[bookmark: _GoBack][image:]ISO/IEC JTC 1/SC 29/WG 11
Coding of moving pictures and audio
Convenorship: UNI (Italy)
ISO/IEC JTC 1/SC 29/WG 11 	N19091

Document type: 	Approved WG 11 document

Title: 	

Status:	Approved

Date of document:	2020-03-27

Source: 	3DG

Expected action:	

No. of pages: 	91

Email of convenor: leonardo@chiariglione.org	

Committee URL: mpeg.chiariglione.org

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11 N19091
January 2020, Brussels, BE

	Source
	3DG

	Title
	G-PCC codec description v6

G-PCC codec description v6

[bookmark: _Ref502916174]Abstract
ISO/IEC MPEG (JTC 1/SC 29/WG 11) is studying the potential need for standardization of point cloud coding technology with a compression capability that significantly exceeds that of the current approaches and will target to create the standard. The group is working together on this exploration activity in a collaborative effort known as the 3 Dimensional Graphics Team (3DG) to evaluate compression technology designs proposed by their experts in this area.
This document provides a detailed description of the point cloud compression G-PCC (Geometry based Point Cloud Compression). It describes the coding features that are under coordinated test model (TMC13) study by 3DG as potential point cloud coding technology. G-PCC addresses the compression of point clouds in both Category 1 (static point clouds) and Category 3 (dynamically acquired point clouds).

Ed. Notes

v1:
· m42238: Neighbour-dependent entropy coding of occupancy patterns
· m42239: Inference of a mode using point location direct coding
· m42689: Sibling neighbour-dependent entropy coding
· m43591: Look ahead cube for efficient neighbours information retrieval
· m43592: Binarization of occupancy information
· m43600: Intra mode for geometry coding
· m43649: alternative entropy codecs
· m43665: Adaptive predictor selection for attributes coding
· m43780: Binarization of transform coefficients
· m43781: Efficient implementation of the Lifting Scheme
· m44750: A new binary entropy coder with update for geometry coding

v2:
· m44752: falsely occupied neighbours
· m44753: adjacent child neighbours
· m44899: a simplified version of the adaptive prediction scheme
· m44940: binary-tree based LoD generation
· m45811: An overview of OBUF and neighbour usage for geometry coding
· m45867: tile and slice partition
· m42538: recolouring
v3:
· m44486, m46209: fixed-point RAHT
· m46148: further reduction of neighbour configurations
· m46149: an improvement of advanced neighbours
· m46150: the reduction of states related to advanced neighbours in OBUF
· m47398: geometry slice header reduction in slice partition
· m46107: Reference structure modification on attribute predicting transform
· m44990: Fixed-point implementation of lifting and predicting transform
· m46188: regular sampling based LoD generation (remove binary LoD)
· m47399: slice based QP delta
· m47401, m47507: QP table
· m46108: attribute residual coding
· m45019: adaptive quantization scheme for RAHT

v4:
· m48892: slice partitioning order, limit the number of points per slice
· m49121: constrain slice partitions to trisoup node size
· m47834: add support for per-layer luma/chroma qp offsets
· m47827: Bypass coding of bypass bins
· m47352: Spatial scalability support
· m48918: LUT-based quantization
· m49407: Distance-weighted color transfer
· m47378: Upsampled transform domain prediction in RAHT

v5:
· m51064 Clarification and Modification of CD syntax and semantics
· m51063: Region-wise attribute quantization control
· m50924: Geometry quantization
· m50927: Slice based geometry quantization
· m51160: Inter-channel Prediction for Near lossless Coding
· m50741: LoD generation for spatial scalability
· m50773: Neighbor’s weight modification on lifting and predicting scheme
· m50008: Planar coding mode
· m50921: Implicit QTBT partition
· m50009: Duplicated points in IDCM
· m51010: Improved implementation of the Prediction and Lifting schemes
· m51092: Possible reduction of attribute coding time for cat3-fused dataset

v6:
· m50642: Angular coding mode
· m52279: Triangle soup decoding
· m51408: LoD generation modification on scalable lifting coding
· m50765: Adaptive predictor selection for reflectance
· m50743: Improved LoD generation for spatial scalability
· m52337: Uniform square partitioning
· m52341: Region-wise attribute quantization control for RAHT
· m52343: Harmonization of angular coding mode and implicit QTBT
· m51374: Early termination for transform domain prediction of RAHT
· m50930: Parallel Octree Coding
· m52400: Harmonization in Geometry Quantization
· m52514: Chunked entropy streams
· m52524: A method to compute dist2 values for LoD attribute coding
· m52719: Improved encoding for inter-channel residual prediction
Overview
Figure 1 provides an overview of the G-PCC encoder and decoder. The modules shown are logical, and do not necessarily correspond one-to-one to implemented code in the TMC13 software.[bookmark: _Ref165880]Figure 1: Overview of the G-PCC encoder (left) and decoder (right).

In both the encoder and decoder, point cloud positions are coded first. Attribute coding depends on the decoded geometry.
In Figure 1, the green modules are options typically used for Category 1 data. Orange modules are options typically used for Category 3 data. All the other modules are common between Categories 1 and 3.
For Category 3 data, the compressed geometry is typically represented as an octree from the root all the way down to a leaf level of individual voxels. For Category 1 data, the compressed geometry is typically represented by a pruned octree (i.e., an octree from the root down to a leaf level of blocks larger than voxels) plus a model that approximates the surface within each leaf of the pruned octree. In this way, both Category 1 and 3 data share the octree coding mechanism, while Category 1 data may in addition approximate the voxels within each leaf with a surface model. The surface model used is a triangulation comprising 1-10 triangles per block, resulting in a triangle soup. The Category 1 geometry codec is therefore known as the Trisoup geometry codec, while the Category 3 geometry codec is known as the Octree geometry codec.
There are 3 attribute coding methods in G-PCC: Region Adaptive Hierarchical Transform (RAHT) coding, interpolation-based hierarchical nearest-neighbour prediction (Predicting Transform), and interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform). RAHT and Lifting are typically used for Category 1 data, while Predicting is typically used for Category 3 data. However, either method may be used for any data, and, just like with the geometry codecs in G-PCC, the user has the option to choose which of the 3 attribute codecs they would like to use.
In the remainder of this document, Section 3 describes the algorithmic details of the geometry and attribute coding methods in G-PCC. Relevant references for this document are provided in Section 4.
[bookmark: _Ref502916178]Codec Descriptions
This section is organized as follows. Section 3.1 describes the pre- and post-processing of point clouds that may be common to Category 1 and Category 3 data in G-PCC. Section 3.2 describes the details of the Octree method for geometry encoding/decoding, while Section 3.3 describes the Trisoup geometry encoding/decoding. Section 3.4 describes the entropy coding method for geometry. Section 3.5 details the attributes transfer (recolouring) module that is used to transfer attributes to point cloud geometry that has been compressed and then reconstructed (decompressed) at the encoder, prior to attribute encoding. Section 3.6 then describes the Predicting method for attribute coding, Section 3.7 describes the Lifting method, and Section 3.8 describes the Region Adaptive Hierarchical Transform (RAHT). Section 3.10 describes the entropy coding for attribute and Section 3.11 describes tools for functionality.
0. [bookmark: _Ref164941]Pre- and post-processing
A point cloud is a collection of points with positions , , where is the number of points in the point cloud, and optional attributes , , where is the number of attributes for each point. The geometry of the point cloud comprises the point positions only. The attributes of the point cloud comprise the point attributes only. In this Test Model, the only attributes supported are a colour triple and/or a reflectance (or else no attributes). The geometry and the attributes of a point cloud are often expressed in application-specific spaces. The Test Model provides pre-processing and post-processing to convert between these application-specific spaces and finite-resolution internal spaces, where the point clouds are compressed.
Coordinate transform and inverse
Original application-specific point positions are generally represented by floating point numbers and need not have any structure, lying in an original (or world) coordinate system denoted , .

Internal (or frame) coordinates , are obtained from original coordinates by the coordinate transformation

where . The parameters and are such that the point positions lie in a bounding cube for some non-negative integer parameter .

Point positions in the internal coordinate system that have been compressed and decompressed are denoted , where is the number of points in the decoded point cloud. may not be the same as .

Decoded point positions in the original coordinate system are obtained from decoded point positions in the internal coordinate system by the coordinate transformation

This can alternatively be expressed by the following homogeneous transformation from internal to original coordinates:

If the Trisoup geometry codec is used, is specified by the triSoupIntToOrigScale parameter, while is [0, 0, 0], and is specified by the triSoupDepth parameter. Components of points outside the bounding cube are clipped to the range if necessary.

If the Octree geometry codec is used, is specified by the positionQuantizationScale parameter, while is determined by and is determined by

such that is the smallest bounding cube with side an integer power of two that contains the point positions in internal coordinates. See Appendix A for definitions of Ceil, Log2, and Max.
Colour transform and inverse
Attribute quantization of colour components is agnostic to the colour space of the components, since the components are processed independently. However, the TM supports conversion from RGB to YCbCr and back again (ITU Rec.709), if desired.
Point quantization and duplicate point removal (voxelization)
Point positions are represented internally as non-negative -bit integers before being compressed. To obtain these integers, the point positions in the internal coordinate system are rounded. Let be a point position in the internal coordinate system. Then its representation as a non-negative -bit integer is

where is the function that rounds the components of a vector to the nearest integer. See Appendix A for details.

After such quantization, there may be multiple points with the same position, called duplicate points. The duplicate points removal process is optional. If enabled, it removes points with the same quantized coordinates. In order to detect duplicates, the STL set data structure is leveraged.

Multiple points with the same quantized position and different attributes will be merged in a single point. The attributes associated with the single point will be computed by the attributes transfer module described in Section 3.5

The process of position quantization, duplicate point removal, and assignment of attributes to the remaining points is called voxelization. In other words, voxelization is the process of grouping points together into voxels. The set of voxels are the unit cubes for integer values of , , and between 0 and . Specifically, the locations of all the points within a voxel are quantized to the voxel centre, and the attributes of all the points within the voxel are combined (e.g., averaged) and assigned to the voxel. A voxel is said to be occupied if it contains any point of the point cloud.

0. [bookmark: _Ref164986]Octree geometry encoding/decoding
If the Octree geometry codec is used, then the geometry encoding proceeds as follows. First, a cubical axis-aligned bounding box B is defined by the two extreme points and .

An octree structure is then built by recursively subdividing B. At each stage, a cube is subdivided into 8 sub-cubes. An 8-bit code, named an occupancy code, is then generated by associating a 1-bit value with each sub-cube in order to indicate whether it contains points (i.e., full and has value 1) or not (i.e., empty and has value 0). Only full sub-cubes with a size greater than 1 (i.e., non-voxels) are further subdivided. Since points may be duplicated, multiple points may be mapped to the same sub-cube of size 1 (i.e., the same voxel). In order to handle such a situation, the number of points for each sub-cube of dimension 1 is also arithmetically encoded. The same arithmetic encoder is used to encode all the information put into the bitstream. Currently the implementation from [1] is used.

The decoding process starts by reading from the bitstream the dimensions of the bounding box B. The same octree structure is then built by subdividing B according to the occupancy codes. Each time a sub-cube of dimension 1 is reached, the number of points for that sub-cube is arithmetically decoded and points located at the origin of the sub-cube are generated.

Note: In order to guarantee encoder/decoder synchronization, the point order defined by the decoding process is used during the level of detail generation process.
Direct coding mode (DCM) [7][57]
The octree representation, or more generally any tree representation, is efficient at representing points with a spatial correlation because trees tend to factorize the higher order bits of the point coordinates. For an octree, each level of depth refines the coordinates of points within a sub-volume by one bit for each component at a cost of eight bits per refinement. Further compression is obtained by entropy coding the split information, i.e. pattern, associated with each tree node. This further compression is possible because the pattern distribution is not uniform, non-uniformity being another consequence of the correlation.

On the other hand, isolated points P cannot be better coded than directly coding their coordinates without compression, simply because by definition, there are no other points within the volume to correlate with. To do otherwise risks a worst-case penalty of five (=8-3) bits per refinement without taking into account entropy coding or assuming uniform distribution. Directly coding point coordinates in a volume/sub-volume is called Direct Coding Mode (or DCM hereafter).

Furthermore, isolated points “pollute” the distribution of patterns, inducing many patterns with only one occupied child, thus changing the balance of the distribution and penalizing the coding of other patterns.

It would be highly beneficial to get rid of isolated points in octree/tree coding in order to obtain better compression performance in volumes where point correlation exists. Also, complexity would be greatly reduced because a DCM is by essence much simpler than a recursive split of a tree.

A combination of octree coding and the Direct Coding Mode, see Figure 2: combining tree coding and Direct Coding Mode, is a straightforward attempt.

[image:]
[bookmark: _Ref502840417]Figure 2: combining tree coding and Direct Coding Mode

Instead of signaling the usage of the DCM for all nodes of the tree is inferred from information coming from the node neighbourhood, leading to what we call Inferred Direct Coding Mode (or IDCM), see Figure 3.

A new eligibility (for DCM) condition is introduced and depends on information coming from the parent node itself or the neighbours of the parent node; this is the inference. If the node is not eligible, then tree coding is applied. If the node is eligible, then:

1. a binary flag is coded to signal if the DCM is applied (flag=1) or not (flag=0) to the node

2. if the flag is equal to 1, then points belonging to the associated volume are directly coded using the DCM. Otherwise (the flag is equal to 0), the tree coding process continues for the current node.

[image:]
[bookmark: _Ref18085411][bookmark: _Ref502841009]Figure 3: overview of IDCM

If the node is eligible for DCM, then a flag is coded to signal if the DCM is applied or not. This flag may be determined by an encoder based upon the number of points belonging to the volume attached to the node. If this number is less than or equal to a threshold th, then DCM is activated; otherwise it is not. TMC13 software has used the value th=2, i.e. up to two points can be directly coded in a volume. The value th is implicit, but could be a coded parameter at sequence/picture level.

If a DCM is applied, the coding of points is performed as follows

1. the number of points (necessarily at most th points) is coded using a truncated unary binarizer followed by a binary entropy coder. With th=2, there is only on flag signalling if the number of points is either 1 or 2. This flag is entropy coded using a binary arithmetic coder with a dedicated context

2. positions X, Y and Z are coded independently for each point, and relatively to the volume associated with the node. For example, if the volume is a cube of size 2^D, then D bits are needed for each coordinate of each point. These bits are direct pushed into the bitstream (bypass coding).

The criterion for eligibility can take two flavours

1) parent-based-eligibility. There is only one occupied child (=the current node) at parent-node level, AND the grand-parent node has at most two occupied children (= the parent node + possibly one other node).
2) 6N eligibility. There is only one occupied child (=the current node) at parent-node level, AND there is no occupied neighbour N (among the six neighbours sharing a face with the current cube associated with the current node, see Figure 3: overview of the proposed IDCM).

If eligibility condition is not fulfilled, the node is not eligible and the process continues to octree coding as in TMC13.

Concerning 6N eligibility, he breadth first scan order of the octree as performed in TMC13 ensures that the six neighbours N are available when determining the eligibility of the current node.

Additionally, IDCM was extended to handle duplicated points optimally by coding the number of duplicated point instead of coding each of them individually.

Neighbour-Dependent Entropy Context (NEIGHB) [8]
Neighbour-Dependent Entropy Context (NEIGHB) selects the configuration depending on the six neighbours N of the parent node and these 6 neighbours, a neighbour configuration number (NC) is deduced to code occupancy pattern. This number NC is an integer between 0 and 63. The value 0 means that there is no occupied neighbour, and the value 63 means that all neighbours are occupied.
The decision process is to choose directly a distribution, among 64 distributions, from the neighbouring configuration number NC, but with a special handling of the case NC=0 which is further split into two sub-cases:
· If the parent node has only one occupied child node (Number of Occupied child nodes =: NO =1), then the position is directly coded by using 3 bits to code the occupied child node position in XYZ inside the volume associated with the parent node
· Otherwise the 0-th distribution corresponding to NC=0 is used.

In order for the decoder to know if NO=1 or not, an additional flag stating whether or not NO=1 must be coded when NC=0. This flag is also entropy coded using a binary arithmetic coder with a dedicated context.

[bookmark: _Ref536466004]Configuration and geometrical invariance
By construction of the octree, a current cube (in blue on Figure 4) associated with a current node is surrounded by six cubes of the same depth sharing a face with it. As depicted on the figure, weights (1, 2, 4, etc.) are associated with each of the six cubes and a neighbouring configuration NC is determined by summing the weights of occupied cubes among the six cubes. Figure 4 on the right, depicts the example for NC=15.
[image:] [image:]
[bookmark: _Ref536464757]Figure 4: neighbour configuration NC (left) and example for NC=15 (right)
Using a breadth-first scanning order ensures that the occupancy of the six cubes neighbouring the current cube is known before (de)coding the 8-bit occupancy pattern of the current node. Therefore, the set Ɗj={b0...bj-1,NC} of states can be used in OBUF (Optimal Binarization with Update On-the-fly, or OBUF) to code the occupancy bit bj. For example, the size of Ɗ7 is 128*64= 8192 states. This is marginally practical for HW implementation and, more importantly, this leads to the dilution of occupancy statistics into too many states to obtain optimal compression performance.
[image:]
[bookmark: _Ref536464885]Figure 5: the ten invariant neighbour configurations NC10 (left) and
the scanning order of current child cubes Ci (right)

To solve these issues, the 64 neighbouring configurations NC are reduced to 10 invariant configurations NC10 by using geometry invariance. Assuming local geometry correlation of the point cloud as invariant under 3D isometries (for example by assuming anisotropy of the 3D space), then the neighbouring configuration can be transformed using 90° rotations and symmetries to match uniquely one of the ten configurations shown on Figure 5. The integer NC in [0,63] is thus mapped onto NC10 in [0,9].
As consistency between neighbouring configuration and occupancy pattern must be preserved, the pattern undergoes the same geometrical transform. Next, in the transformed space for both configuration and pattern, the scanning of the child cubes of the current cube is performed in the order shown in Figure 5 (right).
Configuration-driven OBUF State reduction
The size of the sets Ɗj of states can be lowered further by using a state reduction process. Using NC10 instead of NC, the size of Ɗ7 has become 128*10=1280 states. However, the future introduction of additional intra (but also potentially inter) prediction tools will unavoidably increase its cardinality. Therefore, the number of states must be further reduced already at this stage in order to anticipate new tools. Further reduction is obtained using anisotropy and screening.
When the neighbourhood is empty (NC10=0), the points belonging to the current cube are isolated. In this case, one can use anisotropy, i.e. there is no privileged direction for occupancy. Consequently, when coding bj, the order of the preceding bits b0 to bj-1 is of no importance. Because we are dealing with binary data, the non-ordered set {b0,…,bj-1} is totally characterized by the sum b0+…+bj-1. Consequently, as shown on Figure 6 on the left branch of the decision tree, the set of states is reduced from {b0...bj-1, NC=0} to {b0+…+bj-1, NC10=0} when the neighbouring NC10 configuration is zero.
[image:]
[bookmark: _Ref536465022]Figure 6: reduced dependency state (bj, N10) driving the entropy coder OBUF

When the neighbourhood is not empty, a state reduction is possible by using screening, a term used in physics when mobile charge carriers damp an electric field, like electrons around a nucleus. To continue with this analogy, we will simply replace the nucleus by a neighbouring volume and electrons by already coded current child volumes as depicted on Figure 7. Occupancy bits of child volumes CC0 to CC3 (blue small cubes) have already been coded, and the occupancy of these child volumes “screens” the occupancy of the neighbouring volume (green cube) located above the current volume. Therefore, when coding the occupancy of the child volume CC4 (red small cube), one can neglect the effect of this neighbouring volume, thus leading to the reduction of configurations NC10 = 6, 7 and 8 to configurations 3, 4, and 5 respectively. Practically, one replaces NC10 by NC7 that takes only seven different values.

[image:]
[bookmark: _Ref165796]Figure 7: application of screening to reduce the number of configurations from 10 to 7

Figure 8 shows another usage of the screening technique for the last child cube CC7 for which the front and right neighbouring volumes are screened by the seven already coded child cubes CC0 to CC6. Consequently, for coding b7, NC7 can be replaced by NC5 that takes only five different values. Tests have shown that a good trade-off between compression performance and size of the coder mappings is to use NC10 for bits b0 to b5, NC7 for bit b6 and NC5 for bit b7, as shown on Figure 5.
At this stage the sizes of the eight sets Ɗj of states, for j=1,…,7, are 10, 20, 39, 76, 149, 294, 391 and 520 respectively. These are reasonable sizes that can be implemented.

[image:]
[bookmark: _Ref536465311]Figure 8: further application of screening to reduce the number of configurations from 7 to 5

On further reduction of neighbour configurations (nine neighbour configurations) [27]
Firstly, a minor change in the scan order of the child nodes of the current node must be introduced by swapping bits b5 and b6. This swap is performed to obtain a better screening of b6 from the right.

[image:]
Figure 9: swapping b5 and b6

Secondly, NC10 is reduced to nine neighbour configurations by regrouping NC10=1 and NC10=2 together. Also, a more aggressive reduction is performed down to five configurations for bits b4 and b5, to three configurations for bit b6 and to two configurations for bit b7 as explicated in the figure below.

