
© ISO/IEC 2020 – All rights reserved

ISO/IEC 23090-9:2020(E)

ISO/IEC JTC 1/SC 29/WG 11

Secretariat: JISC

Information technology — MPEG-I (Coded Representation of
Immersive Media) — Part 9: Geometry-based Point Cloud
Compression

DIS stage

Warning for WDs and CDs

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

To help you, this guide on writing standards was produced by the ISO/TMB and is available at
https://www.iso.org/iso/how-to-write-standards.pdf

A model manuscript of a draft International Standard (known as “The Rice Model”) is available at
https://www.iso.org/iso/model_document-rice_model.pdf

https://www.iso.org/iso/how-to-write-standards.pdf
https://www.iso.org/iso/model_document-rice_model.pdf

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 1

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this
publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical,
including photocopying, or posting on the internet or an intranet, without prior written permission. Permission
can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ISO 23090-9:2020(E)

2 © ISO/IEC 2020 – All rights reserved

Contents

Foreword .. 5
Introduction... 6
1 Scope .. 1
2 Normative references .. 1
3 Terms and definitions .. 1
3.1 General .. 1
3.2 Geometry coding related... 3
3.3 Attribute coding related .. 4
4 Abbreviations .. 4
5 Conventions ... 5
5.1 General .. 5
5.2 Numerical representation .. 5
5.3 Arithmetic operators .. 5
5.4 Logical operators ... 6
5.5 Relational operators ... 6
5.6 Bit-wise operators ... 6
5.7 Assignment operators .. 6
5.8 Range notation .. 7
5.9 Mathematical functions ... 7

 Definition of iAtan2 .. 7
 Definition of popCnt ... 8
 Definition of iLog2 ... 8
 Definition of iSqrt .. 8
 Definition of inverse square root function invSqrt ... 9
 Definition of divExp2RoundHalfInf ... 11
 Definition of divExp2RoundHalfUp ... 11
 Conversion of a tuple to 3D Morton code (TupleToMorton) .. 11
 Conversion of 3D Morton codes to a tuple (MortonToTuple) .. 12

 Definition of QpToQstep .. 12
5.10 Vector operations ... 12
5.11 Order of operation precedence ... 13
5.12 Variables, syntax elements, and tables ... 13
5.13 Text description of logical operations .. 15
5.14 Processes ... 16
6 Source, coded, decoded and output data formats, scanning processes, and neighbouring

relationships .. 16
6.1 Bitstream formats .. 16
6.2 Source, decoded, and output point cloud formats .. 16

 Data partitioning .. 17
 Frame index attribute component ... 17

6.3 Geometry octree .. 17
6.4 Neighbour relationships .. 17

 Neighbour dependent geometry octree child node scan order inverse mapping
process ... 17

 Neighbour depending geometry occupancy map permutation process 18
7 Syntax and semantics .. 19
7.1 Method of specifying syntax in tabular form .. 19
7.2 Specification of syntax functions and descriptors .. 20
7.3 Syntax in tabular form .. 21

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 3

 General ... 21
 Data unit and byte alignment syntax ... 21
 Geometry data unit syntax .. 25
 Attribute data unit syntax ... 29

7.4 Semantics ... 31
 General ... 31
 Data unit and byte alignment semantics .. 32
 Geometry data unit semantics ... 40
 Attribute data unit semantics .. 49

8 Decoding process .. 51
8.1 General decoding process .. 51
8.2 Geometry decoding process .. 51

 General geometry decoding process ... 51
 Octree decoding process .. 51
 Geometry Trisoup decoding process ... 53
 Planar coding mode ... 62
 Angular coding mode .. 66

8.3 Attribute decoding ... 68
 Region adaptive hierachical transform decoding process .. 68
 LoD with Lifting Transform decoding process ... 77
 LoD with Predicting Transform decoding process ... 87

8.4 Slice concatenation process .. 88
9 Parsing process ... 89
9.1 General ... 89
9.2 Chunked bytestream parsing process ... 91

 General ... 91
 Syntax ... 92
 Semantics .. 92

9.3 Definition of readDataUnitBit .. 93
9.4 Definition of readAeStreamBit .. 93
9.5 Definition of readBypassStreamBit ... 93
9.6 General inverse binarisation processes ... 94

 Parsing of fixed-length codes ... 94
 Parsing of k-th order exp-Golomb codes ... 94
 Parsing of truncated unary codes ... 94
 Mapping process for signed codes ... 94

9.7 Bit-wise geometry octree occupancy parsing process .. 95
 General process ... 95
 Initialisation process .. 95
 Determination of planar masks used in the inverse binarization process 95
 Occupancy_idx[] parsing process ... 96
 Inverse binarization process.. 96
 Definition of readOccBin() .. 98
 ctxMapIdx and ctxIdx derivation processes ... 98
 Context map update process .. 100
 Occupancy prediction process using neighbouring octree nodes .. 101

9.8 Inferred Direct Coding Mode parsing process ... 103
 General process ... 103
 Determination of the angular context idcmIdxAngular ... 103
 Inverse binarization process.. 104

9.9 Dictionary-based parsing .. 104
 General process ... 104
 Initializing lut0 .. 106
 Initializing lut1 .. 106
 Definition of decodeLut0Index() .. 106

ISO 23090-9:2020(E)

4 © ISO/IEC 2020 – All rights reserved

 Definition of pushLut0() .. 107
 Definition of updateLut0() .. 107
 Definition of lut0ComputeMostFrequentSymbols() .. 107
 Definition of pushLut1() .. 107

9.10 CABAC parsing process ... 108
 General ... 108
 Definition of readBin() ... 108
 Context variables .. 110
 Arithmetic decoding engine ... 111
 Arithmetic encoding engine (informative) ... 113

9.11 Parsing state memorization process ... 115
9.12 Parsing state restoration process .. 115
Annex A Profiles and levels ... 116
A.1 Overview of profiles and levels ... 116
A.2 Requirements on decoder capability .. 116
A.3 Profiles ... 116
A.3.1 General ... 116
A.3.2 Main profile .. 116
A.4 Levels .. 117
A.4.1 Level limits .. 117
Annex B Type-length-value bytestream format .. 118

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 5

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 29, Coding
of audio, picture, multimedia and hypermedia information.

A list of all parts in the ISO/IEC 23090 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html

ISO 23090-9:2020(E)

6 © ISO/IEC 2020 – All rights reserved

Introduction

ISO/IEC 23090-9 specifies Geometry-based Point Cloud Compression (G-PCC).

Advance in 3D capturing and rendering technologies is enabling new applications and services in the
field of assisted and autonomous driving, maps, cultural heritage, industrial processes, immersive real-
time communication, and Virtual/Augmented/Mixed reality (VR/AR/MR) content creation, transmission
and communication. Point clouds have arisen as one of the main representations for such applications. A
point cloud frame consists of a set of 3D points. Each point, in addition to having a 3D position may also
be associated with numerous other attributes such as colour, transparency, reflectance, timestamp,
surface normal, and classification. Such representations require a large amount of data, which can be
costly in terms of storage and transmission. Therefore, the ISO/IEC Moving Picture Experts Group
(MPEG) developed a new International Standard, which aims at efficiently compressing point cloud
representations.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 1

Information technology — MPEG-I (Coded Representation of
Immersive Media) — Part 9: Geometry-based Point Cloud
Compression

1 Scope

This document specifies geometry-based point cloud compression.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 23091−2, Information technology — Coding-independent code points — Part 2: Video

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

3.1 General

3.1.1
point
position specified by their Cartesian co-ordinates (x, y, z) and associated with zero or more sets of
attributes

3.1.2
point cloud frame
set of points at a particular time instance

3.1.3
point cloud
sequence of point cloud frames

3.1.4
Cartesian co-ordinates
three scalars (x, y, z) with finite precision and dynamic range that indicate the location of a point relative
to a fixed reference point

3.1.5
geometry
set of Cartesian co-ordinates associated with a point cloud frame

https://www.iso.org/obp
http://www.electropedia.org/

ISO 23090-9:2020(E)

2 © ISO/IEC 2020 – All rights reserved

3.1.6
attribute
scalar or vector property optionally associated with each point in a point cloud such as colour, reflectance,
frame index, etc.

3.1.7
may
term that is used to refer to behaviour that is allowed, but not necessarily required.
Note 1 to entry: In some places where the optional nature of the described behaviour is intended to be
emphasized, the phrase "may or may not" is used to provide emphasis.

3.1.8
must
term that is used in expressing an observation about a requirement or an implication of a requirement
that is specified elsewhere in this Specification (used exclusively in an informative context)

3.1.9
shall
term used to express mandatory requirements for conformance to this Specification.

3.1.10
should
a term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this
Specification.

3.1.11
informative
term used to refer to content provided in this Specification that does not establish any mandatory
requirements for conformance to this Specification and thus is not considered an integral part of this
Specification

3.1.12
byte
sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.1.13
byte-aligned
position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position
of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when the
position at which it appears in a bitstream is byte-aligned.

3.1.14
unspecified

term unspecified, when used in the clauses specifying some values of a particular syntax element,
indicates that the values have no specified meaning in this Specification and will not have a specified
meaning in the future as an integral part of future versions of this Specification.
3.1.15
syntax element
element of data represented in the bitstream.

3.1.16
bitstream
a sequence of bits that forms the representation of coded point cloud frames

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 3

3.1.17
coded point cloud frame
a coded representation of a point cloud frame

3.1.18
syntax structure

zero or more syntax elements present together in the bitstream in a specified order
3.1.19
bounding box

rectangular cuboid in which the source point cloud frame is included.
3.1.20
3D tile

rectangular cuboid inside a bounding box.
3.1.21
slice
series of syntax element representing a part of or entire coded point cloud frame

3.2 Geometry coding related

3.2.1
position
(x, y, z) co-ordinates of a point, wherethe values are normalized by the bounding box so that the values
of the positions shall be equal to or greater than 0.

3.2.2
octree
8-ary tree representing the 3D geometry of the point cloud.

3.2.3
node
element of the octree representing a sub-volume of the 3D space (or volume) containing the point cloud.

3.2.4
root node
node of the octree with no parent

3.2.5
leaf node
terminating node of the octree having no children

3.2.7
level

number of hops from the root to the node.
3.2.8
occupied node
node for which one or more points belong to the associated sub-volume.

3.2.9
occupancy code

byte for a node whose bits indicate which child nodes are occupied.
3.2.10
Morton code
non-negative 3d-bit integer obtained by interleaving the bits of the non-negative d-bit integers s, t, and v.

ISO 23090-9:2020(E)

4 © ISO/IEC 2020 – All rights reserved

3.3 Attribute coding related

3.3.1
Colour
Three dimensional signal representing the characteristics of the light of the assoicated point (e.g. RGB,
YUV)

Note 1 The colour is, for example, signalled by Red, Green and Blue components (RGB) or Luma and two Chroma
components (YUV).

3.3.2
Reflectance
One dimensional signal representing the ratio of the intensity of the light reflection of the assosiated point

3.3.3
Frame index
One dimensional signal representing the timing information of the assosiated point as the frame order
index

3.3.4
Material ID
One dimensional signal representing the material type information of the associated point

Note 1 For example, the material type could be used as an indicator for identifying an object or the characteristic of
the associated point. The interpretation of the values is outside the scope of this document.

3.3.5
Transparency
One dimensional signal representing the condition of being transparent of the associated point

3.3.7
Normals
Three-dimensional signal representing the unit vector of the perpendicular direction to the surface of the
associated point

Note 1 The order of the three components (i.e. the co-ordinate system) shall be identical to the one in the source
point cloud frame.

4 Abbreviations

For the purposes of this document, the following terms and definitions apply.

APS Attribute Parameter Set

ASH Attribute Slice Header

GSH Geometry Slice Header

GPS Geometry Parameter Set

LSB Least Significant Bit

MSB Most Significant Bit

PCC Point Cloud Compression

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 5

RAHT Region Adaptive Hierarchical Transform

SPS Sequence Parameter Set

5 Conventions

5.1 General

NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language.
However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations
are defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0.

5.2 Numerical representation

The following numerical representation format are defined.

binary representation formatted as 0bXXX... where each digit X is 0 or 1

octal representation formatted as 0oXXX... where each digit X is 0 to 7

decimal representation formatted as XXX... where each digit X is 0 to 9

hexadecimal representation formatted as 0xXXX... where each digit X is 0 to 9 or a to f

5.3 Arithmetic operators

The following arithmetic operators are defined as follows:

+ Addition

− Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

× Multiplication, including matrix multiplication

xy Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.

/ Integer division with truncation of the result toward zero. For example, 7 / 4 and −7 /
−4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.

÷ Used to denote division in mathematical equations where no truncation or rounding is
intended.

x
y

 Used to denote division in mathematical equations where no truncation or rounding is
intended.

� f(i)
y

i = x
 The summation of f(i) with i taking all integer values from x up to and including y.

x % y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and
y > 0.

ISO 23090-9:2020(E)

6 © ISO/IEC 2020 – All rights reserved

5.4 Logical operators

The following logical operators are defined as follows:

x && y Boolean logical "and" of x and y
x | | y Boolean logical "or" of x and y
! Boolean logical "not"
x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

5.5 Relational operators

The following relational operators are defined as follows:

> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
= = Equal to
!= Not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value
"na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The
value "na" is considered not to be equal to any other value.

5.6 Bit-wise operators

The following bit-wise operators are defined as follows:

& Bit-wise "and". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits
than another argument, the shorter argument is extended by adding more significant bits equal to
0.

| Bit-wise "or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits
than another argument, the shorter argument is extended by adding more significant bits equal to
0.

^ Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits
than another argument, the shorter argument is extended by adding more significant bits equal to
0.

x >> y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This
function is defined only for non-negative integer values of y. Bits shifted into the most significant
bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to the shift
operation.

x << y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This
function is defined only for non-negative integer values of y. Bits shifted into the least significant
bits (LSBs) as a result of the left shift have a value equal to 0.

5.7 Assignment operators

The following arithmetic operators are defined as follows:

= Assignment operator

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 7

++ Increment, i.e., x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of
the variable prior to the increment operation.

− − Decrement, i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value
of the variable prior to the decrement operation.

+= Increment by amount specified, i.e., x+= += 3 is equivalent to x = x + 3, and x += (−3) is equivalent
to x = x + (−3).

−= Decrement by amount specified, i.e., x−= −= 3 is equivalent to x = x − 3, and x−= (−3) is equivalent
to x = x − (−3).

5.8 Range notation

The following notation is used to specify a range of values:

x = y .. z x takes on integer values starting from y to z, inclusive, with x, y, and z being
integer numbers and z being greater than y.

5.9 Mathematical functions

The following mathematical functions are defined:

Abs(x) = � x ; x >= 0
−x ; x < 0 � x ; x >= 0

−x ; x < 0

Ceil(x) the smallest integer greater than or equal to x.

Clip1Y(x) = Clip3(0, (1 << BitDepthY) − 1, x)

Clip1C(x) = Clip3(0, (1 << BitDepthC) − 1, x)

Clip3(x, y, z) = �
x ; z < x
y ; z > y
z ; otherwise

Floor(x) the largest integer less than or equal to x.

Min(x, y) = �
x ; x <= y
y ; x > y

Max(x, y) = �
x ; x >= y
y ; x < y

Sign(x) = �
1 ; x > 0
0 ; x = = 0
−1 ; x < 0

Sqrt(x) = √x

Swap(x, y) = (y, x)

 Definition of iAtan2

The inputs to this process are the variables a and b.

The output of this process is the variable t.

The derivation process for 𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2(𝑎𝑎, 𝑏𝑏) is defined as follows.

If a is equal to 0 and b is equal to 0, t is set to 0.

Otherwise, if b is equal to 0, t is set to 804.

ISO 23090-9:2020(E)

8 © ISO/IEC 2020 – All rights reserved

Otherwise, if a is equal to 0 and b is greater than 0, t is set to 402.

Otherwise, if a is equal to 0 and b is smaller than 0, t is set to 1206.

Otherwise, following steps apply:

c = Abs((b << 8) / a)
if (c <= 256)
 idx = c / 12
else
 idx = c > 40 ? 40 : c

t = atanLut[idx]
if (a < 0 && b > 0)
 t += 402
else if (a < 0 && b < 0)
 t += 804
else if (a > 0 && b < 0)
 t += 1206

The array atanLut is defined in Table 1.

Table 1 — the value of atanLut[i+j]

j i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 12 25 38 50 62 74 86 97 108 118 128 138 147 156

15 164 172 180 187 194 201 283 319 339 351 359 365 370 373 376

30 378 380 382 383 385 386 387 387 388 389 389

 Definition of popCnt

The input to this process is the integer variable x.

The output of this process is the number of 1-valued bits present in the binary representation of x.

 Definition of iLog2

The input to this process is the variable x.

The output of this process is the variable y.

The function iLog2 is defined as follows:

y = Floor(Log(x) ÷ Log(2))

where Log() is the natural logarithmic function.

 Definition of iSqrt

The input to this process is the variable pIn.

The output of this process is the variable pOut.

The variables x and n are derived as follows.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 9

for (n = 8; n <= 64; n+= 8) {
 if (pIn >= (1 << (64 − n))){
 x = (tableSqrt[pIn >> (64 − n)] << (32 − (n / 2))) − (n == 8 ? 1 : 0)
 break;
 }
}

The value of tableSqrt[k] with k = 0 .. 255 is defined in Table 2.

Finally, pOut is derived as follows.

x = (pIn / x + x) >> 1
pOut = (pIn / x + x + 1) >> 1

Table 2 — the value of tableSqrt[i+j]

j i

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

0 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5

20 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7

40 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8

60 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

80 9 9 1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

10 10 10 10 10 10 10 10 10 10

10
0

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

11 11 11 11 11 11 11 11 11 11

12
0

1
1

1
1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

12 12 12 12 12 12 12 12 12 12

14
0

1
2

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
3

13 13 13 13 13 13 13 13 13 13

16
0

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

14 14 14 14 14 14 14 14 14 14

18
0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

14 14 14 14 14 14 14 15 15 15

20
0

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

15 15 15 15 15 15 15 15 15 15

22
0

1
5

1
5

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

16 16 16 16 16 16 16 16 16 16

24
0

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

16 16 16 16 16 16

 Definition of inverse square root function invSqrt

The input to this process is the variable pIn.

The output of this process is the variable pOut.

The variables pInScaled and nShift are a normzlised representation of pIn.

shift = −3;
pInScaled = pIn;

ISO 23090-9:2020(E)

10 © ISO/IEC 2020 – All rights reserved

while (pIn & 0xffffffff00000000) {
 pInScaled >>= 2;
 nShift−−;
}
while (!(pInScaled & 0xc0000000)) {
 pInScaled <<= 2;
 nShift++;
}

A first approximation, invSqrtApprox, of the inverse square root is obtained using the arrays threeTimesR
and rCubed.

 idx = (pInScaled >> 25) − 32;
 invSqrtApprox = threeTimesR[idx] − ((rCubed[idx] × pInScaled) >> 32);

A second apprixomation, invSqrtApprox2, is obtained as follows:

s = (invSqrtApprox × pInScaled) >> 32;
s = 0x30000000 − ((invSqrtApprox × s) >> 32);
invSqrtApprox2 = (invSqrtApprox × s) >> 32;

Finally, the output is obtained by inverse scaling the second approximation

if (nShift >= 0)
 pOut = invSqrtApprox2 << nShift;
else
 pOut = invSqrtApprox2 >> (−nShift);

Table 3 — the value of tableThreeR[i+j]

j
i

0 1 2 3 4 5
0 3196059648 3145728000 3107979264 3057647616 3019898880 2969567232
6 2931818496 2894069760 2868903936 2831155200 2793406464 2768240640

12 2730491904 2705326080 2667577344 2642411520 2617245696 2592079872
18 2566914048 2541748224 2516582400 2491416576 2466250752 2441084928
24 2428502016 2403336192 2378170368 2365587456 2340421632 2327838720
30 2302672896 2290089984 2264924160 2252341248 2239758336 2214592512
36 2202009600 2189426688 2164260864 2151677952 2139095040 2126512128
42 2113929216 2101346304 2088763392 2076180480 2051014656 2038431744
48 2025848832 2013265920 2000683008 2000683008 1988100096 1962934272
54 1962934272 1950351360 1937768448 1925185536 1912602624 1900019712
60 1900019712 1887436800 1874853888 1862270976 1849688064 1849688064
66 1837105152 1824522240 1811939328 1811939328 1799356416 1786773504
72 1786773504 1774190592 1761607680 1761607680 1749024768 1736441856
78 1736441856 1723858944 1723858944 1711276032 1698693120 1698693120
84 1686110208 1686110208 1673527296 1660944384 1660944384 1648361472
90 1648361472 1635778560 1635778560 1623195648 1623195648 1610612736

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 11

Table 4 — the value of tableRCube[i+j]

j
i

0 1 2 3 4 5
0 4195081216 3999986688 3857709056 3673323520 3538940928 3364924416
6 3238224896 3114735616 3034196992 2915990528 2800922624 2725880832

12 2615890944 2544223232 2439185408 2370818048 2303728640 2237913088
18 2173355008 2110061568 2048008192 1987165184 1927563264 1869150208
24 1840392192 1783783424 1728321536 1701024768 1647311872 1620883456
30 1568898048 1543306240 1492993024 1468236800 1443762176 1395656704
36 1372007424 1348605952 1302626304 1280060416 1257736192 1235650560
42 1213861888 1192294400 1171008512 1149979648 1108673536 1088379904
48 1068352512 1048567808 1029031936 1029036032 1009729536 971888640
54 971882496 953319424 934993920 916897792 899011584 881389568
60 881392640 864009216 846846976 829900800 813182976 813201408
66 796721152 780459008 764412928 764417024 748601344 732995584
72 733017088 717624320 702468096 702466048 687520768 672786432
78 672787456 658258944 658256896 643947520 629854208 629862400
84 615976960 615952384 602276864 588779520 588804096 575512576
90 575526912 562433024 562439168 549556224 549564416 536876032

 Definition of divExp2RoundHalfInf

The inputs to this process are the variables scalar and shift.

The output of this process is the variable value approximating scalar/2shift, computed as follows:

if (!shift) {
 value = scalar;
} else {
 s0 = 1 << (shift − 1);
 value = scalar >= 0 ? (s0 + scalar) >> shift : −((s0 − scalar) >> shift)
}

 Definition of divExp2RoundHalfUp

The inputs to this process are the variables scalar and shift.

The output of this process is the variable value approximating scalar/2shift, computed as follows:

if (!shift) {
 value = scalar;
} else {
 s0 = 1 << (shift − 1);
 value = (s0 + scalar) >> shift;
}

 Conversion of a tuple to 3D Morton code (TupleToMorton)

The input to this process is a three-tuple of variables (s, t, v).

The output of this process is the 3D Morton code representation, m, of the input tuple as follows:

ISO 23090-9:2020(E)

12 © ISO/IEC 2020 – All rights reserved

𝑚𝑚 = �23𝑖𝑖+2�𝑠𝑠 & 2𝑖𝑖�
𝑖𝑖

+ 23𝑖𝑖+1�𝑡𝑡 & 2𝑖𝑖� + 23𝑖𝑖�𝑣𝑣 & 2𝑖𝑖�

Table 5 illustrates the construction of 3D morton codes from the bit string representation of the variables
s, t, and v.

Table 5 — Construction of 3D Morton codes m from the tuple (s, t, u)

Bit string form Integer form
s t v m m

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1
1 0 0 1 1 0 1 0 1 0 1 0 42
1 0 0 1 1 1 1 0 1 0 1 1 43
1 1 1 0 0 0 1 1 0 1 0 0 52
1 1 1 0 0 1 1 1 0 1 0 1 53
0 1 1 1 1 0 0 1 1 1 1 0 30
0 1 1 1 1 1 0 1 1 1 1 1 31

sn ... s1 s0 tn ... t1 t0 vn ... v1 v0 sn tn vn ... s1 t1 v1 s0 t0 v0 ...

 Conversion of 3D Morton codes to a tuple (MortonToTuple)

The input to this process is a variable m representing a 3D Morton code.

The output of this process is the three-tuple (s, t, u) derived as follows:

𝑠𝑠 = � 2𝑖𝑖�𝑚𝑚 & 23𝑖𝑖+2�
𝑖𝑖

𝑡𝑡 = � 2𝑖𝑖�𝑚𝑚 & 23𝑖𝑖+1�
𝑖𝑖

𝑢𝑢 = � 2𝑖𝑖�𝑚𝑚 & 23𝑖𝑖�
𝑖𝑖

 Definition of QpToQstep

The inputs to this process are:

 the variable qP, representing the quantization parameter.

 the variable isFirstComp

The output of this process is the variable qstep, representing a quantization step size and computed as
follows:

if (isFirstComp)
 qpBdOffset = 6 × (attribute_bitdepth_minus1[ash_attr_sps_attr_idx] – 7)
else
 qpBdOffset = 6 × (attribute_secondary_bitdepth_minus1[ash_attr_sps_attr_idx] – 7)

qP' = Clip3(4, 51 + qPBdOffset, qP);
qstep = levelScale[qP' % 6] << (qP' / 6);

Where the array levelScale is specified as levelScale[k] = { 161, 181, 203, 228, 256, 287 }, with k = 0 .. 5.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 13

5.10 Vector operations

The following mathematical functions are defined:

The function c[i] = CrossProduct (a[i], b[i]) with i = 0 .. 2 is defined as follows:

c[0] = a[1] × b[2] − a[2] × b[1]
c[1] = a[2] × b[0] − a[0] × b[2]
c[2] = a[0] × b[1] − a[1] × b[0]

The function c = InnerProduct (a[i], b[i]) with i = 0 .. 2 is defined as follows:

c = a[0] × b[0] + a[1] × b[1] + a[2] × b[2]

5.11 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following
rules apply:

– Operations of a higher precedence are evaluated before any operation of a lower precedence.

– Operations of the same precedence are evaluated sequentially from left to right.

Table 6 specifies the precedence of operations from highest to lowest; a higher position in the table
indicates a higher precedence.

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this
Specification is the same as used in the C programming language.

Table 6 – Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)
"x++", "x− −"
"!x", "−x" (as a unary prefix operator)
xy

"x × y", "x / y", "x ÷ y", "x
y
", "x % y"

"x + y", "x − y" (as a two-argument operator), "∑ 𝑓𝑓(𝑖𝑖)𝑦𝑦
𝑖𝑖=𝑥𝑥 "

"x << y", "x >> y"
"x < y", "x <= y", "x > y", "x >= y"
"x = = y", "x != y"
"x & y"
"x | y"
"x && y"
"x | | y"
"x ? y : z"
"x..y"
"x = y", "x += y", "x −= y"

5.12 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its
name (all lower-case letters with underscore characters), and one descriptor for its method of coded
representation. The decoding process behaves according to the value of the syntax element and to the

ISO 23090-9:2020(E)

14 © ISO/IEC 2020 – All rights reserved

values of previously decoded syntax elements. When a value of a syntax element is used in the syntax
tables or the text, it appears in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values.
Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper-case letter
and without any underscore characters. Variables starting with an upper-case letter are derived for the
decoding of the current syntax structure and all depending syntax structures. Variables starting with an
upper-case letter may be used in the decoding process for later syntax structures without mentioning the
originating syntax structure of the variable. Variables starting with a lower-case letter are only used
within the clause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably
with their numerical values. Sometimes "mnemonic" names are used without any associated numerical
values. The association of values and names is specified in the text. The names are constructed from one
or more groups of letters separated by an underscore character. Each group starts with an upper-case
letter and may contain more upper-case letters.

NOTE – The syntax is described in a manner that closely follows the C language syntactic constructs.
Functions that specify properties of the current position in the bitstream are referred to as syntax
functions. These functions are specified in clause 7.2 and assume the existence of a bitstream pointer with
an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax
functions are described by their names, which are constructed as syntax element names and end with left
and right round parentheses including zero or more variable names (for definition) or values (for usage),
separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in clause 5.9) are
described by their names, which start with an upper case letter, contain a mixture of lower and upper
case letters without any underscore character, and end with left and right parentheses including zero or
more variable names (for definition) or values (for usage) separated by commas (if more than one
variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays
can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of
arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index
and the second subscript is used as a column (horizontal) index. The indexing order is reversed when
using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal
position x and vertical position y may be denoted either as s[x][y] or as syx. A single column of a matrix
may be referred to as a list and denoted by omission of the row index. Thus, the column of a matrix s at
horizontal position x may be referred to as the list s[x].

A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} },
where each inner pair of brackets specifies the values of the elements within a row in increasing column
order and the rows are ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6 } { 4 9 }
specifies that s[0][0] is set equal to 1, s[1][0] is set equal to 6, s[0][1] is set equal to 4, and s[1][1]
is set equal to 9.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example,
'01000001' represents an eight-bit string having only its second and its last bits (counted from the most
to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of
binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an
eight-bit string having only its second and its last bits (counted from the most to the least significant bit)
equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 15

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by
any value different from zero.

5.13 Text description of logical operations

In the text, a statement of logical operations as would be described mathematically in the following form:

if (condition 0)
 statement 0
else if (condition 1)
 statement 1
...
else /* informative remark on remaining condition */
 statement n

may be described in the following manner:

... as follows / ... the following applies:
– If condition 0, statement 0
– Otherwise, if condition 1, statement 1
– ...
– Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the
following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ...
Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can
be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described mathematically in the following form:

if (condition 0a && condition 0b)
 statement 0
else if (condition 1a| | | | condition 1b)
 statement 1
...
else
 statement n

may be described in the following manner:

... as follows / ... the following applies:

– If all of the following conditions are true, statement 0:
– condition 0a
– condition 0b

– Otherwise, if one or more of the following conditions are true, statement 1:
– condition 1a
– condition 1b

– ...
– Otherwise, statement n

In the text, a statement of logical operations as would be described mathematically in the following form:

if (condition 0)
 statement 0
if (condition 1)
 statement 1

may be described in the following manner:

ISO 23090-9:2020(E)

16 © ISO/IEC 2020 – All rights reserved

When condition 0, statement 0
When condition 1, statement 1

5.14 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification
and invoking. All syntax elements and upper-case variables that pertain to the current syntax structure
and depending syntax structures are available in the process specification and invoking. A process
specification may also have a lower-case variable explicitly specified as input. Each process specification
has explicitly specified an output. The output is a variable that can either be an upper-case variable or a
lower-case variable.

When invoking a process, the assignment of variables is specified as follows:

– If the variables at the invoking and the process specification do not have the same name, the variables are
explicitly assigned to lower case input or output variables of the process specification.

– Otherwise (the variables at the invoking and the process specification have the same name), assignment is
implied.

In the specification of a process, a specific coding block may be referred to by the variable name having a
value equal to the address of the specific coding block.

6 Source, coded, decoded and output data formats, scanning processes, and
neighbouring relationships

6.1 Bitstream formats

This clause specifies the G-PCC bitstream. This clause is not an essential component of this document and
all G-PCC components including any associated G-PCC GPSs or APSs could be encapsulated using a
different format depending on application.

6.2 Source, decoded, and output point cloud formats

This clause specifies the relationship between source and decoded point cloud that is given via the
bitstream.

The point cloud source that is represented by the bitstream is a set of points in the decoding order.

The source and decoded point clouds are each comprised of one or more sample arrays:

– Geometry information – cartesian co-ordinates of the occupied point in 3-dimensional space (0 1 2, also
known as XYZ).

– Single stimulus (Luma only, Reflectance).
– Colour, for example Green, Blue and Red (GBR, also known as RGB).
– Arrays representing other unspecified monochrome or multi-stimulus attribute samplings (for

example, Frame index, Transparency).
The number of bits necessary for the representation of each of the samples in the co-ordinates arrays in
a point cloud is in range of 8 to 32, inclusive.

The number of bits necessary for the representation of each of the samples in the attribute arrays in a
point cloud is in the range of 8 to 16, inclusive. The number of bits used in the different attribute array
may differ from the number of bits used in the other attribute arrays.

The order of the samples in the decoded point cloud is not specified. The order of the source point cloud
and decoded point cloud may be different.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 17

 Data partitioning

This subclause specifies how a frame is partitioned into tiles and slices.

Source point cloud data may be partitioned to multiple slices and can be encoded in a bitstream.

A slice is a set of points that can be encoded or decoded independently. A slice comprises one geometry
data unit and zero or more attribute data units. Attribute data units depend upon the corresponding
geometry data unit within the same slice. Within a slice, the geometry data unit must appear before any
associated attribute units. The data units of a slice must be contiguous. The ordering of slices within a
frame is unspecified.

A group of slices may be identified by a common tile identifier. This specification provides a tile inventory
that describes a bounding box for each tile. A tile may overlap another tile in the bounding box. Each slice
contains an index that identifies to which tile it belongs. Tile information is not used by the decoding
process in this Specification.

 Frame index attribute component

Point cloud data consisting of multiple frames may be encoded by using frame combine coding. Arbitrary
multiple frames may be combined into one input point cloud by preprocessing and each point of the input
point cloud has a frame index as attribute component that indicate the frame to which the point belongs.
The frame index is encoded as one of attribute component. After decoding the bitstream, each point may
be split to multiple frames by using decoded frame index. When a frame index is encoded, it is
recommended to set SliceQpY equal to 4 and unique_geometry_points_flag equal to 0.

6.3 Geometry octree

When the geometry octree is used, then the geometry encoding proceeds as follows. First, a cubical axis-
aligned bounding box B is defined by the two extreme points (0, 0, 0) and (2𝑑𝑑 , 2𝑑𝑑 , 2𝑑𝑑). An octree structure
is then built by recursively subdividing B. At each stage, a cube is subdivided into 8 sub-cubes. An 8-bit
code, named an occupancy code, is then generated by associating a 1-bit value with each sub-cube in
order to indicate whether it contains points (i.e., full and has value 1) or not (i.e., empty and has value 0).
Only full sub-cubes with a size greater than 1 (i.e., non-voxels) are further subdivided. Since points may
be duplicated, multiple points may be mapped to the same sub-cube of size 1 (i.e., the same voxel). In
order to handle such a situation, the number of points for each sub-cube of dimension 1 is also
arithmetically encoded. The same arithmetic encoder is used to encode all the information put into the
bitstream.

The decoding process starts by reading from the bitstream the dimensions of the bounding box B. The
same octree structure is then built by subdividing B according to the occupancy codes. Each time a sub-
cube of dimension 1 is reached, the number of points c for that sub-cube is arithmetically decoded and c
points located at the origin of the sub-cube are generated.

6.4 Neighbour relationships

 Neighbour dependent geometry octree child node scan order inverse mapping process

This process maps an index in one scan order to the corresponding index of another scan order.

The inputs to this process are

− an index, inIdx, in the neighbour dependent permuted child node scan order, and

− the neighbourhood occupancy pattern, neighbourPattern.

ISO 23090-9:2020(E)

18 © ISO/IEC 2020 – All rights reserved

The output of this process is the corresponding index, outIdx, in the octree child node scan order.

