[image:] ISO/IEC JTC 1/SC 29/WG 3 N00026

ISO/IEC JTC 1/SC 29/WG 3
MPEG Systems
Convenorship: KATS (Korea, Republic of)

Document type:	Output Document
Title:	Text of ISO/IEC CD 23090-14 Scene Description for MPEG Media
Status:	Approved
Date of document:	2020-11-30
Source:	ISO/IEC JTC 1/SC 29/WG 3
Expected action:	ACT
Action due date:	2020-12-07
No. of pages:	45 (with cover page)
Email of Convenor:	young.L@samsung.com
Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg3

ISO 23090-14:2020(X)
ISO TC JTC/SC 29/WG 03
[bookmark: CVP_Secretariat_Loca]Secretariat: JISC
Information technology — Coded representation of immersive media —Part 14: Scene Description for MPEG Media

CD stage

Warning for WDs and CDs
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
To help you, this guide on writing standards was produced by the ISO/TMB and is available at https://www.iso.org/iso/how-to-write-standards.pdf
A model manuscript of a draft International Standard (known as “The Rice Model”) is available at https://www.iso.org/iso/model_document-rice_model.pdf

ISO 23090-14:2020(X)
© ISO JTC1 – All rights reserved

2	© ISO JTC1 – All rights reserved

© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
Contents
Foreword	vi
Introduction	vii
1	Scope	1
2	Normative references	1
3	Terms, definitions, symbols and abbreviations	1
3.1	Terms and definitions	1
3.2	Abbreviations	1
3.3	Conventions	2
4	Overview and Architecture	2
4.1	Overview	2
4.2	glTF 2.0 Extension Mechanisms	3
4.2.1	Normative Aspects	3
4.3	Architecture	3
4.3.1	General Architecture	3
4.3.2	Pipelines	6
4.4	Data and Timing Model	7
5	Scene Description Extensions	7
5.1	Overview	7
5.2	Generic Extensions	8
5.2.1	MPEG_media extension	8
5.2.2	MPEG_accessor_timed extension	13
5.2.3	MPEG_buffer_circular extension	16
5.2.4	MPEG_scene_dynamic extensions	18
5.3	Visual Extensions	20
5.3.1	MPEG_texture_video extensions	20
5.4	Audio Extensions	21
5.4.1	MPEG_audio_spatial extensions	21
5.5	Metadata Extensions	26
5.5.1	MPEG_viewport_recommended extensions	26
5.5.2	MPEG_animation_timing extensions	29
6	Media Access and Buffer API	31
6.1	Media Access API	31
6.2	Buffer API	32
7	Scene Processing Model	33
7.1	General	33
7.2	Scene Updates	33
8	Carriage Formats	34
8.1	General	34
8.2	JSON Patch Document Carriage Format for Scene Updates	34
Annex A (normative)	36
Bibliography	37

[bookmark: _Toc353342667][bookmark: _Toc57885472]Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee [or Project Committee] ISO/TC [or ISO/PC] ###, [name of committee], Subcommittee SC ##, [name of subcommittee].
This second/third/… edition cancels and replaces the first/second/… edition (ISO #####:####), which has been technically revised.
The main changes compared to the previous edition are as follows:
—	xxx xxxxxxx xxx xxxx
A list of all parts in the ISO ##### series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
[bookmark: _Toc353342668][bookmark: _Toc57885473]Introduction
Note: Detailed procedures on how to propose technologies for this Working Draft are provided in document N19192.
Identification of patent holders, if any.

ISO 23090-14:2020(X)
ISO 23090-14:2020(X)

iv	© ISO JTC1 – All rights reserved
© ISO JTC1 – All rights reserved	v
Information technology — Coded representation of immersive media — Part 14 : Scene Description for MPEG Media
1 [bookmark: _Toc353342669][bookmark: _Toc57885474]Scope
This document specifies extensions to existing scene description formats in order to support MPEG media, in particular immersive media. MPEG media includes but is not limited to media encoded with MPEG codecs, media stored in MPEG containers, MPEG media and applications formats as well as media provided through MPEG delivery mechanisms. Extensions include scene description format syntax and semantics and the processing model when using these extensions in combination with a presentation engine. It also defines Media Access APIs for communication between the presentation engine and the Media Access Function for these extensions. While the extensions defined in this part may be applicable to other scene description formats, a specific instantiation is provided for "The GL Transmission Format (glTF) 2.0" as defined by Khronos.
2 [bookmark: _Toc353342670][bookmark: _Toc57885475]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
	[23001-15]
	ISO/IEC 23001-15 Information technology — MPEG systems technologies — Part 15: Carriage of web resources in ISOBMFF

	[glTF2.0]
	glTF 2.0 Khronos Group, The GL Transmission Format (glTF) 2.0 Specification, https://github.com/KhronosGroup/glTF/tree/master/specification/2.0/

	[RFC6902]
	IETF RFC 6902 (April 2013): JavaScript Object Notation (JSON) Patch

3 [bookmark: _Toc57883842][bookmark: _Toc57884111][bookmark: _Toc57884397][bookmark: _Toc57884666][bookmark: _Toc57884936][bookmark: _Toc57885204][bookmark: _Toc57885476][bookmark: _Toc57833330][bookmark: _Toc57883843][bookmark: _Toc57884112][bookmark: _Toc57884398][bookmark: _Toc57884667][bookmark: _Toc57884937][bookmark: _Toc57885205][bookmark: _Toc57885477][bookmark: _Toc57833331][bookmark: _Toc57883844][bookmark: _Toc57884113][bookmark: _Toc57884399][bookmark: _Toc57884668][bookmark: _Toc57884938][bookmark: _Toc57885206][bookmark: _Toc57885478][bookmark: _Toc57833332][bookmark: _Toc57883845][bookmark: _Toc57884114][bookmark: _Toc57884400][bookmark: _Toc57884669][bookmark: _Toc57884939][bookmark: _Toc57885207][bookmark: _Toc57885479][bookmark: _Toc54781720][bookmark: _Toc54782564][bookmark: _Toc54781721][bookmark: _Toc54782565][bookmark: _Toc2861679][bookmark: _Toc57885480][bookmark: _Toc353342671]Terms, definitions, symbols and abbreviations
[bookmark: _Toc57885481]Terms and definitions
For the purposes of this document, the terms and definitions given in [glTF2.0] and the following apply.
3.1.1
Presentation Engine
Engine that processes and renders the content of a scene
Note 1 to entry: Text of the note.
3.1.2
Media Access Function
Function that retrieves and prepares media for rendering on request by the Presentation Engine
[bookmark: _Toc57885482]Abbreviations
3D	Three-Dimensional
6DoF	Six Degrees of Freedom
API	Application Programming Interface
AR	Augmented Reality
glTF	Graphics Language Transmission Format
JSON	JavaScript Object Notation
PBR	Physically-Based Rendering
MAF	Media Access Function
VR	Virtual Reality
[bookmark: _Toc57885483]Conventions
The following conventions apply in this document.
4 [bookmark: _Toc54781731][bookmark: _Toc54782575][bookmark: _Toc57885484]Overview and Architecture
[bookmark: _Toc57885485]Overview
Immersive media applications, for example those that aim to provide true AR and 6DoF experiences, require a scene description format that describes a rich 3D scene that enables physically-based rendering (PBR) of the audio-visual content.
Instead of specifying a new Scene Graph format for this purpose, this specification builds on the well-established glTF 2.0 format that is standardized by the Khronos Group.
The following diagram depicts the glTF 2.0 format hierarchy and shows the extensions defined in this specification:
 [image:]
Figure 1 – glTF 2.0 Scene Structure
In addition to the extensions, which provide a tight integration of MPEG media with the Scene Description, the interface between the Presentation Engine and the Media Retrieval Engine is defined. Finally, a processing model as well as conformance and validation definitions of scene descriptions according to this specification are provided.
[bookmark: _Toc54781734][bookmark: _Toc54782578][bookmark: _Toc57885486]glTF 2.0 Extension Mechanisms
glTF 2.0 defines an extension mechanism ([glTF2.0]#specifying-extensions) that allows the base format to be extended with new capabilities. Any glTF object can have an optional extensions property that lists the extensions that are used by that object.
All extensions that are used in a glTF scene must be listed in the top-level extensionsUsed array object. Extensions that are required to correctly render the scene must also be listed in the extensionsRequired array.
As an example of a possible extension, MPEG is currently defining a 6DoF audio encoder input format to address the MPEG-I requirements on 6DoF scene audio. glTF does not provide any support for audio scenes. To address this gap, a new node type and new material extension should be defined.
Similar to Javascript for HTML documents, an active processing may be supported in order to update a glTF scene description. This allows to update the description object model in an asynchronous manner (based on events such as interactivity or server events) as well as in a synchronous manner with a media source. In the latter case, a model as defined for Web Resource Track model for which updates are timed using an ISOBMFF track format aligned with ISO/IEC 23001-15 should be defined.
glTF 2.0 can be extended beyond the core specifications by one of four means:
· Vendor extensions
· EXT Extensions
· KHR Extensions
· KHX Extensions
This document defines extensions to glTF 2.0 under the vendor-specific extension framework with an MPEG namespace.
[bookmark: _Toc57885487]Normative Aspects
The extensions, their syntax and semantics, as well as their processing model are normative. Furthermore, the MAF and the Media Access API and Buffer API are also normative.
[bookmark: _Toc54781737][bookmark: _Toc54782581][bookmark: _Toc57885488]Architecture
[bookmark: _Toc57885489]General Architecture
The scene description is consumed by a Presentation Engine to render a 3D scene to the viewer. The extensions defined in this document allow for the creation of immersive experiences using MPEG media. The scene description extensions are designed with the goal of decoupling the Presentation Engine from the Media Access Function. Presentation Engine and Media Access Function communicate through the Media Access API, which allows the Presentation Engine to request media data required for the rendering of the scene. The Media Access Function will retrieve the requested media and make it available in a timely manner and in a format that can be immediately processed by the Presentation Engine. For instance, a requested media asset may be compressed and residing in the network, so the Media Access Function will retrieve and decode the asset and pass the resulting media data to the Presentation Engine for rendering. The media data is passed in form of buffers from the Media Access Function to the Presentation Engine. The requests for media data are passed through the Media Access API from the Presentation Engine to the Media Access Function.
The following diagram depicts the reference architecture as described previously:
 [image:]
Figure 2 – Scene Description Reference Architecture
The interfaces and components in green are in scope for this document.
The following assumptions apply:
· The format of the buffers is dictated by the scene description and is passed to the MAF through the Media Access API
· Decoder might need to perform necessary transformations to match the buffer format and layout declared in the scene description for that buffer
· The fetching of scene description and scene description updates may be triggered by the MAF.
NOTE – Upon definition of the scene update mechanism, the architecture might need to be adjusted.
A more detailed description of the interactions between the Presentation Engine and the MAF is provided by Figure 3:
 [image:]
[bookmark: _Ref57829220]Figure 3 – Relationship between Presentation Engine and MAF
The diagram shows the buffers in the core of the communication between the Presentation Engine and the MAF.
The procedure can be briefly described as follows:
1. The Presentation Engine receives and parses the Scene Description and following Scene Description updates
2. It identifies external media that needs to be presented and identifies the required presentation time
3. The Presentation Engine then uses the MAF API to request the media and provides the following information:
a. Where: where the MAF will find the requested media
b. What: what parts of the media and at what level of detail
c. When: when the requested media has to be made available
d. How: in which format it wants the data and how it is passed to the Presentation Engine
4. The MAF instantiates the media fetching and decoding pipeline for the requested media at the appropriate time.
a. It ensures that the requested media is available at the appropriate time in the appropriate buffers for access by the Presentation Engine
b. It ensures that the media is decoded and reformatted to match the expected format by the Presentation Engine as described by the Scene Description
The exchange of data (media and metadata) is done through buffers (circular and static buffers). The buffer management is controlled by the buffer manager through the Buffer API. Each Buffer will contain sufficient header information to describe its content and timing.
The basic concept is that for each buffer that is to be filled, the Media Access function has sufficient information to
1. [bookmark: _GoBack]Select the appropriate source for the media (multiple could be specified) and the MAF selects based on preferences and capabilities.
2. For each selected source,
a. it has sufficient information to access the media by using a media access protocol.
b. It has sufficient information to setup the pipeline to provide the information in the correct buffer format

