[image:] ISO/IEC JTC 1/SC 29/WG 2 N0072

ISO/IEC JTC 1/SC 29/WG 2
MPEG Technical requirements
Convenorship: SFS (Finland)

Document type:	Output Document

Title:	Encoder Input Format for MPEG Haptics

Status:	Approved

Date of document:	2021-04-30

Source:	ISO/IEC JTC 1/SC 29/WG 2

Expected action:	 none
Action due date: none

No. of pages:	19 (without cover page)

Email of Convenor:	igor.curcio@nokia.com

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg2

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 2
MPEG TECHNICAL REQUIREMENTS

ISO/IEC JTC 1/SC 29/WG 2 N0072
Online – April 2021

	Title:
	Encoder Input Formats for MPEG Haptics

	Source:
	WG 2 MPEG Technical Requirements

	Editors:
	Yeshwant Muthusamy, Chris Ullrich, Jamal Saboune (Immersion Corporation)
Philippe Guillotel, Fabien Danieau, Quentin Galvane (InterDigital Corporation)
Camille Moussette (Apple, Inc.)
Gwydion ap Dafydd (Lofelt GmbH)

Status: Approved
Serial number: 20229 	

[bookmark: _Toc70678958]Abstract
This document contains detailed descriptions of the Encoder Input Formats (AHAP, IVS, PCM, and OHM) to be used in the Haptics CfP – Phase 1.

[bookmark: bookmark=id.30j0zll][bookmark: _heading=h.gjdgxs]Table of Contents
Abstract	1
1	Introduction	2
2	Object Haptic Metadata (OHM) file format	2
3	PCM Signals	6
4	Haptic Descriptors in JSON (AHAP)	7
4.1	Define Patterns at the Top Level	8
4.2	Build a Pattern from Events	8
4.3	Example AHAP	10
5	Parametric Effect Descriptors in XML (IVS)	11
5.1	Details	11
5.2	Basis Effects	12
5.2.1	Magsweep Effects	12
5.2.2	Periodic Effects	13
5.3	Waveform Effects	14
5.4	Media Effects	15
5.5	Timeline Effects	16
5.6	Interpolated Effects	18
6	References	19

1 [bookmark: _Toc70678959]Introduction
This document fully describes the input formats used for the MPEG Call for Proposals (CfP) on the Coded Representation of Haptics [1] evaluation:

· Object Haptic Metadata (OHM) - that can be used in conjunction with any of the following three input formats
· PCM signals encoded using WAV
· Haptic descriptors in JSON (i.e., AHAP file format)
· Parametric effect descriptors in XML (i.e., IVS file format)

This may form the basis of a more comprehensive input format to be used for the subsequent collaborative technology development process.
2 [bookmark: _Toc70678960]Object Haptic Metadata (OHM) file format
Input data is provided through a list of haptic files. A first OHM metadata file contains a description of the haptic content and configuration. It provides the necessary information on the haptic experience and the associated input signal files. All the other input files contain the different signals and can be provided using any of the formats described in Sections 3, 4, and 5.
This metadata file contains a description of the haptic system and setup. In particular, it provides the name of each associated file along with a description of the signals. It also provides a mapping between each channel of the signals and the targeted body parts on the user body. To perform this mapping, each body part of a user is associated with a binary mask as shown in Figure 1 and Table 1. These masks can be combined to define larger body surfaces as illustrated in Table 2. The syntax of the OHM metadata file is given below.

	Syntax
	No. of bytes
	Data format

	file_description () {
format_id_string
format_version
number_of_haptic_elements
description_string
for (i=0; i<number_of_haptic_elements; i++) {
haptic_element_file_name
element_description_string
number_of_haptic_channels
for (i=0; i<number_of_haptic_channels; i++) {
channel_description_string
channel_gain
body_part_mask
}
}
}
	
