R045	 -45	 0	 -52	 -38	 -9	 +20	 0	 0	

36	 CH_LFE3	 -45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	

37	 CH_M_LSCR	 +60	 0	 n/a		 n/a	 n/a	 n/a	 0	 1	

38	 CH_M_RSCR	 -60	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	

39	 CH_M_LSCH	 +30	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	

40	 CH_M_RSCH	 -30	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	

41	 CH_M_L150	 +150	 0	 143	 157	 -45	 +20	 0	 0	

42	 CH_M_R150	 -150	 0	 -157	 -143	 -45	 +20	 0	 0	

Table	293	—	Formats	with	corresponding	number	of	channels	and	channel	ordering	

Loudspeaker	layout	
index	or	

ChannelConfiguration		
as	defined	in	

ISO/IEC	23001-8

Number	of	
channels Channels	(with	ordering)

1 1 CH_M_000
2 2 CH_M_L030,	CH_M_R030
3 3 CH_M_L030,	CH_M_R030,	CH_M_000
4 4 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M180
5 5 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M_L110,	CH_M_R110
6 6 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110
7 8 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L060,	CH_M_R060
8 n.a.
9 3 CH_M_L030,	CH_M_R030,	CH_M_180
10 4 CH_M_L030,	CH_M_R030,	CH_M_L110,	CH_M_R110
11 7 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_180
12 8 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L135,	CH_M_R135
13 24 CH_M_L060,	CH_M_R060,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	

CH_M_L030,	CH_M_R030,	CH_M_180,	CH_LFE3,	CH_M_L090,	CH_M_R090,	
CH_U_L045,	CH_U_R045,	CH_U_000,	CH_T_000,	CH_U_L135,	CH_U_R135,	
CH_U_L090,	CH_U_R090,	CH_U_180,	CH_L_000,	CH_L_L045,	CH_L_R045

14 8 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030

15 12 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	
CH_LFE3,	CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_180

16 10 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_L110,	CH_U_R110

17 12 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_000,	CH_U_L110,	CH_U_R110,	CH_T_000

18 14 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_M_L150,	CH_M_R150,	CH_U_L030,	CH_U_R030,	CH_U_000,	
CH_U_L110,	CH_U_R110,	CH_T_000

ISO/IEC	23008-3:202X(E)	

614	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

19 12 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L030,	CH_U_R030,	CH_U_L135,	
CH_U_R135	

20 14 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_L135,	
CH_U_R135,	CH_M_LSCR,	CH_M_RSCR	

Table	294	—	Converter	rules	matrix	

Source Destination Gain EQ	index

CH_M_000 CH_M_L022,	CH_M_R022 1.0 0	(off)										
CH_M_000 CH_M_L030,	CH_M_R030 1.0 0	(off)										
CH_M_L022 CH_M_000,	CH_M_L030 1.0 0	(off)										
CH_M_L022 CH_M_L030 1.0	 0	(off)										
CH_M_R022 CH_M_000,	CH_M_R030 1.0 0	(off)										
CH_M_R022 CH_M_R030 1.0	 0	(off)										
CH_M_L045 CH_M_L030,	CH_M_L060 1.0 0	(off)										
CH_M_L045 CH_M_L030 1.0	 0	(off)										
CH_M_R045 CH_M_R030,	CH_M_R060 1.0 0	(off)										
CH_M_R045 CH_M_R030 1.0	 0	(off)										
CH_M_L060 CH_M_L045,	CH_M_L090 1.0 0	(off)										
CH_M_L060 CH_M_L030,	CH_M_L090 1.0 0	(off)										
CH_M_L060 CH_M_L045,	CH_M_L110 1.0 0	(off)										
CH_M_L060 CH_M_L030,	CH_M_L110 1.0 0	(off)										
CH_M_L060 CH_M_L030 0.8	 0	(off)										
CH_M_R060 CH_M_R045,	CH_M_R090, 1.0				 0	(off)										
CH_M_R060 CH_M_R030,	CH_M_R090, 1.0				 0	(off)										
CH_M_R060 CH_M_R045,	CH_M_R110, 1.0				 0	(off)										
CH_M_R060 CH_M_R030,	CH_M_R110, 1.0				 0	(off)										
CH_M_R060 CH_M_R030, 0.8 0	(off)										
CH_M_L090 CH_M_L060,	CH_M_L110 1.0 0	(off)										
CH_M_L090 CH_M_L045,	CH_M_L110 1.0 0	(off)										
CH_M_L090 CH_M_L030,	CH_M_L110 1.0 0	(off)										
CH_M_L090 CH_M_L030 0.8	 0	(off)										
CH_M_R090 CH_M_R060,		CH_M_R110 1.0	 0	(off)										
CH_M_R090 CH_M_R045,		CH_M_R110 1.0	 0	(off)										
CH_M_R090 CH_M_R030,		CH_M_R110 1.0	 0	(off)										
CH_M_R090 CH_M_R030 0.8 0	(off)										
CH_M_L110 CH_M_L135 1.0 0	(off)										
CH_M_L110 CH_M_L090 0.8 0	(off)										
CH_M_L110 CH_M_L045 0.8 0	(off)										
CH_M_L110 CH_M_L030 0.8 0	(off)										
CH_M_R110 CH_M_R135 1.0 0	(off)										
CH_M_R110 CH_M_R090 0.8 0	(off)										
CH_M_R110 CH_M_R045 0.8 0	(off)										
CH_M_R110 CH_M_R030 0.8 0	(off)										
CH_M_L135 CH_M_L110 1.0 0	(off)										

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 615	
	

Source Destination Gain EQ	index

CH_M_L135 CH_M_L150 1.0 0	(off)										
CH_M_L135 CH_M_L090 0.8 0	(off)										
CH_M_L135 CH_M_L045 0.8 0	(off)										
CH_M_L135 CH_M_L030 0.8 0	(off)										
CH_M_R135 CH_M_R110 1.0 0	(off)										
CH_M_R135 CH_M_R150 1.0 0	(off)										
CH_M_R135 CH_M_R090 0.8 0	(off)										
CH_M_R135 CH_M_R045 0.8 0	(off)										
CH_M_R135 CH_M_R030 0.8 0	(off)										
CH_M_L150 CH_M_L135 1.0 0	(off)										
CH_M_L150 CH_M_L110 1.0 0	(off)										
CH_M_L150 CH_M_L045 0.8 0	(off)										
CH_M_L150 CH_M_L030 0.8 0	(off)										
CH_M_R150 CH_M_R135 1.0 0	(off)										
CH_M_R150 CH_M_R110 1.0 0	(off)										
CH_M_R150 CH_M_R045 0.8 0	(off)										
CH_M_R150 CH_M_R030 0.8 0	(off)										
CH_M_180 CH_M_R150,		CH_M_L150 1.0 0	(off)										
CH_M_180 CH_M_R135,		CH_M_L135 1.0 0	(off)										
CH_M_180 CH_M_R110,		CH_M_L110 1.0 0	(off)										
CH_M_180 CH_M_R090,		CH_M_L090 0.8 0	(off)										
CH_M_180 CH_M_R045,		CH_M_L045 0.6 0	(off)										
CH_M_180 CH_M_R030,		CH_M_L030 0.6 0	(off)										
CH_U_000 CH_U_L030,		CH_U_R030 1.0 1										
CH_U_000 CH_M_L030,		CH_M_R030 0.85 0	(off)										
CH_U_L045 CH_U_L030 1.0 0	(off)										
CH_U_L045 CH_M_L045 0.85 1	
CH_U_L045 CH_M_L030 0.85 1	
CH_U_R045 CH_U_R030 1.0 0	(off)										
CH_U_R045 CH_M_R045 0.85 1	
CH_U_R045 CH_M_R030 0.85 1	
CH_U_L030 CH_U_L045 1.0 0	(off)										
CH_U_L030 CH_M_L030 0.85 1	
CH_U_R030 CH_U_R045 1.0 0	(off)										
CH_U_R030 CH_M_R030 0.85 1	
CH_U_L090 CH_U_L030,		CH_U_L110 1.0 0	(off)										
CH_U_L090 CH_U_L030,		CH_U_L135 1.0 0	(off)										
CH_U_L090 CH_U_L045 0.8 0	(off)										
CH_U_L090 CH_U_L030 0.8 0	(off)										
CH_U_L090 CH_M_L045,		CH_M_L110 0.85 2	
CH_U_L090 CH_M_L030,		CH_M_L110 0.85 2	
CH_U_L090 CH_M_L030 0.85 2	
CH_U_R090 CH_U_R030,		CH_U_R110 1.0 0	(off)										
CH_U_R090 CH_U_R030,		CH_U_R135 1.0 0	(off)										
CH_U_R090 CH_U_R045 0.8 0	(off)										
CH_U_R090 CH_U_R030 0.8 0	(off)										
CH_U_R090 CH_M_R045,		CH_M_R110 0.85 2	
CH_U_R090 CH_M_R030,		CH_M_R110 0.85 2	
CH_U_R090 CH_M_R030 0.85 2	
CH_U_L110 CH_U_L135 1.0 0	(off)										
CH_U_L110 CH_U_L090 0.8 0	(off)										
CH_U_L110 CH_U_L045 0.8 0	(off)										
CH_U_L110 CH_U_L030 0.8 0	(off)										

ISO/IEC	23008-3:202X(E)	

616	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Source Destination Gain EQ	index

CH_U_L110 CH_M_L110 0.85 2	
CH_U_L110 CH_M_L045 0.85 2	
CH_U_L110 CH_M_L030 0.85 2	
CH_U_R110 CH_U_R135 1.0 0	(off)										
CH_U_R110 CH_U_R090 0.8 0	(off)										
CH_U_R110 CH_U_R045 0.8 0	(off)										
CH_U_R110 CH_U_R030 0.8 0	(off)										
CH_U_R110 CH_M_R110 0.85 2	
CH_U_R110 CH_M_R045 0.85 2	
CH_U_R110 CH_M_R030 0.85 2	
CH_U_L135 CH_U_L110 1.0 0	(off)										
CH_U_L135 CH_U_L090 0.8 0	(off)										
CH_U_L135 CH_U_L045 0.8 0	(off)										
CH_U_L135 CH_U_L030 0.8 0	(off)										
CH_U_L135 CH_M_L110 0.85 2	
CH_U_L135 CH_M_L045 0.85 2	
CH_U_L135 CH_M_L030 0.85 2	
CH_U_R135 CH_U_R110 1.0 0	(off)										
CH_U_R135 CH_U_R090 0.8 0	(off)										
CH_U_R135 CH_U_R045 0.8 0	(off)										
CH_U_R135 CH_U_R030 0.8 0	(off)										
CH_U_R135 CH_M_R110 0.85 2	
CH_U_R135 CH_M_R045 0.85 2	
CH_U_R135 CH_M_R030 0.85 2	
CH_U_180 CH_U_R135,		CH_U_L135 1.0 0	(off)										
CH_U_180 CH_U_R110,		CH_U_L110 1.0 0	(off)										
CH_U_180 CH_M_180 0.85 2	
CH_U_180 CH_M_R110,		CH_M_L110 0.85 2	
CH_U_180 CH_U_R030,	CH_U_L030 0.8 0	(off)										
CH_U_180 CH_M_R030,		CH_M_L030 0.85 2	
CH_T_000 ALL_U 0.8 3	
CH_T_000 ALL_M 0.8 4	
CH_L_000 CH_M_000 1.0 0	(off)										
CH_L_000 CH_M_L030,		CH_M_R030 1.0 0	(off)										
CH_L_L045 CH_M_L045 1.0 0	(off)										
CH_L_L045 CH_M_L030 1.0 0	(off)										
CH_L_R045 CH_M_R045 1.0 0	(off)										
CH_L_R045 CH_M_R030 1.0 0	(off)										
CH_LFE2 CH_LFE3 1.0 0	(off)										
CH_LFE2 CH_M_L030,		CH_M_R030 1.0 0	(off)										
CH_LFE3 CH_LFE2 1.0 0	(off)										
CH_LFE3 CH_M_L030,		CH_M_R030 1.0 0	(off)										

Table	295	—	Normalized	centre	frequencies	of	the	58	processing	bands	

Normalized	frequency	[0,	1]

0.000000000000000	
0.003891050583658	
0.007782101167315	
0.011673151750973	
0.015564202334630		
0.019455252918288	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 617	
	

Normalized	frequency	[0,	1]

0.023346303501946	
0.027237354085603	
0.031128404669261	
0.035019455252918	
0.038910505836576	
0.042801556420233	
0.046692607003891	
0.050583657587549	
0.054474708171206	
0.058365758754864	
0.062256809338521	
0.066147859922179	
0.070038910505837	
0.073929961089494	
0.077821011673152	
0.081712062256809	
0.085603112840467	
0.089494163424125	
0.093385214007782	
0.097276264591440	
0.101167315175097	
0.105058365758755	
0.108949416342412	
0.112840466926070	
0.116731517509728	
0.120622568093385	
0.124513618677043	
0.132295719844358	
0.143968871595331	
0.157587548638132	
0.173151750972763	
0.188715953307393	
0.204280155642023	
0.221789883268482	
0.241245136186770	
0.260700389105058	
0.284046692607004	
0.311284046692607	
0.338521400778210	
0.365758754863813	
0.394941634241245	
0.428015564202335	
0.464980544747082	
0.505836575875486	
0.550583657587549	
0.597276264591440	
0.647859922178988	
0.704280155642023	
0.764591439688716	
0.828793774319066	
0.898832684824903	
0.966926070038911	

ISO/IEC	23008-3:202X(E)	

618	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	296	—	Processing	band	mapping	table	pbm(k)	

k pbm(k) k pbm(k) k pbm(k) k pbm(k) k pbm(k) k pbm(k)

	0	 0 50 37 100 46 150 51 200 54 250 57
1	 1 51 38 101 46 151 51 201 54 251 57
2	 2 52 38 102 46 152 51 202 54 252 57
3	 3 53 38 103 46 153 51 203 54 253 57
4	 4 54 38 104 46 154 51 204 54 254 57
5	 5 55 39 105 46 155 51 205 55 255 57
6	 6 56 39 106 47 156 51 206 55 256 57
7	 7 57 39 107 47 157 51 207 55
8	 8 58 39 108 47 158 51 208 55
9	 9 59 39 109 47 159 51 209 55
10	 10 60 40 110 47 160 52 210 55
11	 11 61 40 111 47 161 52 211 55
12	 12 62 40 112 47 162 52 212 55
13	 13 63 40 113 47 163 52 213 55
14	 14 64 40 114 47 164 52 214 55
15	 15 65 41 115 48 165 52 215 55
16	 16 66 41 116 48 166 52 216 55
17	 17 67 41 117 48 167 52 217 55
18	 18 68 41 118 48 168 52 218 55
19	 19 69 41 119 48 169 52 219 55
20	 20 70 42 120 48 170 52 220 55
21	 21 71 42 121 48 171 52 221 55
22	 22 72 42 122 48 172 52 222 56
23	 23 73 42 123 48 173 52 223 56
24	 24 74 42 124 48 174 53 224 56
25	 25 75 42 125 49 175 53 225 56
26	 26 76 42 126 49 176 53 226 56
27	 27 77 43 127 49 177 53 227 56
28	 28 78 43 128 49 178 53 228 56
29	 29 79 43 129 49 179 53 229 56
30	 30 80 43 130 49 180 53 230 56
31	 31 81 43 131 49 181 53 231 56
32	 32 82 43 132 49 182 53 232 56
33	 33 83 43 133 49 183 53 233 56
34	 33 84 44 134 49 184 53 234 56
35	 33 85 44 135 49 185 53 235 56
36	 34 86 44 136 50 186 53 236 56
37	 34 87 44 137 50 187 53 237 56
38	 34 88 44 138 50 188 53 238 56
39	 35 89 44 139 50 189 54 239 56
40	 35 90 44 140 50 190 54 240 56
41	 35 91 45 141 50 191 54 241 57
42	 35 92 45 142 50 192 54 242 57
43	 36 93 45 143 50 193 54 243 57
44	 36 94 45 144 50 194 54 244 57
45	 36 95 45 145 50 195 54 245 57
46	 36 96 45 146 50 196 54 246 57
47	 37 97 45 147 50 197 54 247 57
48	 37 98 46 148 51 198 54 248 57
49	 37 99 46 149 51 199 54 249 57 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 619	
	

Table	297	—	Equalizer	parameters	

Equalizer Pf	[Hz] PQ Pg [dB] g	[dB]

 12	000 0,3 -2 1,0	

 12	000 0,3 -3,5 1,0	

 200,1	300,	600 0,3,	0,5,	1,0 -6,5,	1,8,	2,0 0,7	

 5	000,	1	100 1,0,	0,8 4.5,	1,8 -3,1	

 35 0,25 -1,3 1,0	

Table	298	—	Vertically	corresponding	channels		

CH_L_000 	CH_M_000 		CH_U_000
CH_L_L045 CH_M_L030 	CH_U_L030
CH_L_L045 CH_M_L030 	CH_U_L045
CH_L_L045 CH_M_L045 	CH_U_L030
CH_L_L045 CH_M_L045 	CH_U_L045
CH_L_L045 CH_M_L060 	CH_U_L030
CH_L_L045 CH_M_L060 	CH_U_L045
CH_L_R045 CH_M_R030 	CH_U_R030
CH_L_R045 CH_M_R030 	CH_U_R045
CH_L_R045 CH_M_R045 	CH_U_R030
CH_L_R045 CH_M_R045 	CH_U_R045
CH_L_R045 CH_M_R060 	CH_U_R030
CH_L_R045 CH_M_R060 	CH_U_R045
CH_M_180 	CH_U_180 	
CH_M_L090 CH_U_L090 	
CH_M_L110 CH_U_L110 	
CH_M_L135 CH_U_L135 	
CH_M_L090 CH_U_L110 	
CH_M_L090 CH_U_L135 	
CH_M_L110 CH_U_L090 	
CH_M_L110 CH_U_L135 	
CH_M_L135 CH_U_L090 	
CH_M_L135 CH_U_L135 	
CH_M_R090 CH_U_R090 	
CH_M_R110 CH_U_R110 	
CH_M_R135 CH_U_R135 	
CH_M_R090 CH_U_R110 	
CH_M_R090 CH_U_R135 	
CH_M_R110 CH_U_R090 	
CH_M_R110 CH_U_R135 	
CH_M_R135 CH_U_R090 	
CH_M_R135 CH_U_R135 	
NOTE					Each	row	lists	channels	which	are	considered	to	be	above/below	each	other.	

 Audio	signal	processing	

24.3.5.1 General	

The	audio	processing	block	of	the	format	converter	obtains	time	domain	audio	samples	for	Nin	channels	
from	the	core	decoder	and	generates	a	downmixed	time	domain	audio	output	signal	consisting	of	Nout	
channels.	

EQ,1G

EQ,2G

EQ,3G

EQ,4G

EQ,5G

ISO/IEC	23008-3:202X(E)	

620	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

The	processing	takes	as	input	

¾ the	audio	data	decoded	by	the	core	decoder,	and	

¾ the	static	downmix	matrix	MDMX	returned	by	the	initialization	of	the	format	converter.	

It	 returns	 an	Nout-channel	 time	domain	output	 signal	 for	 the	OutConf	 channel	 configuration	 signalled	
during	the	initialization	of	the	format	converter.	

The	format	converter	operates	on	contiguous,	non-overlapping	frames	of	 length	L	=	256	time	domain	
samples	of	the	input	audio	signals	and	outputs	one	frame	of	L	samples	per	processed	input	frame	of	length	
L.	The	algorithm	performs	a	short	time	Fourier	transform	(STFT)	of	length	N	=	512	with	50	%	overlap,	
i.e.	the	overlap	length	as	well	as	the	hop	size	of	the	STFT	is	256	time	domain	samples.	The	STFT	domain	

processing	takes	place	in	K=256	frequency	bins,	which	are	partitioned	into	PB=58	processing	bands.	

24.3.5.2 T/F-transform	(STFT	analysis)	

As	 the	 first	 processing	 step	 the	 converter	 updates	 the	 STFT	 input	 buffer 	by	 one	 frame	 (L=256	

samples)	of	the	Nin	channel	time	domain	input	signal	 :	

	

where	F	denotes	the	 frame	index	and	 	 for	 the	 first	processing	 frame.	An	analysis	window	is	

applied	and	a	DFT	of	length	N=512	is	calculated	for	each	of	the	Nin	signals	in	the	windowed	STFT	input	
buffer:

	

		for	 ,	 	

with	 .	

24.3.5.3 Intermediate	downmix	signals	

Intermediate	downmix	signals	and	corresponding	energies	are	calculated	according	to:	

	

	

Similarly,	the	energies	of	the	intermediate	downmix	signals	are	derived	in	the	processing	bands	as:	

!
,ch iy

n

inch,1 ch, chN

n n n~ ~ ~é ù
=ê ú

ë û
!y y y

!

, 1

, in
, ,

, in

for 0 , 1 i

for , 1 i

F

ch i
ch i L F

ch i

L N
y

L N N

n

n

n

n

n

-~

-~

ì
£ < £ <ï= í

ï £ < £ <î

y

y

, 1

, 0
F

ch i

n -~

=y

!
1

2 /
, ,

0
[]

N
k jk N
ch i ch iy w y e

n p n

n

n
-

-

=

= × ×å 0 k K£ < 1 ini N£ £

()()[] sin 0.5 /w Nn n p= +

, , DMX, ,
1

for 1 , 0
inNk k k

ch o ch i o i out
i

z y M o N k K
=

= £ £ £ <å
!

!
()22

, , DMX, ,
1 ,

()

for 1 , 0
inNpb k k

ch o ch i o i out
i k

pbm k
pb

Z y M o N pb PB
=

=

= £ £ £ <å å

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 621	
	

	

24.3.5.4 Final	frequency	domain	downmix	signals	

The	final	downmix	signals	are	obtained	in	the	STFT	domain	according	to:	

	

with	

		

and	

		where		 	

				and			 	

as	well	as	 	shall	be	initialized	to	zero	for	the	first	processing	frame.	

24.3.5.5 F/T-transform	(STFT	synthesis)	

As	last	processing	step	per	processed	frame	of	256	samples,	the	downmix	signal	is	transformed	to	the	

time	 domain	 by	 application	 of	 an	 inverse	 DFT,	 windowing	 and	 overlap-add	 update,	 yielding	 L	 time	

domain	output	samples	 	per	output	channel.	For	the	current	frame	(frame	index	F)	the	operations	
read:	

		for	 ,	 	

with	 ,	where	 	denotes	the	complex	conjugate	of	z.	

	for	 ,	 ,	

where	 	shall	be	initialized	with	zeros	for	the	first	processing	frame.	

! 2

, ,o
,
()

for 1 , 0
pb k
ch o ch out

k
pbm k
pb

Z z o N pb PB

=

= £ £ £ <å
!

,, , for 1 , 0
kk k
ch och o ch o outz z EQ o N k K= £ £ £ <
!

∂(), 0.4 0.5
,

1 if

min 10 ,max 10 , else
k

kch o
ch o

EQ
EQ-

ì
ï= í æ öç ÷ï è øî

passiveDownmixFlag ==1

∂
!

!
,

,

,eps

pb
k ch o
ch o pb

ch o

ZEQ
Z

=
+

()pb pbm k=

! !
()

!, , , 1
, , ,1

pb F pb F pb F
ch o ch o ch oZ Z Za a

-
= + -

! !
()

!, , , 1
, , ,1

pb F pb F pb F
ch o ch o ch oZ Z Za a

-
= + -

! , 1
,

pb F
ch oZ

- ! , 1
,

pb F
ch oZ

-

,ochz
n!

1, , 2 /
,o ,

0

1[]
NF k compl jk N

ch ch o
k

z w z e
N

n p nn
-

=

= × ×å! 0 Nn£ < 1 outo N£ £

,,
,

,

0
()

k
ch ok compl

ch o N k
ch o

z k K
z

conj z K k N-

ì £ <ï= í £ <ïî
()conj z

, , 1,
,o ,o ,o

F L FF
ch ch chz z z

n nn + -
= +! !" 0 Ln£ < 1 outo N£ £

, 1
,o
F

chz
n -!

ISO/IEC	23008-3:202X(E)	

622	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

25 Low	complexity	immersive	loudspeaker	rendering/format	conversion		

25.1 Description	

For	the	5.0	and	5.1	channel	output	layouts,	immersive	loudspeaker	rendering	shall	be	chosen	to	provide	

overhead	sound	images	using	surround	channel	loudspeakers	depending	on	the	immersiveDownmixFlag	

in	downmixConfig().	The	immersive	loudspeaker	renderer	is	a	downmixer	that	converts	multichannel	

signals	 from	 transmitted	 channel	 configurations	with	Nin	 channels	 to	 desired	 reproduction	 format	 of	
either	 5.1	 or	 5.0	 system.	 It	 has	 a	 switching	 scheme	 between	 3D	 rendering	 and	 2D	 rendering	 using	

different	 elevation	 rendering	 for	 height	 input	 channels	 depending	 on	 the	 transmitted	 bitstream	

rendering3DType	to	provide	overhead	sound	image	properly.	It	is	thus	also	called	‘immersive	format	
converter’.	The	system	consists	of	two	major	building	blocks:	

¾ an	 initialization	algorithm	 that	 takes	 into	account	 static	parameters	 like	 the	 input	and	output	
format;	

¾ a	 signal	 adaptive	 downmixing	 process	 that	 operates	 in	 a	 subband	 domain	 with	 a	 switching	
scheme	according	to	the	transmitted	flag	rendering3DType.	

	

Figure	110	—	Main	building	blocks	of	the	immersive	format	converter	

In	 the	 initialization	 phase	 the	 format	 converter	 automatically	 generates	 optimized	 downmixing	

parameters	 (like	 the	 downmixing	matrix)	 for	 the	 given	 combination	 of	 input	 and	 output	 formats:	 It	

applies	an	algorithm	that	selects	for	each	input	loudspeaker	the	most	appropriate	mapping	rule	from	a	

list	of	rules	that	has	been	designed	to	incorporate	psychoacoustic	considerations.	Each	rule	describes	the	

mapping	from	one	input	channel	to	one	or	several	output	loudspeaker	channels.	

Input	channels	are		

¾ either	mapped	to	a	single	output	channel,		

¾ or	panned	to	two	output	channels,		

¾ or	(in	case	of	the	‘Voice	of	God’	channel)	distributed	over	a	larger	number	of	output	channels,		

DMX process in
subband domain

DMX
configurator

mixer output
signals

mixer output
layout

reproduction
layout

loudspeaker
signalsDecoder

bitstream

rendering3DType

Format Converter

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 623	
	

¾ or	(in	case	of	the	‘elevation	rendering’)	panned	to	multiple	output	channels	with	different	panning	
coefficients	over	frequency.	

The	optimal	mapping	for	each	input	channel	is	selected	depending	on	the	list	of	output	loudspeakers	that	

are	available	in	the	desired	output	format.	Each	mapping	defines	downmix	gains	for	the	input	channel	

under	consideration	as	well	as	potentially	also	an	equalizer	that	is	applied	to	the	input	channel	under	

consideration.	

Output	setups	with	non-standard	loudspeaker	positions	can	be	signalled	to	the	system	by	providing	the	

azimuth	and	elevation	deviations	from	a	regular	loudspeaker	setup.	Further,	distance	variations	of	the	

desired	target	loudspeaker	positions	are	taken	into	account.	

For	each	frame,	a	bit	called	rendering3DType	is	decoded	by	the	decoder	and	passed	to	the	immersive	

format	converter.	The	rendering3DType	indicates	whether	the	sound	scene	 is	appropriate	 for	the	3D	

rendering	 or	 2D	 rendering	 over	 either	 5.0	 or	 5.1	 channel	 layout.	 For	 the	 height	 input	 channels,	 the	

immersive	 format	 converter	 uses	 the	 “spatial	 elevation	 rendering”	 for	 3D	 rendering	 when	 the	

rendering3DType	 is	 TRUE	 and	 “timbral	 elevation	 rendering”	 for	 the	 2D	 rendering	 when	 the	

rendering3DType	is	FALSE.	For	the	non-height	input	channels,	non-elevation	rendering	uses	the	same	

downmix	coefficients	regardless	of	the	rendering3DType.	

The	 actual	 downmixing	 of	 the	 audio	 signals	 is	 performed	 on	 a	 short	 time	 Fourier	 transform	 (STFT)		

representation	of	the	signals.	The	energy-preserving	algorithm	avoids	signal	deteriorations	like	comb-

filtering,	coloration,	or	modulation	artifacts.	

25.2 Syntax	

The	FormatConverterFrame	defines	the	proper	rendering	type	for	the	immersive	format	converter.	

Table	299	—	Syntax	of	FormatConverterFrame()	

Syntax No.	of	bits Mnemonic
FormatConverterFrame()
{
	 rendering3DType; 1 uimsbf
} 	

The	flag	rendering3DType	is	created	at	the	encoder	based	on	the	audio	scene.	When	the	audio	scene	is	
wideband	and	highly	decorrelated	at	a	frame,	the	flag	rendering3DType	becomes	false	and	rendering	is	
done	by	the	secondary	downmix	matrix	MDMX2.	In	all	other	cases,	the	flag	becomes	true	and	rendering	is	

done	by	the	primary	downmix	matrix	MDMX,	which	provides	elevated	sound	images.	

25.3 Definitions	

 General	remarks	

Audio	signals	that	are	fed	into	the	format	converter	are	referred	to	as	input	signals	in	the	following.	Audio	
signals	that	are	the	result	of	the	format	conversion	process	are	referred	to	as	output	signals.	Note	that	the	
audio	input	signals	of	the	format	converter	are	audio	output	signals	of	the	core	decoder.		

Vectors	 and	 matrices	 are	 denoted	 by	 bold-faced	 symbols.	 Vector	 elements	 or	 matrix	 elements	 are	

denoted	 as	 italic	 variables	 supplemented	 by	 indices	 indicating	 the	 row/column	 of	 the	 vector/matrix	

element	in	the	vector/matrix,	e.g.	
	
denotes	a	vector	and	its	elements.	Similarly,	Ma,b	

denotes	the	element	in	the	ath	row	and	bth	column	of	a	matrix	M.		

[]1 a Ny y y = y! !

ISO/IEC	23008-3:202X(E)	

624	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Variable	definitions	

Nin	 Number	of	channels	in	the	input	channel	configuration.	

Nout	 Number	of	channels	in	the	output	channel	configuration.	

MDMX	 Primary	downmix	matrix	containing	real-valued	non-negative	downmix	coefficients	

(downmix	gains)	for	the	non-elevation	rendering	and	spatial	elevation	rendering	for	3D	

rendering	over	2D	layout.	MDMX	is	basically	of	dimension	

(Nout	×	Nin)	but	possibly	increased	to	(Nout		×	(Nin	+	5))	depending	on	the	input	and	output	
layouts.	See	how	the	dimension	is	changed	in	subclause	25.4.2.3.	

MDMX2	 Secondary	downmix	matrix	containing	real-valued	non-negative	downmix	coefficients	

(downmix	gains)	for	the	non-elevation	rendering	and	timbral	elevation	rendering	for	2D	

rendering	over	2D	layout.	The	downmix	coefficients	for	the	horizontal	input	channels	are	

identical	to	those	in	MDMX.	The	MDMX	is	dimension	of	(Nout	×	Nin)	but	possibly	increased	to	
(Nout	×	(Nin	+	5))	depending	on	the	input	and	output	layouts.	See	how	the	dimension	is	
changed	in	subclause		25.4.2.3.	

GEQ	 Matrix	consisting	of	gain	values	per	processing	band	determining	frequency	responses	of	

equalizing	filters	for	all	rendering	mapping.	GEQ,1~5	are	used	for	the	non-elevation	
rendering	and	timbral	elevation	rendering,	GEQ,7~14	are	used	for	spatial	elevation	
rendering,	GEQ,15~20	are	used	for	spatial	coloration	filter,	and	GEQ,21~	are	used	for	modified	
EQ	for	randomized	setup	in	subclause	25.4.1.6.5	and	coloration	filter	in	subclause	

25.4.1.6.7.6.	

IEQ	 Vector	signalling	which	equalizer	filters	to	apply	to	the	input	channels	(if	any).	

L	 Frame	length	measured	in	time	domain	audio	samples.	

ν	 Time	domain	sample	index.	

F	 Frame	index	(frame	number).	

PB	 Number	of	processing	bands,	PB=58.	

pb	 Processing	band	index		().	

N	 DFT	length	

K	 Number	of	STFT	frequency	bins,	K	=	257.	

k	 STFT	frequency	bin	index	().	

α	 Filter	parameter,	α	=	0,043	5.	

A,B	 Channel	indices.	

eps	 Numerical	constant,	 .	

0 pb PB£ <

0 k K£ <

35eps 10-=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 625	
	

rendering3
DType	

Flag	from	the	bitstream	identifying	the	rendering	type	for	the	elevation	rendering.	True	

for	the	general	audio	scene	and	false	for	the	highly	decorrelated	wideband	scene	(e.g.	

applause).	Accordingly,	the	primary	downmix	matrix	MDMX is	chosen	when	the	

rendering3DType	is	TRUE	and	the	secondary	downmnix	matrix	MDMX2 is	chosen	when	

the	rendering3DType	is	FALSE	in	the	immersive	format	converter.	

iin 	 Label	of	the	input	channel	to	be	rendered	by	immersive	format	converter	(e.g.	

CH_U_000)	

GvH0,1~6 (iin)	 Spatial	elevation	panning	coefficients	for	the	input	channel	(iin)	for	the	2,8~10	kHz	in	

order	to	provide	overhead	image.	Note	that	the	coefficient	is	always	normalized	to	

preserve	the	input	power	after	mixing.	The	number	index	represents	output	channels	as	

shown	in	Table	308.		

GvL0,1~6 (iin)	 Spatial	elevation	panning	coefficients	for	the	input	channel	(iin)	for	below	2,8	kHz	and	

above	10	kHz.	Note	that	the	coefficient	is	always	normalized	to	reserve	the			input	power	

after	mixing.	The	number	index	represents	output	channels	as	shown	in	Table	308.	

COLOR_A_B	 Tone	coloration	filter	to	the	output	at	the	azimuth	of	±B	degrees	from	the	input	at	the	

azimuth	of	±A	degrees	based	on	the	ratio	between	HRTF	at	A	and	HRTF	at	B.	It	is	

determined	by	a	frequency	dependent	dynamic	cue	which	represents	loudspeaker-to-

listener	orientation.	

25.4 Processing	

 Initialization	of	the	format	converter	

25.4.1.1 General	description	of	the	initialization	

The	initialization	of	the	format	converter	is	carried	out	before	processing	of	the	audio	samples	delivered	

by	the	core	decoder	takes	place.		

The	initialization	takes	into	account	as	input	parameters:	

¾ The	sampling	rate	of	the	audio	data	to	process;	

¾ The	channel	configuration	of	the	audio	data	to	process	with	the	format	converter	(number	and	
geometric	positions	of	input	channels);	

¾ The	 channel	 configuration	 of	 the	 desired	 output	 format	 (number	 and	 geometric	 positions	 of	
output	channels);	

¾ Optional:	 Parameters	 signalling	 the	 deviation	 of	 the	 output	 loudspeaker	 positions	 from	 a	
standard	loudspeaker	setup	(random	setup	functionality).	

It	returns		

¾ The	 primary	 frequency	 dependent	 downmix	 matrix	MDMX	 that	 is	 applied	 in	 the	 audio	 signal	

processing	of	 the	 format	converter	when	the	rendering3DType	is	TRUE.	Note	that	the	MDMX	 is	

independent	variable	 in	 the	Format	Converter	and	shall	not	be	 taken	 into	account	 in	 the	core	

decoding	process	in	subclause	5.5.4.1.2;	

ISO/IEC	23008-3:202X(E)	

626	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

¾ The	secondary	frequency	dependent	downmix	matrix	MDMX2	 that	is	applied	in	the	audio	signal	

processing	of	the	format	converter	when	the	rendering3DType	is	FALSE.	The	MDMX2	is	identical	

to	MDMX	if	there	is	no	‘height’	input	channel	or	’spatial	elevation	rendering’	is	not	possible.	

The	input	parameters	to	the	initialization	algorithm	are	listed	in	Table	300.	

Table	300	—	Format	converter	initialization	input	parameters	

 Input	format:	number	of	channels	and	nominal	channel	setup	geometry.	
 Output	format:	number	of	channels	and	nominal	channel	setup	geometry.	
fs Sampling	frequency	in	Hertz.	
razi,A For	each	output	channel	A,	an	azimuth	angle	is	specified,	determining	the	deviation	

from	the	standard	format	loudspeaker	azimuth.	
rele,A For	each	output	channel	A,	an	elevation	angle	is	specified,	determining	the	deviation	

from	the	standard	format	loudspeaker	elevation.	
	

Table	301	lists	the	output	parameters	that	are	derived	during	the	initialization	of	the	format	converter.	

Table	301	—	Format	converter	initialization	output	parameters	

MDMX
 Primary	Downmix	matrix	[linear	gains]	for	spatial	elevation	rendering		

(for	rendering3DType	==	1)	
MDMX2 Secondary	Downmix	matrix	[linear	gains]	for	timbral	elevation	rendering		

(for	rendering3DType	==	0)	

Note	 that	 the	 MDMX1	 and	 MDMX2	 include	 the	 same	 input-output	 downmix	 matrix	 for	 non-elevation	

rendering	input	channels.		

25.4.1.2 Assignment	of	format	converter	channel	labels	to	input/output	format	channels	

The	 format	 converter	 initialization	 is	 based	on	 a	 system	of	 rules	 that	 are	defined	 in	 terms	of	 format	
converter	channel	labels,	see	Table	310.	To	allow	the	application	of	the	initialization	rules,	the	channel	
labels	have	to	be	assigned	to	the	channels	of	the	input	and	output	formats.	Each	format	converter	channel	

label	is	associated	with	a	segment	of	the	surface	of	the	unit	sphere,	as	defined	in	Table	310.	The	segments	

are	designed	non-overlapping.	

The	assignment	of	 channel	 labels	 to	 channels	 is	done	by	geometrically	matching	 the	 segments	 to	 the	

position	data	associated	with	the	channels	of	the	input	and	output	formats.	The	azimuth	and	elevation	

angles	in	degrees	of	the	position	data	associated	with	the	channels	shall	be	rounded	towards	the	nearest	

integer	number	before	performing	the	channel	label	assignment.	Note	that	the	nominal	channel	positions	
shall	be	applied	in	the	following	matching	to	channel	label	sectors,	i.e.	the	azimuth	and	elevation	angles	

without	taking	into	account	potential	angle	deviations		signalled	in	razi,A	and/or	rele,A.	

For	each	channel	that	is	not	an	LFE	(low	frequency	enhancement)	channel:	

If	the	nominal	position	of	the	current	channel,	defined	by	its	azimuth	angle	and	elevation	angle,	is	within	

or	on	the	border	of	one	of	the	segments	defined	in	Table	310	then:	

Assign	the	corresponding	channel	label	(e.g.		CH_M_L030)	associated	with	the	matching	segment.	

Add	the	angle	differences	between	the	nominal	position	of	the	current	channel	and	the	nominal	

position	associated	with	the	matching	segment	(i.e.	the	angles	in	the	second	and	third	column	of	

Table	310)	to	the	angle	deviations	stored	in	razi,A	and	rele,A.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 627	
	

Else	(i.e.	no	matching	sector	found),	then:	

Assign	the	CH_EMPTY	label.	

If	an	input	or	output	format	contains	exactly	one	LFE	channel,	then	the	label	CH_LFE1	shall	be	assigned	

to	this	channel.		

If	an	input	or	output	format	contains	exactly	two	LFE	channels,	then	the	labels	CH_LFE1	and	CH_LFE2	

shall	be	assigned	to	the	two	LFE	channels	in	the	order	that	minimizes	the	maximum	azimuth	distance	

from	the	channels	to	the	assigned	CH_LFE1	and	CH_LFE2	nominal	azimuth	positions.	

If	an	input	or	output	format	contains	more	than	2	LFE	channels,	then	those	2	LFE	channels	out	of	the	

considered	setup	shall	be	selected	that	minimize	 the	maximum	azimuth	distance	 to	 the	CH_LFE1	and	

CH_LFE2	nominal	azimuth	positions.	The	labels	CH_LFE1	and	CH_LFE2	shall	be	assigned	as	in	the	case	of	

two	 LFE	 channels.	 The	 remaining	 LFE	 channels	 shall	 not	 be	 considered	 further	 in	 the	 calculation	 of	

downmix	coefficients,	 i.e.	 the	corresponding	 lines/columns	of	 the	downmix	matrix	 shall	 remain	 filled	

with	zeros.	

25.4.1.3 Handling	for	unknown	input	channels	

If	the	label	CH_EMPTY	is	assigned	to	an	input	channel,	this	channel	shall	be	considered	unknown	to	the	

rules-based	 initialization	 and	 the	 downmix	 coefficients	 for	mapping	 this	 input	 channel	 to	 the	 output	

channels	shall	be	derived	as	specified	in	subclause	25.4.1.6.9.	

25.4.1.4 Handling	for	unknown	output	formats	

If	the	output	format	contains	at	least	one	channel	with	the	label	CH_EMPTY	assigned	to	it,	or	if	at	least	

one	channel	label	is	assigned	to	more	than	one	channel	of	the	output	format,	the	output	format	shall	be	

considered	unknown	and	the	derivation	of	the	downmixing	coefficients	shall	be	carried	out	as	specified	

in	 subclause	 25.4.1.6.9.	 The	 rules-based	 derivation	 of	 downmix	 coefficients	 shall	 not	 be	 applied	 for	

unknown	output	formats.	

25.4.1.5 Handling	of	deviations	from	standard	loudspeaker	positions	

If	the	below	conditions	are	not	met,	the	rules-based	initialization	is	considered	to	have	failed,	the	output	

format	shall	be	considered	to	be	unknown,	and	the	downmixing	gains	shall	be	obtained	as	defined	 in	

subclause	25.4.1.6.9.	

The	absolute	values	of	razi,A	and	rele,A	shall	not	exceed	35	and	55	degrees,	respectively.	The	minimum	angle	
between	any	loudspeaker	pair	(without	LFE	channels)	shall	not	be	smaller	than	15	degrees.	

The	values	of	razi,A	shall	be	such	that	the	ordering	by	azimuth	angles	of	the	horizontal	loudspeakers	does	
not	change.	Likewise,	the	ordering	of	the	height	and	low	loudspeakers	shall	not	change.	

The	 values	 of	 rele,A	 shall	 be	 such	 that	 the	 ordering	 by	 elevation	 angles	 of	 loudspeakers	 which	 are	
(approximately)	 above/below	 each	 other	 does	 not	 change.	 To	 verify	 this,	 the	 following	 procedure	 is	

applied:	

For	each	row	of	Table	316	which	contains	two	or	three	channels	of	the	output	format,	do:	

— Order	the	channels	by	elevation	without	randomization;	

ISO/IEC	23008-3:202X(E)	

628	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— Order	the	channels	by	elevation	with	considering	randomization;	

— If	the	two	orderings	differ,	return	an	initialization	error.	

If	the	below	conditions	are	not	met,	converter	initialization	is	considered	to	have	failed,	and	an	error	shall	

be	returned.	

25.4.1.6 Rules-based	initialization	algorithm	

25.4.1.6.1 General	

The	rules-based	initialization	algorithm	is	defined	in	the	following	subclauses.	The	algorithm	shall	not	be	

applied	if	the	output	format	is	considered	unknown	as	defined	in	the	previous	subclause.	For	clarity	the	

following	description	makes	use	of	intermediate	parameters	listed	in	Table	302	but	an	implementation	
may	omit	the	explicit	use	of	these	intermediate	parameters.	

Table	302	—	Format	converter	initialization	intermediate	parameters		

S, SP, SS	 Vector	of	converter	source	channels	[input	channel	indices]	

D, DP, DS	 Vector	of	converter	destination	channels	[output	channel	indices]	

G, GP, GS	 Vector	of	converter	gains	[linear]	

E, EP, ES	 Vector	of	converter	EQ	indices	

GEQ Matrix	containing	equalizer	gain	values	for	all	EQ	indices	and	processing	bands	

	

The	 superscript	 S/P	 is	 the	 discriminator	 for	 the	 elevation	 rendering	 type.	 Those	 with	 designated	

superscript	P	are	initialized	to	be	used	for	the	‘spatial	elevation	rendering’	and	used	to	create	the	primary	

downmix	matrix	MDMX,	those	with	designated	superscript	S	are	for	the	‘timbral	elevation	rendering’	and	

used	to	create	the	secondary	downmix	matrix,	and	those	without	superscript	are	for	the	non-elevation	

rendering	and	used	to	create	both	the	primary	and	secondary	downmix	matrixes.	

The	intermediate	parameters	describe	the	dowmixing	parameters	according	to	the	mapping,	i.e.	as	sets	

of	parameters	Si,	Di,	Gi,	Ei,	per	mapping	i.	

The	format	converter	initialization	output	parameters	are	derived	as	described	in	the	following	Figure	
111.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 629	
	

	

Figure	111	—	Rule	based	downmix	initialization	flow	

with	following	steps	for	each	channel:	

— If	the	destination	of	the	downmix	rule	for	the	input	channel	(iin)	is	VIRTUAL,	isPossibleElev	decides	
whether	the	input	channel	should	be	rendered	by	the	elevation	rendering	defined	in	subclause	

25.4.1.6.7.	

each downmix rule
for the input channel

Destination
 == VIRTUAL?

isPossibleELEV

no : next downmix rule for
the input channel

Valid Rule?

no : next downmix rule
for the input channel

yes

yes : elevation rendering

no

yes

renderElevSptlParms
(with the parameters of

EQSR, GvH, and GvL)
renderElevTmbrParms non-elevation rendering

downmix

each input channel with
the index of (iin)

sS, dS, gS, eS, gainS, nS

next input channel

sP, dP, gP
vH, gP

vL, eP, gEQ,7~14, nP

Post-processing for
Random Setup

Post-processing for
Random Setup

Post-processing for
Random Setup

 SS, DS, GS, ES, GEQ, NS SP, DP, GP
vH, GP

vL, EP, GEQ, NP S, D, G, E, GEQ, N

Merge the input-output mapping and Create downmix Matrixes, MDMX and MDMX2

MDMX and MDMX2

next input channel

For all the input channels, find the rendering rule

collect all the initialization
parameters of

 SS, DS, GS, ES, GainS, NS

collect all the initialization
parameters of

 SP, DP, GP
vH, GP

vL,
EP, GEQ,7~14, NP

collect all the initialization
parameters of

 S, D, G, E, Gain, GEQ,1~5, N

 SS, DS, GS, ES,
GainS, NS SP, DP, GP

vH, GP
vL, EP, GEQ,7~14, NP S, D, G, E, Gain,

GEQ,1~5, N

ISO/IEC	23008-3:202X(E)	

630	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— If	isPossibleElev	returns	TRUE,		
— A	set	of	parameters	of	sP, dP, gPH, gPL, eP, 7!",$%('!"), and nP	and	another	set	of	parameters	of	sS,

dS, gS, eS, gainS, and nS are	initialized	by	the	renderElevParms	and	renderTmbrParms,	
respectively.	Tthe	parameters	of	nP	and	nS	indicate	the	number	of	output	loudspeakers	
required	for	the	input	channel	(iin),	sP, dP, gPH, gPL, and eP are	nP	column	vectors,	sS, dS, gS, eS,
and gainS are	nS	column	vectors,	7!",$%('!")	is	a	58	row	vector	representing	the	EQ	
coefficients	for	the	58	processing	bands	of	the	input	channel	(iin).	

— The	initialization	parameters	are	collected	among	the	group	of	parameters,	each	primary	
or	secondary,	and	the	downmix	rules	for	next	input	channel	are	investigated	until	all	the	

input	channel	mapping	is	found.		

— If	isPossibleElev	returns	FALSE,	the	current	downmix	rule	shall	be	ignored	and	the	next	
downmix	rule	shall	be	investigated	

— If	the	destination	is	not	VIRTUAL,	the	downmix	rule	is	investigated	whether	the	rule	is	valid	
checking	the	output	layout	includes	all	the	channels	in	the	destination	column.		

— If	the	downmix	rule	is	valid,		
— A	set	of	parameters	shall	be	initialized	by	the	non-elevation	rendering	initialization	and	

added	directly	to	the	S, D, G, E, and Gain	as	specified	in	subclause	25.4.1.6.4	and	to	the	GEQ	

as	specified	in	subclause	25.4.1.6.5.	

— The	downmix	rules	for	next	input	channel	shall	be	investigated	until	all	the	input	channel	
mappings	are	found.		

— If	the	downmix	rule	is	invalid,	the	current	downmix	rule	shall	be	ignored	and	the	next	downmix	
rule	shall	be	investigated.		

— After	collecting	all	the	initializations	parameters	for	the	‘spatial	elevation	rendering,’	‘timbral	
elevation	rendering,’	and	‘non-elevation	rendering’,	post-processing	for	random	setup	shall	be	

applied.	

— Create	the	primary	downmix	matrix,	combining	the	‘spatial	elevation	rendering’	and	‘non-elevation	
rendering’	 parameters,	 and	 the	 secondary	 downmix	 matrix,	 combining	 the	 ‘timbral	 elevation	

rendering’	and	‘non-elevation	rendering’	parameters.	

25.4.1.6.2 Random	setups	pre-processing	

Random	output	loudspeaker	setups,	i.e.	output	setups	that	contain	loudspeakers	at	positions	deviating	

from	 the	positions	defined	 for	 the	desired	output	 format	 are	 signalled	by	 specifying	 the	 loudspeaker	

position	deviation	angles	as	input	parameters	razi,A	and	rele,A.	The	angle	deviations	are	taken	into	account	
as	a	pre-processing	step:		

Modify	 in	 Table	 310	 the	 channels’	 azimuth	 and	 elevation	 angles	 by	 adding	 razi,A	 and	 rele,A	 to	 the	
corresponding	channels’	azimuth	and	elevation	angles.	

25.4.1.6.3 Derivation	of	input	channel/output	channel	mapping	parameters	

The	parameters	vectors	S,	D,	G,	E	define	 the	mapping	of	 input	 channels	 to	output	 channels.	For	each	

mapping	 i	 from	 an	 input	 channel	 to	 an	 output	 channel	with	 non-zero	 downmix	 gain	 they	 define	 the	
downmix	gain	as	well	as	an	equalizer	index	that	indicates	which	equalizer	curve	has	to	be	applied	to	the	

input	channel	under	consideration	in	mapping	i.	

The	elements	of	the	parameter	vectors	S,	D,	G,	E	are	derived	by	the	following	algorithm:	

Initialize	the	mapping	counter	i:			i=1,	iP=1, iS=1;	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 631	
	

Initialize	the	EQ	counter	e:			e=21 	 (EQ	slots	for	e	from	1	to	5	are	occupied	by	subclause	25.4.1.6.4,	that	for	
e	from	7	to	14	are	occupied	by	Table	307.	

,	and	that	for	e	from	15	to	20	are	occupied	by	Table	304.	The	EQ	counter	e	will	be	shared	in	subclauses	
25.4.1.6.5	and	25.4.1.6.7.6	in	an	incremental	way.)	

For	each	input	channel,	ignoring	channels	with	label	CH_EMPTY	assigned	to	them:	

If	the	input	channel	also	exists	in	the	output	format	(e.g.	input	channel	under	consideration	is	CH_M_R030	

and	channel	CH_M_R030	exists	in	the	output	format),	then:	

—	 Si	=	index	of	source	channel	in	input		

EXAMPLE					channel	CH_M_R030	in	ChannelConfiguration	6	is	at	second	place	according	to	Table	311,	i.e.	has	
index	2	in	this	format.	

—	 Di	=	index	of	same	channel	in	output	

—	 Gi	=	1.0	

—	 Ei	=	0	

—	 i	=	i	+	1	

Else	(i.e.	if	the	input	channel	does	not	exist	in	the	output	format)	

—	 search	the	first	entry	of	this	channel	in	the	Source	column	of	Table	312,	for	which	the	channels	in	
the	corresponding	row	of	the	Destination	column	exist.	The	VIRTUAL	destination	shall	be	considered	
valid	if	the	isPossibleElev	returns	TRUE,	which	indicates	the	output	format	contains	required	channels	
for	 the	 elevation	 rendering	 of	 the	 input	 channel.	 The	 isPossibleElev,	 renderElevSptlParms,	 and	
renderElevTmbrParms	are	defined	in	subclause	25.4.1.6.7.	The	ALL_U	destination	shall	be	considered	
valid	(i.e.	the	relevant	output	channels	exist)	if	the	output	format	contains	at	least	one	“CH_U_”	channel.	

The	ALL_M	destination	shall	be	considered	valid	(i.e.	 the	relevant	output	channels	exist)	 if	 the	output	

format	contains	at	 least	one	“CH_M_”	channel.	 If	 for	no	entry	in	Table	312	corresponding	to	the	input	

channel	the	channels	in	the	Destination	column	exist,	the	rules-based	initialization	shall	terminate	and	
the	downmix	gains	shall	be	derived	according	to	subclause	25.4.1.6.9.	

—	 If	Destination	column	contains	VIRTUAL,	then:	

—	 	[sP, dP, gPH, gPL, eP,	nP]=	renderElevSptlParms	(specified	in	subclause	25.4.1.6.7.4)		

—	 for	n	=	1	to	nP	

—	 m = iP

—	 SPm = sPn(iin)

—	 DPm = dPn(iin)

—	 GPmH = gPnH(iin)

—	 GPmL = gPnH(iin)

—	 EPm = ePn(iin)

ISO/IEC	23008-3:202X(E)	

632	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

—	 CPmi = (iin)

—	 CPmo =	label	of	the	output	channel dPn(iin)

—	 iP =iP + 1

—	 	[sS, dS, gS, eS, gain, nS]=	renderElevSptlParms	(described	in	subclause	25.4.1.6.7.5)		

—	 for	n	=	1	to	nS	

—	 m = iS

—	 SSm = sSn(iin)

—	 DSm = dSn(iin)

—	 GSm gSn(iin)

—	 ESm = eSn(iin)

—	 CSmi = (iin)

—	 CSmo =	label	of	the	output	channel dPn(iin)

—	 GainSm =	gainn

—	 iS = iS + 1

—	 where	iin is	the	input	channel	label.

Else,	if	Destination	column	contains	ALL_U,	then:	

—	 For	each	output	channel	x	with	“CH_U_”	in	its	name,	do:	

—	 Si	=	index	of	source	channel	in	input		

—	 Di	=	index	of	channel	x	in	output	

—	 Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_U_”	output	channels)	

—	 Ei	=	value	of	EQ	column	

—	 Gaini =	(value	of	Gain	column)	

—	 i	=	i	+	1	

Else	if	Destination	column	contains	ALL_M,	then:	

—	 For	each	output	channel	x	with	“CH_M_”	in	its	name,	do:	

—	 Si	=	index	of	source	channel	in	input	

—	 Di	=	index	of	channel	x	in	output	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 633	
	

—	 Gi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_M_”	output	channels)	

—	 Ei	=	value	of	EQ	column	

—	 Gaini =	(value	of	Gain	column)	

—	 i	=	i	+	1	

Else	If	there	is	one	channel	in	the	Destination	column,	then:	

—	 Si	=	index	of	source	channel	in	input	

—	 Di	=	index	of	destination	channel	in	output	

—	 Gi	=	value	of	Gain	column	

—	 Ei	=	value	of	EQ	column	

—	 Gaini =	(value	of	Gain	column)	

—	 i	=	i	+	1	

Else	(two	channels	in	Destination	column)	

—	 Si	=	index	of	source	channel	in	input	

—	 Di	=	index	of	first	destination	channel	in	output	

—	 Gi	=	(value	of	Gain	column)	·	g1	

—	 Ei	=	value	of	EQ	column	

—	 Gaini =	(value	of	Gain	column)	

—	 i	=	i	+	1	

—	 Si	=	Si	-	1		

—	 Di	=	index	of	second	destination	channel	in	output	

—	 Gi	=	(value	of	Gain	column)	·	g2	

—	 Ei	=	Ei	-	1		

—	 Gaini =	(value	of	Gain	column)	

—	 i	=	i	+	1	

—	 The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	

way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	angles	of	the	destination	channels	are	 	and	 	(see	Table	310).	1a 2a

ISO/IEC	23008-3:202X(E)	

634	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

— 				

— 	

— 	

— 	

25.4.1.6.4 Derivation	of	equalizer	gains	GEQ	

GEQ	consists	of	gain	values	per	processing	band	pb	and	equalizer	index	e.	The	5	predefined	equalizers	are	
combinations	of	different	peak	filters	for	1≤e≤5.	Each	equalizer	is	a	serial	cascade	of	one	or	more	peak	
filters	and	a	gain:	

	

where	band(pb)	is	the	normalized	centre	frequency	of	processing	band	pb,	specified	in	Table	313,	fs	is	the	
sampling	frequency,	and	function	peak()	is	for	negative	G	

	

and	otherwise	

	

The	parameters	for	the	equalizers	are	specified	in	Table	315.	

25.4.1.6.5 Post-processing	for	random	setups	

Once	the	output	parameters	are	computed,	they	are	modified	related	to	the	specific	random	azimuth	and	

elevations	 angles.	 This	 step	has	 only	 to	be	 carried	out,	 if	 not	 all	 rele,A	 are	 zero.	Definition	of	 the	post-
processing	algorithm	for	non-elevation	rendering.	

srca

1 2
0 2

a a
a

-
=

1 2
center 2

a aa +
=

() ()center src 2 1sgna a a a a= - × -

10
0

1 2 102 2
0

tan tan 101,
tan tan 101 1

 with gg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

/20
, , , ,

1
10 () , , ,

2

N
pb g s
EQ e f n Q n g n

n

fG peak band pb P P P
=

æ ö= ç ÷
è ø

Õ

4 2 2 4
2

10
4 2 2 4

2

1 2
peak(, , ,)

10 2

G

b f b f
Q

b f Q G

b f b f
Q

-

æ ö
+ - +ç ÷
è ø=
æ ö
ç ÷+ - +ç ÷ç ÷
è ø

10
4 2 2 4

2

4 2 2 4
2

10 2

peak(, , ,)
1 2

G

b f b f
Q

b f Q G
b f b f

Q

æ ö
ç ÷+ - +ç ÷ç ÷
è ø=
æ ö

+ - +ç ÷
è ø

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 635	
	

For	each	element	i	in	Di,	do:	

if	the	output	channel	with	index	Di	is	a	horizontal	channel	by	definition	(i.e.	output	channel	label	contains	
the	label	‘_M_’),	and	

—	 if	this	output	channel	is	now	a	height	channel	(elevation	in	range	0..60	degrees),	and	

—	 if	input	channel	with	index	Si	is	a	height	channel	(i.e.	label	contains	‘_U_’),	then	

¾ h	=	min(elevation	of	randomized	output	channel,	35)	/	35	
¾ 8)*+, = ℎ ∙ -

./01#
+ (1 − ℎ)	

¾ Apply	compensation	gain	to	DMX	gain:	 	

¾ 	Define	new	equalizer	ˇÄ~,S 	with	the	index	e,	where	 	

¾ Ei	=	e	
¾ e = e +1	

—	 else	if	input	channel	with	index	Si	is	a	horizontal	channel	(label	contains	‘_M_’)	

¾ h	=	min(elevation	of	randomized	output	channel,	35)	/	35	
¾ Define	new	equalizer	7!",2	with	the	index	e,		

where	 	

and	 	is	defined	in	Table	303	

¾ Ei	=	e	
¾ e = e +1	

	

Table	303	—	Inverse	spatial	elevation	filter	(EQ0,lin	is	defined	in	Table	307)	

Azimuth	of	Di Front	centre	
(-15	15)

Front	
(-90	-15)	or		
(15	90)

Side/rear	
[-180	-90]	or	[90	180]

 	

	

Explanation	of	the	post-processing	steps	defined	above:		

h	is	a	normalized	elevation	parameter	indicating	the	elevation	of	a	nominally	horizontal	output	channel	
(‘_M_’)	due	to	a	random	setup	elevation	offset	rele,A.	For	zero	elevation	offset	h=0	follows	and	effectively	no	
post-processing	is	applied.	

The	rule	table	(Table	312)	in	general	applies	a	gain	of	the	value	in	the	gain	column	when	mapping	an	

upper	input	channel	(‘_U_’	in	channel	label)	to	one	or	several	horizontal	output	channels	(‘_M_’	in	channel	

label(s)).	In	case	the	output	channel	gets	elevated	due	to	a	random	setup	elevation	offset	rele,A,	the	gain	is	
partially	(0<h<1)	or	fully	(h=1)	compensated	for.	Similarly	the	equalizer	definitions	fade	towards	a	flat	
EQ-curve	()	for	h	approaching	h	=1.	

i i compG G G= ×

(), ,1
i

pb pb
EQ e EQ EG h h G= + - ×

() (), max 0.6310,min 1.5849, IEQ 1 G ,
pb
EQ e

pb pbh D hi EQ Ei
G = × + - ×

æ öæ öæ ö
ç ÷ç ÷ç ÷è øè øè ø

()IEQ pb
iD

()pbiIEQ D
,9

1
pb
EQG ,7

1
pb
EQG ,8

1
pb
EQG

, . 1.0pb
EQ eG const= =

ISO/IEC	23008-3:202X(E)	

636	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

In	case	a	horizontal	input	channel	gets	mapped	to	an	output	channel	that	gets	elevated	due	to	a	random	

setup	 elevation	 offset	 rele,A,	 the	 equalizer	G!",!!
3 	fully	 applied	 and	 IEQ(Di)pb,	 an	 inverse	 form	 of	 spatial	

elevation	filter	defined	in	Table	303,	is	partially	(0<h<1)	or	fully	(h=1)	applied.	As	the	spatial	elevation	
filter	 is	 defined	 to	 provide	 the	 tone	 color	 of	 overhead	 loudspeakers	 on	 horizontal	 loudspeakers,	 the	

inverse	of	 the	 spatial	 elevation	 filter	 is	 used	 to	provide	 the	 tone	 color	 of	 horizontal	 loudspeakers	on	

overhead	 loudspeakers.	 Note	 that	 the	modified	 EQ	 is	 thresholded	within	 the	 level	 of	 4	dB,	 [0,631	0,	

1,584	9].		

25.4.1.6.6 Spatial	coloration	filter	for	the	horizontal	input	channels	

When	a	horizontal	input	channel	at	side	or	rear	is	panned	by	two	output	loudspeakers,	e.g.	CH_M_L090	is	

panned	by	CH_M_L030	and	CH_M_L110,	the	tone	color	changes.	In	order	to	avoid	such	a	change	in	tone	

color,	a	set	of	horizontal	coloration	filters	of	7!",-4~67	are	defined	as	in	Table	304.	Here,	the	filter	name	
COLOR_A_B	means	the	coloration	filter	for	the	output	at	the	azimuth	of	±B	from	the	input	at	the	azimuth	
of	±A.	The	filtering	algorithm	is:	

For	each	element	i	in S	do:		

	 A	:	the	magnitude	of	the	azimuth	of	the	input	channel	with	index	Si	

	 B	:	the	magnitude	of	the	azimuth	of	the	output	channel	with	index	Di	

	 If	both	Si	and	Di	are	horizontal	channels	and	there	exists	a	filter	COLOR_A_B_		Table	304,	

If	the	output	channel	has	no	deviation	in	azimuth	and	elevation,	(A/80,9# = 0	and	A2:2,9#=0)	

If		 	 A==60		 &&	B	==	30	 	 Ei	=	15	(COLOR_60_30)	

Elseif		 A==90		 &&	B	==	30	 	 Ei	=	16	(COLOR_90_30)	

Elseif		 A==60		 &&	B	==	110		 Ei	=	17	(COLOR_60_110)	

Elseif		 A==90		 &&	B	==	110		 Ei	=	18	(COLOR_90_110)	

Elseif		 A==135		&&	B	==	110		 Ei	=	19	(COLOR_135_110)	

Elseif		 A==180		&&	B	==	110		 Ei	=	20	(COLOR_180_110)	

Table	304	—	Spatial	coloration	filters	for	horizontal	channels	

processi
ng	band	

COLOR_180_110	

!XY,Z[
COLOR_090_030	

!XY,\]	
COLOR_060_110	

!XY,\^	
COLOR_135_110	

!XY,_	
COLOR_090_110	

!XY,\`	
COLOR_060_030	

!XY,\a	

0	 1.257512901	 1.016393	 0.975283	 1.057872	 0.967818	 1.024233	

1	 1.158560317	 0.940154	 1.020111	 1.025689	 1.000571	 0.958515	

2	 0.975947998	 0.924468	 1.052661	 0.972375	 1.03672	 0.938683	

3	 0.812670539	 1.019364	 1.034273	 0.940191	 1.0457	 1.008225	

4	 0.793650794	 1.163062	 1.007329	 0.931031	 1.043259	 1.123006	

5	 0.793650794	 1.255373	 1.010088	 0.925814	 1.048451	 1.209438	

6	 0.793651	 1.221591	 1.044259	 0.911691	 1.054614	 1.209597	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 637	
	

processi
ng	band	

COLOR_180_110	

!XY,Z[
COLOR_090_030	

!XY,\]	
COLOR_060_110	

!XY,\^	
COLOR_135_110	

!XY,_	
COLOR_090_110	

!XY,\`	
COLOR_060_030	

!XY,\a	

7	 0.793651	 1.164189	 1.06016	 0.895357	 1.033851	 1.193814	

8	 0.793651	 1.151248	 1.028108	 0.894999	 0.988836	 1.196971	

9	 0.793651	 1.174002	 0.966481	 0.915049	 0.963343	 1.177826	

10	 0.793651	 1.235628	 0.915263	 0.954878	 1.003832	 1.126607	

11	 0.793651	 1.26	 0.914371	 0.9984	 1.075405	 1.132111	

12	 0.793651	 1.26	 0.942626	 1.002731	 1.061876	 1.26	

13	 0.793651	 1.26	 0.931554	 0.959758	 0.946306	 1.26	

14	 0.793651	 1.26	 0.880058	 0.919532	 0.851115	 1.26	

15	 0.793651	 1.26	 0.825	 0.9062	 0.840038	 1.26	

16	 0.793651	 1.22276	 0.814011	 0.917664	 0.892063	 1.115775	

17	 0.793651	 1.160128	 0.864691	 0.949673	 0.94146	 1.065528	

18	 0.793651	 1.089699	 0.936597	 0.993391	 0.956656	 1.066851	

19	 0.793651	 1.037545	 0.997666	 1.029246	 0.96065	 1.077524	

20	 0.793651	 0.986758	 1.042468	 1.031808	 0.976646	 1.053261	

21	 0.793651	 0.929318	 1.071918	 1.001631	 1.011122	 0.985194	

22	 0.793651	 0.883289	 1.103262	 0.96871	 1.066606	 0.913645	

23	 0.793651	 0.858581	 1.176045	 0.959278	 1.143043	 0.88337	

24	 0.839215	 0.849521	 1.26	 0.97236	 1.234495	 0.901514	

25	 0.895853	 0.85036	 1.26	 0.976487	 1.26	 0.93963	

26	 0.921032	 0.867297	 1.26	 0.950306	 1.26	 0.976639	

27	 0.915816	 0.902004	 1.26	 0.916408	 1.26	 1.021141	

28	 0.907476	 0.943387	 1.26	 0.910758	 1.26	 1.085708	

29	 0.902366	 0.977346	 1.26	 0.928637	 1.26	 1.146713	

30	 0.900041	 1.008207	 1.26	 0.934616	 1.26	 1.170319	

31	 0.903678	 1.043796	 1.26	 0.90898	 1.26	 1.167112	

32	 0.895045	 1.063373	 1.26	 0.866561	 1.26	 1.176141	

33	 0.827595	 1.056064	 1.26	 0.794462	 1.26	 1.26	

34	 0.81639	 1.075206	 1.26	 0.807225	 1.26	 1.229941	

35	 0.793651	 1.002088	 1.26	 0.793651	 1.26	 1.094809	

36	 0.848212	 0.893956	 1.26	 0.793651	 1.26	 0.991888	

37	 0.843676	 0.944609	 1.26	 0.793651	 1.26	 1.054892	

38	 0.807275	 1.002863	 1.26	 0.793651	 1.26	 1.176083	

39	 0.793651	 1.199923	 1.26	 0.793651	 1.26	 1.26	

40	 0.793651	 1.26	 1.26	 0.793651	 1.26	 1.26	

41	 0.793651	 1.26	 1.26	 0.793651	 1.26	 1.26	

42	 0.793651	 1.26	 1.119248	 0.793651	 1.26	 1.26	

43	 0.793651	 1.26	 0.912938	 0.793651	 1.186579	 1.26	

ISO/IEC	23008-3:202X(E)	

638	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

processi
ng	band	

COLOR_180_110	

!XY,Z[
COLOR_090_030	

!XY,\]	
COLOR_060_110	

!XY,\^	
COLOR_135_110	

!XY,_	
COLOR_090_110	

!XY,\`	
COLOR_060_030	

!XY,\a	

44	 0.793651	 1.26	 0.793651	 0.793651	 1.047277	 1.26	

45	 0.793651	 1.26	 0.793651	 0.793651	 0.958699	 1.26	

46	 0.793651	 1.26	 0.793651	 0.836434	 0.937138	 1.26	

47	 0.793651	 1.26	 1.102116	 0.793651	 1.092959	 1.26	

48	 0.793651	 1.26	 1.092848	 0.793651	 1.26	 1.26	

49	 0.793651	 1.26	 0.793651	 0.815618	 1.207313	 1.26	

50	 0.793651	 1.26	 0.793651	 0.818016	 1.021066	 0.793651	

51	 0.793651	 0.922395	 0.793651	 0.899999	 1.008149	 0.793651	

52	 0.793651	 0.793651	 1.114079	 0.856971	 1.047784	 0.793651	

53	 0.793651	 0.793651	 1.26	 0.802702	 1.26	 0.793651	

54	 0.793651	 0.976107	 1.26	 0.793651	 1.26	 0.992957	

55	 0.793651	 1.153876	 1.26	 0.793651	 1.26	 1.034704	

56	 0.793651	 1.26	 1.231165	 0.793651	 1.26	 1.26	

57	 0.793651	 1.26	 0.976335	 0.793651	 1.067507	 1.26	

25.4.1.6.7 Elevation	rendering	

25.4.1.6.7.1 General	

Elevation	rendering	is	intended	to	provide	an	overhead	sound	image	when	using	a	5.1	channel	layout.	

When	 the	Destination	 column	contains	VIRTUAL,	 the	 isPossibleElev	 determines	whether	 the	 input	
channel	shall	be	rendered	by	the	elevation	rendering	and	is	determined	by	comparing	the	output	channel	

configuration	and	the	required	output	channels	for	the	spatial	elevation	rendering.	

Table	305	—	Detail	information	of	the	elevation	rendering	initialization	parameters	

SP Vector	of	converter	source	channels	[input	channel	indices]
Initialization	parameters	
for	spatial	elevation	
rendering	

(renderElevSptlParms)	

DP Vector	converter	destination	channels	[output	channel	indices]

GPH Vector	of	converter	gains	for	2.8~10kHz	components

GPL Vector	of	converter	gains	below	2.8kHz	and	above	10kHz	components

EP Vector	of	converter	EQ	indices

SS Vector	of	converter	source	channels	[input	channel	indices] Initialization	parameters	
for	timbral	elevation	
rendering	

(renderElevTmbrParms)	

DS Vector	converter	destination	channels	[output	channel	indices]

GS Vector	of	converter	gains	[linear]

ES Vector	of	converter	EQ	indices

GEQ Matrix	containing	equalizer	gain	values	for	all	EQ	indices	and	frequency	
bands

EQ	matrix	for	all	
rendering	types	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 639	
	

When	isPossibleElev	 is	TRUE,	two	sets	of	parameters	for	the	spatial	elevation	rendering	and	timbral	
elevation	 rendering	 are	 initialized	 using	 renderElevSptlParms	 and	 renderElevTmbrParms.	 The	
parameters	of	SP, DP, GPH, GPL,	and EP,	initialized	by	renderElevSptlParms,	are	for	the	spatial	elevation	
rendering,	 and	SS, DS, GS,	 and ES,	 initialized	by	renderElevTmbrParms	 are	 for	 the	 timbral	 elevation	
rendering.	The	intermediate	parameters	describe	the	dowmixing	parameters	i	per	mapping	index	i,	i.e.	
as	sets	of	parameters	SPi, DPi, GPiH, GPiL,	and EPi.	

25.4.1.6.7.2 isPossibleElev	:	Decision	whether	elevation	rendering	is	valid	for	the	output	layout	

The	isPossibleElev	boolean	function	returns	TRUE	when	all	of	the	required	output	channels	exist.	The	
required	output	channels	are	defined	in	Table	306,	indicating	1	for	the	required	channel	and	0	for	the	

unnecessary	channel.	For	example,	CH_M_L030,	CH_M_L110,	and	CH_M_R110	are	required	in	order	to	use	

elevation	rendering	for	the	input	channel	CH_U_L030.	If	any	of	the	required	output	channels	for	the	input	

channel	 is	 not	 in	 the	 output	 channel	 configuration,	 isPossibleElev	 shall	 return	FALSE	 and	 elevation	
rendering	shall	not	be	applied	for	that	input	channel.	

Table	306	—	Required	output	channels	for	elevation	rendering	for	isPossibleElev	

Input	
Channel	

Required	output	channels	

CH_M_L030	 CH_M_R030	 CH_M_000	 CH_LFE1	 CH_M_L110	 CH_M_R110	

CH_U_000	 1	 1	 1	 0		 1	 1	
CH_U_L045	 1	 1	 0		 0		 1	 1	
CH_U_R045	 1	 1	 0		 0		 1	 1	
CH_U_L030	 1	 1	 0		 0		 1	 1	
CH_U_R030	 1	 1	 0		 0		 1	 1	
CH_U_L090	 1	 0	 0		 0		 1	 1	
CH_U_R090	 0	 1	 0		 0		 1	 1	
CH_U_L110	 1	 0	 0		 0		 1	 1	
CH_U_R110	 0	 1	 0		 0		 1	 1	
CH_U_L135	 1	 0	 0	 0	 1	 1	
CH_U_R135	 0	 1	 0	 0	 1	 1	
CH_U_180	 1	 1	 0	 0	 1	 1	
CH_T_000	 1	 1	 1	 0	 1	 1	

25.4.1.6.7.3 initElevSptlParms:	Initialization	of	elevation	rendering	parameters	based	on	the	
input	channel	elevation	

The	initial	values	of	the	spatial	elevation	filters	and	the	elevation	panning	coefficients	are	defined	in	Table	

307,	Table	308	and	Table	309	for	the	 ‘height’	 input	channels,	except	CH_T_000.	When	a	 ‘height’	 input	

channel	 (except	 CH_T_000)	 has	 the	 elevation	 higher	 than	 35	 degrees,	 the	 spatial	 elevation	 filter	

coefficients	and	elevation	panning	coefficients	shall	be	updated	according	to	the	degrees	of	the	elevation.	

Note	that	the	elevation	sector	is	defined	from	+21	to	+60	degrees	for	the	height	channels	in	Table	312.		

For	the	elevation	rendering	of	an	input	channel,	an	EQ	is	selected	from	the	EQ	column	of	the	Table	312.	

For	convenience,	eq(i';)	is	defined	as	the	EQ	column, e. g. if	the	i';	is	CH_U_000, eq(i';)		is	9	(EQVFC).	

ISO/IEC	23008-3:202X(E)	

640	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	307	—	Spatial	elevation	filter	initial	values	(for	the	35	degrees	in	elevation)	

Processing	
bands	

(58	bands)	

EQ0,lin	(.)	

7		
(EQVF)	

8		
(EQVB)	

9		
(EQVFC)	

10		
(EQVBC)	

11		
(EQVOG)	

12		
(EQVS)	

13		
(EQBTM)	

14		
(EQVBA)	

0	 0.841395		 0.819093		 0.685085		 0.770312		 0.625280		 0.877674		 0.922571		 0.877674		

1	 0.841395		 0.819093		 0.685085		 0.770312		 0.625280		 0.877674		 0.922571		 0.877674		

2	 0.926119		 0.922571		 0.830000		 0.940445		 0.625280		 0.901571		 1.143756		 0.988553		

3	 0.926119		 0.980995		 0.830000		 1.015469		 0.675162		 1.000000		 1.117721		 1.051155		

4	 0.926119		 0.980995		 0.830000		 1.015469		 0.675162		 1.000000		 1.117721		 1.051155		

5	 0.944061		 0.887837		 0.768679		 1.000000		 0.729024		 0.905038		 1.023293		 0.951335		

6	 0.944061		 0.887837		 0.768679		 1.000000		 0.729024		 0.905038		 1.023293		 0.951335		

7	 0.944061		 0.887837		 0.768679		 1.000000		 0.729024		 0.905038		 1.023293		 0.951335		

8	 0.944061		 0.887837		 0.768679		 1.000000		 0.729024		 0.905038		 1.023293		 0.951335		

9	 0.944061		 0.887837		 0.768679		 1.000000		 0.729024		 0.905038		 1.023293		 0.951335		

10	 0.944061		 0.887837		 0.768679		 1.000000		 0.729024		 0.905038		 1.023293		 0.951335		

11	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

12	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

13	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

14	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

15	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

16	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

17	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

18	 0.908518		 0.958665		 0.768679		 0.887837		 0.701576		 1.039122		 0.922571		 1.027228		

19	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

20	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

21	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

22	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

23	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

24	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

25	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

26	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

27	 0.944061		 0.936843		 0.798751		 0.838172		 0.729024		 1.023293		 0.940445		 0.860994		

28	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

29	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

30	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

31	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

32	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

33	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

34	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 641	
	

Processing	
bands	

(58	bands)	

EQ0,lin	(.)	

7		
(EQVF)	

8		
(EQVB)	

9		
(EQVFC)	

10		
(EQVBC)	

11		
(EQVOG)	

12		
(EQVS)	

13		
(EQBTM)	

14		
(EQVBA)	

35	 0.980995		 0.962351		 0.830000		 0.922571		 0.649743		 0.940445		 0.940445		 0.992354		

36	 0.929311		 0.892125		 0.786271		 0.855249		 0.615512		 0.871818		 0.871818		 0.919939		

37	 0.881628		 0.908657		 0.717845		 0.908657		 0.630513		 0.944205		 0.822369		 0.901709		

38	 0.870100		 0.892065		 0.708457		 0.892065		 0.622267		 0.926965		 0.807353		 0.885244		

39	 0.926766		 0.855247		 0.754596		 0.823047		 0.662793		 0.909407		 0.875168		 0.848708		

40	 0.913913		 0.838687		 0.744132		 0.807111		 0.653601		 0.891798		 0.858223		 0.832275		

41	 0.902215		 0.826864		 0.734606		 0.823697		 0.620943		 0.875859		 0.934905		 0.886001		

42	 0.889454		 0.810537		 0.724216		 0.807432		 0.612160		 0.858564		 0.916444		 0.868506		

43	 0.876028		 0.793461		 0.713285		 0.790422		 0.602920		 0.840476		 0.897137		 0.850208		

44	 0.897706		 0.793209		 0.730935		 0.775153		 0.642011		 0.856488		 0.924814		 0.907238		

45	 0.789863		 0.779063		 0.643126		 0.809542		 0.564885		 0.809542		 0.995954		 0.911813		

46	 0.779856		 0.733647		 0.634979		 0.706025		 0.536730		 0.765280		 0.835899		 0.786116		

47	 0.660004		 0.546217		 0.537392		 0.484952		 0.490480		 0.567586		 0.692945		 0.585282		

48	 0.650985		 0.535796		 0.530049		 0.475700		 0.483778		 0.556758		 0.679725		 0.574116		

49	 0.641943		 0.525406		 0.522686		 0.466475		 0.477058		 0.545961		 0.666543		 0.562982		

50	 0.632968		 0.515151		 0.515379		 0.457370		 0.388260		 0.535305		 0.653533		 0.551994		

51	 0.624467		 0.505491		 0.508457		 0.448794		 0.383046		 0.525267		 0.641279		 0.541644		

52	 0.616092		 0.496025		 0.501638		 0.440390		 0.377909		 0.515431		 0.629270		 0.531501		

53	 0.607606		 0.486487		 0.494729		 0.431921		 0.372704		 0.505519		 0.617170		 0.521280		

54	 0.599370		 0.477280		 0.488023		 0.423747		 0.367652		 0.495952		 0.605490		 0.511415		

55	 0.591397		 0.468415		 0.481530		 0.415876		 0.362761		 0.486740		 0.594243		 0.501916		

56	 0.583481		 0.459661		 0.475085		 0.408104		 0.357906		 0.477644		 0.583138		 0.492536		

57	 0.576447		 0.451922		 0.469358		 0.401233		 0.353590		 0.469602		 0.573319		 0.484243		

	

When	the	 'height‘	 input	channel	 iin	has	higher	elevation	than	35	degrees,	 the	spatial	elevation	filter	 is	

calculated	from	 EQ7,<';3 Geq(i';)H	in	Table	307	by:	
If	the	input	channel,	iin,	is	frontal	side	:	azimuth	is	in	the	range	of	(-90,	90)	

	

	

	

else	(the	input	channel	is	rear	side	:	azimuth	is	either	in	[-180,	-90]	or	in	[90,	180])	

0, (eq(i))
pb
lin inEQ

()()
()()() ()
()()()

10 0, 2

1,

10 0,

20 log 0.05 log / 6000 1 for >8000

20 log 1 otherwise

pb
lin in pb s pb spb

db in pb
lin in

EQ eq i f f f f
EQ eq i

EQ eq i

ì ´ + ´ ´ + ´ï= í
´ +ïî

()() ()() ()2, 1, 1 min(max(elv 35,0),25) 0.05pb pb
db in lin inEQ eq i EQ eq i= ´ + - ´

()

()()() ()

()()()

22,

2,

1 /20 0.05 log /6000

EQ, 1 /20

10 for >8000

10 otherwise

pb
in pb sdb

pbin
indb

EQ eq i f f
pb spb

eq i EQ eq i

f f
G

- - ´ ´

-

ì ´ï= í
ïî

ISO/IEC	23008-3:202X(E)	

642	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

	

	

where	

		 fpb	 is	the	normalized	centre	frequency	of	processing	band	pb,	specified	in	Table	313;	

		 fs	 is	the	sampling	frequency;	

	 elv	 is	the	elevation	of	the	input	channel.	
When	the	'height‘	input	channel	iin	does	not	have	higher	elevation	than	35	degrees,	use	the	initial	filter	
coefficients	according	to:	

	 	 G!",$%('!")
3 = EQ7,<';3 Geq(i';)H 	

The	spatial	elevation	panning	coefficients	shall	also	be	updated	for	the	 ‘height’	 input	channels,	except	

CH_T_000	and	CH_U_180,	for	the	different	elevation	degrees.	Table	308	and	Table	309	show	the	initial	

panning	coefficients	for	the	input	channels	with	the	elevation	of	35	degrees.	When	the	elevation	of	the	

input	channel	is	higher	than	35	degrees,	the	ipsilateral	gain	applied	to	the	input	channel	shall	be	reduced	

and	the	contralateral	channel	shall	be	boosted	with	the	gain	difference	g@(elv)	and	gA(elv).		

