[image:]ISO/IEC JTC 1/SC 29/WG 7 N00012

ISO/IEC JTC 1/SC 29/WG 7
MPEG 3D Graphics Coding
Convenorship: AFNOR (France)

Document type:	Output Document

Title:	V-PCC Codec Description

Status:	Approved

Date of document:	2020-12-01

Source:	ISO/IEC JTC 1/SC 29/WG 7

Expected action:	None

Action due date:	None

No. of pages:	73 (with cover page)

Email of Convenor:	marius.preda @ imt . fr

Committee URL:	https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg7

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC 1/SC 29/WG 7 MPEG 3D GRAPHICS CODING

ISO/IEC JTC 1/SC 29/WG 7 N 00012
October 2020, Virtual

	Title
	V-PCC Codec Description

	Source
	WG 7, MPEG 3D Graphics Coding

	Status
	Approved

	Serial Number
	19621

Abstract
ISO/IEC MPEG (JTC 1/SC 29/WG 7) is studying the potential need for standardization of point cloud coding technology with a compression capability that significantly exceeds that of the current approaches and will target to create the standard. The group is working together on this exploration activity in a collaborative effort known as the 3 Dimensional Graphics Team (3DG) to evaluate compression technology designs proposed by their experts in this area.
This document is the Test model Category 2 v12 (TMC2v12) algorithm description. It describes the coding features that are under a coordinated test model study by 3DG as potential point cloud coding technology. The description of encoding strategies used in experiments for the study of the new technology in the TMC2 is also provided.

Ed. Notes (changes to V-PCC TMC2 release 12.0)

-----------Release 2.1-----------
· (m42538): recolouring
· (m42680): lossless compression
· (m42605): entropy coding
· (m42712): auxiliary information coding
· (m42111): Absolute D1 Geometry coding
-----------Release 3.0-----------
· (m43594): Random access video configuration
· (m43720): Hierarchical metadata (new syntax)
· (m43717): Colour smoothing of reconstructed point cloud
· (m43719): Turn off dilation for texture layers
· (m43582): EDD code to reduce the number of missed points
· (m43677): Visual quality improvement
· (m43678): Disable temporal consistency for AI
· (m43597): Auxiliary information coding
· (m43667): Texture and depth padding for lossy compression
· (m43480): Scale and bias metadata
· (m43575): Delta D1
· (m43712): 10-bit profile for video coding
· (m43805): Lossless encoding of colour attributes
· (m43673): Fixing compilation errors on macOS
· (m43579): Missed points in a separate frame
· (m43583): Video-based coding of the occupancy map for lossy compression
-----------Release 4.0-----------
· (m43669): Projection directions from the bounding box
· (m43668): Surface separation for video encoding efficiency
· (m43723): Spatially adaptive one-layer coding tools (pixel interleave)
· (m42767): Visual quality enhancement of reconstructed point clouds via colour smoothing
· (m43721): Colour pre smoothing
· (m44854): Enhancement of delta coding of patch information
· (m42733): Point cloud colour processing – patch colour subsampling
· (m43681): Optimal texture packing
· (m43680): Patch flexible orientation
· (m43501): Low complexity geometry smoothing
· (m44735): Patch level attributes
· (m43658): Spatially adaptive one-layer coding tools
-----------Release 5.0-----------
· (m44853): Improvements to enhanced delta depth coding for V-PCC
· (m45089): Quantized minDepth for patches
· (m44837): Sparse Linear model based Padding method for the texture images
· (m45946): Additional points patch for improved visual quality in lossy coding
· (m44898): Improved V-PCC auxiliary data encoding/decoding (block to patch information removal)
· (m44769): Global patch allocation method
· (m44907): Decoupled Geometry/Texture Packing
· (m43809): A patch axis swap method
· (m44784): Duplicate points avoidance (pruning)
· (m44941): Motion Vector prediction improvement for point cloud coding
· (m46201): Low complexity patch generation method
· (m46038): The geometry grid smoothing to reduce memory consumption
· (m46132): Adaptive selection of occupancy map precision
· (m46238): Delta coding bugfix
· (m46471): Internal YUV to RGB conversion bugfix
· (m46536): V-PCC software improvements
· (m46537): V-PCC Reference software for new committee draft syntax
· (m46585): Layer/Independent patch identification and coding
-----------Release 6.0-----------
· (m44853): Signalling of Patch Data unit
· (m46198): Patch mode signalling
· (m47746): Identified bugs and other issues in the current V-PCC Study of CD Text
· (m47289): Signalling of the projection pane
· (m47419): Encoding per patch 3d transforms
· (m47962): An SEI design for V-PCC
· (m47480): Global patch allocation packing method (tool2)
· (m47326): Patch mode signalling
· (m47688): On patch frame parameter set
· (m46075): Specifying SEI mechanism (tool1)
· (m46475): Patch Segmentation, encoder only (tool1)
· (m46049): Occupancy map coding
· (m47601): Padding SPP (tool2: m46202)
· (m46277): Low complexity colour smoothing
· (m47610): Enhanced algorithm for the selection of projection plane
· (m43494): Additional projection plane
· (m47447): HBF (tool1: m46212)
· (m43680): Patch Flexible Orientation
· (m46095): Point local reconstruction (tool1)
· (m44779): Occupancy map 2d filtering (tool3)
· (m44802): Additional points coding (tool1)
· (m47932): Fix for CWAI config
· (m46418): Tiles for V-PCC(tool4)
· (m47806): Grid Smoothing and colour pre-smoothing
-----------Release 7.0-----------
· (m49223) Proposal for syntax extension for PLR multi-layer
· (m47496) 3D Geometry Padding
· (m47772) Patch Expansion for Improving Visual Quality
· (m47800) Distance-weighted color transfer
· (m47499) Global Tetris Packing
· (m48919) Patch packing using precedence order
· (m47826) Patch precedence for low delay V-PCC decoding
· (m47477) Texture patch for Enhanced Occupancy Map for Depth
· (m47895) Generalized Enhanced Occupancy Map for Depth
· (m47600) Grid-based partitioning for segmentation refinement
· (m47612) Projection in 6 directions for delta D1 mode
· (m49591) Simplified low complexity color smoothing
· (m49592) Single-pass Boundary Points Identification
-----------Release 8.0-----------
· (m51037): Simplification for EOM patch data unit
· (m51043): Hypothetical Reference Decoder for Atlas Data
· (m50851): TMC2 Software v7.1: bugfixes and improvements
· (m50667): Excluding color outlier for color transfer
· (m51003): On attribute smoothing
· (m51004): Signalling pixel deinterleaving flag for each map
· (m51039): Level of Detail (LoD) signalling and usage
· (m51501): Patch border filtering specification
· (m51485): Clipping for depth alignment
· (m50666): CE2.12 report on high gradient points separation
· (m51023): Smoothing considerations for V-PCC
-----------Release 9.0-----------
· (m52225): [V-PCC] report of CE4FE2.30 Simplified signaling for non-inter predicted patch data units
· (m52529): [V-PCC] [specification] Absolute Coding for attributes
· (m52531): [V-PCC][SW] Comments on the V-PCC Reference Software (support of temporal ids)
· (m52200): [V-PCC] Encoder Performance Optimization and Speed up
· (m52482): [V-PCC][New Proposal] Bug fix for low complexity color smoothing
· (m52483): [V-PCC][New Proposal] Reduced memory grid smoothing
· (m52487): [V-PCC][New Proposal] Patch splitting
· (m52705): [V-PCC] Object Annotation of Patches and Volumetric Rectangles in V-PCC
-----------Release 10.0----------
· (m53339): [V-PCC] Tile group observations and issues in the current V-PCC specification
· (m53450): [V-PCC] Multiple tile groups for 3D ROI
· (m53591): [VPCC][software] TMC2 Software v9.1: improvements and evaluations
· (m53651): [V-PCC] Still Profiles for V-PCC
· (m53342): [VPCC] fast secondary color transfer
-----------Release 11.0----------
· (m54604): On lossy occupancy map compression in V-PCC
-----------Release 12.0----------
· (mXXXXX):

Introduction
The Test Model video-based point cloud compression (V-PCC) is a new project that was started after the Call for Proposals (CfP) for Point Cloud Coding [1]. The core encoding and decoding process for V-PCC were inherited from the solution that demonstrated the highest compression efficiency among all proponents as was agreed during the MPEG 119 meeting in Macau.
This document provides a description of the various encoding algorithms and best practices for pre and post processing used in V-PCC.
All the methods listed have been integrated into the main software branch of the mpeg-pcc-tmc2 [4]. The V-PCC solution is video codec agnostic, however, in the current testing procedure, HM [4] HEVC encoder implementation is used for video-based coding.
This document consists of two parts and provides a description of normative coding tools and a set of best practices (non-normative tools description).
Description of coding features and encoding methods
The technical details of each coding method used in V-PCC test model are described in the following sub-sections. The description of the encoding strategies is also provided.

[image:]

[bookmark: _Ref435478086]Figure 1. V-PCC TMC2 encoding structure
At the encoding stage input point, cloud frame is processed in the following manner.
First, the volumetric 3d data must be represented as a set of 3d projections in different components. At the separation, stage image is decomposed into far and near components for geometry and corresponding attributes components, in addition, an occupancy map 2d image is created to indicate parts of an image that shall be used. The 2d projection is composed of independent patches based on geometry characteristics of the input point cloud frame.
Patch generation method, patch packing strategies and padding methods are out of the scope of the standard and current implementations shall be described in the best practices section of this document.
After the patches have been generated and 2d frames for video encoding were created the occupancy map, geometry information, attribute information and the auxiliary information may be compressed.
The reconstructed geometry information may be smoothed outside the encoding loop as a post processing step. Additional smoothing parameters that were used for the smoothing process may be transferred as a supplemental information for the decoding process.	Comment by v00429036: m51032
At the end of the process, the separate bit streams are multiplexed into the output compressed binary file.
The block structure shown in Figure 1 is used for encoding while for decoding the block structure in Figure 2 is used instead.

[image:]

[bookmark: _Ref524690830]Figure 2. V-PCC TMC2 decoding structure
Decoding process starts form demultiplexing of the input compressed the binary file into geometry, attribute, occupancy map and auxiliary information streams.
The auxiliary information stream is entropy coded and the detailed description of coding methods for auxiliary information compression is provided in this document.
Occupancy map is compressed using video compression, and has to be upscaled to the nominal resolution. The nearest neighbour method is applied for upscaling.
Geometry stream is decoded and in combination with occupancy map and auxiliary information, smoothing may applied to reconstruct point cloud geometry information.
Based on the decoded attribute video stream and reconstructed information for smoothed geometry if present, occupancy map and auxiliary information the attributes of the point cloud can be reconstructed. After attribute reconstruction stage additional attribute smoothing method is used for point cloud refinement.

Point Cloud Representation in V-PCC
Each point cloud frame represents a dataset of points within a 3D volumetric space that has unique coordinates and attributes. An example of a point cloud frame is shown in Figure 3.
[image: D:\IPR_and_Patents\PCC_for_MPEG\Cat2\AdaptiveProjectionBoxOrientation\Longdress_3D_1051_BB.PNG]
[bookmark: _Ref524691082][bookmark: _Hlk23841140]Figure 3. Point cloud sample image (1 frame)

The reconstruction process for proposed pipeline elements is described on Figure 4 starting form the atlas information and adding the occupancy map, the geometry and the attributes information to the reconstruction process.

[image:] [image:] [image:] [image:]
a)				b)			c)			d)
[bookmark: _Ref24544946]Figure 4. Point cloud reconstruction process: a – atlas; b – atlas and occupancy map; c – atlas, occupancy map and geometry, d – atlas, occupancy map, geometry and attribute

[bookmark: _Hlk26959360][bookmark: _Ref524708032]Patch description
The patch in the V-PCC notation is a collection of information that represents a 3d bounding box of the point cloud and associated geometry and attribute description along with the atlas information that is required to reconstruct the 3d point positions and their corresponding attributes from the 2d projections. The graphic representation of the patch is provided on Figure 5.