The output index is determined as follows

outIdx = (childScanMap[neighbourPattern] >> (inIdx × 3)) & 7

Values of the array childScanMap are given by Table 7.

Table 7 — Values of childScanMap[i + j]

 j
i 0 1 2 3
0 0o76543210 0o76543210 0o10325476 0o76543210
4 0o54107632 0o54107632 0o10325476 0o32761054
8 0o32761054 0o76543210 0o32761054 0o54107632

12 0o32761054 0o10325476 0o76543210 0o76543210
16 0o26043715 0o46570213 0o20316475 0o57134602
20 0o04152637 0o45016723 0o01234567 0o23670145
24 0o62734051 0o67452301 0o23670145 0o45016723
28 0o73516240 0o01234567 0o67452301 0o67452301
32 0o37152604 0o57461302 0o31207564 0o46025713
36 0o15043726 0o54107632 0o10325476 0o32761054
40 0o73625140 0o76543210 0o32761054 0o54107632
44 0o62407351 0o10325476 0o76543210 0o76543210
48 0o37152604 0o02134657 0o64752031 0o57461302
52 0o26370415 0o73625140 0o57461302 0o13570246
56 0o40516273 0o31207564 0o15043726 0o75316420
60 0o73625140 0o51734062 0o37152604 0o76543210

 Neighbour depending geometry occupancy map permutation process

The inputs to this process are

− a neighbourhood occupancy pattern neighbourPattern

− a decoded occupancy map value occMap

The output of this process is a permuted occupancy map value occMapP.

The output is derived as follows

occMapP = 0
for (srcIdx = 0; srcIdx < 8; srcIdx++) {
 dstIdx = (childScanMap[neighbourPattern] >> (srcIdx × 3)) & 7
 occMapP = occMapP | (((occMap >> srcIdx) & 1) << dstIdx)
}

The values of the array childScanMap are given by Table 7.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 19

7 Syntax and semantics

7.1 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the
syntax may be specified, either directly or indirectly, in other clauses.

NOTE – An actual decoder should implement some means for identifying entry points into the bitstream and some means to
identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations
are not specified in this Specification.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element
appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is
advanced to the next position beyond the syntax element in the bitstream parsing process.

 Descriptor
/* A statement can be a syntax element with an associated descriptor
or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two
examples */

syntax_element ue(v)
conditioning statement

/* A group of statements enclosed in curly brackets is a compound
statement and is treated functionally as a single statement. */

{
 statement
 statement
 …
}

/* A "while" structure specifies a test of whether a condition is true,
and if true, specifies evaluation of a statement (or compound
statement) repeatedly until the condition is no longer true */

while(condition)
 statement

/* A "do … while" structure specifies evaluation of a statement once,
followed by a test of whether a condition is true, and if true, specifies
repeated evaluation of the statement until the condition is no longer
true */

do
 statement
while(condition)

/* An "if … else" structure specifies a test of whether a condition is
true, and if the condition is true, specifies evaluation of a primary
statement, otherwise, specifies evaluation of an alternative statement.
The "else" part of the structure and the associated alternative

ISO 23090-9:2020(E)

20 © ISO/IEC 2020 – All rights reserved

statement is omitted if no alternative statement evaluation is needed
*/
if(condition)
 primary statement
else
 alternative statement

/* A "for" structure specifies evaluation of an initial statement,
followed by a test of a condition, and if the condition is true, specifies
repeated evaluation of a primary statement followed by a subsequent
statement until the condition is no longer true. */

for(initial statement; condition; subsequent statement)
 primary statement

7.2 Specification of syntax functions and descriptors

The functions presented here are used in the syntactical description. These functions are expressed in
terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the
decoding process from the bitstream.

byte_aligned() is specified as follows:

– If the current position in the bitstream is on a byte boundary, i.e. the next bit in the bitstream is
the first bit in a byte, the return value of byte_aligned() is equal to TRUE.

– Otherwise, the return value of byte_aligned() is equal to FALSE.

more_data_in_byte_stream(), which is specified as follows:

– If more data follow in the byte stream, the return value of more_data_in_byte_stream() is equal
to TRUE.

The following descriptors specify the parsing process of each syntax element. The parsing process for all
descriptors and syntax elements is specified in clause 9.

– ae(v): adaptive arithmetic entropy-coded syntax element.

– de(v): dictionary coded syntax element.

– s(n): signed integer using n bits plus sign bit.

– se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first.

– u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in
a manner dependent on the value of other syntax elements. The parsing process for this descriptor
is specified by the return value of the function read_bits(n) interpreted as a binary representation
of an unsigned integer with most significant bit written first.

– ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 21

7.3 Syntax in tabular form

 General

The syntax structures and the syntax elements within these structures are specified in this sub clause.
Any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise
specified in this Specification.

 Data unit and byte alignment syntax

 Sequence parameter set syntax

seq_parameter_set() { Descriptor
 main_profile_compatibility_flag u(1)
 reserved_profile_compatibility_22bits u(22)
 unique_point_positions_constraint_flag u(1)
 level_idc u(8)
 sps_seq_parameter_set_id ue(v)
 sps_bounding_box_present_flag u(1)
 if(sps_bounding_box_present_flag) {
 for(k = 0; k < 3; k++)
 sps_bounding_box_offset_xyz[k] se(v)
 sps_bounding_box_offset_log2_scale ue(v)
 for(k = 0; k < 3; k++)
 sps_bounding_box_size_xyz[k] ue(v)
 }
 sps_source_scale_factor_numerator_minus1 ue(v)
 sps_source_scale_factor_denominator_minus1 ue(v)
 sps_num_attribute_sets ue(v)
 for(i = 0; i < sps_num_attribute_sets; i++) {
 attribute_instance_id[i] ue(v)
 attribute_dimension_minus1[i] ue(v)
 attribute_bitdepth_minus1[i] ue(v)
 if(attribute_dimension_minus1[i] > 0)
 attribute_secondary_bitdepth_minus1[i] ue(v)
 attribute_cicp_colour_primaries[i] ue(v)
 attribute_cicp_transfer_characteristics[i] ue(v)
 attribute_cicp_matrix_coeffs[i] ue(v)
 attribute_cicp_video_full_range_flag[i] u(1)
 known_attribute_label_flag[i] u(1)
 if(known_attribute_label_flag[i])
 known_attribute_label[i] ue(v)
 else
 attribute_label_four_bytes[i] u(32)
 }
 log2_max_frame_idx u(5)

ISO 23090-9:2020(E)

22 © ISO/IEC 2020 – All rights reserved

 axis_coding_order u(3)
 sps_bypass_stream_enabled_flag u(1)
 sps_extension_flag u(1)
 if(sps_extension_flag)
 while(more_data_in_byte_stream())
 sps_extension_data_flag u(1)
 byte_alignment()
}

 Tile inventory syntax

tile_inventory() { D
e
s
c
r
i
p
t
o
r

 tile_frame_idx t
b
u

 num_tiles u
(
1
6
)

 tile_bounding_box_bits u
(
8
)

 for(i = 0; i < num_tiles; i++) {
 for(k = 0; k < 3; k++)
 tile_bounding_box_offset_xyz[i][k] s

(
v
)

 for(k = 0; k < 3; k++)
 tile_bounding_box_size_xyz[i][k] u

(
v
)

 }
 byte_alignment()
}

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 23

 Geometry parameter set syntax

geometry_parameter_set() { Descriptor
 gps_geom_parameter_set_id ue(v)
 gps_seq_parameter_set_id ue(v)
 gps_gsh_box_present_flag u(1)
 if(gps_gsh_box_present_flag){
 gps_gsh_box_log2_scale_present_flag u(1)
 if(!gps_gsh_box_log2_scale_present_flag)
 gps__gs_box_log2_scale ue(v)
 }
 unique_geometry_points_flag u(1)
 geometry_planar_mode_flag u(1)
 if(geometry_planar_mode_flag){
 geom_planar_mode_th_idcm ue(v)
 geom_planar_mode_th[0] ue(v)
 geom_planar_mode_th[1] ue(v)
 geom_planar_mode_th[2] ue(v)
 geometry_angular_mode_flag u(1)
 }
 if(geometry_angular_mode_flag){
 for(k = 0; k < 3; k++)
 geom_angular_origin_xyz[k] se(v)
 number_lasers_minus1 ue(v)
 for(i = 0; i <= number_lasers_minus1; i++) {
 laser_angle[i] se(v)
 laser_correction[i] se(v)
 }
 planar_buffer_disabled u(1)
 implicit_qtbt_angular_max_node_min_dim_log2_to_split_v se(v)
 implicit_qtbt_angular_max_diff_to_split_v se(v)
 }
 neighbour_context_restriction_flag u(1)
 inferred_direct_coding_mode_enabled_flag u(1)
 bitwise_occupancy_coding_flag u(1)
 adjacent_child_contextualization_enabled_flag u(1)
 log2_neighbour_avail_boundary ue(v)
 log2_intra_pred_max_node_size ue(v)
 log2_trisoup_node_size ue(v)
 geom_scaling_enabled_flag u(1)
 if(geom_scaling_enabled_flag)
 geom_base_qp_minus4 ue(v)
 gps_implicit_geom_partition_flag u(1)
 if(gps_implicit_geom_partition_flag) {

ISO 23090-9:2020(E)

24 © ISO/IEC 2020 – All rights reserved

 gps_max_num_implicit_qtbt_before_ot ue(v)
 gps_min_size_implicit_qtbt ue(v)
 }
 gps_extension_flag u(1)
 if(gps_extension_flag)
 while(more_data_in_byte_stream())
 gps_extension_data_flag u(1)
 byte_alignment()
}

 Attribute parameter set syntax

attribute_parameter_set() { Descriptor
 aps_attr_parameter_set_id ue(v)
 aps_seq_parameter_set_id ue(v)
 attr_coding_type ue(v)
 aps_attr_initial_qp ue(v)
 aps_attr_chroma_qp_offset se(v)
 aps_slice_qp_delta_present_flag u(1)
 if(attr_coding_type = = 0) { //RAHT
 raht_prediction_enabled_flag u(1)
 if (raht_prediction_enabled_flag) {
 raht_prediction_threshold0 ue(v)
 raht_prediction_threshold1 ue(v)
 }
 }
 else if (attr_coding_type <= 2) {
 lifting_num_pred_nearest_neighbours_minus1 ue(v)
 lifting_search_range_minus1 ue(v)
 for(k = 0; k < 3; k++)
 lifting_neighbour_bias_xyz[k] ue(v)
 if (attr_coding_type = = 2)
 lifting_scalability_enabled_flag u(1)
 if (! lifting_scalability_enabled_flag) {
 lifting_num_detail_levels_minus1 ue(v)
 if (lifting_num_detail_levels_minus1 > 0) {
 lifting_lod_regular_sampling_enabled_flag u(1)
 for(idx = 0; idx < num_detail_levels_minus1; idx++)
{

 if (lifting_lod_regular_sampling_enabled_flag)
 lifting_sampling_period_minus2[idx] ue(v)
 else

 lifting_sampling_distance_squared_scale_minus1[idx]

ue(v)

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 25

 if (idx != 0)

 lifting_sampling_distance_squared_offset[idx]

ue(v)

 }
 }
 }
 if(attr_coding_type = = 1) {
 lifting_adaptive_prediction_threshold ue(v)
 lifting_intra_lod_prediction_num_layers ue(v)
 lifting_max_num_direct_predictors ue(v)
 inter_component_prediction_enabled_flag u(1)
 }
 }
 aps_extension_flag u(1)
 if(aps_extension_flag)
 while(more_data_in_byte_stream())
 aps_extension_data_flag u(1)
 byte_alignment()
}

 Frame boundary marker syntax

frame_boundary_marker() { Descriptor
 /* this syntax structure is intentionally empty */
}

 Byte alignment syntax

byte_alignment() { Descriptor
 alignment_bit_equal_to_one /* equal to 1 */ f(1)
 while(!byte_aligned())
 alignment_bit_equal_to_zero /* equal to 0 */ f(1)
}

 Geometry data unit syntax

 General geometry data unit syntax

geometry_data_unit () { Descriptor
 geometry_data_unit_header()
 geometry_data_unit_data()
}

ISO 23090-9:2020(E)

26 © ISO/IEC 2020 – All rights reserved

 Geometry data unit header syntax

geometry_data_unit_ header() { Descriptor
 gsh_num_points_minus1 u(24)
 gsh_geometry_parameter_set_id ue(v)
 gsh_tile_id ue(v)
 gsh_slice_id ue(v)
 frame_idx u(v)
 if(gps_gsh_box_present_flag) {
 if(gps_gsh_box_log2_scale_present_flag)
 gsh_box_log2_scale ue(v)
 for(k = 0; k < 3; k++)
 gsh_box_origin_xyz[k] ue(v)
 }
 if (gps_implicit_geom_partition_flag) {
 gsh_log2_root_nodesize_s ue(v)
 gsh_log2_root_nodesize_t_minus_s se(v)
 gsh_log2_root_nodesize_v_minus_t se(v)
 } else {
 gsh_log2_root_nodesize ue(v)
 }
 gsh_num_entropy_streams_minusQ ue(v)
 if(gsh_num_entropy_streams_minusQ) {
 gsh_entropy_stream_len_bits u(6)
 for(i = 0; i < 2 + gsh_num_entropy_streams_minusQ; i++)
 gsh_entropy_stream_len[i] u(v)
 }
 if(geom_scaling_enabled_flag) {
 geom_slice_qp_offset se(v)
 geom_octree_qp_offsets_depth ue(v)
 }
 byte_alignment()
}

 Geometry data unit data syntax

geometry_data_unit_data() { Descriptor
 depthS = depthT = depthV = 0
 for(depth = 0; depth < MaxGeometryOctreeDepth; depth++) {
 for(nodeIdx = 0; nodeIdx < NumNodesAtDepth[depth];
nodeIdx++) {

 sN = NodeS[depthS][nodeIdx]
 tN = NodeT[depthT][nodeIdx]
 vN = NodeV[depthV][nodeIdx]

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 27

 geometry_node(depthS, depthT, depthV, partitionSkip,
nodeIdx, sN, tN, vN)

 }
 if(! (partitionSkip & 4))
 depthS = depthS + 1
 if(! (partitionSkip & 2))
 depthT = depthT + 1
 if(! (partitionSkip & 1))
 depthV = depthV + 1
 }
 if(log2_trisoup_node_size > 0)
 geometry_trisoup_data()
}

 Geometry node syntax

geometry_node(depthS, depthT, depthV, partitionSkip, nodeIdx, sN,
tN, vN) {

Descriptor

 if(depth = = GeomScalingDepth) {
 geom_node_qp_offset_eq0_flag ae(v)
 if(! geom_node_qp_offset_eq0_flag) {
 geom_node_qp_offset_sign_flag ae(v)
 geom_node_qp_offset_abs_minus1 ae(v)
 }
 }
 if(EffectiveDepth < MaxGeometryOctreeDepth) {
 single_occupancy(nodeIdx)
 if(! single_occupancy_flag && !two_planar_flag[nodeIdx]))
 if(bitwise_occupancy_flag)
 occupancy_map ae(v)
 else
 occupancy_byte de(v)
 }
 if(EffectiveDepthS >= RootNodeSizeSLog2 − 1 &&
 EffectiveDepthT >= RootNodeSizeTLog2 – 1 &&
 EffectiveDepthV >= RootNodeSizeVLog2 – 1) {

 if(!unique_geometry_points_flag)
 for(child = 0; child < GeometryNodeChildrenCnt;
child++) {

 num_points_eq1_flag[child] ae(v)
 if(!num_points_eq1_flag)
 num_points_minus2[child] ae(v)
 }
 } else {

ISO 23090-9:2020(E)

28 © ISO/IEC 2020 – All rights reserved

 if(geometry_planar_mode_flag) {
 for(child = 0; child < GeometryNodeChildrenCnt;
child++)

 for(axisIdx = 0; axisIdx <= 2; axisIdx++)
 if(eligible_planar_flag[axisIdx])
 geometry_planar_mode_data(child, axisIdx)
 }
 if(DirectModeFlagPresent)
 geometry_direct_mode_data(0)
 }
}

 Single occupancy data syntax

single_occupancy(nodeIdx) { Descriptor
 if (!is_planar_flag[nodeIdx][0] ||
 !is_planar_flag[nodeIdx][1] ||
 !is_planar_flag[nodeIdx][2]) {

 if(NeighbourPattern = = 0) {
 if(possibly_planar[nodeIdx][0] &&
 possibly_planar[nodeIdx][1] &&
 possibly_planar[nodeIdx][2]) {

 single_occupancy_flag ae(v)
 if(single_occupancy_flag) {
 if(! is_planar_flag[nodeIdx][0])
 occupancy_idx[0] ae(v)
 if(! is_planar_flag[nodeIdx][1])
 occupancy_idx[1] ae(v)
 if(! is_planar_flag[nodeIdx][2])
 occupancy_idx[2] ae(v)
 }
 }
 }
 }
}

 Planar mode data syntax

geometry_planar_mode_data(child, axisIdx) { Descriptor
 is_planar_flag[child][axisIdx] ae(v)
 if(is_planar_flag[child][axisIdx])
 plane_position[child][axisIdx] ae(v)
}

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 29

 Direct mode data syntax

geometry_direct_mode_data(child) { Descriptor
 direct_mode_flag ae(v)
 if(direct_mode_flag) {
 num_direct_points_gt1 ae(v)
 if(!geom_unique_points_flag && !num_direct_points_gt1) {
 not_duplicated_point_flag ae(v)
 if(!not_duplicated_point_flag) {
 num_direct_points_eq2_flag ae(v)
 if(num_direct_points_eq2_flag)
 num_points_direct_mode_minus3 ae(v)
 }
 }
 for(i = 0; i <= num_direct_different_points_minus1; i++){
 if(ChildNodeSizeSLog2 >= 1 &&
(!is_planar_flag[child][0] || partitionSkip & 4))

 point_offset_s[i][0] ae(v)
 for(j = 1; j < EffectiveChildNodeSizeSLog2; j++)
 point_offset_s[i][j] ae(v)
 if(ChildNodeSizeTLog2 >= 1 &&
(!is_planar_flag[child][1] || partitionSkip & 2))

 point_offset_t[i][0] ae(v)
 for(j = 1; j < EffectiveChildNodeSizeTLog2; j++)
 point_offset_t[i][j] ae(v)
 if(ChildNodeSizeVLog2 >= 1 &&
(!is_planar_flag[child][2] || partitionSkip & 1))

 point_offset_v[i][0] ae(v)
 for(j = 1; j < EffectiveChildNodeSizeVLog2; j++)
 point_offset_v[i][j] ae(v)
 }
 }
}

 Geometry trisoup data syntax

geometry_trisoup_data() { Descriptor
 trisoup_sampling_value_minus1 ae(v)
 num_unique_segments_minus1 ae(v)
 for(i = 0; i <= num_unique_segments_minus1; i++)
 segment_indicator[i] ae(v)
 num_vertices_minus1 ae(v)
 for(i = 0; i <= num_vertices_minus1; i++)
 vertex_position[i] ae(v)
}

ISO 23090-9:2020(E)

30 © ISO/IEC 2020 – All rights reserved

 Attribute data unit syntax
 General attribute data unit syntax

attribute_data_unit () { Descriptor
 attribute_data_unit_header()
 attribute_data_unit_data()
}

 Attribute data unit header syntax

attribute_data_unit_header() { Descriptor
 ash_attr_parameter_set_id ue(v)
 ash_attr_sps_attr_idx ue(v)
 ash_attr_geom_slice_id ue(v)
 if (aps_slice_qp_delta_present_flag) {
 ash_attr_qp_delta_luma se(v)
 if(attribute_dimension_minus1[ash_attr_sps_attr_idx] > 0)
 ash_attr_qp_delta_chroma se(v)
 }
 ash_attr_layer_qp_delta_present_flag u(1)
 if (ash_attr_layer_qp_delta_present_flag) {
 ash_attr_num_layer_qp_minus1 ue(v)
 for(i = 0; i < NumLayerQp; i++){
 ash_attr_layer_qp_delta_luma[i] se(v)
 if(attribute_dimension_minus1[ash_attr_sps_attr_idx] >
0)

 ash_attr_layer_qp_delta_chroma[i] se(v)
 }
 }
 ash_attr_region_qp_delta_present_flag u(1)
 if (ash_attr_region_qp_delta_present_flag) {
 for(k = 0; k < 3; k++)
 ash_attr_qp_region_origin_xyz[k] ue(v)
 for(k = 0; k < 3; k++)
 ash_attr_qp_region_size_xyz[k] ue(v)
 ash_attr_region_qp_delta se(v)
 }
 byte_alignment()
}

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 31

 Attribute data unit data syntax

attribute_data_unit_data() { Descriptor
 AttrDim = attribute_dimension_minus1[ash_attr_sps_attr_idx] +
1

 all_residual_values_equal_to_zero_run ae(v)
 for(i = 0; i < PointCount; i++) {
 if(attr_coding_type = = 1 &&
 MaxPredDiff[i] >= lifting_adaptive_prediction_threshold
&&
 MaxNumPredictors > 1) {

 pred_index[i] ae(v)
 }
 if(all_residual_values_equal_to_zero_run > 0) {
 for(k = 0; k < AttrDim; k++)
 residual_values[k][i] = 0
 all_residual_values_equal_to_zero_run −= 1
 }
 else {
 attribute_coding(i)
 all_residual_values_equal_to_zero_run ae(v)
 }
 }
 byte_alignment()
}

 Attribute value syntax

attribute_coding(pointIdx) { Descriptor
 for (k = 0; k < AttrDim; k++) {
 residual_values_equal_to_zero[k] ae(v)
 if (residual_values_equal_to_zero[k] = = 1)
 residual_values[k][pointIdx] = 0
 else {
 residual_values_equal_to_one[k] ae(v)
 if (residual_values_equql_to_one[k] = = 1)
 residual_values[k][pointIdx] = 1
 else {
 residual_values[k][pointIdx] de(v)
 if (residual_values[k][pointIdx] = = 255)
 remaining_values[k][pointIdx] ae(v)
 residual_values[k][pointIdx] += 2
 }
 }
 }

ISO 23090-9:2020(E)

32 © ISO/IEC 2020 – All rights reserved

 for(d = 1, k = 1; k < AttrDim; k++)
 if(residual_values[k][pointIdx] !=
residual_values[0][pointIdx])

 d = 0
 for(k = 0; k < AttrDim; k++)
 residual_values[k][pointIdx] += d
}

7.4 Semantics

 General

Semantics associated with the syntax structures and with the syntax elements within these structures
are specified in this sub clause. When the semantics of a syntax element are specified using a table or a
set of tables, any values that are not specified in the table(s) shall not be present in the unless otherwise
specified in this Specification.

 Data unit and byte alignment semantics

 Sequence parameter set semantics

main_profile_compatibility_flag equal to 1 specifies that the bitstream conforms to the Main profile.
main_profile_compatibility_flag equal to 0 specifies that the bitstream conforms to a profile other than
the Main profile.

reserved_profile_compatibility_22bits shall be equal to 0 in bitstreams conforming to this version of
this Specification. Other values for reserved_profile_compatibility_22bits are reserved for future use by
ISO/IEC. Decoders shall ignore the value of reserved_profile_compatibility_22bits.

unique_point_positions_constraint_flag equal to 1 indicates that in each point cloud frame that refers
to the current SPS, all output points have unique positions. unique_point_positions_constraint_flag equal
to 0 indicates that in any point cloud frame that refers to the current SPS, two and more output points
may have the same position.

Note – For example, even if all points are unique in each slices, the point from different slices in a frame
may overlap. In that case, unique_point_positions_constraint_flag should be set to 0.

level_idc indicates a level to which the bitstream conforms as specified in Annex A. Bitstreams shall not
contain values of level_idc other than those specified in Annex A. Other values of level_idc are reserved
for future use by ISO/IEC.

sps_seq_parameter_set_id provides an identifier for the SPS for reference by other syntax elements. In
the value of sps_seq_parameter_set_id shall be 0 in bitstreams conforming to this version of this
Specification. The value other than 0 for sps_seq_parameter_set_id is reserved for future use by ISO/IEC.

sps_bounding_box_present_flag equal to 1 indicates that a bounding box is present in the sequence
parameter set. sps_bounding_box_present_flag equal to 0 indicates that the size of the bounding box is
undefined.

sps_bounding_box_offset_xyz[k] indicates the k-th component of the quantized (x, y, z) co-ordinate
offset of the source bounding box in Cartesian co-ordinates. When not present, the values of
sps_bounding_box_offset_xyz[k] are each inferred to be 0.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 33

sps_bounding_box_offset_log2_scale indicates the scaling factor to scale the quantized x, y, and z source
bounding box offsets. When not present, the value of sps_bounding_box_offset_log2_scale is inferred to
be 0.

sps_bounding_box_size_xyz[k] indicates the k-th component of the width, height, and depth,
respectively, of the source bounding box in Cartesian co-ordinates.

sps_source_scale_factor_numerator_minus1 plus 1 indicates the scale factor numerator of the source
point cloud.

sps_source_scale_factor_denominator_minus1 plus 1 indicates the scale factor denominator of the
source point cloud.

sps_num_attribute_sets indicates the number of coded attributes in the bitstream. The value of
sps_num_attribute_sets shall be in the range of 0 to 63.

attribute_dimension_minus1[i] plus 1 specifies the number of components of the i-th attribute.

attribute_instance_id[i] specifies the instance id for the i-th attribute.

NOTE – The value of the attribute_instance_id identifies the attribute when two or more attribute having the
attribute_label_four_bytes value is in the bitstream. For example, it is useful for the point cloud having multiple color from
the different view point.

attribute_bitdepth_minus1[i] plus 1 specifies the bitdepth for first component of the i-th attribute
signal(s).

attribute_secondary_bitdepth_minus1[i] plus 1 specifies the bitdepth for secondary component of the
i-th attribute signal(s).

attribute_cicp_colour_primaries[i] indicates the chromaticity co-ordinates of the colour attribute
source primaries of the i-th attribute. The semantics are as specified for the code point ColourPrimaries
in ISO/IEC 23091-2.

attribute_cicp_transfer_characteristics[i] either indicates the reference opto-electronic transfer
characteristic function of the colour attribute as a function of a source input linear optical intensity Lc
with a nominal real-valued range of 0 to 1 or indicates the inverse of the reference electro-optical transfer
characteristic function as a function of an output linear optical intensity Lo with a nominal real-valued
range of 0 to 1. The semantics are as specified for the code point TransferCharacteristics in ISO/IEC
23091-2.

attribute_cicp_matrix_coeffs[i] describes the matrix coefficients used in deriving luma and chroma
signals from the green, blue, and red, or Y, Z, and X primaries. The semantics are as specified for the code
point MatrixCoefficients in ISO/IEC 23091-2.

attribute_cicp_video_full_range_flag[i] specifies indicates the black level and range of the luma and
chroma signals as derived from E′Y, E′PB, and E′PR or E′R, E′G, and E′B real-valued component signals.
The semantics are as specified for the code point VideoFullRangeFlag in ISO/IEC 23091-2.

known_attribute_label_flag[i] equal to 1 specifies know_attribute_label is signalled for the i-th
attribute. known_attribute_label_flag[i] equal to 0 specifies attribute_label_four_bytes is signalled for the
i-th attribute.

known_attribute_label[i] equal to 0 specifies the attribute is colour. known_attribute_label[i] equal to
1 specifies the attribute is reflectance. known_attribute_label[i] equal to 2 specifies the attribute is frame
index.

ISO 23090-9:2020(E)

34 © ISO/IEC 2020 – All rights reserved

attribute_label_four_bytes[i] indicates the known attribute type with the 4 bytes code. Table 8
describes the list of supported attributes and their relationship with attribute_label_four_bytes[i].

Table 8 — attribute_label_four_bytes

attribute_label_four_bytes[i] Attribute type
0 Colour
1 Reflectance
2 Frame index
3 Material ID
4 Transparency
5 Normals

6 .. 255 Reserved
256 .. 0xffffffff unspecified

log2_max_frame_idx plus 1 specifies the number of bits used to signal the frame_idx syntax variable.

axis_coding_order specifies the correspondence between the X, Y, and Z output axis labels and the three
position components of all points in the reconstructed point cloud.

The array XyzToStv defines the mapping of the k-th component of an (x, y, z) co-ordinate to an index of
the coded geometry axis order (s, t, v). Values of XyzToStv[k], k = 0 .. 2, are defined according to
axis_coding_order in Table 9.

The output axis labels X, Y, and Z are each assigned to the axis index given by XyzToStv[k], for k = 0 .. 2,
according to Table 10.

Table 9 — Definition of XyzToStv[k] according to the value of axis_coding_order

axis_coding_order XyzToStv[k]
0 1 2

0 2 1 0
1 0 1 2
2 0 2 1
3 2 0 1
4 2 1 0
5 1 2 0
6 1 0 2
7 0 1 2

Table 10 — Mapping of output X, Y, and Z axis labels to indicies axis of RecPic[pointIdx][axis]

Label axis
X XyzToStv[0]
Y XyzToStv[1]
Z XyzToStv[2]

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 35

sps_bypass_stream_enabled_flag equal to 1 specifies that the bypass coding mode may be used on
reading the bitstream. sps_bypass_stream_enabled_flag equal to 0 specifies that the bypass coding mode
is not used on reading the bitstream.

sps_extension _flag equal to 0 specifies that no sps_extension_data_flag syntax elements are present in
the SPS syntax structure. sps_extension _flag shall be equal to 0 in bitstreams conforming to this version
of this Specification. The value of 1 for sps_extension _flag is reserved for future use by ISO/IEC. Decoders
shall ignore all sps_extension_data_flag syntax elements that follow the value 1 for sps_extension_flag in
an SPS syntax structure.

sps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance
to profiles specified in Annex A. Decoders conforming to this version of this Specification shall ignore all
sps_extension_data_flag syntax elements.

 Tile inventory semantics

tile_frame_idx contains an identifying number that may be used to identify the purpose of the tile
inventory.

num_tiles specifies the number of tile bounding boxes present in the tile inventory.

tile_bounding_box_bits specifies the bitdepth to represent the bounding box information for the tile
inventory.

tile_bounding_box_offset_xyz[tileId][k] and tile_bounding_box_size_xyz[tileId][k] specify a
bounding box encompasing slices identified by gsh_tile_id equal to tileId.

tile_bounding_box_offset_xyz[tileId][k] is the k-th component of the (x, y, z) origin co-ordinate of the
tile bounding box relative to sps_bounding_box_offset[k].

tile_bounding_box_size_xyz[tileId][k] is the k-th component of the tile bounding box width, height, and
depth, respectively.

 Geometry parameter set semantics

gps_geom_parameter_set_id provides an identifier for the GPS for reference by other syntax elements.
The value of gps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.

gps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value
of gps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.

gps_box_present_flag equal to 1 specifies an additional bounding box information is provided in a
geometry header that references the current GPS. gps_bounding_box_present_flag equal to 0 specifies
that additional bounding box information is not signalled in the geometry header.

gps_gsh_box_log2_scale_present_flag equal to 1 specifies gsh_box_log2_scale is signalled in each
geometry slice header that references the current GPS. gps_gsh_box_log2_scale_present_flag equal to 0
specifies gsh_box_log2_scale is not signalled in each geometry slice header and common scale for all slices
is signalled in gps_gsh_box_log2_scale of current GPS.

gps_gs_box_log2_scale indicates a scale factor to be applied to the slice origin of all slices that reference
the current GPS.

unique_geometry_points_flag equal to 1 indicates that in all slices that refer to the current GPS, all
output points have unique positions within a slice. unique_geometry_points_flag equal to 0 indicates that
in all slices that refer to the current GPS, two or more of the output points may have same positions within
a slice.

ISO 23090-9:2020(E)

36 © ISO/IEC 2020 – All rights reserved

geometry_planar_mode_flag equal to 1 indicates that the planar coding mode is activated.
geometry_planar_mode_flag equal to 0 indicates that the planar coding mode is not activated.

geom_planar_mode_th_idcm specifies the value of the threshold of activation for the direct coding mode.
geom_planar_mode_th_idcm is an integer in the range 0 to 127 inclusive. When not present,
geom_planar_mode_th_idcm is inferred to be 127.

geom_planar_mode_th[i], for i in the range 0 .. 2, specifies the value of the threshold of activation for
planar coding mode along the i-th most probable direction for the planar coding mode to be efficient.
geom_planar_mode_th[i] is an integer in the range 0 .. 127.

geometry_angular_mode_flag equal to 1 indicates that the angular coding mode is activated.
geometry_angular_mode_flag equal to 0 indicates that the angular coding mode is not activated.

geom_angular_origin_xyz[k] specifies the k-th component of the (x, y, z) co-ordinate of the origin used
in the processing of the angular coding mode. When not present, geom_angular_origin_x,
geom_angular_origin_y, and geom_angular_origin_z are inferred to be 0.

The array geomAngularOrigin, with values geomAngularOrigin[k], for k = 0 .. 2, represents the values of
geom_angular_origin_xyz permuted into the coded geometry axis order as follows:

geomAngularOrigin[XyzToStv[k]] = geom_angular_origin_xyz[k], for k = 0..2

number_lasers specifies the number of lasers used for the angular coding mode. When not present,
number_lasers is inferred to be 0.

laser_angle[i], for i in the range 1 .. number_lasers, specifies the tangent of the elevation angle of the i-
th laser relative to the horizontal plane defined by the first and second coded axes.

laser_correction[i], for i in the range 1 .. number_lasers, specifies the correction, along the second
internal axis, of the i-th laser position relative to the geomAngularOrigin[2]. When not present,
laser_correction[i] is inferred to be 0.

planar_buffer_disabled equal to 1 indicates that tracking the closest nodes using a buffer is not used in
process of coding the planar mode flag and the plane position in the planar mode. planar_buffer_disabled
equal to 0 indicates that tracking the closest nodes using a buffer is used. When not present,
planar_buffer_disabled is inferred to be 0.

implicit_qtbt_angular_max_node_min_dim_log2_to_split_v specifies the log2 value of a node size
below which horizontal split of nodes is preferred over vertical split. When not present,
implicit_qtbt_angular_max_diff_to_split_v specifies is inferred to be 0.

implicit_qtbt_angular_max_diff_to_split_v specifies the log2 value of the maximum vertical over
horizontal node size ratio allowed to a node. When not present,
implicit_qtbt_angular_max_node_min_dim_log2_to_split_v is inferred to be 0.

neighbour_context_restriction_flag equal to 0 indicates that geometry node occupancy of the current
node is coded with the contexts determined from neighbouring nodes which is located inside the parent
node of the current node. neighbour_context_restriction_flag equal to 0 indicates that geometry node
occupancy of the current node is coded with the contexts determined from neighbouring nodes which is
located inside or outside the parent node of the current node.

inferred_direct_coding_mode_enabled_flag equal to 1 indicates that direct_mode_flag may be present
in the geometry node syntax. inferred_direct_coding_mode_enabled_flag equal to 0 indicates that
direct_mode_flag is not present in the geometry node syntax.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 37

bitwise_occupancy_coding_flag equal to 1 indicates that geometry node occupancy is encoded using bit-
wise contextualisation of the syntax element ocupancy_map. bitwise_occupancy_coding_flag equal to 0
indicates that geometry node occupancy is encoded using the dictionary encoded syntax element
occypancy_byte.

adjacent_child_contextualization_enabled_flag equal to 1 indicates that the adjacent children of
neighbouring octree nodes are used for bit-wise occupancy contextualization.
adjacent_child_contextualization_enabled_flag equal to 0 indicates that the children of neighbouring
octree nodes are is not used for the occupancy contextualization.

log2_neighbour_avail_boundary specifies the variable NeighbAvailabilityMask as follows.