Figure 4 – Example Instantiation of the Media Pipelines
The MAF may query or obtain additional information from the Presentation Engine in order to optimize the delivery, for example the required quality for each of the buffer, the exact timing information and so on.
[bookmark: _Toc57885490]Pipelines
The concept of pipelines is essential for the processing model of the MPEG-I scene description. Media and Metadata are fetched and processed through pipelines that always end into a final buffer or set of buffers. The final buffer is used to exchange data with the Presentation Engine. The Media Access Function is responsible for the setup and management of the pipeline for each requested media.
A pipeline takes as input one or more media or metadata tracks and outputs one or more buffers. It performs all the necessary processing, such as streaming, demultiplexing, decoding, decryption, and format conversion to match the expected buffer format.
Figure 5 depicts different examples of pipelines. Data may come from one or more tracks, get decoded, processed and then output in one or multiple buffers.
[image:]
Figure 5 – Media Pipelines in Scene Description
In the example, the Scene Description describes all five buffers feeding into the presentation engine. The Processing step may convert formats or may even create new static or dynamic buffers, e.g. creating index buffers based on metadata received from the file itself.
[bookmark: _Toc57885491]	Data and Timing Model
[TODO]
5 [bookmark: _Toc54781741][bookmark: _Toc54782585][bookmark: _Toc54781742][bookmark: _Toc54782586][bookmark: _Toc57833344][bookmark: _Toc57883857][bookmark: _Toc57884126][bookmark: _Toc57884412][bookmark: _Toc57884681][bookmark: _Toc57884951][bookmark: _Toc57885220][bookmark: _Toc57885492][bookmark: _Toc57833346][bookmark: _Toc57883860][bookmark: _Toc57884129][bookmark: _Toc57884415][bookmark: _Toc57884684][bookmark: _Toc57884952][bookmark: _Toc57885221][bookmark: _Toc57885493][bookmark: _Toc57833347][bookmark: _Toc57883861][bookmark: _Toc57884130][bookmark: _Toc57884416][bookmark: _Toc57884685][bookmark: _Toc57884953][bookmark: _Toc57885222][bookmark: _Toc57885494][bookmark: _Toc57833348][bookmark: _Toc57883862][bookmark: _Toc57884131][bookmark: _Toc57884417][bookmark: _Toc57884686][bookmark: _Toc57884954][bookmark: _Toc57885223][bookmark: _Toc57885495][bookmark: _Toc57833349][bookmark: _Toc57883863][bookmark: _Toc57884132][bookmark: _Toc57884418][bookmark: _Toc57884687][bookmark: _Toc57884955][bookmark: _Toc57885224][bookmark: _Toc57885496][bookmark: _Toc57833350][bookmark: _Toc57883864][bookmark: _Toc57884133][bookmark: _Toc57884419][bookmark: _Toc57884688][bookmark: _Toc57884956][bookmark: _Toc57885225][bookmark: _Toc57885497][bookmark: _Toc57833351][bookmark: _Toc57883865][bookmark: _Toc57884134][bookmark: _Toc57884420][bookmark: _Toc57884689][bookmark: _Toc57884957][bookmark: _Toc57885226][bookmark: _Toc57885498][bookmark: _Toc57833352][bookmark: _Toc57883866][bookmark: _Toc57884135][bookmark: _Toc57884421][bookmark: _Toc57884690][bookmark: _Toc57884958][bookmark: _Toc57885227][bookmark: _Toc57885499][bookmark: _Toc57833353][bookmark: _Toc57883867][bookmark: _Toc57884136][bookmark: _Toc57884422][bookmark: _Toc57884691][bookmark: _Toc57884959][bookmark: _Toc57885228][bookmark: _Toc57885500][bookmark: _Toc57833354][bookmark: _Toc57883868][bookmark: _Toc57884137][bookmark: _Toc57884423][bookmark: _Toc57884692][bookmark: _Toc57884960][bookmark: _Toc57885229][bookmark: _Toc57885501][bookmark: _Toc57833355][bookmark: _Toc57883869][bookmark: _Toc57884138][bookmark: _Toc57884424][bookmark: _Toc57884693][bookmark: _Toc57884961][bookmark: _Toc57885230][bookmark: _Toc57885502][bookmark: _Toc57581986][bookmark: _Toc57582232][bookmark: _Toc57833356][bookmark: _Toc57883870][bookmark: _Toc57884139][bookmark: _Toc57884425][bookmark: _Toc57884694][bookmark: _Toc57884962][bookmark: _Toc57885231][bookmark: _Toc57885503][bookmark: _Toc54781744][bookmark: _Toc54782588][bookmark: _Toc57885504]Scene Description Extensions
5.1 [bookmark: _Toc57885505]Overview
The following extensions to glTF 2.0 are defined by this document:
Table 1 – glTF 2.0 Extensions in this document
	Extension Name
	Brief Description
	Type
	Reference

	MPEG_media
	Extension for referencing external media sources.
	Generic
	5.2.1

	MPEG_accessor_timed
	An accessor extension to support timed media.
	Generic
	5.2.2

	MPEG_buffer_circular
	A buffer extension to support circular buffers.
	Generic
	5.2.3

	MPEG_scene_dynamic
	An extension to support scene updates.
	Generic
	5.2.4

	MPEG_texture_video
	A texture extension to support video textures.
	Visual
	5.3.1

	MPEG_audio_spatial
	Adds support for spatial audio.
	Audio
	5.4.1

	MPEG_viewport_recommended
	An extension to describe a recommended viewport.
	Metadata
	5.5.1

	MPEG_animation_timing
	An extension to control animation timelines.
	Metadata
	5.5.2

5.2 [bookmark: _Toc57530831][bookmark: _Toc57581989][bookmark: _Toc57582235][bookmark: _Toc57833359][bookmark: _Toc57883873][bookmark: _Toc57884142][bookmark: _Toc57884428][bookmark: _Toc57884697][bookmark: _Toc57884965][bookmark: _Toc57885234][bookmark: _Toc57885511][bookmark: _Toc57530832][bookmark: _Toc57581990][bookmark: _Toc57582236][bookmark: _Toc57833360][bookmark: _Toc57883874][bookmark: _Toc57884143][bookmark: _Toc57884429][bookmark: _Toc57884698][bookmark: _Toc57884966][bookmark: _Toc57885235][bookmark: _Toc57885512][bookmark: _Toc57530833][bookmark: _Toc57581991][bookmark: _Toc57582237][bookmark: _Toc57833361][bookmark: _Toc57883875][bookmark: _Toc57884144][bookmark: _Toc57884430][bookmark: _Toc57884699][bookmark: _Toc57884967][bookmark: _Toc57885236][bookmark: _Toc57885513][bookmark: _Toc57530834][bookmark: _Toc57581992][bookmark: _Toc57582238][bookmark: _Toc57833362][bookmark: _Toc57883876][bookmark: _Toc57884145][bookmark: _Toc57884431][bookmark: _Toc57884700][bookmark: _Toc57884968][bookmark: _Toc57885237][bookmark: _Toc57885514][bookmark: _Toc57530835][bookmark: _Toc57581993][bookmark: _Toc57582239][bookmark: _Toc57833363][bookmark: _Toc57883877][bookmark: _Toc57884146][bookmark: _Toc57884432][bookmark: _Toc57884701][bookmark: _Toc57884969][bookmark: _Toc57885238][bookmark: _Toc57885515][bookmark: _Toc57530836][bookmark: _Toc57581994][bookmark: _Toc57582240][bookmark: _Toc57833364][bookmark: _Toc57883878][bookmark: _Toc57884147][bookmark: _Toc57884433][bookmark: _Toc57884702][bookmark: _Toc57884970][bookmark: _Toc57885239][bookmark: _Toc57885516][bookmark: _Toc57530837][bookmark: _Toc57581995][bookmark: _Toc57582241][bookmark: _Toc57833365][bookmark: _Toc57883879][bookmark: _Toc57884148][bookmark: _Toc57884434][bookmark: _Toc57884703][bookmark: _Toc57884971][bookmark: _Toc57885240][bookmark: _Toc57885517][bookmark: _Toc54781747][bookmark: _Toc54782591][bookmark: _Toc57885518]Generic Extensions
[bookmark: _Toc44650387][bookmark: _Toc53565399][bookmark: _Ref54781594][bookmark: _Toc57885519]MPEG_media extension
General
MPEG media extension, identified by MPEG_media, provides an array of MPEG media items used in the scene.
If MPEG scene description is supported, then the MPEG_media extension shall be supported. The MPEG media extension shall be included in the extensionsUsed and extensionsRequired of the scene description document for scene descriptions that require the use of MPEG media support.
The extension shall be declared at the top-level as follows:
	{
	"extensionsRequired": [
		"MPEG_media"
]
	"extensionsUsed": [
		"MPEG_media"
]
	}
Semantics
The definition of all objects within MPEG_media extension is provided in the tables below.
Table 2 – Definitions of top-level objects of MPEG_media extension
	Name
	Type
	Default
	Description

	Media
	Array
	N/A
	An array of items that list the media referenced by timed Accessors in a scene.