[image:]	[image:]
a) 3d point cloud domain				b) 2d projection domain
[bookmark: _Ref23856275]Figure 5. Patch description and associated patch information for atlas data

Patch axis orientation (tangent, bitangent, normal axis) depends on the projection plane index (PduProjectionPlane), and patch projection mode. It should be noted that any side of the bounding box and additional 45 degree diagonal projections may be a projection plane. The origin of the patch bounding box is the nearest vertex to the point cloud coordinates origin point O (see Figure 5 a). The projection image is divided into tile groups. The origin point of the patch projection is the nearest point to the patch tile group origin point O (see Figure 5 b).
Tile Group partitioning of auxiliary video RAW and EOM patches
In the current V-PCC specification and when tile groups are used, the syntax does not seem to properly handle RAW and EOM patches that need to be placed in auxiliary videos. One simple way to handle this is to disallow such patches when tile groups are used, however that would considerably limit the functionality of V-PCC. An alternative could be expecting the same partitioning in the auxiliary video as that of the regular video that is associated with the atlas. In that case, however, there may be considerable waste in the auxiliary video data if not all tile groups utilize such partitions, while if tile groups are combined together as a secondary process and the size of the tile group auxiliary video streams was not originally properly constrained, that would imply that the location of those patches may need to be updated and such streams may need to be recreated and reencoded during this secondary process.
We propose a much simpler alternative. Instead of replicating the same partitioning in the auxiliary video as the one used for the atlas groups, we only allow auxiliary video tile groups to stack vertically. Given that unlike natural images, tiling is only utilized here for permitting some form of partitioning and parallelization and has no implications to image reconstruction quality, this makes it much easier to maintain and process such data. In such scenario, the width of all auxiliary video tile groups is expected and required to be the same, which could commonly be easily enforced in the encoder. In situations when the combination is done as a secondary process, it is much simpler to pad horizontally any auxiliary video tile groups that are of a smaller width than the maximum width of all original auxiliary video tile groups prior to such padding process. In video specifications that also support tiles, padding itself could be done using such tiling mechanisms.
After discussions with other V-PCC editors, and to also assist with scaling and interpretation of the video sub-bitstreams, a tile width parameter is also introduced that is also common for all auxiliary tiles. Furthermore, we permit a zero sized auxiliary tile group so as to better handle cases where we may wish to not add any RAW or EOM patches in an auxiliary video associated with a tile group.
Tile Group overlapping
We noticed that in the current V-PCC specification the constraints for afti_top_left_tile_idx[i] and afti_bottom_right_tile_idx_delta[i] do not seem adequate enough so as to avoid collisions and overlapping between two tile groups. One constraint that exists in the specification requires that the value of afti_top_left_tile_idx[i] shall not be equal to the value of afti_top_left_tile_idx[j] for any i not equal to j, which only guarantees that two tile groups do not overlap starting at the top-left corner of both of these partitions.
It should be a requirement for bitstream conformance that a tile group does not overlap with any partition that is associated with any other tile group in the atlas. This could be done by either including such a sentence in the specification, or by deriving the top-left and bottom right tile/partition coordinates of a tile group, TopLeftTileColumn[i], TopLeftTileRow[i], BottomRightTileColumn[i], and BottomRightTileRow[i] and specifying that there should not be any tile group j that satisfies the following properties:

TopLeftTileColumn[i] <= TopLeftTileColumn[j] <= BottomRightTileColumn[i]
or
TopLeftTileRow[i] <= TopLeftTileRow[j] <= BottomRightTileRow[i]

Tile Group partition associations
It is currently possible to have the value of afti_bottom_right_tile_idx_delta[i] correspond to a tile value that is in column that is on the left from the column that corresponds to the value of afti_top_left_tile_idx[i]. That seems confusing and wasteful especially since we permit only rectangular tile groups. We resolve this problem and also make our syntax a bit more efficient by allowing afti_bottom_right_tile_idx_delta[i] to only point to tiles/partitions that are on the right of afti_top_left_tile_idx[i] and by coding this element using a ue(v) mode.

TopLeftTileColumn[i] = afti_top_left_tile_idx[i] % (afti_num_tile_columns_minus1 + 1)
	TopLeftTileRow[i] = afti_top_left_tile_idx[i] / (afti_num_tile_columns_minus1 + 1)	
remainingTileColumns = afti_num_tile_columns_minus1 + 1 – TopLeftTileColumn[i]
	botRightTileColumnOffset = afti_bottom_right_tile_idx_delta[i] % remainingTileColumns
botRightTileRowOffset = afti_bottom_right_tile_idx_delta[i] / remainingTileColumns
	BottomRightTileColumn[i] = TopLeftTileColumn[i] + botRightTileColumnOffset
	BottomRightTileRow[i] = TopLeftTileRow[i] + botRightTileRowOffset

We should highlight that another bug that we noticed here is that the above variables were computed given afti_num_partition_rows_minus1 and not afti_num_tile_columns_minus1.

Tile Group rearrangement
The current specification allows tile groups to be rearranged in a different order from how they are defined. We believe that this functionality is completely redundant, while it adds extra complexity in the encoder and decoder for no good reason. Tile groups are defined with an initial order and then rearranged, making it necessary to also rearrange their associated elements such as TopLeftTileColumn[i], TopLeftTileRow[i], BottomRightTileColumn[i], and BottomRightTileRow[i] etc, based on this final order.
We assert that this functionality is unecessary and that in fact it could be completely emulated in our current specification by slightly modifying the tile group assignment syntax, i.e. by removing the conditional of "if (i>0)" prior to the element afti_top_left_tile_idx[i], and by intelligently assigning tile groups according to our desirable order. That is, if we wanted to define tile groups using an order starting from the right bottom corner to the left top corner, we could do so by simply specifying these tile groups in that order when we assign them. There is no need to again rearrange them with any additional syntax. This makes our syntax cleaner and eliminates the need for any remapping of any assigned parameters after reordering the tile groups.
Handling of tile groups during decoding and reconstruction
To avoid any issues with how tile groups should be handled we recommend both decoding and reconstruction processes to operate on tile/tile groups and not atlases. We would recommend removing section 8.5.6 and keeping patches of different tile groups separate. The decoding process and essential reconstruction steps, except smoothing processes, can be then described per tile group. Since though the video data might not utilize the same partitions, section 8.5.6 should be replaced with a section that "repartitions" the decoded video data into new virtual partitions based on the partitioning defined by atlas tile groups. These virtual video partitions are the ones used to extract the patch information during reconstruction. Scaling of video data is still derived based on the nominal atlas resolution and the resolution of the compressed video data, and that step is applied prior to the partitioning process. However, it might also be beneficial to define smoothing processes, especially if they are utilizing patch information, also in tile group domain.
It is recommended converting the arrays BlockToPatchMap, BlockToPatchMapWidth, and BlockToPatchMapHeight, in section 8.5.5 as local arrays (first letter converted to lower case) since they are expected to be outputs to that process and assign them to a three dimensional array when the process called, where the the first dimension is assigned to the tile group index. Alternatively, these could be converted to three dimensional arrays within section 8.5.5. This will remove the ambiguity of the relationship of these arrays with a tile group.

The patch information is generated per each point cloud frame unless the information is considered static, in this case the atlas information shall be generated only for the key (IRAP) pcc frames.
Patch Segmentation
The patch generation process decomposes the point cloud frame by converting 3d samples to 2d samples on a given projection plane using a strategy that provides the best compression. In TMC2v0, patch generation process aims at decomposing the point cloud into a minimum number of patches with smooth boundaries, while also minimizing reconstruction error.

[image:]

Figure 6. Point cloud sample image (1 frame)
At the initial stage, a normal per each point is estimated according to [2]. The tangent plane and it's corresponding normal are defined per each point, based on the point’s nearest neighbours within a predefined search distance. A K-D tree is used to separate the data and find neighbours in the vicinity of a point and a barycenter of that set of points is used to define the normal. The barycenter c is computed as follows:

The normal is estimated from eigen decomposition for the defined point cloud as:

Based on this information each point is associated with a corresponding plane of a point cloud bounding box. Each plane is defined by a corresponding normalwith values:
· (1.0, 0.0, 0.0),
· (0.0, 1.0, 0.0),
· (0.0, 0.0, 1.0),
· (-1.0, 0.0, 0.0),
· (0.0, -1.0, 0.0),
· (0.0, 0.0, -1.0).
More precisely, each point is associated with the plane that has the closest normal (i.e., maximizes the dot product of the point normal and the plane normal).

The sign of the normal is defined depending on the point’s position in relation to the “center”.
The projection estimation description is demonstrated in Figure 7.

[image: D:\IPR_and_Patents\PCC_for_MPEG\Cat2\AdaptiveProjectionBoxOrientation\Longdress_3D_1051_proj.PNG]
[bookmark: _Ref524707710]Figure 7. Point cloud projected onto “bounded-box” planes
The initial clustering is then refined by iteratively updating the clustered index associated with each point based on the point’s normal and the cluster indices of the point’s nearest neighbours.
At the following step the points are clustered based on the closeness of the normals and the distance between points in Euclidian space. Final Patches are created from the clusters by grouping similar clusters. By adding the weight to each plane the patches are refined when the Initial Segmentation process decides the projection plane, in order to increase the size of the patch in the front or back. The weight values are calculated in the first frame per GOF. It is determined according to the ratio of projected points when projecting all points to the three planes (XY,YZ, ZX).	Comment by Vladyslav Zakharchenko [2]: m47610
The refine segmentation process provides a minimum number of connected components (patches) for a given number of points in the point cloud frame.
[image: C:\Users\e.faramarzi\Pictures\refineSegmentationGrid.png]
Figure 8. Refine segmentation procedure

The process of segmentation refinement may be simplified by adding a grid based constraint to the neighbouring points search that would allow complexity and memory bandwith reduction. And is implemented in a following way.	Comment by v00429036: m47600
1. Partition the (x,y,z) geometry coordinate space into voxels. For example, for a 10-bit point cloud using a voxel size of 8, the number of voxels along each coordinate would be 1024 / 8 = 128 and so the total number of voxels in the coordinate space would be .
2. Find filledVoxels, the filled voxels in the grid which are voxels having at least one point inside.
3. Calculate a voxScoreSmooth score for each filled voxel related to each projection plane by counting the number of points in the voxel which are clustered to that projection plane by the initial segmentation process.
4. Find nnFilledVoxels, the nearest-neighboring filled voxels of each filled voxel (within a search radius and/or limited to a maximum number of neighboring voxels) using the KD-Tree partitioning.
5. Calculate a scoreSmooth score for each filled voxel by adding up the voxScoreSmooth values of the neighboring filled voxels (each voxel is also found as a neighboring voxel of itself by TMC2’s KD-Tree):

where the is the projection plane index and is the index of the voxel containing the i-th point. Hence, the scoreSmooth score would be the same for all points inside a voxel.
6. Calculate a scoreNormal score for each point related to each projected plane:

where is the normal vector of the i-th point, and is the vector of the p-th projection plane.
7. Calculate the final score for each point related to each projection plane as the weighted linear combination of the two scores, as shown below:

where .
[ATA: may be need to describe briefly about]
8. Cluster each point to the projection plane having the highest final score as calculated at 7.
9. Repeat the above steps for a few iterations.

[image: C:\Users\e.faramarzi\Pictures\refineSegmentationGrid.png]
Figure 9. Grid-based refine segmentation procedure

Additionally, the maximum size of the patch may be constrained in order to achieve efficient compact packing process.
Following the generation of a new patch, if the relative dimension of the patch along the tangential and/or bitangential axes is greater than maxPatchSize, then the patch is split along that direction into two parts—the first part consisting of points from the smaller (relative to the initial) patch and the second part consisting of points removed from the patch. While the newly generated smaller patch is added to the final list of patches, the points from the remaining part (which were removed due to splitting) are added back to a list of points not belonging to any patches. In subsequent iterations, these points along with other points that do not belong to any patch are reconsidered for the generation of new patches. The patch-splitting process in 2D space is shown in the flowchart in

Figure 9. The process of splitting patches.

[bookmark: _Ref27749210]Patch Segmentation with additional projection planes
Additional projection planes may be optionally introduced in order to improve the visual, quality of the coded point clouds. In this case each plane is defined by a corresponding normalwith values 	Comment by Vladyslav Zakharchenko [2]: m43494
[ATA: listed vectors are for rotation along Y axis, may also need to add rotation around X and Z as well?]:
· [bookmark: _Hlk26973111](1.0, 0.0, 0.0),
· (0.0, 1.0, 0.0),
· (0.0, 0.0, 1.0),
· (-1.0, 0.0, 0.0),
· (0.0, -1.0, 0.0),
· (0.0, 0.0, -1.0).
·
·
·
·
[image:]
Figure 10. Additional projection plane
In the coordination transform process, point is rotated, shifted and quantized. And u, v, d on a patch are calculated. Yellow line is additional projection plane.

[image:]
[bookmark: _Ref518467095]Figure 11 3D-2D conversion of 45 degree projection plane{(x,y) to (u,d)}
In aspect of decoding process, coordination inverse transform is applied to patch that belongs to one of the additional projection planes. The coordinate transform is lossless because point cloud for TMC2 had been previously voxelized.
[image:]
[bookmark: _Ref518660134]
Figure 12 2D-3D conversion of 45 degree projection plane{(u,d) to (x,y)}

In low complexity scheme, the first block computes the scoreSmooth values for all points without explicit iterations over the projection planes and explicit comparisons between the partition value of each point and those of its neighbouring points. Instead, the partition values are used to directly address the scoreSmooth value of a plane since the partition indices are integer numbers between 0 and numPlanes -1. Then, scoreSmoothVec is used in the next block to compute the overall score for each point.	Comment by Vladyslav Zakharchenko [2]: m46201
Using this approach, the number of iterations would be:
Number of iterations = numIters × numPoints × (numPlanes + numNeighbors)
The attribute (colour) values of the points near the patch boundaries in the point cloud are smoothed prior to mapping the point cloud onto the 2D attribute video frames.
Figure 13 shows the modification to the TMC2 encoder with an additional processing block for colour smoothing of the point cloud prior to texture video generation.
[ATA: should geometry and color smoothing become a post processing operation. Also color transfer process after smoothing is missing?]
[image: BlockDiagam]
[bookmark: _Ref533091822]Figure 13. Encoder with additional colour smoothing block.

