ISO 23090-8:2018(E)
ISO/IEC JTC1/SC 29/WG 11
[bookmark: CVP_Secretariat_Loca]Secretariat:
Information technology — Coded representation of immersive media— Part 8: Network Based Media Processing

[bookmark: _GoBack]CD stage

Warning for WDs and CDs
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
ISO #####-#:####(X)
© ISO 2018 – All rights reserved

2	© ISO #### – All rights reserved
© ISO 2018
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
Contents
Foreword	v
Introduction	vi
1	Scope	1
2	Normative references	1
3	Terms, definitions and abbreviated terms	2
3.1	Terms and definitions	2
3.2	Abbreviated terms	3
4	Conventions	5
5	Overview	5
5.1	Introduction	5
5.2	Architecture	5
6	NBMP Workflow	6
6.1	Introduction	6
6.1.1	Task Allocation & distribution	7
6.1.2	Workflow processing model	7
6.1.3	Workflow Graph	9
6.2	NBMP Function	10
6.2.1	NBMP Function Description	11
6.2.2	Function Grouping	14
6.3	NBMP Task	15
6.3.1	Task Life Cycle	16
6.4	Workflow Description Document (WDD)	17
7	NBMP Interfaces	19
7.1	Introduction	19
7.2	Workflow APIs	19
7.2.2	Workflow API Operations	19
7.3	Task APIs	20
7.3.1	Task API Resource	20
7.3.2	Task API Operations	21
7.4	Function Discovery APIs	22
7.4.1	Function Discovery API Resources	22
7.4.2	Function Discovery API Operations	22
8	NBMP Media and Metadata Formats	23
8.1	Introduction	23
8.2	Media Formats	23
8.3	Metadata Formats	23
9	NBMP Descriptors	23
9.1	Introduction	23
9.1.1	Generic Parameter Representation	23
9.2	General Descriptor	28
9.2.1	JSON Schema	28
9.3	Input Descriptor	29
9.3.1	JSON Schema	31
9.4	Output Descriptor	33
9.4.1	JSON Schema	34
9.5	Processing Descriptor	37
9.5.1	JSON Schema	37
9.6	Requirements Descriptor	38
9.6.1	JSON Schema	40
9.7	Configuration Descriptor	41
9.7.1	JSON Schema	42
9.8	Delay Descriptor	42
9.8.1	JSON Schema	42
9.9	Client Assistance Descriptor	43
9.9.1	JSON Schema	43
9.10	Failover Descriptor	43
9.10.1	JSON Schema	44
9.11	Monitoring Descriptor	45
9.11.1	JSON Schema	45
9.12	Assertion Descriptor	46
9.12.1	JSON Schema	47
9.13	Reporting Descriptor	48
9.13.1	JSON Schema	48
9.14	Notification Descriptor	49
9.14.1	JSON Schema	49
9.15	Group Descriptor	50
Annex A (informative) Schema of the brands	51
Annex B (informative) NBMP Instantiations	52
B.1 Description of Workflow Creation	52
B.1.1 Introduction	52
B.1.2 NBMP Workflow Illustration	52
B.2 Use cases of NBMP	54
B.2.1 Use Case #1: Workflow Description for 360 stitching	54
B.2.2 Use Case #2: Workflow Description for 6DoF Pre-rendering	62
B.2.3 Use Case #3: Workflow Description for Content-Aware Transcoding	72
B.2.4 Use Case #4: Workflow Description for Streaming E-Sports Event	79
B.2.5 Use Case #5 : Workflow Description for OMAF Packager	85
B.2.6 Use Case #6 : Workflow Description for Measurement	91
Bibliography	94

[bookmark: _Toc353342667][bookmark: _Toc535509439]Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/IEC JTC 1 Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
A list of all parts in the ISO 23090 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
[bookmark: _Toc353342668][bookmark: _Toc535509440]Introduction
Network-based Media Processing defines a framework that enables initializing and controlling media processing in the network. An NBMP Source describe the requested media processing and provide information about the nature and format of their media data. Based on that, an NBMP Workflow Manager establishes the media processing workflow and informs the NBMP Source that the workflow is ready and that media processing can start. The Media Source(s) can then start transmitting their media to the network for processing.
An NBMP Workflow can be understood as a connected graph of media processing Tasks, each of which performs a well-defined media processing operation. The Workflow Manager ensures the correct operation of the Workflow by configuring and monitoring each Task as well as the Workflow output. The Workflow manager is responsible for the selection of the media processing Functions and instantiating them as Tasks based on the Workflow Description that is received from the NBMP Source.
NBMP abstracts the underlying compute platform interactions to establish, load, instantiate and monitor the media processing entities that will run the media processing tasks. NBMP defines API between NBMP Source and Workflow Manager, Workflow Manager and Task(s), and API to discover appropriate Function(s). NBMP also defines the media, metadata, and auxiliary information formats for data exchanged between Media Source, Workflow Manager and Tasks.
NBMP function + function repository

ISO 23090-8:2018(E)
ISO 23090-8:2018(E)

vi	© ISO 2018 – All rights reserved
© ISO 2018 – All rights reserved	v
Information technology — Coded Representation of Immersive Media — Part 8: Network Based Media Processing
1 [bookmark: _Toc353342669][bookmark: _Ref535345891][bookmark: _Toc535509441]Scope
The Network-Based Media Processing framework defines the interfaces including both data formats and APIs among the entities connected through the digital networks for media processing, Users can access the entities and configure their operations remotely for efficient intelligent processing. It describes and manages workflow to be applied to the media data, This includes uploading of media data to the network , instantiation of the Media Processing tasks, and configuration of the tasks. This enables dynamic creation of media processing pipeline, access of processed media data and metadata in real-time or in a deferred way. The media and metadata formats that are used between the Media Source, Workflow Manager and Media Processing Entities in a media processing pipeline are also within scope.

2 [bookmark: _Toc353342670][bookmark: _Toc535509442]Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 13818-1, Information technology — Generic coding of moving pictures and associated audio information — Part 1: Systems
ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format
ISO/IEC 14496-15, Information technology — Coding of audio-visual objects — Part 15: Advanced Video Coding (AVC) file format
ISO/IEC 23008–1, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part1: MPEG media transport (MMT)
ISO/IEC 23008-2, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 2: High efficiency video coding
ISO/IEC 23008-3, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 3: 3D audio
ISO/IEC 23009-1, Information technology — Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media presentation description and segment formats
ISO/IEC 23090-2, Information technology — Coded representation of immersive media — Part 2: Omnidirectional media format
RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format
RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
RFC 3550, RTP: A Transport Protocol for Real-Time Applications
RFC 3986, Uniform Resource Identifier (URI): Generic Syntax
3 [bookmark: _Toc535509229][bookmark: _Toc535509336][bookmark: _Toc535509443][bookmark: _Toc535509230][bookmark: _Toc535509337][bookmark: _Toc535509444][bookmark: _Toc353342671][bookmark: _Toc535509445]Terms, definitions and abbreviated terms
[bookmark: _Toc535509446]Terms and definitions
3.1.1
Function Description
description of the details of a Media Processing Function such as input and output description details, requested media processing, requirements, etc.
3.1.2
Function Repository
storage place where NBMP functions are retrieved from by an NBMP workflow manager or NBMP source.
3.1.3
Media Processing Entity
entity that runs one or more media processing task(s)
3.1.4
Media Resource
media data that is captured by the Media Source and is sent to the Media Processing Entities of the NBMP system.
3.1.5
Media Sink
entity that consumes the output of the NBMP Workflow through existing delivery methods
3.1.6
Media Source
entity that provides the raw media content to be processed, such as a digital camera, a microphone, an encoder, or persistent storage.
3.1.7
NBMP Format
media format that is exchanged between the Media Source and the Media Processing Entities in an NBMP system, and between individual Media Processing Entities inside the NBMP system.
3.1.8
NBMP Function
Implementation of a standalone and self-contained media processing operation and the corresponding description of that operation
3.1.9
NBMP Publish Format
media format of the content that is sent from Media Processing Entity to Media Sink..
3.1.10
NBMP Source
entity that provides triggers and describes media processing in the network
3.1.11
NBMP system
system for processing media across one or more processing entities in the network and consisting of a Media Source, a NBMP Source, a NBMP Workflow Manager, a Function Repository, Media Processing Entity(ies) and Media Sink(s).
3.1.12
NBMP workflow
a graph of one or more connected Task(s) that achieve the requested media processing
3.1.13
NBMP Workflow Manager
entity that provisions tasks and connects them to create a complete workflow based on a workflow description and function descriptions
3.1.14
Supplementary Information
metadata or auxiliary information related to the media data or media processing operations
3.1.15
Task
runtime instance of NBMP Function that gets executed inside a Media Processing Entity.
3.1.16
Task Description
description of the runtime details of a Task,such as input and output description details, requirements, configuration information etc.
3.1.17
Workflow Description
description of the details of the media processing such as input and output description details, requested media processing, requirements etc. for the workflow

[bookmark: _Toc535395772][bookmark: _Toc535396525][bookmark: _Toc535395775][bookmark: _Toc535396528][bookmark: _Toc535395776][bookmark: _Toc535396529][bookmark: _Toc535395777][bookmark: _Toc535396530][bookmark: _Toc535509447]Abbreviated terms
API			Application Programming Interface
AVC			Advanced Video Coding
AWS		Amazon Web Services
CDN		Content Distribution Network
CMAF		Common Media Application Format
CPU			Central Processing Unit
DAG		Directed Acyclic Graph
DASH		Dynamic Adaptive Streaming over HTTP
GPU			Graphics Processing Unit
HEVC		High Efficiency Video Coding
HTTP		Hyper Text Transfer Protocol
JSON		JavaScript Object Notation
MMT		MPEG Media Transport
MORE		Media Orchestration
NBMP		Network-Based Media Processing
NVP		Name Value Pair
OTT		Over-the-Top
PCC			Point-Cloud Compression
RTP			Real-time Transport Protocol
TCP			Transmission Control Protocol
UDP		User Datagram Protocol
UHD		Ultra-High Definition
URL			Universal Resource Locator
VVC			Versatile Video Coding
XML		eXtensible Markup Language

[bookmark: _Toc535509234][bookmark: _Toc535509341][bookmark: _Toc535509448][bookmark: _Toc535509235][bookmark: _Toc535509342][bookmark: _Toc535509449][bookmark: _Toc535509236][bookmark: _Toc535509343][bookmark: _Toc535509450][bookmark: _Toc535509237][bookmark: _Toc535509344][bookmark: _Toc535509451][bookmark: _Toc535509238][bookmark: _Toc535509345][bookmark: _Toc535509452][bookmark: _Toc535509239][bookmark: _Toc535509346][bookmark: _Toc535509453][bookmark: _Toc535509240][bookmark: _Toc535509347][bookmark: _Toc535509454][bookmark: _Toc535509241][bookmark: _Toc535509348][bookmark: _Toc535509455][bookmark: _Toc535509456]Conventions
- The term "this clause" refers to the entire clause included within the same first heading number. The term "this subclause" refers to all text contained in the subclause with the lowest hierarchy heading.

[bookmark: _Toc535509243][bookmark: _Toc535509350][bookmark: _Toc535509457][bookmark: _Toc535509244][bookmark: _Toc535509351][bookmark: _Toc535509458][bookmark: _Toc535509459]Overview
[bookmark: _Toc535509460]Introduction
The Network-Based Media Processing (NBMP) framework enables the creators, service providers and consumers of digital media to describe media processing operations that are to be performed by the media processing entities in the network as shown in Figure 1. It provides a method to describe a workflow by composing a set of the media processing functions that are accessible through NBMP Application Programming Interfaces (APIs). A Media Processing Entity contains Processing Tasks applied on the media data and the related metadata received from a Media Source or other Media Processing Entity. A Media Processing Entity provides control functions that are used to compose and configure the Processing Functions. A Media Processing Entity produces media data and related metadata to be consumed by a Media Sink or other Media Processing Entity.
The NBMP framework supports any format of media content, including the existing MPEG codecs and MPEG formats such as ISO/IEC 13818-1, ISO/IEC 14496-12, ISO/IEC 23008-1 and ISO/IEC 23009-1.
The NBMP framework supports the delivery over IP-based networks using the different transport protocols. (e.g., TCP, UDP, RTP and HTTP).
The NBMP framework support the existing delivery methods such as streaming, file delivery, push-based progressive download, hybrid delivery, multipath and heterogeneous network environments.
.
[bookmark: _Toc535509247][bookmark: _Toc535509354][bookmark: _Toc535509461][bookmark: _Toc535509462]Architecture
NBMP specifies interfaces to create and control media processing workflows in the network. NBMP can be split into a control plane and a media plane. The control plane covers the following APIs:
· Workflow API: is the API that is used by the NBMP Source to create and control a media processing workflow
· Function Discovery API: this API provides the means for the Workflow Manager and/or the NBMP Source to discover media processing Functions that can be loaded as part of a media processing Workflow.
· Task API: this API is used by the Workflow Manager to configure and monitor a Task at runtime.
On the media plane, NBMP defines the media formats, the metadata, and the supplementary information formats between the NBMP Source and the Task, as well as between the Tasks themselves.
 The discovery of the NBMP workflow manager and the function repository is out of scope.
The NBMP architecture is depicted by the following diagram:

[image:]
[bookmark: _Ref535345697]Figure 1 — NBMP Reference Architecture

[bookmark: _Toc535509249][bookmark: _Toc535509356][bookmark: _Toc535509463][bookmark: _Toc535395783][bookmark: _Toc535396536][bookmark: _Toc535395784][bookmark: _Toc535396537][bookmark: _Toc535395785][bookmark: _Toc535396538][bookmark: _Toc535509464]NBMP Workflow
3.1 [bookmark: _Toc535509465][bookmark: _Toc519776625]Introduction
The workflow manager receives workflow description document from NBMP source and builds a workflow for requested media processing. This section describes how media processing tasks are selected, configured, and distributed to a set of media processing entities as part of the workflow procedure.
[bookmark: _Toc535509466]Task Allocation & distribution
The workflow manager uses the workflow to perform processing deployment and configure the media processing entities as described in section 6.1.2. It is very likely that for computationally intensive media processing requests, the workflow manager chooses to setup multiple computational instances and distribute the workload among those multiple instances. In this case, the workflow manager takes responsibility to connect and configure all those instances as needed. This can be done in two different ways:
· Workflow manager allocates the same task to multiple instances and provisions a load balancer to distribute the workload among those instances using a chosen scheduling mechanism
· Workflow manager allocates different operations of same task to different instances (e.g., parallel operations)
In either of the above ways, the workflow manager is responsible for setting up the communication paths between those instances so the workload can be successfully completed. The workflow manager also configures the tasks to push the processed media data/streams (or make them available through a pull mechanism) to the next task in the workflow graph.
[bookmark: _Toc535395789][bookmark: _Toc535396542][bookmark: _Ref535347467][bookmark: _Ref535350094][bookmark: _Ref535350099][bookmark: _Toc535509467]Workflow processing model
This section describes the detailed processing model of the workflow manager.
Since the set of functions that are provided by the function repository can be read by the NBMP source, the workflow description document can be composed in two different ways, based on use cases and actual needs:
· NBMP source requests creation of workflow using a set of functions in the function repository:
With this type of workflow creation request, the NBMP source is responsible for selection of functions that are included in the workflow. In this case, the NBMP source requests creation of the workflow using:
· Set of function names read from the function repository using which the workflow is to be created
· Specifying the task connections using the port identifiers defined in InputPorts and OutputPorts parameters as the keys in the Inputs and Outputs of each of the tasks. The mapping information (taskConnectionMap) in the Processing Descriptor in these fields will be used to map the input ports of one task to the output ports of another task, and this will be performed for all tasks in the workflow. In this case, the Keyword and URL in the Processing Description can be empty or unspecified. The details of the port connecting can be found later.When the workflow manager receives the above information from NBMP source, it will create the workflow based on function names and connects the tasks according to what is defined in Input and Output Port Arrays.
· NBMP source requests creation of workflow using a set of keywords using which workflow manager constructs the workflow:
With this kind of workflow creation request, the NBMP source may not have complete idea of set of functions to be inserted into the workflow. In this case, the NBMP source requests creation of workflow using:
· Set of keywords using which the workflow manager need to find appropriate functions
· Specifying all the descriptors as described in Table 6. in the workflow description document.
When the workflow manager receives the above information from NBMP source, it will create the workflow by searching for appropriate functions using the keywords specified in the Processing Descriptor. The workflow manager will then use the other descriptors in the workflow description document to provision tasks and connect them to create the final workflow.
The processing model of the workflow manager can be described using the following steps:
1) Discovery of available media processing functions: An NBMP Function shall implement the function discovery interface as defined in section7.4, to allow external entities to query for a media processing function that fulfills a requested processing. The workflow manager has access to a directory service that offers a searchable list of media processing functions. The work flow manager can use the description of the tasks in the work flow description document to find the appropriate functions for the current workflow. As an example, a workflow description lists two functions “upscale” and then “Dash”
[bookmark: _Ref535347236][bookmark: _Ref518916963]Table 1 — Function repository
	Function
	Details
	APIs

	
	
	

	
	
	

	Function 1
	Function descriptors as described in section 9 for Function -1
	One or more of the supported APIs of described in section 7.4 for Function -1

	…
	…
	…

	…
	…
	…

	Function n
	Function descriptors as described in section 9 for Function -n
	One or more of the supported APIs described in section 7.4 for Function -n

Figure 1 shows the structure of the function repository and the type of information for each function that is published in the directory service.
2) Selection of media processing tasks to prepare the workflow:
When a request for media processing arrives from the NBMP source, the workflow manager shall scan function repository to find the list of all functions that could fulfill the workflow. Using the workflow description from the NBMP source, the workflow manager checks to see what all functions from the function repository need to be selected for finalizing the workflow. This checking depends on information for media processing from NBMP source such as input and output description, and description of the requested processing; and different descriptors (described in section 9) for each function in the function directory. The mapping of the source requests to appropriate media processing tasks to be included in the workflow is central for the implementation of NBMP in the network. The architecture for workflow manager with the media processing function repository is shown in Figure 2.
[image:]
[bookmark: _Ref535345572]Figure 2 — Workflow Manager interworking with Function repository
The search for appropriate functions that need to be run as tasks is performed by the workflow manager using the Function Discovery API. Alternatively, the workflow manager can retrieve the details of all functions in the function repository using the Function Discovery API. The workflow manager can then check the information for media processing from the source with different descriptors for each function fetched as described before
3) Configuration of selected media processing tasks in the workflow:
Once the functions required to be included in the workflow are identified using the function repository as described above, the next step is to run them as tasks and configure those tasks so they can be added to the workflow. Using the information for media processing received from the NBMP source, the workflow manager extracts the configuration data from that information and configures the selected tasks. The configuration of these tasks is performed using the Task API supported by those tasks.
[bookmark: _Toc535509468]Workflow Graph
When the workflow manager receives a workflow description document from the NBMP source, it performs selection of media processing tasks to be inserted into the workflow as described in section 6.1.2. Once the list of tasks that need to be included in the workflow is compiled, the workflow manager shall then connect those tasks to prepare the required workflow.
The workflow setup by the workflow manager can be represented using a DAG as shown in Figure 5. Each node of the DAG represents a processing task in the workflow. The links connecting one node to the other node in the graph represents the transfer of output of the former as input to the later. The details for input and output ports for a task is provided in General descriptor of task in section 6.3. The input to the first node in the DAG represents the input to the first task in the workflow. Similarly, the output of the last node in the DAG represents the output of final task in the workflow which will then be sent to the media sink. At different stages of the workflow, the workflow manager can setup sequential and parallel tasks as shown using sequential and parallel connections between nodes of the DAG shown above.
[image:]
Figure 5 — Directed Acyclic Graph