Table 3 – Definitions of item in the media array of MPEG_media extension
	Name
	Type
	Default
	Description

	Name
	String
	N/A
	Label of the media.

	renderingRate
	Number
	25.0
	The renderingRate attribute is used to indicate the frequency at which the timed media is expected to be updated as frames per second.

	startTime
	Number
	0
	The startTime gives the time at which the rendering of the timed media will be in seconds. By default, the referenced image will be rendered as a static texture until the startTime. A startTime of 0 means the presentation time of the current scene.
Either startTime or autoplay shall be present in glTF description.

	timeOffset
	Number
	0
	The timeOffset indicates the time offset into the source, starting from which the timed media shall be generated. The value is provided in seconds, where 0 corresponds to the start of the source.

	autoplay
	Boolean
	N/A
	Specifies that the media will start playing as soon as it is ready.

Either startTime or autoplay shall be present in glTF description.

	loop
	Boolean
	False
	Specifies that the media will start over again, every time it is finished.

	controls
	Boolean
	N/A
	Specifies that media controls should be displayed (such as a play/pause button etc).

	alternatives
	Array
	N/A
	An array of items that indicate alternatives of the same media (e.g. different video code used)"
Note: the client could select items (i.e. uri and track) included in alternatives depending on the client’s capability.

Table 4 – Definitions of items in the alternatives array of MPEG_media extension
	Name
	Type
	Default
	Description

	mimeType
	string
	N/A
	The MPEG media's MIME type.
Note : the profiles parameter, as defined in RFC6381, might be included as a part of the mimeType to specify the profile of the MPEG media container. (e.g. the profiles parameter indicates the DASH profile when the uri specifies a DASH manifest)

	uri
	string
	N/A
	The uri of the media. Relative paths are relative to the .gltf file. If the reference media is a real-time media stream, then the uri shall follow the referencing scheme defined in section 4.5.

	tracks
	Array
	N/A
	An array of items that lists the referenced tracks in them MPEG media container (e.g. mp4 file or DASH manifest).

Table 5 – Definitions of items in the tracks array of MPEG_media extension
	Name
	Type
	Default
	Description

	track
	string
	N/A
	URL fragments to access the track within MPEG media.
e.g.
DASH : Using MPD Anchors (URL fragments) as defined in Annex C of 23009-1 (Table C.1).
MP4: URL fragments as specified in Annex L of 14496-12.

	codecs
	string
	N/A
	The codecs parameter, as defined in RFC 6381, of the media included in the track.
Note: When the track includes different types of codecs (e.g. the AdaptationSet includes Representations with different codecs), the codecs parameter could be signaled by comma-separated list of values of the codecs.

JSON Syntax/Schema
	{
 "$schema": "http://json-schema.org/draft-04/schema",
 "title": "Media",
 "type": "object",
 "description": "MPEG media used to create a texture, audio source, or any other media type defined by MPEG.",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties": {
 "name": { },
 "renderingRate": {
 "type": "number",
 "minimum": 0.0,
 "exclusiveMinimum": true,
 "default": 25.0,
 "description": "The renderingRate attribute is used to indicate the frequency at which the timed texture is expected to be updated as frames per second."
 },
 "startTime": {
 "type": "number",
 "minimum": 0.0,
 "default": 0.0,
 "exclusiveMinimum": false,
 "description": "The startTime gives the time at which the rendering of the timed texture will be in seconds. By default, the referenced image will be rendered as a static texture until the startTime. A startTime of 0 means the presentation time of the current scene."
 },
 "timeOffset": {
 "type": "number",
 "minimum": 0.0,
 "default": 0.0,
 "exclusiveMinimum": false,
 "description": "The timeOffset indicates the time offset into the source, starting from which the timed texture shall be generated. The value is provided in seconds, where 0 corresponds to the start of the source."
 },
 "autoplay": {
 "type": "boolean",
 "description": "Specifies that the MPEG media start playing as soon as it is ready."
 },
 "loop": {
 "type": "boolean",
 "default": false,
 "description": "Specifies that the MPEG media start over again, every time it is finished."
 },
 "controls": {
 "type": "boolean",
 "description": "Specifies that MPEG media controls should exposed to end user"
 },
 "alternatives": {
 "type": "array",
 "description": "An array of alternatives of the same media (e.g. different video code used)",
 "items": {
 "uri": {
 "type": "string",
 "description": "The uri of the media.",
 "format": "uriref",
 "gltf_detailedDescription": "The uri of the media. Relative paths are relative to the .gltf file.",
 "gltf_uriType": "media"
 },
 "mimeType": {
 "anyOf": [
 {
 "enum": ["video/mp4"]
 },
 {
 "enum": ["application/dash+xml"]
 },
 {
 "type": "string"
 }
],
 "description": "The MPEG media's MIME type."
 },
 "tracks": {
 "type": "array",
 "description": "List of all tracks in MPEG media container (e.g. mp4 file or DASH manifest",
 "items": {
 "track": {
 "type": "string",
 "description": "URL fragments e.g, DASH : Using MPD Anchors (URL fragments) as defined in Annex C of 23009-1 (Table C.1). MP4: URL fragments as specified in Annex L of ISOBMFF."
 },
 "codec": {
 "type": "string",
 "description": "The codecs parameter, as defined in RFC 6381, of the media included in the track."
 }
 }
 },
 "required": ["uri", "mimeType"]
 },
 "minItems": 1
 }
 },
 "oneOf": [
 { "required": ["startTime"] },
 { "required": ["autoplay"] }
]
}

Processing Model
Processing of the MPEG_media extension depends on the referenced media.
Example
In the example below, two media items are listed by MPEG_media object. The first media item contains only one item within alternatives, which is a DASH manifest that contains one track. Even though there are no alternatives at the MPEG media level, DASH manifest may still have different Representations within the Adaptation Set (but this is outside of the scope of the extension). The second media item contains two items within the alternatives. The first one lists an mp4 file that contains data compressed using AVC codec, while the second one lists an mp4 file that contains data compress using HEVC codec. Each item within alternatives array has to have the same amount of track items within tracks object. However, each track item may contain different information, which depends on the structure of the MP4 file.
	{
 "extensions": {
 "MPEG_media": {
 media: [
 {
 "name": "source 0",
 "renderingRate": 25.0,
 "timeOffset": 0.0,
 "autoplay": "true",
 "loop": "true",
 "controls": "false",
 "alternatives": [
 {
 "mimeType": "application/dash+xml",
 "uri": "manifest.mpd",
 "tracks": [
 {
 "track": "#track=1"
 }
]
 }
]
 },
 {
 "name": "source 1",
 "renderingRate": 30.0,
 "startTime": 9.0,
 "timeOffset": 10.0,
 "loop": "true",
 "controls": "false",
 "alternatives": [
 {
 "mimeType": "video/mp4;codecs=\"avc1.42E01E\"",
 "uri": "video1.mp4",
 "tracks": [
 {
 "track": "#track_ID=1"
 },
 {
 "track": "#track_ID=2"
 }
]
 },
 {
 "mimeType": "video/mp4;codecs=\"hev1.1.6.L93.B0\"",
 "uri": "video2.mp4",
 "tracks": [
 {
 "track": "#track_ID=3"
 },
 {
 "track": "#track_ID=1"
 }
]
 }
]
 }
]
 }
 }
}

[bookmark: _Toc57883882][bookmark: _Toc57884151][bookmark: _Toc57884437][bookmark: _Toc57884706][bookmark: _Toc57884974][bookmark: _Toc57885243][bookmark: _Toc57885520][bookmark: _Toc54781750][bookmark: _Toc54782594][bookmark: _Ref54781605][bookmark: _Toc57885582][bookmark: _Toc44650383][bookmark: _Toc53565395]MPEG_accessor_timed extension
General
In order to provide access to timed media and metadata in a scene, a new glTF extension is specified to define timed accessors. An accessor in glTF 2.0 defines the types and layout of the data as stored in a buffer that is viewed through a bufferView.
When timed data is read from a buffer, the data in the buffer is expected to change dynamically with time. The buffer element is extended to add support for a circular buffer that is used with timed data.
A scene that contains timed media and/or metadata shall use the timed accessor extension to access the data. The timed accessor is an extension to regular accessors to indicate that the underlying data buffer is dynamic.
The timed accessor extension is identified by "MPEG_accessor_timed", which shall be included in the extensionsUsed and extensionsRequired of the scene description document, whenever timed data is used in a scene.
Semantics
The "MPEG_accessor_timed " extension shall be defined on "accessors" structures. It may contain the following properties:
Table 6 – Definition of MPEG_accessor_time extension
	Name
	Type
	Default
	Description

	immutable
	boolean
	False
	This flag indicates if the accessor information such as the componentType, bufferView, and type are allowed to change over time. Note that count, max, min, and byteOffset are expected to change and are always included as part of the timed accessor information header.

	bufferView
	integer
	N/A
	This provides the reference id of a bufferView that points to the timed accessor information header.

	updateRate
	number
	25.0
	The updateRate provides the frequency at which the underlying buffer data is expected to change. The rate is provided in number of changes per second.