As an alternative to kd-tree based process for colour smoothing a low complexity method that is based on a 3d super cells may be used. Herein, all points are grouped into 3D cells and then the color centroid for each cell is computed. 	Comment by Vladyslav Zakharchenko [2]: m46277
The proposed method is performed through the following steps:
· The decoded points are split into a 3D grid.
· The color centroid of the points in each cell is computed.
· For each boundary point, the corresponding cell that contains the query point is identified.
· Depending on the position of the query point in the current cell, seven neighboring cells are selected.
· If color variation in a cell is too much, that cell will be excluded from smoothing.
· If the difference between the color centroid of the current cell and the color centroid of a neighboring cell is greater than a threshold, that neighboring cell will be excluded from smoothing.
· A tri-linear filter is applied to the color centroid of the current cell and the remaining neighboring cells.
· If the difference between the color of the query point and the smoothed color is larger than a threshold, the color of the query point will be replaced by the smooth color.

[image: CSLC_flow]
Figure 14. Process flow for low complexity color smoothing.
Furthermore, if the variation in luma values within a cell is greater than a threshold, no color smoothing will be performed in the cell. Since the variation in each cell is already calculated, in the proposed method, the local entropy in each cell will not be calculated. Once local entropy is removed, the value of the threshold for luma variation in cells will be adjusted to make up for the removal of local entropy.	Comment by v00429036: m49591
[image:]
Figure 15. Process flow for the simplified low complexity color smoothing.
When the additional points raw patch is stored in the same geometry video frame along with the regular patches, the geometry video frame is encoded as 10-bits although the maximum depth value in the regular patches is only 255 because the geometry coordinate values of the points in the additional points patch are 10-bits. Furthermore, in order to preserve the fidelity of original 8-bit values in the regular patches due to quantization losses during lossy compression, the depth values in the regular patches are scaled by 4 (left-shifted by 2) before storing them in the geometry video frame. At the decoder, the depth values retrieved from the regular patches in the decoded geometry frames are scaled back by right-shifting by 2 before adding the points to the point cloud. 	Comment by Vladyslav Zakharchenko [2]: m45946	Comment by Tabatabai, Ali: May be instead of additional we should use raw but then what about lossy in that case? May be lossy should read lossless, instead? 	Comment by Vladyslav Zakharchenko [2]: Good catch
When the lossy additional points patch is stored in a separate video frame, the regular patches in the geometry video frames are encoded as 8-bits, and the separate video frame is encoded as 10-bits.
Because of this difference of how the values from the regular patches should be retrieved and processed in the presence of lossy additional points patch, the decoder needs to be aware of the appropriate conditions. These conditions can be either directly signalled to the decoder or inferred at the decoder from other associated signals.
Patch Orientation in 3D space	Comment by Vladyslav Zakharchenko [2]: m47419
The orientation of a patch may be computed such as the rotated points project better on local coordinate system planes. At the decoder side, after decoding the video planes (D0) for each patch, a set of 3D points is obtained. Then, this set is transformed by a local scale, a local rotation and a local translation (encoded as metadata per patch). The result will be the set of 3D points in the global coordinate system. After decoding all the patches and creating, therefore, the 3D point cloud object, it may be possible to apply a global 3D transform (encoded as metadata per frame, or selection of patches within the frame). This last transform is very useful for patches that represent objects that translate (and/or rotate) in the scene.
The effects of the two transforms are cumulated: the first one at the patch level (reconstruct the 3D points belonging to a patch in a local coordinates and then transform them in the world coordinate), the second one at the object level (this is common to all the points of the object and encodes the global translation, orientation, scale).
The effect of the first transformation is formulated as follows:
· If a point Ppatch belongs to the patch Phi then its coordinates are obtained by first decoding the D0 and then multiplying the result with the 3D transform associated with Phi
· Ppatch = Ti * Pdecoded
The effect of the second transformation is formulated as follows:
· For all points:
o Pfinal = GT * Ppatch (with GT global transform – same for all patches)
The cumulative effect is: Pfinal = GT * Ppatch = GT * Ti * Pdecoded = (GT * Ti)* Pdecoded
The center of rotation for the patches in a 3d space would be computed as the center of the bounding box of each patch, using the following patch information:
· 3d coordinates of the patch bounding box (x, y, z), is for example:
· u1, or pdu_3d_shift_tangent_axis,
· v1, or pdu_3d_shift_bitangent_axis,
· d1, or pdu_3d_shift_normal_axis,
· 3d size of the bounding box (width, height an depth), is for example:
· size_u0, or pdu_2d_delta_size_u,
· size_v0, or pdu_2d_delta_size_v,
· geometry depth, max_depth.
In particular, the center of the bounding box of the patch could be computed as follows:
center_normal_axis = pdu_3d_shift_normal_axis + max_depth / 2
center_tangent_axis = pdu_3d_shift_normal_axis + pdu_2d_delta_size_u / 2
center_bitangent_axis = pdu_3d_shift_normal_axis + pdu_2d_delta_size_v / 2

The rotation of the patch in a 3d space could be defined using quaternions as:
4 tuple of real numbers: w, x, y, z

same information on axis angles but in a different form
	[image:]
	

The quaternions have the following characteristics and expressions:
	Unit quaternion	
	

	
	

Multiplication

Quaternion and rotation
	[image:]
	
	

If is a unit quaternion and
then results in p rotating about r by .

If and are unit quaternion the combined rotaton of first rotating by and then by is equivalent to:

Quaternion and rotation matrix

Patch Packing
Patch packing strategy
The patch packing process tries to generate the geometry and texture maps, by appropriately considering the generated patches from section 2.1.1, and by trying to efficiently place the geometry or texture data that correspond to each patch onto a 2D grid of size WxH. Such placement also accounts for a used-defined minimum size block TxT, which specifies the minimum distance between distinct patches as placed on this 2D grid. The corresponding value (T) is encoded and sent to the decoder.
[image:]		[image:]

(a) 				 (b)
Figure16. Example of projected geometry (a) and texture (b) images
The packing method in TMC 2 uses an exhaustive search algorithm as follows:
Initially, patches are placed on a 2D grid in a manner that would guarantee non-overlapping insertion. Samples belonging to a patch (rounded to a value that is a multiple of T) are considered as occupied blocks.
In addition, a safeguard between adjacent patches is forced to distance of at least one block being multiple of T.
Patches are processed in an orderly manner, based on the patch index list. Each patch from the list is iteratively placed on the grid. The grid resolution depends on the original point cloud size and its width (W) and height (H) are transmitted to the decoder.
In the case that there is no empty space available for the next patch the height value of the grid is initially doubled and the insertion of this patch is evaluated again. If the insertion of all patches is successful, then the height is trimmed to the minimum needed value. However, this value is not allowed to be set lower than the originally specified value in the encoder.
The final values for W and H correspond to the frame resolution that is used to encode the texture and geometry video signals using the appropriate video codec.
Patch packing using precedence order	Comment by v00429036: m48919
The RD performance when reorganizing the patches to use the chosen precedence is similar to original method. However, with the packing precedence rearrangement, decoder does not need to reorder the patches. Furthermore, the method allows to decode the larger patches instantly. The patch precedence is indicated by a binary flag in the bitstream.
[image:]

Figure17. Example of patch packing, top to bottom - using block to patch information; using patch order; using patch precedence information
Patch flexible orientation
In order to achieve the compact patch packing on 2d surface flexible patch orientation is allowed. 8 different orientation models are allowed: patch rotated by 0, 90, 180 and 270 degrees, and the mirror image of all those patches. The decoder needs to receive the orientation for the patch to read out the values in the correct order.
[image:]
[bookmark: _Ref533095135]Figure18. Various patch orientation modes
Figure18 provides an example of different orientations.
In a current test model and CD document, methods that correspond to rotation #0 (original/default) and rotation #8 (axis swap) are used by default, and additional 6 patch rotations could be used in the advanced packing algorithms.	Comment by Vladyslav Zakharchenko [2]: m43809	Comment by Vladyslav Zakharchenko [2]: m43680
Packing for 3D ROI
The 3D ROI packing process creates multiple tile groups per 3D ROI and perform a tile group conformant packing, i.e. requiring patches to be within their associated tile group boundaries and in case of an inter patch, to refer to matched patches from the same tile group.
A simple extension to this approach of mapping 3D ROIs into tile groups rather than tiles will not work for the following reasons:
· The generated tile groups may result in a non-rectangular shape. That is since tiles are assigned to a tile group in tile scan order and on demand, it could generate non-rectangular tile groups (see partition 2, in Fig. 1 below).

[image:]Fig. 1 3D ROI to 2D tile mapping (from [1])
· The matching process for inter patches may violate the requirement that patches could only have matches with patches from the same tile group address and not from patches in other tile groups

Decoupled geometry/attribute packing	Comment by Vladyslav Zakharchenko [2]: m44907
Under certain conditions, a method for signalling the decoupled packing strategy can be used and the extra metadata used for independent packing. Packing Strategy Flag introduced by dividing the 8-bit codeword into two 4-bit codewords. The 4 MSB’s are related to the geometry, while the 4 LSB’s are related to texture. If the packing strategy for texture is different than the packing strategy for geometry, then extra metadata needs to be sent for each patch to indicate the position of the patch in the texture canvas. The patch is assumed to be of the same size, but the texture can be in a different location (U0 and V0) and a different orientation.
Push-Pull background filling
For texture, we may have a different background filling than the one for the geometry based on dilation. The common push-pull algorithm, suited for mip-map texture used in the conventional graphics pipeline. The push-pull algorithm creates a multiresolution representation of the canvas image, and fill in the background pixels with pixel values from lower levels. Figure19 provides an example of background filling.
[image:]
[bookmark: _Ref533093488]Figure19. Attribute background filling method
Smoothed PushPull	Comment by Vladyslav Zakharchenko [2]: m46202
The method is based on the Push-pull background filling and operates as follows: at the i-th LoD, the inter-patch area of the i-th LoD image is furthered smoothed out to reduce the entropy or energy between adjacent pixels. This will in turn result in better padding in images of lower level of details (higher resolutions).

[image: C:\Users\e.faramarzi\Desktop\longdress_pushpull_minSize4.bmp] 		[image: C:\Users\e.faramarzi\Desktop\longdress_pushpull_new.bmp]
Figure 20. Attribute background filling method using PP (left) and SPP (right)
Sparse Linear model based padding	Comment by Vladyslav Zakharchenko [2]: m44837
The Sparse Linear Model (SLM) based padding is based on the sparse linear model and helps to create a smoother transition between patches than the original method. The algorithm of this process is as follows:

· Let be the attribute associated with the pixel at the location (i,j), and with the full resolution occupancy . is equal to 1 if the pixel is inside a point cloud patch, i.e. is a full pixel, and 0 if not, i.e. is an empty pixel.
· Let be the set of empty pixels, the set of full pixels, and the set of all pixels.
· Let be the set of neighbouring pixels of the pixel

· We formulate the padding as a minimization problem, which tries to find the values of empty pixels E such that the obtained padded image is as smooth as possible. More precisely, we would like to find the colours , such that the following cost function is minimized:

where is the number of available neighbours of the pixel . For interior pixels, equals 4. For pixels on the boundary of the image is lower than 4.

[image: ../../Documents/padded06.jpg]
Figure 21. Attribute background filling method using SLM
Harmonic Background Filling 	Comment by Vladyslav Zakharchenko [2]: m46212
Harmonic Background Filling is utilizing the multi-resolution representation from push-pull with the sparse linear optimization model. This method is based on the texture diffusion technique for gutter pixels in UV maps.
The system is defined using a linear model and the system is optimized its solution on a multi-resolution framework. It is defined as a 7-point Laplacian with Neumann constraints, but solved as linear system using Gauss-Seidel relaxation while initializing the solution from lower dimension representation.
[image:]
Figure 22. 7-point Laplacian
The occupancy map defines the positions that has to be updated, and also guides the multi-resolution creation. In the case of dyadic sub-sampling of the higher resolution image, the occupied value is carried over to the lower resolution if any of its corresponding 4 positions in high-resolution are occupied.
The linear system is solved for lower resolution, and the solution is replicated to the higher resolution as an initial step for the optimization problem. The solution is suggested for the linear system using Gauss-Seidel relaxation using 10-pass. The optimization can be spatial and temporal as well.
[image:]
Figure 23. Attribute background filling method using HBF

Patch Expansion for Improving Visual Quality	Comment by v00429036: m47772
When connecting points for a current patch, the cluster index of each point is checked to decide a point belonging to the patch. If a point is associated with a cluster index different to the current patch, this point is considered as another patch. These points are usually boundary points which could be eventually missed after patch generation, and results in cracks at boundary.
In order to reduce missed points, boundary points of a patch are forced to be added in this patch. When connecting points form a patch, if a point of different cluster index is encountered, this point is decided at the patch’s boundary, and added in this patch. In this way, patches are expanded around their boundary. In addition, some points are repeatedly added in different patches, which could reduce the possibility of data loss.

[image:]
Figure 24. Patch expansion method
[bookmark: _Ref18677442]Temporary Consistent Patch Order Adjustment
In order to generate video compression friendly packing result, a temporary consistent patch order adjustment method is used to reorder the patches in the frame generated after the projection stage. In a GOF, for the first frame, all the patches are sorted in descending order based on patch size, first comparing the vertical size (sizeV), if the values for sizeV are the same, then horizontal size (sizeU) is considered, in case the values of sizeV and sizeU are exactly the same then patches are sorted by patch index:

operator<(const PCCPatch &lhs, const PCCPatch &rhs) {
	return lhs.sizeV_ != rhs.sizeV_ ? lhs.sizeV_ > rhs.sizeV_
		: (lhs.sizeU_ != rhs.sizeU_ ? lhs.sizeU_ > rhs.sizeU_ : lhs.index_ < rhs.index_);

For the remaining GOF-1 frames, the temporary consistent patch order adjustment method is used.