[image:]
Figure 10: nine neighbour configurations with more aggressive reduction from bit b4

This leads to a significant decrease of the number of states, see table below. The max number of states associated with an occupancy bit has decreased from 520 to 136; the total number of states for all bits has decreased from 1499 to 604.

[image:]
Figure 11: number of states using the proposed nine neighbour configurations

On using child nodes of already-coded neighbouring nodes [20][21]
Among the six neighbours sharing a face with a current node, some of them are already coded. Consequently, if they are occupied, their occupancy information is already coded in the bitstream and the occupancy of their child nodes is known by the decoder when processing the decoding of the current node. Therefore, the knowledge of the occupancy of the occupied already-coded neighbours’ child nodes can be used to better code the occupancy information of the current node.

[image:] [image:]
[bookmark: _Ref536465483]Figure 12: already coded neighbours for a breadth-first scan (left) and children of already-coded occupied neighbours (right)

For example, as shown on Figure 12, when nodes are scanned in breadth-first octree scanning order, in increasing order along the three XYZ axis, there are systematically three neighbouring nodes, sharing a face with the current node, that are already coded. These three nodes are those with lower X, Y and Z coordinates than the current node (Figure 12, left). The child nodes (see Figure 12, right) of the occupied nodes among these three nodes will be used to

· improve the determination of the neighbouring configuration NC10, and
· augment the set Ɗj of states used by OBUF to code the occupancy bits bj of the current node
[bookmark: _Ref9851319]Falsely occupied neighbour
The determination of the neighbouring configuration NC or NC10 as described in section 3.2.2.1 is modified as depicted on Figure 13. Let us consider an occupied already-coded neighbour (red cube on the left of the current node in blue). Instead of systematically taking the neighbour as occupied in the computation of the neighbouring configuration, the occupancy status of this neighbour is determined depending on its child nodes distribution.
If at least one child node is immediately adjacent to the current node, i.e. one of the child’s faces is shared with a face of the current node, then the neighbour is determined as “truly occupied”, thus not changing its status. However, if no child node of the neighbour touches the current node, the neighbour is said to be “falsely occupied”, and its status is set to “non-occupied” in the computation of the neighbouring configuration.

[image:]
[bookmark: _Ref536465699]Figure 13: truly and falsely occupied neighbours

Occupied child nodes adjacent to a current sub-node
For a given sub-node of a current node, let NT (Number Touching) be the number of all occupied child nodes touching (or directly adjacent to) the sub-node from all already-coded occupied neighbouring nodes of the node. The number NT is computed, before the geometrical transform that reduces the neighbour configurations from 64 to 10. Figure 14 illustrates all possible configurations for a sub-node position adjacent to three already coded neighbour nodes. Depending on the distribution of the touching neighbour child nodes, the NT value is comprised between 0 and 3. As shown in Figure 15, the maximum value for NT is 1 as the sub-node touches only one already-coded neighbour node. One also understands that the top-right-rear sub-node of any node necessarily has NT=0 as this sub-node does not touch any already-coded neighbour.

[image:]
[bookmark: _Ref165660]Figure 14: example of values of NT depending on neighbour’s child nodes distribution

[image:]
[bookmark: _Ref165688]Figure 15: another example of values of NT depending on neighbour’s child nodes distribution

[bookmark: _Hlk528228294]After applying the geometrical transform to reduce the neighbouring configuration, each of the child node CCj (as depicted in Figure 5) inherits a value NT[j] indicating the number of neighbour’s occupied child nodes touching the child node. This value can be used to augment the sets Ɗj of states. It has been observed that the case NT[j]=3 is marginal and does not provide extra information to OBUF compared to NT[j]=2. Therefore, in order to minimize the size of the set of states, the value NT[j] is capped to the value 2 to obtain the new value C[j]. The set of states is then augmented as follows

The sets Ɗj of states are practically small enough as reductions based on anisotropy and screening do still apply. By construction, not all combinations of the neighbouring NC10 configuration and C[j] are possible. For example, when NC10=0 (no occupied neighbours), C[j] value is always zero. In another example, when NC10=1, then C[j] is at most one, and necessarily zero for the four child nodes CCj (j=0,3,5,7) on the left on the Figure 5. All those natural reductions lead to sets of states not bigger than a thousand states in average.
On an improvement of advanced neighbours[28]
This method replaces the count C[i] of occupied child nodes of occupied neighbours that are adjacent to the current child node to code (occupancy bit bi) by the following information (see figure below)

· the number of occupied child nodes of occupied neighbours, i.e. essentially the same as C[i]
· the number of missed (=non-occupied) child nodes of occupied neighbours

that are adjacent to the current child node.

Then two quantities are deduced

· C[i] = min(2,occupied)
· M[i] = min(1,missed)

then combined into CM[i] = M[i] + 2*C[i] that can take six valued in [0,5]. A reduction is performed, for i>4, as follows

· Nadv[i] = CM[i] if i<=4
· Nadv[i] = LUT_red[CM[i]] if i>4 where LUT_red = {0,0,1,2,3,3}.

[image:]
Figure 16: definition of occupied/missed advanced neighbours
Incompatibilities between NC9 and new advanced neighbour states Nadv[i][29]
For example, considering the empty configuration NC9 = 0, obviously C[i] must be 0 because there can’t be any occupied advanced neighbour. However, due to “falsely occupied” (see section 3.2.2.4.1), there may be missed advanced neighbours.

Generally speaking, due to “falsely occupied” neighbours, M[i] may be 0 or 1 for any configuration. In the general case, the max value for Nadv[i] depends on

· the position of the child node, i.e. the index i
· the value of the configuration NC

Figures below depict the max possible values for occupied/missed advanced neighbours depending on the index I of the occupancy bit bi and on the neighbour configuration NC.

[image:]
Figure 17: max possible values for occupied/missed advanced neighbour for bits b0 to b3

[image:]
Figure 18: max possible values for occupied/missed advanced neighbour for bits b4 and b5

[image:]
Figure 19: max possible values for occupied/missed advanced neighbour for bit b6

[image:]
Figure 20: max possible values for occupied/missed advanced neighbour for bit b7

The max value for Nadv[i] is given by

· max Nadv[i] = max missed[i] + 2* max occup[i]

and, in case i>4, then the LUT_red = {0,0,1,2,3,3} is applied to this max. This leads to the below in term of number of states.

[image:]
Figure 21: number of states when considering incompatibilities between NC and advanced neighbours

Look ahead table [9]
The current octree-based geometry approach exploits an octree-based subdivision of the 3D space in order to efficiently encode regions containing points. At each level of subdivision of the octree, cubes of the same size are subdivided and an occupancy code for each one is encoded.
· For subdivision level 0, it has single cube of (2C,2C,2C) without any neighbors.
· For subdivision level 1, it may have up to 8 cubes of dimension (2C-1,2C-1,2C-1) each
· …
· For subdivision level L, it may have up to 8L cubes of dimension (2C-L,2C-L,2C-L) each
At each level L, TMC13 defines a set of non-overlapping look-ahead cubes of dimension (2H-C+L,2H-C+L,2H-C+L) each, as described in Figure 22: Look-ahead cubes. Note that the look-ahead cube can fit 23xH cubes of size (2C-L,2C-L,2C-L).
[image:]
[bookmark: _Ref530994811]Figure 22: Look-ahead cubes

At each level L, TMC13 encodes the cubes contained in each look-ahead cube without referencing cubes in other look-ahead cubes. This later constraint makes it possible to use a look-up table with a pre-defined (and limited) size to store neighborhood information of the all the cubes within each look-ahead cube. Such a look-up-table-based approach offers the advantage of avoiding the linear search required in [8], at the cost of slightly higher memory usage (i.e., space to store the LUT) and slightly lower compression efficiency.

TMC13 proceeds as follows:
· During the look-ahead phase, the cubes of dimension (2C-L,2C-L,2C-L) in the current look-ahead cube are extracted from the FIFO and a look-up table that describes for each (2C-L,2C-L,2C-L) region of the current look-ahead cube whether it is occupied or empty is filled.
· Once, the look-up table was filled, the encode phase for the extracted cubes begins. Here, the occupancy information for the 6 neighbors is obtained by fetching the information directly from the look up table.
· For cubes on the boundary of the look-ahead cube, the neighbors located outside are assumed to be empty.
· Efficient implementation could be achieved by
· Storing the occupancy information of each group of 8 neighboring (2C-L,2C-L,2C-L) regions on one byte
· Store the occupancy bytes in a Z-order to maximize memory cache hits

Sibling dependent coding [10]
In TMC13, 10 coding tables are used in arithmetic coding. The switching between the coding tables is controlled by the six neighbours of the current parent node, shown in Figure 23.
[image:]
[bookmark: _Ref531000035][bookmark: _Ref511227218]Figure 23: Six neighbours used to decide the switching of the coding table

During encoding/decoding, the neighbour information for the child node is obtained by searching the encoded/decoded nodes. Information of the encoded/decoded node is also updated by the newly encoded/decoded one. In this way, the six-neighbour information of each child node could be fully obtained by the searching and updating. The same process exists in each level of the octree (except for the last one).

Among the 6 neighbours, three of them are easy to be obtained without any searching. They are shown in Figure 24.
[image:][image:][image:]
[bookmark: _Ref531000021][bookmark: _Ref511227250]Figure 24: Three of the six neighbours are in the same node in the grand parent point of view. Pink nodes are in the same 2x2x2 node, while the other 3 (blue) are outside of the node.

The occupancy of three children that outside of volume of the current parent node is more difficult to be checked. The searching is needed for these three outside children. The other half of the neighbour information could be obtained by checking the occupancy code of the parent node. The efficiency could be improved if the searching process is skipped, since checking current occupancy code would be simpler than searching in the coded node.

The neighbour information retrieval method only considers the three sibling neighbours in case of the parameter neighbour_context_restriction_flag equal to 1 in TMC13 software. For all the child locations, local neighbours are shown in Figure 25.

[image:]
[bookmark: _Ref531000151][bookmark: _Ref511227259]Figure 25: Possible neighbours (pink) in eight cases

In the reduction, the three non-sibling neighbours are considered non-exist. The 64 neighbour configurations are reduced to 6:
· 0 occupied neighbor.
· 1 occupied neighbor, with target node they are horizontal to the x-y plane.
· 1 occupied neighbor, with target node they are vertical to the x-y plane.
· 2 occupied neighbors, with target node they are horizontal to the x-y plane.
· 2 occupied neighbors, with target node they are vertical to the x-y plane.
· 3 occupied neighbors.

[image:]
Figure 26: 6 configurations used in selecting coding tables

[bookmark: _Ref531004706]Intra prediction [11]
Using the six neighbours of the same depth and sharing a face with a current node does not provide all possible information about the local geometry. Ideally, one would like to use at least the 26 neighbours that share a face, an edge or a vertex with the current node. Obviously, the number of possible patterns of occupancy for the 26 neighbours is by far too high to be directly used in the sets Ɗj of states, even trying complex and tricky direct state reductions. In this section, it is proposed to reduce the 26-neighbour pattern to a ternary information that predicts the value of the occupancy bits bj. This process will be called intra prediction. The practical feasibility of using as many as 26 neighbours has been made possible by a fast and efficient search of neighbours introduced in [23].
0. The occupancy score from the 26 neighbours
Firstly, before applying the geometrical transform that reduces the neighbour configurations from NC to NC10, an occupancy score scorem is computed for each of the eight sub-nodes SNm (m=0,…,7) of a current node by using a weighted sum over the 26 neighbours

where m is the sub-node index, k is a neighbour index, wk,m is the contribution (weight) from neighbour k to sub-node m, and δk is the occupancy status (0 for non-occupied, 1 for occupied) of the neighbour k, as depicted on Figure 27.

[image:]
[bookmark: _Ref18086308]Figure 27: weights between neighbours and sub-nodes of a current node

Using the usual anisotropy argument, the weights are considered as a function W of the Euclidian distance dk,m, between the neighbour k and the sub-node m, and the occupancy status δk.

This function W is found empirically. The distance dk,m can take only eight different values and one gets

where W1 and W2 are two LUTs having eight entries (ordered from the shortest to the longest distance) each and are as follows

W0 = {-1, -6, 12, 20, 14, 28, 22, 12},
W1 = {27, 39, 20, 8, 18, 4, 11, 18}.

The LUTs have been constructed such that a higher score scorem indicates a higher probability of the sub-node SNm to be occupied, and such that the transition between low and high probability of occupancy is the sharpest possible as a function of the score.
0. Score-driven entropy coding
The score can take too many different values to be usable as is in the sets of states. Furthermore, it has been observed that the probability of a sub-node to be occupied depends not only on the score but also on the number No of occupied neighbours among the 26 neighbours.
The score is transformed into a ternary information Predm belonging to the set {“predicted non-occupied”, “predicted occupied”, “not predicted”} of three prediction states by using two thresholds th0(No) and th1(No) that depend on the number No of occupied neighbours. If the score scorem is lower than th0(No), then Predm is set to “predicted non-occupied”; if the score scorem is higher than th1(No), then Predm is set to “predicted occupied”; otherwise the score is between the two thresholds and Predm is set to “not predicted”.
After applying the geometrical transform to reduce the neighbouring configuration from NC to NC10, each of the child node CCj inherits a prediction value Pred[j] and the set of states becomes:

This leads to sizes of the eight sets Ɗj of states multiplied by a factor three because the intra prediction is taken independent on other neighbouring techniques. Basically, this means that the set of states is three copies of the sub-set without prediction, i.e.

The two thresholds are determined empirically for the five cases of occupied neighbours No≤9, No=10, No=11, No=12 and No≥13, and practically obtained from the following two LUTs:

 	TH0 = {62, 60, 61, 59, 59},
TH1 = {67, 66, 65, 66, 64}.

Planar coding mode [61]
The planar mode was introduced to code each eligible nodes of the octree more efficiently.
0. Definition of the planar mode
A flag isPlanar is introduced, which indicates whether or not the occupied child nodes belong to a same horizontal plane. If isPlaner is true, then an extra bit planePosition is signaled if this plane is the lower plane or the upper plane.

[image:]
Figure 28: isPanar flag
[image:]
Figure 29: planePosition information

0. Coding of the planar flag of a current node
The planar flag is coded by using a binary arithmetic coder with the 8 contexts based on the following information,
· A planar flag isPlanar of the parent node
· The occupancy of the parent vertical neighbour adjacent to the current node
· The distance d from the closest already coded node at same coordinate and depth
· d is discretize into two values : “near” or “far”

[image:]
Figure 30: a planar flag coding scheme
0. Coding of the plane position of a current node
If the node is planar, the plane position information is coded by using a binary arithmetic coder with 24 (=2x3x2x2) contexts based on the following information,
· The occupancy of the parent vertical neighbour adjacent to the current node
· The distance d from the closest already coded node at same coordinate and depth
· d is discretize into three values : “near” or “not too far” or “far”
· The plane position (if any) of the closest already coded node at same coordinate and depth
· The vertical coordinate of the current node relative to its parent node
1 specific context in case the closest already coded node at same z and depth is not planar.
[image:]
Figure 31: a plane position coding scheme
0. Determining the closest already coded node at same coordinate
· using a rolling buffer (of length 4)
· for each possible coordinate
· keep track of the four last already coded nodes at same coordinate
· stores x or y or z and plane position for the already coded nodes
· determine the closest node from the buffer using (x,y)
· swap the closest to front
· the size of the buffer is at most 2^depth
[image:]
Figure 32: how to determine the closest already coded node with rolling buffer

0. Eligibility of a current node to planar mode
The eligibility criterion is based on tracking the probability of past coded node being planar
· eligible if and only if
p = prob(planar) >= threshold and local_node_density > 3
· typical threshold value is 0.6

Updating the probability prob(planar)
· using a channel model
[image:]
· with length L=255
· where δ(coded node) is 1 if the coded node is planar and 0 otherwise

Update is performed when
· a node occupancy is (de)coded
· or/and a node planar information is (de)coded

Tracking the local node density
· rolling average of number of occupied siblings
0. Planar mode in three directions
[image:]
Figure 33: Coding of occupancy bits with three planar modes xyz

0. Eligibility of a current node to xyz-planar mode
The simple juxtaposition of eligibility criteria does not work.
· Sub-optimal because a first activated planar mode masks 4 occupancy bits in the current node, but a second activated planar mode will then only mask 2 bits of the remaining 4, and a third one would mask only 1 bit of the remaining 2

[image:]

A combined eligibility criterion that preserves symmetry
· does not preclude that one direction is more important than the other two
· definition of “first”, “second” and “third” planar mode is based on the probabilities px, py and pz
· three thresholds th1 < th2 < th3 (typical values 0.6, 0.77, 0.88)

[image:]

Eligible if local node density >3

Angular coding mode [63]
The angular mode was introduced to improve planar coding mode. It uses the child node angular distance from laser angles to improve compression of binary occupancy coding through the prediction of the plane position of the planar mode and the prediction of z-coordinate bits in IDCM nodes.
Corrected angles per laser beam
The data captured with laser beam includes vertical angle dispersion due to noise, measurement precision and inaccuracy of laser position/origin. So, it is corrected as following.

The vertical angle without correction is calculated as following,

Herein, (, ,) indicates a lidar absolute head position.

The vertical angle with correction relative to a laser position (,) in Figure 34 is calculated as following,

Practically, only is significant for the relative position, so is omitted. Note that the correction does depend on a particular laser L. This corrected laser angles are used in angular coding mode.

[image:]
[bookmark: _Ref35885156]Figure 34: Lidar head position and laser relative position

Angular eligibility and determination of the corrected vertical angle
The angular coding mode is applied for nodes where the «angular size» node_size / r is small enough for the eligibility with r relative to the lidar head position (, ,), i.e. if the angular is lower than the smallest angular delta between two laser |tan(θL1) - tan(θL2)|.
[image:]
Figure 35: Angular eligibility
Then, if the eligibility condition is true, the corrected vertical angle of a node is calculated. At first, non corrected angle is calculated as following,

Herein, the center (x,y,z) of the node and the lidar head position (, ,) are used. Then, it is determined to which closest laser L the node belongs to this laser L such that | tan(θ) - tan(θL)| is minimum. Finally, the corrected vertical angle is calculated as following,

Enhancing planar mode using angular contexts
The angular information enhances the plane position set of contexts. At first, the corrected vertical angles tan(θbottom) and tan(θtop) of the two bottom and top virtual planes are calculated by using the center of the virtual planes.

[image:]
Figure 36: Corrected vertical angles tan(θbottom) and tan(θtop)

Then, an angular context for planePositionZ is selected based on tan(θL), tan(θbottom) and tan(θtop) from 10 angular context values. It depends on
· Which of m =|tan(θL) - tan(θbottom)| and M=|tan(θL) - tan(θtop)| is minimum (2 possible values)
· the quantization of |m-M|*r (over 5 values depending on a constant α)
· <=0.5*α
· in]0.5, 1]*α
· in]1, 2]*α
· in]2, 4]*α
· >4*α

Enhancing IDCM using angular contexts
IDCM with angular coding mode are introduced to enhance IDCM. In this mode, x,y-coordinate bits are still bypassed while z-coordinate bits are entropy coded using angular contexts. The z-coordinate bit is coded based on a z-interval as following steps (Figure 37, Figure 38),
· Split in two after (de)coding each z-coordinate bit
· Angular prediction of the sub-interval based on angular information
· Angular context to (de)code the bit
· Context determine based on the sub-interval prediction

[image:]
[bookmark: _Ref35889789]Figure 37: Angular IDCM node

[image:]
[bookmark: _Ref35889880]Figure 38: Evolution of the z-interval
Implicit QTBT partition [62]
The implicit QTBT partition is a simple approach that enables asymmetric geometry partition, in a way the TMC13 can handle the asymmetric bounding box and kd-tree like partitioning can be enabled at certain conditions. It can achieve significant coding gains on sparse distributed data such as on category 3-frame data. The gain is from the intrinsic characteristics of such kind of data where the 3D points of the scene are distributed along one or two principle directions. In such case, implicit QTBT can achieve the gains naturally because the tree structure would be imbalanced

0. Signaling of implicit QT and BT partitions
First of all, the bounding box B is not restricted to be a cube, instead it can be an arbitrary-size rectangular cuboid to better fit for the shape of the 3D scene or objects. In the implementation, the size of B is represented as a power of two, i.e., . Note that are not assumed to be equal, they are signaled separately in the slice header of the bitstream.
As B may not be a perfect cube, in some cases the node may not be (or unable to be) partitioned along all directions. If a partition is performed on all three directions, it is a typical OT partition. If performed on two directions out of three, it is a QT partition in 3D. If performed on one direction only, it is then a BT partition in 3D. Examples of QT and BT in 3D are shown in Figure 40 and Figure 41, respectively.
[image:]
[bookmark: _Ref27146976]Figure 39: Illustration of an octree-partition in 3D space
[image:]
[bookmark: _Ref27146820]Figure 40: Quad-tree partition of a 3D cube, along x-y, x-z, y-z axes, respectively.

