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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards 
bodies (ISO member bodies). The work of preparing International Standards is normally carried out 
through ISO technical committees. Each member body interested in a subject for which a technical 
committee has been established has the right to be represented on that committee. International 
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO 
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of 
electrotechnical standardization. 

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the 
different types of ISO documents should be noted. This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). 

Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any 
patent rights identified during the development of the document will be in the Introduction and/or on 
the ISO list of patent declarations received (see www.iso.org/patents). 

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement. 

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO's adherence to the World 
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see 
www.iso.org/iso/foreword.html. 

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 29, Coding 
of audio, picture, multimedia and hypermedia information. 

A list of all parts in the ISO/IEC 23090 series can be found on the ISO website. 

Any feedback or questions on this document should be directed to the user’s national standards body. A 
complete listing of these bodies can be found at www.iso.org/members.html. 

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
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Introduction 

ISO/IEC 23090-9 specifies Geometry-based Point Cloud Compression (G-PCC). 

Advance in 3D capturing and rendering technologies is enabling new applications and services   in the 
field of assisted and autonomous driving, maps, cultural heritage, industrial processes, immersive real-
time communication, and Virtual/Augmented/Mixed reality (VR/AR/MR) content creation, transmission 
and communication. Point clouds have arisen as one of the main representations for such applications. A 
point cloud frame consists of a set of 3D points. Each point, in addition to having a 3D position may also 
be associated with numerous other attributes such as colour, transparency, reflectance, timestamp, 
surface normal, and classification. Such representations require a large amount of data, which can be 
costly in terms of storage and transmission. Therefore, the ISO/IEC Moving Picture Experts Group 
(MPEG) developed a new International Standard, which aims at efficiently compressing point cloud 
representations. 
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Information technology — MPEG-I (Coded Representation of 
Immersive Media) — Part 9: Geometry-based Point Cloud 
Compression 

1 Scope 

This document specifies geometry-based point cloud compression. 

2 Normative references 

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) applies. 

ISO/IEC 23091−2, Information technology — Coding-independent code points — Part 2: Video 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

ISO and IEC maintain terminological databases for use in standardization at the following addresses: 

— ISO Online browsing platform: available at https://www.iso.org/obp 

— IEC Electropedia: available at http://www.electropedia.org/ 

3.1 General 

3.1.1 
point 
position specified by their Cartesian co-ordinates (x, y, z) and associated with zero or more sets of 
attributes 

3.1.2 
point cloud frame 
set of points at a particular time instance 

3.1.3 
point cloud 
sequence of point cloud frames 

3.1.4 
Cartesian co-ordinates 
three scalars (x, y, z) with finite precision and dynamic range that indicate the location of a point relative 
to a fixed reference point 

3.1.5 
geometry 
set of Cartesian co-ordinates associated with a point cloud frame 

https://www.iso.org/obp
http://www.electropedia.org/


ISO 23090-9:2020(E) 

2 © ISO/IEC 2020 – All rights reserved 

3.1.6 
attribute 
scalar or vector property optionally associated with each point in a point cloud such as colour, reflectance, 
frame index, etc. 

3.1.7 
may 
term that is used to refer to behaviour that is allowed, but not necessarily required. 
Note 1 to entry: In some places where the optional nature of the described behaviour is intended to be 
emphasized, the phrase "may or may not" is used to provide emphasis. 

3.1.8 
must 
term that is used in expressing an observation about a requirement or an implication of a requirement 
that is specified elsewhere in this Specification (used exclusively in an informative context) 

3.1.9 
shall 
term used to express mandatory requirements for conformance to this Specification. 

3.1.10 
should 
a term used to refer to behaviour of an implementation that is encouraged to be followed under 
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this 
Specification. 

3.1.11 
informative 
term used to refer to content provided in this Specification that does not establish any mandatory 
requirements for conformance to this Specification and thus is not considered an integral part of this 
Specification 

3.1.12 
byte 
sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit 
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first. 

3.1.13 
byte-aligned 
position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position 
of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when the 
position at which it appears in a bitstream is byte-aligned. 

3.1.14 
unspecified 

term unspecified, when used in the clauses specifying some values of a particular syntax element, 
indicates that the values have no specified meaning in this Specification and will not have a specified 
meaning in the future as an integral part of future versions of this Specification. 
3.1.15 
syntax element 
element of data represented in the bitstream. 

3.1.16 
bitstream 
a sequence of bits that forms the representation of coded point cloud frames 
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3.1.17 
coded point cloud frame 
a coded representation of a point cloud frame 

3.1.18 
syntax structure 

zero or more syntax elements present together in the bitstream in a specified order 
3.1.19 
bounding box 

rectangular cuboid in which the source point cloud frame is included. 
3.1.20 
3D tile 

rectangular cuboid inside a bounding box. 
3.1.21 
slice 
series of syntax element representing a part of or entire coded point cloud frame 

3.2 Geometry coding related 

3.2.1 
position 
(x, y, z) co-ordinates of a point, wherethe values are normalized by the bounding box so that the values 
of the positions shall be equal to or greater than 0. 

3.2.2 
octree 
8-ary tree representing the 3D geometry of the point cloud.  

3.2.3 
node 
element of the octree representing a sub-volume of the 3D space (or volume) containing the point cloud. 

3.2.4 
root node 
node of the octree with no parent 

3.2.5 
leaf node 
terminating node of the octree having no children 

3.2.7 
level  

number of hops from the root to the node. 
3.2.8 
occupied node 
node for which one or more points belong to the associated sub-volume. 

3.2.9 
occupancy code 

byte for a node whose bits indicate which child nodes are occupied. 
3.2.10 
Morton code 
non-negative 3d-bit integer obtained by interleaving the bits of the non-negative d-bit integers s, t, and v. 
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3.3 Attribute coding related 

3.3.1 
Colour 
Three dimensional signal representing the characteristics of the light of the assoicated point (e.g. RGB, 
YUV) 

Note 1 The colour is, for example, signalled by Red, Green and Blue components (RGB) or Luma and two Chroma 
components (YUV). 

3.3.2 
Reflectance 
One dimensional signal representing the ratio of the intensity of the light reflection of the assosiated point 

3.3.3 
Frame index 
One dimensional signal representing the timing information of the assosiated point as the frame order 
index 

3.3.4 
Material ID 
One dimensional signal representing the material type information of the associated point 

Note 1 For example, the material type could be used as an indicator for identifying an object or the characteristic of 
the associated point. The interpretation of the values is outside the scope of this document. 

3.3.5 
Transparency 
One dimensional signal representing the condition of being transparent of the associated point 

3.3.7 
Normals 
Three-dimensional signal representing the unit vector of the perpendicular direction to the surface of the 
associated point 

Note 1 The order of the three components (i.e. the co-ordinate system) shall be identical to the one in the source 
point cloud frame. 

4 Abbreviations 

For the purposes of this document, the following terms and definitions apply. 

APS  Attribute Parameter Set 

ASH  Attribute Slice Header 

GSH  Geometry Slice Header 

GPS  Geometry Parameter Set 

LSB  Least Significant Bit 

MSB Most Significant Bit 

PCC  Point Cloud Compression 
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RAHT Region Adaptive Hierarchical Transform 

SPS Sequence Parameter Set 

5 Conventions 

5.1 General 

NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. 
However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations 
are defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0. 

5.2 Numerical representation 

The following numerical representation format are defined. 

binary representation  formatted as 0bXXX... where each digit X is 0 or 1 

octal representation   formatted as 0oXXX... where each digit X is 0 to 7 

decimal representation  formatted as XXX... where each digit X is 0 to 9 

hexadecimal representation  formatted as 0xXXX... where each digit X is 0 to 9 or a to f 

5.3 Arithmetic operators 

The following arithmetic operators are defined as follows: 

+ Addition 

− Subtraction (as a two-argument operator) or negation (as a unary prefix operator) 

× Multiplication, including matrix multiplication 

xy Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for 
superscripting not intended for interpretation as exponentiation. 

/ Integer division with truncation of the result toward zero. For example, 7 / 4 and −7 / 
−4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1. 

÷ Used to denote division in mathematical equations where no truncation or rounding is 
intended. 

x
y

 Used to denote division in mathematical equations where no truncation or rounding is 
intended. 

� f( i )
y

i = x
 The summation of f( i ) with i taking all integer values from x up to and including y. 

x % y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and 
y > 0. 
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5.4 Logical operators 

The following logical operators are defined as follows: 

x && y Boolean logical "and" of x and y 
x | | y Boolean logical "or" of x and y 
! Boolean logical "not" 
x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z. 

5.5 Relational operators 

The following relational operators are defined as follows: 

> Greater than 
>= Greater than or equal to 
< Less than 
<= Less than or equal to 
= = Equal to 
!= Not equal to 

When a relational operator is applied to a syntax element or variable that has been assigned the value 
"na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The 
value "na" is considered not to be equal to any other value. 

5.6 Bit-wise operators 

The following bit-wise operators are defined as follows: 

& Bit-wise "and". When operating on integer arguments, operates on a two's complement 
representation of the integer value. When operating on a binary argument that contains fewer bits 
than another argument, the shorter argument is extended by adding more significant bits equal to 
0. 

| Bit-wise "or". When operating on integer arguments, operates on a two's complement 
representation of the integer value. When operating on a binary argument that contains fewer bits 
than another argument, the shorter argument is extended by adding more significant bits equal to 
0. 

^ Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement 
representation of the integer value. When operating on a binary argument that contains fewer bits 
than another argument, the shorter argument is extended by adding more significant bits equal to 
0. 

x >> y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This 
function is defined only for non-negative integer values of y. Bits shifted into the most significant 
bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to the shift 
operation. 

x << y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This 
function is defined only for non-negative integer values of y. Bits shifted into the least significant 
bits (LSBs) as a result of the left shift have a value equal to 0. 

 

5.7 Assignment operators 

The following arithmetic operators are defined as follows: 

= Assignment operator 
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++ Increment, i.e., x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of 
the variable prior to the increment operation. 

− − Decrement, i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value 
of the variable prior to the decrement operation. 

+= Increment by amount specified, i.e., x+= += 3 is equivalent to x = x + 3, and x += (−3) is equivalent 
to x = x + (−3). 

−= Decrement by amount specified, i.e., x−= −= 3 is equivalent to x = x − 3, and x−= (−3) is equivalent 
to x = x − (−3). 

 

5.8 Range notation 

The following notation is used to specify a range of values: 

x = y .. z x takes on integer values starting from y to z, inclusive, with x, y, and z being 
integer numbers and z being greater than y. 

5.9 Mathematical functions 

The following mathematical functions are defined: 

Abs( x ) = � x ; x >= 0
−x ; x < 0 � x ; x  >=  0

−x ; x < 0  

Ceil( x ) the smallest integer greater than or equal to x. 

Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) − 1, x ) 

Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) − 1, x ) 

Clip3( x, y, z ) = � 
x ; z < x
y ; z > y
z ; otherwise

 

Floor( x ) the largest integer less than or equal to x. 

Min( x, y ) = � 
x ; x <= y
y ; x > y  

Max( x, y ) = � 
x ; x >= y
y ; x < y  

Sign( x ) = �
1 ; x > 0
0 ; x = = 0
−1 ; x < 0

 

Sqrt( x ) = √x 

Swap( x, y ) = ( y, x ) 
 

 Definition of iAtan2 

The inputs to this process are the variables a and b. 

The output of this process is the variable t. 

The derivation process for 𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2(𝑎𝑎, 𝑏𝑏) is defined as follows. 

If a is equal to 0 and b is equal to 0, t is set to 0. 

Otherwise, if b is equal to 0, t is set to 804. 



ISO 23090-9:2020(E) 

8 © ISO/IEC 2020 – All rights reserved 

Otherwise, if a is equal to 0 and b is greater than 0, t is set to 402. 

Otherwise, if a is equal to 0 and b is smaller than 0, t is set to 1206. 

Otherwise, following steps apply: 

c = Abs((b << 8) / a) 
if (c <= 256) 
  idx = c / 12 
else 
  idx = c > 40 ? 40 : c 
 
t = atanLut[idx] 
if (a < 0 && b > 0) 
  t += 402 
else if (a < 0 && b < 0) 
  t += 804 
else if (a > 0 && b < 0) 
  t += 1206 

The array atanLut is defined in Table 1. 

Table 1 — the value of atanLut[ i+j ] 

j i 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 12 25 38 50 62 74 86 97 108 118 128 138 147 156 

15 164 172 180 187 194 201 283 319 339 351 359 365 370 373 376 

30 378 380 382 383 385 386 387 387 388 389 389 

 

 Definition of popCnt  

The input to this process is the integer variable x. 

The output of this process is the number of 1-valued bits present in the binary representation of x. 

 Definition of iLog2 

The input to this process is the variable x. 

The output of this process is the variable y. 

The function iLog2 is defined as follows: 

y = Floor(Log(x) ÷ Log(2)) 

where Log( ) is the natural logarithmic function. 

 Definition of iSqrt 

The input to this process is the variable pIn. 

The output of this process is the variable pOut. 

The variables x and n are derived as follows. 
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for (n = 8; n <= 64; n+= 8) { 
  if (pIn >= (1 << (64 − n))){ 
    x = (tableSqrt[pIn >> (64 − n)] << (32 − (n / 2))) − (n == 8 ? 1 : 0) 
    break; 
  } 
} 

The value of tableSqrt[ k ] with k = 0 .. 255 is defined in Table 2. 

Finally, pOut is derived as follows. 

x = (pIn / x + x) >> 1 
pOut = (pIn / x + x + 1) >> 1 

Table 2 — the value of tableSqrt[ i+j ] 

j i 

0 1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

0 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 

20 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 

40 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 

60 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

80 9 9 1
0 

1
0 

1
0 

1
0 

1
0 

1
0 

1
0 

1
0 

10 10 10 10 10 10 10 10 10 10 

10
0 

1
0 

1
1 

1
1 

1
1 

1
1 

1
1 

1
1 

1
1 

1
1 

1
1 

11 11 11 11 11 11 11 11 11 11 

12
0 

1
1 

1
1 

1
2 

1
2 

1
2 

1
2 

1
2 

1
2 

1
2 

1
2 

12 12 12 12 12 12 12 12 12 12 

14
0 

1
2 

1
2 

1
2 

1
2 

1
2 

1
3 

1
3 

1
3 

1
3 

1
3 

13 13 13 13 13 13 13 13 13 13 

16
0 

1
3 

1
3 

1
3 

1
3 

1
3 

1
3 

1
3 

1
3 

1
3 

1
3 

14 14 14 14 14 14 14 14 14 14 

18
0 

1
4 

1
4 

1
4 

1
4 

1
4 

1
4 

1
4 

1
4 

1
4 

1
4 

14 14 14 14 14 14 14 15 15 15 

20
0 

1
5 

1
5 

1
5 

1
5 

1
5 

1
5 

1
5 

1
5 

1
5 

1
5 

15 15 15 15 15 15 15 15 15 15 

22
0 

1
5 

1
5 

1
5 

1
5 

1
5 

1
5 

1
6 

1
6 

1
6 

1
6 

16 16 16 16 16 16 16 16 16 16 

24
0 

1
6 

1
6 

1
6 

1
6 

1
6 

1
6 

1
6 

1
6 

1
6 

1
6 

16 16 16 16 16 16 

 

 Definition of inverse square root function invSqrt 

The input to this process is the variable pIn. 

The output of this process is the variable pOut. 

The variables pInScaled and nShift are a normzlised representation of pIn. 

shift = −3; 
pInScaled = pIn; 
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while (pIn & 0xffffffff00000000) { 
  pInScaled >>= 2; 
  nShift−−; 
} 
while (!(pInScaled & 0xc0000000)) { 
  pInScaled <<= 2; 
  nShift++; 
} 

A first approximation, invSqrtApprox, of the inverse square root is obtained using the arrays threeTimesR 
and rCubed. 

  idx = (pInScaled >> 25) − 32; 
  invSqrtApprox = threeTimesR[idx] − ((rCubed[idx] × pInScaled) >> 32); 

A second apprixomation, invSqrtApprox2, is obtained as follows: 

s = (invSqrtApprox × pInScaled) >> 32;  
s = 0x30000000 − ((invSqrtApprox × s) >> 32); 
invSqrtApprox2 = (invSqrtApprox × s) >> 32; 

Finally, the output is obtained by inverse scaling the second approximation 

if (nShift >= 0) 
  pOut = invSqrtApprox2 << nShift; 
else 
  pOut = invSqrtApprox2 >> (−nShift); 

Table 3 — the value of tableThreeR[ i+j ]  

j 
i 

0 1 2 3 4 5 
0 3196059648 3145728000 3107979264 3057647616 3019898880 2969567232 
6 2931818496 2894069760 2868903936 2831155200 2793406464 2768240640 

12 2730491904 2705326080 2667577344 2642411520 2617245696 2592079872 
18 2566914048 2541748224 2516582400 2491416576 2466250752 2441084928 
24 2428502016 2403336192 2378170368 2365587456 2340421632 2327838720 
30 2302672896 2290089984 2264924160 2252341248 2239758336 2214592512 
36 2202009600 2189426688 2164260864 2151677952 2139095040 2126512128 
42 2113929216 2101346304 2088763392 2076180480 2051014656 2038431744 
48 2025848832 2013265920 2000683008 2000683008 1988100096 1962934272 
54 1962934272 1950351360 1937768448 1925185536 1912602624 1900019712 
60 1900019712 1887436800 1874853888 1862270976 1849688064 1849688064 
66 1837105152 1824522240 1811939328 1811939328 1799356416 1786773504 
72 1786773504 1774190592 1761607680 1761607680 1749024768 1736441856 
78 1736441856 1723858944 1723858944 1711276032 1698693120 1698693120 
84 1686110208 1686110208 1673527296 1660944384 1660944384 1648361472 
90 1648361472 1635778560 1635778560 1623195648 1623195648 1610612736 
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Table 4 — the value of tableRCube[ i+j ]  

j 
i 

0 1 2 3 4 5 
0 4195081216 3999986688 3857709056 3673323520 3538940928 3364924416 
6 3238224896 3114735616 3034196992 2915990528 2800922624 2725880832 

12 2615890944 2544223232 2439185408 2370818048 2303728640 2237913088 
18 2173355008 2110061568 2048008192 1987165184 1927563264 1869150208 
24 1840392192 1783783424 1728321536 1701024768 1647311872 1620883456 
30 1568898048 1543306240 1492993024 1468236800 1443762176 1395656704 
36 1372007424 1348605952 1302626304 1280060416 1257736192 1235650560 
42 1213861888 1192294400 1171008512 1149979648 1108673536 1088379904 
48 1068352512 1048567808 1029031936 1029036032 1009729536 971888640 
54 971882496  953319424  934993920  916897792  899011584  881389568 
60 881392640  864009216  846846976  829900800  813182976  813201408 
66 796721152  780459008  764412928  764417024  748601344  732995584 
72 733017088  717624320  702468096  702466048  687520768  672786432 
78 672787456  658258944  658256896  643947520  629854208  629862400 
84 615976960  615952384  602276864  588779520  588804096  575512576 
90 575526912  562433024  562439168  549556224  549564416  536876032 

 

 Definition of divExp2RoundHalfInf 

The inputs to this process are the variables scalar and shift. 

The output of this process is the variable value approximating scalar/2shift, computed as follows: 

if (!shift) { 
  value = scalar; 
} else { 
  s0 = 1 << (shift − 1); 
  value = scalar >= 0 ? (s0 + scalar) >> shift : −((s0 − scalar) >> shift) 
} 

 Definition of divExp2RoundHalfUp 

The inputs to this process are the variables scalar and shift. 

The output of this process is the variable value approximating scalar/2shift, computed as follows: 

if (!shift) { 
  value = scalar; 
} else { 
  s0 = 1 << (shift − 1); 
  value = (s0 + scalar) >> shift; 
} 

 Conversion of a tuple to 3D Morton code (TupleToMorton) 

The input to this process is a three-tuple of variables ( s, t, v ). 

The output of this process is the 3D Morton code representation, m, of the input tuple as follows: 



ISO 23090-9:2020(E) 

12 © ISO/IEC 2020 – All rights reserved 

𝑚𝑚 = �23𝑖𝑖+2�𝑠𝑠 & 2𝑖𝑖�
𝑖𝑖

+ 23𝑖𝑖+1�𝑡𝑡 & 2𝑖𝑖� + 23𝑖𝑖�𝑣𝑣 & 2𝑖𝑖� 

Table 5 illustrates the construction of 3D morton codes from the bit string representation of the variables 
s, t, and v. 

Table 5 — Construction of 3D Morton codes m from the tuple ( s, t, u ) 

Bit string form Integer form 
s t v m m 

0 0 0 0 0 0 0 0 0  0 0 0 0 
0 0 0 0 0 1 0 0 0  0 0 1 1 
1 0 0 1 1 0 1 0 1  0 1 0 42 
1 0 0 1 1 1 1 0 1  0 1 1 43 
1 1 1 0 0 0 1 1 0  1 0 0 52 
1 1 1 0 0 1 1 1 0  1 0 1 53 
0 1 1 1 1 0 0 1 1  1 1 0 30 
0 1 1 1 1 1 0 1 1  1 1 1 31 

sn ... s1 s0 tn ... t1 t0 vn ... v1 v0 sn tn vn  ... s1 t1 v1  s0 t0 v0 ... 
 

 Conversion of 3D Morton codes to a tuple (MortonToTuple) 

The input to this process is a variable m representing a 3D Morton code. 

The output of this process is the three-tuple ( s, t, u) derived as follows: 

𝑠𝑠 = � 2𝑖𝑖�𝑚𝑚 & 23𝑖𝑖+2�
𝑖𝑖

 

𝑡𝑡 = � 2𝑖𝑖�𝑚𝑚 & 23𝑖𝑖+1�
𝑖𝑖

 

𝑢𝑢 = � 2𝑖𝑖�𝑚𝑚 & 23𝑖𝑖�
𝑖𝑖

 

 Definition of QpToQstep 

The inputs to this process are: 

 the variable qP, representing the quantization parameter. 

 the variable isFirstComp 

The output of this process is the variable qstep, representing a quantization step size and computed as 
follows: 

if (isFirstComp) 
  qpBdOffset = 6 × (attribute_bitdepth_minus1[ash_attr_sps_attr_idx] – 7) 
else 
  qpBdOffset = 6 × (attribute_secondary_bitdepth_minus1[ash_attr_sps_attr_idx] – 7) 
 
qP' = Clip3(4, 51 + qPBdOffset, qP); 
qstep = levelScale[qP' % 6] << (qP' / 6); 

Where the array levelScale is specified as levelScale[ k ] = { 161, 181, 203, 228, 256, 287 }, with k = 0 .. 5. 
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5.10 Vector operations 

The following mathematical functions are defined: 

The function c[ i ] = CrossProduct ( a[ i ], b[ i ] ) with i = 0 .. 2 is defined as follows: 

c[0] = a[1] × b[2] − a[2] × b[1] 
c[1] = a[2] × b[0] − a[0] × b[2] 
c[2] = a[0] × b[1] − a[1] × b[0] 

The function c = InnerProduct ( a[i], b[i] ) with i = 0 .. 2 is defined as follows: 

c = a[0] × b[0] + a[1] × b[1] + a[2] × b[2] 

5.11 Order of operation precedence 

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following 
rules apply: 

– Operations of a higher precedence are evaluated before any operation of a lower precedence. 

– Operations of the same precedence are evaluated sequentially from left to right. 

Table 6 specifies the precedence of operations from highest to lowest; a higher position in the table 
indicates a higher precedence. 

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this 
Specification is the same as used in the C programming language. 
 

Table 6 – Operation precedence from highest (at top of table) to lowest (at bottom of table) 

operations (with operands x, y, and z) 
"x++", "x− −" 
"!x", "−x" (as a unary prefix operator) 
xy 

"x × y", "x / y", "x ÷ y", "x
y
", "x % y" 

"x + y", "x − y" (as a two-argument operator), "∑ 𝑓𝑓(𝑖𝑖)𝑦𝑦
𝑖𝑖=𝑥𝑥 " 

"x << y", "x >> y" 
"x < y", "x <= y", "x > y", "x >= y" 
"x = = y", "x != y" 
"x & y" 
"x | y" 
"x && y" 
"x | | y" 
"x ? y : z" 
"x..y" 
"x = y", "x += y", "x −= y" 

 

5.12 Variables, syntax elements, and tables 

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its 
name (all lower-case letters with underscore characters), and one descriptor for its method of coded 
representation. The decoding process behaves according to the value of the syntax element and to the 
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values of previously decoded syntax elements. When a value of a syntax element is used in the syntax 
tables or the text, it appears in regular (i.e., not bold) type. 

In some cases the syntax tables may use the values of other variables derived from syntax elements values. 
Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper-case letter 
and without any underscore characters. Variables starting with an upper-case letter are derived for the 
decoding of the current syntax structure and all depending syntax structures. Variables starting with an 
upper-case letter may be used in the decoding process for later syntax structures without mentioning the 
originating syntax structure of the variable. Variables starting with a lower-case letter are only used 
within the clause in which they are derived. 

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably 
with their numerical values. Sometimes "mnemonic" names are used without any associated numerical 
values. The association of values and names is specified in the text. The names are constructed from one 
or more groups of letters separated by an underscore character. Each group starts with an upper-case 
letter and may contain more upper-case letters. 

NOTE – The syntax is described in a manner that closely follows the C language syntactic constructs. 
Functions that specify properties of the current position in the bitstream are referred to as syntax 
functions. These functions are specified in clause 7.2 and assume the existence of a bitstream pointer with 
an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax 
functions are described by their names, which are constructed as syntax element names and end with left 
and right round parentheses including zero or more variable names (for definition) or values (for usage), 
separated by commas (if more than one variable). 

Functions that are not syntax functions (including mathematical functions specified in clause 5.9) are 
described by their names, which start with an upper case letter, contain a mixture of lower and upper 
case letters without any underscore character, and end with left and right parentheses including zero or 
more variable names (for definition) or values (for usage) separated by commas (if more than one 
variable). 

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays 
can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of 
arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index 
and the second subscript is used as a column (horizontal) index. The indexing order is reversed when 
using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal 
position x and vertical position y may be denoted either as s[ x ][ y ] or as syx. A single column of a matrix 
may be referred to as a list and denoted by omission of the row index. Thus, the column of a matrix s at 
horizontal position x may be referred to as the list s[ x ]. 

A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} }, 
where each inner pair of brackets specifies the values of the elements within a row in increasing column 
order and the rows are ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6 } { 4 9 } 
specifies that s[ 0 ][ 0 ] is set equal to 1, s[ 1 ][ 0 ] is set equal to 6, s[ 0 ][ 1 ] is set equal to 4, and s[ 1 ][ 1 ] 
is set equal to 9. 

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, 
'01000001' represents an eight-bit string having only its second and its last bits (counted from the most 
to the least significant bit) equal to 1. 

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of 
binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an 
eight-bit string having only its second and its last bits (counted from the most to the least significant bit) 
equal to 1. 

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values. 



© ISO/IEC 2020 – All rights reserved 

© ISO/IEC 2020 – All rights reserved 15 

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by 
any value different from zero. 

5.13 Text description of logical operations 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if (condition 0) 
 statement 0 
else if (condition 1) 
 statement 1 
... 
else /* informative remark on remaining condition */ 
 statement n 

may be described in the following manner: 

... as follows / ... the following applies: 
– If condition 0, statement 0 
– Otherwise, if condition 1, statement 1 
– ... 
– Otherwise (informative remark on remaining condition), statement n 

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the 
following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... 
Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can 
be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...". 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if (condition 0a && condition 0b) 
 statement 0 
else if (condition 1a| | | | condition 1b) 
 statement 1 
... 
else 
 statement n 

may be described in the following manner: 

... as follows / ... the following applies: 

– If all of the following conditions are true, statement 0: 
– condition 0a 
– condition 0b 

– Otherwise, if one or more of the following conditions are true, statement 1: 
– condition 1a 
– condition 1b 

– ... 
– Otherwise, statement n 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if (condition 0) 
 statement 0 
if (condition 1) 
 statement 1 

may be described in the following manner: 
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When condition 0, statement 0 
When condition 1, statement 1 

5.14 Processes 

Processes are used to describe the decoding of syntax elements. A process has a separate specification 
and invoking. All syntax elements and upper-case variables that pertain to the current syntax structure 
and depending syntax structures are available in the process specification and invoking. A process 
specification may also have a lower-case variable explicitly specified as input. Each process specification 
has explicitly specified an output. The output is a variable that can either be an upper-case variable or a 
lower-case variable. 

When invoking a process, the assignment of variables is specified as follows: 

– If the variables at the invoking and the process specification do not have the same name, the variables are 
explicitly assigned to lower case input or output variables of the process specification. 

– Otherwise (the variables at the invoking and the process specification have the same name), assignment is 
implied. 

In the specification of a process, a specific coding block may be referred to by the variable name having a 
value equal to the address of the specific coding block. 

6 Source, coded, decoded and output data formats, scanning processes, and 
neighbouring relationships 

6.1 Bitstream formats 

This clause specifies the G-PCC bitstream. This clause is not an essential component of this document and 
all G-PCC components including any associated G-PCC GPSs or APSs could be encapsulated using a 
different format depending on application.  

6.2 Source, decoded, and output point cloud formats 

This clause specifies the relationship between source and decoded point cloud that is given via the 
bitstream. 

The point cloud source that is represented by the bitstream is a set of points in the decoding order. 

The source and decoded point clouds are each comprised of one or more sample arrays: 

– Geometry information – cartesian co-ordinates of the occupied point in 3-dimensional space (0 1 2, also 
known as XYZ). 

– Single stimulus (Luma only, Reflectance). 
– Colour, for example Green, Blue and Red (GBR, also known as RGB). 
– Arrays representing other unspecified monochrome or multi-stimulus attribute samplings (for 

example, Frame index, Transparency). 
The number of bits necessary for the representation of each of the samples in the co-ordinates arrays in 
a point cloud is in range of 8 to 32, inclusive. 

The number of bits necessary for the representation of each of the samples in the attribute arrays in a 
point cloud is in the range of 8 to 16, inclusive. The number of bits used in the different attribute array 
may differ from the number of bits used in the other attribute arrays. 

The order of the samples in the decoded point cloud is not specified. The order of the source point cloud 
and decoded point cloud may be different. 
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 Data partitioning 

This subclause specifies how a frame is partitioned into tiles and slices. 

Source point cloud data may be partitioned to multiple slices and can be encoded in a bitstream. 

A slice is a set of points that can be encoded or decoded independently. A slice comprises one geometry 
data unit and zero or more attribute data units.  Attribute data units depend upon the corresponding 
geometry data unit within the same slice.  Within a slice, the geometry data unit must appear before any 
associated attribute units.  The data units of a slice must be contiguous.  The ordering of slices within a 
frame is unspecified. 

A group of slices may be identified by a common tile identifier.  This specification provides a tile inventory 
that describes a bounding box for each tile.  A tile may overlap another tile in the bounding box. Each slice 
contains an index that identifies to which tile it belongs.  Tile information is not used by the decoding 
process in this Specification. 

 Frame index attribute component 

Point cloud data consisting of multiple frames may be encoded by using frame combine coding. Arbitrary 
multiple frames may be combined into one input point cloud by preprocessing and each point of the input 
point cloud has a frame index as attribute component that indicate the frame to which the point belongs. 
The frame index is encoded as one of attribute component. After decoding the bitstream, each point may 
be split to multiple frames by using decoded frame index. When a frame index is encoded, it is 
recommended to set SliceQpY equal to 4 and unique_geometry_points_flag equal to 0. 

6.3 Geometry octree 

When the geometry octree is used, then the geometry encoding proceeds as follows. First, a cubical axis-
aligned bounding box B is defined by the two extreme points (0, 0, 0) and (2𝑑𝑑 , 2𝑑𝑑 , 2𝑑𝑑). An octree structure 
is then built by recursively subdividing B. At each stage, a cube is subdivided into 8 sub-cubes.  An 8-bit 
code, named an occupancy code, is then generated by associating a 1-bit value with each sub-cube in 
order to indicate whether it contains points (i.e., full and has value 1) or not (i.e., empty and has value 0).  
Only full sub-cubes with a size greater than 1 (i.e., non-voxels) are further subdivided.  Since points may 
be duplicated, multiple points may be mapped to the same sub-cube of size 1 (i.e., the same voxel).  In 
order to handle such a situation, the number of points for each sub-cube of dimension 1 is also 
arithmetically encoded. The same arithmetic encoder is used to encode all the information put into the 
bitstream. 

The decoding process starts by reading from the bitstream the dimensions of the bounding box B.  The 
same octree structure is then built by subdividing B according to the occupancy codes.  Each time a sub-
cube of dimension 1 is reached, the number of points c for that sub-cube is arithmetically decoded and c 
points located at the origin of the sub-cube are generated.  

6.4 Neighbour relationships 

 Neighbour dependent geometry octree child node scan order inverse mapping process 

This process maps an index in one scan order to the corresponding index of another scan order. 

The inputs to this process are 

− an index, inIdx, in the neighbour dependent permuted child node scan order, and 

− the neighbourhood occupancy pattern, neighbourPattern. 
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The output of this process is the corresponding index, outIdx, in the octree child node scan order. 

The output index is determined as follows 

outIdx = (childScanMap[neighbourPattern] >> (inIdx × 3)) & 7 

Values of the array childScanMap are given by Table 7. 

Table 7 — Values of childScanMap[ i + j ] 

 j 
i 0 1 2 3 
0 0o76543210 0o76543210 0o10325476 0o76543210 
4 0o54107632 0o54107632 0o10325476 0o32761054 
8 0o32761054 0o76543210 0o32761054 0o54107632 

12 0o32761054 0o10325476 0o76543210 0o76543210 
16 0o26043715 0o46570213 0o20316475 0o57134602 
20 0o04152637 0o45016723 0o01234567 0o23670145 
24 0o62734051 0o67452301 0o23670145 0o45016723 
28 0o73516240 0o01234567 0o67452301 0o67452301 
32 0o37152604 0o57461302 0o31207564 0o46025713 
36 0o15043726 0o54107632 0o10325476 0o32761054 
40 0o73625140 0o76543210 0o32761054 0o54107632 
44 0o62407351 0o10325476 0o76543210 0o76543210 
48 0o37152604 0o02134657 0o64752031 0o57461302 
52 0o26370415 0o73625140 0o57461302 0o13570246 
56 0o40516273 0o31207564 0o15043726 0o75316420 
60 0o73625140 0o51734062 0o37152604 0o76543210 

 Neighbour depending geometry occupancy map permutation process 

The inputs to this process are 

− a neighbourhood occupancy pattern neighbourPattern 

− a decoded occupancy map value occMap 

The output of this process is a permuted occupancy map value occMapP. 

The output is derived as follows 

occMapP = 0 
for (srcIdx = 0; srcIdx < 8; srcIdx++) { 
  dstIdx = (childScanMap[neighbourPattern] >> (srcIdx × 3)) & 7 
  occMapP = occMapP | (((occMap >> srcIdx) & 1) << dstIdx) 
} 

The values of the array childScanMap are given by Table 7. 
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7 Syntax and semantics 

7.1 Method of specifying syntax in tabular form 

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the 
syntax may be specified, either directly or indirectly, in other clauses. 