When neighbour_context_restriction_flag is equal to 1, NeighbAvailabilityMask is set equal to 1.
Otherwise, neighbour_context_restriction_flag equal to 0, NeighbAvailabilityMask is set equal to 1 <<
log2_neighbour_avail_boundary.

log2_intra_pred_max_node_size specifies the octree node size eligible for occupancy intra prediction.

log2_trisoup_node_size specifies the variable TrisoupNodeSize as the size of the triangle nodes as
follows.

TrisoupNodeSize = 1 << log2_trisoup_node_size

When log2_trisoup_node_size is equal to 0, the geometry bitstream includes only the octree coding syntax.
When log2_trisoup_node_size is greater than 0, it is a requirement of bitstream conformance that:

- inferred_direct_coding_mode_enabled_flag must be equal to 0, and

- unique_geometry_points_flag must be equal to 1.

geom_scaling_enabled_flag equal to 1 specifies that a scaling process for geometry positions is invoked
during the geometry slice decoding process. geom_scaling_enabled_flag equal to 0 specifies that
geometry positions do not require scaling.

geom_base_qp_minus4 plus 4 specifies the base value of the geometry position quantization parameter.
When not present, geom_base_qp_minus4 is inferred to be 0.

gps_implicit_geom_partition_flag equal to 1 specifies that the implicit geometry partition is enabled for
the sequence or slice. gps_implicit_geom_partition_flag equal to 0 specifies that the implicit geometry
partition is disabled for the sequence or slice. If gps_implicit_geom_partition_flag equals to 1, the
following two parameters gps_max_num_implicit_qtbt_before_ot and gps_min_size_implicit_qtbt are
signaled.

gps_max_num_implicit_qtbt_before_ot specifies the maximal number of implicit QT and BT partitions
before OT partitions.

gps_min_size_implicit_qtbt specifies the minimal size of implicit QT and BT partitions.

gps_extension _flag equal to 0 specifies that no gps_extension_data_flag syntax elements are present in
the GPS syntax structure. gps_extension_flag shall be equal to 0 in bitstreams conforming to this version
of this Specification. The value of 1 for gps_extension _flag is reserved for future use by ISO/IEC. Decoders
shall ignore all gps_extension_data_flag syntax elements that follow the value 1 for gps_extension_flag in
a GPS syntax structure.

gps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance
to profiles specified in this version of this Specification. Decoders conforming to this version of this
Specification shall ignore all gps_extension_data_flag syntax elements.

ISO 23090-9:2020(E)

38 © ISO/IEC 2020 – All rights reserved

 Attribute parameter set semantics

aps_attr_parameter_set_id provides an identifier for the APS for reference by other syntax elements.
The value of aps_attr_parameter_set_id shall be in the range of 0 to 15, inclusive.

aps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value
of aps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.

attr_coding_type indicates that the coding type for the attribute in Table 11 for the given value of
attr_coding_type. The value of attr_coding_type shall be equal to 0, 1, or 2 in bitstreams conforming to this
version of this Specification. Other values of attr_coding_type are reserved for future use by ISO/IEC.
Decoders conforming to this version of this Specification shall ignore reserved values of attr_coding_type.

Table 11 — Interpretation of attr_coding_type

attr_coding_type coding type decoding process

0 Region Adaptive Hierarchical Transform (RAHT) 8.3.1
1 LoD with Predicting Transform 8.3.3
2 LoD with Lifting Transform 8.3.2

aps_attr_initial_qp specifies the initial value of the variable SliceQp for each slice referring to the APS.
The value of aps_attr_initial_qp shall be in the range of 4 to 51, inclusive.

aps_attr_chroma_qp_offset specifies the offsets to the initial quantization parameter signalled by the
syntax aps_attr_initial_qp.

aps_slice_qp_delta_present_flag equal to 1 specifies that the ash_attr_qp_delta_luma and
ash_attr_qp_delta_chroma syntax elements are present in the ASH. aps_slice_qp_present_flag equal to 0
specifies that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are not present
in the ASH.

raht_prediction_enabled_flag equal to 1 specifies the transform weight prediction from the neighbour
points is enabled in the RAHT decoding process. raht_prediction_enabled_flag equal to 0 specifies the
transform weight prediction from the neighbour points is enabled in the RAHT decoding process.

raht_prediction_threshold0 specifies the thredhold to terminate the transform weight prediction from
neighbour points. The value of raht_prediction_threshold0 shall be in the range of 0 to 19.

raht_prediction_threshold1 specifies the thredhold to skip the transform weight prediction from
neighbour points. The value of raht_prediction_threshold1 shall be in the range of 0 to 19.

lifting_num_pred_nearest_neighbours_minus1 plus 1 specifies the maximum number of nearest
neighbours to be used for prediction. The value of lifting_num_pred_nearest_neighbours shall be in the
range of 1 to xx.

The value of NumPredNearestNeighbours is set equal to lifting_num_pred_nearest_neighbours

lifting_search_range_minus1 plus 1 specifies the search range used to determine nearest neighbours to
be used for prediction and to build distance-based levels of detail.

The variable LiftingSearchRange is derived as follows:

LiftingSearchRange = lifting_search_range_minus1 + 1

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 39

lifting_neighbour_bias_xyz[k] specifies the factor used to weight the k-th component of the (x, y, z)
point positions in the calculation of the euclidean distance between two points as part of the nearest
neighbour derivation process.

The array liftingNeighbourBiasStv, with values liftingNeighbourBiasStv[k], k = 0 .. 2, represents the
values of lifting_neighobur_bias_xyz permuted into the coded geometry axis order as follows:

liftingNeighbourBiasStv[XyzToStv[k]] = lifting_neighbour_bias_xyz[k]

lifting_scalability_enabled_flag equal to 1 specifies that the attribute decoding process allows the
pruned octree decode result for the input geometry points. lifting_scalability_enabled_flag equal to 0
specifies that that the attribute decoding process requires the complete octree decode result for the input
geometry points. When not present, the value of lifting_scalability_enabled_flag is inferred to be 0. When
the value of log2_trisoup_node_size is greater than 0, the value of lifting_scalability_enabled_flag shall be
0.

lifting_num_detail_levels_minus1 specifies the number of levels of detail for the attribute coding. The
value of lifting_num_detail_levels_minus1 shall be in the range of 0 to xx.

The variable LevelDetailCount specifying the number of level of detail is derived as follows:

LevelDetailCount = lifting_num_detail_levels_minus1 + 1

lifting_lod_regular_sampling_enabled_flag equal to 1 specifies levels of detail are built by using a
regular sampling strategy. lifting_lod_regular_sampling_enabled_flag equal to 0 specifies that a distance-
based sampling strategy is used instead.

lifting_sampling_period_minus2[idx] plus 2 specifies the sampling period for the level of detail idx.
The value of lifting_sampling_period_minus2[] shall be in the range of 0 to xx.

lifting_sampling_distance_squared_scale_minus1[idx] plus 1 specifies the scaling factor for the
derivation of the square of the sampling distance for the level of detail idx. The value of
lifting_sampling_distance_squared_scale_minus1[idx] shall be in the range of 0 to xx. When
lifting_sampling_distance_squared_scale_minus1[idx] is not present in the bitstream, it is inferred to be
0.

lifting_sampling_distance_squared_offset[idx] specifies the offset for the derivation of the square of
the sampling distance for the level of detail idx. The value of
lifting_sampling_distance_squared_offset[idx] shall be in the range of 0 to xx. When
lifting_sampling_distance_squared_offset[idx] is not present in the bitstream, it is inferred to be 0.

The variable LiftingSamplingDistanceSquared[idx] for idx = 0 .. num_detail_level_minus1 − 1, specifying
the sampling distance for the level of detail idx, are derived as follows:

LiftingSamplingDistanceSquared[0] = lifting_sampling_distance_squared_scale_minus1[0] + 1
for (idx = 1; idx < num_detail_level_minus1; idx++) {
 LiftingSamplingDistanceSquared[idx] =
 (lifting_sampling_distance_squared_scale_minus1[idx] + 1)
 × LiftingSamplingDistanceSquared[idx − 1]
 + lifting_sampling_distance_squared_offset[idx]
}

lifting_adaptive_prediction_threshold specifies the threshold to enable adaptive prediction. The value
of lifting_adaptive_prediction_threshold[] shall be in the range of 0 to xx.

The variable AdaptivePredictionThreshold specifying the threshold to switch to adaptive predictor
selection mode is set equal to lifting_adaptive_prediction_threshold

ISO 23090-9:2020(E)

40 © ISO/IEC 2020 – All rights reserved

lifting_intra_lod_prediction_num_layers specifies number of LoD layer where decoded points in the
same LoD layer could be referred to generate prediction value of target point.
lifting_intra_lod_prediction_num_layers equal to LevelDetailCount indicates that target point could refer
decoded points in the same LoD layer for all LoD layers. lifting_intra_lod_prediction_num_layers equal to
0 indicates that target point could not refer decoded points in the same LoD layer for any LoD layers.
lifting_intra_lod_prediction_num_layers shall be in the range of 0 to LevelDetailCount.

The variable IntraLodPredNumLayers specifying the number of LoD layer where intra lod prediction is
enabled is set equal to lifting_intra_lod_prediction_num_layers.

lifting_max_num_direct_predictors specifies the maximum number of predictorspredictor to be used
for direct prediction. The value of lifting_max_num_direct_predictors shall be range of 0 to
lifting_num_pred_nearest_neighbours.

The variable MaxNumPredictors that is used in the decoding process as follows:

MaxNumPredictors = lifting_max_num_direct_predictors + 1

inter_component_prediction_enabled_flag equal to 1 specifies that the primary component of a multi
component attribute is used to predict the reconstructed value of non-primary components.
inter_component_prediction_enabled_flag equal to 0 specifies that all attribute components are
reconstructed independently.

aps_extension _flag equal to 0 specifies that no aps_extension_data_flag syntax elements are present in
the APS syntax structure. aps_extension_flag shall be equal to 0 in bitstreams conforming to this version
of this Specification. The value of 1 for aps_extension_flag is reserved for future use by ISO/IEC. Decoders
shall ignore all aps_extension_data_flag syntax elements that follow the value 1 for aps_extension_flag in
an APS syntax structure.

aps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance
to profiles specified in this version of this Specification. Decoders conforming to this version of this
Specificatino shall ignore all aps_extension_data_flag syntax elements.

 Frame boundary marker semantics

The frame boundary marker explicitly marks the end of the current frame.

 Byte alignment semantics

alignment_bit_equal_to_one shall be equal to 1.

alignment_bit_equal_to_zero shall be equal to 0.

 Geometry data unit semantics

 General geometry data unit semantics

The variable GeometryNodeOccupancyCnt[depth][sN][tN][vN] represents the number of child nodes
present in the geometry octree node at position (sN, tN, vN) at the given depth of the octree. Undefined
values of GeometryNodeOccupancyCnt are treated as 0.

The variables NodeS[depthS][idx], NodeT[depthT][idx], and NodeV[depthV][idx] represent the s,
t, and v co-ordinates of the idx-th node in decoding order at the given depth. The variable
NumNodesAtDepth[depth] represents the number of nodes to be decoded at the given depth. The
variables depthS, depthT and depthV specify respectively the depth in s, t and v dimensions. The variable
partitionSkip specifies the partition type and direction as in Table 12. The variable partitionSkip is

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 41

represented in binary form with three bits 𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡𝑏𝑏𝑣𝑣, which specify respectively whether to skip partition
along s, t and v dimension.

Table 12— Interpretation of partitionSkip

Partition QT along s-t axes QT along s-v axes QT along t-v axes OT

partitionSkip 0b001 0b010 0b100 0b000

Partition BT along s axis BT along t axis BT along v axis

partitionSkip 0b011 0b101 0b110

The variables NodeS, NodeT, NodeV, NumNodesAtDepth, and GeometryNodeOccupancyCnt are
initialized as follows:

NodeS[0][0] = NodeT[0][0] = NodeV[0][0] = 0
NumNodesAtDepth[0] = 1
GeometryNodeOccupancyCnt[−1][0][0][0] = 8

 Geometry data unit header semantics

gsh_num_points_minus1 plus 1 specifies the maximum number of coded points in the slice. It is a
requirement of bitstream conformance that gsh_num_points_minus1 + 1 is greater than or equal to the
number of decoded points in the slice.

gsh_geometry_parameter_set_id specifies the value of the gps_geom_parameter_set_id of the active GPS.

gsh_tile_id specifies the value of the tile id that is referred to by the GSH . The value of gsh_tile_id shall be
in the range of 0 to xx, inclusive.

gsh_slice_id identifies the slice header for reference by other syntax elements. The value of gsh_slice_id
shall be in the range of 0 to xx, inclusive.

frame_idx specifies the log2_max_frame_idx + 1 least significant bits of a notional frame number counter.
Consecutive slices with differing values of frame_idx form parts of different output point cloud frames.
Consecutive slices with identical values of frame_idx without an intervening frame boundary marker data
unit form parts of the same output point cloud frame.

gsh_box_log2_scale specifies the scaling factor of the slice bounding box origin. When not present,
gsh_box_log2_scale is inferred to be equal to gps_gs_box_log2_scale.

gsh_box_origin_xyz[k] specifies the k-th component of the quantized (x, y, z) co-ordinate of the slice
bounding box origin. When not present, the values of gsh_box_origin_xyz[k] are each inferred to be 0.

The array SliceOriginStv, with values SliceOriginStv[k], k = 0 .. 2, represents the scaled values of
gsh_box_origin_xyz permuted into the coded geometry axis order as follows:

SliceOriginStv[XyzToStv[k]] = gsh_box_origin_xyz[k] << gsh_box_log2_scale

gsh_log2_root_nodesize_s specifies, when present, the first component, s, of the geometry tree root node
size.

gsh_log2_root_nodesize_t_minus_s specifies, when present, the second component, t, of the geometry
tree root node size.

ISO 23090-9:2020(E)

42 © ISO/IEC 2020 – All rights reserved

gsh_log2_root_nodesize_v_minus_t specifies, when present, the third component, v, of the geometry
tree root node size.

gsh_log2_root_nodesize specifies, when present, the size of the root geometry tree node.

The variables RootNodeSizeSLog2, RootNodeSizeTLog2, and RootNodeSizeVLog2 are defined as follows:

− When gps_implicit_geom_partition_flag is equal to 1, the following applies:

RootNodeSizeSLog2 = gsh_log2_root_nodesize_s
RootNodeSizeTLog2 = gsh_log2_root_nodesize_t_minus_s + RootNodeSizeSLog2
RootNodeSizeVLog2 = gsh_log2_root_nodesize_v_minus_t + RootNodeSizeTLog2

− Otherwise, gps_implicit_geom_partition_flag equal to 0, the following applies:

RootNodeSizeSLog2 = 1 << gsh_log2_root_nodesize
RootNodeSizeTLog2 = 1 << gsh_log2_root_nodesize
RootNodeSizeVLog2 = 1 << gsh_log2_root_nodesize

The variables RootNodeSizeS, RootNodeSizeT, RootNodeSizeV, and MaxGeometryOctreeDepth are
initialized as follows:

RootNodeSizeS = 1 << RootNodeSizeSLog2
RootNodeSizeT = 1 << RootNodeSizeTLog2
RootNodeSizeV = 1 << RootNodeSizeVLog2
MaxRootNodeDimLog2 = Max(RootNodeSizeSLog2, RootNodeSizeTLog2, RootNodeSizeVLog2)
minRootNodeDimLog2 = Min(RootNodeSizeSLog2, RootNodeSizeTLog2, RootNodeSizeTLog2)
MaxGeometryOctreeDepth = MaxRootNodeDimLog2 − log2_trisoup_node_size

The variables QtBtK and QtBtM are derived as follows:

− When log2_trisoup_node_size is equal to 0, the following applies

QtBtK = Min(gps_max_num_implicit_qtbt_before_ot, MaxRootNodeDimLog2 − minRootNodeDimLog2)
if (MaxRootNodeDimLog2 == minRootNodeDimLog2)
 QtBtM = 0;
else
 QtBtM = Min(gps_min_size_implicit_qtbt, minRootNodeDimLog2)

− Otherwise, log2_trisoup_node_size is greater than 0, the following applies:

QtBtK = MaxRootNodeDimLog2 − minRootNodeDimLog2
QtBtM = 0

gsh_num_entropy_streams_minusQ indicates the number of entropy streams used to convey the
geometry slice data. If gsh_num_entropy_streams_minusQ is equal to 0, the geometry slice data is
conveyed in a single entropy stream. Otherwise (gsh_num_entropy_streams_minusQ is greater than 0),
the geometry slice data is conveyed in gsh_num_entropy_streams_minusQ + 2 streams. It is a
requirement of bitstream conformance that gsh_num_entropy_streams_minusQ is equal to 0 when
log2_trisoup_node_size is greater than 0.

The variable EntropyStreamCnt represents the number of entropy streams present in the current data
unit:

if (!gsh_num_entropy_streams_minusQ)
 EntropyStreamCnt = 1
else
 EntropyStreamCnt = gsh_num_entropy_streams_minusQ + 2

The variable GeomEntropyStreamDepth is derived as follows:

GeomEntropyStreamDepth = MaxGeometryOctreeDepth − gsh_num_entropy_streams_minusQ − 2

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 43

gsh_entropy_stream_len_bits specifies the number of bits used to represent each of the
gsh_entropy_stream_len[i] syntax elements.

gsh_entropy_stream_len[i] specifies the length in bytes of the i-th entropy stream.

geom_slice_qp_offset specifies an offset to the base geometry quantisation parameter
geom_base_qp_minus4. When not present, geom_slice_qp_offset is inferred to be 0.

geom_octree_qp_offsets_depth specifies, when present, the depth of the geometry octree when
geom_node_qp_offset_eq0_flag is present in the geometry node syntax.

The array ScalingNodeSizeLog2 with values ScalingNodeSizeLog2[cIdx] represents the size of the cIdx-
th scaled position component.

The variable GeomScalingDepth, indicating the geometry octree depth at which the value of
ScalingNodeSizeLog2 is determined, is set as follows:

GeomScalingDepth = geom_scaling_enabled_flag ? geom_octree_qp_offsets_depth : 0

 Geometry slice data semantics

The process to derive the variable partitionSkip is specified from here. The input of the process are
varibales depth, depthS, depthT and depthV. The output of the process is the value of partitionSkip. The
process to derive the variable partitionSkip proceeds as follows.

partitionSkip = 0
NodeSizeSLog2 = RootNodeSizeSLog2 – depthS
NodeSizeTLog2 = RootNodeSizeTLog2 – depthT
NodeSizeVLog2 = RootNodeSizeVLog2 – depthV
MinNodeDimLog2 = Min(NodeSizeSLog2, NodeSizeTLog2, NodeSizeVLog2)
MaxNodeDimLog2 = Max(NodeSizeSLog2, NodeSizeTLog2, NodeSizeVLog2)
If (MinNodeDimLog2 == MaxNodeDimLog2)
 QtBtM = 0

if (QtBtK > depth || M == MinNodeDimLog2) {
 if (NodeSizeSLog2 < MaxNodeDimLog2)
 partitionSkip |= 4
 if (NodeSizeTLog2 < MaxNodeDimLog2)
 partitionSkip |= 2
 if (NodeSizeVLog2 < MaxNodeDimLog2)
 partitionSkip |= 1
}
else if (geometry_angular_mode_flag) {
 minDim = implicit_qtbt_angular_max_node_min_dim_log2_to_split_v
 maxDiff = implicit_qtbt_angular_max_diff_to_split_v
 if (minDim + maxDiff > 0){
 maxNodeDimLog2ST = Max(NodeSizeSLog2, NodeSizeTLog2)
 if (NodeSizeSLog2 < maxNodeDimLog2ST)
 partitionSkip |= 4
 if (NodeSizeTLog2 < maxNodeDimLog2ST)
 partitionSkip |= 2
 if (MinNodeDimLog2 <= minDim && NodeSizeVLog2 >= maxNodeDimLog2ST + maxDiff)
 partitionSkip |= 1
 if (maxNodeDimLog2ST > minDim + maxDiff && NodeSizeVLog2 >= maxNodeDimLog2ST)
 partitionSkip |= 1
 }
}

The parameter QtBtM prevents implicit QT and BT partitions when all dimensions are smaller than or
equal to QtBtM.

ISO 23090-9:2020(E)

44 © ISO/IEC 2020 – All rights reserved

 Geometry node semantics

A geometry node is a node of the geometry octree. An internal geometry node may be split into a
maximum of eight child nodes after decoding the occupancy map for the current node. A leaf node
represents one or more points.

The position of the geometry node at a given depth is given by the unscaled co-ordinate of its lower left
corner as (sN, tN, vN).

The variables sNp, tNp, and vNp indicating the position of the current node's parent node at depth − 1 are
derived as follows:

sNp = sN >> 1
tNp = tN >> 1
vNp = vN >> 1

The variables NodeSizeLog2 and ChildNodeSizeLog2 are derived as follows:

NodeSizeLog2 = MaxRootNodeDimLog2 − depth
ChildNodeSizeLog2 = NodeSizeLog2 − 1

When depth is equal to GeomScalingDepth and nodeIdx is equal to 0, the array ScalingNodeSizeLog2 and
variable minScalingNodeDimLog2 are derived as follows:

ScalingNodeSizeLog2[0] = NodeSizeSLog2
ScalingNodeSizeLog2[1] = NodeSizeTLog2
ScalingNodeSizeLog2[2] = NodeSizeVLog2
minScalingNodeDimLog2 = Min(NodeSizeSLog2, NodeSizeTLog2, NodeSizeVLog2)

The variable NeighbourPattern is derived as follows:

– For each node, the variables rN, lN, fN, bN, uN, and dN are derived as follows:

rN = GeometryNodeOccupancyCnt[depth][sN + 1][tN][vN] != 0
lN = GeometryNodeOccupancyCnt[depth][sN − 1][tN][vN] != 0
bN = GeometryNodeOccupancyCnt[depth][sN][tN + 1][vN] != 0
fN = GeometryNodeOccupancyCnt[depth][sN][tN − 1][vN] != 0
uN = GeometryNodeOccupancyCnt[depth][sN][tN][vN + 1] != 0
dN = GeometryNodeOccupancyCnt[depth][sN][tN][vN − 1] != 0

– If NeighbAvailabilityMask is not equal to 0, the following applies.

lN = ((sN + 1) & NeighbAvailabilityMask == 1 ? 0 : lN
rN = ((sN + 1) & NeighbAvailabilityMask == 0 ? 0 : rN
fN = ((tN + 1) & NeighbAvailabilityMask == 1 ? 0 : fN
bN = ((tN + 1) & NeighbAvailabilityMask == 0 ? 0 : bN
dN = ((vN + 1) & NeighbAvailabilityMask == 1 ? 0 : dN
uN = ((vN + 1) & NeighbAvailabilityMask == 0 ? 0 : uN

– If adjacent_child_contextualization_enabled_flag is equal to 1, the following applies.

lNadj = fNadj = dNadj = 0
for (sNc = sN × 2; sNc < sN × 2 + 2; sNc++){
 for (tNc = tN × 2; tNc < tN × 2 + 2; tNc++){
 for (vNc = vN × 2; vNc < vN × 2 + 2; vNc++) {
 lNadj |= GeometryNodeOccupancyCnt[depth + 1][sN × 2 − 1][tNc][vNc]
 fNadj |= GeometryNodeOccupancyCnt[depth + 1][sNc][tN × 2 − 1][vNc]
 dNadj |= GeometryNodeOccupancyCnt[depth + 1][sNc][tNc][vN × 2 − 1]
 }
 }
}
lN &= lNadj
fN &= fNadj
dN &= dNadj

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 45

– Finally, the variable NeighbourPattern is set as follows:

NeighbourPattern = rN | (lN << 1) | (fN << 2) | (bN << 3) | (dN << 4) | (uN << 5)

geom_node_qp_offset_eq0_flag equal to 1 specifies that the current node's quantization parameter is
offset from the slice quantization parameter. geom_node_qp_offset_eq0_flag equal to 0 specifies that the
current node quantization parameter inherits the quantization parameter of the parent node.

geom_node_qp_offset_sign_flag specifies, when present, the sign of nodeQpOffset as follows:

− If geom_node_qp_offset_sign_flag is equal to 0, the corresponding nodeQpOffset has a negative value.

− Otherwise, geom_node_qp_offset_sign_flag is equal to 1, the corresponding nodeQpOffset has a
positive value.

geom_node_qp_offset_abs_minus1 plus 1 specifies, when present, the absolute difference between the
current node's quantization parameter, nodeQp, and the slice quantisation parameter.

The variable nodeQpOffset is derived as follows:

if (geom_node_qp_offset_eq0_flag)
 nodeQpOffset = 0
else
 nodeQpOffset = (2 × geom_node_qp_offset_sign_flag − 1) × (geom_node_qp_offset_abs_minus1
+ 1)

The variable NodeQp is derived as follows:

− When depth is equal to GeomScalingDepth:

NodeQp = geom_base_qp_minus4 + 4 + geom_slice_qp_offset + nodeQpOffset

− When depth is greater than GeomScalingDepth:

NodeQp = NodeQpMap[depth][nodeIdx]

− Otherwise, depth is less than GeomScalingDepth, NodeQp is set equal to 4.

It is a requirement of bitstream conformance that NodeQp is less than or equal to
minScalingNodeDimLog2 × 6 + 9.

The variables EffectiveChildNodeSizeLog2, EffectiveDepth, EffectiveDepthS, EffectiveDepthT, and
EffectiveDepthV are derived as follows:

EffectiveChildNodeSizeLog2 = ChildNodeSizeLog2 − (NodeQp − 4) / 6
EffectiveDepth = depth + (NodeQp − 4) / 6
EffectiveDepthS = depthS + (NodeQp − 4) / 6
EffectiveDepthT = depthT + (NodeQp − 4) / 6
EffectiveDepthV = depthV + (NodeQp − 4) / 6

occupancy_map is a bitmap that identifies the occupied child nodes of the current node. When present,
the variable OccupancyMap is set equal to occupancy_map.

occupancy_byte specifies a bitmap that identifies the occupied child nodes of the current node. When
present, the variable OccupancyMap is set equal to the output of the geometry occupancy map
permutation process as specified in 6.4.2 when invoked with NeighbourPattern and occupancy_map as
inputs.

When EffectiveDepth is greater than or equal to MaxGeometryOctreeDepth, OccupancyMap is set equal
to 1.

ISO 23090-9:2020(E)

46 © ISO/IEC 2020 – All rights reserved

The array GeometryNodeChildren[i] identifies the index of the i-th occupied child node of the current
node. The variable GeometryNodeChildrenCnt identifies the number of child nodes in the array
GeometryNodeChildren[].

The child node state information is derived from OccupancyMap as follows:

childCnt = 0
for (childIdx = 0; childIdx < 8; childIdx++) {
 if (!(OccupancyMap & (1 << childIdx)))
 continue
 GeometryNodeChildren[childCnt++] = childIdx
}
GeometryNodeChildrenCnt = childCnt
GeometryNodeOccupancyCnt[depth][sN][tN][vN] = childCnt

The variable DirectModeFlagPresent is derived as follows:

− When all of the following conditions are true, DirectModeFlagPresent is set equal to 1:

− inferred_direct_coding_mode_enabled_flag is equal to 1

− proba_planar[0] * proba_planar[1] * proba_planar[2] is less than or equal to
 127 * 127 * geom_planar_mode_th_IDCM

− NodeSizeLog2 is greater than 1

− GeometryNodeOccupancyCnt[depth − 1][sNp][tNp][vNp] is less than or equal to 2

− GeometryNodeOccupancyCnt[depth][sN][tN][vN] is equal to 1

− NeighbourPattern is equal to 0

− (geometry_angular_mode_flag is equal to 0) OR (geometry_angular_mode_flag is equal to 1
AND idcm4angular[child] is equal to 1)

− Otherwise, DirectModeFlagPresent is set equal to 0.

The determination of the probabilities proba_planar[] is performed as described in 8.2.4.6.

num_points_eq1_flag[child] equal to 1 indicates that the current child node contains a single point.
num_points_eq1_flag equal to 0 indicates that the current child node contains at least two points. When
not present, the value of num_points_eq1_flag is inferred equal to 1.

num_points_minus2[child] plus 2 indicates the number of points represented by the current child node.

The array GeometryNodeDupPoints[child] identifies the number of duplicate points in each child of the
current leaf node. When num_points_eq1_flag is equal to 0, GeometryNodeDupPoints[child] is set equal
to 1 + num_points_minus2[child]. Otherwise, GeometryNodeDupPoints[child] is set equal to 0.

eligible_planar_flag[axisIdx] equal to 1 indicates that the child nodes of the current node are eligible
for the planar coding mode in the direction perpendicular to the axisIdx-th axis.
eligible_planar_flag[axisIdx] equal 0 indicates that the child nodes of the current node are not eligible
for the planar coding mode in the direction perpendicular to the axisIdx-th axis. When not present, the
value of eligible_planar_flag[axisIdx] is inferred to be 0. The value of eligible_planar_flag[axisIdx] is
determined as specified in 8.2.4.1.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 47

 Single occupancy data semantics

single_occupancy_flag equal to 1 indicates that the current node contains a single child node.
single_occupancy_flag equal to 0 indicates the current node may contain multiple child nodes.

occupancy_idx[i] with i = 0 .. 2 identifies index of the single occupied child of the current node in the
geometry octree child node traversal order. When present or inferred, the variable OccupancyMap is
determined from occupancy_idx[i] with i = 0 .. 2 as described in 9.7.4.

 Planar mode data semantics

is_planar_flag[child][axisIdx] equal to 1 indicates that the current child node is planar in the direction
perpendicular to the axisIdx-th axis. is_planar_flag[child][axisIdx] equal 0 indicates that the current
child node is not planar in the direction perpendicular to the i-th axis. When not present, the value of
is_planar_flag[child][axisIdx] is inferred to be 0.

The variable two_planar_flag indicates if a node is planar in at least two directions and is determined as
follows

two_planar_flag[nodeIdx] =
 (is_planar_flag[nodeIdx][0] && is_planar_flag[nodeIdx][1])
 || (is_planar_flag[nodeIdx][0] && is_planar_flag[nodeIdx][2])
 || (is_planar_flag[nodeIdx][1] && is_planar_flag[nodeIdx][2])

plane_position[child][axisIdx] equal 0 indicates that the position of the plane for the planar mode is
the lower position relative to increasing i-th co-ordinates. plane_position[child][axisIdx] equal 1
indicates that the position of the plane for the planar mode is the higher position relative to increasing
axisIdx-th co-ordinates.

 Direct mode data semantics

direct_mode_flag equal to 1 indicates that the single child node of the current node is a leaf node and
contains one or more delta point co-ordinates. direct_mode_flag equal to 0 indicates that the single child
node of the current node is an internal octree node. When not present, the value of direct_mode_flag is
inferred to be 0.

When direct_mode_flag is equal to 0, the following applies:

nodeIdx = NumNodesAtDepth[depth + 1]
for (child = 0; child < GeometryNodeChildrenCnt; child++) {
 childIdx = GeometryNodeChildren[child]
 s = NodeS[depth + 1][nodeIdx] = 2 × sN + (childIdx & 4 ==== 1)
 t = NodeT[depth + 1][nodeIdx] = 2 × tN + (childIdx & 2 ==== 1)
 v = NodeV[depth + 1][nodeIdx] = 2 × vN + (childIdx & 1 ==== 1)
 NodeQpMap[depth + 1][nodeIdx] = NodeQp
 GeometryNodeOccupancyCnt[depth + 1][s][t][v] = 1
 nodeIdx++
}
NumNodesAtDepth[depth + 1] = nodeIdx

num_direct_points_gt1 equal to 0 indicates that there is one point in the current child node or that all
points in the current child node have the same s, t and v co-ordinates. num_direct_points_gt1 equal to 1
indicates that there are at leats two points in the current child node with different s, t or v co-ordinates.

not_duplicated _point_flag equal to 0 indicates that all points in the current child node have the same s,
t and v co-ordinates. not_duplicated_point_flag equal to 1 indicates that at least two points in the current
child node have different s, t or v co-ordinates. When not present, the value of not_duplicated_point_flag
is inferred equal to 1.

The variable duplicatedPointFlag is derived as the negation of not_duplicated_point_flag as follows

ISO 23090-9:2020(E)

48 © ISO/IEC 2020 – All rights reserved

duplicatedPointFlag = !not_duplicated_point_flag

num_direct_points_eq2_flag equal to 1 indicates that there are two points in the current child node.
num_direct_points_eq2_flag equal to 0 indicates that theres are at least three points in the current child
node.

num_points_direct_mode_minus3 plus 3 indicates the number of points in the current child node.

num_direct_points_minus1 plus 1 indicates the number of points in the current child node. The variable
num_direct_points_minus1 is derived as follows

num_direct_points_minus1 = 0
if (num_direct_points_gt1) {
 num_direct_points_minus1 = 1
 if (duplicatedPointFlag && !num_direct_points_eq2_flag)
 num_direct_points_minus1 = 2 + num_points_direct_mode_minus3
}

num_direct_different_points_minus1 plus 1 is the number of points having at least one different s, t or
v co-ordinate in the current child node. The variable num_direct_different_points_minus1 is derived as
follows

num_direct_different_points_minus1 = num_direct_points_minus1
if (duplicatedPointFlag)
 num_direct_different_points_minus1 = 0

The variables ChildNodeSizeSLog2, ChildNodeSizeTLog2 and ChildNodeSizeVLog2 specify the s, t, and v
components of the child node size,, and are determined by implicit QT and BT partitions as follows.

if (!(partitionSkip & 4)
 ChildNodeSizeSLog2 = NodeSizeSLog2 – 1;
else
 ChildNodeSizeSLog2 = NodeSizeSLog2;
if (!(partitionSkip & 2)
 ChildNodeSizeTLog2 = NodeSizeTLog2 – 1;
else
 ChildNodeSizeTLog2 = NodeSizeTLog2;
if (!(partitionSkip & 1)
 ChildNodeSizeVLog2 = NodeSizeVLog2 – 1;
else
 ChildNodeSizeVLog2 = NodeSizeVLog2;

point_offset_s[i][j], point_offset_t[i][j], and point_offset_v[i][j] indicate the j-th bit of the current
child node's i-th point's respective s, t, and v co-ordinates relative to the origin of the child node identified
by the index GeometryNodeChildren[0].