Table	308	—	Initial	spatial	localization	panning	coefficients	for	2,8	kHz	~	10	kHz	
(35	degrees	in	elevation)	

Channel	
label,	iin	

GvH0,1~6	(iin)	

CH_M_L030	
(GvH0,1(iin))	

CH_M_R030	
(GvH0,2(iin))	

CH_M_000	
(GvH0,3(iin))	

CH_LFE1	
(GvH0,4(iin))	

CH_M_L110	
(GvH0,5(iin))	

CH_M_R110	
(GvH0,6(iin))	

CH_U_000	 0.49146774	 0.49146774	 0.34746769	 0		 0.44507593	 0.44507593	
CH_U_L045	 0.70918131	 0.27444959	 0		 0		 0.56982642	 0.31150770	
CH_U_R045	 0.27444959	 0.70918131	 0		 0		 0.31150770	 0.56982642	
CH_U_L030	 0.70918131	 0.27444959	 0		 0		 0.56982642	 0.31150770	
CH_U_R030	 0.27444959	 0.70918131	 0		 0		 0.31150770	 0.56982642	
CH_U_L090	 0.56040317	 0	 0		 0		 0.81550622	 0.14456093	
CH_U_R090	 0	 0.56040317	 0		 0		 0.14456093	 0.81550622	
CH_U_L110	 0.34278116	 0		 0		 0		 0.91200900	 0.22525696	
CH_U_R110	 0		 0.34278116	 0		 0		 0.22525696	 0.91200900	
CH_U_L135	 0.34278116	 0		 0		 0		 0.91200900	 0.22525696	
CH_U_R135	 0		 0.34278116	 0		 0		 0.22525696	 0.91200900	
CH_U_180	 0.22851810	 0.22851810	 0		 0		 0.66916323	 0.66916323	
CH_T_000	 0.45328009	 0.45328009	 0.33519593	 0	 0.48822021	 0.48822021	

()()
()()() ()
()()()

10 0, 2

1,

10 0,

20 log 0.07 log / 6000 1 for >8000

20 log 1 otherwise

pb
lin in pb s pb spb

db in pb
lin in

EQ eq i f f f f
EQ eq i

EQ eq i

ì ´ + ´ ´ + ´ï= í
´ +ïî

()() ()() ()2, 1, 1 min(max(elv 35,0),25) 0.05pb pb
db in lin inEQ eq i EQ eq i= ´ + - ´

()

()()() ()

()()()

22,

2,

1 /20 0.07 log /6000

EQ, 1 /20

10 for >8000

10 otherwise

pb
in pb sdb

pbin
indb

EQ eq i f f
pb spb

eq i EQ eq i

f f
G

- - ´ ´

-

ì ´ï= í
ïî

EQ,eq(i) 0, (eq(i))in

pb pb
lin inG EQ=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 643	
	

Table	309	—	Initial	spatial	localization	panning	coefficients	below	2,8	kHz	and	above	10	kHz	
	(35	degrees	in	elevation)	

Channel	
label,	iin	

GvL0,1~6	(iin)	

CH_M_L030	
(GvL0,1(iin))	

CH_M_R030	
(GvL0,2(iin))	

CH_M_000	
(GvL0,3(iin))	

CH_LFE1	
(GvL0,4(iin))	

CH_M_L110	
(GvL0,5(iin))	

CH_M_R110	
(GvL0,6(iin))	

CH_U_000	 0.61940062	 0.61940062	 0.43791625	 0	 0	 0	
CH_U_L045	 1	 0	 0	 0	 0	 0	
CH_U_R045	 0	 1	 0	 0	 0	 0	
CH_U_L030	 1	 0	 0	 0	 0	 0	
CH_U_R030	 0	 1	 0	 0	 0	 0	
CH_U_L090	 0.36730000	 0	 0	 0	 0.93010002	 0	
CH_U_R090	 0	 0.36730000	 0	 0	 0	 0.93010002	
CH_U_L110	 0	 0	 0	 0	 1	 0	
CH_U_R110	 0	 0	 0	 0	 0	 1	
CH_U_L135	 0.34278116	 0	 0	 0	 0.91200900	 0.22525696	
CH_U_R135	 0	 0.34278116	 0	 0	 0.22525696	 0.91200900	
CH_U_180	 0.22851810	 0.22851810	 0		 0		 0.66916323	 0.66916323	
CH_T_000	 0.45328009	 0.45328009	 0.33519593	 0	 0.48822021	 0.48822021	

For	all	height	input	channel	iin,	the	GvH,1~6	and	GvL,1~6	shall	be	initialized	with		GvH0,1~6	:		

	 	 GBC,-~D(i';) = GBC7,-~D(i';)	

	 	 GBE,-~D(i';) = GBE7,-~D(i';)	

For	each	height	input	channel	iin,	the	GvH,1~6	shall	be	calculated	from	GvH0,1~6	:		

	 If	the	input	channel	is	CH_U_000,	

	 	 GBC,4(i';) = 10(7.64∙H';	(HJK($<BLM4,7),64)) 67⁄ ∙ GBC7,4(i';)	

	 	 GBC,D(i';) = 10(7.64∙H';	(HJK($<BLM4,7),64)) 67⁄ ∙ GBC7,D(i';)	

	 Elseif	the	input	channel	is	not	CH_U_180		

	 	 if	the	input	channel	is	side	:	azimuth	is	either	in	(-110,	-70)	or	in	(70,	110),		

	 	 	 g@(elv) = 10(L7.74466∙H';	(HJK($<BLM4,7),64)) 67⁄ 	

	 	 	 gA(elv) = 10(7.O-PQR∙H';	(HJK($<BLM4,7),64)) 67⁄ 	

	 	 else	(the	input	channel	is	frontal	or	rear	in	[-70,	70],	[-180,	-110],	or	[110	180])	

	 	 	 g@(elv) = 10(L7.7OQO7-∙H';	(HJK($<BLM4,7),64)) 67⁄ 	

	 	 	 gA(elv) = 10(7.-ORP4∙H';	(HJK($<BLM4,7),64)) 67⁄ 	

ISO/IEC	23008-3:202X(E)	

644	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 				 For	each	output	channels	ipsilateral	to	the	input	channel,		
	 	 (e.g.	CH_M_L030	and	CH_M_L110	for	CH_U_L045)	

	 	 	 GBC,@(i';) = g@(elv) ∙ GBC7,@(i';)	

	 	 	 where	the	I	of	GBC,@(i';)	represents	the	indices	ipsilateral	to	the	i';	

	 	 For	each	output	channels	contralateral	to	the	input	channel,		
	 	 (e.g.	CH_M_R030	and	CH_M_R110	for	CH_U_L045)	

	 	 	 GBC,A(i';) = gA(elv) ∙ GBC7,A(i';)	

	 	 	 where	the	C	of	GBC,A(i';)	represents	the	indices	contralateral	to	the	i';	

A	set	of	spatial	localization	panning	coefficients	for	the	input	channel	is	normalized	to	make	the	sum	of	

powers	be	1.	

	 PS$%(i';) = P∑ GBC,T6D
TU- (i';)		

	 GBC,-~D(i';) =
-

V&$%
GBC,-~D(i';)	

If	the	input	channel	is	in	[-160,	-110)	or	(110	160],	GBE,A(i';)	shall	be	updated:	

	 	GBE,@(i';) = g@(elv) ∙ GBE7,@(i';)	

	 	GBE,A(i';) = gA(elv) ∙ GBE7,A(i';)	

	 PS$'(i';) = P∑ GBE,T6 (i';)D
TU- 		

	 GBE,-~D(i';) =
-

V&$'
GBE,-~D(i';)	

Note	that	only	the	panning	coefficients	of	the	GBE,-~D	for	the	rear	input	channels	change	and	those	for	the	
frontal/side	input	channel	do	not.	

As	a	result	of	initElevSptlParms		following	parameters	are	derived.	

	 GÄ~,+u()2*)
< :	Updated	spatial	elevation	filter	coefficient	vector	(58	bands)	for	the	input	channel	

iin.	

	 GB≤,8~L(i)'):	Updated	spatial	elevation	panning	coefficients	for	the	input	signal	in	the	range	of	2,8~10	
kHz		

	 GBM,8~L(i)')	:	Updated	spatial	elevation	panning	coefficients	for	the	input	signal	below	2,8	kHz	and	
above	10	kHz	

25.4.1.6.7.4 renderElevSptlParms	:	Derivation	of	input-output	channel	mapping	and	equalizer	
for	spatial	elevation	rendering	

renderElevSptlParms	initializes	the	input-output	channel	mapping	for	spatial	elevation	rendering	for	
an	input	channel	(iin).	

EQ,eq(i)in
pbG

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 645	
	

Initialize	the	mapping	counter	i=1;	

For	m=1	to	6	

If		 GvH,m	(iin)	>	1	

	 sP i	=	index	of	source	channel	iin		

	 dP i	=	index	of	channel	m	in	output	

	 gP iH
	
	=	(value	of	Gain	column)	*	GvH,m	(iin)	

gP iL
	
	=	(value	of	Gain	column)	*	GvL,m	(iin)	

eP i
	
	=	eq(i';)	

i = i + 1

nP = i - 1;	

return	{	sP, dP, gPH, gPL, eP, and nP	}	

Note	that	the	initialization	does	not	add	the	input-output	channel	mapping	that	the	gain	gP iH
		
is	zero	and	

eq(i';)	is	from	7	to	15.	

By	 applying	 the	 downmix	 rules	 defined	 in	 Table	 312	 with	 the	 spatial	 elevation	 filter	 and	 spatial	

localization	panning	coefficients,	 the	spatial	elevation	rendering	parameters	 for	each	 input	channel	 is	

summarized	as:	

— CH_U_L135,	CH_U_R135,	CH_U_180,	or	CH_T_000

— Spatial	Elevation	Filter	:	the	HRTF-based	EQs	(EQVB	,	EQVBC,	or	EQVOG)	

— Spatial	Elevation	Panning	:	Filtered	signal	is	multiplied	by	the	same	panning	coefficients	over	all	
frequency	(the	gP

H is	identical	to	the	g
P

L)	

— CH_U_L110,	and	CH_U_R110

— Spatial	Elevation	Filter	:	the	HRTF-based	EQ	(EQVBA)	

— Spatial	Elevation	Panning	:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gP
H	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gP
L	for	the	rest	frequency	range	:	Use	the	“add-to-the-closest	channel”	method	in	order	to	

provide	enough	envelopment	and	keep	the	audio	channel	wide	enough.	

— CH_U_L090	and	CH_U_R090	
— Spatial	Elevation	Filter	:	the	HRTF-based	EQs	(EQVS)	

— Spatial	Elevation	Panning	:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gP
H	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gP
L	 for	 the	 rest	 frequency	 range	 :	 Panned	 at	 90	 degrees	 using	 front	 and	 surround	

loudspeakers	 in	order	 to	provide	enough	envelopment	and	keep	 the	audio	channel	wide	

enough.	

ISO/IEC	23008-3:202X(E)	

646	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— CH_U_L030,	CH_U_R030,	CH_U_L045,	CH_U_R045	
— Spatial	Elevation	Filter	:	the	HRTF-based	EQs	(EQVF)		

— Spatial	Elevation	Panning	:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	
over	frequency	range	

— gP
H	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gP
L	for	the	rest	frequency	range	:	Use	the	“add-to-the-closest	channel”	method	in	order	to	

provide	enough	envelopment	and	keep	the	audio	channel	wide	enough.	

— Signals	for	the	surround	loudspeakers,	CH_M_L110	and	CH_M_R110,	are	delayed	by	one	STFT	
hop	 size	 in	 order	 to	 avoid	 front-back	 confusion	 using	 the	 precedence	 effect.	 For	 details	 see	

subclause	25.4.2.3 	

— CH_U_000	

— Spatial	Elevation	Filter:	the	HRTF-based	EQ	(EQVFC)	
— Spatial	Elevation	Panning	:	Filtered	EQ	signal	is	multiplied	by	the	different	panning	coefficients	

over	frequency	range	

— gP
H	for	the	elevation-effective	range	(2,8	k	~	10	kHz)	

— gP
L	for	the	rest	frequency	range	:	panned	among	three	frontal	output	channels,	CH_M_L030,	

CH_M_000,	and	CH_M_R030.	

— Signals	for	the	surround	loudspeakers,	CH_M_L110	and	CH_M_R110,	are	delayed	by	one	STFT	
hop	 size	 in	 order	 to	 avoid	 front-back	 confusion	 using	 the	 precedence	 effect.	 For	 details	 see	

subclause	25.4.2.3	

25.4.1.6.7.5 renderElevTmbrParms	:	Derivation	of	input-output	channel	mapping	and	equalizer	
for	timbral	elevation	rendering	

In	the	same	manner	as	renderElevSptlParms,	renderElevTmbrParms	initializes	another	input-output	
channel	mapping	 for	 timbral	 elevation	 rendering	 for	 the	 same	 input	 channel iin.	 The	 parameters	 are	
initialized	 following	 subclause	 25.4.1.6.3	 but	 ignoring	 the	 downmix	 rules	 with	 a	 destination	 field	 of	

VIRTUAL.	As	a	result,	a	set	of	sS, dS, gS,	eS, and gainS	are	defined		for	the	input	channel	iin	by	the	process:		

Initialize	the	mapping	counter	i=1;

Search	the	first	entry	of	the	input	channel	in	the	Source	column	of	the	Table	312	and	the	channels	in	the	

Destination	column	exist	below	the	entry	with	VIRTUAL	destination.	

If	Destination	column	contains	ALL_U,	then:	
	

For	each	output	channel	x	with	“CH_U_”	in	its	name,	do:	

— sSi	=	index	of	source	channel	in	input		
— dSi		=	index	of	channel	x	in	output	
— gSi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_U_”	output	channels)	
— eSi	=	value	of	EQ	column	
— gaini	=	(value	of	Gain	column)	
— i	=	i	+	1	

	

Else	if	Destination	column	contains	ALL_M,	then:	
For	each	output	channel	x	with	“CH_M_”	in	its	name,	do:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 647	
	

— sSi	=	index	of	source	channel	in	input	
— dSi	=	index	of	channel	x	in	output	
— gSi	=	(value	of	Gain	column)	/	sqrt(number	of	“CH_M_”	output	channels)	
— eSi	=	value	of	EQ	column	
— gaini	=	(value	of	Gain	column)	
— i	=	i	+	1	

	

Else	If	there	is	one	channel	in	the	Destination	column,	then:	
— sSi	=	index	of	source	channel	in	input	
— dSi	=	index	of	destination	channel	in	output	
— gSi	=	value	of	Gain	column	
— eSi	=	value	of	EQ	column		
— if	eSi	==	13	(EQBTM)	
— eSi	=	0	(No	Process)	
— gaini	=	(value	of	Gain	column)	
— i	=	i + 1	

	

Else	(two	channels	in	Destination	column)	
— sSi	=	index	of	source	channel	in	input	
— dSi	=	index	of	first	destination	channel	in	output	
— gSi	=	(value	of	Gain	column)	*	 	

— eSi	=	value	of	EQ	column	
— if	eSi	==	13	(EQBTM)	
— eSi	=	0	(No	Process)	
— gaini	=	(value	of	Gain	column)	
— i	=	i + 1	

	

— sSi	=	sSi-1	
— dSi	=	index	of	second	destination	channel	in	output	
— gSi	=	(value	of	Gain	column)	*	g2	
— eSi	=	eSi-1	
— gaini	=	(value	of	Gain	column)	
— i	=	i + 1	

nS		 =	i	-	1;	
return	{	sS,	dS,	gS,	eS,	gain	and	nS	}	
	

The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	angles	of	the	destination	channels	are	 	and	 	(see	Table	310).	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

— 	

1g

1a 2a

srca

1 2
0 2

a a
a

-
=

ISO/IEC	23008-3:202X(E)	

648	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— 	

— 	

— 	

25.4.1.6.7.6 Post-processing	for	random	setups	with	elevation	rendering	

After	 the	parameters	of	SP, DP, GPH, GPL,	 and EP	 are	 initialized	based	on	channel	 information,	 they	are	
modified	according	to	the	azimuth	and	elevation	deviations.	For	the	convenience,	CP ii	refers	the	label	of	

SPi,	CP io	refers	the	label	of	DPi,	A2:2,9#refers	the	elevation	deviation	of	the	CP io,	and		A/80,9#refers	the	azimuth	
deviation	of	the	CP io,	

1)	 Elevation	post-processing	1	:	Find	the	“practically	identical”	channel	

For	each	element	i	in	SP,	do	

flag(i)=0	

For	each	element	i	in	SP,	do	

If	zSUS,å+ 	> 	20	and		zT¥O,å+≤	15	

	 if	(CP	io	==	CH_M_L030	and	(CP	ii	==	CH_U_L030	||	CP	ii	==	CH_M_L045))	||	
	 			(CP	io	==	CH_M_R030	and	(CP	ii	==	CH_U_R030	||	CP	ii	==	CH_M_R045))	||	
	 			(CP	io	==	CH_M_000	and	CP	ii	==	CH_U_000)	||	
	 		{	

	 	 GP	iH		=	1	
	 	 GP	iL		=	1	
	 	 flag(i)=	1	
	 	 For	each	element	j	in	SP,	do	
	 	 	 If	CP	ii	==	CP	ji		&&		i	≠	j	
	 	 	 	 GP	jH		=	0	
	 	 	 	 GP	jL		=	0	
	 	 	 	 flag(j)=	1	
	 		}	

If	zSUS,å+ 	> 	20	and		zT¥O,å+≤	25	

	 if	(CP	io	==	CH_M_L110	and	(CP	ii	==	CH_U_L110	||	CP	ii	==	CH_M_L135))	||	
	 			(CP	io	==	CH_M_R110	and	(CP	ii	==	CH_U_R110	||	CP	ii	==	CH_M_R135))	
	 		{	

	 	 GP	iH		=	1	
	 	 GP	iL		=	1	
	 	 flag(i)=	1	
	 	 For	each	element	j	in	SP,	do	
	 	 	 If	CP	ii	==	CP	ji		&&		i	≠	j	
	 	 	 GP	jH		=	0	

1 2
center 2

a aa +
=

() ()center src 2 1sgna a a a a= - × -

10
0

1 2 102 2
0

tan tan 101, with
tan tan 101 1

gg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 649	
	

	 	 	 GP	jL		=	0	
	 	 	 flag(j)=	1	
	 		}	

For	each	element	i	in	SP,	do	
	 If	zSUS,å+ 	>	20	and	CP	io	==	CH_M_L110	and	CP	ii	==	CH_U_L090		

	 	 For	each	element	j	in	SP,	do	
	 	 	 If	zSUS,åk 	>	20	and	CP	jo	==	CH_M_L030	and	CP	ii	==	CH_U_L090	

	 	 	 	 For	each	element	k	in	SP,	do	
	 	 	 	 	 If	CP	ki	==	CH_U_L090	
	 	 	 	 	 	 GP	kH		=	0	
	 	 	 	 	 	 GP	kL		=	0	
	 	 	 	 	 	 flag(k)=	1	
	 	 	 	 GP	iH		=	g1	
	 	 	 	 GP	iL		=	g1	
	 	 	 	 GP	jH		=	g2	
	 	 	 	 GP	jL		=	g2	
	 	 	 	 flag(i)=	1	
	 	 	 	 flag(j)=	1	
	 If	zSUS,å+ 	>	20	and	CP	io	==	CH_M_R110	and	CP	ii	==	CH_U_R090	

	 	 For	each	element	j	in	SP,	do	
	 	 	 If	zSUS,åk 	>	20	and	CP	jo	==	CH_M_R030	and	CP	ii	==	CH_U_R090	

	 	 	 	 For	each	element	k	in	SP,	do	
	 	 	 	 	 If	CP	ki	==	CH_U_R090	
	 	 	 	 	 	 GP	kH		=	0	
	 	 	 	 	 	 GP	kL		=	0	
	 	 	 	 	 	 flag(k)=	1	
	 	 	 	 GP	iH		=	g1	
	 	 	 	 GP	iL		=	g1	
	 	 	 	 GP	jH		=	g2	
	 	 	 	 GP	jL		=	g2	
	 	 	 	 flag(i)=	1	
	 	 	 	 flag(j)=	1	

The	gains	g1	and	g2	are	computed	by	applying	tangent	law	amplitude	panning	in	the	following	

way.	

— Unwrap	source	destination	channel	azimuth	angles	to	be	positive.	

— The	azimuth	with	the	deviation	for	CP io	and	CP jo	are	 	and	 .	

— The	azimuth	angle	of	the	source	channel	(=	panning	target)	is	 .	

— 	

1a 2a

srca

1 2
0 2

a a
a

-
=

ISO/IEC	23008-3:202X(E)	

650	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

— 	

— 	

— 	

	

2)	 Elevation	post-processing	2	on	panning	coefficients	:	Find	the	“practically	dual	mono”	channel	

For	each	element	i	in	SP,	if	flag(i)==0

	 If	both	CH_M_L030	and	CH_M_R030	have	elevation	deviations	more	than	20	degrees	
if	CP	ii	==	CH_U_000		

if	CP	io	==	CH_M_L030	||	CH_M_R030	
GP	iH		=	1	
GP	iL		=	1	
flag(i)=1	

else		
GP	iH		=	0	
GP	iL		=	0	
flag(i)=1	

	 If	both	CH_M_L110	and	CH_M_R110	are	elevated	
if	CP	ii	==	CH_U_180		

if	CP	io	==	CH_M_L110	||	CH_M_R110	
GP	iH		=	1	
GP	iL		=	1	
flag(i)=1	

else		
GP	iH		=	0	
GP	iL		=	0	
flag(i)=1	
	

3)	 Elevation	post-processing	3	on	panning	coefficients	:	Keep	the	central	image	

For	each	element	i	in	SP,	if	flag(i)==0	

if	CP	ii	==	CH_U_000	||	CH_T_000	||	CH_U_180	
if	only	one	of	the	output	channels	of	CH_M_L030	or	CH_M_R030	has	an	elevation	deviation	
more	than	20	degrees,	then	

if	CP	ii	==	CH_U_000	||	CH_T_000	
if	CP	io	==	CH_M_L030	||	CH_M_R030	

if	CP	io		is	elevated	

GP	iH		=	G
P	iH	×	10

l
#?
∙
B/C/,m+
ln 	

if	CP	ii	==	CH_U_000	

1 2
center 2

a aa +
=

() ()center src 2 1sgna a a a a= - × -

10
0

1 2 102 2
0

tan tan 101,
tan tan 101 1

 with gg g g
g g

a a
a a

-

-

- +
= = =

+ ++ +

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 651	
	

GP	iL		=	G
P	iL	×	10

#
#?
∙
B/C/,m+
ln 	

if	CP	ii	==	CH_T_000	

GP	iL		=	G
P	iL	×	10

l
#?
∙
B/C/,m+
ln 	

flag(i)=1	
else	

GP	iH		=	G
P	iH	×	10

#
#?
∙
B/C/,m+
ln 		

GP	iL		=	G
P	iL	×	10

#
#?
∙
B/C/,m+
ln 	

flag(i)=1	
if	CP	io	==	CH_M_000	

GP	iH		=	G
P	iH	×	10

#
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10

#
#?
∙
B/C/,m+
ln 	

flag(i)=1	
if	CP	ii	==	CH_U_180		

if	CP	io	==	CH_M_L030	||	CH_M_R030	
if	CP	io	is	not	elevated	

GP	iH		=	G
P	iH	×	10>

#
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

#
#?
∙
B/C/,m+
ln 	

flag(i)=1	

if	only	one	of	the	output	channels	of	CH_M_L110	or	CH_M_R110	has	an	elevation	deviation	
more	than	20	degrees,	then	

if	CP	ii	==	CH_U_180	||	CH_T_000	
if	CP	io	==	CH_M_L110	||	CH_M_R110	

if	CP	io		is	elevated	

GP	iH		=	G
P	iH	×	10

#
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10

#
#?
∙
B/C/,m+
ln 	

flag(i)=1	
if	CP	ii	==	CH_U_000		

if	CP	io	==	CH_M_L110	||	CH_M_R110	
if	CP	io	is	not	elevated	

GP	iH		=	G
P	iH	×	10>

#
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

#
#?
∙
B/C/,m+
ln 	

flag(i)=1	
4)	 Elevation	post-processing	4	on	panning	coefficients	:	Keep	the	L/R	balance	when	the	contralateral	

frontal	channel	elevated	

For	each	element	i	in	SP,	if	flag(i)==0	
if	CH_M_L030	is	elevated	more	than	20	degrees	and	CH_M_R030	is	not		
if	CP	ii	==	CH_U_R030	||	CP	ii	==	CH_U_R045,	do	
if	CP	io	==	CH_M_L030	

ISO/IEC	23008-3:202X(E)	

652	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

GP	iH		=	G
P	iH	×	10>

@
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

@
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10>

o
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

o
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	ii	==	CH_U_L090,	do	
if	CP	io	==	CH_M_L030	

GP	iH		=	G
P	iH	×	10

p.r
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10>

o
#?
∙
B/C/,m+
ln 	

flag(i)	=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	0	
flag(i)=1	

elseif	CP	ii	==	CH_U_L110	||	CP	ii	==	CH_U_L135,	do	
if	CP	io	==	CH_M_L030	

GP	iH		=	G
P	iH	×	10

n.s
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10

n.s
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10>

o.s
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

o,s
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10>

@
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

@
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CH_M_R030	is	elevated	more	than	20	degrees	and	CH_M_L030	is	not		

if	CP	ii	==	CH_U_L030	||	CP	ii	==	CH_U_L045,	do	
if	CP	io	==	CH_M_R030	

GP	iH		=	G
P	iH	×	10>

@
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

@
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10>

o
#?
∙
B/C/,m+
ln 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 653	
	

GP	iL		=	G
P	iL	×	10>

o
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	ii	==	CH_U_R090,	do	
if	CP	io	==	CH_M_R030	

GP	iH		=	G
P	iH	×	10

p.r
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10>

o
#?
∙
B/C/,m+
ln 	

flag(i)	=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	0	
flag(i)=1	

elseif	CP	ii	==	CH_U_R110	||	CP	ii	==	CH_U_R135,	do	
if	CP	io	==	CH_M_R030	

GP	iH		=	G
P	iH	×	10

n.s
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10

n.s
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_R110	

GP	iH		=	G
P	iH	×	10>

o.s
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

o,s
#?
∙
B/C/,m+
ln 	

flag(i)=1	
elseif	CP	io	==	CH_M_L110	

GP	iH		=	G
P	iH	×	10>

@
#?
∙
B/C/,m+
ln 	

GP	iL		=	G
P	iL	×	10>

@
#?
∙
B/C/,m+
ln 	

flag(i)=1	
	

5)	 Azimuth	post-processing	on	panning	coefficients	

fbias	=	razi,A(CH_M_L030)+	razi,A(CH_M_R030)	
bbias	=	razi,A(CH_M_L110)+	razi,A(CH_M_R110)	
For	each	element	i	in	SP,	

	 if		fbias	>	10	
	 	 if	(CP	ii	==	CH_U_000	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_L030)	

GP	iH		=	G
P	iH	×	10>

@
#?
∙(FG+D>)

@n 	

if		CP	ii	==	CH_U_000		

GP	iL		=	G
P	iL	×	10>

#
#?
∙(FG+D>)

@n 	

elseif	CP	ii	==	CH_T_000		

GP	iL		=	G
P	iL×	10>

@
#?
∙(FG+D>)

@n 	
flag(i)=1	

	 if		fbias	<	-10	

ISO/IEC	23008-3:202X(E)	

654	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	 	 if	(CP	ii	==	CH_U_000	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_R030)	

GP	iH		=	G
P	iH	×	10

@
#?
∙(FG+D>)

@n 	

if		CP	ii	==	CH_U_000		

GP	iL		=	G
P	iL	×	10

#
#?
∙(FG+D>)

@n 	

elseif	CP	ii	==	CH_T_000		

GP	iL		=	G
P	iL	×	10

@
#?
∙(FG+D>)

@n 	
	

flag(i)=1	
	 if		bbias	>	10	
	 	 if	(CP	ii	==	CH_U_180	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_L110)	

GP	iH		=	G
P	iH	×	10

@
#?
∙(GG+D>)

@n 	

GP	iL		=	G
P	iL	×	10

@
#?
∙(GG+D>)

@n 	

flag(i)=1	
	 if		bbias	<	-10	
	 	 if	(CP	ii	==	CH_U_180	||	CP	ii	==	CH_T_000)	&&	(CP	io	==	CH_M_R110)	

GP	iH		=	G
P	iH	×	10>

@
#?
∙(GG+D>)

@n 	

GP	iL		=	G
P	iL	×	10>

@
#?
∙(GG+D>)

@n 	

flag(i)=1	
	

6)	 Spatial	elevation	coefficient	normalization	

For	each	element	i	in	SP,	if	flag(i)==1	
	 ãO2	=	0	
	 ãO∂ 	=	0	
For	each	element	i	in	SP,	if	flag(i)==1	
	 For	each	element	k	in	SP	

	 				 	 If	CP	ii	==	CP	ki		
	 	 	 	 ãO2 = ãO2 + (÷∑O2)?	
	 	 	 	 ãO∂ = ãO∂ + (÷∑O∂)?	
	 	 	 	 flag(i)==0	

	 For	each	element	k	in	SP	
	 				 	 If	CP	ii	==	CP	ki		

	 	 	 	 ÷∑O2 = ÷∑O2 ∙ ¿ãO2	

	 	 	 	 ÷∑O∂ = ÷∑O∂ ∙ ¿ãO∂ 	
	 	 	 	 flag(i)==0	
7)	 Elevation	post-processing	on	spatial	elevation	filters	

For	each	element	i	in	SP

	 If	CP io	is	elevated	(rele,A(CP io)	>	20)	

EP i
	
	=	0	(no	EQ)	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 655	
	

8)	 Update	the	ES,	GEQ	by	same	process	defined	in	subclause	25.4.1.6.5	as	below.	

For	each	element	i	in	DSi,	do:	

if	the	output	channel	with	index	DSi
	
is	a	horizontal	channel	by	definition	(i.e.	output	channel	label	contains	

the	label	‘_M_’),	and	

if	this	output	channel	is	now	a	height	channel	(elevation	in	range	0..60	degrees),	and	

if	input	channel	with	index	SSi		is	a	height	channel	(i.e.	label	contains	‘_U_’),	then	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35	
¾ ÷\]P∏ = ℎ ∙

8
πTOQ+

v + (1 − ℎ)	

¾ Apply	compensation	gain	to	DMX	gain:	GSi	=	GSi
	
∙Gcomp	

¾ 	Define	new	equalizer	ˇÄ~,S 	with	the	index	e,	where	 	

¾ ESi	=	e		
¾ e	=	e	+1	

else	if	input	channel	with	index	SSi	is	a	horizontal	channel	(label	contains	‘_M_’)	

¾ h	=	min(elevation	of	randomized	output	channel,	35)/35	
¾ Define	new	equalizer	ˇÄ~,S 	with	the	index	e,		

where	 		

¾ ESi	=	e		
¾ e	=	e	+1	

25.4.1.6.7.7 Merge	general	downmix	rules	and	elevation	rules	

After	the	elevation	rendering	parameters	are	initialized,	the	vectors	of	SP, DP, GPH, GPL,	and EP	that	cover	
the	elevation	rendered	height	input	channel	shall	be	merged	with	S, D, G, E,	and	GEQ	that	cover	the	rest	of	

the	input	channels	by:	

	 	RV = SR
V

R T ,				U
V = SU

V

U T ,				7
V
C = S7

V
C

7 T ,					7VE = S7
V
E

7 T ,				VV = SV
V

V T	

SS, DS, GS,	and ES	are	also	merged	with	S, D, G,	and E	by:	

	 	RY = SR
Y

R T ,				U
Y = SU

Y

U T ,				7
Y = S7

Y

7 T ,					V
Y = SV

Y

V T,	

When	no	input	channel	is	rendered	by	elevation	rendering,	the	vectors	of	SP, DP, GPH	(or GPL),	and EP	are	
identical	to	SS, DS, GS,	and ES	and	also	to	S, D, G,	and E.	

25.4.1.6.8 Derivation	of	rules-based	initialization	downmix	matrix	

MDMX	
and	MDMX2	 are	 derived	 by	 rearranging	 the	 temporary	 parameters	 from	 the	 mapping-oriented	

representation	(enumerated	by	mapping	counter	i)	to	a	channel-oriented	representation	as	defined	in	
the	following.	

Initialize	MDMX
	
and	MDMX2	as	Nout	×	Nin	zero	matrixes	for	all	STFT	bins	k.	

For	each	i	in	SPdo:	

, ,(1) G
i

pb pb
EQ e EQ EG h h= + - ×

, ,5 ,G (1) G
i

pb pb pb
EQ e EQ EQ EG h h= × + - ×

ISO/IEC	23008-3:202X(E)	

656	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

If	(EPi	=	0)	

W9Z[,\,]
^ = 8_0`	for	A	=	D	P	i,	B	=	S	P	i	,			 for	k	such	that	fpb=pbm(k)✕	fs	/	2	<	2	800	

W9Z[,\,]
^ = 8_0a	for	A	=	D	P	i,	B	=	S	P	i	,		 for	k	such	that	2	800≤	fpb=pbm(k)	✕	fs	/	2	≤	10	000	

W9Z[,\,]
^ = 8_0`	for	A	=	D	P	i,	B	=	S	P	i	,		 for	k	such	that	fpb=pbm(k)	✕	fs	/	2	>	10	000		

Else	

W9Z[,\,]
^ = 8_0` ∙ 8^bc,b#(for	A	=	D	P	i,	B	=	S	P	i	,		for	k	such	that	fpb=pbm(k)	✕	fs	/	2	<	2	800		

W9Z[,\,]
^ = 8_0a ∙ 8^bc,b#(for	A	=	D	P	i,	B	=	S	P	i,	for	k	such	that	2	800≤	fpb=pbm(k)	✕	fs	/	2	≤	10	000		

W9Z[,\,]
^ = 8_0` ∙ 8^bc,b#(for	A	=	D	P	i,	B	=	S	P	i,		for	k	such	that	fpb=pbm(k)	✕	fs	/	2	>	10	000		

For	each	i	in	SS do:	

If	(ESi	=	0)	

W9Z[6,\,]
^ = 8d0	for	A	=	D	S	i,	B	=	S	S	i	,		 for	0	≤	k	<	K	

Else	

	

where	fpb	is	the	normalized	centre	frequency	of	processing	band	pb,	specified	in	Table	313,	pbm	defines	
the	processing	band	to	STFT	frequency	bin	mapping	as	specified	in	Table	314,	fs	is	the	sampling	frequency,		
Ãåo∫,ª,e
# 	and	Ãåo∫?,ª,e

# 	denotes	the	matrix	element	in	the	Ath	row	and	Bth	column	of	MDMX	and	MDMX2.	

After	the	rules-based	initialization	this	matrix	of	downmix	coefficients	will	contain	columns	of	zeros	if	

unknown	channels	are	present	in	the	input	format.	Those	columns	of	zeros	shall	be	filled	with	downmix	

gains	as	specified	in	subclause	25.4.1.6.9.	

25.4.1.6.9 VBAP-based	downmix	coefficients	derivation	

This	subclause	defines	how	to	generically	derive	downmix	gains	using	VBAP	in	case	of	unknown	output	

formats	or	unknown	input	channels.	The	following	restrictions	apply.	

— If	the	target	setup	contains	at	least	one	LFE,	then	map	each	LFE	channel	directly	to	the	LFE	of	the	
target	 setup	 that	 minimizes	 the	 azimuth	 angle	 deviation.	 No	 VBAP-based	 downmix	 coefficients	

derivation	shall	be	applied	for	the	LFE	channels.	The	downmix	coefficient	for	the	direct	mapping	shall	

be	set	to	unity	gain,	i.e.	to	1.0.	

— Otherwise	apply	the	VBAP-based	downmix	coefficients	derivation	defined	in	the	following	also	to	the	
LFE	channels.	

Handling	of	unknown	output	formats:	

In	case	the	output	format	is	considered	unknown,	the	downmix	coefficients	for	all	input	channels	shall	

be	derived	as	follows.	

Each	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	the	azimuth	

and	elevation	angles	associated	with	the	input	channel.	For	each	input	channel	the	mixing	gains	to	all	

()
DMX2, , ,

for , , 0S
i

k S pb pbm k S S
A B i i iEQ E

M G G A D B S k K== × = = £ <

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 657	
	

output	loudspeakers	are	calculated	as	VBAP	panning	gains	gscaled	according	to	subclause	8.4.4,	where	the	
same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	converter.	The	panning	gain	

vectors	gscaled shall	be	post-processed	according	to	subclause	25.4.1.6.10.	

The	 downmix	matrix	 	is	 finally	 derived	 by	 filling	 each	matrix	 column	with	 the	 post-processed	

panning	gain	vector	elements	of	the	corresponding	input	channel,	independently	of	the	STFT	bin	index	k.	

Handling	of	unknown	input	channels:	

In	case	the	input	format	contains	unknown	input	channels,	the	downmix	coefficients	for	these	channels	

shall	be	derived	as	follows.	

Each	unknown	channel	of	the	input	setup	is	regarded	as	a	static	audio	object	at	the	position	defined	by	

the	azimuth	and	elevation	angles	associated	with	the	input	channel.	For	each	unknown	input	channel	the	

mixing	 gains	 to	 all	 output	 loudspeakers	 are	 calculated	 as	 VBAP	 panning	 gains	 gscaled	 according	 to	
subclause	8.4.4,	where	the	same	output	format	shall	be	signalled	to	the	VBAP	algorithm	as	to	the	format	

converter.	The	panning	gain	vectors	gscaled shall	be	post-processed	according	to	subclause	25.4.1.6.10.	

The	 downmix	 matrix	 	is	 finally	 derived	 by	 filling	 each	 matrix	 column	 corresponding	 to	 an	

unknown	 input	 channel	with	 the	 post-processed	 panning	 gain	 vector	 elements	 of	 the	 corresponding	

unknown	input	channel,	independently	of	the	STFT	bin	index	k.	

25.4.1.6.10 VBAP	gains	post-processing	

The	mixing	gains	obtained	from	the	VBAP	rendering	algorithm	shall	be	post-processed	to	avoid	excessive	

use	of	phantom	sources.	Therefore,	small	matrix	gains	are	set	to	zero,	followed	by	a	renormalization	of	

the	panning	gains	to	ensure	energy-preservation.	

For	each	panning	gain	vector	gscaled do:	

—	 If	the	vector	contains	at	least	one	panning	gain	that	exceeds	the	threshold	value	0.3,	then;	

—	 Set	all	vector	elements	smaller	or	equal	to	0.3	to	the	value	0.0;	

—	 Normalize	the	gain	vector	such	that	the	sum	of	squares	of	the	vector	elements	remains	the	same	as	

before	the	post-processing.	

25.4.1.7 Format	converter	initialization	tables	

Table	310	lists	channel	labels,	corresponding	azimuth	and	elevation	angles,	and	associated	sectors.	The	

sectors	are	defined	as	points	on	the	unit	sphere,	whose	azimuth/elevation	angles	are	within	or	on	the	

borders	of	 the	 intervals	given	by	 the	azimuth/elevation	 start	 and	end	values	 in	 the	 table,	 connecting	

azimuth	start	and	end	values	 in	a	counter-clockwise	direction	and	connecting	elevation	start	and	end	

values	in	the	direction	of	increasing	elevation	angles.	

DMX
kM

DMX
kM

ISO/IEC	23008-3:202X(E)	

658	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	310	—	Channels	definitions:	Channel	labels,	corresponding	azimuth	and	elevation	angles,	
and	associated	sectors	

Loudspeaker
Geometry		
(as	defined	in	
ISO/IEC	
23001-8)	

Channel	 Azimuth	
[deg]	

Elevat
ion	
[deg]	

Azimuth	
start	angle	
of	sector	
[deg]	

Azimuth	
end	angle	
of	sector	
[deg]	

Elevation	
start	

angle	of	
sector	
[deg]	

Elevation	
end	angle	
of	sector	
[deg]	

Ch.	
is	
LFE	

Position	
is	

relative	

	 CH_EMPTY	 n/a	 n/a	 n/a	 n/a	 n/a	 n/a	 0	 0	
0	 CH_M_L030	 +30	 0	 +23	 +37	 -9	 +20	 0	 0	
1	 CH_M_R030	 -30	 0	 -37	 -23	 -9	 +20	 0	 0	
2	 CH_M_000	 0	 0	 -7	 +7	 -9	 +20	 0	 0	
3	 CH_LFE1	 0	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
4	 CH_M_L110	 +110	 0	 +101	 +124	 -45	 +20	 0	 0	
5	 CH_M_R110	 -110	 0	 -124	 -101	 -45	 +20	 0	 0	
6	 CH_M_L022	 +22	 0	 +8	 +22	 -9	 +20	 0	 0	
7	 CH_M_R022	 -22	 0	 -22	 -8	 -9	 +20	 0	 0	
8	 CH_M_L135	 +135	 0	 125	 142	 -45	 +20	 0	 0	
9	 CH_M_R135	 -135	 0	 -142	 -125	 -45	 +20	 0	 0	
10	 CH_M_180	 180	 0	 158	 -158	 -45	 +20	 0	 0	
13	 CH_M_L090	 +90	 0	 +76	 +100	 -45	 +20	 0	 0	
14	 CH_M_R090	 -90	 0	 -100	 -76	 -45	 +20	 0	 0	
15	 CH_M_L060	 +60	 0	 +53	 +75	 -9	 +20	 0	 0	
16	 CH_M_R060	 -60	 0	 -75	 -53	 -9	 +20	 0	 0	
17	 CH_U_L030	 +30	 +35	 +11	 +37	 +21	 +60	 0	 0	
18	 CH_U_R030	 -30	 +35	 -37	 -11	 +21	 +60	 0	 0	
19	 CH_U_000	 0	 +35	 -10	 +10	 +21	 +60	 0	 0	
20	 CH_U_L135	 +135	 +35	 +125	 +157	 +21	 +60	 0	 0	
21	 CH_U_R135	 -135	 +35	 -157	 -125	 +21	 +60	 0	 0	
22	 CH_U_180	 180	 +35	 +158	 -158	 +21	 +60	 0	 0	
23	 CH_U_L090	 +90	 +35	 +67	 +100	 +21	 +60	 0	 0	
24	 CH_U_R090	 -90	 +35	 -100	 -67	 +21	 +60	 0	 0	
25	 CH_T_000	 0	 +90	 -180	 +180	 +61	 +90	 0	 0	
26	 CH_LFE2	 +45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
27	 CH_L_L045	 +45	 -15	 +11	 +75	 -45	 -10	 0	 0	
28	 CH_L_R045	 -45	 -15	 -75	 -11	 -45	 -10	 0	 0	
29	 CH_L_000	 0	 -15	 -10	 +10	 -45	 -10	 0	 0	
30	 CH_U_L110	 +110	 +35	 +101	 +124	 +21	 +60	 0	 0	
31	 CH_U_R110	 -110	 +35	 -124	 -101	 +21	 +60	 0	 0	
32	 CH_U_L045	 +45	 +35	 +38	 +66	 +21	 +60	 0	 0	
33	 CH_U_R045	 -45	 +35	 -66	 -38	 +21	 +60	 0	 0	
34	 CH_M_L045	 +45	 0	 +38	 +52	 -9	 +20	 0	 0	
35	 CH_M_R045	 -45	 0	 -52	 -38	 -9	 +20	 0	 0	
36	 CH_LFE3	 -45	 n/a	 n/a	 n/a	 n/a	 n/a	 1	 0	
37	 CH_M_LSCR	 +60	 0	 n/a		 n/a	 n/a	 n/a	 0	 1	
38	 CH_M_RSCR	 -60	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	
39	 CH_M_LSCH	 +30	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	
40	 CH_M_RSCH	 -30	 0	 n/a	 n/a	 n/a	 n/a	 0	 1	
41	 CH_M_L150	 +150	 0	 143	 157	 -45	 +20	 0	 0	
42	 CH_M_R150	 -150	 0	 -157	 -143	 -45	 +20	 0	 0	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 659	
	

Table	311	—	Formats	with	corresponding	number	of	channels	and	channel	ordering	

Loudspeaker	layout	
index	or	

ChannelConfiguration		
as	defined	in	

ISO/IEC	23001-8

Number	of	
channels Channels	(with	ordering)

1 1 CH_M_000	
2 2 CH_M_L030,	CH_M_R030	
3 3 CH_M_L030,	CH_M_R030,	CH_M_000	
4 4 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M180	
5 5 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_M_L110,	CH_M_R110	
6 6 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110	
7 8 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L060,	CH_M_R060	
8 n.a.	
9 3 CH_M_L030,	CH_M_R030,	CH_M_180	
10 4 CH_M_L030,	CH_M_R030,	CH_M_L110,	CH_M_R110	
11 7 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_180	
12 8 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	

CH_M_L135,	CH_M_R135	
13 24 CH_M_L060,	CH_M_R060,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	

CH_M_L030,	CH_M_R030,	CH_M_180,	CH_LFE3,	CH_M_L090,	CH_M_R090,	
CH_U_L045,	CH_U_R045,	CH_U_000,	CH_T_000,	CH_U_L135,	CH_U_R135,	
CH_U_L090,	CH_U_R090,	CH_U_180,	CH_L_000,	CH_L_L045,	CH_L_R045	

14 8 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030	

15 12 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE2,	CH_M_L135,	CH_M_R135,	
CH_LFE3,	CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_180	

16 10 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_L110,	CH_U_R110	

17 12 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_U_L030,	CH_U_R030,	CH_U_000,	CH_U_L110,	CH_U_R110,	CH_T_000	

18 14 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L110,	CH_M_R110,	
CH_M_L150,	CH_M_R150,	CH_U_L030,	CH_U_R030,	CH_U_000,	
CH_U_L110,	CH_U_R110,	CH_T_000	

19 12 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L030,	CH_U_R030,	CH_U_L135,	
CH_U_R135	

20 14 CH_M_L030,	CH_M_R030,	CH_M_000,	CH_LFE1,	CH_M_L135,	CH_M_R135,	
CH_M_L090,	CH_M_R090,	CH_U_L045,	CH_U_R045,	CH_U_L135,	
CH_U_R135,	CH_M_LSCR,	CH_M_RSCR	

Table	312	—	Converter	rules	matrix	

Source Destination Gain EQ	index

CH_M_000 CH_M_L022,	CH_M_R022 1.0 0	(off)										
CH_M_000 CH_M_L030,	CH_M_R030 1.0 0	(off)										
CH_M_L022 CH_M_000,	CH_M_L030 1.0 0	(off)										
CH_M_L022 CH_M_L030 1.0	 0	(off)										
CH_M_R022 CH_M_000,	CH_M_R030 1.0 0	(off)										
CH_M_R022 CH_M_R030 1.0	 0	(off)										
CH_M_L045 CH_M_L030,	CH_M_L060 1.0 0	(off)										
CH_M_L045 CH_M_L030 1.0	 0	(off)										

ISO/IEC	23008-3:202X(E)	

660	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Source Destination Gain EQ	index

CH_M_R045 CH_M_R030,	CH_M_R060 1.0 0	(off)										
CH_M_R045 CH_M_R030 1.0	 0	(off)										
CH_M_L060 CH_M_L045,	CH_M_L110 1.0 0	(off)										
CH_M_L060 CH_M_L030,	CH_M_L110 1.0 0	(off)										
CH_M_L060 CH_M_L030 0.8	 0	(off)										
CH_M_R060 CH_M_R045,		CH_M_R110, 1.0				 0	(off)										
CH_M_R060 CH_M_R030,		CH_M_R110, 1.0				 0	(off)										
CH_M_R060 CH_M_R030, 0.8 0	(off)										
CH_M_L090 CH_M_L045,	CH_M_L110 1.0 0	(off)										
CH_M_L090 CH_M_L030,	CH_M_L110 1.0 0	(off)										
CH_M_L090 CH_M_L030 0.8	 0	(off)										
CH_M_R090 CH_M_R045,		CH_M_R110 1.0	 0	(off)										
CH_M_R090 CH_M_R030,		CH_M_R110 1.0	 0	(off)										
CH_M_R090 CH_M_R030 0.8 0	(off)										
CH_M_L110 CH_M_L135 1.0 0	(off)										
CH_M_L110 CH_M_L090 0.8 0	(off)										
CH_M_L110 CH_M_L045 0.8 0	(off)										
CH_M_L110 CH_M_L030 0.8 0	(off)										
CH_M_R110 CH_M_R135 1.0 0	(off)										
CH_M_R110 CH_M_R090 0.8 0	(off)										
CH_M_R110 CH_M_R045 0.8 0	(off)										
CH_M_R110 CH_M_R030 0.8 0	(off)										
CH_M_L135 CH_M_L110 1.0 0	(off)										
CH_M_L135 CH_M_L150 1.0 0	(off)										
CH_M_L135 CH_M_L090 0.8 0	(off)										
CH_M_L135 CH_M_L045 0.8 0	(off)										
CH_M_L135 CH_M_L030 0.8 0	(off)										
CH_M_R135 CH_M_R110 1.0 0	(off)										
CH_M_R135 CH_M_R150 1.0 0	(off)										
CH_M_R135 CH_M_R090 0.8 0	(off)										
CH_M_R135 CH_M_R045 0.8 0	(off)										
CH_M_R135 CH_M_R030 0.8 0	(off)										
CH_M_L150 CH_M_L135 1.0 0	(off)										
CH_M_L150 CH_M_L110 1.0 0	(off)										
CH_M_L150 CH_M_L045 0.8 0	(off)										
CH_M_L150 CH_M_L030 0.8 0	(off)										
CH_M_R150 CH_M_R135 1.0 0	(off)										
CH_M_R150 CH_M_R110 1.0 0	(off)										
CH_M_R150 CH_M_R045 0.8 0	(off)										
CH_M_R150 CH_M_R030 0.8 0	(off)										
CH_M_180 CH_M_R150,		CH_M_L150 1.0 0	(off)										
CH_M_180 CH_M_R135,		CH_M_L135 1.0 0	(off)										
CH_M_180 CH_M_R110,		CH_M_L110 1.0 0	(off)										
CH_M_180 CH_M_R090,		CH_M_L090 0.8 0	(off)										
CH_M_180 CH_M_R045,		CH_M_L045 0.6 0	(off)										
CH_M_180 CH_M_R030,		CH_M_L030 0.6 0	(off)										
CH_U_000 CH_U_L030,		CH_U_R030 1.0 1										
CH_U_000 VIRTUAL 1.0 9	(EQVFC)	
CH_U_000 CH_M_L030,		CH_M_R030 0.85 0	(off)										
CH_U_L045 CH_U_L030 1.0 0	(off)										
CH_U_L045 VIRTUAL 1.0 7	(EQVF)	
CH_U_L045 CH_M_L045 0.85 1										
CH_U_L045 CH_M_L030 0.85 1										

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 661	
	

Source Destination Gain EQ	index

CH_U_R045 CH_U_R030 1.0 0	(off)										
CH_U_R045 VIRTUAL 1.0 7	(EQVF)	
CH_U_R045 CH_M_R045 0.85 1										
CH_U_R045 CH_M_R030 0.85 1										
CH_U_L030 CH_U_L045 1.0 0	(off)										
CH_U_L030 VIRTUAL 1.0 7	(EQVF)	
CH_U_L030 CH_M_L030 0.85 1										
CH_U_R030 CH_U_R045 1.0 0	(off)										
CH_U_R030 VIRTUAL 1.0 7	(EQVF)	
CH_U_R030 CH_M_R030 0.85 1										
CH_U_L090 CH_U_L030,		CH_U_L110 1.0 0	(off)										
CH_U_L090 CH_U_L030,		CH_U_L135 1.0 0	(off)										
CH_U_L090 CH_U_L045 0.8 0	(off)										
CH_U_L090 CH_U_L030 0.8 0	(off)										
CH_U_L090 VIRTUAL 1.0 12	(EQVS)	
CH_U_L090 CH_M_L045,		CH_M_L110 0.85 2	
CH_U_L090 CH_M_L030,		CH_M_L110 0.85 2	
CH_U_L090 CH_M_L030 0.85 2	
CH_U_R090 CH_U_R030,		CH_U_R110 1.0 0	(off)										
CH_U_R090 CH_U_R030,		CH_U_R135 1.0 0	(off)										
CH_U_R090 CH_U_R045 0.8 0	(off)										
CH_U_R090 CH_U_R030 0.8 0	(off)										
CH_U_R090 VIRTUAL 1.0 12	(EQVS)	
CH_U_R090 CH_M_R045,		CH_M_R110 0.85 2	
CH_U_R090 CH_M_R030,		CH_M_R110 0.85 2	
CH_U_R090 CH_M_R030 0.85 2	
CH_U_L110 CH_U_L135 1.0 0	(off)										
CH_U_L110 CH_U_L045 0.8 0	(off)										
CH_U_L110 CH_U_L030 0.8 0	(off)										
CH_U_L110 VIRTUAL 1.0 14	(EQVBA)	
CH_U_L110 CH_M_L110 0.85 2	
CH_U_L110 CH_M_L045 0.85 2	
CH_U_L110 CH_M_L030 0.85 2	
CH_U_R110 CH_U_R135 1.0 0	(off)										
CH_U_R110 CH_U_R045 0.8 0	(off)										
CH_U_R110 CH_U_R030 0.8 0	(off)										
CH_U_R110 VIRTUAL 1.0 14	(EQVBA)	
CH_U_R110 CH_M_R110 0.85 2	
CH_U_R110 CH_M_R045 0.85 2	
CH_U_R110 CH_M_R030 0.85 2	
CH_U_L135 CH_U_L110 1.0 0	(off)										
CH_U_L135 CH_U_L045 0.8 0	(off)										
CH_U_L135 CH_U_L030 0.8 0	(off)										
CH_U_L135 VIRTUAL 1.0 8	(EQVB)	
CH_U_L135 CH_M_L110 0.85 2	
CH_U_L135 CH_M_L045 0.85 2	
CH_U_L135 CH_M_L030 0.85 2	
CH_U_R135 CH_U_R110 1.0 0	(off)										
CH_U_R135 CH_U_R045 0.8 0	(off)										
CH_U_R135 CH_U_R030 0.8 0	(off)										

ISO/IEC	23008-3:202X(E)	

662	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Source Destination Gain EQ	index

CH_U_R135 VIRTUAL 1.0 8	(EQVB)	
CH_U_R135 CH_M_R110 0.85 2	
CH_U_R135 CH_M_R045 0.85 2	
CH_U_R135 CH_M_R030 0.85 2	
CH_U_180 CH_U_R135,		CH_U_L135 1.0 0	(off)										
CH_U_180 CH_U_R110,		CH_U_L110 1.0 0	(off)										
CH_U_180 VIRTUAL 1.0 10	(EQVBC)	
CH_U_180 CH_M_180 0.85 2	
CH_U_180 CH_M_R110,		CH_M_L110 0.85 2	
CH_U_180 CH_U_R030,	CH_U_L030 0.8 0	(off)										
CH_U_180 CH_M_R030,		CH_M_L030 0.85 2	
CH_T_000 ALL_U 0.8 3	
CH_T_000 VIRTUAL 1.0 11	(EQVOG)	
CH_T_000 ALL_M 0.8 4	
CH_L_000 CH_M_000 1.0 13	(EQBTM)										
CH_L_000 CH_M_L030,		CH_M_R030 1.0 13	(EQBTM)										
CH_L_L045 CH_M_L045 1.0 13	(EQBTM)										
CH_L_L045 CH_M_L030 1.0 13	(EQBTM)										
CH_L_R045 CH_M_R045 1.0 13	(EQBTM)										
CH_L_R045 CH_M_R030 1.0 13	(EQBTM)										
CH_LFE1 CH_LFE2 1.0 0	(off)										
CH_LFE1 CH_M_L030,		CH_M_R030 1.0 0	(off)										
CH_LFE2 CH_LFE1 1.0 0	(off)										
CH_LFE2 CH_M_L030,		CH_M_R030 1.0 0	(off)										

Table	313	—	Normalized	centre	frequencies	of	the	58	processing	bands	

Normalized	frequency	[0,	1]

0.000000000000000	
0.003891050583658	
0.007782101167315	
0.011673151750973	
0.015564202334630		
0.019455252918288	
0.023346303501946	
0.027237354085603	
0.031128404669261	
0.035019455252918	
0.038910505836576	
0.042801556420233	
0.046692607003891	
0.050583657587549	
0.054474708171206	
0.058365758754864	
0.062256809338521	
0.066147859922179	
0.070038910505837	
0.073929961089494	
0.077821011673152	
0.081712062256809	
0.085603112840467	
0.089494163424125	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 663	
	

Normalized	frequency	[0,	1]

0.093385214007782	
0.097276264591440	
0.101167315175097	
0.105058365758755	
0.108949416342412	
0.112840466926070	
0.116731517509728	
0.120622568093385	
0.124513618677043	
0.132295719844358	
0.143968871595331	
0.157587548638132	
0.173151750972763	
0.188715953307393	
0.204280155642023	
0.221789883268482	
0.241245136186770	
0.260700389105058	
0.284046692607004	
0.311284046692607	
0.338521400778210	
0.365758754863813	
0.394941634241245	
0.428015564202335	
0.464980544747082	
0.505836575875486	
0.550583657587549	
0.597276264591440	
0.647859922178988	
0.704280155642023	
0.764591439688716	
0.828793774319066	
0.898832684824903	
0.966926070038911	

ISO/IEC	23008-3:202X(E)	

664	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	314	—	processing	band	mapping	table	pbm(k)	

k pbm(k) k pbm(k) k pbm(k) k pbm(k) k pbm(k) k pbm(k)

	0	 0 50 37 100 46 150 51 200 54 250 57
1	 1 51 38 101 46 151 51 201 54 251 57
2	 2 52 38 102 46 152 51 202 54 252 57
3	 3 53 38 103 46 153 51 203 54 253 57
4	 4 54 38 104 46 154 51 204 54 254 57
5	 5 55 39 105 46 155 51 205 55 255 57
6	 6 56 39 106 47 156 51 206 55 256 57
7	 7 57 39 107 47 157 51 207 55
8	 8 58 39 108 47 158 51 208 55
9	 9 59 39 109 47 159 51 209 55
10	 10 60 40 110 47 160 52 210 55
11	 11 61 40 111 47 161 52 211 55
12	 12 62 40 112 47 162 52 212 55
13	 13 63 40 113 47 163 52 213 55
14	 14 64 40 114 47 164 52 214 55
15	 15 65 41 115 48 165 52 215 55
16	 16 66 41 116 48 166 52 216 55
17	 17 67 41 117 48 167 52 217 55
18	 18 68 41 118 48 168 52 218 55
19	 19 69 41 119 48 169 52 219 55
20	 20 70 42 120 48 170 52 220 55
21	 21 71 42 121 48 171 52 221 55
22	 22 72 42 122 48 172 52 222 56
23	 23 73 42 123 48 173 52 223 56
24	 24 74 42 124 48 174 53 224 56
25	 25 75 42 125 49 175 53 225 56
26	 26 76 42 126 49 176 53 226 56
27	 27 77 43 127 49 177 53 227 56
28	 28 78 43 128 49 178 53 228 56
29	 29 79 43 129 49 179 53 229 56
30	 30 80 43 130 49 180 53 230 56
31	 31 81 43 131 49 181 53 231 56
32	 32 82 43 132 49 182 53 232 56
33	 33 83 43 133 49 183 53 233 56
34	 33 84 44 134 49 184 53 234 56
35	 33 85 44 135 49 185 53 235 56
36	 34 86 44 136 50 186 53 236 56
37	 34 87 44 137 50 187 53 237 56
38	 34 88 44 138 50 188 53 238 56
39	 35 89 44 139 50 189 54 239 56
40	 35 90 44 140 50 190 54 240 56
41	 35 91 45 141 50 191 54 241 57
42	 35 92 45 142 50 192 54 242 57
43	 36 93 45 143 50 193 54 243 57
44	 36 94 45 144 50 194 54 244 57
45	 36 95 45 145 50 195 54 245 57
46	 36 96 45 146 50 196 54 246 57
47	 37 97 45 147 50 197 54 247 57
48	 37 98 46 148 51 198 54 248 57
49	 37 99 46 149 51 199 54 249 57 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 665	
	

Table	315	—	Equalizer	parameters	

Equalizer Pf	[Hz] PQ Pg [dB] g	[dB]

 12	000 0,3 -2 1,0	

 12	000 0,3 -3,5 1,0	

 200,1	300,	600 0,3,	0,5,	1,0 -6,5,	1,8,	2,0 0,7	

 5	000,	1	100 1,0,	0,8 4,5,	1,8 -3,1	

 35 0,25 -1,3 1,0	

Table	316	—	Vertically	corresponding	channels		

CH_L_000 	CH_M_000 		CH_U_000	
CH_L_L045 CH_M_L030 	CH_U_L030	
CH_L_L045 CH_M_L030 	CH_U_L045	
CH_L_L045 CH_M_L045 	CH_U_L030	
CH_L_L045 CH_M_L045 	CH_U_L045	
CH_L_L045 CH_M_L060 	CH_U_L030	
CH_L_L045 CH_M_L060 	CH_U_L045	
CH_L_R045 CH_M_R030 	CH_U_R030	
CH_L_R045 CH_M_R030 	CH_U_R045	
CH_L_R045 CH_M_R045 	CH_U_R030	
CH_L_R045 CH_M_R045 	CH_U_R045	
CH_L_R045 CH_M_R060 	CH_U_R030	
CH_L_R045 CH_M_R060 	CH_U_R045	
CH_M_180 	CH_U_180 	
CH_M_L090 CH_U_L090 	
CH_M_L110 CH_U_L110 	
CH_M_L135 CH_U_L135 	
CH_M_L090 CH_U_L110 	
CH_M_L090 CH_U_L135 	
CH_M_L110 CH_U_L090 	
CH_M_L110 CH_U_L135 	
CH_M_L135 CH_U_L090 	
CH_M_L135 CH_U_L135 	
CH_M_R090 CH_U_R090 	
CH_M_R110 CH_U_R110 	
CH_M_R135 CH_U_R135 	
CH_M_R090 CH_U_R110 	
CH_M_R090 CH_U_R135 	
CH_M_R110 CH_U_R090 	
CH_M_R110 CH_U_R135 	
CH_M_R135 CH_U_R090 	
CH_M_R135 CH_U_R135 	

NOTE					Each	row	lists	channels	which	are	considered	to	be	above/below	each	
other.	

	

EQ,1G

EQ,2G

EQ,3G

EQ,4G

EQ,5G

ISO/IEC	23008-3:202X(E)	

666	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

 Audio	signal	processing	

25.4.2.1 General	

The	audio	processing	block	of	the	format	converter	obtains	time	domain	audio	samples	for	Nin	channels	
from	the	core	decoder	and	generates	a	downmixed	time	domain	audio	output	signal	consisting	of	Nout	
channels.	

The	processing	takes	as	input	

¾ the	audio	data	and	the	flag	rendering3DType	decoded	by	the	core	decoder,	and	

¾ the	static	downmix	matrixes	MDMX	and	MDMX2	returned	by	the	initialization	of	the	format	converter.	

It	 returns	 an	Nout-channel	 time	domain	output	 signal	 for	 the	OutConf	 channel	 configuration	 signalled	
during	the	initialization	of	the	format	converter.	

The	 format	 converter	 operates	 on	 contiguous,	 non-overlapping	 frames	 of	 length	L=256	 time	 domain	
samples	of	the	input	audio	signals	and	outputs	one	frame	of	L	samples	per	processed	input	frame	of	length	
L.	The	algorithm	performs	a	short	time	Fourier	transform	(STFT)	of	length	N	=	512	with	50%	overlap,	i.e.	
the	overlap	length	as	well	as	the	hop	size	of	the	STFT	is	256	time	domain	samples.	The	STFT	domain	

processing	takes	place	in	K=256	frequency	bins,	which	are	partitioned	into	PB=58	processing	bands.	

The	rendering3DType	is	used	in	the	selection	of	the	downmix	matrix	as	shown	in	Figure	112.	

	

Figure	112	—	Audio	signal	processing	with	switching	scheme	by	rendering3DType	

25.4.2.2 T/F-transform	(STFT	analysis)	

As	 the	 first	 processing	 step	 the	 converter	 updates	 the	 STFT	 input	 buffer 	by	 one	 frame	 (L=256	

samples)	of	the	Nin	channel	time	domain	input	signal	 :	

	

where	F	denotes	the	 frame	index	and	 	 for	 the	 first	processing	 frame.	An	analysis	window	is	

applied	and	a	DFT	of	length	N=512	is	calculated	for	each	of	the	Nin	signals	in	the	windowed	STFT	input	
buffer:

	

Input audio signal

Downmix with MDMX
(with Spatial Elevation Rendering)

Downmix with MDMX2
(with Timbral Elevation Rendering)

rendering3DType = 1

rendering3DType = 0

Output audio signal

Audio signal processing

!
,ch iy

n

! ! !
ch,1 ch, in

v v v
N chy yé ù =ê úë û

y"

!
"

"

, 1
in,

, ,
in,

for 0 , 1 i

for , 1 i

F

ch i
ch i L F

ch i

y L N
y

y L N N

n
n

n

n

n

-

-

ì £ < £ <ï= í
£ < £ <ïî

! , 1

, 0
F

ch iy
n -

=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 667	
	

		for	 ,	 	

with	 .	

25.4.2.3 Delayed	channels	and	downmix	matrix	modification	

If	there	exists	a	frontal	height	input	channel	to	be	rendered	by	spatial	elevation	rendering,	a	delayed	STFT	

spectrum	 of	 the	 input	 channel	 is	 appended	 to	 the	 input	 STFT	 spectrum	 and	 the	 downmix	matrix	 is	

expanded	with	modified	coefficients.	This	step	leads	to	the	spatial	elevation	rendered	signal	being	more	

stable	by	avoiding	the	front-back	confusion.	The	process	is	achieved	by:	

For		each	input	channel	i	in	[1	Nin],	do	

	 	 If	 the	 ith	 input	 channel	 has	 attached	 one	 of	 the	 labels	 CH_U_L030,	 CH_U_L045,	 CH_U_R030,	
CH_U_R045,	and	CH_U_000	

	 	 	 If	the	channel	i	is	to	be	rendered	by	spatial	rendering	

	 	 	 (1)	Append	 the	delayed	STFT	spectrum	of	 the	 input	 channel	 to	 the	vector	of	 input	STFT	

spectra:	

	 	 	 	 ,	 where	 F	 delay = round(fe × 0.003/64) denotes	 the	 frame	 index	

yfg;,3 = l
myfg;,3 yfg,'

;-i$<Jj,3n forn ≥ delay
pyfg;,3 yfg,kl$B,'

E"m(;-i$<Jj),3q otherwise
	

	 	 	 (2)	Modify	the	downmix	matrix	vnop	for	the	CH_M_L110	and	CH_M_R110	

	 	 	 	 vnop = [vnop W9Z[,-~q)*+,0]	

	 	 	 	 vnop6 = [vnop6 [0	0…0]r]	

	 	 	 	 x01 = x01 + 1	

For		each	j	in	[1	Nout],	do	

	 	If	the	jth	output	channel	has	attached	the	label	of	either	CH_M_L110	or	CH_M_R110	

	 	 	 	 	 	 W9Z[,s,0 = 0	

	 	 	 	 	 Else	

	 	 	 	 	 	 W9Z[,s,q#, = 0	

Explanation:	 By	 reproducing	 the	 spatial	 elevation	 rendered	 output	 surround	 channel	 for	 the	 frontal	

height	 input	 channel	with	 a	delay	of	 one	STFT	hop	 size,	 front-back	 confusion	 is	 avoided	 through	 the	

precedence	effect.	

25.4.2.4 Intermediate	downmix	signals	

Intermediate	downmix	signals	and	corresponding	energies	are	calculated	according	to:	

!
1

2 /
, ,

0
[]

N
k jk N
ch i ch iy w y e

n p n

n

n
-

-

=

= × ×å 0 k K£ < 1 ini N£ £

()()[] sin 0.5 /w Nn n p= +

, , k, 1
,

k F k F F
ch ch ch iy -é ù= ë ûy y

ISO/IEC	23008-3:202X(E)	

668	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

	

where		

	

Similarly,	the	energies	of	the	intermediate	downmix	signals	are	derived	in	the	processing	bands	as:	

	

25.4.2.5 Final	frequency	domain	downmix	signals	

The	final	downmix	signals	are	obtained	in	the	STFT	domain	according	to:	

	

with	

	

and	

		where		 ,	

				and			 	

as	well	as	 	shall	be	initialized	to	zero	for	the	first	processing	frame.	

	

!, DMX, ,,
1

for 1 , 0
inN kk k

ch o o ich i out
i

z y M o N k K
=

= £ £ £ <å
"

! "()22
, DMX, ,,

1 ,
()

for 1 , 0
inN kpb k

ch o o ich i out
i k

pbm k
pb

Z y M o N pb PB
=

=

= £ £ £ <å å

! DMX, ,
DMX, ,

DMX2, ,

if
else

rendering3DType == TRU

E

k
k o i

o i k
o i

M
M

M
ìï= í
ïî

! 2

, ,o
,
()

for 1 , 0
pb k
ch o ch out

k
pbm k
pb

Z z o N pb PB

=

= £ £ £ <å
!

,, , for 1 , 0
kk k
ch och o ch o outz z EQ o N k K= £ £ £ <
!

∂(), 0.4 0.5
,

1 if

min 10 ,max 10 , else
k

kch o
ch o

EQ
EQ-

ì
ï= í æ öç ÷ï è øî

passiveDownmixFlag ==1

∂ ,
,

,eps

pb
k ch o
ch o pb

ch o

zEQ
z

=
+

!

! ()pb pbm k=

! !
()

!, , , 1
, , ,1

pb F pb F pb F
ch o ch o ch oZ Z Za a

-
= + -

! !
()

!, , , 1
, , ,1

pb F pb F pb F
ch o ch o ch oZ Z Za a

-
= + -

! , 1
,

pb F
ch oZ

- ! , 1
,

pb F
ch oZ

-

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 669	
	

25.4.2.6 F/T-transform	(STFT	synthesis)	

As	last	processing	step	per	processed	frame	of	256	samples,	the	downmix	signal	is	transformed	to	the	

time	 domain	 by	 application	 of	 an	 inverse	 DFT,	 windowing	 and	 overlap-add	 update,	 yielding	 L	 time	

domain	output	samples	 	per	output	channel.	For	the	current	frame	(frame	index	F)	the	operations	
read:	

		for	 ,	 	

with	 ,	where	 	denotes	the	complex	conjugate	of	z	

	for	 ,	 	

where	 	shall	be	initialized	with	zeros	for	the	first	processing	frame.	

26 MPEG	surround	
26.1 	Technical	overview	

The	output	of	 the	3D	audio	core	decoder	of	 the	 "channels/prerendered	objects"	path	may	be	 further	

processed	by	MPEG	surround	(MPS).	Figure	113	shows	a	schematic	of	a	combined	3D	audio	core	decoder	

and	a	MPS	decoder.	

	

Figure	113	—	3D	audio	core	decoder	with	an	MPEG	surround	decoder	

If	the	SBR	tool	is	active,	a	3D	audio	core	decoder	can	typically	be	efficiently	combined	with	a	subsequent	

MPS	decoder	by	 connecting	 them	 in	 the	QMF	domain	 in	 the	 same	way	as	 it	 is	described	 for	USAC	 in	

ISO/IEC	23003-3:2012,	 4.3.	 If	 a	 connection	 in	 the	 QMF	 domain	 is	 not	 possible,	 the	 tools	 need	 to	 be	
connected	in	the	time	domain.		

If	 MPS	 side	 information	 is	 embedded	 into	 a	 3D	 audio	 bitstream	 by	 means	 of	 the	 usacExtElement	

mechanism	(with	usacExtElementType	being	ID_EXT_ELE_MPEGS),	the	time-alignment	between	the	3D	

audio	data	and	the	MPS	data	assumes	the	most	efficient	connection	between	the	3D	audio	core	decoder	

and	the	MPS	decoder.	If	the	SBR	tool	in	the	3D	audio	core	decoder	is	active	and	if	MPS	employs	a	64-band	

QMF	domain	representation	(see	ISO/IEC	23003-1:2007,	6.6.3),	the	most	efficient	connection	is	in	the	

,ochz
n!

1, , 2 /
,o ,

0

1[]
NF k compl jk N

ch ch o
k

z w z e
N

n p nn
-

=

= × ×å! 0 Nn£ < 1 outo N£ £

,,
,

,

0
()

k
ch ok compl

ch o N k
ch o

z k K
z

conj z K k N-

ì £ <ï= í £ <ïî
()conj z

, , 1,
,o ,o ,o

F L FF
ch ch chz z z

n nn + -
= +! !" 0 Ln£ < 1 outo N£ £

, 1
,o
F

chz
n -!

ISO/IEC	23008-3:202X(E)	

670	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

QMF	domain.	Otherwise,	 the	most	efficient	connection	 is	 in	 the	time	domain.	This	corresponds	to	the	

time-alignment	for	the	combination	of	HE-AAC	and	MPS	as	defined	in	ISO/IEC	23003-1:2007,	4.4,	4.5	and	

7.2.1.		

The	 additional	 delay	 introduced	 by	 adding	 MPS	 decoding	 after	 3D	 audio	 decoding	 is	 given	 by	

ISO/IEC	23003-1:2007,	4.5	and	depends	on	whether	HQ	MPS	or	LP	MPS	 is	used,	and	whether	MPS	 is	

connected	to	the	3D	audio	core	decoder	in	the	QMF	domain	or	in	the	time	domain.	

If	multiple	signal	groups	of	type	SignalGroupTypeChannels	are	present	in	the	bitstream,	one	extension	

element	conveying	MPEG	surround	data	shall	only	refer	to	exactly	only	signal	group.	As	per	subclause	

5.3.1,	the	corresponding	channel	elements	shall	directly	follow	that	extension	element.	

If	the	MPEG	surround	tool	shall	be	used	for	one	signal	group	of	type	SignalGroupTypeChannels,	all	core	

coder	channels	belonging	to	that	signal	group	shall	be	fed	to	the	MPEG	Surround	tool.	

26.2 Syntax	and	data	structure	

The	bitstream	syntax	and	data	structure	are	identical	to	the	definitions	in	ISO/IEC	23003-1.	

26.3 Tool	description	

The	processing	of	the	MPEG	surround	tools	are	fully	specified	in	ISO/IEC	23003-1.	

27 Production	metadata	decoding	
27.1 General	

Audio	metadata	originates	 from	production	 tools	 and	production	 formats.	Audio	metadata	 should	be	

made	available	in	the	bit	stream	to	enable	a	renderer	to	perform	advanced	rendering	of	immersive	audio.	

This	clause	describes	the	production	metadata	and	the	decoding	process	thereof.	

 Object	distance	coding	

The	object	distance	is	signalled	as	an	9-bit	value	allowing	coding	of	values	from	0	m	up	to	177	km	when	

using	an	exponential	mapping.	The	resolution	of	the	distance	is	highest	for	near	positions	(<1	mm)	and	

lowest	in	the	far	positions	(around	5	km).	The	very	low	distances,	below	about	1	cm,	are	considered	less	

important,	thus	the	distance	coding	starts	from	1cm	for	the	second	quantized	value	(=1).	The	lowest	value	

signals	distance	=0.	

 Direct	headphone	signalling	

The	 directHeadphone	 flag	 defines	 that	 the	 corresponding	 signal	 group	 of	 type	 channels	 goes	 to	 the	

headphone	output	directly.	The	channel	group	can	be	mono	or	stereo,	i.e.	the	directHeadphone	flag	shall	

be	0	for	all	signal	groups	of	type	channels,	which	have	a	different	layout	than	mono	or	stereo	assigned	to	

them.	For	stereo,	the	two	signals	are	mixed	to	left	and	right	headphone	channel,	directly.	For	mono:	

—	 the	signal	is	mixed	to	the	left	channel	directly,	if	the	CICPspeakerIdx	==	0,	

—	 the	signal	is	mixed	to	the	right	channel	directly,	if	the	CICPspeakerIdx	==	1,	

—	 the	signal	is	mixed	to	left	and	right	headphone	channel	with	a	gain	factor	of	0.707,	otherwise.	

Over	loudspeakers,	the	signals	would	come	out	at	the	speakers	indicated	in	the	CICP	layout	index.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 671	
	

The	 signals	 flow	 for	 the	 directHeadphone	 channels	 is	 modified	 only	 if	 a	 binaural	 output	 signal	 is	

generated.	For	decoding	and	rendering	for	loudspeaker	playback,	no	change	is	needed	and	the	signal	is	

mixed	to	the	output	channels	according	to	the	rule	set	of	the	format	converter.	

When	using	the	channel	output	interface,	the	directHeadphone	signal	is	provided	to	the	output	interface,	

as	shown	in	Figure	114.	

	

Figure	114	—	Signal	flow	diagram	showing	the	routing	of	directHeadphone	
channel	groups	to	the	output	

In	case	of	binaural	rendering,	the	directHeadphone	channels	are	processed	by	DRC1	and	then	bypass	the	

format	converter,	mixer	and	binaural	renderer.	The	sampling	rate	of	the	directHeadphone	channels	is	

converted	to	match	the	output	sampling	rate.	The	directHeadphone	channels	are	delay-aligned	to	match	

the	 delay	 introduced	 to	 the	 non-directHeadphone	 signals	 by	 the	 format	 converter	 and	 the	 binaural	

renderer.	 The	 directHeadphone	 channels	 are	 then	 mixed	 with	 the	 input	 of	 DRC2	 from	 the	 binaural	

renderer.	

 Reference	distance	coding	

The	reference	loudspeaker	distance	of	input	layout	is	signalled	as	a	7-bit	value	allowing	coding	of	values	

from	 0.5	m	 up	 to	 31.4	m.	 The	 distances	 below	 0.5	m	 are	 considered	 less	 important	 in	 terms	 of	

loudspeaker	layout,	thus	the	distance	coding	starts	from	0.5	m	for	the	first	quantized	value	(=0).	When	

the	 reference	 distance	 is	 not	 defined	 in	 the	 bitstream,	 it	 is	 assumed	 to	 be	 3.1748	m.	 Note	 that	 each	

quantized	reference	distance	value	is	identical	to	one	of	the	quantized	object	distance	values.	

ISO/IEC	23008-3:202X(E)	

672	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

27.2 Syntax	

 Production	metadata	configuration	

Table	317	—	Syntax	of	prodMetadataConfig()	

Syntax	 No.	of	bits	 Mnemonic	
prodMetadataConfig()	
{	 		 		
						/*	high	resolution	reference	distance	*/	 		 		
						has_reference_distance;	 1	 bslbf	
						if	(has_reference_distance)	{	 		 		
												bs_reference_distance;	 7	 uimsbf	
						}	else	{	 		 		
												bs_reference_distance	=	57;	 		 		
						}	 		 		
							 		 		
						/*	high	resolution	object	distance	*/	 		 		
						for	(gp	=	0;	gp	<	numObjectGroups;	gp++)	{					/*	NOTE	1	*/	 		 		
												has_object_distance[gp];	 1	 bslbf	
						}	 		 		
		 		 		
						/*	direct	to	headphone	*/	 		 		
						for	(gp	=	0;	gp	<	numChannelGroups;	gp++)	{			/*	NOTE	2	*/	 		 		
												directHeadphone[gp];	 1	 bslbf	
						}	 		 		
}	 		 		
NOTE	1			numObjectGroups	represents	the	number	of	signal	groups	with	signalGroupType	==	SignalGroupTypeObject	as	
given	by	the	Signals3d()	structure	in	Table	17.	
NOTE	2			numChannelGroups	represents	the	number	of	signal	groups	with	signalGroupType	==	SignalGroupTypeChannel	
as	given	by	the	Signals3d()	structure	in	Table	17.

If	prodMetadataConfig()	is	present,	the	value	of	OAMFrameLength	in	ObjectMetadataConfig()	structure	

in	Table	136	shall	be	OAMFrameLength	==	outputFrameLength.	

 Production	metadata	frame	

Table	318	—	Syntax	of	prodMetadataFrame()	

Syntax	 No.	of	bits	 Mnemonic	
prodMetadataFrame()	 		 		
{	 		 		
						for	(gp	=	0;	gp	<	numObjectGroups;	gp++)	{												/*	NOTE	1	*/	 		 		
												if	(has_object_distance	[gp])	{	 		 		
																		has_intracoded_data;	 1	 bslbf	
																		if	(has_intracoded_data)	{	 		 		
																								intracodedProdMetadataFrame();	 		 		
																		}	 		 		
																		else	{	 		 		
																								dynamicProdMetadataFrame();	 		 		
																		}	 		 		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 673	
	

												}	 		 		
						}	 		 		
}	 		 		
NOTE	1			numObjectGroups	represents	the	number	of	signal	groups	with	signalGroupType	==	SignalGroupTypeObject	as	
given	by	the	Signals3d()	structure	in	Table	17.	
NOTE	2			intracodedProdMetadataFrame()	shall	occur	in	the	first	frame	and	at	each	random	access	point.	

Table	319	—	Syntax	of	intracodedProdMetadataFrame()	

Syntax	 No.	of	bits	 Mnemonic	
intracodedProdMetadataFrame();	
{	 		 		
						if	(num_objects>1)	{			/*	NOTE	1	*/	 		 		
												fixed_distance;	 1	 bslbf	
												if	(fixed_distance)	{	 		 		
																		default_distance;	 9	 uimsbf	
												}	 		 		
												else	{	 		 		
																		common_distance;	 1	 bslbf	
																		if	(common_distance)	{	 		 		
																								default_distance;	 9	 uimsbf	
																		}	 		 		
																		else	{	 		 		
																								for	(o	=	0;	o	<	num_objects;	o++)	{	 		 		
																														position_distance[o];	 9	 uimsbf	
																								}	 		 		
																		}	 		 		
												}	 		 		
						}	 		 		
						else	{	 		 		
												position_distance[0];	 9	 uimsbf	
						}	 		 		
}	 		 		
NOTE	1			num_objects	is	equal	to	the	number	of	objects	in	the	associated	signal	group.	

Table	320	—	Syntax	of	dynamicProdMetadataFrame()	

Syntax No.	of	bits Mnemonic
dynamicProdMetadataFrame()	{ 		 		
						flag_dist_absolute; 1 bslbf
						for	(o	=	0;	o	<	num_objects;	o++)	{																								/*	NOTE	1	*/ 		 		
												if	(has_object_metadata)	{																																	/*	NOTE	2	*/ 		 		
																		singleDynamicProdMetadataFrame(flag_dist_absolute);
												} 		 		
						} 		 		
} 		 		
NOTE	1			num_objects	is	equal	to	the	number	of	objects	in	the	associated	signal	group.	
NOTE	2			has_object_metadata	is	given	by	the	dynamic_object_metadata()	structure	in	Table	145.	