3.2 [bookmark: _Toc535260097][bookmark: _Toc535509469]NBMP Function
An NBMP function description is provided using a set of descriptors described in section 9. Table 2 shows the list of descriptors applicable to NBMP Function.
[bookmark: _Ref535347222][bookmark: _Ref535347217]Table 2 — Descriptors for NBMP Function
	Descriptor
	Description

	General
	Parameters of the general descriptor defined in section 9.2are applicable except the following:
· Priority
· Execution Time

	Input
	Parameters of the Input descriptor defined in section 9.3 are applicable

	Output
	Parameters of the Output descriptor defined in section 9.4 are applicable

	Processing
	· Parameters of the Processing descriptor defined in section 9.5 are applicable except the following: Start Time
· TaskConnectionMap
For keywords: Keywords representing the functionality using which this function can be selected if they match the keywords sent by the NBMP source

	Requirement
	Parameters of the Requirements descriptor defined in section 9.6 are applicable

	Configuration
	Parameters of the Configuration descriptor defined in section 9.7 are applicable

	Client Assistance
	Parameters of the Client Assistance descriptor defined in section 9.9 are applicable

	Monitoring
	Parameters of the Monitoring descriptor defined in section 9.11 are applicable except the following:
· Event
· System

	Assertion
	Parameters of the Client Assistance descriptor defined in section 9.12 are applicable

[bookmark: _Toc535509470][bookmark: _Ref535412334]NBMP Function Description
General
NBMP functions that are included in the function repository shall follow a common representation standard. This section describes the NBMP function reference template that all functions can use for specifying their description.
Template of Reference Function Description
The elements of the suggested template to describe Processing Functions are included below.
· Name: identifier to represent the Processing Function in a workflow description. “Name” parameter is required for Function Description and it should be specified by the implementer or provider of the function
·
· Description: textual explanation to describe the functionality of a Processing Function. Parameter “PublishFormat” is not necessary for Function Description (it would be necessary only for the last “Task” in a Workflow)
· ”Requirements” desccriptor would be used to specify general requirements that would be required for a “Task” instances of said function in a certain runtime environment. In Function Description, only Maxmum or Minimum values would be specified.
· Function Description would not contain “Parameters” in “Configuration” descriptor as it should be provided in Workflow Description and used as configuration parameters to instantiate a function as a Task instance
· Parameters for “Client Assistance” descriptor would be defined after it will be clarified on the points included as Editor’s notes(copied below) in corresponding section of the latest working document on Descriptors
Editor’s Notes: Following are to be clarified: a) Usage of the parameters for two different purposes - 1) Whether the NBMP source knows the set of device capabilities already before creating the workflow? and 2) Collection of device capability information when workflow manager sets up a monitoring task. b) Is the clientAssistance flag needed?
· Parameter “Variable” in “Monitoring” descriptor would be defined as not only specific to each function but also common to all functions
· Assertion Descriptor is not included
· List of input port names, data type units and buffer sizes: list of (1) input port names, (2) data-type units (tokens) that enter the Processing Function through the designated port and (3) sizes of the buffers attached to input ports. This size is measured in data-type units (i.e. The number of data type units to be processed which are stored in the buffer) In case there is no input port, the list consists of an empty set . Parameters “InputPorts” and “OutputPorts” are not required in “Detail” descripters used in Function Description. It would be necessary only for configuration of “Task” instances
· List of output port names and data type units: list of output port names and data-type units (tokens) that egress from the Processing Function through the designated port. In case there is no output port, The list consists of an empty set.
· List of parameter names and range: list of parameter names and range values. Parameters are employed to tune the behaviour of a Processing Function and include configuration.
Editor’s Notes:Above will be update

Table 3 — NBMP Function Reference Template
	Descriptor
	Parameter Name
	Type
	Description
	Additional Details

	General
	ID
	String
	Represents Function Id for the function in Function Repository
	Refer to section 9.2 for additional details

	
	Name
	String
	Represents Function Name for the function in Function Repository
	

	
	Description
	String
	Represents Function Type for the function in Function Repository
	

	
	Brand
	String
	Represents Function identification
	

	
	InputPorts
	Map
	Input ports for the function
	

	
	OutputPorts
	Map
	Output ports for the function
	

	Input
	Media Parameters
	Object
	Represents input media parameters for function as defined in function repository. Details of this parameter in section 9.2
	Refer to section 9.3 for additional details

	
	Metadata Parameters
	Object
	Represents input metadata parameters for function as defined in function repository. Details of this parameter in section 9.2
	

	Output
	Media Parameters
	Object
	Represents output media parameters for function as defined in function repository
	Refer to section 9.4 for additional details

	
	Metadata Parameters
	Object
	Represents output metadata parameters for function as defined in function repository
	

	
	Publish Format
	String
	Output distribution format supported by the function as indicated in function repository
	

	Processing
	Keywords
	Array
	Keywords representing the functionality using which this function can be selected if they match the keywords sent by the NBMP source
	Refer to section 9.5 for additional details

	
	URL
	String
	Pointer to the function implementation (e.g. a URL to an external file implementing the function)
	

	Requirements
	QoS Requirements
	Object
	Specifies the QoS requirements for the function as indicated for the function in the function repository
	Refer to section 9.6 for additional details

	
	Processing Requirements
	Object
	Specifies the processing requirements for the function as indicated for the function in the function repository
	

	
	Security Requirements
	Object
	Specifies the security requirements for the function as indicated for the function in the function repository
	

	Configuration
	Parameters
	Array
	Configuration details of variables, constants, and parameters required for function as specified in function repository
	Refer to section 9.7 for additional details

	ClientAssistance
	clientAssistanceFlag
	Boolean
	Specifies whether the function takes into consideration client assistance
	Refer to section 9.9 for additional details

	
	Device Capabilities
	String
	Specifies device capabilities the function can take into consideration
	

	
	User Preferences
	String
	Specifies user preferences the function can take into consideration
	

	Monitoring
	Variable
	Array
	Provides varible monitoring information for function variables
	Refer to section 9.10 for additional details

	Assertion
	Assertions
	Object
	Dictionary of assertions possible for the function
	Refer to section 9.12 for additional details

[bookmark: _Toc535509471]Function Grouping
Introduction
A Function Group is a set of Functions and their connections that are designed to work together, which allows the workflow manager to integrate them as described in a workflow. The Function Group is described as a sub-workflow, i.e. a DAG of connected Functions. In addition to the graph, a Function Graph also suggests the configuration parameters for each of the Tasks instantiated out of the Function Group.
The following Figure 3 depicts an example Function Group that performs upscaling of a video. The Upscaler Function is limited to 30fps, but the input video is 60fps.
[image:]
[bookmark: _Ref535347079]Figure 3 — Example Function Group
In the above example a splitter/mapper Function is instantiated to prepare the content for upscaling based on the requirements and constraints of the following Upscaler Functions. A Muxer Function is then used to re-multiplex the upscaled videos into a single output stream. A joint configuration is suggested by the Function Group description. An additional synchronization metadata stream may be generated by the splitter/mapper and propagated down to the Muxer through the Upscalers to ensure that the synchronization and frame order is not lost.
The Function Repository maintains the following representation of a Function Group:
Table 4 — Representation of a Function Group
	Parameter
name
	type
	description

	group_id
	integer
	the unique identifier of this function group in the Function Repository

	group_name
	string
	a name assigned to this function group

	connectionMap
	array
	A description of the connectivity of the functions in this group, provided as an array

	relationship
	object
	<function_1_id : port_1_id:function_2_id:port_2_id>

The Function Repository shall be able to store entries for Functions and for Function Groups. The potential restrictions for each function and port of a group shall be provided by the corresponding Group Descriptor.
[bookmark: _Ref535347551][bookmark: _Toc535509472]NBMP Task
An NBMP task description is provided using a set of descriptors described in section 9. Table 5 shows the list of descriptors applicable to NBMP task.
[bookmark: _Ref535347336]Table 5 — Descriptors for NBMP Task
	Descriptor
	Description

	General
	Parameters of the General descriptor defined in section 9.2 are applicable. To reference and link input sources with input port names and output port names at the time of task creation, the binding object is used to make references to the input streams. The Binding object contains the stream names or other parameters defined by the inputs and output. Workflow Manager needs to assign actual stream IDs and creates necessary ports if needed. The binding object is an object structure like {“bind:”name”}.

	Input
	Parameters of the Input descriptor defined in section 9.3 are applicable.

	Output
	Parameters of the Output descriptor defined in section 9.4 are applicable except the following:
· Distribution Format

	Processing
	Parameters of the Processing descriptor defined in section 9.5 are applicable except the following:
· Keywords
· URL
· TaskConnectionMap

	Requirement
	Parameters of the Requirements descriptor defined in section 9.6 are applicable.

	Configuration
	Parameters of the Configuration descriptor defined in section 9.7 are applicable.

	Delay
	Parameters of the Delay descriptor defined in section 9.8 are applicable.

	Client Assistance
	Parameters of the Client Assistance descriptor defined in section 9.9 are applicable.

	Failover
	Parameters of the Failover descriptor defined in section 9.10 are applicable.

	Monitoring
	Parameters of the Input descriptor defined in section 9.11 are applicable.

	Assertion
	Parameters of the Assertion descriptor defined in section 9.12 are applicable.

	Reporting
	Parameters of the Reporting descriptor defined in section 9.13 are applicable.

	Notification
	Parameters of the Notification descriptor defined in section 9.14 are applicable.

[bookmark: _Toc535509473]Task Life Cycle
An NBMP task transitions through different set of states at different points of its execution. This section describes the life-cycle of a task from the time it is instantiated until it gets destroyed. Figure 4 below shows the life cycle of task.
[image:]
[bookmark: _Ref535347401][bookmark: _Ref535347394]Figure 4 — Task Life Cycle
Following is the description of different states in life cycle of a task:
•	Instantiated: A tast is in instantiated state when it is instantiated by the workflow manager through the services of infrastructure manager (as represented using the onInstantiation() event). When the task is configured (as represented using onTaskConfiguration() event), the task moves to Idle state. Alternatively, if the task is terminated (as represented using the onTermi) while in this state, it moves to Destroy state.
•	Idle: When the task is in Instantiated state and the workflow manager performs task configuration (as represented using the onTaskConfiguration() event), the task moves to Idle State. In Idle state, the task is configured with required processing and waiting for data to arrive. When the task is started (as represented using the onStart() event), the task moves to Running state. Alternatively, in Idle state, the task can be re-configured and stays in Idle state waiting for media data or metadata. In Idle state, if the task is terminated (as represented using the onTermination() event), the task moves to Destroy state. In Idle state, if the task is reset (as represented using the onReset() event), the task moves to Instantiated state.
•	Running: While the task is in Idle state, and it is started (using the onStart() event), the task moves from Idle state to Running state. In Running state, the task assigned to the media processing entity is processing data that it receives from either the previous task in the workflow or the NBMP source. Alternatively, in Running state, if the workflow manager performs reconfiguration of the task (as represented using the onTaskConfiguration() event), and if the reconfiguration results in processing reconfiguration with execution on current media/metadata streams to the task, then the task stays in Running state. In Running state, if the task is stopped (as represented using the onStop()event), the task moves to the Idle state. In Running state, if the task encounters an error (as represented using the onError() event), the task moves to Error state. Finally, in Running state, if the task is terminated (as represented using onTermination() event), it moves to Destroy state.
•	Error: The task is in error state when the task encounters an error and cannot process the media data or metadata. Upon handling the error (as represented using the onErrorHandling() event), the task moves back to Idle state. Alternatively, while in Error state, and the task is reset (as represented using onReset() event), the task moves to Instantiated state. Finally, in Error state, if the task is terminated, the task moves to Destroy state.
•	Destroy: The task is in destroy state when the task is terminated by the workflow manager. The task will need to be instantiated for it to be used again.
[bookmark: _Toc535395796][bookmark: _Toc535396549][bookmark: _Toc535509260][bookmark: _Toc535509367][bookmark: _Toc535509474][bookmark: _Toc535509262][bookmark: _Toc535509369][bookmark: _Toc535509476][bookmark: _Toc535509263][bookmark: _Toc535509370][bookmark: _Toc535509477][bookmark: _Toc535509264][bookmark: _Toc535509371][bookmark: _Toc535509478][bookmark: _Toc535509265][bookmark: _Toc535509372][bookmark: _Toc535509479][bookmark: _Toc535395798][bookmark: _Toc535396551][bookmark: _Toc535509480]Workflow Description Document (WDD)
The WDD is passed from the NBMP source to the workflow manager. The workflow description describes details such as input and output data, required functions, requirements etc. for the workflow. Table 6 below shows the contents of the workflow description
[bookmark: _Ref535347592]Table 6 — Workflow Description
	Descriptor
	Description

	General
	Parameters of the General descriptors described in section 9.1 are applicable except the following:
· InputPorts
· OutputPorts

	Input
	Parameters of the Input descriptor described in section 9.2 are applicable

	Output
	Parameters of the Output descriptor described in section 9.3 are applicable

	Processing
	Parameters of the Processing descriptor described in section 9.4 are applicable except the following:
· URL

	Requirement
	Parameters of the Requirement descriptor described in section 9.5 are applicable with below additional information
	Requirements
	Details

	Processor requirements
	Indicates minimum processing capabilities to any media processing entity that will be provisioned in the workflow

	CPU Cores
	Indicates minimum number of CPU cores to be allocated to any media processing entity that will be provisioned in the workflow

	GPU
	Indicates minimum number of GPUs to be allocated to any media processing entity that will be provisioned in the workflow

	Aggregated storage
	Indicates aggregated storage for all media processing entities allocated for the workflow

	Client Assistance
	Parameters of the Client Assistance descriptor described in section 9.8 are applicable

	Failover
	Parameters of the Failover descriptor described in section 9.9 are applicable

	Monitoring
	Parameters of the Monitoring descriptor described in section 9.10 are applicable except the following:
Variable

	Assertion
	Parameters of the Assertion descriptor described in section 9.11 are applicable

	Reporting
	· Parameters of the Reporting descriptor described in section 9.12 are applicable

	Notification
	Parameters of the Notification descriptor described in section 9.14 are applicable

All the above details of workflow description can be encoded using JSON or XML.

[bookmark: _Toc535509481]NBMP Interfaces
[bookmark: _Toc535509482]Introduction
Different entities of the NBMP system such as the NBMP source, workflow manager, and the media processing entities require APIs to invoke media service requests. This section describes the set of APIs supported by the NBMP system such as the workflow APIs (between the NBMP source and workflow manager), Task APIs (between the workflow manager and media processing tasks), and the function discovery APIs (between the workflow manager/NBMP source and the function repository).
[bookmark: _Toc535509483]Workflow APIs
3.2.1 Workflow API Resources

As shown in the NBMP architecture diagram above, the NBMP source uses the NBMP workflow API to communicate with the workflow manager for configuring media processing in the network. In this section, we describe the resources that will be used by the workflow API, and the API operations that act on those resources.
Section 9 describes the detailed set of descriptors that can be used while building the workflow description document. Using on the set of descriptors that can go into the workflow description document as described in section 9, a resource called “workflow-description” can be modelled by composing all workflow description specific descriptors. This means that when the NBMP source sends the workflow-description resource, the server (workflow manager) is able to extract the details of all descriptors described in [1]. The workflow-description resource can be shown as follows:
Table 7 — Workflow API Resources
	API Resource
	Resource Properties

	Workflow-description
	InputDescriptor, OutputDescriptor, ProcessingDescriptor, RequirementDescriptor, ConfigurationDescriptor, DelayDescriptor, ClientAssistanceDescriptor, FailoverDescriptor, MonitoringDescriptor, AssertionDescriptor, ReportingDescriptor

With this kind of modelling, the workflow-description resource can be used in various workflow API operations.
[bookmark: _Toc535509484]Workflow API Operations
The workflow API is used by the NBM source to manage workflows at the workflow manager. Using the workflow-description resource, the following workflow API operations can be supported.
Table 8 — Workflow API Operations
	API
	
	
	Description
	Request Parameters
	Response Parameters

	CreateWorkflow
	
	
	Create a workflow
	Workflow-description resource representation with all workflow specific descriptors
	· Acknowledgement of workflow creation
· Workflow Resource Id
· Endpoint information where to send media data, metadata, and other information for processing

	UpdateWorkflow
	
	
	Update a previously created workflow
	Updated workflow-description resource consisting of one or more workflow specific descriptors. The properties of individual descriptors themselves can be partially sent
	· Acknowledgement of workflow update
· Workflow Resource Id
· Updated endpoint information where to send media data, metadata, and other information for processing

	DeleteWorkflow
	
	
	Terminate a previously created workflow
	· Workflow Resource Id
	· Acknowledgement of workflow termination
· Workflow Resource Id

	RetrieveWorkflow
	
	
	Retrieve a previously configured workflow
	· Workflow Resource Id
	· Acknowledgement of workflow retrieval
· Complete workflow-description resource representation

	GetReports
		Comment by P Kolan: Deleting the two columns From and To as we did for Task API. This is done to keep the specification uniform across different API
	
	Get reports for a previously configured workflow
	· Workflow resource Id
· Report Type (e.g., QoE, consumption, fedback, analysis)
	· Workflow Resource Id
· Detailed report for the requested report type

[bookmark: _Ref535345655][bookmark: _Ref535345666][bookmark: _Toc535509485]Task APIs
Task API defines the API for configuration of media processing entities by the workflow manager. This section describes the Task resource that will be used by the API, and the API operations that act on this resource.
[bookmark: _Toc535509486]Task API Resource
section 9 describes the detailed set of descriptors that can be used for defining any task in the workflow while building the workflow graph. Each of the descriptors described in section 9 that apply to a task can be modeled as a complex property to a resource called the “Task” resource. The structure of each property is defined by the corresponding descriptor members as defined in section 9. The properties of the task resource are as shown in the Table 9 below.
[bookmark: _Ref535348532]Table 9 — Task resource Properties
	Property
	Property Description