[image:]
[bookmark: _Ref27146834]Figure 41: Binary-tree partition of a 3D cube, along x, y, z axis, respectively.
When conditions are met, QT and BT partitions can be performed implicitly. “Implicitly” implies that no additional signaling bits are needed to indicate that a QT or BT partition, instead of an OT partition, is used. Determining the type and direction of the partition is based on the pre-defined conditions. Moreover, bits can be saved from an implicit QT or BT partition compared to an OT partition when signaling the occupancy information of each sub-node. A QT requires four bits, reducing from eight, to represent the occupancy status of four sub-nodes, while a BT only requires two bits.
The encoding of occupancy code of implicit QT and BT partitions can be described as the following examples. First, one can assume that the occupancy code of an OT is encoded in the order as shown in Figure 39. Then, the occupancy code of a QT partition along x-y axes, as shown in the leftmost graph of Figure 40, can be coded by omitting the bits in positions 1, 3, 5, 7, as they can be inferred to be zeros, and only the bits in positions 0, 2, 4, 6 need to be signaled. Similarly, a BT along x axis, as shown in the leftmost graph of Figure 41, only needs to encode occupancy information in positions 0 and 4, and the other six bits can be inferred to be zeros.
In addition, since the implicit partition may lead to sub-nodes with unequal sizes in dimensions, the direct coding mode (DM) should be changed accordingly. For example, if a sub-node with the size of is to be coded in DM mode, the relative positions of each point in the sub-nodes are coded by fixed-length coding with bits, respectively.

0. Conditions for implicit QT and BT partitions
To define the conditions of implicit QT and BT partitions, two parameters are defined, i.e., and . The first parameter defines the maximum times of implicit QT and BT partitions that can be performed before OT partitions. The second parameter defines the minimal size of implicit QT and BT partitions, indicating that implicit QT and BT partitions are allowed only if all dimensions are greater than .
More specifically, the first partitions follow the rules in Table 1, after then it follows the rules in Table 2. If none of the conditions listed in tables are met, an OT partition is performed.
[bookmark: _Ref27175886]Table 1: Conditions to perform implicit QT or BT partition for the first partitions
	
	QT along x-y axes
	QT along x-z axes
	QT along y-z axes

	Condition
	
	
	

	
	BT along x axis
	BT along y axis
	BT along z axis

	Condition
	
	
	

[bookmark: _Ref27175898]Table 2: Conditions to perform implicit QT or BT partition after the first partitions
	
	QT along x-y axes
	QT along x-z axes
	QT along y-z axes

	Condition
	
	
	

	
	BT along x axis
	BT along y axis
	BT along z axis

	Condition
	
	
	

	
	
	
	

Let B have the size of . Without loss of generality, one can assume that . Following the conditions, at first () depths, implicit BT partitions are performed along z axis and implicit QT partitions are then performed along y-z axes based on Table 1. The size of sub-nodes then becomes , where the value of and depend on the value of . Then, OT partitions are performed times making the remaining sub-nodes have the size of . Next, according to Table 2, implicit BT partitions are performed along z-axis times, and implicit QT partitions are then performed along y-z axes times. The rest nodes are with the size of , therefore OT partitions are performed times to reach the smallest units.
Since the Trisoup scheme in current TMC13 design assumes that all three dimensions have the same size, we set and by default if Trisoup is enabled. In this case, all implicit QT and BT partitions are performed before OT partitions, making sure the sub-notes will have equal sizes in three dimensions before Trisoup is invoked. Therefore, the proposed scheme is compatible with current Trisoup.
Harmonization of angular coding mode and implicit QTBT [70]
The method to harmonize implicit QTBT with angular coding mode was introduced. This section explains the reason why the harmonization was needed and how to do it.

Cat3-frame LiDAR sequences in CTCs are mostly “flattened”: the bounding boxes are large and mostly square in x, y; and have a smaller z range. When using implicit QTBT on these sequences, the volume is first split in octrees on the first levels, until having a node with a z dimension equal to one. Then quadtree are used to split, x and y, and finally binary tree (but since LiDAR scenes are most often square in x, y, binary tree is more rarely used).

This decomposition implies that z occupancy is coded for wide but flattened nodes, and so that angular mode must deal with that nodes.

Since angular mode is used to code the z plane index of the planar mode, it is only useful when all the occupied child nodes belong to a same z plane. But, the wider the node is, the higher is the probability that more than one laser is crossing the node, and/or a single laser is crossing the two planes. Then, there is higher probability that the node is not planar. And if it is planar, the angular modeling is less accurate. This problem is illustrated by an example in Figure 42. This example is simplified to a 2D case (x, z) for the sake of simplicity. In Figure 42, the node obtained using implicit QTBT is height time larger than tall, two lasers are crossing the same node, and are even crossing the two horizontal planes of the node. There are 2 points acquired by Laser 1 (suppose that they have a different y value for instance), in two different horizontal planes, and thus the node is coded as not planar. For comparison, the same example is presented Figure 43 but without implicit QTBT, and so, nodes are square. Even if there are more nodes for which planar mode will be coded, all the node are planar, and since the nodes are less wide than in Figure 42, the probability to be planar is higher (and the coding cost of planar mode bit may be lower because it is less random), and the angular prediction modeling of the plane index is better (i.e. the entropy of the plane index bit is lower).
[image:]
[bookmark: _Ref37020114]Figure 42: x,z occupancy example with implicit QTBT leading to large but flattened nodes. One node size is orange rectangle, with sub-nodes in blue. Red points are points in the point cloud.
[image:]
[bookmark: _Ref37020192]Figure 43: x,z occupancy example without implicit QTBT, and so with cube nodes. One node size is orange rectangle, occupied nodes are in dark blue and non-occupied nodes in light blue. Red points are points in the point cloud.
To further improve the accuracy of the angular modeling, instead of using usual implicit QTBT rules, it is more interesting for angular to modify the implicit tree splitting so that it produces nodes that are taller than wide, especially for the highest point precision levels (i.e. bottom of the tree). Figure 44 provides an example with the same case as illustrated in Figure 42 and Figure 43. In this example the node size is one in width and two in height, and thus, the angular precision is further improved, as the probability that a laser is crossing the two planes of a same node is further reduced.
[image:]
[bookmark: _Ref37020244]Figure 44: x,z occupancy example with modified implicit QTBT, and so with more vertical nodes at the bottom of the tree. One node size is orange rectangle, occupied nodes are in dark blue and non-occupied nodes in light blue. Red points are points in the point cloud.
Thus, to harmonize implicit QTBT with angular, it has been chosen to tweak the rules of implicit QTBT, splitting when angular mode is enabled as follow:
inline Vec3<int>
implicitQtBtDecision(
 Vec3<int> nodeSizeLog2,
 int maxNumImplicitQtbtBeforeOt,
 int minDepthImplicitQtbt,
 bool angularModeEnabled,
 const GeometryParameterSet& gps
)
{
 const int maxNodeMinDimLog2ToSplitZ =
 gps.implicit_qtbt_angular_max_node_min_dim_log2_to_split_z;
 const int maxDiffToSplitZ = gps.implicit_qtbt_angular_max_diff_to_split_z;

 int nodeMinDimLog2 =
 std::min({nodeSizeLog2[0], nodeSizeLog2[1], nodeSizeLog2[2]});

 if (maxNumImplicitQtbtBeforeOt || nodeMinDimLog2 == minDepthImplicitQtbt) {
 // implicit qt bt
 int nodeMaxDimLog2 =
 std::max({nodeSizeLog2[0], nodeSizeLog2[1], nodeSizeLog2[2]});
 for (int k = 0; k < 3; k++) {
 if (nodeSizeLog2[k] == nodeMaxDimLog2)
 nodeSizeLog2[k]--;
 }
 } else if (angularModeEnabled
 && (maxNodeMinDimLog2ToSplitZ + maxDiffToSplitZ > 0)) {
 // implicit xy qt bt : do not split z
 int nodeXYMaxDimLog2 = std::max({nodeSizeLog2[0], nodeSizeLog2[1]});
 for (int k = 0; k < 2; k++) {
 if (nodeSizeLog2[k] == nodeXYMaxDimLog2)
 nodeSizeLog2[k]--;
 }
 if ((nodeMinDimLog2 <= maxNodeMinDimLog2ToSplitZ
 && nodeSizeLog2[2] >= nodeXYMaxDimLog2 + maxDiffToSplitZ)
 || (nodeXYMaxDimLog2 >= maxNodeMinDimLog2ToSplitZ + maxDiffToSplitZ
 && nodeSizeLog2[2] >= nodeXYMaxDimLog2))
 nodeSizeLog2[2]--;
 } else // octree partition
 nodeSizeLog2 = nodeSizeLog2 - 1;

 return nodeSizeLog2;
}

gps.implicit_qtbt_angular_max_node_min_dim_log2_to_split_z is an integer that indicates from which node size we want to have more vertical nodes. It allows not having vertical node too early (i.e. on big node sizes) and reduce the probabilities to have multiple lasers crossing the nodes for a given (big) width.
gps.implicit_qtbt_angular_max_diff_to_split_z is an integer that provides the log2 of the maximum vertical/horizontal ratio we want to obtain.

In the performed tests, these values are derived at encoder by using:
 params.encoder.gps.implicit_qtbt_angular_max_node_min_dim_log2_to_split_z =
 std::max<int>(0, 6 + log2(params.encoder.sps.seq_source_geom_scale_factor));
 params.encoder.gps.implicit_qtbt_angular_max_diff_to_split_z =
 std::max<int>(0, 3 + log2(params.encoder.sps.seq_source_geom_scale_factor));

Thus, for lossless coding, the first one is equal to 6 and the second one is equal to 3.
And for lossy coding we take into account the quantization (geometry scale factor) to scale the target node sizes at the proper values, so that we do not apply the vertical node tweaking on the too big node sizes.

Tweaked implicit QTBT first splits x and y until they reach log2 z (i.e. node is cubical). Then, until log2 z node size reaches below 6+3, tweaked implicit QTBT splits in octree (i.e. nodes stay cubical).
Then when log2 z node size reaches below 6+3 (i.e. 6+3-1=8), log2 x and y node sizes are iteratively decreased until max(0, nodeSizeLog2[2]-3) = 8-3 = 5.
Then node size is decreased for all dimensions until it reaches 0.

For instance, in lossless, on frame 1 of qnxadas-junction-approach, log2 node is :
depth = 1 : x = 17 y = 17 z = 15
depth = 2 :x = 16 y = 16 z = 15
depth = 3 :x = 15 y = 15 z = 15
depth = 4 :x = 14 y = 14 z = 14
depth = 5 :x = 13 y = 13 z = 13
depth = 6 :x = 12 y = 12 z = 12
depth = 7 :x = 11 y = 11 z = 11
depth = 8 :x = 10 y = 10 z = 10
depth = 9 :x = 9 y = 9 z = 9
depth = 10 :x = 8 y = 8 z = 8
depth = 11 :x = 7 y = 7 z = 8
depth = 12 :x = 6 y = 6 z = 8
depth = 13 :x = 5 y = 5 z = 8
depth = 14 :x = 4 y = 4 z = 7
depth = 15 :x = 3 y = 3 z = 6
depth = 16 :x = 2 y = 2 z = 5
depth = 17 :x = 1 y = 1 z = 4
depth = 18 :x = 0 y = 0 z = 3
depth = 19 :x = 0 y = 0 z = 2

6 and 3 values were empirically chosen, as a compromise between results on ford and qnx sequence.
Better results could be achieved by taking into account at encoder, on a per sequence (or per frame) basis, the vertical angle between each successive laser (i.e. distances between lasersTheta values) and the average distance of the points and the lidar head to determine gps.implicit_qtbt_angular_max_node_min_dim_log2_to_split_z and gps.implicit_qtbt_angular_max_diff_to_split_z. For instance as there are 64 lasers in Ford sequences and angle between lasers is small, smaller values of these parameters could perform better, while with 16 lasers in QNX sequences, and higher angle between lasers, higher values could perform better.
0. [bookmark: _Ref165012]Trisoup geometry encoding/decoding
Trisoup codec is a geometry coding option that represents the object surface as a series of triangle mesh. It is applicable for a dense surface point cloud. The decoder generates point cloud from the mesh surface in the specified voxel granularity so that it assures the density of the reconstructed point cloud.
If the Trisoup geometry codec is used, then the parameter trisoup_node_size defines the size of the triangle nodes in unit of voxel. The octree encoding and decoding stop at leaf level , in which case the leaf nodes of the octree represent cubes of width , or blocks, and the octree is said to be pruned. In the latter case, Inferred Direct Coding Mode is not allowed.
Determining vertices
If , then the blocks are 2 x 2 x 2 or larger, and it is necessary to represent the collection of voxels within the block by some model. Geometry is represented within each block as a surface that intersects each edge of the block at most once. Since there are 12 edges of a block, there can be at most 12 such intersections within a block. Each such intersection is called a vertex. A vertex along an edge is detected if and only if there is at least one occupied voxel adjacent to the edge among all blocks that share the edge. The position of a detected vertex along an edge is the average position along the edge of all such voxels adjacent to the edge among all blocks that share the edge.
Entropy encoding of vertices
Vertices, nominally being intersections of a surface with edges of a block, are shared across neighbouring blocks, not only guaranteeing continuity across blocks of the reconstructed surface, but also reducing the number of bits required to code the collection of vertices. The set of vertices is coded in two steps. In a first step, the set of all the unique edges (or segments) of occupied blocks is computed, and a bit vector (or segment indicator) determines which segments contain a vertex and which do not. In a second step, for each segment that contains a vertex, the position of the vertex along the segment is uniformly scalar quantized to a small number of levels, typically equal to the block width if the geometric spatial resolution is desired to approximate the voxel resolution, but it could be any number of levels. The segment indicators and the vertex positions are entropy coded by an arithmetic coder. The geometry bitstream becomes a compound bitstream comprising octree, segment indicator, and vertex position bitstreams.
Triangle reconstruction
The vertices on the edges of a block determine a surface through the block. The surface is a non-planar polygon, triangulated as follows. Let , be the coordinates of the vertices on the edges of the block, in any order. Compute the centroid

the mean-removed coordinates

and the (scaled) variances

Find the minimum . If achieves the minimum, then project each vertex onto the x axis (the “dominant” axis) as , and onto the (y,z) plane as , where is the center of the block. Otherwise, if achieves the minimum, then project each vertex onto the y axis as , and onto the (x,z) plane as Otherwise, project each vertex onto the z axis as , and onto the (x,y) plane as

Compute the arctangent , and sort the angles in increasing order, breaking ties in order of increasing . For this order of the vertices, form triangles according to Table 1.

[bookmark: _Ref505763028][bookmark: _Toc516233851][bookmark: _Toc505790539]Table 3: Triangles formed from vertices ordered 1, …, n.
	
	triangles

	3
	(1,2,3)

	4
	(1,2,3), (3,4,1)

	5
	(1,2,3), (3,4,5), (5,1,3)

	6
	(1,2,3), (3,4,5), (5,6,1), (1,3,5)

	7
	(1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)

	8
	(1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)

	9
	(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)

	10
	(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)

	11
	(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)

	12
	(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)

Triangle rasterization
To derive a decoded geometry point cloud from the trisoup in the specified voxel resolution, it is checked if each voxel in the bounding box intersects with the triangles.
More precisely, following steps are conducted.
· To prepare 6 unit vectors (±1, 0 ,0), (0, ±1, 0), (0, 0, ±1) around each triangles.
· To check if the unit vector and the triangle intersect, and if yes, the intersection is calculated and output as decoded voxel.
The intersection check is independent among the vectors, thus the point generation process can be done in parallel. The number of the derived points in the decoder is determined by the voxel grid distance (shown as ‘d’ in Figure 45) which is controlled by the syntax signaling [64].

[image:]
[bookmark: _Ref166021]Figure 45: intersection check on voxel grid

0. Geometry Quantization
Slice-based geometry quantization control [51]
The slice level geometry quantization scheme was introduced in G-PCC. It provides basic functionality to apply different QPs in different slice as different slice may have distinct characteristics.
In the slice-based geometry quantization scheme, different QPs can be assigned to different slices, where the delta of QP from a base QP is signaled at the slice header. An activation flag is introduced in the high-level syntax to enable or disable the slice-level quantization.

The transfer from QP to QStep is as follows,
QStep = geomLevelScale[QP % 6] << (QP / 6),

where geomLevelScale [k] = { 659445, 741374, 831472, 933892, 1048576, 1175576 } with k = 0…5.

Octree-based geometry quantization control [52]
A new quantization scheme was introduced into the octree coding procedure in G-PCC, which enables adaptive geometry quantization for different regions of point clouds. As shown in Figure 46, this new internal quantization is independent from the external quantization in the pre-processing stage. It involves QP variation in octree coding, where QPs may vary for different nodes of octree partition. The proposed scheme enables new functionality of adaptive bit allocation across space for geometry coding, therefore rate control, quality control and other lower-level optimizations become feasible.

[image:]
[bookmark: _Ref22229943]Figure 46 Adaptive quantization introduced into the octree coding process

In this scheme, a new internal quantization is introduced into the octree coding stage at a certain octree partition depth. Therefore, maximum two quantization stages can be enabled at the same time,

[image:]
Figure 47: Illustration of signaling delta QP in 1D
combination of slice-based and octree-based geometry quantization control [51]
A combination scheme of the slice-based and octree-based geometry quantization was introduced, since the slice-based scheme provides the basic functionality to each slice, and the octree-based scheme can provide more flexibility in lower partitioning level. In the combination scheme, instead of applying two internal quantization steps, one single operation is applied, i.e., internal quantization in the octree-level. It is as follows,
· If only octree-based quantization is enabled, it is the same with octree-based scheme, where the internal quantization is applied at a certain specified octree partition depth.
· If only slice-based quantization is enabled, the quantization will be applied in the first octree partition depth.
· If both slice-based and octree-based quantization are enabled, the actual quantization will be applied at the octree partition depth specified in octree-based scheme. The slice-level determined QP will be the base QP for signaling the delta QP at octree-level.
Harmonization on octree-based geometry quantization control [73]

Harmonization with planar coding mode
Planar mode of child node is determined when the child node is created from current node. Geometry quantization, however, is applied when current node is processed. If the two schemes are enabled at the same time, problems may occur when the child node is going to perform quantization at next level, but the planar mode of the child node needs to be determined before quantization is performed. Encoder and decoder mismatch may therefore happen.
To solve this, it disables the planar mode for the octree nodes whose child node will perform quantization. This introduces the minimal change to the code and minor impact on the performance.
Harmonization with Implicit QTBT
Current implementation solves most interactions when enabling implicit QTBT and geometry quantization at the same time. But mismatch may occur when different QPs are applied.
To solve this, a new variable in the struct PCCOctree3Node, i.e., pos_q, which is used in reconstruction of geometry positions at the decoder side is introduced. Another existing variable pos is used for accessing the atlas map in context modeling.
0. [bookmark: _Ref165021]Geometry Entropy encoding
Binary coding of occupancy code
TMC13 supports two binary coding mode of occupancy code. In this section, both methods are described in order.
Bitwise based binary coding of occupancy code [12]
TMC13 has supported a binarization of the entropy coder that codes the occupancy information of the octree. Therefore, a cascade of binary coders is used together with dependency reduction when using ten neighbour configurations in order to obtain a “reasonable” number of entropy coders, with no compression loss.

An improvement of this method has been introduced to obtain a tunable number of binary coders at the price of a slight compression loss with a “more reasonable” number of coders. This method is compatible with intra schemes as described in section 3.2.3 for instance.

The bitwise based binary coder is depicted in yellow and orange as additional blocks in the flowchart of (encoder) and (decoder).

[image:]
Figure 48: flowchart of the proposed encoder for the new binarization scheme

[image:]

Figure 49: flowchart of the proposed encoder for the new binarization scheme

Binarization
A current cube has eight child cubes that may or may not be occupied by at least one point of the point cloud. To each child cube CCi is attached an occupancy bit bi representative of the occupancy state of the child CCi being occupied (bi=1) or non-occupied (bi=0). The concatenation of the eight bits bi forms an eight-bit integer b between 1 and 255; the value 0 being forbidden because at least one child is occupied by construction of the octree.
In order to profit from local geometry correlation, the bits bi should not be coded independently, and an ideal binarization can be obtained based on the well-known conditional entropy formula:

The first bit b0 is coded directly by a binary coder, the second bit b1 is coded by a binary coder depending on the value of b0, etc. The last bit b7 is coded depending on the 128 possible values of b0…b6. A practical implementation to solve these binary coders dependencies is desirable. A straightforward answer may be to introduce contexts as done for CABAC in video coding. For example, one may have 128 contexts to code b7 and the context is chosen based on the value of b0…b6. This would lead to 1+2+4+…+128=255 contexts for the eight bits bj to code. This is still manageable, however when introducing several prediction tools, the number of contexts may easily increase drastically to more than a few thousands, and HW implementations become difficult or impractical.
In the next section, a novel binarization scheme is described which reduces the number of needed contexts and allows for the use and development of additional occupancy prediction tools that will drive the binary entropy coders.
Optimal Binarization with Update On-the-fly
The binarization process has a fixed (small) number N of binary coders that are ideally arithmetic coders with an evolving internal probability, like CABAC or Dirac [15] coders. A bit bj representing the occupancy of a child node is coded using a binary coder Ci chosen among the coders C1 to Cn. The choice of the coder index i is performed depending on a dependency state D as depicted on Figure 50.