ISO/IEC	23008-3:202X(E)	

674	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

Table	321	—	Syntax	of	singleDynamicProdMetadataFrame()	

Syntax	 No.	of	bits	 Mnemonic	
singleDynamicProdMetadataFrame(flag_dist_absolute)	{	 		 		
						if	(flag_dist_absolute)	{	 		 		
																		if	(!fixed_distance)	{																																	/*	NOTE	1	*/	 		 		
																								position_distance;	 9	 uimsbf	
																		}	 		 		
												}	else	{	 		 		
																		if	(!fixed_distance)	{																																				/*	NOTE	1	*/	 		 		
																								flag_distance;	 1	 bslbf	
																								if	(flag_distance)	{	 		 		
																														nBitsDistance;	 3	 uimsbf	
																														num_bits	=	nBitsDistance	+	2;	 		 		
																														position_distance_difference;	 num_bits	 tcimsbf	
																								}	 		 		
																		}	 		 		
												}	 		 		
}	 		 		
NOTE	1			fixed_distance	given	in	the	preceding	intracodedProdMetadataFrame().	

27.3 Semantics	

 Production	metadata	configuration	

has_reference_distance	 This	flag	defines	if	the	bs_reference_distance	parameter	is	signalled	in	

prodMetadataConfig().	If	has_reference_distance	==	0	the	

bs_reference_distance	is	set	to	57,	meaning	the	reference	loudspeaker	

distance	of	input	layout	as	3,1748	m,	by	default.	

bs_reference_distance	 This	field	describes	the	reference	loudspeaker	distance	of	input	layout.	

The	field	can	take	values	between	0	and	127,	which	maps	to	distance	

values	between	0.5	m	and	31.4	m.	Table	322	provides	the	mapping	of	

bs_reference_distance	field	to	the	reference	loudspeaker	distance.	

Table	322	—	Mapping	of	bs_reference_distance	field	to	the	reference	loudspeaker	distance	

bs_reference_dist
ance reference	distance

0	−	127 reference	distance	=	0.01	*	2^(0.0472188798661443	*	(bs_reference_distance	+	119))
	

has_object_distance	 This	flag	defines	if	the	object	distance	parameter	is	signalled	in	

prodMetadataFrame().	In	case	has_object_distance	==	0	the	object	

distances	of	the	corresponding	group	shall	be	set	to	the	value	of	the	

reference	distance,	indicating	that	during	the	production	the	objects	have	

been	positioned	at	production	loudspeaker	distance.	

directHeadphone	 This	flag	defines	that	the	corresponding	signal	group	of	type	channels	

goes	to	the	headphone	output,	directly,	if	the	binaural	output	is	rendered.	

The	signals	are	routed	to	left	and	right	headphone	channel.	For	mono,	the	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 675	
	

signal	is	mixed	to	left	and	right	headphone	channel	with	a	gain	factor	of	

0.707.	

has_intracoded_data	 Flag	indicating	that	the	current	frame	holds	intracoded	data.	The	value	of	

has_intracoded_data	shall	always	be	1.	

position_distance	 This	field	describes	the	distance	between	the	centre	of	the	head	of	the	

listener	at	the	sweet	spot	position	and	an	object.	The	field	can	take	values	

between	0	and	511,	which	map	to	distance	values	between	0	m	and	177	

kilometres.	Table	323	provides	the	mapping	of	position_distance	field	to	

the	distance.	

Table	323	—	Mapping	of	position_distance	field	to	the	distance	

position_distance distance
0 distance	=	0	m
1	−	511 distance	=	0.01	*	2^(0.0472188798661443	*	(position_distance	-	1))

		

fixed_distance	 Flag	indicating	whether	the	distance	value	is	fixed	for	all	objects.	

common_distance	 Indicates	whether	a	common	distance	value	is	used	for	all	objects.	

default_distance	 Defines	the	value	of	the	common	distance	for	all	objects.	

flag_dist_absolute	 Flag	indicating	whether	the	values	of	the	components	are	transmitted	

differentially	or	in	absolute	values.	

flag_distance	 Flag	per	object	indicating	whether	the	distance	value	changes	for	this	

intra-frame	period.	

nBitsDistance	 Defines	how	many	bits	are	required	to	represent	the	differential	value	

minus	2.	

position_distance_difference	 Value	of	the	difference	between	the	linearly	interpolated	and	the	

actual	value	of	distance.	

27.4 Decoding	process	

The	prodMetadataConfig()	is	defined	in	an	mpegh3daExtElement()	structure,	as	defined	in	Table	26.	The	

prodMetadataFrame()	structure	is	located	in	an	mpegh3daExtElementConfig(),	as	defined	in	Table	79.	

28 Earcon	metadata		
28.1 General	

Region-of-interest	(ROI)	information	is	supported	in	OMAF	via	the	sphere	region	timed	metadata.	One	

way	for	guiding	a	user	to	pay	attention	and	view	an	ROI	is	using	audible	messages	called	earcons.	The	

earcon	metadata	fully	describes	the	properties	and	the	spatial	position	of	the	individual	earcons.	

28.2 Syntax	

Table	324	—	Syntax	of	Syntax	of	earconInfo()

Syntax	 No.	of	bits	 Mnemonic	

ISO/IEC	23008-3:202X(E)	

676	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

earconInfo()	
{	 		 		
					bsNumEarcons;	 7	 uimsbf	
					for	(i=0;	i<	bsNumEarcons	+	1;	i++)	{	 		 		
										earconIsIndependent[i];	 1	 uimsbf	
										earconID[i];	 7	 uimsbf	
										earconType[i];	 4	 uimsbf	
										earconActive[i];	 1	 bslbf	
										earconPositionType[i];	 2	 bslbf	
										if	(earconPositionType[i]	==	0)	{	 		 		
															earcon_	CICPspeakerIdx[i];	 7	 uimsbf	
										}	else	{	 		 		
															if	(earconPositionType[i]	==	1)	{	 		 		
																				earcon_azimuth[i];	 8	 uimsbf	
																				earcon_elevation[i];	 6	 uimsbf	
																				earcon_distance[i];	 9	 uimsbf	
															}	else	{	 		 		
																				/*	default	position	information	*/	 		 		
																				earcon_azimuth[i]	=	0;	 		 		
																				earcon_elevation[i];	=	0;	 		 		
																				earcon_distance[i]	=	177	/*	default	reference	distance*/	 		 		
															}	 		 		
										}	 		 		
										earconHasGain;	 1	 bslbf	
										if	(earconHasGain)	{	 		 		
															earcon_gain[i];	 7	 uimsbf	
										}	 		 		
										earconHasTextLabel;	 1	 bslbf	
										if	(earconHasTextLabel)	{	 		 		
															earconNumLanguages[i];	 4	 uimsbf	
															for	(n=0;	n<	earconNumLanguages[i];	n++)	{	 		 		
																				earconLanguage[i][n];	 24	 uimsbf	
																				earconTextDataLength[i][n];	 8	 uimsbf	
																				for	(c=0;	c<	earconTextDataLength[i][n];	c++)	{	 		 		
																									earconTextData[i][n][c];	 8	 	uimsbf	
																				}	 		 		
															}	 		 		
										}	 		 		
					}	 		 		
}	 		 		

Table	325	—	Syntax	of	pcmDataConfig()	

Syntax	 No.	of	bits	 Mnemonic	
pcmDataConfig()	
{	 		 		
					bsNumPcmSignals;	 7	 uimsbf	
					pcmAlignAudioFlag;	 1	 bslbf	
					pcmSamplingRateIndex;	 5	 bslbf	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 677	
	

					if	(pcmSamplinRateIndex	==	0x1f)	{	 		 		
										pcmSamplingRate;	 24	 uimsbf	
					}	 		 		
					pcmBitsPerSampleIndex;	 3	 uimsbf	
					pcmFrameSizeIndex;	 3	 uimsbf	
					if	(pcmFrameSizeIndex	==	5)	{	 		 		
											pcmFixFrameSize;	 16	 uimsbf	
					}	 		 		
					for	(i=0;	i<	bsNumPcmSignals	+	1;	i++)	{	 		 		
										pcmSignal_ID[i];	 7	 uimsbf	
					}	 		 		
					bsPcmLoudnessValue;	 8	 uimsbf	
					pcmHasAttenuationGain;	 2	 uimsbf	
					if	(pcmHasAttenuationGain	==	1)	 		 		
										bsPcmAttenuationGain;	 8	 uimsbf	
					}	 		 		
}	 		 		

Table	326	—	Syntax	of	pcmDataPayload()	

Syntax	 No.	of	bits	 Mnemonic	
pcmDataPayload()	
{	 		 		
					bsNumPcmSignalsInFrame;	 7	 uimsbf	
					for	(i=0;	i<	numPcmSignalsInFrame	+	1;	i++)	{	 		 		
										pcmSignal_ID[i];	 7	 uimsbf	
					}	 		 		
					if	(pcmHasAttenuationGain	==	2)	{	 		 		
											bsPcmAttenuationGain;	 8	 uimsbf	
					}	 		 		
					if	(pcmFrameSizeIndex	==	6)	{	 		 		
											pcmVarFrameSize;	 16	 uimsbf	
					}	 		 		
					for	(i=0;	i<pcmFrameSize;	i++)	{	 		 		
										for	(j=0;	j<	numPcmSignalsInFrame	+	1;	j++)	{	 		 		
															pcmSample;																																																																								/*	NOTE	*/	 nBits	 tcimsbf	
										}	 		 		
					}	 		 		
}	 		 		
NOTE			nBits	=	pcmBitsPerSample.		

28.3 Semantics	

bsNumEarcons	 This	field	specifies	the	number	of	earcon	audio	elements	available	in	the	

stream.	The	number	of	earcon	audio	elements	is	given	by	

bsNumEarcons+1.	

earconIsIndependent	 This	flag	defines	if	the	earcon	audio	element	is	independent	from	any	

audio	scene.	If	earconIsIndependent	==	1	the	earcon	audio	element	is	

independent	from	the	audio	scene.	If	earconIsIndependent	==	0	the	

ISO/IEC	23008-3:202X(E)	

678	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

earcon	audio	element	is	part	of	the	audio	scene	and	the	earconID	shall	

have	the	same	value	as	the	mae_groupID	associated	with	the	audio	

element.	

earconID	 This	field	uniquely	defines	an	ID	for	an	earcon.	This	field	can	take	values	

between	0	and	126.	

earconType	 This	field	defines	the	type	of	the	earcon.	Table	327	specifies	the	allowed	

values.	

Table	327	—	Values	of	earconType	

earconType description
0 undefined
1 natural	sound
2 synthetic	sound
3 spoken	text
4 generic	earcon
5 PCM	earcon
6	-	10 /*	reserved	for	ISO	use	*/
11	-	15 /*	reserved	for	usage	outside	of	ISO	*/

earconActive	 This	flag	defines	if	the	earcon	is	active.	If	earconActive	==	1	the	earcon	

audio	element	shall	be	decoded	and	rendered	into	the	audio	scene.	

earconPositionType		 This	flag	indicates	by	which	means	the	earcon	position	information	is	

conveyed	in	the	bitstream,	according	to	Table	328.	

Table	328	—	Values	of	earconPositionType	

Value Meaning
0 The	position	information	is	signalled	by	means	of	a	LoudspeakerGeometry	index	as	defined	

in	ISO/IEC	23001-8
1 The	position	information	is	signalled	by	means	of	a	list	of	explicit	geometric	position	

information.	
2 The	default	position	information	is	used:
	 —	 earcon_azimuth	=	0;	

—	 earcon_elevation	=	0;	
—	 earcon_distance	=	177;	

	 where	distance(earcon_distance	=	177)	=	2^(5/3)	m	≈	3.1748	m	/*	default	reference					
distance	*/.	

3 				reserved

If	earconIsIndependent	==	0,	the	following	position	information	shall	be	used	instead	of	the	audio	object	

metadata	 specified	 in	the	 dynamic_object_metadata()	 or	

intracoded_object_metadata_efficient()	structures.	

earcon_CICPspeakerIdx	 the	position	of	the	earcon	audio	signal	represented	as	

LoudspeakerGeometry	value	as	defined	in	ISO/IEC	23001-8.	

earcon_azimuth	 the	absolute	value	of	the	azimuth	angle.	

earcon_elevation	 the	absolute	value	of	the	elevation	angle.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 679	
	

earcon_distance	 the	absolute	value	of	the	distance.	The	field	can	take	values	between	0	

and	511,	which	maps	to	distance	values	between	0	m	and	177	539	m.	

Table	329	provides	the	mapping	of	earcon_distance	field	to	the	distance.	

Table	329	—	Mapping	of	earcon_distance	field	to	the	distance	

earcon_distance distance
0 distance	=	0	m
1	−	511 distance	=	0.01	*	2^(0.0472188798661443	*	(earcon_distance	-	1))

earconHasGain	 This	flag	defines	if	the	earcon	has	a	gain	value.	

earcon_gain	 This	field	defines	the	absolute	value	for	the	gain	for	the	earcon.	

earconHasTextLabel	 This	flag	defines	if	the	earcon	has	a	text	label	associated.	

earconNumLanguages	 This	field	specifies	the	number	of	available	languages	for	the	

description	text	label.	

earconLanguage	 This	24-bit	field	identifies	the	language	of	the	description	text	of	an	

earcon.	It	contains	a	3-character	code	as	specified	by	ISO	639-2.	Both	

ISO	639-2/B	and	ISO	639-2/T	may	be	used.	Each	character	is	coded	into	

8	bits	according	to	ISO/IEC	8859-1	and	inserted	in	order	into	the	24-bit	

field.	EXAMPLE:	French	has	3-character	code	“fre”,	which	is	coded	as:	

“0110	0110	0111	0010	0110	0101”.	

earconTextDataLength	 This	field	defines	the	length	of	the	following	group	description	in	the	bit	

Stream.	

earconTextData	 This	field	contains	a	description	of	an	earcon,	i.e.	a	string	describing	the	

content	by	a	high-level	description.	The	format	shall	follow	UTF-8	

according	to	ISO/IEC	10646.	

bsNumPcmSignals	 This	field	specifies	the	number	of	PCM	audio	signals	available	in	the	

stream	for	which	PCM	audio	data	is	carried	in	the	pcmDataPayload()	

structure.	The	number	of	PCM	audio	signals	is	given	by	

bsNumPcmSignals	+1.	The	bsNumPcmSignals	field	shall	be	smaller	than	

or	equal	with	bsNumEarcons.	

pcmAlignAudioFlag	 This	field	indicates	the	PCM	audio	signals	shall	be	aligned	with	the	

rendered	MPEG-H	signals.	If	pcmAlignAudioFlag	==	0	the	PCM	audio	

signals	shall	be	mixed	into	the	rendered	MPEG-H	signals	without	

additional	delay.	If	pcmAlignAudioFlag	==	1	the	PCM	audio	signals	shall	

be	delayed	such	that	the	PCM	audio	signals	arrive	at	the	mixer	aligned	

with	the	rendered	MPEG-H	signals	coded	in	the	MHAS	packet	of	type	

PACTYP_MPEGH3DAFRAME	subsequent	to	the	MHAS	packet	of	type	

PACTYP_EARCON.	

pcmSamplingRateIndex	 This	index	determines	the	sampling	frequency	of	the	PCM	audio	signals.	

The	values	of	pcmSamplingRateIndex	and	their	associated	sampling	

frequencies	are	the	same	as	for	the	usacSamplingFrequencyIndex	

described	in	ISO/IEC	23003-3:2012,	6.1.1.1,	Table	67.	The	sampling	

rate	shall	be	one	of	the	values	in	the	first	column	of	Table	10.	

pcmSamplingRate	 PCM	audio	signals	sampling	frequency	as	unsigned	integer	value	in	case	

pcmSamplingRateIndex	equals	0x1f.	

ISO/IEC	23008-3:202X(E)	

680	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

pcmBitsPerSampleIndex	 The	index	determines	the	number	of	bits	used	to	specify	each	audio	

sample	of	PCM	audio	signals,	according	to	Table	330.	

Table	330	—	Values	of	pcmBitsPerSampleIndex	

pcmBitsPerSampleIndex pcmBitsPerSample
0 	16
1 24
2 32
3	-	7 reserved

pcmFrameSizeIndex	 This	index	determines	the	frame	size	of	the	PCM	signals,	pcmFrameSize	

according	to	Table	331.	All	PCM	signals	in	one	pcmDataPayload()	structure	

shall	have	the	same	frame	size.	Zero	padding	may	be	used	for	some	PCM	

signals.	

Table	331	—	Values	of	pcmFrameSizeIndex	

pcmFrameSizeIndex pcmFrameSize
0 outputFrameLength	as	defined	in	ISO/IEC	23003-3
1 768
2 1024
3 2048
4 4096
5 fixed	frame	size	given	by	pcmFixFrameSize
6 variable	frame	size	given	by	pcmVarFrameSize
7 reserved

pcmFixFrameSize	 This	field	indicates	a	fixed	frame	size	of	the	PCM	audio	signals.	

bsPcmLoudnessValue	 This	field	defines	the	loudness	value	for	an	PCM	audio	signal	carried	in	the	

pcmDataPayload()	structure.	The	values	are	encoded	according	to	Table	

332.	

Table	332	—	Coding	of	bsPCMLoudnessValue	

Field Encoding Mnemonic pcmLoudnessValue	[LKFS] Range
bsPcmLoudnessValue μ	

8	bits
uimsbf Lpcm	=	-57.75	+	μ2-2 −57.75	…	6	dB,	

0.25	dB	step	size.

pcmHasAttenuationGain	 This	field	indicates	whether	the	bsPcmAttenuationGain	field	is	

present.	For	a	value	of	1,	bsPcmAttenuationGain	is	carried	in	the	

pcmDataConfig()	structure.	For	a	value	of	2,	bsPcmAttenuationGain	

is	carried	in	the	pcmDataPayload()	structure.	

pcmHasAttenuationGain	equals	3	is	reserved	and	shall	not	be	used.	

bsPcmAttenuationGain	 This	field	defines	an	attenuation	gain	which	shall	be	applied	to	all	

active	audio	elements	during	playback	of	a	PCM	audio	signal	carried	

in	the	pcmDataPayload()	structure.	The	values	are	encoded	

according	to	Table	333.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 681	
	

Table	333	—	Coding	of	bsPcmAttenuationGain	

Field Encoding Mnemonic pcmAttenuationGain	[dB] Range
bsPcmAttenuationGain μ	

8	bits
uimsbf Attpcm	=	(−1)μ2-2 0	…	-63.75	dB,	

0.25	dB	step	size.

bsNumPcmSignalsInFrame	 This	field	specifies	the	number	of	PCM	audio	signals	carried	in	the	

current	pcmDataPayload()	structure.	The	number	of	PCM	audio	

signals	carried	in	the	current	pcmDataPayload()	structure	is	given	

by	bsNumPcmSignalsInFrame	+1.	The	bsNumPcmSignalsInFrame	

field	shall	be	smaller	than	or	equal	with	bsNumPcmSignals.	

pcmSignal_ID	 This	field	uniquely	defines	an	ID	for	a	PCM	audio	signal.	This	field	can	

take	values	between	0	and	126	and	shall	have	the	same	value	as	the	

earconID	signalled	in	earconInfo()	structure	to	which	the	PCM	audio	data	

in	pcmDataPayload()	corresponds.	

pcmVarFrameSize	 This	field	indicates	a	variable	frame	size	of	the	PCM	audio	signals.	

pcmSample	 PCM	sample	formatted	in	two’s	complement	little-endian	format	

occupying	the	indicated	number	of	bits	without	any	intervening	bits,	that	

correspond	to	the	same	sample	time.	

28.4 Decoding	process	

If	 the	 earconInfo()	 structure	 contains	 at	 least	 one	 earcon	 of	 type	 PCM	 (i.e.	 earconType	 ==	 5),	 	 the	

pcmDataConfig()	and	pcmDataPayload()	structures	shall	be	present	 in	the	MHAS	stream	as	described	

in14.4.	

The	earcons	of	type	PCM	shall	be	rendered	as	audio	objects	using:	

—	 the	PCM	audio	data	carried	in	the	pcmDataPayload()	structure	and	

—	 the	position	metadata	describing	the	earcons	carried	in	the	earconInfo()	structure	and	a	linear	gain	

that	is	applied	by	the	object	renderer	and	

—	 the	 normalization	 gain	 computed	 based	 on	 the	 loudness	 of	 the	 main	 audio	 scene	 minus	 the	

pcmLoudnessValue	 provided	 in	 the	 pcmDataConfig()	 structure	 and	 applied	 to	 the	 earcon	 PCM	

signals.	

If	the	position	of	the	earcon	is	signalled	using	a	CICP	index	given	by	earcon_CICPspeakerIdx	bit	field,	the	

earcon	audio	signal	shall	be	rendered	as	a	channel-based	signal	using	the	format	converter.	

If	the	earcon	PCM	sampling	rate	is	different	than	the	decoder	output	sampling	rate,	the	rendered	earcon	

PCM	signals	shall	be	resampled	using	the	sample	rate	converter	in	4.5	to	the	decoder	output	sampling	

rate.	

The	 rendered	 earcon	 PCM	 signals	 shall	 be	 mixed	 in	 the	 main	 rendered	 audio	 scene	 which	 shall	 be	

attenuated	using	the	attenuation	gain	pcmAttenuationGain.	

When	using	the	earcons	of	type	PCM,	the	decoding	process	described	above	is	shown	in	Figure	115.	

ISO/IEC	23008-3:202X(E)	

682	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

	

Figure	115	—	Signals	flow	for	the	PCM	audio	objects

	

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 683	
	

Annex	A	
(normative)	

	
Tables	for	arithmetic	decoding	of	IGF	information	

A.1 cf_se01[27]	

static unsigned short cf_se01[27] = {
 16370, 16360, 16350, 16336, 16326, 16283, 16215, 16065, 15799, 15417, 14875, 13795,
12038, 9704, 6736, 3918, 2054, 1066, 563, 311, 180, 98, 64, 20, 15, 5, 0
};

A.2 cf_se10[27]	

static unsigned short cf_se10[27] = {
 16218, 16145, 16013, 15754, 15426, 14663, 13563, 11627, 8894, 6220, 4333, 3223, 2680,
2347, 2058, 1887, 1638, 1472, 1306, 1154, 1012, 895, 758, 655, 562, 489, 0
};

A.3 cf_se02[7][27]	

static unsigned short cf_se02[7][27] = {
 { 16332, 16306, 16278, 16242, 16180, 16086, 15936, 15689, 15289, 14657, 13632, 12095,
9926, 6975, 4213, 2285, 1163, 637, 349, 196, 125, 82, 52, 28, 11, 2, 0},
 { 16370, 16367, 16364, 16358, 16350, 16330, 16284, 16170, 16030, 15647, 14840, 13094,
10364, 6833, 3742, 1639, 643, 282, 159, 85, 42, 22, 16, 15, 4, 1, 0},
 { 16373, 16371, 16367, 16363, 16354, 16336, 16290, 16204, 16047, 15735, 14940, 13159,
10171, 6377, 3044, 1212, 474, 208, 115, 60, 27, 14, 7, 6, 5, 1, 0},
 { 16382, 16377, 16367, 16357, 16334, 16281, 16213, 16035, 15613, 14694, 12898, 9720,
5747, 2506, 1030, 469, 251, 124, 58, 48, 35, 17, 12, 7, 6, 5, 0},
 { 16383, 16375, 16374, 16366, 16336, 16250, 16107, 15852, 15398, 14251, 12117, 8796,
5016, 2288, 998, 431, 236, 132, 89, 37, 16, 12, 4, 3, 2, 1, 0},
 { 16375, 16357, 16312, 16294, 16276, 16222, 16133, 15999, 15515, 14655, 13123, 10667,
7324, 4098, 2073, 1141, 630, 370, 209, 93, 48, 39, 12, 11, 10, 9, 0},
 { 16343, 16312, 16281, 16179, 16067, 15730, 15464, 15025, 14392, 13258, 11889, 10224,
7824, 5761, 3902, 2349, 1419, 837, 520, 285, 183, 122, 71, 61, 40, 20, 0}
};

A.4 short	cf_se20[7][27]	

static unsigned short cf_se20[7][27] = {
 { 16351, 16344, 16317, 16283, 16186, 16061, 15855, 15477, 14832, 13832, 12286, 10056,
7412, 4889, 2996, 1739, 1071, 716, 496, 383, 296, 212, 149, 109, 82, 59, 0},
 { 16368, 16352, 16325, 16291, 16224, 16081, 15788, 15228, 14074, 12059, 9253, 5952,
3161, 1655, 1006, 668, 479, 357, 254, 199, 154, 115, 88, 67, 51, 45, 0},
 { 16372, 16357, 16339, 16314, 16263, 16169, 15984, 15556, 14590, 12635, 9475, 5625,
2812, 1488, 913, 641, 467, 347, 250, 191, 155, 117, 89, 72, 59, 46, 0},
 { 16371, 16362, 16352, 16326, 16290, 16229, 16067, 15675, 14715, 12655, 9007, 5114,
2636, 1436, 914, 650, 477, 357, 287, 227, 182, 132, 105, 79, 58, 48, 0},
 { 16364, 16348, 16318, 16269, 16192, 16033, 15637, 14489, 12105, 8407, 4951, 2736, 1669,
1156, 827, 615, 465, 348, 269, 199, 162, 125, 99, 73, 51, 37, 0},
 { 16326, 16297, 16257, 16136, 15923, 15450, 14248, 11907, 8443, 5432, 3396, 2226, 1561,
1201, 909, 699, 520, 423, 323, 255, 221, 163, 121, 87, 71, 50, 0},
 { 16317, 16280, 16203, 16047, 15838, 15450, 14749, 13539, 11868, 9790, 7789, 5956, 4521,
3400, 2513, 1926, 1483, 1100, 816, 590, 431, 306, 214, 149, 105, 60, 0}
};

ISO/IEC	23008-3:202X(E)	

684	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

A.5 short	cf_se11[7][7][27]	

static unsigned short cf_se11[7][7][27] = {
 {
 { 16375, 16372, 16367, 16356, 16326, 16249, 16009, 15318, 13710, 10910, 7311, 3989,
1850, 840, 380, 187, 103, 66, 46, 36, 26, 20, 15, 12, 8, 6, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16374, 16363, 16323, 16171, 15649,
14281, 11398, 7299, 3581, 1336, 428, 135, 49, 17, 7, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16375, 16367, 16347, 16267, 15969, 15044,
12765, 9094, 5087, 2234, 787, 251, 89, 29, 13, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16379, 16376, 16359, 16313, 16124, 15490, 13752, 10641, 6693, 3409,
1499, 567, 208, 76, 34, 17, 10, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16375, 16367, 16336, 16220, 15772, 14485, 12105, 8736,
5367, 2833, 1387, 581, 239, 98, 46, 24, 12, 9, 7, 6, 5, 2, 0},
 { 16383, 16382, 16380, 16379, 16377, 16375, 16347, 16269, 16004, 15265, 13542, 10823,
7903, 5214, 3145, 1692, 847, 365, 139, 47, 14, 9, 8, 5, 4, 3, 0},
 { 16381, 16378, 16375, 16372, 16336, 16274, 16039, 15643, 14737, 13185, 11186, 8836,
6501, 4198, 2444, 1270, 615, 281, 153, 93, 63, 48, 42, 33, 24, 21, 0}
 },
 {
 { 16383, 16382, 16381, 16380, 16379, 16377, 16376, 16373, 16369, 16357, 16316, 16205,
15866, 14910, 12674, 8962, 4857, 1970, 632, 204, 75, 34, 15, 9, 5, 3, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16376, 16375, 16374, 16370, 16356,
16298, 16139, 15598, 14050, 10910, 6488, 2627, 701, 138, 38, 12, 6, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16375, 16358, 16292, 15999, 15070,
12735, 8772, 4549, 1595, 376, 95, 26, 10, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16376, 16375, 16373, 16361, 16309,
16153, 15563, 13983, 10829, 6716, 3004, 1002, 267, 74, 19, 5, 4, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16353, 16250, 15897, 14810, 12582,
9100, 5369, 2494, 884, 281, 87, 31, 12, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16379, 16378, 16377, 16371, 16348, 16282, 16042, 15416, 13942, 11431,
8296, 5101, 2586, 1035, 328, 68, 15, 9, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16380, 16379, 16373, 16340, 16267, 16130, 15773, 14969, 13751, 11722, 9172,
6092, 3329, 1507, 563, 186, 86, 26, 23, 10, 7, 6, 5, 4, 1, 0}
 },
 {
 { 16382, 16381, 16380, 16379, 16377, 16370, 16359, 16312, 16141, 15591, 14168, 11084,
6852, 3124, 1105, 354, 124, 48, 25, 14, 7, 6, 5, 4, 3, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16374, 16357, 16301, 16076, 15343,
13341, 9379, 4693, 1476, 324, 67, 18, 9, 7, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16369, 16349, 16265, 15937, 14834,
12076, 7587, 3123, 769, 152, 44, 13, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16367, 16324, 16160, 15574, 13854,
10306, 5601, 1880, 436, 113, 34, 18, 9, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16372, 16348, 16267, 15929, 14858, 12426,
8315, 4098, 1412, 384, 112, 40, 16, 11, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16376, 16367, 16310, 16123, 15532, 13965, 11248,
7655, 3910, 1573, 491, 141, 43, 18, 9, 8, 5, 4, 3, 2, 1, 0},
 { 16383, 16381, 16379, 16378, 16377, 16373, 16371, 16367, 16347, 16280, 16132, 15778,
14963, 13688, 11380, 8072, 4680, 2140, 774, 193, 63, 33, 15, 7, 5, 4, 0}
 },
 {
 { 16382, 16381, 16380, 16379, 16378, 16377, 16373, 16360, 16339, 16250, 15927, 14873,
12393, 8549, 4645, 2000, 748, 271, 109, 48, 19, 9, 5, 4, 3, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16371, 16351, 16244, 15876, 14627,
11604, 6836, 2711, 772, 210, 54, 21, 8, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16372, 16341, 16209, 15686, 13965,
10150, 5099, 1594, 333, 74, 27, 12, 8, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16369, 16321, 16091, 15261, 12834,
8160, 3248, 821, 187, 59, 22, 11, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16372, 16350, 16249, 15838, 14425, 11097,
6138, 2238, 628, 180, 53, 21, 13, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16377, 16365, 16308, 16026, 15269, 13352, 9583,
5246, 2223, 754, 202, 57, 26, 9, 8, 7, 6, 4, 3, 2, 1, 0},
 { 16379, 16378, 16377, 16376, 16375, 16370, 16365, 16338, 16270, 16120, 15723, 14760,
12783, 9474, 5727, 2713, 977, 296, 93, 39, 14, 12, 10, 7, 4, 3, 0}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 685	
	

 },
 {
 { 16383, 16382, 16379, 16378, 16377, 16370, 16364, 16342, 16267, 16032, 15272, 13475,
10375, 6652, 3685, 1813, 805, 358, 152, 61, 33, 20, 9, 7, 5, 3, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16376, 16361, 16311, 16096, 15280, 13085,
9315, 5003, 1992, 647, 170, 60, 25, 17, 7, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16377, 16376, 16375, 16372, 16355, 16288,
15990, 14926, 12076, 7449, 3161, 981, 302, 78, 24, 7, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16377, 16373, 16351, 16264, 15836, 14299, 10534,
5358, 1777, 499, 145, 44, 17, 11, 8, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16377, 16366, 16324, 16155, 15416, 13055, 8332,
3423, 1080, 304, 97, 39, 16, 9, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16377, 16373, 16359, 16258, 15905, 14720, 11631, 6834,
2911, 1022, 345, 116, 49, 24, 14, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16380, 16379, 16378, 16377, 16376, 16375, 16370, 16365, 16338, 16236, 15960,
15302, 13685, 10788, 6853, 3314, 1213, 417, 149, 59, 25, 8, 3, 2, 1, 0}
 },
 {
 { 16378, 16377, 16376, 16374, 16373, 16368, 16349, 16303, 16149, 15653, 14445, 12326,
9581, 6707, 4156, 2251, 1062, 460, 202, 93, 53, 25, 12, 8, 3, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16378, 16374, 16365, 16317, 16146, 15685, 14441,
11949, 8459, 4949, 2280, 874, 300, 86, 29, 20, 10, 7, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16377, 16358, 16306, 16114, 15474, 13793, 10641,
6491, 3116, 1219, 382, 135, 62, 26, 17, 11, 6, 5, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16376, 16361, 16305, 16051, 15112, 12593, 8234,
4130, 1583, 552, 182, 59, 25, 10, 9, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16381, 16380, 16379, 16376, 16346, 16245, 15837, 14409, 10881, 5964,
2333, 798, 279, 100, 41, 14, 9, 7, 6, 5, 4, 3, 2, 1, 0},
 { 16383, 16382, 16380, 16379, 16377, 16361, 16331, 16156, 15454, 13155, 8820, 4256,
1671, 610, 218, 84, 42, 14, 10, 9, 8, 6, 5, 4, 3, 2, 0},
 { 16382, 16380, 16378, 16377, 16367, 16352, 16241, 16077, 15536, 14352, 11787, 7926,
4119, 1726, 638, 233, 91, 28, 16, 9, 8, 6, 5, 4, 3, 1, 0}
 },
 {
 { 16369, 16361, 16352, 16340, 16315, 16284, 16223, 16091, 15848, 15385, 14573, 13396,
11681, 9316, 6613, 4037, 2144, 1033, 491, 213, 100, 55, 34, 18, 12, 6, 0},
 { 16382, 16381, 16379, 16376, 16371, 16359, 16345, 16306, 16198, 16002, 15534, 14580,
12881, 10271, 6793, 3572, 1467, 504, 152, 60, 23, 14, 5, 4, 2, 1, 0},
 { 16383, 16382, 16380, 16379, 16378, 16376, 16367, 16360, 16344, 16292, 16183, 15902,
15224, 13793, 11340, 7866, 4409, 1916, 689, 225, 80, 34, 16, 6, 3, 1, 0},
 { 16381, 16380, 16379, 16377, 16376, 16372, 16366, 16353, 16325, 16266, 16097, 15632,
14551, 12346, 9014, 5262, 2439, 920, 324, 126, 50, 20, 9, 6, 4, 1, 0},
 { 16383, 16380, 16379, 16377, 16375, 16373, 16369, 16360, 16338, 16283, 16183, 15892,
15109, 13313, 10173, 6308, 3103, 1264, 457, 169, 75, 30, 15, 5, 2, 1, 0},
 { 16379, 16377, 16372, 16370, 16365, 16347, 16296, 16186, 15988, 15448, 14083, 11465,
7678, 4215, 1961, 900, 431, 193, 87, 37, 21, 13, 8, 5, 2, 1, 0},
 { 16373, 16368, 16360, 16342, 16320, 16294, 16230, 16123, 15884, 15548, 14801, 13380,
11064, 7909, 4654, 2378, 1114, 490, 235, 135, 74, 40, 21, 11, 6, 1, 0}
 }
};

A.6 cf_off_se01	

static short cf_off_se01 = +2;

A.7 cf_off_se10	

static short cf_off_se10 = -4;

A.8 cf_off_se02[7]	

static short cf_off_se02[7] = {
 +1, +1, +1, +0, +0, +1, +2
};

ISO/IEC	23008-3:202X(E)	

686	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

A.9 short	cf_off_se20[7]	

static short cf_off_se20[7] = {
 +0, -2, -2, -2, -3, -4, -3
};

A.10 cf_off_se11[7][7]	

static short cf_off_se11[7][7] = {
 { -5, +0, +0, -3, -1, +0, -1},
 { +1, +3, +0, +3, +0, +0, -1},
 { -2, +0, +0, +0, +0, +0, +3},
 { +0, +0, +0, +0, +0, +0, +2},
 { +0, +0, +3, +0, +0, +0, +4},
 { +0, +1, +0, +0, +0, +0, +1},
 { +0, +1, +3, +3, +4, +2, +4}
};
	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 687	
	

Annex	B	
(normative)	

	
SAOC	3D	Decorrelator	pre-mixing	matrices	

Premixing	matrix	for	output	configurations	with	small	number	of	output	channels.	

If	 the	number	of	SAOC	3D	output	channels	 is	smaller	than	or	equal	to	11,	the	pre-	(and	post-)	mixing	

matrices	Mpre	(and	Mpost)	are	set	to	identity:	

	

B.1 Premixing	matrix	for	22.2	output	configuration		

In	case	the	target	rendering	loudspeaker	layout	corresponds	to	ChannelConfiguration	13	of	

ISO/IEC	23001-8	the	pre-mixing	matrix	Mpre	is	defined	as:

()pre post= =M M I

ISO/IEC	23008-3:202X(E)	

688	 ©	ISO/IEC	2019	–	All	rights	reserved	
	

	
Table	B.1	—	Premixing	coefficients	for	 	

	 Ch.	
ID	

CH_
M_0
00	

CH_L
_000	

CH_
U_00
0	

CH_T
_000	

CH_
M_L
135	

CH_
U_L1
35	

CH_
M_R
135	

CH_
U_R1
35	

CH_
M_1
80	

CH_
U_18
0	

CH_
M_L
030	

CH_L
_L04
5	

CH_
M_R
030	

CH_L
_R04
5	

CH_
M_L
090	

CH_
U_L0
90	

CH_
M_R
090	

CH_
U_R0
90	

CH_
M_L
060	

CH_
U_L0
45	

CH_
M_R
060	

CH_
U_R0
45	

X	 Mpre	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	
0	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
1	 2	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 3	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 4	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 5	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	
7	 8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	
8	 9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	
9	 10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	
0	 11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 1	

22outN =

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 689	
	

Here	the	value	X	represents	the	corresponding	decorrelator	index.	

B.2 Algorithm	for	generating	pre-mixing	matrices	

If	 the	 target	 output	 configuration	 is	 not	 specified	 in	 the	 tables	 above,	 the	 pre-mixing	matrix	Mpre	 is	
generated	 using	 the	 following	 algorithm.	 The	 algorithm	 performs	 K	=	N	−	M	 (N	 is	 the	 number	 of	
loudspeakers	in	the	output	configuration,	and	M	is	the	number	of	decorrelators	to	be	used)	loudspeaker	
grouping	operations.	In	each	grouping	step,	the	two	groups	that	are	closest	are	merged.	If	the	decision	of	
the	groups	to	be	merged	is	not	unique,	perceptually	motivated	rules	are	used	to	solve	the	ties.		

B.2.1 Input	to	the	algorithm	and	representations	

The	coordinate	system	uses	the	same	notation	and	conventions	as	used	in	subclause	8.3.	The	conversion	
from	Cartesian	to	spherical	coordinates	follows	the	identities:	

	

	

Algorithm	inputs:		

— Spatial	locations	of	N	loudspeakers:		

,		

where	 	represents	the	elevation	and	the	azimuth	of	the	loudspeaker	 	in	degrees.	
Integer	M	defining	the	number	of	decorrelators.	

B.2.2 Algorithm	steps	

The	algorithm	follows	the	steps.	

1) Initialization:		
a) Modify	 the	 coordinates	 of	 the	 loudspeakers	 on	 the	 median	 plane	 in	 behind	 the	 listener	 by:

	

b) The	height	coordinates	are	scaled	by	 	with	 .	

c) Each	loudspeaker	 	is	declared	to	form	a	group	 .	

d) If	 ,	jump	to	Step	5).	

e) The	 angular	 	and	 azimuth	 	distances	 between	 all	 unique	 pairs	 of	 groups	 ,	

with	 ,	 ,	 ,	 are	calculated	with	

()atan y xj =

2 2
atan z

x y
q

æ ö
= ç ÷ç ÷+è ø

{ } () () (){ }1 1 1,..., ,..., , ,..., , ,..., ,i N i i N NC C C q j q j q j¢ ¢ ¢ ¢ ¢ ¢=

(),i iq j¢ ¢ iC

() ()
()

180 ,0 if 180,
,

, otherwise.
i i

i i
i i

q j
q j

q j
¢ ¢- =ìï= í ¢ ¢ïî

heightz a z¢= 0.5heighta =

iC [], 1,i ig C i N= =
N M£

kD
a

kD
j (),k i jp g g=

1, pairsk Né ù= ë û []1, 1i N= - []1,j i N= + ()1
2pairs

N N
N

-
=

ISO/IEC	23008-3:202X(E)	

690	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

i) ,	and	

ii) 	

iii) Prohibit	 grouping	 across	 the	 median	 plane	 by	 modifying	 the	 distance	 values	 by:	

	

where	Inf	is	a	sufficiently	large	constant.	

2) Merge	the	groups	 	and	 	selected	by:	

a) Select	the	pair	 	with	the	smallest	angular	distance	 .		

i) Locate	the	pairs	 ,	such	that	 	and	assign	these	to	 	

ii) If	L	contains	only	one	pair,	continue	from	Step	3).	

b) From	 the	 pairs	 in	 L,	 select	 the	 pair	 	with	 the	 smallest	 azimuth	 distance	

.		

i) From	 the	 pairs	 in	L,	 locate	 the	 pairs	 ,	 such	 that	 	and	 assign	 these	 to	

.	

ii) If	L	contains	only	one	pair,	continue	from	Step	3).	

c) From	the	pairs	in	L,	select	the	pair	 	which	results	to	a	new	group	 	with	the	

centroid	closest	to	the	through-the-ears	–	axis	 	with	

	

()()
180acos i j i j i j

k

i i i i i i j j j j j j

x x y y z z
D

x x y y z z x x y y z z
a

p

æ ö+ +ç ÷=
ç ÷ç ÷+ + + +è ø

()

if 0 or 0 ,
if 0 or 0 ,

min ,360 otherwise.

i j j i j i

k j i i j i j

i j i j

Dj

j j j j j j
j j j j j j

j j j j

ì - £ £ £ £ïï= - £ £ £ £í
ï

+ - -ïî

() ()
() ()
() ()
() ()

180 0 and 0 180 ,

180 0 and 0 180 ,
, if

0 or 180 and 0 and 180 ,

0 or 180 and 0 and 180 ,

i j

j i

k

i i j j

j j i i

D Infa

j j

j j

j j j j

j j j j

ì - < < < <
ï
ï - < < < <ï= í

= = ¹ ¹ï
ï

= = ¹ ¹ïî

ig jg

(),m i jp g g= ()minm kD Da a=

np m n angleD Da a e- £ { }.nL p=

(),m i jp g g=

()minm kD Dj j=

np m n azimuthD Dj j e- £

{ }nL p=

(),m i jp g g= new
mg

()minTTE TTE
m kD D=

90 if 0,

90 otherwise,

c c
k kTTE

k c
k

D
j j

j

ì - >ï= í
+ïî

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 691	
	

where	 	is	 the	azimuth	of	 the	group	centroid	 	defined	as	 ,	with	 ,	

,	and	 ,	where	 	is	the	number	of	 loudspeakers	 	assigned	to	the	

group	 ,	and	 ,	 ,	and	 	are	the	Cartesian	coordinates	of	the	loudspeaker	 .	

i) From	 the	pairs	 in	L,	 locate	 the	pairs	 ,	 such	 that	 	and	assign	 these	 to	

.	

ii) If	L	contains	only	one	pair,	continue	from	Step	3).	

d) From	the	pairs	in	L,	select	the	pairs	 	which	result	to	new	groups	with	the	centroids	

in	the	rear	hemisphere	(,	or).	

i) Assign	these	pairs	to	 .	

ii) If	L		contains	only	one	pair,	continue	from	Step	3).	

e) From	the	pairs	in	L,	select	the	pair	 	which	results	to	a	new	group	with	the	centroid	

furthest	away	from	the	horizontal	plane	 ,	where	 .	The	elevation	angle	

	is	determined	from	the	Cartesian	coordinates	 	of	the	centroid	 .	

i) From	 the	 pairs	 in	 L,	 locate	 the	 pairs	 ,	 such	 that	 	and	 assign	 these	 to	

.	

ii) If	L	contains	only	one	pair,	continue	from	Step	3).	

f) From	the	pairs	in	L,	select	the	pair	 	which	results	to	a	new	group	with	the	smallest	

number	of	members	(loudspeakers)	 .	

i) From	the	pairs	in	L,	locate	the	pairs	 ,	such	that	 ,	and	assign	these	to	 .	

ii) If	L	contains	only	one	pair,	continue	from	Step	3).	

g) From	the	pairs	in	L,	select	the	pair	 	with	the	centroid	 		with	(alternating	between)	

i) the	largest	azimuth	angle	 ,	

ii) the	smallest	azimuth	angle	 .	

iii) Here	 ,	 ,	 		and	 	are	constants	assigned	to	be	equal	to .	

	
3) Update	group	information.	

c
kj kc

c
k
c

k k
c
k

x
c y

z

é ù
ê ú= ê ú
ê úë û

1

i k

c
k i

C gk

x x
N Î

= å

1

i k

c
k i

C gk

y y
N Î

= å 1

i k

c
k i

C gk

z z
N Î

= å kN iC

kg ix iy iz iC

np
TTE TTE
m n TTED D e- £

{ }nL p=

(),m i jp g g=

90c
mj < - 90c

mj >

{ }mL p=

(),m i jp g g=

()maxel el
m kD D= el c

k kD q=
c
iq , ,c c c

k k kx y z kc

np
el el
m n elD D e- £

{ }nL p=

(),m i jp g g=

{ }minm kN N=

np n mN N== { }nL p=

(),m i jp g g= mc

{ }maxc c
m kj j=

{ }minc c
m kj j=

anglee azimuthe TTEe ele
510-

ISO/IEC	23008-3:202X(E)	

692	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

a) The	two	merged	groups	 	are	removed	from	the	list	of	groups,	and	the	new	group	

	is	added	to	the	end	of	the	list.	

b) Update	the	group	distance	information	 	and	 .	

i) The	merged	groups	 	and	 	are	removed	from	the	distance	information.	

ii) The	new	group	 	is	added	to	the	distance	information	as	the	last	group.	
iii) The	distances	between	the	existing	groups	and	the	new	group	are	calculated.	The	distance	

between	any	two	groups	is	the	maximum	distance	between	the	pairs	of	loudspeakers	in	which	
one	 loudspeaker	 	is	 from	the	 first	group	 	and	 the	second	 loudspeaker	 	is	 from	the	

second	 group	 :	 	 ,	 where	 	contains	 the	 angular	 or	

azimuth	distances	between	the	loudspeakers	 .	

4) Compare	the	current	number	of	groups	with	the	requested	number	of	groups	M.	
a) If	the	current	number	is	larger,	continue	from	Step	2).	
b) Otherwise,	continue	from	Step	5).	

5) Describe	 the	 grouping	 as	 a	 binary	matrix	 	of	 size	 	with	 	

The	indexing	 	of	the	groups	is	obtained	by	numbering	the	final	groups	from	1	to	M	without	

gaps	 in	 the	 order	 they	 reside	 in	 the	 list	 of	 groups,	 and	 the	 loudspeaker	 indexing	 	

implements	 the	 same	 order	 as	 they	 were	 provided	 for	 the	 algorithm.	 Table	 B.2	 provides	 the	
assignment	of	the	decorrelator	indices	to	the	groups:	

	

Table	B.2	—	Decorrelator	assignment	

Group	index	i	 1 2 3 4 5 6 7 8 9 10 11	

Decorrelator	index	 0 1 2 3 4 5 6 7 8 9 0	

	

(),m i jp g g=

m i jg g g= È

Da Dj

ig jg

mg

kC og lC

pg { }, ,
ˆmax | ,o p k l k o l pD D C g C g= Î Î D̂

iC

preM M N´ ()
1 if C g ,

,
0 otherwise.

j i
pre i j

Îì
= í
î

M

[]1,i M=

[]1,j N=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 693	
	

Annex	C	
(informative)	

	
Encoder	tools	

C.1 General	overview	

C.1.1 Encoder	block	diagram	

	

Figure	C.1	—	3D	audio	encoder	

C.1.2 Overview	of	the	encoder	and	decoder	building	blocks	

The	prerenderer/mixer	can	be	used	to	convert	an	object	input	scene	or	single	objects	into	a	channel	or	
HOA	scene	before	encoding.	The	functionality	is	identical	to	the	object	renderer/mixer	(see	subclause	
7.4.4)	 or	 synthesis	 of	 directional	 predominant	 sound	 components	 (see	 subclause	 12.4.2.4.2).	
Prerendering	 of	 objects	 ensures	 deterministic	 signal	 entropy	 at	 the	 encoder	 input	which	 is	 basically	
independent	 of	 the	 number	 of	 simultaneously	 active	 object	 signals.	With	 prerendering	 of	 objects,	 no	
object	metadata	transmission	is	required.		

Discrete	object	signals	are	rendered	to	the	channel	layout	or	HOA	order	that	the	encoder	is	configured	to	
use.	The	weights	of	the	objects	for	each	channel	are	obtained	from	the	associated	object	metadata	(OAM).		

The	SAOC	3D	encoder	takes	as	input	the	object/channel	signals	as	monophonic	waveforms	and	outputs	
the	 parametric	 information	 (which	 is	 packed	 into	 the	 3D	 audio	 bitstream)	 and	 the	 SAOC	 transport	
channels	(which	are	encoded	using	single	channel	elements	and	transmitted).	

ISO/IEC	23008-3:202X(E)	

694	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

The	HOA	spatial	encoder	takes	as	input	the	HOA	signal	in	the	format	specified	in	Annex	F.1	and	outputs	
the	HOA	side	information	(which	is	packed	into	the	bitstream	as	an	HOAFrame()	in	the	extension	element	
data)	and	the	HOA	transport	channels	(which	are	encoded	by	the	MPEG-H	3D	audio	core	encoder).	

C.2 Core	encoder	tools	

C.2.1 Quad	channel	element	

Vertical	channel	pairs	are	combined	using	the	MPEG	surround	based	stereo	tool.	The	resulting	left	and	
right	downmix	channels	are	combined	using	joint	stereo	coding	with	the	possibility	of	complex	stereo	
prediction.	 	The	same	 is	done	 for	residual	channels	 if	present.	Stereo	SBR	 is	calculated	 for	horizontal	
channel	pairs	on	the	original	input	channels.	The	encoding	structure	is	illustrated	in	Figure	C.2.		

	

Figure	C.2	—	Quad	channel	encoder	structure	

A	QCE,	consisting	of	two	adjacent	CPEs,	is	encoded	by	swapping	the	second	channel	of	the	first	element	
and	the	first	channel	of	the	second	element	before	and	after	applying	stereo	SBR	and	between	applying	
MPS	2-1-2	and	joint	stereo	encoding.	If	no	residual	signal	is	transmitted,	a	zero	signal	is	inserted	into	the	
second	CPE.		

The	quad	channel	encoder	is	illustrated	in	Figure	C.3.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 695	
	

	

Figure	C.3	—	Quad	channel	encoder	schematics	

C.2.2 Transform	splitting	

C.2.2.1 General	

Transform	splitting	(TS)	can	be	utilized	on	certain	transient	signal	passages	as	an	alternative	to	regular	
long	 transforms	 (which	 lead	 to	 time-smearing,	 especially	 pre-echo,	 at	 low	 bitrates)	 or	 eight-short	
transforms	(which	lead	to	spectral	holes	and	bubble	artifacts	at	low	bitrates).	TS	can	be	used	in	a	FD	stop-
start	window,	the	encoding	process	is	given	in	the	following	subclause.	

C.2.2.2 Encoding	process	

The	encoding	process	follows	the	one	of	a	STOP_START_SEQUENCE	where	instead	of	applying	one	MDCT	
transform,	two	MDCT	transforms	of	half	length	are	calculated.	

Therefore,	 the	 time-domain	 values	 x’i,n	 which	 consist	 of	 the	 values	 of	 previous	 window_sequence	
concatenated	with	the	values	of	 the	current	block	are	windowed	in	the	regular	 fashion.	The	resulting	
values	zi,n		are	then	further	processed	given	by:	

	

	

, _

0, , _ , _

, for 0 _ / 2 5 _ / 4
ˆ () (_ / 2 5 _ / 4), for _ / 2 5 _ / 4 _ / 2 3 _ / 4

0, for _ / 2 3 _ / 4 _ / 2

i n N s

n i n N s RIGHT N s

z n N l N s
z n z W n N l N s N l N s n N l N s

N l N s n N l

+

+

ì £ < -
ï= × - - - £ < -í
ï - £ <î

1, 1, _ /2 _ /4 , _

, _ /2 _ /4

0, for 0 3 _ / 4
ˆ () (3 _ / 4), for 3 _ / 4 5 _ / 4

, for 5 _ / 4
n n N l N s LEFT N s

i n N l N s

n N s
z n z W n N s N s n N s

z N s n
+ -

+ -

£ <
= × - £ <

£ < _ / 2N l

ì
ï
í
ï
î

ISO/IEC	23008-3:202X(E)	

696	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

The	MDCT	spectral	coefficients	X(0,1),k,	are	the	defined	as:	

 for .

where	

		 n	 sample	index	

		 k	 spectral	coefficient	index	

		 	

The	final	spectral	coefficients	are	obtained	by	interleaving	the	two	half	length	spectra:	

C.2.3 Calculation	of	residual	signal	for	MPEG	surround	with	hybrid	residual	coding	

Calculation	of	the	residual	signal	is	performed	using	the	weights , 	which	are	calculated	based	

on	the	downmix	signal’s	decoder	upmix	weights ,	 ,	the	residual’s	decoder	upmix	weights

,	 	and	the	encoder	downmix	weights	 , .	

	

In	pseudo-code:	

w3 = (((1-H11*w1)/H12_res)-(H21*w1/H22_res))/2.0f;
w4 = (((1-H21*w2)/H22_res)-(H11*w2/H12_res))/2.0f;			

C.2.4 Enhanced	noise	filling	

If	enhanced	noise	filling	including	the	tool	intelligent	gap	filling	(IGF)	is	used	by	the	encoder,	the	user	
defines	 an	 IGF	 start	 frequency	 and	 an	 IGF	 stop	 frequency.	 For	 encoding	 IGF	 energy	 information	 the	
following	method	may	be	applied.	

Let	!" ∈ ℝ!	be	the	MDCT	transformed,	real	valued	spectral	representation	of	a	signal	with	window-length	
2N.	The	encoder	optionally	applies	TNS	on	 .	Let	k	be	the	index	of	a	scale	factor	band	 	in	the	IGF	area	
and	 	the	width	of	this	scale	factor	band,	then	calculate:	

	

where	k=m_igfStartSfb,1+m_igfStartSfb,2+m_igfStartSfb,…,m_	igfStopSfb.	

For	quantizing	use:	

	

()
/2 1

(0,1), (0,1), 0
0

2 1ˆ ˆ4 cos
_ / 2 2

N

k n
n

X z n n k
N l

p-

=

æ öæ ö= × + +ç ÷ç ÷
è øè ø

å 0 _ / 2k N l£ <

0 (_ / 4 1) / 2n N l= +

(0),0 (1),0 (0),1 (1),1 (0), _ 1 (1), _ 1
ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,k N l N lX X X X X X X- -

é ù= ë û!

res,1w res,2w
ml
OTTH ,11 ml

OTTH ,21
mlH ,
res12 mlH ,

res22 dmx,1w dmx,2w

÷÷
ø

ö
çç
è

æ ×
-

×-
=

÷÷
ø

ö
çç
è

æ ×
-

×-
=

ml

ml
OTT

ml

ml
OTT

ml

ml
OTT

ml

ml
OTT

H
wH

H
wH

H
wH

H
wH

,
res

2,dmx
,

,
res

2,dmx
,

res,2

,
res

1,dmx
,

,
res

1,dmx
,

res,1

12
11

22
211

2
1w

22
12

12
111

2
1w

x̂ kscb

kw

21 ˆ
k

k i
i scbk

E x
w Î

= å

2
ˆ (4log ())k kE nINT E=

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 697	
	

All	 values	are	encoded	in	a	lossless	manner	by	an	arithmetic	coder.	The	arithmetic	coder	encodes	all	

values	 	lossless.	 It	 uses	 the	 arith_encode()	 function	 specified	 in	 ISO/IEC	23003-3,	 but	 with	 own	
probability	model	 and	 tables.	 During	 encoding,	 the	 arithmetic	 encoder	 uses	 context	memory,	 which	
should	 have	 for	 each	 element	 and	 for	 each	 channel	 its	 own	 instance.	 Apart	 from	 the	 fact	 that	 the	
calculation	of	the	prediction	residual	(which	is	used	during	encoding)	shall	be	inverted	on	the	decoder	
side,	the	encoding	and	decoding	with	the	IGF	arithmetic	coder	is	completely	symmetric.	

To	make	use	IGF	envelope	noise	flattening,	the	temporal	envelope	of	the	reconstructed	signal	by	the	IGF	
is	 flattened	 on	 the	 decoder	 side	 according	 to	 the	 transmitted	 information	 on	 the	 temporal	 envelope	
flatness,	which	is	an	flatness	indicator.	

The	temporal	flatness	is	measured	as	the	linear	prediction	gain	in	the	frequency	domain.	Firstly,	the	linear	
prediction	of	the	current	MDCT	spectrum	is	performed	and	then	the	prediction	gain	 	is	calculated:	

where		 	=	i-th	PARCOR	coefficient	obtained	by	the	linear	prediction.	

From	 the	prediction	gain	 	and	 the	prediction	gain	 	of	 the	TNS	 filter,	 the	 IGF	 temporal	 flatness	
indicator	flag	isIGFEnfFlat	is	defined	as:	

C.3 Object	metadata	encoding	

C.3.1 Pre-processing	of	the	object	metadata	

An	encoder	who	generates	an	object	metadata	bitstream	according	to	subclauses	7.3.3	or	7.4.3	needs	to	
pre-process	each	object	metadata	sample	as	follows	to	match	the	post-processing	of	the	encoder.	The	
pre-	and	post-processing	effectively	results	in	a	quantization	of	the	position	and	gain	information.	

for (o = 0; o < num_objects; o++)
 azimuth_scaled[o][n] = azimuth[o][n] / 1.5f;

for (o = 0; o < num_objects; o++)
 elevation_scaled[o][n] = elevation[o][n] / 3.0f;

for (o = 0; o < num_objects; o++)
 radius_scaled[o][n] = 3.0f * log2(2.0 * radius[o][n]),

where	the	object	radius	in	the	encoder	should	be	set	to	reference	distance,	i.e.,	radius[o][n]	=	(reference	
distance)	if	the	reference	distance	is	signalled	in	the	bitstream.	If	the	reference	distance	is	not	present,	
the	object	radius	should	be	set	to	3.1748	m,	i.e.	radius[o][n]	=	3.1748.	If	a	distance	dependent	gain	change	
is	desired	the	object	gain	value	gain[o][n]	should	be	used.	Alternatively,	the	distance	gain	rendering	can	
be	done	prior	to	encoding	by	changing	the	gain	of	the	PCM	input	signal	of	the	object.	

for (o = 0; o < num_objects; o++)
 gain_scaled[o][n] = 2.0f * db(gain[o][n]) + 32.0f;

ˆ
kE
ˆ
kE

igfh

()
8

2

1

1

1
igf

i
i

k
h

=

=
-Õ

ik

igfh tnsh

1 , if 1.15 and 1.15
0 , otherwise

igf tnsisIGFEnfFlat
h h< <ì

= í
î

ISO/IEC	23008-3:202X(E)	

698	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

if (uniform_spread == 1)
 {
 for (o = 0; o < num_objects; o++)
 spread_scaled[o] = spread[o] / 1.5f;
 }
 else
 {
 for (o = 0; o < num_objects; o++)
 spread_width_scaled[o] = spread_width[o] / 1.5f;

 for (o = 0; o < num_objects; o++)
 spread_height_scaled[o] = spread_height[o] / 3.0f;

 for (o = 0; o < num_objects; o++)
 spread_depth_scaled[o] = 3.0f * log2(2.0 * (spread_depth[o] + 0.5f));
 }

for (o = 0; o < num_objects; o++)
 dynamic_object_priority_scaled[o][n] = dynamic_object_priority_scaled[o][n];
	
where	log2(x)	denotes	the	base	2	logarithm	and	db(x)	=	20	*	log10(x)	denotes	the	sound	level	in	dB.	

C.3.2 Efficient	object	metadata	encoding	

Subclause	7.3.3	specifies	the	syntax	for	an	efficient	object	metadata	encoding	scheme.	An	encoder,	which	
generates	 such	 a	 bitstream,	 jointly	 encodes	 a	 sequence	 of	 regularly	 sampled	 metadata	 values.	 This	
requires	a	look-ahead	buffer	of	a	given	size	and	as	soon	as	this	buffer	is	filled,	the	whole	data	block	is	
encoded	 and	 transmitted.	 This	 encoded	 object	 data	 consists	 of	 2	 parts,	 the	 mandatory	
intracoded_object_metadata_efficient()	and	optionally	a	differential_metadata()	part.	

C.3.3 Object	metadata	encoding	with	low	delay	

Subclause	7.4.3	specifies	the	syntax	for	an	object	metadata	encoding	scheme	with	low	latency.	An	encoder	
which	generates	such	a	bitstream,	needs	to	regularly	transmit	intracoded	object	metadata	for	random	
access.	 These	 object	 metadata	 frames	 specify	 the	 current	 sample	 value	 of	 all	 metadata	 components	
(azimuth,	 elevation,	 radius,	 and	 gain)	 for	 each	 object.	 These	 metadata	 values	 can	 be	 optionally	
transmitted	as	dynamic	object	metadata.	As	no	look-ahead	buffer	is	involved	on	the	encoder	side,	this	
encoding	scheme	allows	for	low	delay	encoding.	

C.3.4 Spatially	skipping	objects	

If	object	location	varies	rapidly	and	no	spatial	interpolation	between	the	object	locations	is	desired,	the	
encoder	should	ensure	that	the	object	is	inaudible	during	the	MPEG-H	3D	audio	core	coder	frame	in	which	
the	location	change	occurs.	

C.4 SAOC	3D	encoder	

C.4.1 Overview	

The	aim	of	the	SAOC	3D	encoder	is	to	represent	the	input	audio	signals	as	a	multi-channel	downmix	signal	
signal	 along	with	 a	 corresponding	 parametric	 representation.	 The	 following	 paragraphs	 give	 a	 short	
overview	of	the	resulting	processing.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 699	
	

C.4.2 Calculation	of	the	SAOC	3D	parameters	

The	 SAOC	 3D	 parameters	 are	 calculated	 according	 to	 the	 following	 formulas.	 In	 order	 to	 guarantee	
optimum	 performance	 of	 SAOC	 3D	 it	 is	 recommended	 to	 use	 the	 input	 audio	 object	 signals	 with	
compatible	 power.	 The	 product	 of	 two	 input	 audio	 signals	 (normalized	 according	 the	 corresponding	
time/frequency	tiles)	is	determined	as:	

	 	

The	absolute	object	energy	(NRG)	of	the	object	with	the	highest	energy	is	calculated	as:	

	 	

The	ratio	of	the	powers	of	corresponding	input	object	signal	(OLD)	is	given	by:	

	 	

A	similarity	measure	of	the	input	objects	(IOC)	is	given	by	the	cross	correlation:	

	 	

Note,	 that	 IOCs	are	 transmitted	 for	all	pairs	of	 audio	 signals	 i	 and	 j,	 for	which	 the	bitstream	variable	
bsRelatedTo[i][j]	is	set	to	one.	Therefore,	the	stereo	(or	multichannel)	audio	signals	can	be	identified	by	
the	corresponding	bsRelatedTo	matrix	entries.	

Parameters	 describing	 the	 downmix	 processing	 of	 the	 input	 audio	 signals	 are	 derived	 from	 the	 gain	
factors	 applied	 to	 each	 audio	 signal	 and	 downmix	 channel	 ,	where	 index	 i	 denotes	 the	 downmix	
channel	number	and	j	denotes	the	input	signal	number.		

The	downmix	gains	(DMG)	are	then	calculated	according	to:	

	 .	

Each	input	audio	signal	should	have	a	substantial	contribution	to	the	downmix,	i.e.	 .	

C.4.3 Time/frequency	transform	

In	the	SAOC	3D	encoder,	the	same	hybrid	filterbank	as	in	the	decoder	(see	subclause	9.5.1)	is	employed.	

C.4.4 Framing	

The	encoder	employs	variable	 time	segmentation	 in	order	 to	 improve	 transient	behaviour.	The	same	
concepts	as	specified	in	ISO/IEC	23003-1	are	applied.	

()*, ,

,
,

1

n k n k
i j

l m n l k m
i j

n l k m

x x
nrg eÎ Î

Î Î

= +
åå

åå

(), ,
,maxl m l m
i ii

NRG nrg=

,
,,
,

l m
i il m

i l m

nrg
OLD

NRG
=

,
,,

, , ,
, ,

Re
l m
i jl m

i j l m l m
i i j j

nrg
IOC

nrg nrg

ì üï ï= í ý
ï ïî þ

,i jd

()2
, 10 ,10logi j i jDMG d e= +

2
, 0i jd !

ISO/IEC	23008-3:202X(E)	

700	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

C.4.5 Parameter	quantization	and	coding	

The	SAOC	3D	parameters	shall	be	quantized,	delta	and	Huffman	coded	in	accordance	with	the	definition	
in	ISO/IEC	23003-2.	

C.5 HOA	encoder	

C.5.1 Specification	of	value	ranges	for	HOA	coefficients	

A	 specification	 of	 valid	 value	 ranges	 for	 the	 HOA	 coefficients	 is	 of	 essential	 importance	 to	 facilitate	
random	access	at	decoding.	In	particular,	to	be	able	to	start	decompression	at	an	independent	access	unit,	
this	unit	contains,	among	others,	information	about	the	total	absolute	amplitude	change	applied	by	the	
gain	control	processing	unit	to	the	transport	signals	before	perceptual	encoding	from	the	first	frame	up	
to	a	current	frame.	This	information	is	given	by	an	exponent	to	base	‘2’	and	is	contained	in	the	variables	
GainCorrPrevAmpExp	 [i], % = 1,… ,). 	(see	 Table	 200).	 The	 number	 of	 bits	GainCorrPrevAmpExpBits	
required	 to	 code	 these	exponents	depends	on	 the	potential	maximum	gains	of	 the	 signals	before	 the	
application	 of	 the	 gain	 control	 processing	 unit.	 However,	 this	 knowledge	 is	 highly	 dependent	 on	 the	
specification	of	the	value	ranges	of	the	HOA	representations	to	be	compressed.	
Besides	 the	 above	mentioned	necessity	 for	 it,	 a	 value	 range	 specification	 for	HOA	 coefficients	 is	 also	
meaningful	in	the	context	of	an	HOA	production	format,	which	should	ideally	be	completely	compatible	
with	the	compression.	Motivated	by	the	well-known	storage	of	multi-channel	content,	it	is	proposed	to	
impose	constraints	NOT	directly	on	the	value	range	of	the	individual	HOA	coefficient	sequences	<!"(>),	
since	 these	 time-domain	 functions	 are	 not	 the	 signals	 that	 are	 actually	 played	 by	 loudspeakers	 after	
rendering.	 Instead,	 it	 is	 more	 convenient	 to	 consider	 the	 so-called	 equivalent	 spatial	 domain	
representation,	which	is	obtained	by	rendering	the	HOA	representation	to	@	virtual	loudspeaker	signals	
A#(>),	1 ≤ C ≤ @.	The	respective	virtual	loudspeaker	positions	are	assumed	to	be	expressed	by	means	of	
a	spherical	coordinate	system,	where	each	position	is	assumed	to	lie	on	the	unit	sphere,	 i.e.	 to	have	a	
radius	of	1.	Hence,	 the	positions	can	be	equivalently	expressed	by	order	dependent	directions	D#

(%) =
(E#

(%), F#
(%)), 1 ≤ C ≤ @,	where	E#

(%)	and	F#
(%)	denote	the	inclinations	and	azimuths,	respectively	(see	also	

Annex	F.1.1	for	the	definition	of	the	spherical	coordinate	system).	These	directions	are	assumed	to	be	
chosen	according	to	Fliege	and	Meier2)	which	are	explicitly	listed	in	Tables	F.2	to	F.11	for	several	orders	
N.	
	
The	advantage	of	specifying	value	ranges	for	virtual	loudspeaker	signals	over	specifying	value	ranges	for	
HOA	coefficient	 sequences	 is	 that	 the	value	 range	 for	 the	 former	 can	be	 set	 intuitively	equally	 to	 the	
interval	[−1,1[as	 is	 the	case	for	conventional	 loudspeaker	signals	assuming	PCM	representation.	This	
intuitive	imposition	leads	to	a	spatially	uniformly	distributed	quantization	error,	where	it	is	important	to	
note	 that	 the	quantization	 is	 applied	 in	a	domain	 that	 is	 relevant	with	 respect	 to	 actual	 listening.	An	
important	aspect	in	this	context	is	that	the	number	of	bits	per	sample	can	be	chosen	to	be	as	low	as	it	
typically	is	for	conventional	loudspeaker	signals,	i.e.	16,	which	increases	the	efficiency	compared	to	the	
direct	quantization	of	HOA	coefficient	sequences,	where	usually	a	higher	number	of	bits	(e.g.	24	or	even	
32)	per	sample	is	required.	
	
For	the	formal	specification	of	the	value	ranges	for	the	virtual	loudspeaker	signals	A#(>),	1 ≤ C ≤ @,	these	
are	first	summerized	in	the	vector	L(>)	as:	

L(>) ≔ [A'(>) … A((>)]) 	

2) Jörg	Fliege	and	Ulrike	Maier.	"A	two-stage	approach	for	computing	cubature	formulae	for	the	sphere".		Technical	
report,	 Fachbereich	 Mathematik,	 Universität	 Dortmund,	 1999.	 	 Node	 numbers	 are	 found	 at	
http://www.mathematik.uni-dortmund.de/lsx/research/projects/fliege/nodes/nodes.html.

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 701	
	

where	(⋅)) 	denotes	transposition.	The	rendering	process	can	be	formulated	as	a	matrix	multiplication		

	 	 	 	 	 	 	 &(() = +,(!,!)-
%&
⋅ /(()	

	
where	(⋅)*' 	denotes	 the	 inversion.	 The	 final	 specification	 requires	 the	 magnitude	 of	 each	 virtual	
loudspeaker	signal	to	lie	within	the	range	[−O, O[,	which	can	be	formally	expressed	by	

	 ‖L(QR+)‖, = max
'-#-(

SA#(QR+)S ≤ 1				∀Q. 	

with	R+	denoting	the	sampling	period.	

Note	that	the	mode	matrix	V(%,%)	is	invertible	if	the	virtual	loudspeaker	positions	are	chosen	according	
to	 Fliege	 and	Meier,	 and	 the	HOA	 representation	W(>)	can	be	 computed	 from	 the	 virtual	 loudspeaker	
signals	L(>)	by			
	
	 	 	 	 	 	 	 W(>) = V(%,%) 	 ⋅ L(>)	
	
Such	a	specification	sets	a	framework	for	the	developers	of	authoring	tools	for	HOA	content	to	be	able	to	
control	the	value	ranges	of	the	HOA	coefficient	sequences	representing	the	produced	HOA	content.	This	
can	be	achieved	
— either	 implicitly	 by	 directly	 using	 an	 HOA	 production	 format	 employing	 a	 PCM	 version	 of	 the	

equivalent	spatial	domain	representation	of	the	HOA	content,	or	

— explicitly	making	sure	that	the	above	specification	on	the	virtual	loudspeaker	signals	is	satisfied	in	
the	case	an	HOA	production	format	is	used	that	employs	the	HOA	coefficient	sequences	directly.		

	
The	above	presented	specification	of	the	value	range	of	the	HOA	coefficients	affects	the	value	range	of	the	
signals	X/ ,	% = 1,… ,) ,	which	 are	 input	 to	 the	 gain	 control	 processing	 unit	 in	 the	HOA	 encoder.	 These	
signals	 are	 created	 by	 the	 assignment	 of	 either	 predominant	 sound	 signals	 Y0+,1 ,	 Z = 1,… , [,	 or	
particular	 coefficient	 sequences	 of	 the	 ambient	 HOA	 component	<234,! ,	\ = 1,… , @ ,	 either	 spatially	
transformed	or	in	the	HOA	coefficient	domain.	
	
It	can	be	shown	that	under	certain	constraints	on	the	extraction	of	the	predominant	sound	signals	from	
the	original	HOA	representation	at	the	spatial	HOA	encoding	stage	(see	subclause	C.5.3.2.1),	which	are	
describe	 in	 subclause	C.5.1.1,	 the	amplitudes	of	 the	 signals	X/ ,	% = 1,… ,) ,	 before	gain	 control	will	 not	
exceed	the	value	√^ ⋅ @		with	

	 	^ =		 ‖6‖!
!

(
	 	

denoting	the	ratio	between	the	squared	Euclidean	norm	of	the	mode	matrix	and	the	number	@	of	HOA	
coefficient	 sequences.	Note	 that	 this	 ratio	 is	 dependent	 on	 the	 specific	HOA	order	_ 	and	 the	 specific	
virtual	 loudspeaker	directions	D#

(%), 1 ≤ C ≤ @,	which	can	be	expressed	by	appending	to	 the	ratio	 the	
respective	parameter	list	as	follows:	

	 ^ = 		^(_, D'
(%), … , D(

(%)).	 	

Figure	C.4	exemplarily	shows	the	values	of	^	for	virtual	directions	D#
(%), 1 ≤ C ≤ @,	according	to	Fliege	

and	Meier	for	HOA	orders	_ = 1,… ,29.	

ISO/IEC	23008-3:202X(E)	

702	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

	
Figure	C.4	—	Scaling	values	0	abc	decfghi	jecklfebmn	1'

((),2	 ≤ 	4	 ≤

	5	hllbcjemo	fb	pkekc	hmj	qiekok	abc	rst	bcjkcn	6	 = 	2, . . . , 9:	

From	Figure	C.4	can	be	seen	that	an	upper	bound	for	^	is	given	by	1,57	for	all	relevant	orders	_ = 1,… ,29.	
Hence,	the	amplitudes	of	the	signals	before	gain	control	are	bounded	by	1,5 ⋅ @,	which	is	reflected	in	the	
factor	1,5 ⋅ @ 	in	 the	 description	 of	 the	 absolute	 gain	 values	 for	 the	 gain	 control	 in	 an	 independently	
decodable	frame	(see	GainCorrAmpExpBits	in	Table	191	and	GainCorrAmpExp	in	Table	200).	
	
C.5.1.1 Constraints	on	the	computation	of	the	predominant	sound	signals	

To	formally	express	the	constraints	on	the	computation	of	the	predominant	sound	signals	Y0+,/(>),	% =
1,… ,),	at	the	spatial	HOA	encoding	stage	(see	subclause	C.5.3.2.1),	we	assume	that	they	are	collected	in	
the	 vector	v0+(>)	as	v0+(>) = [Y0+,'(>) Y0+,7(>) … Y0+,8(>)]) ,	 and	 that	 they	have	 to	be	determined	
based	on	the	matrix	w:= [y' y7 … y8],	which	is	formed	of	all	vectors	y/ ,	% = 1,… ,),	representing	the	
directional	distribution	of	the	monaural	predominant	sound	signals	Y0+,/(>),	% = 1,… ,).		

Then	the	specific	constraints	are	the	following.	

— Each	predominant	sound	signal	is	obtained	as	a	linear	combination	of	the	coefficient	sequences	
of	the	original	HOA	representation,	i.e.		

v0+(>) = t ⋅ W(>),	 	

where	t ∈ ℝ9×(denotes	the	mixing	matrix.		

— The	mixing	matrix	t	should	be	chosen	such	that	its	Euclidean	norm	does	not	exceed	the	value	of	
1,	i.e.,		

	 ‖t‖7 ≤
!
1,	 		

and	 such	 the	 squared	 Euclidean	 norm	 (or	 equivalently	 power)	 of	 the	 residual	 between	 the	
original	HOA	representation	and	that	of	the	predominant	sound	signals	is	not	greater	than	the	
squared	Euclidean	norm	(or	equivalently	power)	of	the	original	HOA	representation,	i.e.		

	‖l(>) − |}(>)‖7
7 ≤

!
‖l(>)‖7

7.		

An	exemplary	choice	of	the	mixing	matrix	is	obtained	by	the	Moore-Penrose	pseudo	inverse	of	|,	i.e.	t =
|<,	where	the	vectors	y/ ,	% = 1,… ,),	are	chosen	such	that	 ‖|<‖7 ≤ 1. 	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 703	
	

C.5.2 Encoder	block	diagram	

	

Figure	C.5	—	MPEG-H	3D	audio	encoder	for	HOA	content	

The	block	diagram	of	Figure	C.5	depicts	the	structure	of	the	MPEG-H	HOA	encoder.	The	HOA	input	signal	
matrix	~(�)	is	analysed	and	encoded	into	the	spatial	coding	parameters	and	the)	directional	and	ambient	
signals	Ä/(� − 2) .	 The	 number	 I	 of	 signals	 zi	 is	 usually	 much	 lower	 than	 the	 number	 of	 HOA	 input	
coefficients	C(k). The	 signals	Ä/(� − 2)	are	 encoded	by	 the	MPEG-H	3D	audio	 core	encoder.	The	HOA	
frame	creater	converts	the	resulting	HOA	spatial	coding	parameters	to	the	HOA	payloads	HOAConfig()	
and	HOAFrame().		

In	 some	 environments,	 the	 HOA	 spatial	 encoder	may	 be	 separated	 from	 the	MPEG-H	 3D	 audio	 core	
encoder.	In	this	case,	an	HOA	Transport	Format	can	consist	of	the	spatial	coding	parameters	and	the	I	
predominant	and	ambient	signals	zi.	This	HOA	transport	format	can	be	transmitted	from	the	HOA	spatial	
encoder	to	the	MPEG-H	3D	audio	core	encoder.	Compared	with	the	input	HOA	C(k),	the	HOA	transport	
format	usually	requires	a	significantly	reduced	number	of	transport	channels.	

C.5.3 Spatial	HOA	encoding	

The	 architecture	 of	 the	 spatial	 HOA	 encoder	 can	 be	 separated	 into	 two	 successive	 parts,	 which	 are	
illustrated	in	Figures	C.6	and	C.7,	respectively.	

ISO/IEC	23008-3:202X(E)	

704	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

	

Figure	C.6	—	Architecture	of	spatial	HOA	encoder	(part	1)	

	

Figure	C.7	—	Architecture	of	spatial	HOA	encoder	(part	2)	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 705	
	

In	 the	 first	 part,	 the	� -th	 frame	~(�) 	of	 the	 HOA	 representation	 is	 input	 to	 a	 direction	 and	 vector	
estimation	processing	block,	which	is	assumed	to	provide	the	tuple	sets	ℳ=>?(� − 1)	and	ℳ@AB(� − 1).	

Using	both	 tuple	sets	ℳ=>?(� − 1)	and	ℳ@AB(� − 1),	 the	 initial	HOA	frame	~(� − 1)	is	decomposed	 in	
the	HOA	decomposition	into	the	frame	Ç0+(� − 1)	of	all	predominant	sound	(i.e.	directional	and	vector-
based)	signals	and	the	frame	~234(� − 1)	of	the	ambient	HOA	component.	Note	the	delay	of	one	frame,	
respectively,	which	is	due	to	overlap	add	processing	in	order	to	avoid	blocking	artifacts.	Furthermore,	
the	 HOA	 decomposition	 is	 assumed	 to	 output	 some	 prediction	 parameters	É(� − 2) 	related	 to	 the	
predominant	 sound	 HOA	 component	 computed	 from	 the	 directional	 signals.	 Additionally,	 a	 target	
assignment	 vector	y2,C(� − 1) 		 containing	 information	 about	 the	 assignment	 of	 predominant	 sound	
signals,	which	were	determined	in	the	HOA	decomposition	processing	block,	to	the)	available	channels	
is	assumed	to	be	provided.	The	affected	channels	can	be	assumed	to	be	occupied,	meaning	they	are	not	
available	to	transport	any	coefficient	sequences	of	the	ambient	HOA	component	in	the	respective	time	
frame.	

In	 the	ambient	component	modification	processing	block,	 the	 frame	~234(� − 1)	of	 the	ambient	HOA	
component	 is	 modified	 according	 to	 the	 information	 provided	 by	 the	 target	 assignment	 vector	
y2,C(� − 1).	In	particular,	it	is	determined	which	coefficient	sequences	of	the	ambient	HOA	component	
are	 to	 be	 transmitted	 in	 the	 given) 	channels,	 depending,	 amongst	 other	 aspects,	 on	 the	 information	
(contained	 in	 the	 target	 assignment	 vector	y2,C(� − 1))	 about	which	 channels	 are	 available	 and	 not	
already	occupied	by	predominant	sound	signals.	

It	is	assumed	that	the	indices	of	the	selected	coefficient	sequences	to	be	transmitted	are	contained	in	the	
set	ℐ234,2BC(� − 2).	They	are	constrained	to	be	not	greater	than	@32D = (_32D + 1)7,	where	_32D ≤ _	
is	a	predefined	order	that	is	specified	in	the	HOAConfig().	Reducing	the	value	of	this	maximum	order	can	
be	used	to	decrease	the	computational	complexity	as	well	as	to	increase	the	coding	efficiency.			

Additionally,	a	fade	in	and	out	of	coefficient	sequences	is	performed	if	the	indices	of	the	chosen	coefficient	
sequences	vary	between	successive	frames.	The	indices	of	ambient	HOA	coefficient	sequences	that	are	
selected	to	be	transmitted	and	supposed	to	be	faded	out,	 faded	in	or	not	faded	at	all	 in	the	(k − 2)-th	
frame	are	contained	in	the	sets	ℐ=(� − 2),	ℐA(� − 2),	and	ℐE(� − 2),	respectively.		

Furthermore,	 it	 is	 assumed	 that	 the	 first	@3>F 	coefficient	 sequences	 of	 the	 ambient	 HOA	 component	
~234(� − 2)	are	always	chosen	to	be	perceptually	coded		to	be	transmitted.	In	order	to	de-correlate	these	
HOA	coefficient	sequences,	it	is	proposed	to	transform	them	to	directional	signals	(i.e.	general	plane	wave	
functions)	impinging	from	some	predefined	directions	D1

(%"#$),	Z = 1,… , @3>F	related	to	order	_3>F.	

Along	with	the	modified	ambient	HOA	component	~3,2(� − 1)	a	temporally	predicted	modified	ambient	
HOA	component	~0,3,2(� − 1)	is	computed	to	be	later	used	in	the	gain	control	processing	block	in	order	
to	allow	a	reasonable	look	ahead.	

The	 information	 about	 the	 modification	 of	 the	 ambient	 HOA	 component	 is	 directly	 related	 to	 the	
assignment	 of	 all	 possible	 types	 of	 signals	 to	 the	 available	 channels.	 The	 final	 information	 about	 the	
assignment	is	assumed	to	be	contained	in	the	final	assignment	vector	y2(� − 2).	In	order	to	compute	this	
vector,	information	contained	in	the	target	assignment	vector	y2,C(� − 1)	is	exploited.		

The	goal	of	 the	directional	sub-band	signals	prediction,	which	 is	carried	out	 in	 the	 frequency	domain	
using	quadrature	mirror	 filters	(QMF)	with	á = 64	sub-bands	 is	 to	approximate	the	 long	frame	of	 the	
ambient	HOA	component	[~234(� − 2)		~234(� − 1)]		by	a	 composition	of	predicted	directional	 sub-
band	signals.	Each	directional	sub-band	signal	is	assumed	to	be	predicted	by	a	weighted	sum	of	active	
coefficient	sequences	of	the	ambient	HOA	component,	i.e.	those	coefficient	sequences	whose	indices	are	
contained	 in	 the	 set	ℐ234,2BC(� − 2).	 The	 idea	 is	 that	 these	 coefficient	 sequences	will	 be	 transmitted	

ISO/IEC	23008-3:202X(E)	

706	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

within	the)	transport	channels	and,	hence,	will	be	available	at	the	decompression	stage	to	approximate	
the	non-transmitted	coefficient	sequences	of	the	ambient	HOA	component	by	their	predicted	versions.		