NOTE – An actual decoder should implement some means for identifying entry points into the bitstream and some means to 
identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations 
are not specified in this Specification. 

The following table lists examples of pseudo code used to describe the syntax. When syntax_element 
appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is 
advanced to the next position beyond the syntax element in the bitstream parsing process. 

 

 Descriptor 
/* A statement can be a syntax element with an associated descriptor 
or can be an expression used to specify conditions for the existence, 
type, and quantity of syntax elements, as in the following two 
examples */ 

 

syntax_element ue(v) 
conditioning statement  
  
/* A group of statements enclosed in curly brackets is a compound 
statement and is treated functionally as a single statement. */ 

 

{  
 statement  
 statement  
 …  
}  
  
/* A "while" structure specifies a test of whether a condition is true, 
and if true, specifies evaluation of a statement (or compound 
statement) repeatedly until the condition is no longer true */ 

 

while( condition )  
 statement  
  
/* A "do … while" structure specifies evaluation of a statement once, 
followed by a test of whether a condition is true, and if true, specifies 
repeated evaluation of the statement until the condition is no longer 
true */ 

 

do  
 statement  
while( condition )  
  
/* An "if … else" structure specifies a test of whether a condition is 
true, and if the condition is true, specifies evaluation of a primary 
statement, otherwise, specifies evaluation of an alternative statement. 
The "else" part of the structure and the associated alternative 
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statement is omitted if no alternative statement evaluation is needed 
*/ 
if( condition )  
 primary statement  
else  
 alternative statement  
  
/* A "for" structure specifies evaluation of an initial statement, 
followed by a test of a condition, and if the condition is true, specifies 
repeated evaluation of a primary statement followed by a subsequent 
statement until the condition is no longer true. */ 

 

for( initial statement; condition; subsequent statement )  
 primary statement  

 

7.2 Specification of syntax functions and descriptors 

The functions presented here are used in the syntactical description. These functions are expressed in 
terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the 
decoding process from the bitstream.  

byte_aligned( ) is specified as follows: 

– If the current position in the bitstream is on a byte boundary, i.e. the next bit in the bitstream is 
the first bit in a byte, the return value of byte_aligned( ) is equal to TRUE.  

– Otherwise, the return value of byte_aligned( ) is equal to FALSE. 

more_data_in_byte_stream( ), which is specified as follows: 

– If more data follow in the byte stream, the return value of more_data_in_byte_stream( ) is equal 
to TRUE. 

The following descriptors specify the parsing process of each syntax element.  The parsing process for all 
descriptors and syntax elements is specified in clause 9. 

– ae(v): adaptive arithmetic entropy-coded syntax element. 

– de(v): dictionary coded syntax element. 

– s(n): signed integer using n bits plus sign bit. 

– se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. 

– u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in 
a manner dependent on the value of other syntax elements. The parsing process for this descriptor 
is specified by the return value of the function read_bits( n ) interpreted as a binary representation 
of an unsigned integer with most significant bit written first. 

– ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. 
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7.3 Syntax in tabular form 

 General 

The syntax structures and the syntax elements within these structures are specified in this sub clause. 
Any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise 
specified in this Specification. 

 Data unit and byte alignment syntax 

 Sequence parameter set syntax 

seq_parameter_set( ) { Descriptor 
 main_profile_compatibility_flag u(1) 
 reserved_profile_compatibility_22bits u(22) 
 unique_point_positions_constraint_flag u(1) 
 level_idc u(8) 
 sps_seq_parameter_set_id ue(v) 
 sps_bounding_box_present_flag u(1) 
 if( sps_bounding_box_present_flag ) {  
  for( k = 0; k < 3; k++ )  
   sps_bounding_box_offset_xyz[ k ] se(v) 
  sps_bounding_box_offset_log2_scale ue(v) 
  for( k = 0; k < 3; k++ )  
   sps_bounding_box_size_xyz[ k ] ue(v) 
 }  
 sps_source_scale_factor_numerator_minus1 ue(v) 
 sps_source_scale_factor_denominator_minus1 ue(v) 
 sps_num_attribute_sets ue(v) 
 for( i = 0; i < sps_num_attribute_sets; i++ ) {  
  attribute_instance_id[ i ] ue(v) 
  attribute_dimension_minus1[ i ] ue(v) 
  attribute_bitdepth_minus1[ i ] ue(v) 
  if(attribute_dimension_minus1[ i ] > 0 )  
   attribute_secondary_bitdepth_minus1[ i ] ue(v) 
  attribute_cicp_colour_primaries[ i ] ue(v) 
  attribute_cicp_transfer_characteristics[ i ] ue(v) 
  attribute_cicp_matrix_coeffs[ i ] ue(v) 
  attribute_cicp_video_full_range_flag[ i ] u(1) 
  known_attribute_label_flag[ i ] u(1) 
  if( known_attribute_label_flag[ i ] )  
   known_attribute_label[ i ] ue(v) 
  else  
   attribute_label_four_bytes[ i ] u(32) 
 }  
 log2_max_frame_idx u(5) 
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 axis_coding_order u(3) 
 sps_bypass_stream_enabled_flag u(1) 
 sps_extension_flag u(1) 
 if( sps_extension_flag )  
  while( more_data_in_byte_stream( ) )  
   sps_extension_data_flag u(1) 
 byte_alignment( )  
}  

 

 Tile inventory syntax 

tile_inventory( ) { D
e
s
c
r
i
p
t
o
r 

 tile_frame_idx t
b
u 

 num_tiles u
(
1
6
) 

 tile_bounding_box_bits u
(
8
) 

 for( i = 0; i < num_tiles; i++ ) {  
  for( k = 0; k < 3; k++ )  
   tile_bounding_box_offset_xyz[ i ][ k ] s

(
v
) 

  for( k = 0; k < 3; k++ )  
   tile_bounding_box_size_xyz[ i ][ k ] u

(
v
) 

 }  
 byte_alignment( )  
}  
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 Geometry parameter set syntax 

geometry_parameter_set( ) { Descriptor 
 gps_geom_parameter_set_id ue(v) 
 gps_seq_parameter_set_id ue(v) 
 gps_gsh_box_present_flag u(1) 
 if( gps_gsh_box_present_flag ){  
  gps_gsh_box_log2_scale_present_flag u(1) 
  if( !gps_gsh_box_log2_scale_present_flag)  
   gps__gs_box_log2_scale  ue(v) 
 }  
 unique_geometry_points_flag u(1) 
 geometry_planar_mode_flag u(1) 
 if( geometry_planar_mode_flag ){  
  geom_planar_mode_th_idcm ue(v) 
  geom_planar_mode_th[ 0 ] ue(v) 
  geom_planar_mode_th[ 1 ]  ue(v) 
  geom_planar_mode_th[ 2 ] ue(v) 
  geometry_angular_mode_flag u(1) 
 }  
 if( geometry_angular_mode_flag ){  
  for( k = 0; k < 3; k++ )  
   geom_angular_origin_xyz[ k ] se(v) 
  number_lasers_minus1 ue(v) 
  for( i = 0; i <= number_lasers_minus1; i++ ) {  
   laser_angle[ i ] se(v) 
   laser_correction[ i ] se(v) 
  }  
  planar_buffer_disabled u(1) 
  implicit_qtbt_angular_max_node_min_dim_log2_to_split_v se(v) 
  implicit_qtbt_angular_max_diff_to_split_v se(v) 
 }  
 neighbour_context_restriction_flag u(1) 
 inferred_direct_coding_mode_enabled_flag u(1) 
 bitwise_occupancy_coding_flag u(1) 
 adjacent_child_contextualization_enabled_flag u(1) 
 log2_neighbour_avail_boundary ue(v) 
 log2_intra_pred_max_node_size ue(v) 
 log2_trisoup_node_size ue(v) 
 geom_scaling_enabled_flag u(1) 
 if( geom_scaling_enabled_flag )  
  geom_base_qp_minus4 ue(v) 
 gps_implicit_geom_partition_flag u(1) 
 if( gps_implicit_geom_partition_flag ) {  
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  gps_max_num_implicit_qtbt_before_ot ue(v) 
  gps_min_size_implicit_qtbt ue(v) 
 }  
 gps_extension_flag u(1) 
 if( gps_extension_flag )  
  while( more_data_in_byte_stream( ) )  
   gps_extension_data_flag u(1) 
 byte_alignment( )  
}  

 

 Attribute parameter set syntax 

attribute_parameter_set( ) { Descriptor 
 aps_attr_parameter_set_id ue(v) 
 aps_seq_parameter_set_id ue(v) 
 attr_coding_type ue(v) 
 aps_attr_initial_qp ue(v) 
 aps_attr_chroma_qp_offset se(v) 
 aps_slice_qp_delta_present_flag u(1) 
 if(attr_coding_type  = =  0) { //RAHT  
  raht_prediction_enabled_flag u(1) 
  if (raht_prediction_enabled_flag) {  
   raht_prediction_threshold0 ue(v) 
   raht_prediction_threshold1 ue(v) 
  }  
 }  
 else if (attr_coding_type <= 2) {   
  lifting_num_pred_nearest_neighbours_minus1 ue(v) 
  lifting_search_range_minus1 ue(v) 
  for( k = 0; k < 3; k++ )  
   lifting_neighbour_bias_xyz[ k ] ue(v) 
  if ( attr_coding_type  = =  2 )  
   lifting_scalability_enabled_flag u(1) 
  if ( ! lifting_scalability_enabled_flag ) {  
   lifting_num_detail_levels_minus1 ue(v) 
   if ( lifting_num_detail_levels_minus1 > 0 ) {  
    lifting_lod_regular_sampling_enabled_flag u(1) 
    for( idx = 0; idx < num_detail_levels_minus1; idx++ ) 
{ 

 

     if ( lifting_lod_regular_sampling_enabled_flag )  
      lifting_sampling_period_minus2[ idx ] ue(v) 
     else  
     
 lifting_sampling_distance_squared_scale_minus1[ idx ] 

ue(v) 
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     if ( idx != 0 )  
     
 lifting_sampling_distance_squared_offset[ idx ] 

ue(v) 

    }  
   }  
  }  
  if( attr_coding_type  = =  1 ) {  
   lifting_adaptive_prediction_threshold ue(v) 
   lifting_intra_lod_prediction_num_layers ue(v) 
   lifting_max_num_direct_predictors ue(v) 
   inter_component_prediction_enabled_flag u(1) 
  }  
 }  
 aps_extension_flag u(1) 
 if( aps_extension_flag )  
  while( more_data_in_byte_stream( ) )  
   aps_extension_data_flag u(1) 
 byte_alignment( )  
}  

 

 Frame boundary marker syntax 

frame_boundary_marker( ) { Descriptor 
 /* this syntax structure is intentionally empty */  
}  

 

 Byte alignment syntax 

byte_alignment( ) { Descriptor 
 alignment_bit_equal_to_one /* equal to 1 */ f(1) 
 while( !byte_aligned( ) )  
  alignment_bit_equal_to_zero /* equal to 0 */ f(1) 
}  

 

 Geometry data unit syntax 

 General geometry data unit syntax 

geometry_data_unit ( ) { Descriptor 
 geometry_data_unit_header( )  
 geometry_data_unit_data( )  
}  
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 Geometry data unit header syntax 

geometry_data_unit_ header( ) { Descriptor 
 gsh_num_points_minus1 u(24) 
 gsh_geometry_parameter_set_id ue(v) 
 gsh_tile_id ue(v) 
 gsh_slice_id ue(v) 
 frame_idx u(v) 
 if( gps_gsh_box_present_flag ) {  
  if( gps_gsh_box_log2_scale_present_flag )  
   gsh_box_log2_scale ue(v) 
  for( k = 0; k < 3; k++ )  
   gsh_box_origin_xyz[ k ] ue(v) 
 }  
 if ( gps_implicit_geom_partition_flag ) {  
  gsh_log2_root_nodesize_s ue(v) 
  gsh_log2_root_nodesize_t_minus_s se(v) 
  gsh_log2_root_nodesize_v_minus_t se(v) 
 } else {  
  gsh_log2_root_nodesize ue(v) 
 }  
 gsh_num_entropy_streams_minusQ ue(v) 
 if( gsh_num_entropy_streams_minusQ ) {  
  gsh_entropy_stream_len_bits u(6) 
  for( i = 0; i < 2 + gsh_num_entropy_streams_minusQ; i++)   
   gsh_entropy_stream_len[ i ] u(v) 
 }  
 if( geom_scaling_enabled_flag ) {  
  geom_slice_qp_offset se(v) 
  geom_octree_qp_offsets_depth ue(v) 
 }  
 byte_alignment( )  
}  

 

 Geometry data unit data syntax 

geometry_data_unit_data( ) { Descriptor 
 depthS = depthT = depthV = 0  
 for( depth = 0; depth < MaxGeometryOctreeDepth; depth++ ) {  
  for( nodeIdx = 0; nodeIdx < NumNodesAtDepth[ depth ]; 
nodeIdx++ ) { 

 

   sN = NodeS[ depthS ][ nodeIdx ]  
   tN = NodeT[ depthT ][ nodeIdx ]  
   vN = NodeV[ depthV ][ nodeIdx ]  
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   geometry_node( depthS, depthT, depthV, partitionSkip, 
nodeIdx, sN, tN, vN ) 

 

  }  
  if( ! ( partitionSkip & 4 ) )  
   depthS = depthS + 1  
  if( ! ( partitionSkip & 2 ) )  
   depthT = depthT + 1  
  if( ! ( partitionSkip & 1 ) )  
   depthV = depthV + 1  
 }  
 if( log2_trisoup_node_size > 0 )  
  geometry_trisoup_data( )  
}  

 

 Geometry node syntax 

geometry_node( depthS, depthT, depthV, partitionSkip, nodeIdx, sN, 
tN, vN ) { 

Descriptor 

 if( depth = = GeomScalingDepth ) {  
  geom_node_qp_offset_eq0_flag ae(v) 
  if( ! geom_node_qp_offset_eq0_flag) {  
   geom_node_qp_offset_sign_flag ae(v) 
   geom_node_qp_offset_abs_minus1 ae(v) 
  }  
 }  
 if( EffectiveDepth < MaxGeometryOctreeDepth ) {  
  single_occupancy( nodeIdx )  
  if( ! single_occupancy_flag && !two_planar_flag[nodeIdx]))  
   if( bitwise_occupancy_flag )  
    occupancy_map ae(v) 
   else  
    occupancy_byte de(v) 
 }  
 if( EffectiveDepthS >=  RootNodeSizeSLog2 − 1 &&  
  EffectiveDepthT >= RootNodeSizeTLog2 – 1 &&  
  EffectiveDepthV >= RootNodeSizeVLog2 – 1 ) { 

 

  if( !unique_geometry_points_flag )  
   for( child = 0; child < GeometryNodeChildrenCnt; 
child++ ) { 

 

    num_points_eq1_flag[ child ] ae(v) 
    if( !num_points_eq1_flag )  
     num_points_minus2[ child ] ae(v) 
   }  
 } else {  
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  if( geometry_planar_mode_flag ) {  
   for( child = 0; child < GeometryNodeChildrenCnt; 
child++ ) 

 

    for( axisIdx = 0; axisIdx <= 2; axisIdx++ )  
     if( eligible_planar_flag[ axisIdx ] )  
      geometry_planar_mode_data( child, axisIdx )  
  }  
  if( DirectModeFlagPresent )  
   geometry_direct_mode_data( 0 )  
 }  
}  

 

 Single occupancy data syntax 

single_occupancy( nodeIdx ) { Descriptor 
 if ( !is_planar_flag[ nodeIdx ][ 0 ] ||  
  !is_planar_flag[ nodeIdx ][ 1 ] ||  
  !is_planar_flag[ nodeIdx ][ 2 ] ) { 

 

  if( NeighbourPattern = = 0 ) {  
   if( possibly_planar[ nodeIdx ][ 0 ] &&  
    possibly_planar[ nodeIdx ][ 1 ] &&  
    possibly_planar[ nodeIdx ][ 2 ] ) { 

 

    single_occupancy_flag  ae(v) 
    if( single_occupancy_flag ) {  
     if( ! is_planar_flag[ nodeIdx ][ 0 ] )  
      occupancy_idx[ 0 ] ae(v) 
     if( ! is_planar_flag[ nodeIdx ][ 1 ] )  
      occupancy_idx[ 1 ] ae(v) 
     if( ! is_planar_flag[ nodeIdx ][ 2 ] )  
      occupancy_idx[ 2 ] ae(v) 
    }  
   }  
  }  
 }  
}  

 

 Planar mode data syntax 

geometry_planar_mode_data( child, axisIdx ) { Descriptor 
 is_planar_flag[ child ][ axisIdx ] ae(v) 
 if( is_planar_flag[ child ][ axisIdx ] )   
  plane_position[ child ][ axisIdx ] ae(v) 
}  
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 Direct mode data syntax 

geometry_direct_mode_data( child ) { Descriptor 
 direct_mode_flag ae(v) 
 if( direct_mode_flag ) {  
  num_direct_points_gt1 ae(v) 
  if( !geom_unique_points_flag && !num_direct_points_gt1) {   
   not_duplicated_point_flag ae(v) 
   if( !not_duplicated_point_flag ) {  
    num_direct_points_eq2_flag ae(v) 
    if( num_direct_points_eq2_flag)   
     num_points_direct_mode_minus3 ae(v) 
   }  
  }  
  for( i = 0; i <= num_direct_different_points_minus1; i++ ){  
   if( ChildNodeSizeSLog2 >= 1 && 
( !is_planar_flag[ child ][0] || partitionSkip & 4))  

 

    point_offset_s[ i ][ 0 ] ae(v) 
   for( j = 1; j < EffectiveChildNodeSizeSLog2; j++ )   
    point_offset_s[ i ][ j ] ae(v) 
   if(ChildNodeSizeTLog2 >= 1 && 
( !is_planar_flag[ child ][1] || partitionSkip & 2))  

 

    point_offset_t[ i ][ 0 ] ae(v) 
   for( j = 1; j < EffectiveChildNodeSizeTLog2; j++ )   
    point_offset_t[ i ][ j ] ae(v) 
   if(ChildNodeSizeVLog2 >= 1 && 
( !is_planar_flag[child ][2] || partitionSkip & 1))  

 

    point_offset_v[ i ][ 0 ] ae(v) 
   for( j = 1; j < EffectiveChildNodeSizeVLog2; j++ )   
    point_offset_v[ i ][ j ] ae(v) 
  }  
 }  
}  

 

 Geometry trisoup data syntax 

geometry_trisoup_data( ) { Descriptor 
 trisoup_sampling_value_minus1 ae(v) 
 num_unique_segments_minus1 ae(v) 
 for( i = 0; i <= num_unique_segments_minus1; i++ )  
  segment_indicator[ i ] ae(v) 
 num_vertices_minus1 ae(v) 
 for( i = 0; i <= num_vertices_minus1; i++ )  
  vertex_position[ i ] ae(v) 
}  
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 Attribute data unit syntax 
 General attribute data unit syntax 

attribute_data_unit ( ) { Descriptor 
 attribute_data_unit_header( )  
 attribute_data_unit_data( )  
}  

 

 Attribute data unit header syntax 

attribute_data_unit_header( ) { Descriptor 
 ash_attr_parameter_set_id ue(v) 
 ash_attr_sps_attr_idx ue(v) 
 ash_attr_geom_slice_id ue(v) 
 if ( aps_slice_qp_delta_present_flag ) {  
  ash_attr_qp_delta_luma se(v) 
  if( attribute_dimension_minus1[ ash_attr_sps_attr_idx ] > 0 )  
   ash_attr_qp_delta_chroma se(v) 
 }  
 ash_attr_layer_qp_delta_present_flag u(1) 
 if ( ash_attr_layer_qp_delta_present_flag ) {  
  ash_attr_num_layer_qp_minus1 ue(v) 
  for( i = 0; i < NumLayerQp; i++ ){  
   ash_attr_layer_qp_delta_luma[ i ] se(v) 
   if( attribute_dimension_minus1[ ash_attr_sps_attr_idx ] > 
0 ) 

 

    ash_attr_layer_qp_delta_chroma[ i ] se(v) 
  }  
 }  
 ash_attr_region_qp_delta_present_flag u(1) 
 if ( ash_attr_region_qp_delta_present_flag ) {  
  for( k = 0; k < 3; k++ )  
   ash_attr_qp_region_origin_xyz[ k ] ue(v) 
  for( k = 0; k < 3; k++ )  
   ash_attr_qp_region_size_xyz[ k ] ue(v) 
  ash_attr_region_qp_delta se(v) 
 }  
 byte_alignment( )  
}  
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 Attribute data unit data syntax 

attribute_data_unit_data( ) { Descriptor 
 AttrDim = attribute_dimension_minus1[ ash_attr_sps_attr_idx ] + 
1 

 

 all_residual_values_equal_to_zero_run ae(v) 
 for( i = 0; i < PointCount; i++ ) {  
  if( attr_coding_type = = 1 &&  
   MaxPredDiff[ i ] >= lifting_adaptive_prediction_threshold 
&& 
   MaxNumPredictors > 1 ) { 

 

   pred_index[ i ] ae(v) 
  }  
  if( all_residual_values_equal_to_zero_run > 0 ) {  
   for( k = 0; k < AttrDim; k++ )  
    residual_values[ k ][ i ] = 0  
    all_residual_values_equal_to_zero_run −= 1  
  }  
  else {  
   attribute_coding( i )  
   all_residual_values_equal_to_zero_run ae(v) 
  }  
 }  
 byte_alignment( )  
}  

 

 Attribute value syntax 

attribute_coding( pointIdx ) { Descriptor 
 for ( k = 0; k < AttrDim; k++ ) {  
  residual_values_equal_to_zero[ k ] ae(v) 
  if ( residual_values_equal_to_zero[ k ]  = =  1 )  
   residual_values[ k ][ pointIdx ] = 0  
  else {  
   residual_values_equal_to_one[ k ] ae(v) 
   if ( residual_values_equql_to_one[ k ]  = =  1 )  
    residual_values[ k ][ pointIdx ] = 1  
   else {  
    residual_values[ k ][ pointIdx ] de(v) 
    if (residual_values[ k ][ pointIdx ]  = =  255 )  
     remaining_values[ k ][ pointIdx ] ae(v) 
    residual_values[ k ][ pointIdx ] += 2  
   }  
  }  
 }  
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 for( d = 1, k = 1; k < AttrDim; k++ )  
  if( residual_values[ k ][ pointIdx ] != 
residual_values[ 0 ][ pointIdx ] ) 

 

   d = 0  
 for( k = 0; k < AttrDim; k++ )  
  residual_values[ k ][ pointIdx ] += d  
}  

 

7.4 Semantics 

 General 

Semantics associated with the syntax structures and with the syntax elements within these structures 
are specified in this sub clause. When the semantics of a syntax element are specified using a table or a 
set of tables, any values that are not specified in the table(s) shall not be present in the unless otherwise 
specified in this Specification. 

 Data unit and byte alignment semantics 

 Sequence parameter set semantics 

main_profile_compatibility_flag equal to 1 specifies that the bitstream conforms to the Main profile. 
main_profile_compatibility_flag equal to 0 specifies that the bitstream conforms to a profile other than 
the Main profile. 

reserved_profile_compatibility_22bits shall be equal to 0 in bitstreams conforming to this version of 
this Specification.  Other values for reserved_profile_compatibility_22bits are reserved for future use by 
ISO/IEC. Decoders shall ignore the value of reserved_profile_compatibility_22bits. 

unique_point_positions_constraint_flag equal to 1 indicates that in each point cloud frame that refers 
to the current SPS, all output points have unique positions. unique_point_positions_constraint_flag equal 
to 0 indicates that in any point cloud frame that refers to the current SPS, two and more output points 
may have the same position. 

Note – For example, even if all points are unique in each slices, the point from different slices in a frame 
may overlap. In that case, unique_point_positions_constraint_flag should be set to 0. 

level_idc indicates a level to which the bitstream conforms as specified in Annex A. Bitstreams shall not 
contain values of level_idc other than those specified in Annex A. Other values of level_idc are reserved 
for future use by ISO/IEC. 

sps_seq_parameter_set_id provides an identifier for the SPS for reference by other syntax elements. In 
the value of sps_seq_parameter_set_id shall be 0 in bitstreams conforming to this version of this 
Specification. The value other than 0 for sps_seq_parameter_set_id is reserved for future use by ISO/IEC. 

sps_bounding_box_present_flag equal to 1 indicates that a bounding box is present in the sequence 
parameter set. sps_bounding_box_present_flag equal to 0 indicates that the size of the bounding box is 
undefined. 

sps_bounding_box_offset_xyz[ k ] indicates the k-th component of the quantized ( x, y, z ) co-ordinate 
offset of the source bounding box in Cartesian co-ordinates. When not present, the values of 
sps_bounding_box_offset_xyz[ k ] are each inferred to be 0. 
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sps_bounding_box_offset_log2_scale indicates the scaling factor to scale the quantized x, y, and z source 
bounding box offsets. When not present, the value of sps_bounding_box_offset_log2_scale is inferred to 
be 0. 

sps_bounding_box_size_xyz[ k ] indicates the k-th component of the width, height, and depth, 
respectively, of the source bounding box in Cartesian co-ordinates. 

sps_source_scale_factor_numerator_minus1 plus 1 indicates the scale factor numerator of the source 
point cloud. 

sps_source_scale_factor_denominator_minus1 plus 1 indicates the scale factor denominator of the 
source point cloud. 

sps_num_attribute_sets indicates the number of coded attributes in the bitstream. The value of 
sps_num_attribute_sets shall be in the range of 0 to 63. 

attribute_dimension_minus1[ i ] plus 1 specifies the number of components of the i-th attribute. 

attribute_instance_id[ i ] specifies the instance id for the i-th attribute. 

NOTE – The value of the attribute_instance_id identifies the attribute when two or more attribute having the 
attribute_label_four_bytes value is in the bitstream. For example, it is useful for the point cloud having multiple color from 
the different view point. 

attribute_bitdepth_minus1[ i ] plus 1 specifies the bitdepth for first component of the i-th attribute 
signal(s). 

attribute_secondary_bitdepth_minus1[ i ] plus 1 specifies the bitdepth for secondary component of the 
i-th attribute signal(s). 

attribute_cicp_colour_primaries[ i ] indicates the chromaticity co-ordinates of the colour attribute 
source primaries of the i-th attribute. The semantics are as specified for the code point ColourPrimaries 
in ISO/IEC 23091-2. 

attribute_cicp_transfer_characteristics[ i ] either indicates the reference opto-electronic transfer 
characteristic function of the colour attribute as a function of a source input linear optical intensity Lc 
with a nominal real-valued range of 0 to 1 or indicates the inverse of the reference electro-optical transfer 
characteristic function as a function of an output linear optical intensity Lo with a nominal real-valued 
range of 0 to 1. The semantics are as specified for the code point TransferCharacteristics in ISO/IEC 
23091-2. 

attribute_cicp_matrix_coeffs[ i ] describes the matrix coefficients used in deriving luma and chroma 
signals from the green, blue, and red, or Y, Z, and X primaries. The semantics are as specified for the code 
point MatrixCoefficients in ISO/IEC 23091-2. 

attribute_cicp_video_full_range_flag[ i ] specifies indicates the black level and range of the luma and 
chroma signals as derived from E′Y, E′PB, and E′PR or E′R, E′G, and E′B real-valued component signals. 
The semantics are as specified for the code point VideoFullRangeFlag in ISO/IEC 23091-2. 

known_attribute_label_flag[ i ] equal to 1 specifies know_attribute_label is signalled for the i-th 
attribute. known_attribute_label_flag[ i ] equal to 0 specifies attribute_label_four_bytes is signalled for the 
i-th attribute.  

known_attribute_label[ i ] equal to 0 specifies the attribute is colour. known_attribute_label[ i ] equal to 
1 specifies the attribute is reflectance. known_attribute_label[ i ] equal to 2 specifies the attribute is frame 
index. 
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attribute_label_four_bytes[ i ] indicates the known attribute type with the 4 bytes code. Table 8 
describes the list of supported attributes and their relationship with attribute_label_four_bytes[ i ]. 

Table 8 — attribute_label_four_bytes 

attribute_label_four_bytes[ i ] Attribute type 
0 Colour 
1 Reflectance 
2 Frame index 
3 Material ID 
4 Transparency 
5 Normals 

6 .. 255 Reserved 
256 .. 0xffffffff unspecified 

 

log2_max_frame_idx plus 1 specifies the number of bits used to signal the frame_idx syntax variable. 

axis_coding_order specifies the correspondence between the X, Y, and Z output axis labels and the three 
position components of all points in the reconstructed point cloud. 

The array XyzToStv defines the mapping of the k-th component of an ( x, y, z ) co-ordinate to an index of 
the coded geometry axis order ( s, t, v ).  Values of XyzToStv[ k ], k = 0 .. 2, are defined according to 
axis_coding_order in Table 9. 

The output axis labels X, Y, and Z are each assigned to the axis index given by XyzToStv[ k ], for k = 0 .. 2, 
according to Table 10. 

Table 9 — Definition of XyzToStv[ k ] according to the value of axis_coding_order 

axis_coding_order XyzToStv[ k ] 
0 1 2 

0 2 1 0 
1 0 1 2 
2 0 2 1 
3 2 0 1 
4 2 1 0 
5 1 2 0 
6 1 0 2 
7 0 1 2 

Table 10 — Mapping of output X, Y, and Z axis labels to indicies axis of RecPic[ pointIdx ][ axis ] 

Label axis 
X XyzToStv[ 0 ] 
Y XyzToStv[ 1 ] 
Z XyzToStv[ 2 ] 
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sps_bypass_stream_enabled_flag equal to 1 specifies that the bypass coding mode may be used on 
reading the bitstream. sps_bypass_stream_enabled_flag equal to 0 specifies that the bypass coding mode 
is not used on reading the bitstream. 

sps_extension _flag equal to 0 specifies that no sps_extension_data_flag syntax elements are present in 
the SPS syntax structure. sps_extension _flag shall be equal to 0 in bitstreams conforming to this version 
of this Specification.  The value of 1 for sps_extension _flag is reserved for future use by ISO/IEC.  Decoders 
shall ignore all sps_extension_data_flag syntax elements that follow the value 1 for sps_extension_flag in 
an SPS syntax structure. 

sps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance 
to profiles specified in Annex A. Decoders conforming to this version of this Specification shall ignore all 
sps_extension_data_flag syntax elements. 

 Tile inventory semantics 

tile_frame_idx contains an identifying number that may be used to identify the purpose of the tile 
inventory. 

num_tiles specifies the number of tile bounding boxes present in the tile inventory. 

tile_bounding_box_bits specifies the bitdepth to represent the bounding box information for the tile 
inventory. 

tile_bounding_box_offset_xyz[ tileId ][ k ] and tile_bounding_box_size_xyz[ tileId ][ k ] specify a 
bounding box encompasing slices identified by gsh_tile_id equal to tileId. 

tile_bounding_box_offset_xyz[ tileId ][ k ] is the k-th component of the ( x, y, z ) origin co-ordinate of the 
tile bounding box relative to sps_bounding_box_offset[ k ]. 

tile_bounding_box_size_xyz[ tileId ][ k ] is the k-th component of the tile bounding box width, height, and 
depth, respectively. 

 Geometry parameter set semantics 

gps_geom_parameter_set_id provides an identifier for the GPS for reference by other syntax elements. 
The value of gps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

gps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value 
of gps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

gps_box_present_flag equal to 1 specifies an additional bounding box information is provided in a 
geometry header that references the current GPS. gps_bounding_box_present_flag equal to 0 specifies 
that additional bounding box information is not signalled in the geometry header. 

gps_gsh_box_log2_scale_present_flag equal to 1 specifies gsh_box_log2_scale is signalled in each 
geometry slice header that references the current GPS. gps_gsh_box_log2_scale_present_flag equal to 0 
specifies gsh_box_log2_scale is not signalled in each geometry slice header and common scale for all slices 
is signalled in gps_gsh_box_log2_scale of current GPS.  

gps_gs_box_log2_scale indicates a scale factor to be applied to the slice origin of all slices that reference 
the current GPS. 

unique_geometry_points_flag equal to 1 indicates that in all slices that refer to the current GPS, all 
output points have unique positions within a slice. unique_geometry_points_flag equal to 0 indicates that 
in all slices that refer to the current GPS, two or more of the output points may have same positions within 
a slice. 
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geometry_planar_mode_flag equal to 1 indicates that the planar coding mode is activated. 
geometry_planar_mode_flag equal to 0 indicates that the planar coding mode is not activated.  

geom_planar_mode_th_idcm specifies the value of the threshold of activation for the direct coding mode. 
geom_planar_mode_th_idcm is an integer in the range 0 to 127 inclusive.  When not present, 
geom_planar_mode_th_idcm is inferred to be 127. 

geom_planar_mode_th[i], for i in the range 0 .. 2, specifies the value of the threshold of activation for 
planar coding mode along the i-th most probable direction for the planar coding mode to be efficient. 
geom_planar_mode_th[i] is an integer in the range 0 .. 127. 

geometry_angular_mode_flag equal to 1 indicates that the angular coding mode is activated. 
geometry_angular_mode_flag equal to 0 indicates that the angular coding mode is not activated.  

geom_angular_origin_xyz[ k ] specifies the k-th component of the ( x, y, z ) co-ordinate of the origin used 
in the processing of the angular coding mode. When not present, geom_angular_origin_x, 
geom_angular_origin_y, and geom_angular_origin_z are inferred to be 0. 