The method initializes the patch list similar to the implementation for the first frame in the GOF.
Then, based on the patch order in the previous frame, search matched patch in the current frame:

Iterate each patch in previous frame, refPatch[i] is the ith patch in previous frame, for refPatch[i], iterate each patch in current frame, patch[j] is the jth unmatched patch in current frame, compute the coefficient of correlation Qij between refPatch[i] and patch[j], refPatch[i] and patch[j] have the same projection plane. In order to speed up search matched patch procedure, the patch in 3d space will be projected into 2d space, and the IOU(Intersection Over Union) between two patches can be regarded as Qij. So one possible expression of Qij is:

 is the bounding box of the region that refPatch[i] is projected in 2d space. is the bounding box of the region that patch[j] is projected in 2d space. is the intersection area between refRect[i] and Rect[j]. is the union area between refRect[i] and Rect[j].

Qik is the maximum IOU between refPatch[i] and patch[j],j=0,1,..N. k is the corresponding index of maximum IOU. If Qik is larger than THR which is a threshold, patch[k] would be regarded as the best-matched patch in the current frame, set patch[k].bestMatchIndex = i, and put patch[k] into the reorderPatch buffer. Otherwise, we can consider there is no matched patch found in the current frame for refPatch[i].

After iterating all patches in the previous frame, reorderPatch buffer will store all matched patches, and follow the order of the patches in the previous frame. And other unmatched patches in the current frame will be stored at the end of the reorderPatch buffer later.
Global patch allocation	Comment by Vladyslav Zakharchenko [2]: m44769
The global patch allocation (GPA) packing method is utilized to improve the temporally consistent packing within a group of frames. It places each global matched patch in the same location in a corresponding map frame. The global matched patches can be obtained using IoU matching strategy. As a result of this method, all the global matched patches have the same location in the occupancy map in a group of frames.

Figure 25. Global patch allocation diagram
In order to make the global matched patches have the same location in the occupancy map in the group of frames, the proposed method is described as follows. First, compute the union patch of global matched patches in each frame. Suppose there are GlobalPatchCount global matched patches in a group of frames. and all global matched patches are allocated at the beginning of the patch buffers in each frame. unionPatch buffer saves the union of the global matched patch occupancy map in each frame.
Second, using a test model packing method to packing all the patches in unionPatch to get global occupancy map. The u0 and v0 can be obtained for each patch in unionPatch. The global occupancy map will constraint the location of all global matched patches in each frame.
Third, using the global occupancy map to allocate all global matched patches first, then allocate other non-global matched patches in each frame. Figure 11 is a diagram of the GPA method.

 Figure 26. Diagram of GPA method

When the object in the sequence has slow motion, the GPA method can process a group of frames (eg: 32 frames). When the pcc sequence has a fast motion, the unionPatch in global occupancy map would be much larger than the real occupancy map of the global matched patches in each frame. Hence dividing the group of frames into several subcontexts would be a better way to get a more compact packing result for each subcontext.
The patch order used by the GPA technique is different from the patch order used to compress the patch auxiliary data. As the decoder relies on the patch order to reconstruct the block-to-patch information, the decoder might deduce false block-to-patch information, to overcome this issue following constraints should be applied to patch order, by updating the best match index per each patch.	Comment by Vladyslav Zakharchenko [2]: m47480
[image:]
Figure 27 patch ordering of various patches in one GPA point cloud frame group

Global Tetris Packing	Comment by v00429036: m47499
The proposed method identifies temporal correspondence between patches, and creates a “patch volume”, generated by the superposition of aligned occupancy maps. Then the size and length of those patch volumes are considered during the patch placement. Furthermore, the patch order of matched frames is maintained, to ensure that the block2patch condition is not violated. The algorithm consists of the following steps:
1. Perform regular patch matching (see 2.1.4.10)
1. Create a “patch volume” (doubled link list) with matched patches (forward and backward), see Figure 28
1. Calculate the accumulated occupancy map and the weight of each patch according to the matched patches
2. From back to front, initialize the last frame with weight 1 if it has a backward matched patch, otherwise initialize with 0
2. For the other frames, perform the same initialization and add 1 + weight of the forward matched patch
1. For the first frame, sort the list according to the weights, then according to the sizes and place the patches
1. For the subsequent frames, place matched patches first using same order as previous frame (to avoid block2Patch condition violation), then sort the rest of the patches according to their respective weights and then sizes. Notice that the bounding boxes do not have to have the same (U0, V0), since the patches are aligned during the weight generation process.
[image:]
[bookmark: _Ref18677625]Figure 28 patch volume (double-linked list) creation process

Image generation
The image generation process exploits the 3D to 2D mapping computed during the packing process to store the geometry and texture of the point cloud as images. In order to better handle the case of multiple points being projected to the same sample, each patch is projected onto two images, referred to as layers. More precisely, let H(u,v) be the set of points of the current patch that get projected to the same sample (u, v).
[image: D:\PointCloudCompresstion\122_SanDiego\3DG\ouput_docs\pred_structure.png]

 Figure 29. Example of layer projection structure

The first layer, also called the near layer, stores the point of H(u,v) with the lowest depth D0. The second layer, referred to as the far layer, captures the point of H(u,v) with the highest depth within the interval [D0, D0+], where is a user-defined parameter that describes the surface thickness.
The surface separation method is applied to prevent the mixing of different surfaces in the connected components when there is a stack of multiple different surfaces in that connected component. One of the methods to separate surfaces is to use differences of MSE values of points in the RGB colour domain:
Separate patch if,

Where , , are attribute values belonging to T0 and , , are the attribute values belonging to T1.

[image:]
Figure 30. Stacked surface patch separation

Geometry image generation
Geometry is represented by a frame of WxH in YUV420-8bit format, note that the geometry video is monochromatic.
There are two methods to code point cloud geometry information:
Differential coding method
The point cloud geometry reconstruction process exploits the occupancy map information in order to detect the non-empty pixels in the geometry/texture images/maps. The 3D positions of the points associated with those pixels are computed by levering the auxiliary patch information and the geometry images. More precisely, let P be the point associated with the pixel (u, v) and let (0, s0, r0) be the 3D location of the patch to which it belongs and (u0, v0, u1, v1) its 2D bounding box. P could be expressed in terms of depth (u, v), tangential shift s(u, v) and bi-tangential shift r(u, v) as follows:
(u, v) = 0 + g(u, v)
s(u, v) = s0 – u0 + u
r(u, v) = r0 – v0 + v

where g(u, v) is the luma component of the geometry image.
Single configuration file shall be used for video compression solution to encode both depthImg0 and depthImg1.
[bookmark: _Hlk27743764]The sample values for projection mode 0 in a patch are calculated as follows:	Comment by Vladyslav Zakharchenko [2]: m45089

Whereas for the projection mode 1the sample values in the patch are calculated as follows:

where d indicates the depth of the point corresponding to the location, maxDepth indicates that the maximum allowed depth per sequence and QuantizedMinDepth is the minimum depth in the patch, quantized by 2N as follows:

And qunatizedMinDepth is used to derive I (u,v).
Since the minDepth is quantized by 2N, the bits required to signal the minDepths is reduced to M-N where M indicates the bit depth of the geometry data. In the proposed method, the maximum bitsize does not need to be signalled and the minDepth values are signalled by M-N bits.
Absolute depth coding method.
An alternative representation of projected information as an absolute depth value. In this way, depthImg1 has the same characteristics as depthImg0, therefore becoming more suitable to be compressed.
In this case, two separate configuration files for depthImg0 and depthImg1should be used.
Interleaved absolute depth coding method.
Instead of encoding 2 layers, a single layer or frame is encoded, thus reducing the requirement of the codec. The single layer is formed by interleaving alternate pixel values from the original two layers. If D0 represents the depth0 geometry frame corresponding to the depth values of the near layer, that is the layer closer to the projection plane and D1 represents the depth1 geometry frame corresponding to the depth values of the far layer or the layer farthest away from the projection plane, the interleaved frame is formed by taking one pixel from D0, the next from D1, next again from D0 and so on. This alternating of pixels from D0 and D1 is done across all rows and all columns. An illustration of the interleaved depth frame formation process is shown in Figure 31. The interleaved depth frame is represented as D2. It should be noted that since the interleaved frame is formed using both D0 and D1, both D0 and D1 are dilated instead of just dilating D0. As an alternative, the interleaving is performed before any dilation is performed. Then the interleaved depth frame D2 is dilated.

[image:]

[bookmark: _Ref533088381][bookmark: _Ref533088330]Figure 31. Example of the geometry interleaving process

For the reconstruction of geometry, only the interleaved depth frame is available. However, both depth0 and depth1 frames are required to reconstruct the original point cloud. Prediction of the missing depth values is done based on the interpolation of the neighbours. Figure 3 provides a demonstration of the frame available for reconstruction of the point cloud, the frames actually required for proper reconstruction and the frame consisting of missing depth values at the pixels and required to be predicted.
[image:]

Figure 32. Example of geometry deinterleaving and prediction process

To predict the missing values, the neighbouring pixels from the same depth layer are used. In other words, if a certain pixel in the interleaved depth frame contains D0 value and D1 value is missing, prediction of missing D1 value is done based on the neighbours of the current pixel in the interleaved depth frame which contain a D1 value. Similarly, if a pixel in the interleaved depth frame stores D1 value, the prediction of the missing D0 value is done using the neighbours of this pixel that store a D0 value. The predicted D0 and D1 values will be denoted as and . Hence if pixel location in the interleaved frame stores the value of D0, prediction of D1 () is a function of 4 neighbours as:

Similarly, for a pixel in the interleaved frame storing a value of D1, the predicted value of D0 () is:

It should be noted that the reconstructed values of the interleaved depth frame D2 are used for interpolation by the encoder and the decoder. The decoder has all the information available to perform identical operations, maintaining sync with the encoder.
The prediction of missing D1 values is done by finding the mean value of the D1 neighbours, and the prediction of missing D0 values is done by finding the minimum value of the D0 neighbours. In order to ensure that the difference in D1 and D0 depth values at a certain pixel does not exceed the fixed surface thickness of the point cloud, additional conditions are enforced during prediction. For predicting D1, if the predicted D1 value at a pixel, , exceeds the existing D0 value of that pixel () plus the surface thickness, the predicted D1 value, , is overwritten with the value . Similarly, if the predicted D0 value at a pixel, , is less than the D1 value at that pixel () minus the surface thickness, then the prediction is replaced with the value .
As an additional condition, the neighbouring pixels which have an occupancy value of 1 and the ones which belong to the same patch as the point whose missing value is being predicted are considered for prediction. It should be noted that while predicting the missing value, it should be ensured that the D0 value at a certain pixel cannot exceed the D1 value
In case when the number of maps is larger than 2 each pair would have separate deinterleaving flag. Only two maps may be interleaved.	Comment by v00429036: m51004
3D Geometry Padding 	Comment by v00429036: m47496
3D reconstructed value for positions that will be added due to occupancy map coding when padding the geometry image. Figure 33 shows the positions of interest in blue. Notice that any technique that improves occupancy map reconstruction could be used in this framework.
	[image:]
	[image:]

[bookmark: _Ref18676017]Figure 33: 3D points added due to occupancy map rescaling
The technique consists of selecting a value for positions that generate a reconstructed point that is close as possible to the original point cloud. Therefore, we will perform a search in a range of possible depth values.

Spatially adaptive geometry interpolation
Instead of encoding 2 layers, a single layer or frame is encoded. The use of an optimization framework to locally adapt the interpolation coding mode to the characteristics of the point cloud. The optimization is performed using an RDO-like approach in the encoder, adding in the bitstream the required signalling so that the decoder is aware of the interpolation coding mode to use.
The interpolation coding mode optimization is performed at each occupancy map resolution block, using the reconstructed depth image.
The optimal interpolation mode determination is performed at the encoder for each block by:
· Computing the cost (based on bit rate and distortion) of each candidate interpolation coding mode
· Selecting the interpolation coding mode with the lowest cost
· Signalling in the bitstream the selected interpolation coding mode

The candidate interpolation coding modes are the following:
1. No interpolation.
2. Add one additional point with the following algorithm.

For each occupied point p at (u,v) in DepthImage0 within the block
{
Get D0 = DepthImage0(u,v)
Set Dmax = 0
For each neighboring position (un,vn) of p in N window
{
Set DI = DepthImage0(un,vn)
If DI > Dmax and (DI-D0) <= SurfaceThickness
Set Dmax = DI
}
Set DepthInterpolation (u,v) = max(Dmin, Dmax-1)
}
3. From the D0 and DI (depth interpolation) point, fill empty space with new points, this helps surface connection between them.

 Per-patch projection optimization
The projection optimization process selects whether to use a single projection mode for the entire frame. If so, projection mode 0 is used. Otherwise, the projection mode is selected on a per-patch basis.

The projection optimization process selects one of the two projection modes:
· Projection mode 0: minimum depth value stored in depth 0 image, maximum depth value that satisfies the surface thickness constraint stored in depth 1 image.
· Projection mode 1: maximum depth value stored in depth 0 image, minimum depth value that satisfies the surface thickness constraint stored in depth 1 image.