The	prediction	of	each	individual	directional	sub-band	signal	to	be	performed	at	the	decompression	stage	
is	based	on	parameters	of	 the	corresponding	sub-band	group	 including	 the	sub-band	of	 interest.	 It	 is	
assumed	that	there	are	á	sub-bands	that	are	assigned	to	à	sub-band	groups,	which	are	determined	by	
the	sub-band	group	configuration	to	be	specified	in	the	HOAConfig()	(see	subclause	12.4.1.2.1)	It	defines	
for	each	â-th	sub-band	group	a	lower	index	bound	ℒ(â)	and	an	upper	index	bound	ã(â)	such	that	sub-
bands	with	indices	between	these	bounds,	i.e.	with	ℒ(â) ≤ C ≤ ã(â),	are	assumed	to	belong	to	this	sub-
band	group.	The	parameters	for	each	â	-th	sub-band	group,	â = 1,… , à,	comprise	on	the	one	hand	the	
prediction	coefficients	matrix	t(� − 2, â),	which	is	used	to	compute	the	directional	sub-band	signals	from	
the	 active	 coefficient	 sequences	 of	 the	 ambient	 HOA	 component.	 On	 the	 other	 hand,	 the	 parameters	
include	 the	 tuple	 set	 ℳå=>?(� − 2, â) 	containing	 direction	 information	 to	 compute	 the	 HOA	
representation	 of	 the	 directional	 sub-band	 signals.	 The	 first	 element	 Z 	of	 each	 tuple	 of	 the	 set	
ℳå=>?(� − 2, â)	denotes	the	index	of	an	active	direction	trajectory,	of	which	there	are	at	most	[+4.	The	
second	 element	D+4,1(� − 2, â) 	of	 each	 tuple	 indicates	 the	 corresponding	 direction.	 Note	 that	 the	
indexing	of	the	direction	trajectories	is	important	to	provide	continuous	directional	sub-band	signals	on	
the	one	hand,	and	to	exploit	temporal	dependencies	between	successive	prediction	coefficient	matrices	
t(� − 2, â)	for	an	efficient	coding	on	the	other	hand.		

Further,	for	an	efficient	coding	of	the	directions	for	the	individual	sub-band	groups	it	is	assumed	that	all	
of	 them	 are	 contained	 in	 the	 ordered	 direction	 set	çå=>?(� − 2) ,	 of	which	 the	 number	 of	 elements	 is	
constrained	to	be	not	greater	than	a	predefined	number	of	[32D,	of	which	a	typical	value	is	8	or	16.	Hence,	
the	 coding	 of	 the	 directions	 for	 the	 individual	 sub-band	 groups	 may	 be	 done	 by	 their	 index	 of	 the	
corresponding	direction	in	the	set	çå=>?(� − 2).		

The	Directional	sub-band	signals	prediction	also	outputs	the	binary	quantity	bê+40(k − 2)	indicating	if	a	
prediction	of	sub-band	directional	signals	is	to	be	performed	related	to	the	frames	k − 2	and	k − 1	at	all.		

The	channel	assignment	assigns	with	the	information	provided	by	the	assignment	vector	y2(� − 2)	the	
appropriate	signals	contained	in	Ç0+(� − 2)	and	that	contained	in	~3,2(� − 2)	to	the)	available	channels,	
yielding	the	signals	ë/(� − 2),	% = 1,… ,).	Further,	appropriate	signals	contained	in	Ç0+(� − 1)	and	that	
in	~0,234(� − 1)	are	also	assigned	to	the)	available	channels,	yielding	the	predicted	signals	ë0,/(� − 2),	
% = 1,… ,).	

Each	of	the	signals	ë/(� − 2),	% = 1,… ,),	is	finally	processed	by	a	gain	control,	where	the	signal	gain	is	
smoothly	modified	to	achieve	a	value	range	that	is	suitable	for	the	perceptual	encoders.	The	predicted	
signal	 frames	ë0,/(� − 2),	% = 1,… ,),	allow	a	kind	of	 look	ahead	 in	order	to	avoid	severe	gain	changes	
between	successive	blocks.	The	gain	modifications	are	assumed	to	be	reverted	in	the	spatial	decoder	with	
the	gain	control	side	information,	consisting	of	the	exponents	í/(� − 2)	and	the	exception	flags	ì/(� − 2),	
% = 1,… ,).	

The	second	part	of	the	spatial	HOA	encoder	consists	of	the	computation	of	side	information	related	to	
parametric	ambience	replication	(PAR).	The	main	idea	of	PAR	is	to	complement	the	preliminary	encoded	
HOA	representation	by	potentially	missing	ambient	 components,	which	are	parametrically	 replicated	
from	itself.	For	that	purpose,	in	a	first	step	the	HOA	representation	~BG30(� − 2)	is	reconstructed	by	a	
spatial	decoder	using	the	signals	Ä/(� − 2),	% = 1,… ,),	and	the	side	information		

î(� − 2):= {ℳ=>?(� − 2),ℳ@AB(� − 2), í'(� − 2),… , í8(� − 2), ì'(� − 2),… , ì>(� − 2),	

								y2(� − 2), ñ(� − 2), ℐA(� − 2), ℐ=(� − 2), ℐE(� − 2),	

								ℳå=>?(� − 2,1), … ,ℳå=>?(� − 2, à), ó(� − 2,1), … , ó(� − 2, B), âê+40(� − 2)ò	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 707	
	

obtained	in	the	first	part	of	the	spatial	HOA	encoder.	This	side	information	does	obviously	not	contain	
any	PAR	 related	 components.	Hence,	 the	PAR	decoder	has	 to	be	omitted	 for	 this	 special	 spatial	HOA	
decoding.	Due	to	the	successive	application	of	the	QMF	based	analysis	and	synthesis	filter	banks	in	the	
sub-band	directional	signals	synthesis	of	the	spatial	HOA	decoder,	the	reconstructed	HOA	representation	
~BG30(� − 2)	has	a	delay	of	[H3I = 577	samples,	which	is	expressed	by	the	breve	symbol	(˘)	above	the	
variable.	Hence,	 in	a	next	step,	 the	reconstructed	HOA	representation	~BG30(� − 2)	is	delayed	by	ö −
[H3I	samples	to	align	it	with	the	frames	of	the	original	HOA	representation.	Finally,	the	original	HOA	
representation	 (delayed	 by	3 	frames)	~(� − 3) 	and	 the	 delayed	 reconstructed	 HOA	 representation	
~BG30(� − 3) 	together	 with	 the	 index	 sets	ℐA(� − 3) ,	ℐ=(� − 3) ,	 and	ℐE(� − 3) 	are	 input	 to	 the	 PAR	
Encoder	 processing	 block,	 which	 provides	 PAR	 related	 side	 information.	 The	 PAR	 is	 assumed	 to	 be	
carried	out	in	the	frequency	domain	using	quadrature	mirror	filters	(QMF)	with	á = 64	sub-bands.	Each	
individual	sub-band	C,	C = 1,… , á,	is	processed	using	the	corresponding	parameters	of	the	õ-th	sub-band	
group,	õ = 1,… , ú,	 to	which	it	 is	uniquely	assigned.	The	assignment	is	determined	by	the	PAR	related	
sub-band	group	configuration	specified	in	the	HOAConfig()	(see	also	subclause	12.4.1.2.2).	It	defines	for	
each	õ-th	sub-band	group	a	 lower	index	bound	ℒ02?(õ)	and	an	upper	index	bound	ã02?(õ)	such	that	
sub-bands	with	indices	between	these	bounds,	i.e.	with	ℒ02?(õ) ≤ C ≤ ã02?(õ),	are	assumed	to	belong	
to	this	sub-band	group.	The	PAR	related	side	information	consists	of	the	mixing	matrices	ù02?(� − 4, õ),	
the	permutation	matrices	û02?(� − 4, õ)	and	the	numbers	_+>J(� − 4, õ)	for	the	individual	ú	sub-band	
groups	õ = 1,… , ú.	

C.5.3.1 Direction	and	vector	estimation	

The	estimation	of	directions	and	vectors	is	based	on	overlapping	frames	of	length	2ö	in	order	to	allow	
smoothing	 by	 overlap	 add.	 For	 that	 reason,	 both	 tuple	 sets	ℳ=>?(� − 1) 	and	ℳ@AB(� − 1) 	refer	 to	
estimated	quantities	of	the	(� − 1)-th	and	�-th	frame.	

In	particular,	the	tuple	set	

ℳ=>?(� − 1):= ü†%, DCA+C,HE2FC,/(� − 1)°¢ %		is		index		of		an	active	direction		in	(� − 1) − th	and	� −

th		frame	ß	 	

consists	of	tuples	of	which	the	first	element	%	denotes	the	index	of	an	active	direction	(i.e.	the	index	of	the	
channel	 to	be	used	 for	 the	 transmission	of	 the	respective	directional	signal)	and	of	which	 the	second	
element	 DCA+C,HE2FC,/(� − 1) 	denotes	 the	 respective	 quantized	 direction.	 The	 estimation	 of	 the	
directions	is	assumed	to	be	performed	on	a	predefined	set	of	® = (29 + 1)7 = 900	directions	™K

(7L),	´ =
1,… , ®.	The	coding	of	an	active	direction	™K

(7L)	is	accomplished	by	taking	its	index	´.	The	estimation	of	
the	directions	can	be	exemplarily	based	on	the	search	of	energetically	dominant	components	of	the	sound	
scene	using	the	directional	power	distribution.	

Note,	that	there	occurs	the	special	case	that	for	the	last	frame	of	the	activity	period	for	a	directional	signal	
there	is	actually	no	direction.	This	case	is	signalized	by	setting	the	respective	quantized	direction	to	zero.	

The	tuple	set:	
ℳ)*+(< − 1):= @+A, B,(< − 1)-CA			is		index		of		a		vector		found		for		(< − 1) − th		and		< − th		frame	T	 	

consists	of	tuples	of	which	the	first	element	%	denotes	the	index	of	a	vector	(i.e.	the	index	of	the	channel	
to	be	used	for	the	transmission	of	the	respective	vector-based	signal)	and	of	which	the	second	element	
denotes	the	respective	vector	y/(� − 1),	which	is	assumed	to	have	an	Euclidean	norm	of	_ + 1.	

ISO/IEC	23008-3:202X(E)	

708	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

An	 important	 constraint	 arising	 from	 the	 fact	 that	 a	 transport	 channel	 can	 only	 contain	 either	 a	
directional	signal	or	a	vector-based	signal,	but	not	both	of	them,	 is	that	the	two	sets	ℳ=>?(� − 1)	and	
ℳ@AB(� − 1) 	should	 have	 no	 indices	 (i.e.	 first	 elements	 of	 the	 tuples)	 in	 common.	 Further,	 the	 first	
element	of	each	tuple	in	both	sets	ℳ=>?(� − 1)	and	ℳ@AB(� − 1)	should	be	contained	in	the	set	{1, … , ¨},	
where	¨ =) − @3>F	denotes	the	number	of	channels	to	which	signals	of	different	types	may	be	assigned	
to.	

C.5.3.2 HOA	decomposition	

A	 possible	 architecture	 of	 an	 HOA	 processing	 block	 is	 depicted	 in	 Figure	 C.8.	 In	 the	 following,	 the	
individual	processing	blocks	will	be	explained	in	detail.

	

Figure	C.8	—	Architecture	of	HOA	decomposition	

C.5.3.2.1 Computation	of	predominant	sound	signals	

The	first	step	of	the	HOA	decomposition	is	to	compute	the	frame	Ç0+(� − 1)	of	all	predominant	sound	
signals	using	the	two	tuple	sets	ℳ=>?(� − 1)	and	ℳ@AB(� − 1)	together	with	the	frame	~(� − 1)	of	the	
original	HOA	representation.	This	computation	 is	based	on	overlap	add	processing	 in	order	 to	create	
smooth	signals	for	the	successive	perceptual	coding.	Hence,	assuming	the	frame	of	all	predominant	sound	
signals	to	be	composed	of	the	individual	signals	according	to:	

U-.(< − 1) =

⎣
⎢
⎢
⎡
Y-.,&(< − 1)

Y-.,/(< − 1)
												⋮
Y-.,0(< − 1)⎦

⎥
⎥
⎤
,	

with	^ = _ − `123	denoting	the	number	of	channels	to	which	different	types	of	signals	may	be	assigned,	
each	individual	signal	is	computed	as	the	sum	of	a	faded	out	component	and	a	faded	in	component:	

Y-.,,(< − 1) = Y-.,456,,(< − 1) + Y-.,23,,(< − 1)							for			A ∈ {1,… , _}.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 709	
	

To	 compute	 each	 component,	 it	 is	 first	 of	 all	 assumed	 that	 ℐ728(< − 1)	and	ℐ)*+(< −
1)	denote	the	sets	of	all	first	tuple	elements	of	ℳ728(< − 1)	and	ℳ)*+(< − 1) ,	 respectively.	 Further,	 the	
instantaneous	directional	signal	frames	and	the	instantaneous	vector-based	signal	frames	are	defined	by:	

Y728,2,,(<&; </) =
g,(<&)

9

g,(<&)9g,(<&)
h(</)							for			A ∈ ℐ728(<&)	

Y)*+,2,,(<&; </) =
B,(<&)

9

B,(<&)9B,(<&)
h(</)							for			A ∈ ℐ)*+(<&),	

respectively.	In	the	definition	above	:

g,(<&) = i(!,/:)C
;!"#!,%&'(!,)(<*)

	

denotes	the	mode	vector	resulting	from	taking	the	(DCA+C,HE2FC,/(�'))-th	column	of	∞(%,7L),	which	is	the	
mode	matrix	of	order	_	with	 respect	 to	 the	predefined	directions	D!

(7L), \ = 1,… , ® = 900,	defined	 in	
Annex	F.1.5.		

One	alternative	method	of	extracting	the	predominant	signal,	that	also	naturally	outputs	the	vector,	y/(�),	
for	the	vector-based	coding	methodology	is	to	subject	the	input	HOA	signal,	~(�)	,	to	a	linear	invertible	
transform.	 These	 transform	 should	 ideally	 have	 the	 effect	 of	 producing	 decorrelated	 and	 energy	
compacted	signals.	An	example	of	a	 linear	invertible	transform	is	singular	value	decomposition	(SVD)	
that	decomposes,	~(�),	into	a	right-singular	matrix,	±(�),	a	diagonal	matrix	of	singular	values,	≤(�),	and	
a	left-singular	matrix,	w(�)	as	follows:	

~(�) = w(�)≤(�)±(�)	

The	matrix	V(k)	forms	the	basis	for	the	vi(k),	vectors	described	above,	while	the	U(k)	and	S(k)	matrices	
may	be	combined	to	form	candidates	of	the	vector-based	predominant	signals,	xVEC,I,i(k)	contained	in	the	
rows	of	the	matrix	XVEC(k),	i.e.	

XVEC(k)	=	S(k)U(k)	

Various	other	operations	such	as	truncating	to	a	desired	number	of	vectors,	re-ordering	of	the	vectors	in	
the	above	±(�), ≤(�), w(�)	matrices	and	spatio-temporal	interpolation	of	the	y/(�)	vectors	(identical	to	
the	spatio-temporal	interpolation	operation	specified	in	subclause	12.4.2.4.4)	and	energy	compensation	
are	required	to	maintain	continuity	that	is	essential	for	the	ensuing	psychoacoustic	core	coder	and	overall	
transparent	perception	of	the	reconstructed	soundfield.	

Having	computed	the	instantaneous	directional	and	vector-based	signals,	the	samples	of	the	faded	out	
and	faded	in	components	Y-.,456,,(< − 1)	and	Y-.,23,,(< − 1)	are	obtained	as	follows:	

!%&,()*,+(# − 1, ') = *
!,-.,-,+(# − 2; # − 1, ') if			0 ∈ ℐ,-.(# − 2)
!/01,-,+(# − 2; # − 1, ') if			0 ∈ ℐ/01(# − 2)

⋅ 45/01
(6 + ') 			if			0 ∈ ℐ/01(# − 1)

5,-.(6 + ') 			else			

 !%&,-2,+(# − 1, ') = *
!,-.,-,+(# − 1; # − 1, ') ⋅ 5,-.(') if			0 ∈ ℐ,-.(# − 1)
!/01,-,+(# − 1; # − 1, ') ⋅ 5/01(') if			0 ∈ ℐ/01(# − 1)

.

C.5.3.2.2 Predominant	sound	synthesis	

The	predominant	sound	synthesis	 is	 the	same	processing	block	as	employed	for	 the	spatial	decoding.	
Here,	however,	we	assume	for	simplicity	that	the	prediction	parameters	É(� − 1)	(as	defined	in	12.4.2.4)	
have	already	been	determined.	A	possible	 choice	 is	 to	 set	all	of	 the	elements	of	 the	of	 the	prediction	

ISO/IEC	23008-3:202X(E)	

710	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

parameters	É(� − 1)	to	zero.	Further,	it	is	here	assumed	that	the	sets	ℐA(� − 1),	ℐ=(� − 1)	and	ℐE(� − 1)	
are	empty.	

In	contrast	to	the	case	if	the	predominant	sound	synthesis	processing	is	employed	for	the	spatial	decoding,	
the	HOA	representation	of	 the	predominant	sound	component	~0+(� − 1)	is	not	required	 in	 this	case.	
Instead,	the	intermediately	computed	HOA	representations	of	the	directional	and	vector-based	signals,	
~=>?(� − 1)	and	~@AB(� − 1)	are	required.		

C.5.3.2.3 Computation	of	ambient	HOA	component	

The	ambient	HOA	component	is	obtained	from	the	difference	between	the	original	HOA	representation	
and	that	of	the	directional	and	vector-based	signals	by:

	 h=1>(< − 2) = h(< − 2) − h728(< − 2) − h)*+(< − 2).	

The	temporally	predicted	ambient	HOA	component	for	the	(< − 1)-th	frame	may	be	obtained	from	the	
difference	between	the	original	HOA	representation	and	that	of	the	directional	and	vector-based	signals	
by	

	 h-,=1>(< − 1) = h(< − 1) − h728(< − 1) − h)*+(< − 1).

C.5.3.2.4 Computation	of	target	assignment	vector	

The	target	assignment	vector	y2,C(� − 1)	is	assumed	to	consist	of	¨	elements,	which	corresponds	to	the	
number	of	channels	that	are	assumed	to	contain	signals	of	different	types.	The	%-th	element	≥2,C,/(� − 1)	
of	y2,C(� − 1)	is	assumed	to	contain	information	about	the	assignment	of	predominant	sound	signals	to	
the	%-th	channel	and	the	(� − 1)-th	frame.	In	particular,	≥2,C,/(� − 1)	is	assumed	to	be	composed	of	the	
following	triple:	

	 k=,6,,(< − 1) = (TYPE6,,(< − 1), BITRATE6,,(< − 1), INFO6,,(< − 1)),

which	may	consist	of	the	following	elements.

a) TYPEC,/(� − 1),	which	denotes	the	target	signal	type	to	be	used	for	the	(� − 1)-th	frame	of	the	%-
th	channel.	It	is	assumed	to	be	an	element	of	the	following	set	{DIR, VEC, EMPTY}.		

b) BITRATEC,/(� − 1),	which	denotes	the	target	bit	rate	to	be	used	for	the	(� − 1)-th	frame	of	the	%-
th	channel.	The	bit	rate	is	assumed	to	be	given	in	bits/s.		

c) INFOC,/(� − 1),	which	is	assumed	to	contain	further	target	assignment	info	depending	on	the	
signal	type	as	follows:		
	

	 INFOC,/(� − 1) =

⎩
⎪
⎨

⎪
⎧DHE2FC

(/) (� − 1) 			if			TYPEC,/(� − 1) = DIR

yHE2FC
(/) (� − 1) 			if			TYPEC,/(� − 1) = VEC
∅ 			if			TYPEC,/(� − 1) = EMPTY

.	

	Here,	DHE2FC
(/) (� − 1)	denotes	the	quantized	direction	to	be	assigned	to	the	(� − 1)-th	frame	of	

the	%-th	channel	in	case	of	a	directional	signal.	Further,	yHE2FC
(/) (� − 1)	denotes	the	quantized	

vector	to	be	assigned	to	the	(� − 1)-th	frame	of	the	%-th	channel	in	case	of	a	vector-based	signal.	

The	elements	are	set	as	follows:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 711	
	

TYPE*,+(# − 1) = ?
DIR 			if			0 ∈ ℐ,-.(# − 1) ∨ D0 ∈ ℐ,-.(# − 2) ∧ 0 ∉ ℐ,-.(# − 1) ∧ 0 ∉ ℐ/01(# − 1)G
VEC 			if			0 ∈ ℐ/01(# − 1) ∨ D0 ∈ ℐ/01(# − 2) ∧ 0 ∉ ℐ/01(# − 1) ∧ 0 ∉ ℐ,-.(# − 1)G
EMPTY 			else			

.

BITRATE6,,(< − 1) = BITRATE=)

1?5=36
(,) (< − 1) = w

16*.6,?5=36,,(< − 1) 			if			A ∈ ℐ728(< − 1)

0 			if			A ∈ ℐ728(< − 2)	

	 B?5=36
(,) (< − 1) = y

Quantize+B,(< − 1)- if			A ∈ ℐ)*+(< − 1)

Quantize+B,(< − 2)- 		if			A ∈ ℐ)*+(< − 2)
.	

Here,	Quantize(⋅)	denotes	the	operation	to	obtain	the	quantized	vector	representation	from	the	original	
vector.	Each	vector	element	is	quantized	seperately,	where	the	quantization	of	an	element	k	is	given	by:	

 Quantize(k) = min	(255, round }
@

!A&
+ 1.0~ ⋅ 128)

C.5.3.3 Ambient	component	modification	

C.5.3.3.1 General	

The	 ambient	 component	modification	 processing	 block	 has	 the	 purpose	 to	 appropriately	modify	 the	
coefficient	sequences	of	the	ambient	HOA	component.	In	particular,	it	makes	the	decision	which	of	the	
coefficient	sequences	of	 the	ambient	HOA	component	hAMB(< − 2)	are	 to	be	chosen	 to	be	perceptually	
coded.	 Further,	 a	 fade	 in	 and	 out	 of	 coefficient	 sequences	 is	 performed	 if	 the	 indices	 of	 the	 chosen	
coefficient	 sequences	 vary	 between	 successive	 frames.	 It	 is	 assumed	 that	 the	 first	`MIN 	coefficient	
sequences	of	the	ambient	HOA	component	hAMB(< − 2)	are	always	chosen	to	be	perceptually	coded.	In	
order	to	de-correlate	these	HOA	coefficient	sequences,	it	is	proposed	to	transform	them	to	directional	
signals	 (i.e.	 general	 plane	 wave	 functions)	 impinging	 from	 some	 predefined	 directions	1MIN,G ,	 Ä =
1,… , `123.	The	resulting	modified	frame	of	the	ambient	HOA	component	is	denoted	by	hM,A(< − 2).	The	
information	about	the	choice	of	the	ambient	HOA	coefficient	sequences	to	be	transmitted,	about	their	
assignment	 and	 about	 the	 assignment	 of	 the	 predominant	 sound	 signals	 to	 the	 given) 	channels	 is	
assumed	to	be	contained	in	the	assignment	vector	BA(< − 2).	The	case	that	only	the	first	`MINcoefficient	
sequences	of	the	ambient	HOA	component	hAMB(< − 2)are	chosen	to	be	perceptually	coded	corresponds	
to	 a	 reduction	 of	 the	 order	 of	 the	 ambient	 component	 from	` 	to	`MIN .	 The	 indices	 of	 ambient	 HOA	
coefficient	 sequences	 to	 be	 transmitted	 are	 assumed	 to	 be	 output	 in	 the	 set	
ℐAMB,ACT(< − 2).	

Additionally,	 a	 temporally	 predicted	 modified	 ambient	 HOA	 component	 h-,1,=(< − 1) 	is	 computed.	
Compared	to	the	computation	of	the	ambient	HOA	component	h=1>(< − 2),	no	selection	of	coefficients	
and	 no	 fading	 is	 applied,	 since	 the	 required	 information	 for	 these	 operations	 is	 not	 available	 at	 the	
moment	of	computation.	The	temporally	predicted	modified	ambient	HOA	component	is	later	used	in	the	
Gain	Control	processing	block	in	order	to	allow	a	reasonable	look	ahead.	

According	to	the	previous	description,	the	processing	can	be	separated	into	two	successive	parts,	i.e.	the	
computation	 of	 the	 assignment	 vector	 and	 the	 computation	 of	 the	 respective	modified	 ambient	HOA	
component.	Both	parts	will	be	described	in	detail	in	the	following.	

ISO/IEC	23008-3:202X(E)	

712	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

C.5.3.3.2 Computation	of	the	assignment	vector	

Similar	to	the	components	of	the	target	assignment	vector	B=,6(< − 1)	created	in	the	HOA	decomposition,	
the	components	k=,,(< − 2)	of	the	assignment	vector	B=(< − 2)	is	assumed	to	be	composed	of	the	following	
triple:	

	 ≥2,/(� − 2) = (TYPE/(� − 2), BITRATE/(� − 2), INFO/(� − 2)),	

which	consist	of	the	following	elements:			

— TYPE/(� − 2)	,	 which	 denotes	 the	 final	 signal	 type	 used	 for	 the	 (� − 2)-th	 frame	 of	 the	% -th	
channel.	It	is	assumed	to	be	an	element	of	the	following	set	{DIR, VEC, AMB, EMPTY}.		

— BITRATE/(� − 2)	,	which	denotes	the	final	bit	rate	to	be	used	for	the	(� − 2)-th	frame	of	the	%-th	
channel.	The	bit	rate	is	assumed	to	be	given	in	bits/s.		

— INFO/(� − 2),	which	is	assumed	to	contain	further	assignment	info	depending	on	the	signal	type	
as	follows:		

	 INFO/(� − 2) =

⎩
⎪
⎨

⎪
⎧DHE2FC

(/) (� − 2) 			if			TYPE/(� − 2) = DIR

yHE2FC
(/) (� − 2) 			if			TYPE/(� − 2) = VEC
COEFFIDX/(� − 2) 			if			TYPE/(� − 2) = AMB
∅ 			if			TYPEC,/(� − 2) = EMPTY

	

Here,	 1?5=36
(,) (< − 2) 	denotes	 the	 quantized	 direction	 which	 will	 be	 assigned	 to	 the	

(< − 2)-th	 frame	 of	 the	 % -th	 channel	 in	 case	 of	 a	 directional	 signal.	 Further,	yHE2FC
(/) 		

(< − 2)	denotes	the	quantized	vector	which	will	be	assigned	to	the	(< − 2)-th	frame	of	the	
%-th	channel	in	case	of	a	vector-based	signal.	In	the	case	that	an	ambient	HOA	coefficient	
sequences	 is	 to	 be	 assigned	 to	 the	 (< − 2)-th	 frame	 of	 the	% -th	 channel,	 the	 quantity	
COEFFIDX,(< − 2)	is	assumed	to	denote	the	respective	HOA	coefficient	index.		

The	assignment	vector	B=(< − 2)	is	assumed	to	be	computed	recursively	for	< ≥ 1,	where	the	values	of	the	
initial	assignment	vector	B=(−2)	are	set	as	follows	for	A = 1,… , ^:		

	 TYPE/(−2) = EMPTY	

	 BITRATE/(−2) = 0	

	 INFO/(−2) = ∅	

The	actual	computation	of	 the	assignment	vector	B=(< − 2)	is	 summarized	 in	Table	C.1.	Along	with	 its	
computation	 the	 set	 ℐ=1>,=+6(< − 2) 	of	 indices	 of	 active	 ambient	 HOA	 coefficient	 sequences	 to	 be	
transmitted	for	the	(< − 2)-th	frame	is	computed	together	with	additional	auxiliary	quantities	consisting	
of	the	sets	ℐ7(< − 2)	and	ℐ*(< − 2),	which	contain	the	indices	of	ambient	HOA	coefficient	sequences	that	
are	 supposed	 to	be	disabled	 and	 enabled	 in	 the	 (< − 2)-th	 frame,	 respectively.	 The	 set	ℐ=1>,=+6(−2)	is	
assumed	to	be	initialized	to	an	empty	set.	

Further,	during	the	computation	of	the	assignment	vector,	the	set	ℐAMB,P(< − 2)	of	indices	of	all	non-active	
ambient	 HOA	 coefficient	 sequences	 which	 might	 potentially	 be	 activated	 in	 the	 (< − 2)-th	 frame	 is	
assumed	 to	 be	 determined.	 This	 set	 is	 assumed	 to	 have	 ÖAMB,P(< − 2) 	elements	 denoted	 by	
AAMB,P,1(< − 2), … , AAMB,P,LAMB,P(M−2)(< − 2).	It	is	in	particular	assumed	to	be	a	subset	of	ℐAMB,ALL = {1, … , `MAX},	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 713	
	

which	 denotes	 the	 set	 of	 indices	 of	 ambient	 HOA	 coefficient	 sequences	 that	 might	 be	 chosen	 to	 be	
transmitted	within	the)	transport	channels.	

Table	C.1	—	Algorithm	for	computation	of	the	assignment	vector	

	

C.5.3.3.3 Computation	of	the	modified	ambient	HOA	component	

As	 already	 mentioned,	 it	 is	 assumed	 that	 the	 first	`123 	coefficient	 sequences	 of	 the	 ambient	 HOA	
component	h=1>(< − 2)	are	always	chosen	to	be	perceptually	coded.	In	order	to	de-correlate	these	HOA	
coefficient	sequences,	it	is	proposed	to	apply	a	transform	to	them	as	outlined	in	subclause	C.5.3.3.3.1.	

The	 same	 is	 done	 for	 the	 temporally	 predicted	 ambient	 HOA	 component,	 where	 it	 is	 assumed	 that	
h-,=1>,R4S(< − 1)	is	obtained	from	h-,=1>(< − 1)	by	taking	only	the	first	`123	rows:		

ISO/IEC	23008-3:202X(E)	

714	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

U-,=1>,R4S(< − 1) = +i(!/0(,!/0()-
%&
h-,=1>,R4S(< − 1)	

By	further	assuming	the	frame	h1,=(< − 2)	of	the	modified	ambient	HOA	component	and	the	temporally	
predicted	frame	h-,1,=(< − 1)	of	the	modified	ambient	HOA	component	to	be	composed	by	means	of	its	
samples	as		

h1,=(< − 2) = Ü
á1,=,&(< − 2,1) … á1,=,&(< − 2, à)
												⋮ ⋱ 													⋮
á1,=,T(< − 2,1) … á1,=,T(< − 2, à)

ä	

	and		

h-,1,=(< − 1) = Ü
á-,1,=,&(< − 1,1) … á-,1,=,&(< − 1, à)
														⋮ ⋱ 																⋮
á-,1,=,T(< − 1,1) … á-,1,=,T(< − 1, à)

ä,	

the	individual	samples	are	computed	by:	

á1,=,U(< − 2, ã) =

⎩
⎪
⎨

⎪
⎧
!=1>,R4S,U(< − 2, ã) 			if			1 ≤ ê ≤ `123
á=1>,U(< − 2, ã)ë(ã) 			if			ê ∈ ℐ*(< − 2)

á=1>,U(< − 2, ã)ë(à + ã) 			if			ê ∈ ℐ7(< − 2)

á=1>,U(< − 2, ã) 			if			ê ∈ ℐ=1>,=+6(< − 2)\+ℐ*(< − 2) ∪ ℐ7(< − 2)-

0 			else			

	

and		

á-,1,=,U(< − 1, ã) = w
!=1>,R4S,U(< − 1, ã) 			if			1 ≤ ê ≤ `123
á=1>,U(< − 1, ã) 			if			`123 < ê ≤ `
0 			else			

.	

C.5.3.3.3.1 Transform	for	the	∆MNO	low	order	coefficient	sequences	of	the	ambient	HOA	
component		

By	default	 the	 first	`123	HOA	coefficient	sequences	of	h=1>(< − 1)	and	h-,=1>(< − 1)	are	 transformed	to	
provide	 the	 signal	 frames	U=1>,R4S(< − 2) 	and	U-,=1>,R4S(< − 1) ,	 respectively,	 where	 the	 transform	 is	
described	 in	 subclause	 C.5.3.3.3.2.	 If	ñ123 	is	 of	 value	1,	 an	 alternative	 synthesis	method	 described	 in	
subclause	C.5.3.3.3.3	can	be	used.	In	the	latter	case	the	flag	UsePhaseShiftDecorr	has	to	be	set	to	1.	

C.5.3.3.3.2 Spatial	transform	

The	first	`123	coefficient	sequences	of	the	ambient	HOA	component	are	subjected	to	a	spatial	transform,	
where	 they	are	 transformed	 to	directional	 signals	 (i.e.	 general	plane	wave	 functions)	 impinging	 from	
some	predefined	directions	1V

(!/0(),	Z = 1,… , @3>F.	

Assuming	h=1>,R4S(< − 2)	to	be	the	matrix	created	from	h=1>(< − 2)	by	taking	only	the	first	@3>F	rows,	
the	transform	is	given	by:	

Ç234,PGQ(� − 2) = «∞(%"#$,%"#$)»*' ⋅ ~234,PGQ(� − 2)	

where	i(!/0(,!/0() 	denotes	 the	 mode	 matrix	 of	 order	ñ123 	with	 respect	 to	 the	 predefined	 directions	
1U
(!/0(), ê = 1,… , `123,	defined	in	Annex	F.1.5.		

The	 same	 is	 done	 for	 the	 temporally	 predicted	 ambient	 HOA	 component,	 where	 it	 is	 assumed	 that	
h-,=1>,R4S(< − 1)	is	obtained	from	h-,=1>(< − 1)	by	taking	only	the	first	`123	rows:		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 715	
	

U-,=1>,R4S(< − 1) = +i(!/0(,!/0()-
%&
h-,=1>,R4S(< − 1)	

C.5.3.3.3.3 Phase-based	transform	

The	phase-based	transform	for	the	first	`123	HOA	coefficient	sequences	of	C=1>(k − 1)is	defined	by:	

⎣
⎢
⎢
⎡
x=1>,R4S,&(k − 2)
x=1>,R4S,/(k − 2)
x=1>,R4S,W(k − 2)
x=1>,R4S,X(k − 2)⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
d(9) ⋅ (S(k − 2) +M(k − 2))
d(9) ⋅ (M(k − 2) − S(k − 2))
d(8) ⋅ (BA:Y(k − 2) + d(5) ⋅ õ=1>,/(k − 2))
õ=1>,W(k − 2) ⎦

⎥
⎥
⎤
	

with	the	coefficients	d	as	defined	in	Table	C. 2, the	signal	frames	ú(< − 2)	and		ù(< − 2)	being	defined	by:	

S(k − 2) = AA:Y(k − 2) + d(6) ⋅ c=1>,/(k − 2)
M(k − 2) = d(4) ⋅ c=1>,&(k − 2) + d(5) ⋅ c=1>,X(k − 2)

	

and	†A:Y(< − 2)	and	°A:Y(< − 2)	are	the	frames	of	 + 90	degrees	phase	shifted	signals	†	and	°	defined	by:	

A(k − 2) = d(0) ⋅ c=1>,R4S,&(k − 2) + d(1) ⋅ c=1>,X(k − 2)
B(k − 2) = d(2) ⋅ c=1>,R4S,&(k − 2) + d(3) ⋅ c=1>,X(k − 2)

	

The	 phase-based	 transform	 for	 the	 first	 `123	HOA	coefficient	sequences	of	h-,=1>(< − 1) is	 defined	
accordingly.	Note	that	this	kind	of	transform	introduces	a	delay	of	one	frame.	

Table	C.2	—	Coefficients	for	phase-based	transform	

n d(n)
0 0.34202009999999999
1 0.41629927335044281
2 0.14319999999999999
3 0.53170257350013528
4 0.93969259999999999
5 0.15152053650908184
6 0.53517399036360758
7 0.57735026918962584
8 0.94060406122874030
9 0.500000000000000	

C.5.3.4 Directional	sub-bands	signals	prediction	

C.5.3.4.1 General	

The	 purpose	 of	 the	 directional	 sub-band	 signals	 prediction	 is	 to	 approximate	 the	 ambient	 HOA	
component	by	a	composition	of	directional	sub-band	signals,	which	are	predicted	by	a	weighted	sum	of	
those	coefficient	sequences	of	the	ambient	HOA	component	that	are	supposed	to	be	transmitted	within	
the) 	given	 transport	 channels,	 i.e.	 the	 coefficient	 sequences	 with	 indices	 contained	 in	 the	 set	
ℐ234,2BC(� − 2).	The	idea	is	that	these	coefficient	sequences	will	be	available	at	the	decompression	stage	
to	 approximate	 the	 non-transmitted	 coefficient	 sequences	 of	 the	 ambient	 HOA	 component	 by	 their	
predicted	versions.	
The	prediction	of	each	individual	directional	sub-band	signal	to	be	performed	at	the	decompression	stage	
is	based	on	parameters	of	 the	corresponding	sub-band	group	 including	 the	sub-band	of	 interest.	 It	 is	

ISO/IEC	23008-3:202X(E)	

716	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

assumed	that	there	are	á	sub-bands	that	are	assigned	to	à	sub-band	groups,	which	are	determined	by	
the	sub-band	group	configuration	to	be	specified	in	the	HOAConfig()	(see	subclause	12.4.1.2.1).	It	defines	
for	each	â-th	sub-band	group	a	lower	index	bound	ℒ(â)	and	an	upper	index	bound	ã(â)	such	that	sub-
bands	with	indices	between	these	bounds,	i.e.	with	ℒ(â) ≤ C ≤ ã(â),	are	assumed	to	belong	to	this	sub-
band	group.	

The	 parameters	 for	 each	â-th	 sub-band	 group,	â = 1,… , à ,	 comprise	 on	 the	 one	 hand	 the	 prediction	
coefficients	matrix	t(� − 2, â),	which	is	used	to	compute	the	directional	sub-band	signals	from	the	active	
coefficient	sequences	of	 the	ambient	HOA	component.	On	 the	other	hand,	 the	parameters	 include	 the	
tuple	 set	ℳå=>?(� − 2, â) 	containing	 direction	 information	 to	 compute	 the	 HOA	 representation	 of	 the	
directional	sub-band	signals.	The	first	element	Z	of	each	tuple	of	the	set	ℳå=>?(� − 2, â)	denotes	the	index	
of	an	active	direction	trajectory,	of	which	there	are	at	most	[+4.	The	second	element	D+4,1(� − 2, â)	of	
each	tuple	indicates	the	corresponding	direction.	Note	that	the	indexing	of	the	direction	trajectories	is	
important	to	provide	continuous	directional	sub-band	signals	on	the	one	hand,	and	to	exploit	temporal	
dependencies	between	successive	prediction	coefficient	matrices	t(� − 2, â)	for	an	efficient	coding	on	
the	other	hand.		

Further,	for	an	efficient	coding	of	the	individual	sub-band	directions	it	is	assumed	that	all	of	them	are	
contained	in	the	ordered	direction	set	çå=>?(� − 2),	of	which	the	number	of	elements	is	constrained	to	be	
not	greater	than	a	predefined	number	of	[0?A=,	of	which	a	typical	value	is	8	or	16.	Hence,	the	coding	of	
the	 individual	 sub-band	directions	may	be	done	by	 their	 index	of	 the	 corresponding	direction	 in	 the	
set	çå=>?(� − 2).		

In	order	to	avoid	artifacts	in	the	predicted	directional	sub-band	signals	due	to	changes	of	the	estimated	
directions	 and	 prediction	 coefficients	 between	 successive	 frames,	 the	 prediction	 is	 performed	 on	
concatenated	long	frames	consisting	of	two	temporally	successive	frames.	In	particular,	that	means	that	
each	quantity	çå=>?(� − 2),	ℳå=>?(� − 2, â)	and	t(� − 2, â),	â = 1,… , à,	 is	 related	 to	 the	(� − 1)-th	and	
(� − 2)-th	frame.	At	decompression,	these	parameters	are	then	assumed	to	be	used	to	perform	overlap	
add	processing	with	the	predicted	directional	sub-band	signals.		

Note	 that	 in	 the	 absence	 of	 predominant	 sound	 signals	 the	 ambient	 component	 corresponds	 to	 a	
"truncated"	version	of	the	original	HOA	representation.	Truncation	in	this	context	means	that	the	original	
HOA	representation	is	approximated	by	only)	of	its	total	@	coefficient	sequences,	i.e.	by	those	that	are	
chosen	to	be	transmitted	within	the)	transport	channels.		

A	possible	architecture	for	the	directional	sub-band	signals	prediction	is	 illustrated	in	Figure	C.9.	The	
individual	 processing	 units	 to	 compute	 the	 prediction	 parameters	will	 be	 described	 in	 the	 following	
subclauses.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 717	
	

	
Figure	C.9	—	Directional	sub-band	signals	prediction	

C.5.3.4.2 Analysis	filter	banks		

Each	 frame	 W234,!(� − 1) ,	 \ = 1,… , @ ,	 of	 an	 individual	 coefficient	 sequence	 of	 the	 ambient	 HOA	
representation	~234(� − 1)	is	first	decomposed	into	frames	of	individual	sub-band	signals		WÃ234,!(� −
1, C),	C = 1,… , á.	For	each	sub-band	C,	C = 1,… , á,	the	frames	of	the	sub-band	signals	of	the	individual	HOA	
coefficient	sequences	are	collected	into	the	sub-band	HOA	representation		Õå234(� − 1, C)	as:	

£§=1>(< − 1, •) =

⎣
⎢
⎢
⎡
õ¶=1>,&(< − 1, •)

õ¶=1>,/(< − 1, •)
																		⋮
õ¶=1>,T(< − 1, •)⎦

⎥
⎥
⎤
							for			• = 1,… , ß	

The	filter	bank	is	assumed	to	be	based	on	quadrature	mirror	filters	(QMF)	with	a	total	of	á = 64	sub-
bands,	 which	 are	 also	 employed	 for	 perceptual	 coding.	 Note	 that,	 in	 contrast	 to	 the	 HOA	 coefficient	
sequences	W234,!(� − 1)	their	sub-band	representations	WÃ234,!(� − 1, C)	are	complex	valued	in	general.	
Further,	the	sub-band	signals	are	decimated	in	time	compared	to	the	original	time-domain	signals	by	a	
factor	of	á.	As	a	consequence,	the	number	of	samples	in	the	frames	WÃ234,!(� − 1, C)	is	ö+4: = ö/á.	 It	 is	
assumed	that	ö	is	an	integral	multiple	of	á	to	assure	that	ö+4	has	a	positive	integer	value.	

ISO/IEC	23008-3:202X(E)	

718	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

C.5.3.4.3 Direction	estimation	

The	direction	estimation	processing	block	has	the	purpose	to	analyse	the	input	HOA	representation	and	
compute	 for	each	b-th	sub-band	group, • = 1, … , °, a	set	ℳœDIR(< − 2, ®)	of	 tuples	specifying	directions	of	
sub-band	 general	 plane	 wave	 functions	 with	 a	 major	 contribution	 to	 the	 sound	 field	 for	 sub-bands	
belonging	to	the	sub-band	group.	In	this	context	the	term	"major	contribution"	may	for	instance	refer	to	
the	most	power	compared	to	sub-band	general	plane	waves	impinging	from	other	directions.	However,	
it	may	also	refer	to	a	high	relevance	in	terms	of	the	human	perception.		

In	order	to	avoid	artifacts	in	the	predicted	directional	sub-band	signals	at	decompression	due	to	changes	
of	 the	 estimated	 directions	 and	 prediction	 coefficients	 between	 successive	 frames,	 the	 direction	
estimation	 and	 the	 prediction	 of	 directional	 sub-band	 signals	 are	 supposed	 to	 be	 performed	 on	
concatenated	long	frames,	which	consist	of	the	(< − 1)-th	and	(< − 2)-th	input	frame.	At	decompression,	
the	 quantities	 estimated	 on	 these	 long	 frames	 are	 then	 assumed	 to	 be	 used	 to	 perform	 overlap	 add	
processing	with	the	predicted	directional	sub-band	signals.		

The	direction	estimation	for	sub-bands	C	related	to	the	â-th	sub-band	group	is	assumed	to	provide	the	set	
ℳå=>?(� − 2, â) 	of	 tuples	 consisting	 on	 the	 one	 hand	 of	 the	 indices	Z ∈ ℐ–=>?(� − 2, â) 	identifying	 the	
individual	(active)	direction	trajectories	as	well	as	on	the	other	hand	the	respective	estimated	directions	
D+4,1(� − 2, â),	i.e.		

ℳå=>?(� − 2, â) = ü†Z,D+4,1(� − 2, â)°¢ Z ∈ ℐ–=>?(� − 2, â)ß	

The	index	set	ℐ–=>?(� − 2, â)	is	assumed	to	be	a	subset	of	{1, … , [+4},	where	[+4	is	the	maximum	number	
of	possible	directions	per	sub-band	group,	and	hence	per	sub-band.	The	value	of	[+4	can	be	specified	in	
the	HOAConfig()	and	is	typically	small	for	the	reason	of	coding	efficiency.	In	this	context,	the	indexing	of	
the	direction	trajectories	is	important	to	provide	continuous	directional	sub-band	signals	on	the	one	hand,	
and	to	exploit	temporal	dependencies	between	successive	prediction	coefficient	matrices	t(� − 2, â)	for	
an	efficient	coding	on	the	other	hand.	To	further	increase	the	coding	efficiency	for	the	side	information,	
the	 individual	directions	™+4,1(� − 2, â)	of	all	sub-band	groups	are	constrained	to	be	contained	in	the	
direction	 set	çå=>?(� − 2),	which	 itself	 is	 constrained	 to	 contain	 not	more	 than	[0?A= 	directions.	 The	
value	of	[0?A=	can	be	specified	in	the	HOAConfig()	as	a	power	to	the	base	2,	of	which	a	typical	value	is	16	
or	8.	Hence,	the	coding	of	the	directions	for	the	individual	sub-band	groups	may	be	done	by	their	index	
of	the	corresponding	direction	in	the	set	çå=>?(� − 2).	One	possible	idea	for	the	direction	estimation	is	
illustrated	in	Figure	C.10.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 719	
	

	
Figure	C.10	—	Proposed	architecture	of	direction	estimation	

In	 a	 first	 step	 a	 full-band	 direction	 estimation	 is	 performed	 on	 a	 direction	 grid	 consisting	 of	
©	test	directions	1\]^_%&`, ™ = 1,… , ©	(with	©	set	in	the	HOAConfig()	and	the	directions	defined	in	Tables	
F.2	–	F.11)	using	the	concatenated	long	frame		

h=1>(< − 2; < − 1) = [h=1>(< − 2) h=1>(< − 1)]	

consisting	of	the	previous	and	current	input	frames,	~234(� − 2)	and	~234(� − 1),	of	the	full-band	HOA	
representation	of	the	ambient	component.	The	number	®	of	test	directions	for	the	direction	estimation	
is	to	be	specified	in	the	HOAConfig().		

This	 direction	 search	 is	 assumed	 to	 provide	 a	 number	 of	[I4(� − 2) ≤ [0?A= 	direction	 candidates	
DB2,1(� − 2),	Z = 1,… , [I4(� − 2),	which	are	supposed	to	be	contained	in	the	set	çåB2(� − 2),	i.e.	

≠§+=(< − 2) = @1+=,&(< − 2),… ,1+=,a12(<%/)(< − 2)T	

A	typical	value	for	the	maximum	number	of	direction	candidates	per	frame	is	Æ-8*7 = 16.	The	direction	
estimation	can	be	accomplished	e.g.	by	combining	the	 information	obtained	 from	a	directional	power	
distribution	of	 the	 input	HOA	representation	 together	with	a	 simple	 source	movement	model	 for	 the	
Bayesian	inference	of	the	directions.		

In	a	second	step,	the	direction	search	is	carried	out	for	each	individual	sub-band	group,	however	not	on	
the	initial	direction	grid	consisting	of	®	test	directions,	but	rather	on	the	candidate	set	çåB2(� − 2).	The	
number	of	directions	for	the	â-th	sub-band,	â = 1,… , à,	denoted	by	[+4(� − 2, â),	is	assumed	to	be	not	
greater	than	[+4,	which	is	typically	distinctly	smaller	than	[0?A=.	As	the	full-band	version,	the	direction	
search	for	each	individual	â-th	sub-band	group,	â = 1,… , à,	 is	also	supposed	to	be	performed	on	long	
concatenated	frames	of	sub-band	signals	belonging	to	this	sub-band	group:	
£§=1>(< − 2; < − 1; •) = [£§=1>(< − 2, •) £§=1>(< − 1, •)]				• = ℒ(®), … ,∞(®)	

consisting	of	 the	previous	and	current	 frame.	 In	a	 last	step,	 the	desired	set	≠§728(< − 2)	of	all	 full-band	
direction	candidates,	which	do	actually	occur	as	sub-band	directions,	is	determined	as		

ISO/IEC	23008-3:202X(E)	

720	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

≠§728(< − 2):= @1+=,V(< − 2)C	∃® ∈ {1,… , °}			and			Ä ∈ ℐ≤728(< − 2, ®)			≥.		(.			1+=,V(< − 2) = 1.>,V(< − 2, ®)T.	

To	be	able	to	refer	to	them,	the	directions	of	the	set	çå=>?(� − 2)	are	finally	denoted	by	DRG>FA=,1(� − 2),	
Z = 1,… , [RG>FA=(� − 2)	with	[RG>FA=(� − 2)	denoting	their	number.	

C.5.3.4.4 Computation	of	directional	sub-band	signals	for	individual	sub-band	groups		

This	processing	block	is	assumed	to	compute	for	each	â-th	sub-band	group,	â = 1,… , à,	long	frames	of	
directional	 sub-band	signals	v“1(� − 2; � − 1; C),	Z = 1,… , [+4 ,	 related	 to	 the	(� − 2)-th	and	(� − 1)-th	
frame	for	each	sub-band	C	contained	in	this	sub-band	group,	i.e.	for	C = ℒ(â), … ,ã(â).	
For	a	clearer	presentation	of	the	computation,	all	potential	[+4	directional	signals	for	each	C-th	sub-band	
of	a	sub-band	group	â	are	arranged	in	the	matrix	‘å(� − 2; � − 1; C)	as:	

¥§(< − 2; < − 1; •) =

⎣
⎢
⎢
⎢
⎡Yµ&(< − 2; < − 1; •)

Yµ/(< − 2; < − 1; •)
																				⋮

Yµa#2(< − 2; < − 1; •)⎦
⎥
⎥
⎥
⎤

∈ ℂa#2×/c#2	

It	 is	assumed	that	the	frames	of	the	inactive	directional	sub-band	signals,	 i.e.	those	long	signal	frames	
v“1(� − 2; � − 1; C)	whose	 index	Z 	is	 not	 contained	within	 the	 set	ℐ–=>?(� − 2, â)	for	 the	 corresponding	
sub-band	group	b,	are	set	to	zero.		

The	remaining	long	signal	frames	v“1(� − 2; � − 1; C),	i.e.	those	with	index	Z ∈ ℐ–=>?(� − 1, â),	are	assumed	
to	be	collected	within	the	matrix	‘å2BC(� − 2; � − 1; C) ∈ ℂ934(S*',T)×7U34 .	One	possibility	to	compute	the	
active	 directional	 sub-band	 signals	 contained	 therein	 is	 to	 minimize	 the	 error	 between	 their	 HOA	
representation	and	the	sub-band	HOA	representation	of	the	input	ambient	component.	The	solution	is	
given	by		

¥§ =+6(< − 2; < − 1; •) = +,.>(< − 2, ®)-
A
£§=1>(< − 2; < − 1; •)	

where	(⋅)< 	denotes	 the	Moore-Penrose	pseudo-inverse	 and	V+4(� − 2, â) ∈ ℝ(×934(S*',T) 	denotes	 the	
mode	matrix	with	respect	to	the	direction	estimates	in	the	set	÷D+4,1(� − 2, â)SZ ∈ ℐ–=>?(� − 2, â)ò.	

C.5.3.4.5 Prediction	of	directional	sub-band	signals	for	individual	sub-band	groups		

The	prediction	of	all	directional	sub-band	signals	related	to	each	C-th	sub-band	of	the	â-th	sub-band	group,	
® = 1,… , ° ,	which	 are	 contained	 in	 the	matrix	¥§(< − 2; < − 1; •),	 is	 assumed	 to	 performed	 by	 a	matrix	
multiplication	of	£§=1>(< − 2; < − 1; •)	with	the	matrix	∑(< − 2, ®)	with	all	potential	prediction	coefficients.	
In	 particular,	 the	 predicted	 version	 of	¥§(< − 2; < − 1; •) ,	 which	 is	 denoted	 by	¥§ -(< − 2; < − 1; •) 	,	 is	
assumed	to	be	computed	by:	

¥§ -(< − 2; < − 1; •) = ∑(< − 2, ®)£§=1>(< − 2; < − 1; •)				for			• = ℒ(®), … ,∞(®)			and			® = 1,… , °	

Note	that	per	construction	all	rows	of	t(� − 2, â)	except	for	those	with	index	Z ∈ ℐ–=>?(� − 2, â)	are	zero,
meaning	that	obviously	only	the	active	directional	sub-band	signals	are	predicted.	Further,	all	columns	
of	t(� − 2, â)	except	for	those	with	index	\ ∈ ℐ234,2BC(� − 2)	are	also	zero,	meaning	that	for	prediction	
only	those	HOA	coefficient	sequences	are	considered	which	are	supposed	to	be	transmitted	and	to	be	
available	for	prediction	at	HOA	decompression.	

At	 HOA	 decompression,	 the	 original	 sub-band	 HOA	 representation	Õå234(� − 1, C) 	is	 in	 general	 not	
available,	but	instead	only	a	perceptually	decoded	version	of	it,	which	is	used	for	the	prediction	of	the	
directional	sub-band	signals.	In	the	case	the	core	coder	to	encode	the	individual	transport	signals	employs	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 721	
	

spectral	 band	 replication	 (SBR),	 it	 does	 not	 make	 sense	 to	 exploit	 any	 phase	 relationships	 for	 the	
prediction	 from	 “replicated	 high	 frequency	 content”	 by	 using	 complex	 valued	 prediction	 coefficients,	
since	the	SBR	cannot	be	assumed	to	preserve	any	phase	relationships.	Instead,	it	is	more	reasonable	to	
use	only	real	valued	prediction	coefficients	for	the	frequency	region	affected	by	SBR.		

For	 that	 reason,	 the	prediction	coefficients	are	assumed	 to	be	 complex	valued	 for	 sub-band	groups	â	
smaller	 than	 the	 sub-band	 group	 index	C+4? 	(specified	 in	 the	 HOAConfig()),	 and	 real	 valued	 for	 the	
remaining	sub-band	groups,	i.e.		

∑(< − 2, ®) ∈ ∏
ℂa#2×T 			for			1 ≤ • < •.>8
ℝa#2×T 			for			•.>8 ≤ • ≤ °

It	 is	 reasonable	 to	 set	 the	 sub-band	 group	 index	C+4? 	to	 be	 the	 highest	 one	 such	 that	 the	 frequency	
corresponding	to	the	lowest	sub-band	in	this	group	is	below	the	SBR	frequency.		
C.5.3.5 Parametric	ambience	replication	(PAR)	encoder		

C.5.3.5.1 General	

The	main	idea	of	parametric	ambience	replication	(PAR)	is	to	complement	the	preliminary	encoded	HOA	
representation	by	potentially	missing	ambient	components,	which	are	parametrically	 replicated	 from	
itself.	The	replication	is	performed	in	the	sub-band	domain	assuming	F	sub-bands	that	are	assigned	to	G	
sub-band	groups.	The	assignment	is	determined	by	the	PAR	related	sub-band	group	configuration,	which	
is	specified	in	the	HOAConfig()	(see	subclause	12.4.1.2.1).	It	defines	for	each	g-th	sub-band	group,	g =
1,… , G ,	 a	 lower	 index	 bound	ℒ02?(g) 	and	 an	 upper	 index	 bound	ã02?(g) 	such	 that	 sub-bands	 with	
indices	j	between	these	bounds,	i.e.	with	ℒ02?(g) ≤ j ≤ ã02?(g),	are	assumed	to	belong	to	this	sub-band	
group.	 The	 sub-band	 representation	 of	 the	 replicated	 ambient	 component	 for	 the	 j -th	 sub-band	 is	
assumed	 to	 be	 of	 order	N02?(g) 	depending	 on	 the	 corresponding	g -th	 sub-band	 group.	 The	 orders	
N02?(g)	for	each	sub-band	group	g = 1,… , G	are	specified	in	the	HOAConfig().	The	mentioned	sub-band	
representation	 of	 the	 replicated	 ambient	 component	 is	 hence	 represented	 and	 created	 by	means	 of	
O02?(g) = (N02?(g) + 1)7 	virtual	 loudspeaker	 sub-band	 signals	 at	 directions	 DV

WF567(X)Y ,	 d =
1,… , O02?(g),	defined	in	the	tables	in	Tables	F.2	and	F.3.	These	upmix	sub-band	signals	are	computed	as	
a	mixture	of	the	sub-band	signals	created	by	de-correlation	filters	from	the	virtual	loudspeaker	sub-band	
signals	 representing	 the	 truncated	 sub-band	HOA	 representation	 of	~BG30(k − 3).	 Truncation	 in	 this	
context	means	for	sub-bands	j	belonging	to	the	g-th	sub-band	group	the	reduction	of	the	order	to	N02?(g)	
and	the	setting	of	all	coefficient	sequences	to	zero,	whose	indices	are	not	contained	in	either	of	the	sets	
ℐA(k − 3),	ℐ=(k − 3),	 or	ℐE(k − 3).	 The	number	of	 de-correlated	 sub-band	 signals	 to	be	mixed	 for	 the	
creation	of	each	upmix	sub-band	signal	is	allowed	to	vary	over	time	according	to	the	values	in	Table	F.40	
in	order	to	adapt	to	the	diffuseness	of	the	ambient	HOA	component	to	be	replicated.	This	number,	denoted	
by	N+>J(k − 4, g),	offers	the	possibility	to	control	the	amount	of	side	information	required	to	code	the	
mixing	matrices	M02?(k − 4, g)	for	the	individual	sub-band	groups	g = 1,… , G.	Further,	for	N+>J(k, g) <
O02?(g) 	the	 mixing	 uses	 de-correlated	 sub-band	 signals	 obtained	 from	 virtual	 loudspeaker	 signals	
‘BG30(k, j) 	at	 directions	 in	 the	 neighbourhood	 of	 the	 direction	 of	 the	 upmix	 signal.	 This	 operation	
prevents	that	directional	components	of	the	truncated	sub-band	HOA	representations	of	~BG30(k − 3)	
are	undesirably	spatially	distributed	over	all	directions	for	the	replication	of	the	ambient	HOA	component.	
An	additional	aspect	is	that	for	each	number	N+>J(k − 4, g)	and	each	individual	upmix	sub-band	signal	it	
is	specified	in	Table	F.40,	which	de-correlated	sub-band	signals	have	to	be	mixed.	In	order	to	decrease	
the	mutual	correlation	between	each	group	of	de-correlated	sub-band	signals	to	be	mixed,	the	assignment	
of	the	virtual	loudspeaker	signals	to	the	de-correlation	filters	is	adapted	to	the	choice	of	de-correlated	
sub-band	signals.	This	assignment	is	expressed	through	the	permutation	matrices	û02?(k − 4, g)	for	the	
individual	sub-band	groups	g = 1,… , G.	Note	that	for	PAR	overlap	add	processing	is	used	to	handle	time	
varying	parameters.	Hence,	each	parameter	indexed	by	the	index	k − 4	is	assumed	to	be	valid	jointly	for	
the	frames	k − 4	and	k − 3.	A	possible	realization	of	the	PAR	encoder	may	be	decomposed	into	two	parts,	
which	are	illustrated	in	Figures	C.11	and	C.12.	The	first	part	is	concerned	with	the	task	how	to	determine	

ISO/IEC	23008-3:202X(E)	

722	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

the	numbers	N+>J(k − 4, g)	of	de-correlated	sub-band	signals	to	be	mixed	for	the	creation	of	each	upmix	
sub-band	signal	related	to	the	g-th	sub-band	group,	g = 1,… , G.	These	numbers	unambiguously	specify	
the	permutation	matrices	û02?(k − 4, g),	g = 1,… , G,	 through	Table	F.41.	The	 second	part	of	 the	PAR	
encoder	deals	with	problem	of	computing	the	mixing	matrices	ù02?(k − 4, g),	g = 1,… , G.	Both	parts	will	
be	described	in	more	detail	in	the	following.	

C.5.3.5.2 Part	1	of	PAR	encoder		

Figure	C.11	—	Part	1	of	PAR	encoder	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 723	
	

In	the	first	part	of	the	PAR	encoder,	as	illustrated	in	Figure	C.11,	both	the	frame	of	the	reconstructed	HOA	
representation	ŸBG30(k − 3)	and	the	frame	of	the	delayed	original	HOA	representation	Ÿ(k − 3),	are	first	
decomposed	 into	 frames	of	 individual	 sub-band	HOA	 representations	 for	 each	of	 the	F	assumed	 sub-
bands	by	the	application	of	the	analysis	filter	banks,	as	described	in	subclause	12.4.2.7.2.	The	resulting	
individual	sub-band	HOA	representations	are	 then	subjected	 to	a	spatial	 transform	dependent	on	 the	
corresponding	 sub-band	 group	 (see	 subclause	 12.4.2.5.2).	 The	 frames	 of	 all	 resulting	 virtual	
loudspeaker	 sub-band	 signals	 for	 the	 j -th	 sub-band	 j = 1,… , F ,	 are	 denoted	 by	⁄BG30(k − 3, j) 	and	
⁄G?>J(k − 3, j) ,	 respectively.	 In	 a	 next	 step,	 for	 each	g -th	 sub-band	 group,	g = 1,… , G ,	 the	 number	
N+>J(k − 4, g)	of	de-correlated	sub-band	signals	to	be	mixed	for	the	creation	of	an	upmix	sub-band	signal	
is	determined	from	a	comparison	between	the	extended	frames		

[⁄BG30(k − 4, j) ⁄BG30(k − 3, j)],				ℒ02?(g) ≤ j ≤ ã02?(g)	

of	the	virtual	loudspeaker	sub-band	signals	of	the	preliminary	reconstructed	HOA	representation	and	the	
extended	frames		

[⁄G?>J(k − 4, j) ⁄G?>J(k − 3, j)],				ℒ02?(g) ≤ j ≤ ã02?(g)	

of	 the	 virtual	 loudspeaker	 sub-band	 signals	 of	 the	 original	 HOA	 representation.	 The	 idea	 is	 that	 the	
number	N+>J(k − 4, g)	may	be	chosen,	on	the	one	hand,	in	dependence	on	the	diffuseness	of	the	ambient	
HOA	component	to	be	replicated,	and	on	the	other	hand,	in	dependence	on	the	available	data	rate	for	the	
PAR	 side	 information.	 As	 a	 rule	 of	 thumb,	 the	 value	 of	N+>J(k − 4, g) 	should	 be	 increased	 the	 more	
diffuseness	 is	missing	 in	 the	preliminary	 reconstructed	HOA	representation	compared	 to	 the	original	
HOA	representation.	On	the	contrary,	if	a	low	PAR	side	information	data	rate	is	desired	this	value	should	
be	 kept	 low.	 An	 important	 constraint	 is	 that	N+>J(k − 4, g) 	is	 allowed	 only	 to	 have	 values	 as	 that	 of	
NumOfDecorrSigsPerParSubbandTable	 given	 in	 Table	 F.40.	 The	 permutation	matrices	û02?(k − 4, g),	
g = 1,… , G,	which	define	the	assignment	of	the	virtual	loudspeaker	sub-band	signals	to	the	de-correlation	
filters,	are	selected	according	to	Table	F.41	dependent	on	the	numbers	N+>J(k − 4, g).	The	dependence	
expressed	by	Table	F.41	is	chosen	to	minimize	the	mutual	correlation	between	the	signals	to	be	mixed.	
As	a	pre-processing	step	for	the	subsequent	computation	of	the	mixing	matrices	in	the	second	part	of	the	
PAR	Encoder,	the	sub-band	HOA	representation	of	the	reconstructed	HOA	component	~BG30(k − 3)	is	
subjected	to	a	Truncation,	a	Coefficient	Selection	and	a	sub-band	group	dependent	Spatial	Transform	(see	
subclauses	12.4.2.8.3	and	12.4.2.5.2	for	a	detailed	description	of	the	processing)	to	provide	the	frames	of	
all	virtual	loudspeaker	sub-band	signals	‘+0(k − 3, j)	for	each	j-th	sub-band,	j = 1,… , F.		

C.5.3.5.3 Part	2	of	PAR	encoder	

In	the	second	part	of	the	PAR	encoder,	depicted	in	Figure	C.12,	the	virtual	loudspeaker	sub-band	signals	
¥.-(k − 3, j),	representing	the	reconstructed	HOA	component	h+41-(k − 3)	are	subject	to	a	de-correlation.	
In	particular,	the	de-correlated	sub-band	signals	¥7*+(k − 3, j)	for	the	j-th	sub-band	belonging	to	the	g-th	
sub-band	group,	 i.e.	 for	ℒ-=8(g) ≤ j ≤ ∞-=8(g),	are	 computed	according	 to	 the	description	 in	 subclause	
12.4.2.8.5	using	the	permutation	matrix	ª-=8(k − 4, g)	for	the	assignment	of	the	virtual	loudspeaker	sub-
band	signals	¥.-(k − 3, j)	to	the	de-correlation	filters.		

In	 a	 final	 step,	 the	 permutation	 matrix	º-=8(k − 4, g) 	for	 each	 g -th	 sub-band	 group,	 g = 1,… , G ,	 is	
computed	such	as	to	approximate	the	extended	frames:	

[¥482d(k − 4, j) ¥482d(k − 3, j)] − [¥+41-(k − 4, j) ¥+41-(k − 3, j)]	,				ℒ-=8(g) ≤ j ≤ ∞-=8(g)	

of	 the	 virtual	 loudspeaker	 sub-band	 signals	 of	 the	 residual	 between	 the	 original	 and	 preliminary	
reconstructed	 HOA	 representation	 for	 all	 sub-bands	 j 	belonging	 to	 the	g -th	 sub-band	 group	 by	 the	
following	mixture:	

º-=8(k − 4, g)+ª-=8(k − 4, g)-
%&
[¥7*+(k − 4, j) ¥7*+(k − 3, j)],				ℒ-=8(g) ≤ j ≤ ∞-=8(g)	

ISO/IEC	23008-3:202X(E)	

724	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

of	 the	de-correlated	signals	created	 from	the	virtual	 loudspeaker	sub-band	signals	of	 the	preliminary	
reconstructed	HOA	representation.	

	
Figure	C.12	—	Part	2	of	PAR	encoder	

C.5.3.6 Channel	assignment	

The	channel	assignment	assigns	with	the	information	provided	by	the	assignment	vector	y2(� − 2)	the	
appropriate	signals	contained	in	Ç0+(� − 2)	and	that	contained	in	~3,2(� − 2)	to	the)	available	channels,	
yielding	the	signals	ë/(� − 2),	% = 1,… ,).	Further,	appropriate	signals	contained	in	Ç0+(� − 1)	and	that	
in	~3,2(� − 1)	are	also	assigned	to	the)	available	channels,	yielding	the	predicted	signals	ë0,/(� − 2),	% =
1,… ,).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 725	
	

Assuming	the	frame	~3,2(� − 2)	to	be	composed	of	the	individual	coefficient	sequences	as:	

 h1,=(< − 2) =

⎣
⎢
⎢
⎡
õ1,=,&(< − 2)

õ1,=,/(< − 2)
												⋮
õ1,=,T(< − 2)⎦

⎥
⎥
⎤

the	signals	€/(� − 2),	% = 1,… ,),	are	determined	as	follows:		

 Ω,(< − 2) = w

æ-.,,(< − 2) 			if			TYPE,(< − 2) = DIR ∨ TYPE,(< − 2) = VEC

/1,=,U(< − 2) 			if			TYPE,(< − 2) = AMB ∧ COEFFIDX,(< − 2) = ê

0 			if			TYPE,(< − 2) = EMPTY

The	predicted	signals	€0,/(� − 1),	% = 1,… ,),	are	similarly	obtained	by:	

 Ω-,,(< − 1) =

⎩
⎪
⎨

⎪
⎧æ-.,,(< − 1) 			if			TYPE6,,(< − 1) = DIR ∨ TYPE6,,(< − 1) = VEC

/1,=,U(< − 1) 			if			TYPE6,,(< − 2) = EMPTY

				∧ TYPE,(< − 2) = AMB ∧ COEFFIDX,(< − 2) = ê
0 			if			TYPE,(< − 2) = EMPTY

.

C.5.3.7 Gain	control	

Each	of	the	signals	€/(� − 2),	% = 1,… ,),	is	processed	by	a	gain	control,	where	the	signal	gain	is	smoothly	
modified	 to	achieve	a	value	 range	 that	 is	 suitable	 for	 the	perceptual	 encoders,	 i.e.	[−1,1 − 2*Z'].	 The	
predicted	signal	frames	€0,/(� − 1),	% = 1,… ,),	allow	a	kind	of	look	ahead	in	order	to	avoid	severe	gain	
changes	between	successive	blocks.	

For	the	purpose	of	a	smooth	gain	modification,	a	fixed	template	transition	window	function:	

 ¬2d+: = [√2d+(1) √2d+(2) … √2d+(à)]

	is	employed,whose	elements	are	defined	by:	

 √2d+(ã): =
&
X
cos }

e(f%&)
c%&

~ +
W
X
							for			ã = 1,… , à.

In	particular,	the	samples	of	the	gain	controlled	signals:	

 ƒ,(< − 2) = [≈,(< − 2,1) ≈,(< − 2,2) … ≈,(< − 2, à)]

	are	computed	according	to:	

≈,(< − 2, ã) = y
∆,(< − 2, ã) ⋅ «2d+,,(< − 3) ⋅ [√2d+(ã)]

g)(<%/) 	if			»,(< − 2) = 0

∆,(< − 2, ã) ⋅ «2d+,,(< − 3) ⋅ 2
%g)(<%/) 	if			»,(< − 2) = 1

The	factor	õ>JB,(� − 3)	employed	is	initialized	by:	

 «2d+,,(−2):= 1							for			A = 1,… , _,

and	is	recursively	updated	in	the	(� − 2)-th	frame	by:	

 «2d+,,(< − 2) = «2d+,,(< − 3) ⋅ 2
%g)(<%/)							for			A = 1,… , _.

ISO/IEC	23008-3:202X(E)	

726	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Here	it	can	be	seen	that	the	gain	modifications	between	successive	blocks	of	the	%-th	channel	are	assumed	
to	be	captured	by	the	exponents	í/(� − 2)	to	the	base	2,	which	have	to	be	set	such	that	the	gain	controlled	
signals	Ä/(� − 2)	satisfy:	

 1 ≤ ≈,(< − 2, ã) ≤ 1 − 2%W&

The	exception	values	ì/(� − 2)	indicate	if	a	constant	gain	is	applied	to	all	samples	of	the	current	frame	
X/(� − 2)	or	 the	 gain	 is	 smoothly	 changed	 for	 each	 sample,	 following	 the	 shape	of	 the	 exponentiated	
template	transition	window	function	‹>JB.	 It	may	be	reasonable	to	set	ì/(� − 2) = 1	in	the	case	that	a	
very	large	exponent	would	be	needed	for	the	attenuation	with	the	transition	window	function.	

C.5.4 HOA	frame	converter	

The	HOA	frame	converter/creator,	shown	in	Figure	C.5,	converts	the	HOA	coding	parameters	provided	
by	 the	HOA	spatial	 encoding	and	 the	MPEG-H	3D	audio	core	encoder	 to	 the	HOAFrame()	of	 the	HOA	
bitstream.	 The	 following	 subclauses	 show	 how	 to	 convert	 these	 parameters	 to	 the	 actual	 bitstream	
indexes.		

C.5.4.1 Conversion	to	ActiveDirSigs[i]	

NoOfActDirs = 0;

for(DirIdx=0; DirIdx < MaxNumOfDirs; DirIdx++){
 if (DirIdx+1 == ℐ728(< − 4)[NoOfActDirs]){
 ActiveDirSigs[DirIdx] = 1;
 NoOfActDirs++;
 }
 else{
 ActiveDirSigs[DirIdx] = 0;
 }
}

C.5.4.2 Conversion	to	ActiveDirsIds[idx]	

NoOfActDirs = 0;

for (A = 0; A < _; A + +){
 if (TYPE,(< − 4) == Æ_…){

 ActiveDirIds[NoOfActDirs] = 1?5=36
(,) (< − 4);

 NoOfActDirs++;
 }
}

C.5.4.3 Conversion	of	prediction	parameters	É(� − 4)	

The	 prediction	 parameters	 ñ(� − 4) = ÷›C[0A(� − 4), û>F=(� − 4), ûH,I(� − 4)ò 	are	 converted	 to	 an	
intermediate	 coded	 representation,	 which	 corresponds	 to	 that	 used	 in	 the	 description	 of	 the	
HOAPredictionInfo	payload	in	Table	202,	as	follows:	

First	the	flag PSPredictionActive is	set	which	indicates	whether	a	spatial	prediction	is	performed	
at	all:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 727	
	

 À ÃÕŒœ/–œ—“∑/–œ”Õ = 0;
if (ℐ728(< − 4) ≠ ∅){
 for (! = 0; 	!	 < 	'; 	! + +){
 for (* = 0; 	*	 < 	Æhijk; 	* + +){
 if (÷IND,G+1,m+1(< − 4) ≠ 0){
 À ÃÕŒœ/–œ—“∑/–œ”Õ = 1;
 }
 }
 }
}

In	 the	 case	 that	 fiflfickjelfebmtlfedk == 1 ,	 the	 number	 NumActivePred	 of	 directions	 for	 which	
directional	signals	are	predicted	is	computed	as	follows:	

NumActivePred = 0;
for (! = 0; 	!	 < 	'; 	! + +){
 if(÷6n-*,UA&(< − 4) == 1){
 NumActivePred++;
 }
}

Depending	on	the	value	of	NumActivePred	it	is	decided	whether	the	indices	\		of	the	directions	D!

(%),	for	
which	directional	signals	are	predicted,	are	either	

m)	 coded	by	a	bit	array	ActivePred	consisting	of	O	elements,	of	which	the	n-th	element	indicates	if	the	
prediction	for	the	direction	D\

(F)	is	predicted	or	not.	The	bit	array	is	computed	according	to:	

 for(! = 0; 	!	 < 	'; 	! + +){
 ∑/–œ”Õ ÃÕŒ[!] =	÷6n-*,UA&(< − 4);
 }

n)	 coded	 by	 the	 coded	 number	‡g·tlfedkfickj‚jn = NumActivePred − 1 	and	 the	 array	fickj‚jn	
consisting	 of	 indices	n 	of	 the	 directions	D\

(F) ,	 for	 which	 directional	 signals	 are	 predicted.	 The	 array	
PredIds	is	computed	according	to:	

 actIdx = 0;
 for(! = 0; 	!	 < 	'; 	! + +){
 if (÷6n-*,UA&(< − 4) == 1){
 ÃÕŒ◊Œÿ[actIdx] = 	!;
 actIdx + +;
 }
 }
	

The	decision	 about	which	 kind	of	 coding	 is	 used	 is	 indicated	by	 the	 value	 of	„emjsa‰bjkjfickj‚jn,	
which	is set	to	zero	in	the	first	case	or	to	one	in	the	second	case.	The	decision	is	taken	dependent	on	the	
value	of	NumActivePred	according	to:	

Ÿœ“Œ⁄€‹—ŒÕŒ ÃÕŒ◊Œÿ = ›
1 	if			NumActivePred ≤ ùo	
0 	else

,

where	Â]	is	the	greatest	integer	satisfying	

ISO/IEC	23008-3:202X(E)	

728	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

⌈log7(Â])⌉ + Â] ⋅ 	 ⌈log7(@)⌉ < @	.	

The	elements	Ë>F=,1,!(� − 2)	of	the	matrix	û>F=(� − 2),	which	are	indices	of	predominant	sound	signals	
to	be	used	for	the	prediction	of	signals	at	the	directions	D!

(%),	are	coded	according	to:	

TotalIdx = 0;

for(! = 0; 	!	 < 	'; 	! + +){
 if (÷6n-*,UA&(< − 4) == 1){
 for (* = 0; 	*	 < 	Æhijk; 	* + +){
 ÃÕŒfiœÃÀœfl◊Œÿ[TotalIdx] 	= ÷237,VA&,UA&(< − 4);
 TotalIdx + +;
 }
 }
}

The	 corresponding	 quantized	 prediction	 factors	 ËH,I,1,!(� − 4) ,	 which	 are	 elements	 of	 the	 matrix	
ûH,I(� − 4)	are	coded	according	to:	

TotalIdx = 0;

for(! = 0; 	!	 < 	'; 	! + +){
 if (÷6n-*,UA&(< − 4) == 1){
 for (* = 0; 	*	 < 	Æhijk; 	* + +){
 if (÷237,VA&,UA&(< − 4) ≠ 0){
 ÃÕŒ‡·œ“ÿ[TotalIdx] 	= 	÷?,p,VA&,UA&(< − 4);
 TotalIdx + +;
 }
 }
 }
}

C.5.4.4 Coding	of	ambient	HOA	coefficients	side	information	

NoOfCoeffs=0;
for (A = 0; A < _; A + +){
 if (TYPE,(< − 4) == †ù°){
 if (COEFFIDX,(< − 4) == 	COEFFIDX,(< − 5))
 {
 AmbCoeffIdxChanged[A] = false;
 }
 else
 {
 AmbCoeffIdxChanged[A] = true;
 CodedAmbCoeffIdx[NoOfCoeffs++] = COEFFIDX,(< − 4);
 }
 }
}

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 729	
	

C.5.4.5 Coding	of	channel	type	

for (A = 0; A < _; A + +){
 ChannelType[i] = TYPE,(< − 4);
}

C.5.4.6 Conversion	to	CodedGainCorrectionExp[n]	

for (9 = 0; 9 < :; 9 + +){
 CodeLength = 0;
 switch(‚,(< − 4)){
 case 0:
 {
 CodeLength = 1;
 break;
 }
 case -1:
 {
 CodeLength = 2;
 break;
 }
 default:
 {
 CodeLength = 	‚,(< − 4) + 2;
 }
 }

 if(IndependendyFlag){
 GainCorrPrevAmpExp[i] = ceil(log2(«2d+,,(< − 5)));
 }
 for(l=0; l < (CodeLength – 1); l++){
 CodedGainCorrectionExp[l] = 0;
 }
 CodedGainCorrectionExp[l] = 1;
}

C.5.4.7 Conversion	to	GainCorrectionException[i]	

for(9=0; 9 < :; 9++){
 GainCorrectionException[9]	= »,A&(< − 4);
}

C.5.4.8 Coding	of	VVector	

As	 previously	 described	 an	 assignment	 vector	y2(� − 4)	 containing	 the	 side	 information	 for	 each	
transport	channel	is	provided.	The	quantized	vector	data	for	the	transport	channels	containing	vector-
based	predominant	sound	signals	is	assigned	to	the	bitstream	as	follows:		

for (i=0; i < J; i++){
 if (TYPEq(< − 4) == „‰Â)
 {

l=0;
 for (q = 0; q < VVecLength; q++){

VecVal[i][q] = B?5=36
(,) (< − 4)[™ + `or!];

l++;
 }
 }
}

ISO/IEC	23008-3:202X(E)	

730	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Note	 that	 each	 vector	 has	 VVecLength	 elements.	 Only	 the	 elements	 indicated	 in	 VVecCoeffId	 are	
transmitted	according	to	 the	CodedVVecLength	word.	The	reference	encoder	utilizes	a	uniform	8-bit	
scalar	quantizer	(NbitsQ=5)	and	a	CodedVVecLength	word	of	value	2.	

Given	 that	each	of	 the	V-vectors	are	orthonormal	 to	one	another,	each	of	 the	V-vectors	can	be	coded	
independently.	As	described	in	more	detail	below,	each	element	of	 the	V-vectors	are	capable	of	being	
coded	using	the	same	coding	mode	(defined	by	various	sub-modes).			

This	coding	scheme	first	involves	transforming	the	floating	point	representations	of	each	element	(which	
is	a	32-bit	floating	point	number)	of	each	of	the	V-vectors	to	a	16-bit	integer	representation.	This	floating-
point-to-integer-transformation	is	performed	by	multiplying	each	element	of	a	given	one	of	the	V-vectors	
by	215,	which	is,	in	some	examples,	performed	by	a	right	shift	by	15.	

Uniform	quantization	 is	 then	performed	with	respect	 to	all	of	 the	elements	of	 the	given	one	of	 the	V-
vectors.	 	A	quantization	step	size	is	identified	based	on	a	the	nbits	parameter.	This	nbits	parameter	is	
dynamically	 determined	 based	 on	 the	 target	 bitrate.	 The	 quantization	 step	 size	 is	 determined	 as	 a	
function	of	this	nbits	parameter.	To	illustrate,	the	quantization	step	size	(denoted	as	“delta”	or	“Δ”)	is	
determeind	as	being	equal	to	216-nbits.	If	nbits	equals	six,	delta	equals	210	and	there	are	26	quantization	
levels.	In	this	respect,	for	a	vector	element	v,	the	quantized	vector	element	vq	equals	[v/Δ]	and	-2nbits-1	<	
vq	<	2nbits-1.			

Categorization	and	residual	coding	of	the	quantized	vector	elements	is	performed.		As	one	example,	for	a	
given	quantized	vector	element	vq,	a	category	is	identified	(by	determining	a	category	identifier	cid)	to	
which	this	element	corresponds	using	the	following	equation:	

<%Z = 	 È
0, 																											%Í	≥K = 0
ÎQÏõ7|≥K|Ó + 1, 			%Í	≥K ≠ 0	

The	category	index	cid	is	Huffman	coded,	and	a	sign	bit	that	indicates	whether	vq	is	a	positive	value	or	a	
negative	value	is	determined.	A	residual	is	identified	in	this	category	in	accordance	with	the	following	
equation:	

íÒ%ZÚÛQ = |≥K| − 2^/1*'	

The	residual	is	block	coded	with	cid-1	bits.	