[image:]
[bookmark: _Ref536776630]Figure 50: on choosing a binary coder to code an occupancy bit bj depending on a dependency state D

In general, the state D is an element of a set Ɗj, indexed by j from the child node CCj, of states. For example, the sets Ɗj can contain {b0...bj-1, NC, P1,…,PK} where

· NC is a neighbouring configuration that can take 10 different values, and
· the Pk’s are predictors for the occupancy of the cube associated with the bit bj. A predictor can typically take three values, namely “predicted occupied”, “predicted non-occupied” or “not predicted”.

Consequently, the state D can take 10.2j.3K different values, and the size of the set Ɗj of states can easily reach thousands of elements or even more. Example of construction of NC and Pk are explicated later in this paper.
[image:]
[bookmark: _Ref536776690]Figure 51: update process of the coder index i(D)

The coder selection consists of two processes. Firstly, a coder mapping provides a coder index i(D) obtained from the dependency state D, see Figure 51. Practically the mapping is a LUT having as many entries as elements in the set Ɗj of states. The LUT obviously depends on the index j of the child cube, thus one has eight LUTs that map D to i(D). Secondly, once the bit bj is (de)coded, the D-th entry of the mapping is updated from i(D) to a new value iupdate.

The mapping is based on a simple model of a channel with memory of L=10 symbols. A fixed theoretical probability pi (not to be confused with the internal evolving probability of the coder). of coding the symbol 1 is associated with each binary coder Ci. Consequently, in theory, the probability of getting bj=1 for the dependency state D is pi(D). After coding the bit bj, this theoretical probability is modified depending on the value of bj leading to a new probability pnew obtained by the relation, assuming a memory of L symbols:

The coder index is then updated to point to the coder whose probability piupdate is the closest to pnew, i.e.

Practically, the values iupdate obtained from the couple i and bj are precomputed into two LUTs, independent on j and D, such as to get a very compact update step by:

The fixed theoretical probabilities pi are determined such as to cover the interval [0,1] in some optimal way as follows. Let ε>0 be a positive real number. The set of coders {Ci} is said to be a set of ε-coders if

1. the fixed probabilities pi are an increasing sequence relative to the index i and cover the interval (0,1)
2. coding the symbols of a binary channel B, with associated probability pB in [pi-1, pi+1] of the symbols to be 1, using the coder Ci leads to an extra per-symbol entropy of at most ε relative to the coding with an optimal coder with associated probability pB.

In other words, one has an ordered set of coders, and coding a symbol with a marginally sub-optimal coder (Ci±1 instead of Ci) leads to at most ε extra bit per symbol. Therefore, an inaccuracy Δ in the coder index relative to the optimal coder index leads to an extra entropy bounded by Δε.
A set of ε-coders is said to be optimal if its number of coders is minimum among all possible sets of ε-coders. Covering the interval (0,1) is understood loosely as p1 being arbitrarily close to 0 and pN arbitrarily close to 1. Practically, one chooses ε such as to obtain a desired number N(ε) of coders. The probabilities pi can be determined using the following algorithm:
1. start with p1 arbitrary small
2. determine iteratively pi+1 from pi, until pi+1 is arbitrary close to 1, as follows
a. for a probability p, define an entropy error E relatively to pi by
b. take pi+1 as the lowest probability that guarantees the error to be bounded by ε, i.e. .

The value ε = 1.0870e-04 provides an optimal set of N(ε)=256 ε-coders.
It has been observed that the update step requires a fine granularity in term of probabilities pi, but the actual number of coders can be reduced without impacting noticeably the compression performance. Therefore, a coder correspondence (see Figure 51) has been added to map the coder index i(D) in [1,256] to an actual coder index i’(D) in [1,32]. The correspondence is simply a division by 8, and only 32 binary coders are used while maintaining an update working on 256 values. The binary coders Ci are initialized to their fixed theoretical probabilities pi before starting coding the octree.
Bytewise based binary coding for occupancy code [13]
In order to efficiently encode the non-binary occupancy values with a binary arithmetic encoder TMC13 introduce:
· an adaptive look up table (A-LUT), which keeps track of the N (e.g., 32) most frequent occupancy symbols,
· a cache which keeps track of the last different observed M (e.g., 16) occupancy symbols.

The algorithm proceeds as follows:
· The A-LUT is initialized with N symbols provided by the user or computed offline based on the statistics of a similar class of point clouds.
· The cache is initialized with M symbols provided by the user or computed offline based on the statistics of a similar class of point clouds.
· Every time a symbol S is encoded the following steps are applied
1. A binary information indicating whether S is the A-LUT or not is encoded.
2. If S is in the A-LUT, the index of S in the A-LUT is encoded by using a binary arithmetic encoder
· Let (b1, b2, b3, b4, b5) be the five bits of the binary representation of the index of S in the A-LUT. Let b1 be the less significant bit and b5 the most significant bit.
· We propose two approaches to encode the index by using either 31 or 5 adaptive binary arithmetic contexts as shown in the pseudo-codes below (Note: _binaryModel0 is a static binary arithmetic context, and _binaryModelIndexInLUT[] is an array of adaptive binary arithmetic contexts)
· 31 Contexts
[image:]

· 5 contexts
[image:]
3. If S is not the A-LUT, then
· A binary information indicating whether S is in the cache or not is encoded.
· If S is in the cache, then the binary representation of its index is encoded by using a binary arithmetic encoder
· In the current implementation, the binary representation of the index is encoded by using a single static binary context as described in the pseudo-code below
[image:]
· Otherwise, if S is not in the cache, then the binary representation of S is encoded by using a binary arithmetic encoder
· In the current implementation, the binary representation of S is encoded by using a single adaptive binary context as described in the pseudo code below
[image:]
· The symbol S is added to the cache and the oldest symbol in the cache is evicted.
4. The number of occurrences of the symbol S in A-LUT is incremented by one.
5. The list of the N most frequent symbols in the A-LUT is re-computed periodically (Note: the update period increases exponentially).
6. At the start of each level of the octree subdivision, the occurrences of all symbols are reset to zero. The occurrences of the N most frequent symbols are set to 1.
7. When the occurrence of a symbol reaches a user-defined maximum number (e.g., 1024), the occurrences of the all the symbols are divided by 2 to keep the occurrences within a user-defined range.

The approach described above makes it possible to reduce the number of adaptive binary contexts to 340 or 80, depending on the number of binary contexts used to encode the index in the adaptive LUT (i.e., 31 or 5).

This number could be further reduced by applying the adaptive neighborhood context selection described below. The idea is to reduce the number of neighborhood contexts from 10 to a lower number NC (e.g., 6), by assigning a separate context to the (NC-1) most probable neighborhood configurations, and making the neighborhood contexts corresponding to the least probably neighborhood configurations share the same context. The algorithm proceeds as follows:
· Before starting the encode, initialize the occurrences of the 10 neighborhood configurations:
· Set all occurrences to 0
· Set the occurrences based on offline/online statistics or based on user-provided information
· At the beginning of each subdivision level of the octree
· Determine the (NC-1) most probable neighborhood configurations based on the statistics collected during the encoding of previous subdivision level
· Compute a look-up table NLUT, which maps the indexes of the (NC-1) most probable neighborhood configurations to the numbers 0, 1, …, (NC-2) and maps the indexes of the remaining configurations to NC-1
· Initialize the occurrences of the 10 neighborhood configurations to 0
· During the encoding
· increment the occurrence of a neighborhood configuration by one each time such a configuration is encountered
· use the look-up table NLUT[] to determine the context to use to encode the current occupancy values based on the neighborhood configuration index

If NC is set to 6, the variation described above makes it possible to use 48 adaptive binary contexts.

A high throughput version of the scheme described above could be achieved by encoding/decoding the occupancy symbols as a set of separate/independent streams, which could be processed in parallel. The idea is to encode/decode each P (e.g., 4, 8, or 16) consecutive occupancy symbols by using independent, which write to P independent binary sub-streams. The final bistream is obtained by concatenating the P sub-bitstreams. A header information describing the offset to each sub-stream is also included.
· The occupancy symbols are accumulated in a fifo
· If the fifo has at least P symbols
· P symbols are extracted from fifo and encoded as described above by using P separate arithmetic encoders and with independent arithmetic contexts
· The P symbols are pushed to the LUT or to the cache only after all symbols were arithmetically encoded.
· If we reach the end of the encode process and less than P symbols are in the fifo, the fifo is padded with the last observed symbol until it has a size of P, then the P symbols are encoded as described above.
Dirac / SMPTE VC-2 [14]
The Dirac video codec [15] was developed by the BBC with intra profiles being standardised by the SMPTE as VC2[16]. One of the principal objectives of the Dirac project was to produce a royalty free video codec.
For entropy coding, Dirac|VC-2 defines a context adaptive binary arithmetic codec using 32bit arithmetic and 16bit probabilities. Probabilities are updated on the basis that the current probability is an estimate for the number of symbols coded.

Bypass coding of bypass bins [45]
G-PCC introduces an alternative to using an arithmetic entropy codec to code incompressible bypass symbols, using instead an approach to so-called bypass coding that bypasses the arithmetic codec completely without incurring additional signaling overheads.
It involves partitioning the symbol stream into two sub-streams: an arithmetically coded sub-stream and a bypass sub-stream. A data unit is constructed as per Figure 52 as the concatenation of the existing data unit header and (forward) AEC sub-stream with the byte reversed bypass sub-stream. Since the length of the entire data unit is known, using this construction it is not necessary to signal the length of either sub-stream.

[image:]
[bookmark: _Ref17996039]Figure 52: Construction of a data unit payload

From the point of view of a decoder, two read pointers are maintained, one for the payload and forward AEC sub-stream, the other for the reversed sub-stream. At the start of parsing a data unit, the read pointers are initialized to the first and last bytes of the data unit. For each byte read from each sub-stream the associated read pointer is respectively incremented or decremented.

[image:]
Figure 53: Conceptual semantics
Chunked entropy streams [74]
This method is an alternative approach based on a chunk-interleaved representation of the two substreams. It aims to balance the benefit of not arithmetically coding bypass bins, the ability to transmit and receive the bitstream as a whole in the forward order, with the chunk signaling overhead.
[image:]
[bookmark: _Ref37030766]Figure 54: Construction of a multiplexed sub-stream chunk

Each 256 byte chunk is formed of (shown diagrammatically in Figure 54):
· a one byte header that indicates the number of arithmetically coded bytes present in the chunk, n,
• n bytes of arithmetically coded data, and
• 255 − n bytes of (non arithmetically coded) bypass data.
Special handling of the last bypass coded byte in a chunk allows an encoder to flush incomplete chunks in order to permit low latency coding and decoding. The last bypass byte, if present, contains a three bit value indicating the number of bits that have been flushed and should be discarded from the bypass sub stream.
[bookmark: _Ref502913854][bookmark: _Ref165060]Attributes transfer (recolouring)
Given the input point cloud positions/attributes and the reconstructed positions , the objective of the attributes transfer procedure is to determine the attribute values that minimize the attribute distortions.
The implemented approach proceeds as follows:
· Letand be the input and the reconstructed positions, respectively.
· Let and be the number of points in the original and the reconstructed point clouds, respectively.
If duplicated point are merged, then , otherwise .
· For each point in the reconstructed point cloud, let be its nearest neighbour in the original point cloud and the attribute value associated with .
· For each point in the reconstructed point cloud, let be the set of points in the original point cloud that share as their nearest neighbour in the reconstructed point cloud, is the number of elements in , and is one of the elements of Note that could be empty or could have one or multiple elements.
· If is empty, then the attribute value is associated with the point .
· If is not empty, then we proceed as follows:
· The attribute value associated with the point is obtained by Eq.1.

Note: currently --searchRange = 0 shall be used for coding in TMC13.

Distance-weighted color transfer [48]
The improved color transfer algorithm is introduced in the following. For each point of the target :
1- Find the (1 <) nearest neighbors in source to and create a set of points denoted by .
2- Find the set of source points that belongs to their set of nearest neighbors. Denote this set of points by .
3- Compute the distance-weighted average of points in and by:

where denotes the Euclidian distance between the points and , and denotes the color of point .

4- Compute the average (or the weighted average with the number of points of each set as the weights) of and and transfer it to .

[bookmark: _Ref165071]Attribute coding (Predicting Transform)
[bookmark: _Ref502915814]Level of detail generation
The level of detail (LOD) generation process (see Figure 55) re-organizes the points into a set of refinement levels , according to a set of Euclidean distances specified by the user. Note that the distances need to satisfy the following two conditions:
· , and
· .
The re-ordering process is deterministic and operates on the quantized positions ordered according to the octree decoding process. It is applied at both the encoder and the decoder side. It proceeds as follows:
· First, all the points are marked as non-visited and the set of visited points, denoted as , is set as empty.
· The algorithm proceeds iteratively. At each iteration , the refinement level is generated as follows:
· The algorithm iterates over all the points.
· If the current point has been visited, then it is ignored.
· Otherwise, the minimum distance D of the current point to the set is computed.
· If D is strictly lower than , then the current point is ignored,
· If D is higher or equal than , then the current point is marked as visited and added to both and .
· This process is repeated until all the points are traversed.
· The level of detail l, , is obtained by taking the union of the refinement levels .
· This process is repeated until all the LODs are generated or until all the vertices have been visited.
[image:]
[bookmark: _Ref531007498]Figure 55: Level of detail generation process
[bookmark: _Ref502915834]Scalable complexity implementation of LOD generation [19]
In order to provide a scalable complexity implementation of the lifting scheme, G-PCC introduces to:
· Use a bottom-up approach to build the LODs instead of the top-down technique
· Use an approximate nearest neighbor search instead of an exact nearest neighbor search to accelerate LOD and predictor creation.

Let be the set of positions associated with the point cloud points and let be the Morton codes associated with . Let and be the two user-defined parameters specifying the initial sampling distance and the distance ratio between LODs, respectively. Note that .

First the points are sorted according to their associated Morton codes in an ascending order. Let be the array of point indexes ordered according to this process. The algorithm proceeds iteratively. At each iteration , the points belonging to the LOD are extracted and their predictors are build starting from until all the points are assigned to an LOD. More precisely, the algorithm proceeds as follows:
· The sampling distance is initialized with
· For each iteration, where Let be the set of indexes of the points belonging to -th LOD and the set of points belonging to LODs higher than . and are computed as follows.
· First, and are initialized
· . Otherwise,
·
· The point indexes stored in the array are traversed in order. Each time an index is selected and its distance to the most recent SR1 points added to is computed. SR1 is a user-defined parameter that controls the accuracy of the nearest neighbor search. For instance, SR1 could be chosen as 8 or 16 or 64. The smaller the value of SR1 the lower the computational complexity and the accuracy of the nearest neighbor search. The parameter SR1 is included in the bitstream. If any of the SR1 distances is lower than , then is appended to the array Otherwise, is appended to the array .

· This process is iterated until all the indexes in are traversed. At this stage, and are computed and will be used in the next steps to build the predictors associated with the points of . Let \ (where \ is the difference operator) be the set of points that need to be added to LOD(k-1) to get LOD(k). For each point in , we would like to find the -nearest neighbors (is user-defined parameters that controls the maximum number of neighbors used for prediction) of in and compute the prediction weights associated with . The algorithm proceeds as follows.
· Initialize a counter
· For each point in
· Let be the Morton code associated with and let be the Morton code associated with j-th element of the array
· While (, incrementing the counter j by one (
· Compute the distances of to the points associated with the indexes of that are in the range [j-SR2, j+SR2] of the array and keep track of the -nearest neighbors and their associated squared distances . SR2 is a user-defined parameter that controls the accuracy of the nearest neighbor search. Possible values for SR2 are 8, 16, 32, and 64. The smaller the value of SR2 the lower the computational complexity and the accuracy of the nearest neighbor search. The parameter SR2 is included in the bitstream. The computation of the prediction weights used for attribute prediction remains unchanged compared to [4].
· If the distance between the current point and the last processed point is lower than a threshold, use the neighbors of the last point as an initial guess and search around them.
· The previous idea could be generalized to n=1,2,3,4… last points
· Exclude points with a distance higher that a user-defined threshold.

·
·
A method to compute dist2 values for LoD attribute coding [75]
A low complexity and fully automatic non-normative technique to compute the LoD generation parameters with competitive RD performance is introduced.
Rather than black magic, the general principle for choosing a dist2 value for LoD attribute coding is to obtain a ratio of 1:4 in the number of points in the finest and second finest levels of detail. The current dist2 values were initially determined in a response to the call for proposals. For new test sequences the dist2 values (which was originally a more cumbersome list) were copied from similar looking test sequences with little regard to correctness.

The LoD subsampling scheme is a form of down-sampler. It requires a squared distance value to workout the subsampling ratios. The octree that is used to encode the point cloud is also a form of downsampler. It down-samples by factors of 2 in each direction for each level of the octree.
A starting point for the method is to use information that can be discovered during octree coding to approximate an octree level that results in a ratio of one quarter of the total points. This assumes a uniform density where, eventually, surface-like structures are discovered and down-sampled. Since in reality this is unlikely to happen at the exact transition between two octree levels, the squared distance for LoD subsamping is derived by linearly interpolating between the levels either side of the transition. Figure 56 shows the ratio of points in each octree level for various sequences.
[image:]
[bookmark: _Ref37031582]Figure 56: Plot of per level count of octree nodes as ratio to leaf node count

The specific process is as follows:
1. Let lvln be the number of unique points in the n-th lowest octree level. lvl0 represents the number of unique points in the source point cloud.
2. Let lvlRation = lvln / lvl0 as the ratio of unique points at the n-th level to the number of unique points in the source.
3. Find the smallest a that fulfils lvlRatioa > ¼.
4. Linearly interpolate between the values of lvlRatioa and lvlRatioa+1 to determine the value of x0 at y = ¼:
x0 = (¼ − lvlRatioa) / (lvlRatioa+1 − lvlRatioa) + a + 1
5. Determine the squared distance as di = ⌈⌉

While the base method provides a reasonable approximation, it does not always yield the desired ratio. The squared distance value may be refined by iterative interpolations as follows for slightly better RD performance at the cost of increased computational effort.

Starting with i = 0,
1. Perform LoD subsampling of the points using the squared distance di =⌈⌉ to determine the true ratio, lodRatioxi of points for the finest LoD.
2. Linearly interpolate as follows:
[image:]
3. Repeat with successive values if i until either of the following conditions reached:
· lodRatioxi is very close to ¼, i.e. ||lodRatioxi − ¼|| ≤ ϵ.
· Successive values of di have converged. This is possible because di is an integer.
4. Use di from the final iteration as dist2 for LoD generation.
Regular sampling based LoD generation [33]
A low-complexity LOD generation procedure, which better captures the initial point distribution and can enable a more efficient prediction for non-smooth attribute signals defined over irregularly sampled point clouds was introduced. It has a linear complexity and does not requires a second reordering of the points. Instead, it directly leverages the Morton-based ordering of the points that is used to determine prediction neighbors.
Let be the set of ordered indexes and the associated LOD that represents the entire point cloud. Instead of defining a set of sampling distances, it defines a set of sampling rates denoted , where is an integer describing the sampling rate for the LOD (e.g.,). The ordered array of indexes associated with LOD , denoted as , is computed by subsampling , while keeping one index out of every indexes. The sampling rate could be further updated with an LOD in order to better adapt to the point cloud distribution. More precisely, the encoder may explicitly encode in the bitstream for a predefined group of points (e.g., each consecutive H=1024 points) different values or updates to be applied to the latest available value. can be automatically determined based on the characteristics of the signal and/or the point cloud distribution, previous statistics, or could be fixed. Different subsampling rates may be defined per attributes (e.g., color, reflectance) and per channel (e.g., Y and U/V)

Simplified prediction structure in case of LoD equal one [22]
Let be the set of positions associated with the point cloud points and let be the Morton codes associated with . First, the points are sorted according to their associated Morton codes in an ascending order. Let be the array of point indexes ordered according to this process. The encoder/decoder compresses/decompresses respectively the points according to the order defined by . At each iteration , a point is selected. The distances of to the (e.g., =64) previous points are analyzed and the (e.g., =3) nearest-neighbors of are selected to be used for prediction in the same manner as in the current version of G-PCC.

Intra LoD prediction on attribute predicting transform [31]
An EnableReferringSameLoD flag is introduced to control the reference structure for predicting transform in order to keep tradeoff of coding efficiency and parallel processing. If EnableReferringSameLoD flag is set to 1, 3D point in the same LoD could be referred. Additionally, the function to allow to switch this tool on for certain LoD was also introduced. This tool is called by intra LoD prediction.

[image:]
Figure 57: reference structure for intra LoD prediction

Neighbour search at the same distance [58]
The lifting and prediction scheme extensively use nearest neighbor searches during the Level of Detail (LoD) generation and predictors building stages. Especially, it is introduced how neighbors at the same distance are handled as following,
· Neighbors in subsequent LODs with the same distance from the current point are handled according to the priority described in Figure 58.
[image:]
[bookmark: _Ref27130657]Figure 58: Neighbors in subsequent LoDs: Handling neighbors with the same distance from the current point.