The surface thickness constraint is defined as follows: abs(d1 - d0) ≤ surfaceThickness.
[image:]
Figure 34. Example of geometry projection for the blue connected component

Frame projection mode
The frame-level decision is indicated by the frame projection mode parameter. Two per-frame projection modes are defined:
· Frame projection mode 0 corresponds to fixed projection mode, where all patches use projection mode 0 (like TMC2).
· Frame projection mode 1 corresponds to variable projection mode, where each patch can use a different projection mode.

The following algorithm can be used to decide the frame projection mode:

· Generate minimum depth images for the frame (all points of input point cloud), projecting to the XY, XZ and YZ planes.
· Compute the ratio, for the three depth patches combined, between (a) the number of occupied positions with the same value in depth0 and depth1, and (b) the number of occupied positions.
· If the ratio is smaller than ProjectionModeSelectionThreshold,
then set FrameProjectionMode to 0, i.e. variable projection mode,
otherwise, set FrameProjectionMode to 1, i.e. fixed projection mode.

Patch projection mode
When the frame projection mode is set to variable, a per-patch projection mode is sent to indicate the appropriate mode to use to de-project each patch.

The following algorithm can be used to decide the patch projection mode:

· For the point cloud:
· Generate minimum depth images for the frame (all points of input point cloud), projecting to the XY, XZ and YZ planes, minimumDepthFrame[0..2].
· Generate maximum depth images for the frame (all points of input point cloud), projecting to the XY, XZ and YZ planes, maximumDepthFrame[0..2].

· For each connected component:
· Generate the minimum depth patch, minimumDepthPatch, by projecting the minimum distance along the normal axis, i, of the connected component.
· Count number of positions, counterMinimum, in minimumDepthPatch that have the same depth as the co-located position in minimumDepthFrame[i].
· Do the same using maximum distance to obtain counterMaximum.
· If counterMinimum ≥ counterMaximum set the projection mode for the current patch to 0. Otherwise, set the projection mode to 1.

 Enhanced-delta-depth code for lossless coding
The enhanced delta depth coding method modifies the depth image so that instead of coding a single point per sample, multiple points can be coded using the following method
· along one projection line, for each position between D0 and D1, including D1, use one bit to indicate whether or not this position is occupied,
· concatenate all said bits along one projection line to form a codeword, called as Enhanced-Delta-Depth (EDD) code hereafter,
· pack EDD codes of one point cloud frame in DepthImg1, which will be further coded by mature video codecs such as HEVC.
By using the EDD codes to signal those in-between points (up to D1, included), only the depth values of the reference point D0 is required to be coded.
[image:]
Figure 35. Enhanced-Delta-Depth code.
During the creation of patches, a D0 depth patch and an EDD-code patch are created for each connected component.
Consider that D1 – D0 = N. In this case, there are (N – 1) positions between D0 and D1. Let (u, v) denote the column and row index in the image. Also let the occupancy map be denoted by OM(u, v). For lossless coding, the occupancy precision is 1. Thus, the size of the occupancy map image is the same as the size of the depth images D0(u, v) and D1(u, v).	Comment by Vladyslav Zakharchenko [2]: m44853
· If OM(u, v) is equal to 0, it is not modified.
· If OM(u, v) is equal to 1 and (D1(u, v) – D0(u, v)) is less than or equal to 1, then there are no depth positions between D0(u, v) and D1(u, v). In this case, OM(u, v) is not modified.
· If OM(u, v) is equal to 1 and (D1(u, v) – D0(u, v)) is greater than 1, then OM(u, v) is modified as follows:

First, a PCM code is used to specify the occupied depth positions between D0(u, v) and D1(u, v) as shown below.

[image:]
Figure 36. PCM code to represent the occupied depth positions between D0 and D1.

The case where all the depth positions between D0 and D1 are occupied is the most probable. To take advantage of this, instead of adding the PCM code to the occupancy map value, it is modified as follows:

OMnew(u, v) = OMold(u, v) + (2^(N – 1) – 1 − PCM code).

After that, a missedPointsPatch is created as the container of those missed points. Then, the EDD codes or (D0+EDD_Code) are stored in DepthImg1.
In order to signal the colour of those in-between points in the bitstream, the position in the packed texture images for storing the colour of these points is decided during the step of point cloud geometry reconstruction. First, the un-occupied blocks are sorted into a list by their position in the texture image. After that, whenever a new in-between point is reconstructed, the first un-occupied pixel from the first un-occupied block in the list is selected to store the colour of this new in-between point. As the decoder has the same information and thus can repeat the operation, the colour of those in-between points can be correctly retrieved.
Generalized Enhanced Occupancy Map for Depth	Comment by v00429036: m47895
The PCM code, requires that D1(u,v) – D0(u,v) be larger than 1 to be able to use the EOM mode at location (u,v). Thus, instead of using fixed layer numbers as reference for the bounds of the PCM code (layer 0 for the lower bound, layer 1 for the upper bound), the Generalized Enhanced Occupancy Map for Depth computes the bounds of the PCM code procedurally:
Proposed algorithm to compute bounds of the PCM code (encoder and decoder) using generalized enhanced occupancy map.
Let layer_count indicate the number of layers in the stream.
Let D(l) denote depth of layer l at position (u,v)
Set Dmin to MAXDEPTH
Set Dmax to 0
for(l =0; l < layer_count; l++)
{
	if(Dmin > D(l)) then Dmin = D(l)
	if(Dmax < D(l)) then Dmax =D(l)
}

Once Dmin and Dmax have been computed, the EOM code is generated as usual, using Dmin instead of D0 and Dmax instead of D1. The nominal length of the EOM code is computed as:
N = Dmax - Dmin
Now that the bounds of the EOM code are “flexible”, a direction flag is used to signal whether the occupancy bits are ordered from Dmin to Dmax (code_direction = 0) or from Dmax to Dmin (code_direction =1).
With this changes, EOM can be applied to any occupied location of the patch canvas regardless of the depth order of the points coded at each depth layer.
In addition, a lower bound (min_bit_count) and an upper bound (max_bit_count) are used to limit the value of N to a certain range. Thus, the final value of N is computed as:
N = max(min_bit_count, min(max_bit_count, Dmax – Dmin))
where,
· max_bit_count is in the range [2, om_video_bitdepth], and it is set by default to om_video_bitdepth; and,
· min_bit_count is in the range [2, max_bit_count], and it is set by default to 2.
With the proposed changes, it may happen that the occupancy bits of the PCM codeword spans over a point already coded in a depth layer, like the yellow points in the example of Figure 37, coded in depth layer 1. To avoid this overlap, it is proposed as well that the occupancy bits of the PCM codeword skip over the layer-coded locations. E.g., in column A of the same figure, bit b3 would correspond to depth D0 + 4, whereas bit b4 would correspond to depth D0+6. With the skip over feature, the coverage of the PCM code is extended without increasing the number of bits required to code it.
[image:]
[bookmark: _Ref19509962][bookmark: _Ref4088907]Figure 37. Example of generalized EOM.
With the proposed changes, the generalized EOM coding tool can be used in many different bitstream configurations, including single layer, lossy, or multi-layer.
The table below shows, for different values of min_bit_count, max_bit_count, and code_direction, several examples of PCM code occupancy bits for the given location of points along a projection line.
	Point location along projection line

Location of layer-coded points
	X

D0
	X

	X

	
	X

D1
	
	X
	X
	X
	X
	X
	X

D2

	Current EOM

Location of PCM bits
	
	
b0
	
b1
	
b2
	
	
	
	
	
	
	
	

	Generalized EOM (min & max = default,
		 dir = 0)
Location of PCM bits
	
	
b0
	
b1
	
b2
	

	
b3
	
b4
	
b5
	
b6
	
b7
	
b8
	

	Generalized EOM (min = default, max = 5,
		 dir = 0)
Location of PCM bits
	
	
b0
	
b1
	
b2
	
b3
	
b4
	
	
	
	
	
	

	Generalized EOM (min = default, max = 5,
		 dir = 1)
Location of PCM bits
	
	
	
	
	
	
	
b4
	
b3
	
b2
	
b1
	
b0
	

	

	Point location along projection line

Location of layer-coded points
	X
D0
	X
	X
D1
	
	X
D2
	
	X
	X
	X
	X
	X
	X

	Current EOM

Location of PCM bits
	
	
b0
	
	
	
	
	
	
	
	
	
	

	Generalized EOM (min = default, max = 9,
		 dir = 0)
Location of PCM bits
	
	
b0
	
	
b1
	
	
b2
	
b3
	
b4
	
b5
	
b6
	
b7
	
b8

Attribute patch for Enhanced Occupancy Map for Depth	Comment by v00429036: m47477
The EOM method defines a new type of an attribute patch that contains the attribute samples of all the intermediate points, arranged in such a way that direct access to the attribute of intermediate points of a patch is possible. This patch is referred to as “enhanced occupancy map texture patch”, or EOM texture patch.
Figure 38 shows a schematic representation of the EOM attribute patch, where the attribute corresponding to the intermediate points of the three patches is mapped into the OEM patch. For each patch, the corresponding bounding box is processed in raster-scan order, and the attribute of intermediate points mapped into the attribute patch in block-based scan order. The blue circles on the Figure 38 indicate the starting position of each patch – information coded in as patch metadata.
[image:]
[bookmark: _Ref18683865]Figure 38 Schematic representation of an EOM texture patch

Using the proposed EOM attribute patch has no impact on the decoding process.
The algorithm below explains how to compute, for the first intermediate point of a given patch, the (u,v) coordinates of its corresponding texture pixel inside the OEM texture patch.
Given,
· Bitstream parsing and syntax decoding process done
· A patch patchIdx
· A point belonging to patch patchIdx in frame frameIdx, such point being the first intermediate point in decoding order of the patch patchIdx.
· pfdu_eom_texture_patch_count EOM texture patches in frame
The (u.v) coordinates of the texture of such first intermediate point are computed as follows:
// look for index of EOMT patch corresponding to current patch index patchIdx
NumOfPatchesInEOMT = 0
for(p = pfdu_patch_count_minus1+1;
	p < pfdu_patch_count_minus1 + 1 + pfdu_eom_texture_patch_count;
	p++) {
		NumOfPatchesInEOMT += etpdu_patch_count[frmIdx][p];
		if(NumOfPatchesInEOMT-1 >= patchIdx)
			// OEM texture patch for patch patchIdx found
		break;
	}

// initialize (u,v) coordinates to top-left corner of OEM texture patch p
u = etpdu_2d_shift_u[frmIdx][p]
v = etpdu_2d_shift_v[frmIdx][p]

// compute offset inside EOM texture patch with index p
Offset = 0;
for(q = 0; q < patchIdx - (NumOfPatchesInEOMT - etpdu_patch_count[frmIdx][p]);q++)
		Offset += etpdu_patch_count[frmIdx][q];

// advance coordinates inside EOM texture patch
coordinate_advance_raster (u, v, Offset)

Once the (u,v) coordinates of the first intermediate point of the current patch have been found, the coordinates of the following point are computed as follows:
// update coordinates to next intermediate point
coordinate_advance_raster(u, v, 1)
The coordinate_advance_raster (x, y, n) function advances n positions the (x,y) coordinate following the block-based (schematically shown in Figure 39) and the dimensions on the EOM texture patch.

[image:]
[bookmark: _Ref18684405]Figure 39 Schematic representation of per-block raster scan order, shown by the dashed curve

 Quadtree-based encoding for missed points
The method provides a solution for how to compresses the isolated points while exploiting the correlations between their geometry/texture and the geometry/texture of regular points.
(1) The points adapted for patch-based representation (more than 95% of the points) by using lossless video encoding configuration
(2) The isolated points missed by (1) by leveraging a separate video frame encoding strategy.
The method provides the ability to structure the bitstream as:
· A Base Layer (BL), which corresponds to (1), and
· An Enhancement Layer, which corresponds to (2).
Decoders with limited capabilities can still decode BL and provide a faithful (but lossy) version of the content, while decoders with the full support of this approach can decode both BL and EL and therefore provide a lossless reconstruction of the signal.