The	following	example	illustrates	a	simplified	example	of	this	categorization	and	residual	coding	process.	
First,	assume	nbits	equals	six	so	that	vq	∈	[-31,31].	Next,	assume	the	following:	

cid	 vq	 Huffman	code	for	cid	

0	 0	 ‘1’	

1	 -1,			1	 ‘01’	

2	 -3,-2,			2,3	 ‘000’	

3	 -7,-6,-5,-4,			4,5,6,7			 ‘0010’	

4	 -15,-14,…,-8,			8,…,14,15	 ‘00110’	

5	 -31,-30,…,-16,		16,…,30,31	 ‘00111’	

Also,	assume	the	following:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 731	
	

cid	 Block	code	for	residual	

0	 N/A	

1	 0,			1	

2	 01,00,			10,11	

3	 011,010,001,000,			100,101,110,111			

4	 0111,	0110…,0000,			1000,…,1110,1111	

5	 01111,			…					,00000,			10000,				…				,11111	

Thus,	for	a	vq	=	[6,	-17,	0,	0,	3],	the	following	may	be	determined:	

	 cid	=	3,5,0,0,2	

	 sign=1,0,x,x,1	

	 residual	=	2,1,x,x,1	

	 Bits	for	6	=	‘0010’	+	’1’	+	’10’	

	 Bits	for	-17	=	‘00111’	+	’0’	+	‘0001’	

	 Bits	for	0	=	‘0’	

	 Bits	for	0	=	‘0’	

	 Bits	for	3	=	‘000’	+	‘1’	+	‘1’	

	 Total	bits	=	7+10+1+1+5	=	24	

	 Average	bits	=	24/5	=	4.8	

While	not	shown	in	the	foregoing	simplified	example,	different	Huffman	code	books	can	be	selected	for	
different	 values	of	nbits	when	 coding	 the	cid.	 	 In	 some	examples,	 a	different	Huffman	 coding	 table	 is	
provided	for	nbits	values	6,	…,	15.		Moreover,	five	different	Huffman	code	books	may	be	provided	for	each	
of	the	different	nbits	values	ranging	from	6,	…,	15	for	a	total	of	50	Huffman	code	books.	 	As	a	result,	a	
plurality	of	different	Huffman	code	books	are	provided	to	accommodate	coding	of	the	cid	in	a	number	of	
different	statistical	contexts.			

To	illustrate,	for	each	of	the	nbits	values,	a	first	Huffman	code	book	is	provided	for	coding	vector	elements	
one	through	four,	a	second	Huffman	code	book	is	provided	for	coding	vector	elements	five	through	nine,	
a	 third	Huffman	code	book	 is	provided	 for	coding	vector	elements	nine	and	above.	 	These	 first	 three	
Huffman	code	books	are	used	when	the	one	of	the	V-vectors	to	be	compressed	is	not	predicted	from	a	
temporally	 subsequent	 corresponding	 one	 of	 the	 V-vectors	 and	 is	 not	 representative	 of	 spatial	
information	of	a	synthetic	audio	object	(one	defined,	for	example,	originally	by	a	pulse	code	modulated	
(PCM)	audio	object).		Additionally,	for	each	of	the	nbits	values,	a	fourth	Huffman	code	book	is	provided	
for	 coding	 the	 one	 of	 the	 V-vectors	 when	 this	 one	 of	 the	 V-vectors	 is	 predicted	 from	 a	 temporally	
subsequent	corresponding	one	of	the	V-vectors.		For	each	of	the	nbits	values,	a	fifth	Huffman	code	book	
is	provided	for	coding	the	V-vectors	when	this	one	of	the	V-vectors	is	representative	of	a	synthetic	audio	
object.			

ISO/IEC	23008-3:202X(E)	

732	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

The	following	table	illustrates	the	Huffman	table	selection	and	the	bits	to	be	specified	in	the	bitstream	to	
enable	the	decompression	unit	to	select	the	appropriate	Huffman	table:	

Pred	mode	 HT	info	 HT	table	

0	 0	 HT5	

0	 1	 HT{1,2,3}	

1	 0	 HT4	

1	 1	 HT5	

In	the	foregoing	table,	the	prediction	mode	(“Pred	mode”)	indicates	whether	prediction	was	performed	
for	the	current	vector,	while	the	Huffman	Table	(“HT	info”)	indicates	additional	Huffman	code	book	(or	
table)	information	used	to	select	one	of	Huffman	tables	one	through	five.			

The	 following	 table	 further	 illustrates	 this	 Huffman	 table	 selection	 process	 given	 various	 statistical	
contexts	or	scenarios.		

	 Recording	 Synthetic	

W/O	Pred	 HT{1,2,3}	 HT5	

With	Pred	 HT4	 HT5	

In	 the	 foregoing	 table,	 the	 “Recording”	 column	 indicates	 the	 coding	 context	 when	 the	 vector	 is	
representative	 of	 an	 audio	 object	 that	was	 recorded	while	 the	 “Synthetic”	 column	 indicates	 a	 coding	
context	for	when	the	vector	is	representative	of	a	synthetic	audio	object.	The	“W/O	Pred”	row	indicates	
the	coding	context	when	prediction	is	not	performed	with	respect	to	the	vector	elements,	while	the	“With	
Pred”	row	indicates	the	coding	context	when	prediction	is	performed	with	respect	to	the	vector	elements.	
As	shown	in	this	table,	HT{1,	2,	3}	are	selected	when	the	vector	is	representative	of	a	recorded	audio	
object	and	prediction	is	not	performed	with	respect	to	the	vector	elements.	HT5	is	selected	when	the	
audio	object	is	representative	of	a	synthetic	audio	object	and	prediction	is	not	performed	with	respect	to	
the	vector	elements.	HT4	is	selected	when	the	vector	is	representative	of	a	recorded	audio	object	and	
prediction	is	performed	with	respect	to	the	vector	elements.		HT5	is	also	selected	when	the	audio	object	
is	 representative	 of	 a	 synthetic	 audio	 object	 and	 prediction	 is	 performed	with	 respect	 to	 the	 vector	
elements.	

In	 this	 way,	 scalar	 quantization	 and/or	 Huffman	 encoding	 is	 performed	 to	 compress	 the	 V-vectors,	
outputting	the	coded	V-vectors,	which	may	be	specified	as	side	channel	information.	This	side	channel	
information	also	includes	syntax	elements	used	to	code	the	V-vectors.	A	syntax	element	in	a	header	of	an	
access	unit	is	specified	to	denote	which	of	the	plurality	of	configuration	modes	was	selected.	This	syntax	
element	comprises	two	bits	indicating	which	of	the	four	configuration	modes	were	selected	for	specifying	
the	V-vectors	 	 to	 represent	 the	 directional	 aspects	 of	 this	 distinct	 component.	 The	 syntax	 element	 is	
denoted	as	“codedVVecLength”.	In	this	way,	which	of	the	four	configuration	modes	were	used	to	specify	
the	coded	V-vectors	is	signalled	in	the	bitstream.			

Alternatively,	the	V-vectors	can	be	coded	based	on	a	predefined	set	of	code	vectors.	To	code	the	V-vectors,	
each	V-vector	 is	decomposed	 into	a	weighted	sum	of	code	vectors.	The	weighted	sum	of	code	vectors	
consists	of	k	pairs	of	predefined	code	vectors	and	associated	weights:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 733	
	

	

	where	 	represents	the	jth	code	vector	in	a	set	of	predefined	code	vectors	(), 	represents	the	
jth	 real-valued	weight	 in	a	 set	of	predefined	weights	 (),	k	corresponds	 to	 the	 index	of	addends,	
which	can	be	up	to	7,	and	V	corresponds	to	the	V-vector	that	is	being	coded.	The	choice	of	k	depends	on	
the	encoder.	 If	 the	encoder	chooses	a	weighted	sum	of	two	or	more	code	vectors,	 the	total	number	of	
predefined	code	vectors	the	encoder	can	chose	of	is	(_+1)2,	which	predefined	code	vectors	are	derived	
as	HOA	expansion	coefficients	from	the	Tables	F.2	to	F.11.	When	_	is	4,	the	Table	F.6	with	32	predefined	
directions	is	used.	In	all	cases	the	absolute	values	of	the	weights	 	are	vector-quantized	with	respect	to	
the	predefined	weighting	values	 	found	in	the	first columns	of	the	Table	F.14	and	signalled	with	
the	associated	row	number	index.		

The	number	signs	of	the	weights are	separately	coded	as:	

Ò# = Ù
1, ı# ≥ 0
0, ı# < 0.	

In	summary,	after	signaling	the	value	k	>	0,	a	V-vector	is	encoded	with	k	+	1	indices	that	point	to	the	k	+	1	
predefined	code	vectors ,	one	index	that	points	to	the	k	quantized	weights	 in	the	predefined	
weighting	codebook,	and	k	+	1	number	sign	values :	

.	

If	the	encoder	selects	a	weighted	sum	of	one	code	vector	(k	=	0),	a	codebook	derived	from	Annex	F.9	is	
used.	In	this	case	the	absolute	weighting	value	 is	implicitly	set	to	 and	therefore	not	signalled.	
Only	the	number	sign	Ò	is	coded.	

C.5.4.9 Coding	of	parameters	for	directional	sub-band	signals	prediction	

1) NumOfGlobalPredDirs = 	[RG>FA=(k − 4)	

2) UseDirectionalPrediction = 	 ü1 			if			∃b ∈ {1,… , B}		such	that		ó(k − 4, b) ≠ 0	
0 			else ,	

where	0	denotes	a	zero	matrix	with	the	same	dimensions	as	ó(k − 4, b).	
3) for	(d	=0;	d	<	NumOfGlobalPredDirs;	d++)	

{	

	 	 GlobalPredDirsIds[d]	=	q	such	that	DRG>FA=,V<'(k − 4)=	D_W`H*'Y		
}	
	

4) for	(b=0;	b	<	NumOfPredSubbands;	b++)	
{	

UseHuffmanCodingDiffMag[b]	is	set	to	1	or	0	depending	on	whether	it	is	more	efficient	to	
use	Huffman	code	or	not	for	the	differential	coding	for	the	magnitudes	of	all	elements	of	
the	prediction		

	 	 coefficient	matrix		t(� − 4, â).	
	

0
å
=

W»
k

j
jjV w

jW { } jW jw
{ } jw

w
ŵ 1 +k

w

{ } jW { } ˆkw

j s

å
=

W-=
k

j
jjjsV

0

ˆ)12(ˆ w

ŵ 1ˆ =w

ISO/IEC	23008-3:202X(E)	

734	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

UseHuffmanCodingDiffAngle[b]	is	set	to	1	or	0	depending	on	whether	it	is	more	efficient	to	
use	Huffman	code	or	not	for	the	differential	coding	for	the	angles	of	all	elements	of	the	
prediction		

	 	 coefficient	matrix		t(� − 4, â).	
	

	
for	(d	=	0;	d	<	MaxNumOfPredDirsPerBand;	d++)		
{	

DirIsActive[b][d] = 	 Ù1 			if			d ∈ ℐ–=>?(k − 4, b)	
0 			else

	

	
if	(DirIsActive[b][d] == 1)	
{	
	 RelDirGridIdx[b][d] 	= q		such	that		Da(8%b9,K<'(k − 4)=	D+4,V<'(k − 4, b)	
}	

}	
}	
	

5) Since	the	prediction	coefficient	matrix	elements	are	coded	differentially,	before	starting	to	encode	
the	elements	for	a	(k − 4)-th	independency	frame	it	is	necessary	to	initialize	the	quantized	values	
to	zero	for	the	previous	frame	as	follows:	
	
if	(hoaIndependencyFlag(k − 4))	
{	

for	(b=0;	b	<	NumOfPredSubbands;	b++){	
for	(d	=	0;	d	<	MaxNumOfPredDirsPerBand;	d++)	{	

for	(n	=	0;	n	<	MaxNumOfCoeffsToBeTransmitted;	n++)	
{	
	 IntQuantMag(� − 5)[b][d][n] = 0;	
	 IntQuantAngle(� − 5)[b][d][n] 	= 0;	
}	

}	
}	

}	
	

The	actual	encoding	is	assumed	to	be	performed	as	follows.	
	
for	(b=0;	b	<	NumOfPredSubbands;	b++){	
	 	 for	(d	=	0;	d	<	MaxNumOfPredDirsPerBand;	d++)	{	
	 	 	 for	(n	=	0;	n	<	MaxNumOfCoeffsToBeTransmitted;	n++){	
	 	 	 	 if((n + 1) ∈ 	 ℐA(k) ∪ ℐ=(k) ∪	ℐE(k)){	
	 	 	 	 	 FloatMag = 	 Sóå(� − 4, â)[d + 1][n + 1]S;	
	 	 	 	 	 IntQuantMag(� − 4)[b][d][n] = 0;	
	 	 	 	 	 IntQuantAngle(k − 4)[b][d][n] 	= 0;	
	 	 	 	 	 if(FloatMag > 1)	{	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 735	
	

	 	 	 	 	 	 IntQuantMag(� − 4)[b][d][n] = ¸c\(Icdef3eX)
c\Wg hi Y

+ 8.5˝		

	 	 	 	 	 }	
	 	 	 	 	 else{	
	 	 	 	 	 	 IntQuantMag(� − 4)[b][d][n] = ⌊FloatMag ⋅ 8 + 0.5⌋;	
	 	 	 	 	 }	
	 	 	 	 	
	 	 	 	 	 FloatAngle = arg«óå(� − 4, b)[d + 1][n + 1]»;	
	 	 	 	 	 if(FloatAngle < 	−7 ⋅ j

g
− j

'k
){	

	 	 	 	 	 	 IntQuantAngle(k − 4)[b][d][n] 	= 8;	
	 	 	 	 	 }	
	 	 	 	 	 else{	
	 	 	 	 	 	 IntQuantAngle(k − 4)[b][d][n] = !FloatAngle ⋅ g

j
+ 0.5";	

	 	 	 	 	 }	
	 	 	 	 	 DecodedMagDiff[b][d][n] = 	IntQuantMag(k − 4)[b][d][n]	
	 	 	 	 	 	 	 	 	 	 	 	 	 −IntQuantMag(k − 5)[b][d][n];	
	 	 	 	 	 DecodedAngleDiff[b][d][n] = 0;	
	 	 	 	 	 //	If	the	magnitude	after	quantization	is	equal	to	zero,		
	 	 	 	 	 //	the	transmitted	difference	in	quantized	angle	differences	is	ignored.	
	 	 	 	 	 //	Hence,	in	that	case	it	is	reasonable	to	code	the	difference		
	 	 	 	 	 //as	efficient	as	possible	by	setting	it	to	zero.	
	 	 	 	 	 if(IntQuantMag[â][Z][\]	! = 	0){	
	 	 	 	 	 	 DecodedAngleDiff[â][Z][\] = IntQuantAngle(� − 4)[b][d][n]	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 −IntQuantAngle(� − 5)[b][d][n];	
	 	 	 	 	 	 //	Constrain	the	angle	difference	to	lie	in	interval]-pi,pi].	
	 	 	 	 	 	 if	(DecodedAngleDiff[b][d][n] < 	−7){	
	 	 	 	 	 	 	 DecodedAngleDiff[b][d][n]+= 16;		
	 	 	 	 	 	 }	
	 	 	 	 	 	 else{	
	 	 	 	 	 	 	 if	(DecodedAngleDiff[â][Z][\] > 	8){	

	DecodedAngleDiff[â][Z][\]−= 16;	
	 	 	 	 	 	 	 }	
	 	 	 	 	 	 }	
	 	 	 	 	 }	
	 	 	 	 	 else{	
	 	 	 	 	 	 IntQuantAngle(k − 4)[b][d][n] = 0;	
	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 	 else{	

	 	 	 	 	 	 DecodedMagDiff[b][d][n] = 0;	
	 	 	 	 	 	 DecodedAngleDiff[b][d][n] = 0;	
	 	 	 	 	 	 IntQuantMag(k − 4)[b][d][n];	
	 	 	 	 	 	 IntQuantAngle(k − 4)[b][d][n] = 0;	
	 	 	 	 	 	 }	

	 	 	 }	

ISO/IEC	23008-3:202X(E)	

736	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

	 	 }	
}	

	

C.5.4.10 Coding	of	parameters	for	parametric	ambience	replication	(PAR)	

1) UsePar	=	ü1 			if	∃	g ∈ {1,… , ú}	such	that	ù02?(k − 4, g) ≠ 0		
0 			else

	

	
2) for	(õ	=0;	õ	<	NumOfParSubbands;	õ++){	

	

	 	 KeepPreviousParMatrixFlag[õ]=ü1 			if			ù02?(k − 4, g) = ù02?(k − 5, g)		
0 			else

;	

	
	 	 Set	ParDecorrSigsSelectionTableIdx[õ]	according	to	Table	44	depending	on	value	of		
	 	 N+>J(k − 4, g) = 	NumOfDecorrSigsPerParSubbandTable		
	

	 	 UseReducedNoOfUpmixSigs[õ]	=	ü1 			∃	any	zero	row	in	ù02?(k − 4, g)	
0 			else

;	

	
	 	 if	(UseReducedNoOfUpmixSigs[õ]==1){	
	 	 	 for	(n=0;n	<	MaxNumOfDecoSigs[õ];	n++){	

	 	 	 	 UseParUpmixSig[õ][n]	=	ü0 		(n + 1) − th	row	in	ù02?(k − 4, g)	is	zero	
1 			else

;	

	 	 	 }	
	 	 }	
	
	 	 UseParHuffmanCodingDiffAbs[õ]	=	

	 	 	 	∏1 	for	Huffman	coding		the	differences	of	magnitudes	of		º-=8(k − 4, g)	and	º-=8(k − 5, g)	
0 	for	conventional	coding

;	

	
	 	 if	(UseRealCoeffsPerParSubband[õ]==0){	
	 	 	 UseParHuffmanCodingDiffAngle[õ]	=	

	 	 	 	 	∏1 	for	Huffman	coding		the	differences	of	angles	of		º-=8(k − 4, g)	and	º-=8(k − 5, g)	
0 	for	conventional	coding

;	

	 	 }	
	 }	
	

3) Since	the	elements	of	the	mixing	matrices	ù02?(k − 4, g),	g = 1,… , ú,	are	coded	differentially,	
before	starting	to	encode	the	elements	for	a	(� − 4)-th	independency	frame,	which	means	that	
the	hoaIndependencyFlag	in	the	HOAFrame()	payload	is	set	to	one,	it	is	necessary	to	initialize	
the	quantized	values	to	zero	for	the	previous	frame	as	follows:	
	
for	(õ	=0;	õ	<	NumOfParSubbands;	õ	++){	
	 	 for	(d=0;	d	<	MaxNumOfDecoSigs(õ);	d++){	
	 	 	 for	(n=0;	n	<	MaxNumOfDecoSigs(õ);	n++){	
	 	 	 	 IntQuantMagPAR(� − 5)[õ][d][n] = 0;	
	 	 	 	 IntQuantAnglePAR(k − 5)[õ][d][n] = 0;	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 737	
	

	 	 	 }	
	 	 }	
}	
The	actual	encoding	is	assumed	to	be	performed	as	follows:	
	
for	(õ	=0;	õ	<	NumOfParSubbands;	õ	++){	
	 	 for	(d=0;	d	<	MaxNumOfDecoSigs(õ);	d++){	
	 	 	 for	(n=0;	n	<	MaxNumOfDecoSigs(õ);	n++){	
	 	 	 	 FloatMagPAR = 	 |ù02?(k − 4, g)[d][n]|;	
	 	 	 	 IntQuantMagPAR(� − 4)[õ][d][n] = 0;	
	 	 	 	 IntQuantAnglePAR(� − 4)[õ][d][n] 	= 0;	
	 	 	 	 if(FloatMagPAR > 1)	
	 	 	 	 {	

	 	 	 	 	 IntQuantMagPAR(� − 4)[õ][d][n] = ¸c\(Icdef3eX02?)
c\Wg hi Y

+ 8.5˝		

	 	 	 	 }	
	 	 	 	 else	
	 	 	 	 {	
	 	 	 	 	 IntQuantMagPAR(� − 4)[õ][d][n] = ⌊FloatMagPAR ⋅ 8 + 0.5⌋;	
	 	 	 	 }	
	 	 	 	 	
	 	 	 	 FloatAnglePAR = arg(ù02?(k − 4, g)[d][n]);	
	 	 	 	 if(FloatAnglePAR < 	−7 ⋅ j

g
− j

'k
){	

	 	 	 	 	 IntQuantAnglePAR(� − 4)[õ][d][n] 	= 8;	
	 	 	 	 }	
	 	 	 	 else{	
	 	 	 	 	 IntQuantAnglePAR(� − 4)[õ][d][n] = !FloatAnglePAR ⋅ g

j
+ 0.5";	

	 	 	 	 }	
	 	 	 	 DecodedParMagDiff[õ][d][n] = 	IntQuantMagPAR(k − 4)[õ][d][n]	
	 	 	 	 	 	 	 	 	 	 	 	 	 −IntQuantMagPAR(k − 5)[õ][d][n];	
	 	 	 	 DecodedParAngleDiff[õ][d][n] = 0;	
	 	 	 	 //	If	the	magnitude	after	quantization	is	equal	to	zero,		
	 	 	 	 //	the	transmitted	difference	in	quantized	angle	differences	is	ignored.	
	 	 	 	 //	Hence,	in	that	case	it	is	reasonable	to	code	the	difference		
	 	 	 	 //as	efficient	as	possible	by	setting	it	to	zero.	
	 	 	 	 if(IntQuantMagPAR[â][Z][\]	! = 	0){	
	 	 	 	 	 DecodedParAngleDiff[â][Z][\] = IntQuantAnglePAR(� − 4)[õ][d][n]	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 −IntQuantAnglePAR(� − 5)[õ][d][n];	
	 	 	 	 	 //	Constrain	the	angle	difference	to	lie	in	interval]-pi,pi].	
	 	 	 	 	 if	(DecodedParAngleDiff[õ][d][n] < 	−7){	
	 	 	 	 	 	 DecodedParAngleDiff[õ][d][n]+= 16;		
	 	 	 	 	 }	
	 	 	 	 	 else{	
	 	 	 	 	 	 if	(DecodedParAngleDiff[õ][Z][\] > 	8){	

DecodedParAngleDiff[õ][Z][\]−= 16;	

ISO/IEC	23008-3:202X(E)	

738	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 	 else	
	 	 	 	 {	
	 	 	 	 	 IntQuantAnglePAR(k − 4)[õ][d][n] = 0;	
	 	 	 	 }	
	 	 	 }	
	 	 }	
}	

C.6 MPEG	surround	encoder	tool	

The	following	building	blocks	are	specified	for	very	low	bitrate	coding	of	channel	content	(see	Figures	
C.13,	C.14	and	C.15).	

— Pre-rendering/mixing:	A	pre-rendering/mixing	stage	 is	used	on	 the	encoder	side	 to	convert	a	
channel	and	object	input	scene	into	a	channel	scene	before	encoding.	

— Format	conversion:	Format	conversion	can	be	applied	on	the	encoder	side	to	lower	the	number	
of	channels	to	achieve	good	rate/distortion	results	for	a	given	bit	rate.	

— MPEG	surround	encoding:	MPEG	surround	can	be	applied	with	the	following	tree	configurations:	
5-2-5,	7-2-7	or	9-2-9	based	on	7-2-7	with	an	arbitrary	tree	extension.		

— 3D	audio	core	encoder:	Either	the	format	converted	channels	or	the	MPS	stereo	downmix	is	
coded	with	a	3D	audio	core	encoder.	The	MPS	side	information	is	multiplexed	into	an	
mpegh3daExtElement.	

Phase	1	SAOC	3D	encoder	can	be	applied	for	encoding	object	signals.	

Figure	C.13	—	3D	audio	Phase	2	encoder	with	an	MPEG	surround	encoder	

Figure	C.14	—	3D	audio	phase	2	encoder	with	reduced	number	of	channels	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 739	
	

Figure	C.15	—	3D	audio	phase	2	encoder	with	reduced	number	of	channels	

ISO/IEC	23008-3:202X(E)	

740	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Annex	D	
(normative)	

	
Peak	limiter	for	unguided	clipping	prevention	

This	document	describes	several	coding	and	post-processing	steps,	which	can	lead	to	clipping:	

— quantization;	

— parametric	coding	tools;	

— loudness	normalization	and	dynamic	range	control;	
— format	conversion	and	downmixing;	

— object	rendering;	

— interactive	object	scenes	including	user-controlled	gain	manipulation;	

— SAOC	3D	decoding/rendering;	
— HOA	decoding/rendering;	

— binaural	processing;	
— clipping	 prevention	 gains	 potentially	 don’t	 prevent	 clipping	 for	 output	 setups	 with	 displaced	

loudspeakers.	

A	time	domain	peak	limiter	is	designed	to	prevent	clipping	of	the	time	domain	output	signal.	In	case	the	
signal	amplitude	exceeds	a	defined	maximum	value,	it	attenuates	the	signal	and	thus	improves	the	audio	
quality	by	eliminating	audible	distortion.	

The	limiting	should	be	applied	at	the	very	end	of	the	processing	chain,	just	before	the	time	domain	output	
signal	 is	 converted	 from	 floating	point	 to	 fixed	point	PCM	 format.	This	also	means	 that	 any	DRC	and	
loudness	normalization	processing	should	be	performed	before	the	peak	limiter.		

In	the	context	of	MPEG-H	3D	audio	the	 limiter	gets	different	signals	as	 input	depending	on	the	actual	
playback	configuration.	In	case	of	binaural	rendering,	the	two	output	channels	for	the	headphones	are	
processed	by	the	limiter.	If	the	output	channels	of	the	mixer	are	directly	played	back,	the	limiter	processes	
the	 corresponding	 loudspeaker	 channels.	 Note	 that	 channel	 content	might	 be	 format	 converted	 and	
object	content	might	be	rendered	 to	different	 loudspeaker	configurations	before	 the	mixer	(the	same	
holds	for	SAOC	3D	content	and	HOA	content).	

As	part	of	the	MPEG-H	decoder	processing	chain,	the	peak	limiter	shall	be	implemented	according	to	the	
technical	description	in	ISO/IEC	23003-4.	The	algorithm	shall	be	configured	as	follows:	

attack	time:	5	ms;	release	time:	50	ms;	limiting	threshold	-1	dBFS	

WARNING	—The	limiter	is	not	designed	for	levelling	signals	with	a	long-term	level	far	above	the	
threshold.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 741	
	

Annex	E	
(normative)	

	
Compact	template	downmix	matrices	

This	annex	lists	the	predefined	compact	templates	for	several	input	and	output	configuration	pairs,	with	
the	loudspeaker	list	configurations	as	defined	in	Table	166.	

The	 compactTemplate	 matrix	 is	 of	 size	 compactInputCount	 lines	 and	 compactOutputCount	 columns.	
Below,	a	one-dimensional	representation	is	used	where	the	lines	of	the	matrix	are	concatenated	in	order	
to	form	a	vector.	The	size	of	the	vector	is	the	product	of	the	number	of	lines	(compactInputCount)	and	the	
number	of	columns	(compactOutputCount).	

compactTemplate_CICP13_to_CICP6[15 * 4] = {
 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0 }

compactTemplate_CICP14_to_CICP6[5 * 4] = {
 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0 }

compactTemplate_CICP12_to_CICP6[5 * 4] = {
 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 }

compactTemplate_CICP7 to_CICP6[5 * 4] = {
 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1 }

compactTemplate_CICP13_to_CICP14[15 * 5] = {
 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
 0, 0, 0 }

compactTemplate_CICP13_to_CICP12[15 * 5] = {
 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
 0, 0, 0 }

compactTemplate_CICP13_to_CICP7[15 * 5] = {
 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
 0, 0, 0 }

compactTemplate_CICP13_to_CICP2[15 * 1] = {
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

ISO/IEC	23008-3:202X(E)	

742	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Annex	F	
(normative)	

	
HOA	tables	

F.1 HOA	format	description	

F.1.1 Spherical	coordinate	system	for	HOA	

The	HOA	tables	make	use	of	a	spherical	coordinate	system	as	shown	in	Figure	F.1	which	differs	in	terms	
of	the	inclination	angle	E		to	other	spherical	coordinate	systems	within	the	standard	where	the	elevation	
Elmlnop/q!	is	used:			E =

r
7
− Elmlnop/q!	(in	rad).	

Figure	F.1	—	Spherical	coordinate	system	as	used	for	HOA	

F.1.2 General	

Higher	order	ambisonics	(HOA)	 is	based	on	the	description	of	a	sound	field	within	a	compact	area	of	
interest,	which	is	assumed	to	be	free	of	sound	sources.	In	that	case	the	spatiotemporal	behaviour	of	the	
sound	pressure	Ë(>, })	at	time	>	and	position	}	within	the	area	of	interest	is	physically	fully	determined	
by	the	homogeneous	wave	equation.	In	the	following	we	assume	a	spherical	coordinate	system	as	shown	
in	Figure	F.1.	In	the	used	coordinate	system	the	Y	axis	points	to	the	frontal	position,	the	X	axis	points	to	
the	left,	and	the	&	axis	points	to	the	top.	A	position	in	space	} = (, E, F)) 	is	represented	by	a	radius	 > 0	
(i.e.	the	distance	to	the	coordinate	origin),	an	inclination	angle	E ∈ [0,']	measured	from	the	polar	axis	&	
and	an	azimuth	angle	F ∈ [0,2'[measured	counter-clockwise	in	the	Y − X	plane	from	the	Y	axis.	Further,	
(⋅)) 	denotes	the	transposition.	

Then,	it	can	be	shown3)		that	the	Fourier	transform	of	the	sound	pressure	with	respect	to	time	denoted	
by	ℱp(⋅),	i.e.,		

 Á(Ë, æ) = ℱs+÷((, æ)- = ∫
t
%t ÷((, æ)‚

%uvsd(

3) Earl	G.	Williams.			Fourier	Acoustics,	volume	93	of	Applied	Mathematical	Sciences.	Academic	Press,	1999.

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 743	
	

with	ı	denoting	 the	angular	 frequency	and	i	indicating	 the	 imaginary	unit,	may	be	expanded	 into	 the	
series	of	spherical	harmonics	according	to:	

 Á(Ë = <áw, Î, Ï, Ì) = ∑!UxY ∑
U
yx%U †U

y(<)•U(<Î)úU
y(Ï, Ì).	

Here	<s 	denotes	 the	 speed	 of	 sound	 and	� 	denotes	 the	 angular	wavenumber,	which	 is	 related	 to	 the	
angular	frequency	ı	by	� = t

^8
.	Further,	C!(⋅)	denote	the	spherical	Bessel	functions	of	the	first	kind	and	

)!"(E, F)	denote	the	real	valued	Spherical	Harmonics	of	order	\	and	degree	*,	which	are	defined	in	F.1.3.	
The	 expansion	 coefficients	+!"(�) 	only	 depend	 on	 the	 angular	wavenumber	� .	 Note	 that	 it	 has	 been	
implicitly	assumed	that	sound	pressure	is	spatially	band-limited.	Thus	the	series	is	truncated	with	respect	
to	the	order	index	\	at	an	upper	limit	_,	which	is	called	the	order	of	the	HOA	representation.	

If	the	sound	field	is	represented	by	a	superposition	of	an	infinite	number	of	harmonic	plane	waves	of	
different	 angular	 frequencies	ı 	and	 arriving	 from	 all	 possible	 directions	 specified	 by	 the	 angle	 tuple	
(E, F),	it	can	be	shown	[6]	that	the	respective	plane	wave	complex	amplitude	function	Ÿ(ı, E, F)	can	be	
expressed	by	the	following	spherical	harmonics	expansion:	

 Â(Ë = <áw, Ï, Ì) = ∑!UxY ∑
U
yx%U ÂU

y(<)úU
y(Ï, Ì),

where	the	expansion	coefficients	Ÿ!"(�)	are	related	to	the	expansion	coefficients	+!"(�)	by:	
 †U

y(<) = iUÂU
y(<).

Assuming	 the	 individual	 coefficients	Ÿ!"(ı = �<s) 	to	 be	 functions	 of	 the	 angular	 frequency	ı ,	 the	
application	of	the	inverse	Fourier	transform	(denoted	by	ℱ*'(⋅))	provides	time	domain	functions:	

 áU
y(() = ℱs

%&+ÂU
y(Ë/áw)- =

&
/e ∫

t
%tÂU

y }
v
z3
~ ‚uvsdË

for	each	order	\	and	degree	*,	which	can	be	collected	in	a	single	vector	l(>)	by:	

õ(() =
áY
Y(() á&

%&(() á&
Y(() á&

&(() á/
%/(() á/

%&(() á/
Y(() á/

&(() á/
/(() …	á!

!%&(()					á!
!(()

Ò
9

The	position	index	of	a	time	domain	function	<!"(>)	within	the	vector	l(>)	is	given	by	\(\ + 1) + 1 +*.	
The	overall	number	of	elements	in	the	vector	l(>)	is	given	by	@ = (_ + 1)7.	

The	final	Ambisonics	format	provides	the	sampled	version	of	W(>)	using	a	sampling	frequency	Í+	as:	

 {õ(ãÚ.)}f∈ℕ = {õ(Ú.), õ(2Ú.), õ(3Ú.), õ(4Ú.), … }

where	R+ = 1/Í+	denotes	the	sampling	period.	The	elements	of	W(QR+)	are	here	referred	to	as	ambisonics	
coefficients.	 Note	 that	 the	 time	 domain	 signals	<!"(>) 	and	 hence	 the	 ambisonics	 coefficients	 are	 real	
valued.	

F.1.3 Definition	of	real	valued	spherical	harmonics	

The	real	valued	spherical	harmonics)!"(E, F)	(assuming	N3D	normalization)	are	given	by:	

 úU
y(Ï, Ì) = Û(2ê + 1)

(U%|y|)!
(UA|y|)!

	ÁU,|y|(cosÏ)	trgy(Ì)

with	

 trgy(Ì) =

⎩
⎨

⎧ √2cos(ıÌ) ı > 0
1 ı = 0

−√2sin(ıÌ) ı < 0
.

ISO/IEC	23008-3:202X(E)	

744	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

The	associated	Legendre	functions	,!,"(Y)	are	defined	as:	

 ÁU,y(!) = (1 − !/)y//
Ä4

ÄÅ4 ÁU(!),ı ≥ 0

with	the	Legendre	polynomial	,!(Y)	and	without	the	Condon-Shortley	phase	term	(−1)".	

F.1.4 Definition	of	the	HOA	signal	matrix	

For	 the	 HOA	 compression	 a	 frame-wise	 processing	 with	 non-overlapping	 input	 frames	‰(�) 	of	 HOA	
coefficient	sequences	of	length	ö	is	assumed,	where	�	denotes	the	frame	index.	The	frames	are	defined	as	
the	HOA	signal	matrix:	

 h(<):= ˜õ+(<à + 1)Ú.- õ+(<à + 2)Ú.- õ+(< + 1)àÚ.-¯

where	R+	indicates	the	sampling	period.		

F.1.5 Definition	of	the	mode	matrix	

The	mode	matrix	∞(%9,u:) 	of	 order	 	_' 	with	 respect	 to	 the	 directions	DK
(%!) ,	´ = 1,… , O7 = (_7 + 1)7 ,	

related	to	order	_7	is	defined	by:	

 i(!*,(5): = ˜À&
(!*) À/

(!*) … À46
(!*)¯ ∈ ℝ4*×T6

with		

À\
(!*): = ˜úY

Y+1\
(!6)- ú&

%&+1\
(!6)- ú&

Y+1\
(!6)- ú&

&+1\
(!6)- ú/

%/+1\
(!6)-	 ú/

%&+1\
(!6)- … ú!*

!*+1\
(!6)-¯

9
∈ ℝT*

denoting	the	mode	vector	of	order		_'	with	respect	to	the	directions	DK
(%!),	

where	O' = (N' + 1)7.	

F.2 	Uniformly	distributed	positions	%#($%&) = '(#($%&), *#
($%&)+, , ≤ . ≤ / = 0		

Index	™	 ÏÇ
(É)	in	rad	 ÌÇ

(É)	in	rad	

1	 0	 0	
2	 1.910633	 0	
3	 1.910633	 2.094395	
4	 1.910633	 -2.0944	

F.3 	Uniformly	distributed	positions	%#($%') = '(#($%'), *#
($%')+, , ≤ . ≤ / = 1	

Index	™	 ÏÇ
(/)	in	rad	 ÌÇ

(/)in	rad	

1	 0	 0	
2	 2.361073	 0	
3	 1.207589	 -1.95668	
4	 1.207589	 1.956682	
5	 2.415178	 -1.95668	
6	 1.561039	 -3.14159	
7	 2.415178	 1.956681	
8	 1.325668	 0.687124	
9	 1.325667	 -0.68712	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 745	
	

F.4 	Uniformly	distributed	positions	%#($%() = '(#($%(), *#
($%()+, , ≤ . ≤ / = ,2	

Index	™	 ÏÇ
(W)	in	rad	 ÌÇ

(W)	in	rad	

1	 0	 0	
2	 0.854098	 0	
3	 2.031969	 1.119907	
4	 2.605106	 -0.25283	
5	 1.078622	 1.155586	
6	 1.736608	 2.040481	
7	 2.031968	 -1.38118	
8	 1.736609	 0.270692	
9	 1.56888	 -2.20417	
10	 0.917087	 2.297267	
11	 0.917087	 -2.80293	
12	 1.763476	 3.010956	
13	 2.649852	 2.154919	
14	 1.568881	 -0.63529	
15	 0.953962	 -1.41973	
16	 2.458122	 -2.46809	

F.5 	Uniformly	distributed	positions	%#($%)) = '(#($%)), *#
($%))+, , ≤ . ≤ / = 34	

Index	
™	

ÏÇ
(X)	in	
rad	

ÌÇ
(X)	in	

rad	

1	 0	 0	
2	 0.823218	 0	
3	 1.73912	 -2.00759	
4	 0.724297	 1.927637	
5	 1.336281	 -1.41208	
6	 0.871631	 -2.10001	
7	 1.263705	 2.512927	
8	 1.440147	 1.667633	
9	 2.248313	 1.442383	
10	 1.433953	 -0.60062	
11	 2.888065	 0.329968	
12	 2.003914	 -1.18621	
13	 1.80266	 2.983332	
14	 1.396554	 -2.69222	
15	 2.170781	 0.507602	
16	 1.952805	 2.208977	
17	 1.58019	 0.952319	
18	 2.584609	 -1.71565	
19	 0.874597	 0.934402	
20	 2.172935	 -0.38654	
21	 2.612717	 2.675958	
22	 2.193907	 -2.62842	
23	 1.51674	 0.165012	
24	 0.715307	 -1.02504	
25	 0.762553	 -3.13121	

ISO/IEC	23008-3:202X(E)	

746	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

F.6 	 32	Uniformly	distributed	positions	in	spherical	coordinates	

Index	 Ï	in	rad	 Ì	in	rad	

1	 1.2059325	 6.2831853	
2	 1.5707963	 0.5535744	
3	 1.9356602	 6.2831853	
4	 1.5707963	 5.7296109	
5	 0.5535744	 0	
6	 0.9553166	 0.7853982	
7	 1.5707963	 1.2059325	
8	 2.186276	 0.7853982	
9	 2.5880183	 0	
10	 2.186276	 5.4977871	
11	 1.5707963	 5.0772528	
12	 0.9553166	 5.4977871	
13	 0.3648638	 1.5707963	
14	 1.017222	 1.5707963	
15	 2.1243707	 1.5707963	
16	 2.7767288	 1.5707963	
17	 1.2059325	 3.1415927	
18	 1.5707963	 3.695167	
19	 1.9356602	 3.1415927	
20	 1.5707963	 2.5880183	
21	 0.5535744	 3.1415927	
22	 0.9553166	 3.9269908	
23	 1.5707963	 4.3475252	
24	 2.186276	 3.9269908	
25	 2.5880183	 3.1415927	
26	 2.186276	 2.3561945	
27	 1.5707963	 1.9356602	
28	 0.9553166	 2.3561945	
29	 0.3648638	 4.712389	
30	 1.017222	 4.712389	
31	 2.1243707	 4.712389	
32	 2.7767288	 4.712389	

F.7 	Uniformly	distributed	positions	%#($%*) = '(#($%*), *#
($%*)+, , ≤ . ≤ / = 52	

Index	™	 ÏÇ
(Ñ)	in	rad	 ÌÇ

(Ñ)	in	rad	

1	 0	 0	
2	 2.024896	 0	
3	 1.247057	 -1.19666	
4	 2.746177	 0.184066	
5	 0.623575	 0.124282	
6	 1.764494	 -2.84022	
7	 1.070515	 -1.84701	
8	 2.234325	 0.698758	
9	 2.184128	 2.280239	
10	 2.158839	 -2.28482	
11	 0.624151	 -2.37569	
12	 1.237485	 2.883411	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 747	
	

Index	™	 ÏÇ
(Ñ)	in	rad	 ÌÇ

(Ñ)	in	rad	

13	 0.603422	 -1.18504	
14	 1.133942	 -2.76846	
15	 1.060655	 0.763488	
16	 1.634607	 -0.46491	
17	 1.52253	 -2.27504	
18	 1.719188	 1.762138	
19	 0.625061	 2.804486	
20	 1.696573	 -1.69175	
21	 1.812314	 -1.0321	
22	 1.63462	 0.509415	
23	 2.811188	 -1.95737	
24	 1.028624	 -0.567	
25	 1.527149	 2.319619	
26	 1.861841	 2.853233	
27	 2.411897	 -3.07101	
28	 2.784687	 2.113132	
29	 2.277422	 -1.50877	
30	 2.345421	 -0.65404	
31	 2.278241	 1.464227	
32	 0.579954	 1.373127	
33	 1.69346	 1.112751	
34	 0.972182	 2.113949	
35	 1.264106	 0.057137	
36	 1.188862	 1.457925	

F.8 	Uniformly	distributed	positions	%#($%+) = '(#($%+), *#
($%+)+, , ≤ . ≤ / = 01	

Index	™	 ÏÇ
(Ö)	in	rad	 ÌÇ

(Ö)	in	rad	

1	 0	 0	
2	 0.850652	 0	
3	 1.879161	 3.024454	
4	 1.502365	 2.080642	
5	 2.066473	 -2.21373	
6	 1.589575	 -2.03598	
7	 1.144753	 1.678014	
8	 1.830538	 0.964363	
9	 1.391476	 -3.03552	
10	 1.820414	 -2.70206	
11	 0.496613	 0.581055	
12	 2.351968	 -2.80103	
13	 1.112947	 0.550136	
14	 1.046845	 -1.98436	
15	 1.577042	 -0.51212	
16	 2.359303	 -1.1411	
17	 1.342615	 -2.48765	
18	 1.988906	 -1.62282	
19	 2.083484	 -0.57506	
20	 0.998656	 2.286204	
21	 2.438372	 -0.08741	
22	 2.195595	 0.547028	
23	 2.017483	 1.878965	

ISO/IEC	23008-3:202X(E)	

748	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Index	™	 ÏÇ
(Ö)	in	rad	 ÌÇ

(Ö)	in	rad	

24	 2.360463	 2.746717	
25	 0.523033	 -0.76025	
26	 1.323604	 -1.01978	
27	 0.850653	 1.162107	
28	 1.652615	 1.507148	
29	 1.344756	 1.062706	
30	 0.861708	 -2.68135	
31	 1.819892	 -1.08377	
32	 0.996837	 2.91352	
33	 0.501675	 2.939099	
34	 1.435415	 -1.53966	
35	 1.6283	 0.473238	
36	 2.546165	 -1.95522	
37	 2.236832	 1.294994	
38	 2.717718	 0.887936	
39	 1.927866	 2.427548	
40	 1.370154	 -0.01608	
41	 2.53588	 1.97199	
42	 0.88913	 -1.35341	
43	 1.458362	 2.651183	
44	 1.042321	 -0.57647	
45	 0.567169	 1.857517	
46	 2.84677	 -0.77916	
47	 0.519694	 -2.01121	
48	 2.885875	 3.087768	
49	 1.89749	 -0.00446	

F.9 Uniformly	distributed	positions	%#($%',) = '(#($%',), *#
($%',)+, , ≤ . ≤ / = 166		

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	

0	
Invalid	direction	of	
the	last	frame	

1	 0	 0	
2	 1.648625	 0	
3	 1.51815	 -2.96216	
4	 1.571378	 0.671212	
5	 1.237221	 1.018946	
6	 0.897593	 -1.92145	
7	 1.567518	 2.116244	
8	 1.309935	 -3.02869	
9	 2.250228	 -2.62446	
10	 1.675124	 1.798562	
11	 2.105204	 -2.99223	
12	 2.729947	 -1.86764	
13	 2.68145	 -2.14937	
14	 0.581639	 1.353982	
15	 0.441046	 -0.43087	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
16	 1.795203	 -0.67314	
17	 1.142487	 -1.79862	
18	 0.434926	 2.82874	
19	 1.787413	 1.737062	
20	 2.837147	 -2.98967	
21	 1.718636	 3.034998	
22	 1.524985	 0.347348	
23	 1.618312	 -1.14935	
24	 1.015458	 3.05368	
25	 1.410034	 0.364289	
26	 0.63386	 -2.82495	
27	 2.3807	 -0.04809	
28	 1.850847	 -1.64304	
29	 0.831862	 -1.66093	
30	 0.215816	 0.647003	
31	 0.323405	 -2.1392	
32	 1.129028	 1.484131	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
33	 1.570313	 1.608203	
34	 2.045559	 -0.62332	
35	 1.451641	 1.921551	
36	 1.945764	 0.190834	
37	 1.73565	 0.099258	
38	 0.436971	 -1.99858	
39	 0.670992	 1.512933	
40	 1.324883	 -0.40034	
41	 1.58031	 2.594724	
42	 1.188528	 2.911703	
43	 0.9478	 -0.38474	
44	 2.160853	 -0.10694	
45	 2.001857	 -3.09111	
46	 1.967778	 0.428967	
47	 2.037793	 3.050091	
48	 1.835999	 2.993912	
49	 1.182972	 -2.64165	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 749	
	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
50	 0.872258	 2.502549	
51	 1.409198	 -1.56769	
52	 2.228638	 -3.08293	
53	 1.961864	 2.170421	
54	 1.569879	 1.480563	
55	 1.156157	 0.928946	
56	 0.553321	 1.586825	
57	 2.736746	 -2.74048	
58	 1.420082	 2.37143	
59	 2.518823	 -2.9235	
60	 1.552504	 1.088965	
61	 1.481645	 0.126665	
62	 1.577656	 2.720318	
63	 0.379951	 -0.70778	
64	 0.996813	 -1.05418	
65	 0.661003	 -2.27195	
66	 1.548501	 -0.71772	
67	 1.909692	 -2.70419	
68	 1.295493	 -0.75275	
69	 1.004689	 1.971741	
70	 1.854814	 -0.26834	
71	 2.067658	 -0.19824	
72	 1.725335	 2.423184	
73	 1.517999	 2.982654	
74	 2.533863	 0.925501	
75	 0.220892	 1.727021	
76	 0.878211	 0.534883	
77	 1.212656	 -2.29022	
78	 1.222854	 -2.77413	
79	 0.13885	 -3.04163	
80	 2.494965	 -2.33317	
81	 2.611129	 0.740177	
82	 1.014936	 -2.84226	
83	 1.966651	 -0.88556	
84	 1.954772	 2.95192	
85	 1.480695	 2.505321	
86	 1.187389	 2.668544	
87	 2.878225	 1.740344	
88	 1.840673	 -0.90084	
89	 0.482541	 0.059576	
90	 2.265975	 2.572881	
91	 2.241081	 2.729216	
92	 2.690038	 2.060117	
93	 0.675048	 -1.86952	
94	 2.445658	 1.649253	
95	 0.810335	 2.176253	
96	 1.081852	 1.24646	
97	 0.332153	 1.909563	
98	 1.668	 -1.03418	
99	 2.003419	 1.18763	
100	 2.407503	 -0.42968	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
101	 0.968667	 -0.11519	
102	 1.945363	 2.31683	
103	 0.932698	 -1.27416	
104	 1.599876	 3.073713	
105	 1.612046	 -2.55108	
106	 2.050616	 2.403566	
107	 1.830822	 -1.76855	
108	 1.680093	 1.415554	
109	 1.007833	 1.137923	
110	 2.926729	 2.26373	
111	 2.737941	 0.707526	
112	 0.568385	 -0.4058	
113	 1.638646	 2.210018	
114	 0.266392	 -1.34935	
115	 0.327662	 0.477288	
116	 0.927636	 2.227249	
117	 1.14146	 3.038443	
118	 2.06762	 -2.85318	
119	 2.222768	 1.133575	
120	 2.403726	 0.247727	
121	 0.885579	 3.100704	
122	 1.680358	 1.542949	
123	 0.54978	 1.825814	
124	 2.407241	 -2.99473	
125	 2.201696	 -2.48101	
126	 1.393328	 -2.59853	
127	 1.76511	 -0.34817	
128	 2.799968	 -0.90523	
129	 1.429946	 -2.15061	
130	 0.713687	 2.967188	
131	 0.999577	 2.525136	
132	 1.185833	 -3.0043	
133	 1.628546	 -1.60675	
134	 0.390499	 -0.16309	
135	 2.74961	 -1.53884	
136	 1.109979	 0.239356	
137	 1.751276	 0.968193	
138	 1.739555	 -2.5667	
139	 1.094298	 -0.13922	
140	 0.95092	 1.272733	
141	 0.55495	 -1.92423	
142	 1.46096	 -1.31153	
143	 2.123214	 -2.60609	
144	 2.607292	 2.50401	
145	 1.567953	 0.229223	
146	 2.11965	 0.035054	
147	 1.901447	 2.726267	
148	 1.807643	 2.637441	
149	 1.102328	 -2.08037	
150	 1.063134	 -2.98001	
151	 0.45913	 1.414797	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
152	 1.458539	 -1.89453	
153	 2.464122	 1.455199	
154	 1.384519	 -1.69496	
155	 1.378354	 2.567635	
156	 2.075471	 2.109204	
157	 1.350527	 -0.17794	
158	 2.27572	 2.244342	
159	 1.3825	 2.256202	
160	 1.899836	 1.405074	
161	 2.106937	 1.825051	
162	 2.905894	 1.186114	
163	 2.829263	 -0.07337	
164	 1.564043	 1.986713	
165	 1.562449	 1.222059	
166	 1.048635	 -1.17942	
167	 1.539539	 -1.05423	
168	 1.757709	 -0.79651	
169	 1.987148	 1.049579	
170	 2.664232	 0.239561	
171	 0.944831	 2.935054	
172	 0.530097	 2.98606	
173	 2.113757	 -2.07424	
174	 2.007159	 -0.75465	
175	 0.509377	 1.154158	
176	 0.56295	 -3.01749	
177	 1.225235	 1.812035	
178	 2.294677	 -2.95066	
179	 1.141935	 -2.51259	
180	 0.437203	 1.705571	
181	 1.530939	 2.394564	
182	 2.01436	 -2.34799	
183	 1.220024	 -2.01221	
184	 2.46802	 0.09183	
185	 1.562795	 -0.10258	
186	 2.734148	 -0.31911	
187	 0.642009	 -0.21043	
188	 2.164874	 2.196331	
189	 1.340224	 1.994648	
190	 0.254681	 1.180643	
191	 2.147643	 -1.92916	
192	 1.380669	 -0.85841	
193	 0.339154	 3.031337	
194	 1.884403	 -3.05684	
195	 2.221473	 0.704406	
196	 2.355814	 -2.01109	
197	 0.341671	 -2.53387	
198	 0.704668	 0.965639	
199	 2.383303	 1.827128	
200	 1.352517	 0.152264	
201	 1.229109	 1.681484	
202	 0.790487	 0.818661	

ISO/IEC	23008-3:202X(E)	

750	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
203	 2.160701	 -2.74525	
204	 1.893443	 1.808819	
205	 2.665292	 2.950484	
206	 0.36694	 -1.07689	
207	 1.165971	 -1.65698	
208	 2.136698	 -2.34401	
209	 1.835692	 2.370381	
210	 0.826775	 -3.00681	
211	 2.37851	 -2.64413	
212	 0.509276	 -1.47092	
213	 0.459696	 2.51573	
214	 1.14144	 -2.87179	
215	 1.095212	 0.528246	
216	 1.918874	 -1.0104	
217	 1.944373	 -2.82873	
218	 0.908988	 1.424125	
219	 2.123062	 1.381424	
220	 0.723208	 -0.04988	
221	 1.772193	 0.324437	
222	 2.386078	 2.496085	
223	 0.839266	 -0.68259	
224	 1.705387	 -0.57731	
225	 1.991852	 -1.12187	
226	 1.199522	 -1.52465	
227	 1.939319	 -0.15705	
228	 0.672373	 0.771732	
229	 1.650452	 -1.48423	
230	 1.019495	 -0.90967	
231	 1.137124	 0.09819	
232	 1.029515	 1.387047	
233	 1.465347	 -2.37954	
234	 1.125773	 2.544626	
235	 1.681492	 -3.1176	
236	 1.456443	 1.672715	
237	 0.660323	 1.715875	
238	 0.952985	 1.006384	
239	 0.884069	 -2.08282	
240	 1.704448	 -2.2551	
241	 1.863336	 -1.13271	
242	 1.61485	 -2.33109	
243	 2.119403	 1.235667	
244	 2.351532	 1.35266	
245	 1.149726	 1.350574	
246	 2.564869	 1.604189	
247	 1.326894	 -2.34947	
248	 2.258298	 -2.34006	
249	 1.791394	 1.477411	
250	 1.498113	 -1.17992	
251	 0.602375	 -0.00373	
252	 1.237425	 1.551279	
253	 0.440594	 0.625168	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
254	 1.84235	 0.433408	
255	 0.555877	 0.711094	
256	 1.305134	 -0.05933	
257	 1.476318	 3.105652	
258	 1.606411	 -1.72826	
259	 1.266777	 -2.90281	
260	 2.268454	 -1.88782	
261	 2.481008	 -1.96902	
262	 2.585516	 2.744716	
263	 1.113473	 -1.42908	
264	 1.174153	 -1.1451	
265	 1.066774	 2.917822	
266	 1.113674	 0.662505	
267	 0.888281	 0.699802	
268	 0.668481	 1.917836	
269	 2.432596	 -2.15665	
270	 1.231548	 0.731986	
271	 1.693614	 -2.78165	
272	 1.223221	 0.597467	
273	 2.201548	 -1.46529	
274	 1.902098	 -0.03395	
275	 0.898756	 -0.9578	
276	 1.366392	 -2.4668	
277	 1.530575	 -2.24759	
278	 1.260603	 -0.51562	
279	 2.215965	 0.420109	
280	 1.861005	 2.091044	
281	 2.095051	 1.97774	
282	 2.366861	 -1.09488	
283	 1.816403	 -0.14001	
284	 2.317407	 1.016714	
285	 1.461546	 1.290579	
286	 2.193325	 0.980219	
287	 0.77106	 0.453766	
288	 1.5345	 -2.09584	
289	 0.998519	 1.822523	
290	 1.307062	 -2.68391	
291	 1.821806	 -2.46818	
292	 0.803771	 -0.8512	
293	 1.613663	 2.478219	
294	 1.235919	 1.266918	
295	 1.867854	 -1.5141	
296	 1.731207	 -2.90096	
297	 0.770614	 -2.16964	
298	 1.465396	 2.171116	
299	 1.01759	 -0.25568	
300	 1.392705	 0.033061	
301	 0.335498	 1.512517	
302	 1.461289	 1.54693	
303	 0.870924	 2.79258	
304	 1.807489	 -1.89186	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
305	 2.49874	 2.3943	
306	 0.821241	 -0.38577	
307	 0.926356	 -0.80105	
308	 0.556133	 0.471599	
309	 1.992667	 2.819827	
310	 1.679276	 1.671037	
311	 1.953182	 -1.73371	
312	 1.780723	 -2.0138	
313	 1.869401	 2.858128	
314	 1.781218	 1.868012	
315	 1.452526	 1.797269	
316	 2.01251	 1.606667	
317	 2.324749	 1.687037	
318	 1.150755	 -1.27893	
319	 0.756081	 1.140513	
320	 1.973497	 0.669322	
321	 2.010585	 1.463973	
322	 2.849122	 -1.76553	
323	 0.904376	 2.065719	
324	 1.482927	 -1.77235	
325	 2.628205	 -2.84498	
326	 1.420649	 -0.74027	
327	 1.71447	 0.441246	
328	 1.340574	 1.740391	
329	 0.622271	 2.843968	
330	 0.835334	 -2.68133	
331	 3.051987	 -2.23729	
332	 2.046102	 -0.9964	
333	 0.797258	 -1.21134	
334	 2.724646	 -2.43902	
335	 2.611122	 -1.15281	
336	 1.50628	 -1.64946	
337	 1.97295	 2.029822	
338	 2.529466	 -1.54993	
339	 1.672249	 -0.69966	
340	 2.458606	 2.801179	
341	 1.529345	 -1.52587	
342	 2.784085	 1.044762	
343	 2.490242	 -1.11922	
344	 1.591193	 -0.59619	
345	 0.999132	 -2.3122	
346	 0.659373	 -2.06862	
347	 1.119098	 -1.93892	
348	 0.464014	 -1.71556	
349	 2.02629	 -1.96219	
350	 0.596837	 2.477729	
351	 1.861654	 0.086767	
352	 1.112254	 1.889409	
353	 1.139221	 2.168826	
354	 2.159352	 2.490129	
355	 1.258674	 2.210975	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 751	
	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
356	 1.667272	 2.810482	
357	 1.021017	 2.122021	
358	 1.896177	 1.27303	
359	 2.151002	 0.829545	
360	 0.77441	 1.818261	
361	 1.342751	 -0.98295	
362	 0.262384	 -2.928	
363	 0.129902	 1.239366	
364	 1.752458	 2.901332	
365	 1.464396	 2.759957	
366	 2.294039	 -0.51076	
367	 1.454635	 2.045914	
368	 0.227361	 -1.82115	
369	 2.311796	 -2.18266	
370	 2.174068	 -1.77966	
371	 2.506843	 -2.71048	
372	 0.992468	 -2.15921	
373	 1.227143	 0.190669	
374	 1.365428	 1.069193	
375	 1.236975	 2.787516	
376	 1.154208	 1.143476	
377	 1.930709	 -1.8622	
378	 2.234611	 -2.04754	
379	 0.774121	 1.639648	
380	 0.898219	 0.197557	
381	 1.44303	 0.242325	
382	 1.790204	 1.606486	
383	 1.936363	 2.455337	
384	 2.035462	 -2.72018	
385	 0.803546	 2.636475	
386	 2.810275	 2.124549	
387	 2.391563	 -1.83475	
388	 0.84096	 -1.36705	
389	 2.34494	 1.521149	
390	 1.714193	 -0.91551	
391	 1.90252	 1.539578	
392	 2.103342	 -1.39124	
393	 2.27819	 2.411276	
394	 1.392659	 -2.93254	
395	 0.545511	 -2.16194	
396	 1.869133	 -2.58432	
397	 0.630404	 -1.49995	
398	 2.558334	 -2.14126	
399	 1.67063	 2.061112	
400	 1.296188	 -1.11461	
401	 0.788049	 1.99693	
402	 1.827677	 -0.54633	
403	 2.716502	 -0.00221	
404	 0.930328	 2.650971	
405	 0.878368	 -1.51076	
406	 2.489276	 2.603954	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
407	 2.890999	 0.290101	
408	 2.657951	 0.489905	
409	 0.96531	 -0.65453	
410	 1.855747	 -2.92875	
411	 1.651622	 0.758137	
412	 1.265687	 -1.24592	
413	 2.010305	 1.325162	
414	 1.346386	 1.613691	
415	 0.472724	 -0.90468	
416	 2.341165	 -3.13766	
417	 0.960818	 2.381061	
418	 1.398992	 -0.29456	
419	 1.568531	 -2.4351	
420	 1.688619	 -0.11468	
421	 2.160387	 0.558132	
422	 1.114966	 -2.37259	
423	 1.881658	 -0.77985	
424	 1.995754	 1.889234	
425	 1.117533	 1.617382	
426	 1.101304	 -3.11503	
427	 2.352006	 -0.79399	
428	 2.040188	 2.543197	
429	 2.477809	 2.18333	
430	 2.524762	 -1.33162	
431	 1.288795	 2.33856	
432	 1.530619	 -0.32417	
433	 1.996187	 -2.59313	
434	 1.381383	 -1.21295	
435	 1.139198	 -0.89321	
436	 2.635579	 -1.67431	
437	 1.349779	 -2.80923	
438	 2.954408	 -2.83336	
439	 1.452891	 -0.4078	
440	 0.382279	 -2.86135	
441	 2.190325	 -0.25707	
442	 2.287611	 -0.1614	
443	 0.766624	 -0.22703	
444	 1.35654	 0.796767	
445	 2.51213	 1.820018	
446	 2.758135	 1.78361	
447	 0.789472	 1.463058	
448	 1.870388	 1.011095	
449	 2.023221	 0.302364	
450	 2.587183	 0.041182	
451	 2.274545	 0.858747	
452	 1.271142	 -0.28099	
453	 2.082906	 2.919036	
454	 0.359667	 0.139722	
455	 0.760912	 -0.54819	
456	 2.515445	 -1.7665	
457	 0.898162	 -2.40708	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
458	 2.29848	 -0.95139	
459	 1.780645	 1.219744	
460	 2.33852	 0.415346	
461	 1.550073	 0.81606	
462	 1.622057	 -2.1722	
463	 2.509012	 -0.54779	
464	 2.54485	 0.540669	
465	 1.750403	 -1.55851	
466	 2.036536	 0.550905	
467	 2.119604	 -3.12788	
468	 1.636192	 2.943403	
469	 2.706942	 2.670477	
470	 1.229093	 -1.38497	
471	 0.517239	 -0.19113	
472	 0.887576	 -0.52725	
473	 0.975329	 -3.0929	
474	 1.747946	 -1.13831	
475	 1.918438	 3.0902	
476	 2.347749	 0.725686	
477	 1.45421	 1.153591	
478	 1.013689	 -0.51642	
479	 1.604599	 -0.21948	
480	 1.46601	 1.00347	
481	 1.00817	 0.750809	
482	 2.170681	 3.030815	
483	 0.541294	 2.690871	
484	 1.018865	 -2.46184	
485	 0.249878	 2.273772	
486	 0.936888	 -2.96048	
487	 2.401366	 -2.81676	
488	 1.860204	 -0.41883	
489	 1.343815	 0.944867	
490	 1.690278	 -2.44876	
491	 1.19985	 -0.39296	
492	 1.676614	 -1.36115	
493	 2.402845	 -0.2369	
494	 2.074667	 -2.47441	
495	 1.088158	 1.034275	
496	 2.472237	 -2.51843	
497	 2.073053	 0.944332	
498	 0.594256	 -0.80525	
499	 1.347438	 1.349469	
500	 1.697258	 -1.2457	
501	 2.479703	 -0.75308	
502	 0.570621	 2.057593	
503	 2.387091	 2.309908	
504	 1.877449	 -1.37919	
505	 1.984809	 -1.47159	
506	 1.176336	 -0.03381	
507	 0.982489	 -1.44605	
508	 1.345131	 -1.34745	

ISO/IEC	23008-3:202X(E)	

752	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
509	 2.294204	 -1.72473	
510	 2.417431	 -1.46071	
511	 1.046811	 2.268872	
512	 1.586258	 0.446749	
513	 0.928173	 0.036527	
514	 2.073419	 0.171125	
515	 0.709444	 -1.33749	
516	 1.750505	 2.15109	
517	 2.220768	 2.070832	
518	 1.747803	 -2.135	
519	 0.761648	 -2.84202	
520	 1.43706	 -2.01942	
521	 0.89017	 1.902072	
522	 1.583018	 -1.84922	
523	 2.054971	 2.261075	
524	 1.905755	 0.779413	
525	 2.845301	 -0.49506	
526	 0.79774	 -1.82155	
527	 0.800556	 -2.51926	
528	 1.057093	 2.660693	
529	 1.654386	 -2.6654	
530	 0.245118	 0.062155	
531	 1.008694	 1.531093	
532	 0.668768	 0.355014	
533	 1.316919	 -1.48002	
534	 1.642633	 -2.99245	
535	 1.90396	 -1.98914	
536	 2.379387	 -2.33848	
537	 1.336709	 -0.63373	
538	 2.714833	 2.357917	
539	 1.349985	 2.124282	
540	 1.480695	 -0.20244	
541	 2.443129	 1.994495	
542	 1.323511	 -2.08106	
543	 1.234961	 2.076721	
544	 1.806894	 -1.27745	
545	 0.754391	 -1.50994	
546	 1.564541	 -2.75282	
547	 0.384113	 1.17336	
548	 3.102243	 0.912148	
549	 1.265711	 3.029417	
550	 1.674134	 1.28601	
551	 2.149332	 0.288049	
552	 0.749212	 2.791832	
553	 0.388386	 -1.42608	
554	 3.029933	 2.696258	
555	 2.284647	 3.00926	
556	 2.30806	 -1.55714	
557	 0.503707	 -2.81772	
558	 2.288924	 -1.231	
559	 2.482148	 0.732969	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
560	 2.331468	 2.845048	
561	 0.778659	 -2.34698	
562	 1.765106	 -3.02418	
563	 1.43478	 -3.05542	
564	 0.230604	 2.804808	
565	 1.769355	 1.093483	
566	 2.188899	 -2.89502	
567	 2.091434	 -0.8578	
568	 0.879847	 1.139575	
569	 1.049932	 -1.71256	
570	 1.522514	 -2.63529	
571	 1.311231	 -2.21064	
572	 2.20646	 2.880494	
573	 1.558141	 -1.97041	
574	 1.688892	 2.677968	
575	 0.992719	 2.79036	
576	 1.818753	 0.205937	
577	 1.101926	 -2.22723	
578	 1.225344	 -1.00705	
579	 1.949288	 -0.53286	
580	 0.460681	 0.907232	
581	 2.193301	 -1.62602	
582	 0.476412	 -1.19995	
583	 1.636655	 2.3373	
584	 1.206711	 0.329746	
585	 1.707563	 -1.80618	
586	 1.206387	 -2.14769	
587	 0.776972	 -1.99276	
588	 1.096785	 -2.737	
589	 0.436766	 -2.29585	
590	 2.07502	 -1.68559	
591	 1.392412	 3.011491	
592	 0.682369	 -1.13627	
593	 1.225183	 -3.13129	
594	 1.563786	 1.859844	
595	 1.458913	 1.417376	
596	 2.718574	 -3.05981	
597	 1.979705	 -2.95816	
598	 1.554308	 -1.40124	
599	 1.776602	 -0.01863	
600	 2.677886	 -0.92133	
601	 2.029355	 0.802307	
602	 1.729752	 -1.68373	
603	 1.953522	 0.910813	
604	 1.524548	 2.271598	
605	 2.031709	 -0.06394	
606	 2.077636	 -0.4876	
607	 1.051182	 -0.77219	
608	 2.603391	 -0.70524	
609	 2.097943	 0.685032	
610	 0.371327	 2.265788	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
611	 1.213522	 -0.63696	
612	 1.650775	 1.026634	
613	 0.767996	 3.130703	
614	 1.338008	 2.45633	
615	 0.911259	 0.85671	
616	 1.887171	 1.142114	
617	 2.664046	 0.968218	
618	 2.798353	 1.418122	
619	 1.074161	 -0.38727	
620	 1.272782	 -2.55267	
621	 2.404679	 0.886884	
622	 1.477396	 -2.84119	
623	 0.493541	 2.268731	
624	 2.136287	 -0.71983	
625	 0.337112	 0.850139	
626	 1.166585	 2.305876	
627	 1.744347	 2.283504	
628	 1.020634	 -1.85822	
629	 1.898576	 1.672798	
630	 2.995984	 1.636152	
631	 1.238419	 -1.87666	
632	 1.437769	 0.612644	
633	 1.258816	 -0.87666	
634	 0.69643	 -2.99924	
635	 0.900837	 -1.13072	
636	 1.672418	 1.927997	
637	 1.844156	 0.664917	
638	 0.572188	 0.228561	
639	 1.353464	 1.48527	
640	 1.890888	 -2.35266	
641	 1.506348	 -0.83659	
642	 1.773076	 0.775684	
643	 2.410408	 2.98213	
644	 2.90917	 2.868761	
645	 2.180686	 -1.27939	
646	 0.510344	 -0.64266	
647	 1.976097	 -0.40766	
648	 0.826192	 1.29368	
649	 1.91067	 0.549881	
650	 2.776209	 0.3546	
651	 2.235242	 1.289519	
652	 2.115016	 2.777567	
653	 2.070602	 -2.21475	
654	 1.447468	 0.476481	
655	 0.964096	 -2.70809	
656	 2.731012	 -1.20445	
657	 1.334867	 0.670866	
658	 2.429586	 -0.93612	
659	 2.63616	 1.806525	
660	 0.706565	 -1.6814	
661	 2.92805	 -2.17449	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 753	
	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
662	 0.885044	 1.740732	
663	 2.389775	 -0.61931	
664	 1.677833	 0.875902	
665	 0.790738	 -1.03437	
666	 0.584283	 -1.70003	
667	 1.382807	 -0.51729	
668	 2.80396	 -2.16009	
669	 0.304607	 -0.40059	
670	 0.722709	 2.311881	
671	 0.714568	 -0.73016	
672	 1.559086	 -3.08474	
673	 0.962259	 -1.61558	
674	 2.414352	 -1.65088	
675	 0.994271	 0.295543	
676	 1.338226	 1.867127	
677	 0.736288	 2.48462	
678	 1.073514	 -1.56045	
679	 1.822578	 2.505677	
680	 1.990348	 0.065205	
681	 1.781765	 2.766939	
682	 1.033092	 0.896671	
683	 1.127493	 0.798323	
684	 1.727658	 -0.46212	
685	 1.92323	 2.590846	
686	 2.463964	 1.258543	
687	 1.13831	 -0.51322	
688	 1.039074	 -1.32131	
689	 0.588322	 -2.62377	
690	 1.417216	 -1.08365	
691	 0.663017	 0.566512	
692	 1.566429	 1.733991	
693	 1.112158	 1.752268	
694	 0.890368	 1.581359	
695	 2.300542	 -0.33583	
696	 1.648818	 0.332373	
697	 2.118892	 1.52873	
698	 1.43507	 -1.43991	
699	 0.582792	 0.940133	
700	 1.78724	 1.34762	
701	 1.727495	 -0.23086	
702	 1.881733	 1.945045	
703	 1.318704	 0.277601	
704	 1.897627	 0.313832	
705	 0.845239	 -0.08576	
706	 2.0892	 -0.3408	
707	 0.713047	 -2.66438	
708	 0.692857	 2.115152	
709	 1.664634	 1.156801	
710	 0.688454	 -0.93154	
711	 1.463406	 -0.95667	
712	 1.253065	 2.560467	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
713	 1.819658	 -2.80478	
714	 1.260995	 -1.74246	
715	 1.435653	 2.890857	
716	 1.60464	 -2.87152	
717	 1.707593	 2.555998	
718	 1.119645	 2.028703	
719	 2.14202	 2.6348	
720	 2.265749	 -0.67603	
721	 2.190948	 -2.20021	
722	 2.053333	 -1.8255	
723	 1.971232	 -1.60347	
724	 2.578679	 1.371333	
725	 0.773638	 0.639909	
726	 2.232374	 1.77863	
727	 1.785826	 0.548415	
728	 1.336953	 -1.9491	
729	 3.038562	 -0.78873	
730	 2.193649	 -0.41978	
731	 2.845167	 -2.55478	
732	 1.828607	 -2.23861	
733	 0.880755	 -2.82962	
734	 1.949983	 -2.22717	
735	 0.689045	 0.145942	
736	 2.516923	 -0.32934	
737	 2.609519	 -2.60003	
738	 2.020231	 2.681984	
739	 0.127281	 2.277744	
740	 0.679218	 -2.47276	
741	 2.121325	 -1.11859	
742	 1.683063	 -1.92724	
743	 2.499557	 -0.11534	
744	 1.569858	 1.353735	
745	 2.682928	 1.536316	
746	 2.235571	 -1.09784	
747	 0.610097	 2.275041	
748	 0.462906	 -2.5753	
749	 2.443011	 1.067526	
750	 0.454231	 0.339629	
751	 1.016647	 0.143399	
752	 2.461848	 0.404918	
753	 1.764284	 -2.3566	
754	 2.988346	 0.65313	
755	 1.144258	 -0.26842	
756	 2.856875	 0.725942	
757	 0.633973	 3.103215	
758	 1.992845	 -2.09622	
759	 2.202685	 1.920323	
760	 2.223548	 1.603998	
761	 0.116931	 -2.07276	
762	 1.871114	 -2.11472	
763	 2.300243	 -1.38656	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
764	 0.703711	 1.317688	
765	 2.064206	 -1.23679	
766	 0.984963	 0.451056	
767	 0.574487	 -1.0389	
768	 2.234434	 1.445933	
769	 1.358705	 -1.82049	
770	 1.173197	 -0.76244	
771	 2.342805	 1.183469	
772	 2.168829	 -0.97015	
773	 1.306737	 0.41717	
774	 1.289746	 -1.61309	
775	 2.607424	 -1.92324	
776	 2.201525	 0.145244	
777	 2.366264	 2.674947	
778	 1.65598	 -2.0482	
779	 0.265305	 -0.86745	
780	 1.350557	 3.131749	
781	 1.992065	 -1.34164	
782	 0.185258	 -0.45807	
783	 2.55493	 -0.92967	
784	 2.956429	 -0.19053	
785	 1.226258	 1.943601	
786	 0.782128	 0.265945	
787	 1.830475	 0.880835	
788	 0.891636	 -0.24208	
789	 0.827558	 0.986461	
790	 1.050492	 -0.00263	
791	 2.599693	 -3.10426	
792	 1.090734	 -0.64018	
793	 2.547561	 0.273103	
794	 2.607408	 -2.37281	
795	 1.793376	 -1.01865	
796	 0.924974	 -2.5622	
797	 2.284215	 0.567493	
798	 1.552605	 2.852065	
799	 2.624245	 -0.45581	
800	 0.340513	 2.618363	
801	 2.40849	 -1.27478	
802	 2.787701	 2.925913	
803	 1.334157	 0.537385	
804	 1.631284	 -0.81774	
805	 2.283062	 -2.77898	
806	 0.344686	 -1.74739	
807	 1.095126	 0.3841	
808	 2.249031	 -0.00478	
809	 0.44986	 2.0018	
810	 1.948494	 -2.47085	
811	 1.11565	 2.787223	
812	 2.315066	 1.956586	
813	 1.606835	 -0.45474	
814	 0.63299	 1.144043	

ISO/IEC	23008-3:202X(E)	

754	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
815	 2.821878	 2.535641	
816	 1.255164	 0.861751	
817	 1.782187	 -2.68449	
818	 1.539317	 0.556592	
819	 2.567717	 2.022229	
820	 1.466578	 2.642847	
821	 1.646155	 -0.34161	
822	 0.8393	 2.349399	
823	 2.221443	 -0.82712	
824	 2.7254	 -0.63406	
825	 0.669845	 2.643093	
826	 2.330625	 0.112419	
827	 1.249077	 1.41871	
828	 2.569069	 1.13848	
829	 2.620974	 -0.196	
830	 1.269525	 1.14096	
831	 1.462695	 -0.62507	
832	 0.881035	 0.365126	
833	 1.969457	 -0.28369	
834	 0.925107	 -1.76643	
835	 0.990924	 0.60516	
836	 1.323296	 2.675783	
837	 2.103987	 1.090257	
838	 1.262933	 0.062462	
839	 1.20149	 0.469999	
840	 2.848568	 -1.30095	
841	 2.004154	 1.745393	
842	 1.658245	 0.556352	
843	 0.590337	 -1.28162	
844	 0.634946	 -0.58417	
845	 1.770602	 -1.42761	
846	 1.800634	 3.128711	
847	 2.960306	 -1.52444	
848	 2.090759	 -1.54172	
849	 1.051648	 -2.60456	
850	 2.410598	 0.575853	
851	 2.54119	 2.958768	
852	 0.224297	 -2.43296	
853	 2.331693	 -2.4903	
854	 0.557692	 -2.39916	
855	 1.207172	 2.438011	
856	 1.221757	 -0.15931	
857	 1.521682	 0.012241	
858	 2.598787	 2.253584	
859	 1.356805	 1.224114	
860	 0.829988	 2.953818	
861	 1.46143	 0.733704	
862	 0.448311	 -3.11137	
863	 0.142704	 -1.15175	
864	 1.568963	 0.93851	
865	 2.121642	 1.683363	

Index	
™	

ÏÇ
(/:)	in	
rad	

ÌÇ
(/:)	in	

rad	
866	 1.716836	 0.657986	
867	 0.694799	 -0.39167	
868	 1.417863	 -2.27191	
869	 1.608375	 0.1142	
870	 1.435128	 -2.72083	
871	 0.999243	 -2.00614	
872	 2.351548	 2.120987	
873	 0.116779	 0.181628	
874	 1.916873	 -0.65602	
875	 1.310188	 2.909896	
876	 1.48052	 -2.51555	
877	 1.85256	 2.228326	
878	 2.478888	 3.139382	
879	 1.922981	 -1.23807	
880	 0.807703	 0.08444	
881	 1.588222	 -0.93589	
882	 1.110241	 -1.0309	
883	 2.92004	 -0.87525	
884	 1.354995	 2.791024	
885	 2.173878	 -0.57587	
886	 2.275571	 0.270673	
887	 1.447607	 0.878215	
888	 1.507868	 -0.5104	
889	 0.884403	 -2.24604	
890	 1.233859	 -2.4283	
891	 2.092642	 0.423603	
892	 2.165987	 2.344276	
893	 1.082785	 2.411268	
894	 1.577186	 -1.27631	
895	 1.774916	 2.004092	
896	 1.693733	 0.215761	
897	 0.99962	 1.675914	
898	 2.63932	 -1.41064	
899	 2.687317	 1.247289	
900	 1.435467	 -0.0844	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 755	
	

F.10 	Uniformly	distributed	positions	%#($%&-) = '(#($%&-), *#
($%&-)+, , ≤ . ≤ / = 530	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

1	 1,570796	 0	

2	 2,540586	 3,141593	

3	 0,753156	 1,881071	

4	 2,337304	 2,593153	

5	 1,986374	 2,48754	

6	 2,599108	 1,755773	

7	 1,791008	 -0,6984	

8	 0,845842	 2,392534	

9	 2,15876	 1,174137	

10	 1,053916	 2,275885	

11	 0,657397	 -1,1337	

12	 1,687056	 -1,98286	

13	 1,987421	 -0,75853	

14	 1,875376	 -1,90914	

15	 2,681299	 2,881968	

16	 0,984765	 -3,09154	

17	 0,830987	 -0,56701	

18	 1,028238	 1,200757	

19	 1,616876	 -1,19846	

20	 2,726582	 1,354023	

21	 2,18126	 -2,46727	

22	 2,399782	 0,845096	

23	 1,253995	 0,896236	

24	 1,153461	 -0,76225	

25	 1,873442	 1,443549	

26	 2,324723	 -2,63204	

27	 2,338454	 3,125224	

28	 1,8049	 -0,89556	

29	 2,0309	 -2,94098	

30	 2,239202	 0,669903	

31	 2,395458	 2,307872	

32	 0,424288	 0,180267	

33	 1,379181	 -1,88362	

34	 2,343128	 -2,31015	

35	 1,15442	 0,51781	

36	 1,752626	 2,754497	

37	 2,515234	 -2,5068	

38	 2,737789	 -1,87919	

39	 1,330119	 1,72048	

40	 2,697091	 -1,40544	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

41	 2,978019	 2,551982	

42	 2,23678	 0,381458	

43	 1,069124	 -0,98954	

44	 2,365977	 1,141151	

45	 1,650928	 1,988879	

46	 2,452779	 2,836885	

47	 1,24039	 2,848099	

48	 2,554751	 2,532536	

49	 1,832787	 0,883034	

50	 0,841219	 1,357304	

51	 0,152247	 -2,83592	

52	 1,436656	 -1,08457	

53	 1,5882	 -2,58741	

54	 1,745293	 -1,74596	

55	 1,647027	 2,97133	

56	 1,026785	 2,513095	

57	 0,656707	 2,531023	

58	 1,092585	 0,738423	

59	 1,773143	 -1,53397	

60	 0,481758	 2,301998	

61	 1,864767	 0,210064	

62	 1,606288	 -2,95766	

63	 1,485123	 -2,4068	

64	 1,066381	 -1,97222	

65	 2,880783	 -0,52049	

66	 2,137684	 3,12665	

67	 0,76664	 -3,13402	

68	 1,006572	 -1,71701	

69	 2,036013	 -0,34798	

70	 0,901011	 2,940996	

71	 0,872312	 -2,8859	

72	 2,204037	 1,643809	

73	 1,383707	 -2,60137	

74	 0,679817	 0,886414	

75	 1,299549	 0,684811	

76	 0,715096	 1,586673	

77	 0,885953	 2,129444	

78	 1,980002	 -2,08712	

79	 2,413831	 0,507139	

80	 1,47663	 1,8635	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

81	 2,602214	 2,159931	

82	 1,848369	 2,94257	

83	 2,538768	 -1,08864	

84	 2,606473	 0,321932	

85	 1,938743	 -1,68743	

86	 1,171776	 1,58225	

87	 1,183986	 -3,02302	

88	 1,056948	 0,32247	

89	 0,726531	 -0,82381	

90	 0,451831	 -1,27319	

91	 0,965542	 -0,35608	

92	 1,968415	 -1,4576	

93	 0,949663	 -2,16268	

94	 2,125493	 -0,57687	

95	 1,944549	 2,714656	

96	 2,340901	 -0,10918	

97	 1,385594	 2,697843	

98	 0,903401	 -0,11991	

99	 2,071052	 0,54754	

100	 1,382153	 -1,67812	

101	 1,106714	 3,010458	

102	 1,256757	 -0,54454	

103	 1,891797	 -2,3321	

104	 2,941149	 -2,31342	

105	 1,263661	 2,172645	

106	 2,089312	 -2,27241	

107	 1,655611	 1,774379	

108	 1,437424	 2,284765	

109	 1,17978	 -2,61538	

110	 1,812984	 -1,11336	

111	 0,613493	 -0,52422	

112	 2,345378	 -1,23799	

113	 2,161643	 -1,36504	

114	 2,938236	 1,351681	

115	 2,173967	 -0,83679	

116	 0,469181	 2,738193	

117	 0,514665	 1,500147	

118	 0,975424	 0,111555	

119	 0,264261	 2,537599	

120	 2,654416	 -2,8192	

ISO/IEC	23008-3:202X(E)	