· Neighbors in the same LOD Neighbors with the same distance from the current point are handled according to the priority described in Figure 59.
[image:]
[bookmark: _Ref27130759]Figure 59: Neighbors in the same LoD: Handling neighbors with the same distance from the current point.

Neighbors in the subsequent LoDs have a higher priority than neighbors in the same LoD.

Interpolation-based prediction
The attributes associated with the point cloud are encoded/decoded in the order defined by the LOD generation process. At each step, only the already encoded/decoded points are considered for prediction. More precisely, the attribute values are predicted by using a linear interpolation process based on the distances of the nearest neighbours of point i. Let be the set of the k-nearest neighbours of the current point i, and let be their decoded/reconstructed attribute values and their distances to the current point. The predicted attribute value is given by:

.

The number of nearest neighbours, k, is a parameter that is determined by the encoder for each point, and arithmetically encoded.

Neighbour weight modification [56]
In autonomous vehicle scenarios, the points in X-Y plane direction are relatively dense and those in Z axis direction are relatively sparse. Therefore, it is assumed that x and y components are more important than z component for intra prediction. The weight of each neighbor is modified by decreasing the influence of z component with adding a new modification parameter intraPredictionWeight. The modification parameter (intraPredictionWeight) is stored in the Attribute Parameter Set (APS), and it is set manually in config file in the encoder.
[image:]
Figure 60: The modified bitstream structure for TMC13

In the decoder, the modification parameter (intraPredictionWeight) is obtained from APS, and modified weight of each neighbor is calculated with it.
 Let be the position of the current point and be the positions of its 3-nearest neighbors. Let be the neighbors’ decoded/reconstructed attribute values, and be the weights associated with each of the 3-nearest neighbors.
 In this scheme, based on the current result of neighbor point search in generating LoD.
The modified weight of each neighbor is calculated by:
 . (1)
where .
Accordingly the predicted attribute value of the current point is derived as:
. (2)

Adaptive predictor selection [17]
[bookmark: _Ref510803328]In current TMC13 attributes coding, LoD (Level of Detail) of each 3D points is generated based on the distance of each points, then the attributes value of 3D points in each LoD is encoded by applying prediction in LoD-based order (Figure 55). For example, the attributes value of P2 is predicted by calculating the distance based weighted average value of P0, P5 and P4 which were encoded or decoded prior to P2.
In this method, multiple predictor candidates are created based on the result of neighbor point search in generating LoD. For example, when the attributes value of P2 is encoded by using prediction, a distance based weighted average value of P0, P5 and P4 is set to predictor index equal to 0. Then, the value of nearest neighbor point P4 is set to predictor index equal to 1. Moreover, the value of next nearest neighbor point P5 and P0 are set to predictor index equal to 2 and 3 respectively (Table 2). After creating predictor candidates, best predictor is selected by applying a rate-distortion optimization procedure and then, selected predictor index is arithmetically encoded.

[bookmark: _Ref519022177]Table 4: Sample of predictor candidate for attributes coding
	Predictor index
	Predicted value

	0
	average

	1
	P4 (1st nearest point)

	2
	P5 (2nd nearest point)

	3
	P0 (3rd nearest point)

The maximum number of predictor candidate (MaxNumCand) is defined and it is encoded into attributes header. In the current implementation, MaxNumCand is set to equal to 5 (= numberOfNearestNeighborsInPrediction + 1) and it is used in encoding and decoding predictor index with truncated unary binarization.
This method also includes the condition in which the variability of its neighborhood is computed to check how different the neighbor values are and if the variability is higher than a threshold, predictor selection is conducted.
Adaptive predictor selection for reflectance [66]
The rate-distortion optimization procedure of adaptive predictor selection for reflection was modified when the maximum difference of the neighbor’s reflectance is equal or greater than adaptive prediction threshold. Figure 61 shows the procedure before modification.

[image:]
[bookmark: _Ref36719832]Figure 61: Adaptive predictor selection procedure before modification

The score equation is as follows:
idxBits = i + (i == aps.max_num_direct_predictors - 1 ? 1 : 2);
score = attrResidualQuant + idxBits * kAttrPredLambdaR
* (quant.stepSize() >> kFixedPointAttributeShift);

The weighted average predictor is base predictor and idxBits value is 1. i is the neighbor index of the predictor.
In the modified process, an average predictor is not considered as base predictor, and the score equation is equation without idxBits. The modified score equation is as follows:
score = attrResidualQuant

[image:]
Figure 62: Modified procedure for adaptive predictor selection
[bookmark: _Ref502915852]Quantization and inverse quantization of attribute prediction residuals
Let be the input attribute values and the predicted attribute values computed as described in the previous section. The attribute prediction residuals are given by:
.

The quantization and inverse quantization procedures of the attribute prediction residuals are described in Figure 63 and Figure 64, respectively.

	int PCCQuantization(int value, int quantStep) {
 if (!quantStep) {
 return value;
 }
 return sign(value) * ((abs(value) + quantStep / 3) / qs);
}

[bookmark: _Ref536777909][bookmark: _Ref502924192]Figure 63: Attribute prediction residuals quantization procedure

	int PCCInverseQuantization(int value, int quantStep) {
 return qs == 0 ? value : (value * qs);

}

[bookmark: _Ref536777925][bookmark: _Ref502924194]Figure 64: Attribute prediction residuals inverse quantization procedure

[bookmark: _Ref165080][bookmark: _Ref502916195]Attribute coding (Lifting Transform)
The Lifting Transform builds on top of the Predicting Transform described in Section 3.6. Figure 65 and Figure 66 describe the direct/forward and inverse transforms in the proposed lifting scheme, respectively. The two main differences between the prediction scheme described in Section 3.6 and the lifting scheme that will be described in the current section, are the following:
1. Introduction of an update operator
2. Use of an adaptive quantization strategy.

[image:]
[bookmark: _Ref166253]Figure 65: Direct/forward transform in the lifting scheme

[image:]
[bookmark: _Ref166262]Figure 66: Inverse transform in the lifting scheme

Update operator
The LOD-based prediction strategy described in Section 3.6 makes points in lower LODs more influential since they are used more often for prediction. Let be the influence weight associated with a point P. Then is computed by applying the following recursive procedure:
· Set for all points
· Traverse the points according to the inverse of the order defined by the LOD structure
· For every point , update the weights of its neighbors as follows:
.

The update operator uses the prediction residuals to update the attribute values of LOD(j). More precisely, let be the set of points such that . The update operation for P is defined as follows:

Adaptive quantization
The influence weights computed during the transform process are leveraged in order to guide the quantization process. More precisely, the coefficients associated with a point P are multiplied by a factor of . An inverse scaling process by the same factor is applied after inverse quantization on the decoder side. Please note that the scaling factors are completely determined by the reconstructed geometry and they do not need to be encoded in the bitstream.

Fixed-point implementation [32]
A fixed-point version of the Lifting and the Prediction schemes was introduced as follows:
· Floating-point arithmetic was replaced with fixed-point arithmetic
· An approximated version of the square-root function used
· (LUT-based division approximation was used to avoid expensive divisions needed to compute the prediction weights, the update weights and the quantized/unquantized coefficients.) not yet
· The update operation was updated as follows in order to reduce the bit depth needed for fixed-point arithmetic:

[bookmark: _Ref165090]Attribute coding (RAHT)
Transform coding
The voxel colours , are transform coded, analogously to a colour image, by a spatial transform, quantizer, and entropy coder.
Spatial transform
The colours are spatially transformed with RAHT [5][6] to obtain transformed colours , . Appendix B provides details of how to obtain the transformed colours , , from the voxel colours , given a list of associated voxel locations , as side information.
Quantization
The transformed coordinates are quantized by a uniform scalar quantizer with stepsize quantizationStepLuma to obtain the quantized transform coordinates , . The same stepsize is used for all colour components. The quantizationStepLuma is communicated to the colour decoder through the bitstream header.

Fixed-point RAHT implementation [40][41]
An alternative implementation of the RAHT was introduced. In particular, this method provided a fixed-point implementation of RAHT, which is described in more detail in the attached paper [39]. It has no floating-point operations, and the resulting compression performance is essentially identical to the original floating-point-based transform.

In summary, the transform used in RAHT is as illustrated in Figure 67(a), and its respective inverse transform as in Figure 67(b), where and , and w0 is the notation of the weight of the input coefficient Fl+1,2n while w1 is the same for Fl+1,2n+1.

This method simplify the transform to be like in Figure 67(c) (and its inverse in Figure 67(d)), where  is a fixed-point approximation of b2. The coefficients, however, are no longer Fl,n and Gl,n but scaled versions of the original coefficients. For that, one needs to adjust the quantizer step. If the quantizer step is , the overall steps for DC and AC coefficients are:

 , ,

where wDC is the weight of the DC coefficient, or the number of all occupied voxels in the cloud. In order to only use fixed-point values, it needs to approximate  in fixed point and approximate the square root operations using only fixed-point arithmetic.
[image:]
[bookmark: _Ref9863777]Figure 67: RAHT forward and inverse transforms

It can represent a natural number a with fixed-point and  bits of precision as:

a = Ma 2-,

where Ma is an integer value. Let us assume two other numbers, b = Mb 2- and c = Mc 2-. The four basic operations can be performed as:

[image:]

where the multiplication and division by powers of two can be performed by a binary shift in integer arithmetic.

Another operation required by RAHT is the square root operation. The square root is also computed with integer arithmetic using two basic steps: an initial guess and two iterations of the Newton-Raphson algorithm for refinement:

1. Initial guess

a. The integer input number, represented using 64 bits, is segmented into 8 bins with 8 bits each, according to Figure 68.

[image:]
[bookmark: _Ref37115110]Figure 68: 64-bit segmentation

b. The number is right-shifted 8 by 8 bits until only the first bin has non-zero bits.

c. At this point, we can guarantee that the resulting integer is smaller than 256.

d. This value is used as an index to a previously computed table that stores integer approximate square roots values of numbers from 0 to 255.

e. To compensate for the right-shifts, the value returned by the table is left-shifted half the number of bits of the right -shift.

2. Newton-Raphson refinement.

static uint32_t __tableSqrt[256] = {
 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6,
 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9,
 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14,
 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16,
 16, 16, 16, 16, 16, 16, 16, 16, 16};

uint32_t sqrtFixedpoint(uint64_t P)
{
 uint32_t A;

 // Initial guess
 if(P >= ((int64_t) 0x1<<32))
 {
 if(P >= ((int64_t) 0x1<<48))
 {
 if(P >= ((int64_t) 0x1<<56))
 A = (__tableSqrt[P>>56]<<28) - 1;
 else
 A = __tableSqrt[P>>48]<<24;
 }
 else
 {
 if(P >= ((int64_t) 0x1<<40))
 A = __tableSqrt[P>>40]<<20;
 else
 A = __tableSqrt[P>>32]<<16;
 }
 }
 else
 {
 if(P >= ((int64_t) 0x1<<16))
 {
 if(P >= ((int64_t) 0x1<<24))
 A = __tableSqrt[P>>24]<<12;
 else
 A = __tableSqrt[P>>16]<< 8;
 }
 else
 {
 if(P >= ((int64_t) 0x1<< 8))
 A = __tableSqrt[P>> 8]<< 4;
 else
 return __tableSqrt[P];
 }
 }

 A = (A+P/A)>>1;
 return (A+P/A+1)>>1;
}

Upsampled transform domain prediction in RAHT [49]
The transform domain prediction is introduced to improve coding efficiency on RAHT. It is formed of two parts.
Firstly, the RAHT tree traversal is changed to be descent based from the previous ascent approach; ie a tree of attribute and weight sums is constructed and then RAHT is performed from the root of the tree to the leaves for both the encoder and the decoder. The transform is also performed in units of 2×2×2 blocks, rather than breadth-first method. Within the block, the encoder transform order is from leaves to the root. The inverse transformed coefficients of one 2×2×2 block become the inherited DC coefficients of the next level.
Secondly, for each 2×2×2 block, a predicted block is produced by upconverting the previous transform level.
The prediction is transformed and subtracted from the transformed attributes at the encoder.
[image:]
Figure 69: Construction of the transform tree levels

[image:]
Figure 70: Transform and prediction process overview

Figure 71 shows the principle on the upsampled transform domain prediction and the detail processes on prediction, residual calculation, decoding and up-sampling are shown in Figure 72, Figure 73, Figure 74 and Figure 75 respectively.

[image:]
[bookmark: _Ref18084060]Figure 71: Principle on prediction

[image:]
[bookmark: _Ref18084276]Figure 72: Prediction per 2x2x2 (encoder)

[image:]
[bookmark: _Ref18084278]Figure 73: Computing the residual

[image:]
[bookmark: _Ref18084279]Figure 74: Decoding process

[image:]
[bookmark: _Ref18084280]Figure 75: Up-sampling process

Early termination for transform domain prediction of RAHT [71]
In the transform domain prediction, 19 neighbour parent nodes are used to create the prediction value for the encoding target nodes (child nodes) of the center node. The accuracy of the prediction would be better in the denser point cloud like cat1 contents because the number of valid neighbour parent nodes is large. As the result, the coding efficiency is more significant in cat1 content compared to cat3 sparse contents.
Based on this feature, the early termination function for the transform domain prediction is introduced to reduce the coding time. In this function, the following two parameters in every 8 child nodes are calculated.
· NumValidP: total number of valid neighbour parent node
· NumValidGP: total number of valid neighbour grandparent node
Then, the prediction will be disable in case that either NumValidP or NumValidGP is less than threshold. It means that the prediction is terminated when the number of valid neighbour nodes becomes small.
Figure 76 shows the example of the transform domain prediction and parameter definition on this method. In default setting, the threshold TH1 is set to equal to 2 and TH2 is set to equal to 6.
Figure 77 shows the decision flow to disable the prediction in every encoding 8 nodes. At first, NumValidGP is checked if it is larger than TH1 (= 2) before finding neighbour parent nodes. Then if it true, the neighbour parent nodes are searched and the value of NumValidP is calculated. In this flow, if either NumValidGP or NumValidP is less than TH1 or TH2 respectively, the prediction is disable and target 8 node is encoded without it. Otherwise, it is encoded with prediction.

[image:]
[bookmark: _Ref37026931]Figure 76: Example of the transform domain prediction and parameter definition

[image:]
[bookmark: _Ref37027035]Figure 77: Decision flow to disable transform domain prediction
Attribute Quantization
Quantization table [35][36]
The quantization of lifting and RAHT transformed residual coefficients is performed by input signalled QP parameter. This is like the traditional AVC/HEVC/VVC QP based quantizer design whereas a QP parameter is used to determine the quantizer step size. QP parameter is based on a logarithmic structure with every increase of 1 in QP value quantizer step size is increased by approximately 12% and an increase by 6 results in an increase by a factor of 2.

 						 (1)

 = (2)

It is clear that to derive the quantizer step sizes of an input signal it is only necessary to store the 1st 6 values of quantizer step size as a function of QP, namely QP = 0 to 5. Accordingly, QP parameter based formulation and derivation is shown below:

 						 (3) where
 << 8 =

											 (4)

The scaling factor is in accordance with the fixed-point scaling factor introduced in the fixed point RAHT implementation. It also provides enough granularity when changing the QP values.

QP table is shared in three attribute encoding methods: Predicting, Lifting, and RAHT. The decoding processing is modified, because QP table has the function of multiplication by 28. This can be said as quantization and left shift processing are merged as QP table.

[image:]
Figure 78 Modification of the Decoder process TMC13v5

LUT-based quantization [47]
The general idea is to perform quantization using a forward quantization table and de-quantization using an inverse quantization table, as illustrated in the following block diagram.
QP

fLUT

gLUT

Derive InvQstep

Derive ForQstep

De-quantization

Quantization

quantized
value

value
reconstructed value

Illustration of LUT-based quantization and
De-quantization.

Given a quantization parameter QP, a forward and an inverse quantization step are derived (ForQstep and InvQstep) based on two different quantization tables (forward fLUT and inverse gLUT). The input value is quantized using ForQStep and dequantized using InvQstep. This scheme allows for the removal of the division operation in the quantization process, as will be described.

Consider the quantization table gLUT. This table is defined in previous section. The forward quantization table fLUT is derived as follows.

Currently N = 8. And it is considered M = 14, since it was enough to achieve the desired precision. In this case, fLUT becomes,

Adaptive quantization scheme for RAHT
Given a dead-zone , a RAHT coefficient with weight is quantized as:

	 // increase the dead-zone by multiples of step-size

	

	

	 // apply default quantizer as in TMC13

	

where is a parameter chosen to differentiate between the low-frequency and the high frequency coefficients.

The inverse quantization is done by:

Slice-based attribute quantization control [34]
The quantization parameters (QStepAPS) are stored in the Attribute Parameter Set (APS), and the parameters can be changed slice-by-slice.
By adding the Q step delta value (,) in each attribute slice header, the Q step value can be changed for each slice. Q step delta value is the difference between QStepAPS and Q step value of each slice. Q step delta is present only if slice_quant_step_present_flag in APS is set to 1.
In the decoder, obtain QStepAPS from APS and Q step delta value from each attribute slice header, and Q step value can be calculated.
In the current specification, Qstep delta was replaced with QP delta.

As1
APS
Gs1
GPS
As2
Gs2
QStepslice1 = QStepAPS + ΔQStepslice1
QStepslice2 = QStepAPS + ΔQStepslice2
QStepAPS
ΔQStepslice1 ＝ QStepslice1 - QStepAPS
ΔQStepslice2 ＝ QStepslice2 - QStepAPS

Figure 79: The modified bitstream structure to support delta Qstep

Attribute Layer based quantization control [42]
The attribute quantization parameter of each layer can be controlled by using this method. A delta QP layer parameter is implemented on each attribute slice header.
Figure 80 shows Delta QP layer implementation on Lifting/Predicting transform and specific delta QP is applied on each layer. The effective QP value for each layer in a particular slice is added between delta QP of that layer with QP for that slice. The final residue value will be the product of the attribute with quantization weight and effective QP value.

[image:]
[bookmark: _Ref37115200]Figure 80 Operation of Delta Layer QP for Predicting/Lifting Transform

Figure 81 shows RAHT with delta QP for each layer and specific delta QP is applied on each layer. The effective QP value for each layer in a particular slice is added between delta QP of that layer with QP for that slice. The final residue value will be the square root of the attribute divided by weight and effective QP value.

[image:]
[bookmark: _Ref37115217]Figure 81 Operation of Delta Layer QP for RAHT

The quantization parameter (QPAPS) are stored in the Attribute Parameter Set (APS), and the parameters can be changed slice-by-slice and further layer by layer.
By adding the delta QP layer value (, …) in each attribute slice header, the QP value can be changed for each layer of a particular. Delta QP layer value is the difference between QPslice and effective QP value of that slice’s layer. Delta QP layer is present only if layer_QP_present_flag in attribute slice header ASH is set to 1.

As1
APS
Gs1
GPS
As2
Gs2
QPslice1 = QPAPS + ΔQPslice1
QPslice2 = QPAPS + ΔQPslice2
QPfinal_slice1_LoD1 = QPSlice1 + ΔQPslice1_Layer1
QPfinal_slice1_LoD2 = QPSlice1 + ΔQPslice1_Layer2
QPfinal_slice2_LoD1 = QPSlice2 + ΔQPslice2_Layer1

QPAPS

ΔQPslice1 ＝ QPslice1 - QPAPS
ΔQPslice1_Layer1 ΔQPslice1_Layer2 ΔQPslice1_Layer3 ….

ΔQPslice2 ＝ QPslice2 - QPAPS
ΔQPslice1_Layer1 ΔQPslice1_Layer2 ΔQPslice1_Layer3 ….

Figure 82: The modified bitstream structure to support layer delta QP
Region-wise attribute quantization control [50][69]
In the 3D point cloud, the required visual importance and quality is different depending on the 3D region. For example, the face region of a human has higher importance and thus required better quality. Region-wise quantization control in Attribute coding changes the quantization parameter based on the geometry position in a slice. It can keep the compression performance compared to a slice base QP Control because the attribute prediction structure will not be changed.

 [image:] [image:]
Figure 83 Concept of Region-wise QP control

In 3D-region-wise QP control method, the different attribute QP value is applied to specific region. In the encoding / decoding process, the region box where QP value should be changed and its differential QP from slice QP in each layer are determined.

In attribute coding, The QP value for each point is determined by using geometry,
If each point of 3D point cloud is within the box region, then delta QP value will be added on the slice QP in each layer to get the effective QP for that point.

After that, the attribute value is quantized using effective QP value.

In RAHT process, delta QP value for each node on region-wise QP control method is derived using the ones of the two lower level nodes. Herein, the average delta QP value of the two lower-level nodes is used as the one of the current node. The average method will smoothen the different QP value between the nodes.

[bookmark: _Ref165099]Attribute Redisual and Entropy encoding
The quantized, transformed coefficients are entropy encoded using zero run length coding and an arithmetic coder.