The proposed encoding scheme proceeds as follows:
· The current TMC2 [1] encoder is applied to the input point cloud while allowing isolated points to be discarded.
· The reconstructed point cloud based on the current TMC2 system is then generated.
· The points in the input point cloud are then compared to the points of the reconstructed point cloud in order to detect missed/isolated points.
· For every missed point P, a reference point Q (e.g., the nearest neighbour) in the reconstructed point cloud is detected.
· Let i(Q) and j(Q) be the pixel coordinates of Q (i.e., the location of the pixel associated with the point Q in the geometry/texture map). Let dx(Q), dy(Q), and dz(Q) be the per coordinate position differences between P and Q. Furthermore, let dR(Q), dG(Q), and dB(Q) be the per colour component differences between P and Q.
· The encoder composes a separate frame of i(Q) and j(Q)
· Compress the residuals dx(Q), dy(Q), dz(Q), dR(Q), dG(Q), and dB(Q) by using the following strategy:
· Store the residuals in a video frame and losslessly compress them using a video codec
Occupancy map generation
The occupancy map consists of a binary map that indicates for each cell of the grid whether it belongs to the empty space or to the point cloud.
Note: One cell of the 2D grid would produce a sample during the image generation process.
The occupancy map compression leverages the auxiliary information described in the previous section, in order to detect the empty TxT blocks (i.e., blocks with patch index 0). The remaining blocks are encoded as follows.
The occupancy map could be encoded with a precision of B0xB0 blocks. B0 is a user-defined parameter. In order to achieve lossless encoding, B0 should be set to 1. In practice, B0=2 or B0=4 result in visually acceptable results, while significantly reducing the number of bits required to encode the occupancy map.
[image:]
[bookmark: _Ref518057449][bookmark: _Hlk18683830]Figure 40 Projected points from source point cloud (in purple), points to be reconstructed by VTM2 v3.0 (in blue) and corresponding occupancy map (4x4) and block to patch index (16x16) metadata.
When an occupancy map block is occupied, even if only partially occupied, all points in the block will be reconstructed during the decoding process – with occupancy precision equal to 4, the number of reconstructed points per block is 16. In the most extreme case, a single occupied position is enough to mark the corresponding occupancy map block occupied. As a result, during the decoding process, 16 points will be generated instead of just 1 (assuming occupancy precision equal to 4).
Occupancy map refinement	Comment by Vladyslav Zakharchenko [2]: m44779
The method that will reduce the occupancy map and patch to index data when few points are present in a block on encoder side to avoid the noise during the reconstruction stage.
The algorithm is working as following:
1. First phase
Update the occupancy map for block 4x4 (small_block), do:
0. count number of points in the source point cloud using the full occupancy map precision.
0. [bookmark: _Hlk518288391]If , set the occupancy map to unoccupied, otherwise, let the block occupation to one.
Let be the updated occupancy map of the source point cloud at full resolution.

1. Second Phase
From , update the block to patch index at block resolution 16x16. For each block, do:
1. count the number of occupied blocks:
1. If , mark the block unoccupied into block to patch index. Otherwise, let the block marked occupied.

Figure 41 shows the result of the proposed method when applied to the example of Figure 40, which correspond to the suppression of small areas of the source point cloud. Even if some information is missing, the reconstructed point cloud contains far fewer fake points than the one in Figure 40, being more faithful to the original point cloud.
[image:]
[bookmark: _Ref525918406]Figure 41 - Source point cloud (in purple), proposed reconstructed point cloud (in blue) and corresponding occupancy map (4*4) and block to patch index (16x16) metadata.
Attribute image generation
The absolute attribute image generation
Texture: WxH YUV420-8bit. The texture generation procedure exploits the reconstructed/smoothed geometry in order to compute the colours to be associated with the re-sampled points.
The coding for attributes is signalled using a persistence flag per attribute that will indicate wether all attribute maps will use absolute coding, regardless of the choice used for geometry coding, or whether they will follow the method used for their corresponding geometry map	Comment by Vladyslav Zakharchenko [2]: m52529
A decoder maintains the geometry relationship (15 entries max) and whether an attribute shall follow it or not (127 entries max).
The interleaved attribute image generation
The method to represent attribute video that consists of 2 layers, say C0 and C1 as an interleaved image is performed as follows. C0 represents the color0 attribute frame which contains the colour values of the near layer while C1 represents the color1 attribute frame which contains the colour values of the far layer. Then a single attribute frame based on the interleaving of C0 and C1 is formed, encoded and transmitted to the decoder. The interleaved attribute frame C2 is formed by taking alternate attribute values from C0 and C1 across all rows and all columns. This process of obtaining interleaved attribute frame, C2, is illustrated in Figure 20. Here, the dilation is performed on the interleaved attribute frame C2.
[image:]
[bookmark: _Ref533089367]Figure 42. Example of the attribute interleaving process

The prediction of the resampled attribute points is done by using the interleaved attribute frame. The prediction of attribute values of the point cloud involves the prediction of missing attribute values in the interleaved frame, as shown in Figure 43. For predicting the missing attribute values, first it is checked if D0 and D1 values at that pixel are equal, then the attribute value stored at that pixel of the attribute video is assigned to the point.
The prediction of the remaining missing attribute values is done by finding the mean of the neighbours from the same attribute layer. Hence, if at a point value is even and it belongs to the far layer, the attribute values of the neighbouring far layers are averaged to assign the attribute value to this point. Similarly, for odd values, to assign the attribute value to the points belonging to the near layer, the attribute values of the neighbour points in the near layer are averaged:

With the condition that the neighbours should belong to the same patch as the point to be processed. If they don’t belong to the same patch, they are not considered in the prediction of the missing colour of that particular point.

[image:]

[bookmark: _Ref533089778]Figure 43. Example of attribute deinterleaving process and prediction

Duplicate points pruning	Comment by Vladyslav Zakharchenko [2]: m44784
The geometric images are de-projected to generate the geometry of the decoded point clouds. For each existing point within a patch (defined by block to patch index and occupancy map), two points are created based on the coordinates stored in geometry layer 0 and 1 and the patch auxiliary information. To overcome this issue de-projection process is modified to create only one point per (u,v) coordinate of the patch when the coordinates stored in geometry layer 0 and layer 1 are equal.
The process goes as follows:
· For each existing point of a patch, we create a 3D point with the coordinate stored in layer 0.
· Then, we compare the coordinate stored in layer 0 with the coordinate stored in layer 1.
· If the two coordinates are equal, no additional point is created. Otherwise, a second 3D point with the coordinate stored in layer 1 is created.

This process updates both the encoder and the decoder.
Additionally, on the encoder side, the generation of texture images T0 and T1, that store the colour of the reconstructed points (colours of points D0 in T0 and colours of points D1 in T1), proceeds as follows:
· If no 3D point is generated from geometry layer 1 (D1), a dummy colour is stored in the corresponding position of texture layer 1 (T1). For our experiments, the colour T0 is copied in T1.
· Otherwise, the colour of T1 is generated as in the current TMC2.

Smoothing
The smoothing procedure aims at alleviating potential discontinuities that may arise at the patch boundaries due to compression artifacts.
The implemented approach moves boundary points to the centroid of their nearest neighbours.

Geometry Smoothing
Geometry grid smoothing
The process of geometry refinement aims to filter patch boundaries to improve the visual quality of the reconstructed point cloud. Smoothed geometry is used for attribute patch generation.
The method for point cloud smoothing is applied to the patch edges (fig. 11) and the centroid of the decoded points are calculated in a small grid beforehand. After the centroid and the number of points in the 2x2x2 grid are derived, a commonly used trilinear filter is applied with the centroid.

[image:]	[image:]
Figure 44. Points for geometry smoothing and trilinear filter

The grid_size is 8 because the occPrecision (occupancy precision) is set to 4. However, occPrecision can be 1 in minimum so that the grid_size becomes 2 in the case.	Comment by Vladyslav Zakharchenko [2]: m46038
In the geometry grid smoothing, the bounding box is divided into the grids by grid_size. The number of grids numOfGrid is calculated as follows.
	numOfGrid = (boundingBox.x_range/grid_size) *
(boundingBox.y_range/grid_size) * (boundingBox.z_range/grid_size)
In the test model, it cashes the necessary information for the filtering for the entire decoded point cloud frame in advance. However, in another implementation, the memory size can be significantly reduced. In the minimum, it is needed for the trilinear filtering only to store the neighbour 2x2x2 grid information. It means, regardless of the grid_size, theoretically, minimum memory size is obtained with numOfGrid=8 as
	MinMemorySize = 8 * (sizeof(int)*4 +1) = 256 Byte
Fixed grid_size for the grid smoothing has to be applied.
The memory I allocated only to the grid cells that will be used in the smoothing process (i.e. cells with a boundary point or neighbor of a cell with a boundary point). These cells are dubbed as boundary cells. As a result, the allocated memory will significantly be reduced by around 90%. The cells that contain the boundary points and their neighboring cells are identified. Then a tri-linear filter is applied to the centroids of each boundary cell and its surrounding cells to find the smooth geometry for each boundary point. The centroid is computed and stored only for boundary cells. As such, the memory which is used to store the centroids will be reduced drastically. Figure 44 shows a process flow for the reduced-memory grid-based smoothing method.	Comment by Vladyslav Zakharchenko [2]: m52483

[image:]

[bookmark: _Ref36475296]Figure 44. Process flow for reduced-memory grid-based geometry smoothing method.

Patch border filtering	Comment by v00429036: m51501
The process of patch border filtering aims to deform the 2D contour of the current patch to reduce the distance between this contour and the contours of the adjacent patches. For each point of the contour, the distance to the other patches is computed, based on the neighborhood map. Further the contour can be updated to adjust the shape of the current patch. For each point of the contour, two kinds of deformations could be made:
· Erosion, that removes current point from the contour, and;
· Dilatation that increases the contour.
This process could be performed one time for all the contour points. If some points are removed or added in the contour, these new points must be processed again.
The last stage of the patch filtering process is the filling process, which guarantees that there are no holes between two patches in 3d domain. This process has two steps:
· The first one locally changes the depth values of the patch’s contour points to smooth the transition between two patches (Figure 45 b)
· The second one adds 3D points between two patches to fill the hole that could appear in the depth direction (Figure 45 c).
12
8
7
7
6
6
12
10
8
7
6
6
6
6
7
8
10
12
depth
2D
coordinate
 (a) Input to step 4
 (b) Output from step 4 /
Input to step 5
6
6
7
8
9
10
12
11
depth
2D
coordinate
(c) Output from step 5
6
6
7
12
depth
7
8
2D
coordinate

[bookmark: _Ref3891256]Figure 45. Example of the fill seam operation.

The Figure 46 shows the main stages of this process.

 Patches
· Border points
· Adjacentes patches list

(a)
(b)
(c)
(d)

[bookmark: _Ref24117016]Figure 46. Main operation: analysis of the patches to extract the border points and the adjacent patches lists (a), building of the neighborhood depth map based on the borders of the adjacent patches(b), deformation of the 2D patch contour (c) and the border filling (d).

The Figure 47 shows an example of the contour deformation process.

[image: patch_0010_ConnectedComponent_origine]			[image: patch_0010_ConnectedComponent_Iter=03]
[bookmark: _Ref24117077]Figure 47 Example of patch picture: patch points (green), adjacent patch points (bleu) and current patch border (red) before patch filtering (left) and after (right).

Attribute Smoothing
Prerequisites and restrictions to attribute smoothing	Comment by v00429036: m51003
The attribute smoothing is restricted to application of attribute smoothing to only texture attributes having 1 or 3 components.
The 0th component of the decoded attribute video is used for making attribute smoothing decisions.
Colour Smoothing
Patches are packed into 2D video frames for encoding and transmission to the receiver. Since non-neighbouring patches in 3D space are often packed next to each other in 2D videos, the pixel value from non-neighbouring patches might be mixed up by the block-based video codec. Visible artifacts might appear at patch boundaries in the reconstructed point cloud especially at lower bit rates. In this test, the colour of the points near patch boundaries are smoothed as follows:
· Identify points near patch boundaries in the reconstructed point cloud.
· Adaptively smooth out the colour of the selected points in a small neighbourhood
The points near the patch boundary can be identified by the occupancy map which is available to the decoder. Figure 48 shows the patch boundaries in a reconstructed point cloud.

[image: frame112_red_Nosmooth]
[bookmark: _Ref533091282]Figure 48. Patch boundaries in a reconstructed point cloud.

Figures 3 show the new processing block for colour smoothing added to the MPEG-I PCC TMC2 decoder respectively. For colour smoothing, adaptive filters based on the median, averaging, bilateral filter, order statistic filter etc. can be used.
The source code for the median function is listed below:
double median(std::vector<uint8_t>& Data, int N) {
 uint8_t temp;
 int i, j;
 for (i = 0; i < N; i++)
 for (j = i + 1; j < N; j++) {
 if (Data[i] > Data[j]) {
 temp = Data[j];
 Data[j] = Data[i];
 Data[i] = temp;
 }
 }
 if (N % 2 == 0)
		return (double(Data[N / 2]) + double(Data[N / 2 - 1])) / 2.0 ;
 else
 return double(Data[N / 2]);
 }

Single-pass boundary points identification is implemented by iterating over all points once to identify the boundary layers. For each query point, two groups of neighboring points are defined: the first group includes the immediate neighboring points and the second group includes the points 2-pixel apart from the query point, Figure 49. shows the two group of neighbors for a query point.	Comment by v00429036: m49592

[image:]

[bookmark: _Ref18674805][bookmark: _Ref18672893]Figure 49. Neighboring points of a query point (colored in blue): first group of neighbors (colored in green), second group of neighbors (colored in yellow).

In this method, for a query point, if any neighboring pixel (colored in green and yellow) empty, the query point is identified as a boundary point. Also, if the query point is located at an edge of the image or 1-pixel apart from any edge of the image, the query point will be identified as a boundary point as well.
In the calculation of the luminance of the color centroid in each cell, there is no need to divide the luminance value by the number of points in the cell, instead the luminance of the color centroid in cell i is calculated as follows:	Comment by Vladyslav Zakharchenko [2]: m52482

double Y[i] = 0.2126 * colorCentroid[i][0] + 0.7152 * colorCentroid[i][1] + 0.0722 * colorCentroid3[i][2]

For the boundary points detection for points near occupancy map edges a point is identified as a boundary point if one of its neighbors is empty (i.e. occupancy value equal 0). Then in the second pass, all the neighboring point of boundary points (identified in the first pass) are also identified as boundary points. The occupied pixels shall be identified in two rows and two columns near occupancy map edges as boundary points. Figure 50 shows some boundary points near the occupancy map edge.
[image:]
a) 							b)
[bookmark: _Ref18674825]Figure 50. Boundary points not detected (left), boundary points detected near the occupancy map edge (right).