The array geomAngularOrigin, with values geomAngularOrigin[ k ], for k = 0 .. 2, represents the values of 
geom_angular_origin_xyz permuted into the coded geometry axis order as follows: 

geomAngularOrigin[XyzToStv[k]] = geom_angular_origin_xyz[k], for k = 0..2 

number_lasers specifies the number of lasers used for the angular coding mode. When not present, 
number_lasers is inferred to be 0. 

laser_angle[ i ], for i in the range 1 .. number_lasers, specifies the tangent of the elevation angle of the i-
th laser relative to the horizontal plane defined by the first and second coded axes.  

laser_correction[ i ], for i in the range 1 .. number_lasers, specifies the correction, along the second 
internal axis, of the i-th laser position relative to the geomAngularOrigin[ 2 ]. When not present, 
laser_correction[ i ] is inferred to be 0. 

planar_buffer_disabled equal to 1 indicates that tracking the closest nodes using a buffer is not used in 
process of coding the planar mode flag and the plane position in the planar mode. planar_buffer_disabled 
equal to 0 indicates that tracking the closest nodes using a buffer is used. When not present, 
planar_buffer_disabled is inferred to be 0. 

implicit_qtbt_angular_max_node_min_dim_log2_to_split_v specifies the log2 value of a node size 
below which horizontal split of nodes is preferred over vertical split. When not present, 
implicit_qtbt_angular_max_diff_to_split_v specifies is inferred to be 0. 

implicit_qtbt_angular_max_diff_to_split_v specifies the log2 value of the maximum vertical over 
horizontal node size ratio allowed to a node. When not present, 
implicit_qtbt_angular_max_node_min_dim_log2_to_split_v is inferred to be 0. 

neighbour_context_restriction_flag equal to 0 indicates that geometry node occupancy of the current 
node is coded with the contexts determined from neighbouring nodes which is located inside the parent 
node of the current node. neighbour_context_restriction_flag equal to 0 indicates that geometry node 
occupancy of the current node is coded with the contexts determined from neighbouring nodes which is 
located inside or outside the parent node of the current node. 

inferred_direct_coding_mode_enabled_flag equal to 1 indicates that direct_mode_flag may be present 
in the geometry node syntax. inferred_direct_coding_mode_enabled_flag equal to 0 indicates that 
direct_mode_flag is not present in the geometry node syntax. 
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bitwise_occupancy_coding_flag equal to 1 indicates that geometry node occupancy is encoded using bit-
wise contextualisation of the syntax element ocupancy_map. bitwise_occupancy_coding_flag equal to 0 
indicates that geometry node occupancy is encoded using the dictionary encoded syntax element 
occypancy_byte. 

adjacent_child_contextualization_enabled_flag equal to 1 indicates that the adjacent children of 
neighbouring octree nodes are used for bit-wise occupancy contextualization. 
adjacent_child_contextualization_enabled_flag equal to 0 indicates that the children of neighbouring 
octree nodes are is not used for the occupancy contextualization. 

log2_neighbour_avail_boundary specifies the variable NeighbAvailabilityMask as follows. 

When neighbour_context_restriction_flag is equal to 1, NeighbAvailabilityMask is set equal to 1. 
Otherwise, neighbour_context_restriction_flag equal to 0, NeighbAvailabilityMask is set equal to 1 << 
log2_neighbour_avail_boundary. 

log2_intra_pred_max_node_size specifies the octree node size eligible for occupancy intra prediction. 

log2_trisoup_node_size specifies the variable TrisoupNodeSize as the size of the triangle nodes as 
follows.  

TrisoupNodeSize = 1 << log2_trisoup_node_size 

When log2_trisoup_node_size is equal to 0, the geometry bitstream includes only the octree coding syntax.  
When log2_trisoup_node_size is greater than 0, it is a requirement of bitstream conformance that: 

- inferred_direct_coding_mode_enabled_flag must be equal to 0, and 

- unique_geometry_points_flag must be equal to 1. 

geom_scaling_enabled_flag equal to 1 specifies that a scaling process for geometry positions is invoked 
during the geometry slice decoding process.  geom_scaling_enabled_flag equal to 0 specifies that 
geometry positions do not require scaling. 

geom_base_qp_minus4 plus 4 specifies the base value of the geometry position quantization parameter.  
When not present, geom_base_qp_minus4 is inferred to be 0. 

gps_implicit_geom_partition_flag equal to 1 specifies that the implicit geometry partition is enabled for 
the sequence or slice. gps_implicit_geom_partition_flag equal to 0 specifies that the implicit geometry 
partition is disabled for the sequence or slice. If gps_implicit_geom_partition_flag equals to 1, the 
following two parameters gps_max_num_implicit_qtbt_before_ot and gps_min_size_implicit_qtbt are 
signaled. 

gps_max_num_implicit_qtbt_before_ot specifies the maximal number of implicit QT and BT partitions 
before OT partitions.  

gps_min_size_implicit_qtbt specifies the minimal size of implicit QT and BT partitions. 

gps_extension _flag equal to 0 specifies that no gps_extension_data_flag syntax elements are present in 
the GPS syntax structure. gps_extension_flag shall be equal to 0 in bitstreams conforming to this version 
of this Specification.  The value of 1 for gps_extension _flag is reserved for future use by ISO/IEC.  Decoders 
shall ignore all gps_extension_data_flag syntax elements that follow the value 1 for gps_extension_flag in 
a GPS syntax structure. 

gps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance 
to profiles specified in this version of this Specification. Decoders conforming to this version of this 
Specification shall ignore all gps_extension_data_flag syntax elements. 
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 Attribute parameter set semantics 

aps_attr_parameter_set_id provides an identifier for the APS for reference by other syntax elements. 
The value of aps_attr_parameter_set_id shall be in the range of 0 to 15, inclusive. 

aps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value 
of aps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

attr_coding_type indicates that the coding type for the attribute in Table 11 for the given value of 
attr_coding_type. The value of attr_coding_type shall be equal to 0, 1, or 2 in bitstreams conforming to this 
version of this Specification. Other values of attr_coding_type are reserved for future use by ISO/IEC. 
Decoders conforming to this version of this Specification shall ignore reserved values of attr_coding_type. 

Table 11 — Interpretation of attr_coding_type 

attr_coding_type coding type decoding process 

0 Region Adaptive Hierarchical Transform (RAHT) 8.3.1 
1 LoD with Predicting Transform 8.3.3 
2 LoD with Lifting Transform 8.3.2 

 

aps_attr_initial_qp specifies the initial value of the variable SliceQp for each slice referring to the APS. 
The value of aps_attr_initial_qp shall be in the range of 4 to 51, inclusive. 

aps_attr_chroma_qp_offset specifies the offsets to the initial quantization parameter signalled by the 
syntax aps_attr_initial_qp. 

aps_slice_qp_delta_present_flag equal to 1 specifies that the ash_attr_qp_delta_luma and 
ash_attr_qp_delta_chroma syntax elements are present in the ASH. aps_slice_qp_present_flag equal to 0 
specifies that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are not present 
in the ASH. 

raht_prediction_enabled_flag equal to 1 specifies the transform weight prediction from the neighbour 
points is enabled in the RAHT decoding process. raht_prediction_enabled_flag equal to 0 specifies the 
transform weight prediction from the neighbour points is enabled in the RAHT decoding process. 

raht_prediction_threshold0 specifies the thredhold to terminate the transform weight prediction from 
neighbour points. The value of raht_prediction_threshold0 shall be in the range of 0 to 19. 

raht_prediction_threshold1 specifies the thredhold to skip the transform weight prediction from 
neighbour points. The value of raht_prediction_threshold1 shall be in the range of 0 to 19. 

lifting_num_pred_nearest_neighbours_minus1 plus 1 specifies the maximum number of nearest 
neighbours to be used for prediction. The value of lifting_num_pred_nearest_neighbours shall be in the 
range of 1 to xx. 

The value of NumPredNearestNeighbours is set equal to lifting_num_pred_nearest_neighbours 

lifting_search_range_minus1 plus 1 specifies the search range used to determine nearest neighbours to 
be used for prediction and to build distance-based levels of detail. 

The variable LiftingSearchRange is derived as follows: 

LiftingSearchRange = lifting_search_range_minus1 + 1 
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lifting_neighbour_bias_xyz[ k ] specifies the factor used to weight the k-th component of the ( x, y, z ) 
point positions in the calculation of the euclidean distance between two points as part of the nearest 
neighbour derivation process. 

The array liftingNeighbourBiasStv, with values liftingNeighbourBiasStv[ k ], k = 0 .. 2, represents the 
values of lifting_neighobur_bias_xyz permuted into the coded geometry axis order as follows: 

liftingNeighbourBiasStv[XyzToStv[k]] = lifting_neighbour_bias_xyz[k] 

lifting_scalability_enabled_flag equal to 1 specifies that the attribute decoding process allows the 
pruned octree decode result for the input geometry points. lifting_scalability_enabled_flag equal to 0 
specifies that that the attribute decoding process requires the complete octree decode result for the input 
geometry points. When not present, the value of lifting_scalability_enabled_flag is inferred to be 0. When 
the value of log2_trisoup_node_size is greater than 0, the value of lifting_scalability_enabled_flag shall be 
0. 

lifting_num_detail_levels_minus1 specifies the number of levels of detail for the attribute coding. The 
value of lifting_num_detail_levels_minus1 shall be in the range of 0 to xx. 

The variable LevelDetailCount specifying the number of level of detail is derived as follows: 

LevelDetailCount = lifting_num_detail_levels_minus1 + 1 

lifting_lod_regular_sampling_enabled_flag equal to 1 specifies levels of detail are built by using a 
regular sampling strategy. lifting_lod_regular_sampling_enabled_flag equal to 0 specifies that a distance-
based sampling strategy is used instead. 

lifting_sampling_period_minus2[ idx ] plus 2 specifies the sampling period for the level of detail idx. 
The value of lifting_sampling_period_minus2[ ] shall be in the range of 0 to xx. 

lifting_sampling_distance_squared_scale_minus1[ idx ] plus 1 specifies the scaling factor for the 
derivation of the square of the sampling distance for the level of detail idx. The value of 
lifting_sampling_distance_squared_scale_minus1[ idx ] shall be in the range of 0 to xx. When 
lifting_sampling_distance_squared_scale_minus1[ idx ] is not present in the bitstream, it is inferred to be 
0. 

lifting_sampling_distance_squared_offset[ idx ] specifies the offset for the derivation of the square of 
the sampling distance for the level of detail idx. The value of 
lifting_sampling_distance_squared_offset[ idx ] shall be in the range of 0 to xx. When 
lifting_sampling_distance_squared_offset[ idx ] is not present in the bitstream, it is inferred to be 0. 

The variable LiftingSamplingDistanceSquared[ idx ] for idx = 0 .. num_detail_level_minus1 − 1, specifying 
the sampling distance for the level of detail idx, are derived as follows: 

LiftingSamplingDistanceSquared[0] = lifting_sampling_distance_squared_scale_minus1[0] + 1 
for (idx = 1; idx < num_detail_level_minus1; idx++) { 
  LiftingSamplingDistanceSquared[idx] =  
    (lifting_sampling_distance_squared_scale_minus1[idx] + 1) 
   × LiftingSamplingDistanceSquared[idx − 1] 
   + lifting_sampling_distance_squared_offset[idx] 
} 

lifting_adaptive_prediction_threshold specifies the threshold to enable adaptive prediction. The value 
of lifting_adaptive_prediction_threshold[ ] shall be in the range of 0 to xx. 

The variable AdaptivePredictionThreshold specifying the threshold to switch to adaptive predictor 
selection mode is set equal to lifting_adaptive_prediction_threshold 



ISO 23090-9:2020(E) 

40 © ISO/IEC 2020 – All rights reserved 

lifting_intra_lod_prediction_num_layers specifies number of LoD layer where decoded points in the 
same LoD layer could be referred to generate prediction value of target point. 
lifting_intra_lod_prediction_num_layers equal to LevelDetailCount indicates that target point could refer 
decoded points in the same LoD layer for all LoD layers. lifting_intra_lod_prediction_num_layers equal to 
0 indicates that target point could not refer decoded points in the same LoD layer for any LoD layers. 
lifting_intra_lod_prediction_num_layers shall be in the range of 0 to LevelDetailCount. 

The variable IntraLodPredNumLayers specifying the number of LoD layer where intra lod prediction is 
enabled is set equal to lifting_intra_lod_prediction_num_layers. 

lifting_max_num_direct_predictors specifies the maximum number of predictorspredictor to be used 
for direct prediction. The value of lifting_max_num_direct_predictors shall be range of 0 to 
lifting_num_pred_nearest_neighbours. 

The variable MaxNumPredictors that is used in the decoding process as follows:  

MaxNumPredictors = lifting_max_num_direct_predictors + 1 

inter_component_prediction_enabled_flag equal to 1 specifies that the primary component of a multi 
component attribute is used to predict the reconstructed value of non-primary components.  
inter_component_prediction_enabled_flag equal to 0 specifies that all attribute components are 
reconstructed independently. 

aps_extension _flag equal to 0 specifies that no aps_extension_data_flag syntax elements are present in 
the APS syntax structure. aps_extension_flag shall be equal to 0 in bitstreams conforming to this version 
of this Specification.  The value of 1 for aps_extension_flag is reserved for future use by ISO/IEC.  Decoders 
shall ignore all aps_extension_data_flag syntax elements that follow the value 1 for aps_extension_flag in 
an APS syntax structure. 

aps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance 
to profiles specified in this version of this Specification. Decoders conforming to this version of this 
Specificatino shall ignore all aps_extension_data_flag syntax elements. 

 Frame boundary marker semantics 

The frame boundary marker explicitly marks the end of the current frame. 

 Byte alignment semantics 

alignment_bit_equal_to_one shall be equal to 1. 

alignment_bit_equal_to_zero shall be equal to 0. 

 Geometry data unit semantics 

 General geometry data unit semantics 

The variable GeometryNodeOccupancyCnt[ depth ][ sN ][ tN ][ vN ] represents the number of child nodes 
present in the geometry octree node at position (sN, tN, vN) at the given depth of the octree. Undefined 
values of GeometryNodeOccupancyCnt are treated as 0. 

The variables NodeS[ depthS ][ idx ], NodeT[ depthT ][ idx ], and NodeV[ depthV ][ idx ] represent the s, 
t, and v co-ordinates of the idx-th node in decoding order at the given depth. The variable 
NumNodesAtDepth[ depth ] represents the number of nodes to be decoded at the given depth. The 
variables depthS, depthT and depthV specify respectively the depth in s, t and v dimensions. The variable 
partitionSkip specifies the partition type and direction as in Table 12. The variable partitionSkip is 
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represented in binary form with three bits 𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡𝑏𝑏𝑣𝑣, which specify respectively whether to skip partition 
along s, t and v dimension. 

Table 12— Interpretation of partitionSkip 

Partition QT along s-t axes QT along s-v axes QT along t-v axes OT 

partitionSkip 0b001 0b010 0b100 0b000 

Partition BT along s axis BT along t axis BT along v axis  

partitionSkip 0b011 0b101 0b110  

 

The variables NodeS, NodeT, NodeV, NumNodesAtDepth, and GeometryNodeOccupancyCnt are 
initialized as follows: 

NodeS[0][0] = NodeT[0][0] = NodeV[0][0] = 0 
NumNodesAtDepth[0] = 1 
GeometryNodeOccupancyCnt[−1][0][0][0] = 8 

 Geometry data unit header semantics 

gsh_num_points_minus1 plus 1 specifies the maximum number of coded points in the slice.  It is a 
requirement of bitstream conformance that gsh_num_points_minus1 + 1 is greater than or equal to the 
number of decoded points in the slice. 

gsh_geometry_parameter_set_id specifies the value of the gps_geom_parameter_set_id of the active GPS. 

gsh_tile_id specifies the value of the tile id that is referred to by the GSH . The value of gsh_tile_id shall be 
in the range of 0 to xx, inclusive. 

gsh_slice_id identifies the slice header for reference by other syntax elements. The value of gsh_slice_id 
shall be in the range of 0 to xx, inclusive. 

frame_idx specifies the log2_max_frame_idx + 1 least significant bits of a notional frame number counter. 
Consecutive slices with differing values of frame_idx form parts of different output point cloud frames. 
Consecutive slices with identical values of frame_idx without an intervening frame boundary marker data 
unit form parts of the same output point cloud frame. 

gsh_box_log2_scale specifies the scaling factor of the slice bounding box origin.  When not present, 
gsh_box_log2_scale is inferred to be equal to gps_gs_box_log2_scale. 

gsh_box_origin_xyz[ k ] specifies the k-th component of the quantized ( x, y, z ) co-ordinate of the slice 
bounding box origin.  When not present, the values of gsh_box_origin_xyz[ k ] are each inferred to be 0. 

The array SliceOriginStv, with values SliceOriginStv[ k ], k = 0 .. 2, represents the scaled values of 
gsh_box_origin_xyz permuted into the coded geometry axis order as follows: 

SliceOriginStv[XyzToStv[k]] = gsh_box_origin_xyz[k] << gsh_box_log2_scale 

gsh_log2_root_nodesize_s specifies, when present, the first component, s, of the geometry tree root node 
size.  

gsh_log2_root_nodesize_t_minus_s specifies, when present, the second component, t, of the geometry 
tree root node size. 
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gsh_log2_root_nodesize_v_minus_t specifies, when present, the third component, v, of the geometry 
tree root node size. 

gsh_log2_root_nodesize specifies, when present, the size of the root geometry tree node. 

The variables RootNodeSizeSLog2, RootNodeSizeTLog2, and RootNodeSizeVLog2 are defined as follows: 

− When gps_implicit_geom_partition_flag is equal to 1, the following applies: 

RootNodeSizeSLog2 = gsh_log2_root_nodesize_s 
RootNodeSizeTLog2 = gsh_log2_root_nodesize_t_minus_s + RootNodeSizeSLog2 
RootNodeSizeVLog2 = gsh_log2_root_nodesize_v_minus_t + RootNodeSizeTLog2 

− Otherwise, gps_implicit_geom_partition_flag equal to 0, the following applies: 

RootNodeSizeSLog2 = 1 << gsh_log2_root_nodesize 
RootNodeSizeTLog2 = 1 << gsh_log2_root_nodesize 
RootNodeSizeVLog2 = 1 << gsh_log2_root_nodesize 

The variables RootNodeSizeS, RootNodeSizeT, RootNodeSizeV, and MaxGeometryOctreeDepth are 
initialized as follows: 

RootNodeSizeS = 1 << RootNodeSizeSLog2 
RootNodeSizeT = 1 << RootNodeSizeTLog2 
RootNodeSizeV = 1 << RootNodeSizeVLog2 
MaxRootNodeDimLog2 = Max(RootNodeSizeSLog2, RootNodeSizeTLog2, RootNodeSizeVLog2) 
minRootNodeDimLog2 = Min(RootNodeSizeSLog2, RootNodeSizeTLog2, RootNodeSizeTLog2) 
MaxGeometryOctreeDepth = MaxRootNodeDimLog2 − log2_trisoup_node_size 

The variables QtBtK and QtBtM are derived as follows: 

− When log2_trisoup_node_size is equal to 0, the following applies 

QtBtK = Min(gps_max_num_implicit_qtbt_before_ot, MaxRootNodeDimLog2 − minRootNodeDimLog2) 
if (MaxRootNodeDimLog2 == minRootNodeDimLog2) 
  QtBtM = 0; 
else 
  QtBtM = Min(gps_min_size_implicit_qtbt, minRootNodeDimLog2) 

− Otherwise, log2_trisoup_node_size is greater than 0, the following applies: 

QtBtK = MaxRootNodeDimLog2 − minRootNodeDimLog2 
QtBtM = 0 

gsh_num_entropy_streams_minusQ indicates the number of entropy streams used to convey the 
geometry slice data.  If gsh_num_entropy_streams_minusQ is equal to 0, the geometry slice data is 
conveyed in a single entropy stream.  Otherwise (gsh_num_entropy_streams_minusQ is greater than 0), 
the geometry slice data is conveyed in gsh_num_entropy_streams_minusQ + 2 streams.  It is a 
requirement of bitstream conformance that gsh_num_entropy_streams_minusQ is equal to 0 when 
log2_trisoup_node_size is greater than 0. 

The variable EntropyStreamCnt represents the number of entropy streams present in the current data 
unit: 

if (!gsh_num_entropy_streams_minusQ) 
  EntropyStreamCnt = 1 
else 
  EntropyStreamCnt = gsh_num_entropy_streams_minusQ + 2 

The variable GeomEntropyStreamDepth is derived as follows: 

GeomEntropyStreamDepth = MaxGeometryOctreeDepth − gsh_num_entropy_streams_minusQ − 2 
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gsh_entropy_stream_len_bits specifies the number of bits used to represent each of the 
gsh_entropy_stream_len[ i ] syntax elements. 

gsh_entropy_stream_len[ i ] specifies the length in bytes of the i-th entropy stream. 

geom_slice_qp_offset specifies an offset to the base geometry quantisation parameter 
geom_base_qp_minus4.  When not present, geom_slice_qp_offset is inferred to be 0. 

geom_octree_qp_offsets_depth specifies, when present, the depth of the geometry octree when 
geom_node_qp_offset_eq0_flag is present in the geometry node syntax. 

The array ScalingNodeSizeLog2 with values ScalingNodeSizeLog2[ cIdx ] represents the size of the cIdx-
th scaled position component. 

The variable GeomScalingDepth, indicating the geometry octree depth at which the value of 
ScalingNodeSizeLog2 is determined, is set as follows: 

GeomScalingDepth = geom_scaling_enabled_flag ? geom_octree_qp_offsets_depth : 0 

 Geometry slice data semantics  

The process to derive the variable partitionSkip is specified from here. The input of the process are 
varibales depth, depthS, depthT and depthV. The output of the process is the value of partitionSkip. The 
process to derive the variable partitionSkip proceeds as follows. 

partitionSkip = 0 
NodeSizeSLog2 = RootNodeSizeSLog2 – depthS 
NodeSizeTLog2 = RootNodeSizeTLog2 – depthT 
NodeSizeVLog2 = RootNodeSizeVLog2 – depthV 
MinNodeDimLog2 = Min(NodeSizeSLog2, NodeSizeTLog2, NodeSizeVLog2) 
MaxNodeDimLog2 = Max(NodeSizeSLog2, NodeSizeTLog2, NodeSizeVLog2) 
If (MinNodeDimLog2 == MaxNodeDimLog2) 
  QtBtM = 0 
 
if (QtBtK > depth || M == MinNodeDimLog2) { 
  if (NodeSizeSLog2 < MaxNodeDimLog2) 
    partitionSkip |= 4 
  if (NodeSizeTLog2 < MaxNodeDimLog2) 
    partitionSkip |= 2 
  if (NodeSizeVLog2 < MaxNodeDimLog2) 
    partitionSkip |= 1 
} 
else if (geometry_angular_mode_flag) { 
  minDim = implicit_qtbt_angular_max_node_min_dim_log2_to_split_v 
  maxDiff = implicit_qtbt_angular_max_diff_to_split_v 
  if (minDim + maxDiff > 0){  
    maxNodeDimLog2ST = Max(NodeSizeSLog2, NodeSizeTLog2) 
    if (NodeSizeSLog2 < maxNodeDimLog2ST) 
      partitionSkip |= 4 
    if (NodeSizeTLog2 < maxNodeDimLog2ST) 
      partitionSkip |= 2 
    if (MinNodeDimLog2 <= minDim && NodeSizeVLog2 >= maxNodeDimLog2ST + maxDiff) 
      partitionSkip |= 1 
    if (maxNodeDimLog2ST > minDim + maxDiff && NodeSizeVLog2 >= maxNodeDimLog2ST) 
      partitionSkip |= 1 
  } 
} 

The parameter QtBtM prevents implicit QT and BT partitions when all dimensions are smaller than or 
equal to QtBtM. 
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 Geometry node semantics 

A geometry node is a node of the geometry octree. An internal geometry node may be split into a 
maximum of eight child nodes after decoding the occupancy map for the current node. A leaf node 
represents one or more points. 

The position of the geometry node at a given depth is given by the unscaled co-ordinate of its lower left 
corner as ( sN, tN, vN ). 

The variables sNp, tNp, and vNp indicating the position of the current node's parent node at depth − 1 are 
derived as follows: 

sNp = sN >> 1 
tNp = tN >> 1 
vNp = vN >> 1 

The variables NodeSizeLog2 and ChildNodeSizeLog2 are derived as follows: 

NodeSizeLog2 = MaxRootNodeDimLog2 − depth 
ChildNodeSizeLog2 = NodeSizeLog2 − 1 

When depth is equal to GeomScalingDepth and nodeIdx is equal to 0, the array ScalingNodeSizeLog2 and 
variable minScalingNodeDimLog2 are derived as follows: 

ScalingNodeSizeLog2[0] = NodeSizeSLog2 
ScalingNodeSizeLog2[1] = NodeSizeTLog2 
ScalingNodeSizeLog2[2] = NodeSizeVLog2 
minScalingNodeDimLog2 = Min(NodeSizeSLog2, NodeSizeTLog2, NodeSizeVLog2) 

The variable NeighbourPattern is derived as follows: 

– For each node, the variables rN, lN, fN, bN, uN, and dN are derived as follows: 

rN = GeometryNodeOccupancyCnt[depth][sN + 1][tN][vN] != 0 
lN = GeometryNodeOccupancyCnt[depth][sN − 1][tN][vN] != 0 
bN = GeometryNodeOccupancyCnt[depth][sN][tN + 1][vN] != 0 
fN = GeometryNodeOccupancyCnt[depth][sN][tN − 1][vN] != 0 
uN = GeometryNodeOccupancyCnt[depth][sN][tN][vN + 1] != 0 
dN = GeometryNodeOccupancyCnt[depth][sN][tN][vN − 1] != 0 

– If NeighbAvailabilityMask is not equal to 0, the following applies. 

lN = ((sN + 1) & NeighbAvailabilityMask == 1 ? 0 : lN 
rN = ((sN + 1) & NeighbAvailabilityMask == 0 ? 0 : rN 
fN = ((tN + 1) & NeighbAvailabilityMask == 1 ? 0 : fN 
bN = ((tN + 1) & NeighbAvailabilityMask == 0 ? 0 : bN 
dN = ((vN + 1) & NeighbAvailabilityMask == 1 ? 0 : dN 
uN = ((vN + 1) & NeighbAvailabilityMask == 0 ? 0 : uN 

– If adjacent_child_contextualization_enabled_flag is equal to 1, the following applies. 

lNadj = fNadj = dNadj = 0 
for (sNc = sN × 2; sNc < sN × 2 + 2; sNc++){ 
  for (tNc = tN × 2; tNc < tN × 2 + 2; tNc++){ 
    for (vNc = vN × 2; vNc < vN × 2 + 2; vNc++) { 
      lNadj |= GeometryNodeOccupancyCnt[depth + 1][sN × 2 − 1][tNc][vNc] 
      fNadj |= GeometryNodeOccupancyCnt[depth + 1][sNc][tN × 2 − 1][vNc] 
      dNadj |= GeometryNodeOccupancyCnt[depth + 1][sNc][tNc][vN × 2 − 1] 
    } 
  } 
} 
lN &= lNadj 
fN &= fNadj 
dN &= dNadj 
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– Finally, the variable NeighbourPattern is set as follows: 

NeighbourPattern = rN | (lN << 1) | (fN << 2) | (bN << 3) | (dN << 4) | (uN << 5) 

geom_node_qp_offset_eq0_flag equal to 1 specifies that the current node's quantization parameter is 
offset from the slice quantization parameter.  geom_node_qp_offset_eq0_flag equal to 0 specifies that the 
current node quantization parameter inherits the quantization parameter of the parent node. 

geom_node_qp_offset_sign_flag specifies, when present, the sign of nodeQpOffset as follows: 

− If geom_node_qp_offset_sign_flag is equal to 0, the corresponding nodeQpOffset has a negative value. 

− Otherwise, geom_node_qp_offset_sign_flag is equal to 1, the corresponding nodeQpOffset has a 
positive value. 

geom_node_qp_offset_abs_minus1 plus 1 specifies, when present, the absolute difference between the 
current node's quantization parameter, nodeQp, and the slice quantisation parameter. 

The variable nodeQpOffset is derived as follows: 

if (geom_node_qp_offset_eq0_flag) 
  nodeQpOffset = 0 
else 
  nodeQpOffset = (2 × geom_node_qp_offset_sign_flag − 1) × (geom_node_qp_offset_abs_minus1 
+ 1) 

The variable NodeQp is derived as follows: 

− When depth is equal to GeomScalingDepth: 

NodeQp = geom_base_qp_minus4 + 4 + geom_slice_qp_offset + nodeQpOffset 

− When depth is greater than GeomScalingDepth: 

NodeQp = NodeQpMap[depth][nodeIdx] 

− Otherwise, depth is less than GeomScalingDepth, NodeQp is set equal to 4. 

It is a requirement of bitstream conformance that NodeQp is less than or equal to 
minScalingNodeDimLog2 × 6 + 9. 

The variables EffectiveChildNodeSizeLog2, EffectiveDepth, EffectiveDepthS, EffectiveDepthT, and 
EffectiveDepthV are derived as follows: 

EffectiveChildNodeSizeLog2 = ChildNodeSizeLog2 − (NodeQp − 4) / 6 
EffectiveDepth = depth + (NodeQp − 4) / 6 
EffectiveDepthS = depthS + (NodeQp − 4) / 6 
EffectiveDepthT = depthT + (NodeQp − 4) / 6 
EffectiveDepthV = depthV + (NodeQp − 4) / 6 

occupancy_map is a bitmap that identifies the occupied child nodes of the current node. When present, 
the variable OccupancyMap is set equal to occupancy_map. 

occupancy_byte specifies a bitmap that identifies the occupied child nodes of the current node. When 
present, the variable OccupancyMap is set equal to the output of the geometry occupancy map 
permutation process as specified in 6.4.2 when invoked with NeighbourPattern and occupancy_map as 
inputs. 

When EffectiveDepth is greater than or equal to MaxGeometryOctreeDepth, OccupancyMap is set equal 
to 1. 
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The array GeometryNodeChildren[ i ] identifies the index of the i-th occupied child node of the current 
node. The variable GeometryNodeChildrenCnt identifies the number of child nodes in the array 
GeometryNodeChildren[ ]. 

The child node state information is derived from OccupancyMap as follows: 

childCnt = 0 
for (childIdx = 0; childIdx < 8; childIdx++) { 
  if (!(OccupancyMap & (1 << childIdx))) 
    continue 
  GeometryNodeChildren[childCnt++] = childIdx 
} 
GeometryNodeChildrenCnt = childCnt 
GeometryNodeOccupancyCnt[depth][sN][tN][vN] = childCnt 

The variable DirectModeFlagPresent is derived as follows: 

− When all of the following conditions are true, DirectModeFlagPresent is set equal to 1: 

− inferred_direct_coding_mode_enabled_flag is equal to 1 

− proba_planar[0] * proba_planar[1] * proba_planar[2] is less than or equal to 
 127 * 127 * geom_planar_mode_th_IDCM  

− NodeSizeLog2 is greater than 1 

− GeometryNodeOccupancyCnt[ depth − 1 ][ sNp ][ tNp ][ vNp ] is less than or equal to 2 

− GeometryNodeOccupancyCnt[ depth ][ sN ][ tN ][ vN ] is equal to 1 

− NeighbourPattern is equal to 0 

− (geometry_angular_mode_flag is equal to 0) OR (geometry_angular_mode_flag is equal to 1 
AND idcm4angular[ child ]  is equal to 1) 

− Otherwise, DirectModeFlagPresent is set equal to 0. 

The determination of the probabilities proba_planar[] is performed as described in 8.2.4.6. 

num_points_eq1_flag[ child ] equal to 1 indicates that the current child node contains a single point. 
num_points_eq1_flag equal to 0 indicates that the current child node contains at least two points. When 
not present, the value of num_points_eq1_flag is inferred equal to 1. 

num_points_minus2[ child ] plus 2 indicates the number of points represented by the current child node. 

The array GeometryNodeDupPoints[ child ] identifies the number of duplicate points in each child of the 
current leaf node.  When num_points_eq1_flag is equal to 0, GeometryNodeDupPoints[ child ] is set equal 
to 1 + num_points_minus2[ child ].  Otherwise, GeometryNodeDupPoints[ child ] is set equal to 0. 

eligible_planar_flag[ axisIdx ] equal to 1 indicates that the child nodes of the current node are eligible 
for the planar coding mode in the direction perpendicular to the axisIdx-th axis. 
eligible_planar_flag[ axisIdx ] equal 0 indicates that the child nodes of the current node are not eligible 
for the planar coding mode in the direction perpendicular to the axisIdx-th axis. When not present, the 
value of eligible_planar_flag[ axisIdx ] is inferred to be 0. The value of eligible_planar_flag[ axisIdx ] is 
determined as specified in 8.2.4.1. 
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 Single occupancy data semantics 

single_occupancy_flag equal to 1 indicates that the current node contains a single child node. 
single_occupancy_flag equal to 0 indicates the current node may contain multiple child nodes. 

occupancy_idx[ i ] with i = 0 .. 2 identifies index of the single occupied child of the current node in the 
geometry octree child node traversal order. When present or inferred, the variable OccupancyMap is 
determined from occupancy_idx[ i ] with i = 0 .. 2 as described in 9.7.4.  

 Planar mode data semantics 

is_planar_flag[ child ][ axisIdx ] equal to 1 indicates that the current child node is planar in the direction 
perpendicular to the axisIdx-th axis. is_planar_flag[ child ][ axisIdx ] equal 0 indicates that the current 
child node is not planar in the direction perpendicular to the i-th axis. When not present, the value of 
is_planar_flag[ child ][ axisIdx ] is inferred to be 0. 

The variable two_planar_flag indicates if a  node is planar in at least two directions and is determined as 
follows 

two_planar_flag[nodeIdx] = 
     (is_planar_flag[nodeIdx][0] && is_planar_flag[nodeIdx][1]) 
  || (is_planar_flag[nodeIdx][0] && is_planar_flag[nodeIdx][2]) 
  || (is_planar_flag[nodeIdx][1] && is_planar_flag[nodeIdx][2]) 

plane_position[ child ][ axisIdx ] equal 0 indicates that the position of the plane for the planar mode is 
the lower position relative to increasing i-th co-ordinates. plane_position[ child ][ axisIdx ] equal 1 
indicates that the position of the plane for the planar mode is the higher position relative to increasing 
axisIdx-th co-ordinates.  

 Direct mode data semantics 

direct_mode_flag equal to 1 indicates that the single child node of the current node is a leaf node and 
contains one or more delta point co-ordinates. direct_mode_flag equal to 0 indicates that the single child 
node of the current node is an internal octree node. When not present, the value of direct_mode_flag is 
inferred to be 0. 

When direct_mode_flag is equal to 0, the following applies: 

nodeIdx = NumNodesAtDepth[depth + 1] 
for (child = 0; child < GeometryNodeChildrenCnt; child++) { 
  childIdx = GeometryNodeChildren[child] 
  s = NodeS[depth + 1][nodeIdx] = 2 × sN + (childIdx & 4 ==== 1) 
  t = NodeT[depth + 1][nodeIdx] = 2 × tN + (childIdx & 2 ==== 1) 
  v = NodeV[depth + 1][nodeIdx] = 2 × vN + (childIdx & 1 ==== 1) 
  NodeQpMap[depth + 1][nodeIdx] = NodeQp 
  GeometryNodeOccupancyCnt[depth + 1][s][t][v] = 1 
  nodeIdx++ 
} 
NumNodesAtDepth[depth + 1] = nodeIdx 

num_direct_points_gt1 equal to 0 indicates that there is one point in the current child node or that all 
points in the current child node have the same s, t and v co-ordinates. num_direct_points_gt1 equal to 1 
indicates that there are at leats two points in the current child node with different s, t or v co-ordinates. 

not_duplicated _point_flag equal to 0 indicates that all points in the current child node have the same s, 
t and v co-ordinates. not_duplicated_point_flag equal to 1 indicates that at least two points in the current 
child node have different s, t or v co-ordinates. When not present, the value of not_duplicated_point_flag 
is inferred equal to 1. 