When point_offset_s[i][0] is not present, the value of point_offset_s[i][0] is inferred by the plane
position plane_position[child][0].

When point_offset_t[i][0] is not present, the value of point_offset_t[i][0] is inferred by the plane
position plane_position[child][1].

When point_offset_v[i][0] is not present, the value of point_offset_v[i][0] is inferred by the plane
position plane_position[child][2].

The variables PointOffsetS[i], PointOffsetT[i], and PointOffsetV[i] are derived as follows:

PointOffsetS[i] = PointOffsetT[i] = PointOffsetV[i] = 0;
for (j = 0; j < EffectiveChildNodeSizeSLog2; j++)
 PointOffsetS[i] += point_offset_s[i][j] << j;

for (j = 0; j < EffectiveChildNodeSizeTLog2; j++)

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 49

 PointOffsetT[i] += point_offset_t[i][j] << j;

for (j = 0; j < EffectiveChildNodeSizeVLog2; j++)
 PointOffsetV[i] += point_offset_v[i][j] << j;

 Geometry trisoup data semantics

trisoup_sampling_value_minus1 plus 1 specifies the step size for the point sampling on the triangle
surface in the trisoup decoding process specified in 8.2.3.3

num_unique_segments specifies the number of segment indicators.

segment_indicator[i] indicates for a unique edge whether the edge intersects the surface and hence
contains a vertex (1) or not (0).

num_vertices_minus1 plus 1 specifies the number of vertices.

vertex_position[i] indicates the position of the vertex along the edge. The value of vertex_position[i]
shall be in the range of 0 to (1 << log2_trisoup_node_size) – 1, inclusive.

 Attribute data unit semantics

 General attribute data unit semantics

 Attribute data unit header semantics

ash_attr_parameter_set_id specifies the value of the aps_attr_parameter_set_id of the active APS.

ash_attr_sps_attr_idx specifies the order of attribute set in the active SPS. The value of
ash_attr_sps_attr_idx shall be in the range of 0 to sps_num_attribute_sets in the active SPS.

ash_attr_geom_slice_id specifies the value of the gsh_slice_id of the active Geometry Slice Header.

ash_attr_layer_qp_delta_present_flag equal to 1 specifies that the ash_attr_layer_qp_delta_luma and
ash_attr_layer_qp_delta_chroma syntax elements are present in current ASH.
ash_attr_layer_qp_delta_present_flag equal to 0 specifies that the ash_attr_layer_qp_delta_luma and
ash_attr_layer_qp_delta_chroma syntax elements are not present in current ASH.

ash_attr_num_layer_qp_minus1 plus 1 specifies the number of layer in which ash_attr_qp_delta_luma
and ash_attr_qp_delta_chroma are signalled. When ash_attr_num_layer_qp is not signalled, the value of
ash_attr_num_layer_qp is inferred to be 0. The value of NumLayerQp is derived as follows:

NumLayerQp = num_layer_qp_minus1 + 1

ash_attr_qp_delta_luma specifies the luma delta qp from the initial slice qp in the active attribute
parameter set. When ash_attr_qp_delta_luma is not signalled, the value of ash_attr_qp_delta_luma is
inferred to be 0.

ash_attr_qp_delta_chroma specifies the chroma delta qp from the initial slice qp in the active attribute
parameter set. When ash_attr_qp_delta_chroma is not signalled, the value of ash_attr_qp_delta_chroma is
inferred to be 0.

The variables InitialSliceQpY and InitialSliceQpC are derived as follows:

InitialSliceQpY = aps_attrattr_initial_qp + ash_attr_qp_delta_luma
InitialSliceQpC =
 aps_attr_initial_qp + aps_attr_chroma_qp_offset + ash_attr_qp_delta_chroma

ISO 23090-9:2020(E)

50 © ISO/IEC 2020 – All rights reserved

ash_attr_layer_qp_delta_luma specifies the luma delta qp from the InitialSliceQpY in each layer. When
ash_attr_layer_qp_delta_luma is not signalled, the value of ash_attr_layer_qp_delta_luma of all layers are
inferred to be 0.

ash_attr_layer_qp_delta_chroma specifies the chroma delta qp from the InitialSliceQpC in each layer.
When ash_attr_layer_qp_delta_chroma is not signalled, the value of ash_attr_layer_qp_delta_chroma of all
layers are inferred to be 0.

The variables SliceQpY[i] and SliceQpC[i] with i = 0 .. NumLayerQPNumQPLayer − 1 are derived as
follows:

for (i = 0; i < NumLayerQPNumQPLayer; i++) {
 SliceQpY[i] = InitialSliceQpY + ash_attr_layer_qp_delta_luma[i]
 SliceQpC[i] = InitialSliceQpC + ash_attr_layer_qp_delta_chroma[i]
}

ash_attr_region_qp_delta_present_flag equal to 1 indicates that a QP offset is applied to a spatial region
within the current slice. ash_attr_region_qp_delta_present_flag equal to 0 indicates that no spatial
adaptation of QP is performed for the current slice.

ash_attr_qp_region_origin_xyz[k] and ash_attr_qp_region_size_xyz[k] specify, when present, the
spatial region within the current slice where ash_attr_region_qp_delta is applied.

ash_attr_qp_region_origin_xyz[k] is the k-th component of the (x, y, z) origin co-ordinate relative to the
slice origin.

ash_attr_qp_region_size_xyz[k] is the k-th component of the region width, height, and depth, respectively.

The arrays AttrRegionQpOriginStv and AttrRegionQpSizeStv, with values AttrRegionQpOriginStv[k] and
AttrRegionQpSizeStv[k], for k = 0 .. 2, represents the values of ash_attr_qp_region_origin_xyz and
ash_attr_qp_region_size_xyz respectively permuted into the coded geometry axis order as follows:

AttrRegionQpOriginStv[XyzToStv[k]] = ash_attr_qp_region_origin_xyz[k]
AttrRegionQpSizeStv[XyzToStv[k]] = ash_attr_qp_region_size_xyz[k]

ash_attr_region_qp_delta specifies the QP offset to be applied within the region defined by
ash_attr_qp_region_origin_xyz and ash_attr_qp_region_size_xyz.

 Attribute slice data semantics

all_residual_values_equal_to_zero_run specifies the number of occurrence of the pattern which
indicates that each residual_values of all dimension are equal to zero.

pred_index[i] specifies the predictor index to decode the i-th point value of the attribute. The value of
pred_index[i] shall be range of 0 to MaxNumPredictors.

The variable MaxPredDiff[i] is calculated as follows:

Let ℵ𝑖𝑖 be the set of the k-nearest neighbours of the current point i and let �𝑎𝑎�𝑗𝑗�𝑗𝑗∈ ℵ𝑖𝑖
 be their

decoded/reconstructed attribute values. The number of nearest neighbours, k, shall be range of 1 to
lifting_num_pred_nearest_neighbours. The decoded/reconstructed attribute value of neighbours are
derived according to the Predictive Lifting decoding process (8.3.3).

minValue = maxValue = 𝑎𝑎�0
for (j = 0; j < k; j++) {
 minValue = Min(minValue, 𝑎𝑎�𝑗𝑗)
 maxValue = Max(maxValue, 𝑎𝑎�𝑗𝑗)
}

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 51

MaxPredDiff[i] = maxValue − minValue;

 Quantized value bitstream syntax

residual_values_equal_to_zero[k] equal to 1 indicates that residual_values[k][i] is equal to 0.
residual_values_equal_to_zero equal to 0 indicates that residual_values[k][i] is not equal to 0.

residual_values_equql_to_one[k] equal to 1 indicates that residual_values[k][i] equal to 1.
residual_values_equql_to_one equal to 0 indicates that residual_values[k][i] is larger than 2.

residual_values[k][i] describes the k-th dimension and the i-th point value of the attribute.

remaining_values[k][i] describes the k-th dimension and the i-th point remaining value of the attribute.
When not present, the value of remaining_value[k][i] is inferred to be 0.

8 Decoding process

8.1 General decoding process
The input to this process is a sequence of typed data unit buffers.

The output of this process is a series of decoded point cloud frames.

The decoding process is specified such that all decoders that conform to a specified profile and level will
produce numerically identical decoded point cloud frames when invoking the decoding process
associated with that profile for a bitstream conforming to that profile and level. Any decoding process
that produces identical decoded point cloud frame to those produced by the process described herein
conforms to the decoding process requirements of this Specification.

The decoding processes specified in the remainder of this clause apply to each coded picture, referred to
as the current picture and denoted by the variable CurrPic.

The decoding process for the current picture takes as inputs the syntax elements and upper-case
variables from 7.

The decoding process operates as follows for each slice of the current picture:

1. Point positions are decoded using the geometry data unit of the current slice as specified in 8.2.

2. Point attributes are decoded for each attribute data unit in the current slice as specified in 8.3.

3. The decoded points are offset and appended to the output point cloud frame as specified in 8.4.

8.2 Geometry decoding process
 General geometry decoding process

The output of this process is the array PointPos of reconstructed point positions with elements
PointPos[i][axis] for i ranging from 0 to gsh_num_points_minus1 inclusive, and axis ranging from 0 to
2 inclusive.

The variable PointCount is initialized to 0 when the decoding process for the current slice is invoked.

The geometry bitstream comprises a description of an octree. The decoding process for the octree is
specified in clause 8.2.2.

ISO 23090-9:2020(E)

52 © ISO/IEC 2020 – All rights reserved

The geometry bitstream may also comprise a description of the Trisoup. The decoding process for the
Trisoup bitstream is specified in clause 8.2.3.

 Octree decoding process

 General

 Octree node decoding process

The inputs to this process are:

– an octree node location (depth, nodeIdx) specifying the position of the current geometry octree node

– a spatial location (sN, tN, vN) specifying the position of the current geometry octree node in the
current slice.

The outputs of this process are the modified array PointPos and the updated variable PointCount.

If both EffectiveDepth is less than MaxGeometryOctreeDepth − 1, and direct_mode_flag is equal to 0, no
points are output by this process. Otherwise, if either EffectiveDepth is greater than or equal to
MaxGeometryOctreeDepth − 1, or direct_mode_flag is equal to 1, the remainder of this process generates
one or more point positions.

The function geomScale(val, cIdx) is defined as the invocation of the scaling process for a single octree
node position component 8.2.2.3 with the position val, the component cIdx, and the variable qP set equal
to NodeQp as inputs.

The spatial location of points in each occupied child is determined according to the number of duplicate
points in each child and the use of direct coded positions as follows:

for (child = 0; child < GeometryNodeChildrenCnt; child++) {
 childIdx = GeometryNodeChildren[child];
 s = 2 × sN + (childIdx & 4) ==== 1;
 t = 2 × tN + (childIdx & 2) ==== 1;
 v = 2 × vN + (childIdx & 1) ==== 1;
 for (i = 0; i < GeometryNodeDupPoints[child] + 1 ; i++, PointCount++) {
 PointPos[PointCount][0] = geomScale(s, 0);
 PointPos[PointCount][1] = geomScale(t, 1);
 PointPos[PointCount][2] = geomScale(v, 2);
 }
 if (direct_mode_flag) {
 if (!duplicatedPointFlag) {
 for (i = 0; i <= num_direct_points_minus1; i++, PointCount++) {
 PointPos[PointCount][0] = geomScale((s << EffectiveChildNodeSizeLog2) +
PointOffsetS[i], 0);
 PointPos[PointCount][1] = geomScale((t << EffectiveChildNodeSizeLog2) +
PointOffsetT[i], 1);
 PointPos[PointCount][2] = geomScale((v << EffectiveChildNodeSizeLog2) +
PointOffsetV[i], 2);
 }
 }
 else {
 for (i = 0; i <= num_direct_points_minus1; i++, PointCount++) {
 PointPos[PointCount][0] = geomScale((s << EffectiveChildNodeSizeLog2) +
PointOffsetS[0], 0);
 PointPos[PointCount][1] = geomScale((t << EffectiveChildNodeSizeLog2) +
PointOffsetT[0], 1);
 PointPos[PointCount][2] = geomScale((v << EffectiveChildNodeSizeLog2) +
PointOffsetV[0], 2);
 }
 }
 }

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 53

}

It is a requirement of bitstream conformance that PointCount is less than or equal to gsh_num_points.

 Scaling process for a single octree node position component

The inputs to this process are:

– a variable val representing an unscaled position component value,

– a variable cIdx specifying the position component index,

– a variable qP specifying the quantization parameter.

The output of this process is the scaled position component value pos.

(NOTE?) When geom_scaling_enabled_flag is equal to 0, the output of this process ie equal to the input value pos.
The variable scalingExpansionLog2 is set equal to (qP − 4) / 6.

The variables highPart and lowPart representing concatenated parts of the unscaled position component
value are derived as follows:

highPart = val >> (ScalingNodeSizeLog2[cIdx] − scalingExpansionLog2)
lowPart = val & ((1 << (ScalingNodeSizeLog2[cIdx] − scalingExpansionLog2)) − 1)

The list geomLevelScale is specified as:

geomLevelScale[i] = { 659445, 741374, 831472, 933892, 1048576, 1175576 } with i = 0..5

The scale factor sF is derived as follows:

sF = geomLevelScale[qP % 6] << (qP / 6)

The output variable pos is derived as follows:

highPartS = highPart << ScalingNodeSizeLog2[cIdx]
lowPartS = (lowPart × sF + (1 << 19)) >> 20
pos = highPartS | Min(lowPartS, (1 << ScalingNodeSizeLog2[cIdx]) − 1)

 Geometry Trisoup decoding process

This process is invoked after 8.2.2 when TrisoupNodeSize is greater than 0.

This process modifies the following:

 the variable PointCount as the number of the decoded geometry points,

This process invokes the processes from 8.2.3.1 to 8.2.3.4 in sequential order.

 Derivation process for the segment index

Outputs of the process are:

 an array segStPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2, for the start position of a segment

 an array segEdPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2, for the end position of a segment

 an array segVertex[i] with i = 0 .. NodeNum – 1 for the vertex position intersecting the segment

ISO 23090-9:2020(E)

54 © ISO/IEC 2020 – All rights reserved

A variable NodeNum for the number of the trisoup node is set to PointCount × 12 – 1.

This process invokes the sub processes from 8.2.3.1.1 to 8.2.3.1.3 in sequential order.

8.2.3.1.1 Derivation process for sorted segment index

Outputs of this process are:

 the array segStPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2

 the array segEdPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2

 an array sortedSegIdx[i] with i = 0 .. NodeNum − 1 for the sorted segment index.

segStPos[i][axis] and segEdPos[i][axis] with i = 0 .. PointCount − 1 , axis = 0..2 are derived as follows.

for (k = 0; k < 12; k++) {
 segStPos[i × 12+k][axis] =
 PointPos[i][axis] + segStOffsetTable[k][axis] × TrisoupNodeSize
 segEdPos[i × 12+k][axis] =
 PointPos[i][axis] + segEdOffsetTable[k][axis] × TrisoupNodeSize
}

The tables segStOffsetTable[k][axis] and segEdOffsetTable[k][axis] are defined in Table 13 and Table
14, respectively.

Table 13 — segStOffsetTable[k][axis]

axis k

0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 1 0 0 1 1 0 0 0 1

1 0 0 1 0 0 1 1 0 0 0 1 0

2 0 0 0 0 0 0 0 0 1 1 1 1

Table 14 — segEdOffsetTable[k][axis]

axis k

0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 1 1 0 0 1 1 1 0 1 1

1 0 1 1 1 0 1 1 0 0 1 1 1

2 0 0 0 0 1 0 1 1 1 1 1 1

An array stPos1D[i] with i = 0 .. NodeNum − 1 is derived as follows.

stPos1D[i] = (segStPos[i][0] << 42) + (segStPos[i][1] << 21) + segStPos[i][2]

The array sortedSegIdx[i] is sorted based on the value of stPos1D[i] for i = 0 .. NodeNum − 1.

sort(sortedSegIdx[i], stPos1D[i])

where sort(a[], b[]) is a process to reorder the content of the 1D array a[] depending on the value of
1D array b[] in the ascending order.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 55

8.2.3.1.2 Derivation process for unique segment index

Input to this process are:

 the array segStPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2,

 the array segEdPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2,

 the array sortedSegIdx[i] with i = 0 .. NodeNum − 1 .

Outputs of this process are:

 a variable numUniqSeg for the number of unique segments,

 an array uniqSegIdx[i] with i = 0 .. NodeNum − 1 for the unique segment index,

 an array uniqSegStPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2 for the start position of an
unique segment,

 an array uniqSegEdPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2 for the end position of an
unique segment,

A variable uIdx is initialized to 1, and numUniqSeg is initialized to 0.

uniqSegStPos[0][axis] and uniqSegEdPos[0][axis] with axis = 0 .. 2 are initialized as follows:

uniqSegStPos[0][axis] = segStPos[sortedSegIdx[0]][axis]
uniqSegEdPos[0][axis] = segEdPos[sortedSegIdx[0]][axis]

uniqSegIdx[0] is initialized to 0.

For the variable i = 1 .. NodeNum , the following applies:

 If segStPos[i][axis] is not equal to uniqSegStPos[uIdx][axis] with axis = 0 .. 2 or
segEdPos[i][axis] is not equal to uniqSegEdPos[uIdx][axis] with axis = 0 .. 2 , the following applies:

 uniqSegStPos[uIdx][axis] and uniqSegEdPos[uIdx][axis] with axis = 0 .. 2 are derived as
follows:

uniqSegStPos[uIdx][axis] = segStPos[sortedSegtIdx[i]][axis]
uniqSegEdPos[uIdx][axis] = segEdPos[sortedSegtIdx[i]][axis]

 uIdx is set equal to (uIdx + 1).

 uniqSegIdx[] is updated as follows:

uniqSegIdx[sortedSegtIdx[i]] = uIdx − 1

Finally, numUniqSeg is derived as follows,

numUniqSeg = uIdx

8.2.3.1.3 Derivation process for unique segment vertex

Inputs to the process are:

 the variable numUniqSeg,

 the array uniqSegIdx[i] with i = 0 .. NodeNum − 1 ,

ISO 23090-9:2020(E)

56 © ISO/IEC 2020 – All rights reserved

 the array sortedSegIdx[i] with i = 0 .. NodeNum − 1 .

Output of the process is

 the array segVertex[i] with i = 0 .. NodeNum − 1

A variable vertexCount is initialized equal to 0.

An array uniqSegVertex[i] with i = 0 .. numUniqSeg − 1 is derived as follows:

 If the value of segment_indicator[i] is not equal to 0, the following applies:

 uniqSegVertex[i] is set equal to vertex_position[vertexCount]

vertexCount += 1

 Otherwise (the value of segment_indicator[i] is equal to 0),

uniqSegVertex[i] is set equal to −1.

Finally, segVertex[i] with i = 0 .. NodeNum − 1 is derived as follows:

segVertex[i] = uniqSegVertex[uniqSegIdx[sortedSegIdx[i]]]

 Derivation process for the reconstructed triangles

Inputs to the process are:

 the array segStPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2,

 the array segEdPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2,

 the array segVertex[i] with i = 0 .. NodeNum − 1

Outputs of the process are:

 a variable numTriangles for the number of the decoded triangles,

 an array recTriVertex[tIdx][vertex][axis] with tIdx = 0 .. numTriangles − 1, vertex = 0 .. 2,
axis = 0 .. 2 for the vertex positions of the decoded triangles.

The variable numTriangles is initialized to 0.

This process invokes the processes from 8.2.3.2.1 to 8.2.3.2.3 with the variable nIdx = 0 .. PointCount − 1
as the node index.

8.2.3.2.1 Derivation process for the leaf vertex

Inputs to the process are:

 the variable nIdx,

 the array segVertex[i] with i = 0 .. NodeNum − 1,

 the array segStPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2,

 the array segEdPos[i][axis] with i = 0 .. NodeNum − 1 , axis = 0 .. 2

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 57

Outputs of the process are:

 a variable numVertex for the number of the leaf vertices,

 an array leafVertices[j][axis] with j = 0 .. numVertex − 1 , axis = 0 .. 2,

 a variable bkWidth for the block width of the node

The following applies:

 numVertex is initialized to 0.

for (k = 0; k < 12; k++){

 If segVertex[nIdx × 12+k] is greater than 0, the following applies:

 An array segDist[axis] with axis = 0..2 is derived as follows:

 segDist[axis] = segEdPos[nIdx × 12+k][axis] − segStPos[nIdx × 12+k][axis]

 A variable bkWidth is derived as follows:

 bkWidth = Max(Max(segDist[0], segDist[1]), segDist[2])

 A variable dist is derived as follows:

 If segVertex[nIdx × 12+k] is equal to 0,

 dist is set to 0.

 Otherwise, if segVertex[nIdx × 12+k] is equal to (bkWidth − 1),

 dist is set to (bkWidth << 8).

 Otherwise (segVertex[nIdx × 12+k] is greater than 0 and less than (bkWidth − 1)),

 dist is set to (segVertex[nIdx × 12+k] << 8) + 128.

 leafVertices[numVertex][axis] with axis = 0 .. 2 is derives as follows:

 leafVertices[numVertex][axis] = (segStPos[nIdx × 12+k][axis] << 8)

 If segDist[axis] with axis = 0 .. 2 is greater than 0, the following applies.

 leafVertices[numVertex][axis] += dist

 Finally, numVertex is set equal to (numVertex +1).

}

8.2.3.2.2 Sorting process for leafVertices

Inputs to the process are:

 the variable nIdx,

 the variable bkWidth,

 the variable numVertex,

ISO 23090-9:2020(E)

58 © ISO/IEC 2020 – All rights reserved

 the array leafVertices[j][axis] with j = 0 .. numVertex − 1 , axis = 0 .. 2

Output of the process is

 the sorted array leafVertices[j][axis] with j = 0 .. numVertex − 1 , axis = 0 .. 2

This process is skipped if numVertex is less than 3.

An array centroid[axis] with axis = 0 .. 2 is derived as follows:

centroid[axis] = 0
for (j = 0; j < numVertex; j++)
 centroid[axis] += leafVertices[j][axis]
centroid[axis] /= numVertex

An array variance[axis] with axis = 0 .. 2 is derived as follows:

variance[axis] = 0
for (j = 0; j < numVertex; j++)
 variance[axis] += ((leafVertices[j][axis] − centroid[axis])^2) >> 8

A variable minVariance is derived as follows:

minVariance = Min(Min(variance[0], variance[1]), variance[2])

A variable mainAxis is derived as follows:

mainAxis = (minVariance == variance[0] ? 0 : (minVariance == variance[1] ? 1 : 2))

A array triSide[j][axis] with j = 0 .. numVertex − 1 , axis = 0 .. 2 is derived as follows

triSide[j][axis] = leafVertices[j][axis] – ((PointPos[nIdx][axis]+ bkWidth/2) << 8)

An array theta[j] and tiebreaker[j] with j = 0 .. numVertex − 1 are derived as follows:

theta[j] = iAtan2(triSide[j][mainAxis == 2 ? 1 : 2], triSide[j][mainAxis == 0 ? 1 : 0])
tiebreaker[j] = triSide[j][mainAxis]

where the function iAtan2() is defined in 5.9.1.

An array triSortIdx[j] with j = 0 .. numVertex − 1 is derived as follows:

triSortIdx[j] = (theta[j] << 16 + tiebreaker[j]) × −1

Finally, the array leafVertices[j] is sorted based on the value of triSortIdx[j] for j = 0. numVertex − 1.

sort(leafVertices[j], triSortIdx[j])

where sort(a[], b[]) is a process to reorder the content of the 1D array a[] depending on the value of
1D array b[] in the ascending order.

8.2.3.2.3 Derivation process for reconstructed triangle vertex

Inputs to the process are:

 the variable numVertex,

 the array leafVertices[j][axis] with j = 0 .. numVertex − 1 , axis = 0 .. 2,

 the variable numTriangles

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 59

Outputs of the process are

 the modified variable numTriangles

 the array recTriVertex[k][vertex][axis] with vertex = 0 .. 2, axis = 0 .. 2 for the vertices of the k-th
decoded triangles.

This process is skipped if numVertex is less than 3.

A variable triStart is derived as follows:

triStart = (numVertex − 3) × (numVertex – 2) / 2

For the variable triIndex = 0 .. (numVertex – 2) , the following applies:

 An array triOrder[axis] with axis = 0 .. 2 is derived as follows:

triOrder[axis] = polyTriangles[triStart+triIndex][axis]

 recTriVertex[numTriangles][vertex][axis] with vertex = 0 .. 2, axis = 0 .. 2 is derived as follows:

recTriVertex[numTriangles][vertex][axis] = leafVertices[triOrder[vertex]][axis]

 numTriangles is set to (numTriangles+1).

where the value of polyTrianges[i][axis] is defined in Table 15.

Table 15 — value of polyTriangles[i][axis]

i

axi
s

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

0 0 0 2 0 2 4 0 2 4 0 0 2 4 6 2 0 2 4 6 0

1 1 1 3 1 3 0 1 3 5 2 1 3 5 0 4 1 3 5 7 2

2 2 2 0 2 4 2 2 4 0 4 2 4 6 2 6 2 4 6 0 4

i

axi
s

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

0 4 0 2 4 6 8 2 6 0 2 4 6 8 0 4 8 0 2 4 6

1 6 1 3 5 7 0 4 8 1 3 5 7 9 2 6 0 1 3 5 7

2 0 2 4 6 8 2 6 2 2 4 6 8 0 4 8 4 2 4 6 8

i

axi
s

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

0 8 10 2 6 10 0 2 4 6 8 10 0 4 8 0

1 9 0 4 8 2 1 3 5 7 9 11 2 6 10 4

2 10 2 6 10 6 2 4 6 8 10 0 4 8 0 8

 Points derivation process on the triangles

Inputs to this process are:

ISO 23090-9:2020(E)

60 © ISO/IEC 2020 – All rights reserved

 the variable numTriangles,

 the array recTriVertex[tIdx][vertex][axis] with tIdx = 0 .. numTriangles − 1, vertex = 0 .. 2, and
axis = 0 .. 2

Outputs of the process are:

 a variable numPtsOnTriangle for the number of the decoded points on the reconstructed triangles,

 an array ptsOnTriangle[k][axis] with k = 0 .. numPtsOnTriangle − 1 , axis = 0 .. 2

The variable numPtsOnTriangle is initialized to 0.

A variable bbSize is set to (1 << geom_max_node_size_log2) – 1.

For the variable k = 0 .. numTriangles − 1, the following applies:

 An array recTV[vertex][axis] with vertex = 0 .. 2, axis = 0 .. 2 is set to
recTriVertex[k][vertex][axis]

 The three vertices of recTV[vertex][axis] are added to ptsOnTriangle[][axis] with axis = 0 .. 2 as
follows:

for (vertex = 0; vertex < 3; vertex++)
 ptsOnTriangle[numPtsOnTriangle++][axis] = Clip3(recTV[vertex][axis], 0, bbSize)

 For the variable rDir = 0 .. 2, g1 = 0 .. bbSize – 1 , g2 = 0 .. bbSize – 1 , and sign = 0 .. 1, the following
applies:

 A variable rSign is derived as follows:

rSign = sign > 0 ? 256: −256

 A variable rayStart is derived as follows:

rayStart = sign > 0 ? −256 : (bbSize+1) << 8

 An array rayOrigin[axis] with axis = 0 .. 2 is derived as follows:

rayOrigin[0] = (rDir == 0) ? rayStart : g1 << 8
rayOrigin[1] = (rDir == 1) ? rayStart : g1 << 8
rayOrigin[2] = (rDir == 2) ? rayStart : g2 << 8

 An array rayVector[axis] with axis = 0 .. 2 is derived as follows:

rayVector[0] = (rDir == 0) ? rSign : 0
rayVector[1] = (rDir == 1) ? rSign : 0
rayVector[2] = (rDir == 2) ? rSign : 0

 An array interSection[axis] is derived by the process in 8.2.3.3.1 with the input
recTV[vertex][axis], rayOrigin[axis], and rayVector[axis] with vertex = 0 .. 2, axis = 0 .. 2 .

 If all the values of interSection[axis] with axis = 0 .. 2 are greater than 0 and less than or equal
to bbSize, the following applies:

 ptsOnTriangle[numPtsOnTriangle][axis] with axis = 0 .. 2 is set equal
to interSection[axis]

 numPtsOnTriangle is set to (numPtsOnTriangle+1)

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 61

8.2.3.3.1 Derivation process of the intersection between triangle and vector

Inputs to the process are:

 three triangle vertices positions v0[axis], v1[axis], and v2[axis] with axis = 0 .. 2,

 the start position of the vector rayOrg[axis] with axis = 0 .. 2,

 the direction of the vector rayVec[axis] with axis = 0 .. 2.

Output of the process is the array interSection[axis] with axis = 0 .. 2.

The array interSection[axis] with axis = 0 .. 2 is initialized to − 1.

An array edge1[axis], edge2[axis], and rOV[axis] with axis = 0 .. 2 are derived as follows:

edge1[axis] = v1[axis] − v0[axis]
edge2[axis] = v2[axis] − v0[axis]
rOV[axis] = rayOrg[axis] − rayVec[axis]

An array cp1[axis] with axis = 0 .. 2 is derived as follows.

cp1[axis] = CrossProduct(rayVec[axis], edge2[axis])

A variable r1 is calculated as follows:

r1 = InnerProduct(edge1[axis], cp1[axis]) / 256

If r1 is equal to 0, the process ends.

Otherwise (r1 is not equal to 0), the following applies:

 The variable r2 is calculated as follows:

r2 = InnerProduct(rOV[axis], cp1[axis]) / r1

 If r2 is less than 0 or greater than 256, the process ends.

 Otherwise (r2 is greater than or equal to 0 and r2 is less than or equal to 256), the following
applies:

 An array cp2[axis] with axis = 0 .. 2 is derived as follows:

cp2[axis] = CrossProduct(rOV[axis], edge1[axis])

 A variable r3 is derived as follows:

r3 = InnerProduct(rayVec[axis], cp2[axis]) / r1

 If r3 is less than 0 or (r2+r3) is greater than 256, the process ends.

 Otherwise (r3 is greater than or equal to 0 and (r2+r3) is less than or equal to 256), the
following applies:

 A variable rScale is calculated as follows:

rScale = InnerProduct(edge2[axis], cp2[axis]) / r1

 If rScale is less than or equal to 0, the process ends.

ISO 23090-9:2020(E)

62 © ISO/IEC 2020 – All rights reserved

 Otherwise (rScale is greater than 0), interSection[axis] with axis = 0 .. 2 is derived as
follows:

interSection[axis] = Max(0, (rayOrg[axis]+((rayVec[axis] × rScale) >> 8) – 128) >> 8)

 Update process of the decoded geometry points

Inputs to the process are:

 the variable numPtsOnTriangle,

 the array ptsOnTriangle[k][axis] with k = 0 .. numPtsOnTriangle − 1 and axis = 0 .. 2

For a variable p with p = 0 .. numPtsOnTriangle − 1 , if the values of ptsOnTriangle[p][axis] are equal
to the values of ptsOnTriangle[q][axis] with q = 0 .. numPtsOnTriangle − 1 , axis = 0 .. 2 and q ! = p, the
following applies:

ptsOnTriangle[q][axis] with axis = 0..2 is removed from the array.
numPtsOnTriangle−−

The process is repeated until the values of ptsOnTriangle[p][axis] with p = 0..numPtsOnTriangle − 1 ,
axis = 0..2 are unique from the ptsOnTriangle[q][axis] with q = 0..numPtsOnTriangle − 1 , axis = 0..2 .

Finally, the following applies:

PointCount = numPtsOnTriangle

PointPos[i][axis] with i = 0..PointCount − 1 , axis = 0..2 is modified as follows.

PointPos[i][axis] = ptsOnTriangle[i][axis]

 Planar coding mode

 Eligiblity of a node for planar coding mode

For an axis index axisIdx in the range 0 .. 2, the value of eligible_planar_flag[axisIdx] for a current node is
determined as follows

if (depth == GeomScalingDepth − 1)
 eligible_planar_flag[axisIdx] = 0
else if (localDensity >= 3 × 1024)
 eligible_planar_flag[axisIdx] = 0
else {
 eligible_planar_flag[axisIdx] =
 planeRate[axisIdx] >= geom_planar_mode_th[probable_order[axisIdx]]
}

The variable localDensity is an estimate of the mean number of occupied child nodes in a node.
localDensity is initialized to the value localDensity = 1024*4 when starting the geometry decoding
process.

The variable planeRate[axisIdx], for axisIdx in the range 0 2, is an estimate of the probability for a node
to be planar in the direction perpendicular to the axisIdx-th axis. planeRate[axisIdx] is initialized to the
value planeRate[axisIdx] = 128 * 8 when starting the geometry decoding process.

After decoding occupancy_map or occupancy_byte of a current node, the values of localDensity and
planeRate[axisIdx] are updated by

localDensity = ((localDensity << 8) − localDensity + 1024 × GeometryNodeChildrenCnt) >> 8

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 63

if (isNodePlanar[axisIdx])
 planeRate[axisIdx] = ((planeRate[axisIdx] << 8) − planeRate[axisIdx] + 256 + 128) >> 8
else
 planeRate[axisIdx] = ((planeRate[axisIdx] << 8) − planeRate[axisIdx] + 128) >> 8

where isNodePlanar[axisIdx] is equal to 1 if the current node is planar in the direction perpendicular to
the axisIdx-th axis, and is equal to 0 otherwise.

The three values of probable_order[] are deduced from the ordering of the three-entry array planeRate[]
as defined in Table 16.

Table 16 — Determination of the values of probable_order[] from planeRate[]

Condition probable_order[0] probable_order[1] probable_order[2]
planeRate[0]≥ planeRate[1] ≥ planeRate[2] 0 1 2
planeRate[0]≥ planeRate[2] > planeRate[1] 0 2 1
planeRate[1]>planeRate[0] ≥ planeRate[2] 1 0 2
planeRate[1]> planeRate[2] > planeRate[0] 2 0 1
planeRate[2]> planeRate[0] ≥ planeRate[1] 1 2 0
planeRate[2]> planeRate[1] > planeRate[0] 2 1 0

 Buffer tracking the closest nodes in along an axis

The determination of planarIdx (respectively planePosIdx) for the arithmetic coding of
is_planar_flag[child][axisIdx] (respectively plane_position[child][axisIdx]) is performed based on the
planar status of and the distance from the closest already decoded node with same depth and same
axisIdx-th co-ordinate as the current node’s child node. A limited number of candidate nodes for the
closest nodes are tracked by two buffers

 buffer_closest_node_position[axisIdx][coord][candidateIdx][secondary_axisIdx],

 buffer_closest_node_status[axisIdx][coord][candidateIdx],

where axisIdx is an axis index in the range 0 .. 2, and where candidateIdx is a candidate node index in the
range 0 .. nb_candidates − 1. The value nb_candidates specifies the number of candidate nodes tracked by
the buffer and is set to nb_candidates = 4 .