Attribute residual coding [37]
Zero run length coding for attribute residual value and a flag “isOne” which indicates if residual value is equal to 1 based on the current residual coding specification were introduced. In zero run length coding, the number of zero prior to each residual value is counted as zerorun, and then zerorun is encoded instead of encoding sequence of 0s. Figure 84 shows how to encode residual value with zero run length and isOne flag. A zerorun parameter is encoded by truncated unary code with 3 contexts, and a isOne flag is encoded with 7 contexts by using same way to encode isZero flag. This method is applied not only Predicting Transform and Lifting Transform but also RAHT.

[image:]
[bookmark: _Ref9860547]Figure 84: encoding flow for residual value

Inter-channel residual prediction [54][76]
The inter-channel residual prediction is to perform prediction of residuals between channels and code the residual resulting from this second prediction. Specifically, this scheme codes the G-channel first, then use its quantized residual to predict the quantized residuals of R and B channels. The quantization indices of the residual from the additional prediction step is entropy-coded.
 A pseudo code is as following,
X : channel X signal (X can be R,G, or B)
X_pred: predicted channel X signal (obtained from reconstructed neighbor samples in G-PCC)
X_delta_index : quantization index of the prediction residual of channel X
X_delta_recon : reconstructed residual for channel X
X_recon : reconstructed channel X signal
X_delta_residual_index: the quantization index of the residual from the residual-prediction

Encoding Process

2.1	Encoding

// G-Channel
G_delta_index <- Quantize(G- G_pred)
G_delta_recon <- InverseQuantize(G_delta_index)
G_recon <- G_pred + G_delta_recon
EntopyEncode(G_delta_index)

// C-Channels (‘C’ can be either R or B)
C_delta_residual_index <- Quantize (C- C_pred – G_delta_recon)
C_delta_recon <- InverseQuantize(C_delta_residual_index) + G_delta_recon
C_recon <- C_pred + C_delta_recon
EntopyEncode(C_delta_residual_index)

Decoding Process

// G-Channel
G_delta_index < - EntropyDecode()
G_delta_recon <- InverseQuantize(G_delta_index)
G_recon <- G_pred + G_delta_recon

// C-Channels (‘C’ can be either R or B)
C_delta_residual_index < - EntropyDecode()
C_delta_recon < - InverseQuantize(C_delta_residual_index) + G_delta_recon
C_recon <- C_pred + C_delta_recon

Bytewise based binary coding for transformed coefficients [18]
G-PCC supports an efficient binarization scheme for transform coefficients, which requires only a binary arithmetic encoder making it more HW-friendly in terms of implementation. It leverages the binarization scheme described in section 0. First, the binarization approach for mono-dimensional attribute signals such reflectance is described. Next, the case of three-dimensional signal such as clours is described. Generalization to multi-dimensional attributes is straightforward.
Mono-dimensional attributes
Let C be the quantized coefficient to be encoded. First C is mapped to a positive number using the function described in Figure 85. Let M(C) be the mapped value. A binary value is then encoded to indicate whether M(C) is 0 or not. If C is not zero, then two cases are distinguished:
· If M(C) is higher or equal than alphabetSize (i.e., 256 the number of symbols supported by the technique described in [2]), then the value alphabetSize is encoded by using the method described in section 0. The difference between M(C) and alphabetSize is encoded by using an exponential Golomb coding
· Otherwise, the value of M(C) is encoded using the method described in 0.

[image:]
[bookmark: _Ref531007326]Figure 85: mapping signed integers to unsigned integers

Three-dimensional attributes
Let C1, C2, and C3 be the quantized coefficients to be encoded. First C1, C2 and C3 are mapped to a positive number as described above. Let M(C1), M(C2) and M(C3) be the mapped values.
M(C1) is encoded as described above. M(C2) is encoded as described above while choosing different contexts (see Figure 86) based on the condition M(C1) is zero or not . M(C3) is encoded as described above, while choosing different contexts (see Figure 86) based on the conditions M(C1) is zero or not and M(C2) is zero or not.

[image:]
[bookmark: _Ref531007352]Figure 86: Binarization of a three-dimensional signal

Functionality
Tile and Slice
Tile and Slice partition process [43]
Figure 87 shows the process of slice and tile partition.
a) the original point cloud would be firstly quantized according to corresponding condition.
b) Then the quantized cloud is splitted into tiles, which are several cube areas with a certain side length TileSize.
c) After that, the process of slice partition contains two steps.
First, do the preliminary slice partition with slice partition schemes in TMC13. Second, based on two parameters MaxPointNum and MinPointNum, do further merging and splitting operations on slices after first step, which try to get slices with suitable number of points. The modification on partition and quantization order could ensure the point number of each slice to meet the requirement.

[image:]
[bookmark: _Ref17911619]Figure 87 Slice Partition process
Tile partition schemes [43]
The tile partition schemes is as follows:
· Let tileMaps be a map of tile IDs to point indexes that correspond to the tile, initially empty.
· For each point in the reconstructed point cloud after quantization, determine the tile to which it belongs:
- Let tile_origin = floor(pos / TileSize)
- Append point index to tileMaps[tile_origin]
· [bookmark: OLE_LINK1][bookmark: OLE_LINK2]Then the tile ID is simply the index into the tileMaps
· Do slice partition in each tile.
Slice partition schemes
Uniform-Geometry partition along the longest edge or using Octree [25] [43] [44]
The process of slice partition contains two steps. First, do the preliminary slice partition with slice partition schemes. Second, based on two parameters MaxPointNum and MinPointNum, do further merging and splitting operations on slices after first step, which try to get slices with suitable number of points. The method could adaptively determine the number of slices by datasets without per-sequence configurable parameters.

If the number of points is more than MaxPointNum, the following slice partition is done, otherwise the whole point cloud is compressed directly without partition.

TMC13 software supports two slice partition schemes in the encoder.
1. Uniform-Geometry partition along the longest edge
1) Assume the longest edge and the shortest edge as maxEdge and minEdge, slice number as sliceNum, slice size as sliceSize. The default value of sliceNum is set as maxEdge / minEdge and sliceSize is set as minEdge.
2) Clear partitions.slices and resize it to sliceSize. Divide the point cloud into sliceNum slices by uniform-Geometry partition scheme.
· Evaluate the proportion of points smaller than the maxPointNum in all slices. Set a ratio threshold . If is bigger than , go to next step. Otherwise, back to procedure 1) and double the sliceNum.

[bookmark: _Ref536775306]Figure 88: Uniform-Geometry partition along the longest edge

When trisoup is used, first check whether the original slice partition interval is an integer multiple of the block size . If not, the partition interval will be rounded up to the nearest integer that is exactly divisible by the block size.
[image: G:\cloric\slice划分提案\方案1示意图.png]
Figure 89: Partition interval when using trisoup

2. Uniform-Geometry partition using Octree
1) Set the depth of octree partition depOctree = 1 by default
2) Divide the input point cloud into 8depOctree slices by Octree partition scheme.
· Evaluate the proportion of points smaller than the maxPointNum in all slices. Set a ratio threshold . If is bigger than , go to next step. Otherwise, back to procedure 1) and set depOctree += 1.

[bookmark: _Ref536775326]Figure 90: Uniform-Geometry partition using Octree

After slice partition, the point cloud of slice whose point count is more than MaxPointNum is splitted, and the point cloud of slice whose point count too few points is merged.

· Split: If the point count (Asize) is more than MaxPointNum, split the slice into n partitions, where n = ceil (Asize / MaxPointNum).

· Merge: If the point count of current slice is less than MinPointNum, merge it with either prior slice or next one. The principles of choosing the direction to merge are as follows:

1） If current slice is in the first place, then the direction of merging is:
 merge -> next slice
2） If current slice is at the end, then the direction of merging is:
 merge -> prior slice
3） If current slice is neither the first nor the last one, then assume the point count of slice as SumFront and SumNext after merging with prior slice and next one respectively.
· If SumFront > MaxPointNum and SumNext > MaxPointNum,
or SumFront< MaxPointNum and SumNext < MaxPointNum,
then choose the merging direction with the one with more points.
· Otherwise, that is one of SumFront and SumNext is larger than MaxPointNum
and another is not, then choose the merging direction with the smaller one.

After merging, traverse all slices generated after merging, assuming the point count of merged slice as SumMerged, compare the SumMerged with MaxPointNum.
· If SumMerged < MinPointNum, keep merging for current slice.
· If SumMerged > MaxPointNum, split the merged slice with the interval as MaxPointNum.
If MinPointNum <SumMerged< MaxPointNum, keep current slice and check next slice.

Uniform square partitioning
 In order to partition the slices in localized region, first this method partitioned the slices in uniform squares. The maxAxis and midAxis is segmented by the length of the minAxis. Figure 91 shows an example of uniform square partitioned grid.

[image:]
[bookmark: _Ref37002327]Figure 91: Uniform square partitioning

After partitioning, following process are:
1. Generate adjacent information: each none refined slice have an adjacent information in grid area, four directions (bottom, left, top, right) of current slices will be the adjacent information.
2. Merge: merge is processed with the slice having the least point number of the four.
3. Split: split is processed by the direction of next ordered slice.

After processing the merge and split, refined slices are located adaptive to region. Figure 92 shows flow of this method and Figure 93 shows the identical region of required points and decoded points.

[image:]
[bookmark: _Ref37002354]Figure 92: Partitioned result of this method (citytunnel_q1mm)

[image:]
[bookmark: _Ref37002381]Figure 93: Example of decoded region of this method

[bookmark: _Ref3905358]Header reduction by quantize minimum position using gsh_box_log2_scale [30]
Minimum position value of the slice is quantized by gsh_box_log2_scale bit shifting.
Slice origin is set to quantized minimum position.

In octree partition method, gsh_box_log2_scale of every slice origin is set as below.

· gsh_box_log2_scale = total_bit – octree_depth

By setting above way, shifted origin value become equal to Morton order of octree partition.

When the same gsh_box_log2_scale is set to all slices, it is not necessary to store them in slice headers, so common log2_scale is set to new syntax in GPS and it is indicated by a flag whether it is stored in GPS or geometry slice header.
[image:]
Figure 94: Header reduction by quantize position and scaling
Parallel Octree Coding [72]
A new octree coding (encoding and decoding) scheme is introduced, by which the parallel coding can be performed for each octree partition depth instead of sequential coding of each depth.
Parallel octree coding by reinitialization of context variables
This method starts parallel coding from a certain octree coding depth , which is specified in the high-level syntax. It indicates that the octree coding can be processed simultaneously from depth to the maximum depth , where is the total number of octree partition depths. Assuming two depths are coded in parallel, each octree node in depth can be encoded or decoded once its parent node and neighbors of parent node in depth are encoded or decoded. As shown in Figure 95, the parallel coding starts from depth , the nodes marked as “0” in depth can be coded right after its parent node “0” and its neighbors in depth are coded; and the nodes marked as “1” and “2” in depth can be coded right after its parent node “1” and its neighbors in depth are coded; and the same strategy applied to depth , , etc.
To enable the parallel coding, for every octree partition depth that are coded in parallel, the probabilities of all context variables that are related to octree coding need to be reinitialized. It uses the probabilities of the context variables after coding the depth to reinitialize the rest octree depth from to .
[image:]
[bookmark: _Ref37027872]Figure 95: Illustration of parallel octree coding scheme.

Reinitialization of the probability of context variables for bit-wise occupancy coding
When the octree partition reaches the beginning of the specified depth , the probability of context variables for bit-wise coding need to be stored in memory. For the remaining octree partition depths that would proceed in parallel, the probability of context variables needs to be reinitialized to be the same as the stored ones.
Reinitialization of the look-up tables for byte-wise occupancy coding
When the octree partition reaches the beginning of the specified depth , the values of look-up tables for byte-wise coding need to be stored in memory. For the remaining octree partition depths that would proceed in parallel, the values of look-up tables need to be reinitialized to be the same as the stored ones.
The related variables that need to be stored and recovered include the following:
· An array of values lut0[k] storing the most frequent symbols, where k is in the range of 0 to 31, inclusive.
· An array of values lut0Histogram[k] storing the symbols occurrences, where k is in the range of 0 to 255, inclusive.
· [bookmark: _Hlk29290327]Two variables lut0UpdatePeriod and lut0SymbolsUntilUpdate storing the update period for lut0 and the number of symbols remaining until the next update, respectively.
· A variable lut0Reset specifying whether lut0 should be reset during the next lut0 update or not.
· An array of values lut1[k] storing the last 16 decoded symbols with different values, where k is in the range of 0 to 15, inclusive.
· A variable lut1IndexLastSymbol storing the index of the last decoded symbol.
· A set of adaptive binary arithmetic contexts ctxLut0Hit, ctxLut1Hit, and ctxSymbolBit.
· [bookmark: _Hlk29290528]An array of adaptive binary arithmetic contexts ctxLut0Index of size 5 if limitedContextMode equals 1, and 31 otherwise (i.e., limitedContextMode equals 0).
Reinitialization of the history variables for planar coding mode
In Planar coding mode, two history variables are introduced that keep updating during octree coding. Therefore, to enable the parallel octree coding scheme, the two new variables need to be reinitialized as well.

When the octree partition reaches the beginning of the specified depth , the history values for planar coding mode need to be stored in memory. For the remaining octree partition depths that would proceed in parallel, the history values need to be reinitialized to be the same as the stored ones.
Parallel decoder parsing mechanism
Parallel parsing mechanism can be further enabled by specifying the bitstream offsets of the starting position of each parallel octree depth.
As shown in Figure 96, the geometry octree bitstream is composed of several parts. The first part is the geometry slice header which contains the high-level syntaxes used for geometry coding. The remaining part contains the octree coding sub-bitstream of each partition depth. According to the applicability of parallel octree coding, the remaining part can be further categorized into two parts for unparallel and parallel octree coding, respectively.
To enable parallel decoder parsing, first of all, the sub-bitstream of each parallel octree partition depth needs to be aligned in byte positions, thus each sub-bitstream has integer length in bytes. Second, the bitstream offset of each parallel octree partition depth, denoted by , should be specified. The offsets can be specified by their differences, i.e., . Therefore, the decoder can start parsing several octree depths from the specified bitstream segments in parallel. Specifically, the parsing of depth is from the bitstream position to with the length of .
[image:]
[bookmark: _Ref37027962]Figure 96: Illustration of geometry octree bitstream and bitstream offsets of each octree partition depth.
Spatial scalability support [46]
The spatial scalability is important functionality for G-PCC. It is especially useful when the source point cloud is dense even in the local area as the Level of Detail (or, the octree depth) should be large enough to represent the original quality. With the spatial scalability, one can access a lower resolution point cloud as a thumbnail with less decoder complexity and/or with less bandwidth.

When the spatial scalability is needed, it is desirable to decode lower geometry and the corresponding attribute bitstream in a harmonized way as shown in Figure 64. Without the attribute (especially without the color attribute), it is difficult to understand the content at a glance.

[image:]
[bookmark: _Ref17997033]Figure 97: Extended geometry & attribute harmonized spatial scalability

To achieve the harmonized spatial scalability, the attribute decoder is extended to allow the lower resolution geometry point cloud from the partially decoded Octree bitstream, where the position is quantized as INT(pos/2k)*2k.

The following subsections describe the extended changes for the Lifting scheme to support spatial scalability.
Octree harmonized LoD construction
The LoD generation process is extended to align with the geometry Octree structure.
Figure 98 and Figure 99 show the normal and the extended LoD generation process, respectively.
In the normal process, the distance between points is considered. In the extended one, the Octree structure is considered to separate the grouping. The motivation is to align the number of points for the geometry and the attribute.
By this, when the partial octree decoded point cloud is given to the attribute decoder, it can be constructed the Lifting LoD from the given level in the decoder side correctly.

[image:]
[bookmark: _Ref17997131]Figure 98: Normal LoD generation (Independent from Octree LoD)

[image:]
[bookmark: _Ref17997145]Figure 99: Extended LoD generation (align with Octree LoD)

Weight derivation
In the normal process, the weight value is derived from the sum of distances in the higher LoD level. When the partial octree decoded point cloud is given to the attribute decoder, the decoder cannot calculate the correct weight (because the lower LoD information is unknown).

In the extended one, instead of deriving from the distance, the weight is fixed by the point number in the LoD.
Wextended = (Total point number) / (Point number in current LOD)

This simplification assumes that the point distribution in the higher LoD is equally dense enough for the content where the spatial scalability is needed.

Distance normalization
Related to the previous subsection, the weight value is derived from the normalized distance based on LoD.

In the normal process, the distance is calculated as follows.
	Dist = (Pref − Pi)2
, where P denotes the x,y,z position for the ref and the i

In the extended one, the distance is calculated as follows.
	Dist = (Quant(Pref, LoD) − Quant(Pi))2
, where Q(x, LoD) is defiend as ((x>>LoD)<<LoD).

With the normalization, the decoder can calculate the correct weight value with the partially decoded geometry.

Reference structure modification [55][67]
The attribute Lod structure is changed as octree based LoD so that the tendency of number of attributes in LoD is also changed in some cases (see Figure 100). Because octree branch is terminated depend on point density.
 [image:]
[bookmark: _Ref27061169]Figure 100: the number of attribute node in lod (Left is non scalable case, Right is scalable case)

Since it is not necessary to divide Lod12 and Lod11 in terms of coding efficiency of attribute, the lifting reference scheme was modified. For example, in the Figure 100 right case, the reference from Lod12 to Lod11 is prohibited, instead, Lod12 refers Lod 10 or less. This reference structure modification is applied to any Lod levels.

LoD generation modification [65]
In LoD generation method for scalable lifting, how to select retained node is modified to reduce distance distortion caused by distance normalization.

The distance normalization is as follows:
Dist = (Quant(Pref, LoD) − Quant(Pi))2
, where Quant(x, LoD) is defined as ((x>>LoD)<<LoD).

Quant(x, LoD) changes the position of a point to the center position of each octree-based node at the LoD. Figure 101 shows the example of how to calculate distance between two points.

[image:]
[bookmark: _Ref36718779]Figure 101: Example of distance distortion with distance normalization

Therefore, to reduce distance distortion caused by distance normalization, the modified retained node selection is as follows:
· If the LoD is even, select the first child node of the node as the retained node.
· If the LoD is odd, select the last child node of the node as the retained node.
Figure 102 shows the example of the modified selection as retained node.
[image:]
[bookmark: _Ref36718895]Figure 102: Example of the proposed retained node selection (yellow box)

Combine Frame Coding [24]
In frame-based point cloud content, each frame may be relatively smaller in file size, which is less efficient for the I/O interface. Another issue is the overhead of initializing decoder becomes more significant in the edge device as well. The decoder need to run from the initial bounding box and do the dividing for each single frame, but for combine coding the process is conducted only once for each combined Group of Point cloud (GOP), which could be beneficial to less powerful devices.
The first issue could be easily addressed by concatenating the encoded bit-stream of consecutive frames. The second one, however, is inevitable unless the point clouds are combined before encoding. The proposed combine frame coding addresses both issues by introducing the encoding of frame index in the combined point cloud. Moreover, it improves coding efficiency largely so that it could be also beneficial for storage usage of frame-based point cloud content.
Shown below, frames from frame-based point cloud data, for example, Ford content, are combined to a single point cloud. In the Ford content, depending on the movement of the vehicle, some parts of the frame appear to be stationary, while others have moved.
When each of point cloud source is correlated to one another, individual Octree of each frame has a similar structure in the higher level.
 In the leaf node of the combined frame, there are some duplicated points that of different frames.
[image:]
Figure 103: Image of Combine Point Cloud Input Data

A single bitstream is outputted after encoding the entire sequence. Group of Point cloud (GOP) is created and each frame inside the GOP is assigned a unique index, which we call the frame index. The frame indices, which are used in the decoder to reconstruct the input frames, are encoded using two different approaches. Frame index can also be encoded as an attribute. A new attribute is defined to represent frame index. The existing attribute coding method is used to encode it. Note the coding of frame index should be lossless in order to reconstruct correctly.
 When using combine coding, to indicate the number of duplicated frames in leaf node in geometry slice data,
1. unique_geometry_points_flag is recommended to be set to 0
2. Frame index in attribute is recommended to be encoded as lossless encoding

Neighbour point search sharing function [59]
Category3-fused dataset (e.g. city tunnel) has two types of attributes, which are color and reflectance. If the configuration for LOD generation and maximum number of neighbors for both attributes are same, the result from common process can be shared. This can save encoding and decoding time or computation power and redundant memory usage.
In this function, neighbour search process will run one time in generating LOD and the searched neighbor points are used for both color and reflectance encoding/decoding process.