	General
	Property representing the general descriptor as defined in 9.2

	Input
	Property representing the input descriptor as defined in 9.3

	Output
	Property representing the output descriptor as defined in 9.4

	Processing
	Property representing the processing descriptor as defined in 9.5

	Requirement
	Property representing the requirement descriptor as defined in 9.6

	Configuration
	Property representing the configuration descriptor as defined in 9.7

	Delay
	Property representing the delay descriptor as defined in 9.8

	Client Assistance
	Property representing the client assistance descriptor as defined in 9.9

	Failover
	Property representing the failover descriptor as defined in 9.10

	Monitoring
	Property representing the monitoring descriptor as defined in 9.11

	Assertion
	Property representing the assertion descriptor as defined in 9.12

	Reporting
	Property representing the reporting descriptor as defined in 9.13

	Notification
	Property representing the notification descriptor as defined in 9.14

Each of the descriptors that apply to task as defined in section 9 is modeled as a complex object property as shown above. With this kind of modeling, the task resource can be used in various Task API operations.
[bookmark: _Toc535509487]Task API Operations
By modeling different descriptors as properties of task resource, the following API operations will then be possible.
Task Configuration API
The workflow manager can use the Task configuration API to configure media processing entities. Such Task configuration API includes:
Table 10 — Task configuration API
	API
	Description
	Request Parameters
	Response Parameters

	CreateTask
	Provision to run a task inside the media processing entity
	Representation of task resource defined above
	· Acknowledgement of creating a task resource
· Task Resource Id
· Endpoint information where to send media data, metadata, and other information for processing

	UpdateTask
	Modify the task running inside the media processing entity
	Representation of task resource with one or more task resource properties that the workflow manager intends to modify
	· Acknowledgement of updating task resource
· Task Resource Id
· Updated information where to send media data, metadata, and other information for processing

	GetTask
	Retrieve task configuration information
	Resource Id of the task resource whose information the workflow manager intends to retrieve
	· Task Resource Id
· Detailed resource reprensentation of the task resource

	DeleteTask
	Request to de-provision the task running inside the media processing entity and terminate the media processing entity
	Task Resource Id
	· Acknowldgement of reception
· Status of of de-configuration request

3.3 [bookmark: _Toc535395807][bookmark: _Toc535396560][bookmark: _Toc535395808][bookmark: _Toc535396561][bookmark: _Toc535395809][bookmark: _Toc535396562][bookmark: _Toc535395810][bookmark: _Toc535396563][bookmark: _Toc535395811][bookmark: _Toc535396564][bookmark: _Toc527030177][bookmark: _Ref535345762][bookmark: _Ref535406000][bookmark: _Toc535509488]Function Discovery APIs
Function Repository API is used by the workflow manager and the NBMP source for discovery of NBMP functions supported by the network. These functions are included in Function Repository as described in architecture diagram above. Functions are described in the Function Repository using Function Reference Template in section 6.2.1 which the workflow manager and NBMP source can read to execute that function. In this section, we describe the resources that will be used by the API, and the API operations that act on those resources.
3.3.1 [bookmark: _Toc527030178][bookmark: _Toc535509489]Function Discovery API Resources
A discovery resource can be used for setting up the discovery operations. The structure of the discovery resource shows different properties using which the functions can be discovered. In this version of specification, only name based discovery is supported i.e. using a name to search for appropriate functions in the function repository. The structure of the discovery resource can thus be shown as follows:
Table 11 — Function Discovery API Resources
	Properties
	Description

	Name
	String using which functions can be searched.

	Function Id
	Unique identification of each function

3.3.2 [bookmark: _Toc527030179][bookmark: _Toc535509490]Function Discovery API Operations
The function discovery API is used by NBMP source or the workflow manager to discover available functions in the function repository. Using the search resource as defined above, the Function Discovery API operations can be shown as below:

Table 12 — Function Discovery API Operations
	API
	
	
	Description
	Request Parameters
	Response Parameters

	DiscoverAllFunctions
	
	
	Discover all functions in the function repository
	No properties sent along with search resource
	All Functions registered at the function repository. Each function description contains the Function Id and function details.

	DiscoverSpecificFunction
		Comment by P Kolan: Removing these two columns to make the representation uniform
	
	Discover a set of functions matching a given string
	Name string sent along with search resource
	All functions in the function repository whose name matches the given name string. Each function description contains the Function Id and function details.

[bookmark: _Toc535509491]NBMP Media and Metadata Formats
[bookmark: _Toc535509492]Introduction
NBMP Framework specifies the NBMP media and metadata format.
[bookmark: _Toc535509493]Media Formats
NBMP supports the existing media formats defined by MPEG standards for input and output of Task.
[bookmark: _Toc535509280][bookmark: _Toc535509387][bookmark: _Toc535509494][bookmark: _Toc535509495]Metadata Formats
NBMP supports and defines the format of NBMP metadata. The NBMP metadata should be static or dynamic metadata. Both static and dynamic metadata should be provided by the NBMP source, media source, or Tasks.
NBMP supports the existing metadata format defined by MPEG standards.
4 [bookmark: _Toc535509282][bookmark: _Toc535509389][bookmark: _Toc535509496][bookmark: _Toc535509283][bookmark: _Toc535509390][bookmark: _Toc535509497][bookmark: _Toc535509284][bookmark: _Toc535509391][bookmark: _Toc535509498][bookmark: _Toc535509285][bookmark: _Toc535509392][bookmark: _Toc535509499][bookmark: _Toc535509286][bookmark: _Toc535509393][bookmark: _Toc535509500][bookmark: _Toc535395824][bookmark: _Toc535396577][bookmark: _Toc535395825][bookmark: _Toc535396578][bookmark: _Toc535395826][bookmark: _Toc535396579][bookmark: _Toc535395827][bookmark: _Toc535396580][bookmark: _Toc535395833][bookmark: _Toc535396586][bookmark: _Toc535395895][bookmark: _Toc535396648][bookmark: _Toc535395896][bookmark: _Toc535396649][bookmark: _Toc535395897][bookmark: _Toc535396650][bookmark: _Toc535395898][bookmark: _Toc535396651][bookmark: _Toc535395904][bookmark: _Toc535396657][bookmark: _Toc535395966][bookmark: _Toc535396719][bookmark: _Toc535395967][bookmark: _Toc535396720][bookmark: _Toc535395968][bookmark: _Toc535396721][bookmark: _Toc535395974][bookmark: _Toc535396727][bookmark: _Toc535396034][bookmark: _Toc535396787][bookmark: _Toc535396035][bookmark: _Toc535396788][bookmark: _Toc535396036][bookmark: _Toc535396789][bookmark: _Toc535396037][bookmark: _Toc535396790][bookmark: _Toc535396043][bookmark: _Toc535396796][bookmark: _Toc535396080][bookmark: _Toc535396833][bookmark: _Toc535396081][bookmark: _Toc535396834][bookmark: _Toc535396082][bookmark: _Toc535396835][bookmark: _Toc535396093][bookmark: _Toc535396846][bookmark: _Toc535396094][bookmark: _Toc535396847][bookmark: _Toc535396095][bookmark: _Toc535396848][bookmark: _Toc535396096][bookmark: _Toc535396849][bookmark: _Toc535396097][bookmark: _Toc535396850][bookmark: _Toc535396103][bookmark: _Toc535396856][bookmark: _Toc535396162][bookmark: _Toc535396915][bookmark: _Toc535396163][bookmark: _Toc535396916][bookmark: _Toc535396164][bookmark: _Toc535396917][bookmark: _Toc535396165][bookmark: _Toc535396918][bookmark: _Toc535396171][bookmark: _Toc535396924][bookmark: _Toc535396185][bookmark: _Toc535396938][bookmark: _Toc535396186][bookmark: _Toc535396939][bookmark: _Toc535396187][bookmark: _Toc535396940][bookmark: _Toc535396188][bookmark: _Toc535396941][bookmark: _Toc535396194][bookmark: _Toc535396947][bookmark: _Toc535396208][bookmark: _Toc535396961][bookmark: _Toc535396209][bookmark: _Toc535396962][bookmark: _Toc535396210][bookmark: _Toc535396963][bookmark: _Toc535396211][bookmark: _Toc535396964][bookmark: _Toc535396217][bookmark: _Toc535396970][bookmark: _Toc535396238][bookmark: _Toc535396991][bookmark: _Toc535396239][bookmark: _Toc535396992][bookmark: _Toc535396240][bookmark: _Toc535396993][bookmark: _Toc535396241][bookmark: _Toc535396994][bookmark: _Toc535396247][bookmark: _Toc535397000][bookmark: _Toc535396294][bookmark: _Toc535397047][bookmark: _Toc535396295][bookmark: _Toc535397048][bookmark: _Toc535396296][bookmark: _Toc535397049][bookmark: _Toc535396297][bookmark: _Toc535397050][bookmark: _Toc535396303][bookmark: _Toc535397056][bookmark: _Toc535396331][bookmark: _Toc535397084][bookmark: _Toc535396332][bookmark: _Toc535397085][bookmark: _Toc535396333][bookmark: _Toc535397086][bookmark: _Toc535396334][bookmark: _Toc535397087][bookmark: _Toc535396340][bookmark: _Toc535397093][bookmark: _Toc535396360][bookmark: _Toc535397113][bookmark: _Toc535396361][bookmark: _Toc535397114][bookmark: _Toc535396362][bookmark: _Toc535397115][bookmark: _Toc535396383][bookmark: _Toc535397136][bookmark: _Toc535396384][bookmark: _Toc535397137][bookmark: _Toc535396385][bookmark: _Toc535397138][bookmark: _Toc535396386][bookmark: _Toc535397139][bookmark: _Toc535396392][bookmark: _Toc535397145][bookmark: _Toc535396434][bookmark: _Toc535397187][bookmark: _Toc535396435][bookmark: _Toc535397188][bookmark: _Toc535396436][bookmark: _Toc535397189][bookmark: _Toc535396437][bookmark: _Toc535397190][bookmark: _Toc535396443][bookmark: _Toc535397196][bookmark: _Toc535396476][bookmark: _Toc535397229][bookmark: _Toc535260118][bookmark: _Ref535345729][bookmark: _Ref535345788][bookmark: _Ref535345801][bookmark: _Ref535345803][bookmark: _Ref535345827][bookmark: _Ref535346560][bookmark: _Ref535346573][bookmark: _Ref535347960][bookmark: _Ref535347975][bookmark: _Ref535348483][bookmark: _Toc535509501]NBMP Descriptors
[bookmark: _Toc535509502]Introduction
[bookmark: _Toc535509503]Generic Parameter Representation
In order to provide a single representation of the parameter set, the parameter set is represented as a bipartite graph with 3 edge types. The Nodes can either be Parameter Nodes or Value Nodes.
The edge types are:
· Edge type 1: From Parameter Nodes to Value Nodes and indicate that a certain Parameter can take one of a set of Values.
· Edge type 2: From a Value Node to a Parameter Node to indicate a dependency of the Parameter on the parent Parameter taking that specific value
· Edge type 3: From a Value Node to a Parameter or Value Node to indicate that a particular Parameter or Value of that Parameter is not allowed if the first Parameter has the indicated Value.

The following diagram depicts these relationships:

[image:]
Figure 6 — Generic Parameter Representation Diagram
The Value nodes can take single values, value sets, or value ranges. A certain value may indicate that it is the default value. Furthermore, the arrows can indicate if the dependency is mandatory or optional. In the example graph above, parameter P2:2 is not allowed if parameter P1:1 takes value V1:1.
This representation facilitates the selection and verification of the configuration sub-set by performing the following steps:
1. Set i to value 1, representing level 1 of the bipartite graph
2. For Parameters of Level i, select a subset Si of these Parameters to be included in the configuration
3. For each selected Parameter Pi:j, determine the set of values Vi:k that can be assigned to Pi:j.
4. Assign appropriate Value for Pi:j out of the possible values Vi:k
5. Based on assigned values for each parameter Pi:j, determine sub-set Si+1 of Parameters Pi+1:m with edges of type 2 (dependency) and exclude Parameters with edges of type 3 from the graph
6. Set i=i+1 and if the new subset Si is not empty go to step 2
7. If Si is empty, verify that the graph has no nodes of type 3 (exclusion) and return the created configuration
The configuration graph shall be represented in JSON format according to the following schema:
	{
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$id": "http://mpeg.org/nbmp.json",
 "type": "object",
 "title": "NBMP Generic Parameter Schema",
 "required": [
 "parameters"
],
 "properties": {
 "parameters": {
 "type": "array",
 "title": "The Parameters Schema",
 "items": {
 "type": "object",
 "required": [
 "name",
 "id",
 "type"
],
 "properties": {
 "name": {
 "type": "string"
 },
 "id": {
 "type": "integer"
 },
 "type": {
 "type": "string",
 "enum": [
 "simple",
 "enum",
 "range"
]
 },
 "restrictions": {
 "type": "object",
 "properties": {
 "enumValues": {
 "type": "array"
 },
 "rangeValues": {
 "type": "object",
 "properties": {
 "minValue": {
 "type": "integer"
 },
 "maxValue": {
 "type": "integer"
 }
 }
 }
 }
 },
 "conditions": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "required": [
 "parameter_id",
 "parameter_value"
],
 "properties": {
 "parameter_id": {
 "type": "integer"
 },
 "parameter_value": {
 "type": "string"
 },
 "exclusive": {
 "type": "boolean",
 "default": false
 }
 }
 }
]
 }
 }
 }
 }
 }
}

Conditions are used to express the hierarchical relationships between the parameters.

4.1 [bookmark: _Toc535260119][bookmark: _Ref535345906][bookmark: _Ref535346099][bookmark: _Ref535346587][bookmark: _Ref535347893][bookmark: _Ref535348210][bookmark: _Toc535509504]General Descriptor
This descriptor provides details about the underlying resource (e.g., workflow, task) in which this is included. Following are the list of parameters in this descriptor.
Table 13 — General Descriptor
	Parameter Name
	Description
	Data Type

	
	
	

	ID
	Provides a unique identification to the resource.
	String

	Name
	Provides a name for identifying the resource.
	String

	Description
	Provides a human readable description for the underlying resource.
	String

	Brand
	Provides category information for the underlying resource
	String

	Priority
	Provides priority information for the underlying resource.
	Number

	Execution Time
	Provides execution time of the resource
	String

	InputPorts
	Includes a map of port information where:
· Map key: Port Identifier
· Map value: Stream Id in InputDescriptor
Note: One Stream id is mapped to one Port Id per workflow
	Map

	OutputPorts
	Includes a map of port information where:
· Map key: Port Identifier
· Map value: Stream Id in OutputDescriptor
Note: One Stream id is mapped to one Port Id per workflow
	Map

[bookmark: _Toc535509505]JSON Schema
	{
 "title": "The General Descriptor Schema",
 "type": "object",
 "title": "general Descriptor Schema",
 "properties": {
 "id": {
 "type": "string"
 },
 "name": {
 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "brand": {
 "type": "string"
 },
 "priority": {
	"type": "integer"
 },
 "execution-time": {
 "type": "string"
 },
 "input-ports": {
 "type": "object",
 "properties": {
 "input-port-id-1": {
 "type": "string"
 },
 "input-port-id-2": {
 "type": "string"
 }
 }
 },
 "output-ports": {
 "type": "object",
 "properties": {
 "output-port-id-1": {
 "type": "string"
 },
 "output-port-id-2": {
 "type": "string"
 }
 }
 }
 }
}

4.2 [bookmark: _Toc535260120][bookmark: _Ref535345950][bookmark: _Ref535346117][bookmark: _Ref535346126][bookmark: _Ref535346599][bookmark: _Ref535347881][bookmark: _Ref535348220][bookmark: _Toc535509506]Input Descriptor
This descriptor provides input description details for the underlying resource. Following are the list of parameters in this descriptor.
Table 14 — Input Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Media Parameters
	Provides media parameters for resource consumption. The parameters include the following:
· Collection of media descriptions: Each media stream description includes:
· Stream Schema
· Stream Information
· Media Stream ID: ID to identify the media stream. Assigned by Workflow Manager.
· StreamName: String name assigned by NBMP Source
· Stream Tags: Array of keywordsBandwidth: Bandwidth of media stream
· Codec type: Type of codec for the underlying media
· Media Type: Type of media
· Clock rate: Codec clock rate
· Protocol: Protocol for delivery or access of media
· Origination: Location where the media will be sent from or the location from where the media can be fetched from. Such information may include:
· Caching server URL: URL location of the caching server where the media is residing (e.g., edge cache)
· External Server URL: Location of media at an external storage
Note: When Origination is missing, the Workflow Manager can act like the way of Metadata Parameters. When the workflow manager receives this Protocol information, it can take the responsibility of returning back with the protocol endpoint information of the appropriate media processing entity to the media source so media source can ingest media using that protocol
	Object

	Metadata Parameters
	Provides metadata parameters for resource consumption. The parameters include the following:
· Collection of metadata descriptions: Each metadata stream description includes:
· Metadata schema
· Metadata Information
· Metadata Stream Id: ID to identify the content component i.e. metadata stream
· Metadata Type: Type of metadata. Possible values include:
· Timed: Indicates description for Timed metadata
· Non-Timed: Indicates description of non-timed static medatadata
· Bandwidth: Bandwidth of metadata stream
· MetadataDictionary: Dictionary of static non-timed metadata. Dictionary contains a collection of key-value pairs. Each key represents the name of a static metadata parameter and the corresponding value indicates the value of that metadata parameter.
Note: This is only applicable for static non-timed metadata
· Protocol: Ingest protocol for timed metadata. Example: HTTP. When the workflow manager receives this information, it takes the responsibility of returning back with the protocol endpoint information of the appropriate media processing entity to the media source so media source can ingest metadata using that protocol.
Note: This is only applicable for timed metadata
· MetadataIngestFormat: Format of timed metadata. Example: JSON, XML
Note: Metadata parameters from MPEG MORE and MPEG-V are applicable
	Object