The timed accessor information header contains the dynamic metadata that is needed to access the timed data.
The following table describes the syntax and semantics of the timed accessor information header:
Table 7 – Definition of timed accessor information header fields
	Syntax
	Length (bits)
	type
	Semantics

	timestamp_delta
	32
	float
	Provides a delta in seconds that is added to the timestamp of the referenced buffer to determine the timestamp of the referenced timed media.

	if (!immutable) {
 componentType
 bufferView
 type
 normalized
 reserved
}
	
32
32
8
1
7
	
integer
integer
integer
boolean

	These fields correspond to the accessor properties as defined in [glTF2.0]. The type differs from the definition in [glTF2.0] in that it provides a 0-based index of the allowed types as defined in [glTF2.0]. For example a type of 0 indicates that the data is a "SCALAR".

	byteOffset
count
max
min
	32
32
32
32
	integer
integer
float
float
	These fields correspond to the accessor properties as defined in [glTF2.0].

	bufferViewByteOffset
bufferViewByteLength
bufferViewByteStride
	32
32
32
	integer
integer
integer
	These fields correspond to the bufferView fields byteOffset, byteLength, and byteStride respectively.

Note that the timed accessor information header is provided as binary data as part of the buffer data and is accessible through the bufferView of the timed accessor extension.
JSON Syntax/Schema
	{
 "$schema" : "http://json-schema.org/draft-04/schema",
 "title" : "MPEG_accessor_timed extension",
 "type" : "object",
 "description": "glTF extension to specify timed accessor format formats",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties" : {
 "immutable": {
 "type": "boolean",
 "default": false,
 "description": "This flag indicates if the accessor information such as the componentType, bufferView, and type are allowed to change over time. Note that count, max, min, and byteOffset are expected to change and are always included as part of the timed accessor information header. "
 },
 "bufferView": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "This provides the reference id of a bufferView that points to the timed accessor information header. "
 },
 "updateRate": {
 "type": "number",
 "default": 25.0,
 "description": "The updateRate provides the frequency at which the underlying buffer data is expected to change. The rate is provided in number of changes per second."
 }
 },
 "required": ["bufferView"]
}

Processing Model
The processing model of the MPEG_accessor_timed extension is to be defined.
Example
The following is an example showing the new extension:
	{
 "accessors": [
 {
 "bufferView": 0,
 "componentType": 5126,
 "byteOffset": 0,
 "count": 12323,
 "type": "VEC4",
 "extensions": {
 "MPEG_timed_accessor": {
 "immutable":1,
 "bufferView":1,
 "updateRate":25.0
 }
 }
 }
],
}

[bookmark: _Toc57883945][bookmark: _Toc57884214][bookmark: _Toc57884500][bookmark: _Toc57884769][bookmark: _Toc57885037][bookmark: _Toc57885306][bookmark: _Toc57885583][bookmark: _Toc54781771][bookmark: _Toc54782615][bookmark: _Toc44650385][bookmark: _Toc53565397][bookmark: _Ref54781611][bookmark: _Toc57885602]MPEG_buffer_circular extension
General
In order to support timed data access, the buffer element is extended to provide circular buffer functionality. The extension is named "MPEG_buffer_circular" and may be included as part of the "buffers" structures. Buffers that provide access to timed data shall include the "MPEG_buffer_circular" extension.
Semantics
The following properties are defined for the "MPEG_buffer_circular ":
Table 8 – Definition of MPEG_buffer_circular extension
	Name
	Type
	Default
	Description

	count
	integer
	5
	The count field provides the number of frames that are offered by this circular buffer. Each frame will hold data at a particular time instance and will be identified by an index in the range of [0,count-1]. The index, timestamp and length of the frame are signaled as the buffer header, which shall always be accessible at byte 0 of the frame data.

	headerLength
	integer
	12
	The headerLength provides the length of the buffer header and is the offset into the dynamic actual data.

	updateRate
	number
	25.0
	The updateRate provides the frequency at which the underlying buffer data is expected to change. The rate is provided in number of changes per second.

	source
	number
	
	Index of the MPEG media entry that will be used as the source for the input data to this buffer.

Table 9 – Syntax and semantics of the buffer header
	Syntax
	Length (bits)
	type
	Semantics

	index
	8
	integer
	The index of the current buffer frame. The index is a value between 0 and count -1.

	timestamp
	64
	integer
	Provides the timestamp of the data that is contained in this buffer. The format of this field is in NTP Timestamp Format with 32 MSB for seconds and 32 LSB for fraction of seconds. Note that this timestamp field is not necessarily a wallclock time and the interpretation of this field is left to the rendering engine.

	length
	32
	integer
	The length of the data of this buffer frame, including the buffer header.

JSON Syntax/Schema
	{
 "$schema" : "http://json-schema.org/schema#",
 "title" : "MPEG_buffer_circular extension",
 "type" : "object",
 "description": "glTF extension to specify circular buffer",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties" : {
 "count": {
 "type": "boolean",
 "default": false,
 "description": "This provides the number of frames that are offered by this buffer."
 },
 "headerLength": {
 "type": "number",
 "default": 12,
 "description": "This provides the length of the buffer header."
 },
 "updateRate": {
 "type": "number",
 "default": 25.0,
 "description": "The updateRate provides the frequency at which the underlying buffer data is expected to change."
 },
 "source": {
 "type": "number",
 "description": "The index of the MPEG media entry that provides the source."
 }
 },
 "required": ["source"]
}

Processing Model
Frames of the buffer may differ in length based on the amount of data for each frame. A read and a write pointer are maintained for each circular buffer. By default, read and write access to the buffer will be served from the frame that is referenced by the read or write pointer respectively. Access to a particular frame index or timestamp should be supported.
The frames are read at the read pointer for rendering. New incoming frames from the media decoder are inserted at the write pointer. Prior data in that frame will be overwritten and the frame buffer should be resized accordingly.
Figure 6 depicts the buffer structure:
 [image:]
[bookmark: _Ref20827126]Figure 6 – Circular buffer operation
The renderer shall maintain that Timestamp(write_pointer) > Timestamp(read_pointer). When overwriting a frame in the buffer with new timed data, the renderer shall make sure that the read_pointer is moved to the frame with the oldest timestamp. This would result in a frame drop but will ensure that no concurrent access to the same frame in the buffer is performed.
Example
	"buffers": [
 {
 "byteLength": 12661584,
 "uri": "longdress_vox10_1080_791326.bin",
 "extensions": {
 "MPEG_circular_buffer": {
 "count": 5,
 "headerLength": 13,
 "updateRate": 25,
 "source": 1
 }
 }
 },
}