[image:]
Figure 104: flow of neighbour point search sharing for the attribute encoding

[bookmark: _Ref170619]References
1. [bookmark: _Ref504260324][bookmark: _Ref502847135]FastAC fast arithmetic coding algorithm, http://www.cipr.rpi.edu/research/SPIHT/
1. [bookmark: _Ref504260351]Call for Proposals for Point Cloud Compression V2, ISO/IEC JTC1/SC29/WG11 w16736, Hobart, AU, April 2017.
1. [bookmark: _Ref504260636]https://cmake.org
1. https://www.threadingbuildingblocks.org
1. [bookmark: _Ref495593210][bookmark: _Ref503641227][bookmark: _Ref479690079]Queiroz and Chou, “Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform,” IEEE Trans. Image Processing, Aug. 2016.
1. [bookmark: _Ref495593213]Chou and Queiroz, "Transform Coder for Point Cloud Attributes," ISO/IEC JTC1/SC29/WG11 input document m38674, Geneva, May 2016.
1. [bookmark: _Ref530991453][PCC] Inference of a mode using point location direct coding in TMC3, ISO/IEC JTC1/SC29/WG11 input document m42239, Gwangju, Korea, January 2018.
1. [bookmark: _Ref530992499][PCC] Neighbour-dependent entropy coding of occupancy patterns in TMC3, ISO/IEC JTC1/SC29/WG11 input document m42238, Gwangju, Korea, January 2018.
1. [bookmark: _Ref530995333]Look ahead cube for efficient neighbours information retrieval in TMC13, ISO/IEC JTC1/SC29/WG11 input document m43591, Ljubjana, Slovenia, July 2018.
1. [bookmark: _Ref530995599] PCC Simplification of neighbour-dependent entropy coding in CE3.4, ISO/IEC JTC1/SC29/WG11 input document m42689, San Diego, US, April 2018.
1. [bookmark: _Ref531002833] [PCC] Intra mode for geometry coding in TMC3, ISO/IEC JTC1/SC29/WG11 input document m43600, Ljubljana, Slovenia, July 2018.
1. [bookmark: _Ref531004328] [PCC] A new binary entropy coder with update for geometry coding in TM3, ISO/IEC JTC1/SC29/WG11 input document m44750, Macau, China, October 2018.
1. [bookmark: _Ref531005230] Binarization of occupancy information in TMC13, ISO/IEC JTC1/SC29/WG11 input document m43592, Ljubljana, Slovenia, July 2018.
1. [bookmark: _Ref531005763] PCC TMC13 alternative entropy codecs, ISO/IEC JTC1/SC29/WG11 input document m43649, Ljubljana, Slovenia, July 2018.
1. [bookmark: _Ref531005641] “Dirac Specification version 2.2.3,” BBC, Sep. 2008.
1. [bookmark: _Ref531005779] “VC-2 Video Compression,” ST 2042-1, SMPTE, Nov. 2009.
1. [bookmark: _Ref531006100] PCC Adaptive predictor selection for attributes coding in TMC13 related to CE13.3, ISO/IEC JTC1/SC29/WG11 input document m43665, Ljubljana, Slovenia, July 2018.
1. [bookmark: _Ref531006803] Binarization of transform coefficients in TMC13, ISO/IEC JTC1/SC29/WG11 input document m43780, Ljubljana, Slovenia, July 2018.
1. [bookmark: _Ref531022159] Efficient implementation of the Lifting Scheme in TMC13, ISO/IEC JTC1/SC29/WG11 input document m43781, Ljubljana, Slovenia, July 2018.
1. [bookmark: _Ref536470050] A new neighbour node occupancy decision, ISO/IEC JTC1/SC29/WG11 input document m44752, Macau, China, October 2018
1. [bookmark: _Ref536470052] Entropy coding an octree node occupancy depending on neighbour’s child nodes, ISO/IEC JTC1/SC29/WG11 input document m44753, Macau, China, October 2018
1. [bookmark: _Ref536470813] Improved G-PCC lossless and near-lossless coding, ISO/IEC JTC1/SC29/WG11 input document m44899, Macau, China, October 2018
1. Binary-tree based level-of-details generation for attributes coding in G-PCC, ISO/IEC JTC1/SC29/WG11 input document m44940, Macau, China, October 2018
1. [bookmark: _Ref536471514] TMC13 new proposal on Combine Frame Coding, ISO/IEC JTC1/SC29/WG11 input document m44813, Macau, China, October 2018
1. [bookmark: _Ref536775181] G-PCC TMC13 CE13.2 report on point cloud tile and slice based coding, ISO/IEC JTC1/SC29/WG11 input document m45867, Marrakech, Morocco, January 2019
1. PCC CE1.3 recolor method, ISO/IEC JTC1/SC29/WG11 input document m42538, San Diego, US, April 2018
1. [bookmark: _Ref9850421][PCC] On further reduction of neighbour configurations, ISO/IEC JTC1/SC29/WG11 input document m46148, Marrakech, Morocco, January 2019
1. [bookmark: _Ref9850522][PCC] On an improvement of advanced neighbours, ISO/IEC JTC1/SC29/WG11 input document m46149, Marrakech, Morocco, January 2019
1. [bookmark: _Ref9851621][PCC] On the reduction of states related to advanced neighbours in OBUF, ISO/IEC JTC1/SC29/WG11 input document m46150, Marrakech, Morocco, January 2019
1. [bookmark: _Ref9852277][G-PCC] CE13.2 Report on geometry slice header reduction in slice partition, ISO/IEC JTC1/SC29/WG11 input document m47398, Geneva, CH, March 2019
1. [bookmark: _Ref9856078]Reference structure modification on attribute predicting transform in TMC13, ISO/IEC JTC1/SC29 WG11 input document m46107, Marrakech, MA, January 2019
1. [bookmark: _Ref9856779][G-PCC] [New proposal] Fixed-point implementation of G-PCC, ISO/IEC JTC1/SC29/WG11 input document m44900, Macau, China, October 2018
1. [bookmark: _Ref9857632][G-PCC][New Proposal] Efficient Low-Complexity LOD Generation, ISO/IEC JTC1/SC29 WG11 input document m46188, Marrakech, MA, January 2019
1. [G-PCC] CE13.16 Report on Slice-based quantization control, ISO/IEC JTC1/SC29/WG11 input document m47399, Geneva, CH, March 2019
1. [bookmark: _Ref9860067][G-PCC] Quantization Parameter table in Attribute Coding, ISO/IEC JTC1/SC29/WG11 input document m47401, Geneva, CH, March 2019
1. [bookmark: _Ref9860069][G-PCC] New contribution on quantization parameter definition, ISO/IEC JTC1/SC29/WG11 input document m47507, Geneva, CH, March 2019
1. [bookmark: _Ref9861893][G-PCC] Attribute residual coding in TMC13, ISO/IEC JTC1/SC29 WG11 input document m46108, Marrakech, MA, January 2019
1. [G-PCC][New proposal]Non-normative Subband Adaptive, ISO/IEC JTC1/SC29/WG11 input document m45019, Macau, China, October 2018
1. [bookmark: _Ref9863672]G. Sandri, P. A. Chou, M. Krivokuća, and R. L. De Queiroz, Integer Alternative for the Region-Adaptive Hierarchical Transform, submitted for publication in the IEEE Signal Processing Letters. Copyright held by IEEE.
1. [bookmark: _Ref9864475]Fixed-point version of RAHT with rate-distortion impact tests, ISO/IEC JTC1/SC29/WG11 input document m44486, Macau, China, October 2018
1. [bookmark: _Ref9864477]G-PCC CE13.14 Report on implementation of fixed-point RAHT in TMC13, ISO/IEC JTC1/SC29 WG11 input document m46209, Marrakech, MA, January 2019
1. [bookmark: _Ref17968415][G-PCC] CE13.19 Report on Attribute Layer Quantization Control, ISO/IEC JTC1/SC29/WG11 input document m47834, Gothenburg, Sweden, July 2019.
1. [bookmark: _Ref17968260] [G-PCC] CE13.2 report on tile and slice based coding, ISO/IEC JTC1/SC29/WG11 input document m48892, Gothenburg, Sweden, July 2019.
1. [bookmark: _Ref17968298] [G-PCC] [CE13.2-related] An improvement for the uniform-geometry slice partition along the longest edge, ISO/IEC JTC1/SC29/WG11 input document m49121, Gothenburg, Sweden, July 2019.
1. [bookmark: _Ref17995519]G-PCC Bypass coding of bypass bins, ISO/IEC JTC1/SC29/WG11 input document m47827, Geneva, Switzerland, March 2019.
1. [bookmark: _Ref17996714][G-PCC] Spatial scalability support for G-PCC, ISO/IEC JTC1/SC29/WG11 input document m47352, Geneva, Switzerland, March 2019.
1. [bookmark: _Ref17998327][G-PCC] (New) Lifting and RAHT harmonization, ISO/IEC JTC1/SC29/WG11 input document m48918, Gothenburg, Sweden, July 2019.
1. [bookmark: _Ref17999412][G-PCC][New proposal] Improved color transfer, ISO/IEC JTC1/SC29/WG11 input document m49407, Gothenburg, Sweden, July 2019.
1. On an improvement of RAHT to exploit attribute correlation, ISO/IEC JTC1/SC29/WG11 input document m47378, Geneva, Switzerland, March 2019.
1. [G-PCC] EE13.5 Report on Region-wise Quantization Control, ISO/IEC JTC1/SC29/WG11 input document m51063, Geneva, CH, October 2019
1. [G-PCC][EE13.6 related] Slice-based geometry quantization, ISO/IEC JTC1/SC29/WG11 input document m50927, Geneva, CH, October 2019
1. [G-PCC] EE13.6 report on geometry quantization, ISO/IEC JTC1/SC29/WG11 input document m50924, Geneva, CH, October 2019
1. [G-PCC] Clarification and Modification of CD syntax and semantics, ISO/IEC JTC1/SC29/WG11 input document m51064, Geneva, CH, October 2019
1. [G-PCC] Clarification and Modification of CD syntax and semantics, ISO/IEC JTC1/SC29/WG11 input document m51064, Geneva, CH, October 2019
1. [EE13.7] Report on Inter-Channel Prediction for Attribute Coding, ISO/IEC JTC1/SC29/WG11 input document m51160, Geneva, CH, October 2019
1. [G-PCC] CE13.15 Related on improved spatial scalable lifting, ISO/IEC JTC1/SC29/WG11 input document m49044, Gothenburg, Sweden, July 2019.
1. [G-PCC] CE13.20 report on neighbor’s weight modification on Lifting and Predicting Scheme, ISO/IEC JTC1/SC29/WG11 input document m50773, Geneva, CH, October 2019
1. [GPCC] CE13.23 report on duplicated points in IDCM, ISO/IEC JTC1/SC29/WG11 input document m50009, Geneva, CH, October 2019
1. [G-PCC][New proposal] Improved implementation of the Prediction and Lifting schemes., ISO/IEC JTC1/SC29/WG11 input document m51010, Geneva, CH, October 2019
1. [G-PCC][New Proposal] on possible reduction of attribute coding time for cat3-fused dataset, ISO/IEC JTC1/SC29/WG11 input document m51010, Geneva, CH, October 2019
1. [bookmark: _Ref27145593][GPCC] _Planar mode in octree-based geometry coding, ISO/IEC JTC1/SC29/WG11 input document m48906, Gothenburg, Sweden, July 2019.
1. [bookmark: _Ref27176184][G-PCC][New proposal] Implicit geometry partition for point cloud coding, ISO/IEC JTC1/SC29/WG11 input document m49231, Gothenburg, Sweden, July 2019.
1. [bookmark: _Ref35857653][GPCC] [CE 13.22 related] An improvement of the planar coding mode, ISO/IEC JTC1/SC29/WG11 input document m50642, Geneva, CH, Oct 2019.
1. [bookmark: _Ref36718104][G-PCC] CE13.25 report on Triangle soup decoding, ISO/IEC JTC1/SC29/WG11 input document m52279, Brussels, BE, Jan 2020.
1. [bookmark: _Ref36718566][G-PCC][New Proposal] on improved spatial scalable lifting, ISO/IEC JTC1/SC29/WG11 input document m51408, Geneva, CH, Oct 2019.
1. [bookmark: _Ref36719646][G-PCC][New Proposal] on improvement for adaptive reflectance predictor selection, ISO/IEC JTC1/SC29/WG11 input document m50765, Geneva, CH, Oct 2019.
1. [bookmark: _Ref37001013][G-PCC] New proposal CE13.15 Related on improved weight derivation for spatial scalable lifting, ISO/IEC JTC1/SC29/WG11 input document m50743, Geneva, CH, Oct 2019.
1. [G-PCC] [New proposal] On partitioning to support the spatial random access, ISO/IEC JTC1/SC29/WG11 input document m52337, Brussels, BE, Jan 2020.
1. [bookmark: _Ref37003685][G-PCC] EE13.5 Report on Region-wise Quantization Control for RAHT, ISO/IEC JTC1/SC29/WG11 input document m52341, Brussels, BE, Jan 2020.
1. [bookmark: _Ref37019712][GPCC] CE 13.22 report on harmonization of angular coding mode and implicit QTBT, ISO/IEC JTC1/SC29/WG11 input document m52343, Brussels, BE, Jan 2020.
1. [bookmark: _Ref37026778][G-PCC] [new proposal] Early termination for transform domain prediction of RAHT, ISO/IEC JTC1/SC29/WG11 input document m51374, Geneva, CH, Oct 2019.
1. [bookmark: _Ref37027712][G-PCC][new proposal] Parallel Octree Coding for Point Cloud Compression, ISO/IEC JTC1/SC29/WG11 input document m50930, Geneva, CH, Oct 2019.
1. [bookmark: _Ref37029170][G-PCC][CE13.29 related] Harmonization and Fixing in Geometry Quantization, ISO/IEC JTC1/SC29/WG11 input document m52400, Brussels, BE, Jan 2020.
1. [bookmark: _Ref37030984]CE13.10 report on chunked entropy streams, ISO/IEC JTC1/SC29/WG11 input document m52514, Brussels, BE, Jan 2020.
1. [bookmark: _Ref37032487]G-PCC: A method to compute dist2 values for LoD attribute coding, ISO/IEC JTC1/SC29/WG11 input document m52524, Brussels, BE, Jan 2020.
1. [bookmark: _Ref37032946][G-PCC] [EE13.7] Improved encoding for inter-channel residual prediction, ISO/IEC JTC1/SC29/WG11 input document m52719, Brussels, BE, Jan 2020.

Appendix A: Mathematical Functions

 the greatest integer less than or equal to x.
 the least integer greater than or equal to x.
.
 the base-2 logarithm of x.
 = the maximum of x1, …, xN.
 the trigonometric inverse tangent function, operating on an argument x, with
an output value in the range of −π÷2 to π÷2, inclusive, in units of radians.

Appendix B: RAHT
This Appendix provides details of how to transform a list of attributes , into a list of transform coefficients , , given a list of associated voxel locations , as side information, and how to invert the transform.

RAHT and its inverse are performed with respect to a hierarchy defined by the Morton codes of the voxel locations. The Morton code of -bit non-negative integer coordinates , , and is a -bit non-negative integer obtained by interleaving the bits of , , and . To be specific, the Morton code of non-negative -bit integers coordinates

where are the bits of , , and from (high order) to (low order), is the non-negative -bit integer

where are the bits of from (high order) to (low order).

Let denote the -bit prefix of . Let be such a prefix. Define the block at level with prefix to be the set of all points for which . Two blocks at level are sibling blocks if they have the same -bit prefix. The union of two sibling blocks at level is a block at level called their parent block.

The Region Adaptive Haar Transform of the sequence , and its inverse, can now be defined recursively as follows.

Base case:
Let be the attribute of a point and let be its transform. Then .

Recursion:
Consider two sibling blocks and their parent block. Let and be the attributes of the points in the sibling blocks, listed in increasing Morton order, and let and be their respective transforms. Similarly, let be the attributes of all points in their parent block, listed in increasing Morton order, and let be its transform. Then

where and .

In other words, the transform of the parent block is the concatenation of the two sibling blocks, with the exception that the first (DC) components of the transforms of the two sibling blocks are replaced by their weighted sum and difference, and inversely the transforms of the two sibling blocks are copied from the first and last parts of the transform of the parent block, with the exception that the DC components of the transforms of the two sibling blocks are replaced by their weighted difference and sum, namely

and

It is not difficult to show that these are inverses of each other. These are known as Givens rotations.

image3.png
positions attributes
— Lo
Transform]

coordinates

!

Transfer attributes

[

Quantize coefficients

Quantize and remove L
points (voxelize) y
=
Analyze octree =
=
o
9 RAHT
oo
k3]
Analyze surface =
approximation Z l
c
o
———— ©
[
o
v v

Arithmetic encode

!

Arithmetic encode

geometry attribute
bitstream bitstream
| |
I |

Arithmetic decode

!

Synthesize
octree

Arithmetic decode

!

Inverse quantize

Synthesize surface
approximation

[

!

Reconstruct
geometry

L 2

Inverse transform

geometry
bitstream

attribute
bitstream

coordinates ! colors
]
v v
positions attributes

image93.png
FOO GOO

Tree depth 0, apply QL,

F10 G10
FI1 Tree depth 1, apply QL,

Wo Tree depth 2, apply QL,
f0 1 3 4 Effective QP Value for each slice layer

W3.0=1 W3.1=1 W33=1 W34=1
C)~LO ClPSIlce + AQPsllce _LayerO

QL]. ClPSIlce + AQPsllce _Layerl
QLZ ClPSIlce + AQPsllce _Layer2

image94.png
One Slice (No partition)

image95.png
Determine region
and delta GP_box

For each point,
Is geometry within
the region?

Apply delta QP box

image96.png
Residual value: 73 50 32 15012 000...0
W —_—

zerorun=0 zerorun=1 zerorun=N

v

zerorun zerorun zerorun zerorun zerorun zerorun

Encoded value [o [73| 0 |50l o0 320|151]12|N

value value value value value

Encode zerorun
Encode isZero = 1 with truncated unary code

Encode 1sZero =0

Y
Encode isOne =1

N

Encode isOne = 0

|

Encode (value —2)

image97.png
inline unsigned long IntToUInt(long value)
{

return (value < 0) ? static_cast<unsigned long>(-1 - (2 * value)) : static_cast<unsigned long>(2 * value);
}

image98.png
void encodeSymbol(uint32_t value, const uint3z_t k1, const uint3z_t k2) {
const bool isZero = value == 0;
arithmeticEncoder.encode(isZero, binaryModellsZero[k11);
if (liszero) {
--value;
if (value < alphabetSize) {
binarizationContext[k2].encode(value, arithmeticEncoder);
}else {
binarizationContext[k2].encode(alphabetSize, arithmeticEncoder);
arithmeticEncoder . ExpGolombEncode(value - alphabetSize, @, binaryModelo,
binaryModelDiff[k11);
}
}
3}
void encode(const uint32_t value@, const uint32_t valuel, const uint32_t value2) {
const int32_t bo = valued
const int32_t b1 = valuel
encodeSymbol (valued, 0, 0);
encodeSymbol (valuel, 1 + be, 1);
encodeSymbol (value2, 3 + (b0 << 1) + b1, 1);

image99.png
Input Point
Cloud

Quantization

Quantized
point cloud

Tile and Slice Quantize-to-
Partition Original Index
Mapping

Encode slice
geometry

Recolor

image100.emf
min_edge

slice 0 slice 1 slice 2 slice 3

oleObject1.bin

image101.png
slice p
ng=2.6

rne1=3

slice p
ng=3

image4.png
standard mode 8
sub-cubes mode

direct mode

image102.emf
slice 0 slice 1

slice 3

slice 4

ʹ

௖௘௜௟ሺ௟௢௚

మ

ሺ௘ௗ௚௘̴୷ሻሻ

ʹ

௖௘௜௟ሺ௟௢௚

మ

ሺ௘ௗ௚௘̴௫ሻ

ሻ

oleObject2.bin

image103.png

image104.png
[uniform square partition] == [adjacentinformation] - [merge & split]

current slice slice 0 < ropislcel, poimflum 109 " merge
right:slice 3, pointNum: 200 - if currentSlice < minNumPoint
/ top:slice 2, pointNum: 100 merge adjacent minPoint slice
t09/ slice 1 < right:slice 4, pointNum: 50 20
bottom:slice O, pointNum: 20
ight ottom:slice O, pointNum: 100 50 e merge20
left rig .
slice 2 80
hottom . split
- split to next ordered slice
X left:slice N-M, pointNum: 50 N-2N+1N+4 split current sliceN
slice N< in N+1 direction
bottom:slice N-1, pointNum: 80 N-3 N+3 mmp N1
N-4|N-1|N+2 727

image105.png
required region = decoded region

image106.png
slice origin

x |ofo|1[o]o]o]ofo]0

y |of1]|1|[o]o]o]ofo]o

z|1|of1|ofo]ofo]o]o

Octree depth 0 Mask
gsh_box_log2_scale =7

image107.png
Depthd + 2

image108.png
Geometry Octree Bitstream

GSH [0, dpmin) min M-1 Geometry Slice Header

r E===1 Unparallel Octree Coding
B Parallel Octree Coding

Bitstream offsets: (Og,y,;,,) Odpintr Om-1

image109.png
G-PCC
decoder

Level Of Detail low resolution point cloud
(with Attribute)

‘____-[____-. ‘____-[____-‘ G-PCC

decoder

Geometry bitstream Attribute bitstream

full resolution point cloud

image110.png
decoded geometry position
(Morton order)

>

LoD
(root to leaf)

o O
t dist2 @ LoD=(k-1) f

® OO O

v dist2 @ LoD=k

’ reference (retained) node

O the other node

image5.png
yes

code
IDCM on

further split or
direct coding ?