756	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

121	 1,408085	 2,488626	

122	 1,530398	 0,403452	

123	 1,991433	 -1,22731	

124	 1,599368	 -0,73714	

125	 1,050268	 0,966086	

126	 1,99607	 1,016126	

127	 0,748129	 -0,29194	

128	 2,504702	 -1,44572	

129	 1,912277	 -2,74579	

130	 0,085952	 -0,97118	

131	 1,789353	 2,542685	

132	 1,272692	 -0,93652	

133	 1,419238	 1,036116	

134	 2,173909	 -1,09809	

135	 2,030629	 2,04102	

136	 0,546571	 3,121853	

137	 0,513708	 -2,14321	

138	 1,576369	 -1,60474	

139	 2,238422	 -2,91512	

140	 2,095752	 1,395123	

141	 2,128771	 -1,62032	

142	 1,34699	 0,466253	

143	 0,752649	 0,055963	

144	 1,456025	 2,075312	

145	 0,818941	 -1,61666	

146	 1,787983	 -2,15582	

147	 2,186068	 2,408	

148	 1,490763	 -2,78383	

149	 1,178592	 0,084196	

150	 1,696293	 -2,38779	

151	 2,57326	 -2,16432	

152	 2,523326	 -1,77771	

153	 2,247691	 2,875899	

154	 1,690617	 1,537011	

155	 0,511311	 -0,84749	

156	 2,722464	 -0,90106	

157	 2,743368	 -2,41164	

158	 1,003967	 -1,46755	

159	 0,825441	 -1,32701	

160	 1,459158	 0,829409	

161	 0,924496	 1,643935	

162	 0,681508	 2,189654	

163	 1,994055	 -0,99034	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

164	 1,129089	 1,793236	

165	 1,91921	 -0,15902	

166	 1,42492	 2,938636	

167	 0,847863	 1,070911	

168	 1,730771	 -3,12977	

169	 0,661019	 1,232887	

170	 2,775032	 2,459863	

171	 0,298982	 0,67934	

172	 1,580826	 1,170029	

173	 2,301796	 1,407997	

174	 1,7888	 0,013819	

175	 1,390961	 -1,47788	

176	 1,393564	 1,254195	

177	 1,694797	 0,561269	

178	 1,379071	 -0,36899	

179	 1,484571	 -0,55323	

180	 0,976607	 -2,6313	

181	 0,731727	 -2,13684	

182	 1,026173	 1,440579	

183	 2,324373	 -0,63645	

184	 0,230515	 -0,04256	

185	 1,22378	 1,114186	

186	 1,229817	 -1,14916	

187	 1,361976	 -0,71819	

188	 1,167884	 -0,34767	

189	 0,633955	 -1,47943	

190	 1,272376	 -2,41305	

191	 1,919944	 -0,53227	

192	 1,444538	 0,218916	

193	 0,647067	 -2,86207	

194	 1,511014	 1,627943	

195	 2,794805	 1,895057	

196	 2,839082	 -3,05734	

197	 2,28704	 -1,80585	

198	 2,135683	 -0,13755	

199	 0,486	 1,03313	

200	 2,665401	 -0,4202	

201	 0,553326	 1,88797	

202	 1,822203	 -2,94336	

203	 2,009728	 1,598679	

204	 1,393362	 -2,98262	

205	 2,545531	 -0,06951	

206	 1,099367	 2,045297	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

207	 1,283245	 -2,80597	

208	 0,345517	 1,921455	

209	 1,636161	 -0,98807	

210	 1,721978	 0,359968	

211	 1,207643	 2,608317	

212	 1,815744	 2,331834	

213	 1,262957	 -2,04552	

214	 1,498023	 0,620829	

215	 0,940651	 -0,79597	

216	 0,734507	 0,582659	

217	 1,471911	 -0,88269	

218	 1,636408	 2,193534	

219	 0,851626	 -2,38219	

220	 1,559421	 2,791786	

221	 2,770578	 0,789602	

222	 1,899256	 0,448708	

223	 2,40689	 0,189573	

224	 0,946938	 0,550775	

225	 1,589561	 -0,35647	

226	 1,690864	 -0,52639	

227	 1,058173	 -2,4116	

228	 1,729931	 1,303788	

229	 1,369756	 0,031737	

230	 0,68781	 2,856259	

231	 2,524375	 -0,71858	

232	 1,700739	 -2,76659	

233	 0,94978	 1,884725	

234	 2,202511	 0,933913	

235	 1,153878	 -2,21863	

236	 1,513578	 3,134146	

237	 1,839609	 1,907467	

238	 1,494181	 -2,04817	

239	 1,662947	 0,763588	

240	 2,082727	 -1,86729	

241	 0,884444	 0,800713	

242	 1,594825	 -1,40136	

243	 1,588627	 2,592485	

244	 2,452712	 -0,38599	

245	 2,358395	 -0,93592	

246	 2,39574	 -2,03427	

247	 1,290009	 -0,16118	

248	 1,616407	 2,395151	

249	 1,359946	 1,487488	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 757	
	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

250	 2,751026	 0,040667	

251	 2,920272	 0,360027	

252	 0,863606	 -1,05083	

253	 2,323526	 -1,54461	

254	 2,442194	 -2,85478	

255	 0,629957	 -2,43579	

256	 2,029279	 1,8197	

257	 1,190343	 -1,57767	

258	 1,942992	 1,233743	

259	 2,039018	 0,787114	

260	 2,117259	 -2,71461	

261	 2,138562	 2,661812	

262	 2,398201	 1,697863	

263	 2,053973	 0,288687	

264	 1,833566	 2,120746	

265	 1,02534	 -1,22518	

266	 0,12359	 1,536045	

267	 2,897548	 -1,37622	

268	 2,508698	 1,4138	

269	 1,643283	 0,179413	

270	 0,319873	 1,329402	

271	 1,229489	 2,387867	

272	 0,660755	 -1,83187	

273	 1,791646	 -2,56678	

274	 1,299208	 3,092769	

275	 2,047718	 2,911784	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

276	 3,100967	 -0,72195	

277	 2,006519	 0,048203	

278	 2,218598	 2,157181	

279	 1,048729	 -0,5709	

280	 0,574576	 -0,11209	

281	 1,623745	 0,965259	

282	 0,623249	 0,295603	

283	 0,415405	 -0,38272	

284	 1,0989	 -0,12335	

285	 1,048632	 2,764515	

286	 2,418187	 2,003689	

287	 1,256026	 0,280121	

288	 1,410748	 -1,2811	

289	 0,840674	 0,322993	

290	 1,832329	 1,68945	

291	 0,345204	 -3,07767	

292	 1,870125	 0,668736	

293	 1,594522	 -2,21705	

294	 1,19483	 -1,8004	

295	 0,515958	 0,618657	

296	 0,863261	 -1,90625	

297	 0,777824	 -2,63954	

298	 0,322759	 -2,31954	

299	 1,787033	 1,093564	

300	 2,198267	 -2,07434	

301	 1,935165	 3,137176	

Index	
™	

ÏÇ
(&Ü)	in	
rad	

ÌÇ
(&Ü)	in	

rad	

302	 1,543319	 1,396156	

303	 0,460163	 -1,73742	

304	 2,246401	 -0,36529	

305	 0,85267	 2,671535	

306	 2,583571	 0,694424	

307	 1,376707	 -2,22704	

308	 2,22554	 1,90227	

309	 1,794846	 -1,32439	

310	 1,564053	 -1,81823	

311	 1,701089	 -0,17443	

312	 1,285143	 1,945173	

313	 0,26238	 -1,64588	

314	 0,470241	 -2,67375	

315	 2,572875	 1,072132	

316	 1,203326	 -1,36153	

317	 2,014237	 2,262779	

318	 1,986227	 -2,5231	

319	 2,208189	 0,110959	

320	 1,486222	 -0,18011	

321	 0,299216	 -0,87425	

322	 1,813259	 -0,34936	

323	 1,209756	 1,339541	

324	 1,076876	 -2,83889	

F.11 	Uniformly	distributed	positions	%#($%&*) = '(#($%&*), *#
($%&*)+, , ≤ . ≤ / = 342	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

1	 1,570796	 0	

2	 2,393473	 0	

3	 1,522136	 2,803359	

4	 0,349565	 -1,94896	

5	 0,927804	 -1,35385	

6	 2,320706	 -2,74732	

7	 1,357925	 -1,26101	

8	 1,241931	 0,266723	

9	 2,294898	 -1,55165	

10	 2,232673	 -3,02776	

11	 1,906726	 -2,61137	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

12	 1,856837	 3,013545	

13	 1,944553	 -0,92864	

14	 2,116223	 3,017568	

15	 0,58886	 -1,8613	

16	 1,120912	 -2,83234	

17	 1,317554	 -1,03197	

18	 1,85964	 -1,55266	

19	 1,543378	 -1,07218	

20	 1,414883	 1,489539	

21	 1,398677	 -0,59615	

22	 0,355514	 -0,52834	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

23	 1,887142	 1,498187	

24	 0,945425	 -0,7215	

25	 1,691192	 2,354194	

26	 2,255288	 -1,25073	

27	 1,793627	 1,298621	

28	 1,821849	 -1,32933	

29	 2,604814	 -0,17818	

30	 0,696427	 -1,21908	

31	 1,842778	 2,576851	

32	 1,772955	 -1,10763	

33	 0,3771	 0,228439	

ISO/IEC	23008-3:202X(E)	

758	 ©	ISO/IEC	2019	–	All	rights	reserved	

	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

34	 1,458003	 -2,60425	

35	 1,332534	 0,037245	

36	 2,243663	 0,653764	

37	 1,629165	 -1,5172	

38	 0,962537	 -0,14111	

39	 0,993445	 -3,04499	

40	 2,778929	 0,192231	

41	 1,88667	 -1,78233	

42	 2,635501	 3,013891	

43	 1,125377	 -2,3657	

44	 2,654458	 1,925563	

45	 0,980969	 -2,09938	

46	 1,638519	 0,865101	

47	 2,264311	 -1,87584	

48	 2,404355	 -0,35937	

49	 1,911667	 2,344119	

50	 1,076653	 1,680717	

51	 0,73797	 -0,84874	

52	 2,085922	 1,389	

53	 1,871623	 0,89127	

54	 1,624644	 3,018256	

55	 0,992699	 0,338497	

56	 0,333636	 0,85379	

57	 0,729191	 -2,54307	

58	 0,990873	 1,929247	

59	 1,774548	 1,707882	

60	 2,165231	 1,143566	

61	 1,568473	 -2,39426	

62	 1,647178	 1,504474	

63	 0,869419	 2,212078	

64	 1,197839	 -0,1599	

65	 0,610152	 -0,55657	

66	 1,616611	 2,57871	

67	 2,652257	 -2,15443	

68	 0,272368	 -1,22826	

69	 0,504704	 -0,96913	

70	 2,320596	 2,484806	

71	 1,797508	 -2,39174	

72	 1,729672	 -3,05225	

73	 2,877382	 -2,23699	

74	 2,26382	 1,596262	

75	 1,82554	 -2,83876	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

76	 2,188916	 -0,45585	

77	 1,266764	 -3,0278	

78	 0,106946	 -2,25932	

79	 1,392675	 2,588366	

80	 1,538708	 -1,95162	

81	 1,396671	 3,033502	

82	 1,798798	 -0,01576	

83	 1,182777	 1,458666	

84	 1,157454	 3,052619	

85	 0,987032	 -1,62233	

86	 2,495313	 -2,94545	

87	 2,300531	 -2,40772	

88	 1,71055	 1,082068	

89	 1,409113	 0,86112	

90	 1,588546	 -1,29528	

91	 2,084207	 -0,72125	

92	 0,843842	 -2,82936	

93	 1,623546	 -0,64022	

94	 1,537093	 1,712369	

95	 2,706313	 2,488581	

96	 2,661795	 -1,08274	

97	 1,661099	 -2,18404	

98	 2,544606	 1,103956	

99	 1,975901	 -0,48018	

100	 0,497711	 -1,45722	

101	 1,33668	 0,644811	

102	 0,742062	 -0,17734	

103	 1,683236	 -0,21801	

104	 0,840839	 1,660363	

105	 1,364759	 -2,81664	

106	 2,092816	 -1,67852	

107	 2,490621	 -1,37413	

108	 1,560075	 0,642916	

109	 2,133522	 2,328133	

110	 0,779465	 0,472467	

111	 0,247081	 2,779166	

112	 1,067162	 2,831014	

113	 2,380442	 3,019886	

114	 1,44444	 1,925603	

115	 1,500411	 -3,04028	

116	 0,70983	 -3,08512	

117	 1,447034	 -1,71595	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

118	 1,243106	 2,371268	

119	 1,683338	 -2,61501	

120	 2,424317	 -1,01424	

121	 2,179636	 -2,15998	

122	 2,037793	 1,673302	

123	 1,434167	 -2,15919	

124	 2,864829	 3,01668	

125	 2,185216	 -0,97396	

126	 1,868284	 0,434067	

127	 2,03514	 2,096848	

128	 1,905032	 -2,16708	

129	 2,56038	 0,28355	

130	 0,554721	 0,621236	

131	 1,947678	 1,133086	

132	 0,575081	 1,740429	

133	 0,903596	 -2,3585	

134	 1,478289	 1,076754	

135	 2,424566	 -2,13007	

136	 0,360036	 2,04033	

137	 0,993382	 -2,61547	

138	 2,542831	 -0,66374	

139	 1,090724	 0,082772	

140	 1,091107	 -0,92361	

141	 0,833452	 -0,47359	

142	 1,56993	 2,140851	

143	 1,088232	 -1,87171	

144	 0,684584	 1,404315	

145	 1,320057	 1,261449	

146	 1,217046	 1,923915	

147	 1,401621	 -1,48555	

148	 1,468845	 2,36212	

149	 1,346035	 -2,37615	

150	 2,339481	 0,945394	

151	 1,674591	 1,922908	

152	 1,047286	 -0,38372	

153	 0,521563	 -2,32231	

154	 1,665408	 -1,74409	

155	 0,586646	 2,176989	

156	 2,514323	 1,537333	

157	 1,721181	 0,208506	

158	 1,765362	 -1,97824	

159	 2,889133	 -1,30324	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved	 759	
	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

160	 2,317481	 -0,70956	

161	 1,314477	 -1,91758	

162	 2,714288	 -2,73564	

163	 1,228855	 -2,60145	

164	 0,564436	 -2,78435	

165	 1,494758	 -0,8401	

166	 1,781699	 0,661166	

167	 2,295871	 2,13429	

168	 1,713614	 -0,88079	

169	 2,885147	 2,03328	

170	 1,287512	 -0,38537	

171	 2,34424	 1,308152	

172	 1,968755	 -3,06175	

173	 1,165801	 -1,43016	

174	 2,063322	 -1,417	

175	 1,981725	 2,805832	

176	 1,158441	 0,504139	

177	 0,415614	 1,415685	

178	 2,733645	 1,398131	

179	 1,147397	 -0,6025	

180	 2,098148	 0,887682	

181	 1,55741	 1,290594	

182	 3,085288	 -3,0923	

183	 0,477571	 2,576312	

184	 1,16444	 2,605225	

185	 0,961843	 0,651495	

186	 0,946688	 1,41421	

187	 2,035705	 -1,96122	

188	 0,577571	 1,053536	

189	 0,725183	 2,465943	

190	 2,515637	 -2,52086	

191	 1,299069	 2,820881	

192	 2,419005	 1,864017	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

193	 2,482555	 0,670661	

194	 1,528211	 -0,40243	

195	 2,490448	 2,694423	

196	 2,021146	 -0,03142	

197	 1,753836	 -0,44294	

198	 0,328189	 -2,68075	

199	 1,20905	 -2,1319	

200	 0,888586	 2,672667	

201	 2,703794	 0,760721	

202	 0,844501	 0,125584	

203	 2,006136	 0,65058	

204	 2,107115	 0,409253	

205	 1,004001	 2,426362	

206	 0,763348	 1,948305	

207	 0,731214	 -2,15244	

208	 1,595202	 -2,82985	

209	 0,839882	 -1,85594	

210	 1,16032	 0,791245	

211	 2,19261	 0,140513	

212	 1,927939	 -0,25016	

213	 2,34259	 0,367638	

214	 1,237315	 1,027863	

215	 2,507326	 2,262837	

216	 2,762758	 -0,56137	

217	 0,763917	 0,821765	

218	 2,973267	 -0,24682	

219	 2,194507	 -0,18598	

220	 0,159576	 1,576966	

221	 1,915307	 1,892602	

222	 1,801078	 2,125049	

223	 0,742067	 -1,56126	

224	 2,01371	 -1,16887	

225	 1,34053	 2,144167	

Index	
™	

ÏÇ
(&Ñ)	in	
rad	

ÌÇ
(&Ñ)	in	
rad	

226	 1,276706	 -0,79502	

227	 1,106197	 2,164711	

228	 2,485023	 -1,7739	

229	 1,848799	 -0,68792	

230	 0,883602	 2,99489	

231	 0,468236	 3,079139	

232	 1,124606	 -1,18571	

233	 1,225048	 -1,66803	

234	 0,824758	 1,148627	

235	 2,238598	 2,777458	

236	 0,153249	 -0,04564	

237	 1,411124	 0,428897	

238	 1,436586	 -0,18812	

239	 0,901827	 -1,06434	

240	 2,033011	 -2,36686	

241	 0,986595	 0,952245	

242	 1,306663	 1,699442	

243	 1,081021	 1,20636	

244	 0,671755	 2,830533	

245	 1,643208	 0,426869	

246	 2,074043	 2,578425	

247	 1,951007	 0,207296	

248	 1,746655	 2,796536	

249	 2,131472	 -2,59591	

250	 2,176867	 1,879702	

251	 2,925082	 0,996608	

252	 2,06195	 -2,83997	

253	 0,523	 -0,16767	

254	 0,623772	 0,211759	

255	 1,489525	 0,216479	

256	 2,697294	 -1,63972	

ISO/IEC	23008-3:202X(E)	

760	 ©	ISO/IEC	2019	–	All	rights	reserved	

F.12 Table	of	loudspeaker	directions	

Index	
™	 ÏÇ 	in	deg	 ÌÇ 	in	deg	

0	 —	
1	 90	 30	
2	 90	 -30	
3	 90	 0	
4	 90	 110	
5	 90	 -110	
6	 90	 22	
7	 90	 -22	
8	 90	 135	
9	 90	 -135	
10	 90	 180	
11	 90	 90	
12	 90	 -90	
13	 90	 60	
14	 90	 -60	
15	 55	 30	
16	 55	 -30	
17	 55	 0	
18	 55	 135	
19	 55	 -135	
20	 55	 180	
21	 55	 90	
22	 55	 -90	
23	 0	 0	
24	 105	 45	
25	 105	 -45	
26	 105	 0	
27	 55	 110	
28	 55	 -110	
29	 55	 45	
30	 55	 -45	
31	 90	 45	
32	 90	 -45	
33	 90	 150	
34	 90	 -150	

ISO/IEC	FDIS	23008-3:2018(E)

©	ISO/IEC	2021	–	All	rights	reserved	 761	

F.13 Table	of	64	horizontal-only	directions	

Index	
™	 ÏÇ 	in	rad	 ÌÇ 	in	rad	

0	 -	
1	 1.570796327	 0.073140204	
2	 1.570796327	 0.171314974	
3	 1.570796327	 0.269489745	
4	 1.570796327	 0.367664515	
5	 1.570796327	 0.465839286	
6	 1.570796327	 0.564014056	
7	 1.570796327	 0.662188827	
8	 1.570796327	 0.760363597	
9	 1.570796327	 0.858538367	
10	 1.570796327	 0.956713138	
11	 1.570796327	 1.054887908	
12	 1.570796327	 1.153062679	
13	 1.570796327	 1.251237449	
14	 1.570796327	 1.349412219	
15	 1.570796327	 1.44758699	
16	 1.570796327	 1.54576176	
17	 1.570796327	 1.643936531	
18	 1.570796327	 1.742111301	
19	 1.570796327	 1.840286072	
20	 1.570796327	 1.938460842	
21	 1.570796327	 2.036635612	
22	 1.570796327	 2.134810383	
23	 1.570796327	 2.232985153	
24	 1.570796327	 2.331159924	
25	 1.570796327	 2.429334694	
26	 1.570796327	 2.527509465	
27	 1.570796327	 2.625684235	
28	 1.570796327	 2.723859005	
29	 1.570796327	 2.822033776	
30	 1.570796327	 2.920208546	
31	 1.570796327	 3.018383317	
32	 1.570796327	 3.116558087	
33	 1.570796327	 3.214732858	
34	 1.570796327	 3.312907628	
35	 1.570796327	 3.411082398	
36	 1.570796327	 3.509257169	
37	 1.570796327	 3.607431939	
38	 1.570796327	 3.70560671	
39	 1.570796327	 3.80378148	
40	 1.570796327	 3.901956251	
41	 1.570796327	 4.000131021	
42	 1.570796327	 4.098305791	
43	 1.570796327	 4.196480562	
44	 1.570796327	 4.294655332	
45	 1.570796327	 4.392830103	
46	 1.570796327	 4.491004873	
47	 1.570796327	 4.589179644	
48	 1.570796327	 4.687354414	

Index	
™	 ÏÇ 	in	rad	 ÌÇ 	in	rad	
49	 1.570796327	 4.785529184	
50	 1.570796327	 4.883703955	
51	 1.570796327	 4.981878725	
52	 1.570796327	 5.080053496	
53	 1.570796327	 5.178228266	
54	 1.570796327	 5.276403036	
55	 1.570796327	 5.374577807	
56	 1.570796327	 5.472752577	
57	 1.570796327	 5.570927348	
58	 1.570796327	 5.669102118	
59	 1.570796327	 5.767276889	
60	 1.570796327	 5.865451659	
61	 1.570796327	 5.963626429	
62	 1.570796327	 6.0618012	
63	 1.570796327	 6.15997597	
64	 1.570796327	 6.258150741	

ISO/IEC	23008-3:202X(E)	

762 ©	ISO/IEC	2019	–	All	rights	reserved	
	

F.14 Table	of	256x8	weighting	values,	WeightValCdbk	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

0	 0.14285714924	 0.14285714924	 0.14285714924	 0.14285714924	 0.14285714924	 0.14285714924	 0.14285714924	 0.14285714924	

1	 0.79484397173	 0.46111851931	 0.38234585524	 0.24193552136	 0.21444739401	 0.15359933674	 0.14374199510	 0.13393582404	

2	 0.55842214823	 0.30439236760	 0.28972771764	 0.27604454756	 0.26580795646	 0.25700303912	 0.22353190184	 0.21797524393	

3	 0.80101627111	 0.28252929449	 0.25968930125	 0.24477474391	 0.22455757856	 0.21394693851	 0.20253199339	 0.19186609983	

4	 0.37952008843	 0.35683369637	 0.30577528477	 0.28943449259	 0.27463558316	 0.26456278563	 0.25684180856	 0.24980381131	

5	 0.58312273026	 0.49549213052	 0.41733580828	 0.36808615923	 0.16903258860	 0.14236906171	 0.12904828787	 0.11518220603	

6	 0.49205544591	 0.44534200430	 0.42993569374	 0.25750425458	 0.24426941574	 0.23008339107	 0.21231061220	 0.20627330244	

7	 0.51699024439	 0.48146176338	 0.30542108417	 0.27749687433	 0.24495093524	 0.23142641783	 0.21702684462	 0.20758652687	

8	 0.41707205772	 0.29806143045	 0.27184510231	 0.25848242640	 0.25069934130	 0.24254591763	 0.23679557443	 0.23245801032	

9	 0.78000450134	 0.60557442904	 0.19625824690	 0.17497292161	 0.16685895622	 0.15739247203	 0.15030227602	 0.13128414750	

10	 0.52832263708	 0.35157242417	 0.31959608197	 0.28347390890	 0.25750190020	 0.24116875231	 0.22818104923	 0.21805369854	

11	 0.62731820345	 0.40785419941	 0.36995643377	 0.32421410084	 0.28348660469	 0.19164024293	 0.16907556355	 0.13860858977	

12	 0.35809859633	 0.35234281421	 0.34886580706	 0.34171101451	 0.33775320649	 0.24810853601	 0.23695512116	 0.22805042565	

13	 0.65351974964	 0.60984611511	 0.57590663433	 0.25209143758	 0.13560663164	 0.10681645572	 0.09102717042	 0.07677187026	

14	 0.41454949975	 0.39374917746	 0.36720159650	 0.34996235371	 0.27047100663	 0.25519475341	 0.24232575297	 0.22844947875	

15	 0.54697281122	 0.48707035184	 0.37775507569	 0.34455451369	 0.32585829496	 0.29844009876	 0.12574063241	 0.09377439320	

16	 0.33841243386	 0.30431196094	 0.28867927194	 0.27958735824	 0.27019593120	 0.25982984900	 0.25316941738	 0.24786128104	

17	 0.74674654007	 0.50315219164	 0.43787288666	 0.29409092665	 0.20676374435	 0.13847224414	 0.13056376576	 0.11946664006	

18	 0.44768282771	 0.34686994553	 0.31689929962	 0.29552963376	 0.27861413360	 0.26599738002	 0.25477474928	 0.24498242140	

19	 0.59993451834	 0.44165274501	 0.27991858125	 0.26454469562	 0.24926443398	 0.23650069535	 0.22251504660	 0.20240539312	

20	 0.43939149380	 0.39824426174	 0.30669969320	 0.28380185366	 0.26688286662	 0.25460445881	 0.24267078936	 0.23549671471	

21	 0.71892434359	 0.56924980879	 0.44631543756	 0.38114413619	 0.14015947282	 0.11265687644	 0.09512945265	 0.08099808544	

22	 0.48285642266	 0.41384607553	 0.38630300760	 0.35692051053	 0.26822763681	 0.23871804774	 0.22506377101	 0.20998087525	

23	 0.53497987986	 0.48108190298	 0.38528791070	 0.31533282995	 0.28400212526	 0.22990182042	 0.17271237075	 0.14817491174	

24	 0.35310763121	 0.33512002230	 0.32269924879	 0.30408659577	 0.28188729286	 0.26789495349	 0.25707677007	 0.24870659411	

25	 0.67539769411	 0.64346086979	 0.40436282754	 0.23930411041	 0.19364456832	 0.15836749971	 0.13800504804	 0.12381732464	

26	 0.56582337618	 0.41919505596	 0.37840697169	 0.34830787778	 0.25627100468	 0.22717563808	 0.21228587627	 0.19591902196	

27	 0.74236577749	 0.46603596210	 0.42465049028	 0.33208015561	 0.28327256441	 0.24497987330	 0.12629052997	 0.09259223938	

28	 0.39627203345	 0.38062795997	 0.36869239807	 0.32757413387	 0.31495940685	 0.29855728149	 0.27839654684	 0.26048275828	

29	 0.59671962261	 0.48702490330	 0.46957325935	 0.20514920354	 0.19911563396	 0.18249641359	 0.17781682312	 0.17585490644	

30	 0.39978808165	 0.39151057601	 0.37806749344	 0.35209059715	 0.31856745481	 0.30451864004	 0.22019527853	 0.21157874167	

31	 0.48590987921	 0.44779258966	 0.40711387992	 0.37156593800	 0.24407258630	 0.21583117545	 0.19605177641	 0.18148536980	

32	 0.25056058168	 0.24662497640	 0.24356366694	 0.23928862810	 0.23714126647	 0.23380470276	 0.23005983233	 0.22724211216	

33	 0.79841518402	 0.42340806127	 0.25241211057	 0.23648139834	 0.21062786877	 0.19592125714	 0.17908002436	 0.16791133583	

34	 0.58207726479	 0.35862669349	 0.33197173476	 0.31476196647	 0.29948833585	 0.27731230855	 0.25845032930	 0.23733837903	

35	 0.66057932377	 0.39875021577	 0.37705603242	 0.25121569633	 0.24187508225	 0.23014353216	 0.22567911446	 0.21086215973	

36	 0.42894831300	 0.37698829174	 0.34242564440	 0.31678867340	 0.28898784518	 0.26755195856	 0.25456032157	 0.24326157570	

37	 0.50883018970	 0.49752962589	 0.43109422922	 0.41528180242	 0.20638176799	 0.19764222205	 0.16457396746	 0.15458904207	

38	 0.45246738195	 0.42256492376	 0.39209854603	 0.29708382487	 0.27221029997	 0.25654631853	 0.24036636949	 0.22847470641	

39	 0.48947647214	 0.45476981997	 0.31111612916	 0.29022768140	 0.27002742887	 0.25561869144	 0.24482184649	 0.23273958266	

40	 0.39846134186	 0.33908888698	 0.31975308061	 0.30201223493	 0.28754204512	 0.27667829394	 0.26585936546	 0.25648173690	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 763	
	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

41	 0.58775353432	 0.55266702175	 0.30810853839	 0.27059793472	 0.22883629799	 0.19571654499	 0.17382442951	 0.15820622444	

42	 0.50318557024	 0.37506437302	 0.35502073169	 0.34023052454	 0.31978103518	 0.24052129686	 0.22450305521	 0.21318650246	

43	 0.64546233416	 0.44319558144	 0.38771736622	 0.32314512134	 0.23735214770	 0.21786558628	 0.19723846018	 0.18039582670	

44	 0.40013042092	 0.34640094638	 0.33590704203	 0.32749593258	 0.31342297792	 0.30406278372	 0.29156157374	 0.24206121266	

45	 0.63928741217	 0.57422822714	 0.52658158541	 0.20283761621	 0.17723332345	 0.15799443424	 0.14736770093	 0.13996063173	

46	 0.42091622949	 0.38753592968	 0.36137163639	 0.34110710025	 0.32344600558	 0.26189833879	 0.24611066282	 0.23197843134	

47	 0.50451022387	 0.44148400426	 0.37358486652	 0.34788957238	 0.31489911675	 0.28011533618	 0.19982025027	 0.15935395658	

48	 0.33658546209	 0.32670456171	 0.31819191575	 0.30952084064	 0.29968410730	 0.28658291698	 0.26976725459	 0.25705382228	

49	 0.75306212902	 0.46843841672	 0.41990235448	 0.36917394400	 0.19525116682	 0.16681818664	 0.14216706157	 0.12162434310	

50	 0.47792163491	 0.37229952216	 0.35071676970	 0.33036124706	 0.30778241158	 0.28158339858	 0.24565060437	 0.22258616984	

51	 0.62058806419	 0.34256097674	 0.30633333325	 0.27576583624	 0.26174080372	 0.24421462417	 0.23342758417	 0.22193546593	

52	 0.45684978366	 0.43643996119	 0.34727525711	 0.31981772184	 0.27202475071	 0.25391596556	 0.23803244531	 0.22414971888	

53	 0.58322441578	 0.54242825508	 0.42770364881	 0.38091239333	 0.26146495342	 0.21577803791	 0.18338984251	 0.16437540948	

54	 0.48522102833	 0.45780670643	 0.38355031610	 0.35504153371	 0.31289565563	 0.26465445757	 0.23677645624	 0.21545591950	

55	 0.57235288620	 0.51449185610	 0.35284999013	 0.32442733645	 0.25785574317	 0.22270482779	 0.19274626672	 0.18192011118	

56	 0.36940726638	 0.34706988931	 0.33539959788	 0.32554152608	 0.31529080868	 0.30003070831	 0.26358401775	 0.24734900892	

57	 0.66430604458	 0.60233092308	 0.38242354989	 0.33818328381	 0.19866964221	 0.16535988450	 0.14278984070	 0.12755586207	

58	 0.59525412321	 0.39731407166	 0.36312294006	 0.34564334154	 0.33094158769	 0.30742985010	 0.23849965632	 0.20365872979	

59	 0.69998699427	 0.46519204974	 0.42490920424	 0.36635690928	 0.31390833855	 0.28568163514	 0.12037698925	 0.09980452061	

60	 0.40225467086	 0.37305980921	 0.35815593600	 0.34473416209	 0.33079206944	 0.31247195601	 0.28377497196	 0.26858565211	

61	 0.53271287680	 0.49191719294	 0.45600402355	 0.27766326070	 0.24132253230	 0.19154027104	 0.16547074914	 0.13909600675	

62	 0.43617269397	 0.36064311862	 0.34454962611	 0.33915069699	 0.32635813951	 0.31777852774	 0.30336216092	 0.19124200940	

63	 0.50647532940	 0.46337157488	 0.44427481294	 0.33032757044	 0.30512225628	 0.27171173692	 0.24503143132	 0.19941914082	

64	 0.20000000298	 0.20000000298	 0.20000000298	 0.20000000298	 0.20000000298	 0.20000000298	 0.20000000298	 0.20000000298	

65	 0.74654942751	 0.37724107504	 0.35240671039	 0.33455145359	 0.22152486444	 0.19814471900	 0.17745366693	 0.16783019900	

66	 0.53730899096	 0.39932999015	 0.30508694053	 0.28033134341	 0.26260015368	 0.24928328395	 0.23747171462	 0.22426354885	

67	 0.67744874954	 0.28579795361	 0.26536253095	 0.25423511863	 0.24650904536	 0.23754110932	 0.23173643649	 0.22437752783	

68	 0.39902409911	 0.38384497166	 0.37154302001	 0.28241902590	 0.26774469018	 0.25853309035	 0.23424935341	 0.23013438284	

69	 0.60877883434	 0.44438347220	 0.40180400014	 0.35809743404	 0.21291735768	 0.18649940193	 0.16543741524	 0.12603680789	

70	 0.50775003433	 0.45141744614	 0.39282834530	 0.29584446549	 0.26488414407	 0.23803976178	 0.22299997509	 0.20830172300	

71	 0.53450500965	 0.48786035180	 0.34890997410	 0.31172537804	 0.27681696415	 0.24547630548	 0.22033850849	 0.20097981393	

72	 0.39455774426	 0.30479642749	 0.29416203499	 0.28702011704	 0.27806624770	 0.27153915167	 0.26175752282	 0.25541606545	

73	 0.67098462582	 0.63117337227	 0.24813993275	 0.22225950658	 0.20183576643	 0.19043625891	 0.17811721563	 0.17009583116	

74	 0.48210957646	 0.38410952687	 0.35309156775	 0.31066122651	 0.27730253339	 0.26034566760	 0.24867860973	 0.23729436100	

75	 0.62245041132	 0.37098225951	 0.34381911159	 0.32134160399	 0.27213224769	 0.22670701146	 0.20249392092	 0.18612897396	

76	 0.39214438200	 0.37506344914	 0.35052150488	 0.33884295821	 0.27643868327	 0.26669982076	 0.25369071960	 0.24339523911	

77	 0.67255443335	 0.57692515850	 0.51228076220	 0.30616787076	 0.15589813888	 0.13270884752	 0.11426673084	 0.10599973053	

78	 0.44457012415	 0.41108432412	 0.37845623493	 0.31052359939	 0.29203623533	 0.27657330036	 0.25899130106	 0.24351455271	

79	 0.47869503498	 0.45024842024	 0.40613850951	 0.37778830528	 0.33818206191	 0.31310185790	 0.15767624974	 0.13360877335	

80	 0.31828400493	 0.30405649543	 0.29471221566	 0.28833782673	 0.28194105625	 0.27426069975	 0.26590400934	 0.25974217057	

81	 0.71667361259	 0.55418163538	 0.38520732522	 0.31155455112	 0.20731876791	 0.16153648496	 0.13760462403	 0.12420867383	

82	 0.50673252344	 0.35792538524	 0.31964498758	 0.30040553212	 0.28500971198	 0.27012795210	 0.25441285968	 0.23970387876	

ISO/IEC	23008-3:202X(E)	

764 ©	ISO/IEC	2019	–	All	rights	reserved	
	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

83	 0.58802217245	 0.44486734271	 0.38206720352	 0.26177397370	 0.23901008070	 0.22222095728	 0.20359976590	 0.18700566888	

84	 0.49246254563	 0.40479403734	 0.33041283488	 0.30737891793	 0.29307654500	 0.27837556601	 0.26365917921	 0.24757900834	

85	 0.65673732758	 0.50737607479	 0.45704102516	 0.41017740965	 0.20918782055	 0.17555162311	 0.15917785466	 0.13695228100	

86	 0.44781860709	 0.41443964839	 0.38898167014	 0.35191589594	 0.32316616178	 0.25870922208	 0.23694428802	 0.22175471485	

87	 0.56698352098	 0.52851033211	 0.40016290545	 0.28184193373	 0.24339304864	 0.21891167760	 0.20178902149	 0.18994484842	

88	 0.37868189812	 0.36095294356	 0.34389269352	 0.31194424629	 0.28752884269	 0.26847639680	 0.25522902608	 0.24629327655	

89	 0.69654959440	 0.60134440660	 0.37505200505	 0.23735100031	 0.22778923810	 0.21570831537	 0.15116360784	 0.12828123569	

90	 0.58155012131	 0.43284764886	 0.38778057694	 0.35895439982	 0.32588261366	 0.26109844446	 0.22629933059	 0.19965939224	

91	 0.67847418785	 0.42665207386	 0.36123853922	 0.32845968008	 0.30430382490	 0.27355465293	 0.22013194859	 0.18027976155	

92	 0.41887912154	 0.39559540153	 0.37183669209	 0.35087108612	 0.32980874181	 0.29671537876	 0.26577153802	 0.24699205160	

93	 0.60065740347	 0.45891395211	 0.41937434673	 0.27136421204	 0.23910912871	 0.20422393084	 0.17241956294	 0.15350821614	

94	 0.45039427280	 0.41585373878	 0.36478945613	 0.34667611122	 0.32040882111	 0.30377659202	 0.25775164366	 0.20630051196	

95	 0.51751154661	 0.48089325428	 0.39443540573	 0.36219269037	 0.26906323433	 0.25104081631	 0.23434241116	 0.21825088561	

96	 0.28991597891	 0.28157684207	 0.27468073368	 0.27017182112	 0.26374185085	 0.25847229362	 0.25394868851	 0.24774596095	

97	 0.74933719635	 0.52895236015	 0.31208491325	 0.28563153744	 0.25269541144	 0.20397451520	 0.15768800676	 0.13160581887	

98	 0.53249454498	 0.37574425340	 0.34983038902	 0.32813015580	 0.31174287200	 0.28809192777	 0.24384830892	 0.21701574326	

99	 0.73381972313	 0.35802236199	 0.33383172750	 0.30963742733	 0.27194166183	 0.22952681780	 0.20652924478	 0.19140394032	

100	 0.41651207209	 0.39337268472	 0.33355054259	 0.31498488784	 0.30245533586	 0.29214730859	 0.27995562553	 0.26678672433	

101	 0.56411826611	 0.50142419338	 0.46120026708	 0.42488044500	 0.23215650022	 0.19770766795	 0.18385881186	 0.16459460557	

102	 0.51193612814	 0.42751044035	 0.39606067538	 0.32192763686	 0.29309177399	 0.26984211802	 0.24907347560	 0.23106487095	

103	 0.54586160183	 0.42645123601	 0.33907487988	 0.31600162387	 0.29730257392	 0.27062818408	 0.23268057406	 0.20456413925	

104	 0.42928281426	 0.34097182751	 0.32576024532	 0.31176412106	 0.30061480403	 0.29007750750	 0.27439066768	 0.25913015008	

105	 0.64599609375	 0.52732974291	 0.35533568263	 0.25814253092	 0.23032966256	 0.21488656104	 0.19803220034	 0.18712264299	

106	 0.49835008383	 0.40792536736	 0.38041085005	 0.35909211636	 0.33021640778	 0.30180761218	 0.26346507668	 0.21941161156	

107	 0.58480548859	 0.46573826671	 0.43007579446	 0.32742407918	 0.28178045154	 0.24233256280	 0.21408063173	 0.19171340764	

108	 0.41610687971	 0.37281060219	 0.34383708239	 0.33178400993	 0.31251296401	 0.29788833857	 0.25117903948	 0.23374769092	

109	 0.59737443924	 0.57050722837	 0.53830885887	 0.28122380376	 0.22696974874	 0.17846377194	 0.14685870707	 0.13181418180	

110	 0.45754384995	 0.41938585043	 0.38457018137	 0.36279833317	 0.29498502612	 0.27877596021	 0.26620784402	 0.24760368466	

111	 0.45419529080	 0.43593499064	 0.41344907880	 0.37728118896	 0.32258215547	 0.28311738372	 0.22110615671	 0.20024043322	

112	 0.33759289980	 0.32560670376	 0.31843897700	 0.31272244453	 0.30487069488	 0.29889816046	 0.29195928574	 0.27777671814	

113	 0.66974091530	 0.49505102634	 0.42213141918	 0.33872792125	 0.30746147037	 0.18850018084	 0.14808428288	 0.13359536231	

114	 0.47486922145	 0.37855288386	 0.34793695807	 0.32460033894	 0.31118941307	 0.30138605833	 0.29117757082	 0.27802684903	

115	 0.58125519753	 0.38614067435	 0.36091116071	 0.32999494672	 0.29152548313	 0.25976780057	 0.23845666647	 0.21400713921	

116	 0.44776666164	 0.42196542025	 0.34097769856	 0.32207208872	 0.30449104309	 0.28826838732	 0.27085682750	 0.24850587547	

117	 0.55061727762	 0.45165669918	 0.40943107009	 0.38237184286	 0.33682298660	 0.22928853333	 0.20634448528	 0.17931786180	

118	 0.49864098430	 0.47479155660	 0.43658402562	 0.40464472771	 0.28889611363	 0.25402730703	 0.22612684965	 0.20312267542	

119	 0.55005890131	 0.51711976528	 0.38620510697	 0.35109558702	 0.31473791599	 0.26658424735	 0.21602115035	 0.18579325080	

120	 0.38426837325	 0.36537498236	 0.34550759196	 0.32804122567	 0.31222730875	 0.30073213577	 0.28812038898	 0.27422848344	

121	 0.65484243631	 0.53251600266	 0.40934675932	 0.33680415154	 0.22637981176	 0.19159179926	 0.17482009530	 0.15338554978	

122	 0.55713951588	 0.41168308258	 0.38632774353	 0.36779865623	 0.34598541260	 0.32338368893	 0.29294705391	 0.17449903488	

123	 0.62077742815	 0.47246164083	 0.40512818098	 0.38107773662	 0.33558461070	 0.25987720490	 0.18357940018	 0.15721024573	

124	 0.39397120476	 0.38583821058	 0.37222686410	 0.36257618666	 0.35138240457	 0.33977958560	 0.31995892525	 0.22477121651	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 765	
	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

125	 0.54647934437	 0.49775847793	 0.49247577786	 0.30857712030	 0.29185599089	 0.27785685658	 0.18881838024	 0.15491050482	

126	 0.42990466952	 0.40414589643	 0.38557916880	 0.36933395267	 0.35230404139	 0.32059124112	 0.27009034157	 0.24100065231	

127	 0.54749220610	 0.44334703684	 0.41609779000	 0.34750071168	 0.31725120544	 0.29292070866	 0.21522195637	 0.19053839147	

128	 0.64749222994	 0.54334706068	 0.51609778404	 0.44750070572	 0.41725119948	 0.39292070270	 0.31522196531	 0.29053840041	

129	 0.77007097006	 0.45313632488	 0.42635202408	 0.27050286531	 0.23638467491	 0.14430017769	 0.13410738111	 0.12482113391	

130	 0.55409729481	 0.32602620125	 0.30315485597	 0.29316553473	 0.27673637867	 0.26690289378	 0.25846001506	 0.24261341989	

131	 0.76445287466	 0.33021867275	 0.28103995323	 0.26512745023	 0.24348022044	 0.22179818153	 0.21015214920	 0.19247679412	

132	 0.41005608439	 0.38180884719	 0.31563141942	 0.29595983028	 0.28397512436	 0.27352091670	 0.26488372684	 0.25581642985	

133	 0.57585501671	 0.45854207873	 0.41494312882	 0.38658151031	 0.22547020018	 0.16563591361	 0.14735879004	 0.12580314279	

134	 0.47340402007	 0.43635639548	 0.40934944153	 0.32008588314	 0.29166069627	 0.25680494308	 0.21901221573	 0.20009016991	

135	 0.57082951069	 0.48827761412	 0.31398427486	 0.28015059233	 0.25436809659	 0.23979994655	 0.22456750274	 0.21082299948	

136	 0.47228515148	 0.30182516575	 0.28723865747	 0.27575278282	 0.26828339696	 0.26245421171	 0.25461289287	 0.24752725661	

137	 0.71894967556	 0.61468809843	 0.29810670018	 0.23432093859	 0.19970060885	 0.17414394021	 0.15635073185	 0.14011299610	

138	 0.51573014259	 0.40587380528	 0.34972792864	 0.30236828327	 0.26100954413	 0.24093832076	 0.22931326926	 0.21862974763	

139	 0.60383558273	 0.40646794438	 0.37771549821	 0.33632811904	 0.26571106911	 0.24044810236	 0.21452984214	 0.13596092165	

140	 0.38410034776	 0.36802721024	 0.35036489367	 0.33610311151	 0.31955775619	 0.28502196074	 0.26377075911	 0.24860951304	

141	 0.62930804491	 0.59837162495	 0.54873603582	 0.25828573108	 0.18486532569	 0.14119625092	 0.12560606003	 0.11099653691	

142	 0.43573319912	 0.41026431322	 0.38994345069	 0.37064406276	 0.27758184075	 0.25859758258	 0.24220347404	 0.22149020433	

143	 0.51804882288	 0.45437052846	 0.43001574278	 0.34982901812	 0.31412586570	 0.28300875425	 0.13866180182	 0.11979640275	

144	 0.35099327564	 0.31316930056	 0.29964989424	 0.28911879659	 0.28222537041	 0.27620488405	 0.26984691620	 0.26214772463	

145	 0.73332828283	 0.53084212542	 0.40757381916	 0.24461559951	 0.20499037206	 0.19098772109	 0.15507714450	 0.13558012247	

146	 0.46003967524	 0.36005708575	 0.33623608947	 0.31615462899	 0.29985460639	 0.28356593847	 0.26570472121	 0.24878704548	

147	 0.60739403963	 0.42883172631	 0.32452914119	 0.29275184870	 0.26384139061	 0.23215444386	 0.21269993484	 0.19682537019	

148	 0.44518578053	 0.41771936417	 0.31910103559	 0.29834485054	 0.28415712714	 0.27272543311	 0.26305827498	 0.25028139353	

149	 0.64253592491	 0.57072341442	 0.47459748387	 0.41327351332	 0.15690253675	 0.13463670015	 0.12101713568	 0.10744933039	

150	 0.46728655696	 0.44243168831	 0.41094663739	 0.38325166702	 0.26795294881	 0.25149455667	 0.23446558416	 0.22081956267	

151	 0.49576735497	 0.46585386992	 0.38705363870	 0.33900788426	 0.30900198221	 0.22755786777	 0.19630551338	 0.18409386277	

152	 0.36588972807	 0.34945002198	 0.32843595743	 0.31085741520	 0.29378843307	 0.28051096201	 0.26993703842	 0.25998395681	

153	 0.66978323460	 0.59677064419	 0.46173143387	 0.24997499585	 0.20500068367	 0.16063615680	 0.14099515975	 0.12491525710	

154	 0.54366308451	 0.43129226565	 0.39681452513	 0.35753157735	 0.28782463074	 0.24667894840	 0.22925664485	 0.21339561045	

155	 0.74572265148	 0.41382160783	 0.36049494147	 0.34280830622	 0.32422357798	 0.29138809443	 0.16570287943	 0.11353788525	

156	 0.40075972676	 0.38360542059	 0.36385536194	 0.34592014551	 0.31039124727	 0.29833999276	 0.28960114717	 0.27751192451	

157	 0.64764535427	 0.47321715951	 0.45950448513	 0.22232545912	 0.21405889094	 0.19671927392	 0.19121821225	 0.18230436742	

158	 0.44906404614	 0.37056413293	 0.36290347576	 0.34338146448	 0.33582434058	 0.32066836953	 0.21621173620	 0.20067858696	

159	 0.50707036257	 0.46699774265	 0.44164207578	 0.32880738378	 0.25704893470	 0.23068131506	 0.21676768363	 0.20104232430	

160	 0.26544743776	 0.26199305058	 0.25836759806	 0.25599333644	 0.25332039595	 0.25010746717	 0.24776919186	 0.24413038790	

161	 0.79817968607	 0.43531373143	 0.32906854153	 0.28116017580	 0.24104623497	 0.19733117521	 0.16677705944	 0.13718093932	

162	 0.54460340738	 0.35291591287	 0.33593896031	 0.32223016024	 0.31061169505	 0.29905232787	 0.28163319826	 0.26354047656	

163	 0.69690537453	 0.42857950926	 0.30918958783	 0.27675721049	 0.25338932872	 0.23497037590	 0.21543866396	 0.19750066102	

164	 0.42613336444	 0.39590418339	 0.36337912083	 0.33378487825	 0.30084028840	 0.28225705028	 0.26953577995	 0.25553476810	

165	 0.54070806503	 0.48726218939	 0.43281072378	 0.38346928358	 0.24520017207	 0.22237046063	 0.20697279274	 0.19516029954	

166	 0.47115933895	 0.44490760565	 0.41664075851	 0.31321522593	 0.28803569078	 0.27231368423	 0.25747054815	 0.23863947392	

ISO/IEC	23008-3:202X(E)	

766 ©	ISO/IEC	2019	–	All	rights	reserved	
	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

167	 0.49551433325	 0.45984655619	 0.36283609271	 0.31483095884	 0.28380703926	 0.26263338327	 0.24828477204	 0.23408278823	

168	 0.39576989412	 0.34472382069	 0.32303380966	 0.31257274747	 0.30304318666	 0.29460749030	 0.28542041779	 0.27240523696	

169	 0.61965763569	 0.57948148251	 0.30093881488	 0.26064461470	 0.23967476189	 0.22947098315	 0.21033780277	 0.19440263510	

170	 0.52247339487	 0.40494915843	 0.38168114424	 0.35885581374	 0.32437631488	 0.27540740371	 0.23520165682	 0.21434529126	

171	 0.63005423546	 0.45124423504	 0.40847876668	 0.36978697777	 0.27029123902	 0.23056280613	 0.20799256861	 0.18385191262	

172	 0.39806494117	 0.36366334558	 0.35021233559	 0.33985999227	 0.32608425617	 0.31721952558	 0.30016121268	 0.24250994623	

173	 0.63218927383	 0.56133514643	 0.46427112818	 0.25488692522	 0.22181475163	 0.19409717619	 0.17116966844	 0.15767218173	

174	 0.41500517726	 0.40052357316	 0.38756412268	 0.37271642685	 0.30473735929	 0.28017836809	 0.25941246748	 0.24563449621	

175	 0.48917955160	 0.40684896708	 0.39589962363	 0.35348257422	 0.34098029137	 0.30158883333	 0.22752927244	 0.16470588744	

176	 0.34865701199	 0.33448886871	 0.31640192866	 0.30062073469	 0.29176539183	 0.28268805146	 0.27646264434	 0.26826658845	

177	 0.70519459248	 0.45855924487	 0.42308259010	 0.36877742410	 0.22737465799	 0.19209831953	 0.17098936439	 0.14417228103	

178	 0.45906022191	 0.37926918268	 0.35547411442	 0.33653092384	 0.31643703580	 0.29532271624	 0.26774775982	 0.24897006154	

179	 0.60337984562	 0.39334881306	 0.32867935300	 0.29163438082	 0.27401113510	 0.25974184275	 0.24192425609	 0.22149494290	

180	 0.47005206347	 0.42824190855	 0.36030122638	 0.33493918180	 0.30536356568	 0.27391973138	 0.24709321558	 0.22530925274	

181	 0.56325536966	 0.52081197500	 0.48983797431	 0.34833577275	 0.27766245604	 0.21394728124	 0.18984074891	 0.16765412688	

182	 0.51925754547	 0.46256598830	 0.36761412024	 0.34199965000	 0.32303649187	 0.29664480686	 0.24302427471	 0.20872941613	

183	 0.58860057592	 0.55482161045	 0.33504146338	 0.31403699517	 0.27761802077	 0.24759097397	 0.21852086484	 0.19756101072	

184	 0.37119951844	 0.35902559757	 0.34910291433	 0.33399900794	 0.30125772953	 0.28520134091	 0.27460342646	 0.26517572999	

185	 0.62736147642	 0.59619438648	 0.37629756331	 0.31687700748	 0.22016547620	 0.19782966375	 0.17632953823	 0.15588471293	

186	 0.58443737030	 0.40382111073	 0.39046308398	 0.37297117710	 0.35526067019	 0.33122172952	 0.19596673548	 0.17453250289	

187	 0.65445959568	 0.43906202912	 0.41410845518	 0.37806153297	 0.34918367863	 0.32277476788	 0.14668869972	 0.11972039938	

188	 0.39718863368	 0.38390931487	 0.37287235260	 0.36066758633	 0.34674322605	 0.33705303073	 0.31751036644	 0.30043378472	

189	 0.54937422276	 0.50635850430	 0.47786703706	 0.28110766411	 0.24644027650	 0.22723850608	 0.21355801821	 0.19773793221	

190	 0.44525855780	 0.38628384471	 0.36430999637	 0.34758239985	 0.33372902870	 0.31969800591	 0.29727998376	 0.23923909664	

191	 0.53237414360	 0.49453616142	 0.44855651259	 0.33848783374	 0.30384778976	 0.25559720397	 0.22508883476	 0.20050440729	

192	 0.63237416744	 0.59453618526	 0.54855650663	 0.43848782778	 0.40384778380	 0.35559719801	 0.32508882880	 0.30050441623	

193	 0.77140665054	 0.41281196475	 0.39059224725	 0.32933822274	 0.28321883082	 0.20228515565	 0.15007069707	 0.12392359227	

194	 0.55815768242	 0.41372260451	 0.33013489842	 0.30568355322	 0.29002857208	 0.27675876021	 0.26314949989	 0.24567562342	

195	 0.68684321642	 0.31862208247	 0.30858856440	 0.28427690268	 0.26843994856	 0.24507993460	 0.23179675639	 0.21224643290	

196	 0.40539649129	 0.39061707258	 0.37326398492	 0.31066226959	 0.28638833761	 0.26957532763	 0.25214919448	 0.24126306176	

197	 0.58557242155	 0.42768344283	 0.40251737833	 0.36520820856	 0.25520771742	 0.20552073419	 0.18197299540	 0.12133940309	

198	 0.52474576235	 0.49183753133	 0.41146150231	 0.29798740149	 0.27702835202	 0.25854563713	 0.23914113641	 0.22029085457	

199	 0.53242671490	 0.49547109008	 0.32471683621	 0.30036121607	 0.28560292721	 0.26992636919	 0.25034314394	 0.23189513385	

200	 0.37124818563	 0.32426956296	 0.31253075600	 0.30499181151	 0.29666581750	 0.28703734279	 0.27772438526	 0.26618620753	

201	 0.67413765192	 0.59741127491	 0.28078210354	 0.25521555543	 0.23613995314	 0.21581360698	 0.19359986484	 0.18078479171	

202	 0.50528281927	 0.39501929283	 0.36896157265	 0.33700725436	 0.29691538215	 0.27719876170	 0.26379716396	 0.24644511938	

203	 0.60030126572	 0.38864606619	 0.35926234722	 0.33328950405	 0.31013688445	 0.23748821020	 0.19932383299	 0.17056447268	

204	 0.39680826664	 0.37592905760	 0.36349901557	 0.34782472253	 0.29740497470	 0.28116583824	 0.26975482702	 0.25518938899	

205	 0.65084040165	 0.54509425163	 0.50771486759	 0.33582410216	 0.20040887594	 0.16512930393	 0.13927172124	 0.12240694463	

206	 0.43852576613	 0.41657695174	 0.39678290486	 0.33440980315	 0.31248492002	 0.29240888357	 0.27403143048	 0.25433793664	

207	 0.51872080564	 0.47979465127	 0.43315321207	 0.39226415753	 0.35049396753	 0.33031868935	 0.20626008511	 0.15819591284	

208	 0.30610731244	 0.29994234443	 0.29643261433	 0.29264977574	 0.28864839673	 0.28493410349	 0.27867013216	 0.27213385701	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 767	
	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

209	 0.72529870272	 0.54283624887	 0.42402505875	 0.31970357895	 0.25682833791	 0.17434275150	 0.11799624562	 0.09824216366	

210	 0.49724668264	 0.34091734886	 0.32434183359	 0.31277832389	 0.30077791214	 0.28870713711	 0.27383089066	 0.25356900692	

211	 0.58293789625	 0.42730003595	 0.37748879194	 0.29219335318	 0.27037358284	 0.25063398480	 0.23218040168	 0.21311686933	

212	 0.48444029689	 0.45556440949	 0.33772775531	 0.31904110312	 0.29970267415	 0.28322044015	 0.26714205742	 0.24433940649	

213	 0.59070527554	 0.53902429342	 0.48524370790	 0.38909590244	 0.21776504815	 0.18316103518	 0.16051094234	 0.14596399665	

214	 0.47539997101	 0.43619859219	 0.39711382985	 0.37203192711	 0.34098029137	 0.23702913523	 0.21738129854	 0.20137707889	

215	 0.58856564760	 0.54360026121	 0.41127654910	 0.31251078844	 0.27784639597	 0.24329183996	 0.21627748013	 0.19126722217	

216	 0.39292514324	 0.36972630024	 0.34439840913	 0.31245034933	 0.29643741250	 0.28370842338	 0.27124378085	 0.25550225377	

217	 0.67043024302	 0.61531877518	 0.33878093958	 0.27228456736	 0.24707399309	 0.21012933552	 0.15912680328	 0.13414771855	

218	 0.61034709215	 0.42020481825	 0.39670273662	 0.37496975064	 0.30506849289	 0.27905666828	 0.25367006660	 0.20006053150	

219	 0.70636498928	 0.42398384213	 0.37862983346	 0.35392999649	 0.32091820240	 0.29024544358	 0.24340914190	 0.12153684348	

220	 0.43057659268	 0.39862325788	 0.38065409660	 0.36174771190	 0.32387408614	 0.30579686165	 0.29228320718	 0.27279630303	

221	 0.62343716621	 0.48621851206	 0.44812262058	 0.30022734404	 0.25313606858	 0.21727848053	 0.19640298188	 0.17659451067	

222	 0.44988533854	 0.42070183158	 0.39714339375	 0.37046381831	 0.34251809120	 0.30412459373	 0.24388070405	 0.22212789953	

223	 0.55098062754	 0.46630758047	 0.42546895146	 0.39144545794	 0.27940052748	 0.26097854972	 0.24287988245	 0.20625600219	

224	 0.29273715615	 0.28701359034	 0.28373119235	 0.28091940284	 0.27665042877	 0.27308079600	 0.26748976111	 0.26471281052	

225	 0.71355265379	 0.49020338058	 0.37577944994	 0.28319635987	 0.23873016238	 0.21171854436	 0.18804650009	 0.15637901425	

226	 0.55660068989	 0.39886209369	 0.37437853217	 0.33985030651	 0.30876907706	 0.28888490796	 0.26909306645	 0.23704695702	

227	 0.70583689213	 0.42877483368	 0.36816620827	 0.33086043596	 0.27852994204	 0.22559575737	 0.19360531867	 0.17156529427	

228	 0.43853983283	 0.41460996866	 0.34965109825	 0.33208903670	 0.31868499517	 0.30619010329	 0.29265499115	 0.27578762174	

229	 0.57749903202	 0.49143612385	 0.46699175239	 0.43416187167	 0.28016591072	 0.24234375358	 0.19066743553	 0.14956416190	

230	 0.50924265385	 0.45224240422	 0.41352474689	 0.33845725656	 0.31761750579	 0.29427599907	 0.26922121644	 0.23951084912	

231	 0.60374027491	 0.46302655339	 0.33990040421	 0.31192776561	 0.29408001900	 0.27720364928	 0.25387379527	 0.21694156528	

232	 0.43647119403	 0.36093339324	 0.34293213487	 0.33062472939	 0.31679704785	 0.30245274305	 0.28830903769	 0.27087834477	

233	 0.65383946896	 0.52564895153	 0.31720063090	 0.29059863091	 0.26380175352	 0.23136585951	 0.20392955840	 0.17830353975	

234	 0.50566601753	 0.40079429746	 0.37798610330	 0.36135077477	 0.34378758073	 0.32695856690	 0.30520772934	 0.21293807030	

235	 0.59882110357	 0.48514932394	 0.38855046034	 0.33061248064	 0.30257838964	 0.27078577876	 0.23598930240	 0.19385305047	

236	 0.40173494816	 0.36894983053	 0.35584288836	 0.34802794456	 0.33769932389	 0.32643210888	 0.25624498725	 0.24518989027	

237	 0.60420787334	 0.54878103733	 0.50757586956	 0.30284485221	 0.25839889050	 0.21373990178	 0.16967701912	 0.13577646017	

238	 0.47304931283	 0.43745306134	 0.41361993551	 0.37776792049	 0.30731579661	 0.27683883905	 0.25963118672	 0.23687422276	

239	 0.49841865897	 0.45286652446	 0.42498067021	 0.39052179456	 0.35507914424	 0.28703486919	 0.23066577315	 0.20086543262	

240	 0.36050641537	 0.34598454833	 0.33331760764	 0.32078814507	 0.31041473150	 0.29900366068	 0.28772884607	 0.27165180445	

241	 0.65665072203	 0.51070410013	 0.44941297174	 0.35010409355	 0.29105019569	 0.24665780365	 0.15616001189	 0.12231722474	

242	 0.51099073887	 0.38107213378	 0.35778346658	 0.34531381726	 0.32855027914	 0.30501523614	 0.28243455291	 0.24527226388	

243	 0.63356375694	 0.36471256614	 0.34283739328	 0.31853222847	 0.29624897242	 0.26541927457	 0.24259430170	 0.20861044526	

244	 0.47791716456	 0.43307456374	 0.36762490869	 0.34263324738	 0.32163172960	 0.29604339600	 0.27804699540	 0.25670161843	

245	 0.53187179565	 0.49481770396	 0.45012319088	 0.39553806186	 0.34244194627	 0.23406542838	 0.18751733005	 0.16328079998	

246	 0.50791943073	 0.48818722367	 0.41239157319	 0.39609801769	 0.29479750991	 0.28528171778	 0.25787761807	 0.25002819300	

247	 0.55820351839	 0.53505671024	 0.34838438034	 0.33347746730	 0.30748447776	 0.29763421416	 0.23610247672	 0.22169549763	

248	 0.37338459492	 0.36081406474	 0.34944170713	 0.33934831619	 0.32837745547	 0.31714111567	 0.30373838544	 0.28828689456	

249	 0.64201539755	 0.57969570160	 0.43038833141	 0.31022989750	 0.26419389248	 0.19617295265	 0.16362418234	 0.13585570455	

250	 0.61972981691	 0.41899472475	 0.38066852093	 0.36482137442	 0.34612202644	 0.32585892081	 0.28799039125	 0.14544166625	

ISO/IEC	23008-3:202X(E)	

768 ©	ISO/IEC	2019	–	All	rights	reserved	
	

index	 val	0	 val	1	 val	2	 val	3	 val	4	 val	5	 val	6	 val	7	

251	 0.60847359896	 0.45032718778	 0.42618468404	 0.37458378077	 0.32594746351	 0.29452490807	 0.24529175460	 0.14899858832	

252	 0.41701847315	 0.40366286039	 0.39530181885	 0.38611096144	 0.37641784549	 0.35754224658	 0.31309303641	 0.19032783806	

253	 0.57021600008	 0.52653831244	 0.46097266674	 0.33305442333	 0.29376742244	 0.25079119205	 0.22085805237	 0.16703537107	

254	 0.46692559123	 0.42970472574	 0.40528476238	 0.36565339565	 0.34481066465	 0.32495200634	 0.28673160076	 0.25223895907	

255	 0.55347990990	 0.45442497730	 0.40329855680	 0.37147304416	 0.33402213454	 0.29982572794	 0.26707547903	 0.19828215241	

F.15 Huffman	tables	for	HuffTabIndex=6	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 4	 2	 3	 0	 1	 1	 1	 0	 2	 1	
1	 3	 0	 2	 3	 2	 1	 2	 3	 2	 2	
2	 2	 2	 2	 1	 3	 0	 3	 4	 2	 3	
3	 2	 1	 2	 2	 4	 2	 4	 10	 3	 0	
4	 2	 3	 4	 2	 5	 6	 5	 22	 4	 2	
5	 4	 3	 4	 3	 5	 7	 5	 23	 4	 3	

F.16 Huffman	tables	for	HuffTabIndex=7	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 4	 14	 4	 14	 2	 1	 1	 0	 3	 1	
1	 3	 6	 3	 1	 2	 2	 2	 3	 3	 3	
2	 3	 1	 3	 0	 2	 3	 3	 5	 2	 3	
3	 2	 2	 2	 1	 3	 0	 4	 8	 2	 2	
4	 2	 1	 2	 2	 4	 2	 5	 18	 3	 0	
5	 3	 0	 3	 6	 5	 6	 6	 38	 4	 4	
6	 4	 15	 4	 15	 5	 7	 6	 39	 4	 5	

F.17 Huffman	tables	for	HuffTabIndex=8	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 5	 17	 5	 6	 3	 1	 1	 1	 4	 4	
1	 4	 9	 4	 2	 3	 0	 3	 0	 3	 5	
2	 3	 5	 3	 4	 2	 2	 3	 2	 3	 3	
3	 3	 1	 3	 0	 2	 3	 3	 3	 3	 1	
4	 2	 3	 2	 1	 3	 2	 4	 2	 2	 3	
5	 2	 1	 2	 3	 4	 6	 5	 6	 3	 0	
6	 3	 0	 3	 5	 5	 14	 6	 14	 3	 4	
7	 5	 16	 5	 7	 5	 15	 6	 15	 4	 5	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 769	
	

F.18 Huffman	tables	for	HuffTabIndex=9	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 6	 33	 6	 14	 3	 5	 2	 0	 4	 12	
1	 6	 32	 5	 6	 3	 3	 3	 2	 3	 7	
2	 4	 9	 4	 2	 3	 1	 3	 3	 3	 5	
3	 3	 5	 3	 4	 3	 0	 3	 4	 3	 3	
4	 3	 1	 3	 0	 2	 3	 3	 5	 3	 2	
5	 2	 3	 2	 1	 3	 2	 3	 6	 3	 0	
6	 2	 1	 2	 3	 4	 8	 4	 14	 3	 1	
7	 3	 0	 3	 5	 5	 18	 5	 30	 3	 4	
8	 5	 17	 6	 15	 5	 19	 5	 31	 4	 13	

F.19 Huffman	tables	for	HuffTabIndex=10	

Index	
subidx1	 subidx2	 subidx3	 subidx4	 subidx5	

Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	
0	 7	 19	 7	 16	 4	 10	 2	 1	 4	 15	
1	 7	 18	 6	 9	 4	 1	 3	 5	 4	 9	
2	 6	 8	 5	 5	 3	 4	 3	 1	 4	 8	
3	 4	 3	 4	 3	 3	 3	 3	 4	 3	 6	
4	 3	 5	 3	 4	 3	 1	 3	 6	 3	 3	
5	 3	 4	 3	 0	 2	 3	 3	 7	 3	 2	
6	 2	 3	 2	 1	 3	 2	 4	 0	 3	 0	
7	 2	 1	 2	 3	 4	 0	 5	 2	 3	 1	
8	 3	 0	 3	 5	 5	 22	 6	 6	 3	 5	
9	 5	 5	 7	 17	 5	 23	 6	 7	 4	 14	

F.20 Huffman	tables	for	HuffTabIndex=11	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 7	 31	 8	 33	 6	 34	 2	 2	 5	 29	
1	 7	 30	 7	 17	 4	 9	 4	 2	 5	 28	
2	 6	 14	 6	 9	 4	 3	 3	 7	 4	 11	
3	 5	 6	 5	 5	 3	 5	 3	 2	 4	 10	
4	 4	 10	 4	 3	 3	 3	 3	 3	 3	 6	
5	 4	 2	 3	 4	 3	 0	 3	 6	 3	 3	
6	 3	 4	 3	 0	 2	 3	 4	 0	 3	 2	
7	 2	 3	 2	 1	 3	 2	 4	 1	 3	 0	
8	 2	 1	 2	 3	 4	 2	 5	 6	 3	 1	
9	 3	 0	 3	 5	 5	 16	 6	 14	 3	 4	
10	 4	 11	 8	 32	 6	 35	 6	 15	 4	 15	

F.21 Huffman	tables	for	HuffTabIndex=12	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 8	 63	 9	 67	 7	 10	 3	 0	 6	 39	

ISO/IEC	23008-3:202X(E)	

770 ©	ISO/IEC	2019	–	All	rights	reserved	
	

1	 8	 62	 9	 66	 6	 4	 4	 5	 6	 38	
2	 7	 30	 7	 17	 4	 9	 4	 3	 5	 18	
3	 6	 14	 6	 9	 4	 8	 3	 7	 4	 14	
4	 5	 6	 5	 5	 3	 5	 3	 4	 4	 8	
5	 4	 10	 4	 3	 3	 3	 3	 3	 3	 6	
6	 4	 2	 3	 4	 3	 1	 3	 5	 3	 3	
7	 3	 4	 3	 0	 2	 3	 3	 6	 3	 2	
8	 2	 3	 2	 1	 3	 2	 4	 2	 3	 0	
9	 2	 1	 2	 3	 4	 0	 5	 8	 3	 1	
10	 3	 0	 3	 5	 5	 3	 6	 18	 3	 5	
11	 4	 11	 8	 32	 7	 11	 6	 19	 4	 15	

F.22 Huffman	tables	for	HuffTabIndex=13	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 9	 127	 10	 135	 7	 78	 3	 1	 7	 75	
1	 9	 126	 10	 134	 6	 38	 5	 10	 7	 74	
2	 8	 62	 9	 66	 5	 18	 4	 14	 6	 36	
3	 7	 30	 7	 17	 5	 2	 4	 4	 5	 19	
4	 6	 14	 6	 9	 4	 8	 4	 0	 4	 14	
5	 5	 6	 5	 5	 3	 5	 3	 4	 4	 8	
6	 4	 10	 4	 3	 3	 3	 3	 3	 3	 6	
7	 4	 2	 3	 4	 3	 1	 3	 5	 3	 3	
8	 3	 4	 3	 0	 2	 3	 3	 6	 3	 2	
9	 2	 3	 2	 1	 3	 2	 4	 1	 3	 0	
10	 2	 1	 2	 3	 4	 0	 4	 15	 3	 1	
11	 3	 0	 3	 5	 5	 3	 6	 22	 3	 5	
12	 4	 11	 8	 32	 7	 79	 6	 23	 4	 15	

F.23 Huffman	tables	for	HuffTabIndex=14	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 10	 223	 11	 263	 8	 151	 3	 2	 8	 119	
1	 10	 222	 11	 262	 7	 74	 5	 28	 8	 118	
2	 9	 110	 10	 130	 6	 36	 5	 5	 7	 58	
3	 8	 54	 9	 64	 5	 19	 4	 15	 6	 28	
4	 7	 26	 7	 17	 5	 2	 4	 3	 5	 15	
5	 6	 12	 6	 9	 4	 8	 4	 0	 4	 14	
6	 5	 7	 5	 5	 3	 5	 3	 4	 4	 6	
7	 4	 10	 4	 3	 3	 3	 3	 3	 3	 6	
8	 4	 2	 3	 4	 3	 1	 3	 5	 3	 4	
9	 3	 4	 3	 0	 2	 3	 3	 6	 3	 2	
10	 2	 3	 2	 1	 3	 2	 4	 1	 3	 0	
11	 2	 1	 2	 3	 4	 0	 5	 4	 3	 1	
12	 3	 0	 3	 5	 5	 3	 6	 58	 3	 5	
13	 4	 11	 8	 33	 8	 150	 6	 59	 4	 15	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 771	
	

F.24 Huffman	tables	for	HuffTabIndex=15	

Index	 subidx1	 subidx2	 subidx3	 subidx4	 subidx5	
Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	 Len	 CW	

0	 11	 447	 11	 303	 9	 289	 3	 6	 9	 239	
1	 11	 446	 11	 302	 8	 145	 4	 5	 9	 238	
2	 10	 222	 10	 150	 7	 73	 6	 12	 8	 118	
3	 9	 110	 9	 74	 6	 37	 5	 7	 7	 58	
4	 8	 54	 8	 36	 5	 19	 5	 0	 6	 28	
5	 7	 26	 7	 17	 5	 2	 4	 4	 5	 15	
6	 6	 12	 7	 16	 4	 8	 4	 1	 4	 14	
7	 5	 7	 5	 5	 3	 5	 3	 4	 4	 6	
8	 4	 10	 4	 3	 3	 3	 3	 3	 3	 6	
9	 4	 2	 3	 4	 3	 1	 3	 5	 3	 4	
10	 3	 4	 3	 0	 2	 3	 3	 7	 3	 2	
11	 2	 3	 2	 1	 3	 2	 4	 2	 3	 0	
12	 2	 1	 2	 3	 4	 0	 5	 1	 3	 1	
13	 3	 0	 3	 5	 5	 3	 7	 26	 3	 5	
14	 4	 11	 7	 19	 9	 288	 7	 27	 4	 15	

F.25 HOA	Spherical	grid	for	DRC	DSHT	for	order	N=1	

Inclination	Ï	in	rad,			 Azimuth	Ì	in	rad,							˘	
0.33983655 3.14159265 3.14159271
1.57079667 0.00000000 3.14159267
2.06167886 1.95839324 3.14159262
2.06167892 -1.95839316 3.14159262

F.26 	Spherical	grid	for	DRC	DSHT	for	order	N=2	

Inclination	Ï	in	rad,		 	Azimuth	Ì	in	rad,							˘	
1.57079633 0.00000000 1.41002219
2.35131567 3.14159265 1.36874571
1.21127801 -1.18149779 1.36874584
1.21127606 1.18149755 1.36874598
1.31812905 -2.45289512 1.41002213
0.00975782 -0.00009218 1.41002214
1.31812792 2.45289621 1.41002230
2.41880319 1.19514740 1.41002223
2.41880555 -1.19514441 1.41002209

ISO/IEC	23008-3:202X(E)	

772 ©	ISO/IEC	2019	–	All	rights	reserved	
	

F.27 Spherical	grid	for	DRC	DSHT	for	order	N=3	

Inclination	Ï	in	rad,		 	Azimuth	Ì	in	rad,							˘	
0.49220083 0.00000000 0.75567412
1.12054210 -0.87303924 0.75567398
2.52370429 -0.05517088 0.75567401
2.49233024 -2.15479457 0.87457076
1.57082248 0.00000000 0.87457075
2.02713647 1.01643753 0.75567388
1.61486095 -2.60674413 0.75567396
2.02713675 -1.01643766 0.75567398
1.08936018 2.89490077 0.75567412
1.18114721 0.89523032 0.75567399
0.65554353 1.89029902 0.75567382
1.60934762 1.91089719 0.87457082
2.68498672 2.02012831 0.75567392
1.46575084 -1.76455426 0.75567402
0.58248614 -2.22170415 0.87457060
2.00306837 2.81329239 0.75567389

F.28 Spherical	grid	for	DRC	DSHT	for	order	N=4	

Inclination	Ï	in	rad,		 	Azimuth	Ì	in	rad,							˘	
1.57079633 0.00000000 0.52689274
2.39401407 0.00000000 0.48518011
1.14059283 -1.75618245 0.52688432
1.33721851 0.69215601 0.47027816
1.72512898 -1.33340585 0.48037442
1.17406779 -0.79850952 0.51130478
0.69042674 1.07623171 0.50662254
1.47478735 1.43953896 0.52158458
1.67073876 2.25235428 0.52835300
2.52745842 -1.33179653 0.52388165
1.81037110 3.05783641 0.49800736
1.91827560 -2.03351312 0.48516540
0.27992161 2.55302196 0.50663531
0.47981675 -1.18580204 0.50824199
2.37644317 2.52383590 0.45807408
0.98508365 2.03459671 0.47260252
2.18924206 1.58232601 0.49801422
1.49441825 -2.58932194 0.51745117
2.04428895 0.76615262 0.51744164
2.43923726 -2.63989327 0.52146074
1.10308418 2.88498471 0.52158484
0.78489181 -2.54224201 0.47027748
2.96802845 1.25258904 0.52145388
1.91816652 -0.63874484 0.48036020
0.80829458 -0.00991977 0.50824345

	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 773	
	

F.29 Spherical	grid	for	DRC	DSHT	for	order	N=5	

Inclination	Ï	in	rad,	 		Azimuth	Ì	in	rad,							˘	
1.57079633 0.00000000 0.34493574
2.68749293 3.14159265 0.35131373
1.92461621 -1.22481468 0.35358151
1.95917092 3.06534485 0.36442231
2.18883411 0.08893301 0.36437350
0.35664531 -2.15475973 0.33953855
1.32915731 -1.05408340 0.35358417
2.21829206 2.45308518 0.33534647
1.00903070 2.31872053 0.34739607
0.99455136 -2.29370294 0.36437101
1.13601102 -0.46303195 0.33534542
0.41863640 0.63541391 0.35131934
1.78596913 -0.56826765 0.34739591
0.56658255 -0.66284593 0.36441956
2.25292410 0.89044754 0.36437098
2.67263757 -1.71236120 0.36442208
0.86753981 -1.50749854 0.34068122
1.38158330 1.72190554 0.35358401
0.98578154 0.23428465 0.35131950
1.45079827 -1.69748851 0.34739437
2.09223697 -1.85025366 0.33534659
2.62854417 1.70110685 0.34494256
1.44817433 -2.83400771 0.33953463
2.37827410 -0.72817212 0.34068529
0.82285875 1.51124182 0.33534531
0.40679748 2.38217051 0.34493552
0.84332549 -3.07860398 0.36437337
1.38947809 2.83246237 0.34068522
1.61795773 -2.27837285 0.34494274
2.17389505 -2.58540735 0.35131361
1.65172710 2.28105193 0.35358166
1.67862104 0.57097606 0.33953819
2.02514031 1.70739195 0.34739443
1.12965858 0.89802542 0.36442004
2.82979093 0.17840931 0.33953488
1.67550339 1.18664952 0.34068114

F.30 Spherical	grid	for	DRC	DSHT	for	order	N=6	

Inclination	Ï	in	rad,	 		Azimuth	Ì	in	rad,							˘	
1.57079633 0.00000000 0.23821170
2.42144792 0.00000000 0.23821175
0.32919895 2.78993083 0.26169552
1.06225899 1.49243160 0.25534085
1.01526896 -2.16495206 0.25092628
1.10570423 -1.59180661 0.25099550
1.47319543 1.14258135 0.26160776
2.15414541 1.88359269 0.24442720
0.20805372 -0.52863458 0.25487678
0.50141101 -2.11057110 0.25619096
1.98041218 0.28912378 0.26288225
0.83752075 -2.81667891 0.25837996
2.44130228 0.81495962 0.26772416
1.21539727 -1.00788022 0.25534092
2.62944184 -1.58354086 0.26437874
1.86884674 -2.40686906 0.25619091
0.68705554 -1.20612227 0.25576026
1.52325470 -1.98940871 0.26169551
2.39097364 -2.37336381 0.25576025
0.98667678 0.86446728 0.26014219
2.27078506 -3.06771779 0.25099551
2.33605400 2.51674567 0.26455002
1.29371004 2.03656562 0.25576032
0.86334494 2.77720222 0.25092620
1.94118355 -0.37820559 0.26772409
2.10323413 -1.28283816 0.24442725
1.87416330 0.80785741 0.23821179
1.63423157 1.65277986 0.26437876

ISO/IEC	23008-3:202X(E)	

774 ©	ISO/IEC	2019	–	All	rights	reserved	
	

2.06477636 1.31341296 0.25595469
0.82305807 -0.47771423 0.26437883
2.04154780 -1.85106655 0.25487677
0.61285067 0.33640173 0.24442716
1.08029340 0.10986230 0.25595472
1.60164764 -1.43535015 0.26455000
2.66513701 1.69643796 0.26014228
1.35887781 -2.58083733 0.25838000
1.78658555 2.25563014 0.25487674
1.83333508 2.80487382 0.26169549
0.78406009 2.08860099 0.25099560
2.94031615 -0.07888534 0.26160780
1.34658213 2.57400947 0.25619094
1.73906669 -0.87744928 0.26014223
0.50210739 1.33550547 0.26455007
2.38040297 -0.75104092 0.25595462
1.41826790 0.54845193 0.26772418
1.77904107 -2.93136138 0.25092628
1.35746628 -0.47759398 0.26160765
1.31545731 3.12752832 0.25838016
2.81487011 -3.12843671 0.25534100

F.31 Spherical	grid	for	DRC	DSHT	for	order	N=7	

Inclination	Ï	in	rad,	 		Azimuth	Ì	in	rad,							˘	
1.57079633 0.00000000 0.19495795
2.45610519 0.00000000 0.19495809
0.39336242 1.03016214 0.19791987
0.89422674 -2.33320867 0.19872783
0.43545329 -1.90611766 0.20164788
2.82600944 2.32040743 0.18728551
1.59930590 0.43907779 0.18583001
0.64745165 2.11280421 0.20273761
1.90012440 2.19672239 0.19118821
0.77544211 1.42837415 0.18728574
0.69899330 -0.36084163 0.18728569
2.04670638 -3.01527456 0.19927210
2.12677074 1.22510187 0.18728884
0.23447523 2.63866702 0.19927208
2.40003196 -2.63346362 0.19791989
1.45925921 -0.93421891 0.18728903
2.73580260 -0.95164110 0.19927196
1.48655587 -1.60786838 0.20474450
1.68102326 -2.09640999 0.19679660
2.36367468 2.19127430 0.19694872
2.32176930 -0.62030401 0.18583004
2.04546892 1.72866718 0.20474448
0.77250696 2.81267760 0.19495808
1.69576568 2.96849129 0.18583019
0.58175363 -2.82533899 0.18583001
2.87203994 0.51065147 0.20273763
1.39561603 0.84819515 0.20164795
1.88874012 -0.76208433 0.19872768
1.51281601 -2.91380498 0.19495791
1.08945861 2.38896622 0.19812700
1.83804298 -2.57622643 0.20273767
1.47075901 2.08646502 0.18728889
1.36153209 -2.47361065 0.19812703
1.15458107 0.35914488 0.19927210
2.23247953 -1.21160054 0.20164792
2.46336120 2.94460384 0.19682398
1.22791750 2.91409534 0.20129566
1.05015851 -2.89422460 0.20129569
2.12820204 -2.18619520 0.18728575
2.53612755 1.47084632 0.19679675
2.46546154 -1.76957871 0.19682388
1.55027992 2.54237851 0.19872776
2.84242076 -2.37565709 0.19791995
1.23439281 1.32812183 0.19694863
0.69294302 0.32555256 0.19791995
2.05614763 2.67444874 0.20164784
1.09765326 1.83278284 0.19679663
1.12592284 -0.14469268 0.20273758

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 775	
	

1.96529200 -0.24906723 0.20129567
1.96552627 -1.69235565 0.19694871
1.76960407 -1.25179553 0.19118810
1.91136466 0.76951720 0.19872771
1.07406395 -0.69991724 0.19679662
0.69689253 -1.09648035 0.19694872
1.68400415 1.21349142 0.19118831
2.39207241 0.70375526 0.19812696
0.94043078 0.86239912 0.19682389
0.88424480 -1.70121947 0.19118805
1.24865844 -1.99210255 0.18728907
0.24866075 -0.52239150 0.19682390
1.16191600 -1.27749516 0.20474460
2.03676720 0.25756109 0.20129581
1.59547480 1.65945485 0.20474451
1.50944693 -0.45747372 0.19812716