[bookmark: _Toc57883965][bookmark: _Toc57884234][bookmark: _Toc57884520][bookmark: _Toc57884789][bookmark: _Toc57885057][bookmark: _Toc57885326][bookmark: _Toc57885603][bookmark: _Toc57885604][bookmark: _Toc57885605][bookmark: _Toc57885606][bookmark: _Toc57885607][bookmark: _Toc57885608][bookmark: _Toc57885609][bookmark: _Toc57885635][bookmark: _Toc57885678][bookmark: _Toc57885679][bookmark: _Toc57885680][bookmark: _Toc57885681][bookmark: _Toc57885682][bookmark: _Toc57885702][bookmark: _Toc57885703][bookmark: _Toc57885704][bookmark: _Toc57885705][bookmark: _Toc57885706][bookmark: _Toc57885707][bookmark: _Toc57885708][bookmark: _Toc57885709][bookmark: _Toc57885710][bookmark: _Toc57885711][bookmark: _Toc57885712][bookmark: _Toc57885713][bookmark: _Toc57885714][bookmark: _Toc57885715][bookmark: _Toc57885716][bookmark: _Toc57885717][bookmark: _Toc57885718][bookmark: _Toc57885719][bookmark: _Toc57885720][bookmark: _Toc57885721][bookmark: _Toc57883967][bookmark: _Toc57884236][bookmark: _Toc57884522][bookmark: _Toc57884791][bookmark: _Toc57885059][bookmark: _Toc57885328][bookmark: _Toc57885736][bookmark: _Toc57530922][bookmark: _Toc57582080][bookmark: _Toc57582326][bookmark: _Toc57833450][bookmark: _Toc57883968][bookmark: _Toc57884237][bookmark: _Toc57884523][bookmark: _Toc57884792][bookmark: _Toc57885060][bookmark: _Toc57885329][bookmark: _Toc57885737][bookmark: _Toc57530923][bookmark: _Toc57582081][bookmark: _Toc57582327][bookmark: _Toc57833451][bookmark: _Toc57883969][bookmark: _Toc57884238][bookmark: _Toc57884524][bookmark: _Toc57884793][bookmark: _Toc57885061][bookmark: _Toc57885330][bookmark: _Toc57885738][bookmark: _Toc57530924][bookmark: _Toc57582082][bookmark: _Toc57582328][bookmark: _Toc57833452][bookmark: _Toc57883970][bookmark: _Toc57884239][bookmark: _Toc57884525][bookmark: _Toc57884794][bookmark: _Toc57885062][bookmark: _Toc57885331][bookmark: _Toc57885739][bookmark: _Toc57530925][bookmark: _Toc57582083][bookmark: _Toc57582329][bookmark: _Toc57833453][bookmark: _Toc57883971][bookmark: _Toc57884240][bookmark: _Toc57884526][bookmark: _Toc57884795][bookmark: _Toc57885063][bookmark: _Toc57885332][bookmark: _Toc57885740][bookmark: _Toc57530926][bookmark: _Toc57582084][bookmark: _Toc57582330][bookmark: _Toc57833454][bookmark: _Toc57883972][bookmark: _Toc57884241][bookmark: _Toc57884527][bookmark: _Toc57884796][bookmark: _Toc57885064][bookmark: _Toc57885333][bookmark: _Toc57885741][bookmark: _Toc57530927][bookmark: _Toc57582085][bookmark: _Toc57582331][bookmark: _Toc57833455][bookmark: _Toc57883973][bookmark: _Toc57884242][bookmark: _Toc57884528][bookmark: _Toc57884797][bookmark: _Toc57885065][bookmark: _Toc57885334][bookmark: _Toc57885742][bookmark: _Toc57530928][bookmark: _Toc57582086][bookmark: _Toc57582332][bookmark: _Toc57833456][bookmark: _Toc57883974][bookmark: _Toc57884243][bookmark: _Toc57884529][bookmark: _Toc57884798][bookmark: _Toc57885066][bookmark: _Toc57885335][bookmark: _Toc57885743][bookmark: _Toc57530929][bookmark: _Toc57582087][bookmark: _Toc57582333][bookmark: _Toc57833457][bookmark: _Toc57883975][bookmark: _Toc57884244][bookmark: _Toc57884530][bookmark: _Toc57884799][bookmark: _Toc57885067][bookmark: _Toc57885336][bookmark: _Toc57885744][bookmark: _Toc57530930][bookmark: _Toc57582088][bookmark: _Toc57582334][bookmark: _Toc57833458][bookmark: _Toc57883976][bookmark: _Toc57884245][bookmark: _Toc57884531][bookmark: _Toc57884800][bookmark: _Toc57885068][bookmark: _Toc57885337][bookmark: _Toc57885745][bookmark: _Toc57530931][bookmark: _Toc57582089][bookmark: _Toc57582335][bookmark: _Toc57833459][bookmark: _Toc57883977][bookmark: _Toc57884246][bookmark: _Toc57884532][bookmark: _Toc57884801][bookmark: _Toc57885069][bookmark: _Toc57885338][bookmark: _Toc57885746][bookmark: _Toc57530932][bookmark: _Toc57582090][bookmark: _Toc57582336][bookmark: _Toc57833460][bookmark: _Toc57883978][bookmark: _Toc57884247][bookmark: _Toc57884533][bookmark: _Toc57884802][bookmark: _Toc57885070][bookmark: _Toc57885339][bookmark: _Toc57885747][bookmark: _Toc57530933][bookmark: _Toc57582091][bookmark: _Toc57582337][bookmark: _Toc57833461][bookmark: _Toc57883979][bookmark: _Toc57884248][bookmark: _Toc57884534][bookmark: _Toc57884803][bookmark: _Toc57885071][bookmark: _Toc57885340][bookmark: _Toc57885748][bookmark: _Toc57885749][bookmark: _Toc57885750][bookmark: _Toc57885751][bookmark: _Toc57885752][bookmark: _Toc57885753][bookmark: _Toc57885754][bookmark: _Toc57885770][bookmark: _Toc57885790][bookmark: _Toc57885791][bookmark: _Toc57885792][bookmark: _Toc57885793][bookmark: _Toc57885794][bookmark: _Toc57885795][bookmark: _Toc57885796][bookmark: _Toc57885797][bookmark: _Toc57885798][bookmark: _Toc57885799][bookmark: _Toc57885800][bookmark: _Toc57885801][bookmark: _Toc57885802][bookmark: _Toc57885803][bookmark: _Toc57885804][bookmark: _Toc57885805][bookmark: _Toc57885806][bookmark: _Toc57885807][bookmark: _Toc57885808][bookmark: _Toc57885809][bookmark: _Toc57885810][bookmark: _Toc57885811][bookmark: _Toc57883981][bookmark: _Toc57884250][bookmark: _Toc57884536][bookmark: _Toc57884805][bookmark: _Toc57885073][bookmark: _Toc57885342][bookmark: _Toc57885874][bookmark: _MPEG_dynamic_scene_extensions][bookmark: _Ref54781639][bookmark: _Toc57885935]MPEG_scene_dynamic extensions
General
In order to expose the dynamic scene updates using the JSON patch protocol, the glTF extension MPEG_media shall be used. Accordingly, the MPEG_scene_dynamic extension shall contain the URL information to access dynamic scene updates based on JSON patch documents as described in clause 7.2, based on the carriage formats for JSON patch documents defined in clause 8.2.
Semantics
The extension MPEG_scene_dynamic links to one of the entries listed in MPEG_media.
Table 10 – Definition of top-level objects of MPEG_scene_dynamic extension
	Name
	Type
	Default
	Description

	source
	Number
	N/A
	Provides the index of the media listed by MPEG_media extension that provide scene updates.

	track
	Number
	N/A
	Provides the index of a track of a media object, indicated by source object and listed by MPEG_media extension, which samples contain JSON patch updates and provide timing to perform update.

The extension would be declared at the top-level as follows:
{
 "extensionsRequired": [
 "MPEG_scene_dynamic"
]
 "extensionsUsed": [
 "MPEG_scene_dynamic"
]
}
JSON Syntax/Schema
	{
 "$schema" : "http://json-schema.org/draft-04/schema",
 "title" : "MPEG_scene_dynamic extension",
 "type" : "object",
 "description": "glTF extension to expose dynamic scene updates using the JSON patch protocol with MPEG media",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties" : {
 "source": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of the MPEG media that provides dynamic scene update information."
 },
 "track": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of a track of the MPEG media that provides dynamic scene update information."
 }
 },
 "required": ["source"]
}

Processing Model
The processing model could be as follows: When sample becomes active, the media player loads the sample data into the presentation engine and this triggers the scene update performed by the presentation engine. If the scene update contains an addition of new glTF nodes and/or potential modifications of existing glTF nodes, the presentation engine interacts with the MAF to fetch any new content associated with the scene update and presents the new content accordingly.
Example
In the example below, the media object includes the JSON patch document format file name and its track index. The mimeType indicates that the data is JSON patch information for dynamic scene updates.
	"extensions": {
 "MPEG_media": {
 "media": [{
 "name“: “dynamic_scene_data1",
 "alternatives": [{
 "mimeType": "application/mp4;codecs=\"json-patch+json\"",
 "uri": "file_containing_scene_update_track.mp4",
 "tracks": [{"track": "#track=1"}]
 }]
 }]
 }
 "MPEG_scene_dynamic ": {
 "source": 0,
 "track": 0,
 }
}

[bookmark: _Toc57884043][bookmark: _Toc57884312][bookmark: _Toc57884598][bookmark: _Toc57884867][bookmark: _Toc57885135][bookmark: _Toc57885404][bookmark: _Toc57885936][bookmark: _Toc54781798][bookmark: _Toc54782642][bookmark: _Toc54781799][bookmark: _Toc54782643][bookmark: _Toc54781800][bookmark: _Toc54782644][bookmark: _Toc54781801][bookmark: _Toc54782645][bookmark: _Toc57885953]Visual Extensions
[bookmark: _Ref54781646][bookmark: _Toc57885954]MPEG_texture_video extensions
General
MPEG texture video extension, identified by MPEG_texture_video, provides the possibility to link a glTF 2.0 texture object to MPEG media and its respective track, listed by an MPEG_media object. MPEG texture video extension also provides a reference to the MPEG_accessor_timed, using timedAccessor object, where the decoded timed texture will be made available.
If MPEG scene description is supported, then the MPEG_video_texture extension shall be supported. The MPEG texture video extension shall be included in the extensionsUsed and extensionsRequired of the scene description document for scene descriptions that require the use of timed textures.
When the MPEG_texture_video extension is not supported, a texture buffer will be filled by data described by the standard glTF 2.0 source object.
Semantics
Table 11 – Definition of top-level objects of MPEG_texture_video extension
	Name
	Type
	Default
	Description

	timedAccessor
	number
	N/A
	Provides a reference to the timed accessor where the decoded timed texture will be made available.

JSON Syntax/Schema
	{
 "$schema" : "http://json-schema.org/draft-04/schema",
 "title" : "MPEG_texture_video extension",
 "type" : "object",
 "description": "glTF extension to specify textures using MPEG defined formats",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties" : {
 "source": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of the MPEG media used by this texture."
 },
 "track": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of a track of the MPEG media used by this texture."
 },
 "timedAccessor": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "Provides a reference to the timed accessor where the decoded timed texture will be made available."
 }
 },
 "required": ["source"]
}

Processing Model
Example
In the example below, two texture items are listed. Each texture item use MPEG_video_texture extension. The first texture item is linked with source 1 listed by MPEG_media and track 0, and it is expected that decoded texture will be available in buffer indicated by timed accessor 2. The second texture item is linked with the same source 1 listed by MPEG_media but with a different track, track 0, and it will be available in buffer indicated by timed accessor 3.
	{
 "textures": [
 {
 "sampler": 0,
 "source": 1,
 "extensions": {
 "MPEG_video_texture": {
 "timedAccessor": 2,
 }
 }
 },
 {
 "sampler": 1,
 "source": 0,
 "extensions": {
 "MPEG_video_texture": {
 "timedAccessor": 3,
 }
 }
 }
]
}

[bookmark: _Toc57884062][bookmark: _Toc57884331][bookmark: _Toc57884617][bookmark: _Toc57884886][bookmark: _Toc57885154][bookmark: _Toc57885423][bookmark: _Toc57885955][bookmark: _Toc54781804][bookmark: _Toc54782648][bookmark: _Toc57885982][bookmark: _Toc353798251]Audio Extensions
[bookmark: _Toc54781806][bookmark: _Toc54782650][bookmark: _Toc54781807][bookmark: _Toc54782651][bookmark: _Toc54781808][bookmark: _Toc54782652][bookmark: _Toc54781809][bookmark: _Toc54782653][bookmark: _Toc54781810][bookmark: _Toc54782654][bookmark: _Toc54781811][bookmark: _Toc54782655][bookmark: _Toc54781812][bookmark: _Toc54782656][bookmark: _Ref54781652][bookmark: _Toc57885983]MPEG_audio_spatial extensions
General
The MPEG audio extension adds support for spatialized audio to the MPEG scene description based on glTF 2.0. This extension is identified by MPEG_audio_spatial, which can be included at top level or attached to any node in the scene.
The MPEG_audio_spatial extension supports four different node types:
· AudioSource: an audio source that provides input audio data into the scene. Currently, only mono sources are supported.
· Type: 'Object' or 'HOA'
· HOA audio sources shall ignore the parent node's position and be rendered only in 3DoF.
· AudioReverb: A reverb effect can be attached to the output of an audio source. sceneSeveral reverb units can exist and sound sources can feed into one or more of these reverb units. An audio renderer that does not support reverb shall ignore it if the bypass attribute is set to true. If the bypass attribute is set to false, the audio renderer shall return an error message
· AudioListener: An audio listener represents the output of audio in the scene. They are usually attached to camera nodes in the scene. By being a child node of the camera, additional transformations can be applied to the audio listener relative to the transformation applied to the parent camera.
Figure 7 depicts the processing chain for audio in a scene. Note that specification of any effects processing (green arrows) is out of scope for Scene Description:
 [image:]
[bookmark: _Ref57882764]Figure 7 – An example of the processing chain for audio in a scene
Note that the characteristics of Audio Listener depend on the actual output devices available to the audio renderer.
Semantics
Table 12 – Definition of top-level objects of MPEG_audio_spatial extension
	Name
	Type
	Default
	Description

	
	
	
	

	Sources
	Array of audio sources
	
	Provides a list of AudioSource elements that are attached to this node

		Id
	Number
	
	unique identifier of the audio source in the scene.