?
Inference

code
IDCM off

Direct Coding Mode

image111.png
decoded geometry position
(Morton order)

>

attribute decodable
with the partial Octree geometry

LoD
(root to leaf)

LoD border
(align with Octree)

’ reference (retained) node

O the other node

image112.png
frog_00067_vox12

l

LOD

3000000

CTC Anchor
Attribute number of Lod
o 500000 1000000 1500000 2000000 2500000

0

1

2

3

a4

5

6

7

8 m

=

10

1

LOD

Scalable Lifting Scheme (CE13.15)
Attribute number of Lod

0 500000 1000000 1500000 2000000 2500000

3000000

image113.png
LoD2

disteerch? =| 16

<
Mz »
622
st/ 26 21

image114.png
© Reference (retained) node

LOD N-2

LOD N-1

LOD N

image115.png
Framet Frame2 Combined Frame

image116.png
positions

Geometry

attributes

!

Transfer attributes

Encoding

|

geometry bitstream

Reconstructed Geometry

Prediction /Lifting
Transform?

Yes

Generate LOD and search neighbors

Color Encoding

Reflectance Encoding

}

color bitstream

Reflectance bitstream

image6.png
16

32

image7.png
configuration=

image8.png
ﬂﬂﬂﬂ
5

ﬁlu'-l-l'l

cc,

cc,

ccy

cc,

image9.png
8-bit occupancy pattern beb,...b,
configuration NC,in [0,9]

yes, empty neighbourhood

no NCyo

NC,o=0?

code (by|NCy0,bg,by,bybs)
P

code (b,]0)

code (b, [0,b,)

code (b, 10, bytb,)

neighl
reduction

bour

code (bs|NCyo,bo,by by,bs by)
code (bs | NC;,bo,by by b basbs)

NG,

code (b[0, b*+bg)

NC. neighbour
code (b,[NC: by by bybybububd o | o ET O

image10.png
bO,...,b3 coded

Py

b4 to code

image11.png
b0,...,b6 coded
b7 to code I I \

. &

image12.png
after swapping

in TMC3v4 bs and b,

image13.png

image14.png
Occupancy Number of States from States from Total states Old total
bit neighbour config NC=0 NC>0 using NCy,

9 1 8%1=8
b1 9 2 8%2=16 18 20
b, 9 3 8%4=32 35 39
b, 9 4 8*8=64 68 76
b, 5 5 4*16=64 69 149
bs 5 6 4*32=128 134 294
bg 3 7 2*64=128 135 391
b, 2 8 1*128=128 136 520

image15.png

image16.png

image17.png
i i
occupied already truly occupied

coded neighbour

falsely occupied

image18.png
wEE
®E

image19.png
NT=1

NT=0

image20.png
current node

occupied
neighbour

occupied
missed neighbour
advanced i
neighbour / ..
occupied
advanced

neighbour

1 occupied, 1 missed

image21.png
occup<=

b0
bl
b2
b3

missed<=

b0
bl
b2
b3

o O o o
[T Y
R RN O

N

not O due to falsely occupied

N, PN

B R ON

N NN B

N NDNDN

N NDNDN

N NNDN

image22.png
T

s s=
7. e
0o 1 2 3 4
occup<=
b4 0 1 1 2 7
b5 0 1 2 1

image23.png
occup<=

b6

4

b6

3

_0

0

image24.png
occup<=

b7 0 2

image25.png
#istates Occupa Configuration number NC #states | #states #states with
NC, only ncy bit 8 NC== NC>0 intra pred
0 1 2 3 4 5 6 7 8

9 b, 2 4 2 6 6 4 6 6 6 2*1 40*1 42 126
18 b, 2 4 6 4 2 6 6 6 6 2%2 40*2 84 252
35 b, 2 4 4 4 4 6 6 6 6 2*3 40*4 166 498
68 b, 2 4 4 6 4 6 6 6 6 2% 42*8 344 1032
69 b, 2 4 4 6 6 2*5 20*16 330 990
134 bs 1(2) 3(4) 4(6) 3(4) 4(6) 1*6 14*32 454 1362
135 b 1(2) 3(4) 4(6) 1*7 7*64 455 1365
136 b, 1(2) 4(6) 1*8 4*128 520 1560
%—/

max Nadv dependingoniand NC. (before applying LUT_red)

image26.png
(26,2529 Initial Cube

(261, 2¢4,2¢

Cube at subdivision level L

(2oL QML Qo)
Look-ahead cube

image27.png
16

32

image28.png

image29.png

image30.png

image31.png

image32.png
0 1
1 o occupied 1 Dc.cupied &
v Horizontal to x-y
A £ /I/=
% g

3

2 occupied &
Vertical to x-y

5

3 occupied

2

| 1 occupied &
7" Vertical to x-y

7

4

2 occupied &
Horizontal to x-y

image33.png
current node

sub-node

image34.png
4 \ flag isPlanar
Mk\if yes, 1 bit for plane position

image35.png
= = =1 L
planePosition =0 L I—— | I_ " .I_ !
& planePosition = 1 ﬂ @ ﬂ @

image36.png
vertical neighbour
adjacent to the
current node

current
node

closest already coded
node at same coordinate
and depth

parent node

image37.png
vertical neighbour
adjacent to the
current node

plane position

current d

node)

closest already coded
node at same coordinate

vertical and depth

coordinate parent node

image38.png
pick closest

o e
-

closest already coded
node at same coorinate
and depth

push into rolling buffer -~

——"

image39.emf
𝑝 𝑛𝑒𝑤 = (𝐿𝑝 + 𝛿 (coded node)) / (𝐿 + 1)

image40.png
yes

all occupancy bits
inferred by planar
information

A

one planar
false?

neighbour
configuration NC

ves (2)

no

code

singleNode==false

two planar
true?

code the 8 occupancy
bits knowing at least two
are not zero and at most
one planar true

node

three planar
true?

no

v
code
singleNode==true

A 4

code the 8 occupancy

bits knowing at least one
is not zero and at most

two planar are true

bypass the bits xyz of the
single node position,
among the bits not
inferred by the plane
positions

image41.png
Px = prob(x-planar) >= threshold,
Py = prob(y-planar) >= threshold,
pz = prob(z-planar) >= threshold.

image42.png
p1 = prob(most probable planar) >= thy,
P2 = prob(second most probable planar) >= thy,
p3 = prob(least probable planar) >= ths.

image43.png
head position

lase

image44.png
not
] _eligible

—

eligible

image45.png

image46.png
decode x and y coordinates of

the point

l

determine the inverse radius r;

inv

I

determine the laser corrected angle tan(8,)

]

initialize z-interval

yes
PR AL

coord z
completed ?

no

e —

determine angles tan(Byyop) and tan(y,,)

l

determine angular context

l

decode highest order remaining
bit for coord z of the point

update z-interval

image47.png
ztop
z-interval

(initial from node)

Zpottom

ebottom

new z-interval

r

9bottom

image48.png

image49.png

image50.png

image51.png
Laser 2

Laser 1

image52.png
xV

Laser 2

Laser1

image53.png
xV

Laser 2

Laser1

image54.png

image55.png
Preprocessing

(Quantization)

image56.png
Depth i:

@
0
N

" 4 g @ g @ " 4
12 4 6 8 12
N
Y Y

Q% = gpBase + AY°

Q"' = gpBase + A

image57.png
point

cloud
[l . v
! i
1 predictor ! FIFO
i '
'
prediction F% ___________
node
child nodes
child nodes
computation
preceding bits in occupancy pattern b occupancy patternb

N, P depend.ency reduced
reduction 0

N, P, dependency

b, reduction 1

intermediate

N, P, by, b;[" dependency
reduction 2

coder index

1¢® binary coder 0

true coder /| @ binary coder 1

index /.

D
2
/

binary coder 2

T binary coder N-1

bitstream
>

image58.png
point
cloud
v
FIFO
node
v child nodes
H i
neighbour ! .
g) : child nodes
computation .
[computation
neighbour configuration N 'y
A
preceding bits in occupancy pattern b occupancy pattern b
¥ occupancy pattern b
N, P dependency | reduced
reduction 0
b
bi der 0
NP, by [dependency | reduced true coder , bf"ary co der 1
reduction 1 index /7] inary cocer
2 binary coder 2
intermediate 7 bitstream
coder index [—
N, P, by b dependency
it n \
reduction 2

binary coder N-1

image59.png
predicting
process

dependency state D

coder selection

Mbinary coder 1
 @binary coder 2
binary coder 3

binary coder N

bitstream

image60.png
dependency state D

coded bit b;
A A
coder mapping
mapping update
coder index i(D) : ______ coder i (D)
— —

1_correspondance i

image61.png
arithmeticEncoder.
arithmeticEncoder.
arithmeticEncoder.
arithmeticEncoder.
arithmeticEncoder.

encode(bS, _binaryModelIndexInLUT[@]);

encode(b4, _binaryModelIndexInLUT[1 + b5]);

encode(b3, _binaryModelIndexInLUT[3 + (indexLUT >> 3)1);
encode(b2, _binaryModelIndexInLUT[7 + (indexLUT >> 2)1);
encode(b1, _binaryModelIndexInLUT[15 + (indexLUT >> 1)1);

image62.png
arithmeticEncoder.encode (b5, _binaryModelIndexInLUTL@]);
if (b5) {
arithmeticEncoder.encode(b4, _binaryModel®);
arithmeticEncoder.encode(b3, _binaryModel®);
arithmeticEncoder.encode(b2, _binaryModel®);
arithmeticEncoder.encode(b1, _binaryModel®);
} else {
arithmeticEncoder.encode(b4, _binaryModelIndexInLUT[1]);
if (b4) {
arithmeticEncoder.encode(b3, _binaryModel®);
arithmeticEncoder.encode(b2, _binaryModel®);
arithmeticEncoder.encode(b1, _binaryModel®);
} else {
arithmeticEncoder.encode(b3, _binaryModelIndexInLUT[2]);
if (b3) {
arithmeticEncoder.encode(b2, _binaryModel®);
arithmeticEncoder.encode(b1, _binaryModel®);
} else {
arithmeticEncoder.encode(b2, _binaryModelIndexInLUT[3]);
arithmeticEncoder.encode(b1, _binaryModelIndexInLUT[4]);
}
}
}

image63.png
if (inCache) {
for (uint32_t i = @; i < Log2CacheSize; ++i) {
arithmeticEncoder.encode(indexCache & 1, _binaryModel®);
indexCache >>= 1;
3
} else {

image64.png
} else {
for (uint32_t i = 0; i < 8; ++i) {
arithmeticEncoder.encode(occupancy & 1, _binaryModelFL);
occupancy >>= 1;
}
}

image65.png
Forward
AEC
stream

Reverse
bypass
stream

image66.png
Symbols

Contexts

Bypass

—

Bypass

Buffer

Buffer]

i T|AEC

(a) Encoder

———AEC

(b) Decoder

Symbols

Contexts

image67.png
Symbols

Ec (—{
Chunks
—
Bypass sub-stream
Symbol Scheduler

type
(a) Splitting of sub-streams

256 ———————
|1 je—— 1 ——>fe—255—n —f

n

AEC chunk J 7
Bypass chunk

— m
Final bypass byte (4 o3+
Padding bits
(®) A chunk

image68.png
Original order PO, P1, P2, P3, P4, P5,P6, P7, P8, P9

LOD-based
order

image69.png
o

Node count

5

°
3

°
S

°
2

°
i

e
S

10
Log2[NodeSize]

15

— Arco_Valentino_Dense_vexl2 — redandblack_vosl0_1550
—— Arco_Valenono_Dense_vex2) — Shiva_00035_voxl2

— Facade_00005_vex12
—— Facade_00005_vex20.
— longress_yox10_1300
— loot_vex10_1200

~— overpass_qlmm

— queen_0200

— Shiva_00035_vox20
— soldier_vox10_0650.
— tolboot_glmm

— ULB_Uricom_voxl3_n
— ULB_Uricom_vox20_n

image70.png
e et) 4 a if lodRatio, < %

Tiy1 =
(#4—NIRatiog 4 1)(z: —(a+1)) 4

- TRato,, otherwise

image71.png
P4 P3
Pg P1. e o
I 14
@

® P 00
P5 pg 2

Original order PO, P1, P2, P3, P4, P5,P6, P7, P8, P9

LOD-based
order

Lo If EnableRefferingSameLoD = 1 then allowed
LOD1 Otherwise not allowed

image72.emf

9

Current point

8 1110 131210 32 54 76

Morton-based
Index
(the smaller the value the
smaller the associated
Morton code)

Morton code of is lower is than the Morton code of (e.g., Morton code 83666) and
higher than the Morton code of (e.g., Morton code 79973)

12

11

Search center

Priority index
(the smaller the value, the
higher the priority)

Search range = 10

1514 1716 1918 2120 2322 2524 N…

614 24 101920 1718 1516 53 87 109 1211 13

How to determine
the search center ?

(e.g., Morton code 79988)

9

Current point

8 11 10 13 12 1 0 3 2 5 4 7 6

Morton-based

Index

(thesmallerthe value the

smaller the associated

Morton code)

Morton code of is lower is than the Morton code of (e.g., Morton code 83666) and

higher than the Morton code of (e.g., Morton code 79973)

12

11

Search center

Priority index

(thesmallerthevalue, the

higher thepriority)

Search range = 10

15 14 17 16 19 18 21 20 23 22 25 24

N

…

6 14 2 4 1 0 19 20 17 18 15 16 5 3 8 7 10 9 12 11 13

How to determine

the search center ?

(e.g., Morton code 79988)

image1.jpeg

image73.png
Morton-based
Index

(the smaller the value the
smaller the associated
Morton code)

Priority index
(the smaller the value, the
higher the priority)

Current p°| nt Search center

CLEELLE DL L L G L LR
| pwem_,
hunallnlnnl

image74.png
slice 0 slicen
A
p
F}eom'o' Attry |Attr{l

SPS | GPS | APS, | APS; [Geom§| Attrg | Attr? |

aps altr parameter set id
aps seq_parameler set id

attr_encoding

search range
intra_prediction_weight
lod decimation enabled flag,

image75.png
Calculate
Maximum difference between
the neighbor’s attribute values

the maximum difference =
adaptive_prediction_threshold

Predictor Index =0
Predictor Index =0~3

‘ Find the smallest score ‘

I

—{ Set Predictor Index ‘

Predictor Predicted value
dex

average
1% nearest point
204 nearest point
3rd nearest point

image76.png
Calculate
Maximum difference between
the neighbor’s attribute values

the maximum difference =
daptive_prediction_threshol

Yes

Predictor Index =0 Create predictor candidates:

7
With neighbours (1~3) predictor index

Predictor Index =1~3 2

‘ Calculate Scores (remove-idxBits) ‘

!

‘ Find the smallest score ‘
!
4{ Set Predictor Index ‘

image77.emf

Prediction

L(N)

H(N)

-
Update

+

D(N)

P(N)

U(N)

Prediction

L(N-1)

H(N-1)

-
Update

+

D(N-1)

P(N-1)

U(N-1) …
L’(N)

L’(N-1)

Attributes
signal Split

Split

Prediction

L(N)

H(N)

-

Update

+

D(N)

P(N)

U(N)

Prediction

L(N-1)

H(N-1)

-

Update

+

D(N-1)

P(N-1)

U(N-1)

…

L’(N)

L’(N-1)

Attributes

signal

Split

Split

image78.png
D(0)

o

v

(1)

Merge

+ H(1)

(1)

(1)

Merge

Reconstructed
" attributes
ese signal

image79.png
(a)

(b)

(d)

F,

I+1,2n

F2+1,Zn+1

4>E+I,2n+l

F'

Ln

Gv

Ln

’
44— F}+ 1,2n

!
E+1,2n+l

image80.png
Operation

Development

Integer equivalent

Sum [c=a+b| Myx 27+ My x 28 = (Mo + My) x 27 | M, = M, + M,

Subtraction | ¢ =a —b | M, x 277 — My, x 2=% = (M, — M,) x 277 | M.= M, — M,
Multiplication | ¢=a.b M, x 277 My x 278 = (Melle) 05 M, = el
Division | ¢ =& Yor2l — (M) x 2* M, = M2

image81.png
8 bits
s

64 bits

image82.png
{4, why,; (HF) {4, w},; (HF)

—
{A, wh; (LF) -
F' ——

{A whorei {4, who12i41

(b) Unpacking

image2.png
positions attributes
— Lo
Transform]

coordinates

!

Transfer attributes

[

Quantize coefficients

Quantize and remove L
points (voxelize) y
=
Analyze octree =
=
o
9 RAHT
oo
k3]
Analyze surface =
approximation Z l
c
o
———— ©
[
o
v v

Arithmetic encode

!

Arithmetic encode

geometry attribute
bitstream bitstream
| |
I |

Arithmetic decode

!

Synthesize
octree

Arithmetic decode

!

Inverse quantize

Synthesize surface
approximation

[

!

Reconstruct
geometry

L 2

Inverse transform

geometry
bitstream

attribute
bitstream

coordinates ! colors
]
v v
positions attributes

image83.png
{4 @bt lmogs—o (LF)

— Quantised Coefficients

——

s

T-1

1 N D
"Q \?w a\Yane
0
N\
e

Par

ent DC values

: | Ji

v

Reconstruction
>

image84.png
Transformation is performed in the sum attribute space

= sum of attributes Ai/‘/E;

Up-sampling is performed in the mean attribute space

= sum of attributes a; = A; /w;

Prediction does not affect the DC coefficient
* inherited directly from the preceding depth

Anode = Z attribute(p) sum attributes

pénode
node = Anode/ Wnode
Wnode = Z 1 = #{p € node} mean attributes
penode

image85.png
decoded sum of attributes
A/ Vw; at depth d-1

original sum of attributes
A/ Vw;at depth d

o up-sampling T N
- —) —
/ — / A

decoded mean attribute
a;=A;/ w; at depth d-1

transform - 1

i ransform | | | |
- —@— = -

up-sampled mean attribute
a;= A;/ w; at depth d

inverse normalization

-—- o 7 “up-sampled sum of attribute
A;/Vw;at depth d
" residual transformed

coefficients DC,. and AC,.;

image86.png
original sum of attributes ‘
A;/Vw;atdepthd |

“tra nsform

*

AC 1,0rig

AC),_ 1,0rig.

quantize and code

— residual AC
coefficients

Al,crlg/ Wy
Thode
kOrlg/ Wk

D Cdepth d-1
ACyres

ACy-1res

D Cdepth d-1
AC,, ong

I

Ack 1,0rig

up-sampled sum of attribute
| A;/ Vw;at depth d

transform 7 P
*
ACl up Ay up/ Wi
node ¢
A(;k Lup Aiup/NWi

Afk 1,up

image87.png
| dq‘cade‘d sun}7 of attributes A;/ Vw;at depth d

1 up-sampled sum of attribute
_ DC ! | A;/ Vw;at depth d
Ay dec/VWi) ACI?:C —
- i = Tnode
’ H Ardec/ VWi ACy_1 dec o o

| inverse transform $ + transform 7 P

*
DCgec DCgepth a-1 0 Mgy Ay up/VW1
AC, dec _ | ACidecres + AC{'“P g = Thnode i
ac i H ac i Ay Ajup/vWik
k-1,dec ACy_1,dec,res =iy
decode and inverse quantize Dcdepth da-1

decoded AC, dec res
— i :
coefficients Ack—l,dec,res

image88.png
Weighted average

= depending on the distance

=similar to Level of Details, but local

the inverses of the
distances are hard coded

1+ 6 +12 nodes to up-sample the central node

image89.png
Grandparent node
© Valid node - NumValidNGP = 2

. NumValidNP = 11
Parent node

Predicted value is calculated

P A U A VA W by using attribute value of parent nodes
Encoding

target 8 node

RAHT transform domain prediction is activated

Prediction g - when the following any conditions are true,

- NumValidNGP >= TH1 (= 2)
- NumValidNP >= TH2 (= 6)

NumValidNP: total number of valid neighbour parent node

NumValidNGP: total number of valid neighbour grandparent node

image90.png
Encoding target 8 nodes

NumGpValid
>=THL

Yes

findNeighbours

NumpPValid
>=TH2

Yes
v

intraDcPred Disable prediction

P —

image91.png
QP

Predicting —»

Clgzgirt?zee <<8 ¥ Lifting |—>
Qstepf

— Fomula > <<8 [RAHT —»

>>8 ¥ Predicting —
Inverse .
Quantize Lifting
Qstep<<8 f
Proposed ——» RAHT —»
QP Table

image92.png
Effective QP value for each slice layer

P P3 &
PO. . QLO QPSIlce + AQPsllce _LayerO
PZ. P4 PG ‘8 QL]. QPSIlce + AQPsllce _Layerl
P9 QLZ QPSIlce + AQPsllce _Layer2
Original Order PO, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11
LOD based Order I RERCRAD _ P1, P4, P7, P11
LODO Points of LODO * Qweight/ QL,
- Points of (LOD1-LODO) * Qweight / QL,

LOD2
Points of (LOD2-LOD1) * Qweight/ QL,