The value of the variable coord specifies the co-ordinate of the candidate nodes along the axisIdx-th axis
at the spatial precision of the current depth plus 1 which is the depth of the child nodes. For a given value
depth of the depth in octree, coord is in the range 0 .. ((1 << (depth+1)) − 1).

The value of the variable secondary_axisIdx specifies a secondary axis index in the range 0 .. 1. When
axisIdx is equal to 0, secondary_axisIdx equal to 0 specifies the t axis, and secondary_axisIdx equal to 1
specifies the v axis. When axisIdx is equal to 1, secondary_axisIdx equal to 0 specifies the s axis, and
secondary_axisIdx equal to 1 specifies the v axis. When axisIdx is equal to 2, secondary_axisIdx equal to
0 specifies the s axis, and secondary_axisIdx equal to 1 specifies the t axis.

The two buffers are initialized, at the start of the geometry decoding process and also each time the
variable depth specifying the octree depth is incremented, as follows

for (axisIdx = 0 ; axisIdx <= 2 ; axisIdx++)
 for (coord = 0 ; coord < (1 << (depth + 1)) ; coord++)
 for (candidateIdx = 0; candidateIdx < nb_candidates; candidateIdx++) {
 buffer_closest_node_position[axisIdx][coord][candidateIdx][0] = statusKnown
 buffer_closest_node_position[axisIdx][coord][candidateIdx][1] = statusKnown

ISO 23090-9:2020(E)

64 © ISO/IEC 2020 – All rights reserved

 buffer_closest_node_status[axisIdx][coord][candidateIdx] = statusUnknown
 }

where statusKnown is equal to 1 and statusUnknown is equal to 0.

The two buffers are updated after each decoding of the planar mode syntax of a child node, e.g. after each
call of geometry_planar_mode_data(child, axisIdx). First the closest candidate node whose index is
closestIdx, index determined as described in 8.2.4.3, is pushed as the right-most candidate in the buffer.
Second, all candidate nodes are pushed left, losing the left-most candidate mode in the process. Finally,
the child node is pushed as the right-most candidate

buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][0] =
 buffer_closest_node_position[axisIdx][coord_child[axisIdx]][closestIdx][0]

buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][1] =
 buffer_closest_node_position[axisIdx][coord_child[axisIdx]][closestIdx][1]

buffer_closest_node_status[axisIdx][coord_child[axisIdx]][nb_candidates−1] =
 buffer_closest_node_status[axisIdx][coord_child[axisIdx]][closestIdx]

for (candidateIdx = 0; candidateIdx < nb_candidates−1; candidateIdx++) {
 buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx][0] =
 buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx+1][0]

 buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx][1] =
 buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx+1][1]

 buffer_closest_node_status[axisIdx][coord_child[axisIdx]][candidateIdx] =
 buffer_closest_node_status[axisIdx][coord_child[axisIdx]][candidateIdx+1]
}

buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][0] =
 coord_child[other_axis[axisIdx][0]]

buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][1] =
 coord_child[other_axis[axisIdx][1]]

buffer_closest_node_status[axisIdx][coord_child[axisIdx]][nb_candidates−1] =
 child_node_status[axisIdx]

The planar status child_node_status[] of the child node is determined as follows

if (is_planar_flag[child][axisIdx])
 child_node_status[axisIdx] = plane_position[child][axisIdx]
else
 child_node_status[axisIdx] = NOT_PLANAR

where planar NOT_PLANAR is a value different from 0,1 and UNKNOWN_STATUS.

The values of other_axis[axisIdx][XXX] are provided by the Table 17.

Table 17 — the values of other_axis[axisIdx][XXX]

axisIdx other_axis[axisIdx][0] other_axis[axisIdx][1]
0 1 2
1 0 2
2 0 1

The variable coord_child[] is the co-ordinates of the child node with the spatial precision at depth + 1
which is the depth of the child node. The value of coord_child[axisIdx] are obtained from the unscaled co-

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 65

ordinate (sN, tN, vN) of the lower left corner of the child node by coord_child[0] = sN,
coord_child[1] = tN and coord_child[2] = vN .

 Determination of planarIdx for the coding of the planar mode flag

When planar_buffer_disabled is not equal to 1, the determination of planarIdx for the arithmetic coding
of is_planar_flag[child][axisIdx] is performed based firstly on axisIdx, secondly based on the occupancy
of the neighbouring nodes of the current node along the axisIdx-th axis, and thirdly on the distance from
the closest already decoded node with same depth and same axisIdx-th co-ordinate as the current node
child node.

The index closestIdx the closest candidate node is determined as the left-most index idx that minimizes
the distance d[axisIdx][idx] defined as follows

d[child][axisIdx][idx] =
 Abs(buffer_closest_node_position[axisIdx][coord_child[axisIdx]][Idx][0]
 − coord_child[other_axis[axisIdx][0]])
 + Abs(buffer_closest_node_position[axisIdx][coord_child[axisIdx]][Idx][1]
 − coord_child[other_axis[axisIdx][1]])

and the minimal distance is d_min[child][axisIdx] = d[child][axisIdx][closestIdx].

The planar parent neighbouring configuration neigh_planar[child][axisIdx] is deduced from the
occupancy of the neighbouring node N of the current (parent) node such that the node N is a neighbourg
along the axisIdx-th axis and is adjacent to the child node. neigh_planar[child][axisIdx] is set to 1 if the
node N is occupied, 0 otherwise.

The context index planarIdx , for a child node and an axis index axisIdx, is then determined by

planarIdx = axisIdx + 3 × (neigh_planar[child][axisIdx] + (d_min[child][axisIdx] <= 2 ?
0 : 2))

Otherwise, when planar_buffer_disabled is equal to 1, the context index planarIdx , for a child node and
an axis index axisIdx, is set to

planarIdx = axisIdx

 Determination of planePosIdx for the coding of the plane position

The determination of planePosIdx for the arithmetic coding of plane_position[child][axisIdx] is
performed based on

• axisIdx
• planar parent neighbouring configuration neigh_planar[child][axisIdx]
• the planar status status[child][axisIdx] of the closest already decoded node whose index is

closestIdx
• the distance d_min[child][axisIdx] from the closest already decoded node
• and fourthly on the position pos[child][idx] along the axisIdx-th axis of the child inside its parent.

The planar status is determined by, in case planar_buffer_disabled is not equal to 1,

status[child][axisIdx] =
 buffer_closest_node_status[axisIdx][coord_child[axisIdx]][closestIdx]

and pos[child][axisIdx] is set equal to 1 if the child node is located at the higher co-ordinate position,
within its parent, along the axisIdx-th axis, and set equal to 0 if the child node is located at the lower co-
ordinate position.

ISO 23090-9:2020(E)

66 © ISO/IEC 2020 – All rights reserved

Otherwise, in case planar_buffer_disabled is equal to 1, the planar status is set to

status[child][axisIdx] = UNKNOWN_STATUS

The context index planePosIdx, for a child node and an axis index axisIdx, is then determined by

if (status[child][axisIdx] == UNKNOWN_STATUS || status[child][axisIdx] == NOT_PLANAR) {
 planePosIdx = 0
} else {
 discrete_dist = (d_min[child][axisIdx] <= 2 ? 0 : 1) + (d_min[child][axisIdx] <= 16 ?
0 : 1)
 planePosIdx = axisIdx + 3 × (neigh_planar[child][axisIdx] + 2 × discrete_dist)
 planePosIdx += 18 × pos[child][idx]
 planePosIdx += 1
}

 Determination of planePosIdxAngular for the coding of the vertical plane position

The determination of planePosIdxAngular for the arithmetic coding of plane_position[child][2] is
obtained as follows.

In case geometry_angular_mode_flag is equal to 0, i.e. the angular coding mode is not used, the value of
planePosIdxAngular is set equal to planePosIdx.

In case geometry_angular_mode_flag is equal to 1, the value of planePosIdxAngular is determined from
contextAngular by

if (contextAngular == −1)
 planePosIdxAngular = planePosIdx
else
 planePosIdxAngular = 36 + contextAngular[child]

The determination of contextAngular[child] for the arithmetic coding of plane_position[child][2] is
performed asdescribed in section 8.2.5.3.

 Determination of the probability proba_planar[] of good plane position prediction

The information proba_planar[] on the probability of good plane position prediction is used in the
determination of the direct coding mode activation flag DirectModeFlagPresent. The value of
proba_planar[axisIdx], for an axis index in the range 0 .. 2, is in the range 1 .. 127 and is deduced as follows
for each child node

proba_planar[axisIdx] = 127
if (is_planar_flag[child][axisIdx]) {
 if (axisIdx <= 1)
 p = p0[planePosIdx] >> 9
 else
 p = p0[planePosIdxAngular] >> 9
 if (plane_position[child][axisIdx])
 p = 128 – p
 if (p < 1)
 p = 1
 if (p > 127)
 p = 127
 proba_planar[axisIdx] = p
}

where p0[planePosIdx] (respectively p0[planePosIdxAngular]) is the probability, provided by the
CABAC before decoding the bit plane_position[child][axisIdx], of having a zero associated with the
context. This probability p0[planePosIdx] (respectively p0[planePosIdxAngular]) is provided as a 16-
bit unsigned integer in the range 0 .. 0xffff .

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 67

Note that proba_planar[axisIdx] does not need to depend on the child node because the direct mode is
activated if there is only one occupied child node in the current node.

 Angular coding mode

 Determination of the angular eligiblity for a node

The following process applies to a child node Child to determine the angular elibiligility
angular_eligible[Child] of the child node. If geometry_angular_mode_flag is equal to 0,
angular_eligible[Child] is set to equal to 0. Otherwise, the following applies

midNodeS = 1 << (ChildNodeSizeSLog2 − 1)
midNodeT = 1 << (ChildNodeSizeTLog2 − 1)
sLidar = Abs(((sNchild − geomAngularOrigin[0] + midNodeS) << 8) – 128)
tLidar = Abs(((tNchild − geomAngularOrigin[1] + midNodeT) << 8) – 128)
rL1 = (sLidar + tLidar) >> 1
deltaAngleR = deltaAngle × rL1
midNodeV = 1 << (ChildNodeSizeVLog2 − 1)
if (deltaAngleR <= (midNodeV << 26))
 angular_eligible[Child] = 0
else
 angular_eligible[Child] = 1

where deltaAngle is the minimum angular distance between the lasers determined by

 deltaAngle = Min{ Abs(laser_angle[i] – laser_angle[j]) ; 0 ≤ i < j < number_lasers },

and where (sNchild, tNchild, vNchild) specifying the position of the geometry octree child node Child in
the current slice.

 IDCM angular eligibility. Laser index laserIndex associated with a node

The following process applies to a child node Child to determine the IDCM angular elibiligility
idcm4angular[Child] and the laser index laserIndex[Child] associated with the child node.

If the angular elibiligility angular_eligible[Child] is equal to 0, then idcm4angular[Child] is set to 0 and
laserIndex[Child] index is set to a preset value UNKOWN_LASER.

Otherwise, if the angular elibiligility angular_eligible[Child] is equal to 1, the following applies as a
continuation of the process described in 8.2.5.1. Firstly, the inverse rInv of the radial distance of the child
node from the Lidar is determined

r2 = sLidar × sLidar + tLidar × tLidar
rInv = invSqrt(r2)

then an angle theta32 is determined for the child node.

vLidar = ((vNchild − geomAngularOrigin[2] + midNodeT) << 1) − 1
theta = vLidar × rInv
theta32 = theta >= 0 ? theta >> 15 : −((−theta) >> 15)

Finally, the angular elibility and the associated laser to the child node are determined as follows, based
on the parent node Parent of the child node.

laserIndex[Child] = UNKOWN_LASER
idcm4angular[Child] = 0
if (laserIndex[Parent] == UNKOWN_LASER || deltaAngleR <= (midNodeV << (26 + 2))) {
 minDelta = 1 << (18 + 7)
 for (j = 0; j < number_lasers; j++) {
 delta = Abs(laser_angle[j] − theta32)
 if (delta < minDelta) {
 minDelta = delta

ISO 23090-9:2020(E)

68 © ISO/IEC 2020 – All rights reserved

 laserIndex[Child] = j
 }
 }
}
else
 idcm4angular[Child] = 1

 Determination of the context contextAngular for planar coding mode

The following process applies to a child node Child to determine the angular context
contextAngular[Child] associated with the child node.

If the laser index laserIndex[Child] is equal to UNKOWN_LASER, then contextAngular[Child] is set to a
preset value UNKOWN_CONTEXT. Otherwise, if the laser index laserIndex[Child] is not equal to
UNKOWN_LASER, the following applies as a continuation of the process described in 8.2.5.2.

Firstly, two angular differences m and M relative to a lower plane and an upper plane are determined.

thetaLaserDelta = laser_angle[laserIndex[Child]] − theta32
Hr = laser_correction[laserIndex[Child]] × rInv;
thetaLaserDelta += Hr >= 0 ? −(Hr >> 17) : ((−Hr) >> 17)
vShift = (rInv << (ChildNodeSizeVLog2 + 1)) >> 17
m = Abs(thetaLaserDelta − vShift)
M = Abs(thetaLaserDelta + vShift)

Then, the angular context is deduced from the two angular differences.

contextAngular[Child] = m > M
diff = Abs(m − M)
if (diff >= rInv >> 15) contextAngular[Child] += 2;
if (diff >= rInv >> 14) contextAngular[Child] += 2;
if (diff >= rInv >> 13) contextAngular[Child] += 2;
if (diff >= rInv >> 12) contextAngular[Child] += 2;

8.3 Attribute decoding

Inputs to this process are:

the attribute parameter set and the associated bitstream,

Output of the process is a series of the decoded point PointAttr[i][cIdx], where i is in the range of 0 to
PointCount − 1 and cIdx is in the range of 0 to AttrDim − 1.

The attributes may have multiple components.

Each attribute component has been transform coded by a spatial transform, quantized, and entropy
coded, to produce its bitstream. The attribute decoder must invert this process for each attribute
component, to produce a decoded attribute component.

When attr_coding_type is equalt to 0, RAHT decoding process in clause 8.3.1 is invoked.

Otherwise, if attr_coding_type is equal to 1, LoD with Predicting Transform decoding process in clause
8.3.3 is invoked.

Otherwise (attr_coding_type is equal to 2), LoD with Lifting Transform decoding process in clause 8.3.2
is invoked.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 69

 Region adaptive hierachical transform decoding process

 General

The output of this process is the array PointsAttr with elements PointsAttr[i][cIdx] with
i = 0 .. PointCount − 1, and cIdx = 0 .. AttrDim − 1. Each element with index i of PointsAttr is associated
with a position given by the array PointPos with the same index i.

The variable CoeffIdx, specifying a current position in the decoded values array, is initialized to 0.

If PointCount equal to 1, the following applies:

– The variable NumRahtLevels, specifying the number of 3D transform levels, is set equal to 1

– The array PointRegionboxDeltaQp, specifying the value of delta QP per point based on region, are
derived according to the RAHT region-wise qp derivation process (8.3.1.3).

– The scaling process for RAHT coefficients (8.3.1.6) is invoked for each component cIdx in the range
0 .. AttrDim − 1, with the single-element coeff set equal to value[cIdx][CoeffIdx], the position
(sTn, tTn, vTn) set equal to (0, 0, 0), the 3D transform level lvl set equal to 0, and the variable cIdx
as inputs. The reconstructed samples of the output array PointAttr[0][cIdx] is set equal to the
single-element output array of scaled transform coefficients d.

Otherwise, the following applies:

The array Weights, specifying transform coefficient weights, and the variable NumRahtLevels, specifying
the number of 3D transform levels, are derived according to the RAHT weights derivation process
(8.3.1.2).

The array PointRegionboxDeltaQp, specifying the value of delta QP per point based on region, are derived
according to the RAHT region-wise qp derivation process (8.3.1.3).

Reconstruction proceeds level by level from the root of the transform tree to the leaves, each using the
reconstruction of the previous level.

For each 3D transform level in the descending range lvl = NumRahtLevels − 1 .. 0, the following applies:

– The variable inheritDc is derived according to the transform level. For the first 3D transform level,
inheritDc is set equal to 0. Otherwise, for subsequent transform levels, inheritDc is set equal to 1.

– The variable RahtPredictionEnabled is derived as follows:

RahtPredictionEnabled = inheritDc && raht_prediction_enabled_flag.

– The reconstruction process for a single RAHT level is invoked with the variable lvl set equal to 3 × lvl,
and inheritDc as inputs. The output is the array recon with elements recon[s][t][v][cIdx].

– The array PrevRecon, specifying DC coefficients reconstructed from a transform level for use in a
subsequent level is set equal to the array recon.

The reconstructed samples of the output array PointAttr[i][cIdx] are derived as follows with
i = 0 .. PointCount − 1:

− The point position variables (sPt, tPt, vPt) are set equal to PointPos[i][j], with j = 0 .. 2
respectively.

− If Weights[0][sPt][tPt][vPt] is equal to 1, the following applies:

ISO 23090-9:2020(E)

70 © ISO/IEC 2020 – All rights reserved

for (cIdx = 0; cIdx < AttrDim; cIdx++)
 PointAttr[i][cIdx] = DivExp2RoundHalfInf(recon[sPt][tPt][vPt], 15)

− Otherwise, Weights[0][sPt][tPt][vPt] is greater than 1, the following process is used to
reconstruct samples PointAttr[i + j][cIdx] for j = i .. Weights[0][sPt][tPt][vPt] − 1:

− The (AttrDim)×(2) sized array xxx is initialized as follows:

for (cIdx = 0; cIdx < AttrDim; cIdx++)
 xxx[cIdx][0] = recon[xPt][yPt][zPt]

− For each wi in the descending range Weights[0][sPt][tPt][vPt] − 1 .. 1, the following
applies:

− The scaling process for RAHT coefficients is invoked for each component cIdx in the
range 0 .. AttrDim − 1, with the single-element coeff set equal to
residual_values[cIdx][CoeffIdx], the 3D transform level lvl set equal to 0, and the
variable cIdx as inputs. The array element xxx[cIdx][1] is set equal to the single-
element output array of scaled transform coefficients d.

− CoeffIdx is incremented by 1.

− For each component cIdx in the range 0 .. AttrDim − 1, the following applies:

− The inverse two-point transform process is invoked with the array xxx[cIdx][j]
with j = 0 .. 1, and the array w equal to { wi, 1 } as inputs. The output is the two-
element array r.

− The value of xxx[cIdx][0] is replaced by r[0]

− The output PointAttr[i + wi][cIdx] is derived as follows:

PointAttr[i + wi][cIdx] = DivExp2RoundHalfInf(xxx[1], 15)

− The ouput PointAttr[i][cIdx] for cIdx = 0 .. AttrDim − 1 is derived as follows:

PointAttr[i][cIdx] = DivExp2RoundHalfInf(xxx[0], 15)

 RAHT weights derivation process

The outputs of this process are:

− the array Weights, with entries Weights[lvl][s][t][v] equal to the number of points represented
by a coefficient at position (s, t, v) at the lvl'th 1D level of the RAHT transform,

− the variable NumRahtLevels indicating the number of 3D levels in the transform tree.

The elements of the array Weights are derived as follows:

for (i = 0; i < PointCount; i++) {
 s = PointPos[i][0]
 t = PointPos[i][1]
 v = PointPos[i][2]
 Weights[0][s][t][v] += 1;
}

for (lvl = 1, done = 0; !done;)
 for (j = 0; j < 3; j++, lvl++)
 for (i = 0; i < PointCount; i++) {

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 71

 s = PointPos[i][0] >> ((lvl + 0) / 3)
 t = PointPos[i][1] >> ((lvl + 1) / 3)
 v = PointPos[i][2] >> ((lvl + 2) / 3)

 Weights[lvl][s][t][v] += 1;
 if (Weights[lvl][s][t][v] == PointCount)
 done = 1;
 }

The variable NumRahtLevels is set equal to lvl / 3.

 RAHT region-wise qp derivation process

The outputs of this process are the array PointRegionboxDeltaQp, with entries
PointRegionboxDeltaQp[lvl][s][t][v] equal to the value of delta QP per point based on region
represented by a coefficient at position (s, t, v) at the lvl'th 1D level of the RAHT transform.

The output array PointRegionboxDeltaQp is initialize to −1. The variable RegionQpBitShift is set to equal
to 4.

for (i = 0; i < PointCount; i++) { s = PointPos[i][0]
 t = PointPos[i][1]
 v = PointPos[i][2]

 PointRegionboxDeltaQp[0][s][t][v] = 0

 if (!ash_attr_region_qp_delta_present_flag)
 continue
 isPointInRegion = 1
 for (k = 0; k < 3; k++)
 isPointInRegion &=
 AttrRegionQpOrigin[k] <= PointPos[i][k]
 && PointPos[i][k] < AttrRegionQpOrigin[k] + AttrRegionQpSize[k]

 if (isPointInRegion)
 PointRegionboxDeltaQp[0][s][t][v] = ash_attr_region_qp_delta << RegionQpBitShift
}

for (lvl = 1, lvl <= (NumRahtLevels − 1) × 3; lvl++){
 for (i = 0; i < PointCount; i++) {
 s = PointPos[i][0] >> ((lvl + 0) / 3)
 t = PointPos[i][1] >> ((lvl + 1) / 3)
 v = PointPos[i][2] >> ((lvl + 2) / 3)

 if (PointRegionboxDeltaQp[lvl][s][t][v] == −1){
 prevS = (lvl % 3 == 0)? s + 1: s;
 prevT = (lvl % 3 == 2)? t + 1: t;
 prevV = (lvl % 3 == 1)? v + 1: v;
 lQp = PointRegionboxDeltaQp[lvl − 1][s][t][v];
 rQp = PointRegionboxDeltaQp[lvl − 1][prevS][prevT][prevV];

 if (lQp == −1)
 PointRegionboxDeltaQp[lvl][s][t][v] = rQp;
 else if (rQp == −1)
 PointRegionboxDeltaQp[lvl][s][t][v] = lQp;
 else
 PointRegionboxDeltaQp[lvl][s][t][v] = ((lQp + rQp) >> 1);
 }
 }
}

 Reconstruction process for a single 3D RAHT level

The inputs to this process are:

− a variable lvl indicating the current 1D transform level.

ISO 23090-9:2020(E)

72 © ISO/IEC 2020 – All rights reserved

− a variable inheritDc indicating if DC coefficients should be inherited from a previous reconstruction
level.

The outputs of this process are the array recon of reconstructed values and an updated variable CoeffIdx.

An array, nodes, of occupied transform tree nodes in the current level with elements nodes[idx][dim]
is derived using a Morton order traversal of the array Weights as follows:

for (mIdx = 0, nIdx = 0; mIdx < (1 << (3 × NumRahtLevels − 3 − lvl)); mIdx++) {
 (sN, tN, vN) = MortonToTuple(mIdx)
 if (Weights[lvl + 3][sN][tN][vN] == 0)
 continue
 nodesS[nIdx] = 2 × sN
 nodesT[nIdx] = 2 × tN
 nodesV[nIdx] = 2 × vN
 nIdx++
}

The variable numNodesInLvl is set equal to nIdx.

For each occupied transform tree node with nIdx = 0 .. numNodesInLvl − 1, the following steps apply:

The position variables (sTn , tTn , vTn) indicating the location of a transform tree node are initialized
with the values of nodesS[nIdx], nodesT[nIdx], and nodesV[nIdx] respectively.

An (AttrDim)×(8) element array of transform coefficients is derived as follows:

for (childIdx = 0; childIdx < 8; childIdx++) {
 (ds, dt, dv) = MortonToTuple(childIdx)
 if (inheritDc && childIdx == 0)
 continue
 if (Weights[lvl][sTn + ds][tTn + dt][vTn + dv] == 0)
 continue
 for (cIdx = 0; cIdx < AttrDim; cIdx++)
 coeff[cIdx][childIdx] = residual_values[cIdx][CoeffIdx]
 CoeffIdx++
}

For each component of the attribute, the following ordered steps are performed:

− The reconstruction process for a 2×2×2 transform tree node is invoked with the node position
(sTn, tTn, vTn), and the eight-element array coeff[cIdx][childIdx] with childIdx = 0 .. 7 as inputs.
The output is the eight-element array r.

− The array of reconstructed values, recon, is updated as follows:

for (childIdx = 0; childIdx < 8; childIdx++) {
 (ds, dt, dv) = MortonToTuple(childIdx)
 recon[sTn + ds][tTn + dt][vTn + dv][cIdx] = r[childIdx]
}

 Reconstruction process for a 2×2×2 transform tree node

The inputs to this process are:

− a position (sTn, tTn, vTn) and 1D level, lvl, specifying the location of a transform tree node in the
RAHT transform tree,

− a variable cIdx specifying the index of an attribute component,

− an array, coeff, of packed quantized transform coefficients.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 73

The output of this process is an eight-element array, r, of reconstructed values

The scaling process for RAHT coefficients is invoked with the eight-element array coeff, the position
(sTn, tTn, vTn), the 3D transform level lvl set equal to lvl / 3, and the variable cIdx as inputs. The output
is an eight-element array of scaled transform coefficients d.

If RahtPredictionEnabled is equal to 1, the following applies:

− The transform prediction upsampling process is invoked with the position (sTn/2, tTn/2, vTn/2)
and the variable lvl set equal to lvl + 3. The output is the eight-element array p of upsampled
prediction values.

− The forward transform process for 2×2×2 blocks is invoked with the position (sTn, tTn, vTn) and
level lvl of the current transform tree node, and the array p of upsampled prediction values. The
output is the eight-element array q of transformed prediction values.

The scaled transform coefficients d, the transformed prediction values q, and an inherited DC value are
summed to produce the transform coefficient array e as follows:

for (i = inheritDc; i < 8; i++)
 e[i] = d[i] << 15

if (inheritDc) {
 e[0] = DivExp2RoundHalfInf(PrevRecon[sTn / 2][tTn / 2][vTn / 2][cIdx], 15)
 e[0] <<= 15
}

for (i = 1; i < 8; i++)
 e[i] += RahtPredictionEnabled ? q[i] : 0

The inverse transform process for 2×2×2 blocks is invoked with the position (sTn, tTn, vTn) and level
lvl of the current transform tree node, and the array e of transform coefficients. The output is the eight-
element array r of inverse transformed values.

 Scaling process for RAHT coefficients

The inputs to this process are:

− an n-element array coeff of quantized coefficients

− a position (sTn, tTn, vTn) specifying the location of a transform tree node in the RAHT transform
tree

− a variable lvl indicating the 3D transform level of the coefficients

− a variable cIdx specifying the index of an attribute component

The output is an n-element array of scaled transform coefficients d.

The variable qlayer is set equal to Min(NumLayerQP − 1, NumRahtLevels − lvl − 1).

The scaled transform coefficient d[i][cIdx] with i = 0 .. n − 1, and cIdx = 0 .. AttrDim − 1 is derived as
follows:

for (i = 0, childIdx = 0; childIdx < 8 && i < n; childIdx++) {
 (ds, dt, dv) = MortonToTuple(childIdx)
 if (Weights[lvl][sTn + ds][tTn + dt][vTn + dv] == 0)
 continue
 deltaRegionQp = PointRegionboxDeltaQp[lvl][sTn + ds][tTn + dt][vTn + dv]
 >> RegionQpBitShift

ISO 23090-9:2020(E)

74 © ISO/IEC 2020 – All rights reserved

 qstepY = QpToQstep(SliceQpY[qlayer] + deltaRegionQp, 1)
 qstepC = QpToQstep(SliceQpC[qlayer] + deltaRegionQp, 0)
 for (cIdx = 0; cIdx < AttrDim; cIdx++)
 d[i][cIdx] = DivExp2RoundHalfUp(coeff[i][cIdx] ×
 (!cIdx ? qstepY : qstepC), 8)
 i++
}

 Transform prediction upsampling process

The inputs to this process are:

− a position (sTn, tTn, vTn) and 1D level, lvl, specifying the location of a transform tree node in the
RAHT transform tree, and

− a variable cIdx specifying the index of an attribute component.

The output of this process are:

− an eight-element array p of upsampled values.

− the array of NeighCount, with entries NeighCount[lvl][s][t][v] equal to the number of valid
neighbour transform tree node where more than equal to one point exist represented by a coefficient
at position (s, t, v) at the lvl'th 1D level of the RAHT transform.

NeighCount[lvl][s][t][v] is initialized as 0. For each row in Table 18, the following applies:

If lvl / 3 is not equal to NumRahtLevels − 1 and NeighCount[lvl + 3][sTn / 2][tTn / 2][vTn / 2] is less
than raht_prediction_threshold0, for each child position childIdx in the range 0 to 7, inclusive, the
following applies:

for (childIdx = 0; childIdx < 8; childIdx++)
 p[childIdx] = 0

Otherwise, for each row in Table 18, the following applies:

cs = sTn + ds
ct = tTn + dt
cv = vTn + dv
if (Weights[lvl][cs][ct][cv] > 0)
 NeighCount[lvl][sTn][tTn][vTn] += 1

If NeighCount[lvl][sTn][tTn][vTn] is less than raht_prediction_threshold1, for each child position
childIdx in the range 0 to 7, inclusive, the following applies:

for (childIdx = 0; childIdx < 8; childIdx++)
 p[childIdx] = 0

Otherwise, the following applies:

The upsampled 2×2×2 block located at the position (sTn, tTn, vTn) is derived as follows. For each row
in Table 18, the following applies:

cs = sTn + ds
ct = tTn + dt
cv = vTn + dv
if (Weights[lvl][cs][ct][cv] > 0) {
 neighVal = Recon[cs][ct][cv][cIdx]
 value = DivFp(neighVal, iSqrt(Weights[lvl][cs][ct][cv] << 30), 15)
 for (childIdx = 0; childIdx < 8; childIdx++) {
 sumDc[childIdx] += DivExp2RoundHalfInf(value × wn[childIdx], 15)

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 75

 sumWn[childIdx] += wn[childIdx]
 }
}

For each child position childIdx in the range 0 to 7, inclusive, and sumW[childIdx] > 0, as follows:

for (childIdx = 0; childIdx < 8; childIdx++) {
 (ds, dt, dv) = MortonToTuple(childIdx)
 pred = DivFp(sumDc[childIdx], sumWn[childIdx], 15)
 pred ×= iSqrt(Weights[lvl − 3][2 × sTn + ds][2 × tTn + dt][2 × vTn + dv] << 30)
 p[childIdx] = DivExp2RoundHalfInf(pred, 15)
}

Table 18 — Weighting matrix for determining upsampled child position weights, wn[childIdx], for various
neighbour position offsets (dx, dy, dz)

Neighbour offset wn[childIdx]
ds dt dv 0 1 2 3 4 5 6 7
0 0 0 a a a a a a a a
1 0 0 b b b b 0 0 0 0

−1 0 0 b b b b 0 0 0 0
0 1 0 0 0 b b 0 0 b b
0 −1 0 b b 0 0 b b 0 0
0 0 1 0 b 0 b 0 b 0 b
0 0 −1 b 0 b 0 b 0 b 0
1 1 0 0 0 0 0 0 0 c c

−1 1 0 0 0 c c 0 0 0 0
1 −1 0 0 0 0 0 c c 0 0

−1 −1 0 c c 0 0 0 0 0 0
0 1 1 0 0 0 c 0 0 0 c
0 −1 1 0 c 0 0 0 c 0 0
0 1 −1 0 0 c 0 0 0 c 0
0 −1 −1 c 0 0 0 c 0 0 0
1 0 1 0 0 0 0 0 c 0 c

−1 0 1 0 c 0 c 0 0 0 0
1 0 −1 0 0 0 0 c 0 c 0

−1 0 −1 c 0 c 0 0 0 0 0
Where a = 24518, b = 5536, c = 2937

 Forward transform process for 2×2×2 blocks

The inputs to this process are:

− a position (sTn, tTn, vTn) and level, lvl, specifying the position of a transform tree node,

− an eight-element array, p, of values to be transformed.

The output of this process is an eight-element array, q, of transformed values.

ISO 23090-9:2020(E)

76 © ISO/IEC 2020 – All rights reserved

For each row of Table 19 in sequential order, the array p is modified by transforming a pair of values by
invoking the forward two-point transform process 8.3.1.9 with the input array x equal to { p[i], p[j] },
and the array w equal to { wi, wj }. The output y updates the array p[i] = y[0], p[j] = y[1].

The output array q is derived as q[s] = p[t] with s = 0 .. 7 and the value of t derived from s according to
Table 20.

Table 19 — Ordering of coefficients and respective weights for use in the forward and inverse (reverse order) two-
point transform processes

i j wi wj
0 1 w[lvl][sTn + 0][tTn + 0][vTn] w[lvl][sTn + 0][tTn + 0][vTn + 1]
2 3 w[lvl][sTn + 0][tTn + 1][vTn] w[lvl][sTn + 0][tTn + 1][vTn + 1]
4 5 w[lvl][sTn + 1][tTn + 0][vTn] w[lvl][sTn + 1][tTn + 0][vTn + 1]
6 7 w[lvl][sTn + 1][tTn + 1][vTn] w[lvl][sTn + 1][tTn + 1][vTn + 1]
4 6 w[lvl + 1][sTn + 1][tTn][vTn] w[lvl + 1][sTn + 1][tTn + 1][vTn]
0 2 w[lvl + 1][sTn + 0][tTn][vTn] w[lvl + 1][sTn + 0][tTn + 1][vTn]
0 4 w[lvl + 2][sTn + 0][tTn][vTn] w[lvl + 2][sTn + 1][tTn + 0][vTn]

Table 20 — Indexes of transform coefficients in decoding order (s)

s 0 1 2 3 4 5 6 7
t 0 4 6 2 7 5 3 1

 Forward two-point transform process

The inputs to this process are:

− a two-element array, x, of values to be transformed, and

− a two-element array, w, of corresponding weights.

The output of this process is a two-element array, y, of transformed values.

This process has no effect if both elements of w are equal to zero.

The transform coefficients a and b are derived as follows:

a = iSqrt((w[0] << 30) / (w[0] + w[1]))
b = iSqrt((w[1] << 30) / (w[0] + w[1]))

The output is determined as follows:

y[0] = DivExp2RoundHalfInf(x[0] × a, 15) + DivExp2RoundHalfInf(x[1] × b, 15)
y[1] = DivExp2RoundHalfInf(x[1] × a, 15) − DivExp2RoundHalfInf(x[0] × b, 15)

 Inverse transform process for 2×2×2 blocks

The inputs to this process are:

− a position (sTn, tTn, vTn) and level, lvl, specifying the position of a transform tree node, and

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 77

− an eight-element array, e, of transform coefficients.

The output of this process is an eight-element array, r, of inverse transformed values.

The output array r is initialized as r[t] = e[s] with s = 0 .. 7 and the value of t derived from s according
to Table 20.