The variable duplicatedPointFlag is derived as the negation of not_duplicated_point_flag as follows 
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duplicatedPointFlag = !not_duplicated_point_flag 

num_direct_points_eq2_flag equal to 1 indicates that there are two points in the current child node. 
num_direct_points_eq2_flag equal to 0 indicates that theres are at least three points in the current child 
node. 

num_points_direct_mode_minus3 plus 3 indicates the number of points in the current child node. 

num_direct_points_minus1 plus 1 indicates the number of points in the current child node. The variable 
num_direct_points_minus1 is derived as follows  

num_direct_points_minus1 = 0 
if (num_direct_points_gt1) { 
  num_direct_points_minus1 = 1 
  if (duplicatedPointFlag && !num_direct_points_eq2_flag) 
    num_direct_points_minus1 = 2 + num_points_direct_mode_minus3 
} 

num_direct_different_points_minus1 plus 1 is the number of points having at least one different s, t or 
v co-ordinate in the current child node. The variable num_direct_different_points_minus1 is derived as 
follows 

num_direct_different_points_minus1 = num_direct_points_minus1  
if (duplicatedPointFlag)  
  num_direct_different_points_minus1 = 0 

The variables ChildNodeSizeSLog2, ChildNodeSizeTLog2 and ChildNodeSizeVLog2 specify the s, t, and v 
components of the child node size,, and are determined by implicit QT and BT partitions as follows. 

if (!(partitionSkip & 4) 
  ChildNodeSizeSLog2 = NodeSizeSLog2 – 1; 
else 
  ChildNodeSizeSLog2 = NodeSizeSLog2; 
if (!(partitionSkip & 2 ) 
  ChildNodeSizeTLog2 = NodeSizeTLog2 – 1; 
else 
  ChildNodeSizeTLog2 = NodeSizeTLog2; 
if (!(partitionSkip & 1 ) 
  ChildNodeSizeVLog2 = NodeSizeVLog2 – 1; 
else 
  ChildNodeSizeVLog2 = NodeSizeVLog2; 

point_offset_s[ i ][ j ], point_offset_t[ i ][ j ], and point_offset_v[ i ][ j ] indicate the j-th bit of the current 
child node's i-th point's respective s, t, and v co-ordinates relative to the origin of the child node identified 
by the index GeometryNodeChildren[ 0 ]. 

When point_offset_s[ i ][ 0 ] is not present, the value of point_offset_s[ i ][ 0 ] is inferred by the plane 
position plane_position[ child ][0]. 

When point_offset_t[ i ][ 0 ] is not present, the value of point_offset_t[ i ][ 0 ] is inferred by the plane 
position plane_position[ child ][1]. 

When point_offset_v[ i ][ 0 ] is not present, the value of point_offset_v[ i ][ 0 ] is inferred by the plane 
position plane_position[ child ][2]. 

The variables PointOffsetS[ i ], PointOffsetT[ i ], and PointOffsetV[ i ] are derived as follows: 

PointOffsetS[i] = PointOffsetT[i] = PointOffsetV[i] = 0; 
for (j = 0; j < EffectiveChildNodeSizeSLog2; j++) 
  PointOffsetS[i] += point_offset_s[i][j] << j; 
 
for (j = 0; j < EffectiveChildNodeSizeTLog2; j++) 
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  PointOffsetT[i] += point_offset_t[i][j] << j; 
 
for (j = 0; j < EffectiveChildNodeSizeVLog2; j++) 
  PointOffsetV[i] += point_offset_v[i][j] << j; 

 Geometry trisoup data semantics 

trisoup_sampling_value_minus1 plus 1 specifies the step size for the point sampling on the triangle 
surface in the trisoup decoding process specified in 8.2.3.3 

num_unique_segments specifies the number of segment indicators. 

segment_indicator[ i ] indicates for a unique edge whether the edge intersects the surface and hence 
contains a vertex (1) or not (0). 

num_vertices_minus1 plus 1 specifies the number of vertices. 

vertex_position[ i ] indicates the position of the vertex along the edge. The value of vertex_position[ i ] 
shall be in the range of 0 to ( 1 << log2_trisoup_node_size ) – 1, inclusive. 

 Attribute data unit semantics 

 General attribute data unit semantics 

 Attribute data unit header semantics 

ash_attr_parameter_set_id specifies the value of the aps_attr_parameter_set_id of the active APS. 

ash_attr_sps_attr_idx specifies the order of attribute set in the active SPS. The value of 
ash_attr_sps_attr_idx shall be in the range of 0 to sps_num_attribute_sets in the active SPS. 

ash_attr_geom_slice_id specifies the value of the gsh_slice_id of the active Geometry Slice Header. 

ash_attr_layer_qp_delta_present_flag equal to 1 specifies that the ash_attr_layer_qp_delta_luma and 
ash_attr_layer_qp_delta_chroma syntax elements are present in current ASH. 
ash_attr_layer_qp_delta_present_flag equal to 0 specifies that the ash_attr_layer_qp_delta_luma and 
ash_attr_layer_qp_delta_chroma syntax elements are not present in current ASH. 

ash_attr_num_layer_qp_minus1 plus 1 specifies the number of layer in which ash_attr_qp_delta_luma 
and ash_attr_qp_delta_chroma are signalled. When ash_attr_num_layer_qp is not signalled, the value of 
ash_attr_num_layer_qp is inferred to be 0. The value of NumLayerQp is derived as follows: 

NumLayerQp = num_layer_qp_minus1 + 1 

ash_attr_qp_delta_luma specifies the luma delta qp from the initial slice qp in the active attribute 
parameter set. When ash_attr_qp_delta_luma is not signalled, the value of ash_attr_qp_delta_luma is 
inferred to be 0. 

ash_attr_qp_delta_chroma specifies the chroma delta qp from the initial slice qp in the active attribute 
parameter set. When ash_attr_qp_delta_chroma is not signalled, the value of ash_attr_qp_delta_chroma is 
inferred to be 0. 

The variables InitialSliceQpY and InitialSliceQpC are derived as follows: 

InitialSliceQpY = aps_attrattr_initial_qp + ash_attr_qp_delta_luma 
InitialSliceQpC = 
    aps_attr_initial_qp + aps_attr_chroma_qp_offset + ash_attr_qp_delta_chroma 
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ash_attr_layer_qp_delta_luma specifies the luma delta qp from the InitialSliceQpY in each layer. When 
ash_attr_layer_qp_delta_luma is not signalled, the value of ash_attr_layer_qp_delta_luma of all layers are 
inferred to be 0. 

ash_attr_layer_qp_delta_chroma specifies the chroma delta qp from the InitialSliceQpC in each layer. 
When ash_attr_layer_qp_delta_chroma is not signalled, the value of ash_attr_layer_qp_delta_chroma of all 
layers are inferred to be 0. 

The variables SliceQpY[ i ] and SliceQpC[ i ] with i = 0 .. NumLayerQPNumQPLayer − 1 are derived as 
follows: 

for (i = 0; i < NumLayerQPNumQPLayer; i++) { 
  SliceQpY[i] = InitialSliceQpY + ash_attr_layer_qp_delta_luma[i] 
  SliceQpC[i] = InitialSliceQpC + ash_attr_layer_qp_delta_chroma[i] 
} 

ash_attr_region_qp_delta_present_flag equal to 1 indicates that a QP offset is applied to a spatial region 
within the current slice. ash_attr_region_qp_delta_present_flag equal to 0 indicates that no spatial 
adaptation of QP is performed for the current slice. 

ash_attr_qp_region_origin_xyz[ k ] and ash_attr_qp_region_size_xyz[ k ] specify, when present, the 
spatial region within the current slice where ash_attr_region_qp_delta is applied. 

ash_attr_qp_region_origin_xyz[ k ] is the k-th component of the ( x, y, z ) origin co-ordinate relative to the 
slice origin. 

ash_attr_qp_region_size_xyz[ k ] is the k-th component of the region width, height, and depth, respectively. 

The arrays AttrRegionQpOriginStv and AttrRegionQpSizeStv, with values AttrRegionQpOriginStv[ k ] and 
AttrRegionQpSizeStv[ k ], for k = 0 .. 2, represents the values of ash_attr_qp_region_origin_xyz and 
ash_attr_qp_region_size_xyz respectively permuted into the coded geometry axis order as follows: 

AttrRegionQpOriginStv[XyzToStv[k]] = ash_attr_qp_region_origin_xyz[k] 
AttrRegionQpSizeStv[XyzToStv[k]] = ash_attr_qp_region_size_xyz[k] 

ash_attr_region_qp_delta specifies the QP offset to be applied within the region defined by 
ash_attr_qp_region_origin_xyz and ash_attr_qp_region_size_xyz. 

 Attribute slice data semantics 

all_residual_values_equal_to_zero_run specifies the number of occurrence of the pattern which 
indicates that each residual_values of all dimension are equal to zero. 

pred_index[ i ] specifies the predictor index to decode the i-th point value of the attribute. The value of 
pred_index[ i ] shall be range of 0 to MaxNumPredictors. 

The variable MaxPredDiff[ i ] is calculated as follows: 

Let ℵ𝑖𝑖  be the set of the k-nearest neighbours of the current point i and let �𝑎𝑎�𝑗𝑗�𝑗𝑗∈ ℵ𝑖𝑖
 be their 

decoded/reconstructed attribute values. The number of nearest neighbours, k, shall be range of 1 to 
lifting_num_pred_nearest_neighbours. The decoded/reconstructed attribute value of neighbours are 
derived according to the Predictive Lifting decoding process (8.3.3). 

minValue = maxValue = 𝑎𝑎�0 
for (j = 0; j < k; j++) { 
  minValue = Min(minValue, 𝑎𝑎�𝑗𝑗) 
  maxValue = Max(maxValue, 𝑎𝑎�𝑗𝑗) 
} 
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MaxPredDiff[i] = maxValue − minValue; 

 Quantized value bitstream syntax 

residual_values_equal_to_zero[ k ] equal to 1 indicates that residual_values[k][i] is equal to 0. 
residual_values_equal_to_zero equal to 0 indicates that residual_values[k][i] is not equal to 0. 

residual_values_equql_to_one[ k ] equal to 1 indicates that residual_values[k][i] equal to 1. 
residual_values_equql_to_one equal to 0 indicates that residual_values[k][i] is larger than 2. 

residual_values[k][i] describes the k-th dimension and the i-th point value of the attribute. 

remaining_values[k][i] describes the k-th dimension and the i-th point remaining value of the attribute. 
When not present, the value of remaining_value[k][i] is inferred to be 0. 

8 Decoding process 

8.1 General decoding process 
The input to this process is a sequence of typed data unit buffers. 

The output of this process is a series of decoded point cloud frames. 

The decoding process is specified such that all decoders that conform to a specified profile and level will 
produce numerically identical decoded point cloud frames when invoking the decoding process 
associated with that profile for a bitstream conforming to that profile and level. Any decoding process 
that produces identical decoded point cloud frame to those produced by the process described herein 
conforms to the decoding process requirements of this Specification. 

The decoding processes specified in the remainder of this clause apply to each coded picture, referred to 
as the current picture and denoted by the variable CurrPic. 

The decoding process for the current picture takes as inputs the syntax elements and upper-case 
variables from 7. 

The decoding process operates as follows for each slice of the current picture: 

1. Point positions are decoded using the geometry data unit of the current slice as specified in 8.2. 

2. Point attributes are decoded for each attribute data unit in the current slice as specified in 8.3. 

3. The decoded points are offset and appended to the output point cloud frame as specified in 8.4. 

8.2 Geometry decoding process 
 General geometry decoding process 

The output of this process is the array PointPos of reconstructed point positions with elements 
PointPos[ i ][ axis ] for i ranging from 0 to gsh_num_points_minus1 inclusive, and axis ranging from 0 to 
2 inclusive. 

The variable PointCount is initialized to 0 when the decoding process for the current slice is invoked. 

The geometry bitstream comprises a description of an octree. The decoding process for the octree is 
specified in clause 8.2.2. 
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The geometry bitstream may also comprise a description of the Trisoup. The decoding process for the 
Trisoup bitstream is specified in clause 8.2.3. 

 Octree decoding process 

 General 

 Octree node decoding process 

The inputs to this process are: 

– an octree node location (depth, nodeIdx) specifying the position of the current geometry octree node 

– a spatial location (sN, tN, vN) specifying the position of the current geometry octree node in the 
current slice. 

The outputs of this process are the modified array PointPos and the updated variable PointCount. 

If both EffectiveDepth is less than MaxGeometryOctreeDepth − 1, and direct_mode_flag is equal to 0, no 
points are output by this process. Otherwise, if either EffectiveDepth is greater than or equal to 
MaxGeometryOctreeDepth − 1, or direct_mode_flag is equal to 1, the remainder of this process generates 
one or more point positions. 

The function geomScale( val, cIdx ) is defined as the invocation of the scaling process for a single octree 
node position component 8.2.2.3 with the position val, the component cIdx, and the variable qP set equal 
to NodeQp as inputs. 

The spatial location of points in each occupied child is determined according to the number of duplicate 
points in each child and the use of direct coded positions as follows: 

for (child = 0; child < GeometryNodeChildrenCnt; child++) { 
  childIdx = GeometryNodeChildren[child]; 
  s = 2 × sN + (childIdx & 4) ==== 1; 
  t = 2 × tN + (childIdx & 2) ==== 1; 
  v = 2 × vN + (childIdx & 1) ==== 1; 
  for (i = 0; i < GeometryNodeDupPoints[child] + 1 ; i++, PointCount++) { 
    PointPos[PointCount][0] = geomScale(s, 0); 
    PointPos[PointCount][1] = geomScale(t, 1); 
    PointPos[PointCount][2] = geomScale(v, 2); 
  } 
  if (direct_mode_flag) { 
    if (!duplicatedPointFlag) { 
      for (i = 0; i <= num_direct_points_minus1; i++, PointCount++) { 
        PointPos[PointCount][0] = geomScale((s << EffectiveChildNodeSizeLog2) + 
PointOffsetS[i], 0); 
        PointPos[PointCount][1] = geomScale((t << EffectiveChildNodeSizeLog2) + 
PointOffsetT[i], 1); 
        PointPos[PointCount][2] = geomScale((v << EffectiveChildNodeSizeLog2) + 
PointOffsetV[i], 2); 
      } 
    } 
    else { 
      for (i = 0; i <= num_direct_points_minus1; i++, PointCount++) { 
        PointPos[PointCount][0] = geomScale((s << EffectiveChildNodeSizeLog2) + 
PointOffsetS[0], 0); 
        PointPos[PointCount][1] = geomScale((t << EffectiveChildNodeSizeLog2) + 
PointOffsetT[0], 1); 
        PointPos[PointCount][2] = geomScale((v << EffectiveChildNodeSizeLog2) + 
PointOffsetV[0], 2); 
      } 
    } 
  } 
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} 

It is a requirement of bitstream conformance that PointCount is less than or equal to gsh_num_points. 

 Scaling process for a single octree node position component 

The inputs to this process are: 

– a variable val representing an unscaled position component value, 

– a variable cIdx specifying the position component index, 

– a variable qP specifying the quantization parameter. 

The output of this process is the scaled position component value pos. 

(NOTE?) When geom_scaling_enabled_flag is equal to 0, the output of this process ie equal to the input value pos. 
The variable scalingExpansionLog2 is set equal to ( qP − 4 ) / 6. 

The variables highPart and lowPart representing concatenated parts of the unscaled position component 
value are derived as follows: 

highPart = val >> (ScalingNodeSizeLog2[cIdx] − scalingExpansionLog2) 
lowPart = val & ((1 << (ScalingNodeSizeLog2[cIdx] − scalingExpansionLog2)) − 1) 

The list geomLevelScale is specified as: 

geomLevelScale[i] = { 659445, 741374,  831472, 933892, 1048576, 1175576 } with i = 0..5 

The scale factor sF is derived as follows: 

sF = geomLevelScale[qP % 6] << (qP / 6) 

The output variable pos is derived as follows: 

highPartS = highPart << ScalingNodeSizeLog2[cIdx] 
lowPartS = (lowPart × sF + (1 << 19)) >> 20 
pos = highPartS | Min(lowPartS, (1 << ScalingNodeSizeLog2[cIdx]) − 1) 

 Geometry Trisoup decoding process 

This process is invoked after 8.2.2 when TrisoupNodeSize is greater than 0. 

This process modifies the following: 

 the variable PointCount as the number of the decoded geometry points, 

This process invokes the processes from 8.2.3.1 to 8.2.3.4 in sequential order. 

 Derivation process for the segment index 

Outputs of the process are: 

 an array segStPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, for the start position of a segment 

 an array segEdPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, for the end position of a segment 

 an array segVertex[ i ] with i = 0 .. NodeNum – 1 for the vertex position intersecting the segment 
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A variable NodeNum for the number of the trisoup node is set to PointCount × 12 – 1. 

This process invokes the sub processes from 8.2.3.1.1 to 8.2.3.1.3 in sequential order. 

8.2.3.1.1 Derivation process for sorted segment index 

Outputs of this process are: 

 the array segStPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2 

 the array segEdPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2 

 an array sortedSegIdx[ i ] with i = 0 .. NodeNum − 1 for the sorted segment index. 

segStPos[ i ][ axis ] and segEdPos[ i ][ axis ] with  i = 0 .. PointCount − 1 , axis = 0..2 are derived as follows. 

for (k = 0; k < 12; k++) { 
  segStPos[i × 12+k][axis] = 
      PointPos[i][axis] + segStOffsetTable[k][axis] × TrisoupNodeSize 
  segEdPos[i × 12+k][axis] = 
      PointPos[i][axis] + segEdOffsetTable[k][axis] × TrisoupNodeSize 
} 

The tables segStOffsetTable[ k ][ axis ] and segEdOffsetTable[ k ][ axis ] are defined in Table 13 and Table 
14, respectively. 

Table 13 — segStOffsetTable[ k ][ axis ] 

axis k 

0 1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 0 1 1 0 0 0 1 

1 0 0 1 0 0 1 1 0 0 0 1 0 

2 0 0 0 0 0 0 0 0 1 1 1 1 

Table 14 — segEdOffsetTable[ k ][ axis ] 

axis k 

0 1 2 3 4 5 6 7 8 9 10 11 

0 1 0 1 1 0 0 1 1 1 0 1 1 

1 0 1 1 1 0 1 1 0 0 1 1 1 

2 0 0 0 0 1 0 1 1 1 1 1 1 

 
An array stPos1D[ i ] with i = 0 .. NodeNum − 1  is derived as follows. 

stPos1D[i] = (segStPos[i][0] << 42) + (segStPos[i][1] << 21) + segStPos[i][2] 

The array sortedSegIdx[ i ] is sorted based on the value of stPos1D[ i ] for  i = 0 .. NodeNum − 1. 

sort(sortedSegIdx[i], stPos1D[i]) 

where sort( a[ ], b[ ] ) is a process to reorder the content of the 1D array a[ ] depending on the value of 
1D array b[ ] in the ascending order. 
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8.2.3.1.2 Derivation process for unique segment index 

Input to this process are: 

 the array segStPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, 

 the array segEdPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, 

 the array sortedSegIdx[ i ] with i = 0 .. NodeNum − 1 . 

Outputs of this process are: 

 a variable numUniqSeg for the number of unique segments, 

 an array uniqSegIdx[ i ] with  i = 0 .. NodeNum − 1  for the unique segment index, 

 an array uniqSegStPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2  for the start position of an 
unique segment, 

 an array uniqSegEdPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2  for the end position of an 
unique segment, 

A variable uIdx is initialized to 1, and numUniqSeg is initialized to 0. 

uniqSegStPos[ 0 ][axis] and uniqSegEdPos[ 0 ][ axis ] with axis = 0 .. 2  are initialized as follows: 

uniqSegStPos[0][axis] = segStPos[sortedSegIdx[0]][axis] 
uniqSegEdPos[0][axis] = segEdPos[sortedSegIdx[0]][axis] 

uniqSegIdx[ 0 ] is initialized to 0. 

For the variable i = 1 .. NodeNum , the following applies: 

 If segStPos[ i ][ axis ] is not equal to uniqSegStPos[ uIdx ][ axis ] with axis = 0 .. 2  or 
segEdPos[ i ][ axis ] is not equal to uniqSegEdPos[ uIdx ][ axis ] with axis = 0 .. 2 , the following applies: 

  uniqSegStPos[ uIdx ][ axis ] and uniqSegEdPos[ uIdx ][ axis ] with axis = 0 .. 2  are derived as 
follows: 

uniqSegStPos[uIdx][axis] = segStPos[sortedSegtIdx[i]][axis] 
uniqSegEdPos[uIdx][axis] = segEdPos[sortedSegtIdx[i]][axis] 

  uIdx is set equal to (uIdx + 1). 

 uniqSegIdx[ ] is updated as follows: 

uniqSegIdx[sortedSegtIdx[i]] = uIdx − 1 

Finally, numUniqSeg is derived as follows, 

numUniqSeg = uIdx  

8.2.3.1.3 Derivation process for unique segment vertex 

Inputs to the process are: 

 the variable numUniqSeg, 

 the array uniqSegIdx[ i ] with  i = 0 .. NodeNum − 1 , 
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 the array sortedSegIdx[ i ] with i = 0 .. NodeNum − 1 . 

Output of the process is 

 the array segVertex[ i ] with i = 0 .. NodeNum − 1 

A variable vertexCount is initialized equal to 0. 

An array uniqSegVertex[ i ] with i = 0 .. numUniqSeg − 1  is derived as follows: 

 If the value of segment_indicator[ i ] is not equal to 0, the following applies: 

  uniqSegVertex[ i ] is set equal to vertex_position[ vertexCount ] 

vertexCount += 1 

 Otherwise (the value of segment_indicator[ i ] is equal to 0),  

uniqSegVertex[i] is set equal to −1. 

Finally, segVertex[ i ] with i = 0 .. NodeNum − 1 is derived as follows: 

segVertex[i] = uniqSegVertex[uniqSegIdx[sortedSegIdx[i]]] 

 Derivation process for the reconstructed triangles 

Inputs to the process are: 

 the array segStPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, 

 the array segEdPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, 

 the array segVertex[ i ] with i = 0 .. NodeNum − 1 

Outputs of the process are: 

 a variable numTriangles for the number of the decoded triangles, 

 an array recTriVertex[ tIdx ][ vertex ][ axis ] with tIdx = 0 .. numTriangles − 1, vertex = 0 .. 2, 
axis = 0 .. 2 for the vertex positions of the decoded triangles. 

The variable numTriangles is initialized to 0. 

This process invokes the processes from 8.2.3.2.1 to 8.2.3.2.3 with the variable nIdx = 0 .. PointCount − 1 
as the node index. 

8.2.3.2.1 Derivation process for the leaf vertex 

Inputs to the process are: 

 the variable nIdx, 

 the array segVertex[ i ] with i = 0 .. NodeNum − 1, 

 the array segStPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2, 

 the array segEdPos[ i ][ axis ] with  i = 0 .. NodeNum − 1 , axis = 0 .. 2 
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Outputs of the process are: 

 a variable numVertex for the number of the leaf vertices, 

 an array leafVertices[ j ][ axis ] with  j = 0 .. numVertex − 1 , axis = 0 .. 2, 

 a variable bkWidth for the block width of the node 

The following applies: 

 numVertex is initialized to 0. 

for (k = 0; k < 12; k++){ 

  If segVertex[ nIdx × 12+k ] is greater than 0, the following applies: 

   An array segDist[ axis ] with axis = 0..2  is derived as follows: 

      segDist[axis] = segEdPos[nIdx × 12+k][axis] − segStPos[nIdx × 12+k][axis] 

   A variable bkWidth is derived as follows: 

      bkWidth = Max(Max(segDist[0], segDist[1]), segDist[2]) 

   A variable dist is derived as follows: 

    If segVertex[ nIdx × 12+k ] is equal to 0,  

     dist is set to 0. 

    Otherwise, if segVertex[ nIdx × 12+k ] is equal to (bkWidth − 1),  

     dist is set to (bkWidth << 8). 

    Otherwise (segVertex[ nIdx × 12+k ] is greater than 0 and less than (bkWidth − 1)), 

     dist is set to (segVertex[ nIdx × 12+k ] << 8) + 128. 

   leafVertices[ numVertex ][ axis ] with axis = 0 .. 2  is derives as follows: 

      leafVertices[numVertex][axis] = (segStPos[nIdx × 12+k][axis] << 8) 

    If segDist[ axis ] with axis = 0 .. 2  is greater than 0, the following applies. 

        leafVertices[numVertex][axis] += dist 

   Finally, numVertex is set equal to (numVertex +1). 

} 

8.2.3.2.2 Sorting process for leafVertices 

Inputs to the process are: 

 the variable nIdx, 

 the variable bkWidth, 

 the variable numVertex, 
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 the array leafVertices[ j ][ axis ] with  j = 0 .. numVertex − 1 , axis = 0 .. 2 

Output of the process is  

 the sorted array leafVertices[ j ][ axis ] with  j = 0 .. numVertex − 1 , axis = 0 .. 2 

This process is skipped if numVertex is less than 3. 

An array centroid[ axis ] with axis = 0 .. 2 is derived as follows: 

centroid[axis] = 0 
for (j = 0; j < numVertex; j++) 
  centroid[axis] += leafVertices[j][axis] 
centroid[axis] /= numVertex 

An array variance[ axis ] with axis = 0 .. 2 is derived as follows: 

variance[axis] = 0 
for (j = 0; j < numVertex; j++) 
  variance[axis] += ((leafVertices[j][axis] − centroid[axis])^2) >> 8 

A variable minVariance is derived as follows: 

minVariance = Min(Min(variance[0], variance[1]), variance[2]) 

A variable mainAxis is derived as follows: 

mainAxis = (minVariance == variance[0] ? 0 : (minVariance == variance[1] ? 1 : 2)) 

A array triSide[ j ][ axis ] with  j = 0 .. numVertex − 1 , axis = 0 .. 2 is derived as follows 

triSide[j][axis] = leafVertices[j][axis] – ((PointPos[nIdx][axis]+ bkWidth/2) << 8) 

An array theta[ j ] and tiebreaker[ j ] with  j = 0 .. numVertex − 1  are derived as follows: 

theta[j] = iAtan2(triSide[j][mainAxis == 2 ? 1 : 2], triSide[j][mainAxis == 0 ? 1 : 0]) 
tiebreaker[j] = triSide[j][mainAxis] 

where the function iAtan2( ) is defined in 5.9.1. 

An array triSortIdx[ j ] with  j = 0 .. numVertex − 1  is derived as follows: 

triSortIdx[j] = (theta[j] << 16 + tiebreaker[j]) × −1 

Finally, the array leafVertices[ j ] is sorted based on the value of triSortIdx[ j ] for  j = 0. numVertex − 1. 

sort(leafVertices[j], triSortIdx[j]) 

where sort( a[ ], b[ ] ) is a process to reorder the content of the 1D array a[ ] depending on the value of 
1D array b[ ] in the ascending order. 

8.2.3.2.3 Derivation process for reconstructed triangle vertex 

Inputs to the process are: 

 the variable numVertex, 

 the array leafVertices[ j ][ axis ] with  j = 0 .. numVertex − 1 , axis = 0 .. 2, 

 the variable numTriangles 
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Outputs of the process are  

 the modified variable numTriangles 

 the array recTriVertex[ k ][ vertex ][ axis ] with vertex = 0 .. 2, axis = 0 .. 2 for the vertices of the k-th 
decoded triangles. 

This process is skipped if numVertex is less than 3. 

A variable triStart is derived as follows: 

triStart = (numVertex − 3) × (numVertex – 2) / 2 

For the variable triIndex = 0 .. (numVertex – 2) , the following applies: 

 An array triOrder[ axis ] with axis = 0 .. 2  is derived as follows: 

triOrder[axis] = polyTriangles[triStart+triIndex][axis] 

 recTriVertex[ numTriangles ][ vertex ][ axis ] with vertex = 0 .. 2, axis = 0 .. 2 is derived as follows: 

recTriVertex[numTriangles][vertex][axis] = leafVertices[triOrder[vertex]][axis] 

 numTriangles is set to (numTriangles+1). 

where the value of polyTrianges[ i ][ axis ] is defined in Table 15. 

Table 15 — value of polyTriangles[ i ][ axis ] 
 

i 

axi
s 

0 1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
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1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

0 0 0 2 0 2 4 0 2 4 0 0 2 4 6 2 0 2 4 6 0 

1 1 1 3 1 3 0 1 3 5 2 1 3 5 0 4 1 3 5 7 2 

2 2 2 0 2 4 2 2 4 0 4 2 4 6 2 6 2 4 6 0 4 
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3
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3
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3
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3
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3
9 

0 4 0 2 4 6 8 2 6 0 2 4 6 8 0 4 8 0 2 4 6 

1 6 1 3 5 7 0 4 8 1 3 5 7 9 2 6 0 1 3 5 7 

2 0 2 4 6 8 2 6 2 2 4 6 8 0 4 8 4 2 4 6 8 
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5
0 

5
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5
2 
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5
4 

0 8 10 2 6 10 0 2 4 6 8 10 0 4 8 0 

1 9 0 4 8 2 1 3 5 7 9 11 2 6 10 4 

2 10 2 6 10 6 2 4 6 8 10 0 4 8 0 8 

 

 Points derivation process on the triangles 

Inputs to this process are: 
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 the variable numTriangles, 

 the array recTriVertex[ tIdx ][ vertex ][ axis ] with tIdx = 0 .. numTriangles − 1, vertex = 0 .. 2, and 
axis = 0 .. 2 

Outputs of the process are: 

 a variable numPtsOnTriangle for the number of the decoded points on the reconstructed triangles, 

 an array ptsOnTriangle[ k ][ axis ] with k = 0 .. numPtsOnTriangle − 1 , axis = 0 .. 2 

The variable numPtsOnTriangle is initialized to 0. 

A variable bbSize is set to ( 1 << geom_max_node_size_log2 ) – 1. 

For the variable k = 0 .. numTriangles − 1, the following applies: 

 An array recTV[ vertex ][ axis ] with vertex = 0 .. 2, axis = 0 .. 2 is set to 
recTriVertex[ k ][ vertex ][ axis ] 

 The three vertices of recTV[ vertex ][ axis ] are added to ptsOnTriangle[ ][ axis ] with axis = 0 .. 2 as 
follows: 

for (vertex = 0; vertex < 3; vertex++) 
  ptsOnTriangle[numPtsOnTriangle++][axis] = Clip3(recTV[vertex][axis], 0, bbSize) 

 For the variable rDir = 0 .. 2, g1 = 0 .. bbSize – 1 , g2 = 0 .. bbSize – 1 , and sign = 0 .. 1, the following 
applies: 

  A variable rSign is derived as follows: 

rSign = sign > 0 ? 256: −256 

  A variable rayStart is derived as follows: 

rayStart = sign > 0 ? −256 : (bbSize+1) << 8 

  An array rayOrigin[ axis ] with axis = 0 .. 2  is derived as follows: 

rayOrigin[0] = (rDir == 0) ? rayStart : g1 << 8 
rayOrigin[1] = (rDir == 1) ? rayStart : g1 << 8 
rayOrigin[2] = (rDir == 2) ? rayStart : g2 << 8 

  An array rayVector[ axis ] with axis = 0 .. 2  is derived as follows: 

rayVector[0] = (rDir == 0) ? rSign : 0 
rayVector[1] = (rDir == 1) ? rSign : 0 
rayVector[2] = (rDir == 2) ? rSign : 0 

  An array interSection[ axis ] is derived by the process in 8.2.3.3.1 with the input 
recTV[ vertex ][ axis ], rayOrigin[ axis ], and rayVector[ axis ] with vertex = 0 .. 2, axis = 0 .. 2 . 

  If all the values of interSection[ axis ] with axis = 0 .. 2  are greater than 0 and less than or equal 
to bbSize, the following applies: 

   ptsOnTriangle[ numPtsOnTriangle ][ axis ] with axis = 0 .. 2  is set equal 
to  interSection[ axis ] 

   numPtsOnTriangle is set to (numPtsOnTriangle+1) 
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8.2.3.3.1 Derivation process of the intersection between triangle and vector 

Inputs to the process are: 

 three triangle vertices positions v0[ axis ], v1[ axis ], and v2[ axis ] with axis = 0 .. 2, 

 the start position of the vector rayOrg[ axis ] with axis = 0 .. 2, 

 the direction of the vector rayVec[ axis ] with axis = 0 .. 2. 

Output of the process is the array interSection[ axis ] with axis = 0 .. 2. 

The array interSection[ axis ] with axis = 0 .. 2 is initialized to − 1. 

An array edge1[ axis ], edge2[ axis ], and rOV[ axis ] with axis = 0 .. 2 are derived as follows: 

edge1[axis] = v1[axis] − v0[axis] 
edge2[axis] = v2[axis] − v0[axis] 
rOV[axis] = rayOrg[axis] − rayVec[axis] 

An array cp1[ axis ] with axis = 0 .. 2 is derived as follows. 

cp1[axis] = CrossProduct(rayVec[axis], edge2[axis]) 

A variable r1 is calculated as follows: 

r1 = InnerProduct(edge1[axis], cp1[axis]) / 256 

If r1 is equal to 0, the process ends. 

Otherwise (r1 is not equal to 0), the following applies: 

 The variable r2 is calculated as follows: 

r2 = InnerProduct(rOV[axis], cp1[axis]) / r1 

 If r2 is less than 0 or greater than 256, the process ends. 

 Otherwise (r2 is greater than or equal to 0 and r2 is less than or equal to 256), the following 
applies: 

  An array cp2[ axis ] with axis = 0 .. 2 is derived as follows: 

cp2[axis] = CrossProduct(rOV[axis], edge1[axis]) 

  A variable r3 is derived as follows: 

r3 = InnerProduct(rayVec[axis], cp2[axis]) / r1 

  If r3 is less than 0 or (r2+r3) is greater than 256, the process ends. 

  Otherwise (r3 is greater than or equal to 0 and (r2+r3) is less than or equal to 256), the 
following applies: 

   A variable rScale is calculated as follows: 

rScale = InnerProduct(edge2[axis], cp2[axis]) / r1 

   If rScale is less than or equal to 0, the process ends. 
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   Otherwise (rScale is greater than 0), interSection[ axis ] with axis = 0 .. 2 is derived as 
follows: 

interSection[axis] = Max(0, (rayOrg[axis]+((rayVec[axis] × rScale) >> 8) – 128) >> 8) 

 Update process of the decoded geometry points 

Inputs to the process are: 

 the variable numPtsOnTriangle, 

 the array ptsOnTriangle[ k ][ axis ] with k = 0 .. numPtsOnTriangle − 1  and axis = 0 .. 2 

For a variable p with p = 0 .. numPtsOnTriangle − 1 , if the values of ptsOnTriangle[ p ][ axis ] are equal 
to the values of ptsOnTriangle[ q ][ axis ] with q = 0 .. numPtsOnTriangle − 1 , axis = 0 .. 2 and q  ! = p, the 
following applies: 

ptsOnTriangle[q][axis] with axis = 0..2  is removed from the array. 
numPtsOnTriangle−− 

The process is repeated until the values of ptsOnTriangle[p][axis] with p = 0..numPtsOnTriangle − 1 , 
axis = 0..2  are unique from the ptsOnTriangle[q][axis] with q = 0..numPtsOnTriangle − 1 , axis = 0..2 . 