Image padding
The padding process aims at filling the empty space between patches in order to generate a piecewise smooth image suited for video compression. The following method is used:
· Each block of TxT (e.g., 16x16) pixels is processed independently.
· If the block is empty (i.e., all its pixels belong to empty space), then the pixels of the block are filled by copying either the last row or column of the previous TxT block in raster order.
· If the block is full (i.e., no empty pixels), nothing is done.
· If the block has both empty and filled pixels, then the empty pixels are iteratively filled with the average value of their non-empty neighbours.
Texture Padding Improvement (Group dilation)
The method of group dilation is built on a fact that far T0 and near T1 projection layers share the same occupancy map, thus the dilated region in T0 and T1 have the same shape.

	, where Occupancy Map .

The first dilation for T0 and the second dilation from T1 are replaced with the new dilation T2:

		, where Occupancy Map .

 Patch-based colour sub-sampling
As one way to mitigate the colour bleeding artifact, m42733 [3] proposes to change the chroma sub-sampling stage as illustrated by Fig.1. Instead of doing the colour subsampling in the image with the collection of all patches together in one single image, the proposed approach performs colour sub-sampling at each independent patch before packing them into a common image. That is, when the 2D image is formed, it uses patch information that has already been converted from RGB444 to YUV420. This patch independent process is used at the encoder side for sub-sampled colour generation, but also at the decoder side when up-sampling the texture image.

[image:]
Figure 51. The processing order of colour processing in TMC2 (above), and proposed colour processing order

V-PCC bitstream structure	Comment by Vladyslav Zakharchenko [2]: m52351
The NAL Sample stream can be used for coded representation of the dynamic point clouds. One of the advantages of the NAL concept is the use of different prediction structures and many other advanced techniques introduced in video encoding. The flexible coding structure can be implemented by using the POC concept, and also a class to manage the list of parameters in the NAL sample stream and V-PCC sample stream. The figure below shows an example of a NAL bitstream with other types of NAL units, in the correct ordering

[image:]
Figure 51. Example of NAL sample bitstream
Generation of the V-PCC or NAL unit sample stream format starts with a sample stream header followed by of a sequence of sample stream V-PCC unit or NAL unit syntax structures. The sample stream V-PCC or NAL header contains a syntax element, “ssvh_unit_size_precision_bytes_minus1” or “ssnh_unit_size_precision_bytes_minus1”, which is used to specify the precision, in bytes, of the “ssvu_vpcc_unit_size” or “ssnu_nal_unit_size” syntax element in each sample stream V-PCC or NAL units. The “ssvu_vpcc_unit_size” or “ssnu_nal_unit_size” syntax element is used to specify the size of each one V-PCC or NAL unit syntax structure that follows. The current TM implementation of sample stream format for V-PCC and NAL units, a two-path approach is taken: First path finds the maximum size of sample stream V-PCC/NAL unit structures. Second path forms the sample stream header by setting its unit size precision based on this max value. It then creates a sequence of sample stream unit. We propose to re-design V-PCC and NAL unit sample stream format classes that avoids this two-path approach by calculating the size precision at each instance of sample stream unit syntax structure. In this case compressed dynamic point cloud content bitstream will have the structure described in figure:
[image:]
Figure 5: Example of V-PCC bitstream using multiple atlases

Current TM implementation number of tile groups is limited to a single tile group for an atlas frame. Moreover, in its present implementation it lacks the support for AFOC based NAL unit type identification as well to the cases whereas reordering of atlas frame inputs may become necessary i.e. hierarchical P.
Video compression
The generated images/layers are stored as video frames and compressed using the HM video codec according to the HM configurations provided as parameters.
Lossless Video compression for Geometry and Texture
Input point cloud, which miss projection on to the 2D frames during the 3D-to-2D transformation in a separate patch and store the 10-bit X, Y, Z geometry values in the three colour planes of 10-bit 4:4:4 format video frames. Such a group of points is called the missed-points-patch. An occupancy map corresponding to the missed-points-patch is generated and the patch information is set to the decoder using the existing mechanisms of TMC2.HM-16.18+SCM-8.7[6] is used for lossless coding.
In addition Rext__HIGH_BIT_DEPTH_SUPPORT = 1 is used for improved coding results.

 Encoding RGB colour attributes (RGB to GBR conversion)
Due to a fact that HM s/w even in 4:4:4 mode gives priority to encode the first component it is suggested to convert data to GBR format for lossless encoding mode to achieve performance improvement. The HM s/w provides some limited functionality for performing colour conversions at the input (InputColourSpaceConvert) and output (OutputColourSpaceConvert) of the HM encoder and decoder respectively. This also includes support for converting (R,G,B)-ordered RGB samples to (G,B,R) in the encoder (i.e. InputColourSpaceConvert= RGBtoGBR) and (G,B,R) ordered RGB samples to (R,G,B) in the decoder (OutputColourSpaceConvert= GBRtoRGB).
Lossy Video compression for Geometry and Texture
HM-16.18+SCM-8.7 [4] video codec is used for lossy compression for texture and geometry video. And HM-16.18+SCM-8.7 (SCC) is used for occupancy map lossy coding [6].
In addition Rext__HIGH_BIT_DEPTH_SUPPORT = 1 is used for improved coding results.
Motion vector prediction improvement for point cloud coding	Comment by Vladyslav Zakharchenko [2]: m44941
The basic rule of the motion vector derivation scheme is shown in Fig. 1. For a block in the current frame, we first find the corresponding 3-D position using the patch and depth information. Then in the depth map, we perform motion estimation to find the nearest 3-D position in the reference frame. The motion vector derived in the motion estimation process is used as a motion vector block of the attributes block.
[image:]
Figure 52. The basic rule of the motion vector derivation

The derived motion vector is inserted in the first position of the advanced motion vector prediction candidate list. The duplication detection is performed between the first original MVP and derived MVP.
After determining the corresponding patch in the reference frame, the MV can be determined by the following two parts. The first part is the 3D difference between the current patch and the reference patch since the 3D positions of the start pixel of the patch are different.

The second part is the 2D different between the 2D positions of the current patch and the reference patch, considering the occupancy block resolution (or)

The final derived MV is the combination of these two parts

After adding the derived MV as the candidate, the encoder will choose from the MV predictor, the zero MV, the proposed 3D MV, and the MV from the partition 2Nx2N using rate-distortion optimization to determine the center of the search range. If the proposed 3D MV is with the smallest rate-distortion (R-D) cost and chosen as the start point, it will be more probable for the encoder to find the corresponding block in the reference frame thus can provide a significant performance improvement.

Atlas (Auxiliary patch information) compression
The following metadata is encoded/decoded for every patch:
· Index of the projection plane 	Comment by Vladyslav Zakharchenko [2]: m47289
· [bookmark: _Hlk9930944]Index 0 for the plane (1.0, 0.0, 0.0)
· Index 1 for the plane (0.0, 1.0, 0.0)
· Index 2 for the plane (0.0, 0.0,1.0)
· Index 3 for the plane (-1.0, 0.0, 0.0)
· Index 4 for the plane (0.0, -1.0, 0.0)
· Index 5 for the plane (0.0, 0.0, -1.0)
· 2D bounding box (u0, v0, u1, v1)
· [bookmark: _Hlk9930586]3D location (x0, y0, z0) of the patch represented in terms of depth 0, tangential shift s0 and bi-tangential shift r0. According to the chosen projection planes, (0, s0, r0) are computed as follows:
· Index 0, 0= x0, s0=z0 and r0 = y0
· Index 3, 0= x0, s0=z0 and r0 = y0
· Index 1, 0= y0, s0=z0 and r0 = x0
· Index 4, 0= y0, s0=z0 and r0 = x0
· Index 2, 0= z0, s0=x0 and r0 = y0
· Index 5, 0= z0, s0=x0 and r0 = y0
An addition to the index list to define the normal axis is used for the additional 45-degree projection planes:	Comment by Vladyslav Zakharchenko [2]: m43494
· Index 6 for the plane
· Index 7 for the plane
· Index 8 for the plane
· Index 9 for the plane
The mapping information providing for each TxT block its associated patch index is represented as follows:
· For each TxT block, let L be the ordered list of the indexes of the patches such that their 2D bounding box contains that block. The order in the list is the same as the order used to encode the 2D bounding boxes. L is called the list of candidate patches.
· The empty space between patches is considered as a patch and is assigned the special index 0, which is added to the candidate patches list of all the blocks.
· I is an index of the patch to which belongs the current TxT block.
Differential auxiliary information coding
The temporally consistent packing method shall process all the matched patches of the current frame first by populating the occupancy map, and then all the remaining unmatched patches are positioned in unoccupied space of the occupancy map. This approach increases the possibility to pack the patches in a similar order from the previous frame.
Furthermore, the correlation of the patches between consecutive frames could be used to reduce the entropy of the auxiliary patch information in a differential manner, using the patch in a previous frame as a reference (fig. 12). The following auxiliary information component may be encoded using differential method u0,v0,u1,v1,d1,sizeU0, sizeV0 and so on.
[image:]
Figure 53: Patch index predictor for V-PCC
To signal the matched patch index, the index of the patch in the current frame is used as the predictor. Matched patch index predictor is defined as follows:
For the zeroth patch.
predicted index = 0
For the remaining patches
predicted index = previous predicted index + 1 + previous delta_index
Recolouring
Given the input point cloud positions/attributes and the reconstructed positions , the objective of the attributes transfer procedure is to determine the attribute values that minimize the attribute distortions.
Direct colour transfer
The implemented approach proceeds as follows:
· Letand be the input and the reconstructed positions, respectively.
· Let and be the number of points in the original and the reconstructed point clouds, respectively.
If duplicated point are merged, then , otherwise .
· For each point in the reconstructed point cloud, let be its nearest neighbour in the original point cloud and the attribute value associated with .
· For each point in the reconstructed point cloud, let be the set of points in the original point cloud that share as their nearest neighbour in the reconstructed point cloud, is the number of elements in , and is one of the elements of Note that could be empty or could have one or multiple elements.
· If is empty, then the attribute value is associated with the point .
· If is not empty, then we proceed as follows:
· The attribute value associated with the point is obtained by Eq.1.

Note: currently --searchRange = 0 shall be used for coding in TMC2 3.

Distance-weighted colour transfer	Comment by v00429036: m47800
The distance-weighted colour transfer algorithm is described in the following. For each point of the target :
1- Find the (1 <) nearest neighbors in source to and create a set of points denoted by .
2- Find the set of source points that belongs to their set of nearest neighbors. Denote this set of points by .
3- Compute the distance-weighted average of points in and by:

where denotes the Euclidian distance between the points and , and denotes the colour of point .
4- Compute the average (or the weighted average with the number of points of each set as the weights) of and and use it as a centroid colour.

[image:][image:]

Figure 54: Nearest neighbor search in colour transfer

5- Use backward search from the centroid point to exclude the points if their absolute differences to the centroid colour is larger than the threshold .	Comment by v00429036: m50667
6- Update the weighted average of of and and transfer it to .

Secondary colour transfer	Comment by v00429036: m47800
The color/attribute transfer process can be applied to each attribute component, e.g. color component, associated with the smoothed geometry point clouds after the geometry smoothing is applied at the decoder. This optional process can be done to adjust and correct these attribute component values according to the changes introduced to the geometry coordinates of each point by this process.
To reduce the decoding complexity, the limit is applied for the search range used in the currently activated color transfer method. The color transfer method employs two searches, one over the geometry smoothed reconstructed point cloud and one over the non-smoothed reconstructed point cloud. A search range limit is to the forward search, and is applied further to the backward search, which tries to find the best matching smoothed points for each non smoothed point. In this case, the set of non smoothed points is determined during the forward search. Only the non-smoothed points selected as the best matching ones to the smoothed points are used for the backward search.
At the final averaging process, the color values of the smoothed whose geometry values are changed during the geometry smoothing process are adjusted. When the smoothed points are marked during the smoothing process, the proposed scheme does not mark points whose smoothed results are same as their non-smoothed values.