[bookmark: _Toc535509507][bookmark: _Toc535260121]JSON Schema
	{
 "title": "The Input Descriptor Schema",
 "type": "object",
 "properties": {
 "media-parameters": {
 "type": "array",
 "items": {
 "type": "object",
 "required": [
 "stream-schema",
 "stream-information"
],
 "properties": {
 "stream-schema": {
 "type": "string"
 },
 "stream-information": {
 "type": "object",
 "properties": {
 "media-stream-id": {
 "type": "string"
 },"stream-tag": {
 "type": "string"
 },
 "bandwidth": {
 "type": "string"
 },
 "codec-type": {
 "type": "string"
 },
 "media-type": {
 "type": "string"
 },
 "clock-rate": {
 "type": "string"
 },
 "protocol": {
 "type": "string"
 },
 "origination": {
 "type": "object",
 "required": [
 "caching-server-url",
 "external-server-url"
],
 "properties": {
 "caching-server-url": {
 "type": "string"
 },
 "external-server-url": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 },
 "metadata-parameters": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "metadata-schema": {
 "type": "string"
 },
 "metadata-information": {
 "type": "object",
 "required": [
 "metadata-stream-id",
 "metadata-type",
 "bandwidth",
 "metadata-dictionary",
 "protocol",
 "metadata-ingest-format"
],
 "properties": {
 "metadata-stream-id": {
 "type": "string"
 },
 "metadata-type": {
 "type": "object",
 "properties": {
 "timed": {
 "type": "string"
 },
 "non-timed": {
 "type": "string"
 }
 }
 },
 "bandwidth": {
 "type": "string"
 },
 "metadata-dictionary": {
 "type": "object",
 "properties": {
 "param1": {
 "type": "string"
 },
 "param2": {
 "type": "string"
 }
 }
 },
 "protocol": {
 "type": "string"
 },
 "metadata-ingest-format": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
}

4.3 [bookmark: _Ref535345965][bookmark: _Ref535346152][bookmark: _Ref535346611][bookmark: _Ref535347871][bookmark: _Ref535348230][bookmark: _Toc535509508]Output Descriptor
This descriptor provides output description details for the underlying resource. Following are the list of parameters in this descriptor.
Table 15 — Output Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Media Parameters
	Provides media parameters for production by the resource. The parameters include the following:
· Array of media descriptions: Each media stream description includes:
· Stream schema
· Stream information
· Media Stream ID: ID to identify the media stream. Assigned by Workflow Manager.
· StreamName: String name assigned by NBMP Source
· Stream Tags: Array of keywordsCodec type: Type of codec
· Media Type: Type of media
· Bandwidth: Bandwidth of media stream
· Clock rate: Codec clock rate
· Protocol: Protocol for delivery of media type
· Destination: Where to send the output to
· Publish Format: Desired publish format
	Object

	Metadata Parameters
	Provides metadata parameters for production by the resource. The parameters include the following:
· Array of metadata descriptions: Each metadata stream description includes:
· Metadata schema
· Metadata information
· Metadata Stream Id: ID to identify the content component i.e. metadata stream
· Metadata Type: Type of metadata
· Timed: Indicates description for Timed metadata
· Non-Timed: Indicates description of non-timed static metadata
· Bandwidth: Bandwidth of metadata stream
· MetadataDictionary: Dictionary of static non-timed metadata. Dictionary contains a collection of key-value pairs. Each key represents the name of a static metadata parameter and the corresponding value indicates the value of that metadata parameter.
Note: This is only applicable for static non-timed metadata
· Protocol: Distribution protocol for timed metadata. Example: HTTP. When the workflow manager receives this information, it takes the responsibility of returning back with the protocol endpoint information of the appropriate media processing entity to the media source so media source can ingest metadata using that protocol.
Note: This is only applicable for timed metadata
· Publish Format: Desired publish format of timed metadata. E.g., JSON, XML
Note: Metadata parameters from MPEG MORE and MPEG-V are applicable
	Object

	Publish Format
	Desired output publish format
	String

Editor’s Notes: The need for “Publish Format” field in “Media Parameters”, “Metadata Parameters”, and as a separate field is to be clarified.
[bookmark: _Toc535509509]JSON Schema
	{
 "title": "The Output Descriptor Schema",
 "type": "object",
 "properties": {
 "media-parameters": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "stream-schema": {
 "type": "string"
 },
 "stream-information": {
 "type": "object",
 "required": [
 “media-stream-id”,
 “stream-tag”,
 "codec-type",
 "media-type",
 "bandwidth",
 "clock-rate",
 "transport-protocol",
 "destination",
 "merge-input-media-components",
 "distribution-format"
],
 "properties": {
 "media-stream-id": {
 "type": "string"
 },"stream-tag": {
 "type": "string"
 },
 "codec-type": {
 "type": "string"
 },
 "media-type": {
 "type": "string"
 },
 "bandwidth": {
 "type": "string"
 },
 "clock-rate": {
 "type": "string"
 },
 "protocol": {
 "type": "string"
 },
 "destination": {
 "type": "string"
 },
 "publish-format": {
 "type": "string"
 }
 }
 }
 }
 }
 },
 "metadata-parameters": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "metadata-schema": {
 "type": "string"
 },
 "metadata-information": {
 "type": "object",
 "required": [
 “metadata-stream-id”,
 "metadata-type",
 "merge-input-media-components",
 "distribution-format"
],
 "properties": {
 "metadata-type": {
 "type": "object",
 "properties": {
 "timed": {
 "type": "string"
 },
 "non-timed": {
 "type": "string"
 }
 }
 },
 "bandwidth": {
 "type": "string"
 },
 "metadata-dictionary": {
 "type": "object",
 "properties": {
 "param1": {
 "type": "string"
 },
 "param2": {
 "type": "string"
 }
 }
 },
 "protocol": {
 "type": "string"
 },
 "publish-format": {
 "type": "string"
 }
 }
 }
 }
 }
 },
 "publish-format": {
 "type": "string"
 }
 }
}

4.4 [bookmark: _Toc535260122][bookmark: _Ref535345980][bookmark: _Ref535346163][bookmark: _Ref535346622][bookmark: _Ref535347857][bookmark: _Ref535348242][bookmark: _Toc535509510]Processing Descriptor
This descriptor provides high level details about the requested media processing. This description is limited to a list of sequential tasks to be performed on the input media data. Following are the list of parameters in this descriptor.
Table 16 — Processing Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Keywords
	List of keywords that can be used to execute a search in function repository.
Functions are described using a human-readable description and included in the Function Repository. Either the workflow manager or the NBMP source can use function names as mentioned in Function Repository for inclusion in this field.
	Array

	URL
	Pointer to the resource implementation
	String

	Start Time
	Start time when the resource need to run
	String

	TaskConnectionMap
	Provides connection information between tasks in case of static workflows
	Map

Note: TaskConnectionMap provides linking information between different tasks in the static workflow. The structure of the TaskConnectionMap is as follows:
Table 17 — The structure of the TaskConnectionMap
	OutputTask Identifier
	OutputPortIdentifier
	InputTask Identifier
	InputPortIdentifier

	Task A
	Port A
	Task B
	Port B

 In the above task connection map, the output port “A” of Task A is linked to Input port B of Task B
[bookmark: _Toc535509511]JSON Schema
	{
 "title": "The Processing Descriptor Schema",
 "type": "object",
 "required": [
 "key-words",
 "url",
 "start-time",
 "task-connection-map"
],
 "properties": {
 "key-words": {
 "type": "array"
 },
 "url": {
 "type": "string"
 },
 "start-time": {
 "type": "string"
 },
 "task-connection-map": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "OutputTaskConnection": {
 "type": "object",
 "required": [
 "taskid",
 "portid"
],
 "properties": {
 "taskid": {
 "type": "string"
 },
 "portid": {
 "type": "string"
 }
 }
 },
 "InputTaskConnection": {
 "type": "object",
 "required": [
 "taskid",
 "portid"
],
 "properties": {
 "taskid": {
 "type": "string"
 },
 "portid": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
}

4.5 [bookmark: _Toc535260123][bookmark: _Ref535345994][bookmark: _Ref535346173][bookmark: _Ref535346633][bookmark: _Ref535347847][bookmark: _Ref535348254][bookmark: _Toc535509512]Requirements Descriptor
This descriptor provides requirements that can be configured for the underlying resource. Following are the list of parameters in this descriptor.

Table 18 — Requirements Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	QoS Requirements
	Provides QoS requirements for the resource. These include the following:
· Delay Requirement: Provides delay requirements for the resource.
For task: specifies the delay requirements for the task
For workflow: specifies the end-to-end delay requirements for the workflow
· Bitrate Requirement: Provides bitrate requirements for content ingestion and distribution
· Ingestion Bitrate Requirements: Provides bitrate requirements for content ingestion
· Distribution Bitrate Requirements: Provides bitrate requirements for content distribution
· Throughput Requirements: Provides throughput requirements for the resource
	Object

	Processing Requirements
	Provides processing requirements for the resource. These include the following:
· Hardware Requirements: Provides hardware requirements for infrastructure to be used. These include:
· Processor Requirements: Minimum processor capabilities for the resource.
Note:
· CPU cores: Minimum number of CPU cores to be allocated

· GPUs: Minimum number of GPUs to be allocated
Note:
· GPU Acceleration: Required GPU acceleration
· Storage Requirements: Provides storage requirements for compute infrastructure allocated for the resource. Information in this descriptor includes:
· Local storage descriptor: Minimum local storage to be allocated to the resource
· Aggregated storage: Provides information about aggregated storage (including storage from local, network, and remote) allocated the resource

· Deployment Requirements: Provides details about deployment requirements for processing resources allocated for the workflow. Such information includes:
· Location: Indicates the location where the processing and storage resources need to be allocated
	Object

	Security Requirements
	Provides detailed security requirements during content ingestion and content distribution. Such information includes:
· Enable Transport Layer Security: Indicates whether to enable transport layer security
· Enable Secure Tunnelling: Indicates whether to enable secure tunnelling using technologies such as IPSec, SSH etc.
	Object

[bookmark: _Toc535509513]JSON Schema
	{
 "title": "The Requirements Descriptor Schema",
 "type": "object",
 "required": [
 "qos-requirements",
 "processing-requirements",
 "security-requirements"
],
 "properties": {
 "qos-requirements": {
 "type": "object",
 "properties": {
 "delay-requirements": {
 "type": "string"
 },
 "bitrate-requirements": {
 "type": "object",
 "properties": {
 "ingestion-bitrate-requirements": {
 "type": "string"
 },
 "distribution-bitrate-requirements": {
 "type": "string"
 }
 }
 },
 "thruput-requirements": {
 "type": "string"
 }
 }
 },
 "processing-requirements": {
 "type": "object",
 "properties": {
 "hardware-requirements": {
 "type": "object",
 "properties": {
 "processor-requirements": {
 "type": "string"
 },
 "min-cpu-cores": {
 "type": "integer"
 },
 "min-gpu": {
 "type": "integer"
 },
 "gpu-acceleration": {
 "type": "boolean"
 }
 }
 },
 "storage-requirements": {
 "type": "object",
 "properties": {
 "local-storate": {
 "type": "string"
 },
 "aggregated-storage": {
 "type": "string"
 }
 }
 },
 "deployment-requirements": {
 "type": "object",
 "required": [
 "location"
],
 "properties": {
 "location": {
 "type": "string"
 }
 }
 }
 }
 },
 "security-requirements": {
 "type": "object",
 "properties": {
 "enable-transport-layer-security": {
 "type": "boolean"
 },
 "enable-secure-tunneling": {
 "type": "boolean"
 }
 }
 }
 }
}

4.6 [bookmark: _Toc535260124][bookmark: _Ref535346012][bookmark: _Ref535346018][bookmark: _Ref535346186][bookmark: _Ref535346644][bookmark: _Ref535348267][bookmark: _Ref535348279][bookmark: _Toc535509514]Configuration Descriptor
This descriptor provides configuration information for the underlying resource. Following are the list of parameters in this descriptor.
Table 19 — Configuration Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Parameters
	Configuration details of parameters required for resource.
	Array

Editor’s Notes: The description and parameters for configuration descriptor needs to be revisited. The configuration descriptor should provide generic parameter format.
[bookmark: _Toc535509515]JSON Schema
	{
 "title": "The Configuration Descriptor Schema",
 "type": "object",
 "required": [
 "parameters"
],
 "properties": {
 "parameters": {
 "type": "array"
 }
 }
}

4.7 [bookmark: _Toc535260125][bookmark: _Ref535346654][bookmark: _Ref535348293][bookmark: _Ref535348336][bookmark: _Toc535509516]Delay Descriptor
This descriptor provides delay information before startup for the underlying resource. Following are the list of parameters in this descriptor.
Table 20 — Delay Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Delay
	Amount of delay before task startup
	Number

[bookmark: _Toc535509517]JSON Schema
	{
 "title": "The Delay Descriptor Schema",
 "type": "object",
 "required": [
 "delay"
],
 "properties": {
 "delay": {
 "type": "integer"
 }
 }
}

4.8 [bookmark: _Toc535260126][bookmark: _Ref535346039][bookmark: _Ref535346199][bookmark: _Ref535346663][bookmark: _Ref535347691][bookmark: _Ref535347695][bookmark: _Ref535348327][bookmark: _Toc535509518]Client Assistance Descriptor
This descriptor provides client assistance information for the underlying resource. Following are the list of parameters in this descriptor.
Table 21 — Client Assistance Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	clientAssistanceFlag
	Indicates whether the resource requires/supports client monitoring
	Boolean

	Device Capabilities
	Provides information from client about device capabilities
	String

	User Preferences
	Provides information from client about user preferences
	String

Editor’s Notes: Following are to be clarified: a) Usage of the parameters for two different purposes - 1) Whether the NBMP source knows the set of device capabilities already before creating the workflow? and 2) Collection of device capability information when workflow manager sets up a monitoring task. b) Is the clientAssistance flag needed?
[bookmark: _Toc535509519]JSON Schema
	{
 "title": "The Client Assistance Descriptor Schema",
 "type": "object",
"required": [
 “client-assistance-flag”,
 "device-capabilities",
 "user-preferences"
],
"properties": {
 "client-assistance-flag": {
 "type": "boolean"
 },
 "device-capabilities": {
 "type": "string"
 },
 "user-preferences": {
 "type": "string"
 }
 }
}

4.9 [bookmark: _Toc535260127][bookmark: _Ref535346211][bookmark: _Ref535346676][bookmark: _Ref535347717][bookmark: _Ref535348309][bookmark: _Toc535509520]Failover Descriptor
This descriptor provides information in case of failover of the underlying resource. Following are the list of parameters in this descriptor.
Table 22 — Failover Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Failover Mode
	Indicates action upon failover of underlying resource. Following are the possible values:
· Failover Mode: Restart Immediately - Restart the resource
· Failover Mode: Restart With Delay - Restart the rsource after certain delay
· Failover Mode: Continue with last good state - Restart the resource based on available state persistence information
· Failover Mode: Execute Backup Deployment - Execute backup deployment script given by Backup Deployment URL below
· If Failover Mode is Exit: Exit the resource

	String

	Failover Delay
	Indicates the amount of time the failover recuperation method needs to be delayed.
· If Failover Mode is “RestartImmediately”, possible value for this field is 0
· If Failover Mode is “RestartWithDelay”, , possible value for this field is amount of time the source wants the resource to be delayed. <Default: 10 minutes>
	Number

	State Persistance
	Provides information when state of media processing needs to be persisted. Information in this parameter includes the following:
· Persistance URL: URL of storage where the state information is persisted. This information is optional from the media source. The workflow manager can allocate some storage and use it for state information persistence.
· Persistance Interval: How often the state information is written to the Persistance URL.
	Object

	Backup Deployment URL
	URL to an external/internal instruction file for backup deployment that needs to be executed upon failover.
	String

[bookmark: _Toc535509521]JSON Schema
	{
 "title": "The Failover Descriptor Schema",
 "type": "object",
 "required": [
 "failover-mode",
 "failover-delay",
 "state-persistance",
 "backup-deployment-url"
],
 "properties": {
 "failover-mode": {
 "type": "string"
 },
 "failover-delay": {
 "type": "integer"
 },
 "state-persistance": {
 "type": "object",
 "properties": {
 "persistance-url": {
 "type": "string"
 },
 "persistance-interval": {
 "type": "string"
 }
 }
 },
 "backup-deployment-url": {
 "type": "string"
 }
 }
}

4.10 [bookmark: _Toc535260128][bookmark: _Ref535346052][bookmark: _Ref535346688][bookmark: _Ref535347729][bookmark: _Ref535348346][bookmark: _Toc535509522]Monitoring Descriptor
This descriptor provides monitoring information for the underlying resource. Following are the list of parameters in this descriptor.
Table 23 — Monitoring Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Event
	Provides information for monitoring of certain type of events (e.g., CRITICAL, INFORMATIONAL, DEBUG)
	Array

	Variable
	Provides information for monitoring of certain type of computation parameters
	Array

	System
	Monitoring of system data during lifecycle of this resource
	Array

[bookmark: _Toc535509523]JSON Schema
	{
 "title": "The Monitoring Descriptor Schema",
 "type": "object",
 "required": [
 "event",
 "variable",
 "system"
],
 "properties": {
 "event": {
 "type": "array"
 },
 "variable": {
 "type": "array"
 },
 "system": {
 "type": "array"
 }
 }
}

4.11 [bookmark: _Toc535260129][bookmark: _Ref535346064][bookmark: _Ref535346227][bookmark: _Ref535346700][bookmark: _Ref535347739][bookmark: _Ref535348356][bookmark: _Toc535509524]Assertion Descriptor
This descriptor provides assertion information for validating the underlying resource. Following are the list of parameters in this descriptor.
Table 24 — Assertion Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Assertions
	Dictionary of Name Value Predicate pairs (NVPs). Each NVP pair consists of:
· Name: string that represents the parameter to be checked
· Value Predicate: Object representing the assertion predicate to evaluate the parameter. The value object represents all the following information
· Evaluation Condition: The condition against which the parameter will be checked with the given value
· Check Value: The value to be used while evaluating the condition
· Offset: Offset limit that the parameter can deviate from given value for the evaluation condition to evaluate to a success
· Action: Action to perform if the evaluation has failed
	Object

Following is a list of assertions and their parameters which can be included in the assertion list of NVPs sent in the workflow description document from the media source.
Table 25 — Assertion list of NVPs
	Type of Assertions
	Description
	List of Parameters

	Quality assertions
	Provides description to create assertions that check the quality of media processing
	List of parameters in the “QoS Requirements” Descriptor above

	Computational assertions
	Provides description to create assertions that check the computational requirements of media processing
	List of parameters in the “Processing Requirements” section of the Requirement Descriptor above.

	Input assertions
	Provides description to create assertions that check whether the workflow input is of certain kind
	List of media data, metadata, and other data parameters in the Input Descriptor described above.

	Output assertions
	Provides description to create assertions that check whether the workflow output is of certain kind
	List of media data, metadata, and other data parameters in the Output Descriptor described above.