4
2
2
32

64
32
2

32
4
4
	
char
unsigned int
unsigned int
char

char
char
unsigned int

char
single float
unsigned int

format_id_string – unique character identifier “OHM”
format_version – version number of the file format: 1.
number_of_haptic_elements – number of haptic elements compiling the content. An element typically maps to an end-user haptic device.
description_string – description string containing a human readable content description. If shorter than 32 bytes, it is followed by padding null characters. If the string is 32 bytes long, the string is terminated without a null character.
haptic_element_file_name – description string containing the file name of the according haptic element file (.wav, .ivs, .ahap). If shorter than 64 bytes, it is followed by padding null characters. If the string is 64 bytes long, the string is terminated without a null character. Note that an element might include more than one channel. This file is assumed to be located in the same directory as the ohm file (i.e., same path).
element_description_string – description string containing a human readable content description. If shorter than 32 bytes, it is followed by padding null characters. If the string is 32 bytes long, the string is terminated without a null character.
number_of_haptic_channels – number of simultaneous channels for each haptic element (up to 65535).
channel_description_string – description string containing a human readable content description. If shorter than 32 bytes, it is followed by padding null characters. If the string is 32 bytes long, the string is terminated without a null character.
body_part_mask – binary mask specifying the body part(s) on which to apply the effect.
channel_gain – a single precision float value that describes the amplitude gain for the haptic track. A value of 1.0 indicates that the track should be rendered at nominal voltage. Higher values indicate an overdrive state for the actuator. Defaults to 1.0, if not specified when the OHM file is generated.

Table 1: Body Part Masks
	body part ID
	Name
	body_part_mask
	Hexa

	0
	Unspecified
	00000000000000000000000000000000
	0x00000000

	1
	Head front
	00000000000000000000000000000001
	0x00000001

	2
	Head back
	00000000000000000000000000000010
	0x00000002

	3
	Head right
	00000000000000000000000000000100
	0x00000004

	4
	Head left
	00000000000000000000000000001000
	0x00000008

	5
	Right upper chest
	00000000000000000000000000010000
	0x00000010

	6
	Left upper chest
	00000000000000000000000000100000
	0x00000020

	7
	Abdomen
	00000000000000000000000001000000
	0x00000040

	8
	Waist
	00000000000000000000000010000000
	0x00000080

	9
	Upper back
	00000000000000000000000100000000
	0x00000100

	10
	Lower back
	00000000000000000000001000000000
	0x00000200

	11
	Right upper arm
	00000000000000000000010000000000
	0x00000400

	12
	Left upper arm
	00000000000000000000100000000000
	0x00000800

	13
	Right forearm
	00000000000000000001000000000000
	0x00001000

	14
	Left forearm
	00000000000000000010000000000000
	0x00002000

	15
	Right wrist
	00000000000000000100000000000000
	0x00004000

	16
	Left wrist
	00000000000000001000000000000000
	0x00008000

	17
	Right hand palm
	00000000000000010000000000000000
	0x00010000

	18
	Left hand palm
	00000000000000100000000000000000
	0x00020000

	19
	Right hand dorsum
	00000000000001000000000000000000
	0x00040000

	20
	Left hand dorsum
	00000000000010000000000000000000
	0x00080000

	21
	Right hand fingers
	00000000000100000000000000000000
	0x00100000

	22
	Left hand fingers
	00000000001000000000000000000000
	0x00200000

	23
	Right thigh
	00000000010000000000000000000000
	0x00400000

	24
	Left thigh
	00000000100000000000000000000000
	0x00800000

	25
	Right calf
	00000001000000000000000000000000
	0x01000000

	26
	Left calf
	00000010000000000000000000000000
	0x02000000

	27
	Right foot palm
	00000100000000000000000000000000
	0x04000000

	28
	Left foot palm
	00001000000000000000000000000000
	0x08000000

	29
	Right foot dorsum
	00010000000000000000000000000000
	0x10000000

	30
	Left foot dorsum
	00100000000000000000000000000000
	0x20000000

	31
	Right foot fingers
	01000000000000000000000000000000
	0x40000000

	32
	Left foot fingers
	10000000000000000000000000000000
	0x80000000

[image:]
Figure 1: Body Part Segmentation

Table 2: Body Parts Combinations
	body part ID
	body_part_mask
	Hexa

	Right arm
	00000000000101010101010000000000
	0x00015540

	Left arm
	00000000001010101010100000000000
	0x002AA800

	Right leg
	01010101010000000000000000000000
	0x55400000

	Left leg
	10101010100000000000000000000000
	0xAA800000

	Upper body
	00000000001111111111111111111111
	0x003FFFFF

	Lower body
	11111111110000000000000000000000
	0xFFC00000

	Full body
	11111111111111111111111111111111
	0xFFFFFFFF

Example: rain.ohm associated to the rain.wav effects file

output of the text parser for rain.ohm:

	format version: 1
number_of_haptic_elements: 1
description string: rain effect
haptic_object #: 1
haptic_object_file_name: rain.wav
element description string: Vibration effect
number_of_haptic_channels: 4
haptic channel #: 1
 channel description string: head
 channel gain: 1.0
 body_part_mask: 0b1111
 body parts: ['Head front', 'Head back', 'Head right', 'Head left']
haptic channel #: 2
 channel description string: left arm
 channel gain: 1.0
 body_part_mask: 0b1010101010100000000000
 body parts: ['Left upper arm', 'Left forearm', 'Left wrist', 'Left hand palm', 'Left hand dorsum', 'Left hand fingers']
haptic channel #: 3
 channel description string: right arm
 channel gain: 1.0
 body_part_mask: 0b101010101010000000000
 body parts: ['Right upper arm', 'Right forearm', 'Right wrist', 'Right hand palm', 'Right hand dorsum', 'Right hand fingers']
haptic channel #: 4
 channel description string: upper chest
 channel gain: 1.0
 body_part_mask: 0b110000
 body parts: ['Right upper chest', 'Left upper chest']

Content of rain.wav:
[image:]
3 [bookmark: _Toc70678961]PCM Signals
PCM signals are described using the Waveform Audio File Format. This file format standard is an instance of the Resource Interchange File Format (RIFF) and is a well-suited container for any type of uncompressed PCM signal such as haptic signals. It can be composed of several channels, each containing a different signal. Its syntax is described below:

	Syntax
	No. of bytes
	Data format

	wav_format() {
file_type_bloc_ID
file_size
file_format_ID

format_bloc_ID
bloc_size
audio_format
number_channels
frequency
bytes_per_seconds
bytes_per_bloc
bits_per_samples

data_bloc_id
data_size
for (i=0; i< data_size/number_channels; i++) {
for (j=0; j< number_channels; j++) {
data_bytes
}
}
}
	
4
4
4

4
4
2
2
4
4
2
2

4
4

bits_per_sample/8
	
char
unsigned int
char

char
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

unsigned int
unsigned int

signed int

file_type_bloc_ID: constant «RIFF»(0x52,0x49,0x46,0x46)
file_size: file size minus 8 bytes
file_format_ID: constant «WAVE» (0x57,0x41,0x56,0x45)
format_bloc_ID: constant «fmt␣» (0x66,0x6D, 0x74,0x20)
bloc_size: number of bytes per bloc - 16 (0x10)
audio_format: storage format in the file (1: PCM, ...)
number_channels: number of channels
frequency: sampling frequency of the data (in Hertz)
bytes_per_seconds: number of bytes to read per seconds (i.e., frequency * bytes_per_bloc).
bytes_per_bloc: number of bytes per bloc of samples (i.e., for all channels: number_channels*bits_per_sample/8).
bits_per_samples: number of bits used to code each sample (8, 16, 24)
data_bloc_id: constant «data»(0x64,0x61,0x74,0x61)
data_size: number of data bytes
data_bytes: data value normalized [-1,+1]
4 [bookmark: _Toc70678962]Haptic Descriptors in JSON (AHAP)
The Apple Haptic and Audio Pattern (AHAP) descriptor is a JSON-like file format [2] that specifies a haptic pattern through key-value pairs, to be used with Apple products that support Core Haptics (CH).
In short, an AHAP contains one Pattern made of Events and the two basic event types are:
Transient events, which are brief, compact experiences that feel like taps or impulses, such as the experience of tapping the Flashlight button on the Home screen.
Continuous events, which feel like sustained vibrations, such as the experience of the lasers effect in a message.
Regardless of the building block you choose, you can also control its sharpness and intensity. By combining transient and continuous events, varying sharpness, and intensity, and including optional audio content, you can create a wide range of different haptic experiences.
An AHAP file does not need an entry for every key. When Core Haptics loads an AHAP file, it sets missing entries to their default value and clamps out-of-range values to their minimum or maximum values, whichever is closer. The Core Haptics framework ignores unexpected and unsupported keys.
The following paragraphs detail the primary keys and describes their effect on the resulting haptic pattern.
4.1 [bookmark: _Toc70678963]Define Patterns at the Top Level
The only top-level keys are Pattern and Version. The value for Pattern is an array of subdictionaries. Each AHAP file can contain a single pattern. Version indicates the lowest version of Core Haptics that can support loading and playing the file. Later versions, indicated by a higher version number, may contain keys that are not supported in older versions of the framework.
Pattern
Array of Event dictionaries representing a segment of the haptics to play.
Version
The Core Haptics version that supports the file.
4.2 [bookmark: _Toc70678964]Build a Pattern from Events
Each pattern contains one or more events, defined by the Event key at the top level of the pattern dictionary. An event is a segment of the pattern with some duration and a set of properties, such as intensity or sharpness. Each event starts at its own time and can overlap other events.
Event
Dictionary of event type, start time, duration, and optional event parameters.
You can define two other keys in the pattern dictionary:
Parameter
A key in the pattern dictionary that you use to define a dynamic parameter.
ParameterCurve
A key in the pattern dictionary that you use to define a parameter curve.
[image:]
For additional details plus all the available keys and parameters, please refer to the Core Haptics documentation [2].