For each row of Table 19 in reverse order, the array r is modified by transforming a pair of values by
invoking the inverse two-point transform process 8.3.1.11 with the input array x equal to { r[i], r[j] },
and the array w equal to { wi, wj }. The output y updates the array r[i] = y[0], r[j] = y[1].

 Inverse two-point transform process

The inputs to this process are:

− a two-element array, x, of transform coefficient, and

− a two-element array, w, of corresponding weights.

The output of this process is a two-element array, y, of inverse transformed values.

This process has no effect if both elements of w are equal to zero.

The transform coefficients a and b are derived as follows:

a = iSqrt((w[0] << 30) / (w[0] + w[1]))
b = iSqrt((w[1] << 30) / (w[0] + w[1]))

The output is determined as follows:

y[0] = DivExp2RoundHalfInf(x[0] × a, 15) − DivExp2RoundHalfInf(x[1] × b, 15)
y[1] = DivExp2RoundHalfInf(x[1] × a, 15) + DivExp2RoundHalfInf(x[0] × b, 15)

 LoD with Lifting Transform decoding process

Inputs of this process are:

 a variable minGeomNodeSizeLog2 specifing the number of octree layers that are skipped to decode.

The output of the process is

 a series of the decoded attribute values attributeValues[i][a], where i is in the range of 0 to
PointCount − 1, inclusive, and a in the range of 0 to AttrDim − 1, inclusive.

First a variable PointNumInSlice is set to gsh_ num_points in the active slice.

NOTE 1 – When lifting_scalability_enabled_flag is equal to 1, PointCount may be smaller than
PointNumInSlice due to minGeomNodeSizeLog2 larger than 0.

This process invokes the sub-processes in the following order.

The level of detail generation process in clause 8.3.2.1 is invoked.The output of this process are stored in
indexes[i], neighbours[i][n], neighboursCount[i], neighboursDistance2[i][n], and
pointCountPerLevelOfDetail[l], where i is in the range of 0 to PointCount − 1, inclusive, n in the range of
0 to NumPredNearestNeighbours − 1, inclusive, l is in the range of 0 to LevelDetailCount − 1, inclusive.

 The prediction weight derivation process in 8.3.2.4 is invoked with the parameters neighbours,
neighboursCount and neighboursDistance2. The output of this process is stored in

ISO 23090-9:2020(E)

78 © ISO/IEC 2020 – All rights reserved

predictionWeights[i][n], where i is in the range of 0 to PointCount − 1, inclusive, and n in the range of
0 to NumPredNearestNeighbours − 1, inclusive.

 The quantization weights derivation process in 8.3.2.5 is invoked with the parameters indexes,
neighbours, neighboursCount, predictionWeights, and pointNumPerLoD. The output of this process is
stored in quantizationWeights[i], where i is in the range of 0 to PointCount − 1, inclusive.

 The inverse quantization process in 8.3.2.6 is invoked with the parameters indexes, neighbours,
neighboursCount and predictionWeights. The output of this process is stored in
unquantAttributeCoefficients[i][j], where i is in the range of 0 to PointCount − 1, inclusive, and j in the
range of 0 to AttrDim − 1, inclusive.

 The inverse lifting process in 8.3.2.7 is invoked with the parameters unquantAttributeCoefficients,
quantizationWeights, predictionWeights and pointCountPerLevelOfDetail. This process updates the
attribute coefficients unquantAttributeCoefficients[i][j], where i is in the range of 0 to PointCount − 1,
inclusive, and j in the range of 0 to AttrDim − 1, inclusive.

The reconstructed attributes values are obtained as follows.

for (i = 0; i < PointCount; i++) {
 for (j = 0; j < AttrDim; j++) {
 value = divExp2RoundHalfInf(unquantAttributeCoefficients[i][j], 8);
 if (AttrDim == 0) {
 maxAttribute = (1 << (attribute_bitdepth_minus1[ash_attr_sps_attr_idx] + 1)) − 1
 }
 else {
 maxAttribute = (1 << (attribute_secondary_bitdepth_minus1[ash_attr_sps_attr_idx] +
1)) − 1
 }
 attributeValues[i][j] = Clip3(value , 0, maxAttribute);
 }
}

 Level of Detail Generation

The input of the process is

 a vailable minGeomNodeSizeLog2 specifing the number of octree layers that are skipped to decode.

The outputs of the process are

 an array of point indexes indexes[i], where i is in the range of 0 to PointCount − 1, inclusive.

 a series of nearest neighbours indexes neighbours[i][n], where i is in the range of 0 to
PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array of nearest neighbours count neighboursCount[i], where i is in the range of 0 to
PointCount − 1, inclusive.

 an array of nearest neighbours squared distances neighboursDistance2[i][n], where i is in the
range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1,
inclusive.

 an array pointCountPerLevelOfDetail[l], where l is in the range of 0 to LevelDetailCount − 1, inclusive.

An array of distances sampling[l], where l is in the range of 0 to LevelDetailCount − 2, inclusive, is
derived as followings:

if (lifting_lod_regular_sampling_enabled_flag) {

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 79

 for (lod = 0; lod < LevelDetailCount − 1; lod++)
 sampling[lod] = lifting_sampling_period_minus2[lod] + 2
}
else {
 for (lod = 0; lod < LevelDetailCount − 1; lod++)
 sampling[lod] = LiftingSamplingDistanceSquared[lod]
}

Depending on the value of lifting_lod_regular_sampling_enabled_flag, the level of detail generation
process re-organizes the points into a set of refinement levels (𝑅𝑅𝑙𝑙)𝑙𝑙=0…𝐿𝐿−1 , according to a the set of
Euclidian distances (i.e., lifting_lod_regular_sampling_enabled_flag equals 0) or sampling period (i.e.,
lifting_lod_regular_sampling_enabled_flag equals 1) specified by the array sampling[l].

If lifting_lod_regular_sampling_enabled_flag equals 0, the array sampling[l] represents squared
sampling distances verifying the following condition:

sampling[l−1] < sampling[l]

If lifting_lod_regular_sampling_enabled_flag equals 1, the array sampling[l] represents sampling periods
verifying the following condition:

sampling[l] > 1.If lifting_scalability_enabled_flag equals 1, the level of detail degneration process re-
organizes the points into a set of refinement levels (𝑅𝑅𝑙𝑙)𝑙𝑙=0…𝐿𝐿−1 , according to octree nodes based on
geometry. Depeding on the value of samplingFromLastFlag, the first point in the node (i.e.,
samplingFromLastFlag equals 0) or the last point in the node (i.e., samplingFromLastFlag equals 1) is
sampled.

First, the point sorting process based on Morton code in clause 5.9.8 is invoked. Let Order[i] be the array
of point indexes sorted according to their Morton codes and McodeUnsorted the array of unsorted
Morton codes.

Next, the following procedure is applied in order to compute both the level of detail reordering and the
points nearest neighbours.

unprocessedPointCount = PointCount
for (i = 0; i < unprocessedPointCount; i++) {
 unprocessedPointIndexes[i] = Order[i]
}
for (lod = 1; lod < LevelDetailCount; lod++)
 unprocessedPointCountPerLevelOfDetail[lod] = 0;
unprocessedPointCountPerLevelOfDetail[0] = PointCount

If lifting_scalability_enabled_flag is equal to 0, the following is applied.

endIndex = 0
assignedPointCount = 0
for (lod = 0; unprocessedPointCount > 0 && lod < LevelDetailCount; lod++) {
 nonAssignedPointCount = 0
 startIndex = assignedPointCount
 if (lod == LevelDetailCount – 1) {
 for (i = 0; i < unprocessedPointCount; i++)
 assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i]
 } else {
 nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[0]
 for (i = 1; i < unprocessedPointCount; i++) {
 foundAssignedPointWithinDistanceFlag = 0
 if (lifting_lod_regular_sampling_enabled_flag == 1) {
 foundAssignedPointWithinDistanceFlag = (i % sampling[lod]) != 0
 } else {
 for (axis = 0; axis < 3; axis++)
 currentPos[axis] = PointPos[unprocessedPointIndexes[i]][axis]
 k = 0
 while (k++ < LiftingSearchRange) {
 for (axis = 0; axis < 3; axis++)

ISO 23090-9:2020(E)

80 © ISO/IEC 2020 – All rights reserved

 d[axis] = currentPos[axis] –
PointPos[nonAssignedPointIndexes[nonAssignedPointCount – 1]][axis]
 d2 = InneProduct(d[], d[])
 if (d2 <= sampling[lod]) {
 foundAssignedPointWithinDistanceFlag = 1
 break
 }
 }
 }
 if (foundAssignedPointWithinDistance == 1)
 assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i]
 else
 nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i]
 }
 }
 endIndex = assignedPointCount
 computeNearestNeighbours(
 startIndex, endIndex,
 lod, assignedPointIndexes,
 McodeUnsorted, nonAssignedPointCount,
 nonAssignedPointIndexes)
 unprocessedPointCountPerLevelOfDetail[lod+1] = nonAssignedPointCount
 unprocessedPointCount = nonAssignedPointCount
 unprocessedPointIndexes = nonAssignedPointIndexes //NOTE the left and the right are
pointer of the array
}

Otherwise (lifting_scalability_enabled_flag is equal to 1), the following is applied;

endIndex = 0
assignedPointCount = 0
for (lod = minGeomNodeSizeLog2; unprocessedPointCount > 0; lod++) {
 startIndex = assignedPointCount
 nonAssignedPointCount = 0
 samplingFromLastFlag = lod & 1
 for (i = 0; i < unprocessedPointCount; i++) {
 currVoxelIndex = McodeUnsorted[unprocessedPointIndexes[i]] >> (3×(lod+1))
 if (samplingFromLastFlag == 0){
 if (i == 0)
 nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i]
 else {
 prevVoxelIndex = McodeUnsorted[unprocessedPointIndexes[i−1]] >> (3×(lod+1))

 if (currVoxelIndex > prevVoxelIndex)
 nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i]
 else
 assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i]
 }
 } else {
 if (i == (unprocessedPointCount – 1))
 nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i]
 else {
 nextVoxelIndex = McodeUnsorted[unprocessedPointIndexes[i+1]] >> (3×(lod+1))
 if (currVoxelIndex < nextVoxelIndex)
 nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i]
 else
 assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i]
 }
 }
 }
 endIndex = assignedPointCount
 if (startIndex != endIndex) {
 numOfPointInSkipped = PointNumInSlice – PointCount
 if ((endIndex – startIndex) > (startIndex + numOfPointInSkipped)){
 for (loop = 0; loop < lod − minGeomNodeSizeLog2; loop++){
 computeNearestNeighbours(
 PointCount − unprocessedPointCountPerLevelOfDetail[loop],
 PointCount − unprocessedPointCountPerLevelOfDetail[loop+1],
 loop + minGeomNodeSizeLog2, assignedPointIndexes,

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 81

 McodeUnsorted, nonAssignedPointCount,
 nonAssignedPointIndexes)
 }
 }
 }
 computeNearestNeighbours(
 startIndex, endIndex,
 lod , assignedPointIndexes,
 McodeUnsorted, nonAssignedPointCount,
 nonAssignedPointIndexes)
 unprocessedPointCountPerLevelOfDetail[lod+1] = nonAssignedPointCount
 unprocessedPointCount = nonAssignedPointCount
 unprocessedPointIndexes = nonAssignedPointIndexes
}

Then, the following procedure is applied:

for (i = 0; i < PointCount; i++)
 indexes[PointCount− 1 – i] = assignedPointIndexes[i]

for (lod = 0; lod < LevelDetailCount; lod++)
 pointCountPerLevelOfDetail[lod] = unprocessedPointCountPerLevelOfDetail[LevelDetailCount
− 1 − lod]

 Definition of computeNearestNeighbours()

Inputs of this process are:

 two variables startIndex and endIndex indicating the range of points for which the nearest
neighbours should be computed

 a variable currentLayer specifying LoD layer number, where a series of the decoded geometry point
belong

 an array of point indexes assignedPointIndexes[i], where i is in the range of 0 to PointCount − 1,
inclusive.

 an array of Morton codes McodeUnsorted[i], where i is in the range of 0 to PointCount − 1, inclusive.

 a variable nonAssignedPointCount specifying the number of non-assigned points.

 an array of point indexes nonAssignedPointIndexes[i], where i is in the range of 0 to PointCount − 1,
inclusive.

The outputs of the process are

 a series of nearest neighbours indexes neighbours[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array of nearest neighbours counts neighboursCount[i], where i is in the range of 0 to
PointCount − 1, inclusive.

 an array of nearest neighbours squared distances neighboursDistance2[i][n], where i is in the
range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1,
inclusive.

The nearest neighbours of the points are computing as follows.

if (nonAssignedPointCount == 0) {
 for (i = startIndex; i < endIndex; i++)
 neighboursCount[assignedPointIndexes[i]] = 0
} else {

ISO 23090-9:2020(E)

82 © ISO/IEC 2020 – All rights reserved

 j = 0
 for (i = startIndex; i < endIndex; i++) {
 currentIndex = assignedPointIndexes[i]
 currentMortonCode = McodeUnsorted[currentIndex]
 currentPos = PointPos[currentIndex]
 while (j < nonAssignedPointCount &&
 currentMortonCode >= McodeUnsorted[nonAssignedPointIndexes[j])
 j++
 }
 j = Min(nonAssignedPointCount − 1, j)
 j0 = Max(0, j − LiftingSearchRange)
 j1 = Min(nonAssignedPointCount, j + LiftingSearchRange + 1)
 neighboursCount[currentIndex] = 0
 k = 0
 for (k = j0; k < j1 ; k++) {
 neighbourIndex = nonAssignedPointIndex[k]
 neighbourPos = PointPos[neighbourIndex]
 if (lifting_scalability_enabled_flag){
 for (axis = 0; axis < 3; axis++)
 currentPos[axis] = (currentPos[axis] >> currentLayer) << currentLayer
 neighbourPos[axis] = (neighbourPos[axis] >> currentLayer) << currentLayer
 }
 }
 for (axis = 0; axis < 3; axis++)
 d[axis] = liftingNeighbourBiasStv[axis]×(currentPos[axis] – neighbourPos[axis])
 d2 = InnerProduct(d[], d[])
 if (Abs(k − j) <= 3)
 insertIndex = k − j > 0 ? ((k − j) << 1) − 1 : (j − k) << 1;
 else if (k > j)
 insertIndex = 7 + k − j;
 else
 insertIndex = LiftingSearchRange + 4 + j − k;
 if (neighboursCount[currentIndex] < NumPredNearestNeighbours) {
 p = neighboursCount[currentIndex]
 neighbours[currentIndex][p] = neighbourIndex;
 neighboursDistance2[currentIndex][p] = d2
 neighboursInsertIndex[currentIndex][p] = insertIndex;
 neighboursCount[currentIndex]++
 sortNeighbours(neighboursCount[currentIndex],
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex])
 } else if (d2 < neighboursDistance2[currentIndex][NumPredNearestNeighbours−1) {
 neighbours[currentIndex][NumPredNearestNeighbours−1 = neighbourIndex
 neighboursDistance2[currentIndex][NumPredNearestNeighbours−1 = d2
 neighboursInsertIndex[currentIndex][NumPredNearestNeighbours − 1] = insertIndex
 sortNeighbours(NumPredNearestNeighbours,
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex]);
 } }
 if (currentLayer >= LevelDetailCount − IntraLodPredNumLayers) {
 j1 = Min(endIndex, k + LiftingSearchRange)
 for (k = i + 1; k < j1; k++) {
 neighbourIndex = assignedPointIndex[k]
 neighbourPos = PointPos[neighbourIndex]
 for (axis = 0; axis < 3; axis++)
 d[axis] = liftingNeighbourBiasStv[axis]×(currentPos[axis] – neighbourPos[axis])
 d2 = InnerProduct(d[], d[])
 insertIndex = 2 × LiftingSearchRange + (k − i);
 if (neighboursCount[currentIndex] < NumPredNearestNeighbours) {
 p = neighboursCount[currentIndex]
 neighbours[currentIndex][p] = neighbourIndex
 neighboursDistance2[currentIndex][p] = d2
 neighboursInsertIndex[currentIndex][p] = insertIndex
 neighboursCount[currentIndex]++
 sortNeighbours(neighboursCount[currentIndex],
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex]);

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 83

 } else if (d2 < neighboursDistance2[currentIndex][NumPredNearestNeighbours – 1]) {
 neighbours[currentIndex][NumPredNearestNeighbours – 1] = neighbourIndex
 neighboursDistance2[currentIndex][NumPredNearestNeighbours – 1] = d2
 neighboursInsertIndex[currentIndex][NumPredNearestNeighbours − 1] = insertIndex
 sortNeighbours(NumPredNearestNeighbours,
 neighbours[currentIndex],
 neighboursDistance2[currentIndex] ,
 neighboursInsertIndex[currentIndex])
 }
 }
 }
}

 Definition of sortNeighbours()

Inputs of this process are:

 a variable neighboursCount indicating the number of nearest neighbours for the current point.
neighboursCount i is in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array of nearest neighbours indexes neighbours[n], where n in the range of 0 to
neighboursCount − 1, inclusive.

 an array of nearest neighbours squared distances neighboursDistance2[n], where n in the range of
0 to neighboursCount − 1, inclusive.

 an array of nearest neighbours insert index neighboursInsertIndex[n], where n in the range of 0 to
neighboursCount − 1, inclusive.

The process sortNeighbours() sorts the arrays neighbours[n],,],, neighboursDistance2[n] and
neighboursInsertIndex[n], according to the increasing values of neighboursDistance2[n]. Herein, when
two more than neighbours[n] have same neighboursDistance2[n], neighbours[n] where smaller
neighboursInsertIndex[n] is assigned is sorted by priority.

 Prediction weights derivation process

The inputs of this process are:

 a series of nearest neighbours indexes neighbours[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array of nearest neighbours counts neighboursCount[i], where i is in the range of 0 to
PointCount − 1, inclusive.

 an array of nearest neighbours squared distances neighboursDistance2[i][n], where i is in the
range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1,
inclusive.

The output is:

 an array of prediction predictionWeights[i][n], where i is in the range of 0 to PointCount − 1,
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

The prediction weights derivation process proceeds as follows:

MaxWeightValue = 1 << 8;
for (i = 0; i < PointCount; i++) {
 while (neighboursCount[i] > 1 &&
 neighboursDistance2[i][0] > 0 &&
 (neighboursDistance2[neighbourCount[i] −1][0] >> 8) >

ISO 23090-9:2020(E)

84 © ISO/IEC 2020 – All rights reserved

 neighboursDistance2[i][0]) {
 neighboursCount[i]−−;
 }
 if (neighboursCount[i]< 2 || neighboursDistance2[i][0]== 0) {
 neighboursCount[i]= 1;
 predictionWeights[i][0] = MaxWeightValue;
 } else {
 bitCount = iLog2(neighboursDistance2[i][0]) + 2;
 shiftDistance = bitCount > 8 ? bitCount − 8 : 0;
 biasDistance = ((1 << shift) >> 1);
 if (neighboursCount[i]== 2) {
 d0 = (neighboursDistance2[i][0] + biasDistance) >> shiftDistance;
 d1 = (neighboursDistance2[i][1]+ biasDistance) >> shiftDistance;
 sum = d1 + d0;
 sumDiv2 = sum >> 1;
 w1 = ((d0 << 8) + sumDiv2) / sum;
 predictionWeights[i][0] = MaxWeightValue − w1;
 predictionWeights[i][1] = w1;
 } else {
 neighboursCount[i] = 3;
 d0 = (neighboursDistance2[i][0] + biasDistance) >> shiftDistance;
 d1 = (neighboursDistance2[i][1]+ biasDistance) >> shiftDistance;
 d2 = (neighboursDistance2[i][2]+ biasDistance) >> shiftDistance;
 d0d1 = d0 × d1;
 d0d2 = d0 × d2;
 d1d2 = d1 × d2;
 sum = d1d2 + d0d1 + d0d2;
 sumDiv2 = sum >> 1;
 r = ((1 << 31) + sumDiv2) / sum;
 biasWeight = 1 << (shift − 1);
 w2 = (d0d1 × r + biasWeight) >> 23;
 w1 = (d0d2 × r + biasWeight) >> 23;
 predictionWeights[i][0] = MaxWeightValue − (w1 + w2);
 predictionWeights[i][1] = w1;
 predictionWeights[i][2] = w2;
 }
 }
}

 Quantization weights derivation process
The inputs of this process are:

 an array of point indexes indexes[i], where i is in the range of 0 to PointCount − 1, inclusive.

 a series of nearest neighbours indexes neighbours[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array of nearest neighbours counts neighboursCount[i], where i is in the range of 0 to
PointCount − 1, inclusive.

 an array of prediction predictionWeights[i][n], where i is in the range of 0 to PointCount − 1,
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array of the number of the decoded points per LoD pointNumPerLoD[k], where k is in the range
of 0 to LevelDetailCount − 1, inclusive.

The output is:

 an array of quantization weights quantizationWeights[i], where i is in the range of 0 to
PointCount − 1, inclusive.

The quantization weights derivation procedure proceeds as follows.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 85

If lifting_scalability_enabled_flag is equal to 0, the following is applied:

for (i = 0; i < PointCount; i++)
 quantizationWeights[i] = 1 << 8

for (i = PointCount − 1; i >= 0; i−−) {
 index = indexes[i]
 for (p = 0; p < neighboursCount[index]; p++) {
 neighbour = neighbours[index][p]
 quantizationWeights[neighbour] += divExp2RoundHalfInf(
 predictionWeights[neighbour] ×quantizationWeights[neighbour],
 8)
 }
}

for (i = 0; i < PointCount; i++)
 quantizationWeights[i] = iSqrt(quantizationWeights[i])

Otherwise (lifting_scalability_enabled_flag is equal to 1), the following is applied:

index = 0
startIndex = 0
for (lodIndex = 0; lodIndex < lodCount; lodIndex++) {
 for (i = 0; i < pointNumPerLoD[lodIndex]; i++)
 quantizationWeights[index++] =
 ((PointNumInSlice − startIndex)/pointNumPerLoD[lodIndex])) × (1 << 8)
 startIndex += pointNumPerLoD[lodIndex]
}

 Inverse quantization process

Inputs of this process are:

 an array of quantization weights quantizationWeights[i], where i is in the range of 0 to
PointCount − 1, inclusive.

The output of the process is

 a series of the unquantized attribute coefficients unquantAttributeCoefficients[i][a], where i is in
the range of 0 to PointCount − 1, inclusive, and a in the range of 0 to AttrDim − 1, inclusive.

The inverse quantization process proceeds as follows.

endIndex = pointCountPerLevelOfDetail[0]
for (i = 0, d = 0; i < PointCount; i++) {
 if (i == endIndex) {
 endIndex = pointCountPerLevelOfDetail[++d];
 layerQpY = d < NumLayerQP ? SliceQpY[d] : SliceQpY[NumLayerQP – 1];
 layerQpC = d < NumLayerQP ? SliceQpC[d] : SliceQpC[NumLayerQP – 1];
 }

 regionBoxDeltaQp = 0;
 if (ash_attr_region_qp_delta_present_flag == 1){
 isPointInRegion = 1
 for (k = 0; k < 3; k++)
 isPointInRegion &=
 AttrRegionQpOrigin[k] <= PointPos[i][k]
 && PointPos[i][k] < AttrRegionQpOrigin[k] + AttrRegionQpSize[k]

 if (isPointInRegion)
 regionBoxDeltaQp = RegionboxDeltaQp
 }

 qstepY = QpToQstep(layerQpY + regionBoxDeltaQp, 1);
 qstepC = QpToQstep(layerQpC + regionBoxDeltaQp, 0);
 for (a = 0; a < AttrDim; a++)

ISO 23090-9:2020(E)

86 © ISO/IEC 2020 – All rights reserved

 unquantAttributeCoefficients[i][a] = residual_values[a][i] × (!a ? qstepY : qstepC);
}

 Inverse lifting

Inputs of this process are:

 a series of attribute coefficients attributeCoefficients[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive.

 an array of quantization weights quantizationWeights[i], where i is in the range of 0 to
PointCount − 1, inclusive.

 an array of prediction predictionWeights[i][n], where i is in the range of 0 to PointCount − 1,
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

The process updates the attributes coefficients attributeCoefficients. It proceeds as follows.

for (lod = 1; lod < LevelDetailCount; lod++) {
 startIndex = pointCountPerLevelOfDetail[lod – 1];
 endIndex = pointCountPerLevelOfDetail[lod];
 inverseUpdate(startIndex, endIndex, attributeCoefficients, quantizationWeights and
predictionWeights);
 inversePrediction(startIndex, endIndex, attributeCoefficients, and predictionWeights);
}

 Definition of inverseUpdate()

Inputs of this process are:

 a series of attribute coefficients attributeCoefficients[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive.

 an array of prediction predictionWeights[i][n], where i is in the range of 0 to PointCount − 1,
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

The process updates the attribute coefficients attributeCoefficients. It proceeds as follows.

for (i = 0; i < startIndex; i++) {
 updateWeights[i] = 0;
 for (j = 0; j < AttrDim; j++)
 updates[i][j] = 0
}

for (i = 0; i < (endIndex − startIndex); i++) {
 index = predictorCount − i − 1 + startIndex;
 currentQuantWeight = quantizationWeights[index];
 for (p = 0; p < neighboursCount[index]; p++) {
 neighbourIndex = neighbours[index][p];
 weight = predictionWeights[index][p] × currentQuantWeight;
 updateWeights[neighbourIndex] += weight;
 for (j = 0; j < AttrDim; j++)
 updates[neighbourIndex][j] += weight × attributeCoefficients[index][j];
 }
}

for (i = 0; i < startIndex; i++) {
 if (updateWeights[i] > 0) {
 bias = updateWeights[i] >> 1;
 for (j = 0; j < AttrDim; j++)
 attributeCoefficients[index][j] −= (updates[i][j] + bias) / updateWeights[i];
 }
}

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 87

 Definition of inversePrediction()

Inputs of this process are:

 a series of attribute coefficients attributeCoefficients[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive.

 an array of quantization weights quantizationWeights[i], where i is in the range of 0 to
PointCount − 1, inclusive.

 an array of prediction predictionWeights[i][n], where i is in the range of 0 to PointCount − 1,
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive.

 an array pointCountPerLevelOfDetail[l], where l is in the range of 0 to LevelDetailCount − 1, inclusive.

The process updates the attribute coefficients attributeCoefficients. It proceeds as follows.

pointCount = endIndex − startIndex;
for (i = 0; i < pointCount; i++) {
 index = predictorCount − i − 1 + startIndex;
 for (j = 0; j < AttrDim; j++) {
 predicted = 0;
 for (p = 0; p < neighboursCount[index]; p++) {
 neighbourIndex = neighbours[index][p];
 predicted += predictionWeights[index][p] × attributeCoefficients[neighbourIndex][j];
 }
 attributeCoefficients[neighbourIndex][j] += divExp2RoundHalfInf(predicted, 8);
 }
}

 LoD with Predicting Transform decoding process

The output of the process is

 a series of the decoded attribute values attributeValues[i][j], where i is in the range of 0 to
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive.

This process invokes the sub-processes in the following order.

 The level of detail generation process in clause 8.3.2.1 is invoked.The output of this process are
stored in indexes[i], neighbours[i][n], neighboursCount[i], neighboursDistance2[i][n], and
pointCountPerLevelOfDetail[l], where i is in the range of 0 to PointCount − 1, inclusive, n in the range of
0 to NumPredNearestNeighbours − 1, inclusive, l is in the range of 0 to LevelDetailCount, inclusive.

 The Prediction weight derivation process in 8.3.2.4 is invoked with the parameters neighbours,
neighboursCount and neighboursDistance2. The output of this process is stored in
predictionWeights[i][n], where i is in the range of 0 to PointCount − 1, inclusive, and n in the range of
0 to NumPredNearestNeighbours − 1, inclusive.

 The inverse quantization process in 8.3.2.6 is invoked with the parameters indexes, neighbours,
neighboursCount and predictionWeights. The output of this process is stored in
unquantAttributeCoefficients[i][j], where i is in the range of 0 to PointCount − 1, inclusive, and j in the
range of 0 to AttrDim − 1, inclusive.

The reconstructed attributes values are obtained as follows.

q = 0;
for (i = 0; i < PointCount; i++) {
 currentIndex = indexes[i];
 for (j = 0; j < AttrDim; j++) {

ISO 23090-9:2020(E)

88 © ISO/IEC 2020 – All rights reserved

 minPredAttribute[j] = 0;
 maxPredAttribute[j] = 0;
 predicted[j] = 0;
 }
 for (p = 0; p < neighboursCount[index]; p++) {
 neighbourIndex = neighbours[index][p];
 for (j = 0; j < AttrDim; j++) {
 if (p == 0 || minPredAttribute[j] > attributeValues[neighbourIndex][j])
 minPredAttribute[j] = attributeValues[neighbourIndex][j];
 if (p == 0 || maxPredAttribute[j] < attributeValues[neighbourIndex][j])
 maxPredAttribute[j] = attributeValues[neighbourIndex][j];
 }
 }
 maxDiff = maxPredAttribute[0] – minPredAttribute[0];
 for (j = 1; j < AttrDim; j++)
 maxDiff = Max(maxDiff, maxPredAttribute[j] – minPredAttribute[j]);
 if (maxDiff > AdaptivePredictionThreshold)
 predMode = pred_index[i];
 else
 predMode = 0;
 if (predMode > 0) {
 neighbourIndex = neighbours[index][predMode −1];
 for (j = 1; j < AttrDim; j++)
 predicted[j] = attributeValues[neighbourIndex][j];
 } else {
 for (j = 0; j < AttrDim; j++) {
 for (p = 0; p < neighboursCount[index]; p++) {
 neighbourIndex = neighbours[index][p];
 weight = predictionWeights[index][p];
 predicted[j] += weight × attributeValues[neighbourIndex][j];
 }
 predicted[j] = divExp2RoundHalfInf(predicted[j], 8);
 }
 }
 for (j = 0; j < AttrDim; j++)
 res[j] = divExp2RoundHalfInf(unquantAttributeCoefficients[currentIndex][j], 8);
 for (j = 0; j < AttrDim; j++) {
 attributeValue = predicted[j] + res[j] + (j > 0 ? res[0] : 0);
 if (AttrDim == 0)
 maxAttribute = (1 << (attribute_bitdepth_minus1[ash_attr_sps_attr_idx] + 1)) − 1
 else
 maxAttribute = (1 << (attribute_secondary_bitdepth_minus1[ash_attr_sps_attr_idx] +
1)) − 1
 attributeValues[currentIndex][j] = Clip(attributeValue, 0, maxAttribute);
 }
}

8.4 Slice concatenation process

The outputs of this process are:

– the modified array RecPic with elements RecPic[pointIdx][attrIdx] representing points in the
reconstructed point cloud frame, and

– the modified variable RecPicPointCount representing the number of points in the reconstructed
point cloud frame.

RecPicPointCount is initialized to 0.

The points and attributes from the current slice are concatenated with the reconstructed point cloud
frame as follows:

for (pointIdx = 0; pointIdx <= gsh_num_points_minus1; pointIdx++, RecPicPointCound++) {
 for (axis = 0; axis < 3; axis++)
 RecPic[RecPicPointCount][axis] = PointPos[pointIdx][axis];
 for (cIdx = 0; cIdx < NumAttributeComponents; cIdx++)

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 89

 RecPic[RecPicPointCount][3 + cIdx] = pointAttr[pointIdx][cIdx];
}

9 Parsing process

9.1 General

This process is invoked when the descriptor of a syntax element in the syntx tables in 7.3 is equal to u(n),
ue(v), se(v), ae(v), or de(v).

The output of this process is a syntax element value.

The array DataUnitBytes, with elements DataUnitBytes[i], i = 0 .. DataUnitLength − 1, represents a coded
data unit as a sequence of bytes. When parsing the first syntax element of a data unit, DataUnitBytes is
set equal to the byte array provided by an encapsulation format (such as Annex B) or by an external
means. The function readDataUnitBit() provides access to the bitstream as described in 9.2.

When sps_bypass_stream_enabled_flag is equal to 1, each data unit represents a header part and one or
more sequences of chunk interleaved substreams. Parsing of the geometry slice and attribute slice syntax
structures proceeds as follows:

− At the start of parsing the data unit, the variable entropyStreamIdx is initialized to 0.

− The variable ChunkSeqLen is derived as follows:

− When parsing the geometry slice syntax, if entropyStreamIdx is less than
EntropyStreamCnt − 1, ChunkSeqLen is set equal to
gsh_entropy_stream_len[entropyStreamIdx].

− Otherwise, ChunkSeqLen is set equal to DataUnitLength − (DataUnitReadIdx >> 3)

− The arrays AeByteStream and BypassBitStream represent streams of non-bypass arithmetic coded
bins and directly coded bypass bins respectively.

− The chunk interleaved substreams parsing process (9.2) is invoked with the input variable
ChunkSeqLen and the output arrays AeByteStream and BypassBitstream as follows:

− At the start of parsing the geometry_slice_data syntax structure.

− At the start of pasing the geometry_node_syntax structure when GeomEntropyStreamCnt is
greater than 1, nodeIdx is equal to 0, and the variable depth is greater than or equal to
GeomEntropyStreamDepth.

− At the start of parsing the attribute_slice_data syntax structure.

− entropyStreamIdx is incremented by 1.

When GeomEntropyStreamCnt is greater than 1, the parsing state may be memorized or restored when
starting to parse the geometry_node syntax structure (7.3.3.4) as follows:

− The parsing state memorization process (9.11) is invoked when nodeIdx is equal to 0 and depth is
equal to GeomEntropyStreamDepth.

− The parsing state restoration process (9.12) is invoked when nodeIdx is equal to 0 and depth is
greater than or equal to GeomEntropyStreamDepth.

ISO 23090-9:2020(E)

90 © ISO/IEC 2020 – All rights reserved

The output syntax element value is parsed according to the processes corresponding to the syntax
element’s descriptor and name in Table 21 and Table 22.