[bookmark: _Toc535509525]JSON Schema
	{
 "title": "The Assertion Descriptor Schema",
 "type": "object",
 "required": [
 "assertions"
],
 "properties": {
 "assertions": {
 "type": "object",
 "properties": {
 "param1": {
 "type": "object",
 "required": [
 "evaluation-condition",
 "check-value",
 "offset",
 "action"
],
 "properties": {
 "evaluation-condition": {
 "type": "string"
 },
 "check-value": {
 "type": "string"
 },
 "offset": {
 "type": "string"
 },
 "action": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

4.12 [bookmark: _Toc535260130][bookmark: _Ref535346710][bookmark: _Ref535347749][bookmark: _Ref535348368][bookmark: _Toc535509526]Reporting Descriptor
This descriptor provides reporting information for underlying resource. Following are the list of parameters in this descriptor.
Table 26 — Reporting Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Report Type
	Type of report
	String

	Reporting Interval
	Indicates how often the reports needs to be generated and reported
	Number

	Report Start Time
	Start time for reporting
	String

	URL
	URL of an external repository where the reports need to be reported/deposited
	String

	Delivery Methods
	Type of delivery methods that are supported for reporting
	String

[bookmark: _Toc535509527]JSON Schema
	{
 "title": "The Reporting Descriptor Schema",
 "type": "object",
 "required": [
 "report-type",
 "reporting-interval",
 "report-start-time",
 "url",
 "delivery-methods"
],
 "properties": {
 "report-type": {
 "type": "string"
 },
 "reporting-interval": {
 "type": "integer"
 },
 "report-start-time": {
 "type": "string"
 },
 "url": {
 "type": "string"
 },
 "delivery-methods": {
 "type": "string"
 }
 }
}

4.13 [bookmark: _Toc535260131][bookmark: _Ref535346720][bookmark: _Ref535348379][bookmark: _Toc535509528]Notification Descriptor
This descriptor provides notification information for underlying resource. Following are the list of parameters in this descriptor.
Table 27 — Notification Descriptors
	Parameter Name
	Description
	Data Type

	
	
	

	Notification
	Type of notification this resource can produce/send. Possible notifications include:
· Congestion: Indicates capability to send congestion notification information
· Application: Indicates capability to send application specific notification information
· System: Indicates capability to send system specific notification information
	Array

	URL
	URL where the resource intends to receive notifications
	String

	Notification Interval
	Interval at which notifications needs to be delivered. Possible values are :
· 0: Notification interval of zero indicates that the notification should be sent as soon as the corresponding event is observed
· Value greater than 0: Any value greater than 0 indicates the interval after which the notification is delivered
	Number

[bookmark: _Toc535509529]JSON Schema
	{
 "title": "The Notifications Descriptor Schema",
 "type": "object",
 "required": [
 "notification",
 "url",
 "notification-interval"
],
 "properties": {
 "notification": {
 "type": "array"
 },
 "url": {
 "type": "string"
 },
 "notification-interval": {
 "type": "integer"
 }
 }
}

[bookmark: _Ref535347760][bookmark: _Toc535509530]Group Descriptor
A Function may indicate whether it can run in any combination with other Functions or whether it requires to be instantiated as part of one of a set of Function Groups. A flag standalone is used to indicate this.
A new Group Descriptor is used to indicate the list of Function Groups that this Function can be used with. For each of the defined Groups, the Group Descriptor also includes the corresponding input, configuration, and output restrictions.
The following Table specifies the Group Descriptor:
Table 28 — GroupDescriptor
	Parameter Name
	Description
	Data Type

	GroupId
	Unique Identifier of the Function Group in the current Functon Repository.
	integer

	InputRestrictions
	A subset of the input parameters with their allowed values when the Function is used in this Group.
	Parameters

	ConfigurationRestrictions
	A subset of the configuration parameters with their allowed values when the Function is used in this Group.
	Parameters

	OutputRestrictions
	A subset of the output parameters with their allowed values when the Function is used in this Group.
	Parameters

The description of the graph of a Function Group is done separately. The Function Group is described by the connections between the Functions of the Group. For each node of the graph, a reference to the connection port, the connected Function, and the remote port on the connection Function is indicated. The Function Group is identified by a unique Group Id in the Function Repository.

[bookmark: _Toc450303222][bookmark: _Toc9996972][bookmark: _Toc438968655][bookmark: _Toc443461103][bookmark: _Toc353342675][bookmark: _Toc535509531]
(informative)

Schema of the brands
NBMP defines a selected set of reference functions that implementers can use to achieve higher consistency and visibility of their implementations as well as easy discoverability by workflow managers.
NBMP reference functions are identifiable through their brand names, which follow the following convention:
“urn:mpeg:nbmp:v{version_number}:{function_name}”
The “urn:mpeg:nbmp” namespace is reserved to MPEG NBMP-defined functions. {version_number} is used to indicate the version number of the related function description. {function_name} is used to provide the name of the function.
The following is an example of a reference function brand:
“urn:mpeg:nbmp:v2:4k_upscaler”
[bookmark: _Toc535509319][bookmark: _Toc535509426][bookmark: _Toc535509532][bookmark: _Toc535509533]
(informative)

NBMP Instantiations
[bookmark: _Toc535509534]B.1 Description of Workflow Creation
[bookmark: _Toc535509535]B.1.1 Introduction
Network-Based Media Processing (NBMP) enables offloading processing to the network/cloud. A workflow manager creates a workflow based on the workflow description document that it receives from the NBMP Source. The workflow manager selects and builds the NBMP Functions into selected Media Processing Entities and then performs the configuration of the Tasks. This section is informative and describes the workflow creation procedure. The description also includes steps that are performed with the underlying cloud platform for illustration purposes. These steps are highly dependent on the cloud platform APIs, which are slightly different from cloud platform to another.
[bookmark: _Toc535509536]B.1.2 NBMP Workflow Illustration
B.1.2.1 NBMP Workflow Creation
The following diagram depicts the workflow creation steps in an exemplary form:
[image:]
Figure B. 1 — the workflow creation steps
The details of the steps are as follows:
1. An NBMP Source uses the Workflow API to create a workflow. It sends the workflow description document as part of the request. The workflow manager checks the workflow description document and starts building the workflow.
2. The workflow manager sends a query or set of queries to the Function Registry to find the Functions that it will deploy to create the workflow.
3. For each query, the Function Registry replies with a short list of potential Functions, their descriptions and their configuration information.
4. The workflow manager selects the set of Functions it wants to deploy and based on their requirements it contacts the cloud platform to create the required Media Professing Entities and load the Functions on them.
5. The cloud platform confirms the creation of each Media Processing Entity, including the network access information.
6. The workflow manager creates a configuration for each Task and uses the Task API to send the configuration to that Task.
7. The Task confirms the successful configuration and returns access information so the workflow manager can connect the next Task
8. The workflow manager confirms the creation of the workflow to the NBMP Source and informs it that media processing can start.

Steps 4 and 5 are out of scope of NBMP and rely on the APIs offered by the underlying cloud platform. As an example, when using the AWS RESTful APIs, the following calls are performed:
1. AllocateAddress: this request can be used to allocate an IP address to be used for the CE
2. CreateLaunchTemplate: a request to create a template for a Compute Engine (CE). The request includes a set of parameters in RequestLaunchTemplateData. These can include:
a. CpuOptions: number of CPU cores
b. ElasticGpuSpecifications: GPUs associated with the CE
c. ImageId: ID of the container to load on the CE
d. Placement: the geographic location of the CE
e. NetworkInterfaces: public IP address to be associated to the CE, e.g. one created using the AllocateAddress request
f. InstanceType: a selection from a pre-defined set of CEs with memory, CPU, storage configurations
3. RunInstances: Once the template is created, the workflow manager can use the RunInstances request to start a CE based on the created template.
4. MonitorInstances: the workflow manager may use this request to monitor the CE instances that it created.
5. TerminateInstances: the workflow manager may use this request to stop and release the CE instances once the workflow does not need them anymore or the workflow is termindated.
B.1.2.2 NBMP Workflow Update
In order to hide workflow internal details from the NBMP Source, all updates to the workflow are performed through the workflow manager. In particular, the NBMP source might not know the entry points to the different Task control funtions as it might expose some internal details that are sensitive or not relevant to the NBMP Source.
The Update procedure is performed using the Workflow API and implemented on the Tasks by the workflow manger using the Task API.
The following flow chart diagram describes the different steps for a workflow update:

[image:]
Figure B.2 — workflow update
1. The NBMP Source recognizes the need to update the workflow and uses the Parameter description that it has received from the workflow manager to update the configuration parameters
2. The workflow manager extracts the relevant configuration parameter updates for each of the NBMP Tasks in the workflow and uses the Task API to adjust convery the updates to the corresponding Task.
3. The NBMP Task confirms the successful update of the parameters to the workflow manager if the parameter updates are accepted. Otherwise, it responds with an error message without altering the current Task or interrupting the media processing.
4. After successful updates to all Tasks, the workflow manager informs the NBMP Source about successful workflow update
Note that in some cases an update will result in interruption to the media processing that will impact all NBMP Sinks. The NBMP Source shall be aware of this interruption through the configuration description. Each Parameter will indicate whether when modified it results in interruption to the media processing or not.
[bookmark: _Toc535509537]B.2 Use cases of NBMP
[bookmark: _Toc535509538]B.2.1 Use Case #1: Workflow Description for 360 stitching
B.2.1.1 Workflow Description with multiple processing entities for 360 VR stitching
This section describes the use case for the workflow description for 360 stitching. Figure B.3 shows overall processing workflow for 360 stitching. The purpose of 360 stitching is to combine synchronized multi-360 videos into one stitched 360 video stream. Stitched 360 video of ultra-high resolution can provide viewers with 3DoF (Degrees of Freedom) viewing experiences. If the data amount of 3DoF 360 contents is very huge, it is not easy to handle this amount of data in the standalone server. Therefore, network based media processing can be considered as one of solutions for resolving this issue. The input 360 video content to be stitched from media source can be sent to the cloud platform which will use network based media processing to stitch multiple 360 contents. A simple 3DoF 360 stitching process through network based media processing consists of two kinds of process as shown in Figure B.3. The first type process involves decoding, projection, geometric information extraction, and image processing for image stitching. The second type process involves encoding, inverse projection, viewport extraction, and video rendering for viewport-dependent image rendering. Projection and inverse projection process could be omitted depending on the type of input images. During the 360 stitching process, metadata such as seam information and camera parameters need to be defined and transmitted to the workflow manager for usage in the image alignment, lens distortion correction, projection, and inverse projection. Table B.1 describes each task in detail. Geometrical information extraction task performs geometrical processing required for image stitching. Feature point extraction, feature-based camera parameter extraction (or camera calibration or homography calculation), and seam information extraction may be included in the geometric processing as shown in Figure B.3. Image processing for stitching involves lens distortion correction, camera parameter-based image alignment, blending and post-processing as depicted in Figure B.6. Detailed description of detailed tasks involved in the geometric processing and image processing for stitching can be found in Table B.2 and Table B.3, respectively.
[bookmark: _Ref535421575][bookmark: _Ref535414557]Table B.1 — Tasks involved in 360 stitching
	Task
	Description
	Input
	Output

	Decoding
	Involves video type conversion from encoded video stream to raw video stream inputted from media source.
	Encoded media data feed from media source (3DoF contents server or camera)
	Decoded media data using media decoder

	Geometric information extraction
	Involves geometric information extraction from acquired images by media source. Geometric information includes feature points for correspondence estimation, correspondence relation between extracted feature points, extrinsic and intrinsic camera parameters (includes homography matrix), depth information, and seam information. Extracted geometric information is used to image processing for stitching.
	Decoded media data such as two neighboring image frames.
	Geometric information such as feature points, correspondence relation, extrinsic and intrinsic camera parameters (homography matrix), depth information, seam information

	Projection
	Involves 360 image projection on the sphere, cube map, and polyhedron.
	Decoded 360 video to be stitched captured by media source such VR camera
	Projected 360 video

	Image processing for stitching
	Involves input image processing process for 360 image stitching using geometric information. Lens distortion correction, image alignment
	Input media data to be stitched and geometric information extracted
	Processed media (stitched 360 image)

	Encoding
	Involves video encoding of Projected 360 video using 360 video codec.
	Projected 360 video
	*Stitched encoded 360 video
*It could be the output of cloud platform

	Inverse Projection
	Involves inverse projection from projected 360 image to planar 360 image..
	aligned 360 video(stitched 360 video)
	Inverse projected planar 360 video

	Viewport extraction
	Involves extraction of region of interest to be displayed to viewer according to the viewing direction of viewer.
	Viewer’s viewing direction(line of sight)
	Extracted view port(region of interest) region and rendered viewport image(video)

	Stitched viewport image rendering
	Involves stitched 360 video rendering according to the extracted viewport position.
	Viewport position information, Stitched 360 video
	Rendered 360 video corresponds to the extracted viewport

[bookmark: _Ref535421677][bookmark: _Ref535414689][bookmark: _Ref535421670]Table B.2 — Tasks involved in the geometric information extraction
	Task
	Description
	Input
	Output

	Feature point extraction
	Involves feature point extraction process in the input neighboring 360 videos in order to align two images
	Neighboring images to be aligned(stitched)
	Extracted feature point sets in the neighboring images

	Feature-based camera parameter extraction
	Involves matching corresponding feature points extracted in the neighboring images, and camera extrinsic and intrinsic parameter calculation including homography matrix calculation between input 360 videos.
	Extracted feature points in the neighboring images
	correspondence relation between extracted feature points in the neighboring images, homography matrix, extrinsic/intrinsic camera parameters

	Seam information extraction
	Involves seam extraction and update process required when suddenly an object appears at the front.
	Initially extracted seam information and newly appearing object information, input neighboring images.
	Extracted or updated seam position and shape information

[bookmark: _Ref535421718][bookmark: _Ref535414700]Table B.3 — Tasks involved in the image processing for stitching
	Task
	Description
	Input
	Output

	Lens distortion correction
	Involves image distortion correction process using lens distortion parameters
	Lens distorted media data
	Lens distortion corrected media data

	Camera parameter-based image alignment
	Involves geometric alignment between two input 360 images by homography calculated during the camera calibration process
	Input multi 360 videos, homography matrix, camera parameters
	Geometrically aligned input 360 videos

	Blending and post-processing
	Involves color correction in the overlapped area of aligned 360 videos and filtering for the removal of noise.
	Geometrically aligned input 360 video
	Blended and post-processed aligned 360 video(stitched 360 video)

The tasks described in Table B.1, Table B.2 and Table B.3 above can be shown as an NBMP workflow using the DAG shown in Figure B.3, Figure B.4, and Figure B.5.
 [image:]

[bookmark: _Ref535420140]Figure B.3 — 360 stitching Workflow
The NBMP service provider can provide 360 stitching service to interested users using the above workflow. As described in section 6.1.2, the task directory at the service provider can include details about each of the above tasks. The workflow manager can then pick these tasks to prepare the workflow described in Figure B.3 above.
[image:]
[bookmark: _Ref535420155][bookmark: _Ref535414817]Figure B.4 — 360 video geometric information extraction workflow
[image:]
[bookmark: _Ref535420163][bookmark: _Ref535414848]Figure B.5 — 360 video image processing for stitching workflow

The diagram below details the NBMP call flow to trigger the 360 stitching task.

[image:]
[bookmark: _Ref535421622][bookmark: _Ref535414972]Figure B.6 — NBMP call flow to trigger the 360 stitching task

1. An NBMP Source (Media Source) uses the CreateWorkflow API to create the 360 stitching workflow. It sends the workflow description document as part of the request. The workflow manager checks the workflow description document and starts building the workflow. The Input descriptor gives media parameters such as codec type of input media stream, frame rate, resolution, and number of input views, etc. The processing descriptor gives details about the type of processing the media source intends to set up such as 360 video stitching. The requirement descriptor describes requirement information for the complete workflow such as delay requirements. Output descriptor provides a description of output that the media source intends for the workflow to output such as 360 stitched video stream.
2. The workflow manager sends a query or set of queries to the Function Registry to find the Functions for 360 stitching that it will deploy to create the workflow.
3. For each query, the Function Registry replies with a short list of potential Functions, their descriptions and their configuration information.
4. The workflow manager selects the set of Functions that it wants to deploy for 360 stitching and based on their requirements it contacts the cloud platform to create the required Media Professing Entities and load the Functions (such as image of the 360 stitch docker) on them.
5. The cloud platform confirms the creation of each Media Processing Entity, including the network access information.
6. The workflow manager creates a configuration for each Task and uses the Task API to send the configuration to that Task.
7. The Task confirms the successful configuration and returns access information so the workflow manager can connect the next Task
8. The workflow manager confirms the creation of the workflow to the NBMP Source and informs it that media processing for 360 stitching can start.
9. The workflow manager continuously monitors content-dependent Metadata, associated to each task output. If some parameters of each task needs to be changed for the next segment, the workflow manager uses the Task API to send an updated configuration to that Task.
10. After a few seconds without any need of 360 video stitching (no request for a stream for 360 stitching), the NBMP source (Media source) uses DeleteWorkflow API operation to stop the 360 stitching task.
B.2.1.2 Workflow Description with single processing entity for 360 VR stitching
The use case (4.1.5) in NBMP Use Cases document [1] is a cloud-based service that constructs panoramic (monoscopic and stereoscopic) high-resolution frames by combining imagery from multiple camera lenses. Ultra-wide angle or even fisheye camera models are, typically used to provide enough overlapping visual regions between lenses. The stitching function internally can comprise of several processing steps such as color harmonization and de-noising and a main stitching function with specific configuration to create stitched equirectangular frames. Optionally, the frames can be encoded and packaged into chosen video output format. Figure B.7 shows the realization structure of the proposed function in the context of NBMP.

[image:]
[bookmark: _Ref535420231][bookmark: _Ref535415123]Figure B.7 — 360 VR stitching task in NBMP

The dotted line represents a channel from the Application (i.e. the Client) to send real-time control parameters to the task, for example, QoS parameters like the optimal seam locations that change, or some dynamic feedback from the client. The communication is out of the scope but the dynamic data should be considered as either a specific task or dynamic metadata.
B.2.1.2.1 Multi-source content
In the stitching process, certain information such as camera parameters, and objectives and subjective requirements for the stitching process are required. Additionally, the content used for stitching may be fragmented and heterogeneous. For example, some content made available for stitching could be captured from a single-body camera or multiple fish eye cameras, or a set of cameras on a rig. The cameras from different sources may not be synchronized and may not be formatted uniformly. Therefore, input source parameters that indicate the content properties for content from different sources are important for the stitching process in order to perform the stitching efficiently and with minimal amount of errors.

B.2.1.2.2 The seam adjustment
Due to the physical separation of cameras/lenses and colour calibration differences, some visible artifacts can occur in the interpolated (“seam”) areas of the resulting panoramic image. These artifacts tend to be more visible on objects that are closest to the camera, as the parallax difference between sensor angles is at its greatest for such objects. Hence, adjustment of seam locations can be possible to minimize these errors. Adjusting the seam locations, for instance, takes into account the width and position of the seams.