4.3 [bookmark: _Toc70678965]Example AHAP

[image:]

Sparkle.ahap (abbreviated for clarity)
{
 "Version": 1.0,
 "Pattern":
 [
 {
 "Event":
 {
 "Time": 0.0,
 "EventType": "HapticTransient",
 "EventParameters":
 [
 { "ParameterID": "HapticIntensity", "ParameterValue": 1.0 },
 { "ParameterID": "HapticSharpness", "ParameterValue": 0.6 }
]
 }
 },
 {
 "Event":
 {
 "Time": 0.024,
 "EventType": "HapticContinuous",
 "EventDuration": 0.150,
 "EventParameters":
 [
 { "ParameterID": "HapticIntensity", "ParameterValue": 0.6 },
 { "ParameterID": "HapticSharpness", "ParameterValue": 0.1 }
]
 }
 },
 {
 "ParameterCurve":
 {
 "ParameterID": "HapticIntensityControl",
 "Time": 0.024,
 "ParameterCurveControlPoints":
 [
 { "Time": 0, "ParameterValue": 1.0 },
 { "Time": 0.025, "ParameterValue": 0.45 },
 { "Time": 0.15, "ParameterValue": 0.0 }
]
 }
 },
...
 }
]
}

5 [bookmark: _Toc70678966]Parametric Effect Descriptors in XML (IVS)
The IVS file format is an XML-based file format used by Immersion’s Haptic Studio to represent vibrotactile effects.
An IVS file defines zero or more vibrotactile effects. Because an IVS file can define multiple vibrotactile effects, it can be thought of as defining a library of vibrotactile effects. An application can play any defined effect by using an API that can play effects defined in the IVS file format.
Immersion’s software plays effects defined in IVS files by converting the IVS file contents to a proprietary IVT format, which is a binary representation of information present in the IVS file. IVS files are intended to be human-readable, whereas IVT files are intended to be more easily processed by machine.
5.1 [bookmark: _Toc70678967]Details
An IVS file represents a collection of vibrotactile and audio effects. There are four types of effects further described below:
· Basis effects
· Waveform effects
· Media effects
· Timeline effects
· Interpolated effects
Example:
<?xml version="1.0"?>
<ivs-file last-modified="Monday, September 21, 2020 06:32:48PM">
 <effects>
	<basis-effect …/>
	<waveform-effect …/>
	<timeline-effect …>
	 …
	</timeline-effect>
	<media-effect …/>
<interpolated-effect …>
 …
 	</interpolated-effect>