Finally, the following applies: 

PointCount = numPtsOnTriangle 

PointPos[i][axis] with i = 0..PointCount − 1 , axis = 0..2 is modified as follows. 

PointPos[i][axis] = ptsOnTriangle[i][axis] 

 Planar coding mode 

 Eligiblity of a node for planar coding mode 

For an axis index axisIdx in the range 0 .. 2, the value of eligible_planar_flag[axisIdx] for a current node is 
determined as follows 

if (depth == GeomScalingDepth − 1) 
  eligible_planar_flag[axisIdx] = 0 
else if (localDensity >= 3 × 1024) 
  eligible_planar_flag[axisIdx] = 0 
else { 
  eligible_planar_flag[axisIdx] = 
    planeRate[axisIdx] >= geom_planar_mode_th[probable_order[axisIdx]] 
} 

The variable localDensity is an estimate of the mean number of occupied child nodes in a node. 
localDensity is initialized to the value localDensity = 1024*4 when starting the geometry decoding 
process.  

The variable planeRate[axisIdx], for axisIdx in the range 0  2, is an estimate of the probability for a node 
to be planar in the direction perpendicular to the axisIdx-th axis.  planeRate[axisIdx] is initialized to the 
value planeRate[axisIdx] = 128 * 8 when starting the geometry decoding process.   

After decoding occupancy_map or occupancy_byte of a current node, the values of localDensity and 
planeRate[axisIdx] are updated by  

localDensity = ((localDensity << 8) − localDensity + 1024 × GeometryNodeChildrenCnt) >> 8 
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if (isNodePlanar[axisIdx]) 
  planeRate[axisIdx] = ((planeRate[axisIdx] << 8) − planeRate[axisIdx] + 256 + 128) >> 8 
else 
  planeRate[axisIdx] = ((planeRate[axisIdx] << 8) − planeRate[axisIdx] + 128) >> 8 

where isNodePlanar[axisIdx] is equal to 1 if the current node is planar in the direction perpendicular to 
the axisIdx-th axis, and is equal to 0 otherwise.  

The three values of probable_order[] are deduced from the ordering of the three-entry array planeRate[] 
as defined in Table 16. 

Table 16 — Determination of the values of probable_order[] from planeRate[] 

Condition probable_order[ 0 ] probable_order[ 1 ] probable_order[ 2 ] 
planeRate[0]≥ planeRate[1] ≥ planeRate[2] 0 1 2 
planeRate[0]≥ planeRate[2] > planeRate[1] 0 2 1 
planeRate[1]>planeRate[0] ≥ planeRate[2] 1 0 2 
planeRate[1]> planeRate[2] > planeRate[0] 2 0 1 
planeRate[2]> planeRate[0] ≥ planeRate[1] 1 2 0 
planeRate[2]> planeRate[1] > planeRate[0] 2 1 0 

 

 Buffer tracking the closest nodes in along an axis   

The determination of planarIdx (respectively planePosIdx) for the arithmetic coding of 
is_planar_flag[child][ axisIdx] (respectively plane_position[child][ axisIdx]) is performed based on the 
planar status of and the distance from the closest already decoded node with same depth and same 
axisIdx-th co-ordinate as the current node’s child node. A limited number of candidate nodes for the 
closest nodes are tracked by two buffers 

 buffer_closest_node_position[ axisIdx ][ coord ][ candidateIdx ][ secondary_axisIdx ], 

 buffer_closest_node_status[ axisIdx ][ coord ][ candidateIdx ], 

where axisIdx is an axis index in the range 0 .. 2, and where candidateIdx is a candidate node index in the 
range 0 .. nb_candidates − 1. The value nb_candidates specifies the number of candidate nodes tracked by 
the buffer and is set to nb_candidates = 4 .  

The value of the variable coord specifies the co-ordinate of the candidate nodes along the axisIdx-th axis 
at the spatial precision of the current depth plus 1 which is the depth of the child nodes. For a given value 
depth of the depth in octree, coord is in the range 0 .. ( ( 1 << ( depth+1 ) ) − 1 ). 

The value of the variable secondary_axisIdx specifies a secondary axis index in the range 0 .. 1. When 
axisIdx is equal to 0, secondary_axisIdx equal to 0 specifies the t axis, and secondary_axisIdx equal to 1 
specifies the v axis. When axisIdx is equal to 1, secondary_axisIdx equal to 0 specifies the s axis, and 
secondary_axisIdx equal to 1 specifies the v axis. When axisIdx is equal to 2, secondary_axisIdx equal to 
0 specifies the s axis, and secondary_axisIdx equal to 1 specifies the t axis. 

The two buffers are initialized, at the start of the geometry decoding process and also each time the 
variable depth specifying the octree depth is incremented, as follows 

for (axisIdx = 0 ; axisIdx <= 2 ; axisIdx++) 
  for (coord = 0 ; coord < (1 << (depth + 1)) ; coord++) 
    for (candidateIdx = 0; candidateIdx < nb_candidates; candidateIdx++) { 
      buffer_closest_node_position[axisIdx][coord][candidateIdx][0] = statusKnown 
      buffer_closest_node_position[axisIdx][coord][candidateIdx][1] = statusKnown 
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      buffer_closest_node_status[axisIdx][coord][candidateIdx] = statusUnknown 
    } 

where statusKnown is equal to 1 and statusUnknown is equal to 0.  

The two buffers are updated after each decoding of the planar mode syntax of a child node, e.g. after each 
call of geometry_planar_mode_data(child, axisIdx). First the closest candidate node whose index is 
closestIdx, index determined as described in 8.2.4.3, is pushed as the right-most candidate in the buffer. 
Second, all candidate nodes are pushed left, losing the left-most candidate mode in the process. Finally, 
the child node is pushed as the right-most candidate  

buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][0] = 
    buffer_closest_node_position[axisIdx][coord_child[axisIdx]][closestIdx][0] 
 
buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][1] = 
    buffer_closest_node_position[axisIdx][coord_child[axisIdx]][closestIdx][1] 
 
buffer_closest_node_status[axisIdx][coord_child[axisIdx]][nb_candidates−1] = 
    buffer_closest_node_status[axisIdx][coord_child[axisIdx]][closestIdx] 
 
for (candidateIdx = 0; candidateIdx < nb_candidates−1; candidateIdx++) { 
  buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx][0] = 
      buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx+1][0] 
 
  buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx][1] = 
      buffer_closest_node_position[axisIdx][coord_child[axisIdx]][candidateIdx+1][1] 
 
  buffer_closest_node_status[axisIdx][coord_child[axisIdx]][candidateIdx] = 
      buffer_closest_node_status[axisIdx][coord_child[axisIdx]][candidateIdx+1] 
} 
 
buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][0] = 
    coord_child[other_axis[axisIdx][0]] 
 
buffer_closest_node_position[axisIdx][coord_child[axisIdx]][nb_candidates−1][1] = 
    coord_child[other_axis[axisIdx][1]] 
 
buffer_closest_node_status[axisIdx][coord_child[axisIdx]][nb_candidates−1] = 
    child_node_status[axisIdx] 

The planar status child_node_status[] of the child node is determined as follows 

if (is_planar_flag[child][axisIdx]) 
  child_node_status[axisIdx] = plane_position[child][axisIdx] 
else 
  child_node_status[axisIdx] = NOT_PLANAR 

where planar NOT_PLANAR is a value different from 0,1 and UNKNOWN_STATUS.  

The values of other_axis[ axisIdx ][ XXX ] are provided by the Table 17.  

Table 17 — the values of other_axis[ axisIdx ][ XXX ]  

axisIdx other_axis[ axisIdx ][ 0 ] other_axis[ axisIdx ][ 1 ] 
0 1 2 
1 0 2 
2 0 1 

 

The variable coord_child[] is the co-ordinates of the child node with the spatial precision at depth + 1 
which is the depth of the child node. The value of coord_child[axisIdx] are obtained from the unscaled co-
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ordinate ( sN, tN, vN ) of the lower left corner of the child node by coord_child[ 0 ] = sN, 
coord_child[ 1 ] = tN and coord_child[ 2 ] = vN . 

 Determination of planarIdx for the coding of the planar mode flag 

When planar_buffer_disabled is not equal to 1, the determination of planarIdx for the arithmetic coding 
of is_planar_flag[child][axisIdx]  is performed based firstly on axisIdx, secondly based on the occupancy 
of the neighbouring nodes of the current node along the axisIdx-th axis, and thirdly on the distance from 
the closest already decoded node with same depth and same axisIdx-th co-ordinate as the current node 
child node. 

The index closestIdx the closest candidate node is determined as the left-most index idx that minimizes 
the distance d[axisIdx][idx] defined as follows 

d[child][axisIdx][idx] = 
    Abs(buffer_closest_node_position[axisIdx][coord_child[axisIdx]][Idx][0] 
      − coord_child[other_axis[axisIdx][0]]) 
  + Abs(buffer_closest_node_position[axisIdx][coord_child[axisIdx]][Idx][1] 
      − coord_child[other_axis[axisIdx][1]]) 

and the minimal distance is d_min[child][axisIdx] = d[child][axisIdx][closestIdx].  

The planar parent neighbouring configuration neigh_planar[child][axisIdx] is deduced from the 
occupancy of the neighbouring node N of the current (parent) node such that the node N is a neighbourg 
along the axisIdx-th axis and is adjacent to the child node. neigh_planar[child][axisIdx] is set to 1 if the 
node N is occupied, 0 otherwise. 

The context index planarIdx , for a child node and an axis index axisIdx, is then determined by 

planarIdx = axisIdx + 3 × (neigh_planar[child][axisIdx] + (d_min[child][axisIdx] <= 2 ? 
0 : 2)) 

Otherwise, when planar_buffer_disabled is equal to 1, the context index planarIdx , for a child node and 
an axis index axisIdx, is set to 

planarIdx = axisIdx 

 Determination of planePosIdx for the coding of the plane position 

The determination of planePosIdx for the arithmetic coding of plane_position[child][axisIdx]  is 
performed based  on 

• axisIdx 
• planar parent neighbouring configuration neigh_planar[child][axisIdx]  
• the planar status status[child][axisIdx] of the closest already decoded node whose index is 

closestIdx 
• the distance d_min[child][axisIdx] from the closest already decoded node  
•  and fourthly on the position pos[child][idx] along the axisIdx-th axis of the child inside its parent.  

 

The planar status is determined by, in case planar_buffer_disabled is not equal to 1,  

status[child][axisIdx] = 
    buffer_closest_node_status[axisIdx][coord_child[axisIdx]][closestIdx] 

and pos[child][axisIdx] is set equal to 1 if the child node is located at the higher co-ordinate position, 
within its parent, along the axisIdx-th axis, and set equal to 0 if the child node is located at the lower co-
ordinate position. 



ISO 23090-9:2020(E) 

66 © ISO/IEC 2020 – All rights reserved 

Otherwise, in case planar_buffer_disabled is equal to 1, the planar status is set to 

status[child][axisIdx] = UNKNOWN_STATUS 

The context index planePosIdx, for a child node and an axis index axisIdx, is then determined by 

if (status[child][axisIdx] == UNKNOWN_STATUS || status[child][axisIdx] == NOT_PLANAR) { 
  planePosIdx = 0 
} else { 
  discrete_dist = (d_min[child][axisIdx] <= 2 ? 0 : 1) + (d_min[child][axisIdx] <= 16 ? 
0 : 1) 
  planePosIdx = axisIdx + 3 × (neigh_planar[child][axisIdx] + 2 × discrete_dist) 
  planePosIdx += 18 × pos[child][idx] 
  planePosIdx += 1 
} 

 Determination of planePosIdxAngular for the coding of the vertical plane position 

The determination of planePosIdxAngular for the arithmetic coding of plane_position[child][2] is 
obtained as follows. 

In case geometry_angular_mode_flag is equal to 0, i.e. the angular coding mode is not used, the value of 
planePosIdxAngular is set equal to planePosIdx.  

In case geometry_angular_mode_flag is equal to 1, the value of planePosIdxAngular is determined from 
contextAngular by 

if (contextAngular == −1)  
  planePosIdxAngular = planePosIdx 
else 
  planePosIdxAngular = 36 + contextAngular[child] 

The determination of contextAngular[child] for the arithmetic coding of plane_position[ child ][ 2 ] is 
performed asdescribed in section 8.2.5.3. 

 Determination of the probability proba_planar[] of good plane position prediction 

The information proba_planar[] on the probability of good plane position prediction is used in the 
determination of the direct coding mode activation flag DirectModeFlagPresent. The value of 
proba_planar[axisIdx], for an axis index in the range 0 .. 2, is in the range 1 .. 127 and is deduced as follows 
for each child node 

proba_planar[axisIdx] = 127 
if (is_planar_flag[child][axisIdx]) {   
  if (axisIdx <= 1) 
    p = p0[planePosIdx] >> 9 
  else 
    p = p0[planePosIdxAngular] >> 9 
  if (plane_position[child][axisIdx]) 
    p = 128 – p 
  if (p < 1) 
    p = 1 
  if (p > 127)  
    p = 127 
  proba_planar[axisIdx] = p 
} 

where p0[ planePosIdx ] (respectively p0[ planePosIdxAngular ]) is the probability, provided by the 
CABAC before decoding the bit plane_position[ child ][ axisIdx ], of having a zero associated with the 
context. This probability p0[ planePosIdx ] (respectively p0[ planePosIdxAngular ]) is provided as a 16-
bit unsigned integer in the range 0 .. 0xffff .  
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Note that proba_planar[ axisIdx ] does not need to depend on the child node because the direct mode is 
activated if there is only one occupied child node in the current node.  

 Angular coding mode 

 Determination of the angular eligiblity for a node 

The following process applies to a child node Child to determine the angular elibiligility 
angular_eligible[ Child ] of the child node. If geometry_angular_mode_flag is equal to 0, 
angular_eligible[ Child ] is set to equal to 0. Otherwise, the following applies 

midNodeS = 1 << (ChildNodeSizeSLog2 − 1) 
midNodeT = 1 << (ChildNodeSizeTLog2 − 1) 
sLidar = Abs(((sNchild − geomAngularOrigin[0] + midNodeS) << 8) – 128) 
tLidar = Abs(((tNchild − geomAngularOrigin[1] + midNodeT) << 8) – 128) 
rL1 = (sLidar + tLidar) >> 1 
deltaAngleR = deltaAngle × rL1 
midNodeV = 1 << (ChildNodeSizeVLog2 − 1) 
if (deltaAngleR <= (midNodeV << 26)) 
  angular_eligible[Child] = 0 
else 
  angular_eligible[Child] = 1 

where deltaAngle is the minimum angular distance between the lasers determined by  

  deltaAngle = Min{ Abs(laser_angle[i] – laser_angle[j]) ; 0 ≤ i < j < number_lasers }, 

and where (sNchild, tNchild, vNchild) specifying the position of the geometry octree child node Child in 
the current slice. 

 IDCM angular eligibility. Laser index laserIndex  associated with a node 

The following process applies to a child node Child to determine the IDCM angular elibiligility 
idcm4angular[ Child ] and the laser index  laserIndex[ Child ] associated with the child node. 

If the angular elibiligility angular_eligible[ Child ] is equal to 0, then idcm4angular[ Child ] is set to 0 and 
laserIndex[ Child ] index is set to a preset value UNKOWN_LASER.  

Otherwise, if the angular elibiligility angular_eligible[Child] is equal to 1, the following applies as a 
continuation of the process described in 8.2.5.1. Firstly, the inverse rInv of the radial distance of the child 
node from the Lidar is determined 

r2 = sLidar ×  sLidar + tLidar × tLidar 
rInv = invSqrt(r2) 

then an angle theta32 is determined for the child node.  

vLidar = ((vNchild − geomAngularOrigin[2] + midNodeT) << 1) − 1 
theta = vLidar × rInv 
theta32 = theta >= 0 ? theta >> 15 : −((−theta) >> 15) 

Finally, the angular elibility and the associated laser to the child node are determined as follows, based 
on the parent node Parent of the child node.  

laserIndex[Child] = UNKOWN_LASER 
idcm4angular[Child] = 0 
if (laserIndex[Parent] == UNKOWN_LASER || deltaAngleR <= (midNodeV << (26 + 2))) { 
  minDelta = 1 << (18 + 7) 
  for (j = 0; j < number_lasers; j++) { 
    delta = Abs(laser_angle[j] − theta32) 
    if (delta < minDelta) { 
      minDelta = delta 
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      laserIndex[Child] = j 
    } 
  }   
} 
else 
  idcm4angular[Child] = 1 

 Determination of the context contextAngular for planar coding mode 

The following process applies to a child node Child to determine the angular context 
contextAngular[ Child ] associated with the child node. 

If the laser index laserIndex[Child] is equal to UNKOWN_LASER, then contextAngular[ Child ] is set to a 
preset value UNKOWN_CONTEXT. Otherwise, if the laser index laserIndex[ Child ] is not equal to 
UNKOWN_LASER, the following applies as a continuation of the process described in 8.2.5.2. 

Firstly, two angular differences m and M relative to a lower plane and an upper plane are determined. 

thetaLaserDelta = laser_angle[laserIndex[Child]] − theta32 
Hr = laser_correction[laserIndex[Child]] × rInv; 
thetaLaserDelta += Hr >= 0 ? −(Hr >> 17) : ((−Hr) >> 17) 
vShift = (rInv << (ChildNodeSizeVLog2  + 1)) >> 17  
m = Abs(thetaLaserDelta − vShift) 
M = Abs(thetaLaserDelta + vShift) 

Then, the angular context is deduced from the two angular differences. 

contextAngular[Child] = m > M 
diff = Abs(m − M) 
if (diff >= rInv >> 15) contextAngular[Child] += 2; 
if (diff >= rInv >> 14) contextAngular[Child] += 2; 
if (diff >= rInv >> 13) contextAngular[Child] += 2; 
if (diff >= rInv >> 12) contextAngular[Child] += 2; 

8.3 Attribute decoding 

Inputs to this process are: 

the attribute parameter set and the associated bitstream,  

Output of the process is a series of the decoded point PointAttr[ i ][ cIdx ], where i is in the range of 0 to 
PointCount − 1 and cIdx is in the range of 0 to AttrDim − 1. 

The attributes may have multiple components. 

Each attribute component has been transform coded by a spatial transform, quantized, and entropy 
coded, to produce its bitstream. The attribute decoder must invert this process for each attribute 
component, to produce a decoded attribute component. 

When attr_coding_type is equalt to 0, RAHT decoding process in clause 8.3.1 is invoked. 

Otherwise, if attr_coding_type is equal to 1, LoD with Predicting Transform  decoding process in clause 
8.3.3 is invoked. 

Otherwise (attr_coding_type is equal to 2), LoD with Lifting Transform  decoding process in clause 8.3.2 
is invoked. 
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 Region adaptive hierachical transform decoding process 

 General 

The output of this process is the array PointsAttr with elements PointsAttr[ i ][ cIdx ] with 
i = 0 .. PointCount − 1, and cIdx = 0 .. AttrDim − 1. Each element with index i of PointsAttr is associated 
with a position given by the array PointPos with the same index i. 

The variable CoeffIdx, specifying a current position in the decoded values array, is initialized to 0. 

If PointCount equal to 1, the following applies: 

– The variable NumRahtLevels, specifying the number of 3D transform levels, is set equal to 1  

– The array PointRegionboxDeltaQp, specifying the value of delta QP per point based on region, are 
derived according to the RAHT region-wise qp derivation process (8.3.1.3). 

– The scaling process for RAHT coefficients (8.3.1.6) is invoked for each component cIdx in the range 
0 .. AttrDim − 1, with the single-element coeff set equal to value[ cIdx ][ CoeffIdx ], the position 
( sTn, tTn, vTn ) set equal to ( 0, 0, 0 ), the 3D transform level lvl set equal to 0, and the variable cIdx 
as inputs. The reconstructed samples of the output array PointAttr[ 0 ][ cIdx ] is set equal to the 
single-element output array of scaled transform coefficients d. 

Otherwise, the following applies: 

The array Weights, specifying transform coefficient weights, and the variable NumRahtLevels, specifying 
the number of 3D transform levels, are derived according to the RAHT weights derivation process 
(8.3.1.2). 

The array PointRegionboxDeltaQp, specifying the value of delta QP per point based on region, are derived 
according to the RAHT region-wise qp derivation process (8.3.1.3). 

Reconstruction proceeds level by level from the root of the transform tree to the leaves, each using the 
reconstruction of the previous level. 

For each 3D transform level in the descending range lvl = NumRahtLevels − 1 .. 0, the following applies: 

– The variable inheritDc is derived according to the transform level.  For the first 3D transform level, 
inheritDc is set equal to 0.  Otherwise, for subsequent transform levels, inheritDc is set equal to 1. 

– The variable RahtPredictionEnabled is derived as follows: 

RahtPredictionEnabled = inheritDc && raht_prediction_enabled_flag. 

– The reconstruction process for a single RAHT level is invoked with the variable lvl set equal to 3 × lvl, 
and inheritDc as inputs.  The output is the array recon with elements recon[ s ][ t ][ v ][ cIdx ]. 

– The array PrevRecon, specifying DC coefficients reconstructed from a transform level for use in a 
subsequent level is set equal to the array recon. 

The reconstructed samples of the output array PointAttr[ i ][ cIdx ] are derived as follows with 
i = 0 .. PointCount − 1: 

− The point position variables ( sPt, tPt, vPt ) are set equal to PointPos[ i ][ j ], with j = 0 .. 2 
respectively. 

− If Weights[ 0 ][ sPt ][ tPt ][ vPt ] is equal to 1, the following applies: 
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for (cIdx = 0; cIdx < AttrDim; cIdx++) 
  PointAttr[i][cIdx] = DivExp2RoundHalfInf(recon[sPt][tPt][vPt], 15) 

− Otherwise, Weights[ 0 ][ sPt ][ tPt ][ vPt ] is greater than 1, the following process is used to 
reconstruct samples PointAttr[ i + j ][ cIdx ] for j = i .. Weights[ 0 ][ sPt ][ tPt ][ vPt ] − 1: 

− The ( AttrDim )×( 2 ) sized array xxx is initialized as follows: 

for (cIdx = 0; cIdx < AttrDim; cIdx++) 
  xxx[cIdx][0] = recon[xPt][yPt][zPt] 

− For each wi in the descending range Weights[ 0 ][ sPt ][ tPt ][ vPt ] − 1 .. 1, the following 
applies: 

− The scaling process for RAHT coefficients is invoked for each component cIdx in the 
range 0 .. AttrDim − 1, with the single-element coeff set equal to 
residual_values[ cIdx ][ CoeffIdx ], the 3D transform level lvl set equal to 0, and the 
variable cIdx as inputs.  The array element xxx[ cIdx ][ 1 ] is set equal to the single-
element output array of scaled transform coefficients d. 

− CoeffIdx is incremented by 1. 

− For each component cIdx in the range 0 .. AttrDim − 1, the following applies: 

− The inverse two-point transform process is invoked with the array xxx[ cIdx ][ j ] 
with j = 0 .. 1, and the array w equal to { wi, 1 } as inputs.  The output is the two-
element array r. 

− The value of xxx[ cIdx ][ 0 ] is replaced by r[ 0 ] 

− The output PointAttr[ i + wi ][ cIdx ] is derived as follows: 

PointAttr[i + wi][cIdx] = DivExp2RoundHalfInf(xxx[1], 15) 

− The ouput PointAttr[ i ][ cIdx ] for cIdx = 0 .. AttrDim − 1 is derived as follows: 

PointAttr[i][cIdx] = DivExp2RoundHalfInf(xxx[0], 15) 

 RAHT weights derivation process 

The outputs of this process are: 

− the array Weights, with entries Weights[ lvl ][ s ][ t ][ v ] equal to the number of points represented 
by a coefficient at position ( s, t, v ) at the lvl'th 1D level of the RAHT transform, 

− the variable NumRahtLevels indicating the number of 3D levels in the transform tree. 

The elements of the array Weights are derived as follows: 

for (i = 0; i < PointCount; i++) { 
  s = PointPos[i][0] 
  t = PointPos[i][1] 
  v = PointPos[i][2] 
  Weights[0][s][t][v] += 1; 
} 
 
for (lvl = 1, done = 0; !done;) 
  for (j = 0; j < 3; j++, lvl++) 
    for (i = 0; i < PointCount; i++) { 
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      s = PointPos[i][0] >> ((lvl + 0) / 3) 
      t = PointPos[i][1] >> ((lvl + 1) / 3) 
      v = PointPos[i][2] >> ((lvl + 2) / 3) 
 
      Weights[lvl][s][t][v] += 1; 
      if (Weights[lvl][s][t][v] == PointCount) 
        done = 1; 
    } 

The variable NumRahtLevels is set equal to lvl / 3. 

 RAHT region-wise qp derivation process 

The outputs of this process are the array PointRegionboxDeltaQp, with entries 
PointRegionboxDeltaQp[ lvl ][ s ][ t ][ v ] equal to the value of delta QP per point based on region 
represented by a coefficient at position ( s, t, v ) at the lvl'th 1D level of the RAHT transform. 

The output array PointRegionboxDeltaQp is initialize to −1. The variable RegionQpBitShift is set to equal 
to 4. 

for (i = 0; i < PointCount; i++) {  s = PointPos[i][0] 
  t = PointPos[i][1] 
  v = PointPos[i][2] 
 
  PointRegionboxDeltaQp[0][s][t][v] = 0 
 
  if (!ash_attr_region_qp_delta_present_flag) 
    continue 
  isPointInRegion = 1 
  for (k = 0; k < 3; k++) 
    isPointInRegion &= 
        AttrRegionQpOrigin[k] <= PointPos[i][k] 
     && PointPos[i][k] < AttrRegionQpOrigin[k] + AttrRegionQpSize[k] 
 
  if (isPointInRegion) 
    PointRegionboxDeltaQp[0][s][t][v] = ash_attr_region_qp_delta << RegionQpBitShift 
} 
 
for (lvl = 1, lvl <= (NumRahtLevels − 1) × 3; lvl++){ 
  for (i = 0; i < PointCount; i++) { 
    s = PointPos[i][0] >> ((lvl + 0) / 3) 
    t = PointPos[i][1] >> ((lvl + 1) / 3) 
    v = PointPos[i][2] >> ((lvl + 2) / 3) 
     
    if (PointRegionboxDeltaQp[lvl][s][t][v] == −1){ 
      prevS = (lvl % 3 == 0)? s + 1: s; 
      prevT = (lvl % 3 == 2)? t + 1: t; 
      prevV = (lvl % 3 == 1)? v + 1: v; 
      lQp = PointRegionboxDeltaQp[lvl − 1][s][t][v]; 
      rQp = PointRegionboxDeltaQp[lvl − 1][prevS][prevT][prevV]; 
 
      if (lQp == −1) 
        PointRegionboxDeltaQp[lvl][s][t][v] = rQp; 
      else if (rQp == −1) 
        PointRegionboxDeltaQp[lvl][s][t][v] = lQp; 
      else 
        PointRegionboxDeltaQp[lvl][s][t][v] = ((lQp + rQp) >> 1); 
    } 
  } 
} 

 Reconstruction process for a single 3D RAHT level 

The inputs to this process are: 

− a variable lvl indicating the current 1D transform level. 



ISO 23090-9:2020(E) 

72 © ISO/IEC 2020 – All rights reserved 

− a variable inheritDc indicating if DC coefficients should be inherited from a previous reconstruction 
level. 

The outputs of this process are the array recon of reconstructed values and an updated variable CoeffIdx. 

An array, nodes, of occupied transform tree nodes in the current level with elements nodes[ idx ][ dim ] 
is derived using a Morton order traversal of the array Weights as follows: 

for (mIdx = 0, nIdx = 0; mIdx < (1 << (3 × NumRahtLevels − 3 − lvl)); mIdx++) { 
  (sN, tN, vN) = MortonToTuple(mIdx) 
  if (Weights[lvl + 3][sN][tN][vN] == 0) 
    continue 
  nodesS[nIdx] = 2 × sN 
  nodesT[nIdx] = 2 × tN 
  nodesV[nIdx] = 2 × vN 
  nIdx++ 
} 

The variable numNodesInLvl is set equal to nIdx. 

For each occupied transform tree node with nIdx = 0 .. numNodesInLvl − 1, the following steps apply: 

The position variables ( sTn , tTn , vTn ) indicating the location of a transform tree node are initialized 
with the values of nodesS[ nIdx ], nodesT[ nIdx ], and nodesV[ nIdx ] respectively. 

An ( AttrDim )×( 8 ) element array of transform coefficients is derived as follows: 

for (childIdx = 0; childIdx < 8; childIdx++) { 
  (ds, dt, dv) = MortonToTuple(childIdx) 
  if (inheritDc && childIdx == 0) 
    continue 
  if (Weights[lvl][sTn + ds][tTn + dt][vTn + dv] == 0) 
    continue 
  for (cIdx = 0; cIdx < AttrDim; cIdx++) 
    coeff[cIdx][childIdx] = residual_values[cIdx][CoeffIdx] 
  CoeffIdx++ 
} 

For each component of the attribute, the following ordered steps are performed: 

− The reconstruction process for a 2×2×2 transform tree node is invoked with the node position 
( sTn, tTn, vTn ), and the eight-element array coeff[ cIdx ][ childIdx ] with childIdx = 0 .. 7 as inputs.  
The output is the eight-element array r. 

− The array of reconstructed values, recon, is updated as follows: 

for (childIdx = 0; childIdx < 8; childIdx++) { 
  (ds, dt, dv) = MortonToTuple(childIdx) 
  recon[sTn + ds][tTn + dt][vTn + dv][cIdx] = r[childIdx] 
} 

 Reconstruction process for a 2×2×2 transform tree node 

The inputs to this process are: 

− a position ( sTn, tTn, vTn ) and 1D level, lvl, specifying the location of a transform tree node in the 
RAHT transform tree, 

− a variable cIdx specifying the index of an attribute component, 

− an array, coeff, of packed quantized transform coefficients. 
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The output of this process is an eight-element array, r, of reconstructed values 

The scaling process for RAHT coefficients is invoked with the eight-element array coeff, the position 
( sTn, tTn, vTn ), the 3D transform level lvl set equal to lvl / 3, and the variable cIdx as inputs.  The output 
is an eight-element array of scaled transform coefficients d. 

If RahtPredictionEnabled is equal to 1, the following applies: 

− The transform prediction upsampling process is invoked with the position ( sTn/2, tTn/2, vTn/2 ) 
and the variable lvl set equal to lvl + 3.  The output is the eight-element array p of upsampled 
prediction values. 

− The forward transform process for 2×2×2 blocks is invoked with the position ( sTn, tTn, vTn ) and 
level lvl of the current transform tree node, and the array p of upsampled prediction values.  The 
output is the eight-element array q of transformed prediction values. 

The scaled transform coefficients d, the transformed prediction values q, and an inherited DC value are 
summed to produce the transform coefficient array e as follows: 

for (i = inheritDc; i < 8; i++) 
  e[i] = d[i] << 15 
 
if (inheritDc) { 
  e[0] = DivExp2RoundHalfInf(PrevRecon[sTn / 2][tTn / 2][vTn / 2][cIdx], 15) 
  e[0] <<= 15 
} 
 
for (i = 1; i < 8; i++) 
  e[i] += RahtPredictionEnabled ? q[i] : 0 

The inverse transform process for 2×2×2 blocks is invoked with the position ( sTn, tTn, vTn ) and level 
lvl of the current transform tree node, and the array e of transform coefficients.  The output is the eight-
element array r of inverse transformed values. 

 Scaling process for RAHT coefficients 

The inputs to this process are: 

− an n-element array coeff of quantized coefficients  

− a position ( sTn, tTn, vTn ) specifying the location of a transform tree node in the RAHT transform 
tree 

− a variable lvl indicating the 3D transform level of the coefficients 

− a variable cIdx specifying the index of an attribute component 

The output is an n-element array of scaled transform coefficients d. 

The variable qlayer is set equal to Min( NumLayerQP − 1, NumRahtLevels − lvl − 1). 

The scaled transform coefficient d[ i ][ cIdx ] with i = 0 .. n − 1, and cIdx = 0 .. AttrDim − 1 is derived as 
follows: 

for (i = 0, childIdx = 0; childIdx < 8 && i < n; childIdx++) { 
  (ds, dt, dv) = MortonToTuple(childIdx) 
  if (Weights[lvl][sTn + ds][tTn + dt][vTn + dv] == 0) 
    continue 
  deltaRegionQp = PointRegionboxDeltaQp[lvl][sTn + ds][tTn + dt][vTn + dv]  
      >> RegionQpBitShift 
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  qstepY = QpToQstep(SliceQpY[qlayer] + deltaRegionQp, 1) 
  qstepC = QpToQstep(SliceQpC[qlayer] + deltaRegionQp, 0) 
  for (cIdx = 0; cIdx < AttrDim; cIdx++) 
    d[i][cIdx] = DivExp2RoundHalfUp(coeff[i][cIdx] ×  
        (!cIdx ? qstepY : qstepC), 8) 
  i++ 
} 

 Transform prediction upsampling process 

The inputs to this process are: 

− a position ( sTn, tTn, vTn ) and 1D level, lvl, specifying the location of a transform tree node in the 
RAHT transform tree, and 

− a variable cIdx specifying the index of an attribute component. 

The output of this process are: 

− an eight-element array p of upsampled values.  

− the array of NeighCount, with entries NeighCount[ lvl ][ s ][ t ][ v ] equal to the number of valid 
neighbour transform tree node where more than equal to one point exist represented by a coefficient 
at position ( s, t, v ) at the lvl'th 1D level of the RAHT transform. 