[image:] [image:]
Figure B.8 — One example capturing setup with 8 fish-eye cameras and stitched 360 equirectangular
B.2.1.3 360VRStitcher Function Reference Template
The Table presents the function template of the 360VRstitcher Function Reference Template.
Table B.4 — 360VRstitcher Function Reference Template.
	Descriptor
	Parameter Name
	Type
	Description

	General
	ID
	String
	 Provided by the Function Repository

	
	Name
	String
	“360-vr-stitcher”

	
	Description
	String
	“Equirectangular 360 VR stitcher”

	
	Brand
	String
	”urn:mpeg:nbmp:2019:functions:vr360stitcher”

	
	InputPorts
	Map
	Collection of named input media streams (1..n inputs)

	
	OutputPorts
	Map
	Contains at least one media and one optional metadata
· “media:” media output
· “metadata”: metadta output

	Input
	Media Parameters
	Object
	image or video

	
	Metadata Parameters
	Object
	Metadata schema
· “Camera”:Intrinsic parameters (type, width, height, focal, principal_point, distortion) from camera calibration result

	Output
	Media Parameters
	Object
	Image or video

	
	Metadata Parameters
	Object
	N/A

	Processing
	Keywords
	Array
	Number of keywords
· ”360vrstitching”
· ”equirectangular stitching”

	Requirements
	QoS Requirements
	Object
	

	
	Processing Requirements
	Object
	

	
	Security Requirements
	Object
	

	Configuration
	Parameters
	Array
	Function parameters
· Cameras
· Schema: See Section B.2.1.3.1
· Stitching parameters
· Schema: See Section B.2.1.3.2

	ClientAssistance
	clientAssistanceFlag
	Boolean
	

	
	Device Capabilities
	String
	

	
	User Preferences
	String
	

	Monitoring
	Variable
	Array
	

	Assertion
	Assertions
	Object
	

The follow parameters are used as an implementation guidance.
[bookmark: _Ref535420335]B.2.1.3.1 Cameras parameters
Table B.5 — Implementation guidance of Cameras parameters for 360VRstitching
	Parameter name
	Type
	Parameter description

	Camera_shutter_type
	String
	“rolling” or “global”

	Camera_sync_skew
	Number
	0 if in synch, milliseconds for out of synch, -1 if not known

	Capturing_settings
	Object
	Scene type (indoor or outdoor), ambient light, exposure etc.

	Camera_extrinsics
	Object
	Camera transformation parameters (translation and rotation for global to camera transformation) used to align images in 3D space

B.2.1.3.2 Stitching parameters
Table B.6 — Implementation guidance of stitching parameters for 360VRstitching
	Parameter name
	Type
	Parameter description

	Seam_positions
	Array
	Interpolated area in effecting the final stitching quality. The region structure can be represented by series of pixel points (start point, intersection points, end point)

	Seam_mask
	Object
	Optionally, interpolated area locations can be represented by mask image, which have only 1 or 0 value, for more sophisticated stitching process.

	Stitching_method
	String
	Specific stitching algorithm can be specified for patial or full stitching approaches.	Comment by You, Yu (Nokia - FI/Tampere): From SJTU

	Seam_extent_of_freedom
	Number
	The degree of freedom the seam region can be moved, e.g. horitontally

	Convergence_selection
	Object
	Convergence point selection criteria. It describes the semantic level of decision in handling ROI-related inclusion/exclusion/weighting criteria

	Camera_weighting
	Array
	The weighting in stitching process. The higher the weighting value is, the more important the camera is. Or the ordering number of the camera array. This value can be dynamic for example, effected by user’s viewing preference.

[bookmark: _Ref535415952][bookmark: _Toc535509539]B.2.2 Use Case #2: Workflow Description for 6DoF Pre-rendering
This section describes the workflow generation for remote rendering, network pre-rendering use case. 6DoF contents contains the media data such as geometry, textures, materials etc. for representing the object as 3D domain and meta data such as scene description etc. for describing the object and its related 3D space. However, it would be difficult to receive and render a complete 6DoF volumetric video content due to the lack of processing power, battery power consumption limits, and network conditions. This use case is a good candidate for network based media processing. The 6DoF volumetric video content from media source can be sent to the network which will use network based media processing to simplify it to less complex media contents.
A simple 6DoF rendering process involves geometric and rendering processes. And in the geometric processing involves Vertex Transformation, Primitive Assembly, Clipping and Window viewport Transformation . Each of these tasks are described in detail in Table B.7 below.
[bookmark: _Ref535421967][bookmark: _Ref535349875][bookmark: _Ref535415762]Table B.7 — Tasks involved in geometric processing
	Task
	Description
	Input
	Output

	Vertex
Transformation
	Involves mapping of object in the 3D space based on Point data in 6DoF media data and its related 6DoF meta data (Object Coordinates etc.).
	Media data feed from media source (6DoF contents server or camera)
	Object in 3D space

	Primitive
Assembly
	Involves reconstruction of point data such as mesh or polygon type for representing the shape of an object in 3D space.
	point data in 3D space.
	Geometric reconstruction data in 3D space

	Clipping
	Involves method to selectively enable or disable rendering operations within a defined region of interest based on user feedback info. (userviewport, userviewlocation etc.)
	Geometric reconstruction (mesh) of object in 3D space
	Clipping the object in 3D space based on region of interest

	Window viewport Transformation
	Involves transform the object in region of interest to application or device specific coordinates
	Clipping the object in 3D space based on region of interest
	object in region of interest referenced by application coordinate

The tasks described in Table B.7 above can be shown as an NBMP workflow using the DAG shown in Figure B.9 below.
[image:]
[bookmark: _Ref535420434][bookmark: _Ref535420429][bookmark: _Ref535350015][bookmark: _Ref535350120]Figure B.9 — Geometric processing Workflow
The NBMP service provider can provide the geometric processing service to interested users using the above workflow. As described in section 6.1.2, the task directory at the service provider can include details about each of the four tasks (vertex transformation, primitive assembly, clipping, window viewport transformation). The workflow manager can then pick these tasks to prepare the workflow described in Figure B.9 above.
[image:]
Figure B.10 — Pre-rendering and remote rendering Workflow
The NBMP service provider can provide the rendering processing service to interested users using the above workflow. The output of the rendering processing can be generated by 2D contents for remote rendering or simplified 6DoF contents for pre-rendering use case. If the user device condition or network bandwidth does not satisfied to receiving the full 6DoF contents than it can be provided as 2D contents or simplified contents referenced by user feedback information. During the remote rendering, rendering processing can provide the rasterization process for pixel mapping to the 2D display. And during the pre-rendering, rendering processing can provide the partial 6DoF contents by user feedback information such as user viewport information.
Much like a 6DoF use case equivalent of the VR use case, which includes functions related to both generation (stitching) and some form of processing (OMAF generator), the figure below shows an example of a point cloud based 6DoF content generation and pre-rendering workflow.

[image:]
Figure B.11 — Example of instantiated functions (tasks) for 6DoF content generation and pre-rendering (in blue), with the red line indicating media flow, green line indicating metadata
6DoF content generation:
· Media sources are typically comprised of multiple video streams (multi-views), and possibly depth information or streams (similar to the media sources for VR stitching)
· The point cloud generator function takes the multiple video (+depth) streams as an input, performs modelling based media processing, and outputs point cloud data, such as an obj file (similar to the stitching function for VR)
· The point cloud data is then used as the input to the PCC encoder function (MPEG V-PCC encoder [1]), which compresses the point cloud data, as well as encapsulating it into a format suitable for output (a V-PCC ISOBMFF file)

Depending on the physical locations or entities performing the 6DoF content generation and pre-rendering, the dotted lines in the figure represent a possible need to deliver the data and metadata to a different entity located at a different location (in which case additional media delivery related functions may be required).
6DoF content pre-rendering:
· On receiving compressed point cloud data as an input (e.g. a V-PCC ISOBMFF file), the PCC decoder function (e.g. an MPEG V-PCC decoder) decapsulates and decodes the data to output raw point cloud data, such as an obj file
· The point cloud data is then fed into a point cloud renderer, which renders the 3D space/scene represented by the data, and also extracts a certain viewpoint and viewport from the 3D space (as requested by the client or viewer), outputting a compressed 2D video stream which then ready for packetization and delivery
· The packetizer and distributor functions are not new or unique to 6DoF content pre-rendering, and have already been defined in NBMP

B.2.2.1 6DoF content generation & pre-rendering Reference Function Templates
This section provides the reference function templates for the functions described in section B.2.2. Since there are no specific syntax yet available, descriptive parameter names and entries have been taken from the current NBMP WD specification document.
B.2.2.1.1 Point cloud generator <mpeg-nbmp-pcgenerator>
Table B.8 — Point cloud generator Function Reference Template
	[bookmark: _Toc527030190][bookmark: _Toc528085417]Descriptor
	Parameter Name
	Type
	Value
	Must Follow?

	General
	ID
	String
	Returned by the creation operation
	N

	
	Name
	String
	NBMP Point Cloud Generator Function
	Y

	
	Description
	String
	Point cloud modeling, point cloud generator
	Y

	
	Brand
	String
	urn:mpeg:nbmp:2019:functions:pcgenerator
	Y

	
	InputPorts
	Map
	Number_of_inputs-1 (>=2)
<Port: i, Stream: i>
	Y

	
	OutputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	Input
	Media Parameters
	Object
	Mandatory parameters for each stream:

Media_stream_id,
Bandwidth,
Codec,
Media Type: at least one Video media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	Metadata_stream_id,
Media Type: timed metadata track,
Clock rate,
Sample Duration in clock rate,
Protocol,
Origination
	N

	Output
	Media Parameters
	Object
	Mandatory parameters for each stream:

Media_stream_id,
Bandwidth,
Codec: raw
Media Type: at least one Point Cloud media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	
	N

	
	Publish Format
	String
	ply
	Y

	Processing
	Keywords
	Array
	NBMP Point Cloud Generator, NBMP Point Cloud Modeling
	Y

	
	URL
	String
	URL depends on location
	N

	Requirements
	QoS Requirements
	Object
	Depends on application
	N

	
	Processing Requirements
	Object
	Depends on input videos, e.g. minimum of 1vCPU and 2GB of RAM to process 1080p@25Hz
	N

	
	Security Requirements
	Object
	Depends on application
	N

	Configuration
	Parameters
	Array
	The following Parameters are mandatory:

Number_of_Inputs: integer
Camera parameters
Point cloud modeling parameters

	Y

	ClientAssistance
	clientAssistanceFlag
	Boolean
	N/A
	N

	
	Device Capabilities
	String
	N/A
	N

	
	User Preferences
	String
	N/A
	N

	Monitoring
	Variable
	Array
	N/A
	N

	Assertion
	Assertions
	Object
	N/A
	N

B.2.2.1.2 Point cloud encoder <mpeg-nbmp-pcencoder>
Table B.9 — Point cloud encoder Function Reference Template
	Descriptor
	Parameter Name
	Type
	Value
	Must Follow?

	General
	ID
	String
	Returned by the creation operation
	N

	
	Name
	String
	NBMP Point Cloud Encoder Function
	Y

	
	Description
	String
	Point cloud encoder, V-PCC point cloud encoder
	Y

	
	Brand
	String
	urn:mpeg:nbmp:2019:functions:pcencoder
	Y

	
	InputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	
	OutputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	Input
	Media Parameters
	Object
	Mandatory Parameters:

Media_stream_id,
Bandwidth,
Codec: raw
Media Type: at least one Point Cloud media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	
	N

	Output
	Media Parameters
	Object
	Mandatory Parameters for each stream:

Media_stream_id,
Bandwidth,
Codec: V-PCC
Media Type: at least one V-PCC Video media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	
	N

	
	Publish Format
	String
	V-PCC ISOBMFF file
	Y

	Processing
	Keywords
	Array
	NBMP Point Cloud Encoder, NBMP V-PCC Encoder
	Y

	
	URL
	String
	URL depends on location
	N

	Requirements
	QoS Requirements
	Object
	Depends on application
	N

	
	Processing Requirements
	Object
	Depends on input videos, e.g. minimum of 1vCPU and 2GB of RAM to process 1080p@25Hz
	N

	
	Security Requirements
	Object
	Depends on application
	N

	Configuration
	Parameters
	Array
	The following Parameters are mandatory:

V-PCC encoding parameters[1]
	Y

	ClientAssistance
	clientAssistanceFlag
	Boolean
	N/A
	N

	
	Device Capabilities
	String
	N/A
	N

	
	User Preferences
	String
	N/A
	N

	Monitoring
	Variable
	Array
	N/A
	N

	Assertion
	Assertions
	Object
	N/A
	N

B.2.2.1.3 Point cloud decoder <mpeg-nbmp-pccdecoder>
Table B.10 — Point cloud decoder Function Reference Template
	Descriptor
	Parameter Name
	Type
	Value
	Must Follow?

	General
	ID
	String
	Returned by the creation operation
	N

	
	Name
	String
	NBMP Point Cloud Decoder Function
	Y

	
	Description
	String
	Point cloud decoder, V-PCC point cloud decoder
	Y

	
	Brand
	String
	urn:mpeg:nbmp:2019:functions:pcdecoder
	Y

	
	InputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	
	OutputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	Input
	Media Parameters
	Object
	Mandatory Parameters:

Media_stream_id,
Bandwidth,
Codec: V-PCC
Media Type: at least one VPCC media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	
	N

	Output
	Media Parameters
	Object
	Mandatory Parameters for each stream:

Media_stream_id,
Bandwidth,
Codec: raw
Media Type: at least one Point Cloud media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	
	N

	
	Publish Format
	String
	ply
	Y

	Processing
	Keywords
	Array
	NBMP Point Cloud Decoder, NBMP V-PCC Decoder
	Y

	
	URL
	String
	URL depends on location
	N

	Requirements
	QoS Requirements
	Object
	Depends on application
	N

	
	Processing Requirements
	Object
	Depends on input videos, e.g. minimum of 1vCPU and 2GB of RAM to process 1080p@25Hz
	N

	
	Security Requirements
	Object
	Depends on application
	N

	Configuration
	Parameters
	Array
	The following Parameters are mandatory:

TBD [1]
	Y

	ClientAssistance
	clientAssistanceFlag
	Boolean
	N/A
	N

	
	Device Capabilities
	String
	N/A
	N

	
	User Preferences
	String
	N/A
	N

	Monitoring
	Variable
	Array
	N/A
	N

	Assertion
	Assertions
	Object
	N/A
	N

B.2.2.1.4 Point cloud renderer <mpeg-nbmp-pcrenderer>
Table B.11 — Point cloud renderer Function Reference Template
	Descriptor
	Parameter Name
	Type
	Value
	Must Follow?

	General
	ID
	String
	Returned by the creation operation
	N

	
	Name
	String
	NBMP Point Cloud Renderer Function
	Y

	
	Description
	String
	Point cloud renderer, point cloud pre-renderer
	Y

	
	Brand
	String
	urn:mpeg:nbmp:2019:functions:pcrenderer
	Y

	
	InputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	
	OutputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>
	Y

	Input
	Media Parameters
	Object
	Mandatory Parameters:

Media_stream_id,
Bandwidth,
Codec: raw
Media Type: at least one Point Cloud media
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	Metadata_stream_id,
Media Type: timed metadata track,
Clock rate,
Sample Duration in clock rate,
Protocol,
Origination
	N

	Output
	Media Parameters
	Object
	Mandatory Parameters for each stream:

Media_stream_id,
Bandwidth,
Codec,
Media Type: at least one Video media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	
	N

	
	Publish Format
	String
	Video format
	Y

	Processing
	Keywords
	Array
	NBMP Point Cloud Renderer
	Y

	
	URL
	String
	URL depends on location
	N

	Requirements
	QoS Requirements
	Object
	Depends on application
	N

	
	Processing Requirements
	Object
	Depends on input videos, e.g. minimum of 1vCPU and 2GB of RAM to process 1080p@25Hz
	N

	
	Security Requirements
	Object
	Depends on application
	N

	Configuration
	Parameters
	Array
	The following Parameters are mandatory:

Texture parameters
Mesh parameters
Rendering related configuration parameters
	Y

	ClientAssistance
	clientAssistanceFlag
	Boolean
	Information about number of views and viewer information to compose 2D video
	Y

	
	Device Capabilities
	String
	2D video display based on number of required views and viwers
	Y

	
	User Preferences
	String
	Depends on number of required views and viewers
	Y

	Monitoring
	Variable
	Array
	N/A
	N

	Assertion
	Assertions
	Object
	N/A
	N

[bookmark: _jd439jcgs39n][bookmark: _Toc535509540]B.2.3 Use Case #3: Workflow Description for Content-Aware Transcoding
This section describes the workflow generation for Content-Aware Transcoding.
[image:]In this Use-case, an original video (S) is ingested and encoded at a nominal resolution, frame rate and bitrate to produce an initial stream (T) at an Origin server (A). The initial stream (T) is delivered to a node (B) within the media delivery network. This node (B) is a server, which can be at any place within the media delivery network, down to the edge node. At this node (B), a processing is applied in order to transform the initial stream (T) into video representations (U1, U2, U3) of various resolutions, frame rates and bitrates, which can be delivered to the end-user devices (C).