F.32 Spherical	grid	for	DRC	DSHT	for	order	N=8	

Inclination	Ï	in	rad,		 	Azimuth	Ì	in	rad,							˘	
1.57079633 0.00000000 0.16035506
2.37045281 3.14159265 0.15319651
1.16118114 -2.76809755 0.14493850
1.96701676 -2.93113550 0.15659032
0.44283230 2.79053078 0.16051177
2.27466442 -1.58633222 0.15823741
1.90257136 -1.34326395 0.15410190
1.22671270 -0.30245108 0.15555055
1.18223758 3.09331226 0.16269226
0.77757990 -3.00089450 0.15370974
1.71069627 1.52817508 0.15330871
2.10766509 -2.12432828 0.15659023
1.91267082 1.11619994 0.15721852
1.50641800 -1.38243964 0.15314283
1.90689598 0.26039435 0.15542290
1.87573690 -1.75821192 0.15263979
0.66839369 0.92054291 0.15198113
2.99900287 1.37574537 0.15918574
1.25503817 1.48780173 0.15554994
2.12588745 1.55120363 0.15777865
1.46867749 -1.78074999 0.15251277
1.42058775 0.80011364 0.14438414
1.39768944 -2.42566469 0.15882669
1.68448339 2.64994016 0.15410149
2.68318874 2.44896055 0.15624640
1.18069550 -2.06498432 0.15624611
0.95913015 -0.72316181 0.15330920
1.46298411 1.86944950 0.15860486
2.29917993 2.02407291 0.15772368
2.19757565 0.59478929 0.14875234
1.38002876 -0.71570078 0.15860447
1.66966479 -2.13711058 0.15319630
1.10433150 -1.56966543 0.15772351
1.51539913 1.17237827 0.15450396
1.67195210 -0.98489422 0.15912839
0.42176814 -1.52602006 0.15232202
1.06037388 1.88421174 0.14355622
0.80107740 1.50114356 0.16035524
2.52167695 -2.05535482 0.15604687
2.28748597 -2.58806117 0.15620875
2.58630438 1.56214454 0.15317153
2.72391006 -0.27193316 0.15370972
1.62712008 -0.39597375 0.14355623
2.34174815 0.09134393 0.16051150
1.06986925 0.59872741 0.16355869
1.92177200 -0.65082006 0.16077195
0.34213508 0.27645779 0.16434890
1.94986982 2.34291415 0.15314342
2.30898057 1.08877369 0.15232257
1.98986693 2.91045974 0.15264014
1.59231399 3.06757473 0.15823739
1.29864641 2.69395181 0.14576771
2.29317210 2.58349572 0.15251182

ISO/IEC	23008-3:202X(E)	

776 ©	ISO/IEC	2019	–	All	rights	reserved	
	

0.05793299 -2.59778561 0.14875351
1.99058472 -0.17696672 0.15658029
2.73125795 -2.83579628 0.15882635
2.15451150 -1.01207152 0.14576802
1.07129033 1.08091974 0.15708292
1.52711913 2.26168806 0.15912867
1.16236502 0.13916825 0.15708284
1.81256106 0.70838029 0.16434891
1.85530369 -2.50737902 0.15620805
0.74434685 0.30249140 0.14438364
1.49824071 0.40090739 0.15198070
1.56474110 -2.81849429 0.15604718
2.32808998 -0.50109067 0.15441122
1.87070391 1.92956677 0.15353048
2.88720571 -1.59178147 0.14493905
0.79687026 -1.22448828 0.15777882
0.49073383 -2.49121159 0.15636169
0.86597756 2.72407864 0.15441117
0.90380271 -2.41570722 0.15918617
0.69379152 2.15722882 0.15658036
0.77950388 -1.87939660 0.15317146
0.38197320 1.59711308 0.15542262
2.54311968 -1.11209930 0.16269195
1.21275328 -1.10763361 0.15353067
1.12072521 2.31432004 0.16077173
0.51475687 -0.64396568 0.15721788
2.62938152 0.64839067 0.15636234
0.82751400 -0.22838738 0.15450447

F.33 Spherical	grid	for	DRC	DSHT	for	order	N=9	

Inclination	Ï	in	rad,			 Azimuth	Ì	in	rad,							˘	
 1.57079633 0.00000000 0.12828036
 2.16373203 3.14159265 0.12214120
 2.55778055 1.07800687 0.12411909
 0.36041732 1.91355038 0.12214053
 1.86313281 0.70422900 0.12980341
 0.68734931 0.62766121 0.12595879
 2.53087449 -3.07674104 0.12686568
 1.93858183 -0.00399326 0.12591541
 1.99735356 -1.78523667 0.12686523
 2.54599177 -1.14448038 0.12980331
 1.41727037 2.10029510 0.12827997
 1.42975298 -2.03832959 0.12040441
 0.49591158 -2.80876714 0.12828003
 1.94504826 2.64716384 0.12980323
 1.46050203 0.65963288 0.12411898
 0.81994922 1.60055042 0.12980342
 2.90039010 -2.83032233 0.12595875
 1.17750420 -2.52395452 0.12980367
 2.23201026 -1.41758015 0.12980324
 1.83260522 3.00221101 0.12040296
 0.27280823 0.57309173 0.12827984
 1.82697936 -1.42107305 0.12411958
 0.64885136 -0.63755903 0.12214100
 2.92668990 -0.74715817 0.12411960
 0.83608830 3.07605331 0.12595899
 2.13647090 -0.37015260 0.12591690
 1.17248048 -2.96343400 0.12411921
 2.27278176 -0.78829766 0.12214053
 2.33382027 0.02692246 0.12827987
 1.44091653 -1.38509544 0.13113000
 1.49774230 -2.75550338 0.12686541
 1.64796000 2.38538463 0.12686567
 0.86423080 -2.72191030 0.12040420
 1.88340220 -0.70858136 0.12827970
 1.84991189 -2.51360023 0.12591545
 1.55433945 2.75646776 0.12411975
 1.05621052 2.19619507 0.12040388
 1.62064026 -1.72752451 0.12595883
 1.13565641 -0.61914701 0.12980332
 1.13683348 1.80774348 0.12214042
 0.73983145 -2.25726397 0.12214044

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 777	
	

 0.29726235 -0.84075556 0.12591620
 0.52655839 2.71448092 0.12686515
 0.42942711 -1.90719617 0.12591540
 0.91398906 1.08067861 0.12411953
 2.68849385 2.50148936 0.12411959
 2.36098369 -1.86914671 0.12214058
 1.83657803 -2.89541550 0.12828043
 1.27526530 1.01421481 0.12595902
 2.35129951 2.23269302 0.12040288
 1.30431251 0.32225872 0.12595868
 0.90231487 2.60267985 0.12411967
 2.30337398 2.71898541 0.12980326
 1.39373392 -0.35543690 0.12214089
 1.49751408 -3.13733860 0.12595843
 2.01751030 -1.08299197 0.12040386
 1.17568045 1.40534497 0.12686527
 2.19236789 -2.70093341 0.12591627
 2.56023704 -0.43012045 0.12686513
 1.51097956 -2.38499767 0.12214025
 1.28573634 2.50420996 0.12595853
 0.84660824 -1.75673313 0.12686549
 0.70805638 2.10420981 0.12980326
 1.48574685 1.70727610 0.12591670
 1.99776782 2.26037793 0.12214140
 1.68420229 0.34882309 0.12686573
 1.84850208 1.58929972 0.12591555
 2.05336705 0.37361712 0.12214035
 0.13006441 -2.96000913 0.12591661
 1.76189826 1.97111953 0.12591598
 2.71326544 -1.80095205 0.12040383
 1.75573602 -0.35227870 0.12591593
 1.19314055 2.90104754 0.13112995
 1.63811123 0.98412082 0.12040459
 1.07280135 0.65657785 0.13113003
 0.91115869 -0.28257823 0.12980346
 1.29046828 -1.01963661 0.12411946
 2.37826460 0.55252527 0.12040438
 2.13871758 1.83860212 0.12828036
 2.24254365 1.40568224 0.12686556
 1.65398515 -1.06244312 0.12595861
 0.64259427 -1.30247588 0.12828045
 2.51222922 -2.44030027 0.12827971
 1.79529243 -2.10829994 0.12828002
 1.51732931 -0.70668218 0.12686586
 0.92550987 -0.95463482 0.12040314
 1.08652419 -2.13466658 0.12980337
 1.20141169 -0.04579864 0.12040323
 2.14184722 -2.24301998 0.12591668
 2.54887172 1.74602244 0.12595856
 1.05541584 -1.36282902 0.12595851
 0.91981071 0.23029246 0.12411927
 2.71843378 0.31100130 0.12595908
 1.53660179 1.34230146 0.12827978
 2.16591389 0.92821735 0.12980362
 0.56817609 0.00264963 0.12686571
 2.92170819 1.46142465 0.13112985
 1.91166616 1.21479777 0.12214024
 0.55577503 1.21928553 0.12040379
 1.22767373 -1.71900109 0.12411923

ISO/IEC	23008-3:202X(E)	

778 ©	ISO/IEC	2019	–	All	rights	reserved	
	

F.34 Huffman	table	for	decoding	HuffmanMagDiffNoSbr	

HuffmanWord	 Codeword	length	 HuffmanMagDiffNoSbr[
HuffmanWord]	

0101010	 7	 -8	(escape	for	run-length	code)	

0101110111	 10	 -7	

010111001	 9	 -6	

01011000	 8	 -5	

0101000	 7	 -4	

0101101	 7	 -3	

01000	 5	 -2	

00	 2	 -1	

1	 1	 0	

011	 3	 1	

01001	 5	 2	

0101111	 7	 3	

0101011	 7	 4	

01011001	 8	 5	

010111010	 9	 6	

010111000	 9	 7	

0101110110	 10	 8	

0101001	 7	 9	(escape	for	run-length	code)	

F.35 Huffman	table	for	decoding	HuffmanMagDiffSbr	

HuffmanWord	 Codeword	length	 HuffmanMagDiffSbr[HuffmanWord]	
0100111100	 10	 -8	(escape	for	run-length	code)	

010011111111	 12	 -7	

0100111101	 10	 -6	

01001110	 8	 -5	

0100001	 7	 -4	

010001	 6	 -3	

01010	 5	 -2	

00	 2	 -1	

1	 1	 0	

011	 3	 1	

01011	 5	 2	

010010	 6	 3	

0100110	 7	 4	

0100000	 7	 5	

0100111110	 10	 6	

010011111101	 12	 7	

010011111100	 12	 8	

010011111110	 12	 9	(escape	for	run-length	code)	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 779	
	

F.36 Huffman	table	for	decoding	DecTableAngleDiff	

HuffmanWord	 Codeword	length	 DecodedAngleDiff[HuffmanWord]	
0111111	 7	 -7	

0110111	 7	 -6	

000111	 6	 -5	

011000	 6	 -4	

011110	 6	 -3	

0000	 4	 -2	

010	 3	 -1	

1	 1	 0	

001	 3	 1	

01110	 5	 2	

00010	 5	 3	

011001	 6	 4	

000110	 6	 5	

0110110	 7	 6	

0111110	 7	 7	

011010	 6	 8	

F.37 Huffman	table	for	decoding	ParHuffmanMagDiffNoSbr	

HuffmanWord	 Codeword	length	 ParHuffmanMagDiffNoSbr[HuffmanWord]	
001110000	 9	 -8	(escape	for	run-length	code)	
00111001	 8	 -7	
001001	 6	 -6	
00101	 5	 -5	
10100	 5	 -4	
0100	 4	 -3	
1011	 4	 -2	
100	 3	 -1	
11	 2	 0	
011	 3	 1	
000	 3	 2	
0101	 4	 3	
10101	 5	 4	
00110	 5	 5	
001111	 6	 6	
001000	 6	 7	
0011101	 7	 8	
001110001	 9	 9	(escape	for	run-length	code)	

ISO/IEC	23008-3:202X(E)	

780 ©	ISO/IEC	2019	–	All	rights	reserved	
	

F.38 Huffman	table	for	decoding	ParHuffmanMagDiffSbr	

HuffmanWord	 Codeword	length	 ParHuffmanMagDiffSbr[HuffmanWord]	
1000011000	 10	 -8	(escape	for	run-length	code)	
11111101	 8	 -7	
100001101	 9	 -6	
11111111	 8	 -5	
100000	 6	 -4	
11110	 5	 -3	
1001	 4	 -2	
110	 3	 -1	
0	 1	 0	
101	 3	 1	
1110	 4	 2	
10001	 5	 3	
111110	 6	 4	
1000010	 7	 5	
10000111	 8	 6	
11111100	 8	 7	
11111110	 8	 8	
1000011001	 10	 9	(escape	for	run-length	code)	

F.39 Huffman	table	for	decoding	ParDecTableAngleDiff	

HuffmanWord	 Codeword	length	 ParDecodedAngleDiff[HuffmanWord]	
100111	 6	 -7	
111001	 6	 -6	
10000	 5	 -5	
10010	 5	 -4	
0011	 4	 -3	
000	 3	 -2	
110	 3	 -1	
01	 2	 0	
101	 3	 1	
1111	 4	 2	
0010	 4	 3	
10001	 5	 4	
111011	 6	 5	
111010	 6	 6	
100110	 6	 7	
111000	 6	 8	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 781	
	

F.40 Table	for	ParDecorrSigsSelectionTableIdx	referring	to	
NumOfDecorrSigsPerParSubbandTable	and	ParSelectedDecorrSigsIdxMatrixTable	

ParDecorrSigs	
SelectionTableIdx	

NumOfDecorrSigs	
PerParSubbandTable	

ParSelectedDecorr	
SigsIdxMatrixTable	

0	 1	 {	 {0},	
	 {1},	
	 {2},	
	 {3},	
	 {4},	
	 {5},	
	 {6},	
	 {7},	
	 {8}		
}	

1	 2	 {	 {0,	 	2},	
	 {1,	 	4},	
	 {2,	 	4},	
	 {3,	 	5},	
	 {1,	 	4},	
	 {3,	 	5},	
	 {1,	 	6},	
	 {3,	 	7},	
	 {1,	 	8}		
}	

2	 4	 {	 {0,	 	2,	 	3,	 	8},	
	 {1,	 	4,	 	7,	 	8},	
	 {0,	 	2,	 	4,	 	5},	
	 {0,	 	3,	 	5,	 	7},	
	 {1,	 	2,	 	4,	 	5},	
	 {2,	 	3,	 	4,	 	5},	
	 {1,	 	3,	 	4,	 	6},	
	 {1,	 	3,	 	7,	 	8},	
	 {0,	 	1,	 	2,	 	8}		
}	

3	 9	 {	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8},	
	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8}	
}	

F.41 Table	for	ParDecorrSigsSelectionTableIdx	referring	to	ParPermIdxVectorTable	

ParDecorrSigs	
SelectionTableIdx	 ParPermIdxVectorTable	

0	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8}	

1	 {0,	 1,	 3,	 7,	 2,	 5,	 6,	 8,	 4}	

2	 {0,	 1,	 3,	 7,	 5,	 4,	 6,	 2,	 8}	

3	 {0,	 1,	 2,	 3,	 4,	 5,	 6,	 7,	 8}	

ISO/IEC	23008-3:202X(E)	

782 ©	ISO/IEC	2019	–	All	rights	reserved	
	

F.42 Table	for	ParDecorrSigsSelectionTableIdx	referring	to	
NumOfDecorrSigsPerFirstOrderParSubbandTable	and	
ParFirstOrderSelectedDecorrSigsIdxMatrixTable	

ParDecorrSigs	
SelectionTableIdx	

NumOfDecorrSigs	
PerFirstOrderParSubbandTable	

ParFirstOrderSelectedDecorr	
SigsIdxMatrixTable	

0	 1	 {	 {0},	
	 {1},	
	 {2},	
	 {3},	
	 {4},	
}	

1	 2	 {	 {0,	 	2},	
	 {1,	 	3},	
	 {2,	 	3},	
	 {2,	 	3}	
}	

2	 3	 {	 {0,	 	1,	 	2},	
	 {0,	 	1,	 	3},	
	 {0,	 	2,	 	3},	
	 {1,	 	2,	 	3}	
}	

3	 4	 {	 {0,	 1,	 2,	 3,	 4},	
	 {0,	 1,	 2,	 3,	 4},	
	 {0,	 1,	 2,	 3,	 4},	
	 {0,	 1,	 2,	 3,	 4}	
}	

F.43 Table	for	ParDecorrSigsSelectionTableIdx	referring	to	
ParFirstOrderPermIdxVectorTable	

ParDecorrSigs	
SelectionTableIdx	 ParFirstOrderPermIdxVectorTable	

0	 {0,	 1,	 2,	 3}	

1	 {0,	 1,	 3,	 2}	

2	 {0,	 1,	 2,	 3}	

3	 {0,	 1,	 2,	 3}	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 783	
	

Annex	G	
(informative)	

	
Low	complexity	HOA	rendering	

G.1 General	

The	 general	 idea	 of	 the	 low	 complexity	HOA	 rendering	 tool	 is	 to	 perform	 rendering	 on	 the	 decoded	
predominant	 sounds	 and	 ambient	 sound	 directly	 (before	 the	 HOA	 composition).	 In	 other	words	 the	
rendering	process	is	integrated	into	the	spatial	HOA	decoding	process.	By	doing	this	the	computational	
complexity	 can	 reduced	 by	 roughly	 a	 factor	 of	 4	 for	 typical	 use	 cases	 as	 measurements	 on	
implementations	have	shown.	It	should	be	noted	that	in	case	near-filed	compensation	shall	be	applied	
(see	 subclause	 12.4.3.4)	 the	 rendering	 cannot	 be	 split	 in	 separate	 rendering	 steps	 for	 predominant	
sounds	and	ambiance,	because	the	NFC	filters	have	to	be	applied	on	the	complete	reconstructed	HOA	
signal.	The	feasibility	of	the	low	complexity	HOA	Spatial	Decoding	and	Rendering	in	dependency	on	the	
NFC	processing	is	shown	in	Figure	G.1.	

Figure	G.1	—	HOA	spatial	decoding	and	rendering	dependent	on	the	NFC	processing	

In	 case	 the	 content	 is	 produced	 using	 the	 NFC	 feature	 (UseNfc	 ==	 1)	 a	 NFC	 reference	 distance	
(NfcReferenceDistance)	is	transmitted	in	the	bitstream.	Only	if	this	NFC	reference	distance	is	larger	than	
the	maximum	of	the	loudspeaker	distances	in	the	actual	loudspeaker	playback	set-up	the	NFC	processing	
shall	be	applied	and	access	to	the	complete	decoded	HOA	coefficient	signals	is	needed.	

In	Table	G.1	some	exemplary	complexity	numbers	in	MOPS	(million	operations	per	second)	comparing	
the	low	complexity	HOA	spatial	decoding	and	rendering	with	the	straight	forward	implementation	are	
given.	

Predominant Sound
(PS) Synthesis &

rendering

Ambience Synthesis
& rendering

Predominant
Sound (PS)
Synthesis

Ambience
Synthesis

HOA
composition HOA

rendering

HOA
composition

Standard HOA decoding & rendering

Low-complexity HOA decoding & rendering

Loudspeaker

output

Loudspeaker

output

Core decoder

Core decoder

Gain
control

&
PS/Amb

ience
switch

IF
UsesNfc

= 1
AND

NfcRefe
renceDi
stance

>
 rmax

UsesNfc

ELSE

1…I-M

1…M

1…I-M

1…M

1…M

1…I-M
PS parameters

PS parameters

PS parameters
Bitstream

ISO/IEC	23008-3:202X(E)	

784 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Table	G.1	—	Exemplary	complexity	numbers	comparing	straight	forward	implementation		
with	low	complexity	HOA	spatial	decoding	and	rendering	

PCU	in	MOPS	
	HOA	order	ñ = 4		 	HOA	order		ñ = 6		
	Number	of	loudspeakers	 	Number	of	loudspeakers	
	à. = 7		 	à. = 11		 	à. = 22		 	à. = 7		 	à. = 11		 	à. = 22		

Straight	forward	implementation		 65	 70	 83	 184	 193	 219	

Low	complexity	HOA	spatial	
decoding	and	rendering		

13	 19	 36	 13	 19	 37	

— a	sampling	rate	of	√. = 48	<˚≈		

— `123 = 1	

— a	frame	length	of	à = 1024	samples	

— _ = 9	HOA	transport	channels	containing	in	total	©=1>(<) = 5	coefficient	sequences	of	the	ambient	
HOA	 component	 (i.e.	 |ℐ2=(<)| = ` − ©=1>(<) = 20),	©728(<) = ©728(< − 1) = 2 	directional	 signals	
and	©)*+(<) = ©)*+(< − 1) = 2	vector-based	signals	per	frame	

— that	 for	 each	 frame	 all	 of	 the	 directional	 signals	 are	 involved	 in	 the	 spatial	 prediction	©-7(<) =
©-7(< − 1) = ©728(<) = 2	

— as	the	worst	case	that	in	each	frame	a	coefficient	sequence	of	the	ambient	HOA	component	is	faded	
out	and	in	(i.e.	|ℐ*(<)| = |ℐ7(<)| = 1)	

NOTE	 The	meaning	of	the	variables	is	defined	in	the	detailed	description	of	the	efficient	implementation.	

These	numbers	demonstrate	two	things:	first	of	all	the	huge	complexity	savings	that	can	be	achieved	by	
the	low	complexity	combined	HOA	spatial	decoding	and	rendering.	And	second,	that	the	complexity	is	no	
longer	strongly	dependent	on	the	order	of	the	coded	HOA	content.	In	the	detailed	description	it	is	shown	
that	the	estimate	of	the	worst	case	complexity	only	depends	on	the	number	of	HOA	transport	channels,	
the	maximum	number	of	predominant	sounds	and	the	number	of	loudspeakers.	

Subsequently	 a	 rough	overview	of	 low	 complexity	HOA	decoding	 and	 rendering	 is	 given	 followed	by	
detailed	description.	

Figure	G.2	—	Low	complexity	HOA	spatial	decoding	and	rendering	

Figure	G.2	shows	a	block	diagram	of	the	HOA	spatial	decoding	and	rendering.	The	rendering	is	split	in	
two	parts	the	rendering	of	the	predominant	sounds	(PS)	and	the	ambiance	rendering.	Additionally,	the	
rendering	 itself	 is	 integrated	 into	 the	preceding	processing	 steps,	 the	PS	 synthesis	 and	 the	 ambiance	
synthesis.		

The	 ambience	 synthesis	 and	 rendering	 can	 be	written	 as	 a	matrix	multiplication,	˝áàâ = ˛áàâ	háàâ ,	
where	˝áàâ		denotes	the	generated	loudspeaker	signals	for	the	ambient	component,	háàâ		denotes	the	
active	 (non-zero)	 synthesized	 ambient	 HOA	 component	 and	˛áàâ	 		 denotes	 the	 ambience	 rendering	

Predominant Sound
(PS) Synthesis &

rendering

Ambience Synthesis
& rendering

HOA composition

Low-complexity HOA decoding & rendering

Loudspeaker

output

Core decoder

Core decoder

Gain
control

&
PS/Amb

ience
switch

1…I-M

1…M

PS parameters

Bitstream

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 785	
	

matrix.	Here,	the	ambience	rendering	˛áàâ	is	composed	of	columns	of	the	original	rendering	matrix	D	
corresponding	to	the	active	(non-zero)	coefficient	sequences	of	the	ambient	HOA	component.	

The	 PS	 synthesis	 and	 rendering	 can	 be	 written	 as	˝äã = ˛äã	Uäã ,	where	˝äã 	denotes	 the	 generated	
loudspeaker	 signals	 for	 the	 decoded	 predominant	 sound,	Uäã 		denotes	 the	 vector	 of	 all	 predominant	
sound	signals	˛äã	denotes	the	PS	rendering	matrix.	Here,	 the	PS	rendering	matrix	 is	derived	from	the	
original	 rendering	matrix	 from	HOA	 to	 loudspeaker	 output	 and	 the	 synthesis	matrix	 given	 by	˛äã	 =
˛ºäãã,	where	D	denotes	the	original	rendering	matrix	from	HOA	to	loudspeaker	output	and	ºäãã	denotes	
the	predominant	sound	synthesis	matrix.	The	PS	rendering	has	to	be	done	separately	for	direction	based	
predominant	sounds	and	for	vector-based	predominant	sounds.		

Finally,	the	loudspeaker	output	signals	are	calculated	as	the	sum	of	the	separately	calculated	signals	for	
predominant	sound	and	ambience:	˝ =˝äã +˝áàâ.	

In	the	following	detailed	description	it	can	be	seen,	that	the	combined	decoding	and	rendering	results	in	
a	mathematically	identical	implementation.	

G.2 Detailed	description	

We	propose	 to	 considerably	 reduce	 the	 computational	 demand	 for	 the	 spatial	 HOA	 decoder	 and	 the	
subsequent	HOA	renderer	by	combining	 these	 two	processing	modules	as	 illustrated	 in	Figure	G.2	 to	
directly	output	frames	˝̌(<)	of	loudspeaker	signals	instead	of	reconstructed	HOA	coefficient	sequences.	
In	 particular,	 the	 original	 channel	 reassignment,	 the	 predominant	 sound	 synthesis,	 the	 ambience	
synthesis,	the	HOA	composition	and	the	HOA	renderer	processing	blocks	are	replaced	by	the	combined	
HOA	synthesis	and	rendering	processing	block.		

This	newly	introduced	processing	block	requires	additional	knowledge	of	the	rendering	matrix	D,	which	
is	assumed	to	be	precomputed	according	to	subclause	12.4.3.3,	like	in	the	original	realization	of	the	HOA	
renderer.	

ISO/IEC	23008-3:202X(E)	

786 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Figure	G.3	—	Combined	efficient	spatial	HOA	decoder	and	renderer	

G.2.1 	Realization	of	combined	HOA	synthesis	and	rendering	

The	proposed	realization	of	 the	combined	HOA	synthesis	and	rendering	 is	 illustrated	 in	Figure	G.4	 It	
directly	computes	the	decoded	frame	-.(�) ∈ ℝU3×U	of	loudspeaker	signals	from	the	frame		/0(�) ∈ ℝ8×U	
of	 gain	 corrected	 signals,	 the	 rendering	matrix	1 ∈ ℝU3×(and	 a	 sub-set	î(�)	of	 the	 side	 information	
defined	by		

î(�):= ÷ℐA(�), ℐ=(�), ℐE(�), É(�),ℳ=>?(�),ℳ@AB(�), y234,2++>JF(�)ò	

As	 can	 be	 seen	 from	 Figure	 G.4,	 the	 processing	 can	 be	 subdivided	 into	 the	 combined	 synthesis	 and	
rendering	of	the	ambient	HOA	component	and	the	combined	synthesis	and	rendering	of	the	predominant	
sound	HOA	component,	of	which	the	outputs	are	finally	added.	Both	processing	blocks	are	described	in	
detail	in	the	following.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 787	
	

Figure	G.4	—	Proposed	realization	of	combined	HOA	synthesis	and	rendering	

G.2.1.1 	Proposed	combined	synthesis	and	rendering	of	ambient	HOA	component	

The	 general	 idea	 for	 the	 proposed	 computation	 of	 the	 frame	-.234(�) 	of	 the	 loudspeaker	 signals	
corresponding	to	the	ambient	HOA	component	is	to	omit	the	intermediate	explicit	computation	of	the	
corresponding	 HOA	 representation	‰234(�) .	 In	 particular,	 for	 the	 first	@3>F 	spatially	 transformed	
coefficient	sequences,	which	are	always	transmitted	within	the	last	@3>F	transport	signals	ë2/(�),	% =) −
@3>F + 1,… ,),	the	inverse	spatial	transform	is	combined	with	the	rendering.	

A	second	aspect	is	that	the	rendering	is	performed	only	for	those	coefficient	sequences,	which	have	been	
actually	 transmitted	within	 the	 transport	signals,	 thereby	omitting	 the	meaningless	rendering	of	zero	
coefficient	sequences.	

Altogether,	 the	 computation	 of	 the	 frame	-.234(�) 	is	 expressed	 by	 a	 single	 matrix	 multiplication	
according	to:	

˝̌=1>(<) = !=1>(<) ⋅ "=1>(<).

where	the	computation	of	the	matrices	ó234(�) ∈ ℝU3×v6"4(S)	and	3234(�) ∈ ℝv6"4(S)×U	is	explained	
in	 the	 following.	The	number	®234(�)	of	 columns	of	ó234(�)	or	 rows	of	3234(�)	corresponds	 to	 the	
number	of	elements	of:	

ℐ=1>(<):= ℐ*(<) ∪ ℐ7(<) ∪ ℐ5(<)

ISO/IEC	23008-3:202X(E)	

788 ©	ISO/IEC	2019	–	All	rights	reserved	
	

being	 the	 union	 of	 the	 sets	ℐA(�),	ℐ=(�)	and	ℐE(�).	 Differently	 expressed,	 the	 number	®234(�)	is	 the	
number	of	totally	transmitted	ambient	HOA	coefficient	sequences	or	their	spatially	transformed	versions.	

The	matrix	ó234(�)	consists	of	two	components,	t234,3>F ∈ ℝU3×("#$ 	and	ó234,?A+C(�),	as		

!=1>(<) = [!=1>,123 !=1>,8*.6(<)]

The	first	component	ó234,3>F	is	computed	by		

!=1>,123 = ˛123 ⋅ i
(!/0(,!/0()

where	13>F ∈ ℝU3×("#$ 	denotes	the	matrix	resulting	from	the	first	@3>F	columns	of	1.	It	accomplishes	
the	actual	combination	of	the	inverse	spatial	transform	for	the	first	@3>F	spatially	transformed	coefficient	
sequences	of	the	ambient	HOA	component,	which	are	always	transmitted	within	the	last	@3>F	transport	
signals,	 with	 the	 corresponding	 rendering.	 Note	 that	 this	 matrix	 is	 frame	 independent	 and	 can	 be	
precomputed	during	an	initialization	process.	

The	remaining	matrix	ó234,?A+C(�)	accomplishes	the	rendering	of	those	HOA	coefficient	sequences	of	
the	ambient	HOA	component	that	are	transmitted	within	the	transport	signals	additionally	to	the	always	
transmitted	first	@3>F	spatially	transformed	coefficient	sequences.	Hence,	this	matrix	consists	of	columns	
of	 the	 original	 rendering	 matrix	1 	corresponding	 to	 these	 additionally	 transmitted	 HOA	 coefficient	
sequences.	The	order	of	the	columns	is	arbitrary	in	principle,	however,	should	match	with	the	order	of	
the	 corresponding	 coefficient	 sequences	 assigned	 to	 the	 signal	 matrix	3234(�) .	 In	 particular,	 if	 we	
assume	any	ordering	being	defined	by	the	following	bijective	function		

√=1>,487,<: ℐ=1>(<)\{1, , `123} → 1,… , ©=1>(<) − `123

the	C-th	column	of	ó234,?A+C(�)	is	set	to	the	(Í234,G?=,S*' (C))-th	column	of	the	rendering	matrix	1.	

Correspondingly,	 the	 individual	 signal	 frames	ë234,/(�) ,	 % = 1,… , ®234(�) 	within	 the	 signal	 matrix	
3234(�)	have	to	be	extracted	from	the	frame	3(�)	of	gain	corrected	signals	by		

$=1>,å(<) = ŷ
$&r%T/0(Aå(<) if			1 ≤ • ≤ `123
$&,(<)			≥. (.			k=,,(<) = √=1>,487,<

%& (• − `123) if			`123 < • ≤ ©=1>(<)

G.2.1.2 	Proposed	combined	synthesis	and	rendering	of	predominant	sound	HOA	component	

As	shown	in	Figure	G.3,	the	combined	synthesis	and	rendering	of	the	predominant	sound	HOA	component	
itself	 can	be	subdivided	 into	 three	parallel	processing	blocks,	of	which	 the	 loudspeaker	signal	output	
frames	-.0=(�),	-.=>?(�)	and	-.@AB(�)	are	finally	added	to	obtain	the	frame	-.0+(�)	of	the	loudspeaker	
signals	corresponding	to	the	predominant	sound	HOA	component.	The	general	idea	for	the	computation	
of	 all	 three	 blocks	 is	 to	 reduce	 the	 computational	 demand	 by	 omitting	 the	 intermediate	 explicit	
computation	of	the	corresponding	HOA	representation.	All	of	the	three	processing	blocks	are	described	
in	detail	in	the	following.	

G.2.1.2.1 Combined	synthesis	and	rendering	of	HOA	representation	of	predicted	directional	
signals	

The	original	idea	of	the	spatial	prediction	is	to	create	@	virtual	loudspeaker	signals,	each	from	a	weighted	
sum	of	active	directional	signals,	and	then	to	create	an	HOA	representation	thereof	by	using	the	inverse	
spatial	 transform.	 However,	 the	 same	 process,	 viewed	 from	 a	 different	 perspective,	 can	 be	 seen	 as	
defining	for	each	active	directional	signal,	which	participates	in	the	spatial	prediction,	a	vector	defining	
its	directional	distribution, similar	as	for	the	vector-based	signals.	Combining	the	rendering	with	the	HOA	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 789	
	

synthesis	 can	 then	 be	 expressed	 by	 means	 of	 multiplying	 the	 frame	 of	 all	 active	 directional	 signals	
involved	in	the	spatial	prediction	with	a	matrix	which	describes	their	panning	to	the	loudspeaker	signals.	
This	operation	reduces	the	number	of	signals	to	be	processed	from	@	to	the	number	of	active	directional	
signals	involved	in	the	spatial	prediction,	and	thereby	makes	the	most	computational	demanding	part	of	
the	HOA	synthesis	and	rendering	independent	of	the	HOA	order	_.	

Another	important	aspect	to	be	addressed	is	the	eventual	fading	of	certain	coefficient	sequences	of	the	
HOA	 representation	 of	 spatially	 predicted	 signals.	 The	 proposed	 solution	 to	 solve	 that	 issue	 for	 the	
combined	HOA	synthesis	and	rendering	is	to	introduce	three	different	types	of	active	directional	signals,	
namely	non-faded,	faded	out	and	faded	in	ones.	For	all	signals	of	each	type	a	special	panning	matrix	is	
then	computed	by	involving	from	the	HOA	rendering	matrix	and	from	the	HOA	representation	only	the	
coefficient	 sequences	with	 the	 appropriate	 indices,	 namely	 indices	 of	 non-transmitted	 ambient	 HOA	
coefficient	sequences	contained	in:	

ℐ2=(<):= {1,… , `}\+ℐ*(<) ∪ ℐ7(<) ∪ ℐ5(<)-,

and	 indices	of	 faded	out	or	 faded	 in	ambient	HOA	coefficient	sequences	contained	 in	ℐ=(�)	and	ℐA(�),	
respectively.	

In	detail,	 the	 computation	of	 the	 frame	-.0=(�)	of	 the	 loudspeaker	 signals	 corresponding	 to	 the	HOA	
representation	of	predicted	directional	signals	is	expressed	by	a	single	matrix	multiplication	according	
to:	

˝̌-7(<) = !-7(<) ⋅ "-7(<).

Both	matrices,	ó0=(�)	and	30=(�),	consist	each	of	two	components,	i.e.	one	component	for	the	faded	out	
contribution	from	the	last	frame	and	one	component	for	the	faded	in	contribution	from	the	current	frame:		

!-7(<) = [!-7,456(<) !-7,23(<)]

"-7(<) = '"-7,456(<)"-7,23(<) (

Each	 sub	 matrix	 itself	 is	 assumed	 to	 consist	 of	 three	 components	 as	 follows,	 related	 to	 the	 three	
previously	mentioned	types	of	active	directional	signals,	namely	non-faded,	faded	out	and	faded	in	ones:		

!-7,456(<) = [!-7,456,2=(<) !-7,456,*(<) !-7,456,7(<)]

!-7,23(<) = [!-7,23,2=(<) !-7,23,*(<) !-7,23,7(<)]

"-7,456(<) = Ü

"-7,456,2=(<)
"-7,456,*(<)
"-7,456,7(<)

ä

"-7,23(<) = Ü

"-7,23,2=(<)
"-7,23,*(<)
"-7,23,7(<)

ä

Each	sub-matrix	component	with	label	"IA",	"E"	and	"D"	is	associated	with	the	set	ℐ>2(�),	ℐA(�),	and	ℐ=(�),	
and	is	assumed	to	be	not	existent	in	the	case	the	corresponding	set	is	empty.	

To	 compute	 the	 individual	 sub-matrix	 components,	we	 first	 introduce	 the	 set	 of	 indices	 of	 all	 active	
directional	signals	involved	in	the	spatial	prediction:	

ISO/IEC	23008-3:202X(E)	

790 ©	ISO/IEC	2019	–	All	rights	reserved	
	

ℐ-7(<) = @÷237,V,U(<)CÄ ∈ {1,… , Æ-8*7}, ê ∈ {1,… , `}T\{0},

of	which	the	number	of	elements	is	denoted	by:	

©-7(<) = |ℐ-7(<)|

We	further	assume	that	the	indices	of	the	set	ℐ0=(�)	are	ordered	by	the	following	bijective	function:	

√-7,487,<: ℐ-7(<) → {1, … , ©-7(<)}.

Then	we	 define	 the	matrix	óQA>Jw(�) ∈ ℝ(×v5;(S) ,	 of	which	 the	%-th	 column	 consists	 of	@ 	elements,	
where	the \-th	element	defines	the	weighting	of	the	mode	vector	with	respect	to	the	direction	™!

(%)	in	
order	to	construct	the	vector	representing	the	directional	distribution	of	the	active	directional	signal	with	
index	Í0=,G?=,S*' (%).	Its	elements	are	computed	by:	

)S*2dç,U,,(<) = ∏
÷p,V,U(<) 			if			∃Ä ∈ {1… , , Æ-8*7}			≥. (.			÷237,V,U(<) = √-7,487,<

%& (A)

0 			else			
.

Using	the	matrix	óQA>Jw(�)	we	can	compute	the	matrix	w0=(�) ∈ ℝ(×v5;(S),	of	which	the	%-th	column	
represents	the	directional	distribution	of	the	active	directional	signal	with	index	Í0=,G?=,S*' (%),	by:	

*-7(<) = i(!,!) ⋅ !S*2dç(<).

We	further	denote	by	ó←{ℐ}	the	matrix	obtained	by	taking	from	a	matrix	ó	the	rows	with	indices	(in	an	
ascending	order)	contained	in	the	set	ℐ.	Similarly,	we	denote	by	ó↓{ℐ}	the	matrix	obtained	by	taking	from	
a	matrix	ó	the	columns	with	indices	(in	an	ascending	order)	contained	in	the	set	ℐ.	

The	 components	 of	 the	 matrices	 ó0=,GEC(�) 	and	 ó0=,>F(�) 	are	 finally	 obtained	 by	 multiplying	
appropriate	 sub-matrices	 of	 the	 rendering	 matrix	1 	with	 appropriate	 sub-matrices	 of	 the	 matrix	
w0=(� − 1)	or	w0=(�)	representing	the	directional	distribution	of	the	active	directional	signals,	i.e.		

!-7,456,2=(<) = ˛↓{ℐ0'(<)} ⋅ *-7(< − 1)←{ℐ0'(<)}

!-7,456,*(<) = ˛↓{ℐ"(<)} ⋅ *-7(< − 1)←{ℐ"(<)}

!-7,456,7(<) = ˛↓{ℐ7(<)} ⋅ *-7(< − 1)←{ℐ7(<)}

and		

!-7,23,2=(<) = ˛↓{ℐ0'(<)} ⋅ *-7(<)←{ℐ0'(<)}

!-7,23,*(<) = ˛↓{ℐ"(<)} ⋅ *-7(<)←{ℐ"(<)}

!-7,23,7(<) = ˛↓{ℐ7(<)} ⋅ *-7(<)←{ℐ7(<)}

The	 signal	 sub-matrices	 30=,GEC,>2(�) ∈ ℝv5;(S*')×U 	and	 30=,>F,>2(�) ∈ ℝv5;(S)×U 	are	 supposed	 to	
contain	the	active	directional	signals	extracted	from	the	frame		30(�)	of	gain	corrected	signals	according	
to	the	ordering	functions	Í0=,G?=,S*'	and	Í0=,G?=,S ,	respectively,	which	are	faded	out	or	in	appropriately.	

In	 particular,	 the	 samples	 X0=,GEC,>2,/(�, Q) ,	 1 ≤ C ≤ ®0=(� − 1) ,	 1 ≤ Q ≤ ö ,	 of	 the	 signal	 matrix	
30=,GEC,>2(�)	are	computed	from	the	samples	of	the	frame	30(�)	of	gain	corrected	signals	by:	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 791	
	

∆-7,456,2=,,(<, ã) = ∆"ì87,9:7,;<*<* (,)(<, ã) ⋅ ë728(à + ã)	

	Similarly,	 the	 samples	X0=,>F,>2,/(�, Q) ,	1 ≤ C ≤ ®0=(�) ,	1 ≤ Q ≤ ö ,	 of	 the	 signal	matrix	30=,>F,>2(�) 	are	
computed	from	the	samples	of	the	frame	30(�)	of	gain	corrected	signals	by:	

∆-7,23,2=,,(<, ã) = ∆"ì87,9:7,;<* (,)(<, ã) ⋅ ë728(ã).	

The	 signal	 sub-matrices	30=,GEC,A(�) ∈ ℝv5;(S*')×U 	and	30=,GEC,=(�) ∈ ℝv5;(S*')×U 	are	 then	 created	
from	30=,GEC,>2(�)	by	applying	an	additional	fade	out	and	fade	in,	respectively.	Similarly	the	sub-matrices	
30=,>F,A(�) ∈ ℝv5;(S)×U 	and	30=,>F,=(�) ∈ ℝv5;(S)×U 	are	 computed	 from	30=,>F,>2(�) 	by	 applying	 an	
additional	fade	out	and	fade	in,	respectively.	

In	detail,	the	samples	X0=,GEC,A,/(�, Q)	and	X0=,GEC,=,/(�, Q),	1 ≤ C ≤ ®0=(� − 1),	of	the	signal	sub-matrices	
30=,GEC,A(�)	and	30=,GEC,=(�)	are	computed	by:	

∆-7,456,*,,(<, ã) = ∆-7,456,2=,,(<, ã) ⋅ ë728(à + ã)

∆-7,456,7,,(<, ã) = ∆-7,456,2=,,(<, ã) ⋅ ë728(ã)

Accordingly,	 the	 samples	X0=,>F,A,/(�, Q) 	and	X0=,>F,=,/(�, Q) ,	1 ≤ C ≤ ®0=(�) ,	 of	 the	 signal	 sub-matrices	
30=,>F,A(�)	and	30=,>F,=(�)	are	computed	by:	

∆-7,23,*,,(<, ã) = ∆-7,23,2=,,(<, ã) ⋅ ë728(à + ã)

∆-7,23,7,,(<, ã) = ∆-7,23,2=,,(<, ã) ⋅ ë728(ã)

G.2.1.2.1.1 Exemplary	computation	of	the	matrix	for	weighting	of	mode	vectors	

Since	the	computation	of	the	matrix	óQA>Jw(�)	may	appear	complicated	and	confusing	at	first	sight,	we	
provide	in	the	following	an	example	for	its	computation.	We	assume	for	simplicity	an	HOA	order	of	_ =
2	and	that	the	matrices	û>F=(�)	and	ûI(�)	specifying	the	spatial	prediction	are	given	by:	

ª237(<) = +1 0 1 0 3 0 3 0 0
3 0 0 0 0 0 1 0 0

,

ªp(<) = -
3

8
0 −

7

8
0

5

8
0 −

3

4
0 0

1

2
0 0 0 0 0

1

8
0 0

.

The	first	columns	of	these	matrices	have	to	be	interpreted	such	that	the	predicted	directional	signal	for	
direction	D%

(') 	is	 obtained	 from	a	weighted	 sum	of	directional	 signals	with	 indices	1	and	3,	where	 the	
weighting	factors	are	given	by	Z

g
	and	'

7
,	respectively.	

Under	this	exemplary	assumption,	the	set	of	indices	of	all	active	directional	signals	involved	in	the	spatial	
prediction	is	given	by:	

ℐ0=(�) = {1,3}	

A	possible	bijective	function	for	ordering	the	elements	of	this	set	is	given	by:	

Í0=,G?=,S: ℐ0=(�) → {1,2},				Í0=,G?=,S(1) = 1, Í0=,G?=,S(3) = 2	

ISO/IEC	23008-3:202X(E)	

792 ©	ISO/IEC	2019	–	All	rights	reserved	
	

The	matrix	óQA>Jw(�)	is	in	this	case	given	by:	

!S*2dç(<) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3

8

1

2
0 0

−
7

8
0

0 0

0
5

8
0 0
1

8
−
3

4
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

where	the	first	column	contains	the	factors	related	to	the	weighting	of	the	directional	signal	with	index	1	
and	the	second	column	contains	the	factors	related	to	the	weighting	of	the	directional	signal	with	index	
3.	

G.2.1.2.2 Combined	synthesis	and	rendering	of	HOA	representation	of	active	directional	signals	

The	computation	of	the	frame	-.=>?(�)	is	expressed	by	a	single	matrix	multiplication	according	to		

-.=>?(�) = ó=>?(�) ⋅ 3=>?(�)	

where,	in	principle,	the	columns	of	the	matrix	ó=>?(�) ∈ ℝU3×Wv;#7(S*')<v;#7(S)Y	describe	the	panning	of	
the	 active	 directional	 signals,	 contained	 in	 the	 signal	 matrix	3=>?(�) ∈ ℝWv;#7(S*')<v;#7(S)Y×U ,	 to	 the	
loudspeakers.	

Both	matrices,	ó=>?(�)	and	3=>?(�),	consist	each	of	two	components,	i.e.	one	component	for	the	faded	
out	contribution	from	the	last	frame	and	one	component	for	the	faded	in	contribution	from	the	current	
frame:		

ó=>?(�) = [ó=>?,02F(� − 1) ó=>?,02F(�)]	

3=>?(�) = 5
3=>?,GEC(�)
3=>?,>F(�)

6	

The	 number	 ®=>?(�) 	of	 columns	 of	 ó=>?,02F(�) ∈ ℝU3×v;#7(S) 	is	 equal	 to	 the	 number	 of	 rows	 of	
3=>?,GEC(�) ∈ ℝv;#7(S)×U ,	and	corresponds	to	the	number	of	elements	of	the	set	ℐ=>?,F}(�),	i.e.		

©728(<) = Cℐ728,3î(<)C

Correspondingly,	the	number	of	rows	of	3=>?,>F(�) ∈ ℝv;#7(S*')×U	is	equal	to	®=>?(� − 1).	

The	matrix	ó=>?,02F(�)	is	computed	by	the	product:	

!728,-=3(<) = ˛ ⋅ i728(<),

where	 the	 columns	of	∞=>?(�) ∈ ℝ(×v;#7(S) 	consist	 of	mode	vectors	with	 respect	 to	 (valid	non-zero)	
directions	contained	in	the	second	elements	of	the	tuples	in	ℳ=>?(�).	The	order	of	the	mode	vectors	is	
arbitrary	in	principle,	however,	should	match	with	the	order	of	the	corresponding	signals	assigned	to	the	
signal	matrix	3=>?(�).	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 793	
	

In	particular,	if	we	assume	any	ordering	being	defined	by	the	following	bijective	function:	

√728,487,<: ℐ728,3î(<) → {1, … , ©728(<)},

	the	C-th	column	of	∞=>?(�)	is	set	to	the	mode	vector	corresponding	to	the	direction	represented	by	that	
tuple	 in	ℳ=>?(�) 	of	 which	 the	 first	 element	 is	 equal	 to	Í=>?,G?=,S*' (C) .	 Since	 there	 are	900 	possible	
directions	in	total,	of	which	the	mode	matrix	∞(%,7L)	is	assumed	to	be	precomputed	at	an	initialization	
phase,	the	C-th	column	of	∞=>?(�)	can	also	be	expressed	by:	

i728(<)|å = i(!,/:)C
ï%&'(!,=(<)

							≥. (.							Ä = √728,487,<%&
%& (•).

The	signal	matrices	3=>?,GEC(�)	and	3=>?,GEC(�)	are	supposed	to	contain	the	active	directional	signals	
extracted	from	the	frame	30(�)	of	gain	corrected	signals	according	to	the	ordering	functions	Í=>?,G?=,S*'	
and	Í=>?,G?=,S ,	respectively,	which	faded	out	or	in	appropriately.	

In	 particular,	 the	 samples	 X=>?,GEC,#(�, Q) ,	 1 ≤ C ≤ ®=>?(� − 1) ,	 1 ≤ Q ≤ ö ,	 of	 the	 signal	 matrix	
3=>?,GEC(�)	are	computed	from	the	samples	of	the	frame	30(�)	of	gain	corrected	signals	by:	

∆728,456,å(<, ã) = ∆"ì70:,9:7,;<*<* (å)(<, ã) ⋅ w
ë728(à + ã) if			√728,487,<%&

%& (•) ∈ ℐ728,3î(<)

ë)*+(à + ã) if			√728,487,<%&
%& (•) ∈ ℐ)*+(<)

1 			else			

Similarly,	 the	 samples	X=>?,>F,#(�, Q) ,	1 ≤ C ≤ ®=>?(�) ,	1 ≤ Q ≤ ö ,	 of	 the	 signal	 matrix	3=>?,>F(�) 	are	
computed	by:	

∆728,23,å(<, ã) = ∆"ì70:,9:7,;<* (å)(<, ã) ⋅ ∏
ë728(ã) if			√728,487,<

%& (•) ∈ ℐ728,3î(< − 1) ∪ ℐ)*+(< − 1)

1 else			

G.2.1.2.2.1 Combined	synthesis	and	rendering	of	HOA	representation	of	active	vector-based	
signals		

The	 combined	 synthesis	 and	 rendering	 of	 HOA	 representation	 of	 active	 vector-based	 signals	 is	 very	
similar	to	the	combined	synthesis	and	rendering	of	HOA	representation	of	predicted	directional	signals,	
described	 in	 subclause	 G.2.1.2.1.	 In	 particular,	 the	 vectors	 defining	 the	 directional	 distributions	 of	
monaural	signals,	which	are	referred	to	as	vector-based	signals,	are	here	directly	given,	whereas	they	had	
to	 be	 intermediately	 computed	 for	 the	 combined	 synthesis	 and	 rendering	 of	 HOA	 representation	 of	
predicted	directional	signals.	

Further,	in	case	that	vectors	representing	the	spatial	distribution	of	vector-based	signals	have	been	coded	
in	 a	 special	mode	 (i.e.	CodedVVecLength = 1)),	 a	 fading	 in	or	out	 is	performed	 for	 certain	 coefficient	
sequences	of	the	reconstructed	HOA	component	of	the	vector-based	signals.		

Similar	 to	our	solution	 for	 the	combined	synthesis	and	rendering	of	HOA	representation	of	predicted	
directional	signals,	we	propose	to	solve	this	issue	by	introducing	three	different	types	of	active	vector-
based	signals,	namely	non-faded,	faded-out,	and	faded-in.	For	all	signals	of	each	type	a	special	panning	
matrix	is	then	computed	by	involving	from	the	HOA	rendering	matrix	and	from	the	HOA	representation	
only	the	coefficient	sequences	with	the	appropriate	indices,	namely	indices	of	non-transmitted	ambient	
HOA	 coefficient	 sequences	 contained	 in	ℐ>2(�) ,	 and	 indices	 of	 faded	 out	 or	 faded	 in	 ambient	 HOA	
coefficient	sequences	contained	in	ℐ=(�)	and	ℐA(�),	respectively.	

In	detail,	 the	computation	of	the	frame	-.@AB(�)	of	the	loudspeaker	signals	corresponding	to	the	HOA	
representation	of	predicted	directional	signals	is	expressed	by	a	single	matrix	multiplication	according	
to		

ISO/IEC	23008-3:202X(E)	

794 ©	ISO/IEC	2019	–	All	rights	reserved	
	

-.@AB(�) = ó@AB(�) ⋅ 3@AB(�)	

Both	matrices,	ó@AB(�)	and	3@AB(�),	consist	each	of	two	components,	i.e.	one	component	for	the	faded	
out	contribution	from	the	last	frame	and	one	component	for	the	faded	in	contribution	from	the	current	
frame:		

!)*+(<) = [!)*+,456(<) !)*+,23(<)]

")*+(<) = '")*+,456(<)")*+,23(<) (

Each	 sub	 matrix	 itself	 is	 assumed	 to	 consist	 of	 three	 components	 as	 follows,	 related	 to	 the	 three	
previously	mentioned	 types	of	 active	vector-based	signals,	namely	non-faded,	 faded	out	and	 faded	 in	
ones:		

!)*+,456(<) = [!)*+,456,2=(<) !)*+,456,*(<) !)*+,456,7(<)]

!)*+,23(<) = [!)*+,23,2=(<) !)*+,23,*(<) !)*+,23,7(<)]

")*+,456(<) = Ü

")*+,456,2=(<)
")*+,456,*(<)
")*+,456,7(<)

ä

")*+,23(<) = Ü

")*+,23,2=(<)
")*+,23,*(<)
")*+,23,7(<)

ä

Each	sub-matrix	component	with	label	"IA",	"E"	and	"D"	is	associated	with	the	set	ℐ>2(�),	ℐA(�),	and	ℐ=(�),	
and	is	assumed	to	be	not	existent	in	the	case	the	corresponding	set	is	empty.	

To	compute	the	individual	sub-matrix	components,	we	first	compose	the	matrix	w@AB(�) ∈ ℝv<=>(S)×S 	
from	the	®@AB(�):= |ℐ@AB(�)|	vectors	contained	in	the	second	elements	of	the	tuples	of	ℳ@AB(�).	The	
order	of	the	vectors	is	arbitrary	in	principle,	however,	should	match	with	the	order	of	the	corresponding	
signals	assigned	to	the	signal	matrix	3@AB,>F,>2(�).	In	particular,	if	we	assume	any	ordering	being	defined	
by	the	following	bijective	function:	

√)*+,487,<: ℐ)*+(<) → {1, … , ©)*+(<)},

the	C-th	column	of	w@AB(�)	is	set	to	the	vector	represented	by	that	tuple	in	ℳ@AB(�)	of	which	the	first	
element	is	equal	to	Í@AB,G?=,S*' (C).	

The	 components	 of	 the	 matrices	 ó@AB,GEC(�) 	and	 ó@AB,>F(�) 	are	 finally	 obtained	 by	 multiplying	
appropriate	 sub-matrices	 of	 the	 rendering	 matrix	1 	with	 appropriate	 sub-matrices	 of	 the	 matrix	
w@AB(� − 1)	or	w@AB(�)	representing	the	directional	distribution	of	the	active	vector-based	signals,	i.e.		

!)*+,456,2=(<) = ˛↓{ℐ0'(<)} ⋅ *)*+(< − 1)←{ℐ0'(<)}

!)*+,456,*(<) = ˛↓{ℐ"(<)} ⋅ *)*+(< − 1)←{ℐ"(<)}

!)*+,456,7(<) = ˛↓{ℐ7(<)} ⋅ *)*+(< − 1)←{ℐ7(<)}

and		

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 795	
	

!)*+,23,2=(<) = ˛↓{ℐ0'(<)} ⋅ *)*+(<)←{ℐ0'(<)}

!)*+,23,*(<) = ˛↓{ℐ"(<)} ⋅ *)*+(<)←{ℐ"(<)}

!)*+,23,7(<) = ˛↓{ℐ7(<)} ⋅ *)*+(<)←{ℐ7(<)}.

The	 signal	 sub-matrices	3@AB,GEC,>2(�) ∈ ℝv<=>(S*')×U 	and	3@AB,>F,>2(�) ∈ ℝv<=>(S)×U 	are	 supposed	 to	
contain	the	active	vector-based	signals	extracted	from	the	frame	/(�)	of	gain	corrected	signals	according	
to	 the	 ordering	 functions	 Í@AB,G?=,S*' 	and	 Í@AB,G?=,S ,	 respectively,	 which	 are	 faded	 out	 or	 in	
appropriately.	

In	 particular,	 the	 samples	 X@AB,GEC,>2,/(�, Q) ,	 1 ≤ C ≤ ®@AB(� − 1) ,	 1 ≤ Q ≤ ö ,	 of	 the	 signal	 matrix	
3@AB,GEC,>2(�)	are	computed	from	the	samples	of	the	frame	30(�)	of	gain	corrected	signals	by:	

∆)*+,456,2=,,(<, ã) = ∆"ì87,9:7,;<*<* (,)(<, ã) ⋅ w
ë728(à + ã) if			√-7,487,<%&

%& (A) ∈ ℐ728(<)

ë)*+(à + ã) if			√-7,487,<%&
%& (A) ∈ ℐ)*+(<)

0 else			

.

Similarly,	the	samples	X@AB,>F,>2,/(�, Q),	1 ≤ C ≤ ®@AB(�),	1 ≤ Q ≤ ö,	of	the	signal	matrix	3@AB,>F,>2(�)	are	
computed	from	the	samples	of	the	frame	30(�)	of	gain	corrected	signals	by:	

∆)*+,23,2=,,(<, ã) = ∆"ì>"?,9:7,;<* (,)(<, ã) ⋅ ∏
ë)*+(ã) if			√)*+,487,<

%& (A) ∈ ℐ728(< − 1) ∪ ℐ)*+(< − 1)

1 else			

The	 signal	 sub-matrices	 3@AB,GEC,A(�) ∈ ℝv<=>(S*')×U 	and	 3@AB,GEC,=(�) ∈ ℝv<=>(S*')×U 	are	 then	
created	 from	3@AB,GEC,>2(�)	by	applying	an	additional	 fade	out	and	 fade	 in,	 respectively.	Similarly	 the	
sub-matrices	3@AB,>F,A(�) ∈ ℝv<=>(S)×U 	and	3@AB,>F,=(�) ∈ ℝv<=>(S)×U 	are	 computed	 from	3@AB,>F,>2(�)	
by	applying	an	additional	fade	out	and	fade	in,	respectively.	

In	 detail,	 the	 samples	X@AB,GEC,A,/(�, Q) 	and	X@AB,GEC,=,/(�, Q) ,	1 ≤ C ≤ ®@AB(� − 1) ,	 of	 the	 signal	 sub-
matrices	3@AB,GEC,A(�)	and	3@AB,GEC,=(�)	are	computed	by:	

∆)*+,456,*,,(<, ã) = ∆)*+,456,2=,,(<, ã) ⋅ ë728(à + ã)

∆)*+,456,7,,(<, ã) = ∆)*+,456,2=,,(<, ã) ⋅ ë728(ã)

Accordingly,	the	samples	X@AB,>F,A,/(�, Q)	and	X@AB,>F,=,/(�, Q),	1 ≤ C ≤ ®@AB(�),	of	the	signal	sub-matrices	
3@AB,>F,A(�)	and	3@AB,>F,=(�)	are	computed	by:	

∆)*+,23,*,,(<, ã) = ∆)*+,23,2=,,(<, ã) ⋅ ë728(à + ã)

∆)*+,23,7,,(<, ã) = ∆)*+,23,2=,,(<, ã) ⋅ ë728(ã)

G.2.2 Further	remarks	

The	highest	computationally	demanding	part	of	each	processing	block	of	the	combined	HOA	synthesis	
and	 rendering	 may	 be	 expressed	 by	 a	 simple	 matrix	 multiplication.	 Hence,	 for	 the	 practical	
implementation	 it	 is	possible	 to	use	special	matrix	multiplication	 functions	optimized	with	respect	 to	
performance.	

It	is	in	this	context	also	possible	to	compute	the	rendered	loudspeaker	signals	of	all	processing	blocks	by	
a	single	matrix	multiplication	as:	

ISO/IEC	23008-3:202X(E)	

796 ©	ISO/IEC	2019	–	All	rights	reserved	
	

˝̌(<) = !=RR(<) ⋅ "=RR(<),

	where	the	matrices	ó2PP(�)	and	32PP(�)	are	defined	by:	

!=RR(<):= [!=1>(<) !-7(<) !728(<) !)*+(<)]

"=RR(<) =
⎣
⎢
⎢
⎡
"=1>(<)
"-7(<)
"728(<)
")*+(<) ⎦

⎥
⎥
⎤

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 797	
	

Annex	H	
(informative)	

	
Information	on	delay	and	complexity	of	time-domain	binauralization	

This	 Annex	 provides	 information	 on	 the	 time-domain	 binaural	 decoder	 complexity	 and	 latency.	
Additionally,	 potential	 time-domain	 binaural	 implementations	 with	 zero	 latency	 are	 described	 for	
information	purposes.	

H.1 Complexity	and	latency	

H.1.1 Algorithm	description	

Before	defining	the	time-domain	(TD)	binaural	decoder	complexity,	the	underlying	algorithm	is	briefly	
recalled	on	the	following	figure.	Convolutions	are	performed	in	the	frequency	domain.	A	cutoff	frequency	
á< 	(in	 [0,1])	 is	 available	 for	 each	 channel,	 each	 ear	 and	 each	 block	 so	 that	 the	 frequency-domain	
multiplication	only	involves	_ÍÍ> ∗ á<	complex	multiplications.		

Figure	H.1	—	Simplified	TD	binaural	decoder	

ISO/IEC	23008-3:202X(E)	

798 ©	ISO/IEC	2019	–	All	rights	reserved	
	

H.1.2 Complexity	

Complexity	of	the	binaural	decoder	can	be	evaluated	with	the	following	formula:.	

Details	 Evaluation	methodology	

FFT/IFFT	 +	 = 	 (_%\ËÚ>Ò + _ÏÚ>ËÚ>Ò) ∗ á ∗_ÍÍ> ∗ QÏõ2(_ÍÍ>)	

CMULT(Direct)	
à	 = 	4 ∗_âQÏ<�Ò[%í<> ∗_ÍÍ> ∗ 9 9 á<[%í<>(%lo~ , %^�o!)

%/!ÄÅpÇ

/?@ABÉ'

%qÅpÄÅpÇ	

/CADÉ'

	

CMULT(Diffuse)	 Ÿ	 = 	4 ∗_ÍÍ> ∗ 9 9 á<[%ÍÍÚÒí(%lo~ , %Tmq^S)
%Tmq^SÇ9/ÖÖÅÇl

/EFG?HÉ'

%qÅpÄÅpÇ	

/CADÉ'

	

Weighted	DMX	 [= 	6 ∗_%\ËÚ>Ò ∗_ÍÍ> ∗max
/CAD,/EFG?H

«á<[%ÍÍÚÒí(%lo~ , %Tmq^S)»	

Complexity/samp	 (A+B+C+D)/Nsamp	

With	á = 2.5	as	a	realistic	complexity	factor	for	a	complex	FFT,	_ÍÍ>	(complex)	=	_ÒÛ*Ë	=	_Z%í<>	(i.e.,	
the	size	of	the	direct	and	diffuse	filter	blocks),	_ÏÚ>ËÚ>Ò=2	and	_%\ËÚ>	is	the	number	of	input	channels,	
e.g.,	24	for	a	22.2	configuration.	Also	_âQÏ<�Ò[%í<> = 1	in	the	reference	implementation.	It	is	kept	as	a	
variable	in	the	formula	only	because	it	might	be	different	from	1	in	other	low-delay	implementations	that	
will	be	described	later	in	this	Annex.	

Note	 that	 in	 the	 reference	TD	binaural	 software,	 the	maximum	_Z%í<>	is	 set	 to	8192,	 the	maximum	
_âQÏ<�Ò[%ÍÍÚÒí	is	set	to	10,	and	the	maximum	_%\ËÚ>Ò	is	set	to	30.	

H.1.3 Latency	

The	latency	(i.e.,	blocking	delay)	introduced	by	the	time-domain	binaural	decoder	is	defined	by	:	

:;<=>Wë	 = 	?@AB=W<	– 	?@=WD@=B	[A>	E;F›:=E]		
where		

		 _Z%í<>	 size	of	the	direct	filters;	

		 Ndecoder	 MPEG-H	decoder	frame	size	(e.g.,	2	048	samples).	

_Z%í<>	(and	consequently	the	latency)	depends	on	the	BRIRs	set.	It	is	computed	in	the	Parameterization	
module,	and	typically	ranges	between	1	024	(short	filters)	and	8	192	samples	(long	BRIRs).	In	any	case,	
the	 maximum	 value	 for	_Z%í<> 	is	 8	192	 (imposed	 by	 the	 parameterization	 module).	 Consequently,	
assuming	a	decoder	frame	size	of	2048	samples,	the	maximum	latency	introduced	by	the	TD	binaural	
renderer	is:	

ÂÛY	QÛ>í\<X	 = 	6	144	samples	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 799	
	

H.2 Experimental	results		

This	subclause	provides	a	numerical	evaluation	of	the	TD	binaural	decoder	complexity	and	latency,	for	
three	realistic	BRIR	sets.		

The	parameters	provided	by	the	parameterization	module	are	first	described	for	each	BRIR	sets.		

Filter	parameters	for	an	example	HRIR	

Num	channels	:	24		

Length	BRIR	:	558		

Length	direct	:	1024		

Num	diffuse	blocks	:	0		

Direct	Fc	Left		:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
1.00	1.00	1.00	1.00	1.00	1.00			

Direct	Fc	Right	:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
1.00	1.00	1.00	1.00	1.00	1.00			

Inverse	Diffuse	Weights	:0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Diffuse	Fc	:	None		

Filter	parameters	for	an	example	mid	BRIR	

Num	channels	:	24		

Length	BRIR	:	48000		

Length	direct	:	4096		

Num	diffuse	blocks	:	1		

Direct	Fc	Left		:	0.83	0.67	0.67	0.00	0.67	0.67	0.83	0.67	0.67	0.00	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	
0.67	0.67	0.67	0.67	0.83	0.67			

Direct	Fc	Right	:	0.67	0.83	0.67	0.00	0.67	0.67	0.67	0.67	0.67	0.00	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	
0.67	0.67	0.67	0.67	0.67	0.83			

Inverse	Diffuse	Weights	:0.07	0.07	0.08	0.00	0.07	0.08	0.08	0.08	0.08	0.00	0.08	0.08	0.08	0.09	0.09	0.07	
0.09	0.09	0.09	0.09	0.09	0.09	0.08	0.08			

Diffuse	Fc	Left		:	0.50			

Diffuse	Fc	Right	:	0.50			

Filter	parameters	for	an	example	long	BRIR	

Num	channels	:	24		

ISO/IEC	23008-3:202X(E)	

800 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Length	BRIR	:	96000		

Length	direct	:	8192		

Num	diffuse	blocks	:	1		

Direct	Fc	Left		:	0.83	0.50	0.83	0.00	0.83	0.67	0.83	0.67	0.83	0.00	0.83	0.50	0.83	0.50	0.83	0.83	0.83	0.50	
0.83	0.50	0.67	0.83	0.83	0.67			

Direct	Fc	Right	:	0.67	0.83	0.83	0.00	0.50	0.83	0.83	0.83	0.67	0.00	0.50	0.83	0.67	0.83	0.83	0.83	0.50	0.83	
0.50	0.83	0.50	0.83	0.67	0.83			

Inverse	Diffuse	Weights	:0.25	0.25	0.30	0.00	0.27	0.25	0.25	0.26	0.25	0.00	0.28	0.26	0.20	0.21	0.25	0.20	
0.25	0.22	0.27	0.21	0.23	0.26	0.24	0.27			

Diffuse	Fc	Left		:	0.33			

Diffuse	Fc	Right	:	0.33			

The	resulting	complexity	and	latency	for	the	binaural	renderer	are	illustrated	in	Table	H.1.	

Table	H.1	—	Complexity	and	latency	of	the	TD	binaural	decoder	in	22.2	virtual	loudspeaker	
configuration,	for	3	example	BRIR	sets.			

BRIR	set	

Partionning	
(i.e.,	number	of	
direct	and	diffuse	

blocks)	

Ndirect	
(size	of	the	
direct	and	
diffuse	
blocks)	

Latency	
Ndirect	–	Ndecoder	

with	
Ndecoder=2	048	

Complexity	
(muladd/sample)	

HRIRs	 1	direct	+	0	diffuse	 1	024	 0	 842	

Mid	BRIRs	 1	direct	+	1	diffuse	 4	096	 2	048	 977	

Long	BRIRs	 1	direct	+	1	diffuse	 8	192	 6	144	 1	022	

H.3 Alternative	low-delay	implementations	

Two	approaches	 are	possible	 to	 reduce	 the	binaural	 renderer	 latency	 to	 zero,	 even	when	_Z%í<>	 >
	_Zí<ÏZí:	

1) Low-delay	high-quality	(bit	exact):	subdivise	the	direct	filter	into	several	direct	filter	blocks	

Using	sub-blocks	of	size	_Zí<ÏZí	samples	leads	to	zero	latency	for	the	binaural	renderer.	
This	approach	is	bit-exact	with	the	reference	software.	However	the	extra	partitioning	
introduces	extra	complexity	to	the	binaural	renderer.	
	

2) Low-delay	 low-complexity	 (not	 bit	 exact):	 impose	 	 _Z%í<>	 ≤ 	_Zí<ÏZí 	in	 the	
parameterization	module	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 801	
	

This	approach	is	not	bit-exact	with	the	reference	software	and	might	produce	perceptual	
degradation.	However	it	may	be	useful	for	some	applications	since	it	can	reduce	both	the	
latency	and	the	computational	cost.	
	

The	results	of	the	two	low-delay	approaches	are	compared	with	the	reference	implementation	in	Table	
H.2.	

Table	H.2	—	Comparison	of	3	implementations	for	an	example	mid-size	BRIR	set.	
Detailed	BRIR	parameters:	22.2	channels,	1	direct	+	1	diffuse,		

Ndirect=4096,	all	FcDirect=0.75,	all	FcDiffuse=0.5	

Implementation	

Partionning	
(i.e.,	number	
of	direct	and	
diffuse	
blocks)	

Ndirect	
(size	of	the	
direct	and	
diffuse	
blocks)	

Latency	
Ndirect	–	
Ndecoder	

with	Ndecoder=2	
048	

Complexity	
(muladd/sample)	

Reference	
implementation	

1	direct	+	1	
diffuse	

4	096	 2	048	 922	

Low-delay	high-quality		

ð Bit	exact	with	Ref	
implementation		

2	direct	+	2	
diffuse	

2	048	 0	 998	

Low-delay	low-complexity		

ð Not	bit	exact	with	
Ref	implementation		

1	direct	+	3	
diffuse	

2	048	 0	 870	

ISO/IEC	23008-3:202X(E)	

802 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Annex	I	
(informative)	

	
Determination	of	a	rotation	matrix	for	processing	of	scene	

displacement	data	
The	 determination	 of	 a	 rotation	 matrix	 for	 an	 intrinsic	 rotation	 (also	 called	 ‘intermediate	 frames’,	
‘rotation	of	moving	body	axes’,	meaning	a	rotation	about	the	axes	of	a	rotating	coordinate	system.	The	
rotating	coordinate	system	is	initially	aligned	with	the	fixed	one	and	modifies	its	orientation	after	each	
elemental	rotation)	with	the	z-x-y	convention	(‘yaw-pitch-roll	convention’	(YPR))	is	shown	below.	

Note	 that	 the	 following	 text	 defines	 rotation	matrixes	 that	 are	 designed	 to	 be	 pre-multiplied	with	 a	
column-vector	representing	a	position	in	3D	space.	

The	 overall	 rotation	matrix	 is	 defined	 as	 the	matrix	 product	 of	 three	 elemental	 rotations.	 The	 three	
elemental	rotations	(also	called	coordinate	rotations)	are:	

The	 three	 different	 elemental	 rotations	 are	 combined	 by	 matrix	 multiplication	 to	 form	 the	 overall	
multiplication	matrix	(‘yaw-pitch-roll	convention’).	The	signs	for	the	pitch	and	roll	angles	are	negative,	
because	the	elemental	multiplication	are	always	defined	as	clockwise	rotations.	

If	a	matrix	is	needed	to	be	post-multiplied	with	a	row-vector,	the	order	of	elemental	rotations	has	to	be	
inverted.	

Determination	of	rotation	matrix	for	scene	based	content:	

From	the	scene	displacement	angles	(roll,	pitch	and	yaw),	a	rotation	matrix	GÜáàIJK 	suited	for	the	HOA	
coordinate	system	(see	Annex		F.1.1)	is	calculated:	

GÜáàIJK =	G~qp,â«Hyaw»	G~qp,ç(ìpitch)	G~qp,ì
) (Eroll)

where		G) 	denotes	 the	 transposed	of	matrix	G	and	 the	basic	 rotation	matrices	 	G~qp,ì ,	G~qp,ç ,	G~qp,â 	are	
defined	above.	

()

()

()

rot ,

rot ,

rot ,

1 0 0
0 cos() sin()
0 sin() cos()

cos() 0 sin()
0 1 0

sin() 0 cos()

cos() sin() 0
sin() cos() 0
0 0 1

x

y

z

é ù
ê ú× = × ×ê ú
ê ú- × ×ë û

× - ×é ù
ê ú× = ê ú
ê ú× ×ë û

× ×é ù
ê ú× = - × ×ê ú
ê úë û

T

T

T

rot rot, yaw rot, pitch rot, roll

rot, yaw rot, pitch rot, roll

() () ()

() () ()
z x y

T T
z x y

a q b

a q b

= × - × -

= × ×

T T T T

T T T

yaw yaw roll roll

yaw yaw pitch pitch

pitch pitch roll roll

cos() sin() 0 1 0 0 cos() 0 sin()
sin() cos() 0 0 cos() sin() 0 1 0
0 0 1 0 sin() cos() sin() 0 cos()

a a b b
a a q q

q q b b

é ùé ù é ù
ê úê ú ê ú= - × - ×ê úê ú ê ú
ê úê ú ê ú-ë û ë ûë û

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 803	
	

Annex	J	
(informative)	

	
Decorrelation	filtering	for	‘diffuseness’	processing	

Decorrelation	filters	for	the	 ‘diffuseness’	processing	are	designed	in	time-frequency	domain	(e.g.	QMF	
domain,	ERB	(equivalent	rectangular	bandwidth)	domain,	STFT	domain).	

A	set	of	frequency-dependent	(random/pseudo-random)	delays	is	defined,	resulting	in	one	specific	delay	
value 	I[â] 	per	 frequency	 band 	â.	 One	 decorrelation	 filter	 is	 defined	 for	 each	 reproduction	
loudspeaker/virtual	loudspeaker.	The	delays	are	static	within	time.	

The	decorrelation	filters	are	implemented	as	FIR	filters	and	filtering	is	performed	to	time-domain	signals.	

The	following	parameters	can	be	adjusted.	

— Overall	(broadband)	minimum	and	maximum	delay	values		δóò\and	δóeô.	

— Frequency-dependent	minimum	and	maximum	delay	values	δóò\[b]	and	δóeô	[b],	e.g.	 limitation	of	
the	delay	per	band	to	be	proportional	to	the	longest	waveform	period	present	in	the	current	band,	
resulting	in	a	maximum	absolute	delay	per	band.	

Decorrelation	filters	according	to	the	described	design	paradigm	are	already	in	use	for	different	purposes	
and	applications,	for	examples	see	References	[8],	[9]	and	[10].	

Based	on	the	existing	implementations,	the	following	parameter	values	are	recommended	to	use.	

— The	minimum	overall	delay	δóeô[b]	is	set	to	5ms	[8]	and	[9].	
— Below	1	500	Hz:	The	maximum	delay	δóeô[b]	is	50	times	the	cycle	time	of	the	frequency	band	with	

an	upper	limit	of	100	ms	[8].	

— Above	 1	500	Hz:	 The	 maximum	 delay	δóeô [b]	 is	 always	 50ms.	 The	 minimum	 delay	δóeô [b]	 is	
10	times	the	cycle	time	of	the	frequency	band	[8].	

In	 addition,	 it	 is	 also	 possible	 to	 define	 further	 enhancement	 steps,	 which	 improve	 the	 diffuseness	
perception	and	minimize	temporal	artifacts.	Examples	for	enhancement	processing	are,	e.g.:		

— Delays	 at	 cutoff	 frequencies	 are	 chosen	 in	 a	 specific	 way	 to	 avoid	 artifacts	 at	 borders	 between	
frequency	 bands,	 e.g.	 by	 defining	 the	 delays	 in	 a	way	 such	 that	 the	 phase	matches	 at	 the	 cutoff	
frequency	where	 the	delay	 is	 changed	 [8],	 for	 instance	by	 ensuring	 that	 the	phase	 shift	 at	 cutoff	
frequencies	have	to	be	multiples	of	360°	[10].	

— Pseudo-randomization	of	the	delays,	such	that	they	are	distributed	equally	to	the	full	delay	range	in	
each	 frequency	band.	This	can	be	ensured	by	dividing	 the	delay	range	 into	as	many	equal-length	
intervals	as	there	are	channels,	and	randomizing	a	delay	from	a	uniform	distribution	for	each	interval.	
Resulting	delays	are	then	assigned	to	the	different	filters	(channels)	in	random	order	[9].	

Exception	of	transient	signal	parts	before	application	of	decorrelation	filters:	An	additional	step	is	added	
before	the	filtering	that	separates	the	transients	from	the	signal	(e.g.	by	using	an	energy-based	transient	
detection).	The	signal	without	transients	is	then	filtered	with	the	decorrelation	filters	and	the	original	
transients	are	added	back	to	the	decorrelated	signal	afterwards	[8].	

ISO/IEC	23008-3:202X(E)	

804 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Annex	K	
(informative)	

	
Distance	and	depth	spread	rendering	

This	annex	describes	an	informative	approach	to	distance	and	depth	spread	rendering.		

Distance	rendering:	

The	approach	for	distance	rendering	uses	methods	of	signal	processing	to	render	objects	with	a	defined	
distance	that	can	be	nearer	or	farer	away	than	the	original	loudspeaker	distance	[11].	

Therefore,	the	following	mapping	of	OAM	radius	values	to	a	distance	factor	shall	be	applied.	

¾ The	reference	distance,	rref	,	is	assumed	to	be	the	maximum	local	loudspeaker	distance	signalled	
in	 the	 mpegh3daLocalSetupInformation()	 interface.	 If	 no	 loudspeaker	 distances	 are	 given,	 a	
maximum	distance	of	1023cm	shall	be	assumed.	

¾ The	doubling	factor	d	is	defined	as:	

¾ If	r	is	equal	to	rref,then	d	=	0.		

After	determination	of	d,	the	original	object	is	copied	to	the	positions	az	+	30°	and	az	–	30°.	

For	r	>	rref,	the	copied	object	signals	are	decorrelated	with	decorrelation	filters	(individual	filters),	e.g.	
according	to	[8].	This	results	in	a	lowering	of	phase	coherence	and	interaural	coherence.		

The	gains	of	the	two	copies	objects,	as	well	as	the	gain	of	the	original	object,	are	then	adjusted	based	on	
the	doubling	factor	d.	

For	r	>	rref	:		 d' = d	(with	0	=	original	LS	distance	and	1	=	doubled	distance):	

— Gain	of	the	original	object	 ;	
— Gain	of	the	copied	objects	gdec	=	0.25	·	d1;	
— In	addition	to	that,	a	loudness	normalization	may	be	applied:	

	

	

	

For	r	<	rref	:				d7 = min	(d, 1)			(with	0	=	original	LS	distance	and	1	=	half	the	original	distance)	

¾ A	specific	gain	ratio	implies	the	perception	of	“nearness”	
¾ Gain	of	the	original	object		 	

¾ Gain	of	the	copied	objects		gödõõ = † 7
7-V7

-1° ⋅ 0.6	

2

2

log

log

ref
ref

ref
ref

r r r
r

d
r

r r
r

ì æ ö
>ï ç ÷ç ÷ï è ø= í

æ öï
<ç ÷ï

è øî

dry 1max(0,1 0.5)g d= - ×

2 2
norm dry dec2g g g= + ×

dry
dry

norm

´
g

g
g

=

dec
dec

norm

´ gg
g

=

dry 1g =

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 805	
	

¾

¾ In	addition	to	that,	a	loudness	normalization	may	be	applied:	

Depth	spread	rendering:	

With	the	described	rendering	of	distance,	rendering	of	depth	spread	can	be	realized	by	the	means	of	the	
proposed	informal	distance	rendering.	

To	 make	 use	 of	 the	 depth	 spread	 value,	 which	 is	 transmitted	 in	 case	 of	 non-uniform	 spread,	 the	
corresponding	object	is	rendered	at	multiple	distances:	

— Once	at	the	‘front’	of	the	depth	expansion;	
— Once	at	the	‘back’	of	the	depth	expansion;	
— Once	at	the	original	distance.	

The	depth	spread	value	is	translated	to	the	following	‘front’	and	‘back’	radius	values:	

The	‘front’	radius	is	restricted	to	a	minimum	of	0.	

The	rendering	of	2D	spread	by	the	use	of	18	additional	MDAP	directions	shall	only	be	applied	to	the	object	
at	the	original	distance.	

2
corr 2

2 2 2

2 1 0.6 1
2

min(3.25, 0.8 log () 0.6 1

d
g d

d d

ì æ ö
- × £ï ç ÷= -í è ø

ï × + >î

2 2
norm dry corr2g g g= + ×

dry
dry

norm

´
g

g
g

=

corr
corr

norm

´ gg
g

=

back depthspread ·0.5r r= +

front depthmax(0, spread ·0.5)r r= -

ISO/IEC	23008-3:202X(E)	

806 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Annex	L	
(informative)	

	
HREP	encoder	description	

Figure	L.1	—High	resolution	envelope	processing	(HREP)	tool	at	encoder	

L.1 Computation	of	the	gains	and	the	beta	factor	

At	the	preprocessing	side,	the	HP	part	of	block	�,	assumed	to	contain	a	transient	event,	is	adjusted	using	
the	scalar	gain õ[�]	in	order	to	make	it	more	similar	to	the	background	in	its	neighbourhood.	The	energy	
of	the	HP	part	of	block	�	will	be	denoted	by	hp_e[�]	and	the	average	energy	of	the	HP	background	in	the	
neighbourhood	of	block	�	will	be	denoted	by	hp_bg_e[�].	

We	define	the	parameter	H ∈ [0, 1],	which	controls	the	amount	of	adjustment	as:	

«ìfñós[<] = w
/ ∙ hp_bg_e[<] + (1 − /) ∙ hp_e[<]

hp_e[<]
,	when	hp_e[<] ≥ Úquiet

1,	otherwise
	

The	 value	 of	õÖmqop[�] 	is	 quantized	 and	 clipped	 to	 the	 range	 allowed	 by	 the	 chosen	 value	 of	 the	
extendedGainRange	configuration	option	to	produce	the	gain	index	gainIdx[�][Ò%õ]	as:	

õ/1ì = Îlog7«4 ∙ õÖmqop[�]» + 0.5Ó + GAIN_INDEX_0dB,	

gainIdx[�][Ò%õ] = min(max(0, õ/1ì) , 2 ∙ GAIN_INDEX_0dB− 1) .	