NeighCount[ lvl ][ s ][ t ][ v ] is initialized as 0. For each row in Table 18, the following applies: 

If lvl / 3 is not equal to NumRahtLevels − 1 and NeighCount[ lvl + 3][ sTn /  2][ tTn / 2][ vTn / 2] is less 
than raht_prediction_threshold0, for each child position childIdx in the range 0 to 7, inclusive, the 
following applies: 

for (childIdx = 0; childIdx < 8; childIdx++) 
  p[childIdx] = 0 

Otherwise, for each row in Table 18, the following applies: 

cs = sTn + ds 
ct = tTn + dt 
cv = vTn + dv 
if (Weights[lvl][cs][ct][cv] > 0) 
  NeighCount[lvl][sTn][tTn][vTn] += 1 

If NeighCount[ lvl ][ sTn ][ tTn ][ vTn ] is less than raht_prediction_threshold1, for each child position 
childIdx in the range 0 to 7, inclusive, the following applies: 

for (childIdx = 0; childIdx < 8; childIdx++) 
  p[childIdx] = 0 

Otherwise, the following applies: 

The upsampled 2×2×2 block located at the position ( sTn, tTn, vTn ) is derived as follows.  For each row 
in Table 18, the following applies: 

cs = sTn + ds 
ct = tTn + dt 
cv = vTn + dv 
if (Weights[lvl][cs][ct][cv] > 0) { 
  neighVal = Recon[cs][ct][cv][cIdx] 
  value = DivFp(neighVal, iSqrt(Weights[lvl][cs][ct][cv] << 30), 15) 
  for (childIdx = 0; childIdx < 8; childIdx++) { 
    sumDc[childIdx] += DivExp2RoundHalfInf(value × wn[childIdx], 15) 
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    sumWn[childIdx] += wn[childIdx] 
  } 
} 

For each child position childIdx in the range 0 to 7, inclusive, and sumW[ childIdx ] > 0, as follows: 

for (childIdx = 0; childIdx < 8; childIdx++) { 
  (ds, dt, dv) = MortonToTuple(childIdx) 
  pred = DivFp(sumDc[childIdx], sumWn[childIdx], 15) 
  pred ×= iSqrt(Weights[lvl − 3][2 × sTn + ds][2 × tTn + dt][2 × vTn + dv] << 30) 
  p[childIdx] = DivExp2RoundHalfInf(pred, 15) 
} 

Table 18 — Weighting matrix for determining upsampled child position weights, wn[ childIdx ], for various 
neighbour position offsets ( dx, dy, dz ) 

Neighbour offset wn[ childIdx ] 
ds dt dv 0 1 2 3 4 5 6 7 
0 0 0 a a a a a a a a 
1 0 0 b b b b 0 0 0 0 

−1 0 0 b b b b 0 0 0 0 
0 1 0 0 0 b b 0 0 b b 
0 −1 0 b b 0 0 b b 0 0 
0 0 1 0 b 0 b 0 b 0 b 
0 0 −1 b 0 b 0 b 0 b 0 
1 1 0 0 0 0 0 0 0 c c 

−1 1 0 0 0 c c 0 0 0 0 
1 −1 0 0 0 0 0 c c 0 0 

−1 −1 0 c c 0 0 0 0 0 0 
0 1 1 0 0 0 c 0 0 0 c 
0 −1 1 0 c 0 0 0 c 0 0 
0 1 −1 0 0 c 0 0 0 c 0 
0 −1 −1 c 0 0 0 c 0 0 0 
1 0 1 0 0 0 0 0 c 0 c 

−1 0 1 0 c 0 c 0 0 0 0 
1 0 −1 0 0 0 0 c 0 c 0 

−1 0 −1 c 0 c 0 0 0 0 0 
Where a = 24518, b = 5536, c = 2937 

 

 Forward transform process for 2×2×2 blocks 

The inputs to this process are: 

− a position ( sTn, tTn, vTn ) and level, lvl, specifying the position of a transform tree node, 

− an eight-element array, p, of values to be transformed. 

The output of this process is an eight-element array, q, of transformed values. 
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For each row of Table 19 in sequential order, the array p is modified by transforming a pair of values by 
invoking the forward two-point transform process 8.3.1.9 with the input array x equal to { p[ i ], p[ j ] }, 
and the array w equal to { wi, wj }.  The output y updates the array p[ i ] = y[ 0 ], p[ j ] = y[ 1 ]. 

The output array q is derived as q[ s ] = p[ t ] with s = 0 .. 7 and the value of t derived from s according to 
Table 20. 

Table 19 — Ordering of coefficients and respective weights for use in the forward and inverse (reverse order) two-
point transform processes 

i j wi wj 
0 1 w[ lvl ][ sTn + 0 ][ tTn + 0 ][ vTn ] w[ lvl ][ sTn + 0 ][ tTn + 0 ][ vTn + 1 ] 
2 3 w[ lvl ][ sTn + 0 ][ tTn + 1 ][ vTn ] w[ lvl ][ sTn + 0 ][ tTn + 1 ][ vTn + 1 ] 
4 5 w[ lvl ][ sTn + 1 ][ tTn + 0 ][ vTn] w[ lvl ][ sTn + 1 ][ tTn + 0 ][ vTn + 1 ] 
6 7 w[ lvl ][ sTn + 1 ][ tTn + 1 ][ vTn] w[ lvl ][ sTn + 1 ][ tTn + 1 ][ vTn + 1 ] 
4 6 w[ lvl + 1 ][ sTn + 1 ][ tTn ][ vTn] w[ lvl + 1 ][ sTn + 1 ][ tTn + 1 ][ vTn ] 
0 2 w[ lvl + 1 ][ sTn + 0 ][ tTn ][ vTn] w[ lvl + 1 ][ sTn + 0 ][ tTn + 1 ][ vTn ] 
0 4 w[ lvl + 2 ][ sTn + 0 ][ tTn ][ vTn] w[ lvl + 2 ][ sTn + 1 ][ tTn + 0 ][ vTn ] 

 

Table 20 — Indexes of transform coefficients in decoding order (s) 

s 0 1 2 3 4 5 6 7 
t 0 4 6 2 7 5 3 1 

 

 Forward two-point transform process 

The inputs to this process are: 

− a two-element array, x, of values to be transformed, and 

− a two-element array, w, of corresponding weights. 

The output of this process is a two-element array, y, of transformed values. 

This process has no effect if both elements of w are equal to zero. 

The transform coefficients a and b are derived as follows: 

a = iSqrt((w[0] << 30) / (w[0] + w[1])) 
b = iSqrt((w[1] << 30) / (w[0] + w[1])) 

The output is determined as follows: 

y[0] = DivExp2RoundHalfInf(x[0] × a, 15) + DivExp2RoundHalfInf(x[1] × b, 15) 
y[1] = DivExp2RoundHalfInf(x[1] × a, 15) − DivExp2RoundHalfInf(x[0] × b, 15) 

 Inverse transform process for 2×2×2 blocks 

The inputs to this process are: 

− a position ( sTn, tTn, vTn ) and level, lvl, specifying the position of a transform tree node, and 
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− an eight-element array, e, of transform coefficients. 

The output of this process is an eight-element array, r, of inverse transformed values. 

The output array r is initialized as r[ t ] = e[ s ] with s = 0 .. 7 and the value of t derived from s according 
to Table 20. 

For each row of Table 19 in reverse order, the array r is modified by transforming a pair of values by 
invoking the inverse two-point transform process 8.3.1.11 with the input array x equal to { r[ i ], r[ j ] }, 
and the array w equal to { wi, wj }.  The output y updates the array r[ i ] = y[ 0 ], r[ j ] = y[ 1 ]. 

 Inverse two-point transform process 

The inputs to this process are: 

− a two-element array, x, of transform coefficient, and 

− a two-element array, w, of corresponding weights. 

The output of this process is a two-element array, y, of inverse transformed values. 

This process has no effect if both elements of w are equal to zero. 

The transform coefficients  a and b are derived as follows: 

a = iSqrt((w[0] << 30) / (w[0] + w[1])) 
b = iSqrt((w[1] << 30) / (w[0] + w[1])) 

The output is determined as follows: 

y[0] = DivExp2RoundHalfInf(x[0] × a, 15) − DivExp2RoundHalfInf(x[1] × b, 15) 
y[1] = DivExp2RoundHalfInf(x[1] × a, 15) + DivExp2RoundHalfInf(x[0] × b, 15) 

 LoD with Lifting Transform decoding process 

Inputs of this process are: 

 a variable minGeomNodeSizeLog2 specifing the number of octree layers that are skipped to decode. 

The output of the process is 

 a series of the decoded attribute values attributeValues[ i ][ a ], where i is in the range of 0 to 
PointCount − 1, inclusive, and a in the range of 0 to AttrDim − 1, inclusive. 

First a variable PointNumInSlice is set to gsh_ num_points in the active slice. 

NOTE 1 – When lifting_scalability_enabled_flag is equal to 1, PointCount may be smaller than 
PointNumInSlice due to minGeomNodeSizeLog2 larger than 0. 

This process invokes the sub-processes in the following order. 

The level of detail generation process in clause 8.3.2.1 is invoked.The output of this process are stored in 
indexes[ i ], neighbours[ i ][ n ], neighboursCount[ i ], neighboursDistance2[ i ][ n ], and 
pointCountPerLevelOfDetail[l], where i is in the range of 0 to PointCount − 1, inclusive, n in the range of 
0 to NumPredNearestNeighbours − 1, inclusive, l is in the range of 0 to LevelDetailCount − 1, inclusive. 

 The prediction weight derivation process in 8.3.2.4 is invoked with the parameters neighbours, 
neighboursCount and neighboursDistance2. The output of this process is stored in 
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predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, inclusive, and n in the range of 
0 to NumPredNearestNeighbours − 1, inclusive. 

 The quantization weights derivation process in 8.3.2.5 is invoked with the parameters indexes, 
neighbours, neighboursCount, predictionWeights, and pointNumPerLoD. The output of this process is 
stored in quantizationWeights[ i ], where i is in the range of 0 to PointCount − 1, inclusive. 

 The inverse quantization process in 8.3.2.6 is invoked with the parameters indexes, neighbours, 
neighboursCount and predictionWeights. The output of this process is stored in 
unquantAttributeCoefficients[ i ][ j ], where i is in the range of 0 to PointCount − 1, inclusive, and j in the 
range of 0 to AttrDim − 1, inclusive. 

 The inverse lifting process in 8.3.2.7 is invoked with the parameters unquantAttributeCoefficients, 
quantizationWeights, predictionWeights and pointCountPerLevelOfDetail. This process updates the 
attribute coefficients unquantAttributeCoefficients[ i ][ j ], where i is in the range of 0 to PointCount − 1, 
inclusive, and j in the range of 0 to AttrDim − 1, inclusive. 

The reconstructed attributes values are obtained as follows. 

for (i = 0; i <  PointCount; i++) { 
  for (j = 0; j < AttrDim; j++) { 
    value = divExp2RoundHalfInf(unquantAttributeCoefficients[i][j], 8); 
    if (AttrDim == 0) { 
      maxAttribute = (1 << (attribute_bitdepth_minus1[ash_attr_sps_attr_idx] + 1)) − 1 
    } 
    else { 
      maxAttribute = (1 << (attribute_secondary_bitdepth_minus1[ash_attr_sps_attr_idx] + 
1)) − 1 
    } 
    attributeValues[i][j] = Clip3(value , 0, maxAttribute); 
  } 
} 

 Level of Detail Generation 

The input of the process is 

 a vailable minGeomNodeSizeLog2 specifing the number of octree layers that are skipped to decode. 

The outputs of the process are 

 an array of point indexes indexes[ i ], where i is in the range of 0 to PointCount − 1, inclusive. 

 a series of nearest neighbours indexes neighbours[ i ][ n ], where i is in the range of 0 to 
PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array of nearest neighbours count neighboursCount[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

 an array of nearest neighbours squared distances neighboursDistance2[ i ][ n ], where i is in the 
range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, 
inclusive. 

 an array pointCountPerLevelOfDetail[l], where l is in the range of 0 to LevelDetailCount − 1, inclusive. 

An array of distances sampling[ l ], where l is in the range of 0 to LevelDetailCount − 2, inclusive, is 
derived as followings: 

if (lifting_lod_regular_sampling_enabled_flag) { 
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  for (lod = 0; lod < LevelDetailCount − 1; lod++) 
    sampling[lod] = lifting_sampling_period_minus2[lod] + 2 
} 
else { 
  for (lod = 0; lod < LevelDetailCount − 1; lod++) 
    sampling[lod] = LiftingSamplingDistanceSquared[lod] 
} 

Depending on the value of lifting_lod_regular_sampling_enabled_flag, the level of detail generation 
process re-organizes the points into a set of refinement levels (𝑅𝑅𝑙𝑙)𝑙𝑙=0…𝐿𝐿−1 , according to a the set of 
Euclidian distances (i.e., lifting_lod_regular_sampling_enabled_flag equals 0) or sampling period (i.e., 
lifting_lod_regular_sampling_enabled_flag equals 1) specified by the array sampling[ l ]. 

If lifting_lod_regular_sampling_enabled_flag equals 0, the array sampling[ l ] represents squared 
sampling distances verifying the following condition: 

sampling[l−1] < sampling[l] 

If lifting_lod_regular_sampling_enabled_flag equals 1, the array sampling[ l ] represents sampling periods 
verifying the following condition: 

sampling[ l ] > 1.If lifting_scalability_enabled_flag equals 1, the level of detail degneration process re-
organizes the points into a set of refinement levels (𝑅𝑅𝑙𝑙)𝑙𝑙=0…𝐿𝐿−1 , according to octree nodes based on 
geometry. Depeding on the value of samplingFromLastFlag, the first point in the node (i.e., 
samplingFromLastFlag equals 0) or the last point in the node (i.e., samplingFromLastFlag equals 1) is 
sampled. 

First, the point sorting process based on Morton code in clause 5.9.8 is invoked. Let Order[i] be the array 
of point indexes sorted according to their Morton codes and McodeUnsorted the array of unsorted 
Morton codes. 

Next, the following procedure is applied in order to compute both the level of detail reordering and the 
points nearest neighbours. 

unprocessedPointCount =  PointCount 
for (i = 0; i < unprocessedPointCount; i++) { 
  unprocessedPointIndexes[i] = Order[i] 
} 
for (lod = 1; lod < LevelDetailCount; lod++) 
  unprocessedPointCountPerLevelOfDetail[lod] = 0; 
unprocessedPointCountPerLevelOfDetail[0] =  PointCount 

If lifting_scalability_enabled_flag is equal to 0, the following is applied. 

endIndex = 0 
assignedPointCount = 0 
for (lod = 0; unprocessedPointCount > 0 && lod < LevelDetailCount; lod++) { 
  nonAssignedPointCount = 0 
  startIndex = assignedPointCount 
  if (lod == LevelDetailCount – 1) {  
    for (i = 0; i < unprocessedPointCount; i++) 
      assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i] 
  } else { 
    nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[0] 
    for (i = 1; i < unprocessedPointCount; i++) { 
      foundAssignedPointWithinDistanceFlag = 0 
      if (lifting_lod_regular_sampling_enabled_flag == 1) { 
        foundAssignedPointWithinDistanceFlag = (i % sampling[lod]) != 0 
      } else { 
        for (axis = 0; axis < 3; axis++) 
          currentPos[axis] = PointPos[unprocessedPointIndexes[i]][axis] 
        k = 0 
        while (k++ < LiftingSearchRange) { 
          for (axis = 0; axis < 3; axis++) 
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            d[axis] = currentPos[axis] – 
PointPos[nonAssignedPointIndexes[nonAssignedPointCount – 1]][axis] 
          d2 = InneProduct(d[], d[]) 
          if (d2 <= sampling[lod]) { 
            foundAssignedPointWithinDistanceFlag = 1 
            break 
          } 
        } 
      } 
      if (foundAssignedPointWithinDistance == 1) 
        assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i] 
      else 
        nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i] 
    } 
  } 
  endIndex = assignedPointCount 
  computeNearestNeighbours( 
          startIndex, endIndex,  
          lod, assignedPointIndexes, 
          McodeUnsorted, nonAssignedPointCount, 
          nonAssignedPointIndexes) 
  unprocessedPointCountPerLevelOfDetail[lod+1] = nonAssignedPointCount 
  unprocessedPointCount = nonAssignedPointCount 
  unprocessedPointIndexes = nonAssignedPointIndexes //NOTE the left and the right are 
pointer of the array 
} 

Otherwise (lifting_scalability_enabled_flag is equal to 1), the following is applied; 

endIndex = 0 
assignedPointCount = 0 
for (lod = minGeomNodeSizeLog2; unprocessedPointCount > 0; lod++) { 
  startIndex = assignedPointCount 
  nonAssignedPointCount = 0 
  samplingFromLastFlag = lod & 1 
  for (i = 0; i < unprocessedPointCount; i++) { 
    currVoxelIndex = McodeUnsorted[unprocessedPointIndexes[i]] >> (3×(lod+1)) 
    if (samplingFromLastFlag == 0){ 
      if (i == 0) 
        nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i] 
      else { 
        prevVoxelIndex = McodeUnsorted[unprocessedPointIndexes[i−1]] >> (3×(lod+1)) 
 
        if (currVoxelIndex > prevVoxelIndex) 
          nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i] 
        else 
          assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i] 
      } 
    } else { 
      if (i == (unprocessedPointCount – 1)) 
        nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i] 
      else { 
        nextVoxelIndex = McodeUnsorted[unprocessedPointIndexes[i+1]] >> (3×(lod+1)) 
        if (currVoxelIndex < nextVoxelIndex) 
          nonAssignedPointIndexes[nonAssignedPointCount++] = unprocessedPointIndexes[i] 
        else 
          assignedPointIndexes[assignedPointCount++] = unprocessedPointIndexes[i] 
      } 
    } 
  } 
  endIndex = assignedPointCount 
  if (startIndex != endIndex) { 
    numOfPointInSkipped = PointNumInSlice – PointCount 
    if ((endIndex – startIndex) > (startIndex + numOfPointInSkipped)){ 
      for (loop = 0; loop < lod − minGeomNodeSizeLog2; loop++){ 
        computeNearestNeighbours( 
          PointCount − unprocessedPointCountPerLevelOfDetail[loop], 
          PointCount − unprocessedPointCountPerLevelOfDetail[loop+1], 
          loop + minGeomNodeSizeLog2, assignedPointIndexes, 
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          McodeUnsorted, nonAssignedPointCount, 
          nonAssignedPointIndexes) 
      } 
    } 
  } 
  computeNearestNeighbours( 
          startIndex, endIndex,  
          lod , assignedPointIndexes, 
          McodeUnsorted, nonAssignedPointCount, 
          nonAssignedPointIndexes) 
  unprocessedPointCountPerLevelOfDetail[lod+1] = nonAssignedPointCount 
  unprocessedPointCount = nonAssignedPointCount 
  unprocessedPointIndexes = nonAssignedPointIndexes 
} 

Then, the following procedure is applied: 

for (i = 0; i < PointCount; i++) 
  indexes[PointCount− 1 – i] = assignedPointIndexes[i] 
 
for (lod = 0; lod < LevelDetailCount; lod++) 
  pointCountPerLevelOfDetail[lod] = unprocessedPointCountPerLevelOfDetail[LevelDetailCount 
− 1 − lod] 

 Definition of computeNearestNeighbours() 

Inputs of this process are: 

 two variables startIndex and endIndex indicating the range of points for which the nearest 
neighbours should be computed 

 a variable currentLayer specifying LoD layer number, where a series of the decoded geometry point 
belong 

 an array of point indexes assignedPointIndexes[ i ], where i is in the range of 0 to PointCount − 1, 
inclusive. 

 an array of Morton codes McodeUnsorted[ i ], where i is in the range of 0 to PointCount − 1, inclusive. 

 a variable nonAssignedPointCount specifying the number of non-assigned points. 

 an array of point indexes nonAssignedPointIndexes[ i ], where i is in the range of 0 to PointCount − 1, 
inclusive. 

The outputs of the process are 

 a series of nearest neighbours indexes neighbours[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array of nearest neighbours counts neighboursCount[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

 an array of nearest neighbours squared distances neighboursDistance2[ i ][ n ], where i is in the 
range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, 
inclusive. 

The nearest neighbours of the points are computing as follows. 

if (nonAssignedPointCount == 0) { 
  for (i = startIndex; i < endIndex; i++)  
    neighboursCount[assignedPointIndexes[i]] = 0 
} else { 
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  j = 0 
  for (i = startIndex; i < endIndex; i++) { 
    currentIndex = assignedPointIndexes[i] 
    currentMortonCode = McodeUnsorted[currentIndex] 
    currentPos = PointPos[currentIndex] 
    while (j < nonAssignedPointCount &&  
      currentMortonCode >= McodeUnsorted[nonAssignedPointIndexes[j]) 
      j++ 
    } 
    j = Min(nonAssignedPointCount − 1, j) 
    j0 = Max(0, j − LiftingSearchRange) 
    j1 = Min(nonAssignedPointCount, j + LiftingSearchRange + 1) 
    neighboursCount[currentIndex] = 0 
    k = 0 
    for (k = j0; k < j1 ; k++) {       
      neighbourIndex = nonAssignedPointIndex[k] 
      neighbourPos = PointPos[neighbourIndex] 
      if (lifting_scalability_enabled_flag){ 
        for (axis = 0; axis < 3; axis++) 
          currentPos[axis] = (currentPos[axis] >> currentLayer) << currentLayer 
          neighbourPos[axis] = (neighbourPos[axis] >> currentLayer) << currentLayer 
        } 
      } 
      for (axis = 0; axis < 3; axis++) 
        d[axis] = liftingNeighbourBiasStv[axis]×(currentPos[axis] – neighbourPos[axis]) 
      d2 = InnerProduct(d[], d[]) 
      if (Abs(k − j) <= 3) 
        insertIndex = k − j > 0 ? ((k − j) << 1) − 1 : (j − k) << 1; 
      else if (k > j) 
        insertIndex = 7 + k − j; 
      else 
        insertIndex = LiftingSearchRange + 4 + j − k; 
      if (neighboursCount[currentIndex] < NumPredNearestNeighbours) { 
        p = neighboursCount[currentIndex] 
        neighbours[currentIndex][p] = neighbourIndex; 
        neighboursDistance2[currentIndex][p] = d2 
        neighboursInsertIndex[currentIndex][p] = insertIndex; 
        neighboursCount[currentIndex]++ 
        sortNeighbours(neighboursCount[currentIndex],  
                neighbours[currentIndex],  
                neighboursDistance2[currentIndex] , 
                neighboursInsertIndex[currentIndex]) 
      } else if (d2 < neighboursDistance2[currentIndex ][NumPredNearestNeighbours−1) { 
        neighbours[currentIndex ][NumPredNearestNeighbours−1 = neighbourIndex 
        neighboursDistance2[currentIndex ][NumPredNearestNeighbours−1 = d2 
        neighboursInsertIndex[currentIndex][NumPredNearestNeighbours − 1] = insertIndex 
        sortNeighbours(NumPredNearestNeighbours, 
                neighbours[currentIndex],  
                neighboursDistance2[currentIndex] , 
                neighboursInsertIndex[currentIndex]); 
      }  } 
  if (currentLayer >= LevelDetailCount − IntraLodPredNumLayers) { 
    j1 = Min(endIndex, k + LiftingSearchRange) 
    for (k = i + 1; k < j1; k++) { 
      neighbourIndex = assignedPointIndex[k] 
      neighbourPos = PointPos[neighbourIndex] 
      for (axis = 0; axis < 3; axis++) 
        d[axis] = liftingNeighbourBiasStv[axis]×(currentPos[axis] – neighbourPos[axis]) 
      d2 = InnerProduct(d[], d[]) 
      insertIndex = 2 × LiftingSearchRange + (k − i); 
      if (neighboursCount[currentIndex] < NumPredNearestNeighbours) { 
        p = neighboursCount[currentIndex] 
        neighbours[currentIndex][p] = neighbourIndex 
        neighboursDistance2[currentIndex][p] = d2 
        neighboursInsertIndex[currentIndex][p] = insertIndex 
        neighboursCount[currentIndex]++ 
        sortNeighbours(neighboursCount[currentIndex],  
              neighbours[currentIndex],  
              neighboursDistance2[currentIndex] , 
              neighboursInsertIndex[currentIndex]); 
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      } else if (d2 < neighboursDistance2[currentIndex][NumPredNearestNeighbours – 1]) { 
        neighbours[currentIndex][NumPredNearestNeighbours – 1] = neighbourIndex 
        neighboursDistance2[currentIndex][NumPredNearestNeighbours – 1] = d2 
        neighboursInsertIndex[currentIndex][NumPredNearestNeighbours − 1] = insertIndex 
        sortNeighbours(NumPredNearestNeighbours, 
                neighbours[currentIndex],  
                neighboursDistance2[currentIndex] , 
                neighboursInsertIndex[currentIndex]) 
      } 
    } 
  } 
} 

 Definition of sortNeighbours() 

Inputs of this process are: 

 a variable neighboursCount indicating the number of nearest neighbours for the current point. 
neighboursCount i is in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array of nearest neighbours indexes neighbours[ n ], where n in the range of 0 to 
neighboursCount − 1, inclusive. 

 an array of nearest neighbours squared distances neighboursDistance2[ n ], where n in the range of 
0 to neighboursCount − 1, inclusive.  

 an array of nearest neighbours insert index neighboursInsertIndex[ n ], where n in the range of 0 to 
neighboursCount − 1, inclusive. 

The process sortNeighbours() sorts the arrays neighbours[ n ],,],, neighboursDistance2[ n ] and 
neighboursInsertIndex[ n ], according to the increasing values of neighboursDistance2[ n ]. Herein, when 
two more than neighbours[ n ] have same neighboursDistance2[ n ], neighbours[ n ] where smaller 
neighboursInsertIndex[ n ] is assigned is sorted by priority. 

 Prediction weights derivation process 

The inputs of this process are: 

 a series of nearest neighbours indexes neighbours[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array of nearest neighbours counts neighboursCount[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

 an array of nearest neighbours squared distances neighboursDistance2[ i ][ n ], where i is in the 
range of 0 to PointCount − 1, inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, 
inclusive. 

The output is: 

 an array of prediction predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, 
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

The prediction weights derivation process proceeds as follows: 

MaxWeightValue = 1 << 8; 
for (i = 0; i < PointCount; i++) { 
  while (neighboursCount[i] > 1 && 
    neighboursDistance2[i][0] > 0 && 
    (neighboursDistance2[neighbourCount[i] −1][0] >> 8) >  
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      neighboursDistance2[i][0]) { 
    neighboursCount[i]−−; 
  } 
  if (neighboursCount[i]< 2 || neighboursDistance2[i][0]== 0) { 
    neighboursCount[i]= 1; 
    predictionWeights[i][0] = MaxWeightValue; 
  } else { 
    bitCount = iLog2(neighboursDistance2[i][0]) + 2; 
    shiftDistance = bitCount > 8 ? bitCount − 8 : 0; 
    biasDistance = ((1 << shift) >> 1); 
    if (neighboursCount[i]== 2) { 
      d0 = (neighboursDistance2[i][0] + biasDistance) >> shiftDistance; 
      d1 = (neighboursDistance2[i][1]+ biasDistance) >> shiftDistance; 
      sum = d1 + d0; 
      sumDiv2 = sum >> 1; 
      w1 = ((d0 << 8) + sumDiv2) / sum; 
      predictionWeights[i][0]  = MaxWeightValue − w1; 
      predictionWeights[i][1] = w1; 
    } else { 
      neighboursCount[i] = 3; 
      d0 = (neighboursDistance2[i][0] + biasDistance) >> shiftDistance; 
      d1 = (neighboursDistance2[i][1]+ biasDistance) >> shiftDistance; 
      d2 = (neighboursDistance2[i][2]+ biasDistance) >> shiftDistance; 
      d0d1 = d0 × d1; 
      d0d2 = d0 × d2; 
      d1d2 = d1 × d2; 
      sum = d1d2 + d0d1 + d0d2; 
      sumDiv2 = sum >> 1; 
      r = ((1 << 31) + sumDiv2) / sum; 
      biasWeight = 1 << (shift − 1); 
      w2 = (d0d1 × r + biasWeight) >> 23; 
      w1 = (d0d2 × r + biasWeight) >> 23; 
      predictionWeights[i][0]  = MaxWeightValue − (w1 + w2); 
      predictionWeights[i][1]  = w1; 
      predictionWeights[i][2]  = w2; 
    } 
  } 
} 

 Quantization weights derivation process 
The inputs of this process are: 

 an array of point indexes indexes[ i ], where i is in the range of 0 to PointCount − 1, inclusive. 

 a series of nearest neighbours indexes neighbours[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array of nearest neighbours counts neighboursCount[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

 an array of prediction predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, 
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array of the number of the decoded points per LoD pointNumPerLoD[ k ], where k is in the range 
of 0 to LevelDetailCount − 1, inclusive. 

The output is: 

 an array of quantization weights quantizationWeights[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

The quantization weights derivation procedure proceeds as follows. 



© ISO/IEC 2020 – All rights reserved 

© ISO/IEC 2020 – All rights reserved 85 

If lifting_scalability_enabled_flag is equal to 0, the following is applied: 

for (i = 0; i < PointCount; i++) 
  quantizationWeights[i] = 1 << 8 
 
for (i = PointCount − 1; i >= 0; i−−) { 
  index = indexes[i] 
  for (p = 0; p < neighboursCount[index]; p++) { 
    neighbour = neighbours[index][p] 
    quantizationWeights[neighbour] += divExp2RoundHalfInf( 
          predictionWeights[neighbour] ×quantizationWeights[neighbour], 
          8) 
  } 
} 
 
for (i = 0; i < PointCount; i++) 
  quantizationWeights[i] = iSqrt(quantizationWeights[i]) 

Otherwise (lifting_scalability_enabled_flag is equal to 1), the following is applied: 

index = 0 
startIndex = 0 
for (lodIndex = 0; lodIndex < lodCount; lodIndex++) { 
  for (i = 0; i < pointNumPerLoD[lodIndex]; i++) 
    quantizationWeights[index++] =  
        ((PointNumInSlice − startIndex)/pointNumPerLoD[lodIndex])) × (1 << 8) 
  startIndex += pointNumPerLoD[lodIndex] 
} 

 Inverse quantization process  

Inputs of this process are: 

 an array of quantization weights quantizationWeights[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

The output of the process is 

 a series of the unquantized attribute coefficients unquantAttributeCoefficients[ i ][ a ], where i is in 
the range of 0 to PointCount − 1, inclusive, and a in the range of 0 to AttrDim − 1, inclusive. 

The inverse quantization process proceeds as follows. 

endIndex = pointCountPerLevelOfDetail[0] 
for (i = 0, d = 0; i < PointCount; i++) { 
  if (i == endIndex) { 
    endIndex = pointCountPerLevelOfDetail[++d]; 
    layerQpY = d < NumLayerQP ? SliceQpY[d] : SliceQpY[NumLayerQP – 1]; 
    layerQpC = d < NumLayerQP ? SliceQpC[d] : SliceQpC[NumLayerQP – 1]; 
  } 
 
  regionBoxDeltaQp = 0; 
  if (ash_attr_region_qp_delta_present_flag == 1){ 
    isPointInRegion = 1 
    for (k = 0; k < 3; k++) 
      isPointInRegion &= 
          AttrRegionQpOrigin[k] <= PointPos[i][k] 
       && PointPos[i][k] < AttrRegionQpOrigin[k] + AttrRegionQpSize[k] 
 
    if (isPointInRegion) 
      regionBoxDeltaQp = RegionboxDeltaQp 
  } 
 
  qstepY = QpToQstep(layerQpY + regionBoxDeltaQp, 1); 
  qstepC = QpToQstep(layerQpC + regionBoxDeltaQp, 0); 
  for (a = 0; a < AttrDim; a++) 
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    unquantAttributeCoefficients[i][a] = residual_values[a][i] × (!a ? qstepY : qstepC); 
} 

 Inverse lifting 

Inputs of this process are: 

 a series of attribute coefficients attributeCoefficients[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive. 

 an array of quantization weights quantizationWeights[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

 an array of prediction predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, 
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

The process updates the attributes coefficients attributeCoefficients. It proceeds as follows. 

for (lod = 1; lod < LevelDetailCount; lod++) { 
  startIndex = pointCountPerLevelOfDetail[lod – 1]; 
  endIndex = pointCountPerLevelOfDetail[lod]; 
  inverseUpdate(startIndex, endIndex, attributeCoefficients, quantizationWeights and 
predictionWeights); 
  inversePrediction(startIndex, endIndex, attributeCoefficients, and predictionWeights); 
} 

 Definition of inverseUpdate() 

Inputs of this process are: 

 a series of attribute coefficients attributeCoefficients[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive. 

 an array of prediction predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, 
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

The process updates the attribute coefficients attributeCoefficients. It proceeds as follows. 

for (i = 0; i < startIndex; i++) { 
  updateWeights[i] = 0; 
  for (j = 0; j < AttrDim; j++) 
    updates[i][j] = 0 
} 
 
for (i = 0; i < (endIndex − startIndex); i++) { 
  index = predictorCount − i − 1 + startIndex; 
  currentQuantWeight = quantizationWeights[index]; 
  for (p = 0; p < neighboursCount[index]; p++) { 
    neighbourIndex = neighbours[index][p]; 
    weight = predictionWeights[index][p] × currentQuantWeight; 
    updateWeights[neighbourIndex] += weight; 
    for (j = 0; j < AttrDim; j++) 
      updates[neighbourIndex][j] += weight × attributeCoefficients[index][j]; 
  } 
} 
 
for (i = 0; i < startIndex; i++) { 
  if (updateWeights[i] > 0) { 
    bias = updateWeights[i] >> 1; 
    for (j = 0; j < AttrDim; j++) 
      attributeCoefficients[index][j] −= (updates[i][j] + bias) / updateWeights[i]; 
  } 
} 
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 Definition of inversePrediction() 

Inputs of this process are: 

 a series of attribute coefficients attributeCoefficients[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive. 

 an array of quantization weights quantizationWeights[ i ], where i is in the range of 0 to 
PointCount − 1, inclusive. 

 an array of prediction predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, 
inclusive, and n in the range of 0 to NumPredNearestNeighbours − 1, inclusive. 

 an array pointCountPerLevelOfDetail[l], where l is in the range of 0 to LevelDetailCount − 1, inclusive. 

The process updates the attribute coefficients attributeCoefficients. It proceeds as follows. 

pointCount = endIndex − startIndex; 
for (i = 0; i < pointCount; i++) { 
  index = predictorCount − i − 1 + startIndex; 
  for (j = 0; j < AttrDim; j++) { 
    predicted = 0; 
    for (p = 0; p < neighboursCount[index]; p++) { 
      neighbourIndex = neighbours[index][p]; 
      predicted += predictionWeights[index][p] × attributeCoefficients[neighbourIndex][j]; 
    } 
    attributeCoefficients[neighbourIndex][j] += divExp2RoundHalfInf(predicted, 8); 
  } 
} 

 LoD with Predicting Transform decoding process 

The output of the process is 

 a series of the decoded attribute values attributeValues[ i ][ j ], where i is in the range of 0 to 
PointCount − 1, inclusive, and j in the range of 0 to AttrDim − 1, inclusive. 

This process invokes the sub-processes in the following order. 

 The level of detail generation process in clause 8.3.2.1 is invoked.The output of this process are 
stored in indexes[ i ], neighbours[ i ][ n ], neighboursCount[ i ], neighboursDistance2[ i ][ n ], and 
pointCountPerLevelOfDetail[l], where i is in the range of 0 to PointCount − 1, inclusive, n in the range of 
0 to NumPredNearestNeighbours − 1, inclusive, l is in the range of 0 to LevelDetailCount, inclusive. 

 The Prediction weight derivation process in 8.3.2.4 is invoked with the parameters neighbours, 
neighboursCount and neighboursDistance2. The output of this process is stored in 
predictionWeights[ i ][ n ], where i is in the range of 0 to PointCount − 1, inclusive, and n in the range of 
0 to NumPredNearestNeighbours − 1, inclusive. 