Table 21 — Descriptor passing process

Descriptor Process Channel read method
u(n) 9.6.1 readDataUnitBit()
ue(v) 9.6.2 readDataUnitBit()
s(n) 9.6.1, 9.6.4 readDataUnitBit()
se(v) 9.6.2, 9.6.4 readDataUnitBit()
ae(v) 9.10.1 readBin()
de(v) 9.9.1 readBin()

Table 22 — Syntax element specific parsing processes

Syntax structure Syntax element Parsing process
geometry_node() geom_node_qp_offset_eq0_flag 9.6.1 (FL), numBins = 1
 geom_node_qp_offset_sign_flag 9.6.1 (FL), numBins = 1
 geom_node_qp_offset_abs_minus1 9.6.2 (EGk), k = 0
 single_occupancy_flag 9.6.1 (FL), numBins = 1
 occupancy_idx[] 9.6.1 (FL), numBins = 3
 occypancy_map 9.7.5
 occupancy_byte 9.9.1
 num_points_eq1_flag[] 9.6.1 (FL), numBins = 1
 num_points_minus2[] 9.6.2 (EGk), k = 0
 is_planar_flag[][] 9.6.1 (FL), numBins = 1
 plane_position[][] 9.6.1 (FL), numBins = 1
 direct_mode_flag 9.6.1 (FL), numBins = 1
 num_direct_points_gt1 9.6.1 (FL), numBins = 1
 not_duplicated_point_flag 9.6.1 (FL), numBins = 1
 num_direct_points_eq2_flag 9.6.1 (FL), numBins = 1
 num_points_direct_mode_minus3 9.6.2 (EGk), k = 0
 point_offset_s[][]

point_offset_t[][]
point_offset_v[][]

9.6.1 (FL), numBins = 1

geometry_trisoup_data() trisoup_sampling_value_minus1 9.4.2 (EGk), k = 0
 num_unique_segments_minus1[] 9.6.2 (EGk), k = 0
 segment_indicator[] 9.6.1 (FL), numBins = 1
 num_vertices_minus1[] 9.6.2 (EGk), k = 0
 vertex_position[] 9.6.3 (TU),

maxVal = (1 <<
trisoup_node_size_log2) + 1

attribute_slice_data() all_residual_values_equal_to_zero_run 9.6.3 (TU),
maxVal = TBD

 pred_index 9.6.3 (TU),

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 91

Syntax structure Syntax element Parsing process
maxVal = MaxNumPredictors

attribute_coding() residual_values_equal_to_zero 9.6.1 (FL), numBins = 1
 residual_values_equal_to_one 9.6.1 (FL), numBins = 1
 remaining_values[][] 9.6.2 (EGk), k = 0
dictionary_encoded_value() dict_lut0_hit_flag 9.6.1 (FL), numBins = 1
 dict_lut1_hit_flag 9.6.1 (FL), numBins = 1
 dict_lut0_idx XXXREF
 dict_lut1_idx 9.6.1 (FL), numBins = 4
 dict_direct_value 9.6.1 (FL), numBins = 8

9.2 Chunked bytestream parsing process

 General

The input to this process is the variable ChunkSeqLen representing the length in bytes of a sequence of
chunks.

The output of this process are:

− The array AeByteStream consisting of bytes of an arithmetic coded data stream.

− The variable AeStreamReadIdx, representing the read position of the AeByteStream.

− The array BypassBitStream consisting of bits of a bypass data stream.

− The variable BypassStreamReadIdx, representing the read position of the BypassBitStream.

A chunked bytestream sequence consists of one or more chunks. With the exception of the last chunk in
a sequence, all chunks are 256 bytes in length. The final chunk may be truncated to ChunkSeqLen % 256
bytes. Each chunk contains data from one or both of the arithmetic coded data stream and a bypass bin
data stream.

The variables AeStreamReadIdx and AeBypassStreamReadIdx are both initialized to 0.

The arrays AeByteStream and BypassBitSteram are assembled according to the following syntax (9.2.2)
and semantics (9.2.3).

 Syntax

 Chunked bytestream sequence syntax

ae_chunk_sequence() { Descriptor
 for(chunkOffset = 0; chunkOffset < ChunkSeqLen; chunkOffset +=
256)

 ae_chunk(Min(256, chunkSeqLen − chunkSeqOffset))
}

ISO 23090-9:2020(E)

92 © ISO/IEC 2020 – All rights reserved

 Chunked bytestream chunk syntax

ae_chunk(chunkLen) { Descriptor
 chunk_num_ae_bytes u(8)
 for(i = 0; i < num_ae_bytes; i++)
 chunk_ae_byte[i] u(8)
 for(j = 0; i < chunkLen − 1; j++, i++) {
 if(i < chunkLen − 2)
 chunk_bypass_byte[j] u(8)
 else {
 chunk_bypass_5bits u(5)
 chunk_bypass_num_flushed_bits u(3)
 }
}

 Semantics

 Chunked bytestream sequence semantics

This clause is intentionally empty.

 Chunked bytestream chunk semantics

The contents of each chunk is concatenated to the arrays AeByteStream and BypassBitStream.

chunk_num_ae_bytes indicates the number of chunk_ae_byte and chunk_bypass_byte elements present
in a chunk. When not present, the value of chunk_num_ae_bytes is inferred to be 0. It is a requirement of
bitstream conformance that chunk_num_ae_bytes is less than chunkLen.

chunk_ae_byte[i] specifies the i-th byte of the arithmetically encoded symbol sub-stream of the current
chunk. Each chunk_ae_byte[i] is appended to the AeByteStream array as follows:

for (i = 0; i < chunk_num_ae_bytes; i++)
 AeByteStream[AeStreamLen++] = chunk_ae_byte[i]

chunk_bypass_byte[j] specifies the j-th byte of the bypass symbol sub-stream of the current chunk.
Each chunk_bypass_byte is appended to the BypassBitStream array as follows:

numChunkBypassBytes = Max(0, chunkLen − 2 − chunk_num_ae_bytes)
for (j = 0; j < numChunkBypassBytes; j++)
 for (b = 7; b >= 0; b−−)
 BypassBitStream[BypassBitStreamLen++] = (chunk_bypass_byte[j] >> b) & 1

chunk_bypass_5bits specifies the values of five bypass bits at the end of the bypass symbol sub-stream
of the current chunk. Each bit is appended to the BypassBitStream array as follows:

for (b = 4; b >= 0; b−−)
 BypassBitStream[BypassBitStreamLen++] = (chunk_bypass_5bits >> b) & 1

chunk_bypass_num_flushed_bits specifies the number of bypass bits to be discarded from the end of
the BypassBitStream.

BypassBitstreamLen −= chunk_bypass_num_flushed_bits

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 93

9.3 Definition of readDataUnitBit

The inputs to this process are the current data unit byte array DataUnitBytes and the associated read
position DataUnitReadIdx.

The outputs of this process are the next bit read from the data unit, and the updated data unit read
position.

On the first invocation of this process for the current data unit, the variable DataUnitReadIdx is set equal
to 0.

The output value bitVal is determined as follows:

byteIdx = DataUnitReadIdx >> 3
bitMask = 0x80 >> (DataUnitReadIdx & 7)
bitVal = DataUnitBytes[byteIdx] & bitMask != 0

After determining bitVal, the variable DataUnitReadIdx is incremented by one.

9.4 Definition of readAeStreamBit

If sps_bypass_stream_enabled_flag is equal to 0, this process is equivalent to invoking readDataUnitBit
(9.3).

Otherwise, sps_bypass_stream_enabled_flag equal to 1, the outputs of this process are the next bit read
from the AeByteStream array, and the updated AeByteStream read position.

The output value bitVal is determined as follows:

byteIdx = AeStreamReadIdx >> 3
bitMask = 0x80 >> (AeStreamReadIdx & 7)
bitVal = AeByteStream[byteIdx] & bitMask != 0

After determining bitVal, the variable AeReadIdx is incremented by one.

9.5 Definition of readBypassStreamBit

The outputs of this process are the next bypass bit read from the BypassBitStream array, and an updated
BypassBitStream read position.

The output value bitVal is determined as follows:

bitVal = BypassBitStream[BypassBitsteramReadIdx]

After determining bitVal, the variable BypassBitStreamReadIdx is incremented by one.

9.6 General inverse binarisation processes

 Parsing of fixed-length codes

The inputs to this process are the value numBits, indicating the number of bits that represent the syntax
element, and the channel read function readBit().

The output from this process is an unsigned syntax element value, constructed as follows:

value = 0;
for (BinIdx = 0; BinIdx < numBits; BinIdx++)
 value = (value << 1) + readBit()

ISO 23090-9:2020(E)

94 © ISO/IEC 2020 – All rights reserved

 Parsing of k-th order exp-Golomb codes

The inputs to this process are the value k, indicating the order of the exp-Golomb code used to represent
the syntax element, and the channel read function readBit().

The output from this process is an unsigned syntax element value, determined as follows:

First, a unary encoded prefix is determined as follows:

prefix = 0
for (BinIdx = 0; readBit() == 1; BinIdx++)
 prefix++

Then, a suffix consisting of k + prefix bins is determined as follows

suffix = 0;
for (i = 0; i < k + prefix; i++)
 suffix = (suffix << 1) + readBit();

Finally, the syntax element value is constructed as follows

value = ((1 << prefix) − 1) × k + suffix

 Parsing of truncated unary codes

The inputs to this process are the value maxVal, and the channel read function readBit().

The output from this process is an unsigned syntax element value, determined as follows:

value = 0
for (BinIdx = 0; value < maxVal && readBit() == 1; BinIdx++)
 value++

 Mapping process for signed codes

Input to this process is an unsigned syntax element value, unsignedVal.

Output from this process is the signed syntax element value, determined as follows:

 If unsignedVal is even, the outputis is set equal to unsignedVal >> 1,

 Otherwise, if unsignedVal is odd, the output is set equal to (unsignedVal + 1) >> 1.

Table 23 illustrates an example of the mapping process.

Table 23 — Conversion of unsigned values for signed syntax elements (informative)

Unsigned value Signed value
0 0
1 −1
2 1
3 −2
4 2
5 −3
6 3
... ...

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 95

9.7 Bit-wise geometry octree occupancy parsing process

 General process

The parsing and inverse binarization of the arithmetically coded syntax element occupancy_map is
described in 9.7.5

The decoding of each arithmetically encoded bin in occupancy_map involves a context selection process
that makes use of a dynamic map (the array CtxMap) to select a context (9.7.7) based upon the occupancy
state of neighbouring nodes, predicted occupancy values ((9.7.9) and previously decoded bins. After
decoding a bin, CtxMap is updated based upon the decoded bin value (9.7.8).

At the start of decoding a geometrydata unit, CtxMap is initialized according to 9.7.2.

 NOTE — While the described process updates CtxMap after decoding each bin, there is no
dependency by subsequent bins on the updated value.

 Initialisation process

This process is invoked at the start of each geometry data unit.

The output from this process is the initialized array CtxMap with entries CtxMap[i] for i in the range 0
to 1499 × 3 set equal to 127.

 Determination of planar masks used in the inverse binarization process

Two 8-bit binary masks mask_planar_fixed0[axisIdx] and mask_planar[axisIdx] are determined for the
current node and for an axis index axisIdx.

The first mask mask_planar_fixed0[axisIdx] is constructed that such its i-th bit, for i = 0 .. 7, is set to 1 if
the corresponding i-th child node belongs to the lower plane along the axisIdx-th axis. This bit is set 0 if
the child node belongs to the upper plane.

If the node is not planar along the axisIdx-th axis, i.e. is_planar_flag[nodeIdx][axisIdx] is equal to 0, then
mask_planar[axisIdx] is set to 0.

Otherwise, if is_planar_flag[nodeIdx][axisIdx] is equal to 1, the node is planar along the axisIdx-th axis,
the occupied plane position is known from plane_position[nodeIdx][axisIdx], and the i-th bit, for
i = 0 .. 7, of mask_planar[axisIdx] is set to 0 if the corresponding i-th child node belongs to the occupied
plane, 1 otherwise.

By construction of mask_planar[axisIdx], its bits whose value is 1 do mask the occupancy bits
corresponding to child nodes for which it is known, from the planar information, that they are not
occupied.

 Occupancy_idx[] parsing process

When occupancy_idx[axisIdx], for axisIdx in the range 0 .. 2, is not present, the value of
occupancy_idx[axisIdx] is inferred by the corresponding plane position, if the latter is present, as follows,

if (is_planar_flag[nodeIdx][axisIdx])
 occupancy_idx[axisIdx] = plane_position[nodeIdx][axisIdx]

ISO 23090-9:2020(E)

96 © ISO/IEC 2020 – All rights reserved

If all three values occupancy_idx[axisIdx] are either present or inferred by the corresponding plane
position ,the following applies:

OccupancyMap = 1 << (occupancy_idx[2] | (occupancy_idx[1] << 1) | (occupancy_idx[0] << 2))

If single_occupancy_flag is equal to 0, two_planar_flag[nodeIdx] is equal to 1, and
is_planar_flag[nodeIdx][axisIdx] is equal to 0, for an axis index axisIdx, then only two child nodes are
occupied along the axisIdx-th axis. In this case, OccupancyMap is determined as follows

if (!single_occupancy_flag && two_planar_flag[nodeIdx]) {
 if (!is_planar_flag[nodeIdx][0])
 OccupancyMap =
 (1 << (occupancy_idx[2] | (occupancy_idx[1] << 1)))
 | (1 << (occupancy_idx[2] | (occupancy_idx[1] << 1) | 1 << 2))

 if (!is_planar_flag[nodeIdx][1])
 OccupancyMap =
 (1 << (occupancy_idx[2] | (occupancy_idx[0] << 2)))
 | (1 << (occupancy_idx[2] | 1 << 1 | (occupancy_idx[0] << 2)))

 if (!is_planar_flag[nodeIdx][2])
 OccupancyMap =
 (1 << (occupancy_idx[1] << 1 | (occupancy_idx[0] << 2)))
 | (1 << (1 | occupancy_idx[1] << 1 | (occupancy_idx[0] << 2)))
}

OccupancyMap = 1 << (occupancy_idx[2] | (occupancy_idx[1] << 1) | (occupancy_idx[0] << 2))

 Inverse binarization process

This process reconstructs a value of the syntax element occupancy_map.The input to this process is the
variables NeighbourPattern and the planar information mask_planar[] and mask_planar_fixed0[]
associated with the current node.

The output from this process is the syntax element value, constructed as follows:

value = 0
min_non_zero_node = NeighbourPattern == 0 ? 2 : 1
for (axisIdx = 0; axisIdx <= 2; axisIdx++)
 min_non_zero_plane[axisIdx] = NeighbourPattern == 0 && mask_planar[axisIdx] ? 2 :1

initialize_counters_for_zeros()
for (BinIdx = 0; BinIdx < 8; BinIdx++) {
 binIsInferred0 =
 ((mask_planar[0] >> bitCodingOrder[BinIdx]) & 1)
 || ((mask_planar[1] >> bitCodingOrder[BinIdx]) & 1)
 || ((mask_planar[2] >> bitCodingOrder[BinIdx]) & 1)

 if (binIsInferred0) {
 bin = 0
 continue
 }

 determine_binIsInferred1()
 if (binIsInferred1)
 bin = 1
 else {
 bin = readOccBin()
 if (!bin)
 update_counters_for_zeros()
 }
 value = value | (bin << bitCodingOrder[BinIdx])
}

where bitCodingOrder[BinIdx] is defined by Table 24, and readOccBin() is specified by 9.7.6,

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 97

Table 24 — Values of bitCodingOrder[i]

i 0 1 2 3 4 5 6 7
value 1 7 5 3 2 6 4 0

The variable binIsInferred0 is set equal to 1 when the value of the bin can be deduced to be 0 from the
planar information associated with the node, e.g. when the bin corresponds to the occupancy bit of a child
node that belongs to a plane known to be unoccupied from the planar information. Otherwise,
binIsInferred0 is set equal to 0.

If binIsInferred0 equal 0, the variable binIsInferred1 is set equal to 1 when the value of the bin can be
deduced to be 1 from the planar information, the minimum number min_non_zero_node of non-zero bins
in the node, and the minimum number min_non_zero_plane[axisIdx] of non-zero bins in the occupied
plane along the axisIdx-th axis (would the node be palnar along this axis). Otherwise, binIsInferred1 is
set equal to 0.

The value of binIsInferred1 is determined based on counters coded0[axisIdx][planePos] that counts the
number of occupancy bits already known to be zero for a plane position planePos (either equal to 0 for
the lower plane, or equal to 1 for the upper plane) along the axisIdx-th axis. The counters are initialized
at the start of the inverse binarization process as follows

initialize_counters_for_zeros() {
 for (axisIdx = 0; axisIdx <= 2; axisIdx++)
 for (planePos = 0; planePos <= 1; planePos++)
 coded0[axisIdx][planePos] = 0
 for (i = 0; i < 8; i++) {
 if ((mask_planar[0] >> i) & 1 || ((mask_planar[1] >> i) & 1 || ((mask_planar[2] >> i)
& 1) {
 coded0[0][(mask_planar_fixed0[0] >> i) & 1]++
 coded0[1][(mask_planar_fixed0[1] >> i) & 1]++
 coded0[2][(mask_planar_fixed0[2] >> i) & 1]++
 }
 }
}

Thus, the counters coded0[][] are initialized counting the number of occupancy bits known to be zero
from the planar information. Each time a bin is decoded by readOccBin() and this decoded bin is equal
to 0, the counters coded0[][] are updated by

update_counters_for_zeros() {
 coded0[0][(mask_planar_fixed0[0] >> bitCodingOrder[BinIdx]) & 1]++
 coded0[1][(mask_planar_fixed0[1] >> bitCodingOrder[BinIdx]) & 1]++
 coded0[2][(mask_planar_fixed0[2] >> bitCodingOrder[BinIdx]) & 1]++
}

When binIsInferred0 equal 0, the determaination of the value of binIsInferred1 performed as follows

determine_ binIsInferred1() {
 for (axisIdx = 0; axisIdx <= 2; axisIdx ++) {
 mask0 = mask_planar_fixed0[axisIdx] >> bitCodingOrder[BinIdx]) & 1
 binIsOne[axisIdx] =
 (eligible_planar_flag[axisIdx]
 && coded0[axisIdx][mask0] >= 4− min_non_zero_plane[axisIdx])
 || coded0[axisIdx][0] + coded0[axisIdx][0] >= 8 − min_non_zero_node
 }
 binIsInferred0 = binIsOne[0] || binIsOne[1] || binIsOne[2]
}

In this process binIsOne[axisIdx] is equal to 1 when the bin can be deduced to be 1 from the planar
information along the axisIdx-th axis; it is equal to 0 otherwise. This deduction can be performed because
either the node the planarity of the node is known and already at least 4 − min_non_zero_plane[axisIdx]

ISO 23090-9:2020(E)

98 © ISO/IEC 2020 – All rights reserved

bins are known to be or have been decoded to zero, or already at least 8 − min_non_zero_node bins are
known to be or have been decoded to zero.

 Definition of readOccBin()

The inputs to this process are the variables BinIdx, and PartialSynVal.

The output from this process is the value of the decoded bin.

The process for a decoding a single bin is as follows:

 The variables ctxMapIdx and ctxIdx are determined according to the derivation process 9.7.7 with
the variables NeighbourPattern, BinIdx, and PartialSynVal as input.

 The arithmetic decoding process 9.10.2 for a single bin is invoked for the syntax element
occupancy_map with the variable ctxIdx as input. The output binVal is the value of the decoded bin.

 The context map update process 9.7.8 is invoked with the variable ctxMapIdx and the decoded bin
value.

 ctxMapIdx and ctxIdx derivation processes

Inputs to this process are,

 the variable NeighbourPattern, representing the occupancy of the neighbours of the current node’s
parent neighbours,

 the variable binIdx, indicating the bin to be decoded, and

 the variable partialSynVal, representing the partially reconstructed value of the syntax element.

Output of by this process are the variables ctxMapIdx andctxIdx.

The variable idxPred is set as follows:

 If NodeMaxDimLog2 is greater than or equal to log2_intra_pred_max_node_size, the variable
idxPredidxPred is set equal to 0.

 Otherwise, NodeMaxDimLog2 is less than log2_intra_pred_max_node_size, the variable idxPred is set
equal to the output of the occupancy prediction process using neighbouring octree nodes (9.7.9) when
invoked with the current node and childIdx set equal to the output of the neighbour dependent geometry
octree child node scan order Inverse mapping process (6.4.1) with the inputs neighbourPattern and inIdx
set equal to bitCodingOrder[binIdx] where values of bitCodingOrder[] are given in Table 24.

The variable idxAdj is set as follows:

 If adjacent_child_contextualization_enabled_flag is equal to 1, the following applies:

 The variables adjOcc and adjUnocc are initialized to 0.

 The variables sC, tC, and vC identifying the position of the child node associated with binIdx at depth
+ 1 are initialized as follows

sC = 2 × sN + ((bitCodingOrder[binIdx] >> 2) & 1)
tC = 2 × tN + ((bitCodingOrder[binIdx] >> 1) & 1)
vC = 2 × vN + (bitCodingOrder[binIdx] & 1)

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 99

 The following procedure is performed for each of the s, t, and v axes by substituting the variables aN,
aC, nPmas, sCn, tCn, vCn, sNn, tNn, and vNn of the corresponding row of Table 25.

// if child is adjacent to a causally-valid neighbour
if (!(aC & 1)) {
 if (NeighboutPattern & nPmask)
 adjOcc += GeometryNodeOccupancyCnt[depth + 1][sCn][tCn][vCn]
 else
 // if neighbour is available but not present
 if ((aN + 1) & NeighbAvailabilityMask != 1)
 if (GeometryNodeOccupancyCnt[depth][sNn][tNn][vNn] == 0)
 adjUnocc = 1
}

Table 25 — Variable substitutions for the computation of adjOcc and adjUnocc

axis aN aC nPmask sCn tCn vCn sNn tNn vNn

s sN sC 2 sC−1 tC vC sN−1 tN vN

t tN tC 4 sC tC−1 vC sN tN−1 vN

v vN vC 16 sC tC vC−1 sN tN vN−1

 The variable idxAdj is derived as follows

idxAdj = adjUnocc + 2 × Min(2, adjOcc)
if (binIdx > 4)
 idxAdj = ctxIdxAdjReduc567[idxAdj]

Table 26 — Values of ctxIdxAdjReduc567[i]

i 0 1 2 3 4 5

ctxIdxAdjReduc567[i] 0 0 1 2 3 3

The variable ctxIdxMapIdx is set equal to 3 × idxAdj + idxPred.

The output variable ctxMapIdx is derived as follows:

 If NeighbourPattern is equal to 0, ctxIdxMapOffset is set equal to popcnt(partialSynVal).

 Otherwise, NeighbourPattern is not equal to 0, the following applies:

if (neighbour_context_restriction_flag)
 pattern = neighbourPattern64to9[NeighbourPattern];
else
 pattern = neighbourPattern64to6[NeighbourPattern];

if (binIdx == 7)
 pattern = 1;
else if (binIdx == 6)
 pattern = neighbourPattern9to3[pattern];
else if (binIdx > 3)
 pattern = neighbourPattern9to5[pattern];
ctxIdxMapOffset = ((pattern − 1) << binIdx) + partialSynVal + binIdx + 1;

Finally, the output variable ctxIdx is set as follows

ctxMapIdx = ctxIdxMapIdx × 1499 + ctxIdxMapOffset
ctxIdx = CtxMap[ctxMapIdx] >> 3

ISO 23090-9:2020(E)

100 © ISO/IEC 2020 – All rights reserved

Table 27 — Values of neighbourPattern64to9[j + i]

i

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 1 1 2 2 3 1 2 2 3 1 3 3 4

16 1 2 2 3 2 5 5 6 2 5 5 6 3 6 6 7

32 1 2 2 3 2 5 5 6 2 5 5 6 3 6 6 7

48 1 3 3 4 3 6 6 7 3 6 6 7 4 7 7 8

Table 28 — Values of neighbourPattern64to6[j + i]

j i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 5 5 na 5 1 1 na 5 1 1 na na na na na

16 2 3 3 na 3 7 7 na 3 7 7 na na na na na

32 2 3 3 na 3 7 7 na 3 7 7 na na na na na

48 na na na na na na na na na na na na na na na na

Table 29 — Specification of neighbourPattern9to5[i]

i 0 1 2 3 4 5 6 7 8
neighbourPattern9to5[i] 0 1 2 3 11 22 3 4 44

Table 30 — Specification of neighbourPattern9to3[i]

i 0 1 2 3 4 5 6 7 8
neighbourPattern9to3[i] 0 1 11 22 22 11 22 2 2

 Context map update process

This process updates the context mapping table for the syntax element occupancy_map.

Input to this process are the variable ctxMapIdx and a decoded bin value.

The context mapping CtxMap[ctxMapIdx] is updated as follows:

stateVal = CtxMap[ctxMapIdx]
if (binVal)
 CtxMap[ctxMapIdx] += ctxMapTransition[(255 − stateVal) >> 4]
else
 CtxMap[ctxMapIdx] −= ctxMapTransition[stateVal >> 4]

Where values of ctxMapTransition are given by Table 31.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 101

Table 31 — Values of ctxMapTransition[i]

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
value 0 1 1 2 4 7 9 11 14 16 19 23 22 18 13 6

 Occupancy prediction process using neighbouring octree nodes

The occupancy prediction process generates a tri-state occupancy prediction of a single child node based
on the occupancy state of nodes neighbouring the parent node.

Input to this process are

 the variables sN, tN, vN, and depth, identifying a node in the geometry octree, and

 the variable childIdx identifying a child node position according to the geometry octree child
traversal order for occupancy prediction.

Output from this process is the predicted occupancy state for the specified child node.

A list of neighbouring occupied blocks is determined as follows:

for (i = 0; i < 25; i++) {
 s = sN + dS[i]
 t = tN + dT[i]
 v = vN + dV[i]
 if (available(sN, tN, vN, s, t, v))
 occupied[i] = GeometryNodeOccupancyCnt[depth][s][t][v] != 0
 else
 occupied[i] = 0
}

Where the function available(sN, tN, vN, s, t, v) evaluates to true if all of the following conditions are true:

log2_neighbour_avail_boundary > 0
(s ^ sN) >> log2_neighbour_avail_boundary == 0
(t ^ tN) >> log2_neighbour_avail_boundary == 0
(v ^ vN) >> log2_neighbour_avail_boundary == 0

And where the values of the neighbour position offsets dS[], dT[], and dV[] are given in Table 32.

If the sum of occupied[i], with i = 0 .. 25, is less than 8, the output predicted occupancy state is set equal
to zero and no further processing occurs.

An occupancy score for the child node is determined as follows:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖][𝑖𝑖]]][𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖]]
25

𝑖𝑖=0

Where the values of scoreIdx[][], and predictionScore[][] are given by Table 32 and Table 33.

The output predicted occupancy state, prediction, is set according to the following:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖]
25

𝑖𝑖=0

thresholdIdx = Min(numOccupied − 8, 4);
if (score <= predictionThreshold[thresholdIdx][0])
 prediction = 1;

ISO 23090-9:2020(E)

102 © ISO/IEC 2020 – All rights reserved

else if (score >= predictionThreshold[thresholdIdx][1])
 prediction = 2;
else
 prediction = 0;

Where the value of predictionThreshold[][] is given by Table 34.

Table 32 — Values of dS[i], dT[i], dV[i], and scoreIdx[bitIdx][i] for intra occupancy prediction

scoreIdx[childIdx][i]

i dS[i] dT[i] dV[i] 0 1 2 3 4 5 6 7

0 −1 −1 −1 2 4 4 6 4 6 6 7

1 −1 −1 0 1 1 3 3 3 3 5 5

2 −1 −1 1 4 2 6 4 6 4 7 6

3 −1 0 −1 1 3 1 3 3 5 3 5

4 −1 0 0 0 0 0 0 2 2 2 2

5 −1 0 1 3 1 3 1 5 3 5 3

6 −1 1 −1 4 6 2 4 6 7 4 6

7 −1 1 0 3 3 1 1 5 5 3 3

8 −1 1 1 6 4 4 2 7 6 6 4

9 0 −1 −1 1 3 3 5 1 3 3 5

10 0 −1 0 0 0 2 2 0 0 2 2

11 0 −1 1 3 1 5 3 3 1 5 3

12 0 0 −1 0 2 0 2 0 2 0 2

13 0 0 1 2 0 2 0 2 0 2 0

14 0 1 −1 3 5 1 3 3 5 1 3

15 0 1 0 2 2 0 0 2 2 0 0

16 0 1 1 5 3 3 1 5 3 3 1

17 1 −1 −1 4 6 6 7 2 4 4 6

18 1 −1 0 3 3 5 5 1 1 3 3

19 1 −1 1 6 4 7 6 4 2 6 4

20 1 0 −1 3 5 3 5 1 3 1 3

21 1 0 0 2 2 2 2 0 0 0 0

22 1 0 1 5 3 5 3 3 1 3 1

23 1 1 −1 6 7 4 6 4 6 2 4

24 1 1 0 5 5 3 3 3 3 1 1

25 1 1 1 7 6 6 4 6 4 4 2

Table 33 — Values of predictionScore[i][occupied]

i

occupied 0 1 2 3 4 5 6 7

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 103

0 −4 −24 48 80 56 112 88 48

1 108 156 80 32 72 16 44 72

Table 34 — Values of predictionThreshold[i][j]

i

occupied 0 1 2 3 4

0 1612 1560 1586 1534 1534

1 1742 1716 1690 1716 1664

9.8 Inferred Direct Coding Mode parsing process

 General process

The parsing and inverse binarization of the arithmetically coded syntax element plane_position[][2] is
described in 9.8.3.

 Determination of the angular context idcmIdxAngular

The process to determine the context idcmIdxAngular[i][j] for coding the bin point_offset_v[i][j]
assoicated with j-th bit of the the i-th point belongign to a the child node tha t undergoes Iferred Direct
Coding Mode is described in this section.

This process is performed after point_offset_s[i][] and point_offset_t[i][] are decoded such that
PointOffsetS[i] and PointOffsetT[i] are known. The s and t position, relative to the Lidar, of the point i
is derived by

posSlidar[i] = sNchild − geomAngularOrigin[0] + PointOffsetS[i]
posTlidar[i] = tNchild − geomAngularOrigin[1] + PointOffsetT[i]

where (sNchild, tNchild, vNchild) specifying the position of the geometry octree child node Child in the
current slice.

The inverse rInv of the radial distance of the point from the Lidar is determined by

sLidar = (posSlidar[i] << 8) − 128
tLidar = (posTlidar[i] << 8) − 128
r2 = sLidar × sLidar + tLidar × tLidar
rInv = invSqrt(r2)

The corrected laser angle ThetaLaser of the laser associated with the child nodeChild is deduces by

Hr = laser_correction[laserIndex[Child]] × rInv
ThetaLaser = laser_angle[laserIndex[Child]] + (Hr >= 0 ? −(Hr >> 17) : ((−Hr) >> 17))

Assuming that the bits point_offset_v[i][j2] for j2 = 0 .. j − 1, are known, the point is known to belong to
a virtual vertical interval whose half size is provided by

halfIntervalSize[j] = (1 << (EffectiveChildNodeSizeVLog2 − 1)) >> j

and a partial v point position posVlidarPartial[i][j], that provides the lower end of the interval, is
deduced by

ISO 23090-9:2020(E)

104 © ISO/IEC 2020 – All rights reserved

PointOffsetVpartial = 0;
for (j2 = 0; j2 < j; j2++)
 PointOffsetVpartial[i] += point_offset_v[i][j2] << j2
PointOffsetVpartial[i] <<= (EffectiveChildNodeSizeVLog2 − j)
 posVlidarPartial[i][j] = vNchild − geomAngularOrigin[2] + PointOffsetVpartial[i]

A relative laser position thetaLaserDeltaVirtualInterval relative to the middle of the virtual interval is
computed by

vLidar = ((posVlidarPartial[i][j] + halfIntervalSize[j]) << 1) − 1
theta = zLidar × rInv
theta32 = theta >= 0 ? theta >> 15 : −((−theta) >> 15)
thetaLaserDeltaVirtualInterval = ThetaLaser − theta32;

Two absolute angular differences m and M of the laser relative to a lower and an upper v position in the
virtual interval are determined.

vShift = ((rInv << EffectiveChildNodeSizeVLog2) >> 17) >> j
m = Abs(thetaLaserDeltaVirtualInterval − vShift);
M = Abs(thetaLaserDeltaVirtualInterval + vShift);

Then, the angular context is deduced from the two absolute angular differences.

idcmIdxAngular[i][j] = m > M
diff = Abs(m − M)
if (diff >= rInv >> 15) idcmIdxAngular[i][j] += 2
if (diff >= rInv >> 14) idcmIdxAngular[i][j] += 2
if (diff >= rInv >> 13) idcmIdxAngular[i][j] += 2
if (diff >= rInv >> 12) idcmIdxAngular[i][j] += 2

 Inverse binarization process

When Inferred Direct Coding Mode is applied to a child node Child, the bits point_offset_v[i][j] of the i-
th point in the child node, for j in the range 0 .. EffectiveChildNodeSizeVLog2 or in the range
1 .. EffectiveChildNodeSizeVLog2 in case the first bit is inferred by the plane position
plane_position[Child][2], are decoded applying the following process.

If geometry_angular_mode_flag is equal to 0, then the bit point_offset_v[i][j] is decoded using the bypass
decoding process.

Otherwise, if geometry_angular_mode_flag is equal to 0, the bit point_offset_v[i][0] is bypass decoded
when not inferred by the plane position, and the bits point_offset_v[i][j] are decoded using the context
idcmIdxAngular[i][j] for j > 0.

9.9 Dictionary-based parsing

 General process

This process is invoked when parsing syntax elements with descriptor ae(v).

This process involves:

• An array of values lut0[k] storing the most frequent symbols, where k is in the range of 0 to 31,
inclusive.

• An array of values lut0Histogram[k] storing the symbols occurrences, where k is in the range of
0 to 255, inclusive.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 105

• Two variables lut0UpdatePeriod and lut0SymbolsUntilUpdate storing the update period for lut0
and the number of symbols remaining until the next update, respectively.

• A variable lut0Reset specifying whether lut0 should be reset during the next lut0 update or not.

• An array of values lut1[k] storing the last 16 decoded symbols, where k is in the range of 0 to 15,
inclusive.

• A variable lut1IndexLastSymbol storing the index of the last decoded symbol.

• A static binary arithmetic context ctxStatic.

• A set of adaptive binary arithmetic contexts ctxLut0Hit, ctxLut1Hit, and ctxSymbolBit.

• An array of adaptive binary arithmetic contexts ctxLut0Index of size 5 if limitedContextMode
equals 1, and 31 otherwise (i.e., limitedContextMode equals 0).

Inputs to this process are

 a variable limitedContextMode specifying whether a limited number of contexts is used or not.

 a variable lut0MaxOccurrence specifying the maximum allowed occurrence value in
lut0Histogram[k].

 two variables lut0InitialUpdatePeriod and lut0MaxUpdatePeriod specifying the initial update period
and the maximum update period for the for lut0, respectively.

 an array of values lut0Initilization[k] specifying the initial lut0 values, where k is in the range of 0
to 31, inclusive.

lut0 is initialized by invoking the initialization process in clause 9.9.2 with the parameters
limitedContextMode and lut0Initilization.

lut0UpdatePeriod, lut0SymbolsUntilUpdate and lut0Reset are initialized as follows:

 lut0UpdatePeriod = lut0InitialUpdatePeriod

 lut0SymbolsUntilUpdate = lut0InitialUpdatePeriod

 lut0Reset = 0

lut1 is initialized by invoking the initialization process in clause 9.9.3.

All the binary arithmetic contexts are initialized by invoking the process in clause 9.10.4.2.