		Type
	String
	
	“Object” or “HOA”

		Pregain
	Float
	0
	provides a level-adjustment in dB for the signal associated with the source.

		playbackSpeed
	Float
	1
	defines the playback speed of the audio signal. A value of 1.0 corresponds to playback at normal speed.

		Attenuation
	[bookmark: OLE_LINK15][bookmark: OLE_LINK16]Enumeration
	linear
	provides the function used to calculate the attenuation of the audio signal based on the distance to the source. An enumeration of predefined attenuation functions is defined.

	[bookmark: OLE_LINK17][bookmark: OLE_LINK18]	attenuationParameters
	Array of float
	
	array of parameters that are input to the attenuation function. The semantics of these parameters depend on the attenuation function itself.

		referenceDistance
	Float
	1
	provides the distance in meters for which the distance gain is implicitly included in the source signal after application of pregain.
Disregarded for HOA audio sources.

		timedAccessor
	Number
	
	provides a pointer to the timed accessor that will provide the audio data for this source.

		reverbFeed
	Array of id’s
	
	If present: One or more pointers to reverb units, optionally extended by a floating point scaling factor.

	Listener
	Object
	
	places an audio listener node in the scene that is attached to a parent camera node. The audio listener characteristics depend on the available audio output devices.

		Id
	Number
	
	unique identifier of the audio listener in the scene.

	Reverb
	Array of objects
	
	list of audio reverb units that are defined at the top level of the scene.

		Id
	Number
	
	unique identifier of the audio reverb unit in the scene.

		Bypass
	Boolean
	true
	indicates if the reverb unit can by bypassed if the audio renderer does not support it.

		properties
	Arry of object
	
	contains reverb unit specific parameters

			frequencies
	float
	
	Frequencies for the provided RT60 and DSR values.

			RT60
	float
	
	RT60 values(s) for the frequencies provided in the ‘frequencies’ field.

			DSR
	float
	
	Diffuse-to-Source Ratio values [dB] for the frequencies provided in the ‘frequencies’ field. See explanatory text below.

		predelay
	Number
	
	Delay from onset of source to onset of late reverberation for which DSR is provided.

JSON Syntax/Schema
	{
 "$schema" : "http://json-schema.org/draft-04/schema",
 "title" : "MPEG_audio_spatial extension",
 "type" : "object",
 "description": "glTF extension to specify spatial audio support",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "definitions": {
 "audiosource": {
 "type": "object",
 "properties": {
 "id": {"type": "number"},
 "type": {"type": "string"},
 "pregain": {"type": "number", "default": 0},
 "playbackSpeed": {"type": "number", "default": 1},
 "attenuation": {"type": "string", "enum": {"linear"}, "default": "linear"},
 "attenuationParameters": {"type": "array", "items": {"type": "number"}},
 "referenceDistance": {"type": "number", "default": 1},
 "timedAccessor": {"type": "number"},
 "reverbFeed": {"type": "array", "items": {"type": "number"}},
 }
 },
 "audiolistener": {
 "type": "object",
 "properties": {
 "id": {"type": "number"}
 }
 },
 "reverbproperty": {
 "type": "object",
 "properties": {
 "frequencies": {"type": "number"},
 "RT60": {"type": "number"},
 "DSR": {"type": "number"}
 }
 }
 "reverb": {
 "type": "object",
 "properties": {
 "id": {"id": "number"},
 "bypass": {"type": "boolean"},
 "properties": {"type": "array", "items": {"type": "#/definitions/reverproperty"}},
 "predelay": {"type": "number"}
 }
 }
 },
 "properties" : {
 "sources": {
 "type": "array",
 "items": {
 "type": "#/definitions/audiosource"
 },
 "description": "The index of the MPEG media used by this texture."
 },
 "listener": {
 "type": "#/definitions/audiolistener",
 "description": "The index of a track of the MPEG media used by this texture."
 },
 "reverbs": {
 "type": "#/definitions/reverb",
 "description": "Provides a reference to the timed accessor where the decoded timed texture will be made available."
 }
 },
 "required": ["sources", "listener"]
}

Processing Model
The 60 dB reverberation time, short RT60, is defined as the time it takes for the sound pressure level in a room to reduce by 60 dB, measured after a generated steady-state test signal is abruptly ended. It is defined for a specific <frequency> as an attribute rt60 and specified in seconds.
The pre-delay time indicates the delay between the emission at the source and the onset of the diffuse late reverberation part of a signal (i.e. the sound after the early reflections) and is specified in seconds. It is frequency-independent.
The Diffuse-to-Source-Ratio (DSR) specifies the level of the diffuse reverberation relative to the level of the total emitted sound. This can be determined while making an RT60 measurement. It is defined for a specific <frequency> as an attribute DSR and can be computed as follows:

For example, a value of 0 indicates direct sound only, while large values will describe an almost completely reverberant (wet) acoustic environment. Note that the DSR values do not influence the amplitude of the direct sound in the process of rendering. While DSR is a general description of a room’s acoustic properties, rendering reverberation using DSR requires taking into account the source’s directivity pattern to find the total emitted energy from the PCM signal’s reference level. DSR values are independent of directivity and may be determined with a source of any directivity, e.g. an omni-directional source. The total diffuse reverb energy denotes the reverberation energy at any point in the region for which the acoustic environment is defined and is therefore directly linked to the PCM signal’s reference level.
Example
	{
 "asset": {
 "generator": "MPEG",
 "version": "2.0"
 },
 "scene": 0,
 "scenes": [
 {
 "nodes": [
 0, 1
]
 }
],
 "nodes": [
 {
 "mesh": 0,
 "children": [2]
 },
 {
 "camera": 0,
 "children": [3]
 },
	{
		"extensions": {
 	"MPEG_audio_spatial ": {
			“source”: {
 "id": 0,
 "volume": 110,
 "distance": 30,
 "attenuation": "linear",
 "attenuationParameters": [-5.0],
 "timedAccessors": 0
 }
 }
		}
	},
	{
		"extensions": {
 "MPEG_spatial_audio": {
 	"listener": {
 	"id": 0
 	}
 }
 }
 }
],
 "MPEG_media": {
 "media": [
 {
 "name": "audio_source_1",
 "loop": true,
 "alternatives": [
 {
 "mimeType": "audio/aac",
 "uri": "https://example.com/audio_source_0.aac"
 }
]
 }
]
 }
 }
}

[bookmark: _Toc57884091][bookmark: _Toc57884360][bookmark: _Toc57884646][bookmark: _Toc57884915][bookmark: _Toc57885183][bookmark: _Toc57885452][bookmark: _Toc57885984]Metadata Extensions
[bookmark: _Toc57885985][bookmark: _Ref57886002]MPEG_viewport_recommended extensions
General
MPEG viewport recommended extension, identified by MPEG_viewport_recommended, provides the link from a glTF2.0 camera object to recommended viewport timed metadata by referencing to the MPEG accessor timed, where the sample of recommended viewport timed metadata will be made available. The MPEG_viewport_recommended extension shall be included in the extensionsUsed and extensionsRequired of the scene description document, whenever MPEG_viewport_recommended extension is used in a scene.
The recommended viewport timed metadata provides dynamically changed information which includes translation and rotation of the node which includes the camera object, as well as the intrinsic camera parameter of the camera object. The client renders viewport according to the dynamically changed information.
Semantics
Table 13 – Definition of MPEG_viewport_recommended extension
	Name
	Type
	Default
	Description

	name
	string
	N/A
	Label of the recommended viewport

	translation
	number
	N/A
	Provides a reference to timed accessor where the timed data for the translation of camera object will be made available. The type of the referenced accessor is FLOAT_VEC3 value, (x, y, z).

	rotation
	number
	N/A
	Provides a reference to timed accessor where the timed data for the rotation of camera object will be made available. The type of the referenced accessor is FLOAT_VEC4 unit quaternion value, (x, y, z, w).

	perspective
	number
	N/A
	Provides a reference to timed accessor where the timed data for the perspective of the camera object will be made available. The type of the referenced accessor is FLOAT_VEC4 value, (aspectRatio, yfov, zfar, znear).

