i | <HHeum Y

120

i | <HHeum Y

120

HaploX Genomics Center: a large sequencing center

Able to sequence 60,000 whole genomes per year

To address some common bioinformatics problems, | started

OpenGene

Since Apr. 2016
https://github.com/OpenGene

Developed 10+ open source software

MutScan GeneFuse

gencore

Make

fastp DeepSomatic

Mutation ' :
Preprocess Aol Variant

Detection detection

in classficatio
OpenGene SegMaker repaq CfdnaPattern
NGS FASTQ cfDNA AfterQC Demultiplex

Julia library

simulator compression recognition ing

FAS TG OQC

Developed 10+ open source software

GeneFuse gencore

Make

Ml EelT DeepSomatic

Mutation Fusion Vont

Detection detection b CONSENSUS
OpenGene SegMaker CfdnaPattern Defq
NGS cfDNA AfterQC Demultiplex

Julia library

recognition EASTO OC ing

simulator

Why do we need another FASTQ preprocessor?

How did we do NGS data preprocessing?

Post-
filtering
QC

Pre-
filtering
QC

1, QC + filtering can be combined to reduce extra computation and I/O

Why do we need another FASTQ preprocessor?

We hope that the QC process can be automatic, so figures are not enough

Post-
filtering
QC

Pre—
filtering
QC

Downstream

analysis

failed

Exception

handling

2, the preprocessor should provide QC report readable for both human and computer

Why do we need another FASTQ preprocessor?

Some functions we were expecting...

PE-based Automatic polyG /

UMI
error adapter A i (R B O

; processing S L
correction trimming trimming

3, some functions must be integrated into the preprocessing step

Why do we need another FASTQ preprocessor?

We want to parallelize and stream our pipeline

Chr1
BAM
#1 #1 #1
Clean RVA\Y Sorted

FASTQ BAM BAM
Chr2
; BAM
. # D) #
Split RAW
P Clean RAW Sorted
FASTQ BAM BAM
Chr3
............ BAM
#n #n #n :

Clean RVA\Y Sorted

FASTQ BAM BAM
Chry
BAM

4, the preprocessor should support STDIN, STDOUT and splitting the data

Why do we need another FASTQ preprocessor?

Wait for 10 hours to QC and filter WGS data?

Speed

5, the preprocessor should be ultra-fast

https://github.com/OpenGene/fastp

H BEWEHH-> | B

120

fastp: an ultra-fast all-in-one FASTQ preprocessor

QC + filtering in a single I/O pass

Pre— Post—

filtering Filtering filtering
QC QC

1, QC + filtering can be combined to reduce extra computation and I/O

fastp: performs quality control, adapter trimming, quality filtering, per-read quality pruning,
and many other operations with a single scan of the FASTQ data

fastp: an ultra-fast all-in-one FASTQ preprocessor

2, the preprocessor should provide QC report readable for both human and computer
fastp: generates human readable JSON report + interactive HTML report

fastp: an ultra-fast all-in-one FASTQ preprocessor

3, some functions must be integrated into the preprocessing step

fastp: auto filtering, adapter trimming, quality pruning, base correction, polyG/polyX trimming,

UM, insert-size profiling, duplication profiling and many more...

fastp: an ultra-fast all-in-one FASTQ preprocessor

1. by limiting total split file number 1. read from STDIN or write to STDOUT

2. by limiting split file size 2. automatic interleaved for PE data

4, the preprocessor should support STDIN, STDOUT and splitting the data
fastp: supports splitting when filtering, streaming (STDIN + STDOUT)

fastp: an ultra-fast all-in-one FASTQ preprocessor

Table 1. Speed comparison

of fastp and other software.
Results for both paired-end
(PE) and single-end (SE)

input were compared.

Remember that fastp does much more than other

tools in this evaluation

5, the preprocessor should be ultra-fast

fastp: developed in C++ with solid multi-threading support, 2~5X faster than other tools

How we make it?

: preprocessing
F filtering

One pack One pack : isti
o ond ook : — statistical
: Global trimming o

Read2 in
Parallel Parallel

paired-end paired-end
preprocessor preprocessor
Pre-filtering

statistical
QC and QC and results

filtering Clean reads filtering
results results

Filtering

(a) main workflow (b) paired-end preprocessor

The workflow of fastp

PE overlap analysis for error correction

Error correction for PE data by overlap analysis

PE overlap analysis for adapter trimming

Automatic adapter trimming for PE data by overlap analysis

Automatic adapter sequence detection for SE data

77 1%
Y% - A:1.5% .. P
’ ‘ 3 A:0.5%
\ 1 \. ,adapter seed ‘
A i\ :
C: 98% AAATCGATCG =N ‘
< X > T:3.5% T: 98.5%

G:0.5%)~ O 6 0.5 "
- > G: 0.5% 1%

Backward: find the upstream adapter Forward: find the downstream adapter sequence
sequence followed by adapter seed following adapter seed

Detect adapter sequence by constructing nucleotide tree

UMI preprocessing

Handle UMI easily by fastp

UMI sequencing

fastp + gencore for UMI-based deduplication and error elimination

(a) the noisy data before processing (b) the clean data after processing

The effect of using fastp and gencore to reduce sequencing errors

Evaluate duplication level and insert-size distribution

(a) the duplication level and distribution (b) the insert-size distribution

fastp automatically evaluates duplication rate and insert-size with almost zero overhead

Detect the overrepresented sequences

fastp detects not only the overrepresented sequences, but also their distributions

Interactive full k-mer table

fastp computes the exactly occurrence
table of 5-mer, and present it in a
interactive HTML table.

The dark GGGGG

indicates polyG

How polyG happens, and how fastp addresses this issue

2-color system causes polyG fastp addresses the polyG issue

fastp addreses the polyG issue by trimming polyG tails

Evaluation of filtering performance for downstream analysis

(a) Mismatches, clips, and single-read maps (b) Result of adapter trimming performance

of the data filtered with different tools. evaluation.

fastp produces cleaner data for downstream analysis

10T bases generated per day, how to

H BEWEHH-> | B

=
N

repag

https.//github.com/OpenGene/repaq

2-stage compression

- =

LZMA

- CompreSSion -

Strategies to repack the original FASTQ

o g = > B

Encode and decode by chunks

Process the metainfo, sequence and quality separately
Extract the common info and ordered info from metainfo

Find the overlap of a pair of reads and encode it only once
Find the connection of N bases with corresponding quality bin
Find the major quality bin, and only encode the others

Don’t use any entropy encoding to preserve the compressibility for LZMA

FASTQ file of 100G bases from NovaSeq

40
GB

Uncompressed Gzip Bzip2 repaq ?
245GB 100% 50GB 20.4% 40GB 16.3%

FASTQ file of 100G bases from NovaSeq

40
GB

Uncompressed Gzip Bzip2 Repaq
245GB 100% 50GB 20.4% 40GB 16.3% 10 GB 4.1%

i | <HHeum Y

120