 The inverse quantization process in 8.3.2.6 is invoked with the parameters indexes, neighbours, 
neighboursCount and predictionWeights. The output of this process is stored in 
unquantAttributeCoefficients[ i ][ j ], where i is in the range of 0 to PointCount − 1, inclusive, and j in the 
range of 0 to AttrDim − 1, inclusive. 

The reconstructed attributes values are obtained as follows. 

q = 0; 
for (i = 0; i < PointCount; i++) { 
  currentIndex = indexes[i]; 
  for (j = 0; j < AttrDim; j++) { 
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    minPredAttribute[j] = 0; 
    maxPredAttribute[j] = 0; 
    predicted[j] = 0; 
  } 
  for (p = 0; p < neighboursCount[index]; p++) { 
    neighbourIndex = neighbours[index][p]; 
    for (j = 0; j < AttrDim; j++) { 
      if (p == 0 || minPredAttribute[j] > attributeValues[neighbourIndex][j]) 
        minPredAttribute[j] = attributeValues[neighbourIndex][j]; 
      if (p == 0 || maxPredAttribute[j] < attributeValues[neighbourIndex][j]) 
        maxPredAttribute[j] = attributeValues[neighbourIndex][j]; 
    } 
  } 
  maxDiff = maxPredAttribute[0] – minPredAttribute[0]; 
  for (j = 1; j < AttrDim; j++) 
    maxDiff = Max(maxDiff, maxPredAttribute[j] – minPredAttribute[j]); 
  if (maxDiff > AdaptivePredictionThreshold) 
    predMode = pred_index[i]; 
  else 
    predMode = 0; 
  if (predMode > 0) { 
    neighbourIndex = neighbours[index][predMode −1]; 
    for (j = 1; j < AttrDim; j++) 
      predicted[j] = attributeValues[neighbourIndex][j]; 
  } else { 
    for (j = 0; j < AttrDim; j++) { 
      for (p = 0; p < neighboursCount[index]; p++) { 
        neighbourIndex = neighbours[index][p]; 
        weight = predictionWeights[index][p]; 
        predicted[j] += weight × attributeValues[neighbourIndex][j]; 
      } 
      predicted[j] = divExp2RoundHalfInf(predicted[j], 8); 
    } 
  } 
  for (j = 0; j < AttrDim; j++) 
    res[j] = divExp2RoundHalfInf(unquantAttributeCoefficients[currentIndex][j], 8); 
  for (j = 0; j < AttrDim; j++) { 
    attributeValue = predicted[j] + res[j] + (j > 0 ? res[0] : 0); 
    if (AttrDim == 0) 
      maxAttribute = (1 << (attribute_bitdepth_minus1[ash_attr_sps_attr_idx] + 1)) − 1 
    else 
      maxAttribute = (1 << (attribute_secondary_bitdepth_minus1[ash_attr_sps_attr_idx] + 
1)) − 1 
    attributeValues[currentIndex][j] = Clip(attributeValue, 0, maxAttribute); 
  } 
} 

8.4 Slice concatenation process 

The outputs of this process are: 

– the modified array RecPic with elements RecPic[ pointIdx ][ attrIdx ] representing points in the 
reconstructed point cloud frame, and 

– the modified variable RecPicPointCount representing the number of points in the reconstructed 
point cloud frame. 

RecPicPointCount is initialized to 0. 

The points and attributes from the current slice are concatenated with the reconstructed point cloud 
frame as follows: 

for (pointIdx = 0; pointIdx <= gsh_num_points_minus1; pointIdx++, RecPicPointCound++) { 
  for (axis = 0; axis < 3; axis++) 
    RecPic[RecPicPointCount][axis] = PointPos[pointIdx][axis]; 
  for (cIdx = 0; cIdx < NumAttributeComponents; cIdx++) 
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    RecPic[RecPicPointCount][3 + cIdx] = pointAttr[pointIdx][cIdx]; 
} 

9 Parsing process 

9.1 General 

This process is invoked when the descriptor of a syntax element in the syntx tables in 7.3 is equal to u(n), 
ue(v), se(v), ae(v), or de(v).  

The output of this process is a syntax element value. 

The array DataUnitBytes, with elements DataUnitBytes[ i ], i = 0 .. DataUnitLength − 1, represents a coded 
data unit as a sequence of bytes.  When parsing the first syntax element of a data unit, DataUnitBytes is 
set equal to the byte array provided by an encapsulation format (such as Annex B) or by an external 
means.  The function readDataUnitBit( ) provides access to the bitstream as described in 9.2. 

When sps_bypass_stream_enabled_flag is equal to 1, each data unit represents a header part and one or 
more sequences of chunk interleaved substreams.  Parsing of the geometry slice and attribute slice syntax 
structures proceeds as follows: 

− At the start of parsing the data unit, the variable entropyStreamIdx is initialized to 0. 

− The variable ChunkSeqLen is derived as follows: 

− When parsing the geometry slice syntax, if entropyStreamIdx is less than 
EntropyStreamCnt − 1, ChunkSeqLen is set equal to 
gsh_entropy_stream_len[ entropyStreamIdx ]. 

− Otherwise, ChunkSeqLen is set equal to DataUnitLength − ( DataUnitReadIdx >> 3 ) 

− The arrays AeByteStream and BypassBitStream represent streams of non-bypass arithmetic coded 
bins and directly coded bypass bins respectively. 

− The chunk interleaved substreams parsing process (9.2) is invoked with the input variable 
ChunkSeqLen and the output arrays AeByteStream and BypassBitstream as follows: 

− At the start of parsing the geometry_slice_data syntax structure. 

− At the start of pasing the geometry_node_syntax structure when GeomEntropyStreamCnt is 
greater than 1, nodeIdx is equal to 0, and the variable depth is greater than or equal to 
GeomEntropyStreamDepth. 

− At the start of parsing the attribute_slice_data syntax structure. 

− entropyStreamIdx is incremented by 1. 

When GeomEntropyStreamCnt is greater than 1, the parsing state may be memorized or restored when 
starting to parse the geometry_node syntax structure (7.3.3.4) as follows: 

− The parsing state memorization process (9.11) is invoked when nodeIdx is equal to 0 and depth is 
equal to GeomEntropyStreamDepth. 

− The parsing state restoration process (9.12) is invoked when nodeIdx is equal to 0 and depth is 
greater than or equal to GeomEntropyStreamDepth. 
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The output syntax element value is parsed according to the processes corresponding to the syntax 
element’s descriptor and name in Table 21 and Table 22. 

Table 21 — Descriptor passing process 

Descriptor Process Channel read method 
u(n) 9.6.1 readDataUnitBit( ) 
ue(v) 9.6.2 readDataUnitBit( ) 
s(n) 9.6.1, 9.6.4 readDataUnitBit( ) 
se(v) 9.6.2, 9.6.4 readDataUnitBit( ) 
ae(v) 9.10.1 readBin( ) 
de(v) 9.9.1 readBin( ) 

 

Table 22 — Syntax element specific parsing processes 

Syntax structure Syntax element Parsing process 
geometry_node( ) geom_node_qp_offset_eq0_flag 9.6.1 (FL), numBins = 1 
 geom_node_qp_offset_sign_flag 9.6.1 (FL), numBins = 1 
 geom_node_qp_offset_abs_minus1 9.6.2 (EGk), k = 0 
 single_occupancy_flag 9.6.1 (FL), numBins = 1 
 occupancy_idx[] 9.6.1 (FL), numBins = 3 
 occypancy_map 9.7.5 
 occupancy_byte 9.9.1 
 num_points_eq1_flag[ ] 9.6.1 (FL), numBins = 1 
 num_points_minus2[ ] 9.6.2 (EGk), k = 0 
 is_planar_flag[ ][ ] 9.6.1 (FL), numBins = 1 
 plane_position[ ][ ] 9.6.1 (FL), numBins = 1 
 direct_mode_flag 9.6.1 (FL), numBins = 1 
 num_direct_points_gt1  9.6.1 (FL), numBins = 1 
 not_duplicated_point_flag 9.6.1 (FL), numBins = 1 
 num_direct_points_eq2_flag 9.6.1 (FL), numBins = 1 
 num_points_direct_mode_minus3 9.6.2 (EGk), k = 0 
 point_offset_s[ ][ ] 

point_offset_t[ ][ ] 
point_offset_v[ ][ ] 

9.6.1 (FL), numBins = 1 

geometry_trisoup_data( ) trisoup_sampling_value_minus1 9.4.2 (EGk), k = 0 
 num_unique_segments_minus1[ ] 9.6.2 (EGk), k = 0 
 segment_indicator[ ] 9.6.1 (FL), numBins = 1 
 num_vertices_minus1[ ] 9.6.2 (EGk), k = 0 
 vertex_position[ ] 9.6.3 (TU), 

maxVal = ( 1 << 
trisoup_node_size_log2 ) + 1 

attribute_slice_data( ) all_residual_values_equal_to_zero_run 9.6.3 (TU), 
maxVal = TBD 

 pred_index 9.6.3 (TU), 
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Syntax structure Syntax element Parsing process 
maxVal = MaxNumPredictors 

attribute_coding( ) residual_values_equal_to_zero 9.6.1 (FL), numBins = 1 
 residual_values_equal_to_one 9.6.1 (FL), numBins = 1 
 remaining_values[ ][ ] 9.6.2 (EGk), k = 0 
dictionary_encoded_value( ) dict_lut0_hit_flag 9.6.1 (FL), numBins = 1 
 dict_lut1_hit_flag 9.6.1 (FL), numBins = 1 
 dict_lut0_idx XXXREF 
 dict_lut1_idx 9.6.1 (FL), numBins = 4 
 dict_direct_value 9.6.1 (FL), numBins = 8 

 

9.2 Chunked bytestream parsing process 

 General 

The input to this process is the variable ChunkSeqLen representing the length in bytes of a sequence of 
chunks. 

The output of this process are: 

− The array AeByteStream consisting of bytes of an arithmetic coded data stream. 

− The variable AeStreamReadIdx, representing the read position of the AeByteStream. 

− The array BypassBitStream consisting of bits of a bypass data stream. 

− The variable BypassStreamReadIdx, representing the read position of the BypassBitStream. 

A chunked bytestream sequence consists of one or more chunks.  With the exception of the last chunk in 
a sequence, all chunks are 256 bytes in length.  The final chunk may be truncated to ChunkSeqLen % 256 
bytes.  Each chunk contains data from one or both of the arithmetic coded data stream and a bypass bin 
data stream. 

The variables AeStreamReadIdx and AeBypassStreamReadIdx are both initialized to 0. 

The arrays AeByteStream and BypassBitSteram are assembled according to the following syntax (9.2.2) 
and semantics (9.2.3). 

 Syntax 

 Chunked bytestream sequence syntax 

ae_chunk_sequence( ) { Descriptor 
  for( chunkOffset = 0; chunkOffset < ChunkSeqLen; chunkOffset += 
256 ) 

 

    ae_chunk( Min( 256, chunkSeqLen − chunkSeqOffset ) )  
}  
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 Chunked bytestream chunk syntax 

ae_chunk( chunkLen ) { Descriptor 
  chunk_num_ae_bytes u(8) 
  for( i = 0; i < num_ae_bytes; i++ )  
    chunk_ae_byte[ i ] u(8) 
  for( j = 0; i < chunkLen − 1; j++, i++ ) {  
    if( i < chunkLen − 2 )  
      chunk_bypass_byte[ j ] u(8) 
    else {  
      chunk_bypass_5bits u(5) 
      chunk_bypass_num_flushed_bits u(3) 
  }  
}  

 

 Semantics 

 Chunked bytestream sequence semantics 

This clause is intentionally empty. 

 Chunked bytestream chunk semantics 

The contents of each chunk is concatenated to the arrays AeByteStream and BypassBitStream. 

chunk_num_ae_bytes indicates the number of chunk_ae_byte and chunk_bypass_byte elements present 
in a chunk.  When not present, the value of chunk_num_ae_bytes is inferred to be 0.  It is a requirement of 
bitstream conformance that chunk_num_ae_bytes is less than chunkLen. 

chunk_ae_byte[ i ] specifies the i-th byte of the arithmetically encoded symbol sub-stream of the current 
chunk.  Each chunk_ae_byte[ i ] is appended to the AeByteStream array as follows: 

for (i = 0; i < chunk_num_ae_bytes; i++) 
  AeByteStream[AeStreamLen++] = chunk_ae_byte[i] 

chunk_bypass_byte[ j ] specifies the j-th byte of the bypass symbol sub-stream of the current chunk. 
Each chunk_bypass_byte is appended to the BypassBitStream array as follows: 

numChunkBypassBytes = Max(0, chunkLen − 2 − chunk_num_ae_bytes) 
for (j = 0; j < numChunkBypassBytes; j++) 
  for (b = 7; b >= 0; b−−) 
    BypassBitStream[BypassBitStreamLen++] = (chunk_bypass_byte[j] >> b) & 1 

chunk_bypass_5bits specifies the values of five bypass bits at the end of the bypass symbol sub-stream 
of the current chunk.  Each bit is appended to the BypassBitStream array as follows: 

for (b = 4; b >= 0; b−−) 
  BypassBitStream[BypassBitStreamLen++] = (chunk_bypass_5bits >> b) & 1 

chunk_bypass_num_flushed_bits specifies the number of bypass bits to be discarded from the end of 
the BypassBitStream. 

BypassBitstreamLen −= chunk_bypass_num_flushed_bits 
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9.3 Definition of readDataUnitBit 

The inputs to this process are the current data unit byte array DataUnitBytes and the associated read 
position DataUnitReadIdx. 

The outputs of this process are the next bit read from the data unit, and the updated data unit read 
position. 

On the first invocation of this process for the current data unit, the variable DataUnitReadIdx is set equal 
to 0. 

The output value bitVal is determined as follows: 

byteIdx = DataUnitReadIdx >> 3 
bitMask = 0x80 >> (DataUnitReadIdx & 7) 
bitVal = DataUnitBytes[byteIdx] & bitMask != 0 

After determining bitVal, the variable DataUnitReadIdx is incremented by one. 

9.4 Definition of readAeStreamBit 

If sps_bypass_stream_enabled_flag is equal to 0, this process is equivalent to invoking readDataUnitBit 
(9.3). 

Otherwise, sps_bypass_stream_enabled_flag equal to 1, the outputs of this process are the next bit read 
from the AeByteStream array, and the updated AeByteStream read position. 

The output value bitVal is determined as follows: 

byteIdx = AeStreamReadIdx >> 3 
bitMask = 0x80 >> (AeStreamReadIdx & 7) 
bitVal = AeByteStream[byteIdx] & bitMask != 0 

After determining bitVal, the variable AeReadIdx is incremented by one. 

9.5 Definition of readBypassStreamBit 

The outputs of this process are the next bypass bit read from the BypassBitStream array, and an updated 
BypassBitStream read position. 

The output value bitVal is determined as follows: 

bitVal = BypassBitStream[BypassBitsteramReadIdx] 

After determining bitVal, the variable BypassBitStreamReadIdx is incremented by one. 

9.6 General inverse binarisation processes 

 Parsing of fixed-length codes 

The inputs to this process are the value numBits, indicating the number of bits that represent the syntax 
element, and the channel read function readBit( ). 

The output from this process is an unsigned syntax element value, constructed as follows: 

value = 0; 
for (BinIdx = 0; BinIdx < numBits; BinIdx++) 
  value = (value << 1) + readBit() 
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 Parsing of k-th order exp-Golomb codes 

The inputs to this process are the value k, indicating the order of the exp-Golomb code used to represent 
the syntax element, and the channel read function readBit( ). 

The output from this process is an unsigned syntax element value, determined as follows: 

First, a unary encoded prefix is determined as follows: 

prefix = 0 
for (BinIdx = 0; readBit() == 1; BinIdx++) 
  prefix++ 

Then, a suffix consisting of k + prefix bins is determined as follows 

suffix = 0; 
for (i = 0; i < k + prefix; i++) 
  suffix = (suffix << 1) + readBit(); 

Finally, the syntax element value is constructed as follows 

value = ((1 << prefix) − 1) × k + suffix 

 Parsing of truncated unary codes 

The inputs to this process are the value maxVal, and the channel read function readBit( ). 

The output from this process is an unsigned syntax element value, determined as follows: 

value = 0 
for (BinIdx = 0; value < maxVal && readBit() == 1; BinIdx++) 
  value++ 

 Mapping process for signed codes 

Input to this process is an unsigned syntax element value, unsignedVal. 

Output from this process is the signed syntax element value, determined as follows: 

 If unsignedVal is even, the outputis is set equal to unsignedVal >> 1, 

 Otherwise, if unsignedVal is odd, the output is set equal to (unsignedVal + 1) >> 1. 

Table 23 illustrates an example of the mapping process. 

Table 23 — Conversion of unsigned values for signed syntax elements (informative) 

Unsigned value Signed value 
0 0 
1 −1 
2 1 
3 −2 
4 2 
5 −3 
6 3 
... ... 
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9.7 Bit-wise geometry octree occupancy parsing process  

 General process 

The parsing and inverse binarization of the arithmetically coded syntax element occupancy_map is 
described in 9.7.5 

The decoding of each arithmetically encoded bin in occupancy_map involves a context selection process 
that makes use of a dynamic map (the array CtxMap) to select a context (9.7.7) based upon the occupancy 
state of neighbouring nodes, predicted occupancy values ((9.7.9) and previously decoded bins. After 
decoding a bin, CtxMap is updated based upon the decoded bin value (9.7.8). 

At the start of decoding a geometrydata unit, CtxMap is initialized according to 9.7.2. 

 NOTE — While the described process updates CtxMap after decoding each bin, there is no 
dependency by subsequent bins on the updated value. 

 Initialisation process 

This process is invoked at the start of each geometry data unit. 

The output from this process is the initialized array CtxMap with entries CtxMap[ i ] for i in the range 0 
to 1499 × 3 set equal to 127. 

 Determination of planar masks used in the inverse binarization process 

Two 8-bit binary masks mask_planar_fixed0[axisIdx] and mask_planar[axisIdx] are determined for the  
current node and for an axis index axisIdx.  

The first mask mask_planar_fixed0[axisIdx] is constructed that such its i-th bit, for i = 0 .. 7, is set to 1 if 
the corresponding i-th child node belongs to the lower plane along the axisIdx-th axis. This bit is set 0 if 
the child node belongs to the upper plane.  

If the node is not planar along the axisIdx-th axis, i.e. is_planar_flag[nodeIdx ][ axisIdx] is equal to 0, then 
mask_planar[axisIdx] is set to 0.  

Otherwise, if is_planar_flag[ nodeIdx ][ axisIdx ] is equal to 1, the node is planar along the axisIdx-th axis, 
the occupied plane position is known from plane_position[ nodeIdx ][ axisIdx ], and the i-th bit, for 
i = 0 .. 7, of mask_planar[ axisIdx ] is set to 0 if the corresponding i-th child node belongs to the occupied 
plane, 1 otherwise.  

By construction of mask_planar[axisIdx], its bits whose value is 1 do mask the occupancy bits 
corresponding to child nodes for which it is known, from the planar information, that they are not 
occupied. 

 Occupancy_idx[] parsing process 

When occupancy_idx[axisIdx], for axisIdx in the range 0 .. 2, is not present, the value of 
occupancy_idx[axisIdx] is inferred by the corresponding plane position, if the latter is present, as follows,   

if (is_planar_flag[nodeIdx ][axisIdx])   
  occupancy_idx[axisIdx] = plane_position[nodeIdx][axisIdx] 
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If all three values occupancy_idx[axisIdx] are either present or inferred by the corresponding plane 
position ,the following applies: 

OccupancyMap = 1 << (occupancy_idx[2] | (occupancy_idx[1] << 1) | (occupancy_idx[0] << 2)) 

If single_occupancy_flag is equal to 0, two_planar_flag[nodeIdx] is equal to 1, and 
is_planar_flag[nodeIdx][axisIdx] is equal to 0, for an axis index axisIdx, then only two child nodes are 
occupied along the axisIdx-th axis. In this case, OccupancyMap is determined as follows 

if (!single_occupancy_flag && two_planar_flag[nodeIdx]) { 
  if (!is_planar_flag[nodeIdx][0]) 
    OccupancyMap = 
        (1 << (occupancy_idx[2] | (occupancy_idx[1] << 1))) 
      | (1 << (occupancy_idx[2] | (occupancy_idx[1] << 1) | 1 << 2)) 
 
  if (!is_planar_flag[nodeIdx][1]) 
    OccupancyMap = 
        (1 << (occupancy_idx[2] | (occupancy_idx[0] << 2))) 
      | (1 << (occupancy_idx[2] | 1 << 1 | (occupancy_idx[0] << 2))) 
 
  if (!is_planar_flag[nodeIdx][2]) 
    OccupancyMap = 
        (1 << (occupancy_idx[1] << 1 | (occupancy_idx[0] << 2))) 
      | (1 << (1 | occupancy_idx[1] << 1 | (occupancy_idx[0] << 2))) 
} 
 
OccupancyMap = 1 << (occupancy_idx[2] | (occupancy_idx[1] << 1) | (occupancy_idx[0] << 2)) 

 Inverse binarization process 

This process reconstructs a value of the syntax element occupancy_map.The input to this process is the 
variables NeighbourPattern and the planar information mask_planar[] and mask_planar_fixed0[] 
associated with the current node. 

The output from this process is the syntax element value, constructed as follows: 

value = 0 
min_non_zero_node = NeighbourPattern == 0 ? 2 : 1 
for (axisIdx = 0; axisIdx <= 2; axisIdx++) 
  min_non_zero_plane[axisIdx] = NeighbourPattern == 0 && mask_planar[axisIdx] ? 2 :1  
 
initialize_counters_for_zeros()  
for (BinIdx = 0; BinIdx < 8; BinIdx++) { 
  binIsInferred0 = 
      ((mask_planar[0] >> bitCodingOrder[BinIdx]) & 1) 
   || ((mask_planar[1] >> bitCodingOrder[BinIdx]) & 1) 
   || ((mask_planar[2] >> bitCodingOrder[BinIdx]) & 1) 
 
  if (binIsInferred0) { 
    bin = 0 
    continue 
  } 
 
  determine_binIsInferred1() 
  if (binIsInferred1) 
    bin = 1 
  else { 
    bin = readOccBin() 
    if (!bin) 
      update_counters_for_zeros() 
  } 
  value = value | (bin << bitCodingOrder[BinIdx]) 
} 

where bitCodingOrder[ BinIdx ] is defined by Table 24, and readOccBin() is specified by 9.7.6, 
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Table 24 — Values of bitCodingOrder[i] 

i 0 1 2 3 4 5 6 7 
value 1 7 5 3 2 6 4 0 

 

The variable binIsInferred0 is set equal to 1 when the value of the bin can be deduced to be 0 from the 
planar information associated with the node, e.g. when the bin corresponds to the occupancy bit of a child 
node that belongs to a plane known to be unoccupied from the planar information. Otherwise, 
binIsInferred0 is set equal to 0. 

If binIsInferred0 equal 0, the variable binIsInferred1 is set equal to 1 when the value of the bin can be 
deduced to be 1 from the planar information, the minimum number min_non_zero_node of non-zero bins 
in the node, and the minimum number min_non_zero_plane[axisIdx] of non-zero bins in the occupied 
plane along the axisIdx-th axis (would the node be palnar along this axis). Otherwise, binIsInferred1 is 
set equal to 0. 

The value of binIsInferred1 is determined based on counters coded0[axisIdx][planePos] that counts the 
number of occupancy bits already known to be zero for a plane position planePos (either equal to 0 for 
the lower plane,  or equal to 1 for the upper plane)  along the axisIdx-th axis. The counters are initialized 
at the start of the inverse binarization process as follows  

initialize_counters_for_zeros() { 
  for (axisIdx = 0; axisIdx <= 2; axisIdx++)  
    for (planePos = 0; planePos <= 1; planePos++)  
      coded0[axisIdx][planePos] = 0 
  for (i = 0; i < 8; i++) { 
    if ((mask_planar[0] >> i) & 1 || ((mask_planar[1] >> i) & 1 || ((mask_planar[2] >> i) 
& 1) { 
      coded0[0][(mask_planar_fixed0[0] >> i) & 1]++ 
      coded0[1][(mask_planar_fixed0[1] >> i) & 1]++ 
      coded0[2][(mask_planar_fixed0[2] >> i) & 1]++ 
    } 
  } 
} 

Thus, the counters coded0[][] are initialized counting the number of occupancy bits known to be zero 
from the planar information. Each time a bin is decoded by readOccBin( ) and this decoded bin is equal 
to 0, the counters coded0[][] are updated by 

update_counters_for_zeros() { 
  coded0[0][(mask_planar_fixed0[0] >> bitCodingOrder[BinIdx]) & 1]++ 
  coded0[1][(mask_planar_fixed0[1] >> bitCodingOrder[BinIdx]) & 1]++ 
  coded0[2][(mask_planar_fixed0[2] >> bitCodingOrder[BinIdx]) & 1]++ 
} 

When binIsInferred0 equal 0, the determaination of the value of binIsInferred1 performed as follows  

determine_ binIsInferred1() { 
  for (axisIdx = 0; axisIdx <= 2; axisIdx ++) { 
    mask0 = mask_planar_fixed0[axisIdx] >> bitCodingOrder[BinIdx]) & 1   
    binIsOne[axisIdx] = 
        (eligible_planar_flag[axisIdx] 
          && coded0[axisIdx][mask0] >= 4− min_non_zero_plane[axisIdx]) 
      || coded0[axisIdx][0] + coded0[axisIdx][0] >= 8 − min_non_zero_node 
  } 
  binIsInferred0 = binIsOne[0] || binIsOne[1] || binIsOne[2] 
} 

In this process binIsOne[axisIdx] is equal to 1 when the bin can be deduced to be 1 from the planar 
information along the  axisIdx-th axis; it is equal to 0 otherwise.  This deduction can be performed because 
either the node the planarity of the node is known and already at least 4 − min_non_zero_plane[axisIdx] 
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bins are known to be or have been decoded to zero, or already at least 8 − min_non_zero_node bins are 
known to be or have been decoded to zero. 

 Definition of readOccBin() 

The inputs to this process are the variables BinIdx, and PartialSynVal. 

The output from this process is the value of the decoded bin. 

The process for a decoding a single bin is as follows: 

 The variables ctxMapIdx and ctxIdx are determined according to the derivation process 9.7.7 with 
the variables NeighbourPattern, BinIdx, and PartialSynVal as input. 

 The arithmetic decoding process 9.10.2 for a single bin is invoked for the syntax element 
occupancy_map with the variable ctxIdx as input.  The output binVal is the value of the decoded bin. 

 The context map update process 9.7.8 is invoked with the variable ctxMapIdx and the decoded bin 
value. 

 ctxMapIdx and ctxIdx derivation processes 

Inputs to this process are, 

 the variable NeighbourPattern, representing the occupancy of the neighbours of the current node’s 
parent neighbours, 

 the variable binIdx, indicating the bin to be decoded, and 

 the variable partialSynVal, representing the partially reconstructed value of the syntax element. 

Output of by this process are the variables ctxMapIdx andctxIdx. 

The variable idxPred is set as follows: 

 If NodeMaxDimLog2 is greater than or equal to log2_intra_pred_max_node_size, the variable 
idxPredidxPred is set equal to 0. 

 Otherwise, NodeMaxDimLog2 is less than log2_intra_pred_max_node_size, the variable idxPred is set 
equal to the output of the occupancy prediction process using neighbouring octree nodes (9.7.9) when 
invoked with the current node and childIdx set equal to the output of the neighbour dependent geometry 
octree child node scan order Inverse mapping process (6.4.1) with the inputs neighbourPattern and inIdx 
set equal to bitCodingOrder[ binIdx ] where values of bitCodingOrder[ ] are given in Table 24. 

The variable idxAdj is set as follows: 

 If adjacent_child_contextualization_enabled_flag is equal to 1, the following applies: 

 The variables adjOcc and adjUnocc are initialized to 0. 

 The variables sC, tC, and vC identifying the position of the child node associated with binIdx at depth 
+ 1 are initialized as follows 

sC = 2 × sN + ((bitCodingOrder[binIdx] >> 2) & 1) 
tC = 2 × tN + ((bitCodingOrder[binIdx] >> 1) & 1) 
vC = 2 × vN + (bitCodingOrder[binIdx] & 1) 
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 The following procedure is performed for each of the s, t, and v axes by substituting the variables aN, 
aC, nPmas, sCn, tCn, vCn, sNn, tNn, and vNn of the corresponding row of Table 25. 

// if child is adjacent to a causally-valid neighbour 
if (!(aC & 1)) { 
  if (NeighboutPattern & nPmask) 
    adjOcc += GeometryNodeOccupancyCnt[depth + 1][sCn][tCn][vCn] 
  else 
    // if neighbour is available but not present 
    if ((aN + 1) & NeighbAvailabilityMask != 1) 
      if (GeometryNodeOccupancyCnt[depth][sNn][tNn][vNn] == 0) 
        adjUnocc = 1 
} 

Table 25 — Variable substitutions for the computation of adjOcc and adjUnocc 

axis aN aC nPmask sCn tCn vCn sNn tNn vNn 

s sN sC 2 sC−1 tC vC sN−1 tN vN 

t tN tC 4 sC tC−1 vC sN tN−1 vN 

v vN vC 16 sC tC vC−1 sN tN vN−1 

 

 The variable idxAdj is derived as follows 

idxAdj = adjUnocc + 2 × Min(2, adjOcc) 
if (binIdx > 4) 
  idxAdj = ctxIdxAdjReduc567[idxAdj] 

Table 26 — Values of ctxIdxAdjReduc567[ i ] 

i 0 1 2 3 4 5 

ctxIdxAdjReduc567[ i ] 0 0 1 2 3 3 

 

The variable ctxIdxMapIdx is set equal to 3 × idxAdj + idxPred. 

The output variable ctxMapIdx is derived as follows: 

 If NeighbourPattern is equal to 0, ctxIdxMapOffset is set equal to popcnt( partialSynVal ). 

 Otherwise, NeighbourPattern is not equal to 0, the following applies: 

if (neighbour_context_restriction_flag) 
  pattern = neighbourPattern64to9[NeighbourPattern]; 
else 
  pattern = neighbourPattern64to6[NeighbourPattern]; 
 
if (binIdx == 7) 
  pattern = 1; 
else if (binIdx == 6) 
  pattern = neighbourPattern9to3[pattern]; 
else if (binIdx > 3) 
  pattern = neighbourPattern9to5[pattern]; 
ctxIdxMapOffset = ((pattern − 1) << binIdx) + partialSynVal + binIdx + 1; 

Finally, the output variable ctxIdx is set as follows 

ctxMapIdx = ctxIdxMapIdx × 1499 + ctxIdxMapOffset 
ctxIdx = CtxMap[ctxMapIdx] >> 3 
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Table 27 — Values of neighbourPattern64to9[ j + i ] 
 

i 

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 1 1 1 2 2 3 1 2 2 3 1 3 3 4 

16 1 2 2 3 2 5 5 6 2 5 5 6 3 6 6 7 

32 1 2 2 3 2 5 5 6 2 5 5 6 3 6 6 7 

48 1 3 3 4 3 6 6 7 3 6 6 7 4 7 7 8 

 

Table 28 — Values of neighbourPattern64to6[ j + i ] 

j i 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 5 5 na 5 1 1 na 5 1 1 na na na na na 

16 2 3 3 na 3 7 7 na 3 7 7 na na na na na 

32 2 3 3 na 3 7 7 na 3 7 7 na na na na na 

48 na na na na na na na na na na na na na na na na 
 

Table 29 — Specification of neighbourPattern9to5[ i ] 

i 0 1 2 3 4 5 6 7 8  
neighbourPattern9to5[ i ] 0 1 2 3 11 22 3 4 44  

 

Table 30 — Specification of neighbourPattern9to3[ i ] 

i 0 1 2 3 4 5 6 7 8 
neighbourPattern9to3[ i ] 0 1 11 22 22 11 22 2 2 

 

 Context map update process 

This process updates the context mapping table for the syntax element occupancy_map. 

Input to this process are the variable ctxMapIdx and a decoded bin value. 

The context mapping CtxMap[ctxMapIdx] is updated as follows: 

stateVal = CtxMap[ctxMapIdx] 
if (binVal) 
  CtxMap[ctxMapIdx] += ctxMapTransition[(255 − stateVal) >> 4] 
else 
  CtxMap[ctxMapIdx] −= ctxMapTransition[stateVal >> 4] 

Where values of ctxMapTransition are given by Table 31. 
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Table 31 — Values of ctxMapTransition[ i ] 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
value 0 1 1 2 4 7 9 11 14 16 19 23 22 18 13 6 

 

 Occupancy prediction process using neighbouring octree nodes 

The occupancy prediction process generates a tri-state occupancy prediction of a single child node based 
on the occupancy state of nodes neighbouring the parent node. 

Input to this process are 

 the variables sN, tN, vN, and depth, identifying a node in the geometry octree, and 

 the variable childIdx identifying a child node position according to the geometry octree child 
traversal order for occupancy prediction. 

Output from this process is the predicted occupancy state for the specified child node. 

A list of neighbouring occupied blocks is determined as follows: 

for (i = 0; i < 25; i++) { 
  s = sN + dS[i] 
  t = tN + dT[i] 
  v = vN + dV[i] 
  if (available(sN, tN, vN, s, t, v)) 
    occupied[i] = GeometryNodeOccupancyCnt[depth][s][t][v] != 0 
  else 
    occupied[i] = 0 
} 

Where the function available( sN, tN, vN, s, t, v ) evaluates to true if all of the following conditions are true: 

log2_neighbour_avail_boundary > 0 
(s ^ sN) >> log2_neighbour_avail_boundary == 0 
(t ^ tN) >> log2_neighbour_avail_boundary == 0 
(v ^ vN) >> log2_neighbour_avail_boundary == 0 

And where the values of the neighbour position offsets dS[ ], dT[ ], and dV[ ] are given in Table 32. 

If the sum of occupied[i], with i = 0 .. 25, is less than 8, the output predicted occupancy state is set equal 
to zero and no further processing occurs. 

An occupancy score for the child node is determined as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[ 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ][ 𝑖𝑖 ] ]][𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖]]
25

𝑖𝑖=0

 

Where the values of scoreIdx[ ][ ], and predictionScore[ ][ ] are given by Table 32 and Table 33. 

The output predicted occupancy state, prediction, is set according to the following: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖]
25

𝑖𝑖=0

 

thresholdIdx = Min(numOccupied − 8, 4); 
if (score <= predictionThreshold[thresholdIdx][0]) 
  prediction = 1; 
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else if (score >= predictionThreshold[thresholdIdx][1]) 
  prediction = 2; 
else 
  prediction = 0; 

Where the value of predictionThreshold[ ][ ] is given by Table 34. 