Output from this process is an 8-bit syntax element value, constructed as follows.

lut0_hit_flag = readBin(ctxLut0Hit);
if (lut0_hit_flag) {
 index = decodeLut0Index(limitedContextMode, ctxLut0Index);
 value = lut0[index];
 pushLut0(value);
} else {
 lut1_hit_flag = readBin(ctxLut1Hit);
 if (lut1_hit_flag) {
 index = 0;
 for (i = 0; i < 4; i++)
 index |= readBin(ctxStatic) << i;
 value = lut1[index];
 } else {

ISO 23090-9:2020(E)

106 © ISO/IEC 2020 – All rights reserved

 value = 0;
 for (i = 0; i < 8; i++)
 value |= readBin(ctxSymbolBit) << i;
 }
 pushLut1(value);
 pushLut0(value);
}

 Initializing lut0

Inputs to this process are

 a variable limitedContextMode specifying whether a limited number of contexts is used or not.

 an array of values lut0Initilization[k], to initialize lut0 where k is in the range of 0 to 31, inclusive.

lut0 is initialized according to the following process.

for (k = 0; k < 32; k++)
 lut0[k]= limitedContextMode == 1 ? lut0Initlization[k] : k;

 Initializing lut1

lut1 is initialized according to the following process.

for (k = 0; k < 16; k++)
 lut1[k]= k;

 Definition of decodeLut0Index()

Inputs to this process is a variable limitedContextMode specifying whether a limited number of contexts
is used or not.

Output from this process is a 5-bit index, constructed as follows.

if (limitedContextMode == 1) {
 b0 = readBin(ctxLutIndex[0]);
 if (b0) {
 b1 = readBin(ctxStatic);
 b2 = readBin(ctxStatic);
 b3 = readBin(ctxStatic);
 b4 = readBin(ctxStatic);
 } else {
 b1 = readBin (ctxLutIndex[1]);
 if (b1) {
 b2 = readBin(ctxStatic);
 b3 = readBin(ctxStatic);
 b4 = readBin(ctxStatic);
 } else {
 b2 = readBin(ctxLutIndex[2]);
 if (b2) {
 b3 = readBin(ctxStatic);
 b4 = readBin(ctxStatic);
 } else {
 b3 = readBin(ctxLutIndex[3]);
 b4 = readBin(ctxLutIndex[4]);
 }
 }
 }
 index = (b0 << 4) | (b1 << 3) | (b2 << 2) | (b3 << 1) | b4;
} else {
 index = 0;
 index = (index << 1) | readBin(ctxLutIndex[0]);
 index = (index << 1) | readBin(ctxLutIndex[1 + index]);

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 107

 index = (index << 1) | readBin(ctxLutIndex[3 + index]);
 index = (index << 1) | readBin(ctxLutIndex[7 + index]);
 index = (index << 1) | readBin(ctxLutIndex[15 + index]);
}

 Definition of pushLut0()

Inputs to this process are

 an 8-bit variable symbol specifying the symbol to be pushed to lut0.

 a variable maxOccurrence specifying the maximum allowed occurrence value in lut0Histogram[k].

This process updates lut0 and lut0Histogram as follows.

lut0Histogram[symbol]++
if (lut0Histogram[symbol] > lut0MaxOccurrence) {
 for (k = 0; k < 256; k++)
 lut0Histogram[k] = lut0Histogram[k] >> 1;
}
lut0SymbolsUntilUpdate−−;
if (lut0SymbolsUntilUpdate == 0)
 updateLut0();

 Definition of updateLut0()

This process updates lut0UpdatePeriod, lut0 and lut0Histogram as follows.

lut0UpdatePeriod = Min((5 × lut0UpdatePeriod) >> 2, lut0MaxUpdatePeriod);
lut0SymbolsUntilUpdate = lut0UpdatePeriod;
lut0ComputeMostFrequentSymbols()
if (lut0Reset) {
 lut0Reset = false;
 for (k = 0; k < 256; k++)
 lut0Histogram[k] = 0;
}

 Definition of lut0ComputeMostFrequentSymbols()

This process updates lut0 such that it contains the 32 most frequent symbols based on the occurrence
values stored in lut0Histogram. If two symbols S1 and S2 have the same occurrence the one with the
smallest value is preferred.

 Definition of pushLut1()

Input to this process is an 8-bit variable symbol specifying the symbol to be pushed to lut1.

This process updates lut1 and lut1IndexLastSymbol as follows.

index = −1
for (k = 0; k < 16; k++) {
 if (lut1[index] == symbol) {
 index = k;
 break;
 }
}
lut1IndexLastSymbol++
index0 = lut1IndexLastSymbol % 16;
symbol0 = lut1[index0];
if (index == −1)
 lut1[index0] = symbol;
else
 swap(lut1[index0], lut1[index]);

ISO 23090-9:2020(E)

108 © ISO/IEC 2020 – All rights reserved

9.10 CABAC parsing process

 General

This process is invoked when parsing syntax elements with descriptor ae(v).

The input to this process is a request for the value of a syntax element.

The output of this process is the value of the syntax element.

The initialization processes 9.10.3.2 and 9.10.4.2 are invoked when starting to parse of any of the
following syntax structures:

– geometry_slice_data (7.3.3.3)

– attribute_slice_data (7.3.4.3)

The parsing of the syntax element proceeds according to the corresponding process listed in Table 22.

 Definition of readBin()

The inputs to this process are the variable binIdx and an associated syntax element.

The outputs of this process is the value of the decoded bin and an updated context variable.

The values ctxTbl and ctxIdx are determined according to the entries for the associated syntax element
in Table 35.

If the value of ctxIdx is not equal to the value 'bypass', the following applies:

– The arithmetic decoding process 9.10.4.3 for a single bin is invoked to determine the value of the
decoded bin with the context variable Contexts[ctxTbl][ctxIdx] as input.

– The context map update process 9.10.3.3 is invoked with the context variable
Contexts[ctxTbl][ctxIdx] and the decoded bin value.

Otherwise, the value of ctxIdx is equal be the value 'bypass', the following applies:

− If sps_bypass_stream_enabled_flag is equal to 0, the arithmetic decoding process 9.10.4.4 for a single
bypass bin is invoked to determine the value of the decoded bin. Otherwise,
sps_bypass_stream_enabled_flag is equal to 1, the readBypassStreamBit process 9.4 is invoked to
determine the value of the decoded bin.

Table 35 — Values of ctxTbl and ctxIdx for binarized ae(v) coded syntax elements

Syntax element ctxTbl ctxIdx
geom_node_qp_offset_eq0_flag 28 0
geom_node_qp_offset_sign_flag 29 0
geom_node_qp_offset_abs_minus1 30 prefix: 0

sufix: bypass
single_occupancy_flag 0 0
occupancy_idx[] na bypass
occupancy_map 1 0 .. 31 (9.7.7)
num_points_eq1_flag[] 2 0

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 109

Syntax element ctxTbl ctxIdx
num_points_minus2[] 3 prefix:0

suffix: bypass
is_planar_flag[][] 31 0 .. 11: planarIdx (8.2.4.3)
plane_position[][0] 32 0 .. 36: planePosIdx (8.2.4.4)
plane_position[][1] 33 0 .. 36: planePosIdx (8.2.4.4)
plane_position[][2] 34 0 .. 46: planePosIdxAngular (8.2.4.5)
direct_mode_flag 4 0
num_direct_points_gt1 35 0
not_duplicated_point_flag 2 0
num_direct_points_eq2_flag 36 0
num_points_direct_mode_minus3 3 prefix:0

suffix: bypass
point_offset_s[][]
point_offset_t[][]

na bypass

point_offset_v[][] na
37

bypass or
0 .. 10: idcmIdxAngular (9.8.3)

trisoup_sampling_value_minus1 na bypass
num_unique_segments_minus1[] na prefix: bypass

suffix: bypass
segment_indicator[] 6 BinIdx
num_vertices_minus1[] na prefix: bypass

suffix: bypass
vertex_position[] 7 BinIdx
all_residual_values_equal_to_zero_ru
n

8 0 .. 2

pred_index 9 Min(BinIdx, 1)
residual_values_equal_to_zero 10

� 2𝑖𝑖(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧[𝑖𝑖])
𝑘𝑘−1

𝑖𝑖=0

residual_values_equal_to_one 11 � 2𝑖𝑖�1
𝑘𝑘−1

𝑖𝑖=0
+ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧[𝑖𝑖] || 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖])�

remaining_values[][] 12 0 .. 6
dict_lut0_hit_flag ctxTblD[0] 0
dict_lut1_hit_flag ctxTblD[1] 0
dict_lut0_idx ctxTblD[2] 0 .. 4
dict_lut1_idx ctxTblD[3] bypass
dict_direct_value ctxTblD[4] 0

Table 36 — Values of ctxTblD[n] for de(v) coded syntax elements

Syntax element n
0 1 2 3 4

occupancy_byte 13 14 15 16 17
values[][], k2 = = 0 18 19 20 21 22

ISO 23090-9:2020(E)

110 © ISO/IEC 2020 – All rights reserved

values[][], k2 = = 1 23 24 25 26 27

 Context variables

 General

A context variable is a 16-bit unsigned integer value that models the probability of a zero bin.

NOTE — The values 0, 0x8000, and 0x10000 represent the probability of a zero bin as impossible, equi-probable, and certain
respectively. The values 0 and 0x10000 can never be attained due to the operation of the context update process.

Adaptive contexts are updated after decoding each bin, according to a probability look-up table. The
update table supplies a value for incrementing or decrementing the probability of a zero bin based upon
the upper eight bits of the context's current value.

The array Contexts, with values Contexts[ctxTbl][ctxIdx], represents individual context variables used
by the CABAC parsing process. The values of ctxIdx for each value of ctxTbl are specified in Table .

 Initialisation of context variables

The outputs of this process are initialized CABAC state variables.

All context variables of the arithmetic decoding engine are initialized to the value 0x8000.

 Context variable update process

The inputs to this process are the variable binVal representing the value of a decoded bin, and a context
variable ctx.

The output of this process is the updated context variable.

The context variable is updated as follows:

if (binVal)
 ctx −= CtxUpdateDelta[ctx >> 8];
else
 ctx += CtxUpdateDelta[255 − (ctx >> 8)];

where values of CtxUpdateDelta[] are given in Table 37.

Table 37 — Values of CtxUpdateDelta[i + j]

j
i

0 1 2 3 4 5 6 7 8 9 10 11
0 0 2 5 8 11 15 20 24 29 35 41 47

12 53 60 67 74 82 89 97 106 114 123 132 141
24 150 160 170 180 190 201 211 222 233 244 256 267
36 279 291 303 315 327 340 353 366 379 392 405 419
48 433 447 461 475 489 504 518 533 548 563 578 593
60 609 624 640 656 672 688 705 721 738 754 771 788
72 805 822 840 857 875 892 910 928 946 964 983 1001
84 1020 1038 1057 1076 1095 1114 1133 1153 1172 1192 1211 1231
96 1251 1271 1291 1311 1332 1352 1373 1393 1414 1435 1456 1477

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 111

j
i

0 1 2 3 4 5 6 7 8 9 10 11
108 1498 1520 1541 1562 1584 1606 1628 1649 1671 1694 1716 1738
120 1760 1783 1806 1828 1851 1874 1897 1920 1935 1942 1949 1955
132 1961 1968 1974 1980 1985 1991 1996 2001 2006 2011 2016 2021
144 2025 2029 2033 2037 2040 2044 2047 2050 2053 2056 2058 2061
156 2063 2065 2066 2068 2069 2070 2071 2072 2072 2072 2072 2072
168 2072 2071 2070 2069 2068 2066 2065 2063 2060 2058 2055 2052
180 2049 2045 2042 2038 2033 2029 2024 2019 2013 2008 2002 1996
192 1989 1982 1975 1968 1960 1952 1943 1934 1925 1916 1906 1896
204 1885 1874 1863 1851 1839 1827 1814 1800 1786 1772 1757 1742
216 1727 1710 1694 1676 1659 1640 1622 1602 1582 1561 1540 1518
228 1495 1471 1447 1422 1396 1369 1341 1312 1282 1251 1219 1186
240 1151 1114 1077 1037 995 952 906 857 805 750 690 625
252 553 471 376 255

 Arithmetic decoding engine

 General

The arithmetic decoding engine is a multi-context adaptive binary arithmetic decoder, performing binary
renormalisation and producing binary outputs.

NOTE — The arithmetic decoding engine is based upon that of Dirac|SMPTE VC-2.
The arithmetic decoder state consists of the following variables:

– ivlLow, an integer representing the beginning of the current coding interval.

– ivlRange, an integer representing the size of the current coding interval.

– ivlCode, an integer within the interval[ivlLow, ivlLow + ivlRange − 1], updated from the
encoded bitstream.

 Initialisation process

The outputs of this process are the initialized arithmetic decoding engine variables ivlLow, ivlRange, and
ivlCode.

At the start of the decoding of any data unit, the arithmetic decoding state shall be initialized as follows:

ivlLow = 0;
ivlRange = 0xffff;
ivlCode = 0;
for (i = 0; i < 15; i++) {
 ivlCode <<= 1;
 ivlCode += readAeStreamBit();
}

 Decoding process for a single binary value

The inputs to this process are the context variable ctx and the state variables ivlLow, ivlRange, and
ivlCode.

ISO 23090-9:2020(E)

112 © ISO/IEC 2020 – All rights reserved

The outputs of this process are the decoded binary value binVal, and the updated state variables ivlLow,
and ivlRange.

The output binVal, and the updated state variables ivlRange, and ivlCode are determined as follows:

count = ivlCode − ivlLow;
rangeTimesProb = (ivlRange × ctx) >> 16;
binVal = count >= rangeTimeProb;
if (!binVal)
 ivlRange = rangeTimesProb;
else {
 ivlLow += rangeTimesProb;
 ivlRange −= rangeTimesProb;
}

 Decoding process for a single binary bypass value

The inputs to this process are the state variables ivlLow, ivlRange, and ivlCode.

The outputs of this process are the decoded binary value binVal, and the updated state variables ivlLow,
and ivlRange.

The output binVal, and the updated state variables ivlRange, and ivlCode are determined as follows:

count = ivlCode − ivlLow;
rangeTimesProb = ivlRange >> 1;
binVal = count >= rangeTimeProb;
if (!binVal)
 ivlRange = rangeTimesProb;
else {
 ivlLow += rangeTimesProb;
 ivlRange −= rangeTimesProb;
}

 Arithmetic decoder state renormalisation process

Renormalisation stops the arithmetic decoding engine from losing accuracy. Renormalisation shall be
applied while the range is less than or equal to a quarter of the total available 16-bit range (0x4000).
Each renormalisation doubles the interval and reads a bit into the codeword.

The inputs to this process are the state variables ivlLow, ivlRange, and ivlCode.

The outputs of this process are the updated state variables ivlLow, ivlRange, and ivlCode.

While ivlRange is less than or equal to 0x4000, the following applies:

if ((ivlLow + ivlRange − 1) ^ ivlLow >= 0x8000) {
 ivlCode ^= 0x4000;
 ivlLow ^= 0x4000;
}
ivlRange <<= 1;
ivlLow = (ivlLow << 1) & 0xffff;
ivlCode = ((ivlCode << 1) | readAeStreamBit()) & 0xffff;

 Arithmetic encoding engine (informative)

 General (informative)

This clause does not form an integral part of this Specification.

The inputs to this process are binary symbols that are to be encoded.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 113

The outputs of this process are bits that are written to the data unit bytestream.

This informative clause describes an arithmetic encoding engine that matches the arithmetic decoding
engine described in 9.10.4. The encoding engine is essentially symmetric with the decoding engine, i.e.,
procedures are called in the same order. Table 38 illustrates the correspondence between decoding and
encoding processes.

Table 38 — Correspondence between decoder and encoder arithmetic coding processes

Process Decoder Encoder
Initialisation 9.10.4.2 9.10.5.2
Symbol coding 9.10.4.3 9.10.5.3
Renormalisation 9.10.4.5 9.10.5.4
Termination — 9.10.5.5

The state of the arithmetic encoding engine is represented by the variables ivlLow indicating the bottom
of the encoding interval, ivlRange indicating the width of the encoding interval, and ivlCarry tracking the
number of unresolved straddle conditions during renormalisation.

 Initialization process (informative)

This clause does not form an integral part of this Specification.

This process is invoked before encoding the first ae(v) coded syntax element of a data unit.

The outputs of this process are the arithmetic encoding engine variables ivlLow, ivlRange, and ivlCarry,
initialized as follows:

ivlLow = 0;
ivlRange = 0xFFFF;
ivlCarry = 0;

With 16 bit accuracy, 0xFFFF corresponds to an interval width value of (almost) 1.

 Encoding process for a single binary value (informative)

This clause does not form an integral part of this Specification.

The inputs to this process are the context variable ctx, the value of binVal to be encoded, and the state
variables ivlLow, and ivlRange.

The outputs of this process are the updated state variables ivlLow, and ivlRange.

Coding a binary value consists of, in order, scaling the interval[ivlLow, ivlLow + ivlRange], renormalising
and outputting data.

rangeTimesProb = (ivlRange × ctx) >> 16;
if (!binVal)
 ivlRange = rangeTimesProb;
else {
 ivlLow += rangeTimesProb;
 ivlRange −= rangeTimesProb;
}

ISO 23090-9:2020(E)

114 © ISO/IEC 2020 – All rights reserved

 Arithmetic encoder state renormalisation process (informative)

This clause does not form an integral part of this Specification.

The inputs to this process are the variables ivlLow, ivlRange.

The outputs of this process are zero or more bits written to the data unit bitstream and the updated
variables ivlLow, ivlRange.

Renormalisation must cause ivlLow and ivlRange to be modified exactly as in the decoder. In addition,
during renormalisation bits are output when ivlLow and ivlLow + ivlRange agree in their most significant
bits, taking into account carries accumulated when a straddle condition is detected.

While ivlRange is less than or equal to 0x4000, the following applies:

if ((ivlLow + ivlRange − 1) ^ ivlLow >= 0x8000) {
 ivlLow ^= 0x4000;
 ivlCarry++;
} else {
 writeBit((ivlLow >> 15) & 1);
 for (; ivlCarry > 0; ivlCarry−−)
 writeBit((~ivlLow >> 15) & 1);
}
ivlRange <<= 1;
ivlLow <<= 1;
ivlLow &= 0xFFFF;

 Arithmetic encoding engine termination process (informative)

This clause does not form an integral part of this Specification.

After encoding, there may be insufficient bits for a decoder to determine the final encoded symbols, partly
because further renormalisation is required — for example, MSBs may agree but the range may still be
larger than 0x4000) — and partly because there may be unresolved carries.

The following four-stage process adequately flushes the encoder by outputting remaining resolved MSBs,
resolving remaining straddle conditions, flushing carry bits, finally byte aligning the output with padding
bits.

while ((ivlLow + ivlRange − 1) ^ ivlLow < 0x8000) {
 writeBit((ivlLow >> 15) & 1);
 for (; ivlCarry > 0; ivlCarry−−)
 writeBit((~ivlLow >> 15) & 1);
 ivlRange <<= 1;
 ivlLow <<= 1;
 ivlLow &= 0xFFFF;
}
while ((ivlLow & 0x4000) && ((ivlLow + ivlRange − 1) & 0x4000)) {
 carry++;
 ivlLow ^= 0x4000;
 ivlLow &= 0x7FFF;
 ivlLow <<= 1;
 ivlRange <<= 1;
}
writeBit((ivlLow >> 15) & 1);
for (; ivlCarry > 0; ivlCarry−−)
 writeBit((~ivlLow >> 15) & 1);
byte_align();

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 115

9.11 Parsing state memorization process

This process records the elements and values of the following arrays and variables for restoration by the
parsing state restoration process (9.12):

− The array Contexts from the CABAC parsing process (9.10)

− The array CtxMap from the bit-wise geometry octree occupancy parsing process (9.7)

− The arrays and variables lut0, lut0Histogram, lut0UpdatePeriod, lut0SymbolsUntilUpdate,
lut0Reset, lut1, lut1IndexLastSymbol from the dictionar-based parsing process (9.9)

− The array planeRate and variable localDensity from the planar coding mode (8.2.4)

9.12 Parsing state restoration process

This process restores the elements and values of the following arrays and variables to those previously
recorded by the parsing state memorization process (9.11):

− The array Contexts from the CABAC parsing process (9.10)

− The array CtxMap from the bit-wise geometry octree occupancy parsing process (9.7)

− The arrays and variables lut0, lut0Histogram, lut0UpdatePeriod, lut0SymbolsUntilUpdate,
lut0Reset, lut1, lut1IndexLastSymbol from the dictionar-based parsing process (9.9)

− The array planeRate and variable localDensity from the planar coding mode (8.2.4)

ISO 23090-9:2020(E)

116 © ISO/IEC 2020 – All rights reserved

Annex A

Profiles and levels

A.1 Overview of profiles and levels

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to
decode the bitstreams. Profiles and levels may also be used to indicate interoperability points between
individual decoder implementations.

NOTE 1 – This Specification does not include individually selectable “options” at the decoder, as this would increase interoperability
difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders
conforming to that profile.

NOTE 2 – Encoders are not required to make use of any particular subset of features supported in a profile.
Each level specifies a set of limits on the values that may be taken by the syntax elements of this
Specification. The level definition is used with all profiles. For any given profile, a level generally
corresponds to a particular decoder processing load and memory capability.

The profiles that are specified in clause A.3 are also referred to as the profiles specified in Annex A.

A.2 Requirements on decoder capability

Capabilities of decoders conforming to this Specification are specified in terms of the ability to decode
bitstreams conforming to the constraints of profiles and levels specified in this annex. When expressing
the capabilities of a decoder for a specified profile, the level supported for that profile should also be
expressed.

Specific values are specified in this annex for the syntax elements main_profile_compatibility_flag and
level_idc. All other values of main_profile_compatibility_flag and level_idc are reserved for future use by
ISO/IEC.

NOTE – Decoders should infer that a reserved value of level_idc between the values specified in this
Specification indicates intermediate capabilities between the specified levels.

A.3 Profiles

A.3.1 General

All constraints for SPSs, GPSs, and APSs that are specified are constraints for the parameter sets that are
activated when the bitstream is decoded.

A.3.2 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:

– Active SPSs shall have main_profile_compatibility_flag equal to 1 only.

– The level constraints specified for the Main profile in clause A.4 shall be fulfilled.

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 117

Conformance of a bitstream to the Main profile is indicated by main_profile_compatibility_flag being
equal to 1.

Decoders conforming to the Main profile at a specific level (identified by a specific value of level_idc) shall
be capable of decoding all bitstreams for which all of the following conditions apply:

– The bitstream representation is indicated to conform to the Main profile.

– The bitstream representation is indicated to conform to a level that is lower than or equal to the
specified level.

A.4 Levels

A.4.1 Level limits

For purposes of comparison of level capabilities, a particular level is considered to be a lower level than
some other level when the value of the level_idc of the particular level is less than that of the other level.

Table A. 1 specifies limits for each level.

A level to which a bitstream conforms are indicated by the syntax elements level_idc as follows:

– level_idc shall be set equal to a value of 20 times the level number specified in Table A. 1.

Table A. 1 — Level limits

Level

M
a

x point

4 1,100,000

ISO 23090-9:2020(E)

118 © ISO/IEC 2020 – All rights reserved

Annex B

Type-length-value bytestream format

B.1 General

This annex specifies syntax and semantics of a byte stream format for use by applications that deliver
some or all of the data units as an ordered stream of bytes without any requirement for further
encapsulation in a file format.

The byte stream format consists of a sequence of type-length-value encapsulation structures that each
represent a single coded syntax structure.

B.2 Syntax and semantics

B.2.1 Syntax

tlv_encapsulation() { Descriptor
 tlv_type u(8)
 tlv_num_payload_bytes u(32)
 for(i = 0; i < tlv_num_payload_bytes; i++)
 tlv_payload_byte[i] u(8)
}

B.2.2 Semantics

The order of TLV encapsulation stuctures shall follow the decoding order of the encapsulated syntax
structures.

tlv_type identifies the syntax structure represented by tlv_payload_byte[] according to Table B. 1.

Table B. 1 — Mapping of tlv_type and associated data unit to syntax tables

tlv_type Syntax table Description

0 7.3.1.1 Sequence parameter set

1 7.3.1.2 Geometry parameter set

2 7.3.2.1 Geometry data unit

3 7.3.1.3 Attribute parameter set

4 7.3.3.1 Attribute data unit

5 7.3.2.2 Tile inventory

6 7.3.2.5 Frame boundary marker

tlv_num_payload_bytes indicates the length in bytes of tlv_payload_byte[].

tlv_payload_byte[i] is the i-th byte of payload data.

B.3 TLV decoding process

© ISO/IEC 2020 – All rights reserved

© ISO/IEC 2020 – All rights reserved 119

Input to this process is an ordered stream of bytes consisting of a sequence of TLV encapsulation
structures.

Output of this process is a sequence of syntax structures.

The decoder repeatedly parses tlv_encapsulation structures until the end of the bytestream has been
encountered (as determined by unspecified means) and the last NAL unit in the byte stream has been
decoded.

After parsing each tlv_ encapsulation structure, the following occurs

 the array DataUnitBytes is set equal to tlv_payload_byte[],

 the variable DataUnitLength is set equal to tlv_num_payload_bytes,

 the parsing process in Table B. 1 corresponding to tlv_type is invoked.

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	3.1 General
	3.2 Geometry coding related
	3.3 Attribute coding related

	4 Abbreviations
	5 Conventions
	5.1 General
	5.2 Numerical representation
	5.3 Arithmetic operators
	5.4 Logical operators
	5.5 Relational operators
	5.6 Bit-wise operators
	5.7 Assignment operators
	5.8 Range notation
	5.9 Mathematical functions
	5.9.1 Definition of iAtan2
	5.9.2 Definition of popCnt
	5.9.3 Definition of iLog2
	5.9.4 Definition of iSqrt
	5.9.5 Definition of inverse square root function invSqrt
	5.9.6 Definition of divExp2RoundHalfInf
	5.9.7 Definition of divExp2RoundHalfUp
	5.9.8 Conversion of a tuple to 3D Morton code (TupleToMorton)
	5.9.9 Conversion of 3D Morton codes to a tuple (MortonToTuple)
	5.9.10 Definition of QpToQstep

	5.10 Vector operations
	5.11 Order of operation precedence
	5.12 Variables, syntax elements, and tables
	5.13 Text description of logical operations
	5.14 Processes

	6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships
	6.1 Bitstream formats
	6.2 Source, decoded, and output point cloud formats
	6.2.1 Data partitioning
	6.2.2 Frame index attribute component

	6.3 Geometry octree
	6.4 Neighbour relationships
	6.4.1 Neighbour dependent geometry octree child node scan order inverse mapping process
	6.4.2 Neighbour depending geometry occupancy map permutation process

	7 Syntax and semantics
	7.1 Method of specifying syntax in tabular form
	7.2 Specification of syntax functions and descriptors
	7.3 Syntax in tabular form
	7.3.1 General
	7.3.2 Data unit and byte alignment syntax
	7.3.2.1 Sequence parameter set syntax
	7.3.2.2 Tile inventory syntax
	7.3.2.3 Geometry parameter set syntax
	7.3.2.4 Attribute parameter set syntax
	7.3.2.5 Frame boundary marker syntax
	7.3.2.6 Byte alignment syntax

	7.3.3 Geometry data unit syntax
	7.3.3.1 General geometry data unit syntax
	7.3.3.2 Geometry data unit header syntax
	7.3.3.3 Geometry data unit data syntax
	7.3.3.4 Geometry node syntax
	7.3.3.5 Single occupancy data syntax
	7.3.3.6 Planar mode data syntax
	7.3.3.7 Direct mode data syntax
	7.3.3.8 Geometry trisoup data syntax

	7.3.4 Attribute data unit syntax
	7.3.4.1 General attribute data unit syntax
	7.3.4.2 Attribute data unit header syntax
	7.3.4.3 Attribute data unit data syntax
	7.3.4.4 Attribute value syntax

	7.4 Semantics
	7.4.1 General
	7.4.2 Data unit and byte alignment semantics
	7.4.2.1 Sequence parameter set semantics
	7.4.2.2 Tile inventory semantics
	7.4.2.3 Geometry parameter set semantics
	7.4.2.4 Attribute parameter set semantics
	7.4.2.5 Frame boundary marker semantics
	7.4.2.6 Byte alignment semantics

	7.4.3 Geometry data unit semantics
	7.4.3.1 General geometry data unit semantics
	7.4.3.2 Geometry data unit header semantics
	7.4.3.3 Geometry slice data semantics
	7.4.3.4 Geometry node semantics
	7.4.3.5 Single occupancy data semantics
	7.4.3.6 Planar mode data semantics
	7.4.3.7 Direct mode data semantics
	7.4.3.8 Geometry trisoup data semantics

	7.4.4 Attribute data unit semantics
	7.4.4.1 General attribute data unit semantics
	7.4.4.2 Attribute data unit header semantics
	7.4.4.3 Attribute slice data semantics
	7.4.4.4 Quantized value bitstream syntax

	8 Decoding process
	8.1 General decoding process
	8.2 Geometry decoding process
	8.2.1 General geometry decoding process
	8.2.2 Octree decoding process
	8.2.2.1 General
	8.2.2.2 Octree node decoding process
	8.2.2.3 Scaling process for a single octree node position component

	8.2.3 Geometry Trisoup decoding process
	8.2.3.1 Derivation process for the segment index
	8.2.3.1.1 Derivation process for sorted segment index
	8.2.3.1.2 Derivation process for unique segment index
	8.2.3.1.3 Derivation process for unique segment vertex

	8.2.3.2 Derivation process for the reconstructed triangles
	8.2.3.2.1 Derivation process for the leaf vertex
	8.2.3.2.2 Sorting process for leafVertices
	8.2.3.2.3 Derivation process for reconstructed triangle vertex

	8.2.3.3 Points derivation process on the triangles
	8.2.3.3.1 Derivation process of the intersection between triangle and vector

	8.2.3.4 Update process of the decoded geometry points

	8.2.4 Planar coding mode
	8.2.4.1 Eligiblity of a node for planar coding mode
	8.2.4.2 Buffer tracking the closest nodes in along an axis
	8.2.4.3 Determination of planarIdx for the coding of the planar mode flag
	8.2.4.4 Determination of planePosIdx for the coding of the plane position
	8.2.4.5 Determination of planePosIdxAngular for the coding of the vertical plane position
	8.2.4.6 Determination of the probability proba_planar[] of good plane position prediction

	8.2.5 Angular coding mode
	8.2.5.1 Determination of the angular eligiblity for a node
	8.2.5.2 IDCM angular eligibility. Laser index laserIndex associated with a node
	8.2.5.3 Determination of the context contextAngular for planar coding mode

	8.3 Attribute decoding
	8.3.1 Region adaptive hierachical transform decoding process
	8.3.1.1 General
	8.3.1.2 RAHT weights derivation process
	8.3.1.3 RAHT region-wise qp derivation process
	8.3.1.4 Reconstruction process for a single 3D RAHT level
	8.3.1.5 Reconstruction process for a 2×2×2 transform tree node
	8.3.1.6 Scaling process for RAHT coefficients
	8.3.1.7 Transform prediction upsampling process
	8.3.1.8 Forward transform process for 2×2×2 blocks
	8.3.1.9 Forward two-point transform process
	8.3.1.10 Inverse transform process for 2×2×2 blocks
	8.3.1.11 Inverse two-point transform process

	8.3.2 LoD with Lifting Transform decoding process
	8.3.2.1 Level of Detail Generation
	8.3.2.2 Definition of computeNearestNeighbours()
	8.3.2.3 Definition of sortNeighbours()
	8.3.2.4 Prediction weights derivation process
	8.3.2.5 Quantization weights derivation process
	8.3.2.6 Inverse quantization process
	8.3.2.7 Inverse lifting
	8.3.2.8 Definition of inverseUpdate()
	8.3.2.9 Definition of inversePrediction()

	8.3.3 LoD with Predicting Transform decoding process

	8.4 Slice concatenation process

	9 Parsing process
	9.1 General
	9.2 Chunked bytestream parsing process
	9.2.1 General
	9.2.2 Syntax
	9.2.2.1 Chunked bytestream sequence syntax
	9.2.2.2 Chunked bytestream chunk syntax

	9.2.3 Semantics
	9.2.3.1 Chunked bytestream sequence semantics
	9.2.3.2 Chunked bytestream chunk semantics

	9.3 Definition of readDataUnitBit
	9.4 Definition of readAeStreamBit
	9.5 Definition of readBypassStreamBit
	9.6 General inverse binarisation processes
	9.6.1 Parsing of fixed-length codes
	9.6.2 Parsing of k-th order exp-Golomb codes
	9.6.3 Parsing of truncated unary codes
	9.6.4 Mapping process for signed codes

	9.7 Bit-wise geometry octree occupancy parsing process
	9.7.1 General process
	9.7.2 Initialisation process
	9.7.3 Determination of planar masks used in the inverse binarization process
	9.7.4 Occupancy_idx[] parsing process
	9.7.5 Inverse binarization process
	9.7.6 Definition of readOccBin()
	9.7.7 ctxMapIdx and ctxIdx derivation processes
	9.7.8 Context map update process
	9.7.9 Occupancy prediction process using neighbouring octree nodes

	9.8 Inferred Direct Coding Mode parsing process
	9.8.1 General process
	9.8.2 Determination of the angular context idcmIdxAngular
	9.8.3 Inverse binarization process

	9.9 Dictionary-based parsing
	9.9.1 General process
	9.9.2 Initializing lut0
	9.9.3 Initializing lut1
	9.9.4 Definition of decodeLut0Index()
	9.9.5 Definition of pushLut0()
	9.9.6 Definition of updateLut0()
	9.9.7 Definition of lut0ComputeMostFrequentSymbols()
	9.9.8 Definition of pushLut1()

	9.10 CABAC parsing process
	9.10.1 General
	9.10.2 Definition of readBin()
	9.10.3 Context variables
	9.10.3.1 General
	9.10.3.2 Initialisation of context variables
	9.10.3.3 Context variable update process

	9.10.4 Arithmetic decoding engine
	9.10.4.1 General
	9.10.4.2 Initialisation process
	9.10.4.3 Decoding process for a single binary value
	9.10.4.4 Decoding process for a single binary bypass value
	9.10.4.5 Arithmetic decoder state renormalisation process

	9.10.5 Arithmetic encoding engine (informative)
	9.10.5.1 General (informative)
	9.10.5.2 Initialization process (informative)
	9.10.5.3 Encoding process for a single binary value (informative)
	9.10.5.4 Arithmetic encoder state renormalisation process (informative)
	9.10.5.5 Arithmetic encoding engine termination process (informative)

	9.11 Parsing state memorization process
	9.12 Parsing state restoration process

	Annex A Profiles and levels
	A.1 Overview of profiles and levels
	A.2 Requirements on decoder capability
	A.3 Profiles
	A.3.1 General
	A.3.2 Main profile
	A.4 Levels
	A.4.1 Level limits
	Annex B Type-length-value bytestream format