The	value	õ[�]	used	for	the	processing	is	the	quantized	value,	defined	at	the	decoder	side	as:	

õ[�] = 2
gainIdx[S][Ç/ü]*GAIN_INDEX_0dB

† 	

When	H	is	0,	the	gain	has	value	õÖmqop[�] = 1,	therefore	no	adjustment	is	made,	and	when	H	is	1,	the	gain	
has	value	õÖmqop[�] = hp_bg_e[�] hp_e[�]⁄ ,	 therefore	 the	adjusted	energy	 is	made	 to	coincide	with	 the	
average	energy	of	the	background.	We	can	rewrite	the	above	relation	as:	

õÖmqop[�] ∙ hp_e[�] = hp_bg_e[�] + (1 − H) ∙ (hp_e[�] − hp_bg_e[�])

Windowing
(sine) w[]

FFT
(size 128)

IFFT
(size 128)

Windowing
(sine) w[]

Windowing
(squared sine)

w^2[]
-

LP block lpb[k][]

HP block hpb[k][]

input block
ib[k][]

+
output block

ob[k][]

LP shape ps[]

scalar gain g[k]

c[k][]

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 807	
	

indicating	that	the	variation	of	the	adjusted	energy	«ìfñós[<] ∙ hp_e[<]	around	the	corresponding	average	
energy	of	the	background	hp_bg_e[<]	is	reduced	with	a	factor	of	(1 − H).	In	the	proposed	system,	H = 0.75	
is	used,	thus	the	variation	of	the	HP	energy	of	each	block	around	the	corresponding	average	energy	of	the	
background	is	reduced	to	25	%	of	the	original.	

The	 core	 encoder	 and	 decoder	 introduce	 additional	 attenuation	 of	 transient	 events,	 which	 is	
approximately	 modelled	 by	 introducing	 an	 extra	 attenuation	 step,	 using	 the	 parameter	 » ∈ [0, 1]	
depending	on	the	core	encoder	configuration	and	the	signal	characteristics	of	the	frame,	as:	

õ<Ömqop[�] =
ì ∙ hp_bg_e[�] + (1 − ì) ∙ NõÖmqop[�] ∙ hp_e[�]O

hp_e[�] 	

indicating	that,	after	passing	through	the	core	encoder	and	decoder,	the	variation	of	the	decoded	energy	
«áìfñós[<] ∙ hp_e[<] 	around	 the	 corresponding	 average	 energy	 of	 the	 background	hp_bg_e[<] 	is	 further	
reduced	with	an	additional	factor	of	(1 − »).	

Using	just	õ[�],	H,	and	ì,	it	is	possible	to	compute	an	estimate	of	õ<[�]	at	the	decoder	side	as:	

õ<[�] = (1 +
ì ∙ (1 − H)

H) ∙ õ[�] −
ì ∙ (1 − H)

H 	

The	 parameter	 beta_factor = °∙('*£)
£

	is	 quantized	 to	 betaFactorIdx[sig]	 and	 transmitted	 as	 side	
information	for	each	frame.	The	compensated	gain	õ<[�]	can	be	computed	using	beta_factor	as:	

õ<[�] = (1 + beta_factor) ∙ õ[�] − beta_factor	

L.2 Computation	of	the	LP	part	and	the	HP	part	

The	processing	is	identical	to	the	corresponding	one	at	the	decoder	side	defined	earlier,	except	that	the	
processing	shape	ps[Í]	is	used	instead	of	the	adaptive	reconstruction	shape	rs[Í]	in	the	computation	of	
the	LP	block	lpb[�],	which	is	obtained	by	applying	IFFT	and	windowing	again	as	

lpb[�][%] = A[%] ×)ááR(ps[Í]× <[�][Í]),	for	0 ≤ % < _	

L.3 Computation	of	the	output	signal	

Based	on	õ[�],	the	value	of	the	output	block	ob[�]	is	computed	as:	

ob[�][%] = lpb[�][%] + õ[�] ∙ hpb[�][%],	for	0 ≤ % < _	

Identical	to	the	decoder	side,	the	output	signal	is	computed	using	the	output	blocks	using	overlap-add	as:	

Ï Q� ∙
_
2 + CR = ob[� − 1] QC +

_
2R + ob

[�][C],	for	0 ≤ C <
_
2 	

Ï Q(� + 1) ∙
_
2 + CR = ob[�] QC +

_
2R + ob

[� + 1][C],	for	0 ≤ C <
_
2 	

L.4 Encoding	of	gains	using	arithmetic	coding	
The	helper	 function	HREP_encode_ac_data(gain_count,	 signal_count)	describes	 the	writing	of	 the	gain	
values	from	the	array	gainIdx	using	the	following	USAC	low-level	arithmetic	coding	functions:	

ISO/IEC	23008-3:202X(E)	

808 ©	ISO/IEC	2019	–	All	rights	reserved	
	

arith_encode(*ari_state, symbol, cum_freq),
arith_encoder_open(*ari_state),
arith_encoder_flush(*ari_state).

Two	additional	helper	functions	are	introduced,	

ari_encode_bit_with_prob(*ari_state, bit_value, count_0, count_total),

which	encodes	the	one	bit	bit_value	with	Ë§ = count_0/total_count	and	Ë' = 1 − Ë§,	and	

ari_encode_bit(*ari_state, bit_value),

which	encodes	the	one	bit	bit_value	without	modelling,	with	Ë§ = 0,5	and	Ë' = 0,5.	

ari_encode_bit_with_prob(*ari_state, bit_value, count_0, count_total)
{
 prob_scale = 1 << 14;
 tbl[0] = prob_scale - (count_0 * prob_scale) / count_total;
 tbl[1] = 0;
 arith_encode(ari_state, bit_value, tbl);
}

ari_encode_bit(*ari_state, bit_value)
{
 prob_scale = 1 << 14;
 tbl[0] = prob_scale >> 1;
 tbl[1] = 0;
 ari_encode(ari_state, bit_value, tbl);
}

HREP_encode_ac_data(gain_count, signal_count)
{
 cnt_mask[2] = {1, 1};
 cnt_sign[2] = {1, 1};
 cnt_neg[2] = {1, 1};
 cnt_pos[2] = {1, 1};

 arith_encoder_open(&ari_state);

 for (pos = 0; pos < gain_count; pos++) {
 for (sig = 0; sig < signal_count; sig++) {
 if (!isHREPActive[sig]) {
 continue;
 }

 sym = gainIdx[pos][sig] - GAIN_INDEX_0dB;
 if (extendedGainRange) {
 sym_ori = sym;
 sym = max(min(sym_ori, GAIN_INDEX_0dB / 2 - 1), -GAIN_INDEX_0dB / 2);
 }

 mask_bit = (sym != 0);
 arith_encode_bit_with_prob(ari_state, mask_bit, cnt_mask[0],
 cnt_mask[0] + cnt_mask[1]);
 cnt_mask[mask_bit]++;

 if (mask_bit) {
 sign_bit = (sym < 0);
 arith_encode_bit_with_prob(ari_state, sign_bit,
 cnt_sign[0], cnt_sign[0] + cnt_sign[1]);
 cnt_sign[sign_bit] += 2;

 if (sign_bit) {
 large_bit = (sym < -2);
 arith_encode_bit_with_prob(ari_state, large_bit,

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 809	
	

 cnt_neg[0], cnt_neg[0] + cnt_neg[1]);
 cnt_neg[large_bit] += 2;
 last_bit = sym & 1;
 arith_encode_bit(ari_state, last_bit);
 } else {
 large_bit = (sym > 2);
 arith_encode_bit_with_prob(ari_state, large_bit, cnt_pos[0],
 cnt_pos[0] + cnt_pos[1]);
 cnt_pos[large_bit] += 2;
 if (large_bit == 0) {
 last_bit = sym & 1;
 ari_encode_bit(ari_state, last_bit);
 }
 }
 }

 if (extendedGainRange) {
 prob_scale = 1 << 14;
 esc_cnt = prob_scale / 5;
 tbl_esc[5] = {prob_scale-esc_cnt, prob_scale-2*esc_cnt,
 prob_scale-3*esc_cnt, prob_scale-4*esc_cnt, 0};
 if (sym_ori <= -4) {
 esc = -4 - sym_ori;
 arith_encode(ari_state, esc, tbl_esc);
 } else if (sym_ori >= 3) {
 esc = sym_ori - 3;
 arith_encode(ari_state, esc, tbl_esc);
 }
 }
 }
 }

 arith_encode_flush(ari_state);
}

ISO/IEC	23008-3:202X(E)	

810 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Annex	M	
(informative)	

	
Screen-related	adaptation	of	HOA	content	in	complexity	

constrained	implementations	

As	described	 in	 subclause	18.4,	 the	 screen-related	 adaptation	of	HOA	 content	does	not	 add	 run-time	
complexity	to	the	decoder	because	all	necessary	processing	is	carried	out	during	the	initialization	phase	
of	the	decoder.	

In	some	use	cases	however,	a	config	change	at	run-time	can	occur	(e.g.,	a	switch	from	a	channel	content	
to	a	new	HOA	program).	In	this	situation,	the	adaptation	matrix	is	computed	based	on	the	production	
screen	size	signalled	within	the	HOA	bitstream.	Because	a	config	change	may	cause	a	number	of	additional	
operations,	the	computation	of	the	HOA	adaptation	matrix	may	add	a	complexity	burden	to	some	decoder	
implementations.		

To	eliminate	this	complexity	burden,	during	the	decoder	startup	a	set	of	adaptation	matrices	of	common	
production	screen	sizes	can	be	precomputed	for	the	local	screen	size	and	stored	in	memory.	During	a	
config	 change	 the	 decoder	 can	 now	 recall	 the	 desired	 adaptation	 matrix	 from	 memory	 instead	 of	
computing	 the	matrix	 on-the-fly.	 In	 case	 the	 stored	 adaptation	matrix	 does	 not	 perfectly	 match	 the	
signalled	production	screen	size,	the	closest	matching	stored	matrix	should	be	selected.	While	decoding	
the	HOA	bitstream,	a	low-priority	thread	may	then	compute	the	ideal	adaptation	matrix	and	replace	the	
preliminary	matrix.	

Table	M.1	—	Recommended	production	screen	sizes	for	precomputed	HOA	
screen-adaptation	matrices	

Image	system	 	 	 	 	

640	×	483	 5,5	 -5,5	 4,0	 -4,0	

1	024	×	768	 8,5	 -8,5	 6,5	 -6,5	

1	280	×	720	 10,5	 -10,5	 6,0	 -6,0	

1	400	×	1	050	 11,5	 -11,5	 8,5	 -8,5	

1	920	×	1	080	 15,5	 -15,5	 9,0	 -9,0	

3	840	×	2	160	 29,0	 -29,0	 17,5	 -17,5	

7	680	×	4	320	 48,0	 -48,0	 32,0	 -32,0	

nominal
leftj nominal

rightj nominal
topq nominal

bottomq

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 811	
	

Annex	N	
(normative)	

	
Retaining	original	file	length	with	MPEG-H	3D	audio	

N.1 General	

This	 Annex	 provides	 information	 on	 how	 to	 best	 employ	 MPEG-H	 3D	 audio	 (3DA)	 in	 a	 file-to-file	
encoding/decoding	scenario.	In	such	a	scenario,	it	is	usually	desired	to	retain	the	original	file	length	(OFL)	
in	terms	of	decoded	audio	PCM	samples	(or	audio	duration	in	seconds)	as	decoder	output.	

In	particular,	this	Annex	addresses	the	fact	that	the	“edit	list”	box	functionality	of	the	ISO	Base	Media	File	
Format	(ISOBMFF)	is	neither	required	nor	desired.	That	particular	box	has	been	used	in	the	past	(rather:	
diverted	from	its	originally	intended	use)	to	achieve	OFL	functionality	(see	e.g.	ISO/IEC	23003-3:2012,	
Annex	 F).	 Furthermore,	 edit	 lists	 are	 not	 specified	 for	 the	 use	with	 fragmented	 ISOBMFF	 files	which	
comprise	the	majority	of	modern	delivery	systems	like	MPEG-DASH	or	MMT.	

With	MPEG-H	 3D	 audio	 it	 is	 possible	 to	 achieve	 the	 same	 functionality	 by	 other	means	which	were	
designed	for	that	particular	application.	It	does,	to	some	degree,	require	the	encoder	to	follow	certain	
restrictions.	

This	 document	 describes	 how	 an	 encoder	 should	 be	 implemented	 to	 avoid	 undesired	 leading	 zero	
samples	at	the	beginning	of	the	decoded	audio	and	how	the	ISOBMFF	sample	duration	and	the	MHAS	
truncation	message	can	be	used	to	crop	trailing	zero	samples	at	the	end	of	the	audio	PCM	output	samples.	

While	the	encoder	and	decoder	behaviour	described	in	this	document	aims	at	solving	the	OFL	file	use	
case,	 such	 behaviour	 is	 generally	 desired	 to	 avoid	 other	 audio/systems	 related	 pitfalls,	 e.g.	 A/V	
synchronization	problems.	

N.2 Avoiding	leading	zero	samples	

The	MPEG-H	3D	audio	encoder	 is	not	normatively	specified	and	can	 therefore	 introduce	an	arbitrary	
additional	encoder	delay	(see	for	example	the	definition	of	Daddenc	in	ISO/IEC	23003-3:2012/Amd.3:2016)	
and/or	 may	 output	 an	 AU	 containing	 the	 MDCT	 part	 DMDCT	 of	 the	 DStandard	 delay	 (see	
ISO/IEC	23003-3:2012/Amd.3:2016).	To	allow	reconstruction	of	the	original	file	length,	without	using	
the	‘edts’	box,	it	is	important	that	the	encoder	is	not	producing	any	access	units	(AUs)	representing	this	
delay.	

If	the	encoder	is	producing	AUs	during	startup	(i.e.	if	Daddenc	and	DMDCT	can	be	observed	at	the	decoder	
output),	then	this	delay	should	be	discarded	on	system	level	before	storing	the	AUs	in	the	ISO	Base	Media	
File.	This	requires	that	the	encoder	delay	is	an	integer	multiple	of	the	audio	frame	length,	e.g.	1024	PCM	
audio	samples.	This	can	be	easily	achieved	by	padding	the	encoder	input	signal	with	leading	zero	samples	
as	shown	in	Figure	N.1.	

ISO/IEC	23008-3:202X(E)	

812 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Figure	N.1	—	Encoder	delay	handling	

In	addition,	the	first	AU	stored	in	the	ISOBMFF	file	should	include	an	audio	pre-roll	extension	payload	
element	(an	extension	element	of	type	ID_EXT_ELE_AUDIOPREROLL	should	be	present)	as	defined	in	this	
specification	 to	 enable	 a	 complete	 reconstruction	 of	 the	 first	 audio	 frame.	 Otherwise	 a	 short	 fade-in	
depending	on	the	chosen	windowing	function	will	occur.	

N.3 Avoiding	trailing	zero	samples	

In	 contrast	 to	MPEG-4	AAC	decoders,	 an	MPEG-H	3D	audio	decoder	does	not	 immediately	produce	a	
composition	unit	(CU)	for	every	provided	AU.	Instead	the	MPEG-H	decoder	ingests	AUs	until	the	first	valid	
audio	samples	can	be	reconstructed	(see	also	Clause	20).	Consequently	neither	the	standard	delay	Dstandard	
nor	 the	 additional	 decoder	 delay	 Dadddec	 as	 defined	 in	 ISO/IEC	 23003-3:2012/Amd.3:2016	 can	 be	
observed	at	the	decoder	output.	

When	MPEG-H	3D	audio	elementary	streams	are	stored	in	an	ISOBMFF	file,	all	decoded	audio	frames	shall	
be	trimmed	to	their	sample	duration	if	the	number	of	output	samples	does	not	correspond	to	the	given	
sample	duration.		

For	non-fragmented	ISOBMFF	files,	the	sample	duration	is	provided	by	the	sample_delta	value	in	the	‘stts’	
box,	for	fragmented	ISOBMFF	files,	the	sample	duration	is	provided	by	the	sample_duration	value	in	the	
‘trun’	box.		

NOTE	 If	one	of	the	sample	entry	types	“mhm1”	or	“mhm2”	is	used,	i.e.	MHAS	streams	are	stored	in	the	ISOBMFF	
file,	and	an	MHAS	packet	with	PACTYP_AUDIOTRUNCATION	is	present,	trimming	might	have	already	happened	in	
the	decoder	and	additional	trimming	on	systems	layer	might	not	be	necessary.	

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 813	
	

Annex	O	
(normative)	

	
Codebook	tables	used	to	de-quantize	high	band	time	domain	bandwidth	

extension	parameters	

O.1 Codebook	table	for	tbeLSFCB1_7b	

tbeLSFCB1_7b[128x10] =

0.04864 0.097476 0.14699 0.19811 0.25074 0.32976 0.36053 0.38823 0.42603 0.46205
0.078258 0.11627 0.15307 0.2182 0.26242 0.29803 0.34483 0.379 0.41075 0.43858
0.048724 0.099256 0.15056 0.20264 0.26402 0.34633 0.37125 0.40096 0.43365 0.46697
0.055234 0.09483 0.13869 0.18 0.22943 0.27291 0.31784 0.36125 0.41255 0.45768
0.066955 0.11182 0.15389 0.19033 0.22682 0.26791 0.34946 0.38512 0.42342 0.46221
0.14499 0.1748 0.21495 0.24694 0.28636 0.31766 0.35518 0.39053 0.4296 0.46383
0.053712 0.093501 0.14021 0.18292 0.2327 0.27472 0.32114 0.36421 0.4071 0.45041
0.066898 0.11273 0.16787 0.20781 0.24622 0.28312 0.32727 0.37084 0.40917 0.45845
0.082957 0.12982 0.17424 0.21286 0.24847 0.27936 0.31235 0.34285 0.37285 0.40878
0.050453 0.087648 0.14344 0.18596 0.23016 0.27458 0.32064 0.36275 0.41255 0.4558
0.051327 0.098449 0.15099 0.19838 0.24737 0.2934 0.33846 0.38268 0.42641 0.46512
0.05992 0.098888 0.14664 0.19564 0.24687 0.2953 0.34024 0.37436 0.4127 0.46074
0.064031 0.10319 0.14764 0.19739 0.28187 0.31927 0.3543 0.39228 0.4299 0.46405
0.05498 0.10968 0.16474 0.21945 0.27381 0.32726 0.37935 0.4227 0.44562 0.46469
0.062601 0.099835 0.1538 0.20029 0.2468 0.31243 0.34783 0.37527 0.4072 0.44755
0.074256 0.12069 0.16331 0.20117 0.24158 0.2817 0.32371 0.3614 0.3963 0.43522
0.062513 0.093121 0.14336 0.21052 0.249 0.28973 0.32993 0.3629 0.39997 0.43306
0.025216 0.043257 0.13114 0.17096 0.22462 0.26778 0.31784 0.36167 0.41032 0.45643
0.056889 0.093219 0.1666 0.21076 0.25352 0.29067 0.32129 0.34992 0.37958 0.41368
0.056254 0.095794 0.14664 0.19128 0.2395 0.2838 0.32869 0.36962 0.41141 0.45676
0.058042 0.097978 0.15892 0.19464 0.23194 0.2935 0.32952 0.35889 0.40646 0.46064
0.072914 0.1154 0.15946 0.20074 0.2373 0.26943 0.30625 0.33507 0.36892 0.45515
0.056726 0.097439 0.14751 0.19242 0.24069 0.28525 0.33185 0.37655 0.42171 0.46229
0.057682 0.099927 0.15032 0.19308 0.27116 0.30672 0.33711 0.36787 0.39748 0.42756
0.059562 0.091735 0.1341 0.17118 0.21142 0.24863 0.29472 0.35438 0.41296 0.4628
0.076592 0.11714 0.16126 0.19883 0.26108 0.2992 0.3282 0.36076 0.40563 0.46238
0.081288 0.13113 0.18743 0.23964 0.28014 0.311 0.34508 0.38208 0.41473 0.44881
0.047304 0.091933 0.14034 0.18718 0.23665 0.28615 0.34071 0.37923 0.41879 0.45996
0.073207 0.11332 0.15612 0.19594 0.23554 0.27743 0.32333 0.36004 0.40608 0.4578
0.044135 0.090759 0.13707 0.17933 0.23073 0.27435 0.32164 0.36583 0.41077 0.45869
0.061503 0.099996 0.1528 0.20125 0.23896 0.27336 0.33323 0.37198 0.4063 0.46365
0.065593 0.10711 0.16066 0.20394 0.24858 0.29493 0.33799 0.37688 0.41802 0.46047
0.1059 0.15367 0.18936 0.22616 0.26279 0.28926 0.3175 0.35417 0.40672 0.45639
0.057113 0.089617 0.12791 0.16286 0.21899 0.29084 0.35171 0.38775 0.42141 0.45997
0.053929 0.092518 0.13694 0.1872 0.23374 0.27702 0.32099 0.36716 0.41372 0.45724
0.077925 0.13348 0.17623 0.21205 0.24834 0.28115 0.32721 0.38949 0.43806 0.4682
0.060914 0.096059 0.14495 0.19642 0.26599 0.30276 0.33096 0.36561 0.428 0.46364
0.05613 0.085034 0.13865 0.22254 0.26806 0.30525 0.34751 0.38395 0.41763 0.45029
0.064602 0.10449 0.14634 0.18852 0.23804 0.2827 0.32807 0.3707 0.41459 0.45941
0.058853 0.13554 0.23094 0.26372 0.28659 0.31606 0.34768 0.38237 0.41999 0.459
0.05125 0.089764 0.17961 0.22403 0.2602 0.29763 0.34402 0.37597 0.40581 0.42963
0.050346 0.092015 0.14275 0.18846 0.23657 0.28188 0.33198 0.37714 0.43739 0.47361
0.090389 0.13874 0.18458 0.22703 0.29216 0.32995 0.3617 0.3935 0.43168 0.46435
0.062889 0.10177 0.15493 0.19945 0.25233 0.29641 0.32735 0.35234 0.38123 0.45544
0.033993 0.10547 0.16782 0.19104 0.21646 0.2844 0.2997 0.3822 0.42213 0.4468

ISO/IEC	23008-3:202X(E)	

814 ©	ISO/IEC	2019	–	All	rights	reserved	
	

0.048248 0.091496 0.13816 0.18174 0.22617 0.27066 0.31573 0.36917 0.41195 0.45331
0.074263 0.11464 0.15112 0.19072 0.24866 0.3139 0.3564 0.39229 0.42873 0.45959
0.082441 0.12775 0.17752 0.21919 0.26654 0.31239 0.35872 0.39247 0.42209 0.45135
0.06041 0.099001 0.1455 0.18432 0.22311 0.25934 0.30034 0.339 0.38092 0.42745
0.098797 0.15514 0.19949 0.23451 0.27097 0.30414 0.34261 0.38031 0.41939 0.45784
0.050761 0.10016 0.15511 0.20496 0.28976 0.35413 0.36998 0.40295 0.43271 0.46698
0.06635 0.10749 0.15417 0.20038 0.24819 0.29304 0.33287 0.36759 0.40764 0.45054
0.069487 0.12266 0.1735 0.22063 0.26539 0.3029 0.34334 0.38586 0.42719 0.4649
0.042813 0.091028 0.13746 0.18144 0.22793 0.27297 0.31582 0.36022 0.40902 0.45234
0.052359 0.093423 0.14274 0.18587 0.23586 0.28088 0.32701 0.37263 0.41803 0.46095
0.070718 0.11038 0.14953 0.18253 0.21624 0.26049 0.32113 0.3672 0.41231 0.45706
0.097556 0.12551 0.1721 0.2097 0.25496 0.29517 0.33522 0.37297 0.41498 0.45778
0.064392 0.10609 0.15365 0.19776 0.24462 0.28831 0.33764 0.3811 0.4242 0.46355
0.073186 0.12058 0.16666 0.21015 0.25381 0.29592 0.3378 0.3776 0.4159 0.4579
0.091626 0.11604 0.15985 0.19528 0.24234 0.28384 0.32961 0.37044 0.41356 0.45836
0.057081 0.095632 0.14173 0.18279 0.22838 0.28121 0.32571 0.36764 0.41234 0.45558
0.054602 0.093851 0.14172 0.18519 0.23076 0.27183 0.32759 0.36943 0.41137 0.45868
0.092356 0.14423 0.18907 0.23602 0.2752 0.30097 0.32923 0.3666 0.43299 0.47154
0.020284 0.067152 0.1739 0.19172 0.22009 0.2837 0.29809 0.38033 0.42259 0.44582
0.11677 0.17269 0.20934 0.24439 0.27788 0.31092 0.34639 0.38046 0.42032 0.45872
0.043648 0.096081 0.15832 0.21033 0.26148 0.30301 0.35086 0.39177 0.4316 0.4681
0.086671 0.12893 0.16953 0.21426 0.28242 0.30587 0.34046 0.36881 0.40498 0.4608
0.05893 0.10354 0.1605 0.21739 0.26171 0.29623 0.33495 0.37639 0.42006 0.46177
0.058451 0.10759 0.16289 0.21735 0.27477 0.31757 0.35144 0.37944 0.40977 0.45046
0.13913 0.16306 0.20118 0.22876 0.26581 0.2942 0.33234 0.36722 0.40766 0.44982
0.064312 0.10151 0.14697 0.18944 0.23353 0.27556 0.32105 0.35401 0.39019 0.43029
0.066387 0.1139 0.16282 0.1981 0.23374 0.26839 0.31431 0.37408 0.42376 0.46234
0.0619 0.10224 0.15369 0.1959 0.23929 0.28086 0.32217 0.36659 0.40559 0.44546
0.057058 0.088951 0.12949 0.17176 0.26222 0.30829 0.34607 0.38467 0.42381 0.45859
0.049937 0.094674 0.14351 0.19269 0.24155 0.30233 0.35801 0.38773 0.42523 0.4617
0.096405 0.12953 0.17659 0.21641 0.26497 0.30357 0.34612 0.38552 0.42775 0.46475
0.069274 0.12394 0.18428 0.22001 0.26097 0.29437 0.32684 0.35971 0.392 0.426
0.07173 0.11545 0.16149 0.2073 0.25003 0.29488 0.34333 0.38752 0.43048 0.46536
0.025897 0.054595 0.13747 0.18048 0.23646 0.27848 0.33024 0.37767 0.4258 0.46747
0.062263 0.10497 0.17325 0.2122 0.24606 0.27739 0.31206 0.35079 0.39653 0.44881
0.080856 0.1174 0.15965 0.20324 0.24789 0.29084 0.33559 0.3797 0.42412 0.46362
0.076273 0.1152 0.15864 0.19365 0.23081 0.26163 0.29772 0.34594 0.40989 0.45981
0.05974 0.097397 0.14663 0.18948 0.23014 0.26658 0.31188 0.35323 0.39598 0.45568
0.089729 0.12058 0.1664 0.20761 0.25415 0.29671 0.34251 0.38499 0.42675 0.46417
0.10149 0.15478 0.20253 0.24714 0.28616 0.32199 0.35857 0.39359 0.43249 0.46541
0.068134 0.10965 0.16946 0.21258 0.25223 0.29539 0.32954 0.36661 0.40406 0.44434
0.059349 0.099026 0.14925 0.20131 0.2487 0.28452 0.3177 0.35592 0.41204 0.45923
0.065178 0.10281 0.14506 0.19004 0.23703 0.28249 0.34337 0.37726 0.40877 0.44441
0.058248 0.1002 0.14662 0.19279 0.24515 0.29091 0.34616 0.40158 0.4391 0.46714
0.055435 0.10999 0.16531 0.22018 0.27454 0.32777 0.37764 0.40848 0.42345 0.4524
0.094702 0.11922 0.16528 0.20083 0.24884 0.28901 0.33374 0.37321 0.4154 0.45969
0.065859 0.11153 0.16175 0.19725 0.2667 0.2972 0.3296 0.39005 0.41908 0.44839
0.068448 0.12152 0.17471 0.22659 0.27381 0.31568 0.35792 0.39513 0.43529 0.46713
0.03068 0.069976 0.14897 0.19635 0.2515 0.29365 0.34592 0.39015 0.43145 0.46917
0.0625 0.10732 0.16161 0.22149 0.27042 0.30207 0.32751 0.35529 0.3954 0.44926
0.073237 0.11547 0.15621 0.20002 0.24426 0.28741 0.33136 0.37513 0.41916 0.46057
0.072788 0.11042 0.14969 0.172 0.28589 0.29948 0.3576 0.37192 0.43892 0.46426
0.060735 0.1061 0.15458 0.20272 0.25444 0.3012 0.34733 0.38491 0.42641 0.46586
0.061916 0.10486 0.16011 0.20586 0.24633 0.28864 0.32991 0.36585 0.43974 0.46804
0.04931 0.07895 0.14 0.19322 0.2453 0.29023 0.32821 0.35684 0.39085 0.45545
0.071672 0.1113 0.17002 0.20712 0.28395 0.3044 0.35077 0.37205 0.43674 0.46667
0.05397 0.08745 0.13262 0.1732 0.21461 0.25479 0.33363 0.37275 0.4197 0.45941
0.047444 0.0917 0.13765 0.18167 0.22432 0.27282 0.31944 0.36299 0.40694 0.45558
0.056411 0.10184 0.17531 0.20875 0.24522 0.27875 0.33244 0.38745 0.42799 0.46691

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 815	
	

0.061397 0.1026 0.15555 0.19894 0.24395 0.28636 0.32936 0.37276 0.41652 0.45946
0.067086 0.10131 0.1415 0.17384 0.26202 0.29564 0.32718 0.35501 0.4041 0.45262
0.06752 0.10817 0.14602 0.18037 0.23122 0.29473 0.33742 0.37734 0.42715 0.46179
0.056339 0.097771 0.15026 0.19271 0.23301 0.2775 0.32642 0.37017 0.41986 0.46119
0.078862 0.1313 0.17098 0.21256 0.25355 0.31264 0.37304 0.40151 0.44291 0.47174
0.057228 0.087987 0.13248 0.17724 0.22664 0.29933 0.33536 0.36461 0.3966 0.4468
0.071459 0.1196 0.17572 0.21851 0.25563 0.28666 0.31849 0.35939 0.42121 0.46212
0.084105 0.11778 0.1555 0.18993 0.23727 0.29898 0.33703 0.36576 0.39955 0.44998
0.059197 0.11086 0.16253 0.21338 0.26115 0.30845 0.35535 0.39323 0.43047 0.46691
0.081157 0.14149 0.19367 0.23526 0.27272 0.31008 0.35214 0.39291 0.43546 0.46809
0.059251 0.10234 0.18619 0.23621 0.27276 0.30402 0.33806 0.37437 0.42053 0.46013
0.057636 0.11668 0.17332 0.21085 0.25074 0.28787 0.35466 0.38723 0.41556 0.45072
0.077062 0.11305 0.16977 0.21412 0.25478 0.31383 0.34803 0.37685 0.41875 0.45695
0.079259 0.12789 0.17309 0.21644 0.25272 0.28551 0.31874 0.34827 0.38158 0.45512
0.057262 0.09683 0.14579 0.18805 0.23294 0.27595 0.31965 0.366 0.4105 0.45759
0.050687 0.083651 0.16807 0.20719 0.26005 0.29982 0.33047 0.36335 0.40416 0.45711
0.074028 0.12257 0.16312 0.20115 0.24125 0.28368 0.36765 0.39595 0.43793 0.4697
0.077292 0.13171 0.18313 0.223 0.26128 0.29794 0.33419 0.37304 0.41163 0.45407
0.094223 0.12981 0.17293 0.20371 0.23887 0.27876 0.32559 0.36707 0.41258 0.45899
0.050304 0.095738 0.15217 0.19473 0.24594 0.28693 0.33484 0.38731 0.41925 0.44441
0.045328 0.086714 0.13202 0.1828 0.22775 0.27262 0.31975 0.36471 0.40814 0.45356
0.066427 0.10038 0.1371 0.17293 0.22457 0.27187 0.31852 0.38646 0.4289 0.46181
0.037658 0.091131 0.15119 0.19697 0.25015 0.28876 0.31699 0.374 0.41923 0.45872
0.05842 0.088421 0.12705 0.16466 0.2148 0.26252 0.3135 0.35408 0.39721 0.4461

O.2 Codebook	table	for	tbeLSFCB2_7b	

tbeLSFCB2_7b[128x10] =

-0.00337 -0.00510 -0.00245 0.00060 -0.00334 -0.00731 0.00799 0.00068 -0.00497 0.01280
0.01295 0.00199 -0.01603 0.01614 0.00589 -0.00575 -0.00171 0.00060 -0.00092 -0.00469
-0.00043 0.00719 0.01071 0.00272 -0.00114 -0.01095 0.01105 0.00183 -0.00772 0.00764
-0.00320 -0.00066 0.00754 0.00244 0.01423 0.00461 0.00266 0.00977 0.00397 0.00409
-0.00900 -0.02064 0.01180 0.00291 -0.00054 -0.00549 -0.00008 -0.00686 -0.00678 -0.00002
-0.00646 0.00064 -0.00090 0.00330 -0.00139 0.00387 -0.00365 -0.00194 -0.00167 0.00174
-0.00310 0.00348 -0.00210 -0.01048 0.00088 0.01234 0.00902 -0.00303 -0.00937 0.01209
-0.00744 0.00015 -0.00688 0.00403 -0.00814 0.00404 -0.00731 0.00788 -0.00504 0.01323
0.00135 -0.01165 -0.00957 -0.00186 0.00873 0.00330 -0.00063 0.00013 0.00098 0.00650
0.00628 -0.00531 0.00132 0.01057 0.00084 -0.00405 0.00899 0.00717 -0.00353 -0.00357
-0.00445 -0.00915 -0.01136 -0.01307 -0.00679 0.00019 0.00610 0.00643 0.00774 0.00522
-0.00245 -0.01237 0.00349 -0.01072 0.00668 -0.00514 0.00465 -0.00753 0.01282 0.00145
0.00020 0.00098 -0.00067 -0.00022 -0.00024 0.00072 0.00156 0.00702 0.00783 0.00300
0.00009 -0.00134 -0.00210 0.00217 -0.00712 -0.00067 -0.00289 0.00313 0.00023 -0.00204
0.00376 -0.00171 -0.00462 -0.00358 -0.00237 -0.00759 -0.00798 -0.00179 -0.00928 -0.01537
-0.00045 -0.00215 0.00164 -0.00024 0.00582 0.00815 -0.00066 -0.00713 0.00088 -0.00162
-0.00161 -0.00855 0.00341 -0.00380 -0.00987 0.00499 -0.00495 -0.00986 -0.01351 0.00954
-0.00035 0.00520 -0.00068 -0.00133 0.01598 0.00197 -0.00185 0.00165 -0.00270 -0.01326
-0.00053 0.00002 -0.00364 -0.00144 -0.00916 -0.01694 0.00265 0.00646 0.00567 0.00078
0.00631 0.01285 -0.00311 -0.01465 0.00403 0.00264 -0.00369 0.00078 0.00634 0.00285
0.00665 -0.00361 -0.00854 0.00962 -0.00654 0.01019 0.00158 0.00435 0.00877 -0.00357
0.00338 -0.00083 -0.00835 -0.01444 -0.00405 -0.00840 -0.00385 -0.00190 -0.00825 0.00515
-0.00335 -0.00132 -0.00304 -0.00521 -0.00570 -0.00721 -0.00872 -0.00590 0.00970 0.01296
0.00213 -0.00811 -0.01250 0.01025 -0.00119 -0.00865 0.00550 -0.00397 0.00942 0.00233
0.00781 0.00977 0.00334 -0.00673 -0.01296 0.00435 0.00111 -0.00431 -0.00840 0.00809
0.00281 -0.00295 -0.00111 -0.00497 -0.00256 0.00023 -0.00136 -0.00411 -0.00139 -0.00247
-0.00973 -0.00705 0.00334 0.00307 -0.00091 -0.00496 -0.00195 0.00378 0.00523 0.00387
-0.00329 0.00277 0.00016 -0.00236 0.00125 -0.00644 0.00166 -0.00244 0.00023 -0.00216
-0.00146 0.00552 0.00388 -0.00039 0.00409 0.00209 -0.00137 0.00087 -0.00120 0.00082
0.00462 0.00036 0.00365 -0.00233 0.00624 0.00022 -0.00780 0.00998 -0.00181 0.01111

ISO/IEC	23008-3:202X(E)	

816 ©	ISO/IEC	2019	–	All	rights	reserved	
	

0.00166 0.00000 -0.00128 0.00356 0.00562 -0.00056 0.00400 -0.00137 -0.00074 0.00172
0.00059 -0.00876 -0.01031 0.01259 0.00462 -0.00022 -0.00520 -0.01173 -0.00854 0.00461
-0.00623 0.00871 0.00137 -0.01140 0.00488 -0.00649 0.00912 0.00697 0.00018 0.00161
-0.01810 -0.00014 0.00146 -0.00191 0.00653 0.00256 0.00293 -0.00032 -0.00211 -0.00089
-0.00041 -0.00486 -0.00147 -0.00212 -0.00127 -0.00410 0.00450 0.00219 0.00191 0.00042
-0.00626 -0.00094 0.00891 0.00596 0.00246 -0.00645 -0.01149 0.00095 -0.00966 0.00508
0.00439 -0.00186 -0.01025 -0.00088 -0.00483 0.00934 -0.00057 -0.01341 0.00599 0.00660
-0.00401 -0.01532 -0.00893 -0.00157 -0.00542 -0.00426 -0.00606 -0.00341 -0.00204 -0.00048
-0.00810 -0.01429 0.00390 0.00399 -0.00012 0.01031 0.01085 0.00579 0.00179 0.00282
-0.00261 -0.00601 0.00025 -0.00432 -0.00828 0.01165 0.00455 0.00070 -0.00620 -0.01734
-0.00077 -0.00906 0.00763 -0.00175 -0.01536 0.00454 -0.00274 0.01174 0.00388 -0.00443
-0.00699 0.01617 0.00363 -0.00455 -0.01085 -0.00888 -0.00345 -0.00409 -0.00176 -0.00098
0.00237 0.00694 0.00619 -0.00269 -0.00619 -0.00513 -0.00662 0.01945 0.00982 0.00334
-0.00945 0.00895 0.00229 -0.01320 0.00256 0.00168 -0.01106 0.00550 -0.00322 -0.00463
-0.00490 -0.00743 0.00205 -0.00081 -0.00575 -0.01266 0.01381 0.00730 -0.00233 -0.01681
-0.00141 0.00044 -0.00047 -0.00114 0.00259 0.00345 0.00363 0.00523 0.01856 0.01402
-0.00473 0.00005 0.01646 0.00678 0.00100 0.00647 0.00089 -0.00544 -0.00524 0.01047
-0.00077 0.00165 -0.00063 -0.00045 -0.00052 -0.00255 -0.00528 -0.00695 -0.00521 -0.00145
0.00213 0.00388 0.01048 -0.00187 -0.00761 0.00328 -0.00815 -0.00023 0.00088 -0.00450
0.01530 0.00935 0.00755 0.00303 0.00692 0.00512 0.00375 0.00463 0.00297 -0.00083
0.00130 -0.00101 0.00009 0.00100 0.00256 0.00324 0.00385 0.00622 0.00144 -0.00456
-0.00063 -0.00036 -0.00035 -0.00429 -0.00255 -0.00276 -0.00544 0.00083 0.00099 0.00295
-0.00998 0.01045 -0.00535 0.00361 0.00112 -0.00385 -0.00531 0.00469 0.00449 -0.00224
0.00004 0.00077 0.00790 -0.00007 -0.00948 -0.00132 0.00307 0.00034 0.00531 0.00734
0.00297 -0.00669 0.01277 0.00930 0.00400 0.00377 -0.00322 -0.00198 -0.00435 -0.01245
-0.00091 0.00325 0.00161 0.01818 0.01222 0.00835 0.00426 -0.00130 -0.00496 -0.00217
-0.00556 -0.00922 0.00384 0.01075 0.00487 -0.00245 -0.01137 -0.01353 0.01339 0.00754
0.00071 0.00125 0.00059 0.00104 0.00027 0.00204 0.00071 -0.00041 -0.00574 -0.00585
0.00217 0.00300 -0.00770 -0.00164 0.00010 0.00118 -0.00011 -0.00002 -0.00053 -0.00012
-0.00568 0.00131 -0.00318 0.01111 0.00041 -0.00721 0.00253 -0.00190 -0.00423 -0.00706
-0.00211 -0.00271 0.00269 -0.00181 -0.01218 -0.00419 0.00225 -0.00293 -0.00585 -0.00265
0.00179 0.00409 0.00189 0.00557 0.00192 -0.00087 -0.00680 0.01192 -0.00009 -0.01131
-0.00260 0.00019 0.00065 -0.00016 0.00166 0.00369 0.00057 -0.00867 -0.01672 -0.00577
0.00074 -0.00313 -0.00577 -0.01117 0.01268 0.00983 0.01024 0.00849 0.00353 -0.00299
-0.00414 -0.00339 -0.00184 -0.00462 0.00169 0.00135 0.00080 -0.00307 -0.00328 0.00437
-0.00414 0.00332 0.00388 0.00865 0.00266 0.00152 0.00417 -0.00481 0.01127 -0.00190
0.00014 0.00054 -0.00267 -0.00129 0.00974 -0.00129 -0.01645 -0.00023 0.00216 -0.00094
0.00344 -0.00024 0.00063 0.00090 0.00010 0.00140 -0.00278 -0.00298 -0.00558 0.00500
0.00680 -0.00135 0.00742 0.00697 -0.00743 0.00847 0.00614 -0.00265 -0.00976 0.00082
-0.00268 -0.00037 -0.00132 0.00002 0.00274 0.00038 -0.00121 0.00105 0.00223 -0.00086
-0.00155 -0.00403 -0.00214 -0.00630 0.00164 -0.00012 0.00727 0.00100 -0.00553 -0.00712
-0.00109 -0.00513 0.00426 -0.00198 -0.00064 0.00316 -0.00233 0.00407 -0.00220 -0.00041
-0.00094 -0.00156 0.00007 -0.00060 0.00234 0.00101 -0.00263 -0.00229 0.00595 0.00684
0.00249 -0.00715 0.00663 -0.00735 0.00972 -0.00423 0.00415 0.00210 -0.01681 0.00579
-0.00452 -0.00344 -0.00482 -0.00148 -0.00085 0.00147 -0.00314 -0.00339 0.00554 -0.00666
-0.00783 0.01143 0.00487 -0.00730 0.00410 0.00412 -0.00284 -0.01383 0.00927 0.00531
-0.00070 0.00038 -0.00354 0.00283 -0.00263 -0.00456 -0.00060 -0.00363 0.00131 0.00302
0.00484 0.00422 0.00167 -0.00090 -0.00187 -0.00403 0.00003 0.00316 -0.00169 -0.00139
-0.01608 0.00351 0.00713 -0.00532 -0.01154 0.00641 0.00285 -0.00096 0.00387 0.00155
-0.00274 -0.00600 0.00146 0.00442 0.00154 -0.00044 -0.00156 -0.00220 -0.00295 -0.00348
0.00451 0.00129 -0.00598 -0.00924 -0.00267 -0.00035 -0.00035 0.01025 0.00224 -0.00936
-0.00333 0.01928 0.01314 0.00532 0.00299 -0.00150 -0.00236 0.00373 0.00259 -0.00183
-0.00353 -0.00932 0.00003 0.01754 0.00853 -0.00008 -0.00624 0.00566 0.00827 0.00118
0.00217 -0.00935 0.01083 0.00067 -0.01143 0.01088 0.00003 -0.01172 0.01042 0.00396
-0.01660 0.00488 0.01388 0.00339 -0.00212 -0.00667 -0.00086 -0.00172 -0.00523 -0.01345
0.00673 0.00086 -0.00182 0.00715 0.00340 0.00729 0.00690 -0.00234 0.00200 0.01147
0.00663 0.01129 0.00470 -0.00276 -0.00958 -0.00489 0.00915 0.00326 -0.00505 -0.01288
0.00587 -0.00019 -0.00082 0.00326 -0.00003 -0.00385 0.00133 -0.00406 0.00256 -0.00591
0.01532 0.00977 -0.00174 0.00304 -0.00344 -0.00652 -0.01245 0.00256 0.00588 0.00005

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 817	
	

0.01009 -0.00216 -0.00350 -0.00358 -0.00498 -0.00098 0.00291 0.00284 0.00285 0.00460
-0.00508 0.01327 -0.00038 0.00304 0.00459 -0.00144 0.00127 -0.00718 -0.00963 0.00960
0.00808 0.00285 -0.00735 0.00592 -0.00489 -0.00934 0.00689 -0.00499 -0.01021 0.00396
0.00517 0.00012 0.00051 0.00232 0.00084 0.00387 -0.00405 0.00114 0.00068 -0.00005
0.00588 0.00418 -0.01025 0.00294 0.01323 0.00363 -0.00389 -0.00421 0.01118 0.00219
-0.00067 -0.00674 0.00169 0.00331 -0.00314 -0.01072 -0.01872 0.01094 0.00269 -0.00552
0.00903 0.00325 0.00558 0.00257 0.00204 -0.00219 -0.00570 -0.01377 0.00330 0.00650
0.00284 0.01149 -0.00301 -0.00822 0.00067 0.00254 -0.00309 -0.01205 -0.00010 -0.01318
0.00884 0.00161 -0.00642 -0.00693 -0.01250 -0.00702 -0.00683 -0.01022 0.00435 -0.00224
0.00513 -0.00615 -0.01373 -0.00169 0.00414 -0.00529 -0.00926 0.01457 0.00922 0.00224
-0.00062 0.00049 0.00232 0.00591 -0.00044 0.00009 0.00059 0.00328 -0.00021 0.00418
0.00189 -0.00047 0.00472 0.00164 0.00287 -0.00387 -0.00465 0.00070 0.00565 -0.00168
0.00454 0.00316 -0.00233 0.01149 0.00352 -0.00822 -0.00614 0.00157 0.00051 0.00736
-0.00788 0.00067 -0.00855 0.00507 0.00335 0.00380 0.00738 0.00339 0.00149 0.00360
0.01501 0.00202 -0.00822 -0.00462 0.00285 0.00705 -0.00018 -0.00441 -0.00545 -0.00465
0.00489 0.01066 -0.00362 -0.00124 -0.00135 -0.00669 0.00770 -0.00296 0.01064 0.00596
0.00093 -0.00225 0.00609 0.00067 0.00030 -0.00290 0.00251 -0.00254 -0.00151 0.00109
-0.00207 -0.00532 -0.01473 -0.01715 0.00824 0.00273 -0.00514 -0.01033 -0.00059 -0.00534
0.00232 0.00251 0.00162 -0.00421 0.00149 0.00162 0.00399 -0.00223 0.00552 -0.00128
0.00526 -0.00233 0.01093 0.00588 -0.00702 -0.01361 -0.00334 -0.00177 0.00054 -0.00199
0.01063 0.00542 -0.01294 -0.00590 0.01045 -0.00500 0.01123 0.00424 -0.00410 0.00156
0.00132 0.00630 0.00032 0.00503 -0.00245 0.00182 0.00076 -0.00323 0.00108 -0.00113
-0.00675 -0.00372 0.00315 -0.00018 -0.00370 -0.00204 -0.01295 -0.01879 -0.00088 -0.00739
-0.00443 0.00812 0.00509 0.00141 0.00209 0.01110 0.01058 0.00327 -0.00349 -0.00476
0.00236 0.00203 0.00071 -0.00213 -0.00041 0.00399 0.00620 0.00326 -0.00395 0.00331
0.01170 0.01308 0.00544 0.00387 0.00234 -0.00131 -0.00686 -0.00899 -0.01449 -0.00552
-0.00455 0.00381 -0.00150 -0.00425 -0.00407 0.00142 0.00145 0.00011 0.00065 -0.00036
0.00142 -0.00377 -0.01061 0.00145 -0.00680 0.00356 0.00786 -0.00003 -0.00785 -0.00015
0.00031 -0.00046 -0.00130 0.00012 -0.00511 -0.00415 0.01774 0.01511 0.00634 0.00103
0.00216 0.01149 0.00207 -0.00597 -0.01697 0.01133 0.00409 0.00307 0.00625 -0.00341
-0.00185 -0.00120 -0.00286 -0.00065 0.00175 -0.00332 -0.00206 0.00458 -0.00494 0.00032
0.00419 -0.00080 0.00042 -0.00553 0.00667 -0.00079 -0.00148 -0.00047 -0.00114 -0.00043
-0.00415 -0.01096 -0.01411 0.00782 0.00911 0.00301 0.00108 0.00301 -0.00459 -0.01355
-0.00702 -0.01663 0.00665 -0.00800 0.00952 0.00021 -0.00605 0.00804 0.00040 -0.00767
-0.00070 -0.00255 0.00008 0.00094 -0.00347 0.00505 0.00399 -0.00214 0.00319 -0.00064
-0.00519 0.00129 0.00444 0.00199 -0.00295 -0.00070 0.00338 0.00526 0.00066 -0.00398
-0.00127 0.00067 -0.00361 -0.00203 0.01636 0.00656 -0.00244 -0.00530 -0.00926 0.00465
-0.00224 -0.00755 0.01921 0.00929 0.00078 -0.00545 0.00948 0.00684 0.00558 -0.00054
0.00061 -0.00183 -0.00318 -0.00807 0.00005 0.01402 -0.00302 0.00284 0.00492 0.00030

O.3 Codebook	table	for	tbeExcFilterCB1_7b	

tbeExcFilterCB1_7b[128x10] =

0.09278 -0.04927 -0.1285 0.04224 0.19906 -0.11443 -0.17523 0.22302 0.13816 -0.28557
0.00011 -0.11068 -0.30536 -0.28212 -0.08996 -0.23144 -0.02353 0.01956 0.08163 0.15772
-0.0627 -0.05202 -0.09499 0.09656 0.09493 -0.07314 0.26034 0.12844 0.08331 -0.13683
0.07668 -0.02219 0.29456 0.17219 0.1365 -0.02633 0.02025 -0.0703 -0.0775 -0.36374
0.07061 -0.08168 -0.02593 -0.1945 -0.1438 0.01913 0.1581 0.13042 0.18332 0.03253
-0.04266 0.05446 0.04855 0.21232 0.34886 -0.04787 -0.14493 0.01559 0.20742 0.02468
0.29098 0.06383 0.1662 0.15719 0.14352 0.19807 0.09548 -0.05796 0.10414 -0.13189
-0.11786 -0.08787 0.21436 0.22915 -0.07895 -0.16376 -0.24403 -0.12381 0.00463 0.18062
0.19711 -0.20348 0.03503 -0.24203 0.1465 0.01923 -0.25212 0.07296 -0.13447 0.06531
-0.20131 0.09759 -0.08098 -0.04882 -0.1088 -0.08122 0.14914 -0.10339 0.24513 -0.19795
-0.02871 0.24279 0.05725 0.07613 0.41804 0.19693 -0.01821 0.02656 -0.18997 -0.10614
-0.08732 -0.00701 0.29408 -0.07048 -0.21163 0.21397 0.09863 -0.24706 0.16062 -0.04952
-0.10538 -0.086 0.174 0.18545 -0.10238 0.14518 0.24527 -0.11161 -0.0553 -0.04299
-0.25925 -0.21043 0.1905 0.21659 -0.08269 -0.15606 0.20488 0.1939 -0.09604 -0.07044
0.0885 -0.01086 -0.01367 -0.06393 0.25061 -0.31779 0.27489 -0.04085 -0.00347 0.00237

ISO/IEC	23008-3:202X(E)	

818 ©	ISO/IEC	2019	–	All	rights	reserved	
	

0.13072 0.15224 0.11707 0.17535 0.1665 0.14625 0.1913 0.15279 0.17186 0.1516
0.13914 0.13684 -0.11358 0.00496 0.19564 -0.11009 -0.05058 0.10552 -0.0155 -0.16635
-0.17303 0.30944 -0.16285 -0.12656 0.08875 0.01211 -0.22898 0.21767 -0.01427 0.01698
0.07809 -0.09757 0.16756 -0.11494 0.23395 -0.19899 0.18347 -0.1323 0.04415 0.00773
0.04403 -0.20143 -0.07105 -0.07592 -0.06155 -0.08754 0.09564 0.16468 0.30223 0.18032
-0.05453 -0.09441 0.07789 0.00663 -0.14208 0.21035 -0.11962 0.26739 -0.19667 0.23282
0.08878 0.06016 -0.03346 -0.10331 0.03731 -0.18329 0.12412 -0.15104 -0.10267 0.17931
0.13982 0.16001 0.10645 -0.09327 -0.15898 -0.17531 -0.24699 -0.12977 -0.03232 0.10249
0.17369 -0.22144 0.05599 0.04504 -0.19557 0.20916 -0.18563 0.05508 0.11578 -0.19359
0.11344 -0.14198 0.17441 -0.24905 0.07004 -0.21457 -0.06794 0.12604 -0.01816 -0.11586
-0.28752 0.01574 -0.05318 -0.16036 -0.0289 0.33425 -0.2483 -0.03269 0.23887 -0.0867
-0.20272 0.11303 0.01556 -0.09528 0.12476 -0.06551 0.18028 -0.15544 0.13792 -0.09292
0.32678 -0.34258 0.28105 -0.16207 0.15352 -0.04954 0.10858 -0.16012 0.13098 -0.18598
0.28576 -0.13167 -0.05888 0.41716 0.15788 -0.0209 0.05537 0.05957 -0.11597 -0.14661
-0.17519 -0.20084 -0.34181 -0.14418 0.04831 0.10175 0.14236 0.29364 0.19556 0.13918
-0.01579 -0.17416 0.11269 -0.07107 0.06136 0.12149 0.38782 0.13322 0.17157 0.14254
0.60481 -0.16148 -0.15186 0.01878 -0.06836 -0.1074 -0.00005 -0.05971 0.05391 -0.02553
-0.10493 -0.14194 0.38099 -0.2901 0.22174 -0.09632 0.06112 0.02876 -0.02286 0.07233
0.24364 -0.21663 -0.01911 0.0096 -0.11763 -0.24622 0.06394 0.28675 -0.21145 -0.06453
-0.01379 0.17444 -0.27516 0.24924 -0.32361 0.20715 -0.16383 0.12124 0.00005 -0.04997
-0.11352 0.00839 0.2271 -0.09127 -0.06364 0.32364 -0.00851 -0.10246 0.07668 0.1547
0.22745 0.42787 0.08653 0.20847 -0.02817 -0.01357 -0.23705 -0.11736 -0.08144 -0.11707
-0.06226 0.07085 -0.28589 -0.14047 -0.13638 0.0236 0.10832 0.14287 -0.098 -0.16612
0.2042 0.14631 -0.08956 0.14235 -0.096 0.04706 -0.11978 -0.18188 0.05349 -0.11259
-0.09417 0.15147 -0.09651 -0.14957 -0.00021 0.05522 -0.12538 0.01834 0.25829 0.12862
0.16162 -0.06564 0.0067 0.18043 -0.06129 0.03649 0.03095 0.02585 -0.02912 0.06451
-0.28975 -0.345 0.01568 0.24021 0.18663 0.21627 0.01571 0.03578 0.11493 0.08829
-0.12705 0.04453 -0.13477 0.091 -0.01383 0.00159 -0.06496 -0.05362 -0.0394 -0.02151
-0.12755 0.14558 0.15106 -0.02064 -0.29887 0.16319 0.06857 0.0212 -0.2026 0.0259
-0.17117 -0.06328 -0.03136 -0.29652 -0.1893 -0.09838 0.0278 0.09643 0.10744 0.02357
0.053 0.18895 0.16667 -0.00416 0.1834 0.07217 0.19257 -0.04169 0.12714 -0.01619
-0.0752 -0.14532 -0.07175 0.0769 0.24361 0.11323 -0.12563 -0.23458 -0.08666 0.05998
-0.05859 0.04079 0.18985 0.09698 -0.19533 -0.24503 -0.00954 0.12981 0.21652 0.07806
-0.12002 0.28904 0.01626 -0.24498 -0.0272 0.2128 -0.02151 -0.16347 -0.0967 0.20795
0.50418 0.08574 0.22471 -0.04306 0.13474 -0.08671 -0.05666 -0.03676 -0.08459 -0.06769
0.02286 0.12102 0.29062 0.12411 0.08985 -0.16048 -0.12923 -0.07103 0.1419 0.0479
-0.10845 -0.02732 0.03072 0.0004 -0.12867 0.03644 -0.08572 -0.11518 -0.06929 -0.19148
-0.02748 -0.17042 0.00163 0.22631 0.0142 -0.11956 -0.05735 0.21573 0.14477 -0.12457
-0.01568 0.11073 -0.03985 0.04661 0.05849 -0.15079 -0.10682 0.05741 -0.18892 -0.14861
0.19846 0.08849 -0.18109 0.07191 0.11123 0.11135 -0.22693 -0.13385 0.14867 0.2448
-0.06086 0.07105 0.25679 0.21256 0.15673 0.00614 -0.14847 -0.27092 -0.16918 -0.08032
0.12908 -0.03723 0.03004 -0.20515 -0.02586 -0.09931 0.064 -0.34729 -0.24735 -0.01626
0.03513 -0.15752 -0.21218 -0.01513 0.10926 0.26235 0.13124 -0.05397 -0.12931 -0.164
0.32126 -0.43877 0.29727 -0.06329 -0.01772 -0.02293 0.0103 0.01445 -0.11286 0.15418
-0.01192 -0.07969 -0.12374 -0.17855 -0.23807 0.00419 -0.02184 0.06684 0.17852 0.29893
0.10326 0.19906 0.19395 0.15637 0.1055 0.11203 0.17639 -0.15675 -0.11169 -0.08789
-0.00384 -0.20679 0.14551 -0.33019 -0.05396 -0.1172 -0.03656 -0.19987 0.31038 -0.07446
-0.06342 -0.0733 0.17837 -0.02925 -0.3374 -0.07286 0.06349 0.08309 -0.04134 -0.18
0.18227 0.01978 -0.13399 0.13816 -0.07183 -0.09984 0.19717 -0.38523 0.24609 -0.14978
-0.15414 0.11149 -0.03078 0.18451 -0.00297 0.07744 -0.19722 0.13131 -0.32475 -0.17452
0.1621 0.19069 -0.01805 -0.19237 -0.31834 -0.15308 -0.24636 -0.04185 -0.09914 0.15125
0.03948 -0.06088 0.02126 0.10788 0.09653 0.02821 0.15783 0.31781 -0.08155 -0.0866
-0.0929 -0.12616 0.15252 -0.0054 -0.13055 -0.06022 0.32783 -0.01737 -0.14561 0.16336
0.14679 -0.56493 -0.10632 0.04228 -0.05807 0.04268 0.09777 -0.03118 0.08026 -0.02373
0.11382 -0.10601 0.11797 -0.15816 0.18875 -0.24262 0.22059 -0.2419 0.16014 -0.16597
-0.24762 -0.1385 -0.0306 0.01652 0.2478 0.00461 0.04798 -0.13205 -0.17872 -0.27586
0.17452 -0.07422 -0.18426 -0.22858 0.17663 0.17637 0.01567 0.04839 0.17465 0.04414
0.21046 0.20266 -0.06857 0.13902 0.09125 0.15126 0.00066 0.25658 -0.11583 0.09393
0.09252 -0.15663 0.25566 -0.29825 0.20961 0.02225 -0.07936 0.18718 -0.0963 0.05259

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 819	
	

-0.00489 0.30066 0.2113 -0.02953 -0.13884 -0.01595 0.07737 0.24748 0.00024 -0.24767
0.0832 0.132 -0.32829 0.23837 -0.14868 0.02548 0.02908 -0.06391 0.17978 -0.17895
-0.28483 0.09445 0.03269 -0.28991 0.28999 -0.15826 -0.07588 0.15063 0.02107 -0.09693
0.00589 -0.23991 -0.25147 0.0797 0.00099 -0.33922 -0.00358 0.05907 -0.00584 -0.06714
-0.3141 -0.18801 -0.19762 -0.01455 -0.15881 -0.02694 -0.11556 0.15593 0.03082 0.07944
-0.17182 -0.12576 -0.207 0.01487 -0.3132 0.07076 0.14413 -0.04814 0.07926 0.29518
-0.12083 0.22381 -0.09037 -0.00754 -0.10236 -0.30394 -0.04741 -0.19619 0.0041 -0.02265
-0.135 -0.13959 -0.07177 0.04913 0.1705 0.29018 0.21969 0.12795 -0.08954 -0.1192
-0.02099 -0.01349 0.18666 -0.11731 -0.0694 -0.01206 0.04575 -0.28522 0.06272 0.21929
0.05285 -0.24949 -0.07622 0.00994 0.12521 -0.20135 -0.23649 -0.0102 0.28374 -0.08653
0.02941 -0.11032 0.10028 -0.09118 0.02639 0.03435 -0.09569 0.1835 -0.23319 0.21404
0.24015 0.2126 -0.30559 -0.05484 0.21301 -0.21983 -0.07878 0.03676 -0.08183 -0.06813
-0.19167 0.12845 -0.02812 -0.08852 -0.00023 0.05442 -0.23315 0.25718 -0.17648 0.04466
-0.27951 -0.40209 0.03651 -0.23924 -0.0378 -0.03813 0.146 0.03969 0.01548 0.10721
0.05164 0.3033 0.16359 -0.3031 0.18994 0.09423 -0.17393 -0.10583 0.15986 -0.17391
0.28887 0.212 0.1482 0.07474 -0.0562 0.07817 0.09121 -0.0125 0.0249 0.10721
-0.10861 -0.17472 -0.16074 0.01766 0.13904 -0.01032 -0.18168 -0.07163 0.0866 0.25212
0.06583 0.1732 0.18612 0.02844 -0.00684 0.05076 0.06633 -0.01868 -0.36337 -0.00145
-0.20373 0.17958 0.01276 -0.19623 0.25943 -0.20367 0.04363 0.1202 -0.23678 0.23433
-0.31519 0.45586 -0.19958 0.15573 -0.01105 0.05693 -0.00513 -0.04786 0.04476 -0.07665
0.03913 0.01571 0.12931 -0.04987 -0.03622 0.12222 -0.12841 -0.06675 0.12739 -0.27043
0.19196 0.01555 -0.18623 -0.10338 0.10205 0.24427 -0.05114 -0.19983 -0.06205 0.23172
-0.04826 0.06662 -0.05736 0.11138 0.14769 0.16176 0.18896 0.17452 0.16037 0.16983
-0.58447 0.14411 0.15819 -0.02144 -0.05763 0.03507 0.07015 0.04073 0.00249 0.06873
-0.0266 -0.16384 0.28281 -0.21409 0.01775 0.19542 -0.24404 0.14437 0.01253 -0.14766
-0.15907 0.18067 -0.22955 0.29121 -0.1669 0.04491 0.15167 -0.15487 0.01232 0.11974
-0.10455 -0.17684 0.00579 -0.06413 -0.27576 -0.13528 -0.10478 -0.08135 -0.18969 0.04317
-0.05531 0.07263 0.32632 0.25261 0.13853 0.22197 0.05991 0.10931 -0.02463 -0.03771
-0.20395 -0.07239 -0.09158 0.08176 0.07971 0.00478 0.08317 -0.05277 -0.01755 0.30809
0.08477 0.14641 -0.2379 -0.10917 0.17376 0.00504 -0.17479 -0.04727 0.13627 -0.02987
-0.02589 -0.05581 -0.02698 0.18784 -0.07125 -0.21985 0.14818 -0.04534 -0.01314 -0.27353
0.10683 0.10494 0.03292 0.07779 0.04558 0.19903 -0.1806 -0.25146 -0.218 -0.08735
-0.01506 0.02393 -0.0587 0.18272 -0.04665 0.25365 0.03352 0.07832 0.31578 -0.18382
-0.13469 0.00802 -0.06824 -0.14264 0.09786 0.14645 0.03437 0.25509 0.12065 -0.0047
-0.17372 0.16471 -0.1458 0.20169 -0.19102 0.23891 -0.15672 0.17025 -0.14625 0.17294
-0.15096 -0.13882 -0.24174 -0.21843 -0.16274 -0.04953 -0.15773 -0.11578 0.05515 0.00516
0.17293 -0.16682 -0.18541 0.17506 0.00449 -0.19161 0.13069 -0.01691 -0.16014 0.14568
0.25916 -0.21056 0.2534 0.02887 -0.1987 0.19963 -0.21138 0.09373 -0.1072 -0.05951
0.04409 0.16961 0.14393 0.18203 -0.00318 -0.15294 0.14754 -0.08258 -0.39253 0.05379
-0.29088 0.21829 -0.18293 -0.05882 0.23213 -0.21198 0.2196 -0.17126 0.10365 0.07923
0.17379 0.04236 -0.20095 0.24801 -0.04809 -0.17663 0.2164 -0.1322 -0.05155 0.19464
0.305 -0.09919 -0.29554 0.13626 -0.13423 0.12329 -0.27827 0.21269 -0.14658 0.06335
0.1476 0.19249 0.04762 -0.09385 -0.16885 -0.22736 -0.04003 0.12119 0.21066 0.20016
0.16428 -0.23129 0.09663 0.16263 -0.18679 0.0795 0.0932 -0.21933 0.16027 0.06644
0.33437 0.09924 -0.0745 -0.3394 -0.21713 0.03763 0.16516 0.02988 0.01462 -0.08174
0.05556 0.1579 -0.10683 -0.23347 -0.02877 0.17658 0.2735 -0.04794 -0.19388 -0.06425
0.19943 0.08925 0.13219 -0.00961 -0.05766 -0.26293 -0.24305 -0.23162 -0.16636 -0.25138
0.27138 -0.13496 -0.01964 0.30839 -0.36682 0.11144 0.11409 -0.07192 -0.13701 0.09785
-0.23936 -0.16826 0.22517 -0.12862 0.14949 0.15623 0.08161 -0.08912 0.05373 -0.14484
0.01871 0.10768 0.03986 0.20721 0.07845 -0.16446 -0.10902 0.16222 -0.18383 0.00369
0.21345 -0.22268 0.07646 0.1023 -0.22599 0.20325 -0.10195 -0.10515 0.20697 -0.13575
-0.04869 -0.07865 -0.12637 -0.00702 -0.06357 -0.11804 -0.19936 -0.23968 -0.09776 0.0579
-0.0791 0.0253 -0.0595 0.08575 0.01864 0.07607 -0.15311 0.29688 -0.13386 0.16496
-0.0944 0.25161 -0.35154 0.16061 0.06074 -0.1722 0.1042 0.15929 -0.18229 0.19977

ISO/IEC	23008-3:202X(E)	

820 ©	ISO/IEC	2019	–	All	rights	reserved	
	

O.4 Codebook	table	for	tbeExcFilterCB2_4b	

tbeExcFilterCB2_4b[16x6] =

-0.20232 0.19847 -0.096441 0.20558 0.1712 0.14251
0.18595 -0.059879 0.22704 0.098489 -0.21216 0.1781
0.14201 0.13805 0.18921 0.10948 0.21574 -0.19181
-0.15192 -0.20135 -0.16245 0.15589 -0.20001 0.15736
0.11894 -0.22244 0.10315 0.20449 0.19699 0.16757
-0.18169 -0.1969 0.21968 -0.17568 0.08214 -0.073996
-0.17077 0.094474 -0.016721 -0.21172 -0.22251 0.20939
0.17044 0.1361 -0.21435 0.22042 -0.11153 -0.1802
0.10768 -0.21295 -0.17889 -0.2272 0.16925 0.12479
0.19545 0.18475 0.06574 -0.22264 -0.15453 -0.17849
0.15459 -0.24222 -0.0084513 -0.081542 -0.17888 -0.22024
-0.19043 0.14675 -0.20002 -0.19699 0.063592 -0.17998
0.019109 0.1948 0.21405 -0.15812 0.19539 0.19374
-0.18862 0.13162 0.18746 0.17667 -0.21274 -0.12737
0.2333 0.18153 -0.21589 -0.0058148 0.043154 0.1992
-0.11754 -0.19539 -0.15312 0.1694 0.18711 -0.20856

O.5 Codebook	table	for	SHBCB_SubGain5bit	

SHBCB_SubGain5bit[32x4] =
0.21132, 0.8919, 0.25073, 0.24781, 0.49109, 0.36892, 0.36424, 0.68769, 0.31642, 0.39282, 0.50357, 0.69143, 0.14538, 0.20545, 0.61508,
0.72523, 0.55597, 0.40693, 0.5515, 0.4636, 0.32782, 0.35346, 0.71621, 0.48607, 0.47823, 0.75732, 0.28454, 0.30591, 0.93541, 0.20099,
0.17145, 0.15627, 0.46125, 0.40196, 0.53871, 0.57318, 0.81196, 0.33227, 0.32905, 0.32359, 0.27682, 0.63987, 0.274, 0.64008, 0.55515,
0.50701, 0.48201, 0.44507, 0.47378, 0.47841, 0.60912, 0.41031, 0.66645, 0.45733, 0.47489, 0.33369, 0.28321, 0.30804, 0.31331,
0.83754, 0.72424, 0.24507, 0.26089, 0.56661, 0.50327, 0.28639, 0.75435, 0.26554, 0.55363, 0.61005, 0.4572, 0.31771, 0.11637, 0.11819,
0.15457, 0.96163, 0.49218, 0.58968, 0.40155, 0.49174, 0.33193, 0.70435, 0.4566, 0.40953, 0.41897, 0.52221, 0.45016, 0.58571, 0.30084,
0.55935, 0.69881, 0.28529, 0.35628, 0.51005, 0.57418, 0.52403, 0.19211, 0.20635, 0.90755, 0.24599, 0.7371, 0.23927, 0.56338, 0.24211,
0.64261, 0.38355, 0.435, 0.49054, 0.7583, 0.53387, 0.27663, 0.20498, 0.53563, 0.46946, 0.44187, 0.54153, 0.47413, 0.49108, 0.51251,
0.50223, 0.6421, 0.52116, 0.34328, 0.43333, 0.4512, 0.57399, 0.51208, 0.44725

O.6 Codebook	table	for	SHBCB_GainFrame5bit	

SHBCB_GainFrame5bit[32] =
0.001011, 0.003713, 0.015517, 0.060132, 0.120586, 0.195489, 0.281113, 0.379025, 0.492374, 0.620740, 0.764047, 0.924080, 1.098318,
1.290460, 1.498303, 1.724956, 1.972520, 2.246851, 2.565094, 2.935901, 3.376749, 3.924642, 4.601801, 5.425421, 6.469817, 7.949088,
10.28801, 13.60010, 15.98213, 26.88470, 52.42506, 104.3400

O.7 Codebook	table	for	win_flatten	

win_flatten[128] =
0.000088034, 0.000476116, 0.001169363, 0.002150485, 0.003429115, 0.005010492, 0.006898746, 0.009062795,
0.011521152, 0.014280317, 0.017346705, 0.020672203, 0.024285616, 0.028196360, 0.032413006, 0.036865973,
0.041598847, 0.046624415, 0.051953217, 0.057488784, 0.063295004, 0.069388114, 0.075780325, 0.082343259,
0.089166444, 0.096269593, 0.103666288, 0.111191524, 0.118965557, 0.127011578, 0.135344218, 0.143757482,
0.152407144, 0.161319848, 0.170510936, 0.179729455, 0.189171151, 0.198866047, 0.208829871, 0.218763164,
0.228905716, 0.239290834, 0.249934286, 0.260485032, 0.271230554, 0.282207315, 0.293430784, 0.304495752,
0.315740588, 0.327204751, 0.338903073, 0.350374111, 0.362009827, 0.373852485, 0.385915952, 0.397681021,
0.409595440, 0.421704067, 0.434019475, 0.445963724, 0.458042003, 0.470301524, 0.482753259, 0.494760120,
0.506885848, 0.519179745, 0.531650889, 0.543603194, 0.555659506, 0.567870932, 0.580244380, 0.592025487,
0.603896179, 0.615909077, 0.628068660, 0.639563560, 0.651134210, 0.662834422, 0.674666017, 0.685762445,
0.696921498, 0.708197860, 0.719590484, 0.730179986, 0.740819828, 0.751565232, 0.762412100, 0.772391076,
0.782409064, 0.792521481, 0.802721036, 0.811991726, 0.821291165, 0.830674628, 0.840131507, 0.848602932,
0.857094007, 0.865659523, 0.874285468, 0.881874298, 0.889474928, 0.897141336, 0.904856044, 0.911487394,
0.918124024, 0.924818762, 0.931550652, 0.937158805, 0.942767102, 0.948426913, 0.954113807, 0.958642835,

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 821	
	

0.963168312, 0.967739839, 0.972329565, 0.975733870, 0.979132398, 0.982572706, 0.986023587, 0.988268182,
0.990506116, 0.992782769, 0.995064351, 0.996124740, 0.997178979, 0.998271140, 0.999365251, 0.999935699

O.8 Codebook	table	for	RVEC	

RVEC[256] =
0.02164473, 0.35885197, -0.16274954, -0.08241354, 0.07313631, -0.00054929, -0.13080014, 0.07226136,
-0.13965981, -0.04834007, -0.02745908, -0.02867859, 0.11216793, 0.16604294, -0.00134274, 0.06818508,
-0.17387933, 0.09406016, -0.08150196, 0.05083200, -0.01952806, -0.10203217, -0.03067050, -0.05153965,
0.06250680, 0.00859049, -0.12008808, -0.11361376, 0.17176038, 0.01174004, -0.02275130, -0.09895785,
-0.10167463, -0.22059087, -0.05334539, -0.00629700, -0.16706355, 0.07795000, 0.08731710, 0.09669208,
0.15378080, 0.01794813, -0.01549965, -0.24923822, 0.19985947, -0.10477958, 0.06674605, -0.11186616,
-0.17927034, 0.08443811, 0.25542912, 0.03167623, 0.19633667, 0.19163096, 0.01907267, 0.12298489,
-0.03147158, 0.05562247, 0.30200079, -0.04257871, 0.08275045, -0.03386311, -0.02265750, 0.18742503,
-0.13598505, -0.32004824, -0.00438390, -0.15576170, 0.06006401, -0.00952147, 0.18848655, 0.06630960,
0.07121546, -0.00733249, 0.08277771, 0.22764891, 0.06772452, -0.09509693, -0.00172236, 0.08452052,
0.17020901, -0.03737585, 0.02349647, 0.10855560, 0.06854416, 0.07084806, 0.09390105, 0.00124924,
0.03026483, -0.15169589, 0.01347072, -0.15377805, 0.14992996, 0.11630810, 0.03483583, -0.03914850,
-0.20075595, 0.12728901, -0.04495851, -0.11576717, -0.15281813, 0.06055827, -0.03471978, -0.03617816,
0.17230885, 0.03094525, -0.15618153, 0.21792564, 0.08106838, -0.22098514, -0.10796417, 0.07131225,
0.22092983, -0.01539366, -0.02876964, -0.30910203, 0.02143815, -0.11630868, -0.00922897, 0.07431208,
0.15533504, 0.11425125, 0.07125455, -0.11914105, -0.04275274, -0.05072749, -0.22143129, 0.19787727,
-0.20946717, -0.16564523, 0.05962536, -0.22325630, -0.04333350, -0.04707248, 0.16608582, 0.00948954,
0.11283893, -0.04097161, -0.09076904, 0.26722300, 0.00987607, -0.05807892, 0.07872546, 0.08040629,
0.12927419, -0.05647410, 0.09603068, -0.02356448, -0.02160797, -0.11687102, 0.07936122, -0.05764586,
-0.10510305, -0.02326054, 0.12021790, 0.09782617, -0.22600858, -0.02555378, -0.03561033, -0.01337216,
0.11311363, -0.03096960, -0.22801498, 0.05643769, 0.13053033, 0.04452197, -0.09299882, -0.11475921,
0.02257649, -0.21770498, -0.11454470, -0.09435777, 0.00638951, -0.36990553, 0.04266735, 0.06915011,
0.07644624, -0.24336053, -0.03421960, -0.10622191, -0.17223521, 0.04054553, 0.13831380, 0.02925055,
0.16207848, -0.12994884, -0.09751288, -0.05397306, -0.09323815, 0.13425350, -0.00046960, 0.31072289,
0.13740718, 0.05835414, -0.04803475, 0.15423043, -0.09652353, 0.14896898, -0.16368309, 0.05875925,
-0.03678078, -0.19627908, 0.07034992, -0.27213186, -0.04338680, 0.01567988, -0.09158870, 0.11987700,
0.07083926, 0.01099900, -0.01084446, 0.04508050, -0.10655984, -0.13945042, 0.05837287, 0.08458713,
-0.04212087, -0.15749574, 0.11632511, 0.07976698, 0.06725866, -0.09567240, 0.03796997, -0.09355708,
-0.13569611, -0.19498724, 0.14951572, -0.16023041, 0.04185898, 0.06099325, 0.03425207, 0.16211477,
0.03998571, -0.03629408, -0.10099959, 0.19540504, 0.11653102, 0.23601755, 0.04943547, -0.26040605,
0.02153429, 0.22880882, -0.13646534, 0.03881640, -0.02896636, 0.09774253, -0.13509314, -0.08713179,
0.13485038, 0.06968338, 0.19561967, 0.07884958, -0.10365590, -0.10321335, -0.09081125, -0.00147976

ISO/IEC	23008-3:202X(E)	

822 ©	ISO/IEC	2019	–	All	rights	reserved	
	

Annex	P	
(informative)	

	
Implementation	and	usage	guidelines	for	signalling	of	profile	and	level	

compatibility	sets	

MPEG-H	 3d	 audio	 bitstreams	may	 comply	 with	multiple	 profiles	 and	 levels.	 For	 ensuring	maximum	
interoperability	 between	 devices	 supporting	 several	 profiles,	 the	 CompatibleProfileLevelSet()	 syntax	
element	defined	in	Table	14	may	be	used	to	indicate	that	one	bitstream	is	compatible	to	multiple	profiles	
and	levels.	

This	Annex	provides	guidelines	on	how	the	CompatibleProfileLevelSet()	syntax	element	should	be	used	
in	cases	when	a	single	bitstream	is	compatible	to	multiple	profiles.	

P.1 		Baseline	profile	signalling	

The	baseline	profile	is	a	subset	of	the	low-complexity	profile	and	therefore	compatibility	signalling	for	
multiple	profiles	and	levels	may	be	used	to	indicate	that	one	bitstream	is	compliant	to	baseline	and	low	
complexity	profiles	and	devices	supporting	either	of	the	two	profiles	can	decode	the	bitstream.	

It	is	recommended	to	signal	the	bitstreams	conformant	to	the	baseline	profile	as	low	complexity	profile	
and	compatible	to	baseline	profile.	Table	P.1	indicates	the	recommended	values	for	signalling	the	profiles	
and	levels	in	the	mpegh3daConfig()	and	CompatibleProfileLevelSet()	syntax	elements	for	any	bitstream	
compliant	to	the	baseline	profile.	

Table	P.1	—	Value	of	mpegh3daProfileLevelIndication	and	CompatibleSetIndication

Level	 mpegh3daProfileLevelIndication	 CompatibleSetIndication	

Baseline	level	1 0x0B	(LC	level	1) 0x10	(Baseline	level	1)

Baseline	level	2 0x0C	(LC	level	2) 0x11	(Baseline	level	2)

Baseline	level	3a	 0x0D	(LC	level	3) 0x12	(Baseline	level	3)

Baseline	level	3b	 0x0E	(LC	level	4) 0x12	(Baseline	level	3)

Baseline	level	4 0x0E	(LC	level	4) 0x13	(Baseline	level	4)

Baseline	level	5 0x0F	(LC	level	5) 0x14	(Baseline	level	5)
a				If	the	bitstream	contains	no	more	than	16	decoder	processed	core	channels,	the	bitstream	is	also	compliant	to	low	
complexity	profile	level	3.	

b			If	the	bitstream	contains	more	than	16	but	not	more	than	24	decoder	processed	core	channels,	and	complexity	
restrictions	in	subclause	4.8.2.5.2	apply,	the	bitstream	is	also	compliant	to	low	complexity	profile	level	4.

The	complexity	restrictions	for	Level	3	with	more	than	16	decoder	processed	core	channels	specified	in	
subclause	4.8.2.5.2	may	be	used	for	delivery	of	up	to	24	objects	at	high	bitrates,	 for	example,	for	high	
quality	music	streaming	services.	By	applying	the	restrictions	in	subclause	4.8.2.5.2,	the	24	objects	can	
be	used	in	Level	3	without	increasing	the	decoder	complexity.	

It	is	recommended	to	use	the	restrictions	in	subclause	4.8.2.5.2	only	for	bitstreams	containing	more	than	
16	but	not	more	than	24	objects	encoded	at	high	bitrates,	using	at	least	64	kbps	per	object.

ISO/IEC	23008-3:202X(E)	

©	ISO/IEC	2021	–	All	rights	reserved 823	
	

Bibliography	

[1] Ville	Pulkki,	Virtual	Sound	Source	Positioning	Using	Vector	Base	Amplitude	Panning,	Journal	of	
the	Audio	Engineering	Society,	1997	June,	Vol.	45/6,	p.	456	

[2] Ioannis	Pitas,	Fast	Algorithms	for	Running	Ordering	and	Max/Min	Calculation,	IEEE	Transactions	
on	Circuits	and	Systems,	Vol.	36,	No.	6,	June	1989	

[3] Perttu	 Hämäläinen,	 Smoothing	 of	 the	 Control	 Signal	 without	 Clipped	 Output	 in	 Digital	 Peak	
Limiters	,	Proc.	of	the	5th	Int.	Conference	on	Digital	Audio	Effects	(DAFx-02,	Hamburg,	Germany,	
September	26-28,	2002	

[4] Marc	 Poletti,	 Robust	 Two-Dimensional	 Surround	 Sound	 Reproduction	 for	 Nonuniform	
Loudspeaker	Layouts,	J.	Audio	Eng.	Soc.,	Vol.	55,	No.	7/8,	2007	July/August	

[5] Earl	G.	Williams,	Fourier	Acoustics,	volume	93	of	Applied	Mathematical	Sciences.	Academic	Press,	
1999	

[6] Boaz	Rafaely,	Plane-wave	Decomposition	of	the	Sound	Field	on	a	Sphere	by	Spherical	Convolution.		
J.	Acoust.	Soc.	Am.,	4(116):2149--2157,	2004	

[7] Ville	Pulkki,	Generic	panning	tools	for	MAX/MSP,	Proceedings	of	International	Computer	Music	
Conference,	2000	

[8] Laitinen,	 M.-V.	 et	 al.:	 “Reproducing	 Applause-Type	 Signals	 with	 Directional	 Audio	 Coding”.	 J.	
Audio	Eng.	Soc.,	Vol.	59,	No.	1/2,	2011	

[9] Vilkamo,	J.	et	al.:	“Directional	Audio	Coding:	Virtual	Microphone-Based	Synthesis	and	Subjective	
Evaluation”.	J.	Audio	Eng.	Soc.,	Vol.	57,	No.	9,	2009	

[10] Bouéri,	M.,	Kyriakakis,	C.:	“Audio	Signal	Decorrelation	Based	on	a	Critical	Band	Approach”.	117th	
AES	Convention,	San	Francisco,	USA,	2004	

[11] Laitinen,	M.-V.	 et	 al.:	 “Auditory	Distance	 rendering	 using	 a	 standard	 5.1	 loudspeaker	 setup”.	
139th	AES	Convention,	New	York,	USA,	2015	

[12] ITU	 T.35,	 Procedure	 for	 the	 Allocation	 of	 ITU-T	 Defined	 Codes	 for	 Non-standard	 Facilities,	
February	2000	

[13] J.	Sakurai,	J.	Napolitano,	"Modern	Quantum	Mechanics",	Addison-Wesley,	2010	

[14] ISO/IEC	9899,	Information	technology	—	Programming	languages	—	C	