JSON Syntax/Schema
	{
	"$schema": "http://json-schema.org/draft-04/schema",
	"title": "MPEG_viewport_recommended extension",
	"type": "object",
	"description": "glTF extension for specifying recommended viewport.",
	"allOf": [
		{
			"$ref": "glTFProperty.schema.json"
		}
],
	"properties": {
		"name": {
			"type": "string",
			"description": "The name of the recommended viewport."
		},
		"translation": {
			"allOf": [
				{
					"$ref": "glTFid.schema.json"
				}
],
			"description": "The index of the accessor that contains the translation value of camera object."
		},
		"rootation": {
			"allOf": [
				{
					"$ref": "glTFid.schema.json"
				}
],
			"description": "The index of the accessor that contains the rotation value of camera object."
		},
		"perspective": {
			"allOf": [
				{
					"$ref": "glTFid.schema.json"
				}
],
			"description": "The index of the accessor that contains perspective parameters of the camera object."
		}
	}
}

Processing Model
The processing model could be as follows: According to the hypothetical model defined in this document, when sample of recommended viewport timed metadata track becomes active, the media player loads the sample data into the presentation engine and this triggers the change of the setting of glTF2.0 camera object performed by the presentation engine.
Example
In the example below, one camera object is listed. This camera object uses MPEG_viewport_recommended extension. it is expected that recommended viewport information will be available in buffer indicated by timed accessor 0, 1, 2.
	"cameras":[{
	"name":"Finite perspective camera",
	"type": "perspective",
	"perspective": {
		"aspectRatio": 1.5,
		"yfov": 0.660593,
		"zfar": 100,
		"znear": 0.01
		},
		"extensions": {
			"MPEG_viewport_recommended":[{
				"name": "Recommended view 1",
				"translation": 0,
				"rotation": 1,
				"perspective": 2
				}]
		}
}]

In the example below, one media object is listed. This media object includes the recommended viewport file name and its track index. The mimeType indicates that the data is recommended viewport information.
	"extensions" : {
	"MPEG_media" : {
		"media" : [{
			"name": "recommended_viewport_data1",
			"alternatives": [{
			"mimeType": "application/mp4;codecs=\"recv\"",
			"uri": "recommnededviewport1.mp4",
			"tracks": [{"track": "#track=1"}]
			}]
		}]
	}
}

[bookmark: _Toc57885986][bookmark: _Ref57886003]MPEG_animation_timing extensions
General
In order to link an animation glTF 2.0 to timed metadata and its respective track listed by MPEG_media object an MPEG animation extension is defined. The MPEG animation timing extension is identified by MPEG_animation_timing, which shall be included in the extensionsUsed and extensionsRequired of the scene description document, whenever animation timing is used in a scene.
Alignment between MPEG media timelines and glTF 2.0 animation timeline enables creation of narrated stories. The animation timing metadata could allow simultaneous pausing and other manipulation of glTF 2.0 animation and MPEG media. By manipulating the global timeline for narrated content, the glTF 2.0 animation and MPEG media would be manipulated as well.
Semantics
Table 14 – Semantics of MPEG animation timing extension
	Name
	Type
	Default
	Description

	source
	number
	N/A
	Provides the index of the media listed by MPEG_media extension that provide animation timing information.

	track
	number
	N/A
	Provides the index of a track of a media object, indicated by source object and listed by MPEG_media extension, which samples contain animation timing information.

JSON Syntax/Schema
	{
 "$schema" : "http://json-schema.org/draft-04/schema",
 "title" : "MPEG_animation_timing extension",
 "type" : "object",
 "description": "glTF extension to specify timing information that allow to synchronized animation with MPEG media",
 "allOf": [{ "$ref": "glTFChildOfRootProperty.schema.json" }],
 "properties" : {
 "source": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of the MPEG media that provides timing information."
 },
 "track": {
 "allOf": [{ "$ref": "glTFid.schema.json" }],
 "description": "The index of a track of the MPEG media that provides timing information."
 }
 },
 "required": ["source"]
}

Processing Model
The processing model could be as follows: when a sample of animation timing track becomes active, the media player loads the sample data into the presentation engine and this triggers the change of the state of glTF 2.0 animation performed by the presentation engine.
Example
	{
 "extensions": {
 "MPEG_media": {
 media: [
 {
 "name": "source 0",
 "alternatives": [
 {
 "mimeType": "application/mp4",
 "uri": "file.mp4",
 "tracks": [
 {
 "track": "#track_ID=1"
 }
]
 }
]
 }
]
 }
 },
 "animations": [
 {
 "name": "Animate all properties of one node with different samplers",
 "channels": [
 {
 "sampler": 0,
 "target": {
 "node": 1,
 "path": "rotation"
 }
 },
 {
 "sampler": 1,
 "target": {
 "node": 1,
 "path": "scale"
 }
 },
],
 "samplers": [
 {
 "input": 4,
 "interpolation": "LINEAR",
 "output": 5
 },
 {
 "input": 4,
 "interpolation": "LINEAR",
 "output": 6
 }
]
 }
 "extensions": {
 "MPEG_animation_timing": {
 "source": 0,
 "track": 0
 }
 }
}

6 [bookmark: _Toc54781846][bookmark: _Toc54782690][bookmark: _Toc57885987]Media Access and Buffer API
[bookmark: _Toc57885988]Media Access API
The Media Access API is a standardized API that is offered by any compliant Media Access Function to the Presentation Engine.
The following methods are offered through this API:
Table 15 – Description of Media Access API
	Method
	State after Success
	Brief Description

	initialize()
	READY
	The Presentation Engine initializes a new media access pipeline. It provides information related to the requested media or metadata. The MAF will setup the pipeline and allocate the buffers, if they have not been allocated by the Presentation Engine.

	startFetching()
	ACTIVE
	Once initialized and in READY state, the Presentation Engine may request the Pipeline to start fetching the requested data.

	stopFetching()
	READY
	The Presentation Engine may request to stop data fetching through this pipeline.

	destroy()
	IDLE
	Finally, the Presentation Engine may request to destroy this pipeline and free any associated resources.

The IDL description of this interface is provided in the following table:
	interface Pipeline {
 readonly attribute Buffer buffers[];
 readonly attribute PipelineState state;
 attribute EventHandler onstatechange;
 void 		initialize(MediaInfo mediaInfo, TimeInfo timeInfo, BufferInfo bufferInfo[]);
 void	startFetching(TimeInfo timeInfo, ViewInfo viewInfo);
 void	stopFetching();
 void	destroy();
};

The defined data types are provided in the following table:
	interface MediaInfo {
	attribute String name;
	attribute AlternativeLocation alternatives;
};
interface AlternativeLocation {
	attribute String mimeType;
	attribute Track tracks[];
	attribute uri;
};
interface Track {
	attribute String track;
	attribute integer id;
	attribute integer bufferId;
};
interface TimeInfo {
	attribute double startTime;
	attribute double timeOffset;
	attribute boolean autoplay;
	attribute boolean loop;
};
interface BufferInfo {
	attribute integer bufferId;
	attribute BufferHandler handler;
	attribute ComponentType componentType;
	attribute SampleType sampleType;
	attribute integer offset;
	attribute integer stride;
	attribute AttributeType attributeType;
};
interface ViewInfo {
	attribute Pose pose;
	attribute Transform objectPosition;
};
Enum AttributeType {"ATTRIB_NORMAL”,”ATTRIB_POSITION”,”ATTRIB_COLOR”, ”ATTRIB_TEXCOORD”,”ATTRIB_INDEX”,”ATTRIB_TANGENT”, ”ATTRIB_WEIGHTS”}

The MAF may use the ViewInfo to optimize the streaming of the requested media, e.g. by adjusting the level of detail (number of polygons/points, texture resolution, …) based on the distance to and orientation of the viewer. The BufferInfo contains information about each Buffer and describes the format of the samples and frames that are stored in that buffer. One ore more tracks from the MediaInfo may feed into the same buffer. The link between the track that provides the actual media and the buffer that will store the output of the pipeline is established through the bufferId attribute.
[bookmark: _Toc44650381][bookmark: _Toc44650546][bookmark: _Toc57885989]Buffer API
The Buffer API is used by the Presentation Engine and the MAF to allocate and control buffers for the exchange of data between the Presentation Engine and the MAF through media pipelines.
The Buffer API offers the following methods:
Table 16 – Description of Buffer API
	Method
	Brief Description

	allocate()
	Allocates a buffer for the data exchange between the MAF and the Presentation Engine.

	writeFrame()
	writes a frame to the buffer.

	readFrame()
	reads a frame from the buffer.

	free()
	Destroys the buffers and frees any resources associated with it.

When allocating a buffer, sufficient information is provided about the buffer configuration. This includes the maximum size of the buffer, the static information in the buffer header, the number of frames in the buffer for circular buffers, and the update rate of the buffer.
The IDL description of the Buffer API interface is provided in the following table:
	interface CircularBuffer {
 readonly attribute Frame frames[];
 readonly attribute count;
 readonly attribute integer read_ptr;
 readonly attributre integer write_ptr;
 readonly attribute decimal updateRate;
 attribute integer headerLength;
 attribute EventHandler onframewrite;
 attribute EventHandler onframeread;
 void allocate(int count);
 void writeFrame(Frame frame);
 Frame readFrame();
 Void free();
};
interface Frame {
 attribute integer index;
 attribute long timestamp;
 attribute integer length;
};