Table 32 — Values of dS[ i ], dT[ i ], dV[ i ], and scoreIdx[ bitIdx ][ i ] for intra occupancy prediction 
    

scoreIdx[ childIdx ][ i ] 

i dS[ i ] dT[ i ] dV[ i ] 0 1 2 3 4 5 6 7 

0 −1 −1 −1 2 4 4 6 4 6 6 7 

1 −1 −1 0 1 1 3 3 3 3 5 5 

2 −1 −1 1 4 2 6 4 6 4 7 6 

3 −1 0 −1 1 3 1 3 3 5 3 5 

4 −1 0 0 0 0 0 0 2 2 2 2 

5 −1 0 1 3 1 3 1 5 3 5 3 

6 −1 1 −1 4 6 2 4 6 7 4 6 

7 −1 1 0 3 3 1 1 5 5 3 3 

8 −1 1 1 6 4 4 2 7 6 6 4 

9 0 −1 −1 1 3 3 5 1 3 3 5 

10 0 −1 0 0 0 2 2 0 0 2 2 

11 0 −1 1 3 1 5 3 3 1 5 3 

12 0 0 −1 0 2 0 2 0 2 0 2 

13 0 0 1 2 0 2 0 2 0 2 0 

14 0 1 −1 3 5 1 3 3 5 1 3 

15 0 1 0 2 2 0 0 2 2 0 0 

16 0 1 1 5 3 3 1 5 3 3 1 

17 1 −1 −1 4 6 6 7 2 4 4 6 

18 1 −1 0 3 3 5 5 1 1 3 3 

19 1 −1 1 6 4 7 6 4 2 6 4 

20 1 0 −1 3 5 3 5 1 3 1 3 

21 1 0 0 2 2 2 2 0 0 0 0 

22 1 0 1 5 3 5 3 3 1 3 1 

23 1 1 −1 6 7 4 6 4 6 2 4 

24 1 1 0 5 5 3 3 3 3 1 1 

25 1 1 1 7 6 6 4 6 4 4 2 

 

Table 33 — Values of predictionScore[ i ][ occupied ] 
 

i 

occupied 0 1 2 3 4 5 6 7 
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0 −4 −24 48 80 56 112 88 48 

1 108 156 80 32 72 16 44 72 

 

Table 34 — Values of predictionThreshold[ i ][ j ] 
 

i 

occupied 0 1 2 3 4 

0 1612 1560 1586 1534 1534 

1 1742 1716 1690 1716 1664 

 

9.8 Inferred Direct Coding Mode parsing process  

 General process 

The parsing and inverse binarization of the arithmetically coded syntax element plane_position[ ][ 2 ] is 
described in 9.8.3. 

 Determination of the angular context idcmIdxAngular 

The process to determine the context idcmIdxAngular[ i ][ j ] for coding the bin point_offset_v[ i ][ j ] 
assoicated with j-th bit of the the i-th point belongign to a the child node tha t undergoes Iferred Direct 
Coding Mode is described in this section.  

This process is performed after point_offset_s[ i ][] and point_offset_t[ i ][] are decoded such that 
PointOffsetS[ i ] and PointOffsetT[ i ] are known. The s and t position, relative to the Lidar, of the point i 
is derived by 

posSlidar[i] = sNchild − geomAngularOrigin[0] + PointOffsetS[i] 
posTlidar[i] = tNchild − geomAngularOrigin[1] + PointOffsetT[i] 

where (sNchild, tNchild, vNchild) specifying the position of the geometry octree child node Child in the 
current slice. 

The inverse rInv of the radial distance of the point from the Lidar is determined by 

sLidar = (posSlidar[i] << 8) − 128 
tLidar = (posTlidar[i] << 8) − 128 
r2 = sLidar × sLidar + tLidar × tLidar 
rInv = invSqrt(r2) 

The corrected laser angle ThetaLaser of the laser associated with the child nodeChild is deduces by 

Hr = laser_correction[laserIndex[Child]] × rInv 
ThetaLaser = laser_angle[laserIndex[Child]] + (Hr >= 0 ? −(Hr >> 17) : ((−Hr) >> 17)) 

Assuming that the bits point_offset_v[ i ][ j2 ] for j2 = 0 .. j − 1, are known, the point is known to belong to 
a virtual vertical interval whose half size is provided by   

halfIntervalSize[j] = (1 << (EffectiveChildNodeSizeVLog2 − 1)) >> j 

and a partial v point position posVlidarPartial[ i ][ j ], that provides the lower end of the interval, is 
deduced by 
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PointOffsetVpartial = 0; 
for (j2 = 0; j2 < j; j2++)  
  PointOffsetVpartial[i] += point_offset_v[i][j2] << j2 
PointOffsetVpartial[i] <<= (EffectiveChildNodeSizeVLog2 − j) 
  posVlidarPartial[i][j] = vNchild − geomAngularOrigin[2] + PointOffsetVpartial[i] 

A relative laser position thetaLaserDeltaVirtualInterval relative to the middle of the virtual interval is 
computed by  

vLidar = ((posVlidarPartial[i][j] + halfIntervalSize[j]) << 1) − 1 
theta = zLidar × rInv 
theta32 = theta >= 0 ? theta >> 15 : −((−theta) >> 15) 
thetaLaserDeltaVirtualInterval = ThetaLaser − theta32;  

Two absolute angular differences m and M of the laser relative to a lower and an upper v position in the 
virtual interval are determined. 

vShift = ((rInv << EffectiveChildNodeSizeVLog2) >> 17) >> j 
m = Abs(thetaLaserDeltaVirtualInterval − vShift); 
M = Abs(thetaLaserDeltaVirtualInterval + vShift); 

Then, the angular context is deduced from the two absolute angular differences. 

idcmIdxAngular[i][j] = m > M 
diff = Abs(m − M) 
if (diff >= rInv >> 15) idcmIdxAngular[i][j] += 2 
if (diff >= rInv >> 14) idcmIdxAngular[i][j] += 2 
if (diff >= rInv >> 13) idcmIdxAngular[i][j] += 2 
if (diff >= rInv >> 12) idcmIdxAngular[i][j] += 2 

 Inverse binarization process  

When Inferred Direct Coding Mode is applied to a child node Child, the bits point_offset_v[ i ][ j ] of the i-
th point in the child node, for j in the range 0 .. EffectiveChildNodeSizeVLog2 or in the range 
1 .. EffectiveChildNodeSizeVLog2 in case the first bit is inferred by the plane position 
plane_position[Child][2], are decoded applying the following process.  

If geometry_angular_mode_flag is equal to 0, then the bit point_offset_v[ i ][ j ] is decoded using the bypass 
decoding process.  

Otherwise, if geometry_angular_mode_flag is equal to 0, the bit point_offset_v[ i ][ 0 ] is bypass decoded 
when not inferred by the plane position, and the bits point_offset_v[ i ][ j ] are decoded using the context 
idcmIdxAngular[ i ][ j ] for j > 0.  

9.9 Dictionary-based parsing 

 General process 

This process is invoked when parsing syntax elements with descriptor ae(v). 

This process involves: 

• An array of values lut0[k] storing the most frequent symbols, where k is in the range of 0 to 31, 
inclusive. 

• An array of values lut0Histogram[k] storing the symbols occurrences, where k is in the range of 
0 to 255, inclusive. 
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• Two variables lut0UpdatePeriod and lut0SymbolsUntilUpdate storing the update period for lut0 
and the number of symbols remaining until the next update, respectively. 

• A variable lut0Reset specifying whether lut0 should be reset during the next lut0 update or not. 

• An array of values lut1[k] storing the last 16 decoded symbols, where k is in the range of 0 to 15, 
inclusive. 

• A variable lut1IndexLastSymbol storing the index of the last decoded symbol. 

• A static binary arithmetic context ctxStatic. 

• A set of adaptive binary arithmetic contexts ctxLut0Hit, ctxLut1Hit, and ctxSymbolBit. 

• An array of adaptive binary arithmetic contexts ctxLut0Index of size 5 if limitedContextMode 
equals 1, and 31 otherwise (i.e., limitedContextMode equals 0). 

Inputs to this process are  

 a variable limitedContextMode specifying whether a limited number of contexts is used or not. 

 a variable lut0MaxOccurrence specifying the maximum allowed occurrence value in 
lut0Histogram[k]. 

 two variables lut0InitialUpdatePeriod and lut0MaxUpdatePeriod specifying the initial update period 
and the maximum update period for the for lut0, respectively. 

 an array of values lut0Initilization[ k ] specifying the initial lut0 values, where k is in the range of 0 
to 31, inclusive. 

lut0 is initialized by invoking the initialization process in clause 9.9.2 with the parameters 
limitedContextMode and lut0Initilization. 

lut0UpdatePeriod, lut0SymbolsUntilUpdate and lut0Reset are initialized as follows: 

 lut0UpdatePeriod = lut0InitialUpdatePeriod 

 lut0SymbolsUntilUpdate = lut0InitialUpdatePeriod 

 lut0Reset = 0 

lut1 is initialized by invoking the initialization process in clause 9.9.3. 

All the binary arithmetic contexts are initialized by invoking the process in clause 9.10.4.2. 

Output from this process is an 8-bit syntax element value, constructed as follows. 

lut0_hit_flag = readBin(ctxLut0Hit); 
if (lut0_hit_flag) { 
  index = decodeLut0Index(limitedContextMode, ctxLut0Index); 
  value = lut0[index]; 
  pushLut0(value); 
} else { 
  lut1_hit_flag = readBin(ctxLut1Hit); 
  if (lut1_hit_flag) { 
    index = 0; 
    for (i = 0; i < 4; i++) 
      index |= readBin(ctxStatic) << i; 
    value = lut1[index]; 
  } else { 
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    value = 0; 
    for (i = 0; i < 8; i++) 
      value |= readBin(ctxSymbolBit) << i; 
  } 
  pushLut1(value); 
  pushLut0(value); 
} 

 Initializing lut0 

Inputs to this process are  

 a variable limitedContextMode specifying whether a limited number of contexts is used or not. 

 an array of values lut0Initilization[ k ], to initialize lut0 where k is in the range of 0 to 31, inclusive. 

lut0 is initialized according to the following process. 

for (k = 0; k < 32; k++) 
  lut0[k]= limitedContextMode == 1 ? lut0Initlization[k] : k; 

 Initializing lut1 

lut1 is initialized according to the following process. 

for (k = 0; k < 16; k++) 
  lut1[k]= k; 

 Definition of decodeLut0Index() 

Inputs to this process is a variable limitedContextMode specifying whether a limited number of contexts 
is used or not. 

Output from this process is a 5-bit index, constructed as follows. 

if (limitedContextMode == 1) { 
  b0 = readBin(ctxLutIndex[0]); 
  if (b0) { 
    b1 = readBin(ctxStatic); 
    b2 = readBin(ctxStatic); 
    b3 = readBin(ctxStatic); 
    b4 = readBin(ctxStatic); 
  } else { 
    b1 = readBin (ctxLutIndex[1]); 
    if (b1) { 
      b2 = readBin(ctxStatic); 
      b3 = readBin(ctxStatic); 
      b4 = readBin(ctxStatic); 
    } else { 
      b2 = readBin(ctxLutIndex[2]); 
      if (b2) { 
        b3 = readBin(ctxStatic); 
        b4 = readBin(ctxStatic); 
      } else { 
        b3 = readBin(ctxLutIndex[3]); 
        b4 = readBin(ctxLutIndex[4]); 
      } 
    } 
  } 
  index = (b0 << 4) | (b1 << 3) | (b2 << 2) | (b3 << 1) | b4; 
} else { 
  index = 0; 
  index = (index << 1) | readBin(ctxLutIndex[0]); 
  index = (index << 1) | readBin(ctxLutIndex[1 + index]); 
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  index = (index << 1) | readBin(ctxLutIndex[3 + index]); 
  index = (index << 1) | readBin(ctxLutIndex[7 + index]); 
  index = (index << 1) | readBin(ctxLutIndex[15 + index]); 
} 

 Definition of pushLut0() 

Inputs to this process are  

 an 8-bit variable symbol specifying the symbol to be pushed to lut0. 

 a variable maxOccurrence specifying the maximum allowed occurrence value in lut0Histogram[k]. 

This process updates lut0 and lut0Histogram as follows. 

lut0Histogram[symbol]++ 
if (lut0Histogram[symbol] > lut0MaxOccurrence) { 
  for (k = 0; k < 256; k++) 
    lut0Histogram[k] = lut0Histogram[k] >> 1; 
} 
lut0SymbolsUntilUpdate−−; 
if (lut0SymbolsUntilUpdate == 0) 
  updateLut0(); 

 Definition of updateLut0() 

This process updates lut0UpdatePeriod, lut0 and lut0Histogram as follows. 

lut0UpdatePeriod = Min((5 × lut0UpdatePeriod) >> 2, lut0MaxUpdatePeriod); 
lut0SymbolsUntilUpdate = lut0UpdatePeriod; 
lut0ComputeMostFrequentSymbols() 
if (lut0Reset) { 
  lut0Reset = false; 
  for (k = 0; k < 256; k++) 
    lut0Histogram[k] = 0; 
} 

 Definition of lut0ComputeMostFrequentSymbols() 

This process updates lut0 such that it contains the 32 most frequent symbols based on the occurrence 
values stored in lut0Histogram. If two symbols S1 and S2 have the same occurrence the one with the 
smallest value is preferred. 

 Definition of pushLut1() 

Input to this process is an 8-bit variable symbol specifying the symbol to be pushed to lut1. 

This process updates lut1 and lut1IndexLastSymbol as follows. 

index = −1 
for (k = 0; k < 16; k++) { 
  if (lut1[index] == symbol) { 
    index = k; 
    break; 
  } 
} 
lut1IndexLastSymbol++ 
index0 = lut1IndexLastSymbol % 16; 
symbol0 = lut1[index0]; 
if (index == −1) 
  lut1[index0] = symbol; 
else 
  swap(lut1[index0], lut1[index]); 
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9.10 CABAC parsing process  

 General 

This process is invoked when parsing syntax elements with descriptor ae(v). 

The input to this process is a request for the value of a syntax element. 

The output of this process is the value of the syntax element. 

The initialization processes 9.10.3.2 and 9.10.4.2 are invoked when starting to parse of any of the 
following syntax structures: 

– geometry_slice_data (7.3.3.3) 

– attribute_slice_data (7.3.4.3) 

The parsing of the syntax element proceeds according to the corresponding process listed in Table 22. 

 Definition of readBin() 

The inputs to this process are the variable binIdx and an associated syntax element. 

The outputs of this process is the value of the decoded bin and an updated context variable. 

The values ctxTbl and ctxIdx are determined according to the entries for the associated syntax element 
in Table 35. 

If the value of ctxIdx is not equal to the value 'bypass', the following applies: 

– The arithmetic decoding process 9.10.4.3 for a single bin is invoked to determine the value of the 
decoded bin with the context variable Contexts[ ctxTbl ][ ctxIdx ] as input. 

– The context map update process 9.10.3.3 is invoked with the context variable 
Contexts[ ctxTbl ][ ctxIdx ] and the decoded bin value. 

Otherwise, the value of ctxIdx is equal be the value 'bypass', the following applies: 

− If sps_bypass_stream_enabled_flag is equal to 0, the arithmetic decoding process 9.10.4.4 for a single 
bypass bin is invoked to determine the value of the decoded bin.  Otherwise, 
sps_bypass_stream_enabled_flag is equal to 1, the readBypassStreamBit process 9.4 is invoked to 
determine the value of the decoded bin. 

Table 35 — Values of ctxTbl and ctxIdx for binarized ae(v) coded syntax elements 

Syntax element ctxTbl ctxIdx 
geom_node_qp_offset_eq0_flag 28 0 
geom_node_qp_offset_sign_flag 29 0 
geom_node_qp_offset_abs_minus1 30 prefix: 0 

sufix: bypass 
single_occupancy_flag 0 0 
occupancy_idx[] na bypass 
occupancy_map 1 0 .. 31 (9.7.7) 
num_points_eq1_flag[ ] 2 0 
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Syntax element ctxTbl ctxIdx 
num_points_minus2[ ] 3 prefix:0 

suffix: bypass 
is_planar_flag[ ][ ] 31 0 .. 11: planarIdx (8.2.4.3) 
plane_position[ ][0] 32 0 .. 36: planePosIdx (8.2.4.4) 
plane_position[ ][1] 33 0 .. 36: planePosIdx (8.2.4.4) 
plane_position[ ][2] 34 0 .. 46: planePosIdxAngular (8.2.4.5) 
direct_mode_flag 4 0 
num_direct_points_gt1 35 0 
not_duplicated_point_flag 2 0 
num_direct_points_eq2_flag 36 0 
num_points_direct_mode_minus3 3 prefix:0 

suffix: bypass 
point_offset_s[ ][ ] 
point_offset_t[ ][ ] 

na bypass 

point_offset_v[ ][ ] na 
37 

bypass or  
0 .. 10: idcmIdxAngular (9.8.3) 

trisoup_sampling_value_minus1 na bypass 
num_unique_segments_minus1[ ] na prefix: bypass 

suffix: bypass 
segment_indicator[ ] 6 BinIdx 
num_vertices_minus1[ ] na prefix: bypass 

suffix: bypass 
vertex_position[ ] 7 BinIdx 
all_residual_values_equal_to_zero_ru
n 

8 0 .. 2 

pred_index 9 Min(BinIdx, 1) 
residual_values_equal_to_zero 10 

� 2𝑖𝑖(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧[𝑖𝑖])
𝑘𝑘−1

𝑖𝑖=0

 

residual_values_equal_to_one 11 � 2𝑖𝑖�1
𝑘𝑘−1

𝑖𝑖=0
+ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡_𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧[𝑖𝑖] || 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡_𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖])� 

remaining_values[ ][ ] 12 0 .. 6 
dict_lut0_hit_flag ctxTblD[0] 0 
dict_lut1_hit_flag ctxTblD[1] 0 
dict_lut0_idx ctxTblD[2] 0 .. 4 
dict_lut1_idx ctxTblD[3] bypass 
dict_direct_value ctxTblD[4] 0 

 

Table 36 — Values of ctxTblD[ n ] for de(v) coded syntax elements 

Syntax element n 
0 1 2 3 4 

occupancy_byte 13 14 15 16 17 
values[ ][ ], k2 = = 0 18 19 20 21 22 
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values[ ][ ], k2 = = 1 23 24 25 26 27 
 

 Context variables 

 General 

A context variable is a 16-bit unsigned integer value that models the probability of a zero bin. 

NOTE  —  The values 0, 0x8000, and 0x10000 represent the probability of a zero bin as impossible, equi-probable, and certain 
respectively.  The values 0 and 0x10000 can never be attained due to the operation of the context update process. 

Adaptive contexts are updated after decoding each bin, according to a probability look-up table.  The 
update table supplies a value for incrementing or decrementing the probability of a zero bin based upon 
the upper eight bits of the context's current value. 

The array Contexts, with values Contexts[ ctxTbl ][ ctxIdx ], represents individual context variables used 
by the CABAC parsing process.  The values of ctxIdx for each value of ctxTbl are specified in Table . 

 Initialisation of context variables 

The outputs of this process are initialized CABAC state variables. 

All context variables of the arithmetic decoding engine are initialized to the value 0x8000. 

 Context variable update process 

The inputs to this process are the variable binVal representing the value of a decoded bin, and a context 
variable ctx. 

The output of this process is the updated context variable. 

The context variable is updated as follows: 

if (binVal) 
  ctx −= CtxUpdateDelta[ctx >> 8]; 
else 
  ctx += CtxUpdateDelta[255 − (ctx >> 8)]; 

where values of CtxUpdateDelta[ ] are given in Table 37. 

Table 37 — Values of CtxUpdateDelta[ i + j ] 

j 
i 

0 1 2 3 4 5 6 7 8 9 10 11 
0 0 2 5 8 11 15 20 24 29 35 41 47 

12 53 60 67 74 82 89 97 106 114 123 132 141 
24 150 160 170 180 190 201 211 222 233 244 256 267 
36 279 291 303 315 327 340 353 366 379 392 405 419 
48 433 447 461 475 489 504 518 533 548 563 578 593 
60 609 624 640 656 672 688 705 721 738 754 771 788 
72 805 822 840 857 875 892 910 928 946 964 983 1001 
84 1020 1038 1057 1076 1095 1114 1133 1153 1172 1192 1211 1231 
96 1251 1271 1291 1311 1332 1352 1373 1393 1414 1435 1456 1477 
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j 
i 

0 1 2 3 4 5 6 7 8 9 10 11 
108 1498 1520 1541 1562 1584 1606 1628 1649 1671 1694 1716 1738 
120 1760 1783 1806 1828 1851 1874 1897 1920 1935 1942 1949 1955 
132 1961 1968 1974 1980 1985 1991 1996 2001 2006 2011 2016 2021 
144 2025 2029 2033 2037 2040 2044 2047 2050 2053 2056 2058 2061 
156 2063 2065 2066 2068 2069 2070 2071 2072 2072 2072 2072 2072 
168 2072 2071 2070 2069 2068 2066 2065 2063 2060 2058 2055 2052 
180 2049 2045 2042 2038 2033 2029 2024 2019 2013 2008 2002 1996 
192 1989 1982 1975 1968 1960 1952 1943 1934 1925 1916 1906 1896 
204 1885 1874 1863 1851 1839 1827 1814 1800 1786 1772 1757 1742 
216 1727 1710 1694 1676 1659 1640 1622 1602 1582 1561 1540 1518 
228 1495 1471 1447 1422 1396 1369 1341 1312 1282 1251 1219 1186 
240 1151 1114 1077 1037 995 952 906 857 805 750 690 625 
252 553 471 376 255         

 

 Arithmetic decoding engine 

 General 

The arithmetic decoding engine is a multi-context adaptive binary arithmetic decoder, performing binary 
renormalisation and producing binary outputs. 

NOTE  —  The arithmetic decoding engine is based upon that of Dirac|SMPTE VC-2. 
The arithmetic decoder state consists of the following variables: 

– ivlLow, an integer representing the beginning of the current coding interval. 

– ivlRange, an integer representing the size of the current coding interval. 

– ivlCode, an integer within the interval[ ivlLow, ivlLow + ivlRange − 1 ], updated from the 
encoded bitstream. 

 Initialisation process 

The outputs of this process are the initialized arithmetic decoding engine variables ivlLow, ivlRange, and 
ivlCode. 

At the start of the decoding of any data unit, the arithmetic decoding state shall be initialized as follows: 

ivlLow = 0; 
ivlRange = 0xffff; 
ivlCode = 0; 
for (i = 0; i < 15; i++) { 
  ivlCode <<= 1; 
  ivlCode += readAeStreamBit(); 
} 

 Decoding process for a single binary value 

The inputs to this process are the context variable ctx and the state variables ivlLow, ivlRange, and 
ivlCode. 
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The outputs of this process are the decoded binary value binVal, and the updated state variables ivlLow, 
and ivlRange. 

The output binVal, and the updated state variables ivlRange, and ivlCode are determined as follows: 

count = ivlCode − ivlLow; 
rangeTimesProb = (ivlRange × ctx) >> 16; 
binVal = count >= rangeTimeProb; 
if (!binVal) 
  ivlRange = rangeTimesProb; 
else { 
  ivlLow += rangeTimesProb; 
  ivlRange −= rangeTimesProb; 
} 

 Decoding process for a single binary bypass value 

The inputs to this process are the state variables ivlLow, ivlRange, and ivlCode. 

The outputs of this process are the decoded binary value binVal, and the updated state variables ivlLow, 
and ivlRange. 

The output binVal, and the updated state variables ivlRange, and ivlCode are determined as follows: 

count = ivlCode − ivlLow; 
rangeTimesProb = ivlRange >> 1; 
binVal = count >= rangeTimeProb; 
if (!binVal) 
  ivlRange = rangeTimesProb; 
else { 
  ivlLow += rangeTimesProb; 
  ivlRange −= rangeTimesProb; 
} 

 Arithmetic decoder state renormalisation process 

Renormalisation stops the arithmetic decoding engine from losing accuracy.  Renormalisation shall be 
applied while the range is less than or equal to a quarter of the total available 16-bit range (0x4000).  
Each renormalisation doubles the interval and reads a bit into the codeword. 

The inputs to this process are the state variables ivlLow, ivlRange, and ivlCode. 

The outputs of this process are the updated state variables ivlLow, ivlRange, and ivlCode. 

While ivlRange is less than or equal to 0x4000, the following applies: 

if ((ivlLow + ivlRange − 1) ^ ivlLow >= 0x8000) { 
  ivlCode ^= 0x4000; 
  ivlLow ^= 0x4000; 
} 
ivlRange <<= 1; 
ivlLow = (ivlLow << 1) & 0xffff; 
ivlCode = ((ivlCode << 1) | readAeStreamBit()) & 0xffff; 

 Arithmetic encoding engine (informative) 

 General (informative) 

This clause does not form an integral part of this Specification. 

The inputs to this process are binary symbols that are to be encoded. 



© ISO/IEC 2020 – All rights reserved 

© ISO/IEC 2020 – All rights reserved 113 

The outputs of this process are bits that are written to the data unit bytestream. 

This informative clause describes an arithmetic encoding engine that matches the arithmetic decoding 
engine described in 9.10.4. The encoding engine is essentially symmetric with the decoding engine, i.e., 
procedures are called in the same order. Table 38 illustrates the correspondence between decoding and 
encoding processes. 

Table 38 — Correspondence between decoder and encoder arithmetic coding processes 

Process Decoder Encoder 
Initialisation 9.10.4.2 9.10.5.2 
Symbol coding 9.10.4.3 9.10.5.3 
Renormalisation 9.10.4.5 9.10.5.4 
Termination — 9.10.5.5 

 

The state of the arithmetic encoding engine is represented by the variables ivlLow indicating the bottom 
of the encoding interval, ivlRange indicating the width of the encoding interval, and ivlCarry tracking the 
number of unresolved straddle conditions during renormalisation. 

 Initialization process (informative) 

This clause does not form an integral part of this Specification. 

This process is invoked before encoding the first ae(v) coded syntax element of a data unit. 

The outputs of this process are the arithmetic encoding engine variables ivlLow, ivlRange, and ivlCarry, 
initialized as follows: 

ivlLow = 0; 
ivlRange = 0xFFFF; 
ivlCarry = 0; 

With 16 bit accuracy, 0xFFFF corresponds to an interval width value of (almost) 1. 

 Encoding process for a single binary value (informative) 

This clause does not form an integral part of this Specification. 

The inputs to this process are the context variable ctx, the value of binVal to be encoded, and the state 
variables ivlLow, and ivlRange. 

The outputs of this process are the updated state variables ivlLow, and ivlRange. 

Coding a binary value consists of, in order, scaling the interval[ ivlLow, ivlLow + ivlRange ], renormalising 
and outputting data. 

rangeTimesProb = (ivlRange × ctx) >> 16; 
if (!binVal) 
  ivlRange = rangeTimesProb; 
else { 
  ivlLow += rangeTimesProb; 
  ivlRange −= rangeTimesProb; 
} 
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 Arithmetic encoder state renormalisation process (informative) 

This clause does not form an integral part of this Specification. 

The inputs to this process are the variables ivlLow, ivlRange. 

The outputs of this process are zero or more bits written to the data unit bitstream and the updated 
variables ivlLow, ivlRange. 

Renormalisation must cause ivlLow and ivlRange to be modified exactly as in the decoder. In addition, 
during renormalisation bits are output when ivlLow and ivlLow + ivlRange agree in their most significant 
bits, taking into account carries accumulated when a straddle condition is detected. 

While ivlRange is less than or equal to 0x4000, the following applies: 

if ((ivlLow + ivlRange − 1) ^ ivlLow >= 0x8000) { 
  ivlLow ^= 0x4000; 
  ivlCarry++; 
} else { 
  writeBit((ivlLow >> 15) & 1); 
  for (; ivlCarry > 0; ivlCarry−−) 
    writeBit((~ivlLow >> 15) & 1); 
} 
ivlRange <<= 1; 
ivlLow <<= 1; 
ivlLow &= 0xFFFF; 

 Arithmetic encoding engine termination process (informative) 

This clause does not form an integral part of this Specification. 

After encoding, there may be insufficient bits for a decoder to determine the final encoded symbols, partly 
because further renormalisation is required — for example, MSBs may agree but the range may still be 
larger than 0x4000) — and partly because there may be unresolved carries. 

The following four-stage process adequately flushes the encoder by outputting remaining resolved MSBs, 
resolving remaining straddle conditions, flushing carry bits, finally byte aligning the output with padding 
bits. 

while ((ivlLow + ivlRange − 1) ^ ivlLow < 0x8000) { 
  writeBit((ivlLow >> 15) & 1); 
  for (; ivlCarry > 0; ivlCarry−−) 
    writeBit((~ivlLow >> 15) & 1); 
  ivlRange <<= 1; 
  ivlLow <<= 1; 
  ivlLow &= 0xFFFF; 
} 
while ((ivlLow & 0x4000) && ((ivlLow + ivlRange − 1) & 0x4000)) { 
  carry++; 
  ivlLow ^= 0x4000; 
  ivlLow &= 0x7FFF; 
  ivlLow <<= 1; 
  ivlRange <<= 1; 
} 
writeBit((ivlLow >> 15) & 1); 
for (; ivlCarry > 0; ivlCarry−−) 
  writeBit((~ivlLow >> 15) & 1); 
byte_align(); 
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9.11 Parsing state memorization process 

This process records the elements and values of the following arrays and variables for restoration by the 
parsing state restoration process (9.12): 

− The array Contexts from the CABAC parsing process (9.10) 

− The array CtxMap from the bit-wise geometry octree occupancy parsing process (9.7) 

− The arrays and variables lut0, lut0Histogram, lut0UpdatePeriod, lut0SymbolsUntilUpdate, 
lut0Reset, lut1, lut1IndexLastSymbol from the dictionar-based parsing process (9.9) 

− The array planeRate and variable localDensity from the planar coding mode (8.2.4) 

9.12 Parsing state restoration process 

This process restores the elements and values of the following arrays and variables to those previously 
recorded by the parsing state memorization process (9.11): 

− The array Contexts from the CABAC parsing process (9.10) 

− The array CtxMap from the bit-wise geometry octree occupancy parsing process (9.7) 

− The arrays and variables lut0, lut0Histogram, lut0UpdatePeriod, lut0SymbolsUntilUpdate, 
lut0Reset, lut1, lut1IndexLastSymbol from the dictionar-based parsing process (9.9) 

− The array planeRate and variable localDensity from the planar coding mode (8.2.4) 
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Annex A 
 

Profiles and levels 

A.1 Overview of profiles and levels 

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to 
decode the bitstreams. Profiles and levels may also be used to indicate interoperability points between 
individual decoder implementations. 

NOTE 1 – This Specification does not include individually selectable “options” at the decoder, as this would increase interoperability 
difficulties. 

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders 
conforming to that profile. 

NOTE 2 – Encoders are not required to make use of any particular subset of features supported in a profile. 
Each level specifies a set of limits on the values that may be taken by the syntax elements of this 
Specification. The level definition is used with all profiles. For any given profile, a level generally 
corresponds to a particular decoder processing load and memory capability. 

The profiles that are specified in clause A.3 are also referred to as the profiles specified in Annex A. 

A.2 Requirements on decoder capability 

Capabilities of decoders conforming to this Specification are specified in terms of the ability to decode 
bitstreams conforming to the constraints of profiles and levels specified in this annex. When expressing 
the capabilities of a decoder for a specified profile, the level supported for that profile should also be 
expressed. 

Specific values are specified in this annex for the syntax elements main_profile_compatibility_flag and 
level_idc. All other values of main_profile_compatibility_flag and level_idc are reserved for future use by 
ISO/IEC. 

NOTE – Decoders should infer that a reserved value of level_idc between the values specified in this 
Specification indicates intermediate capabilities between the specified levels. 

A.3 Profiles 

A.3.1 General 

All constraints for SPSs, GPSs, and APSs that are specified are constraints for the parameter sets that are 
activated when the bitstream is decoded. 

A.3.2 Main profile 

Bitstreams conforming to the Main profile shall obey the following constraints: 

– Active SPSs shall have main_profile_compatibility_flag equal to 1 only. 

– The level constraints specified for the Main profile in clause A.4 shall be fulfilled. 
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Conformance of a bitstream to the Main profile is indicated by main_profile_compatibility_flag being 
equal to 1. 

Decoders conforming to the Main profile at a specific level (identified by a specific value of level_idc) shall 
be capable of decoding all bitstreams for which all of the following conditions apply: 

– The bitstream representation is indicated to conform to the Main profile. 

– The bitstream representation is indicated to conform to a level that is lower than or equal to the 
specified level. 

A.4 Levels 

A.4.1 Level limits 

For purposes of comparison of level capabilities, a particular level is considered to be a lower level than 
some other level when the value of the level_idc of the particular level is less than that of the other level. 

Table A. 1 specifies limits for each level. 

A level to which a bitstream conforms are indicated by the syntax elements level_idc as follows: 

– level_idc shall be set equal to a value of 20 times the level number specified in Table A. 1. 

 

Table A. 1 — Level limits 

Level 

M
a

x point    

4 1,100,000 
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Annex B 
 

Type-length-value bytestream format 

B.1 General 

This annex specifies syntax and semantics of a byte stream format for use by applications that deliver 
some or all of the data units as an ordered stream of bytes without any requirement for further 
encapsulation in a file format. 

The byte stream format consists of a sequence of type-length-value encapsulation structures that each 
represent a single coded syntax structure. 

B.2 Syntax and semantics 

B.2.1 Syntax 

tlv_encapsulation( ) { Descriptor 
 tlv_type u(8) 
 tlv_num_payload_bytes u(32) 
 for( i = 0; i < tlv_num_payload_bytes; i++ )  
  tlv_payload_byte[ i ] u(8) 
}  

 

B.2.2 Semantics 

The order of TLV encapsulation stuctures shall follow the decoding order of the encapsulated syntax 
structures. 

tlv_type identifies the syntax structure represented by tlv_payload_byte[ ] according to Table B. 1. 

Table B. 1 — Mapping of tlv_type and associated data unit to syntax tables 

tlv_type Syntax table Description 

0 7.3.1.1 Sequence parameter set 

1 7.3.1.2 Geometry parameter set 

2 7.3.2.1 Geometry data unit 

3 7.3.1.3 Attribute parameter set 

4 7.3.3.1 Attribute data unit 

5 7.3.2.2 Tile inventory 

6 7.3.2.5 Frame boundary marker 
 

tlv_num_payload_bytes indicates the length in bytes of tlv_payload_byte[ ]. 

tlv_payload_byte[ i ] is the i-th byte of payload data. 

B.3 TLV decoding process 
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Input to this process is an ordered stream of bytes consisting of a sequence of TLV encapsulation 
structures. 

Output of this process is a sequence of syntax structures. 

The decoder repeatedly parses tlv_encapsulation structures until the end of the bytestream has been 
encountered (as determined by unspecified means) and the last NAL unit in the byte stream has been 
decoded. 

After parsing each tlv_ encapsulation structure, the following occurs 

 the array DataUnitBytes is set equal to tlv_payload_byte[ ], 

 the variable DataUnitLength is set equal to tlv_num_payload_bytes, 

 the parsing process in Table B. 1 corresponding to tlv_type is invoked. 
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