Figure B.12 — Global workflow
Two types of Content-Aware Transcoding can be applied using NBMP framework:
in the first type, using a pre-defined list of bitrates, the video output of the Content-Aware Transcoding will be configured for the requested bitrate, thanks to Timed-Metadata which provide a recommended video format per segment for each of these bitrates,
in the second type, using a list of possible video formats , the video output of the Content-Aware Transcoding will be configured for the requested bitrate, thanks to Timed-Metadata which provide a minimum bitrate per segment for each of these formats.
In the first type of Content-Aware Transcoding, for each segment of video, the encoder produces, with the appropriate compression standard and profile, the media stream at the nominal resolution and frame rate for the representation with the highest bitrate and determines the nominal resolution and frame rates for the other representations of lower bitrates. For each segment, it builds a list of bitrates and for each of them, indicates the recommended format (resolution and frame rate). It sends this information to the packager.
The packager creates the video segments for the representation with the highest bitrate and embeds the information associated to the other possible representations into Timed-metadata segments. It builds a playlist/manifest file to give the links to the video and metadata segments. It sends segments and playlist/manifest file to the Origin server.
The Origin server sends segments to servers through the CDN down to the Edge server.
The OTT player gets the list of available bitrates in the OTT service through a request to the CDN. It then makes a request for a representation with a given bitrate in function of the bandwith conditions of the local network and with a maximum resolution and frame rates if it has specific constraints.
If the highest bitrate is requested by the OTT player and if the resolution or frame rate of the video segment is not higher than the supported resolution or frame rate of the player, the server simply serves the video segment it received from the Origin server. If a lower bitrate is requested, the server triggers a transcoding task which converts the existing video segment into a video segment of lower bitrate with the recommended resolution and frame rate as given by the Metadata associated to this segment or taking into account more restrictive constraints given by the player. In the same way, if the highest bitrate is requested by the OTT player but with more restrictive constraints on resolution and frame rate than the ones used to produce the existing video segment, the server triggers a transcoding task which converts the existing video segment into a video segment with the same capped bitrate but with a lower resolution or frame rate.
The diagram below details the NBMP call flow to trigger the transcoding task.
[image:]
Figure B.13 — NBMP call flow to trigger the transcoding task
1. The NBMP Source (CDN server) uses the CreateWorkflow API operation with the following workflow description to create the transcoding workflow.
Table B.12 — Workflow description
	No
	Parameter
	Additional Description

	1
	InputDescriptor
	Provides information describing input that the media source intends to use for this workflow.
· Media Parameters:
· Codec type (AVC/HEVC/VVC)
· Media Type (Profile+Level)
· Codec clock rate
· Transport Protocol for delivery of media
· Origination: URL of the Media stream
· Metadata Parameters:
· Metadata Type: RecommendedVideoFormat (rvrf)
· Transport Protocol for delivery of metadata
· Origination: URL of the Metadata stream

	2
	ProcessingDescriptor
	Provides details about the type of processing the media source intends to set up.
· Keyword Search for Tasks: AVC/HEVC/VVC video transcoding

	3
	RequirementDescriptor
	Specifies requirement information for the complete workflow. Such information includes:
· QoS requirements: Detailed QoS requirements for the end-to-end workflow
· delay requirements Real-time
· Processing requirements: No need
· Security requirements: No need

	4
	OutputDescriptor
	Provides information describing output that the media source intends for the workflow to output.
· DistributionFormat to the media sink CMAF
· Media Parameters: Array of output media descriptions. Each media stream description includes:
· Codec type: AVC/HEVC/VVC
· Media Type: Profile + Max Res/Fr requested by the client
· Codec clock rate OK
· Transport Protocol: HTTP
· Destination: URL
· Metadata Parameters: No Metadata

	6
	FailoverDescriptor
	Provides information in case of failover of this workflow.
· FailoverMode:
· ExecuteBackupDeployment
· FailoverDelay: 0
· State Persistance Descriptor:
· BackupDeployment:

	7
	MonitoringDescriptor
	Provides information for type of monitoring for this workflow. Such information includes:
· Event: CRITICAL event
· Variable: No need
· System: No need

It sends the workflow description document as part of the request. The workflow manager checks the workflow description document and starts building the workflow. The input descriptor gives the URL of the content-dependent Metadata, which can change dynamically the configuration of the Transcoding task.
The output descriptor gives the constraints (max bitrate, max resolution and frame rate) expressed by the client. If the constraints change, an update of the workflow is necessary (UpdateWorkflow API operation) but is not supposed to change as much as the recommendations brought by the content-dependent Metadata.
2. The workflow manager sends a query or set of queries to the Function Registry to find the AVC/HEVC/VVC Transcoding Function that it will deploy to create the workflow.
3. For each query, the Function Registry replies with a short list of potential Functions, their descriptions and their configuration information.
4. The workflow manager selects the Transcoding Function it wants to deploy and based on its requirements it contacts the cloud platform to create the required Media Processing Entity and load the Function (image of the Transcoder docker) on it.
5. The cloud platform confirms the creation of each Media Processing Entity, including the network access information.
6. The workflow manager uses content-dependent Metadata and constraints given in the output descriptor of the Workflow to set the parameters of the output Media (bitrate, resolution and frame rate) to be produced by the Transcoding Task, as described in the table below. It uses the Task API to send the configuration to that Task.
Table B.13 — Task description
	No
	Parameter
	Additional Description

	1
	General
	General Information about the task.
· Name: AVC/HEVC/VVC video transcoding to Res/FR/Bitrate
· ID: Task-1
· Type: AVC/HEVC/VVC Video Transcoding
· Priority: High
· Execution Time: Real-time (takes into account video constraints)
· Input Port Id Array: Task-1_IN_1
· Output Port Id Array: Task-1_OUT_1

	2
	InputDescriptor
	Provides information describing the type of input for this task.
· Media Parameters: Passed from Workflow API
· Metadata Parameters: No need
· Other Parameters: No need

	3
	Processing
	Provides details about the type of computation that this task performs.
· Location: The one given by the Cloud at step 5
· Start Time: Immediate

	4
	DelayDescriptor
	Indicates any delay before task startup 0

	6
	RequirementDescriptor
	Specifies information for general requirements that this task has to take into account. This information is prepared based on the information for processing from the media source.
· QoS requirements:
· delay requirements Real-time
· Processing requirements: No need
· Security requirements: No need

	7
	OutputDescriptor
	Provides information describing the type of output for this task.
· Media Parameters: Details about the type of media output from this task Profile + Res/FR + Bitrate
· Metadata Parameters: No need
· Other Parameters: No need

	8
	ConfigurationDescriptor
	Provides configuration information that processingDescriptor needs for executing the assigned processing for this task. Such information includes:
· ParameterConfiguration: Configuration details of variables, constants, and parameters required by the executable/script assigned to this task

	10
	FailoverDescriptor
	Provides information in case of failover of this task. Such information includes: Passed from the workflow API

	11
	MonitoringDescriptor
	Provides information for type of monitoring for this task. Passed from the workflow API

	18
	ClientAssistanceDescriptor
	Specifies client assistance information that this task can use.
Such information includes:
· Device capability information: Information from the client about device capabilities
· User Preference information: Information from the client about user’s preferences
· FoV Information: Information about viewing port of the user at the client
Workflow manager configures a media processing entity in the workflow to receive such information from the client.
Client information, like max bitrate or max resolution/FR, has been received by the Media source and sent to the workflow manager in the output configuration descriptor. They have been taken into account, as well as the Content-dependent Metadata, to configure the output of the transcoding task

7. The Task confirms the successful configuration and start and returns access information
8. The workflow manager confirms the creation of the workflow to the NBMP Source
9. The workflow manager continuously monitors content-dependent Metadata, associated to each video segment. If the parameters of the output Media (bitrate, resolution and frame rate) to be produced by the Transcoding Task need to be changed for the next segment, the workflow manager uses the Task API to send an updated configuration to that Task.
10. After a few seconds without any need of stream transcoding (no request for a stream with lower bitrate for ex), the NBMP Source (CDN server) uses the DeleteWorkflow API operation to stop the transcoding task.
In the second type of Content-Aware Transcoding, for each segment of video, the encoder produces, with the appropriate compression standard and profile, the media stream at a good quality with the highest resolution and frame rate and determines bitrates where a change to a lower resolution and/or frame rates is recommended to keep the best quality. The highest resolution and frame rate will depend on the type of OTT service (HD/UHD) and regions (50/60Hz). For each segment, it builds a list of formats (resolution and frame rate) in a decreasing order and for each of these formats, indicates the minimum bitrate below which the given format does not keep an advantage compared to a format of lower resolution and/or frame rate. It sends this information to the packager.
The packager creates the video segments for the nominal representation with the highest resolution and frame rate and embeds the information associated to the other video formats into Timed-metadata segments. It builds a playlist/manifest file to give the links to the video and metadata segments. It sends segments and playlist/manifest file to the Origin server.
The Origin server sends segments to servers through the CDN down to the Edge server.
The OTT player gets the list of available bitrates in the OTT service through a request to the CDN. It then makes a request for a representation with a given bitrate in function of the bandwith conditions of the local network and with a maximum resolution and frame rates if it has specific constraints.
If the bitrate of the available video segment is lower than the maximum bitrate requested by the OTT player and if the resolution or frame rate of the video segment is not higher than the supported resolution or frame rate of the player, the server simply serves the video segment it received from the Origin server. If a lower bitrate is requested, the server triggers a transcoding task which converts the existing video segment into a video segment of lower bitrate with a resolution and frame rate which is deduced from the Metadata associated to this segment or taking into account more restrictive constraints given by the player. In the same way, if the bitrate requested by the OTT player is higher than the one of the existing video segment but with more restrictive constraints on resolution and frame rate than the ones used to produce the existing video segment, the server triggers a transcoding task which converts the existing video segment into a video segment with the same capped bitrate but with a lower resolution or frame rate.
The NBMP call flow to trigger the transcoding task is the same as the one described for the first type of Content-Aware Transcoding. The only change is the type of Metadata in the input descriptor of the Workflow description: BitRateShaping Metadata (brsh).
B.2.3.1 Function Refernece Template of Video transcoder <mpeg-nbmp-vtranscoder>
This section provides the reference function template for a video transcoder, whose output format can be dynamically configured over time.
Table B.14 — Video transcoder Function Reference Template
	Descriptor
	Parameter Name
	Type
	Value
	Must Follow?

	General
	ID
	String
	Returned by the creation operation
	N

	
	Name
	String
	NBMP Video Transcoder Function
	Y

	
	Description
	String
	Video transcoder
	Y

	
	Brand
	String
	urn:mpeg:nbmp:2019:functions:vtranscoder
	Y

	
	InputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
	Y

	
	OutputPorts
	Map
	Mandatory:<Port: 1 , Stream: 1>
	Y

	Input
	Media Parameters
	Object
	Mandatory Parameters:
Media_stream_id,
Bandwidth: maximum bandwidth,
Media Type: Video
Codec: codec type and profile
Format: maximum format (resolution + frame rate) or codec level supported
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	Not needed
	N

	Output
	Media Parameters
	Object
	Mandatory Parameters for each stream:
Media_stream_id,
Bandwidth: minimum bandwidth
Media Type: Video,
Codec: codec type and profile
Format: list of supported formats
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination
	Y

	
	Metadata Parameters
	Object
	Not needed
	N

	
	Publish Format
	String
	 ISOBMFF file
	Y

	Processing
	Keywords
	Array
	NBMP Video transcoder, NBMP « codec type » transcoder
	Y

	
	URL
	String
	URL depends on location
	N

	Requirements
	QoS Requirements
	Object
	Depends on application
	N

	
	Processing Requirements
	Object
	Depends on input videos
	N

	
	Security Requirements
	Object
	Depends on application
	N

	Configuration
	Parameters
	Array
	Dynamic configuration

	Y

	ClientAssistance
	clientAssistanceFlag
	Boolean
	N/A
	N

	
	Device Capabilities
	String
	N/A
	N

	
	User Preferences
	String
	N/A
	N

	Monitoring
	Variable
	Array
	N/A
	N

	Assertion
	Assertions
	Object
	N/A
	N

[bookmark: _Toc535509541]B.2.4 Use Case #4: Workflow Description for Streaming E-Sports Event
This section describes the workflow generation for E-Sports use case. In this use case, a gamer can be a player or an observer. A number of players are playing simultaneously in a collaborative and interactive game. At the same time, there a number of observers who are following the game in real-time. The observers can follow one or more number of players playing the game and can be considered as virtual cameras placed in the virtual place of the game. Furthermore, there are physical cameras in E-sports stadium which capture player’s face, commentary booth, stand and etc. As a result, viewers can watch a combination of views from their favourable players, observer views, and/or physical camera views according to their preference. The use case is as show in Figure B.14 below.

[bookmark: _Ref535420663][bookmark: _Ref535350354]Figure B.14 — E-Sports Use case with multiple gamers and viewers
As shown in Figure B.14 above, a number of gamers (Gamer 1 to Gamer N) are participating in a game. The game and camera views of each of these gamers is recorded and processed in a game engine. These views can be processed in the cloud (e.g., in the network edge) using NBMP and Mobile Edge Computing (MEC). Based on the player selection of each viewer, the media processing in the cloud can group related game views (e.g., of following gamers/players), converted to a 2D video and sent to the viewer.

[bookmark: _Ref535420645][bookmark: _Ref535350406]Figure B.15 — Workflow for E-Sports use case
As shown in Figure B.15 above, for realizing the E-Sports use case, the following media processing components are needed in the network:
· Measurement function for receiving information from the viewers about interested gamer views and video sizes (i.e. video can be resized according to layout of the viewer)
· Measurement function for receiving information about network conditions between the network and the NBMP sink (network adaptation)
· Packaging function for grouping interested player views, observer views and physical camera views.
· Transcoding functions for transcoding selected views to a 2D video for delivery to the observer.
The below Table B.15 shows example workflow description document from NBMP source to the workflow manager for setting up the workflow for E-Sports use case.
[bookmark: _Ref535422171][bookmark: _Ref535350446]Table B.15 — Workflow description for Streaming E-Sports Event
	No
	Parameter
	Additional Description

	1
	General Descriptor
	Provides details about the required workflow. Following are the list of parameters:
· ID:E-SportsWorkflowId
· Name: E-Sports Workflow
· Type: Multi-view Transcoding
· Priority:2

	2
	InputDescriptor
	Provides information describing input that the media source intends to use for this workflow.
· Media Parameters:
· N-number of media descriptions (N: total number of observer, player, and camera views; N>M where M is the number of views selected by viewer). Each media description has following parameters
· Stream Information
· Media Stream Id: MediaStreamId of media description of player/observer/camera view stream
· Stream Tag: stream-tag
· Bandwidth: Bandwidth
· Codec type: <video-codec>
· Media Type: Video
· Clock rate: <codec-clock-rate>
· Protocol: <protocol>
· Origination: <origination-location>
· Metadata Parameters:
· M-number of metadata descriptions (M: Number of views requested by the viewer). Each metadata description has following parameters
· Metadata Information
· Metadata Stream Id: MetadataStreamId of metadata description of interested view stream
· Bandwidth: Bandwidth
· MetadataDictionary: <metadata-dict>
· Protocol: <ingest-protocol>
· MetadataIngestFormat: JSON

	3
	OutputDescriptor
	Provides information describing input that the media source intends to use for this workflow.
· Media Parameters:
· 1..M number of Media descriptions. Each media description has following parameters
· Stream Information
· Media Stream Id: MediaStreamId of media description for viewer view stream
· Stream Tag: stream-tag
· Bandwidth: Bandwidth
· Codec type: <video-codec>
· Media Type: Video
· Clock rate: <codec-clock-rate>
· Protocol: <protocol>
· Destination: <destination-location>

	4
	ProcessingDescriptor
	Provides details about the type of processing the media source intends to set up.
· Keywords: <NBMP Compositor, NBMP Multi-view Transcoder>

	5
	RequirementDescriptor
	Specifies requirement information for the complete workflow. Such information includes:
· QoS requirements: Detailed QoS requirements for the end-to-end workflow
· delay requirements Real-time
· throughput-requirements: <required-throughput>
· Processing requirements:
· Hardware-requirements:
· GPU: 4
· CPU Cores: 8
· Deployment-requirements:
· Location: <network-edge>

	6
	ClientAssistance
	Provides client assistance information for the workflow.
· Device-capabilities: <device-capabilities>
· User-preferences: <number-of-player-views, video-sizes, network-conditions>

	7
	FailoverDescriptor
	Provides information in case of failover of this workflow.
· FailoverMode: RestartImmediately
· FailoverDelay: 0

	8
	MonitoringDescriptor
	Provides information for type of monitoring for this workflow. Such information includes:
· Event: CRITICAL, ERROR, INFORMATION
· System: <monitor memory, CPU, GPU performance>

	9
	ReportingDescriptor
	· Report-type: <Consumption, QoS>
· Reporting-Interval: 120
· Reporting-start-time: <start-time>
· URL: <reporting-server-URL>

An NBMP media processing function can be developed that performs the required media processing of the E-Sports use case described above. Table B.16 below describes example function description for such a media processing function.
[bookmark: _Ref535422192][bookmark: _Ref535350496]Table B.16 — Function Description for Streaming E-Sports Event
	Descriptor
	Parameter Name
	Type
	Must Comply?
	Value

	General
	ID
	String
	N
	Returned by the creation operation

	
	Name
	String
	Y
	NBMP Multi-view E-Sports Function

	
	Description
	String
	N
	NBMP Multi-view Transcoding

	
	Brand
	String
	N
	

	
	InputPorts
	Map
	Y
	Mandatory: <Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2> .. <Port: M, Stream: N>M where N is the total number of views between player, observer, and camera views; and M is the number of views requested for streaming by the viewer

	
	OutputPorts
	Map
	Y
	Mandatory: <Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2> .. <Port: M, Stream: M> where M is the required number of views for a viewer

	Input
	Media Parameters
	Object
	Y
	Mandatory Parameters for each stream:
Media_stream_id,
Bandwidth,
Codec,
Media Type: at least one Video media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Origination

	
	Metadata Parameters
	Object
	N
	Mandatory Parameters:
Timed metadata of dynamically changing viewer preferences for number of player/observer/camera views and video sizes

	Output
	Media Parameters
	Object
	Y
	Mandatory Parameters for viewer stream:
Media_stream_id,
Bandwidth,
Codec,
Media Type: at least one Video media,
Clock rate,
Sample Duration in clock rate units,
Protocol,
Destination

	
	Metadata Parameters
	Object
	N
	Mandatory Parameters:
None

	Processing
	Keywords
	Array
	Y
	NBMP Compositor, NBMP Multiview Transcoder

	
	URL
	String
	N
	URL depends on location

	Requirements
	QoS Requirements
	Object
	N
	Depends on Application

	
	Processing Requirements
	Object
	N
	Depends on input video and number of gamers/players, and required video sizes

	
	Security Requirements
	Object
	N
	Depends on Application

	Configuration
	Parameters
	Array
	N
	Depends on implementation

	ClientAssistance
	clientAssistanceFlag
	Boolean
	Y
	Information about number of views and player information to compose 2D video

	
	Device Capabilities
	String
	Y
	2D video display based on number of required views and players

	
	User Preferences
	String
	Y
	Depends on number of required views and players

	Monitoring
	Variable
	Array
	N
	Application parameters, System parameters

	Assertion
	Assertions
	Object
	N
	Not required

[bookmark: _Toc535509542]B.2.5 Use Case #5 : Workflow Description for OMAF Packager
B.2.5.1 Workflow Description with OMAF creator
The proposed OMAF creator function follows the typical content flow process for an omnidirectional media application with projected video specified in the OMAF V1 document [2]. All proposed parameters are taken from the OMAF V1 document [2]. Particularly, the proposed function covers the Section 4.2.2 Stitching, rotation, projection, and region-wise packing [2]. The red block in Fig 1 from [2] shows the scope of the proposed function to projected video. The function should work for both projected and fisheye video cases.