[bookmark: _Toc57884095][bookmark: _Toc57884364][bookmark: _Toc57884650][bookmark: _Toc57884919][bookmark: _Toc57885187][bookmark: _Toc57885456][bookmark: _Toc57885990][bookmark: _Toc54781848][bookmark: _Toc54782692][bookmark: _Toc54781849][bookmark: _Toc54782693][bookmark: _Toc57885991]Scene Processing Model
[bookmark: _Toc57885992]General
This clause describes the scene processing model.
[bookmark: _Scene_Updates][bookmark: _Ref57883694][bookmark: _Toc57885993]Scene Updates
Scene Updates shall be expressed using the JSON Patch protocol as defined in IETF RFC 6902 [RFC6902]. ISOBMFF-based carriage format for JSON patch documents is specified in subclause 8.2. The glTF extensions MPEG_media and MPEG_scene_dynamic shall be used in order to expose the dynamic scene updates using the JSON patch protocol, as described in subclause 5.2.4.
Each update operation shall consist of a JSON Patch document, where all update operations are considered as a single timed transaction. When no node matches the node selection, the update command of this node shall be discarded. When all update commands have been processed or discarded, the scene graph update shall be considered completed.
After successfully performing an update operation, the resulting scene graph shall be consistent, valid, and all references shall be correct. Since glTF 2.0 uses the order of elements for referencing, particular care should be used with update operations that change the order of elements in the graph, such as move and remove operations. The client shall update all references after every successful update operation.
When a JSON Patch document contains a target scene description version, the client shall not perform any updates from the scene description that it is using if the target scene description version does not match the current scene description version.
The fetching of updates and the activation of certain nodes may be triggered by different factors including the following:
· Wallclock time
· Presentation time
· Interaction event
The Presentation Engine parses the scene graph and maintains a representation of the graph in memory. The Presentation Engine needs to know when a certain scene update has to be applied. The update synchronization information can be obtained from the container format for the scene update samples as described in clause 8.2. The scene updates themselves will modify the graph representation in memory and may add new media to the scene. The timing for the newly added or updated media is determined by the metadata in the scene description.
For live presentations, it is expected that presentation of the newly added glTF objects (e.g., new live media and potentially other dynamic objects) included in the scene during the scene updates will be synchronized with the scene presentation timeline via timing information (e.g., timestamps, etc.) included in the corresponding media formats and containers.
[bookmark: _Toc57885994]Carriage Formats
[bookmark: _Toc54782698][bookmark: _Toc54782699][bookmark: _Toc57885995]General
This clause describes the carriage formats related to scene description for MPEG media.
[bookmark: _JSON_Patch_Document][bookmark: _Ref57883625][bookmark: _Toc57885996]JSON Patch Document Carriage Format for Scene Updates
The ISOBMFF format based on ISO/IEC 23001-15 [23001-15] shall be used toward carrying the JSON patch documents for scene updates. The glTF extensions MPEG_media and MPEG_scene_dynamic shall be used in order to expose the dynamic scene updates using the JSON patch protocol, as described in subclauses 5.2.4 and 7.2.
The brand 'scen' shall be used to signal the presence of tracks with the following constraints:
· The track handler type shall be 'meta'.
· The sample entry format shall be 'stxt' and:
· its mime_format field shall be set to application/json-patch+json,
· its content_encoding field shall contain either an empty string or a value allowed in HTTP's Content-Encoding header.
· The content of each sample shall be compliant to JSON patch format as defined in IETF RFC 6902 [RFC6902] based on the MIME type application/json-patch+json. Each sample shall be marked as a sync sample. Samples may have the sample_has_redundancy flag set to 1, in which case ISO/IEC 14496-12 processing is applied as discussed in clause 4.4 of ISO/IEC 23001-15 [23001-15].
Apart from the scene update operations described in IETF RFC 6902, track samples may additionally contain:
· The presentation timestamp identifying the execution time of the scene update transaction, which may correspond to wall clock time for live presentations based on absolute timestamps in UTC or TAI formats.
· An identifier that corresponds to the version of the scene update on which the update transactions shall apply.
· A triggering event identifier (user interaction, event happening in the scene, ...).
These relevant parameters for dynamic scene updates are defined in Table 17.
[bookmark: _Ref53567342]Table 17 – Definitions of relevant attributes for dynamic scene updates
	Name
	Type
	Default
	Description

	version_id
	String
	n/a
	Identifier for the version of the dynamic scene update

	event_id
	String
	n/a
	Identifier for the event triggering the dynamic scene update

	absolute_time_UTC
	DateTime
	n/a
	Wall clock time identifying the execution time of the scene update transaction on the glTF object. The value is denoted in UTC.

	absolute_time_TAI
	DateTime
	n/a
	Wall clock time identifying the execution time of the scene update transaction on the glTF object. The value is denoted in TAI.

The relevant parameters in Table 17 may be signalled as part of the samples based on suitable extensions of ISO/IEC 23001-15.
As per the above syntax, the signalling of the absolute timestamp in both UTC and TAI formats is permitted. While MPEG media formats (e.g., DASH) support UTC-based signalling for live media, UTC format suffers from the issue of leap seconds caused by irregularities in earth’s rotation. In particular, the unpredictability of leap seconds may be problematic for dynamic scenes of time-critical nature that require precise timestamping. The option to signal the absolute timestamp information in TAI format is provided to avoid the leap second problem, since TAI is precisely defined in a manner that is independent of earth’s rotation. It is required that the scene description contains absolute_time_UTC, while signalling of absolute_time_TAI is optional.
A presentation engine may use several methods in order to obtain the wall clock times as used by the JSON patch-based Scene Description update and may synchronize its clock to the one used to generate the Scene Description update. Such methods may include the NTP protocol as defined in IETF RFC 5905, SNTP protocol as defined in IETF RFC 5905 as well as others.
Annex A [bookmark: _Toc54781855][bookmark: _Toc54782702][bookmark: _Toc57884102][bookmark: _Toc57884371][bookmark: _Toc57884657][bookmark: _Toc57884926][bookmark: _Toc57885194][bookmark: _Toc57885463][bookmark: _Toc57885997][bookmark: _Toc57884103][bookmark: _Toc57884372][bookmark: _Toc57884658][bookmark: _Toc57884927][bookmark: _Toc57885195][bookmark: _Toc57885464][bookmark: _Toc57885998][bookmark: _Toc57884104][bookmark: _Toc57884373][bookmark: _Toc57884659][bookmark: _Toc57884928][bookmark: _Toc57885196][bookmark: _Toc57885465][bookmark: _Toc57885999][bookmark: _Toc450303222][bookmark: _Toc9996972][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Toc353342675][bookmark: _Toc57886000]
(normative)

[bookmark: _Toc443470372][bookmark: _Toc450303224][bookmark: _Toc9996979][bookmark: _Toc353342679][bookmark: _Toc57886001]Bibliography
[1]	IETF RFC 5905 (in force) Network Time Protocol Version 4: Protocol and Algorithms Specification
[2]	ISO #######:20##, General title — Part ##: Title of part

6	© ISO JTC1 – All rights reserved
© ISO JTC1 – All rights reserved	5
image1.jpeg

image2.emf

scene

node

camera mesh light

accessor

bufferView

buffer

material

technique texture

samplerimageprogram

shader

animation

skin

MPEG_media

MPEG_texture_video
MPEG_buffer_circular

MPEG_accessor_timed

MPEG_animation_timing

MPEG_audio_spatial

MPEG_scene_dynamic

scene

node

camera

mesh

light

accessor

bufferView

buffer

material

technique texture

sampler

imageprogram

shader

animation

skin

MPEG_media

MPEG_texture_video

MPEG_buffer_circular

MPEG_accessor_timed

MPEG_animation_timing

MPEG_audio_spatial

MPEG_scene_dynamic

image3.emf

Decoder

Media
Retrieval
Engine

Presentation
Engine

Cloud Media Requests
Decoder

Decoder

Local Storage

Manifest,
Index, … Texture Buffer

#1

Metadata
Buffer

Vertex Buffer
#n

Vertex Buffer
#1

Texture Buffer
#n

Texture Buffer
#2

Audio
Decoder RenderingSync

Decoder

Media

Retrieval

Engine

Presentation

Engine

Cloud

Media Requests

Decoder

Decoder

Local Storage

Manifest,

Index, …

Texture Buffer

#1

Metadata

Buffer

Vertex Buffer

#n

Vertex Buffer

#1

Texture Buffer

#n

Texture Buffer

#2

Audio

Decoder

Rendering

Sync

image4.png

image5.emf
glTFPresentation EngineglTFBufferglTFglTF BufferMPEG CircularBufferglTFAccessors andBuffer ViewsMPEGVisual Timed AccessorsMPEG CircularBufferMPEG CircularBufferMPEG CircularBufferMPEG CircularBufferMPEGAudioTimed AccessorsBuffer ViewBuffer ViewMPEG CircularBufferMPEG Track ProcessingTimed Scene ExtensionsTimed Accessor SyncMedia Access Function(MAF)Local StorageMAF-APIScene & UpdatesCloudBuffer APIMedia InfoPipeline and Buffer ManagementMPEG CircularBufferMPEG CircularBufferVideo Decoding EngineAudio Decoding EngineOther data compressor(metadata, haptics)Buffer PipelinesglTF2.0 domainPeer ConnectivityMedia Access Plugin 1DASH ClientMedia Access Plugin 3: Disc AccessMedia Access Plugin 2WebRTC

Microsoft_Visio_Drawing.vsdx
glTF
Presentation Engine
glTF Buffer
glTF
glTF Buffer
MPEG Circular
Buffer

glTF Accessors and Buffer Views
MPEG Visual Timed Accessors
MPEG Circular
Buffer
MPEG Circular
Buffer
MPEG Circular
Buffer
MPEG Circular
Buffer
MPEG Audio Timed Accessors
Buffer View
Buffer View

MPEG Circular
Buffer
MPEG Track Processing
Timed Scene Extensions
Timed Accessor Sync
Media Access Function
(MAF)
Local Storage
MAF-API
Scene & Updates
Cloud
Buffer
API
Media Info
Pipeline and Buffer  Management
MPEG Circular
Buffer
MPEG Circular
Buffer

Video Decoding Engine

Audio Decoding Engine
Other data compressor (metadata, haptics)
Buffer Pipelines
glTF2.0 domain
Peer Connectivity
Media Access Plugin 1 DASH Client
Media Access Plugin 3: Disc Access
Media Access Plugin 2 WebRTC

image6.emf

Texture Track

Occupancy Track

Single Track

HEVC Decoder

HEVC Decoder

Processing

Processing

Interleaved
XYZRGBA Buffer

Buffer

Presentation Engine

Pi
pe

lin
e

#1
Pi
pe

lin
e

#2

Patch Track Patch Decoder

Static Metadata

Geometry Track HEVC Decoder Processing

HEVC Decoder

HEVC Decoder

Patch Decoder

HEVC Decoder

Processing

Demuxer

Processing

Processing

3D
 R

ec
on

st
ru

ct
io

n

Buffer

Buffer

Buffer

Option #1

Option #2

Texture Track

Occupancy Track

Single Track

HEVC Decoder

HEVC Decoder

Processing

Processing

Interleaved

XYZRGBA Buffer

Buffer

Presentation Engine

P

i

p

e

l

i

n

e

#

1

P

i

p

e

l

i

n

e

#

2

Patch Track Patch Decoder

Static Metadata

Geometry Track

HEVC Decoder Processing

HEVC Decoder

HEVC Decoder

Patch Decoder

HEVC Decoder

Processing

Demuxer

Processing

Processing

3

D

R

e

c

o

n

s

t

r

u

c

t

i

o

n

Buffer

Buffer

Buffer

Option #1

Option #2

image7.emf

H
D

R

H
D

R
H

D
R

Read pointer

W
rite pointer

image8.emf

Audio Source

Audio Effect

Audio Listener

Audio Source

Audio Effect

Audio Listener