 </effects>
</ivs-file>
5.2 [bookmark: _Toc70678968]Basis Effects
Basis effects are simple, standalone effects. In other words, basis effects do not depend on other effects.
There are two flavors of basis effects:
· Magsweep effects
· Periodic effects
5.2.1 [bookmark: _Toc70678969]Magsweep Effects
Magsweep effects define a vibration amplitude over time using a piecewise linear attack-sustain-fade envelope with the following parameters:
· Attack time – the duration of the attack phase
· Attack level – the amplitude at the start of the attack phase
· Magnitude level – the amplitude during the sustain phase. The amplitude changes linearly during the attack phase from the attack level to the magnitude level
· Fade time – the duration of the fade phase
· Fade level – the amplitude at the end of the fade phase. The amplitude changes linearly from the sustain level to the fade level during the fade phase
[image:]
Magsweep effects also have a style parameter with the following possible values:
· Strong
· Smooth
· Sharp
The style affects how the effect is rendered on the target hardware, depending on the target actuator capabilities.
Magsweep effects also have an actuator ID parameter, or index, specifying the actuator on which to render the effect on a multi-actuator device.
Example:
	<basis-effect name="MagSweep"
 	 type="magsweep"
 	 duration="1000"
 	 magnitude="7500"
 	 style="sharp"
 	 attack-time="200"
 	 attack-level="3000"
 	 fade-time="200"
 	 fade-level="2000"
 	 actuator="1"/>
[image:]
5.2.2 [bookmark: _Toc70678970]Periodic Effects
Periodic effects have the same envelope, style, and actuator ID parameters as magsweep effects, plus a period parameter and a wave type parameter. The period and wave type parameters define a recurring vibration pattern that may be enveloped.
The period parameter is the duration of one cycle of the periodic pattern and can be in milliseconds or microseconds.
The wave type parameter can have the following values:
· Square
· Triangle
· Sine
· Sawtooth up
· Sawtooth down
Example:
	<basis-effect name="Periodic"
 	 type="periodic"
 	 duration="100"
 	 magnitude="7977"
 	 waveform="sine"
 	 period="5"
 	 style="strong"
 	 attack-time="50"
 	 fade-time="25"/>
[image:]

5.3 [bookmark: _Toc70678971]Waveform Effects
Waveform effects represent the vibration amplitude using a PCM signal stored in a WAVE file. On HD systems, the waveform effect specifies the actuator signal rather than the vibration amplitude.
Example:
	<waveform-effect name="Alarm01" path="..\..\..\Windows\Media\Alarm01.wav" magnitude="10000" actuator="0" bit-depth="16" sampling-rate="22050"/>
[image:]

5.4 [bookmark: _Toc70678972]Media Effects
Media effects refer to audio files that are to be played together with the vibrotactile effects in a timeline effect.
Example:
	<media-effect name="Alarm01 #1"
 	 type="wav"
 	 path="..\..\..\Windows\Media\Alarm01.wav"
 	 start-offset="0"
 	 duration="5572"/>
[image:]

5.5 [bookmark: _Toc70678973]Timeline Effects
Timeline effects combine basis and waveform effects into more complex patterns. Instance of basis or waveform effects are represented as launch event in a timeline effect.
Timeline effects may contain repeat events that allow a portion of the timeline effect to be repeated several times, or indefinitely. Repeat events may be nested.
Example 1:
 <timeline-effect name="Timeline">
 <mute effect="Alarm01"/>
 <launch-event time="500"
 effect="MagSweep"
 magnitude-override="10000"/>
 <launch-event time="0"
 effect="Alarm01"/>
 <launch-event time="1500"
 effect="MagSweep"
 duration-override="750"/>
 <launch-event time="0"
 effect="Alarm01 #1"/>
 <repeat-event time="1000"
 count="9"
 duration="1000"/>
[image:]
Example 2:
 </timeline-effect>
 <timeline-effect name="Timeline #1">
 <launch-event time="0"
 effect="Periodic"/>
 <launch-event time="1500"
 effect="Periodic"
 period-override="-2147477148"/>
 <launch-event time="500"
 effect="MagSweep"/>
 </timeline-effect>
[image:]
5.6 [bookmark: _Toc70678974]Interpolated Effects
Interpolated effects contain keyframes of basis effects of the same type. When an application plays an interpolated effect is played, the application provides an interpolant value that is used to interpolate between keyframes; that is, between parameters of the basis effects associated with the keyframes. The effect resulting from the interpolation may play repeatedly. The application may change the interpolant value while the interpolated effect plays, resulting in a dynamic effect that may depend on an external stimulus.
Example:
	<interpolated-effect>
 	<key-frame effect="MagSweep" repeat-gap="0" interpolant="0"/>
 	<key-frame effect="Copy of MagSweep" repeat-gap="0" interpolant="1000"/>
 	<key-frame effect="Copy #1 of MagSweep" repeat-gap="0" interpolant="3000"/>
	</interpolated-effect>

[image:]
6 [bookmark: _Toc70678975] References
1. WG02 N0070, Call for Proposals on the Coded Representation of Haptics – Phase 1
2. Apple Haptic and Audio Pattern (AHAP) file format: https://developer.apple.com/documentation/corehaptics/representing_haptic_patterns_in_ahap_files

image1.jpeg

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