[image:]
Figure B.16 — Scope of the OMAF creator function (projected video example)
Table B.17 Function Template
	Descriptor
	Parameter Name
	Type
	Description

	General
	ID
	String
	 Provided by the Function Repository

	
	Name
	String
	“omaf_creator”

	
	Description
	String
	“OMAF Creator v1.0”

	
	Brand
	String
	”urn:mpeg:nbmp:2019:functions:omaf_creator”

	
	InputPorts
	Map
	Collection of named input media streams including image, video, and audio, e.g.
· "image_input": "source_image"
· "video_input": "source_video"
· "audio_input": "source_audio"

	
	OutputPorts
	Map
	The key-value object mapping the named ports to the output stream type definition, e.g.
· "video_output":"video_output"
· "image_output":"image_output"
· "audio_output":"audio_output"
· “metadata_outout”: “metadata_output”

	Input
	Media Parameters
	Object
	Schema of input media (image, video, and audio)

	
	Metadata Parameters
	Object
	N/A

	Output
	Media Parameters
	Object
	Schema of output media corresponding to the OutputPorts, e.g.
· “name:”: ”video_output”
· “name”: “image_outout”
· “name”: ”audio_outout”

	
	Metadata Parameters
	Object
	Schema of output metadata, e.g.
· “name”: ”metadata_output”

	Processing
	Keywords
	Array
	Number of keywords
· ”OMAF creator”
· ”OMAFCreator”

	Configuration
	Parameters
	Array
	Recommended configurabale parameters (mandatory and optional ones) are listed in the following tables.

This descriptor provides configuration information for the function. Following are the sample list of some parameters in this descriptor from OMAF v1 document [3]. The list is by no means a full list and details are missing, for example, the default values when some parameters are absent from the provided NBMP workflow description.

Table B.18 — Mandatory parameters
	Parameter name
	Type
	Parameter description
	OMAF V1 spec [2]

	1
	projection_type
	String
	Projection type
	5.2 and 8.3.2

	2
	packing_type
	Object
	Region-wise packing and guardbands
	7.5.3 and 8.3.3

	3
	viewing_orientation
	Object
	Initial viewing orientation
	7.7.4

	4
	viewport_type
	Object
	Recommended viewport
	7.7.5

	5
	region_wise_quality_ranking
	Object
	Region-wise quality ranking
	7.8, 8.3.5, 8.3.6

	6
	video_profile
	Object
	Video profile
a. HEVC Viewport independent profile
b. HEVC viewport dependent profile
c. AVC viewport dependent profile

	10.1.2, 10.1.3, and 10.1.4

	7
	audio_profile
	Object
	Audio profile
a. 3D audio profile
b. 2D audio profile

	10.2.2 and 10.2.3

	8
	presentation_profile
	String
	Presentation profiles
	11

Table B.19 — Optional parameters
	Parameter name
	Type
	Parameter description
	OMAF V1 spec.
[2]

	1
	stereo
	String
	Stereo video indication
	7.1.1 and 8.2.2

	2
	coverage
	Object
	Coverage information
	7.4.1 and 7.5.5 and 8.3.4

	3
	conversion
	Object
	Conversion from local coordinate axes to the global coordinate axes
	5.3 and rotation in 7.5.4

	4
	fisheye
	Object
	Fisheye video
	6 and 8.3.7

	5
	mmt
	Object
	MMT
	9

	6
	image_profile
	Object
	Image profile
	10.4

	7
	image_hevc
	Object
	HEVC image profile
	7.9 and 10.3.3

	8
	image_jpeg
	String
	JPEG image profile
	10.3.4

B.2.5.2 Use case: NBMP workflow for network-based OMAF video conversion
OMAF (Omnidirectional Media Application Format) [2] is a systems standard developed by the Moving Picture Experts Group (MPEG) for enabling standardized omnidirectional media applications, focusing on 360 video, images and audio. OMAF Creator and Player Engine (the creator) is an open-sourced implementation of OMAF standard in order to demonstrate its powerful features and capabilities, and to help achieving interoperability between OMAF implementations.
 The creator toolkit in the GitHub converts HEVC encoded 360 panorama videos into OMAF compliant MP4 format. To run the pipeline in the context of NBMP, we present the definition of conversion functions with their input/output schema; and the NBMP workflow description to showcase how the traditional media processing pipelines can be converted into the NBMP workflows. Fig 2 illustrates the NBMP workflow task taking general video inputs as an example. The example setup is to allow parallel H265 transcoder tasks over multiple NBMP MPEs and then the OMAF converter task handling the joined output from multiple outputs.
The sample workflow involves 2 media processing functions (Transcoder and OMAFCreator) but 5 actual tasks deployed in a NBMP platform (Fig 2). The Join Task is a very simple task that does nothing but synchronously joins multiple inputs into one. It waits till all inputs are available. Such tasks without any specific media processing operations should be considered as a generic flow control category to support different workflow patterns such as flow Splitter/Fork (e.g. fan-out) and Join (e.g. fan-in). Typically, this kind of control tasks does not involve media processing directly but provide proper timing control and route the data flows among other media tasks. NBMP should consider defining a minimal set of process tasks and recommended workflow processing patterns, similar to BPMN Fork and Join, for example.
 [image:]
Figure B.17 — OMAF workflow example in NBMP
The green dots represent the InputPorts and OutputPorts defined in the general descriptor in Section 9. They are connected according to the TaskConnectionMap definition by the NBMP Workflow Manager at runtime.

B.2.5.2.1 NBMP Function Description
 Given a Function repository provided by the NBMP platform, the developer can register processing functions by providing the Function Descriptions. Those descriptions can be obtained via the Function Discovery API (Section 7.4.1). Table B.20 and Table B.21 shows some examples of the 2 function descriptions, respectively. It is worth noting that the tables are used as an example and more parameters in other NBMP descriptors would be defined from the Function Repository.
[bookmark: _Ref535422567]Table B.20 — Transcoder function description (General, Configure, and Processing descriptors)
	No
	NBMP descriptor
	Parameter name/value

	1
	General
	Map data type describing the basic function information.
· ID: Provided by the NBMP platform
· Name: “Transcoder”
· Version: “1.0.0” 	Comment by You, Yu (Nokia-TECH/Tampere): Not discussed yet but recommended to be added
· Description: “MPEG decoder and H265 encoder”	Comment by You, Yu (Nokia-TECH/Tampere): Agreed to have “Desciption” parameter
· InputPorts: (map)
· “input”: 0 (index of input media parameters)
· OutputPorts (map):
· “output”: 0 (index of output media element)

	2
	Input
	Describing the types of input for this function
· Media Parameters:
· Single video input
· Metadata Parameters:
· (empty)
· Other Parameters:
· (empty)

	3
	Output
	Describing the types of output for this function
· Media Parameters:
· Single tiled HEVC video output
· Metadata Parameters:
· (empty)
· Other Parameters:
· (empty)

	4
	Configuration
	Provides information describing the parameters required for this function
· Parameter definition in JSON Schema (see Annex A.1 Transcoder parameter JSON schema)

	6
	Requirements
	Specifies information for general requirements that this task has to take into account. This information is prepared based on the information for processing from the media source.
· QoS requirements:
· In/Output bitrate requirement
· Processing requirements:
· CPU/GPU requirement
· Storage requirement
· Deployment requirement
· Affinity requirement
· Security requirements: (empty)

Note:
· The input video format can be flexible, if the transcoder has the capability of decoding multiple input video formats (for instance, like the Gstreamer’s Decodebin)
· The output video format can be specified as the HEVC format, with the schema defined

[bookmark: _Ref535422612]Table B.21 — OMAF Conversion function description
	No
	NBMP descriptor
	Parameter name/value

	1
	General
	General Information about the workflow.
· ID: Provided by the NBMP platform
· Name: “OMAFCreator”
· Version: “1.0.0”
· Description: “MPEG OMAF Creator”
· InputPorts: (map)
· “input”: reference to input media 0
· OutputPorts (map):
· “omaf_output”: reference to output media type 0

	2
	Input
	Provides information describing the type of input for this function
· Media Parameters (collection of inputs):
1. Array of videos (see Annex A.2.1)
· Metadata Parameters:
· (empty)
· Other Parameters:
· (empty)

	3
	Output
	Provides information describing the type of output for this function
· Media Parameters (Collection of outputs):
1. Output video
· Metadata Parameters:
· (empty)
· Other Parameters:
· (empty)

	4
	Configuration
	Provides information describing the parameters required for this function
· Parameter definition in JSON Schema (see Annex A.2.3 Parameter schema). It controls the quality of the output.

	6
	Requirements
	Specifies information for general requirements that this task has to take into account. This information is prepared based on the information for processing from the media source.
· QoS requirements:
· In/Output bitrate requirement
· Processing requirements:
· CPU/GPU requirement
· Storage requirement
· Deployment requirement
· Affinity requirement
· Security requirements: (empty)

[bookmark: _Toc535509543]B.2.6 Use Case #6 : Workflow Description for Measurement
B.2.6.1 Introduction
A measurement function is a function for measuring the user preference or network conditions from media sink; without such a dedicated measurement function, user preference or network conditions cannot be delivered to the relevant function in the workflow since the media sink does not know of such workflow or task details. The connection between the measurement function and function which consumes the output of the measurement function that are described in a workflow for measuring the user or network information from the media sink, and send it to the specific measurement information consumed function, which allows the workflow manager to integrate them as described in a workflow.
The following Figure B.18depicts an example of using the measurement Function in a workflow which produces feedback information for a function which consumes the output of the measurement function (NBMP Task 2). The measurement Function can receive the user conditions or preference from the media sink. The measurement function sends the feedback information to NBMP task2 which is already set up in the workflow.
The NBMP Task2 can be instantiated to prepare the updated output of the Task2 based on feedback information. A user preference information is delivered by the client assistance descriptor. A metadata stream such as user preference information is received from the measurement function and update of the output of the Task2 based on measurement information.
[image:]
[bookmark: _Ref535422883][bookmark: _Ref535422880]Figure B.18 — Example of the measurement Function
B.2.6.2 Measurement Function Reference Template
A measurement Function that is implemented according to this specification shall provide the following NBMP Function Reference Template:
Table B.22 — Measurement Function Reference Template
	Descriptor
	Parameter Name
	Type
	Must Follow?
	Value

	General
	ID
	String
	Y
	Returned by the creation operation.

	
	Name
	String
	Y
	NBMP measurement Function

	
	Description
	String
	Y
	measurement Function for (service or function(S))

	
	Brand
	String
	Y
	urn:mpeg:nbmp:2018:functions:measurement

	
	InputPorts
	Map
	Y
	Number_of_inputs-1 (>=2)
<Port: i, Stream: i>

<Port: 0, Stream: 0> for Syncrhonization Information

	
	OutputPorts
	Map
	Y
	Mandatory: <Port: 1 , Stream: 1>
Optional: <Port: 2, Stream: 2>

	Input
	Media Parameters
	Object
	N
	-

	
	Metadata Parameters
	Object
	N
	

	Output
	Media Parameters
	Object
	N
	-

	
	Metadata Parameters
	Object
	Y
	Mandatory Parameters for each stream:
Metadata _stream_id,
Media Type: timed metadata track
Distribution Format,

	
	Publish Format
	String
	N
	Depends on application

	Processing
	Keywords
	Array
	Y
	NBMP Measurement

	
	URL
	String
	N
	URL depends on location

	Requirements
	QoS Requirements
	Object
	N
	Depends on application

	
	Processing Requirements
	Object
	N
	Depends on input metadata, e.g. minimum of 1vCPU and 2GB of RAM to process 1080p@25Hz

	
	Security Requirements
	Object
	N
	Depends on application

	Configuration
	Parameters
	Array
	Y
	The following Parameters are mandatory:
Number_of_inputs: integer
service : string
measurement_Algorithm: enumeration

	ClientAssistance
	clientAssistanceFlag
	Boolean
	N
	Depends on application

	
	Device Capabilities
	String
	Y
	measurement_parameter : string
(Depends on application)

	
	User Preferences
	String
	Y
	measurement_parameter : string
(Depends on application. e.g. user viewport information for viewport based VR streaming)

	Monitoring
	Variable
	Array
	N
	Application parameters, System parameters

	Assertion
	Assertions
	Object
	N
	-

[bookmark: _Toc443470372][bookmark: _Toc450303224][bookmark: _Toc9996979][bookmark: _Toc353342679][bookmark: _Toc535509544]Bibliography
[1]	ISO/IEC 23090-5, Information technology — Coded representation of immersive media — Part 5: Point Cloud Compression
[2]	ISO/IEC 23090-2,Information technology — Coded representation of immersive media — Part 2: Omnidirectional media format

72	© ISO 2018 – All rights reserved
© ISO 2018 – All rights reserved	71
image1.png
NBMP Source

Media
Source

NBMP
Workflow API
NBMP Workflow
———eep
Worlkflow . Manager .
Description (Builds workflow/DAG. allocates tasks. runtime
serp configuration/stream binding)
'Y
NBMP Task configuration,
Task o -
reporting the current task status
API

Media Processing Entity (MPE)

Media resource,
Supplementary
information

(e.g. timed
metadata)

Task 2

Function Function
Discovery API | Description
Function
Discovery API
Function
Function Description Repository
___________________________ Form of NBMP
Sfunction
identification
Media
[Y A Sink

Runtime Configuration/
Stream/Event Binding

image2.png
Media Sink

.
Taskn

Workflow

Workflow
Manager

Task 1

Media Source

image3.png
Task1

image4.png
Function Group
#109234

Upscaler
(max 30ps)

Splitter/Mapper

HD@60fps

Upscaler
(max 30fps)

image5.png
st
onTaskConfiguration() onstop()

oninstantiation)
onTerminatation|)

onReset()

onTaskConfiguration()

image6.emf
Parameter Node

Value Node

» Value of Parameter

—————————— » Parameter depends on Value of parent Parameter

----------------------------------- » Parameter not allowed if Value is assigned to Parent Parameter

P1:1

P2:1

P2:2

3_1

V1:1

V1:2

V3:1 V3:2

V3:3

P

V

Parameter Node

Value Node

Value of Parameter

Parameter depends on Value of parent Parameter

Parameter not allowed if Value is assigned to Parent Parameter

image7.emf
[Cloud Platform] [NBMP Task }

NBMP Source

Workflow

Manager

Function

Registry

Cloud Platform NBMP Task

1

2

3

4

5

6

7

8

image8.emf
[NBMP Task]

NBMP Source

Workflow

Manager

NBMP Task

1

2

3

4

image9.wmf
Decoding

Geometric

Information

Extraction

360 video to be stitched

From media source

Projection

Encoding

Inverse

Projection

Viewport

Extraction

Viewport

I

mage

R

endering

Rendered viewport

dependent 360 video

Metadata

for decoding

Metadata

for stitching

Image Stitching Cloud

Image

Processing

for

Stitching

Decoding

V

iewport

-

dependent

Image Rendering Cloud

Ex. Edge computing

Stitched Encoded

360

video

Head Mounted

Display(HMD)

image10.jpeg
Feature Camera Seam

Point Parameter information
Extraction Extraction Extraction

image11.png
Camera

Blending

Lens Parameter-
. . and
Distortion based
. Post-
Correction Image .
processing

Alignment

image12.png
[newrsoue

[emsarmom] (Cvaeras]

image13.emf
Configuration

config

e N
Media Source T VR Stitching Task
”’//’,,é?
Metadata timed
metadata
(control)
NBMP Source Media Processing Entity
A

— — — Qut of scope

feedback

output

[}
[}
[}
[}
[}
[}
[}
[}
[}
i Sink
[}
[}
[}
[}
[}
[}
[}
[}
[}

Application

image14.png

image15.png

image16.png
Window
Viewport
Transformation

Vertex
Transformation

!

Object Camera & Device

Coordinates Clipping Coordinates
Coordinates

Primitive
Assembly

image17.png
Rendered

Contents
. . (2D video
6DoF Geometric Rendering or
Contents Processing Processing Simplified
6DoF

contents)

image18.png
6DoF content generation 6DoF content pre-rendering

Point Cloud PCC PCC Point Cloud

Generator Encoder IIINNNNINND N Decoder Renderer Packetizer Distributor

Source(s)

image19.emf

S

T

U1, U2, U3

U1

U2

U3

video

Initial encoding

Transcoding

A B

T

Media source

image20.emf
Gamer 1 Gamer 2 Gamer N

Intranet

Professional

E-sports Stadium

Game Server

(Cloud)

Service Provider MNO Edge N/W

Gamer’s screen (1..N) : Graphic

Camera: Video

(e.g., player’s face, commentary booth, stand)

MEC

Media Processing

- Transcoding

- Pre-rendering

- View selection

(interaction)

- Graphics overlay

- Adaptive streaming

Viewer 1 Viewer M

NBMP Source

MPE

NBMP Sink

Microsoft_PowerPoint_Slide1.sldx

Gamer 1

Gamer 2

Gamer N

Intranet

Professional

E-sports Stadium

Game Server

(Cloud)

Service Provider

MNO Edge N/W

Gamer’s screen (1..N) : Graphic

Camera: Video

(e.g., player’s face, commentary booth, stand)

MEC

Media Processing

Transcoding

Pre-rendering

View selection (interaction)

Graphics overlay

Adaptive streaming

Viewer 1

Viewer M

NBMP Source

MPE

NBMP Sink

image1.png

image2.png

image3.png

image4.png

image5.png

image6.jpg

image7.png

image21.emf
Cameras

Player

views

Observer

views

Compositor Transcoder

Media Sink

M videos 1..M videos

Bandwidth

Network

monitor

Total N views

Layout & Stream

Selection

Microsoft_PowerPoint_Slide2.sldx
Cameras

Player views

Observer views

Compositor

Transcoder

Media Sink

M videos

1..M videos

Bandwidth

Network monitor

Total N views

Layout & Stream Selection

image1.png

image22.png
Ba

A, Acquisition Audio encoding g
Image stitching, - - Ev
5 rotation, projection, Video encoding File/segment Fs
' and region-wise D encapsulation E
packing "> Image encoding [-E. ‘
Metadata
o
(i Delivery
OMAF player % x
8
Na B 2
LEUdSPGakGFS/ Audio rendering °1 Audio decoding X
eadphones e N E’a
; - - File/segment | F
v / Video decoding decapsulation Fs
Display Image rendering v\D E’ x
T f
i Image decoding
| Headleye |
Orientation/viewport metadata tracking | Orientation/

viewport metadata

image23.tiff
Pre-processing Conversion
A
f) —

Transcoder “output”
Task 1

Input 1

Transcoder OMAF Conversion

Input 2
e Task 2 Task

Array of

itput
Video info Qutpns

Transcoder

Input 3
Task 3

image24.png
Source

NBMP
Task 1

NBMP
Task 2

Measurement
Function

NBMP
Task 3