Patch information coding
Patch type coding methods	Comment by Vladyslav Zakharchenko [2]: m47326
The patch data units could be coded in several different modes, the chart with the corresponding coding modes is provided below.
The patch coding mode is defined, depending on the image type, and is signalled using 0-th order exp-Golomb binarization, according to the tables below:

For intra frames:
	I_INTRA
	0

	I_RAW
	1

	I_END
	14

For inter frames:
	P_SKIP
	0

	P_INTER
	1

	P_INTRA
	2

	P_RAW
	3

	P_END
	14

[image:]	Comment by Vladyslav Zakharchenko [2]: m52225

Figure 27: Decoding chart for patch data unit in V-PCC
Patch 2D to 3D coordinates conversion coding
PatchNormalAxis is the projection plane used to generate the patch and can take one of six values [0..5] Each patch has dedicated normal direction which instructs patches to be placed towards outside-in in a corresponding projection plane, associated with a viewId value for a given patch. This syntax element is signalled using a 0-th order exp-Golomb binarization.	Comment by Vladyslav Zakharchenko [2]: m47289
PatchProjectionMode is the projection mode that defines the direction of the patch normal axis. Depending on the PatchProjectionMode the depth values of the patch should be either added (mode 0) or subtracted (mode 1) from the indicated patch origin point (see Figure 5).
It intends T0 to be outer surface and T1 to be inner surface.
Related to the reconstruction process of point cloud, the variables PatchNormalAxis and PatchProjectionMode for the patch p can be computed as follows:
 PatchNormalAxis[p] = projection_plane_index[p] % 3
 PatchProjectionMode[p] = projection_plane_index [p] / 3
In case when additional projections are used as specified in paragraph 2.1.3 the projection plane for patch is extended to ten values [0..9]. Related to the reconstruction process of point cloud, the variables PatchNormalAxis and PatchProjectionMode for the patch p can be computed as follows:
 PatchNormalAxis[p] = projection_plane_index[p] % 5
 PatchProjectionMode[p] = projection_plane_index [p] / 5
Additional Points Patch
The limitation of the TMC2 codec for lossless coding is that it’s restricted to point clouds limited to a maximum size of 1024 because the 3D coordinates are represented in absolute value and compressed in 10-bit video.
The method is based on splitting the entire space (2N×2N×2N cube, where N is the bit depth of the geometry) into several 2M×2M×2M sub-cubes (where M is the depth of the video). Then, for each sub-cube containing at least one missing point, create a missing point patch and represent the geometry coordinates of the missing points inside the cube relative to one of the corners of the sub-cube.
The encoder can use octree decomposition to split the space into 10243 cubes. Then, for each 10243 proceed as follows:
· If there is at least one missing point inside
· Create a MissingPointsPatch object storing the sub-cube position in the input bonding box
· Update the origin of the sub-cube (u1, v1, d1)
· Update the number of missing points inside
· Create a 2D patch in the luma video frame (packing algorithm)
· Update the location in packed image (u0, v0)
· Add sequentially the differential coordinates (dX, dY, dZ) of each missing point (X, Y, Z) in the Y component of the geometry frame
dX = X – u1
dY = Y – v1
dZ = Z – d1
Point Local Reconstruction Mode	Comment by Vladyslav Zakharchenko [2]: m44802
The point local reconstruction mode (PLRM) is used in combination with the one-layer coding mode and adapts locally the point reconstruction mode. For each 16x16 block, a reconstruction mode is determined on encoder side by RDO and signaled in the stream.	Comment by Vladyslav Zakharchenko [2]: m46095
The reconstruction mode is sent into the bitstream via 4 parameters in V-PCC R4.0. They are the following:
· Interpolation mode (I)
· Filling mode (that can be combined with interpolation mode) (F)
· minD1 mode (that can be combined with interpolation mode) (minD1)
· neighbor (linked to the interpolation mode and indicate the number of neighbors to take for the interpolation process) (N)

	Optimization Mode
	I
	F
	D1min
	N

	0
	0
	0
	0
	1

	1
	1
	0
	0
	1

	2
	1
	1
	0
	1

	3
	1
	0
	0
	2

	4
	1
	1
	0
	2

	5
	0
	0
	1
	1

	6
	1
	0
	1
	1

These parameters are interpreted on the decoder side in order to reconstruct points based on the base layer and PLRM metadata, that determines the process to apply to reconstruct new points.
To maximize the compression efficiency of the entropy coding of the PLRM mode multiple prediction contexts are used (one context per possible mode) and the optimal context is automatically selected to encode the mode of the current block based on the neighborhood.
The selection process is implemented as follows:
First, a set of modes that combines all applicable reconstruction parameters is defined as shown in table above.
For each optimization mode available, the encoder selects by RDO which mode must be applied (current RDO process of PLRM) for each 16x16 block.
A context is associated with each available mode.
The histogram of the modes selected by the RDO is used to pick the prediction context of the most-used mode as context to entropy-code the mode for the current block/
Among optimization modes chosen by RDO, we count how many times each mode is used among the already coded blocks around the current block (i.e. neighbor blocks as shown in Figure 55)
[image:]
[bookmark: _Ref534900813][bookmark: _Ref534900805]Figure 55 Used neighbor-1 to study the mode occurrence

Occupancy map coding
The compression process proceeds as follows:
· Binary values are associated with B0xB0 sub-blocks belonging to the same TxT block. A value 1 is associated with a sub-block if it contains at least a non-padded pixel, and 0 otherwise. If a sub-block has a value of 1 it is said to be full, otherwise, it is an empty sub-block.
· If all the sub-blocks of a TxT block are full (i.e., have value 1). The block is said to be full. Otherwise, the block is said to be non-full.
· Binary information is encoded for each TxT block to indicate whether it is full or not.
Video-based occupancy map coding for lossless compression
A two-dimensional binary image of resolution (Width/B0)x(Height/B1), where Width and Height are the width and height of the geometry and texture images that we intend to be compressed. A sample equal to 1 means that the corresponding/co-located sample or samples in the geometry and texture image should be considered as point cloud points when decoding, while a sample equal to 0 should be ignored (commonly includes padding information). The resolution of the occupancy map does not have to be the same as those of the geometry and texture images and instead the occupancy map could be encoded with a precision of B0xB1 blocks. In order to achieve lossless encoding B0 and B1 are selected to be equal to 1. In practice, B0=B1=2 or B0=B1=4 can result in visually acceptable results, while significantly reducing the number of bits required to encode the occupancy map. The generated binary image covers only a single colour plane. However, given the prevalence of 4:2:0 codecs, it may be desirable to extend the image with “neutral” or fixed value chroma planes (e.g. add chroma planes with all sample values equal to 0 or 128, assuming the use of an 8-bit codec).
The obtained video frame is compressed by using a video codec with lossless coding tool support (e.g., AVC, HEVC RExt, HEVC-SCC).
Video-based occupancy map coding for lossy compression	Comment by Vladyslav Zakharchenko [2]: m46049
In order to allow the use of lossy compression to code the occupancy map. On the encoder side, the occupancy map values are multiplied by a scale_factor. Thus, samples which are occupied now have an occupancy map value equal to scale_factor. The samples that are not occupied still have an occupancy map value of 0. Next, the occupancy map video is coded in a lossy manner using a relatively high QP value to produce compressed occupancy map. The QP value is chosen depending on the scale_factor and the overall target rate for the compressed point cloud.
For instance the parameters could be set to following values:
· scale_factor = 65
· lossy_occupancy_map_compression_threshold = 32
· occupancy map QP = 42.
1. Note: The lossy occupancy map should be performed in the closed loop, and the reconstructed occupancy map frame shall be used for the encoding process to guarantee the matching between the encoder and the decoder.
The encoder in general should not generate the lossy occupancy map unless intended to, thus the warning should be issued to indicate that the generated occupancy map is empty.	Comment by Vladyslav Zakharchenko [2]: m54604
2. Note: For various artistic effects it might be desirable to have the empty occupancy map, in this case the blank (with RGB attributes equal to (0,0,0) to the YUV, or YCbCr attributes equal to (0, 2^(ColorBD-1), 2^(ColorBD-1))) attribute frame should be generated.

Block to patch information derivation	Comment by Vladyslav Zakharchenko [2]: m44989
The block to patch information is derived from the 2D bounding boxes of the patches. More precisely, when adding a new patch P, the packing algorithm checks that the bounding box of P does not intersect with any block that contains samples from a previously placed patch.
[bookmark: _Toc467250391][bookmark: _Toc490559789]At decoding time, two possible approaches can be used to reconstruct the block to patch information:
· The patches can be parsed in the same order as they were placed on the occupancy map. For a given patch P, we assign all the blocks its bounding box cover to P as we know they do not contain pixels from previously processed patches.
· The patches can be processed in reverse order. In that case, given a patch P, all the blocks that are covered by its bounding box and that were not already assigned to a previous patch belong to P.	Comment by v00429036: m47826

Description of visual quality improvement methods
Shape reconstruction
High gradient points separation	Comment by v00429036: m50666
The geometry gradient of a patch is calculated to determine points to be separated. This method aims to fill holes caused by projecting points to the same location on a 2D plane, which allows to reduce the number of missed points, and improve the visual quality of the reconstructed point cloud.

[image:]
Figure 56 Multiple points are projected onto D0 and D1 layers. Some points are missing in the reconstructed point cloud.

To determine points being separated, Sobel filter is applied on the geometry D0 layer for each patch to calculate its gradient. If the gradient of a pixel is larger than a pre-defined threshold , points projected on this 2D location will be regarded as high gradient points. These points with similar orientation are then grouped. Because it is not desirable to separate single or few points from the existing CC, the number of connected high gradient points is counted, and a pre-defined threshold is used to filter groups with fewer points. These groups of high gradient points will be removed from the current CC.
Each high gradient group then calculates a new orientation according to the sum of their normals. If the group connects to any existing CC which has the same orientation or the inverse orientation, it will join that CC. Otherwise, the high gradient group becomes a new CC.

References
1. [bookmark: _Ref512778120]PCC Test Model Category 2v0, ISO/IEC JTC1/SC29/WG11 N17248, Macau, China, October 2017.
2. [bookmark: _Ref512779798]Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle. Surface reconstruction from unorganized points. ACM SIGGRAPH 1992 Proceedings, 71-78.
3. [bookmark: _Ref518468846]S. Shwartz, P. Chou, I Shinharoy, D. Flynn Common test conditions for point cloud compression. ISO/IEC JTC1/SC29/WG11 N17766, Ljubljana, SI, July 2018.
4. [bookmark: _Ref518467731][bookmark: _Ref512778242]https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.168+SCM-8.7
5. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.168+SCM-8.7
6. [bookmark: _Ref524087967]https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.168+SCM-8.7
7. [bookmark: _Ref518467935]http://mpegx.int-evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc2

image76.png

image77.emf
88888650000732644102888800002064D0D1888800004286projectpoints belong to the same CC8888860000264402projection planereconstructreconstructed points

image2.png

image3.emf

demultiplexer Video
decompression

Video
decompression

Video
decompression

Patch sequence
decompression

SPS
parsing

Geometry/Attribute
Reconstruction

Compressed
bitstream

Geometry
Post-Processing
(e.g., smoothing)

patch
sub stream

occupancy
sub stream

geometry
sub stream

attribute
sub stream

SPS

patch
information

occupancy
map

geometry
images

attribute
images

Attribute transfer
& smoothing

Reconstructed
point cloud

image4.png

image5.png

image6.png

image7.png

image8.png

image9.JPG

image10.jpeg

image11.png

image12.png

image13.png

image14.emf
SEGMENT POINT CLOUD AND ASSIGN EACH POINT TO A GROUP BASED ON A DEFINED CLUSTERING CRIETRION (E.G. BASED ON ASSOCIATED NORMAL VECTORS AND NEIGHBOURHOOD) STARTK=0CREATE A LIST OF POINTS THAT DO NOT BELONG TO ANY PATCHES(INITIALLY NO POINTS BELONG TO ANY PATCH)ALL POINTS ADDEDTO PATCHESSTOPYGENERATE ONE OR MORE PATCHES BASED ON POINT CLASSIFICATION AND CLOSENESS OF POINTS IN GEOMETRY SPACEK < NUMBER OF GROUPSYNDETERMINE IF THE PATCH SHOULD BE SPLIT IN ALONG ANY DIMENSION BASED ON ENCODER INPUT PARAMETER maPatchSizeDETERMINE THE LINE ALONG WHICH TO SPLIT THE PATCH BASED ON THE maxPatchSize parameterSPLIT PATCHSPLIT PATCH BY REMOVING POINTS ACROSS THE LINE FROM THE PATCHNYGROUP OF REMOVED POINTSYADD PATCH TO THE LIST OF PATCHES K=K+1N

Microsoft_Visio_Drawing.vsdx
SEGMENT POINT CLOUD AND ASSIGN EACH POINT TO A GROUP BASED ON A DEFINED CLUSTERING CRIETRION (E.G. BASED ON ASSOCIATED NORMAL VECTORS AND NEIGHBOURHOOD)
START
K=0
CREATE A LIST OF POINTS THAT DO NOT BELONG TO ANY PATCHES
(INITIALLY NO POINTS BELONG TO ANY PATCH)
ALL
POINTS ADDED
TO PATCHES
STOP
Y
GENERATE ONE OR MORE PATCHES BASED ON POINT CLASSIFICATION AND CLOSENESS OF POINTS IN GEOMETRY SPACE
K <
NUMBER OF GROUPS
Y
N
DETERMINE IF THE PATCH SHOULD BE SPLIT IN ALONG ANY DIMENSION BASED ON ENCODER INPUT PARAMETER maPatchSize
DETERMINE THE LINE ALONG WHICH TO SPLIT THE PATCH BASED ON THE maxPatchSize parameter
SPLIT PATCH
SPLIT PATCH BY REMOVING POINTS ACROSS THE LINE FROM THE PATCH
N
Y
GROUP OF REMOVED POINTS
Y
ADD PATCH TO THE LIST OF PATCHES
K=K+1
N

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.emf

r

!

image22.emf

!

r

y

x

z

p

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.jpeg

image30.jpeg

image31.jpeg

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image180.png

image190.png

image200.png

image210.png

image220.png

image40.emf
Union occupancy mapoccupancy map in TMC2occupancy map for proposed method in TMC2

Microsoft_Visio___1111111111111.vsdx
Union occupancy map
occupancy map in TMC2
occupancy map for proposed method in TMC2

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.emf

image53.emf

image54.png

image55.png

image56.png

image1.jpeg

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image64.png

image63.jpeg

image64.jpeg

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.emf
Current frameReference frame

MV

image72.png

image73.png

image74.png

image75.png

